
The Design Inference

How can we identify events due to intelligent causes and distinguish
them from events due to undirected natural causes? If we lack a
causal theory, how can we determine whether an intelligent cause
acted? This book presents a reliable method for detecting intelligent
causes: the design inference.

The design inference uncovers intelligent causes by isolating the
key trademark of intelligent causes: specified events of small prob-
ability. Just about anything that happens is highly improbable, but
when a highly improbable event is also specified (i.e., conforms to
an independently given pattern) undirected natural causes lose their
explanatory power. Design inferences can be found in a range of sci-
entific pursuits from forensic science to research into the origins of
life to the search for extraterrestrial intelligence.

This challenging and provocative book shows how incomplete
undirected causes are for science and breathes new life into clas-
sical design arguments. It will be read with particular interest by
philosophers of science and religion, other philosophers concerned
with epistemology and logic, probability and complexity theorists,
and statisticians.

"As the century and with it the millennium come to an end, ques-
tions long buried have disinterred themselves and come clattering
back to intellectual life, dragging their winding sheets behind them.
Just what, for example, is the origin of biological complexity and how
is it to be explained? We have no more idea today than Darwin did in
1859, which is to say no idea whatsoever. William Dembski's book is
not apt to be the last word on the inference to design, but it will surely
be the first. It is a fine contribution to analysis, clear, sober, informed,
mathematically sophisticated and modest. Those who agree with its
point of view will read it with pleasure, and those who do not will
ignore it at their peril."

David Berlinski, Author of The Tour of the Calculus
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The same Arguments which explode the Notion of Luck, may, on the other
side, be useful in some Cases to establish a due comparison between Chance
and Design: We may imagine Chance and Design to be, as it were, in Com-
petition with each other, for the production of some sorts of Events, and may
calculate what Probability there is, that those Events should be rather owing
to one than to the other.

—Abraham de Moivre, Doctrine of Chances, 1718





To my parents, William J. and Ursula Dembski, Proverbs 1:8-9
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Preface

Highly improbable events don't happen by chance. Just about every-
thing that happens is highly improbable. Both claims are correct as
far as they go. The aim of this monograph is to show just how far they
go. In Personal Knowledge Michael Polanyi (1962, p. 33) considers
stones placed in a garden. In one instance the stones spell "Welcome
to Wales by British Railways," in the other they appear randomly
strewn. In both instances the precise arrangement of stones is vastly
improbable. Indeed, any given arrangement of stones is but one of
an almost infinite number of possible arrangements. Nevertheless, ar-
rangements of stones that spell coherent English sentences form but
a minuscule proportion of the total possible arrangements of stones.
The improbability of such arrangements is not properly referred to
chance.

What is the difference between a randomly strewn arrangement and
one that spells a coherent English sentence? Improbability by itself
isn't decisive. In addition what's needed is conformity to a pattern.
When the stones spell a coherent English sentence, they conform
to a pattern. When they are randomly strewn, no pattern is evident.
But herein lies a difficulty. Everything conforms to some pattern or
other - even a random arrangement of stones. The crucial question,
therefore, is whether an arrangement of stones conforms to the right
sort of pattern to eliminate chance.

This monograph presents a full account of those patterns capable of
successfully eliminating chance. Present statistical theory offers only
a partial account of such patterns. To eliminate chance the statistician
sets up a rejection region prior to an experiment. If the outcome of
the experiment falls within the rejection region, chance is eliminated.
Rejection regions are patterns given prior to an event. Although such
patterns successfully eliminate chance, they are by no means the
only ones. Detectives, for instance, routinely uncover patterns after
the fact - patterns identified only after a crime has been committed,
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and which effectively preclude attributing the crime to chance (cf.
Dornstein, 1996; Evans, 1996).

Although improbability is not a sufficient condition for eliminating
chance, it is a necessary condition. Four heads in a row with a fair coin
is sufficiently probable as not to raise an eyebrow; four hundred heads
in a row is a different story. But where is the cutoff? How small a
probability is small enough to eliminate chance? The answer depends
on the relevant number of opportunities for patterns and events to
coincide - or what I call the relevant probabilistic resources. A toy
universe with only 10 elementary particles has far fewer probabilistic
resources than our own universe with 1080. What is highly improbable
and not properly attributed to chance within the toy universe may be
quite probable and reasonably attributed to chance within our own
universe.

Eliminating chance is closely connected with design and intelli-
gent agency. To eliminate chance because a sufficiently improbable
event conforms to the right sort of pattern is frequently the first step
in identifying an intelligent agent. It makes sense, therefore, to de-
fine design as "patterned improbability," and the design inference as
the logic by which "patterned improbability" is detected and demon-
strated. So defined, the design inference stops short of delivering a
causal story for how an intelligent agent acted. But by precluding
chance and implicating intelligent agency, the design inference does
the next best thing.

Who will want to read this monograph? Certainly anyone interested
in the logic of probabilistic inferences. This includes logicians, epis-
temologists, philosophers of science, probabilists, statisticians, and
computational complexity theorists. Nevertheless, a much broader au-
dience has a vital stake in the results of this monograph. Indeed, any-
one who employs small-probability chance-elimination arguments for
a living will want to know the results of this monograph. The broader
audience of this work therefore includes forensic scientists, SETI
researchers, insurance fraud investigators, debunkers of psychic phe-
nomena, origins-of-life researchers, intellectual property attorneys,
investigators of data falsification, cryptographers, parapsychology re-
searchers, and programmers of (pseudo-) random number generators.

Although this is a research monograph, my aim throughout has
been to write an interesting book, and one that as little as possible
duplicates existing texts in probability and statistics. Even the most
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technical portions of this monograph will be interlaced with examples
accessible to nontechnical readers. I therefore encourage nontechni-
cal readers to read this monograph from start to finish, skipping the
technical portions. Readers with a background in probability theory,
on the other hand, I encourage to read this monograph thoroughly
from start to finish. Small-probability arguments are widely abused
and misunderstood. In the analysis of small-probability arguments the
devil is in the details. Because this monograph constitutes a sustained
argument, a sustained reading would be optimal. Nevertheless, for the
reader with limited time, I suggest reading Sections 1.1-1.2,2.1-2.2,
5.1-5.4, and all of Chapter 6 in order, referring to Chapters 3 and 4
as needed.

This monograph is organized as follows. Chapter 1 is an examples
chapter showing just how prevalent design inferences are. Chapter 2
in turn provides an overview of the logical structure of the design
inference. Chapters 1 and 2 are the least technical and introduce the
design inference. Chapters 3 and 4 present the twin pillars on which
the design inference is based, namely, probability theory and com-
plexity theory. With the technical apparatus of Chapters 3 and 4 in
place, what remains is to elucidate the dual notions of specification
and probabilistic resources. Chapter 5 treats specification (i.e., the
type of pattern needed to eliminate chance). Chapter 6 treats proba-
bilistic resources (i.e., the degree of improbability needed to eliminate
chance). Together Chapters 5 and 6 yield a precise formulation of the
design inference.

Xl l l
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1
Introduction

1.1 HISTORICAL OVERVIEW

Eliminating chance through small probabilities has a long history.
In his dialogue on the nature of the gods, Cicero (46 BC, p. 213) re-
marked, "If a countless number of copies of the one-and-twenty letters
of the alphabet, made of gold or what you will, were thrown together
into some receptacle and then shaken out on to the ground, [would
it] be possible that they should produce the Annals of Ennius? . . .
I doubt whether chance could possibly succeed in producing even a
single verse!"

Eighteen centuries later the Marquis Pierre Simon de Laplace
(1814, p. 1307) would question whether Cicero's method of randomly
shaking out letters could produce even a single word: "On a table we
see letters arranged in this order, Constantinople, and we judge that
this arrangement is not the result of chance, not because it is less
possible than the others, for if this word were not employed in any
language we should not suspect it came from any particular cause, but
this word being in use among us, it is incomparably more probable
that some person has thus arranged the aforesaid letters than that this
arrangement is due to chance." A whole book, a single verse, nay,
even a long word are so unlikely that we attribute their occurrence to
something other than chance.

To show the absurdity of maintaining chance in the face of small
probabilities Thomas Reid (1780, p. 52) asked: "If a man throws dies
and both turn up aces, if he should throw 400 times, would chance
throw up 400 aces? Colors thrown carelessly upon a canvas may come
up to appear as a human face, but would they form a picture beautiful
as the pagan Venus? A hog grubbing in the earth with his snout may
turn up something like the letter A, but would he turn up the words of
a complete sentence?" The answer to each question obviously is "no."



In the preface to his classic treatise on gambling Abraham de
Moivre (1718, p. v) opposes chance to a mode of explanation he
calls "design":

The same Arguments which explode the Notion of Luck, may, on the other
side, be useful in some Cases to establish a due comparison between Chance
and Design: We may imagine Chance and Design to be, as it were, in
Competition with each other, for the production of some sorts of Events,
and may calculate what Probability there is, that those Events should be
rather owing to one than to the other. To give a familiar Instance of this,
Let us suppose that two Packs of Piquet-Cards being sent for, it should be
perceived that there is, from Top to Bottom, the same Disposition of the
Cards in both packs; let us likewise suppose that, some doubt arising about
this Disposition of the Cards, it should be questioned whether it ought to be
attributed to Chance, or to the Maker's Design: In this Case the Doctrine of
Combinations decides the Question; since it may be proved by its Rules, that
there are the odds of above 263130830000 Millions of Millions of Millions
of Millions to One, that the Cards were designedly set in the Order in which
they were found.

Nor has eliminating chance through small probabilities dimin-
ished in our own day. When Ronald Fisher charged Gregor Mendel's
gardening assistant with data falsification because Mendel's data
matched Mendel's theory too closely, Fisher was eliminating chance
through small probabilities (see Fisher, 1965, p. 53). When Richard
Dawkins takes creationists to task for misunderstanding Darwin's the-
ory, it is for failing to appreciate that Darwin's theory renders life's
emergence and development sufficiently probable to obviate the need
for a supernatural designer. As a matter of general principle, however,
Dawkins concedes that eliminating chance through small probabili-
ties constitutes a valid mode of reasoning - it's just that in the case
of life's emergence and development the probabilities aren't small
enough (see Dawkins, 1987, pp. 139-144). Present-day examples of
chance-elimination arguments based on small probabilities are easily
multiplied (cf. the later sections in this chapter).

What underlies our unwillingness to attribute highly improbable
events to chance? According to the French mathematician Emile
Borel this unwillingness proceeds from a regulative principle govern-
ing small probabilities. Borel (1962, p. 1) referred to this principle as
the Single Law of Chance, and formulated it as follows: "Phenomena



with very small probabilities do not occur." Though Borel's proba-
bilistic intuitions were excellent, and though his work on small prob-
abilities has led the field since the 1930s, his statement of the Single
Law of Chance is inadequate. Two objections can be raised: (1) Borel
never adequately distinguished those highly improbable events prop-
erly attributed to chance from those properly attributed to something
else; and (2) Borel never clarified what concrete numerical values
correspond to small probabilities.

The first objection is evident: plenty of highly improbable events
happen by chance all the time. The precise sequence of heads and
tails in a long sequence of coin tosses, the precise configuration of
darts from throwing darts at a dart board, and the precise seating
arrangement of people at a cinema are all highly improbable events
that, apart from any further information, can properly be explained by
appeal to chance. It is only when the precise sequence of heads and
tails has been recorded in advance, when the precise configuration
of the darts locates all the darts at the center of the target, and when
the precise seating arrangement at the cinema corresponds to seats
people have been assigned on their ticket stubs that we begin to doubt
whether these events occurred by chance. In other words, it is not just
the sheer improbability of an event, but also the conformity of the
event to a pattern, that leads us to look beyond chance to explain the
event.

"Eliminating chance through small probabilities" must therefore
be interpreted as an elliptical expression. Sheer improbability by it-
self is not enough to eliminate chance. Rather, to eliminate chance,
we need also to know whether an event conforms to a pattern. Un-
fortunately, in formulating his Single Law of Chance, Borel never
made this conformity of event to pattern explicit. This is not to
say that Borel dismissed an extra-probabilistic factor like "confor-
mity to pattern" in eliminating chance. But in never making the
role of patterns explicit, or analyzing it, Borel's treatment of how
small probabilities eliminate chance became unnecessarily restric-
tive. Essentially, to eliminate chance through small probabilities
Borel was forced to designate a pattern prior to an event and then
eliminate chance just in case the event conformed to that pattern.
This method of eliminating chance is of course extremely common
in statistics, where it is known as setting a rejection region prior to an



experiment. In statistics, if the outcome of an experiment (= event)
falls within the rejection region (= pattern), the chance hypothesis
supposedly responsible for the outcome is rejected (i.e., chance is
eliminated).

A little reflection, however, makes clear that a pattern need not
be given prior to an event to warrant eliminating chance. Consider,
for instance, Alice and Bob on the occasion of their fiftieth wedding
anniversary. Their six children show up bearing gifts. Each gift is part
of a matching set of china. There is no duplication of gifts, and together
the gifts form a complete set of china. Suppose Alice and Bob were
satisfied with their old set of china, and had no inkling prior to opening
their gifts that they might expect a new set of china. Alice and Bob
are therefore without a relevant pattern whither to refer their gifts
prior to actually receiving them from their children. Nevertheless,
Alice and Bob will not attribute the gifts to random acts of kindness
(i.e., to chance). Rather, Alice and Bob will attribute the new set of
china to the collusion of their children (i.e., to design). Granted, Alice
and Bob have been given no pattern prior to receiving the gifts. Yet
on receiving the gifts, Alice and Bob discern a pattern that - though
discerned after the fact - cannot be reasonably explained apart from
the collusion of their children.

In the presence of small probabilities, patterns given prior to events
always eliminate chance. In the presence of small probabilities, pat-
terns identified after events may or may not eliminate chance. Thus,
Alice and Bob were able to eliminate chance after the fact. But
suppose I flip a coin a thousand times and subsequently record the
sequence of coin tosses on paper. The sequence I flipped (= event)
conforms to the sequence recorded on paper (= pattern). Moreover,
the sequence I flipped is vastly improbable (the probability is approxi-
mately 10~300). Nevertheless, it's clear that the pattern to which these
coin flips conform was artificially concocted and, as it stands, cannot
legitimately warrant eliminating chance - the pattern was simply read
off the event.

Patterns may therefore be divided into two types, those that in the
presence of small probabilities warrant the elimination of chance and
those that despite the presence of small probabilities do not warrant
the elimination of chance. The first type of pattern will be called



a specification, the second a fabrication.1 Borel never drew this
distinction, and as a result only saw how to eliminate chance in the
simplest case where a pattern is given prior to an event. Borel's Single
Law of Chance never came to terms with specification. In place of his
Single Law of Chance, I therefore propose a new regulative principle
governing small probabilities, one that makes explicit reference to
specification. This replacement for Borel's Single Law of Chance
I call the Law of Small Probability (LSP). According to this law,
specified events of small probability do not occur by chance.

The other objection to Borel's Single Law of Chance is this. Be-
sides failing to distinguish specifications from fabrications, Borel
never clarified what concrete numerical values correspond to small
probabilities. In any practical application, to use small probabilities to
eliminate chance we need a probability bound co according to which
any probability p less than to is small. The need for such a probability
bound now raises an obvious question: How small is small enough?
This question demands a concrete numerical answer, for without such
concrete numbers, eliminating chance through small probabilities be-
comes subjective and vague.

This is not to say Borel never offered such concrete numbers. He
did. In 1930 he proposed 1O~1000 as a bound below which proba-
bilities could be neglected universally (i.e., neglected across the en-
tire universe). Later, in 1939, he proposed a less stringent universal
probability bound of KT50 (see Knobloch, 1990, p. 228). Unfortu-
nately, Borel never convincingly justified these probability bounds.
Take 10~50, the probability bound on which Borel ultimately settled.
Borel (1962, p. 28) justified this bound as follows:

If we turn our attention, not to the terrestrial globe, but to the portion of the
universe accessible to our astronomical and physical instruments, we are led
to define the negligible probabilities on the cosmic scale. Some astronomical
laws, such as Newton's law of universal gravitation and certain physical

1 This distinction addresses the worry that it's always possible to find any pattern one likes in a
data set so long as one looks hard enough. Although there may be no limit to the patterns one
can invent and afterward impose on data, there are strict limits to the patterns with the right
probabilistic and complexity-theoretic properties for eliminating chance (cf. Chapter 5).
Distinguishing patterns according to their ability to underwrite particular forms of inference
is not new. Nelson Goodman (1983), for instance, distinguishes the patterns that lead to
successful inductive inferences from those that do not, referring to the former as projectable
predicates (cf. "all emeralds are green") and to the latter as nonprojectable predicates (cf.
"all emeralds are grue" where grue means green before the year 2000, blue thereafter).



laws relative to the propagation of light waves, are verified by innumerable
observations of all the visible celestial bodies. The probability that a new
observation would contradict all these concordant observations is extremely
small. We may be led to set at 1CT50 the value of negligible probabilities on
the cosmic scale. When the probability of an event is below this limit, the
opposite event may be expected to occur with certainty, whatever the number
of occasions presenting themselves in the entire universe. The number of
observable stars is of the order of magnitude of a billion, or 109, and the
number of observations which the inhabitants of the earth could make of these
stars, even if all were observing, is certainly less than 1020. [An event] with a
probability of 10~50 will therefore never occur, or at least never be observed.

There are three problems with Borel's case for 10~50 as a universal
probability bound. First, Borel does not adequately distinguish the
occurrence of an event from the observation of an event. There is
a difference between an event never occurring and never being ob-
served. Is it that (specified) events of small probability are occurring
all the time, but that we're just not observing them? Or are they not
occurring at all? Borel doesn't say.

Second, Borel never makes clear how the number of opportunities
for an event to occur covaries with his universal probability bound.
That there's a connection is clear. If, for instance, there are 1050 op-
portunities for an event of probability 10~50 to occur, then there is a
better than even chance that the event will occur. With 1050 opportu-
nities, an event of probability 10~50 is therefore likely to occur. But
suppose Borel is right, and that the universe is such that no event has
anywhere near 1050 opportunities to occur. Suppose no event has more
than 1030 opportunities to occur. An event of probability 10~50 with
1030 opportunities to occur therefore has probability around 10~20 of
occurring. True, this last probability strikes us as absurdly small. But
if all we've done is substitute one small probability (i.e., 10~20) for
another (i.e., 10~50), then we've hardly explained what constitutes a
small probability. There is a regress here, and Borel does nothing to
point the way out.

Third and last, in fixing his small probability bound, Borel neglects
an inquirer's interests and context. In most contexts 10~50 is far too
stringent. When, for instance, Ronald Fisher charged Mendel's gar-
dening assistant with data falsification, what elicited this charge was a
specified event whose probability was no more extreme than one in a
hundred thousand (see Freedman, Pisani, and Purves, 1978, pp. 426-
7). What counts as a small probability depends on an inquirer's



interests and context for eliminating chance. Social scientists who
set their alpha level at .05 or .01 (= small probability bound) are less
stringent than criminal courts that establish guilt to a moral certainty
and beyond reasonable doubt, and these in turn are less stringent than
inflationary cosmologists as they account for the relative flatness of
spacetime. Borel admits that what counts as a small probability on
"the human scale" differs from what counts as a small probability on
the "cosmic scale" (Borel, 1962, pp. 26-8). But he never clarifies
how small probabilities covary with context.

In each case the difficulty is not that Borel went wrong, but that
Borel did not go far enough. The Law of Small Probability corrects
Borel's Single Law of Chance, and thereby elucidates the pattern of
inference from which the title of this monograph takes its name -
the design inference. When the Law of Small Probability eliminates
chance, it is always a specific chance hypothesis that gets eliminated.
By itself, a given application of the Law of Small Probability therefore
falls under that branch of statistics known as hypothesis testing. In
hypothesis testing, when a given chance hypothesis gets eliminated,
it is typically because an alternate chance hypothesis has displaced
it - essentially chance gets replaced by chance (cf. Hacking, 1965,
p. 89). By contrast, a successful design inference sweeps the field
clear of chance hypotheses. The design inference, in inferring design,
eliminates chance entirely, whereas statistical hypothesis testing, in
eliminating one chance hypothesis, opens the door to others.

To appreciate the difference between statistical hypothesis testing
and the design inference, imagine a die thrown six million times.
Statistical hypothesis testing considers two hypotheses: Ho, the null
hypothesis, which asserts that the die is fair (i.e., each face has proba-
bility 1/6); and Hj, the alternate hypothesis, which asserts that the die
is in some way loaded or skewed. Suppose now that the die is thrown
six million times and that each face appears exactly one million times.
Even if the die is fair, something is fishy about getting exactly one
million appearances of each face. Yet the standard statistical method
for testing whether the die is fair, namely, a chi-square goodness of fit
test, has no possibility of rejecting the null hypothesis (cf. Freedman
et al., 1978, ch. 28). Indeed, statistical hypothesis testing can do no
better than advise accepting the null hypothesis Ho.

This advice, however, is clearly absurd. As with Ronald Fisher's
analysis of Gregor Mendel's pea-pod experiments, the fit between



data and theory is too close to be explained by chance. If the die is
fair and directed by chance, our best single guess - or what is known
as the mathematical expectation - is that each face of the die will ap-
pear a million times. But this mathematical expectation differs sharply
from our practical expectation in which we expect to see each face
of the die appear roughly a million times, but not exactly a million
times. The probability of an exact fit with mathematical expectation
is around 10~20, which in any practical application constitutes a small
probability. Moreover, since in any practical application the mathe-
matical expectation will constitute a specification, the Law of Small
Probability advises rejecting the null hypothesis Ho, contrary to statis-
tical hypothesis testing. Thus, whereas statistical hypothesis testing
eliminates chance because divergence from mathematical expecta-
tion is too great, the design inference eliminates chance because the
fit with mathematical expectation is too close.

We may therefore think of design and chance as competing modes
of explanation for which design prevails once chance is exhausted. In
eliminating chance, the design inference eliminates not just a single
chance hypothesis, but all relevant chance hypotheses. How do we
explain an event once a design inference has swept the field clear of
relevant chance hypotheses? Although a design inference is often the
occasion for inferring an intelligent agent (cf. the examples in the
following sections), as a pattern of inference the design inference is
not tied to any doctrine of intelligent agency. The design inference
focuses on features of an event that bar it from being attributed to
chance, not on the causal story underlying the event. To be sure,
there is a connection between the design inference and intelligent
agency (see Section 2.4). This connection, however, is not part of the
logical structure of the design inference. Certain events are properly
attributed to chance, certain events are not. The design inference
marks the difference, yet without prejudging the underlying causal
story.

If the design inference at best implicates an intelligent agent with-
out necessarily delivering one, why use the word design at all, es-
pecially since the word so readily connotes intelligent agency? The
reference to design reflects the logical structure of the design infer-
ence, depending as it does on a coincidence between patterns and
events. Taken in its most fundamental sense, the word design denotes
a pattern or blueprint. Often the reason an event conforms to a pattern



is because an intelligent agent has acted deliberately to conform the
event to the pattern. There is no logical necessity, however, for turning
this connection between event and pattern into a metaphysical princi-
ple. We can determine whether an event conforms to a pattern with-
out having to explain why the conformity exists. Thus, even though a
design inference is frequently the first step toward identifying an in-
telligent agent, design as inferred from the design inference does not
logically entail an intelligent agent. The design that emerges from
the design inference must not be conflated with intelligent agency.
Though they are frequently linked, the two are separate. Whether an
event conforms to a pattern is a separate question from what caused
an event to conform to a pattern.

The effect of a design inference is to limit our explanatory options,
not to identify a cause. To identify a cause we need to investigate
the particulars of the situation in which design is inferred. Simply
put, we need more details. As a mode of explanation, design is not
in the business of telling causal stories. Rather, design signifies the
output of a certain pattern of inference, to wit, the design inference.
Design therefore constitutes a logical rather than causal category. So
construed design falls not within teleology, but within the logical
foundations of probability theory. The design inference constitutes
the most exciting application of the Law of Small Probability. All the
remaining sections of this chapter illustrate design inferences.

1.2 THE MAN WITH THE GOLDEN ARM

Even if we can't ascertain the precise causal story underlying an event,
we often have probabilistic information that enables us to rule out
ways of explaining the event. This ruling out of explanatory options
is what the design inference is all about. The design inference does
not by itself deliver an intelligent agent. But as a logical apparatus
for sifting our explanatory options, the design inference rules out
explanations incompatible with intelligent agency (such as chance).
The design inference appears widely, and is memorably illustrated in
the following example (New York Times, 23 July 1985, p. Bl):

TRENTON, July 22 - The New Jersey Supreme Court today caught up
with the "man with the golden arm," Nicholas Caputo, the Essex County
Clerk and a Democrat who has conducted drawings for decades that have
given Democrats the top ballot line in the county 40 out of 41 times.



Mary V. Mochary, the Republican Senate candidate, and county Republi-
can officials filed a suit after Mr. Caputo pulled the Democrat's name again
last year.

The election is over - Mrs. Mochary lost - and the point is moot. But the
court noted that the chances of picking the same name 40 out of 41 times
were less than 1 in 50 billion. It said that "confronted with these odds, few
persons of reason will accept the explanation of blind chance."

And, while the court said it was not accusing Mr. Caputo of anything,
it said it believed that election officials have a duty to strengthen public
confidence in the election process after such a string of "coincidences."

The court suggested - but did not order - changes in the way Mr. Caputo
conducts the drawings to stem "further loss of public confidence in the
integrity of the electoral process."

Justice Robert L. Clifford, while concurring with the 6-to-0 ruling, said
the guidelines should have been ordered instead of suggested.

Nicholas Caputo was brought before the New Jersey Supreme
Court because the Republican party filed suit against him, claim-
ing Caputo had consistently rigged the ballot lines in the New Jersey
county where he was county clerk. It is common knowledge that first
position on a ballot increases one's chances of winning an election
(other things being equal, voters are more likely to vote for the first
person on a ballot than the rest). Since in every instance but one Caputo
positioned the Democrats first on the ballot line, the Republicans ar-
gued that in selecting the order of ballots Caputo had intentionally
favored his own Democratic party. In short, the Republicans claimed
Caputo cheated.

The question, then, before the New Jersey Supreme Court was,
Did Caputo actually rig the order of ballots, or was it without malice
and forethought that Caputo assigned the Democrats first place forty
out of forty-one times? Since Caputo denied wrongdoing, and since
he conducted the drawing of ballots so that witnesses were unable to
observe how he actually did draw the ballots (this was brought out in
a portion of the article omitted in the preceding quote), determining
whether Caputo did in fact rig the order of ballots becomes a matter
of evaluating the circumstantial evidence connected with this case.
How, then, is this evidence to be evaluated?

In trying to explain the remarkable coincidence of Nicholas Caputo
selecting the Democrats forty out of forty-one times to head the ballot
line, the court faced three explanatory options:
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Regularity: Unknown to Caputo, he was not employing a reliable
random process to determine ballot order. Caputo was like some-
one who thinks a fair coin is being flipped when in fact it's a
double-headed coin. Just as flipping a double-headed coin is
going to yield a long string of heads, so Caputo, using his faulty
method for ballot selection, generated a long string of Democrats
coming out on top. An unknown regularity controlled Caputo's
ballot line selections.

Chance: In selecting the order of political parties on the state ballot,
Caputo employed a reliable random process that did not favor
one political party over another. The fact that the Democrats
came out on top forty out of forty-one times was simply a fluke.
It occurred by chance.

Agency: Caputo, acting as a fully conscious intelligent agent and
intending to aid his own political party, purposely rigged the
ballot line selections to keep the Democrats coming out on top.
In short, Caputo cheated.

The first option - that Caputo chose poorly his procedure for select-
ing ballot lines, so that instead of genuinely randomizing the ballot
order, it just kept putting the Democrats on top - was not taken se-
riously by the court. The court could dismiss this option outright
because Caputo claimed to be using an urn model to select ballot
lines. Thus, in a portion of the New York Times article not quoted,
Caputo claimed to have placed capsules designating the various po-
litical parties running in New Jersey into a container, and then swished
them around. Since urn models are among the most reliable random-
ization techniques available, there was no reason for the court to
suspect that Caputo's randomization procedure was at fault. The key
question, therefore, was whether Caputo actually put this procedure
into practice when he made the ballot line selections, or whether
he purposely circumvented this procedure to keep the Democrats
coming out on top. And since Caputo's actual drawing of the cap-
sules was obscured to witnesses, it was this question the court had to
answer.

With the regularity explanation at least for the moment bracketed,
the court next decided to dispense with the chance explanation. Hav-
ing noted that the chance of picking the same political party 40 out
of 41 times was less than 1 in 50 billion, the court concluded that
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"confronted with these odds, few persons of reason will accept the
explanation of blind chance." Now this certainly seems right. Nev-
ertheless, a bit more needs to be said. As we saw in Section 1.1,
exceeding improbability is by itself not enough to preclude an event
from happening by chance. Whenever I am dealt a bridge hand, I par-
ticipate in an exceedingly improbable event. Whenever I play darts,
the precise position where the darts land represents an exceedingly
improbable configuration. In fact, just about anything that happens
is exceedingly improbable once we factor in all the other ways what
actually happened might have happened. The problem, then, does not
reside simply in an event being improbable.

All the same, in the absence of a causal story detailing what
happened, improbability remains a crucial ingredient in eliminating
chance. For suppose that Caputo actually was cheating right from the
beginning of his career as Essex County clerk. Suppose further that the
one exception in Caputo's career as "the man with the golden arm" -
that is, the one case where Caputo placed the Democrats second on
the ballot line - did not occur till after his third time selecting ballot
lines. Thus, for the first three ballot line selections of Caputo's career
the Democrats all came out on top, and they came out on top precisely
because Caputo intended it that way. Simply on the basis of three bal-
lot line selections, and without direct evidence of Caputo's cheating,
an outside observer would be in no position to decide whether Caputo
was cheating or selecting the ballots honestly.

With only three ballot line selections, the probabilities are too large
to reliably eliminate chance. The probability of randomly selecting
the Democrats to come out on top given that their only competi-
tion is the Republicans is in this case 1 in 8 (here p equals 0.125;
compare this with the p-value computed by the court, which equals
0.00000000002). Because three Democrats in a row could eas-
ily happen by chance, we would be acting in bad faith if we did
not give Caputo the benefit of the doubt in the face of such large
probabilities. Small probabilities are therefore a necessary condi-
tion for eliminating chance, even though they are not a sufficient
condition.

What, then, besides small probabilities do we need for evidence
that Caputo cheated? As we saw in Section 1.1, the event in question
needs to conform to a pattern. Not just any pattern will do, however.
Some patterns successfully eliminate chance while others do not.
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Consider the case of an archer. Suppose an archer stands fifty meters
from a large wall with bow and arrow in hand. The wall, let us say, is
sufficiently large that the archer cannot help but hit it. Now suppose
every time the archer shoots an arrow at the wall, she paints a target
around the arrow, so that the arrow is positioned squarely in the bull's-
eye. What can be concluded from this scenario? Absolutely nothing
about the archer's ability as an archer. The fact that the archer is in
each instance squarely hitting the bull's-eye is utterly bogus. Yes, she
is matching a pattern; but it is a pattern she fixes only after the arrow
has been shot and its position located. The pattern is thus purely ad
hoc.

But suppose instead that the archer paints a fixed target on the
wall and then shoots at it. Suppose she shoots 100 arrows, and each
time hits a perfect bull's-eye. What can be concluded from this second
scenario? In the words of the New Jersey Supreme Court, "confronted
with these odds, few persons of reason will accept the explanation of
blind chance." Indeed, confronted with this second scenario we infer
that here is a world-class archer.

The difference between the first and the second scenario is that the
pattern in the first is purely ad hoc, whereas the pattern in the second
is not. Thus, only in the second scenario are we warranted eliminat-
ing chance. Let me emphasize that for now I am only spotlighting a
distinction without explicating it. I shall in due course explicate the
distinction between "good" and "bad" patterns - those that respec-
tively do and don't permit us to eliminate chance (see Chapter 5). But
for now I am simply trying to make the distinction between good and
bad patterns appear plausible. In Section 1.1 we called the good pat-
terns specifications and the bad patterns fabrications. Specifications
are the non-ad hoc patterns that can legitimately be used to eliminate
chance and warrant a design inference. Fabrications are the ad hoc
patterns that cannot legitimately be used to eliminate chance.

Thus, when the archer first paints a fixed target and thereafter shoots
at it, she specifies hitting a bull's-eye. When in fact she repeatedly
hits the bull's-eye, we are warranted attributing her success not to
beginner's luck, but to her skill as an archer. On the other hand,
when the archer paints a target around the arrow only after each
shot, squarely positioning each arrow in the bull's-eye, she fabri-
cates hitting the bull's-eye. Thus, even though she repeatedly hits the
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bull's-eye, we are not warranted attributing her "success" in hitting
the bull's-eye to anything other than luck. In the latter scenario, her
skill as an archer thus remains an open question.2

How do these considerations apply to Nicholas Caputo? By se-
lecting the Democrats to head the ballot forty out of forty-one times,
Caputo appears to have participated in an event of probability less
than 1 in 50 billion (p = 0.00000000002). Yet as we have noted,
events of exceedingly small probability happen all the time. Hence
by itself Caputo's participation in an event of probability less than 1
in 50 billion is no cause for alarm. The crucial question is whether this
event is also specified - does this event follow a non-ad hoc pattern
so that we can legitimately eliminate chance?

Now there is a very simple way to avoid ad hoc patterns and gen-
erate specifications, and that is by designating an event prior to its
occurrence - C. S. Peirce (1883 [1955], pp. 207-10) referred to this
type of specification as a predesignation. In the archer example, by
painting the bull's-eye before taking aim, the archer specifies in ad-
vance where the arrows are to land. Because the pattern is set prior
to the event, the objection of ad-hocness or fabrication is effectively
blocked.

In the Caputo case, however, the pattern is discovered after the
event: only after we witness an extended series of ballot line selec-
tions do we notice a suspicious pattern. Though discovered after the
fact, this pattern is not a fabrication. Patterns given prior to an event,
or Peirce's predesignations, constitute but a proper subset of the pat-
terns that legitimately eliminate chance. The important thing about a
pattern is not when it was identified, but whether in a certain well-
defined sense it is independent of an event. We refer to this relation
of independence as detachability, and say that a pattern is detachable
just in case it satisfies this relation.

2 The archer example introduces a tripartite distinction that will be implicit throughout our
study of chance elimination arguments: a reference class of possible events (e.g., the arrow
hitting the wall at some unspecified place); a pattern that restricts the reference class of
possible events (e.g., a target on the wall); and the precise event that has occurred (e.g.,
the arrow hitting the wall at some precise location). In a chance elimination argument, the
reference class, the pattern, and the event are always inseparably linked, with the pattern
mediating between the event and the reference class, helping to decide whether the event
really is due to chance. Throughout this monograph we shall refer to patterns and events as
such, but refer to reference classes by way of the chance hypotheses that characterize them
(cf. Section 5.2).
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Detachability distinguishes specifications from fabrications. Al-
though a precise account of detachability will have to wait until
Chapter 5, the basic intuition underlying detachability is this: Given
an event, would we be able to formulate a pattern describing it if we
had no knowledge which event occurred? Here is the idea. An event
has occurred. A pattern describing the event is given. The event is
one from a range of possible events. If all we knew was the range
of possible events without any specifics about which event actually
occurred, could we still formulate the pattern describing the event? If
so, the pattern is detachable from the event.

To illustrate detachability in the Caputo case, consider two pos-
sible courses Nicholas Caputo's career as Essex County clerk might
have taken (for simplicity assume no third-party candidates were ever
involved, so that all elections were between Democrats and Republi-
cans). In the one case - and for the sake of argument let us suppose
this is what actually happened - Caputo chose the Democrats over
the Republicans forty out of forty-one times in the following order:

(A) DDDDDDDDDDDDDDDDDDDDDDRDDDDDDDDDDDDDDDDDD.

Thus, the initial twenty-two times Caputo chose the Democrats to
head the ballot line, then the twenty-third time he chose the Republi-
cans, after which for the remaining times he chose the Democrats.

In the second possible course Caputo's career as county clerk might
have taken, suppose Caputo once again had forty-one occasions on
which to select the order of ballots, but this time that he chose both
Democrats and Republicans to head the ballot pretty evenly, let us
say in the following order:

(B) DRRDRDRRDDDRDRDDRDRRDRRDRRRDRRRDRDDDRDRDD.

In this instance the Democrats came out on top only twenty times,
and the Republicans twenty-one times.

Sequences (A) and (B) are both patterns and describe possible ways
Caputo might have selected ballot orders in his years as Essex County
clerk. (A) and (B) are therefore patterns describing possible events.
Now the question detachability asks is whether (A) and (B) could
have been formulated without our knowing which event occurred. For
(A) the answer is yes, but for (B) the answer is no. (A) is therefore
detachable whereas (B) is not.
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How is this distinction justified? To formulate (B) I just one mo-
ment ago flipped a coin forty-one times, recording "D" for Democrat
whenever I observed heads and "R" for Republican whenever I ob-
served tails. On the other hand, to formulate (A) I simply recorded
"D" forty times and then interspersed a single "R." Now consider a
human subject S confronted with sequences (A) and (B). S comes to
these sequences with considerable background knowledge which, we
may suppose, includes the following:

(1) Nicholas Caputo is a Democrat.
(2) Nicholas Caputo would like to see the Democrats appear first on

the ballot since having the first place on the ballot line signifi-
cantly boosts one's chances of winning an election.

(3) Nicholas Caputo, as election commissioner of Essex County, has
full control over who appears first on the ballots in Essex County.

(4) Election commissioners in the past have been guilty of all manner
of fraud, including unfair assignments of ballot lines.

(5) If Caputo were assigning ballot lines fairly, then both Democrats
and Republicans should receive priority roughly the same number
of times.

Given this background knowledge S is in a position to formulate
various "cheating patterns" by which Caputo might attempt to give the
Democrats first place on the ballot. The most blatant cheat is of course
to assign the Democrats first place all the time. Next most blatant is
to assign the Republicans first place just once (as in (A) - there are
41 ways to assign the Republicans first place just once). Slightly less
blatant - though still blatant - is to assign the Republicans first place
exactly two times (there are 820 ways to assign the Republicans first
place exactly two times). This line of reasoning can be extended by
throwing the Republicans a few additional sops. The point is, given
S's background knowledge, S is easily able (possibly with the aid of
a personal computer) to formulate ways Caputo could cheat, one of
which would surely include (A).

Contrast this now with (B). Since (B) was generated by a sequence
of coin tosses, (B) represents one of two trillion or so possible ways
Caputo might legitimately have chosen ballot orders. True, in this
respect probabilities do not distinguish (A) from (B) since all such
sequences of Ds and Rs of length 41 have the same small probability
of occurring by chance, namely 1 in 241, or approximately 1 in two
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trillion. But S is a finite agent whose background knowledge enables
S to formulate only a tiny fraction of all the possible sequences of Ds
and Rs of length 41. Unlike (A), (B) is not among them. Confronted
with (B), S will scrutinize it, try to discover a pattern that isn't ad hoc,
and thus seek to uncover evidence that (B) resulted from something
other than chance. But given S's background knowledge, nothing
about (B) suggests an explanation other than chance. Indeed, since
the relative frequency of Democrats to Republicans actually favors
Republicans (twenty-one Rs versus twenty Ds), the Nicholas Caputo
responsible for (B) is hardly "the man with the golden arm." Thus,
while (A) is detachable, (B) is not.

But can one be absolutely certain (B) is not detachable? No, one
cannot. There is a fundamental asymmetry between detachability and
its negation, call it nondetachability. In practice one can decisively
demonstrate that a pattern is detachable from an event, but not that
a pattern is incapable of being detached from an event. A failure to
establish detachability always leaves open the possibility that detach-
ability might still be demonstrated at some later date.

To illustrate this point, suppose I walk down a dirt road and find
some stones lying about. The configuration of stones says nothing
to me. Given my background knowledge I can discover no pattern in
this configuration that I could have formulated on my own without
actually seeing the stones lying about as they do. I cannot detach
the pattern of stones from the configuration they assume. I therefore
have no reason to attribute the configuration to anything other than
chance. But suppose next an astronomer travels this same road and
looks at the same stones only to find that the configuration precisely
matches some highly complex constellation. Given the astronomer's
background knowledge, this pattern now becomes detachable. The
astronomer will therefore have grounds for thinking that the stones
were intentionally arranged to match the constellation.

Detachability must always be relativized to a subject and a subject's
background knowledge. Whether one can detach a pattern from an
event depends on one's background knowledge coming to the event.
Often one's background knowledge is insufficient to detach a pattern
from an event. Consider, for instance, the case of cryptographers try-
ing to break a cryptosystem. Until they break the cryptosystem, the
strings of characters they record from listening to their enemy's com-
munications will seem random, and for all the cryptographers know
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might just be gibberish. Only after the cryptographers have broken
the cryptosystem and discovered the key for decrypting their enemy's
communications will they discern the detachable pattern present in
the communications they have been monitoring (cf. Section 1.6).

Is it, then, strictly because our background knowledge and abil-
ities are limited that some patterns fail to be detachable? Would,
for instance, an infinitely powerful computational device be capa-
ble of detaching any pattern whatsoever? Regardless whether some
super-being possesses an unlimited capacity to detach patterns, as
a practical matter we humans find ourselves with plenty of patterns
we cannot detach. Whether all patterns are detachable in some grand
metaphysical sense, therefore, has no bearing on the practical prob-
lem whether a certain pattern is detachable given certain limited back-
ground knowledge. Finite rational agents like ourselves can formulate
only a very few detachable patterns. For instance, of all the possible
ways we might flip a coin a thousand times, we can make explicit
only a minuscule proportion. It follows that a human subject will be
unable to specify any but a very tiny fraction of these possible coin
flips. In general, the patterns we can know to be detachable are quite
limited.3

Let us now wrap up the Caputo example. Confronted with Nicholas
Caputo assigning the Democrats the top ballot line forty out of forty-
one times, the New Jersey Supreme Court first rejected the regularity
explanation, and then rejected the chance explanation ("confronted
with these odds, few persons of reason will accept the explanation of
blind chance"). Left with no other option, the court therefore accepted
the agency explanation, inferred Caputo was cheating, and threw him
in prison.

Well, not quite. The court did refuse to attribute Caputo's golden
arm to either regularity or chance. Yet when it came to giving a positive
explanation of Caputo's golden arm, the court waffled. To be sure, the
court knew something was amiss. For the Democrats to get the top
ballot line in Caputo's county forty out of forty-one times, especially

3 This conclusion is consistent with algorithmic information theory, which regards a sequence
of numbers as nonrandom to the degree that it is compressible. Since compressibility within
algorithmic information theory constitutes but a special case of detachability, and since
most sequences are incompressible, the detachable sequences are indeed quite limited. See
Kolmogorov (1965), Chaitin (1966), and van Lambalgen (1989). See also Section 1.7.
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with Caputo solely responsible for ballot line selections, something
had to be fishy. Nevertheless, the New Jersey Supreme Court was
unwilling explicitly to charge Caputo with corruption. Of the six
judges, Justice Robert L. Clifford was the most suspicious of Caputo,
wanting to order Caputo to institute new guidelines for selecting
ballot lines. The actual ruling, however, simply suggested that Caputo
institute new guidelines in the interest of "public confidence in the
integrity of the electoral process." The court therefore stopped short
of charging Caputo with dishonesty.

Did Caputo cheat? Certainly this is the best explanation of Caputo's
golden arm. Nonetheless, the court stopped short of convicting Ca-
puto. Why? The court had no clear mandate for dealing with highly
improbable ballot line selections. Such mandates exist in other legal
settings, as with discrimination laws that prevent employers from at-
tributing to the luck of the draw their failure to hire sufficiently many
women or minorities. But in the absence of such a mandate the court
needed an exact causal story of how Caputo cheated if the suit against
him was to succeed. And since Caputo managed to obscure how he
selected the ballot lines, no such causal story was forthcoming. The
court therefore went as far as it could.

Implicit throughout the court's deliberations was the design infer-
ence. The court wanted to determine whether Caputo cheated. Lack-
ing a causal story of how Caputo selected the ballot lines, the court
was left with circumstantial evidence. Given this evidence, the court
immediately ruled out regularity. What's more, from the specified im-
probability of selecting the Democrats forty out of forty-one times,
the court also ruled out chance.

These two moves - ruling out regularity, and then ruling out
chance - constitute the design inference. The conception of design
that emerges from the design inference is therefore eliminative, as-
serting of an event what it is not, not what it is. To attribute an event to
design is to say that regularity and chance have been ruled out. Refer-
ring Caputo's ballot line selections to design is therefore not identical
with referring it to agency. To be sure, design renders agency plau-
sible. But as the negation of regularity and chance, design is a mode
of explanation logically preliminary to agency. Certainly agency (in
this case cheating) best explains Caputo's ballot line selections. But
no one was privy to Caputo's ballot line selections. In the absence of
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an exact causal story, the New Jersey Supreme Court therefore went
as far as it could in the Caputo case.4

1.3 INTELLECTUAL PROPERTY PROTECTION

If the courts are at times less than decisive in connecting design with
agency, the same cannot be said for the many professions whose
livelihood depends on drawing design inferences and using them to
attribute agency. Money, property, and even human lives depend on
the events we attribute to agency. Often the design inference is the
only way to distinguish agency from other causes, so that for practical
purposes design (i.e., the elimination of regularity and chance) and
agency (i.e., the intentional activity of an intelligent cause or agent)
become identified, if not conflated. Thus, we find entire industries
dedicated to drawing design inferences, and therewith immediately
attributing agency. These industries include patent offices, copyright
offices, insurance companies, actuarial firms, statistical consultants,
cryptographers, forensic scientists, and detectives to name but a few.
For the remainder of this chapter I intend simply to sketch how
these "design industries" infer design and thereby attribute agency.
In each case the key that turns the lock is a specified event of small
probability.

Consider first intellectual property protection. There are two
primary industries that protect intellectual property - patent and copy-
right offices. Patents protect inventions, copyrights protect text. Peo-
ple avail themselves of patent and copyright laws to assert the priority
of their work, and thus to keep copycats from obtaining a share in
the market. The laws are such that if person A creates some artifact
X and files X with the relevant patent or copyright office at time tj,
and person B claims to have created the same artifact X at any time t2

subsequent to time ti, person B is liable to penalties. Is this fair? What
if B created X independently of A? Chance can never exclude this
possibility. But since the probability of B creating X independently

4 Legal scholars continue to debate the proper application of probabilistic reasoning to legal
problems. Larry Tribe (1971), for instance, views the application of Bayes's theorem within
the context of a trial as fundamentally unsound. Michael Finkelstein takes the opposite view
(see Finkelstein, 1978, p. 288 ff.). Still, there appears no getting rid of the design inference in
the law. Cases of bid-rigging (Finkelstein and Levin, 1990, p. 64), price-fixing (Finkelstein
and Levenbach, 1986, pp. 79-106), and collusion often cannot be detected save by means of
a design inference.
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of A is in most cases minuscule, the presumption is that B copied X
from A rather than that B came up with X independently of A.

Sometimes manufacturers assist patent and copyright offices by
introducing "traps" into their artifacts so that anyone who copies the
artifacts gets caught red-handed. Copycats, after all, typically intro-
duce variations into the things they copy so that the match between
original and copy is not exact. Thus, after A has produced X, the
copycat B, instead of reproducing X exactly, will produce a variation
on X, call it X', which B hopes will be sufficiently different from X
to circumvent the protection offered by patent and copyright offices.
Traps block this move.

Consider, for instance, a trap formerly employed by Encyclopedia
Britannica to monitor the copying of its encyclopedia by rival en-
cyclopedia companies: because rival encyclopedia companies were
not directly copying the articles in Encyclopedia Britannica, but
rather seemed to be rewriting or paraphrasing its articles, Encyclo-
pedia Britannica decided to include among its articles bogus biogra-
phies, i.e., biographies of people who were made up by Encyclopedia
Britannica and thus never existed except in its pages. Thus, when-
ever the biography of some "famous" artist who had never existed
reappeared in a rival encyclopedia, Encyclopedia Britannica could
with complete confidence assert that the rival encyclopedia company
had plagiarized. Bogus biographies thus served to trap plagiarizing
encyclopedia companies.

A variation on this theme occurs when two parties, say A and B,
have the power to produce exactly the same artifact X, but where
producing X requires so much effort that it is easier to copy X once
X has already been produced than to produce X from scratch. For
instance, before the advent of computers logarithmic tables had to be
computed by hand. Although there is nothing esoteric about calculat-
ing logarithms, the process is tedious and time-consuming if done by
hand. Once the calculation has been accurately performed, however,
there is no need to repeat it.

The problem, then, confronting the manufacturers of logarithmic
tables was that after expending so much effort to compute logarithms,
if they were to publish their results without safeguards, nothing would
prevent a plagiarist from copying the logarithms directly, and then
simply claiming that he or she had calculated the logarithms indepen-
dently. To solve this problem, manufacturers of logarithmic tables
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introduced occasional - but deliberate - errors into their tables, er-
rors which they carefully noted to themselves. Thus, in a table of
logarithms that was accurate to eight decimal places, errors in the
seventh and eighth decimal places would occasionally be introduced.

These errors then served to trap plagiarists, for even though plagia-
rists could always claim to have computed the logarithms correctly
by mechanically following a certain algorithm, they could not reason-
ably claim to have committed the same errors. As Aristotle remarked
in his Nichomachean Ethics (McKeon, 1941, p. 1106), "it is possible
to fail in many ways,... while to succeed is possible only in one way."
Thus, when two manufacturers of logarithmic tables record identical
logarithms that are correct, both receive the benefit of the doubt that
they have actually done the work of computing logarithms. But when
both record the same errors, it is perfectly legitimate to conclude that
whoever published last plagiarized.5

1.4 FORENSIC SCIENCE AND DETECTION

Forensic scientists, detectives, lawyers, and insurance fraud investiga-
tors cannot do without the design inference. Something as common as
a forensic scientist placing someone at the scene of a crime by match-
ing fingerprints requires a design inference. Indeed, there is no logical
or genetic impossibility preventing two individuals from sharing the
same fingerprints. Rather, our best understanding of fingerprints and
the way they are distributed in the human population is that they are,
with very high probability, unique to individuals. And so, whenever
the fingerprints of an individual match those found at the scene of a
crime, we conclude that the individual was indeed at the scene of the
crime.

The forensic scientist's stock of design inferences is continually
increasing. Consider the following headline: "DNA Tests Becoming
Elementary in Solving Crimes." The lead article went on to describe

5 In the same spirit there's the joke about two college students who sat next to each other while
taking a final exam. In the opinion of the professor teaching the course, the one student was
the brightest in the class, the other the worst. Yet when the professor got back their exams,
she found both students had gotten every question but the last perfectly correct. When it came
to the last question, however, the brightest student wrote, "I don't know the answer to this
question," while the worst student wrote, "I don't know the answer to this question either."
If there was any doubt about who was cheating, the incriminating use of the word "either"
removed it.
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the type of reasoning employed by forensic scientists in DNA testing.
As the following excerpt makes clear, all the key features of the design
inference described in Sections 1.1 and 1.2 are present in DNA testing
(The Times - Princeton-Metro, N.J., 23 May 1994, p. Al):

TRENTON - A state police DNA testing program is expected to be ready
in the fall, and prosecutors and police are eagerly looking forward to taking
full advantage of a technology that has dramatically boosted the success rate
of rape prosecutions across the country.

Mercer County Prosecutor Maryann Bielamowicz called the effect of
DNA testing on rape cases "definitely a revolution. It's the most exciting
development in my career in our ability to prosecute."

She remembered a recent case of a young man arrested for a series of
three sexual assaults. The suspect had little prior criminal history, but the
crimes were brutal knifepoint attacks in which the assailant broke in through
a window, then tied up and terrorized his victims.

"Based on a DNA test in one of those assaults he pleaded guilty to all
three. He got 60 years. He'll have to serve 271/2 before parole. That's pretty
good evidence," she said.

All three women identified the young man. But what really intimidated
the suspect into agreeing to such a rotten deal were the enormous odds -
one in several million - that someone other than he left semen containing
the particular genetic markers found in the DNA test. Similar numbers are
intimidating many others into foregoing trials, said the prosecutor.6

Not just forensic science, but the whole field of detection is in-
conceivable without the design inference. Indeed, the mystery genre
would be dead without it.7 When in the movie Double Indemnity
Edward G. Robinson ("the insurance claims man") puts it together
that Barbara Stanwyck's husband did not die an accidental death
by falling off a train, but instead was murdered by Stanwyck to

6 It's worth mentioning that at the time of this writing, the accuracy and usefulness of DNA
testing is still a matter for debate. As a New York Times (23 August 1994, p. A10) article
concerned with the currently ongoing O. J. Simpson case remarks, "there is wide disagree-
ment among scientific experts about the accuracy and usefulness of DNA testing and they
emphasize that only those tests performed under the best of circumstances are valuable." My
interest, however, in this matter is not with the ultimate fate of DNA testing, but with the
logic that underlies it, a logic that hinges on the design inference.

7Cf. David Lehman's (1989, p. 20) notion of "retrospective prophecy" as applied to the
detective-fiction genre: "If mind-reading, backward-reasoning investigators of crimes -
sleuths like Dupin or Sherlock Holmes - resemble prophets, it's in the visionary rather than
the vatic sense. It's not that they see into the future; on the contrary, they're not even looking
that way. But reflecting on the clues left behind by the past, they see patterns where the rest of
us see only random signs. They reveal and make intelligible what otherwise would be dark."
The design inference is the key that unlocks the patterns that "the rest of us see only [as]
random signs."
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collect on a life insurance policy, the design inference is decisive.
Why hadn't Stanwyck's husband made use of his life insurance pol-
icy earlier to pay off on a previously sustained injury, for the pol-
icy did have such a provision? Why should he die just two weeks
after taking out the policy? Why did he happen to die on a train,
thereby requiring the insurance company to pay double the usual in-
demnity (hence the title of the movie)? How could he have broken
his neck falling off a train when at the time of the fall, the train
could not have been moving faster than 15 m.p.h.? And who would
seriously consider committing suicide by jumping off a train mov-
ing only 15 m.p.h.? Too many pieces coalescing too neatly made the
explanations of accidental death and suicide insupportable. Thus, at
one point Edward G. Robinson exclaims, "The pieces all fit together
like a watch!" Suffice it to say, in the movie Barbara Stanwyck and
her accomplice/lover Fred MacMurray did indeed kill Stanwyck's
husband.

Whenever there is a mystery, it is the design inference that elicits
the crucial insight needed to solve the mystery. The dawning recog-
nition that a trusted companion has all along been deceiving you (cf.
Notorious); the suspicion that someone is alive after all, even though
the most obvious indicators point to the person having died (cf. The
Third Man); and the realization that a string of seemingly accidental
deaths were carefully planned (cf. Coma) all derive from design in-
ferences. At the heart of these inferences is a convergence of small
probabilities and specifications, a convergence that cannot properly
be explained by appealing to chance.

1.5 DATA FALSIFICATION IN SCIENCE

R. A. Fisher uncovered a classic case of data falsification by ana-
lyzing Gregor Mendel's data on peas. Fisher inferred that "Mendel's
data were massaged," as one statistics text puts it, because Mendel's
data matched Mendel's theory too closely.8 Interestingly, the coin-
cidence that elicited this charge of data falsification was a specified
event whose probability was no more extreme than one in a hundred

8 I'm basing my remarks about Mendel's data on Freedman et al. (1978, pp. 426-7) and Fisher
(1965, p. 53). For a more recent reevaluation of Mendel's data, which still concludes that
"the segregations are in general closer to Mendel's expectations than chance would dictate,"
see Edwards (1986).
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thousand (a probability that is huge compared with the 1 in 50 billion
probability of the Caputo example in Section 1.2). Fisher concluded
his analysis of Mendel's experiment by charging Mendel's gardening
assistant with deception.

In a more recent example of data falsification, an experimental
psychologist intent on increasing the number of publications in his
curriculum vitae decided to lift a two-by-two table of summary statis-
tics from one of his articles and insert it - unchanged - into another
article.9 Data falsification was clearly implicated because of the vast
improbability that data from two separate experiments should produce
the same summary table of statistics. When forced to face a review
board, the psychologist resigned his academic position rather than
try to explain how this coincidence could have occurred without any
fault on his part. The incriminating two-by-two table that appeared
in both articles consisted of four blocks each containing a three-digit
number. The odds would therefore have been roughly one in a trillion
(= 1012) that this same table might by chance have appeared twice in
his research.

Why did the experimental psychologist resign rather than defend a
1 in 10'2 improbability? Why not simply attribute the coincidence to
chance? There were two reasons. First, at the review board the psy-
chologist would have had to produce the experimental protocols for
the two experiments that supposedly gave rise to the identical two-
by-two tables. If he was guilty of data falsification, these protocols
would have incriminated him. Second, even if the protocols were lost,
the sheer improbability of producing so unlikely a match between the
two papers would have been enough to impugn the researcher's hon-
esty. Once a specification is in place (here the first article containing
the two-by-two table specifies the other - cf. our discussion of pla-
giarism in Section 1.3) and the probabilities become too small, the
burden of proof, at least within the scientific community, shifts to the
experimenter suspected of data falsification.

Last, consider the debunking of parapsychology. Parapsychologi-
cal experiments all follow a common pattern: producing a specified

9 This example was aired on PBS back in the mid-eighties in a documentary concerned with
dishonesty and fraud in the sciences. The name of the documentary as well as that of the
experimental psychologist have long since escaped me. The main point of the case, however,
has remained with me, and continues to provide a striking example of the design inference
in action.
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event of small probability, and then explaining it in terms of a the-
oretical construct called psi (i.e., the factor or faculty supposedly
responsible for such events). For instance, shuffle some cards and
then have a human subject guess their order. If the human subject
guesses correctly, the improbability of this coincidence (= specified
event of small probability) is regarded as evidence for psi. To at-
tribute such coincidences to psi the parapsychologist must first draw
a successful design inference (i.e., eliminate regularity and chance).
The debunker's task, then, is to block the parapsychologist's design
inference, that is, to show that the design inference was drawn in-
correctly, and that chance or regularity can in fact account for the
coincidence in question. In showing that parapsychologists failed to
draw their design inferences correctly, debunkers typically look for
outright fraud or sloven experimental method (see Reinsel, 1990,
p. 194).

1.6 CRYPTOGRAPHY (AND SETI)

Cryptography is the study of secure communications. Given Alice
and Bob, and their mutual enemy Carl, Alice wants to send messages
to Bob without worrying about Carl reading Bob's mail. Before any
messages are sent, Alice and Bob will therefore agree on a method
that enables Bob to interpret Alice's transmissions, but one that makes
it difficult for anyone ignorant of the method to know what Alice is
communicating. In the parlance of the field, Alice encrypts messages
and relays them to Bob; and Bob, in interpreting Alice's messages,
decrypts them. Any such method for encrypting and decrypting mes-
sages is known as a cryptosystem.

It is vital that when Alice and Bob agree on a cryptosystem, they
not reveal the method of decryption to Carl. Carl's overriding interest
is to crack the cryptosystem. Presumably Carl will intercept some of
the messages from Alice to Bob. In fact, not wanting to underesti-
mate Carl, Alice and Bob will assume that Carl is able to intercept all
transmissions from Alice to Bob. Alice, Bob, and Carl therefore have
three respective tasks: Alice's task is to encrypt plaintext into cipher-
text and get the ciphertext into Bob's hands. Bob's task is to decrypt
ciphertext received from Alice back into plaintext. Carl's task is to
intercept as many ciphertext messages from Alice to Bob as possible,
steal as many translations into plaintext of these ciphertext messages
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as possible, and with this information try to break the cryptosystem
that Alice and Bob are employing (i.e., figure out the method of en-
cryption and decryption). Of course, if Carl can steal the actual method
of encryption and decryption, so much the better for Carl - but then
the game is up.10

Alice and Bob want their cryptosystem to be as secure as possible.
The security of a cryptosystem, however, can never be perfect since
Carl might by pure luck happen to guess the cryptosystem imple-
mented by Alice and Bob. The security of a cryptosystem is therefore
always a matter of probability. Hence for any cryptosystem it is nec-
essary to ask, What is the probability that Carl will figure out the
cryptosystem and thereafter be able to read Bob's mail? This proba-
bility will depend on several factors. We shall always give Carl the
benefit of the doubt that Carl has full access to ciphertext transmis-
sions. Hence the probability will depend on the number of ciphertext
transmissions that have passed from Alice to Bob. It will also depend
on any plaintext translations that Carl has happened to obtain of ci-
phertext transmissions. So too it will depend on the computational
resources that Carl has available for running through possible cryp-
tosystems and checking whether one of these possibilities is the one
actually being employed (the computational power of Carl is the most
important theme in current cryptographic research). In each case we
give Carl the benefit of the doubt, never underestimating Carl's abil-
ities, always assuming that short of a lucky guess Carl will adopt the
most expedient course for breaking the cryptosystem.

When all is said and done, the security of a cryptosystem is en-
capsulated in a positive probability p - the probability that Carl at
his most resourceful will break the cryptosystem. Once this mea-
sure of security is in hand, several questions immediately arise: How
do Alice and Bob determine whether their cryptosystem has been
compromised? Once they are confident their cryptosystem has been
compromised, do they attribute its compromise to the ingenuity of
Carl as a code breaker, or to the cunning of Carl as an infiltrator
into Alice's and Bob's communication centers? As for Carl, when
does he know that he has broken the cryptosystem of Alice and Bob?
Alternatively, suppose Carl has come up with a method for decrypt-
ing ciphertext from Alice; how does Carl know that his method of

10 See Patterson (1987) for an overview of cryptography.
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decryption is the one actually being employed by Bob? This is a
problem of underdetermination. Bob and Carl might devise alternate
methods for decrypting the messages coming from Alice. Since
Alice and Bob have agreed in advance what constitutes the proper
way of decrypting Alice's ciphertext transmissions, Bob knows that
his reading of Alice's transmissions is correct. But how does Carl
know that his reading of Alice's transmissions is correct (i.e., that it
is the same as Bob's)? Finally, suppose Carl monitors signals along
a communication channel, suspecting that Alice and Bob are using
it to communicate. Prior to breaking the cryptosystem, how can Carl
be sure the signals are not random but meaningful? How does Carl
determine the difference? How does Carl know that Alice isn't just
sending Bob gibberish?

Let us now consider these questions in turn. When do Alice and
Bob know .their cryptosystem has been compromised? Clearly this
will depend on the occurrence of one too many unhappy coincidences.
Suppose the last ten times a field marshal ordered an attack, he sent his
field commanders encrypted instructions, and each time the enemy
took appropriate countermeasures. If the field marshal can preclude
treachery within his ranks, after a while he will be convinced that the
enemy is reading his mail - that is, intercepting the transmissions to
his commanders and decrypting them. Eventually it will become too
unlikely that the enemy happened by chance to apply just the right
countermeasures every time the field marshal issued instructions.

As a historical note, the allies in World War II did break the cryp-
tosystems of both the Japanese and the Germans. This was one of
the best kept secrets of the war, and one that saved countless allied
lives. It was necessary to keep it a secret, for if the Nazis had sus-
pected that the British and Americans had broken their cryptosystem
(in this case the Enigma cryptosystem), they would promptly have
changed cryptosystems. The allies therefore purposely allowed some
of the Nazis' plans to succeed lest the Nazis suspect their cryptosys-
tem had been compromised. The actual practice of cryptography is
very much a poker game, giving up an advantage here to obtain a
bigger advantage elsewhere.

The cryptosystems employed by the Nazis in World War II were
not very secure, even by the standards of the time, and certainly not
by today's standards. Most of the cryptosystems of the past are easily
broken given the computational resources of the present. But suppose
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a cryptosystem is known to be highly secure irrespective of the compu-
tational resources available now or at some future date (the one-time
pad constitutes such a cryptosystem). For such a cryptosystem, the
probabilistic p value for breaking it is so small that all the computa-
tional resources that might ever be available to us still do not make
breaking it likely. What shall we then conclude if we become con-
vinced such a cryptosystem has been broken? In practice we look for
a fifth column. A fifth column, instead of breaking the cryptosystem
fair and square, goes into our files and steals the answer key.

A compromised cryptosystem that in the absence of a fifth column
is supposed to be highly secure has in all likelihood been subverted
by a fifth column. Given such a compromised cryptosystem, counter-
intelligence services are quick to conduct an investigation, looking
for everything from negligence to outright treachery to explain how
the cryptosystem was leaked to the enemy. Note that the chance hy-
pothesis - that the enemy by adroitly searching the space of possible
cryptosystems happened to figure out the right method of decryp-
tion - does not cut any ice if the cryptosystem is known to be highly
secure (e.g., a one-time pad). Highly secure cryptosystems are not
broken by chance, or even by ingenuity, but by cheating. Genius can
take us only so far. Or as the proverb goes, the difference between
genius and stupidity is that genius has its limits.

Let us consider next the question of underdetermination. Though
in principle underdetermination might be a problem, in practice it
turns out never to be a problem for cryptography. If a proposed
decryption scheme is successful at coherently interpreting numer-
ous ciphertext transmissions, the cryptosystem is considered broken.
Breaking a cryptosystem is like finding a key that turns a lock. Once
the lock turns, we're sure the door will open. True, there is always
the possibility that the lock will turn without the door opening. But
as a proposed decryption scheme assigns a coherent sense not only to
prior transmissions, but also to incoming transmissions of ciphertext,
any doubts about the correctness of the decryption scheme disappear.
Note that underdetermination is never a problem for Alice and Bob:
having specified in advance the encryption-decryption scheme they
will be using, Bob is limited to only one way of interpreting Alice's
ciphertext transmissions. Underdetermination is potentially a prob-
lem only for Carl, who in finding a way to make sense of Alice's
ciphertext transmissions will want to make sure his way of doing so
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is the same as Bob's. In practice Carl attains this assurance simply by
finding he can assign a coherent sense to the ciphertext transmissions
coming his way.

Finally, suppose Carl monitors a communication channel, suspect-
ing that Alice is sending Bob encrypted messages over this channel.
Suppose, moreover, that Carl has yet to discover a way to interpret the
signals crossing the channel. Carl therefore wonders, Do the signals
constitute encrypted messages (and thus convey meaning) or are they
merely random, meaningless signals (Alice, for instance, might be
flipping a coin and signaling a sequence of coin flips)? There is only
one way for Carl to find out: provisionally assume the signals mov-
ing across the communication channel encrypt meaningful messages,
and try to figure out a method of encryption-decryption that makes
sense out of the signals. Without such a method, Carl cannot know
for certain whether a meaningful message is in fact being relayed,
or whether he is just listening to noise. Short of knowing what Alice
is actually doing on her end of the communications channel (e.g.,
flipping a coin or formulating meaningful English sentences), Carl
can be sure that the channel is being used as a conduit for meaningful
communication only if he can devise a decryption scheme that is able
to render meaningful the transmissions moving across the channel.

Notice that there is an asymmetry here. Just from listening to the
communication channel, Carl may legitimately conclude that mean-
ingful messages are being transmitted across the channel - Carl has
simply to come up with a decryption scheme that renders Alice's trans-
missions meaningful. But just from listening to the channel, Carl may
never legitimately conclude that no meaningful communication is be-
ing transmitted - Carl's inability to discover a decryption scheme is
never evidence that no such scheme is operating. This is true even if
the signals crossing the channel are highly repetitive or simple from a
communication engineer's point of view, for by agreeing in advance
that a simple transmission signifies a complicated message, Alice
and Bob can expand without limit the information content of even a
simple transmission."

Cryptography provides a framework for understanding the SETI
research program (SETI = Search for Extraterrestrial Intelligence).

1' As Fred Dretske (1981, p. 51) remarks, "there simply is no limit to what can be learned from
a particular signal about another state of affairs."
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Over the past several years radio observatories have been employed
to monitor millions of radio channels in the hope of detecting ra-
dio transmissions from space that reliably indicate ETIs (extraterres-
trial intelligences). Since unlike the ETIs on Star Trek, genuine ETIs
are presumed not to communicate in English, or any other human
language for that matter, the problem of determining when a radio
transmission is the product of an intelligence falls under the crypto-
graphic framework just described. Indeed, the SETI researcher's task
is to eavesdrop on interplanetary communications, trying to deter-
mine whether a given radio signal was transmitted by an intelligent
agent, and if so, the signal's meaning.

Of course, the actual cryptography employed by SETI researchers
is pretty minimal. Typically it is assumed that ETIs are so intent on
making their presence known that they will do something terribly
obvious, like transmit a sequence of prime numbers. For the SETI
program to have even a chance of being successful, the following
hypotheses must hold: (1) ETIs must at some point in the history of
the universe have existed; (2) ETIs have been sufficiently advanced
technologically to signal their presence by means of radio signals;
(3) ETIs have indeed signaled their presence by means of radio trans-
missions; and (4) we happen to be living at just the right time in
cosmic history to receive those transmissions.

These hypotheses are sufficiently tenuous that SETI researchers
avoid the further complication of asking whether ETIs are communi-
cating enigmatically, and thereby making it difficult to discern their
presence. Any "cryptosystem" the ETIs are employing is therefore
assumed to be strictly minimal and unintended. The ETIs, we assume,
want desperately to make their presence known. If, therefore, we need
to do any cryptanalysis, it is solely because the means by which ETIs
communicate are so foreign to ours.

If the SETI program ever proves successful (something it has yet
to do), its success will consist in drawing a successful design infer-
ence, matching radio transmissions it has monitored with patterns
it deems clear and reliable indicators of intelligence. As it monitors
millions of radio channels, SETI attempts to match patterns it has
specified in advance. Insofar as SETI fails to specify the patterns em-
ployed by ETIs, SETI will fail to detect them - their presence will
slip past the SETI researchers' sieve. Regardless whether one thinks
SETI constitutes an ill-fated research program, it raises important
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questions about the nature of intelligence, the possibility of detecting
intelligences other than human, and the role of design inferences in
detecting intelligence.

1.7 RANDOMNESS

In the 1960s, the Russian probabilist Andrei Kolmogorov investigated
what makes a sequence of coin flips random. If we flip a fair coin and
note the occurrences of heads and tails in order, denoting heads by 1
and tails by 0, then a sequence of 100 coin flips looks as follows:

(R) 1100001101011000110111111

1010001100011011001110111

0001100100001011110111011

0011111010010100101011110.

This is in fact a sequence I have just now obtained by flipping a
penny 100 times. Alternatively, I might have obtained the following
sequence:

(N) 111111111111111111111111
11111111111111111111111111

111111111111111111111111
11111111111111111111111111.

Now the problem facing Kolmogorov was this: given probability
theory and its usual way of computing probabilities for coin tosses,
Kolmogorov was unable to distinguish these sequences in terms of
their degree of randomness. Sequences (R) and (N) have been labeled
suggestively, R for "random," N for "nonrandom." Kolmogorov
wanted to say that (R) was "more random" than (N). But given the
usual way of computing probabilities, Kolmogorov could only say
that each of these sequences had the same small probability of oc-
curring, namely 1 in 2100, or approximately 1 in 1030. Indeed, every
sequence of 100 coin tosses has exactly this same small probability
of occurring.

To get around this difficulty Kolmogorov introduced some concepts
from recursion theory, a subfield of mathematical logic concerned
with computation and generally considered quite far removed from
probability theory. What Kolmogorov said was that a string of 0s and
Is becomes increasingly random as the shortest computer program

32



that generates the string increases in length (Kolmogorov, 1965). For
our purposes we can think of a computer program as a shorthand
description of a sequence of coin tosses. Thus, the sequence (N) is
not very random because it has a very short description, namely,

repeat ' 1 ' a hundred t imes.

Note that we are interested in the shortest descriptions since any
sequence can always be described in terms of itself. Thus, (N) has the
longer description

copy '1111111111111111111111111

1111111111111111111111111

1111111111111111111111111

1111111111111111111111111'.

But this description holds no interest since there is one so much
shorter.

The sequence

(H) 1111111111111111111111111

1111111111111111111111111

0000000000000000000000000

0000000000000000000000000

is slightly more random than (N) since it requires a longer description,
for example,

repeat ' 1' f i f t y t imes, then repeat ' 0 ' f i f t y t imes.

So too the sequence

(A) 1010101010101010101010101
0101010101010101010101010

1010101010101010101010101
0101010101010101010101010

has a short description,

repeat '10 ' f i f t y t imes.

The sequence (R), on the other hand, has no short and neat descrip-
tion (at least none that has yet been discovered). For this reason Kol-
mogorov would want to regard it as more random than the sequences
(N), (H), and (A).
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Since one can always describe a sequence in terms of itself, (R)
has the description

copy '1100001101011000110111111
1010001100011011001110111

0001100100001011110111011
0011111010010100101011110'.

Because (R) was constructed by flipping a coin, it is very likely that
this is the shortest description of (R). It is a combinatorial fact that the
vast majority of sequences of 0s and Is have as their shortest descrip-
tion just the sequence itself, that is, most sequences are random in
Kolmogorov's computational sense. Kolmogorov used the language
of statistical mechanics to describe this fact, calling the random se-
quences high entropy sequences, and the nonrandom sequence low
entropy sequences.12 It follows that the collection of nonrandom se-
quences has small probability among the totality of sequences, so that
observing a nonrandom sequence is reason to look for explanations
other than chance.

To illustrate Kolmogorov's ideas, imagine someone informs you
she just flipped a coin 100 times. If she hands you sequence (R),
you examine it and try to discover a short description. After repeated
attempts you find you cannot describe the sequence more efficiently
than the sequence describes itself. Hence you conclude it is a gen-
uinely random sequence, that is, a sequence she might well have
gotten by flipping a fair coin. Of course you might be wrong - you
might simply have missed some simple and short description. But un-
til you have such a description in hand, you will suppose the sequence
is random.

Next, suppose this same individual hands you the sequence (R) on a
slip of paper and then disappears. A week later she reappears and says,
"Guess what? Remember that sequence I handed you a week ago?
Well, last night I was flipping this penny. And would you believe
it, I got the same sequence as on the slip of paper." You examine
the coin and observe it is a genuine U.S. government mint penny
that is evenly balanced and has distinguishable sides. Moreover, she
insists that each time she flipped the penny, she gave it a good jolt

12 For the deep connection between entropy in statistical mechanics and entropy in the infor-
mation theoretic sense of Kolmogorov see Yockey (1992, pp. 66-7; but note the errors in
formulas 2.27 and 2.28). See also Zurek (1990).
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(these were not phony flips). What do you conclude now? As before,
you will not be able to find any shorter description than the sequence
itself - it is a random sequence. Nevertheless, you are entirely justified
rejecting her story. The problem is that the timing is all off. When
she handed you the sequence a week earlier, she specified a highly
improbable event. When she returned and claimed subsequently to
have reproduced the sequence, she in effect claimed to prophesy an
improbable chance event. Prophecy of improbable chance events is
highly dubious. Indeed, anyone with this gift should be a billionaire
many times over (either in Las Vegas or on Wall Street).

Finally, suppose this individual comes to you and says, "Would you
believe it? I just flipped this penny 100 times, and it came up heads
each time!" As before, the coin she shows you is a genuine penny
and she is emphatic that hers were not phony flips. Rather than being
specified in advance, this time the pattern of coin flips is specified in
virtue of its low computational complexity. The sequence (N) has, in
Kolmogorov's terminology, about the lowest entropy possible. There
are very few sequences with descriptions as short as "repeat ' 1 ' 100
times." Once again, you would be ill-advised to trust her story. The
problem is not that low-entropy sequences like (N) are highly improb-
able. Rather, the problem is that there are too many other sequences
for which no short description can be found.

Our coin flipping friend, who claims to have flipped 100 heads
in a row with a fair coin, and without phony flips, is in the same
position as a lottery manager whose relatives all win the jackpot or
an election commissioner whose own political party repeatedly gets
the first ballot line (cf. Section 1.2). In each case public opinion
rightly draws a design inference, eliminating chance and attributing
fraud. Granted, the evidence is always circumstantial. What's more,
our legal system has yet to think through how such evidence should
be handled. Nevertheless, the inference that chance was offset by an
act of intentional meddling is in each case compelling.13

13 For further discussion of randomness see Dembski (1991; in press) as well as Section 5.10.
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Overview of the design inference

i
2.1 THE EXPLANATORY FILTER

Whenever explaining an event, we must choose from three compet-
ing modes of explanation. These are regularity, chance, and design.
To attribute an event to a regularity is to say that the event will (al-
most) always happen. To attribute an event to chance is to say that
probabilities characterize the occurrence of the event, but are also
compatible with some other event happening. To attribute an event to
design is to say that it cannot reasonably be referred to either regu-
larity or chance. Defining design as the set-theoretic complement of
the disjunction regularity-or-chance guarantees that the three modes
of explanation are mutually exclusive and exhaustive. It remains to
show that design is significant in its own right.

The principal advantage of characterizing design as the comple-
ment of regularity and chance is that it avoids committing itself to a
doctrine of intelligent agency. In practice, when we eliminate regular-
ity and chance, we typically do end up with an intelligent agent. Thus,
in practice, to infer design is typically to end up with a "designer" in
the classical sense. Nevertheless, it is useful to separate design from
theories of intelligence and intelligent agency. An intelligence may,
after all, act to mimic regularity or chance, and thereby render its ac-
tions indistinguishable from regularity or chance (cf. the discussion
of cryptography and randomness in Sections 1.6 and 1.7). Anything
might have an intelligent cause. Not everything can be known to have
an intelligent cause. Defining design as the negation of regularity and
chance avoids prejudicing the causal storfes we associate with design
inferences.

When called to explain an event, we therefore have a decision
to make - are we going to attribute it to regularity or chance or de-
sign? To answer this question we employ a standard operating pro-
cedure. The flowchart in Figure 2.1 summarizes this procedure. It
will be called the Explanatory Filter, or simply the filter. To use the
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The Explanatory Filter

yes—m4 regularity J

yes—*4 chance J

no

yes—*4 design J

f chance J

Figure 2.1.
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Explanatory Filter we begin with an event E. The filter consists of two
types of nodes, initial and terminal nodes represented by ovals, and de-
cision nodes represented by diamonds. We therefore start E off at the
node labeled "start." From "start" E moves to the first decision node.
This node asks whether E is highly probable (hence the label HP).

To say that E is highly probable is to say that given the relevant
antecedent circumstances, E will for all practical purposes always
happen. HP events characterize the deterministic and nondetermin-
istic regularities of nature (or what we frequently call natural laws),
conveniently situating them within a single probabilistic framework.
For instance, the event of a bullet firing when a gun's trigger is pulled
and the event of getting at least one head when a fair coin is tossed a
hundred times are both HP events. Generally speaking, we regard the
first event as nonprobabilistic, the second as probabilistic. It is conve-
nient to think of all such regularities as probabilistic, assimilating the
nonprobabilistic case to the probabilistic case in which probabilities
collapse to 0 and 1.

Thus, if E happens to be an HP event, we stop and attribute E to a
regularity. Regularities are always the first line of defense. If we can
explain by means of a regularity, chance and design are automatically
precluded. Similarly, chance is always the second line of defense. If
we can't explain by means of a regularity, but can explain by means
of chance, then design is automatically precluded. There is thus an
order of priority to explanation.1 Within this order regularity has top
priority, chance second, and design last.

It needs to be stressed, however, that this order of priority has noth-
ing to do with one mode of explanation being somehow "preferable"
or "better" than another. We are not offering a better explanation of,
say, Nicholas Caputo's "golden arm" by attributing it to regularity or
chance as opposed to design. Presumably, one or the other of these
explanations is correct, so that the one to be preferred is the one that
is correct. Nevertheless, as a matter of explanatory priority, we look
to regularity and chance before we invoke design.

Explanatory priority is a case of Occam's razor. Accordingly, when
any one of the three modes of explanation fails adequately to explain
an event, we move to the mode of explanation at the next level of

' It is this order of priority and the concomitant sifting of explanatory options that justifies the
name "Explanatory Filter."
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complication. Note that explanations that appeal to regularity are in-
deed simplest, for they admit no contingency, claiming things always
happen that way. Explanations that appeal to chance add a level of
complication, for they admit contingency, but one characterized by
probability. Most complicated are those explanations that appeal to
design, for they admit contingency, but not one characterized by prob-
ability.

Examples of explanatory priority abound. To see that regularity
has explanatory priority over design, recall Newton's classic error
in calculating the dynamics of the solar system. Newton had thought
that the dynamics of the solar system were unstable and therefore that
the motions of the planets required slight periodic adjustments by the
intervention of God (hence for Newton the proper mode of explanation
for the dynamics of the solar system, though partially appealing to
his laws of mechanics, also included an appeal to design, with design
here taking the form of supernatural intervention). But when a century
later the French mathematician Laplace showed that the dynamics of
the solar system were relatively stable, and therefore did not require
periodic divine adjustments, regularity was reinstated as the proper
mode of explanation for the dynamics of the solar system.

Similarly, to see that regularity has explanatory priority over chance,
consider a pair of dice that land snake-eyes (i.e., each die displays
a one). If the dice are fair, this outcome has probability 1 in 36, an
instance of what I call an intermediate probability (IP for short; what
makes an event an IP event will become clear momentarily). Now un-
der ordinary circumstances there is no problem attributing IP events,
like the occurrence of snake-eyes, to chance. But suppose that in fact
the dice are weighted so that each die will almost surely come up
displaying a one (i.e., the dice are loaded). In this case the occurrence
of snake-eyes is an HP event and would not be attributed to chance.
Instead, the occurrence of snake-eyes would be attributed to a reg-
ularity, namely, the regular way dice land when weighted in certain
prescribed ways.

Finally, to see that chance has explanatory priority over design,
imagine that you and your aunt Jane both live in a small town, and
that occasionally when you buy groceries at the one supermarket in
town, you run into your aunt. Has your aunt carefully planned these
meetings? Is she monitoring the food you purchase? Is she secretly
trying to poison your pickles? Attributing to intelligent forces what
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ought properly be attributed to chance indicates paranoia and super-
stition. Maybe your aunt is secretly a mass murderer, and maybe her
meetings with you at the supermarket are planned. But to demonstrate
this you will need more than an innocent encounter at the supermarket.

To return now to the event E as it proceeds through the Explana-
tory Filter, suppose E is not an HP event, and has therefore passed
to the next decision node, the node labeled "IP?" What needs to be
determined here is whether E is an event of intermediate probabil-
ity. Events of intermediate probability, or what I'm calling IP events,
are the events we reasonably expect to occur by chance in the ordi-
nary circumstances of life. Rolling snake-eyes with a pair of fair dice
constitutes an IP event. Even someone winning a lottery where the
probability of winning is as little as one in ten million will consti-
tute an IP event once we factor in all the other people playing the
lottery. IP events are sufficiently probable to give us no reason to sus-
pect they resulted from anything other than chance. Thus, if an event
E reaches the second decision node and is judged an IP event, we stop
and attribute E to chance.

But suppose E is neither an HP nor an IP event. E therefore proceeds
to the third and final decision node of the flowchart. In this case E is
an event of small probability, or what I'm calling an SP event. As we
saw in Chapter 1, SP events happen by chance all the time - flip a coin
long enough and you'll participate in a highly improbable event. To
eliminate chance it is therefore not enough simply to know that E is an
SP event. Rather, an extraprobabilistic factor must also be introduced,
what in Chapter 1 we referred to as specification. A probabilistic set-
up like tossing a coin 1000 times entails that some SP event will
occur. If, however, this event is also specified, then we are justified
in eliminating chance. It's the specified SP events (abbreviated sp/SP
events) that cannot properly be attributed to chance. Richard Dawkins
(1987, p. 8) makes this point as follows:

Hitting upon the lucky number that opens the bank's safe is the equivalent,
in our analogy, of hurling scrap metal around at random and happening to
assemble a Boeing 747. Of all the millions of unique and, with hindsight
equally improbable, positions of the combination lock, only one opens the
lock. Similarly, of all the millions of unique and, with hindsight equally
improbable, arrangements of a heap of junk, only one (or very few) will fly.
The uniqueness of the arrangement that flies, or that opens the safe, [has]
nothing to do with hindsight. It is specified in advance.
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Specifications are common in statistics, where they are known as
rejection regions. The basic problem of statistics is the testing of prob-
abilistic hypotheses. Statisticians are continually confronted with sit-
uations in which some probability distribution is assumed to be oper-
ating, and then given the task of determining whether this probability
distribution actually is operating. To do this statisticians set up a re-
jection region and then take a sample. If the observed sample falls
within the rejection region, the presumption is that the probability dis-
tribution in question was not operating to produce the sample. On the
other hand, if the observed sample falls outside the rejection region,
the probability distribution in question is taken, at least provisionally,
as adequate to account for the sample.2

Now there is an important difference between the logic of the Ex-
planatory Filter and the logic of statistical hypothesis testing: to end
up at the filter's terminal node labeled "design" is to sweep the field
clear of all relevant chance explanations. This contrasts with statisti-
cal hypothesis testing, where eliminating one chance hypothesis typ-
ically opens the door to others. The sp/SP events of the Explanatory
Filter exclude chance decisively, whereas the events that fall within
the rejection regions of statistics may allow that some probability
distribution other than the one originally suspected is operating.

For an event E to pass to the third decision node of the Explanatory
Filter, it is therefore not enough to know that E has small probability
with respect to some probability distribution or other. Rather, we must
know that whatever probability distribution may have been respon-
sible for E, it wasn't one for which the probability of E was either
an HP or an IP event. Thus, unlike the statistician, who typically op-
erates from a position of ignorance in determining what probability
distribution is responsible for the samples he or she observes, before
we even begin to send E through the Explanatory Filter, we need to
know what probability distribution(s), if any, were operating to pro-
duce the event. Alternatively, the "design theorist" is in the business
of categorically eliminating chance, whereas the statistician is in the
business of ruling out individual probability distributions.

There is thus a crucial difference between the way statistics elim-
inates chance and the way the design inference eliminates chance.

2For a general description of statistical reasoning see Hacking (1965) as well as Howson and
Urbach (1993). See Mood, Graybill, and Boes (1974, pp. 401-81) for an account of hypothesis
testing.
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When statistics eliminates chance, it is always a particular probability
distribution (or set of probability distributions) that gets eliminated,
with the question remaining what alternative probability distributions
might be operating in its place. On the other hand, when the design
inference eliminates chance, it leaves no room for alternative proba-
bility distributions. Statistics, therefore, eliminates chance only in the
limited sense of rejecting one chance explanation while leaving open
another. The design inference, on the other hand, eliminates chance
in the global sense of closing the door to every relevant chance ex-
planation.

To clarify the distinction between statistical inferences and design
inferences, consider an example of each. When a statistician wants
to determine whether a certain fertilizer will help improve the yield
of a certain crop, she assumes initially that the fertilizer will have
no effect. Her research presumably is going to be used by farmers to
decide whether to use this fertilizer. Because fertilizer costs money,
she doesn't want to recommend the fertilizer if in fact it has no positive
effect on the crop. Initially she will therefore assume the fertilizer has
no effect one way or the other.

Having made this assumption, she will now compare how the crop
fares with both fertilized and unfertilized soil. She will therefore
conduct an experiment, raising, let us say, one acre of the crop in
fertilized soil, and another in unfertilized soil. In raising the crop,
she will try to keep all sources of variation other than the fertilizer
constant (e.g., water and sunshine). Our statistician does not know in
advance how the crop will fare in the fertilized soil. Nevertheless, it's
virtually certain she won't observe exactly the same yields from both
acres.

The statistician's task, therefore, is to determine whether any dif-
ference in yield is due to the intrinsic effectiveness of the fertilizer or
to chance fluctuations. Let us say that the fertilized crop yielded more
than the unfertilized crop. Her task then is to determine whether this
difference is significant enough to overturn her initial assumption that
the fertilizer has no effect on the crop. If there is only a one percent
increase in the fertilized crop over the unfertilized crop, this may not
be enough to overthrow her initial assumption. On the other hand, a
100 percent increase in the fertilized crop would surely overthrow the
statistician's initial assumption, providing evidence that the fertilizer
is highly effective.
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The point then is this. Our statistician started by assuming that the
probability distribution characterizing crop yield for fertilized soil
is the same as the probability distribution characterizing crop yield
for unfertilized soil. She made this assumption because without prior
knowledge about the effectiveness of the fertilizer, it was the safest
assumption to make. Indeed, she doesn't want to recommend that
farmers buy this fertilizer unless it significantly improves their crop
yield. At least initially she will therefore assume the fertilizer has no
effect on crops, and that differences in crop yield are due to random
fluctuations. The truth of this initial assumption, however, remains
uncertain until she performs her experiment. If the experiment indi-
cates little or no difference in crop yield, she will stick with her initial
assumption. But if there is a big difference, she will discard her initial
assumption and revise her probability distribution. Note, however,
that in discarding her initial assumption and revising her probability
distribution, our statistician has not eliminated chance, but merely
exchanged one chance hypothesis for another. Probabilities continue
to characterize crop yield for the fertilized soil.3

Let us now contrast the probabilistic reasoning of this statistician
with the probabilistic reasoning of a design theorist who, to use the
preceding example by Richard Dawkins (1987, p. 8), must explain
why a certain bank's safe that was closed earlier happens now to be
open. Let us suppose the safe has a combination lock that is marked
with a hundred numbers ranging from 00 to 99, and for which five
turns in alternating directions are required to open the lock. We assume
that precisely one sequence of alternating turns is capable of opening
the lock (e.g., 34-98-25-09-71). There are thus ten billion possible
combinations of which precisely one opens the lock (as Dawkins
puts it, "of all the millions of unique and, with hindsight equally
improbable, positions of the combination lock, only one opens the
lock").

We assume our design theorist is adept at using the Explanatory Fil-
ter. He will therefore take the opening of the bank's safe, an event he
will denote by E, and feed it into the filter. How does E fare at the first
decision node? Since no regularities account for the opening of safes
with combination locks, E is not an HP event. E therefore moves past

3 Observe that throughout this statistical analysis we never obtain a causal story detailing the
fertilizer's effect on growing plants. For both the fertilized and the unfertilized soils all we
obtain are probability distributions characterizing expected yield.
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the first decision node. How does E fare at the second decision node?
With ten billion possibilities, only one of which opens the safe, ran-
dom twirling of the combination lock's dial is exceedingly unlikely
to open the lock. E therefore isn't an IP event either. E therefore lands
at the third decision node. In particular, E is an SP event.

Now the crucial thing to observe here is that the status of E as an
SP event is not open to question in the way the effectiveness of fertil-
izers was open to question in the last example. The design theorist's
initial assessment of probability for the combination lock is stable;
the statistician's initial assessment about the effectiveness of a given
fertilizer is not. We have a great deal of prior knowledge about locks
in general, and combination locks in particular, before the specific
combination lock we are considering crosses our path. On the other
hand, we know virtually nothing about a new fertilizer and its effect
on crop yield until after we perform an experiment with it. Whereas
the statistician's initial assessment of probability is likely to change,
the design theorist's initial assessment of probability is stable. The
statistician wants to exclude one chance explanation only to replace it
with another. The design theorist, on the other hand, wants to exclude
the only available chance explanation, replacing it with a completely
different mode of explanation, namely, a design explanation.4

Let us now return to the passage of E through the Explanatory Filter.
As an SP event, E proceeds past the first two decision nodes to the third
and final decision node. There the crucial question is whether E is also
specified. Is E an sp/SP event or merely an SP event? If the latter, then
the opening of the bank's safe can legitimately be attributed to chance
(just as apart from a specification a highly improbable sequence of
coin flips can be attributed to chance). But of course E is specified.
Indeed, the very construction of the lock's tumblers specifies which

4 The safecracking example presents the simplest case of a design inference. Here there is
only one possible chance hypothesis to consider, and when it is eliminated, any appeal to
chance is effectively dead. Design inferences in which multiple chance hypotheses have to be
considered and then eliminated arise as well. We might, for instance, imagine explaining the
occurrence of a hundred heads in a row from a coin that is either fair or weighted in favor of
heads with probability of heads 0.75. To eliminate chance and infer design in this example
we would have to eliminate two chance hypotheses, one where the probability of heads is 0.5
(i.e., the coin is fair) and the other where the probability of heads is 0.75. To do this we would
have to make sure that for both probability distributions a hundred heads in a row is an SP
event, and then show that this event is also specified. In case still more chance hypotheses are
operating, design follows only if each of these additional chance hypotheses gets eliminated
as well, which means that the event has to be an SP event with respect to all the relevant chance
hypotheses and in each case be specified as well.
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one of the ten billion combinations opens the lock. E is therefore
an sp/SP event and passes to the terminal node labeled "design."
Our design theorist will therefore infer design, and in all likelihood
conclude that an intelligent agent opened the safe (e.g., the safe's
owner or a safe-cracking thief).

How to assign probabilities to events passing through the Ex-
planatory Filter requires some clarification, especially how to decide
whether an event E is an HP, IP, or SP event. I shall elaborate on
the conception of probability relevant to the design inference and
the Explanatory Filter in Chapter 3. But briefly, probability is a rela-
tion between background information and events. If this background
information includes (1) that certain antecedent circumstances were
satisfied, (2) that the occurrence of E has with at most rare exceptions
attended these antecedent circumstances, and (3) that E actually has
occurred, then it follows that E is an HP event and that a regularity
explains E. Given background information satisfying (l)-(3), we an-
swer "Yes" at the decision node labeled "HP?" and conclude that E
is due to a regularity.

But suppose E doesn't satisfy (l)-(3). With regularity no longer
in the running, the problem now is to determine whether E is due
to chance or design. Moreover, the way to do this is to assume pro-
visionally that chance was responsible for E, and then determine
whether this assumption can be maintained. This accords with my
earlier remarks about explanatory priority and Occam's razor. Hav-
ing eliminated regularity, we are down to two explanations, chance
or design. Since chance is the simpler explanation, barring strong
countervailing reasons we prefer to explain by reference to chance as
opposed to design. Such strong countervailing reasons arise when E
is an sp/SP event - but we are getting ahead of ourselves.

Once we have eliminated regularity as an explanation of E, we
therefore assume provisionally that E occurred by chance, and then
determine the probability of E under this assumption. With our ex-
planatory options reduced to chance and design, we identify the back-
ground information that accounts for how E could have arisen by
chance. This background information enables us to assign a proba-
bility to E (or a range of probabilities). If this probability is an IP,
we reject design and attribute E to chance. If, on the other hand, this
probability is an SP, we then have the additional task of determin-
ing whether E is specified. Given our provisional assumption that E

45



occurred by chance, the finding that E is a specified event of small
probability acts as a probabilistic reductio ad absurdum, leading us to
reject our provisional assumption of chance, and instead infer design
(cf. Section 6.3).

Note that this way of opposing chance to design requires that we
be clear what chance processes could be operating to produce the
event in question. Suppose, for instance, I have before me a hundred
pennies all of which have landed heads. What is the probability of
getting all 100 pennies to exhibit heads? This probability depends
on the chance process controlling the pennies. If, for instance, the
chance process flips each penny individually and waits until it lands
heads, after 200 flips there will be an even chance that all the pennies
exhibit heads (and after a thousand flips it will be almost certain that
all the pennies exhibit heads). If, on the other hand, the chance process
operates by flipping all the pennies simultaneously, and does not stop
until all the pennies simultaneously exhibit heads, it will require about
1030 such simultaneous flips for there to be an even chance that all
the pennies exhibit heads.

But suppose we know there were no more than 200 occasions for
flipping the pennies, and that all the pennies exhibit heads. If the pen-
nies were flipped individually, the probability that all of them exhibit
heads is 1/2. On the other hand, if the pennies were flipped simul-
taneously, the probability that all of them exhibit heads is less than
one in 1027. The first of these probabilities is an intermediate prob-
ability, whereas the second is for most purposes a small probability.
Now 100 heads in a row is a specified event (cf. the discussion of
randomness in Section 1.7). If the coins could have been flipped indi-
vidually, our provisional assumption that chance produced 100 heads
in a row would stand since in this case even though 100 heads in a
row is specified, it is merely an IP event. On the other hand, if the
coins could only have been flipped simultaneously, we would reject
chance and attribute the 100 heads in a row to design since in this
case 100 heads in a row is an sp/SP event. The chance process that
flips coins individually and leaves them be after they land heads thus
leads to significantly different conclusions from the chance process
that flips coins simultaneously.

What the Explanatory Filter means by "chance" and "design" varies
from situation to situation. Consider plagiarism. Person A writes X at
time ti. Person B writes X' at time t2, t2 coming after ti. Suppose
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X' looks suspiciously similar to X. We want to know whether B
copied from A. For simplicity let's assume neither common cause
explanations (i.e., that A and B both copied from some third source)
nor intermediary cause explanations (i.e., that B copied from C| who
copied from C 2 . . . who copied from Cn who in turn copied from A)
hold. Thus, we assume that if B did not compose X' independently,
then B copied from A. If we now let E denote the writing of X' at
time t2 by B, an investigation into whether B copied from A can be
recast as an application of the filter to E. In this scenario, to say that
E occurred by chance is to say that B produced X' without recourse
to X, whereas to say that E occurred by design is to say that B copied
from A. But note that in either case E represents an intentional act.

To sum up this section, the Explanatory Filter faithfully represents
our ordinary human practice of sorting through events we alternately
attribute to regularity, chance, or design. In particular, passage through
the flowchart to the terminal node labeled "design" encapsulates the
design inference. This inference characterizes

(1) how copyright and patent offices identify theft of intellectual
property

(2) how insurance companies keep themselves from getting ripped
off

(3) how detectives employ circumstantial evidence to nail criminals
(4) how forensic scientists place individuals at the scene of a crime
(5) how skeptics debunk the claims of parapsychologists
(6) how scientists uncover data falsification
(7) how the SETI program detects extraterrestrial intelligences
(8) how statisticians and computer scientists distinguish random from

nonrandom strings of digits.

Entire human industries depend critically on the design inference.
Indeed, courts have sent people to the electric chair on account of this
inference. A rigorous elucidation of the design inference is therefore
of more than academic interest.

2.2 THE LOGIC OF THE INFERENCE

Just because the Explanatory Filter describes how we ordinarily sift
our explanatory options does not mean it correctly prescribes how we
should sift our explanatory options. To see that the filter is not merely
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descriptive, but also normative for sifting our explanatory options, we
need to understand the logic that underlies it. The Explanatory Filter
has a logical counterpart that is fully suited for the rigors of scientific
inquiry. Specifically, there is a valid deductive argument that traces the
passage of an event E through the Explanatory Filter from the initial
node labeled "start" to the terminal node labeled "design." Here is
this argument:

Premise 1: E has occurred.
Premise 2: E is specified.
Premise 3: If E is due to chance, then E has small probability.
Premise 4: Specified events of small probability do not occur by

chance.
Premise 5: E is not due to a regularity.
Premise 6: E is due to either a regularity, chance, or design.
Conclusion: E is due to design.5

Let us walk through this argument in the concrete case where E is
the opening of a safe's combination lock. Premise 1 simply says that E
occurred. And indeed, E better have occurred for E to need explaining.
Hence we take Premise 1 to be satisfied. Because E is specified (the
very construction of the safe specifies which one of the many possible
combinations opens it), it follows that Premise 2 is satisfied as well.
Premise 3 says that if the safe was opened by chance, then the open-
ing of the safe was an SP event. This is no problem either. Someone
twirling the dial of the combination lock has to hit just the right com-
bination. And on any reasonable lock, the probability of hitting the
right combination will be exceedingly small. Premise 4 is the Law of
Small Probability, or LSP for short. LSP is the key regulative princi-
ple governing small probabilities (cf. Section 1.1). Although LSP will
by now seem quite plausible, its full justification will have to await
Chapter 6. Thus, provisionally we take LSP to be satisfied as well.
Premise 5 says that the safe didn't open as the result of a regularity.

5 To say that an event E is "due to" either a regularity or chance or design is not to advance
a causal story for E. Regularity, chance, and design, as developed in Section 2.1, constitute
distinct modes of explanation whose appropriateness depends on whether an event exhibits
certain features. The causal story one eventually tells, though constrained by the mode of
explanation, ultimately depends on context. The statement "E is due to design" is thus a
shorthand for "the proper mode of explanation for E is design." Similarly, "E is due to a
regularity" and "E is due to chance" are shorthands for "the proper mode of explanation for E
is a regularity" and "the proper mode of explanation for E is chance," respectively.
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This premise too is satisfied since no known regularities account for
the opening of safes with reasonably sophisticated combination locks.
Premise 6 is the trichotomy rule. Trichotomy holds because regularity,
chance, and design are mutually exclusive and exhaustive (cf. Sec-
tion 2.1). Together these six premises entail the conclusion that the
opening of the safe's combination lock must properly be attributed to
design. And of course, except for the most trivial combination locks,
we do attribute their opening not to regularities or chance, but to the
intentional activity of a human agent.

The validity of the preceding argument becomes clear once we
recast it in symbolic form (note that E is a fixed event and that in
Premise 4, X is a bound variable ranging over events):

Premise 1: oc(E)
Premise 2: sp(E)
Premise 3: ch(E) -> SP(E)
Premise 4: VX[oc(X) & sp(X) & SP(X) -> ~cA(X)]
Premise 5: ~reg(E)
Premise 6: reg(E) V ch(E) v des(E)
Conclusion: des(E).

So formulated, the design inference constitutes a valid argument
within the first-order predicate logic. There are six one-place pred-
icates: oc(E) = E has occurred; sp(E) = E is specified; SP(E) = E
is an event of small probability; reg(E) = E is due to a regularity;
c/z(E) = E is due to chance; and des(E) = E is due to design. The
sentential connectives ~, &, v, and —>• denote respectively not, and,
or, and if-then. VX is the universal quantifier (read "for all X" or
"for every X"). Premise 4, the Law of Small Probability, is the only
premise employing a quantifier. The proof that this argument is valid
is straightforward.6

Although the preceding formulation of the design inference is sub-
stantially correct, it needs to be refined. Three of the predicates, namely

6 Instantiate Premise 4 by substituting E for X. Provisionally assume E is due to chance, i.e.,
c/i(E). Then by applying modus ponens to Premise 3, infer E is a small probability event, i.e.,
SP(E). Conjoin SP(E) with Premises 1 and 2. This conjunction is identical with the antecedent
of Premise 4 after instantiation. Thus, by modus ponens it follows that E is not due to chance,
i.e., ~cfc(E). This contradicts our provisional assumption, and so, by reductio ad absurdum,
it follows that E is indeed not due to chance, i.e., ~ cft(E). But by disjunctive syllogism
Premises 5 and 6 yield c/i(E) v des(E). And since we just derived ~ ch(E), another application
of disjunctive syllogism yields des(E). This is the desired conclusion.
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ch, SP, and sp, need to be indexed by a chance hypothesis, which we'll
denote by H. Thus, to say that an event E occurred by chance is to
say that E occurred according to the chance hypothesis H; to say that
E has small probability is to say that E has small probability with
respect to H; and to say that E is specified is to say that E is specified
with respect to H. Rewriting the predicates ch(-), SP(-), and sp(-) as
respectively ch(-\ H), SP{-; H), and sp(-; H) leads to the following
reformulation of the design inference:

Premise 1: oc(E)
Premise 2: sp(E; H)
Premise 3: SP(E;H)
Premise 4: VX[oc(X) & sp(X; H) & SP(X; H) -» ~c/i(X; H)]
Premise 5: ~reg(E)
Premise 6: reg(E) v ch(E; H) v des(E)
Conclusion: des(E).

Except for Premise 3, the only change in this formulation is a substi-
tution of predicates, substituting predicates indexed by H for nonin-
dexed ones. As for Premise 3, dropping the conditional now makes
sense because indexing SP by H predicates of E that as an event due
to H it would have small probability (whether E actually occurred by
chance thus becomes immaterial). The antecedent in ch(E) -+ SP(E)
therefore becomes redundant as soon as we index SP by H. The proof
that this revised argument is valid is also straightforward.7

This last formulation of the design inference is adequate so long
as only one chance hypothesis could be responsible for E. Thus, for
the opening of a safe's combination lock, this last formulation is just
fine. If, however, multiple chance hypotheses could be responsible for
E, this formulation needs to be modified. Letting 7i denote all the
relevant chance hypotheses that could be responsible for E, for the
design inference to sweep the field clear of these chance hypotheses,
it needs to be reformulated as follows:

Premise 1: oc(E)
Premise 2: (VH e H) sp(E; H)

7 Instantiate Premise 4 by substituting E for X. Conjoin Premises 1,2, and 3. By modus ponens,
infer ~c/i(E; H). By applying disjunctive syllogism to Premise 6 infer reg(E) v des(E). Now
take Premise 5 and apply disjunctive syllogism to reg(E) v des(E). This yields des(E), the
desired conclusion.
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Premise 3: (VH € H) SP(E; H)
Premise 4: (VX)(VH e H) {[oc(X) & sp(X; H) & SP(X; H)] -+

~ch(X; H)}
Premise 5: ~reg(E)
Premise 6: reg(E) v (3H E ft) ch(E; H) V d«(E)
Conclusion: des(E).

Except for one small refinement to be described in Chapter 6, this is
the definitive formulation of the design inference. Note that 3H eTi
is a restricted existential quantifier (read "for some H in 7i"). Note
also that when H = {H} (i.e., when only one chance hypothesis could
be responsible for E), this formulation reduces to the previous one.

So formulated, the design inference constitutes a valid deductive
argument in the first-order predicate logic. To see this, fix a chance
hypothesis H and consider the following argument:

Premise 1'
Premise 2'
Premise 3'
Premise 4'

oc(E)
sp(E; H)
SP(E; H)
VX[oc(X) & sp(X; H) & SP(X; H) -+ ~c/*(X; H)]

Conclusion': ~c/i(E; H).

The validity of this argument is immediate: conjoin Premises 1'
through 3', universally instantiate Premise 4' substituting E for X,
and then apply modus ponens. Since Conclusion' eliminates only a
single chance hypothesis H, to eliminate all the chance hypotheses
relevant to E's occurrence, the preceding argument needs to hold for
all H in H. To represent this logically we place each line of the pre-
ceding argument under the scope of the quantifier VH e Ti. Premises
1' through 4' thereby become Premises 1 through 4, and Conclusion'
becomes (VH e H) ~c/i(E; H).

A double application of disjunctive syllogism to Premise 6 now
produces the desired conclusion. These applications successively strip
the disjuncts reg(E) and (3H e H) ch(E; H) from Premise 6. Specif-
ically, ~reg(E) in Premise 5 strips reg(E) from Premise 6 to yield
(3H E H)ch(E; H) v des(E). Next (VH 6 H) ~c/i(E; H), which was
derived from Premises 1 through 4 and is the negation of (3H e H)
ch(E; H), strips the remaining obstacle to des(E), This establishes the
validity of the design inference.
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Next, let us consider Premises 1 through 6 individually.
Premise 1: This premise asserts that E has occurred. Since the

occurrence of an event can be asserted irrespective of any chance
hypothesis that might explain its occurrence, there is no need in this
premise to invoke a chance hypothesis H, nor for that matter the
collection of chance hypotheses TC relevant to E's occurrence. Since
oc is independent of any chance hypothesis H, quantifying over H
leaves Premise 1 unaffected.

Premise 2: This premise asserts that E is specified for all chance
hypotheses relevant to E's occurrence (i.e., for all chance hypotheses
in H). Since an event has to be specified to eliminate chance, and
since the design inference infers design by eliminating all relevant
chance hypotheses, sp(E; H) has to be satisfied for all H in H.

Premise 3: This premise asserts that E has small probability for
all chance hypotheses relevant to E's occurrence (i.e., for all chance
hypotheses in H). Since an event has to have small probability to
eliminate chance, and since the design inference infers design by
eliminating all relevant chance hypotheses, SP(E; H) has to be satis-
fied for all H in H.

Premise 4: The Law of Small Probability asserts that for an arbi-
trary event X and an arbitrary chance hypothesis H, if X occurred, is
specified with respect to H, and has small probability with respect to
H, then the occurrence of X was not governed by the chance hypoth-
esis H. Formally this is expressed by writing

oc(X) & sp(X; H) & SP(X; H) -* ~c/i(X; H).

Since in this formula X and H are unconstrained, we can eliminate
the free variables and express the Law of Small Probability in closed
form as follows:

VX VH[oc(X) & sp(X; H) & SP(X; H) -* ~c/i(X; H)].

But since this last formula holds for all chance hypotheses whatsoever,
it holds for all chance hypotheses relevant to E's occurrence, that is, for
all chance hypotheses H in H,, By restricting the universal quantifier
VH to H, we therefore obtain

VX(VH e H)[oc(X) & sp(X; H) & SP(X; H) -+ ~ch(X; H)].

This last version of the Law of Small Probability coincides with
Premise 4. We need it to derive (VH e H) ~c/z(E; H) from Premises 1
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through 4, the claim that E is not due to any of the chance hypotheses
inH.

Premise 5: This premise asserts that no regularity was responsible
for E. We can represent a regularity R as an ordered pair ({A}, f)
where {A} is a set of antecedent circumstances and f is a mapping
from {A} to events. For a regularity R = ({A}, f) to account for E
then means that for some Ao in {A}, Ao was satisfied and f(A0) = E.
To predicate reg of E may then be defined as follows:

reg(E) —def There is some regularity R that accounts for E.

Justifying reg(E) is straightforward, for it amounts to no more
than checking whether some regularity R accounts for E. On the
other hand, justifying ~reg(E) tends to be trickier, for what must
be argued is that no regularity accounts for E. In practice, the way
~reg(E) gets justified is by arguing that E is compatible with all
relevant natural laws (natural laws are the regularities that govern
natural phenomena, e.g., the laws of chemistry and physics), but that
these natural laws permit any number of alternatives to E. In this
way E becomes irreducible to natural laws, and thus unexplainable in
terms of regularities.8

The safe-cracker example considered earlier in this section illus-
trates this method of eliminating regularities. The laws of physics
prescribe two possible motions of the combination lock, viz., clock-
wise and counterclockwise turns. Dialing any particular combination
is compatible with these possible motions of the lock, but in no way
dictated by these motions. To open the lock by hitting the right com-
bination is therefore irreducible to these possible motions of the lock.

This method of eliminating regularity applies not just to the opening
of combination locks, but quite generally: The position of scrabble
pieces on a scrabble board is irreducible to the natural laws governing
the motion of scrabble pieces; the configuration of ink on a sheet of
paper is irreducible to the physics and chemistry of paper and ink;
the sequencing of DNA bases is irreducible to the bonding affinities
between the bases; and so forth. In each case what defeats regularity is
contingency - a contingency compatible with the regularities known
to be operating, but in no way determined by them.

8This method for eliminating regularity is described in Lenoir (1982, pp. 7-8), Polanyi (1967;
1968), and Yockey (1992, p. 335).
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Premise 6: This is the trichotomy rule. It asserts that E is due to
either regularity or chance or design. The three disjuncts are mutu-
ally exclusive and exhaustive. Given that H includes all the relevant
chance hypotheses that might explain E, to assert that E is due to
chance means that there is some H in H that satisfies ch(E; H), that
is, (3H e Ti)ch{E; H). This is the second disjunct in Premise 6. Since
this disjunct requires that E be contingent, and since reg(E) precludes
E from being contingent, it follows that the first two disjuncts of
Premise 6 are mutually exclusive. To assure that the three disjuncts
in Premise 6 are both mutually exclusive and exhaustive, it is there-
fore necessary to define design as the negation of the disjunction
regularity-or-chance (cf. Section 2.1). We therefore define des(E) as
the negation of reg(E) v (3H e H)ch(E; H). By the De Morgan rule
and a standard logical manipulation with the existential quantifier,
des(E) may therefore be defined as

des(E) =def ~reg{E) & (VH e H) ~c/t(E; H).

E is therefore due to design just in case E is not due to a regularity
and E is not due to chance. As the examples in Chapter 1 have made
clear, this mode of explanation is nonvacuous and significant in its
own right.

One last point about the logical structure of the design inference is
worth noting: Just because the premises of the design inference will
in most applications be only probable or assertible rather than certain
or true in no way limits the significance of the design inference. The
design inference constitutes a valid deductive argument. In a valid
deductive argument the premises not only entail the conclusion, but
also render the conclusion probable if the premises themselves are
probable. This probabilistic relation between premises and conclu-
sion is called "partial entailment." Within the logic of entailment,
entailment automatically yields partial entailment (see Adams, 1975,
ch. 1). Thus, whereas entailment guarantees the truth of the conclusion
given the truth of the premises, entailment also guarantees that the
conclusion has high probability if the premises have high probability.
Entailment therefore confers not only truth, but also probability. It
follows that the design inference is robust. It is not simply a piece of
logic chopping. In particular, it is entirely suited to scientific inquiry
and the uncertainties that so often attend scientific claims.
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Although the hard work of this monograph still remains, concep-
tually our task is now much simpler. To complete our analysis of the
design inference we need simply to explicate and justify the Law of
Small Probability. This in turn reduces to accomplishing three objec-
tives: (1) explicate the predicate sp (i.e., say what it is for an event
to be specified); (2) explicate the predicate SP (i.e., say what it is for
an event to have small probability); and (3) justify the Law of Small
Probability (i.e., show why specified events of small probability can-
not legitimately be referred to chance). All the remaining chapters of
this monograph are devoted to accomplishing these objectives. Chap-
ters 3 and 4 lay the logical and mathematical foundations. Chapter 5
explicates specification. Chapter 6 explicates small probabilities and
justifies the Law of Small Probability. The remainder of this chapter
presents a case study of the design inference (Section 2.3) and shows
the connection between design and intelligent agency (Section 2.4).

2.3 CASE STUDY: THE CREATION-EVOLUTION
CONTROVERSY

Design inferences occur widely in the creation-evolution controversy.
Arguments by evolutionists that support biological evolution and ar-
guments by creationists that oppose biological evolution frequently
and self-consciously employ the logic of the design inference. To see
this, let us consider two such arguments, one an antievolutionary ar-
gument by creationists Clifford Wilson and John Weldon, the other
a proevolutionary argument by the Darwinist Richard Dawkins. First
consider the antievolutionary argument by Wilson and Weldon (1978,
pp. 320-3):

In the October, 1969, issue of Nature magazine, Dr. Frank Salisbury...
examined the chance of one of the most basic chemical reactions for the
continuation of life taking place. This reaction involved the formation of
a specific DNA molecule He calculated the chance of this molecule
evolving on 1020 hospitable planets He concluded that the chances of
just this one tiny DNA molecule coming into existence over four billion
years... as one chance in 10415 This shows that life simply could not
originate in outer space, period.

[Yet] Dr. George Wald, Nobel Prize-winning biologist of Harvard Univer-
sity, stated several years ago: "One only has to contemplate the magnitude of
[the] task to concede that spontaneous generation of a living organism is im-
possible. Yet here we are - as a result I believe, of spontaneous generation."
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[This type of reasoning] shows how far even brilliant men will go to escape
the idea of God being their Creator

Next consider the following proevolutionary argument by Richard
Dawkins (1987, pp. 45, 49):

[One in 10190] is the chance against happening to hit upon haemoglobin by
luck— It is amazing that you can still read calculations like my haemoglobin
calculation, used as though they constituted arguments against Darwin's the-
ory. The people who do this, often expert in their own field, astronomy or
whatever it may be, seem sincerely to believe that Darwinism explains liv-
ing organization in terms of chance - "single-step selection" - alone. This
belief, that Darwinian evolution is "random," is not merely false. It is the
exact opposite of the truth. Chance is a minor ingredient in the Darwinian
recipe, but the most important ingredient is cumulative selection which is
quintessentially nonrandom.

There is a big difference, then, between cumulative selection (in which
each improvement, however slight, is used as a basis for future building),
and single-step selection (in which each new "try" is a fresh one). If evolu-
tionary progress had to rely on single-step selection, it would never have got
anywhere. If, however, there was any way in which the necessary conditions
for cumulative selection could have been set up by the blind forces of nature,
strange and wonderful might have been the consequences. As a matter of
fact that is exactly what happened on this planet.

Both the argument by Wilson and Weldon, and the argument by
Dawkins can be unpacked as design inferences - for Wilson and
Weldon as a successful design inference, for Dawkins as a failed
design inference. A design inference attempts to establish whether an
event is due to design. If we now take the event in question to be the
occurrence of life on planet Earth, and denote this event by LIFE, then
the design inference assumes the following form (cf. Section 2.2):

Premise 1: LIFE has occurred.
Premise 2: LIFE is specified.
Premise 3: If LIFE is due to chance, then LIFE has small probability.
Premise 4: Specified events of small probability do not occur by

chance.
Premise 5: LIFE is not due to a regularity.
Premise 6: LIFE is due to regularity, chance, or design.
Conclusion: LIFE is due to design.

Since Wilson and Weldon, as well as Dawkins are attempting to
explain LIFE, let us consider how their respective arguments conform
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to this pattern of inference. First Dawkins. Dawkins resolutely refuses
to countenance design as a proper mode of explanation for LIFE.
Dawkins thus rejects the conclusion of the design inference. But since
the design inference constitutes a valid logical argument, for Dawkins
to reject the conclusion he must reject at least one of the premises.
But which one?

Let us run through the premises individually. Is Premise 1 a problem
for Dawkins? Obviously not. LIFE has clearly occurred. What about
Premise 2? Is LIFE specified? Dawkins (1987, p. 9) is quite definite
about affirming this premise: "Complicated things have some quality,
specifiable in advance, that is highly unlikely to have been acquired
by random chance alone. In the case of living things, the quality that
is specified in advance is . . . the ability to propagate genes in repro-
duction." So Premise 2 isn't a problem for Dawkins either. Indeed,
no evolutionist or creationist I know denies that LIFE is specified.

Consider next Premise 4, the Law of Small Probability. Here too
Dawkins finds nothing objectionable. Consider, for instance, the fol-
lowing remark (Dawkins, 1987, pp. 139, 145-6):

We can accept a certain amount of luck in our explanations, but not too
much In our theory of how we came to exist, we are allowed to postulate
a certain ration of luck. This ration has, as its upper limit, the number of
eligible planets in the universe.... We [therefore] have at our disposal, if
we want to use it, odds of 1 in 100 billion billion as an upper limit (or 1 in
however many available planets we think there are) to spend in our theory
of the origin of life. This is the maximum amount of luck we are allowed to
postulate in our theory. Suppose we want to suggest, for instance, that life
began when both DNA and its protein-based replication machinery sponta-
neously chanced to come into existence. We can allow ourselves the luxury
of such an extravagant theory, provided that the odds against this coincidence
occurring on a planet do not exceed 100 billion billion to one.

Dawkins is restating the Law of Small Probability. LIFE is a specified
event whose probability better not get too small. Thus, Premise 4 is
not a problem for Dawkins either.

What about trichotomy, that LIFE is properly explained either
by regularity, chance, or design? Here the very title of Dawkins's
book - The Blind Watchmaker - makes clear that Premise 6 is not
a problem either. Dawkins's title alludes to William Paley's (1802)
famous watchmaker argument. For Dawkins, however, the watch-
maker is blind, implying that the watchmaker is conditioned solely by
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regularity and chance. Along with most evolutionists, Dawkins holds
that regularity and chance together are adequate to explain LIFE.
Dawkins therefore holds to trichotomy, albeit a truncated trichotomy
in which one of the disjuncts (i.e., design) is vacuous.

That leaves Premises 3 and 5. Dawkins appears to accept Premise
5 - that LIFE is not due to a regularity. All the same, because Dawkins
never assigns an exact probability to LIFE, he never settles whether
LIFE is a high probability event and thus could legitimately be at-
tributed to a regularity. Dawkins seems mainly interested in showing
that the occurrence of life on earth is probable enough, not in deter-
mining whether this probability is so close to unity to justify calling
it a high probability event. Moreover, given the importance Dawkins
attaches to probabilities, it appears that chance and contingency are
essential to his understanding of LIFE. Thus, we have reason to think
Dawkins accepts Premise 5.

This leaves Premise 3. Dawkins rejects Premise 3. Dawkins's ap-
peal to cumulative selection makes this clear. According to Dawkins
(1987, p. 49), "Chance is a minor ingredient in the Darwinian recipe,
but the most important ingredient is cumulative selection which is
quintessentially nonrandom." The difference between cumulative se-
lection and what Dawkins calls single-step selection can be illustrated
with a coin tossing example. Suppose you want to know whether by
tossing a hundred pennies you can ever expect to observe a hundred
heads simultaneously. In the single-step selection scenario you put
the pennies in a box, shake the box, and see if all the pennies si-
multaneously exhibit heads. If not, you keep repeating the process
until all the pennies simultaneously exhibit heads. In the cumulative
selection scenario, on the other hand, you shake the box as before,
but every time you look inside the box, you remove the pennies that
exhibit heads. You stop when all the pennies have been removed and
are exhibiting heads (an example like this was treated more fully in
Section 2.1).

Now it's clear that with the single-step selection scenario you will
never observe all the pennies exhibiting heads - the odds are too much
against it. On the other hand, it's equally clear that with the cumula-
tive selection scenario you'll see all the pennies exhibiting heads very
quickly. Dawkins's point, then, is that the natural processes responsi-
ble for LIFE act by cumulative selection, and therefore render LIFE
reasonably probable. This he regards as the genius of Darwin, finding
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a naturalistic means for rendering probable what naively we take to be
highly improbable. Dawkins therefore rejects Premise 3. Moreover,
having rejected one of the premises in the design inference, Dawkins
is under no obligation to draw the conclusion of the design inference,
to wit, that the proper mode of explanation for LIFE is design. Indeed,
Dawkins explicitly rejects this conclusion.

Where do Wilson and Weldon come down on the six premises
of the design inference? Like Dawkins, Wilson and Weldon hold to
Premises 1,2,4, and 6. Premises 1 and 6, though not explicitly stated,
are clearly presupposed in their argument. Premises 2 and 4, on the
other hand, are also presupposed, but imperfectly expressed since
Wilson and Weldon do not have a well-developed notion of specifica-
tion. Their version of the Law of Small Probability is Borel's Single
Law of Chance (Wilson and Weldon, 1978, p. 321): "Emile Borel.. .
formulated a basic law of probability. It states that the occurrence of
any event where the chances are beyond one in 105 0. . . is an event
which we can state with certainty will never happen - no matter how
much time is allotted, no matter how many conceivable opportunities
could exist for the event to take place."9

Wilson and Weldon are here employing a pretheoretic version of the
Law of Small Probability, and one that omits specification. But since
small probabilities have to combine with specifications to eliminate
chance (exceedingly improbable unspecified events, after all, happen
by chance all the time - see Chapter 1 and Section 2.1), a cleaned-up
version of their argument would substitute Premises 2 and 4 for their
pretheoretic version of the Law of Small Probability. Hence, as with
Dawkins, we may regard Wilson and Weldon as affirming Premises 1,
2, 4, and 6.

But while Dawkins is not entirely clear about where he stands on
Premise 5 and is perfectly clear about rejecting Premise 3, Wilson
and Weldon accept both these premises. From the vast improbability
of a certain DNA molecule, Wilson and Weldon (1978, p. 321) infer
that LIFE is vastly more improbable still, and thus conclude that it is
impossible for LIFE to originate anywhere in the universe by chance.

9Wilson and Weldon are citing Borel (1962, p. 28), the relevant portion of which was quoted
in Section 1.1. In appealing to Borel, Wilson and Weldon are not misrepresenting him. Nev-
ertheless, because Borel never developed an adequate conception of specification, his version
of the Law of Small Probability is inadequate, and by implication so is Wilson and Weldon's.
Cf. Borel (1962; 1963) and Knobloch (1990, p. 228).
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For them LIFE is therefore neither the product of a regularity of
nature nor an event with anything other than a very small probability.
Besides Premises 1, 2,4, and 6, Wilson and Weldon therefore accept
Premises 3 and 5 as well. And having accepted the six premises of
the design inference, by force of logic they conclude that the proper
mode of explanation for LIFE is design. Note, however, that their
identification of design with the activity of an intelligent agent - much
less the God of Scripture - does not follow by the force of this logic.

These two arguments, the one by Wilson and Weldon, and the other
by Dawkins, provide an object lesson for how design inferences arise
in the creation-evolution controversy. The design inference consti-
tutes a valid logical argument. Moreover, creationists and evolution-
ists alike tend not to controvert Premises 1, 2, 4, and 6. Thus, when
creationists and evolutionists dispute the conclusion of the design
inference, the dispute is over Premises 3 and 5: If LIFE is due to
chance, how improbable was it? and Is LIFE due to a regularity? If
Premises 3 and 5 both hold, then the conclusion of the design infer-
ence follows. If there is reason to doubt either of these premises, then
the conclusion is blocked.

One thing, however, is clear. Creationists and evolutionists alike
feel the force of the design inference. At some level they are all re-
sponding to it. This is true even of those who, unlike Dawkins, think
LIFE is extremely unlikely to occur by chance in the known physical
universe, but who nevertheless agree with Dawkins that LIFE is prop-
erly explained without reference to design. For instance, advocates
of the Anthropic Principle like Barrow and Tipler (1986) posit an
ensemble of universes so that LIFE, though highly improbable in our
own little universe, is nevertheless virtually certain to have arisen at
least once in the many, many universes that constitute the ensemble
of which our universe is a member.

On this view LIFE is the winning of a grand lottery in which our
universe happens to be the lucky ticket holder: The fact that our uni-
verse was lucky enough to beget LIFE is perhaps surprising, but no
reason to look for explanations other than chance - much as a lot-
tery winner, though no doubt surprised at winning, need not look for
explanations other than chance since somebody (some universe) had
to win. Our sense of surprise is due to a selection effect - that we
should be so lucky. The relevant probability, however, is not the vast
improbability that anyone in particular should win, but the extremely
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high probability that some (unspecified) lottery player would be sure
to win. It's the high probability that someone will be selected that
transforms what started as a seeming impossibility into a virtual cer-
tainty. Thus, whereas Dawkins rejects Premise 3 and offers the stan-
dard Darwinian mechanism as grounds for his rejection, Barrow and
Tipler reject Premise 5, positing an ensemble of universes so that
LIFE is sure to arise somewhere in this ensemble.

Positing an ensemble of universes isn't the only way to undercut
Premise 5. Some theorists think our own little universe is quite enough
to render LIFE not only probable, but virtually certain. Stuart Kauff-
man (1993, p. 340), for instance, identifies LIFE with "the emergence
of self-reproducing systems of catalytic polymers, either peptides,
RNA, or others." Adopting this approach, Kauffman (1993, p. 288)
develops a mathematical model in which "autocatalytic polymer sets
. . . are expected to form spontaneously." Kauffman (1993, p. 287)
attempts to lay the foundation for a theory of life's origin in which
LIFE is not a lucky accident, but an event that is fully to be expected:
"I believe [life] to be an expected, emergent, collective property of
complex systems of polymer catalysts. Life, I suggest, 'crystallizes'
in a phase transition leading to connected sequences of biochemical
transformations by which polymers and simpler building blocks mu-
tually catalyze their collective reproduction." Kauffman is not alone
in explaining LIFE as a regularity of nature. Prigogine and Stengers
(1984, pp. 84, 176), Wicken (1987), Brooks and Wiley (1988), and
de Duve (1995) all share this same commitment.

To sum up, whereas creationists accept all six premises of the
design inference, evolutionary biologists, to block the conclusion
of the design inference, block Premises 3 and 5. Thus Darwin, to
block Premises 3 and 5, had to give himself more time for variation
and selection to take effect than many of his contemporaries were
willing to grant (even though Lord Kelvin, the leading physicist in
Darwin's day, estimated the age of the earth at 100 million years,
Darwin regarded this age as too low for his theory). Thus Dawkins, to
block Premises 3 and 5, and sustain his case for the blind watchmaker,
not only gives himself all the time Darwin ever wanted, but also helps
himself to all the conceivable planets that might exist in the known
physical universe. Thus Barrow and Tipler, to block Premises 3 and
5, and give credence to their various anthropic principles, not only
give themselves all the time and planets that Dawkins ever wanted, but

61



also help themselves to a generous serving of universes (universes that
are by definition causally inaccessible to us).10 Thus Kauffman, to
block Premises 3 and 5, and explain LIFE entirely in terms of natural
processes operating on the earth (and hence without recourse to an
ensemble of universes), invokes laws of self-organization whereby
LIFE might arise spontaneously. From the perspective of the design
inference, all these moves are moves against Premises 3 and 5, and
therefore moves to block the conclusion of the design inference.

2.4 FROM DESIGN TO AGENCY

The logic of the Explanatory Filter is eliminative - to infer design is to
eliminate regularity and chance. Yet in practice, to infer design is not
simply to eliminate regularity and chance, but to detect the activity
of an intelligent agent. Though defined as a negation, design delivers
much more than a negation. Apparently lacking in causal pretensions,
design sharply constrains our causal stories. There is an intimate
connection between design and intelligent agency, a connection made
clear by the Explanatory Filter. The aim of this section is to elucidate
this connection.

To see why the filter is so well suited for recognizing intelligent
agency, we need to understand what it is about intelligent agents that
reveals their activity. The principal characteristic of intelligent agency
is directed contingency, or what we call choice. Whenever an intel-
ligent agent acts, it chooses from a range of competing possibilities.
This is true not just of humans, but of animals as well as of extrater-
restrial intelligences. A rat navigating a maze must choose whether
to go right or left at various points in the maze. In trying to detect an
extraterrestrial intelligence, SETI researchers assume such an intel-
ligence could choose from a range of possible radio transmissions,
and then attempt to match the observed transmissions with patterns
regarded as sure indicators of intelligence. Whenever a human being
utters meaningful speech, a choice is made from a range of possible
sound combinations that might have been uttered. Intelligent agency
always entails discrimination, choosing certain things and ruling out
others.

10 See Barrow and Tipler (1986), as well as critiques of the Anthropic Principle by van Inwagen
(1993, ch. 8) and Leslie (1989).
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Given this characterization of intelligent agency, the crucial ques-
tion is how to recognize it. Intelligent agents act by making a choice.
How then do we recognize that an intelligent agent has made a choice?
A bottle of ink spills accidentally onto a sheet of paper; someone takes
a fountain pen and writes a message on a sheet of paper. In both in-
stances ink is applied to paper. In both instances one among an almost
infinite set of possibilities is realized. In both instances a contingency
is actualized and others are ruled out. Yet in one instance we ascribe
agency, in the other chance. What is the relevant difference? Not
only do we need to observe that a contingency was actualized, but
we ourselves need also to be able to specify that contingency. The
contingency must conform to an independently given pattern, and we
must be able independently to formulate that pattern (cf. Sections 1.1
and 1.2 as well as Chapter 5). A random ink blot is unspecifiable; a
message written with ink on paper is specifiable. Wittgenstein (1980,
p. 1 e) made the same point as follows: "We tend to take the speech of a
Chinese for inarticulate gurgling. Someone who understands Chinese
will recognize language in what he hears. Similarly I often cannot
discern the humanity in man."

In hearing a Chinese utterance, someone who understands Chinese
not only recognizes that one from a range of all possible utterances
was actualized, but is also able to specify the utterance as coherent
Chinese speech. Contrast this with someone who does not understand
Chinese. In hearing a Chinese utterance, someone who does not un-
derstand Chinese also recognizes that one from a range of possible
utterances was actualized, but this time, because lacking the ability
to understand Chinese, is unable to specify the utterance as coherent
speech. To someone who does not understand Chinese, the utterance
will appear gibberish. Gibberish - the utterance of nonsense sylla-
bles uninterpretable within any natural language - always actualizes
one utterance from the range of possible utterances. Nevertheless,
gibberish, by corresponding to nothing we can understand in any lan-
guage, also cannot be specified. As a result, gibberish is never taken
for intelligent communication, but always for what Wittgenstein calls
"inarticulate gurgling."

The actualization of one among several competing possibilities,
the exclusion of the rest, and the specification of the possibility
that was actualized encapsulate how we recognize intelligent agents.
Actualization-Exclusion-Specification - this triad - provides a
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general scheme for recognizing intelligence, be it animal, human, or
extraterrestrial. Actualization establishes that the possibility in ques-
tion is the one that actually occurred. Exclusion establishes that there
was genuine contingency (i.e., that there were other live possibilities,
and that these were ruled out). Specification establishes that the ac-
tualized possibility conforms to a pattern given independently of its
actualization.

Now where does choice, that defining characteristic of intelligent
agency, figure into this criterion? The problem is that we never witness
choice directly. Instead, we witness actualizations of contingency
that might be the result of choice (i.e., directed contingency), but
that also might be the result of chance (i.e., blind contingency). Now
there is only one way to tell the difference - specification. Specifi-
cation is the only means available to us for distinguishing choice
from chance, directed contingency from blind contingency. Actual-
ization and exclusion together guarantee we are dealing with contin-
gency. Specification guarantees we are dealing with a directed contin-
gency. The Actualization-Exclusion-Specification triad is therefore
precisely what we need to identify choice and therewith intelligent
agency.

Psychologists who study animal learning and behavior have known
of the Actualization-Exclusion-Specification triad all along, albeit
implicitly. For these psychologists - known as learning theorists -
learning is discrimination (cf. Mazur, 1990; Schwartz, 1984). To
learn a task an animal must acquire the ability to actualize behav-
iors suitable for the task as well as the ability to exclude behaviors
unsuitable for the task. Moreover, for a psychologist to recognize that
an animal has learned a task, it is necessary not only to observe the
animal making the appropriate behavior, but also to specify this be-
havior. Thus, to recognize whether a rat has successfully learned how
to traverse a maze, a psychologist must first specify the sequence of
right and left turns that conducts the rat out of the maze. No doubt, a
rat randomly wandering a maze also discriminates a sequence of right
and left turns. But by randomly wandering the maze, the rat gives no
indication that it can discriminate the appropriate sequence of right
and left turns for exiting the maze. Consequently, the psychologist
studying the rat will have no reason to think the rat has learned how
to traverse the maze. Only if the rat executes the sequence of right
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and left turns specified by the psychologist will the psychologist rec-
ognize that the rat has learned how to traverse the maze. Now it is
precisely the learned behaviors we regard as intelligent in animals.
Hence it is no surprise that the same scheme for recognizing animal
learning recurs for recognizing intelligent agents generally, to wit,
actualization, exclusion, and specification.

This general scheme for recognizing intelligent agents is but a
thinly disguised form of the Explanatory Filter: For the filter to elim-
inate regularity, one must establish that a multiplicity of possibil-
ities is compatible with the given antecedent circumstance (recall
that regularity admits only one possible consequence for the given
antecedent circumstance; hence to eliminate regularity is to estab-
lish a multiplicity of possible consequences). Next, for the filter to
eliminate chance, one must establish that the possibility actualized
after the others were ruled out was also specified. So far the match
between this general scheme for recognizing intelligent agency and
how the Explanatory Filter infers design is exact. Only one loose end
remains - the role of small probabilities. Although small probabil-
ities figure prominently in the Explanatory Filter, their role in this
general scheme for recognizing intelligent agency is not immediately
apparent. In this scheme one among several competing possibilities
is actualized, the rest are excluded, and the possibility that was actu-
alized is specified. Where in this scheme are the small probabilities?

The answer is that they are there implicitly. To see this, consider
again a rat traversing a maze, but this time take a very simple maze
in which two right turns conduct the rat out of the maze. How will
a psychologist studying the rat determine whether it has learned to
exit the maze? Just putting the rat in the maze will not be enough.
Because the maze is so simple, the rat could by chance just happen
to take two right turns, and thereby exit the maze. The psychologist
will therefore be uncertain whether the rat actually learned to exit this
maze, or whether the rat just got lucky. But contrast this now with a
complicated maze in which a rat must take just the right sequence of
left and right turns to exit the maze. Suppose the rat must take 100
appropriate right and left turns, and that any mistake will prevent the
rat from exiting the maze. A psychologist who sees the rat take no
erroneous turns and in short order exit the maze will be convinced
that the rat has indeed learned how to exit the maze, and that this was
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not dumb luck. With the simple maze there is a substantial probability
that the rat will exit the maze by chance; with the complicated maze
this is exceedingly improbable.

It's now clear why the Explanatory Filter is so well suited for
recognizing intelligent agency: for the Explanatory Filter to infer de-
sign coincides with how we recognize intelligent agency generally.
In general, to recognize intelligent agency we must establish that one
from a range of competing possibilities was actualized, determine
which possibilities were ruled out, and then specify the possibility
that was actualized. What's more, the competing possibilities that
were ruled out must be live possibilities, sufficiently numerous so that
specifying the possibility that was actualized cannot be attributed to
chance. In terms of probability, this just means that the possibility
that was specified has small probability. All the elements in the gen-
eral scheme for recognizing intelligent agency (i.e., Actualization-
Exclusion-Specification) find their counterpart in the Explanatory
Filter. It follows that the filter formalizes what we have been doing
right along when we recognize intelligent agents. The Explanatory
Filter pinpoints how we recognize intelligent agency.
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3
Probability Theory

3.1 THE PROBABILITY OF AN EVENT

Our aim throughout the next four chapters is to explicate and justify
the Law of Small Probability (LSP). To accomplish this aim, let us
start by identifying the conception of probability we shall be using.
Conceptions of probability abound. Typically they begin with a full
theoretical apparatus determining the range of applicability as well
as the interpretation of probabilities. In developing our conception of
probability, I want to reverse this usual order, and instead of starting
with a full theoretical apparatus, begin by asking what minimally
we need in a conception of probability to make the design inference
work.

One thing that becomes clear immediately is that we do not need a
full-blown Bayesian conception of probability. Within the Bayesian
conception propositions are assigned probabilities according to the
degree of belief attached to them. Given propositions E and H, it
makes sense within the Bayesian conception to assign probabilities
to E and H individually (i.e., P(E) and P(H)) as well as to assign
conditional probabilities to E given H and to H given E (i.e., P(E | H)
and P(H | E)). If E denotes evidence and H denotes a hypothesis, then
of particular interest for the Bayesian probabilist is how believing E
affects belief in the hypothesis H. Bayes's theorem is said to answer
this question, relating the probability of H given E (i.e., P(H | E),
known as the posterior probability) to the probability E given H (i.e.,
P(E | H), known as the likelihood) and the probability of H by itself
(i.e., P(H), known as the prior probability):

P ( H | E ) =
 P ( E | H ) P ( H )

P(E|H)P(H) + £, .P(E|H,)P(H,)

Here the H; are alternate hypotheses that together with H are mutually
exclusive and exhaustive. Bayes's theorem is therefore of particular
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interest if one wants to understand the degree to which evidence
confirms one hypothesis over another.

It follows that Bayes's theorem has little relevance to the design
inference. Indeed, confirming hypotheses is precisely what the design
inference does not do. The design inference is in the business of
eliminating hypotheses, not confirming them. Given an event E and
a chance hypothesis H, for the design inference to eliminate H, what
needs to be established is that the probability of E given H (i.e.,
P(E | H)) is small enough. On the other hand, what does not need to be
established is the probability of H given E (i.e., P(H | E)). Because the
design inference is eliminative, there is no "design hypothesis" against
which the relevant chance hypotheses compete, and which must then
be compared within a Bayesian confirmation scheme. Thus, we shall
never see a design hypothesis D pitted against a chance hypothesis
H so that E confirms D better than H just in case P(D | E) is greater
than P(H | E). This may constitute a "Bayesian design inference,"
but it is not the design inference stemming from the Explanatory
Filter.

Of the three types of probabilities that appear in Bayes's theorem -
posterior probabilities, likelihoods, and prior probabilities - only one
is relevant to the design inference, namely, the likelihoods. The prob-
ability of an event given a chance hypothesis is the only type of prob-
ability we need to consider. Posterior probabilities and prior proba-
bilities play no role. This I take to be a huge advantage of the design
inference. Posterior probabilities can typically be established only
via prior probabilities, and prior probabilities are often impossible to
justify.

Only in special cases can prior probabilities be assigned with any
degree of confidence (e.g., medical tests that test whether someone
has contracted a given disease). Usually, however, prior probabili-
ties cannot be assigned with confidence, and so one is left appeal-
ing to some variant of the indifference principle. Broadly speaking,
the indifference principle asserts that given a set of mutually exclu-
sive and exhaustive possibilities, the possibilities are to be treated as
equiprobable unless there is reason to think otherwise. Unless prop-
erly nuanced, the indifference principle leads to paradoxes like the
one of Bertrand (cf. Howson and Urbach, 1993, p. 60). And even
when it avoids paradox, the indifference principle can lead to such
ridiculous claims as the one by Laplace (see Zabell, 1988, p. 173),
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who, in assuming that the earth was about 5000 years old, claimed
"it is a bet of 1826214 to one that [the sun] will rise again tomorrow."

These remarks about the Bayesian conception of probability ap-
ply equally to the logical and epistemic conceptions of probability
(cf. respectively Keynes, 1921; Plantinga, 1993, chs. 8-9), and in-
deed to any conception of probability that in assigning probabili-
ties to propositions (or statements), finds it important to move freely
from a conditional probability like P(E | H) to its inverse probabil-
ity P(H | E) (usually by means of Bayes's theorem) as well as to the
unconditioned probabilities P(E) and P(H). This is not to say that
the Bayesian or logical or epistemic conceptions of probability are
incompatible with the design inference - the probabilities they assign
work perfectly well with it. Nonetheless, these conceptions commit
one to a much bigger (and more controversial) probabilistic apparatus
than required by the design inference. All that the design inference
requires of a probabilistic apparatus is that it assign probabilities to
events.

What, then, is the probability of an event? To answer this question
observe first of all that the probability of an event is never the prob-
ability of an event simpliciter, but always the probability of an event
in relation to certain background information. Consider for instance
the case of someone we'll call John. John, let us say, belongs to a
local athletic club. What is the probability that John will show up at
the athletic club Friday night to work out? The event in question, and
the one whose probability we wish to determine, is the appearance
of John at the athletic club Friday night. What probability shall we
assign to this event? The answer clearly depends on the background
information with which we approach this event. Change the back-
ground information and the probability changes as well. Here are a
few possibilities:

(1) We never heard of John. We don't know who John is, nor the
athletic club John attends. With this paucity of background in-
formation we can't even begin to assign a probability to John
showing up at the athletic club Friday night.

(2) We know John well. We know that it is John's birthday on Friday,
and that he never works out on his birthday because he prefers
instead to carouse with his friends. We also know that the athletic
club where John works out does not tolerate drunken revelry. It
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therefore seems highly improbable that John will turn up at the
athletic club Friday night.

(3) We know John well, but this time we know that John is a physical
fitness addict. In fact, we know that for the past five years John
has not missed a Friday night workout at the athletic club. We
also know that John is in perfect health and has not been sick in
years. It therefore seems quite probable that John will turn up at
the athletic club Friday night.

(4) Finally, we know John well, and we know that John only works
out three to four nights a week, favoring no day of the week over
another. It therefore seems as probable as not that John will turn
up at the athletic club Friday night.

The probability of an event can therefore be understood as the prob-
ability of an event E in relation to certain background information H.
What sort of relation? The following definition provides the answer:

Definition. The probability of an event E with respect to background
information H, denoted by P(E | H) and called "the probability of
E given H," is the best available estimate of how likely E is to occur
under the assumption that H obtains.

The remaining sections of this chapter will be devoted to unpacking
this definition. Yet before we do this, it will be instructive to compare
this definition with the propensity interpretation of probability. The
propensity interpretation holds that probabilities are physically real
properties of experimental arrangements (cf. von Mises, 1957, p. 14;
Popper, 1959; and Giere, 1973, p. 473). Accordingly, probability is
a relation between events and experimental arrangements. A given
experimental arrangement has an inherent tendency (i.e., propensity)
to produce a given event. If the experimental arrangement could be
repeated indefinitely, this inherent tendency would express itself as
a limiting relative frequency. Within a propensity interpretation this
limiting relative frequency, capturing as it does the propensity of an
experimental arrangement to produce an event, defines the probability
of an event.

Although our definition of probability can accommodate the
propensity interpretation, the converse fails. To accommodate the
propensity interpretation it is enough to associate an experimental
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arrangement A with background information H that adequately de-
scribes A, and then set P(E | H) equal to the propensity-theoretic prob-
ability of E given A. On the other hand, accommodating our definition
of probability within the propensity interpretation is not possible. The
problem is that while an experimental arrangement is always fixed
and comprehensive, background information is typically partial and
fluid, subject to change in the light of further information.

Consider again the case of John showing up at the athletic club
Friday night given that we know he's a physical fitness addict. Our
background information leads us, rightly, to assign a high probability
to this event. The actual experimental arrangement in which John finds
himself, however, may be one where John has had a brain hemorrhage
and is in no position to convey himself to the athletic club. Factoring
in this new information would lead us, rightly, to lower the probability
of John showing up at the athletic club. But the actual experimental
arrangement might also include John's best friend, in a fervor of
nostalgia, forming the intention to wheel John's unconscious body
to the athletic club. Again, factoring in this new information would
lead us, rightly, to increase the probability of John showing up at the
athletic club.

Clearly, none of these probabilities assigned in the light of changing
background information can legitimately be regarded as a propen-
sity. But perhaps the problem is that we were being too restric-
tive with our background information. Is it possible to factor in
enough information so that our background information compre-
hensively describes the experimental arrangement in which John
finds himself? And if we could, would the probability we deter-
mined on the basis of this background information then constitute
a propensity? Quantum mechanical systems that are simple, styl-
ized, and irreducibly random may be amenable to this approach. But
John showing up at the athletic club depends on a plethora of fac-
tors, including human intentionality. It's not at all clear that back-
ground information can capture all these factors, nor that the re-
sulting probability would constitute a propensity. Even so, the de-
cisive obstacle facing the propensity interpretation, and preventing
it from accommodating our definition of probability, is that it has
no way of assigning probabilities in the light of partial background
information.
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3.2 EVENTS

In unpacking our definition of probability, let us begin with events.
An event is any actual or possible occurrence in space and time.
Events can be relatively simple, as when a coin lands heads, or more
complicated, as when a sperm and egg cell unite to form a zygote.
Events can be historical, as in the dropping of the atomic bomb on
Nagasaki in World War II. Events can be counterfactual, as in the
dropping of the atomic bomb on Tokyo in World War II. Events are
one-shot occurrences, tied to specific times, places, and things. This is
not to say that an event cannot take a long to time to happen or might
not be diffused through considerable swatches of space-e.g., the
event of the solar system assuming its present form. It is, however,
to say that events always possess specificity. Thus, a coin landing
heads is an event only if we are considering a specific coin tossed at
a specific time and place.1

Because we often apply Boolean operators to events, it is conve-
nient to broaden our notion of event so that events are closed under
Boolean operations. Thus, we define events as including not only one-
shot occurrences, but also negations, conjunctions, and disjunctions
of events. Thus, we may think of generic events as built up recursively
from elementary events (i.e., the one-shot occurrences) via Boolean
operations.

Often it will be convenient to treat events abstractly. Thus, we may
speak of tossing a fair coin, without reference to any actual coin,
place, or time. But such "abstract events" are simply classes of events
grouped together because they share a common feature of interest.
Thus, to speak abstractly of a coin landing heads, without reference to
a specific coin, serves as a convenient way of talking about a general
class of coin tosses. The probability of such an "abstract event" is
the range of probabilities associated with all the individual events
constituting it.

Events are not beliefs. My belief that I can successfully jump a
twelve-foot chasm is not the same as the event that I successfully
jump the chasm. What's more, my degree of belief that I can jump
the chasm may be unrelated to the probability that I successfully
jump the chasm if pursued, say, by a pack of bloodhounds. I may be
fully convinced that the occult power I derive from yoga meditation

1 Here I am following Borel (1963), for whom probability was the probability of a single event.
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will enable me to jump the chasm successfully. But if I am grossly
overweight and out of shape, the probability that I shall successfully
cross the chasm will be small.

Finally, even though events are distinct from objects, they are
closely related. Events typically presuppose objects and objects are
typically produced by events. Consider, for instance, a dictionary
resting on my bookshelf. I have just now adjusted it, changing its
position. As a result, the dictionary has just now participated in an
event, namely the changing of its position. Though presupposed in
this event, the dictionary is not an event. On the other hand, the dictio-
nary itself was produced by an event, most immediately, its printing
and binding at a printer. It follows that even though we cannot, strictly
speaking, submit an object to the Explanatory Filter and thus perform
a design inference on it, nevertheless we can submit the event that
produced the object to the Explanatory Filter. In particular, we can
assign probabilities to objects by assigning probabilities to the events
that produced the objects.

3.3 BACKGROUND INFORMATION

To assess the probability of an event E is to assess its probability rela-
tive to certain background information H. Such background informa-
tion consists of items of information, which are simply claims about
the world.2 The background information H for assessing the probabil-
ity of an event E decomposes into items of information H^ H 2 , . . . , Hn

such that H is the conjunction of these items:

H = H, & H2 & • • • & Hn

(the ampersand here represents the standard logical symbol for the
conjunction "and"). As with events, negations, conjunctions, and dis-
junctions of items of information are also items of information. Thus,
the background information H, as a conjunction of items of informa-
tion, can itself be viewed as an item of information.

To illustrate how probability relates events and background infor-
mation, consider the following example. Suppose we are given an

2Here I am following Stalnaker (1984, p. 65) in identifying "items of information" with
propositions or claims. Ordinary usage sometimes restricts information to true claims about
the world. In contrast, the background information relative to which probability assignments
are made can be either factual or counterfactual.
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event E that consists of Frank attending a certain party tomorrow.
What are the chances that E will happen (i.e., that Frank will attend
the party)? To assess the probability of this event, let us assume we
are given the following items of information. H] - Frank is ambiva-
lent about parties (he can take them or leave them). H2 - Susan is
going to be at the party, and Frank is crazy about Susan. H3 - George,
Frank's boss, is going to be at the party, and Frank would just as soon
avoid him. H4 - it's going to be a huge bashi, so it's likely for Frank
to get lost in the shuffle and avoid his boss. Given these four items of
information, the probability of E needs to be assessed relative to the
background information

H = H, & H2 & H3 & H4.

Moreover, given H, it seems reasonably probable that Frank will show
up at the party: Frank doesn't actively dislike parties, Susan is going
to be there, he's crazy about Susan, and his boss, whom he would
rather avoid, can, it seems, be avoided.

An important fact to remember about background information is
that probabilities can change drastically when either old items of in-
formation are deleted or new items of information are added. Suppose,
for instance, we delete H2 and H4 from H. In this case the relevant
background information becomes H' = H! & H3. All we know now
is that Frank is ambivalent about parties and that his boss, whom he
would rather avoid, is going to be there. Relative to H', the probability
of E happening seems quite small. On the other hand, we may aug-
ment our original H to include the additional item of information H5,
viz., that Frank has been in a serious car accident and is hospitalized
lying in a coma. In this case the relevant background information
becomes

H" = H & H5 = H, & H2 & H3 & H4 & H5.

The addition of H5 overwhelms our previous items of information.
The probability of Frank showing up at the party tomorrow now be-
comes virtually nil.

The probability of an event E relative to background information
H does not depend on whether the information in H actually obtains,
or for that matter whether the event E has actually occurred. It is
simply irrelevant to P(E | H) whether the information in H is accurate,
verified, true, or assertible, or for that matter whether E has occurred.
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Rather, what is important is how likely it would be for E to occur under
the supposition that all the information in H obtains. The probability
of an event E is therefore a conditional probability, conditional on the
information H, with no presumption that the event or the information
accurately reflects the actual world.

Finally, items of information are capable of describing events, but
are not limited to events. Suppose, for instance, I wish to assign a
probability to Ronnie washing my car. Suppose my background in-
formation includes (1) that I have asked Ronnie to wash my car, (2)
that I have paid Ronnie $10 to wash my car, (3) that Ronnie is a
conscientious soul who is eager to please people, and (4) that Ronnie
views me as a cult figure and worships me. Given this background
information it seems highly probable that Ronnie will wash my car.
But notice, of these four items of information only the first two de-
scribe events - asking Ronnie to wash my car, and paying Ronnie to
do it. In contrast, the third item describes a character trait of Ronnie's
whereas the fourth describes a misguided belief. Every event can be
described by a corresponding item of information, but some items of
information do not describe events.

3.4 LIKELIHOOD

Having defined events and background information, we need next to
define the relation between them. Specifically, given an event E and
background information H we need to define how E and H together
induce the probability P(E | H). To see what's at stake, consider the
case of an English professor who for the past twenty years has been
teaching the same course each year. Suppose each year the course
enrollment has reached the maximum capacity of thirty students. Be-
cause the course is a college requirement, the professor is confident
that in the upcoming year the course will once again attract thirty
students. Now for a little diversion, each time the professor teaches
this course she asks her students to give their birthdates. To the pro-
fessor's surprise, in fifteen out of the twenty times she has taught the
course, at least two students shared a birthday. The professor is not
alone in being surprised. Indeed, most people find it unlikely that in
a class of thirty students two will share a birthday.

Because our college professor teaches in the humanities, let us fol-
low the popular stereotype of attributing to her little mathematical
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sophistication. Thus, we assume she lacks the statistical training for
thoroughly analyzing this apparent anomaly. Nevertheless, let us sup-
pose that even though this result seems to her counterintuitive, she
decides it is more likely than not that in a class of thirty students at
least one pair of students will share a birthday. In fact, given that in
seventy-five percent of her classes the students shared a birthday, let
us say she adopts a frequentist approach and assigns a probability of
0.75 to the event that the next time she teaches this course, her class
will have a shared birthday.

Without any statistical or probabilistic training, the best our col-
lege professor can do is employ past relative frequencies to assign
probabilities. We may therefore ask what probability she ought to
assign if she possessed further mathematical training. William Feller,
who possessed such training, proposed the following assignment of
probability (Feller, 1968, p. 33 - the italics are his):

The birthdays of r people form a sample of size r from the population
of all days in the year. The years are not of equal length, and we know that
the birth rates are not quite constant throughout the year. However, in a first
approximation, we may take a random selection of people as equivalent to
random selection of birthdays and consider the year as consisting of 365 days.
[Given] these conventions .. . [we conclude] that the probability that all r
birthdays are different equals

' 365r V 3657 V 365/ V 365

Again the numerical consequences are astounding. Thus for r = 23 people
we have p < 1/2, that is, for 23 people the probability that at least two
people have a common birthday exceeds 1/2.

Because this result is counterintuitive, it is called the "birthday
paradox." Since there are 365 days in the year, our first thought is
that for two of r people to have a better than even chance of sharing a
birthday, about half the number of days in the year will be required.
Our first thought is to fix a given individual and then calculate the odds
that the others share a birthday with this individual. The reason far
fewer people will do is that we must consider all paired comparisons
between individuals, and not simply comparisons to a fixed individual.
Thus, in a class of 30 students there are 435 ways (>365 days in a
year) of pairing the students, that is, ways the students can potentially
share a birthday. It turns out, therefore, to be quite likely that in a class
of thirty students at least two will share a birthday. In fact, according
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to Feller's formula, in a class of thirty students, the probability is 0.77
that at least two share a birthday.

Despite her lack of statistical training, our college professor was
therefore quite close to the mark in assigning a probability of 0.75.
Nevertheless, because her approach to probabilities relied exclusively
on relative frequencies and because her sample size was small, she
might easily have been much further from the mark. Given her train-
ing, our college professor did the best she could. On the other hand,
Feller's probabilistic analysis represents a significant improvement.
Even so, Feller's analysis is not the improvement to end all improve-
ments. As Feller himself notes, his analysis can be further improved
by factoring in leap years and differential birth rates according to time
of year. And no doubt this analysis could be improved still further by
taking into account yet other factors.

The lesson here is that the probability one assigns to an event
depends on how effectively one is able to utilize background infor-
mation and relate it back to the event. And this in turn depends on the
training, experience, computational tools, and noetic faculties of the
probabilist. The key word here is "effectively." Background informa-
tion is like a mine whose resources need to be fully exploited. Given
an event E and background information H, the probability P(E | H)
never drops out for free. What H has to tell us about E needs to be
as effectively utilized as possible. Given her lack of training in statis-
tics, our English professor was limited in what she could extract from
her background information. On the other hand, given his extensive
training in statistics and probability, William Feller was able to make
much better use of the same background information (though not
perfect use).

The idea of effectively utilizing background information to assess
probability is related to what statisticians call sufficiency. Sufficiency
is all about making optimal use of one's data. Invariably the statisti-
cian tries to understand a population by collecting data from it (called
"taking a sample"), and then drawing inferences from the data back
to the population. Now the problem with data is that left to them-
selves they tell us nothing about how to infer back to the population.
Suppose, for instance, we've taken a random sample, recorded 100
measurements, and now want to estimate the population mean. By
themselves, these 100 measurements tell us nothing about the popu-
lation mean.
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To be of use, data have to be mined. If we suppose the 100 measure-
ments are normally distributed, the optimal way to mine these data is
by taking the sample mean: add all 100 measurements together and
divide by 100. This is the sufficient statistic for the population mean
(Mood et al., 1974, p. 313). As a sufficient statistic, it makes opti-
mal use of these data. Of course, we can also make less than optimal
use of these data. We can, for instance, ignore all but the smallest and
largest measurement, add them together, and divide by 2. This statistic
would also estimate the population mean, but would be grossly ineffi-
cient, ignoring most of the data. Moreover, it would introduce bias if
the population were distributed asymmetrically about the population
mean.3

The mining metaphor is worth taking seriously. A sufficient statistic
is one that has mined the data so thoroughly that it can tell us nothing
more about the parameter of interest. So too, background information
may be mined so thoroughly that it can tell us nothing more about the
event in question. Working a mine till it is exhausted is of course an
ideal, and one we rarely attain. Nevertheless, it is an ideal to which
we aspire, and one that regulates our assignment of probabilities.
Just as in statistics sufficiency is the regulative ideal relating data to
population parameters, so for probability likelihood is the regulative
ideal relating background information to events:

Definition. The likelihood of an event E with respect to background
information H, denoted by A(E \ H) and called "the likelihood of E
given H" is that number, or range of numbers? in the unit interval
[0, 1] denoting how likely E is to occur under the assumption that
H obtains and upon the condition that H is as effectively utilized as
possible.

Implicit in this definition is that likelihoods are appropriately cal-
ibrated. There are two ways to calibrate likelihoods, both of which
agree. The first is the frequentist approach. According to it, to say that
the likelihood of an event E given H has value X is to say that if an ex-
perimental set-up in which H obtains could be repeated indefinitely,

3 For an introduction to sufficiency see Mood et al. (1974, pp. 299-314). For a full theoretical
account see Le Cam (1986, ch. 5).

4Cf. Peter Walley's "imprecise probabilities" and Henry Kyburg's "interval-valued probabil-
ities." See respectively Walley (1991) and Bogdan (1982).
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so that the outcome of one experiment does not affect the outcomes
of the others, then the relative frequency with which E occurs in these
experiments has limiting value X. This was the approach originally
adopted by von Mises (1957), and one that continues to enjoy popular-
ity. The second way of calibrating likelihood is the classical approach.
According to it, to say that the likelihood of an event E given H has
value X is to say E is as likely to occur as randomly selecting one of m
designated possibilities from a total of N possibilities, where (1) 0 <
m < N, (2) all the possibilities are symmetric, and (3) A. equals m/N.
This second approach, though apparently limited to likelihoods that
are rational numbers, is perfectly adequate for all practical purposes
since our precision in measurement is always limited. Moreover, if
we take mathematical limits of rational likelihoods, we can attain any
likelihood in the unit interval.

Both approaches employ idealizations. With the frequentist ap-
proach the idealization consists in an indefinite repetition of an ex-
periment under independent and identical conditions, as well as the
supposition that in such an indefinite repetition relative frequencies
will converge to a limiting value. With the classical approach the
idealization consists in an abstract mechanism from which one may
randomly sample among N distinct symmetric possibilities. Exam-
ples of the latter include flipping a rigid, homogeneous disk with
distinguishable sides; throwing a rigid, homogeneous cube with dis-
tinguishable faces; selecting a ball from an urn that has been thor-
oughly mixed and whose contents consist of balls all having the same
size, shape, rigidity, and homogeneity, though differing in color;
and shuffling a pack of cards each of which are identical save for
the pattern printed on the card. "Random sampling" and "symmet-
ric possibilities" are irreducible concepts within the classical ap-
proach.

In practice, both approaches for calibrating likelihood work in tan-
dem. The abstract mechanisms of the classical approach are readily
approximated by real mechanisms like coins, dice, cards, and urns
containing balls. Repeated random sampling from these real mecha-
nisms typically yields relative frequencies that closely approximate
the likelihoods specified by the classical approach. In this way the
two approaches coalesce. Since my aim is not to explicate the theo-
retical underpinnings of the frequentist and classical approaches, but
merely to indicate the rationale for why likelihoods assume certain
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values as opposed to others (e.g., why 1/13 as opposed to 1/14 is the
likelihood of drawing an ace from an ordinary deck of playing cards),
I'll leave the discussion here. The theoretical underpinnings of these
approaches are taken up in the works of Keynes (1921 [1988]), von
Mises (1957), Reichenbach (1949), and Laplace (1814).

A likelihood can be a single number between 0 and 1, a range
of numbers between 0 and 1, or be undefined. Given as background
knowledge H the claim that Ronnie washed my car, and given the
event E that Ronnie did indeed wash my car, A(E | H) is the likeli-
hood of a tautology and therefore equals 1, a single number. On the
other hand, given as background knowledge that I shall be randomly
sampling a ball from either of two urns where one urn contains a single
white ball and three red balls and the other contains three white balls
and a single red balls (all the balls are identical save for color), and
given that I know nothing about which urn I shall be sampling (i.e., my
background information includes nothing for assessing prior proba-
bilities), the likelihood A(E | H) of drawing a red ball (= E) given
my background information (= H) is the interval [1/4, 3/4], i.e., all
numbers between 1/4 and 3/4. Finally, let E = Ronnie washed my car
and H — All the theorems of arithmetic. Because H has no relevance
to E, A(E | H) is undefined.5

Now that we know what the numbers mean, let's return to the defini-
tion of likelihood and consider what it is for background information
to be as effectively utilized as possible. At issue here is not simply the
effective, but the maximally effective use of background information.
What's more, except in the simplest cases the maximally effective use
of background information is beyond human capacities. The question
therefore arises just what capacities would facilitate the maximally
effective use of background information. Complete knowledge of all
mathematical truths (including all the theorems of statistics and prob-
ability), complete knowledge of the causal structure of the universe,
complete knowledge of every possible event as well as the conditions
under which it can occur, unlimited computational power, and the abil-
ity to reason without error should do it. A being with these capacities -
call it an ideal rational agent - regardless whether it exists, and regard-
less what form it takes (whether a transcendent god, a Peircean ideal

5 In these examples the relation between events and background information was sufficiently
simple that a definite determination of likelihoods was possible. In general, likelihoods can
only be estimated (cf. Section 3.5).
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community, or a Kantian regulative ideal), could make maximally
effective use of background information in determining likelihoods.

The mere possibility of such ideal rational agents renders likelihood
an objective relation between events and background information. To
see this, consider all ideal rational agents across all possible worlds.
If for an event E and background information H all these agents agree
in their assignment of likelihood, then A(E | H) is univocally defined
across all possible worlds. If on the other hand they disagree, define
A(E | H) as the smallest subset of the unit interval [0,1] that includes
all the likelihoods proposed by the ideal rational agents. This too
defines A(E | H) univocally across all possible worlds. Finally, if at
least one ideal rational agent decides the likelihood of E given H is
undefined, then take A(E | H) as undefined. This too assigns A(E | H)
a univocal sense across all possible worlds. Holding univocally across
all possible worlds, the likelihood relation is therefore independent
of what we know or believe, and therefore objective. Moreover, since
there are many likelihoods we can evaluate precisely and which as-
sume point values, it follows this relation is nontrivial (most statistical
probabilities are likelihoods and assume point values - see Plantinga,
1993, pp. 139-41).

3.5 THE BEST AVAILABLE ESTIMATE

Just because likelihoods are objective does not mean we can deter-
mine what they are. Objectivity and intelligibility are always separate
issues. We see this preeminently in mathematics, which consists en-
tirely of objective truths, only some of which we can know to be true.
So too, we can determine only some likelihoods exactly. Typically,
though, the best we can do is determine likelihoods approximately.
This calls for estimates.

To estimate a likelihood is to assign an event a number between
0 and 1 (or a range of numbers between 0 and 1) that, in the light
of relevant background information, reflects how likely the event is
to occur. All of us make such estimates of likelihood all the time
(though frequently we don't make explicit numerical assignments).
Given what I know about myself, I judge it highly unlikely (i.e., I
estimate the likelihood close to 0) that I'll play the upcoming state
lottery, much less win it; I judge it moderately likely (i.e., I estimate
the likelihood better than a half) that I'll get a haircut within the next
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three weeks; and I judge it highly likely (i.e., I estimate the likelihood
very close to 1) that I won't live to see the twenty-second century.
Such estimates of likelihood we call probabilities. Probabilities are
not only commonplace, but also indispensable for navigating through
life's uncertainties.

Because probabilities attempt to bridle uncertainty, the claim is
sometimes made that probability is a measure of ignorance. This
characterization of probability is misleading. Estimating the likeli-
hood of an event in the light of background information presupposes
a grasp of (1) the relevant background information, (2) the range of
events compatible with this background information, and (3) the art
of handling probabilities. In other words, we need to know quite a bit
to estimate likelihoods. It seems, therefore, inappropriate to describe
what we are doing when we estimate likelihoods as "measuring ig-
norance." Ignorance typically connotes a lack of knowledge that can
be remedied, and should have been remedied, but wasn't because of
negligence. Estimating likelihoods in the light of relevant background
information is nothing of the sort. When estimating likelihoods, we
have typically remedied as much ignorance as we are able. What
uncertainty remains is due not to negligence, but to the difficulties
inherent in ruling out alternate possibilities.

Although we make estimates of likelihood all the time, our esti-
mates can also be wrong. Wrong in what sense? Wrong not in the
sense of diverging from the true likelihood (estimation always toler-
ates some degree of error), but wrong in the sense that given what we
know about the art of handling uncertainty (statistical theory, causal
relations, contingency, etc.), we could have come up with a better
estimate of likelihood. We go wrong in our estimates of likelihood
for all the usual reasons we commit errors, such as sloppiness, dog-
matism, and self-deception. But this is never an excuse. Anyone who
goes to Las Vegas thinking he or she has a better than even chance
of beating the casinos (short of a card counter, or someone who has a
fix with the casino) ought to know better, and has made some terribly
wrong estimates of likelihood.

Estimating likelihood is not something we do well instinctively.
A striking example comes from the field of cognitive psychology.
At one time psychologists Peterson and Beach (1967) claimed sta-
tistical theory provided a reasonably accurate model for how people
make decisions in the face of uncertainty. According to Peterson and
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Beach, people left to their own devices come up with estimates of
likelihood reasonably close to those of statisticians. To be sure, these
estimates might need to be refined through more exact probabilistic
analyses, but on the whole people's intuitive estimates of likelihood
were thought not seriously to depart from the estimates of likelihood
prescribed by statistical theory.

In a celebrated series of articles, Kahneman and Tversky (1972;
1973) (also Tversky and Kahneman, 1971; 1973) provided convinc-
ing contrary evidence that people left to their own pretheoretic devices
are not "sloppy Bayesians" or "somewhat imperfect probability theo-
rists." Rather, Kahneman and Tversky found that people demonstrate
consistent biases in their departure from optimal statistical decision
making. Their findings held even for trained statisticians when these
were deprived of paper and pencil. Thus, even trained statisticians fail
to estimate the likelihood of events according to statistical theory un-
less paper and pencil are in hand and statistical theory is consciously
being applied to the problem at hand. The connection between sta-
tistical theory on the one hand, and the way people ordinarily reach
decisions in the face of uncertainty on the other, was therefore found
to be not even close.6

To appreciate how people can go wrong as "intuitive probabilists,"
consider the following case in which someone is asked to estimate
a likelihood (these are the sorts of counterexamples Kahneman and
Tversky used to refute Peterson and Beach):

Imagine you are at the doctor's office. You have recently had tests performed
to check whether you have a certain disease - disease X. The tests have come
back positive. You know that the false positive rate for the test is 4% and the
false negative rate is 3%. That is to say, for those who don't have the disease,
only 4% of the time does the test indicate the presence of the disease; whereas
for the people who actually have the disease, only 3% of the time does the
test fail to detect the disease. Hence for those who don't have the disease,
the test is 96% accurate, whereas for those who have the disease the test is

6Likewise, Bayesian decision theorists (e.g., Earman, 1992; Howson and Urbach, 1993)
avoid suggesting that we are intuitive Bayesians when left to our own devices. Instead, they
produce Dutch Book arguments, demonstrating that we had better align our decision making
with Bayesian principles since otherwise we'll lose money. Bayesianism not only prescribes
how to be rational, but also ties rationality to that great arbiter of all things, the bottom line.
Even Carnap (1955 [1970], p. 450) took this approach: "A man considers several possible
ways for investing a certain amount of money. Then he can - in principle, at least - calculate
the estimate of his gain for each possible way. To act rationally, he should then choose that
way for which the estimated gain is highest."
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97% accurate. Suppose now that you also happen to know that the disease is
rare in the population at large - say that no more than 1% of the population
has the disease. With this background information, and given that your test
came back positive, what do you estimate is the likelihood that you actually
have contracted disease X?

Presented with a case like this, most people estimate their likeli-
hood of having contracted the disease as quite high, typically better
than eighty or ninety percent. As it turns out, however, this estimate
is unduly high. In fact, a simple (and in this case sound) application
of Bayes's theorem shows that the chance of having contracted the
disease is less than twenty percent. For if we let E denote the contract-
ing of disease X, and let H denote the test coming back positive, and
factor in what we've been given about false positives, false negatives,
and the incidence of the disease within the general population, then
the probability we are after is P(E | H), which according to Bayes's
theorem is just

P(H | E)P(E)
P(E|H) =

P(H | E)P(E) + P(H | ~E)P(~E)

(0.97)(0.01)

(0.97) (0.01) + (0.04) (0.99)

= 0.1968.

What, then, makes an estimate a good estimate of likelihood? To
answer this question recall what makes something a likelihood in the
first place. Given an event E and background information H, for a
number A to be the likelihood of E given H means that k denotes
how likely E is to occur once H has been as effectively utilized as
possible. An ideal rational agent omnicompetent in the art of handling
uncertainties knows how to extract from H everything relevant for
determining how likely E is to occur. How does this apply to our
estimates of likelihood? Though less than ideal rational agents, we
all know something about the art of handling uncertainty, some more
than others. The key question, therefore, is whether we are making
the best use of what we do know about handling uncertainty. Given
perfect knowledge in the art of handling uncertainty, an ideal rational
agent can make maximally effective use of H in assessing likelihood.
Given our limited knowledge in the art of handling uncertainty, the
question remains whether we are nonetheless utilizing H as effectively
as we can in assessing likelihood.
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Recall the case of the college professor in Section 3.4. Though with-
out formal statistical training, by appealing to relative frequencies the
college professor made the best estimate she could of the likelihood
that her upcoming class would have a shared birthday. On the other
hand, in virtue of his statistical training William Feller was able to
make better use of the same background information, and thereby im-
prove the college professor's estimate of likelihood. Yet given what
the college professor and William Feller respectively knew about the
art of handling uncertainties, both offered perfectly good estimates
of likelihood. It is important to realize that neither estimate was sub-
jective or relative in the sense of merely reflecting personal taste. As
soon as their knowledge about the art of handling uncertainties was
determined, what could count as a good estimate of likelihood was
determined as well.

As estimates of likelihood, probabilities therefore fail to be objec-
tive in the unqualified sense of being completely independent of what
we know or believe. On the other hand, probabilities are objective in
the qualified sense that once we factor in what we know about the
art of handling uncertainty, the probability of an event given back-
ground knowledge is determined, and not the further subject of human
idiosyncrasy.7 This qualified objectivity of probability implies also a
normativity for probability. People with the same knowledge in the
art of handling uncertainty confronted with the same event and relat-
ing it to the same background information should assign roughly the
same probabilities.

Even so, there is no simple answer to the question what separates
the good from the bad estimates of likelihood - those we want to
dignify with the appellation "the probability of an event" from those
we don't. There is no algorithm that for every event-information
pair invariably outputs the right probability. Neither do any of the
traditional conceptions of probability - whether subjective, logical,

'Though adopting a logical conception of probability, Keynes (1921, p. 35) fully appreciated
this point: "The degree of probability, which it is rational of us to entertain, does not presume
perfect logical insight, and is relative in part to the secondary propositions which we in
fact know; and it is not dependent upon whether more perfect logical insight is or is not
conceivable. It is the degree of probability to which those logical processes lead, of which
our minds are capable If we do not take this view of probability, if we do not limit it
in this way and make it, to this extent, relative to human powers, we are altogether adrift
in the unknown; for we cannot ever know what degree of probability would be justified
by the perceptions of logical relations which we are, and must always be, incapable of
comprehending."
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classical, or frequentist - adequately decide this question. The math-
ematical theory of probability is only about 350 years old. In that
time it has been continually developing new methods and ideas for
estimating likelihoods. The probability of an event is therefore not
etched in stone, but subject to continual refinement over time. What's
more, assigning a probability to estimate likelihood often requires a
combination of methods and ideas.

Often but not always. A frequentist conception of probability is no
doubt the right one for determining the failure rate of light bulbs, and
more generally the failure rate of devices that wear out over time.
Thus, to test the endurance of a brand of light bulbs, the techni-
cians at Underwriter Laboratories will simply take a bunch of these
light bulbs and run them continuously until they fail. The average
rate of failure and the variability of failure rates will be recorded,
and thereafter serve as baselines for the light bulbs. Such baselines
are established within a frequentist conception of probability. The
frequentist conception of probability, however, remains limited. Mis-
sionaries being fattened up by cannibals have little reason to think
that the frequency with which they have been fed until now reliably
gauges whether they will be fed tomorrow - indeed, every day that
passes gives them more reason to think that tomorrow they themselves
will furnish the main course.

Even assigning a probability to something as seemingly straightfor-
ward as tossing a coin requires a host of factors be taken into account,
including both frequentist and classical conceptions of probability.
For if evenly balanced coins on average showed experimentally a
strong predisposition to land heads, we should not assign equal prob-
abilities to heads and tails. Yet the fact that in an even number of
tosses coins only infrequently land heads and tails equally often does
not imply that our best estimate of likelihood should be other than
50-50. Recorded relative frequency confirms that the two faces of
a coin should each be assigned a probability close to fifty percent.
Stochastic independence among coin tosses and symmetry properties
then settle the matter, fixing the probabilities at exactly fifty percent.

Moreover, the view that coin trajectories follow the laws of me-
chanics and can therefore, at least in principle, be predicted in advance
(thereby for any given toss collapsing probabilities to either zero or
one) has had to be modified in the light of our more recent understand-
ing of nonlinear systems, of which the human body is a conspicuous
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example. Yes, once a coin is in the air, and we know its position and
momentum, we can predict how the coin will land. But prior to its
being tossed, physics is incapable of determining the precise impulse
that a complex nonlinear system like a human being will impart to the
coin.8 Thus, we see that a variety of considerations come into play
when assessing probability even for something as simple and stylized
as flipping a balanced, rigid disk with distinguishable sides.

Nor are Bayesian conceptions of probability without their limita-
tions. As we've seen, both in this section and in Section 3.1, Bayesian
conceptions of probability invariably face the problem of how to as-
sign prior probabilities. Only in special cases can prior probabilities be
assigned with any degree of confidence (e.g., medical tests). So long as
the priors remain suspect, so does any application of Bayes's theorem.
On the other hand, when the priors are well-defined, Bayes's theorem
works just fine, as does the Bayesian conception of probability. To
sum up, then, there is no magic bullet for assigning probabilities.

To define probability as the best available estimate of likelihood
is therefore to embrace fallibilism and progressivism as ineliminable
aspects of probability. How we determine the best available estimate
of the likelihood of an event is in the end a function of our accu-
mulated knowledge for dealing with uncertainty. Such knowledge
consists of norms and practices that are constantly being corrected
and refined. Such knowledge arises within a community of discourse
and reflects the practices of those judged by the community as expert
in the estimation of likelihoods. As the best available estimate of the
likelihood of an event in the light of relevant background informa-
tion, the probability of an event is the estimate on which this group
of experts agrees.9 What gets assigned as the probability of an event
is therefore historically contingent. I offer no algorithm for assigning
probabilities nor theory for how probabilities change over time. For
practical purposes it suffices that a community of discourse can settle
on a fixed estimate of likelihood.

Each word in the phrase "the best available estimate" does impor-
tant work in the definition of probability. "Estimate" signifies that an

8 For nonlinear dynamics and chaos see Lasota and Mackey (1985) and Waldrop (1992).
9 In describing who is qualified to assign probabilities, Alvin Plantinga (1993, p. 195) remarks,

"While we may not be thinking of a veritable Mozart of probabilities, we are not thinking
of your average probability duffer either. When it comes to the deliverances of reason, what
counts is the best, or nearly the best, that human beings can do."
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event is being assigned a number between 0 and 1 (or a range of num-
bers, or no number at all) which, in the light of relevant background
information, reflects how likely it is for an event to occur. The expres-
sion "best available" ensures that the relevant community of discourse
is taking full advantage of its accumulated knowledge for dealing with
uncertainty (e.g., the latest advances in statistical theory). This means
that assignments of probability are self-critical and that the knowl-
edge employed to assign probabilities is constantly being revised,
corrected, and improved. As estimates of likelihood by experts in a
community of discourse, probabilities are always on the table, ready
to be discussed, revised, or even trashed. Finally, the definite article
"the" indicates that the relevant community of discourse agrees on
the estimate, whether it be a single number or a range of numbers
or no number at all. Within a community of discourse at a particular
time probability is therefore uniquely determined.

3.6 AXIOMATIZATION OF PROBABILITY

Distinct conceptions of probability require distinct axiomatizations.l0

The conception of probability presented in this chapter requires an
axiomatization whose probability measures are point-valued, finitely
additive, partial functions that apply to sentences (an interval-valued
generalization is straightforward). Here is the axiomatization: Let S
be a collection of sentences that contains the sentence T (tautology),
is closed under the unitary operator ~ (negation) as well as under
the binary operators & (conjunction) and v (disjunction), and has a
binary relation _L (disjointness). ~, &, and v satisfy the usual laws
of sentential logic (e.g., de Morgan's laws, distributivity of & over v
and vice versa, and commutativity of & and v). We define two binary
relations on S in terms of _L: A =>• B iffdef A _L (~B) and A <£>• B
iffdef A =*> B and B =>• A. Then ± satisfies the following conditions:

(1) ± is symmetric, that is, for every A and B in S, if A _L B, then
B ± A .

(2) For every A in S, A _L (~A).
(3) For every A, B, and C in S, if A =>• C, then (A & B) =>• C.
(4) For every A, B, and C in S, if ( A v B ) ^ C, then A =» C.

10 For examples of distinct axiomatizations of probability see Gudder (1988), Dubins and Savage
(1976), and deFinetti( 1974).



(5) For every A, B, and C in S, if A _L B and C =>• B, then A _L C.
(6) It's not the case that T J_ T.
(7) For all A in S, A => T, (Av~A) & T, and (A & ~A)

<S> (~T).

In case A _L B we'll say A and B are either disjoint, perpendicular, or
mutually exclusive; in case A => B we'll say A entails B; and in case
A <£>• B we'll say A and B are equivalent.

Given a set S satisfying these properties, a probability measure P on
S is then by definition any function satisfying the following axioms:

(Al) P is a partial function11 from the Cartesian product S x S into
the unit interval [0,1] (the value of P for any ordered pair (A, B)
in its domain is denoted by P(A | B)).

(A2) For any A and B in S, P(A | B) is defined only if B is not
equivalent to ~T. Moreover, if B is not equivalent to ~T, and
if B entails A, then P(A | B) is defined and equals 1.

(A3) For any A, A', B.andB'inS, if A is equivalent to A', Bis equiv-
alent to B', and P(A | B) is defined, then P(A' | B') is defined as
well and equals P(A | B).

(A4) For any A, B, and C in S, if A _L B and P(A | C), P(B | C), and
P(A V B | C) are all defined, then P(A | C) + P(B | C) = P(A v
B|C).

(A5) For any A and B in S, if P(A | B), P(A & B | T), and P(B | T) are
all defined, then P(A | B) = P(A & B | T)/ P(B | T). If we define
P also as a partial function on S that to each A in S assigns
P(A) (=def P(A | T)), then the last equation reads P(A | B) =
P(A & B)/P(B).

How does this formalism accommodate the probability of an event
E given background information H (i.e., the definition of probabil-
ity given in Section 3.1)? As we noted in Section 3.3, every event
can be described by a corresponding item of information. If we now
interpret the sentences in S as items of information, then some of
these sentences describe events. Thus, the probability P(E | H) can be
reinterpreted within the preceding axiomatization as the probability
of the sentence in S describing E given the sentence in S describing
H. Once the correspondence between sentences on the one hand, and

' ' Making probability measures partial rather than total functions allows for gaps in probability
assignments to be built directly into our probabilistic formalism.
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events and information on the other is established, our entire discus-
sion about the probability of an event assimilates to the preceding
axiomatization. Because it is natural to speak of the probability of
an event conditional on information instead of the probability of one
sentence conditional on another, and because there is little chance of
confusion going from one way of speaking to the other, I shall use
both ways of speaking freely and interchangeably.

Given a probability P(E | H), one needs to keep in mind that adding
further background information to H can drastically affect this prob-
ability. Save for probabilities identically zero or one, the addition of
novel information always threatens to overturn a previous assignment
of probability. Indeed, if P(E | H) is strictly between 0 and 1 and if the
underlying probability space is sufficiently fine-grained,12 as is often
the case, then it is possible to specify additional information I such
that P(E | H & I) falls anywhere between 0 and 1. Moreover, addi-
tional information is always available to collapse probabilities strictly
to 1 and 0 (whether the underlying probability space is fine-grained
or not): for I = E & H, P(E | H & I) = 1 and for I = H & (~E),
P(E | H & I) = 0 (we assume all the probabilities here are defined).

Because I shall want to connect the probability measures of this
chapter with the complexity measures of the next chapter, it will be
convenient to give a slight reformulation of the probability measures
defined in axioms A1-A5. Thus, instead of defining the probability
measure P simply as a partial function on the Cartesian product of
sentences S x S, it will be convenient also to define P as a partial
function on the Cartesian product S x pow(S), where pow(S) is the
powerset of S, that is, the collection of all subsets of S. The correspon-
dence between the two types of probability is now easily established:
for P defined on S x S, and evaluated at (E, H) in S x S, the cor-
responding P defined on S x pow(S) is evaluated at (E, {H}). Thus,
P(E | H) = P(E | {H}), where the probability measure on the left side
of the equation is defined on S x S, and the probability measure on
the right side is defined on S x pow(S).

12 What I mean by "sufficiently fine-grained" is that for any A such that P(A) > 0 and any r such
that P(A) > r > 0, there is a sentence A' that entails A satisfying P(A') = r (if we're dealing
with a Boolean algebra of sets, A' will be a subset of A). Many probability measures satisfy
this condition (e.g., the uniform probability on the unit interval [0, 1]). The general class of
these probability measures consists of the nonatomic probability measures on uncountable
complete separable metric spaces (see Parthasarathy, 1967, pp. 53-5).

90



Alternatively, for P defined on S x pow(S), and evaluated at
(E, H) in S x pow(S) where H = {H[, H 2 , . . . , Hn}, the corresponding
P defined on S x S is evaluated at (E, H, & H2 & •• • & Hn). Thus,
P(E | H) = P(E | H, & H2 & • • • & Hn), where the probability mea-
sure on the left side of the equation is defined on S x pow(S), and the
probability measure on the right side is defined on S x S. To establish
the correspondence when H contains infinitely many members of S
we need to extend "&" to an infinitary conjunction. Moreover, when
H is empty, P(E | H) = P(E | T) = P(E) (an empty conjunction is by
convention a tautology). Whether defined on S x S or S x pow(S),
these formulations of P are entirely equivalent. In particular, it is per-
fectly straightforward to reformulate axioms A1-A5 for probability
measures defined on S x pow(S).
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Complexity theory

4.1 THE COMPLEXITY OF A PROBLEM

Our aim remains to explicate and justify the Law of Small Probability.
Two pillars undergird this law, one probabilistic, the other complex-
ity-theoretic. In the last chapter we elucidated the probabilistic pillar.
Here we elucidate the complexity-theoretic pillar. Complexity the-
ory, like probability theory, is a theory of measurement.' Whereas
probability theory measures the likelihood of an event, complexity
theory measures the difficulty of a problem. Specifically, complexity
theory measures how difficult it is to solve a problem Q given certain
resources R. To see how complexity theory works in practice, let us
examine the most active area of research currently within complexity
theory, namely, computational complexity theory.

Computational complexity pervades every aspect of computer sci-
ence. Whatever the computational problem, a programmer has to
consider how the available computational resources (= R) contribute
to solving the problem (= Q). If a problem is intractable, the pro-
grammer won't want to waste time trying to solve it. Intractability
occurs either if the problem has no algorithm that allows it even in
principle to be solved on a computer, or if all the algorithms that solve
the problem consume so many computational resources as to make
solving the problem impracticable (either by requiring too much time
or memory). Programmers therefore have a vital stake in compu-
tational complexity theory. By definition computational complexity
theory handles one task: inputting algorithms and outputting the com-
putational resources needed to run those algorithms.

Stated in this way computational complexity theory appears to
do little more than reckon the cost of doing computational busi-
ness. Nevertheless, the very idea of reckoning such costs has had
profound implications for computer science and mathematics. The
1 For general theoretical accounts of what it means to measure something, see Torgerson (1958),
Suppes and Zinnes (1963), and Coombs, Dawes, and Tversky (1970).
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celebrated open problem whether P (the polynomial time algorithms)
equals NP (the nondeterministic polynomial time algorithms) is just
one problem formulated entirely within computational complexity
theory. To show that P is contained in NP is straightforward. The
difficult question is whether the conceivably broader class of algo-
rithms NP in fact coincides with the known subclass P (P is sig-
nificant because it comprises the only class of algorithms known to
be computationally tractable). A solution to this problem has im-
plications for everything from logic (is the satisfiability problem of
the propositional calculus practicable?) to real-world optimization
problems (can we in real-time solve the traveling salesperson prob-
lem?). Questions at the heart of probability (e.g., randomness) and
about the nature of mathematical proof (e.g., interactive proof sys-
tems) have also been recast in terms of computational complexity
theory.2

Thus, philosophers too, and not just mathematicians and com-
puter scientists, have a stake in computational complexity theory (see
Earman, 1986, ch. 8; Wimsatt, 1980). Nevertheless, because com-
putational complexity theory operates with the restricted notion of a
computational resource, the problems it can pose and the solutions
it can give are limited to this type of resource. Now the resources
relevant to the design inference certainly include computational re-
sources, but also exceed them. For this reason I shall propose a gen-
eral approach to complexity, and one that incorporates computational
complexity as a special case. Together with probability theory this
generalized approach to complexity undergirds the Law of Small
Probability.

The main object of study within complexity theory is the com-
plexity measure. Complexity measures are measures of difficulty,
measuring how difficult it is to solve a problem using the resources
given. Thus, complexity measures measure such things as cost, time,
distance, work, or effort. In measuring how difficult it is to solve
a problem using resources, complexity measures assess not the ac-
tual contribution the resources have already made toward solving the

2 For a precise formulation of the problem whether P equals NP see Garey and Johnson (1979,
ch. 2). Various complexity-theoretic approaches to randomness have been proposed. See
for instance Kolmogorov (1965) and the more recent work of van Lambalgen (1989) for a
space complexity approach; Goldreich, Goldwasser, and Micali (1986) for a time complexity
approach; and Dembski (1991; in press) for a "pattern" complexity approach. Finally, for
interactive proof systems see Balcazar, Diaz, and Gabarro (1990, ch. 11).
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problem, but what remains to be done in solving the problem once
the resources are in hand (e.g., with resources of $100 in hand and a
problem of acquiring a total of $1000, the complexity of the problem
is not the $100 already available, but the $900 yet needed).

The computational complexity measures from computer science
are a special case of complexity measures. Computational complex-
ity is measured in terms of either time (i.e., number of elementary
computational steps per second) or space (i.e., size of memory, usu-
ally measured in bits or bytes) or some combination of the two. The
more difficult a problem, the more time and space are required to run
the algorithm that leads to a solution. Time and space are the program-
mer's resources for transacting computational business. The business
of computation is solving computational problems. To stay in busi-
ness the efficient programmer strives to minimize the expenditure of
computational resources.

Complexity theory generalizes computational complexity theory.
Complexity theory takes problem-resource pairs (Q, R), conceived
now quite generally, and assesses to what degree the resources R con-
tribute to solving the problem Q. Moreover, it does this by measuring
what remains undone to solve Q once R is in hand. The easier/harder
it is to solve Q using R, the smaller/larger the complexity of (Q, R).
Thus, when the complexity of (Q, R) is minimal, one faces but min-
imal difficulty solving Q using R (e.g., when the resources already
contain a complete solution to the problem). Conversely, when the
complexity of (Q, R) is high, one faces considerable difficulty solving
Q using R (e.g., when Q is insoluble on the basis of R).

Since complexity assesses the difficulty of solving a problem using
the resources given, complexity is a binary relation between problems
and resources. The following definition characterizes this relation:

Definition. The complexity of a problem Q with respect to resources
R, denoted by (p(Q \ R)3 and called "the complexity of Q given R,"
is the best available estimate of how difficult it is to solve Q under
the assumption that R obtains.

This definition closely parallels the definition of probability given
in Section 3.1. Recall,

3 On occasion I shall also use other Greek letters, especially rjr, f, and / , to denote complexity
measures.
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Definition. The probability of an event E with respect to background
information H, denoted by P(E | H) and called "the probability of
E given H," is the best available estimate of how likely ' E is to occur
under the assumption that H obtains.

The similarity between complexity and probability is not purely
formal. In navigating through life's uncertainties, we invariably need
to do two things: (1) estimate how likely it is for certain events to
happen and (2) estimate how difficult it is for us to solve problems
arising from those events. Probability theory and complexity theory
thus work in tandem.

Sometimes the connection between probability and complexity is
so close that the two notions end up being mathematically equivalent.
Consider, for instance, the case of a safecracker whose problem is
to open a safe (cf. Section 2.1). Let us suppose the safe has a com-
bination lock marked with a hundred numbers ranging from 00 to
99, and for which five turns in alternating directions are required to
open the lock. As usual, we assume only one sequence of alternat-
ing turns can open the lock (e.g., 34-98-25-09-71). There are thus
ten billion possible combinations, of which precisely one opens the
lock.

The opening of the safe may now be treated from both a proba-
bilistic and a complexity-theoretic point of view. From a probabilis-
tic point of view we may ask how likely is it for the safecracker,
given only one opportunity to try a possible combination, to open the
combination lock. Let us assume the safecracker has no background
information to narrow down the range of possible combinations.4

Here the event in question is the opening of the lock by the safe-
cracker, and the relevant background information, whatever else it
may be, is such that it fails to narrow down the range of possible
combinations. The relevant probability is therefore one in ten billion,
or 10-10.

4 It's worth noting that safecrackers by and large do not have special background information
that enables them to reduce the number of possibilities on a combination lock. In general,
safecrackers open safes by cracking them - i.e., by actually breaking the mechanism - not by
finessing their way past the safe's mechanism, as by listening to the fall of tumblers. As Gleick
(1992, p. 189) notes, "the lore notwithstanding, the chief tools of successful safecrackers were
crowbars and drills. Safes were cracked; holes were torn in their sides; handles and dials were
torn off. When all else failed, safes were burned. The safeman used 'soup' - nitroglycerin."
Without such tools (= additional resources), safecrackers have no advantage over the rest of us.
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Alternatively, from a complexity-theoretic point of view we may
ask how difficult is it for the safecracker to open the lock. Without
tools to force the lock and without information to narrow down the
possible combinations, the safecracker cannot judge whether a combi-
nation opens the safe except by checking it. As the maximum number
of possible combinations the safecracker may have to check, 1010

therefore measures the difficulty of opening the safe. Since it is more
convenient to take the logarithm of this number, and since the loga-
rithm of 1010 is by definition the information inherent in an event of
probability 10~10 (see Hamming, 1986; as well as Section 4.6), the
likelihood of opening the safe and the complexity of opening the safe
are mathematically equivalent.

Although probability and complexity can turn out to be equivalent
notions, generally this is not the case. For instance, the probability
of a massive solar flair erupting between ten and eleven o'clock to-
morrow morning depends not at all on any problems we are capable
of solving. Alternatively, sorting an array of numbers according to
magnitude depends on the correctness of our sorting algorithms and
our computational power for executing these algorithms, and not at
all on probabilistic considerations.

Yet despite such differences, probability and complexity paral-
lel each other point for point (cf. Chapter 3): Event corresponds
to problem, background information to resources, and likelihood
to difficulty. Just as probability assesses likelihood of events in the
light of background information, so too complexity assesses diffi-
culty of problems in the light of resources. Moreover, both defi-
nitions depend on a community of discourse producing best avail-
able estimates, of likelihood in the one case, of difficulty in the
other. For the definitions of probability and complexity to make
sense it is necessary that estimates, whether of likelihood or of dif-
ficulty, be properly calibrated. In the case of probability, classical
and frequentist approaches to probability enabled us to calibrate
numerical assignments of probability (cf. Section 3.4). In the case
of complexity, the notion of a complexity bound enables us to cal-
ibrate numerical assignments of complexity (cf. Section 4.5). Just
as likelihood constitutes an objective relation between events and
background information, so too difficulty constitutes an objective
relation between problems and resources. Just as good estimates of
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likelihood require knowledge in the art of handling uncertainty, so too
good estimates of difficulty require knowledge in the art of problem-
solving.

4.2 PROBLEMS AND RESOURCES

The next four sections unpack the definition of complexity. We begin
with problems. Though philosophers devote considerable energy to
investigating specific problems, philosophers seem to have devoted
little attention to explicating the nature of problems per se. In Bertrand
Russell's Problems of Philosophy, problems are not themselves taken
to constitute a problem. Philosophers of science Larry Laudan (1977)
and Imre Lakatos (1970) make problem-solving the centerpiece of
their philosophy of science, but say little, except by way of example,
about what problems are. Cognitive scientists seek to understand hu-
man problem-solving, yet when coming to terms with the nature of
problems per se typically do not progress beyond claims like the fol-
lowing (Bourne, Dominowski, and Loftus, 1979, p. 232): "Problems
come in all shapes and sizes but generally share the characteristic that
the individual must discover what to do in order to achieve a goal."
In dictionaries and encyclopedias of philosophy, "problem" taken by
itself (as opposed to specific problems like "the problem of other
minds" or "the mind-body problem") neither appears as an entry nor
is cited in any index. Since so many philosophers resist the urge to
explicate problems per se, I shall do the same, treating problems as
irreducible and foundational.

Given a problem, we next define resources as whatever is given
to solve the problem. In identifying the resources for solving a prob-
lem, we need to be careful to include the skills and capacities of the
agent who will attempt to solve the problem. For instance, to prove a
mathematical theorem requires not only paper and pencil, but also the
skills of a mathematician. Moreover, the degree of mathematical skill
possessed by the mathematician will greatly affect whether and with
what facility a theorem gets proven. A world class number theorist
can solve problems in number theory that I cannot hope to solve, solve
others easily that I could solve only with great effort, and solve still
others that I too can solve easily, but which someone without math-
ematical training cannot solve. In short, paper plus pencil plus the
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skills of a world class number theorist is a far more effective resource
for solving problems in number theory than paper plus pencil plus
the skills of a number-theoretic duffer like myself.

Agents engaged in problem-solving vary greatly. Often they are in-
dividual human beings (as in the safecracker example of Section 4.1).
Many problems, however, require whole teams of human problem
solvers. For instance, the 10,000-page proof of the classification the-
orem for finite simple groups is the solution to a problem requiring the
joint effort of hundreds of mathematicians spanning several decades
(see Gorenstein 1983; 1986). The relevant agent here was therefore
not a lone super-genius mathematician, but rather the community of
mathematicians known as finite group theorists. Nor are agents nec-
essarily human. A honey bee performing a dance is an agent who
by dancing solves the problem of informing other bees where nec-
tar is located. So too, computers can be treated as agents that solve
problems by employing algorithms.5

The resources of complexity theory and the background informa-
tion of probability theory are interconvertible notions. Certainly it's
always possible to treat background information as a resource for
solving a problem. For instance, when a safecracker attempts to open
the combination lock of a safe, if the safecracker also possesses infor-
mation about what the first two numbers of the safe's combination are,
this background information constitutes a resource that substantially
decreases the difficulty of opening the lock. Conversely, it's always
possible to use background information to describe the resources for
solving a problem. For instance, even though a key resource help-
ing me to write this monograph is a Macintosh SE/30 computer, the
description of this resource also serves as background information.
Thus, we can view resources and background information as intercon-
vertible. This interconvertibility will be exploited throughout Chap-
ters 5 and 6, where the resources for a complexity measure cp serve
double-duty as background information for a probability measure P.
5 Treating computers as agents raises some interesting issues in the philosophy of mathemat-

ics. Tymoczko (1979), for instance, questioned whether Appel, Haken, and Koch's (1977)
computer-assisted proof of the four color theorem was legitimate by charging that the computer,
rather than assuming its ordinary role as a passive resource, was usurping the role of human
agents in surveying the proof's validity (Tymoczko was here appealing to Wittgenstein's re-
quirement that mathematical proofs be humanly surveyable - see Wittgenstein, 1983, pp. 95,
143 ff.). Detlefsen and Luker (1980, p. 804) disagreed, insisting that mathematicians em-
ploy all sorts of resources to assist them in proving theorems, among which the computer is
unexceptional.
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4.3 DIFFICULTY AND ITS ESTIMATION

A problem's difficulty will appear greater than it actually is if the
resources for solving the problem are used ineffectively. Resources
can be ineffectively used in either of two ways - by underutilizing
them or by wasting them. For example, if my resources comprise
a 300-pound refrigerator and a pickup truck, and my problem is to
transport the refrigerator from my house to my friend's house five
miles away, then I had better use the pickup. To be sure, I could
avoid using the pickup and try moving the refrigerator manually the
five miles to my friend's house. But by refusing to use the pickup, I
make my problem appear more difficult than it actually is. The def-
ect here is underutilizing available resources. Alternatively, I can
make full use of the pickup, but instead of driving directly with the
refrigerator to my friend's house, decide first to drive to Niagara
Falls and back. The defect this time is not underutilizing available re-
sources, but wasting them. As with underutilizing available resources,
wasting them makes my problem appear more difficult than it actu-
ally is.

Accurately assessing a problem's difficulty therefore requires avoi-
ding the twin defects of underutilizing and wasting resources. Indeed,
we can go so far as to say that resources are effectively utilized to the
degree that these twin defects are avoided. Thus, to say that resources
are as effectively utilized as possible is to say these twin defects have
been entirely eliminated. This is of course an ideal, and one we rarely
attain. Nevertheless, it is an ideal to which we aspire, and one that
regulates our assessment of difficulty. Just as within probability the-
ory likelihood is the regulative ideal relating background information
to events, so within complexity theory difficulty is the regulative ideal
relating resources to problems:

Definition. The difficulty of a problem Q with respect to resources
R, denoted by A(Q \ R) and called "the difficulty of Q given R," is
that number, or range of numbers, in the interval [0, oo] denoting
how difficult Q is to solve under the assumption that R obtains and
upon the condition that R is as effectively utilized as possible.

In this definition A(Q | R) measures how difficult Q remains once
R has been as effectively utilized as possible. Moreover, degree of
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difficulty increases with A(Q|R) so that A(Q|R) = 0 indicates
minimal difficulty and A(Q|R) = oo maximal difficulty. Implicit
in this definition is that degree of difficulty has been appropriately
calibrated. This topic is taken up in Section 4.5.

As with likelihood, difficulty can assume a single value, a range
of values, or remain undefined. How difficult is it to open a lock of
which we know nothing about its construction? This question admits
no answer, leaving difficulty undefined. How difficult is it to open a
lock if all we know is that it is one of several models, some of which
are more secure than others. In this case difficulty will span a range
of values. How difficult is it to open a lock that is already open? Here
there is no difficulty at all. The difficulty is zero, a single value.

Although evaluating difficulty requires utilizing resources as ef-
fectively as possible, typically we fall short of this ideal. Given
human limitations, some underutilization and waste typically creep
into our problem-solving. With less than perfect facility in the art
of problem-solving, we tend to make less than maximally effec-
tive use of the resources we are given. Indeed, maximally effec-
tive utilization of resources presupposes perfect facility in the art
of problem-solving. A being with this capacity - call it an ideal ratio-
nal agent - regardless whether it exists, and regardless what form
it takes, could evaluate difficulty precisely. Now the mere possi-
bility of such ideal rational agents renders difficulty an objective
relation between problems and resources. Justifying this claim is
virtually identical to justifying the objectivity of likelihood in
Section 3.4, only this time our ideal rational agents specialize in
problem-solving as opposed to uncertainty (the one additional com-
plication here is that difficulty needs to be appropriately calibrated -
see Section 4.5).

Just because difficulty is objective does not mean we can evaluate
it precisely. Typically, the best we can do is estimate it approximately.
To estimate the difficulty of a problem Q given resources R is to assign
a number between 0 and oo (or a range of numbers) that, given the
resources R, reflects how difficult it is to solve Q, 0 indicating mini-
mal difficulty and oo indicating maximal difficulty (often oo signifies
impossibility). All of us make such estimates of difficulty all the time
(though typically we don't make explicit numerical assignments). As
with estimates of likelihood, estimates of difficulty are indispensable
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to navigating through life. The following examples illustrate just how
widespread the practice of estimating difficulty is.

(1) When building, plumbing, or electrical contractors place bids
with their clients, they estimate how difficult it will be to solve a
problem (i.e., complete a job) given the resources at the contrac-
tor's disposal. The estimate of difficulty here corresponds to the
cost of labor and materials.

(2) Computer scientists routinely estimate the difficulty of solving
a computational problem by taking the currently best algorithm
that solves the problem and determining the algorithm's running
time. In this case the estimate of difficulty is the running time of
an algorithm on a computer.

(3) The odds that odds-makers in Las Vegas assign to sporting events
reflect the difficulty that one team is expected to encounter in
defeating another. In this case probabilities are doing the work of
estimating difficulty.

(4) The whole field of optimization within the industrial sciences can
be construed as minimizing the difficulty of solving certain prob-
lems, thereby maximizing output and minimizing incurred costs.
Within optimization theory, estimates of difficulty range over ev-
erything from straight monetary costs to distances a traveling
salesperson has to cover.

Estimates of difficulty sometimes keep us from attempting to solve
problems not because they are intractable, but because we deem them
too time-consuming or tedious. Consider for instance the case of
William Thurston, the premier mathematician in low-dimensional
topology, who a few years back wouldn't check a supposed proof of
the Poincare Conjecture in dimension 3. The Poincare Conjecture in
dimension 3 has been a long-standing open problem in mathematics
whose resolution the mathematical community eagerly awaits. Nev-
ertheless, Thurston refused to examine the proposed proof in detail,
his reason being not only that the methods used in the proof were
in his opinion inadequate, but more importantly because he judged
it would take him several months to work through the details of the
proof. Thurston therefore left the problem of checking the proof to
his students. As it turned out, Thurston's intuitions were correct - the
supposed proof contained an unfixable error.
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Although we make estimates of difficulty all the time, our estimates
can also be wrong. Wrong in what sense? Wrong not in the sense of
diverging from the true difficulty (estimation always tolerates some
degree of error), but wrong in the sense that given what we know
about the art of problem-solving, we could have come up with a
better estimate of difficulty. Sometimes we go wrong by thinking a
problem more difficult than it actually is, at other times by thinking
a problem easier than it actually is. Cases of underestimating difficulty
include the following:

(1) In the 1970s medical doctors thought that by the 1980s they would
be able to produce an artificial heart that could serve patients
almost as well as a fully functional natural heart. The problem of
producing such an artificial heart has in fact proved much more
difficult, with artificial hearts unable to keep patients alive for
more than a matter of months.

(2) In the 1950s it was thought that with the advent of the computer,
computational natural language translators were just around the
corner. The hope in particular was that such translators could
help us keep up with the Russians during the Sputnik craze. By
the 1960s these hopes were effectively dashed. Since then work
on natural language processing has continued, but with limited
success, and nowhere near the full natural language translators
that had been envisioned.

(3) Around the turn of the century the mathematician Hermann
Minkowski regarded the four-color problem as a fairly easy prob-
lem whose solution had been delayed only because no one of his
mathematical caliber had yet to attack the problem (Minkowski
was never modest about his abilities). When Minkowski actually
did set his sights on the problem, he found it much more difficult
than he expected. Indeed, its solution had to wait another eighty
years, and then was possible only with the aid of a computer. (See
Appel et al., 1977 for the solution to the four-color problem and
Reid, 1986 for a biographical sketch of Minkowski.)

(4) How difficult is it for inorganic matter to organize itself sponta-
neously and produce life? Until the last century the spontaneous
generation of organisms (even multicellular organisms) was taken
as a matter of course. Since then, however, beginning notably with
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the work of Louis Pasteur, chemical evolution and the origin of
life have come to appear much more difficult problems. To be
sure, many scientists hold that some form of prebiotic evolution
has occurred. But the simplistic view that flies simply pop into
existence out of household dust has long been abandoned. (See
Thaxton, Bradley, and Olsen, 1984 for a critical review of origin
of life studies.)

On the other hand, cases of overestimating difficulty are quite com-
mon as well:

(1) A bank president regards a bank vault as impregnable to burglars.
A software designer thinks the security measures she has imple-
mented render an operating system safe from hackers. The proud
owner of a new Porsche Turbo thinks the car's security system
will make it difficult for thieves to steal. Nevertheless, in each
instance a breach of security frequently proves far easier than
was previously suspected.

(2) How difficult is it for a human being to fly? How difficult is it to
put a person on the moon? How difficult is it to travel to Mars?
In the decades preceding these accomplishments few thought it
possible. Technology frequently outstrips our expectations. Tech-
nology can make the solution of problems far easier than we
previously imagined.

(3) After World War I the allies placed such constraints on Germany
(in terms of war reparations, limits on the size of the German
army, and sanctions) as to make it difficult for Germany to recover
and again threaten Europe. World War I was to be the war that
ended all wars. As it turned out, Germany was soon enough back
on its feet posing a threat to Europe.

(4) At the turn of the century the mathematician Gottlob Frege
claimed to have derived arithmetic entirely from the laws of
logic (Frege's system employed no specifically arithmetical ax-
ioms). Based as it was supposed on purely logical laws, Frege's
system should have been logically consistent. In particular, no
amount of deductive "inferencing" should have been able to de-
rive a contradiction from Frege's system. Deriving a contradiction
from Frege's system was supposed to be logically impossible,
and hence infinitely difficult (complexity = oo). Nevertheless,
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Bertrand Russell's paradox made short work of Frege's system,
showing that a contradiction issued from it rather easily.6

What, then, makes an estimate a good estimate of difficulty? To an-
swer this question recall how we defined difficulty. Given a problem
Q and resources R, for a number 8 to be the difficulty of Q given R
means that S denotes how difficult Q is to solve once R has been as ef-
fectively utilized as possible. An ideal rational agent omnicompetent
in the art of problem-solving knows how to extract from R everything
relevant for assessing Q's difficulty. How is this relevant to our own
estimates of difficulty? Though less than ideal rational agents, we all
know something about the art of problem-solving, some more than
others. The key question, therefore, is whether we are making the best
use of what we do know about problem-solving. Given perfect facility
in the art of problem-solving, an ideal rational agent can make max-
imally effective use of R, and thereby determine difficulty exactly.
Given our limited facility in the art of problem-solving, the question
remains whether we are nonetheless utilizing R as effectively as we
can in estimating difficulty.

Such estimates of difficulty are what we mean by complexity. It
is important to realize that such estimates are neither subjective nor
relative in the sense of merely reflecting personal taste. As soon as
we factor in what we know about the art of problem-solving, what
can count as a good estimate of difficulty is fully determined. As
estimates of difficulty, complexities therefore fail to be objective in
the unqualified sense of being completely independent of what we
know or believe. On the other hand, complexities are objective in the
qualified sense that once we factor in what we know about the art
of problem-solving, complexities are determined, and not the further
subject of human idiosyncrasy. This qualified objectivity of complex-
ity implies also a normativity for complexity. People with the same
knowledge in the art of problem-solving confronted with the same
problem and relating it to the same resources should assign roughly
the same complexities.

6 As Frege (1985, p. 214) put it, "Hardly anything more unfortunate can befall a scientific writer
than to have one of the foundations of his edifice shaken after the work is finished. This was
the position I was placed in by a letter of Mr. Bertrand Russell, just when the printing of this
volume was nearing its completion. It is a matter of my Axiom (V)." This remark appears in the
appendix to volume II of Frege's Grundgesetze der Arithmetik (The Basic Laws of Arithmetic).
Russell's paradox had demonstrated that inherent in Frege's system was a contradiction.
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Even so, there is no simple answer to the question what separates
the good from the bad estimates of difficulty - those we want to dig-
nify with the appellation "the complexity of a problem" from those
we don't. There is, for instance, no algorithm that for every problem-
resource pair invariably outputs the right complexity. Neither is there
a systematic approach to complexity that regulates how this question
is to be answered across the board. What with complexity cover-
ing everything from computation to cooking, complexity is simply
too broad a notion to yield complete systematization. Computational
complexity theory, much less complexity theory generally, is less
than fifty years old. In that time complexity theory has been continu-
ally developing new methods and ideas for estimating difficulty. The
complexity of a problem is therefore not etched in stone, but subject
to continual refinement over time.

Still, one guideline for preventing bad estimates of difficulty is
worth keeping in mind. Namely, we must avoid artificially inflating
our estimates of difficulty by permitting useless activity that wastes
precious resources. A computer programmer, for instance, can pur-
posely write inefficient code, introducing, say, a loop that iterates a
million times, but has no effect on the output of the algorithm. Lawyers
and accountants can pad their time sheets by spending far more time
on the account of a client than they actually need to. Taxicab drivers
can take a long, circuitous route between two points when a simple,
direct route exists. In estimating difficulty we must conscientiously
strive to eliminate all superfluous activity. Granted, this is not always
clear or possible. If we are new in a city, we can be fooled by a dis-
honest taxicab driver, and thus think getting from point A to point B is
more difficult than it actually is. Nevertheless, as soon as we discover
a superfluous element in the solution of a problem, we eliminate it,
and no longer factor it into our estimates of difficulty. Our estimates
of difficulty need to avoid as much useless padding as possible.

To define complexity as the best available estimate of difficulty is
therefore to embrace fallibilism and progressivism as ineliminable
aspects of complexity. How we go about finding the best available
estimate of the difficulty of a problem is in the end a function of
our accumulated knowledge for dealing with a wide cross-section
of related problems. Such knowledge consists of norms and practices
that are constantly being corrected and refined. Such knowledge arises
within a community of discourse and reflects the practices of those
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judged by the community as expert in the estimation of difficulty. As
the best available estimate of the difficulty of a problem given certain
resources, the complexity of a problem is the estimate on which this
group of experts agrees. What gets assigned as the complexity of a
problem is therefore historically contingent. I offer no algorithm for
assigning complexities nor theory for how complexities change over
time. For practical purposes it suffices that a community of discourse
can settle on a fixed estimate of difficulty.

Each word in the phrase "the best available estimate" does impor-
tant work in the definition of complexity. "Estimate" signifies that a
problem is being assigned a number between 0 and oo (or a range of
numbers, or no number at all) that, given certain resources, reflects
how difficult it is to solve the problem. The expression "best avail-
able" ensures that the relevant community of discourse is taking full
advantage of its accumulated knowledge for solving problems (e.g.,
the latest advances in computational complexity theory). This means
that assignments of complexity are self-critical and that the knowl-
edge employed to assign complexities is constantly being revised,
corrected, and improved. As estimates of difficulty by experts in a
community of discourse, complexities are always on the table, ready
to be discussed, revised, or even trashed. Finally, the definite article
"the" indicates that the relevant community of discourse agrees on
the estimate, whether it be a single number or a range of numbers
or no number at all. Within a community of discourse at a particular
time complexity is therefore uniquely determined.

4.4 AXIOMATIZATION OF COMPLEXITY

In the definition of complexity, two questions still need to be an-
swered. The first is how to axiomatize complexity theory, the second
is what do the numerical values of complexity signify. We take up the
first question here, the second in the next section. In any axiomatiza-
tion of complexity theory the primary object of study is the complexity
measure. To define a complexity measure <p we start with a nonempty
set S whose elements will be referred to generically as sentences. S
will typically comprise the sentences of a formal language. Never-
theless, as far as the formal apparatus of complexity is concerned,
exactly what S is or how its elements are interpreted doesn't matter.
All that is required is that S be a nonempty set. Thus, it can happen
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that the "sentences" on which a complexity measure is defined are
propositions, possible worlds, elements from a Boolean or a -algebra,
geographical locations, or even the very problems to which estimates
of difficulty are being assigned.

Whereas in Section 3.6 it was assumed that the sentences associ-
ated with probability measures always come with additional structures
(i.e., negation, conjunction, and disjunction), no such additional struc-
tures are presupposed for the sentences associated with complexity
measures. Nevertheless, the sentences associated with a complexity
measure always have the option of supporting additional structures.
The most common of these optional additional structures will be
called negation and denoted by the symbol ~, which will signify
a function from S into itself such that for any A in S, ~ A ^ A.
In case S is not a collection of sentences from a formal language,
but, say, a Boolean algebra, ~ may have the additional property of
being an involution (i.e., for any A in S, ~ ~ A = A), as when ~
denotes complementation of sets. In addition to ~, S may support
binary operators & and v, called respectively conjunction and dis-
junction, which map S x S into S. S may of course support still other
structures.

The problem-resource pairs of S are next defined as any ordered
pairs of the form (C, A) from the Cartesian product S x pow(S)
(pow(S) = the powerset of S, i.e., the collection of all subsets of S).
The sentence C therefore represents a problem Q whereas the collec-
tion of sentences A represents the resources R relevant for solving Q.
A complexity measure on S is then a partial function whose domain
comprises these problem-resource pairs of S. More specifically,

Definition. A complexity measure on a collection of sentences S is
any partial function <p from the Cartesian product S x pow(S) into
the nonnegative extended reals [0, oo] that, so long as (C,A) is in the
domain ofcp, satisfies the following redundancy condition:

ForC eS and A e pow(S), ifCeA, then <p(C\A) = 0.

Note that as a partial function, cp need not be defined everywhere
on the Cartesian product S x pow(S) (cf. conditional probabilities
of the form P(C | A) which are undefined whenever P(A) equals 0).
This is not to say that complexity measures can't be total functions,
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defined on the whole of S x pow(S) - in some instances they are,
as with computational complexity measures. But often, as with in-
formation measures (which are really just probability measures in
disguise - see Section 4.6), they will only be partial functions.

For C in S and A a subset of S, we write q>(C | A) even though the
standard way of expressing a function of two variables is <p(C, A).
We choose the notation <p(C | A) by analogy with conditional proba-
bilities, thinking of A as supplying the resources available for solving
the problem C. Thus, we think of cp(C | A) as calculating how diffi-
cult it is to solve C once A is given, with <p(C | A) = 0 indicating
minimal difficulty and cp(C | A) = oo indicating maximal difficulty.
When writing <p(C | A), we shall speak of conditioning C on A. It is
convenient to collect all complexity measures defined on a collection
of sentences S into a set. Thus, we let Comp(S) denote the set of all
complexity measures on S.7

For A and C in S, the complexity of the problem-resource pair (C,
A) is next defined as <p(C | {A}). To simplify the notation we denote
<p(C | {A}) also by <p(C | A). <p(C | A) then estimates how difficult it
is to solve C from A alone. Notice that by the redundancy condi-
tion <p(A | A) = 0. The difficulty of establishing some sentence D
apart from any additional resources can next be defined as <p(D | 0)
(0 = null set). To simplify the notation we denote <p(D | 0) also by

If cp is a complexity measure on a collection of sentences S, we refer
to the pair (S, cp) as a complexity system. Associated with any com-
plexity system (S, <p) is a subcollection Axv (S) of S called the axioms
or implicit resources of (S, <p). Ax^iS) is the collection of sentences
in S that are immediate under <p - zero complexity is required to solve
the problems represented by the axioms. Formally

If S and cp are clear from the context, we'll denote Ax^iS) simply by
Ax.

7 The reader who wants to compare this notion of complexity measure with the standard com-
putational notion should consult Davis and Weyuker (1983, pt. 4). For a machine-independent
approach to computational complexity, see also Blum (1967).

8 Note that conditioning on the null-set for a complexity measure corresponds to conditioning
on a tautology for a probability measure. This correspondence is not accidental. Probability
measures, when reformulated as information measures, are a type of complexity measure. See
Section 4.6.
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How does the preceding formalism accommodate the complexity
of a problem Q given resources R (i.e., the definition of complexity
given in Section 4.1)? To apply this formalism to an actual problem-
resource pair (Q, R), we need to interpret the sentences in S as descrip-
tions of both the problem Q and the resources R. Thus, the complexity
of the problem-resource pair (Q, R) is within the preceding formalism
unpacked as the complexity of a sentence C in S describing Q given a
collection of sentences A in S describing the resources in R. Once the
correspondence between sentences on the one hand and problems and
resources on the other is established, we can assimilate our treatment
of complexity in Sections 4.1-4.3 to this formalism.9

Because it is more natural to speak of the complexity of a problem
in relation to resources than the complexity of an individual sentence
in relation to a collection of sentences, I shall prefer the former mode
of expression. Moreover, for a problem-resource pair (Q, R) and a
complexity measure cp I shall freely write <p(Q | R), even though (Q,
R) is not technically in the domain of definition of cp (<p(Q | R) needing
properly to be interpreted as the complexity of a sentence describing
Q given a collection of sentences describing R). Correspondingly, for
a sentence C and a collection of sentences A I shall freely refer to
the pair (C, A) as a problem-resource pair, even though technically
(C, A) is just an ordered pair consisting of sentences from a formal
language.

If we now review the treatment of probability at the end of Sec-
tion 3.6, we see that both probability measures and complexity mea-
sures are partial functions on a Cartesian product of sentences S x
pow(S). This common domain of definition for both probability and
complexity measures will prove extremely useful in the next chap-
ter. Because of this common domain of definition, sentences in S
can alternately describe events, background information, problems,
and resources. Thus in particular, it will be possible to let back-
ground information for a probability measure serve double-duty as re-
sources for a complexity measure (a collection of sentences describing
background information for a probability measure may equally well

9 Implicit in this identification is that sentences that describe the same problems and resources
yield the same assignments of complexity under substitution. For instance, if C and D are
sentences both describing the problem Q, and if A and B are collections of sentences both
describing the resources R, then for any complexity measure <p that assigns a complexity to
the problem-resource pair (Q, R), cp (C | A) = <p (D | B).
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describe resources for a complexity measure, and vice versa). Hav-
ing sentences serve double-duty in this way will be essential to the
account of specification given in Chapter 5.

4.5 CALIBRATION THROUGH COMPLEXITY BOUNDS

In the definition of complexity, one question still needs to be an-
swered: What do the numerical values of complexity signify? So far
all I have said about complexities is that they range between 0 and
oo, with 0 signifying minimal difficulty (typically no difficulty at
all), oo signifying maximal difficulty (typically impossibility), and
the bigger complexities signifying the more difficult problems. Thus,
all I have done is attribute a certain ordinal property to complexities.
What I have not done is explain the significance of the numerical
values assigned by complexity measures.

Because complexity is so much more general a notion than prob-
ability (in Section 4.6 we'll see that probability is a special case of
complexity), calibrating complexities is nowhere near as neat as cali-
brating probabilities. There is a universality to probability that simply
does not hold for complexity. To say that an event has probability 1/2
is to say that it is as likely to occur as it is for a fair coin to land heads.
Probabilities are always comparable to a standard (e.g., coin tossing)
and therefore always commensurable (cf. Section 3.4).

Nothing like this holds for complexities. To say that a problem has
complexity 100 may mean that it requires 100 processing steps on a
computer, or that it requires 100 bits of information to specify, or that
it requires 100 dollars to procure, or what have you. None of these
complexities is commensurable in any straightforward way. Within
certain contexts it may, for instance, be possible to equate number
of processing steps executed on a mainframe computer with a dollar
amount measuring the cost to a computer facility for executing so-
and-so-many computational steps. But such an equation will depend
on the current state of computer technology, what it costs to maintain
and run the mainframe computer, not to mention what a given com-
puter facility thinks it can get away with charging its users. All of
this is highly contextual and ad hoc. There is consequently no stan-
dard against which all complexity measures can be compared as there
is for probability. The best we can hope for is certain limited pair-
wise comparisons between distinct complexity measures. The dual
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notions of tractability and intractability bounds provide the key to
these comparisons.

Although a complexity measure cp estimates the difficulty of solv-
ing a problem Q given resources R, it does not tell us the degree of
difficulty up to which Q can be solved by means of R, nor the degree of
difficulty beyond which Q cannot be solved by means of R. The degree
of difficulty up to which a problem can still be solved will be called
a tractability bound, whereas the degree of difficulty beyond which
a problem can no longer be solved will be called an intractability
bound. Tractability and intractability bounds are always nonnegative
extended real numbers (i.e., numbers in the extended real interval [0,
oo]). We denote tractability bounds with the Greek letter A. and in-
tractability bounds with the Greek letter \x. Also, we refer to tractabil-
ity and intractability bounds generically as complexity bounds. Given
a complexity measure (p, a problem Q, resources R, a tractability
bound X, and an intractability bound //,, we say that the problem Q is
tractable if <p(Q | R) < A. and intractable if cp(Q | R) > /z. Note that a
tractability bound A. can never exceed its corresponding intractability
bound fi, and that the two need not be equal.

To see what's at stake with tractability and intractability bounds,
imagine that what currently is the top of the line supercomputer can
perform its computations at the rate of 1 teraflop (i.e., a trillion floating
point operations per second). Suppose further that we, as operators
of this supercomputer, want to use it to solve various computational
problems. If we now include this supercomputer among our resources
R, we can then define a complexity measure <p that to each compu-
tational problem Q assigns the minimum number of floating point
operations required on the supercomputer to solve Q, a number we
denote by <p(Q|R).

What are plausible tractability and intractability bounds for </>? A
tractability bound characterizes the degree of difficulty up to which
we are still able to solve a problem Q given resources R. Even if
we owned the supercomputer outright and could use it any way we
saw fit, it seems implausible that we should be able to spend more
than a year of computation time on any given problem (presumably
we purchased the supercomputer to meet a multiplicity of needs, and
not just to solve a single problem). Since there are on the order of
108 seconds in a year and since our supercomputer can perform 1012

floating point operations per second, we therefore do not expect to
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be able to handle any computational problem requiring more than
108 x 1012 = 1020 floating point operations. In this way X = 1020

becomes a tractability bound for <p.
On the other hand, we may choose to ignore practical limitations

on the use of our supercomputer. Indeed, if we can devote one year on
the supercomputer to a given problem, why not two? And if two, why
not three? And if three, why not four? And if . . .? At some point, how-
ever, these questions must terminate. The duration of the universe, for
instance, obviously presents an upper bound on the number of years
our supercomputer, or any computer for that matter, can be devoted
to a particular problem. Since an intractability bound characterizes
the degree of difficulty beyond which we are no longer able to solve a
problem Q given resources R, to play it safe we might imagine gener-
ation upon generation of computer scientist, each intent on obtaining
a solution to the same problem, pursuing the solution to this problem
on our supercomputer for, let us say, a billion billion years (which by
all accounts exceeds the heat-death/collapse of the known physical
universe). In this case, with 1018 ( = a billion billion) years to perform
computations, with less than 108 seconds per year, and with the abil-
ity to perform 1012 floating point operations per second, even in this
science-fiction scenario our supercomputer cannot handle computa-
tional problems requiring more than 1018 x 108 x 1012 = 1038 float-
ing point operations. In this way /x = 1O38 becomes an intractability
bound for cp.

Observe that the tractability bound A. = 1020 is strictly less than
the intractability bound /x = 1O38. A gap like this between tractability
and intractability bounds is common. If there is a practical possibility
of running a supercomputer for one year devoted to one particu-
lar computational problem, then there is also a practical possibility
of running it for two, three, or even ten years. Similarly, if a bil-
lion billion years is incredibly generous as a bound above which a
supercomputer cannot even in principle be run, then so is a hundred-
million billion years. Typically between a tractability bound and its
corresponding intractability bound there lies a demilitarized zone in
which levels of difficulty slightly bigger than the tractability bound
will still characterize tractable problems, in which levels of difficulty
slightly smaller than the intractability bound will still characterize
intractable problems, and in which the levels of difficulty that remain

112



between the two bounds do not clearly characterize tractable or in-
tractable problems.10

It follows that neither tractability nor intractability bounds will in
general be unique. To be sure, they may be unique, and they may even
be equal. This would be the case, for instance, if our supercomputer
had a built-in explosive device so that after precisely one year of
continuous operation the computer was sure to blow up. In this case,
any computation requiring less than a year would be tractable and any
computation requiring more than a year would be intractable. Thus,
in this instance k and \x would be equal.

In general, however, tractability and intractability bounds for a
given complexity measure will neither be equal nor uniquely speci-
fied. Nevertheless, since a tractability bound signifies a degree of diffi-
culty up to which problems are still doable, and an intractability bound
signifies a degree of difficulty beyond which problems are no longer
doable, there is an obvious rule of thumb for selecting tractability and
intractability bounds: take tractability bounds as large as possible and
intractability bounds as small as possible. Although this rule of thumb
doesn't uniquely specify tractability and intractability bounds, it does
narrow the field considerably. Moreover, it has the effect of making
our tractability and intractability bounds as informative as possible.
Suppose that k and k' are both tractability bounds with k' < k. Then
for any problem that k' tells us is tractable, k will tell us it is tractable
as well, since <p(Q | R) < k' entails <p(Q | R) < k. Similarly, suppose
that \x and \x! are both tractability bounds with //,' > /x. Then for any
problem that //,' tells us is intractable, /x will tell us it is intractable as
well, since <p(Q | R) > /x' entails <p(Q | R) > /x.

Tractability and intractability bounds are as much estimates of dif-
ficulty as are complexities, only this time the estimates are made
not for individual problem-resource pairs, but for whole classes of
them (i.e., the doable and nondoable problems). Everything said in

10 Although complexity bounds cannot avoid the problem of vagueness, what vagueness they en-
counter is innocuous and does not undermine the utility of the predicates "(Q, R) is tractable"
and "(Q, R) is intractable." As Bas van Fraassen (1980, p. 16) rightly observes, "a vague
predicate is usable provided it has clear cases and clear counter-cases." "Tractable" and "in-
tractable" are usable in van Fraassen's sense because complexity bounds can be so defined
that complexities less than a tractability bound clearly signal problems that are solvable, and
complexities greater than an intractability bound clearly signal problems that are not solvable.
There is a vast literature on vagueness (cf. Goguen, 1968-69; Fine, 1975; Kaufmann, 1975;
Klir and Folger, 1988; and McGee, 1991).

113



Section 4.3 about assigning numerical values of complexity therefore
holds for assigning tractability and intractability bounds. In partic-
ular, they are assigned in a community of discourse and reflect the
norms and practices of those in the community judged as expert in
estimating the difficulty of problems.

Assigning appropriate tractability and intractability bounds to a
complexity system (S, <p) depends especially on the types of resources
available for solving problems. If cp, for instance, measures the num-
ber of elementary computational steps needed for an algorithm to
solve a computational problem, and if one's resources are limited
to computers available before 1960, then the relevant complexity
bounds, call them A.i960 and /u.i96o, will be relatively small (relatively
few computational steps are required to exhaust our computational re-
sources). If, on the other hand, (p has available as resources machines
present in 1990, then the relevant complexity bounds, call them A1990

and /x199o, will be substantially larger (this time our computational
resources enable us to execute far more computational steps). Thus,
even for the same complexity measure cp, different types of resources
issue in different complexity bounds (in this example technological
advance marks a change in resource type).

The question remains, What does a complexity measure signify
when it assigns a numerical estimate of difficulty? This question
now admits a limited answer in terms of tractability and intractabil-
ity bounds. Given a complexity measure q> with tractability and in-
tractability bounds k and \x respectively, and a problem Q that is
to be solved with resources R; Q is respectively tractable, indetermi-
nate, or intractable depending on whether <p(Q | R) is strictly less than
A, between X and /x, or strictly greater than \i. Complexity bounds
therefore make it possible to compare distinct complexity measures
according to which problems they render tractable, indeterminate,
or intractable. This wraps up the definition of complexity given in
Section 4.1. The next two sections examine two commonly occurring
types of complexity measures.

4.6 INFORMATION MEASURES

Probability measures are disguised complexity measures. As they
stand, however, probability measures are not complexity measures.
Not only is the scaling off (complexity measures assume values in the
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extended real interval [0, oo] whereas probability measures assume
values in the unit interval [0, 1]), but also the directionality of these
measures is reversed. To see this, recall the safecracker in Section 4.1
who tries to open a safe whose combination lock allows ten billion
possible combinations. As before, we suppose the safe is sufficiently
well constructed that the safecracker cannot do better than randomly
twirl the dial on the safe's combination lock and hope by chance to
hit the right combination. Under these circumstances it's clear that
the difficulty that confronts the safecracker in opening the safe in-
creases as the safecracker's likelihood of opening the safe by chance
decreases. Thus, we see that complexity and probability covary in op-
posite directions: Probabilities closer to zero correspond to complex-
ities closer to infinity, while probabilities closer to one correspond to
complexities closer to zero (imagine a safe with only one or two pos-
sible combinations - the probability/likelihood of opening the safe
now goes up to one whereas the complexity/difficulty of opening it
goes down to zero).

Once we adjust for scaling and directionality, it becomes entirely
straightforward to view probability measures as disguised complex-
ity measures, with the disguise involving nothing more than a change
in direction and scale. Indeed, any order-reversing one-to-one cor-
respondence between [0, 1] and [0, oo] mapping 0 to oo and 1 to 0
transforms a probability measure into a complexity measure (by an
order-reversing function from reals to reals, I mean a function f such
that for a < b, f(a) > f(b)). Thus, if f is such a correspondence and P
is a probability measure, f o P will be a complexity measure (the little
circle "o" between f and P signifies composition of functions).11

It's clear that such fs are not uniquely determined. Indeed, given
the way I've characterized f, f need not even be continuous. Neverthe-
less, of all the possible order-reversing correspondences between the
unit interval [0, 1] and the extended real interval [0, oo] taking 0 to

1' At the end of Section 3.6 we extended the definition of probability measures from S x S to
S x pow(S). Hence, for the probability measure P and the one-to-one order-reversing map f
that takes 0 to oo and 1 to 0, f o P has the right domain of definition for a complexity measure
(complexity measures being defined on Cartesian products of the form S x pow(S)). To see
that f o P actually is a complexity measure, it remains to check that f o P satisfies the redun-
dancy condition. Suppose therefore that E € S, that H C S where H = (H|, H2 , . . . , HN},
and that E is one of the HJS, i.e., E 6 H. Then Hi & H2 & • • • & HN entails E, and so long
as P(E IH) is denned, P(E | H) = P(E | H1 & H2 & • • • & HN) = 1. But since f takes 1 to
0, it follows that f o P(E | H) = 0. f o P therefore satisfies the redundancy condition and is a
complexity measure.
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oo and 1 to 0, one correspondence stands out, and this is the negative
logarithm to the base 2, that is, f = — log2. This canonical method for
transforming probability measures into complexity measures stems
from Claude Shannon's theory of communication (see Shannon and
Weaver, 1949), with the complexity measure — log2 o P used to mea-
sure the "Shannon information" crossing a communication channel.

Complexity measures that are probability measures transformed by
—log2 will henceforth be referred to as information measures. Thus,
given a probability measure P defined on a collection of sentences S,
<p = —log2 o P defines an information measure on S. For simplicity
we also write the composition of the two functions —log2 and P as
—log2 P (thus <p = — log2 P). If <p is an information measure on the
collection of sentences S, we refer to the complexity system (S, <p)
as an information system. As we saw in Section 4.4, associated with
any complexity system (S, (p) is a subcollection A*p(S) of S, which
we called the axioms or implicit resources of (S, <p). Axp(S) was
there defined formally as the collection {A e S:<p(A) = 0}. Since
cp — —log2 P, in terms of the probability measure P, Ax^(S) equals
{A 6 S:P(A) = 1} (since -Iog2(l) = 0). Any axiom A of (S, <p)
therefore describes an event of probability 1.

From the vantage of Shannon information, the axioms of an in-
formation measure are otiose, corresponding as they do to events of
probability 1. Events of probability 1 rule out no possibilities. Because
events of probability 1 comprise the complete range of possibility,
they are utterly uninformative about what did and did not happen. In
the case of coin tossing, for instance, that either heads or tails will
land is an event of probability 1. To be informed of this event - that
after the coin was tossed, either heads or tails landed - is therefore
to acquire no new information, since we presumably knew what the
range of possibility was in the first place. This contrasts with RMS
systems, whose axioms are not trivial (see the next two sections, but
especially Section 4.8).

What advantage does an information measure cp have over its corre-
sponding probability measure P? And why apply — log2 to P instead
of some other order reversing map that takes 0 to oo and 1 to 0?
Since <p and P are interdefinable (<p — —log2 P and P = 2"*"), any
complexity-theoretic analysis in terms of <p can be translated into a
corresponding probabilistic analysis in terms of P, and vice versa.
Moreover, if our aim is simply to transform P into some complexity
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measure or other, any number of other transformations could serve
us equally well (e.g., f(x) = (1 — x)/x, what is known as the inverse
odds ratio).

The rationale for transforming probability measures by — log2 de-
rives from communication theory. The most convenient way for com-
munication theorists to measure information is in bits (this accounts
for the base 2 in the logarithm). Any message sent across a communi-
cation channel can be viewed as a sequence of Os and Is. Characters
from more complicated alphabets can be represented as strings of Os
and Is (cf. the ASCII code, which uses strings comprising eight Os
and Is to represent the characters on a typewriter), with whole words
and sentences in turn represented as strings of such character strings.
In this way all communication can be reduced to the transmission of
sequences of Os and Is. Given this reduction, the obvious way for
communication theorists to measure complexity is in number of bits
(i.e., number of Os and Is) transmitted across a communication chan-
nel. Communication theorists refer to this measure of complexity as
information.

The connection between information and probability now follows
as soon as we let sequences of Os and Is represent events. Imagine,
for instance, that a spy in the field wants to inform headquarters of the
exact position of the enemy. There are any number of positions the
enemy might have taken, each of which constitutes a possible event.
The enemy, however, has assumed one concrete position which the
spy must now represent in a sequence of Os and Is and transmit to
headquarters. How long (i.e., complex) does this string of Os and Is
have to be? The answer obviously depends on the number of possible
positions the enemy might have assumed.

Suppose, for instance, the enemy has assumed 1 of 2n possible
positions. There are 2" bit strings of length n (i.e., strings of the form
100110- • 0110 of length n). Hence there is a one-to-one correspon-
dence between bit strings of length n and the 2n possible enemy posi-
tions, one of which has actually been assumed. Once such a correspon-
dence is in place, to represent the actual enemy position, it is enough
to point to the bit string of length n that corresponds to that position.

If we now suppose that each of the possible positions the enemy
might assume is equiprobable (this assumption is surely unrealistic,
but it helps to draw the connection between information and prob-
ability), then the probability of the enemy taking a given position
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is the reciprocal of the total number of possible positions the en-
emy could have assumed, in this case 2~n. Since information as a
measure of complexity is just the length of a bit string, and since n
bits are required to represent any one of 2" equiprobable events (in
this case, enemy positions), it makes sense to extend the notion of
information from bit strings to equiprobable events so that the in-
formation inherent in any of 2n equiprobable events is by definition
n = —Iog2(2~n) = —log2(probability of any such event). The obvi-
ous further extension for arbitrary events A with respect to arbitrary
probability measures P is to define the information inherent in A as
—log2 P(A). Here, then, is the rationale for calling (p = — log2 P an
information measure.

It follows that information measures are complexity measures in
more than just name. Of course, as objects satisfying the defini-
tion of complexity measures given in Section 4.4, information
measures are complexity measures on purely formal grounds. In-
formation measures, however, also connect with our intuitive un-
derstanding of complexity. Complexity is always a measure of dif-
ficulty, assessing how difficult it is to do this given that you can
do that. For information measures the relevant type of difficulty is
length of bit strings, assessing how difficult is it to represent events
by means of bit strings, difficulty being identified with length of bit
strings.12

4.7 RMS MEASURES

Given a nonempty set S, an RMS measure on S is defined as any
partial function (p from the Cartesian product S x pow(S) into the

12 In this discussion of information measures I seem inadvertently to have slipped into the
probabilistic language of "events" and "background information," as opposed to sticking
with the language appropriate to information measures, that is, the complexity-theoretic
language of "problems" and "resources." Strictly speaking, probability measures are defined
for event-information pairs whereas complexity measures are defined for problem-resource
pairs. Since information measures are complexity measures, we may well ask what are the
problem-resource pairs to which they are being applied. As for resources, these readily
subsume background information. As for problems, they have been implicit throughout this
discussion, since it was never events themselves that were considered, but rather events
that needed to be represented by sequences of Os and Is - and representing an event in this
way does constitute a problem. The probabilistic language of "events" and "background
information" is innocuous in the case of information measures because the identification
between the probability of an event and the information required to represent an event is
perfectly straightforward.
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nonnegative extended reals [0, oo] satisfying the following condi-
tions:

(4.7.1) Redundancy: For C e S and A e pow(S), if C e A, then
<p(C | A) = 0.

(4.7.2) Monotonicity: For C e S and A, B e pow(S), if A C B then

(4.7.3) Subadditivity: For C, D e S and A e pow(S), <p(D | A) <

These conditions need only hold where <p is defined. RMS is an
acronym for Redundancy-Monotonicity-Subadditivity. As in the ax-
iomatization of complexity given in Section 4.4, the elements of the
set S on which an RMS measure is defined will be referred to gener-
ically as sentences.

An RMS measure is therefore a complexity measure satisfying two
additional requirements, monotonicity and subadditivity (redundancy
holds by definition for all complexity measures - see Section 4.4). For
a collection of sentences S and an RMS measure <p, the ordered pair
(S, (p) will be referred to as an RMS system (cf. complexity systems in
Section 4.4). The collection of all RMS measures on a set of sentences
S will be denoted by RMS(S) (cf. Comp(S) in Section 4.4). Note that a
handy triangle inequality follows immediately from the monotonicity
and subadditivity conditions:

(4.7.4) For all A, B, and C in S, <p(C | A) < cp(B | A) + <p(C | B).

RMS measures can be thought to measure the work or effort that
must be expended to solve a problem given a set of resources. Thus,
for an RMS measure <p, <p(C | A) can be interpreted as the amount of
effort needed to solve C given the resources A.13 For RMS measures
the redundancy condition then indicates that if a problem has already
been solved and its solution is among the given resources, no further
effort need be expended to solve the problem. Hence (4.7.1). The
monotonicity condition in turn indicates that the effort that must be
expended to solve a problem decreases as the resources needed for
solving the problem are increased. Thus, cp(C | A) decreases as A

13 In general, the elements of S will represent problems and resources rather than actually
coinciding with them. Thus, technically it would be more accurate to interpret <p(C | A) as the
amount of effort needed to solve the problem represented by C given the resources represented
by A. This is a niggling point.
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increases. Hence (4.7.2). Complexity measures that satisfy condition
(4.7.2) only will be called monotonic complexity measures.

Finally, the subadditivity condition indicates that the effort needed
to solve a fixed problem from fixed resources cannot exceed the fol-
lowing the sum: (the effort needed to solve an intermediate problem
from the initial resources) + (the effort needed to solve the original
problem from initial resources together with the solution to the inter-
mediate problem, which now serves as an additional resource). In the
subadditivity condition, the intermediate problem serves double duty,
once as a problem to be solved via the initial resources, and once as
a solution (to the intermediate problem) that together with the initial
resources helps solve the original problem.14 Thus, comparing the
most direct route for solving D with the indirect route of first solving
C and then solving D using the solution to C - the initial resources A
staying fixed - we expect the direct route to D to require less effort
than the indirect route through C. Hence (4.7.3). Complexity mea-
sures that satisfy condition (4.7.3) only will be called subadditive
complexity measures.

Although conditions (4.7.1)-(4.7.3) seem reasonable for modeling
work and effort, conditions (4.7.1) and (4.7.2) are nonetheless open to
criticism in this regard. The difficulty with these two conditions is that
they seem to ignore the cost of utilizing resources that are so large as
to be unwieldy. Indeed, the more resources the merrier is the upshot of
conditions (4.7.1) and (4.7.2). Resources, however, need not always
be an asset. One of the artificial intelligence community's biggest
challenges is devising search strategies that distinguish relevant from
irrelevant information (see VanLehn, 1989).15

Consider for instance a large database. If we treat the items of infor-
mation it contains as resources, then according to conditions (4.7.1)
and (4.7.2) this large database is resource rich, and is therefore bet-
ter at reducing effort than smaller databases. On the other hand, if
we treat size of the database as an obstacle in the sense that search

14 For RMS measures, what is the solution to a problem in one instance can be a resource in
another. This is especially true of real-world examples in which effort is expended: Thus, in
one instance the problem may be constructing hammer and chisel from nondescript pieces
of metal, whereas in another the problem may be sculpting a statue using that same hammer
and chisel.

15 Cf. Aristotle who in the opening of his Metaphysics asserted that knowledge is always a
good thing. In an information age, where the sheer volume of information is spinning out of
control, too much knowledge/information can actually be a bad thing.
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and access times increase with size, then a large database requires
greater expenditures of effort than smaller databases. This example
becomes particularly poignant if we think of augmenting the database
with a mound of trivial and useless information whereby most of the
database becomes irrelevant to the actual information we are trying
to derive.16

Against this criticism I would simply point out that search times
can themselves be represented in terms of effort. Thus, in the database
example we may have to consider two types of effort, one that treats
the individual items of information in the database as assets, no matter
how trivial or irrelevant, and another that treats the entire database
as an obstacle, with the database becoming less and less tractable
as its size increases. Depending on the purposes at hand we may
focus on one form of effort in place of another. Alternatively, we may
want to consider some combined measure of effort that balances the
advantage of increased information with the disadvantage of having
to search through it.

In contrast, condition (4.7.3), the subadditivity requirement, seems
largely uncontroversial in modeling work or effort. Because this con-
dition is stated as an inequality (i.e., the effort needed to solve a
problem directly is less than or equal to the effort needed to solve a
problem indirectly via the solution of some intermediate problem), it
represents the common occurrence that costs diminish as production
size increases. Imagine a printer who must print 1000 copies of a
book. The subadditivity requirement implies that the cost of print-
ing 1000 copies in one batch cannot exceed - and might actually be
strictly less than - the cost of printing 500 copies twice in two batches.
In fact, we know from experience that printing 500 copies twice will
be more expensive than printing 1000 copies once. Of course, the
subadditivity requirement also permits strict equality, as when solv-
ing an intermediate problem is the quickest way to solving a given
problem.

Although the preceding account of RMS measures is new, specific
examples of RMS measures are well-known and easily recognized.
I want to review some of these examples now. These examples will
demonstrate the scope and diversity of RMS measures. Here, then, is
a brief catalogue:

16 I'm indebted to Frank Doring for this line of criticism.
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Example 4.7.1 (Distance). Imagine sending a light signal from point
A to point B (suppose A and B are at rest in some inertial frame).
Then with a light source at A as the resource and getting to B as
the problem, one example of an RMS measure relating the two is
the distance separating A and B. In this way the metrics of point-set
topology become RMS measures. Note that the triangle inequality
(4.7.4) {i.e., that the direct distance between two points never ex-
ceeds the indirect distance through some intermediate point) follows
immediately from the subadditivity condition. Note also that if the
problem is getting a signal to B as quickly as possible from one of
many sources (e.g., A, A', A", ...), then the relevant "measure of
effort" is the distance from B of the source closest to B. Hence, con-
sistent with the monotonicity condition, the more (re)sources, the less
effort.

More formally, we may consider a metric space (M, d). M is a
nonempty set and d is a function on the twofold Cartesian product of
M into the nonnegative extended reals [0, oo]. M and d satisfy the
following conditions:X1

(4.7.5) Nonnegativity: d(x, y) > 0 for all x and y in M, with
d(x, y) = 0 if y = x.

(4.7.6) Symmetry: d(x, y) = d(y, x) for all x and y in M.
(4.7.7) Triangle inequality: d(x, z) < d(x, y) + d(y, z) for all x, y,

and z in M.

Now define the following function <p on M x pow(M) (x € M and A
CM):

(4.7.8) <p(x\ A) = inf{d(x, y)\ y e A] (i.e., the d(x, A) of point-set
topologists).

(p measures the minimum distance from x to the set A (the non-
mathematician might want to think of x as a ship at sea and A as
land with <p(x\A) measuring the nearest distance to land). It is
immediate that (p satisfies conditions (4.7. l)-(4.7.3) for RMS mea-
sures.

"Observe that I am presenting here a slightly more general notion of metric space than is
customary. Normally the distance between any pair of points in a metric space is finite,
i.e., normally d takes values in the nonnegative reals [0, oo) rather than in the nonnegative
extended reals [0, oo]. Also, the definition I give permits distinct points to have zero distance.
What I'm calling a "metric" thus corresponds to what mathematicians call a "semimetric."
SeeWilansky(1983,p. 12).
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Example 4.7.2 (Blocks Worlds). Imagine an initial configuration
of blocks that is to be rearranged into a certain final configuration.
Arranging the blocks to fit the final configuration is the problem to
be solved; the initial configuration constitutes the resources; and the
complexity of solving the problem with the given resources is the effort
qua work (in the sense of force x distance) needed to rearrange the
blocks. If initial and final configurations are identical, no effort need
be expended (cf redundancy). If the final configuration contains
more blocks than the initial configuration, no amount of rearranging
is going to attain the final configuration (in this case effort becomes
infinite). This example generalizes easily to the full notion of work as
defined in classical physics.

Example 4.7.3 (Computational Complexity Theory18). Given a
program P, the effort needed to run it is the number of elementary
computational steps that must be executed before the program halts -
cp(P) = nfor some natural number n. Given a program P that incor-
porates another program Qas a subroutine, we can ask how quickly
P halts given that no costs are incurred every time P calls Q - the
answer being given by cp(P\ Q). If P incorporates several subrou-
tines, such as {Q\,Qi,. • -,Qk}, we can ask how quickly P halts given
that no costs are incurred every time P calls any of the subroutines
in {Q\,Qi,- • .,Qk\ - the answer being given by <p(P | [Q\,Q2,.. .,Qk}).
<p is easily shown to be an RMS measure.

Example 4.7.4 (Mathematical Models and the Material Condi-
tional). Mathematical models can be viewed as {0, oo}-valued RMS
measures. Given a formal language L that generates a collection of
sentences S by means of logical connectives, a model Mfor L assigns
to each sentence A e 5 a truth value which can be denoted by M(A)
(— true or false). M interacts with the connectives ~, &, and v as
follows: for A, B e S, M(~A) = true iff M(A) = false; M(A & B) =
true iff M(A) = true and M(B) = true; M(A v B) = true iff at least
one of M(A) and M(B) is true. The collection of all true sentences
with respect to M, known as the theory ofM, is usually denoted by
th(Af) (= {A € S | M(A) is true}). Associated with M is therefore an

18 Garey and Johnson (1979) is the place to start for computational complexity theory. Balcazar
et al.'s (1988; 1990) two volumes present a more thorough exposition of the subject.
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RMS measure q> on S such that <p(C \ A) = oo precisely when A C
th(M) and C $. th(M), 0 otherwise.

Thus, for A e 5, M(A) = true (resp. false) iff (p(A) = 0 (resp.
oo). Moreover, ifL employs the horseshoe connective "D" and M
interprets "D " as a material conditional (i.e., A D C is false iff A is
true and C is false), then for A, CeS, M(A D C) = false iff M(A) =
true andM(Q = false iff A € th(M) and C i th(M) iff cp(C \ A) =
oo. Analyzing the truth of the material conditional A D C by means
of a mathematical model M can therefore be accomplished equally
well by means of the corresponding {0, oo}-valued RMS measure <p.
In the next example we shall see that RMS measures enable us also
to characterize logical entailment.

Example 4.7.5 (Minimum Proof Length Measures). As a final ex-
ample I want to consider a type of RMS measure that arises very
naturally for formal systems. By a formal system I mean a collection
of sentences S together with a consequence relation R. S will typically
be a collection of well-formed formulas from a language L built up
recursively through the application of various logical connectives. R
will then be a collection of inference rules, which may be conceived
as mappings that take nonempty collections of sentences in S to indi-
vidual sentences in S (for instance, for any p and q in S, disjunctive
syllogism takes {pVq, ~p} into q).19 We shall always assume that
R includes reductio ad absurdum: for any p and q in S, there is a
mapping in R that takes {p, ~p} into q. Note that S is always closed
under the inference rules ofR.

Every subset B of S issues in a set of consequences, called the
deductive closure of B with respect to R (i.e., all sentences in S
provable from B via R). We'll denote the deductive closure ofB with
respect to R by R(B). For convenience we 'II define a deductive system
as any ordered pair (B, R) where B is a subset ofS, usually referred to
as the axioms of the deductive system, andR is a collection of inference
rules under which S is closed. A proof with respect to the deductive
system (B, R) is now an (N + l)-tuple of sentences (Bo, B\,..., BN)
where each Bt is either an element ofB or the output of some inference

19 We could permit R to include inference rules that map the empty collection of sentences in
S to individual sentences in S. Such inference rules, however, serve the same function as the
background assumptions qua axioms we consider momentarily. By restricting our attention
to nondegenerate inference rules that operate on nonempty collections of sentences, a useful
separation between inference rules and axioms is maintained.
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rule r e R applied to some subset of BjS for j < i. In this way
(Bo, B\,..., BN) is said to be a proof of BN. R(B) is then the totality
of these BNs provable from B via R. Note that we always take N to be
finite and therefore restrict proofs to N-tuples of finite length. Note
also that (B, R) is inconsistent just in case there is some A e S such
that A e R(B) and ~A e R(B).

Suppose next that n = (Bo, B\, ..., BN) is a proof of the sentence
BN within the deductive system (B, R). Define A. as the following
measure of proof length: for n = (Bo, B\, ..., BN), X(n) = N.
Given X we can define a function cp that for any sentence D in S and
any subset B of S asks what is the length of the shortest proof of
D within the deductive system (B, R) (R stays fixed). Formally, we
define the minimum proof length measure as follows:

(4.7.9) <p(D | B) =def inf{X(?r) | n is a proof of V within (B, R)}.

Several observations are now in order. First, it is straightforward
to show that <p satisfies (4.7.1)-(4.7.3) and is therefore an RMS
measure.20 Second, (p is finite precisely on the deductive closure
R(B), and infinite elsewhere.21 Third, what we defined in Section 4.4
as the axioms/implicit resources of the complexity system (S, cp) (i.e.,
Axip(S) = {A e S :cp(A) = 0}) is none other than the axioms of
the deductive system (B, R) (i.e., B). In other words, Axv(S) = B.22

Fourth, consistency of the deductive system (B, R) has a natural char-
acterization in terms ofcp: (B, R) is inconsistent just in case there is
some A € S such that <p(A | B) < oo and <p(~ A \B) < oo. Fifth,
<p takes values only in N U {oo} - the natural numbers plus infinity
(in particular, <p(D | B) = oo means D has no proof from B via R).

20 (4.7.1) and (4.7.2) are trivial to prove. (4.7.3) is a matter of concatenating proofs, but
does require a little bookkeeping: to show <p(B | C) < ip(A \ C) + ^ ( B | C U (A)), let
(Do, D | , . . . , D M ) be a minimal length proof of A from C ( D M = A) and let (Eo, Ei E N )
be a minimal length proof of B from C U (A) ( E N = B). If A does not appear in
(Eo, E i , . . . , E N ) , then <p(B | C) = N and we are done. If A does appear in (Eo, E | , . . . , E N ) ,
then because the proof is with respect to resources C U {A), we may assume that Eo = A
(if not, simply move A to the Eo position - this rearrangement is still a proof of B from
C U (A}). It follows that (D o , D , , . . . , D M - i , A, E | , . . . , E N ) is a proof of length M + N =
<p(A | C) + <p(B | C U {A}) from resources C. Hence ip(B \ C) < ip(k | C) + ip(B | C U (A)).

21 If D has a p r o o f s within the deductive system (B, R), then k(iz) is finite and so the infimum
in (4.7.8) is finite as well. If on the other hand D has no proof within the deductive system (B,
R) , then the infimum in (4.7.8) is over an empty set. The convention among mathematicians
is to identify infima over empty sets with positive infinity, i.e., oo.

22 The only 1-tuple proofs of the form (Bo) are those where Bo belongs to B. This follows
because the inference rules R were defined to operate only on nonempty collections of
sentences.
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Sixth, for if> to be well-defined, cp must be limited to proofs of minimum
length since proofs can always be padded with irrelevant steps.

The minimum proof length measure <p allows for a more precise
analysis of proof-theoretic notions like entailment and consistency
than is possible within ordinary proof theory, which is concerned
not with the length/difficulty of proofs, but simply with whether or
not proofs exist. Consider, for instance, Harvey Friedman's notion of
n-consistency.23 According to Friedman a deductive system {B, R)
is n-consistent if there is no proof of a contradiction in the system
whose length is less than or equal to n steps. Since an inconsistent
system entails a contradiction in finitely many steps, we may ask,
What is the fewest number of steps required to reach a contradiction ?
If the fewest number of steps is n + 1(= cp{A & ~A \B) for some
A), then this inconsistent system is nevertheless n-consistent. An in-
consistent system is therefore always n-consistent for some n. Now
ifn is very large, it may be utterly beyond our resources to discover
a contradiction that renders the system logically inconsistent. Thus,
for practical purposes, an n-consistent system for which n is so large
that we cannot hope in practice to discover a contradiction from it
may be indistinguishable from a logically consistent system {i.e., an
oo-consistent system in Friedman's terminology).

Arend Hey ting has taken up this topic, though in a somewhat
different guise, in his book Intuitionism. There he presents a de-
lightful dialogue in which proponents of various philosophical po-
sitions concerning the nature of mathematics argue their views. In
this dialogue Heyting places the pragmatic view of consistency I
have just described in the mouth of an interlocutor named Letter.
A Hilbertian formalist known as Form has just demanded of Let-
ter that Letter provide "some modes of reasoning to prove the con-
sistency of your formal system" {Heyting, 1971, p. 7). Letter's
response, particularly in light of Godel's second theorem, seems
entirely appropriate {Heyting, 1971, p. 7): "Why should I want to
prove [consistency] ? You must not forget that our formal systems are
constructed with the aim towards applications and that in general

23 Friedman's seminal work on this topic, though never published, was circulated as an un-
published preprint entitled "On the Consistency, Completeness and Correctness Problems"
(Columbus, Ohio, Ohio State University, 1979). More recently, Friedman's ideas about n-
consistency have been revived in the work of Krajicek and Pudlak (1989).
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they prove useful; this fact would be difficult to explain if every
formula were deducible in them. Thereby we get a practical con-
viction of consistency which suffices for our work." The minimum
proof length measure along with Friedman's notion of n-consistency
helps to make sense of what Hey ting calls "a practical conviction of
consistency."

Like consistency, entailment too receives a more precise analysis
at the hands of the minimum proof length measure. Instead of simply
determining whether a certain set of premises permits the proof of a
certain claim, and thereby entails that claim, by asking instead for the
minimum length of proof, the minimum proof length measure offers
some insight into how difficult it is to prove things. To be sure, there
is no exact correspondence between difficulty of proving something
and minimum length of proof: Some things are tedious to prove (i.e.,
require many steps), but are perfectly straightforward whereas oth-
ers can be proved very quickly (i.e., require very few steps) once one
grasps a crucial insight, though achieving the crucial insight may be
exceedingly difficult. Indeed, complexity theory may be utterly irrel-
evant to characterizing the difficulty of achieving the crucial insights
that lead to groundbreaking conceptual advances (take for instance
the introduction of the zero or the complex numbers in mathematics).
Nevertheless, other things being equal (and I stress this qualification),
it seems reasonable to think that the difficulty of proving something
increases as the minimum number of inferential steps needed to prove
it increases.

Something like this certainly seems to be the case in mathematics.
As Bradley and Swartz (1979, pp. 147-9) observe,

There are ... some propositions the knowledge of whose truth, if it is
humanly possible at all, can be acquired only by an enormous investment in
inferential reasoning [cf. expenditure of effort]. The proofs of many theorems
informal logic and pure mathematics certainly call for a great deal more
than simple analytical understanding of the concepts involved. And in some
cases the amount of investment in analysis and inference that seems to be
called for, in order that we should know whether a proposition is true or
false, may turn out to be entirely beyond the intellectual resources of mere
human beings.

As a case in point consider the famous, but as yet unproved, proposition
of arithmetic known as Goldbach's Conjecture, viz., Every even number
greater than two is the sum of two primes Goldbach's Conjecture is
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easily understood. In fact we understand it well enough to be able to test
it on the first few of an infinite number of cases [But] for all we know,
it may turn out to be unprovable by any being having the capacities for
knowledge-acquisition which we human beings have. Of course, we do not
now know whether or not it will eventually succumb to our attempts to prove
it. Maybe it will. In this case it will be known ratiocinatively. But then, again,
maybe it will not. In that case it may well be one of those propositions whose
truth is not known because its truth is unknowable. At present we simply do
not know which.

The "enormous investment in inferential reasoning," the "intel-
lectual resources of mere human beings," and "the capacities for
knowledge-acquisition which we human beings have" can all be
unpacked in terms of the effort mathematicians expend trying to
prove things. An infinitely powerful problem solver is able to set-
tle the Goldbach Conjecture, either by providing a counterexam-
ple {i.e., an even integer greater than 2 that is not the sum of two
primes), or by running through all the even integers greater than
2 and in each case finding a pair of primes that sums to it (this is
of course a brute force approach, unlikely to win any prizes for el-
egance; but then again this is the virtue of an infinitely powerful
problem solver - the ability to solve everything by albeit inelegant
means).

Once the problem solver is limited, however, the question about
resources and their optimal use cannot be avoided. The solutions to
mathematical problems are widely held to be noncontingent since
mathematical propositions are regarded as necessarily true or false.
Nevertheless, the capacity of rational agents to solve mathematical
problems is contingent, depending on the resources available to these
agents. Their capacity to solve mathematical problems is therefore
inextricably tied to the complexity of the problems under consider-
ation and the amount of effort they can expend to try to solve the
problems. Since the solutions to mathematical problems are typically
proofs of theorems, and since the difficulty of coming up with these
solutions correlates to some extent with minimum length of proof,
the minimum proof length measure provides one way of studying
what mathematical problems are solvable, and by extension what
mathematical knowledge is attainable. Thus, in the minimum proof
length measure we have an RMS measure that figures centrally into
such key questions in the philosophy of mathematics as consistency,
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entailment, and the practical limitations to mathematical knowledge.
This ends the examples.

In concluding this section, I want to state two useful results about
constructing new RMS measures from old.

Proposition 4.7.1. Let RMS(S) denote all the RMS measures defined
on S xpow(S). Then RMS(S) satisfies the following properties:

(i) For every <p e RMS(S) and every nonnegative real number c,
c<p £ RMS(S).

(ii) For all (pandxj/ e RMS(S), cp + is e RMS(S).
(Hi) For every collection of RMS measures F c RMS(S), £(C | A) =

sup{<p(C \A)\cp eF] defines an RMS measure in RMS(S).

Remarks, (i) and (ii) together imply that RMS(S) is what mathemati-
cians call a cone. Since by convention the supremum of an empty set
of nonnegative numbers is 0, if F is empty, £ is just the RMS measure
that is identically zero.

Proof, (i) and (ii) are obvious, (iii) follows immediately by noting
that sup{<p(C | A) + <p(D | A U {C}) | <p e F} < sup{<p(C | A) | <p e
F} + sup{<KD|AU{C})|<peF}.

Proposition 4.7.2. If \ff is any RMS measure on S and A is a fixed
subset of S, then the function (p defined by (p(C \ B) =def ^(C \ A UB)
is also an RMS measure on S (C € S and B C S).

The proof is trivial and is therefore omitted. Proposition 4.7.2 al-
lows us to incorporate resources directly into RMS measures. Thus,
for an RMS-measure/resource pair (\j/, A), we can define the de-
rived RMS measure cp(C \ B) as ^(C | AUB) by incorporating the
resources A directly into \js. There is an analogy here with conditional
probabilities: Just as probability measures conditioned on fixed back-
ground information are still probability measures, so RMS measures
conditioned on fixed resources are still RMS measures. Further tech-
nical results regarding RMS measures can be found in Section 4.8.
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4.8 TECHNICAL SUPPLEMENT ON RMS MEASURES

Since an RMS measure <p is a partial function from S x pow(S)
->• [0, oo], one may ask what happens when the second argument of
(p varies over subcollections of the axioms. Recall that in Section 4.4
the axioms of the complexity system (S, (p) were defined as Axv —
[A € S | (p(A | 0) = 0}, that is, the sentences in S representing prob-
lems that can be solved without additional resources and without any
difficulty. Since for RMS measures we construe difficulty in terms of
effort/work (cf. Section 4.7), we can think of the axioms of <p as those
problems that even without additional resources require no effort to
solve.

Given an RMS measure (p on a collection of sentences S, and a
collection of axioms A that is a subset of Ax:,,,, let us therefore start
by asking, How does </>(C | 0) compare to (p(C\ A) for an arbitrary
element C of S? Alternatively, How does conditioning on the axioms
affect the RMS measure <pl The following proposition offers a partial
answer.

Proposition 4.8.1. For any finite collection of axioms A from the RMS
system (S,<p), conditioning on A does not change the RMS measure
(p, that is, for all C in S, cp(C | 0) =

Proof. It is enough to note that for an arbitrary RMS measure ir and
any element A such that f (A) = 0, ^(C | A) = i/r(C): f(C | A) <
VKQ is always true (additional resources, in this case A, can only
decrease complexity), whereas by subadditivity ty (C) = ir(C | 0) <
ir{A | 0) + f (C | A) = \[r(C | A). Thus, for the case in question, if
A = {A,, A 2 , . . . , AN}, for all C in S, <p(C | 0) = cp(C | {A,}) =
<p(C | {A,, A2}) = • • • = <p(C | {A,, A 2 , . . . , An}) = <p(C | A).

This result, however, does not generalize to infinite collections of
axioms. For consider the metric space of nonnegative reals, [0, oo),
with the usual metric d(x, y) = |x — y|. As we saw in Example 4.7.1,
<p(x | A) = inf{d(x, y) | y e A}) defines an RMS measure on [0,
oo). By Proposition 4.7.2 <p'(x | A) = <p(x | A UN) is also an RMS
measure (N is the set of the natural numbers). Next define the follow-
ing extended real-valued function <J> on the Cartesian product of the
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extended reals with its powerset (i.e., $ : [0, oo] x pow([0, oo]) -»•
[0, oo]):

<D(x|A)

> ' (x |Af i [0 , oo)) if x ^ o o
0 if x = oo, and oo € A or A D N is infinite
oo if x = oo, oo ^ A, and A n N is finite.

(4.8.1)

<1> is an RMS measure. Redundancy and monotonicity are obvious.
Subadditivity requires checking a few cases: For A and B in [0, oo)
and C inpow([0, oo]) (n.b., this is the powerset of the extended reals,
not just the powerset of the nonnegative reals),

(4.8.2) <D(b|C) <<D(a|C) + <I>(b|CU{a})

follows immediately because <p' is subadditive. If a = oo, oo £ C,
and C contains only finitely many natural numbers, then O(a | C) =
oo and (4.8.2) follows immediately. If a = oo and oo e C, then
equality holds in (4.8.2) (in this case <f>(a | C) = 0). If a = oo and
C contains infinitely many natural numbers but not oo, then equality
holds as well (again 4>(a|C) = 0). Finally we need to consider
the case where a < oo and b = oo. Since a < oo, both C and
C U {a} contain oo, or both contain finitely many natural numbers, or
both contain infinitely many natural numbers. In each case therefore
<D(b | C) = <J>(b | C U {a}). Having exhausted all possibilities, we see
that * is subadditive.

To see now that Proposition 4.8.1 doesn't extend to infinite collec-
tions of axioms, observe that the axioms of <t> are precisely the natural
numbers N and that <I>(oo | A) = oo implies O(oo | AU(u[) = oo
for any 0 < u < oo (for <E> (oo | A) = oo to hold, A has to have finite
intersection with N; but in this case A U {u} also has finite intersection
with N, and since u =̂ oo, 4>(oo | AU {u}) = oo). Hence, while it's
true that for any finite subcollection C of N

4>(oo|C) = <D(oo) = oo,

for any infinite subcollection D of N

0 = «J)(oo | D) # <D(oo) = oo.

Since therefore conditioning on infinitely many axioms of 3> changes
O, it follows that Proposition 4.8.1 can't be extended to infinite col-
lections of axioms.

131



Because such counterexamples to infinitary versions of Proposi-
tion 4.8.1 exist, the following definition is nonvacuous: An RMS
measure <p on S is regular if conditioning on any subcollection of
axioms does not change <p, that is, if for any subcollection of axioms
A (finite or infinite) associated with <p, (p(C) = <p(C | A) regardless
of C. Observe that by Proposition 4.8.1 every RMS measure with
only finitely many axioms is regular. Observe also that by the mono-
tonicity of RMS measures it is enough to check the regularity of <p
on the entire set of axioms Axv: Since any subcollection of axioms
A satisfies <p(C) > <p(C|A) > <p(C\Axv), as soon as it is deter-
mined that <p(C) = <p(C | Ax9), it follows that <p(C) = <p{C | A) for
all subcollections of axioms A.

It's possible to define a stronger version of regularity. Since by
Proposition 4.7.2 any RMS measure (p with respect to S and any fixed
subset A of S yield a new RMS measure \jr defined by ^ (C | B) =
<p{C | A U B) (C € S and B c S both arbitrary), one may ask if all such
iff are regular (A is here arbitrary). If all such derived RMS measures
are regular, then we say cp is completely regular. This can be stated
formally as follows: An RMS measure <p on S is completely regular
if for any subset A of S, the derived RMS measure \jr defined by
f(C | B) = (p(C | A U B) is regular (C € S and B C S both arbitrary).
Note that in this case the derived RMS measure ir includes A among
its axioms. The following counterexample demonstrates that not all
regular RMS measures are completely regular.

Let d be the ordinary absolute-value distance defined on [0, oo),
the same as in the previous counterexample. We then define the RMS
measure ^ on [0, oo] as follows:

inf {d(x, y) | y e A n [0, oo)} if x ^ oo
0 if x = oo, and oo e A or A fl N is infinite
oo if x = oo, oo £ A, and A D N is finite.

(4.8.3)

The proof that * is an RMS measure is virtually identical with the
proof that O as defined in (4.8.1) is an RMS measure. Now because
* has no axioms (and thus a fortiori only finitely many axioms), by
Proposition 4.8.1 ^ is regular. Moreover, <J>(x | A) is identical with
*(x | A UN). Hence, since <J> fails to be regular, it follows that ^
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cannot be completely regular. Thus, not all regular RMS measures
are completely regular.

It's also possible to define a weaker version or regularity: An RMS
measure <p on S is semiregular if for any subcollection of axioms A
associated with <p, <p(C) = <p(C | A) for all the absolutely intractable
elements C of <p, that is, (p(C | A) = oo whenever <p(C) = oo (the
absolutely intractable elements are those with infinite complexity,
like C here). We then define an RMS measure <p on S as com-
pletely semiregular if for any subset A of S, the derived RMS mea-
sure V defined by T//(C | B) = <p(C | AUB) is semiregular (C 6 S
and B C S both arbitrary). Slight modifications of the two preceding
counterexamples show that not all RMS measures are semiregular
and that not all semiregular RMS measures are completely semi-
regular.

The next two propositions show that the RMS measures associated
with metrics and deductive systems are completely regular.

Proposition 4.8.2 (cf. Example 4.7.1). Let (M, D) be a metric
space. Then the RMS measure <p(x \ A) =def d(x, A) is completely
regular.

Proof. For an arbitrary subset A of M define the derived RMS mea-
sure \js(x | B) = <p(x | A U B) for all x in M and all B in pow(M). The
axioms of xjt are those xs that satisfy x(r (x) = i/̂ (x | 0) = cp(x | A U 0)
= <p(\ | A) = d(x, A) = 0, which is none other than those xs in
the closure of A (i.e., the set A together with its limit points; we'll
denote the closure of A by c/(A)). In short, Ax$ =cl(A). This fol-
lows from an easily verified result in point-set topology asserting
that d(x, A) and d(x, c/(A)) are identical functions of x. Given now
that Ax^ = cl(A) D A, and thus that for all x in M iff (x) = \fr(x \ 0)
= cp(x | A U 0) = <p(x | A) = d(x, A) = d(x, c/(A)) = <p(x \ c/(A))
= <p(x\AUcl(A)) = \(r(x\cl(A)), it follows that for all x in M,
i/r(x) — xjr(x I Axf). All such \[s derived from cp are therefore regu-
lar. It follows that (p is completely regular.

Proposition 4.8.3 (cf. Example 4.7.5). Let R comprise a set of in-
ference rules defined with respect to the collection of sentences S. Let
<p(C \A) define the length of the shortest proofofC from premises A
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(C S) via the inference rules R. Then <p is a completely regular RMS
measure - that is, the minimum proof length measure is completely
regular.

Proof. Suppose A c S and define V(C | B) = <p(C | A U B), C e S
and B c S arbitrary. Then the axioms Ax$ associated with x/f com-
prise none other than the members of A, that is, Ax$ = A. Hence
f(C) = <p(C | A) = <p(C | A U A) = f{C | A) = y (C | Ax^), which es-
tablishes the regularity of ^ and thus the complete regularity of (p.

The two preceding propositions are special cases of a more gen-
eral result. Call an RMS measure <p on S finitely generated if for
every C e S and every A c S, A has a finite subset Afin (depend-
ing on C) such that <p(C | A) = y(C | Afin). Call an RMS measure
<p on S singular if for every C e S and every nonempty A C S,
cp(C | A) = inf{<p(C | A) | A e A}.24 It's clear that RMS measures de-
rived from deductive systems are finitely generated, and that RMS
measures derived from metrics are singular.

Proposition 4.8.4. Finitely generated and singular RMS measures
are completely regular.

Proof. The proof for finitely generated RMS measures follows
immediately from Proposition 4.8.1. The proof for singular RMS
measures is virtually identical with the proof of Proposition 4.8.2
once we define the closure of A with respect to cp as c/p(A) = {C e
S|<p(C|A) = 0} (D A), and note that the triangle inequality for
RMS measures together with the assumption of singularity implies
<p(C | A) = <p(C | c/p(A)) for all C e S.

From a complexity-theoretic point of view individual axioms are
null resources - conditioning on them individually or in finite batches
is equivalent to conditioning on nothing at all (i.e., conditioning on
the null set). What's more, for completely regular RMS measures in-
finite collections of axioms offer no advantage over finite collections

24 Since the infimum of an empty collection of nonnegative real numbers is by convention oo,
we could have defined an RMS measure cp on S as singular if for every C 6 S and for every
A c S (empty or nonempty) (p(C \ A) = in%(C | A) | A e A), thereby identifying <p(C 10)
with oo.
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of axioms - conditioning on infinite collections is in this case also
equivalent to conditioning on nothing at all. Conditioning on non-
axioms, however, is a different story. Indeed, since <p(A | {A}) = 0
regardless of A, strict diminution of complexity is always a possibil-
ity when conditioning on nonaxioms. Subsets D of S that uniformly
decrease <p(A | D) as a function of A are of interest in this regard.
Two such D are worth mentioning: (1) a subset D of S is dense in the
RMS system (S, <p) if <p(C | D) = 0 regardless of C; (2) a subset D of
S is s-dense in the RMS system (S, <p) if <p(C | D) < £ regardless of
C (s > 0).

Finally, I want to point out an equivalence relation and a partial or-
dering that are naturally associated with RMS systems: Given (S, <p),
it is natural to say that A is equivalent to B (written A o- B) iff
<p(A | B) = <p(B | A) = 0 and that A dominates B (written A =>• B
or alternatively B «= A) iff <p(B | A) = 0 (A and B e S). Given
the defining conditions for RMS measures (i.e., redundancy, mono-
tonicity, and subadditivity) and the resulting triangle inequality (i.e.,
<p(C | A) < <p(B | A) + <p(C | B) for all A, B, and C in S), it follows
that <$• is an equivalence relation and that =£• is a preorder that in-
duces a partial order on the equivalence classes of <$•. Dominance
can be used to examine such questions in the logic of conditionals
as strengthening the antecedent and weakening the consequent (e.g.,
when does A => B entail (A & C) =>• B and A =» (B v C)).

135



Specification

5.1 PATTERNS

Our aim remains to explicate and justify the Law of Small Proba-
bility. With the theoretical underpinnings for this law now in place
(i.e., probability theory and complexity theory), our next task is to
explicate the dual notions of specification and small probability. We
treat specification in this chapter, small probability in the next. Speci-
fications are those patterns that in combination with small probability
warrant the elimination of chance. In explicating specification, we
therefore need first to be clear what we mean by a pattern.

By a pattern we shall mean any description that corresponds
uniquely to some prescribed event. Formally, a pattern may be defined
as a description-correspondence pair (D, *) where the description D
belongs to a descriptive language D and the correspondence * is a
partial function between D and a collection of events E so that * in-
cludes D in its domain of definition (as a partial function * need not
be defined on all of D). (D, *) is therefore a pattern relative to the
descriptive language D and the collection of events E. Formally, D
can be any nonempty set,1 and E any collection of actual or possi-
ble events. What makes D "descriptive" is that the correspondence *
maps descriptions to events. Since for any pattern (D, *) the corre-
spondence * includes D in its domain of definition, we let D* denote
the event that corresponds to D under *. To simplify notation we fre-
quently represent patterns simply by the letter D (the correspondence
* in this case being implicit). It will be clear from context whether D
signifies the full pattern (D, *) or merely its first component.

Given this definition of pattern we then say that an event E conforms
to a pattern D just in case the occurrence of E entails the occurrence

1 In this respect the descriptive language associated with a pattern is like the sentences on which
a complexity measure is defined (cf. Section 4.4).
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of D* (or, in the notation of Section 3.6, E => D*).2 Alternatively,
we say that a pattern D delimits an event E just in case E conforms
to D. In case D* and E are identical events (i.e., D* = E, which
holds just in case E =* D* and D* => E), we say that the pattern
D matches the event E, or equivalently that the event E matches the
pattern D. We also say that D* subsumes E just in case E entails D*.
These definitions help us relate patterns to events while preserving
their differences.

To illustrate these definitions, consider the following example. A
pair of dice is rolled. There are thirty-six possible ways the dice might
land. These possibilities comprise events of the form (x, y), where x
and y are numbers between 1 and 6. Thus, we take (3, 5) as the event
of rolling a 3 with the first die and a 5 with the second. Although the
elementary outcomes for rolling the pair of dice all take this form,
we typically expand our conception of events to include more general
events, like rolling the dice so that the sum of their faces is at least 11,
an event we can represent as (5, 6)(6, 5)(6, 6). The relevant collection
of events E from rolling two dice then comprises all strings of the form

(x i ,y i ) (x 2 ,y 2 ) - - - (x n ,yn)

where the x,s and y,s are between 1 and 6.
As for the descriptive language D that describes the events in E, we

can take D to comprise ordinary English sentences. The correspon-
dence * that maps D into E can then be taken as our ordinary way of
interpreting English sentences. Thus, the pattern ("the sum of faces
equals seven," *) matches the event

Moreover, this pattern delimits (without matching) the more highly
constrained events like (6, 1) and (2, 5)(1, 6) and (4, 3)(3,4)(2, 5),
all of which entail E.

5.2 THE REQUISITE PRECONDITION

As noted in Chapter 1, patterns come in two varieties, specifications
and fabrications. Specifications are the good patterns, the ones that

2 To say that the event E entails the event D* is to say that if the event E should happen, then
the event D* must happen as well. For instance, buying a Rolls Royce entails buying a car.
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legitimately warrant eliminating chance, whereas fabrications are the
bad patterns, the ones that are ad hoc and do not warrant eliminating
chance. What, then, marks the difference between specifications and
fabrications? Before we can even begin to answer this question, cer-
tain items need to be in place. We shall refer to these items collectively
as the requisite precondition.

To decide whether a pattern is suitable for eliminating chance, we
are never just given an event E and a pattern D to which E conforms.
In addition we are given a descriptive language D and a collection of
events E. Moreover, since D is shorthand for (D, *), we are also given a
partial function * that maps D to E, and in particular associates D with
the event D*. Like the sentences to which complexity measures apply
(cf. Section 4.4), the collection D can be any nonempty set. The im-
portant thing is that D be in the set and that the correspondence * map
D to an event D* entailed by E. As for the collection of events E, it may
comprise any collection of actual or possible events so long as it con-
tains E. Moreover, since we are trying to decide whether to attribute
E to chance, we also need background information H (i.e., a chance
hypothesis) characterizing how E might have occurred by chance. H
in turn calls for a probability measure P to estimate likelihoods con-
ditional on H, and in particular the likelihood of E conditional on H.

Still more is needed to establish a pattern's suitability for eliminat-
ing chance. To see this, consider the following event E^, an event that
to all appearances was obtained by flipping a fair coin 100 times:

(E^) THTTTHHTHHTTTTTHTHTTHHHTT

HTHHHTHHHTTTTTTTHTTHTTTHH

THTTTHTHTHHTTHHHHTTTHTTHH

THTHTHHHHTTHHTHHHHTHHHHTT.

Is E ,̂ due to chance or not? A standard trick of statistics professors in
teaching introductory statistics is to have half the students in a class
each flip a coin 100 times, recording the sequence of heads and tails
on a slip of paper, and then have each student in the other half as a
purely mental act mimic a sequence of 100 coin tosses, also recording
the sequence of heads and tails on a slip of paper. When the students
then hand in their slips of paper, it is the professor's job to sort the
papers into two piles, those generated by flipping a fair coin, and
those concocted in the students' heads. To the amazement of the
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students, the statistics professor is typically able to sort the papers
with 100 percent accuracy.

There is no mystery here. The statistics professor simply looks for
a repetition of six or seven heads or tails in a row to distinguish the
truly random from the pseudo-random sequences (the truly random
sequences being those derived from flipping a fair coin, the pseudo-
random sequences being those concocted in the students' heads).
In a hundred coin flips one is quite likely to see six or seven such
repetitions. On the other hand, people concocting pseudo-random
sequences with their minds tend to alternate between heads and tails
much too frequently. Whereas with a truly random sequence of coin
tosses there is a fifty percent chance that one toss will differ from the
next, as a matter of human psychology people expect that one toss
will differ from the next around seventy percent of the time.

How then will our statistics professor fare when confronted with
E^ ? Will she attribute E^ to chance or to the musings of someone try-
ing to mimic chance? According to the professor's crude randomness
checker, E^ would be considered truly random, for E^ contains a rep-
etition of seven tails in a row. Everything that at first blush would lead
us to regard E^ as truly random checks out. There are exactly fifty
alternations between heads and tails (as opposed to the seventy that
would be expected from humans trying to mimic chance). What's
more, the relative frequencies of heads and tails check out: There
were forty-nine heads and fifty-one tails. Thus, it's not as though the
coin supposedly responsible for E^ was heavily biased in favor of one
side versus the other.

Suppose, however, our statistics professor suspects she is not up
against a neophyte statistics student, but is instead up against a fellow
statistician trying to put one over on her. To help organize her prob-
lem, study it more carefully, submit it to computational analysis, and
ultimately determine whether E^ occurred by chance, our statistics
professor will find it convenient to let strings of 0s and 1 s represent the
outcomes of coin flips, say with 1 corresponding to heads and 0 to tails.
In this case the following description D^ will describe the event E^:

(D*) 0100011011000001010011100

1011101110000000100100011

0100010101100111100010011

0101011110011011110111100.
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The collection of events E can then be defined as the powerset of
the 100-fold Cartesian product {H, T}100({H,T}100= the Cartesian
product of {H, T} with itself 100 times), the descriptive language D
can similarly be defined as the powerset of the 100-fold Cartesian
product {0,1}100, and the correspondence * between D and E can be
defined as the canonical extension of the function between {0, 1} and
{H, T} that takes 1 to H and 0 to T. In this way D^ becomes a pattern
that matches the event E^, that is, DJ, = E^.

In trying to uncover whether E^ occurred by chance, our statistics
professor needs next to identify the chance hypothesis H under which
E^ might have occurred by chance, as well as the probability measure
P that estimates the likelihood that an event in E occurs by chance
under the chance hypothesis H (in particular, P(-1H) will assign a
probability to E^). Since we are assuming that if E^ occurred by
chance, then E^ occurred through the flipping of a fair coin, the
chance hypothesis H characterizes a fair coin flipped 100 times under
stochastically independent conditions where at each flip heads and
tails have probability 1/2 (or, as statisticians would say, the coin
flips are independent and identically distributed with heads and tails
equiprobable). Thus, conditional on H, the probability measure P
assigns to E^ the probability P(EV, | H) = P(D* | H) = 2-100, which
is approximately 10~30.

To organize her problem, and thereby help determine whether E^
occurred by chance, our statistics professor will therefore lay out the
following six items: E, D, E^, D^, H, and P. Though necessary,
by themselves these items are hardly sufficient to determine whether
E^ occurred by chance. The reason is not difficult to see. Indeed,
there is nothing in these six items to prevent D^ simply from being
read off E^. Thus far, instead of deriving D^ independently of E^,
our statistics professor has simply formulated D^ in response to E^.
These six items therefore provide no support one way or the other for
determining whether E^ occurred by chance.

We are back to the question of how to explain an arrow stuck in a
bull's-eye (cf. Section 1.2). Whether we attribute an arrow sticking
in a bull's-eye to chance depends on whether the bull's-eye was in
place before the arrow was shot, or whether it was painted around
the arrow only after the arrow landed. The bull's-eye (= pattern) cer-
tainly delimits where the arrow landed (= event). But if the bull's-eye
was painted around the arrow only after the arrow landed, there is no
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reason to think that where the arrow landed was dictated by some-
thing other than chance. Only if the position of the target (= pattern)
is in some sense independent of whatever chance process might be
responsible for the arrow's flight can this pattern preclude chance.
Now specification is all about the type of independence that must
obtain between a target's position (= pattern) and an arrow's flight
(= event) to preclude chance.

What then is missing from E, D, E^, D^, H, and P that would
render D^ independent of E^, and thereby preclude E^ from occurring
by chance? To answer this question let us rewrite D^ as follows:

(Pi) 0
1

00

01

10
11

000

001

010

011

100

101

110

111

0000

0001

0010

0011

0100

0101

0110

0111

1000



1001

1010

1011

1100

1101

1110

1111

00

By viewing D^ this way, anyone with the least exposure to binary
arithmetic immediately recognizes that D ,̂ was formulated simply by
writing the binary numbers in ascending order, starting with the one-
digit binary numbers (i.e., 0 and 1), proceeding to the two-digit binary
numbers (i.e., 00,01,10, and 11), and continuing on up until 100 digits
were recorded. It's therefore intuitively clear that D^ cannot describe
a truly random event (i.e., an event gotten by tossing a fair coin),
but instead describes a pseudo-random event (hence the subscript ifr),
concocted by doing a little binary arithmetic.

Although it's now intuitively clear why chance cannot properly
explain E^, let us consider more closely why this is the case. In try-
ing to unravel whether E^ occurred by chance, we initially laid out
E, D, E^, D^, H, and P. By themselves these items proved insuffi-
cient to eliminate chance. Rather, to eliminate chance we had also
to recognize that D ,̂ could be readily obtained by performing some
simple arithmetic operations with binary numbers. Thus, to eliminate
chance we needed to supplement these items with side information
I comprising our knowledge of binary arithmetic. For many of us I
will include the following items of information:

Ii: Binary numbers are ordinarily represented with the symbols "0"
and"l."

I2: The binary number bn • • • b2b] b0 equals the decimal number bo2°+
b ,2 '+b 2 2 2 + --- + bn2n.

I3: 0 is a natural place to begin counting binary numbers.
I4: In counting (binary) numbers, one lists them in order of increasing

magnitude.
I5: Binary numbers are naturally grouped according to the number of

digits they employ.
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1$: When representing a k digit binary number with an m digit binary
number where m > k, it is customary to prefix m-k Os in front
of the k digit number.

If we now equate I with the conjunction I] & I2 & I3 & I4 & I5 & I6,1
satisfies two conditions that enable it to eliminate chance. The first is
that I is conditionally independent of E^ given H: Without knowing
whether E^ happened and given only H and I, we know no more about
what event happened than if we had simply been given H alone. Al-
ternatively, supplementing H by I does not affect the probability we
assign to E^. This is certainly the case here since our knowledge of
binary arithmetic does not affect the estimates of likelihood we assign
to coin tosses. Conditional independence is the standard probabilistic
way of unpacking epistemic independence. Two things are epistem-
ically independent if knowledge about one thing (in this case I) does
not affect knowledge about the other (in this case E / s occurrence
conditional on H). Conditional independence formalizes this relation
by requiring that probabilities conditioned on additional knowledge
remain unchanged.

The other condition I must satisfy to eliminate chance is that it has
to be sufficient to formulate D,;,. Treating E^ as an indeterminate event
that occurred according to the chance hypothesis H, we pretend I con-
tains crucial information about this event and try to formulate a pattern
that delimits it. For the second condition to be satisfied D,;, has to be
among the patterns formulated this way. The logic underlying this
second condition is important. Because the first condition established
that I is conditionally independent of E^ given H, any knowledge we
have of I ought to give us no knowledge about E^ so long as - and
this is the crucial assumption - E^ occurred according to the chance
hypothesis H. Hence any pattern formulated strictly on the basis of I
ought not to give us any knowledge about E^ either. Yet the fact that
it does, inasmuch as D^ delimits E^, means that I is after all giving
us knowledge about E^. The assumption that E ,̂ occurred according
to the chance hypothesis H is therefore thrown into question.3

A precise formulation of these conditions will be given in the next
section. For the moment, however, I want simply to observe that while

3 The two conditions here described are necessary for side information to eliminate chance.
These conditions become sufficient to eliminate chance only when the relevant probabilities
become small enough. How small is small enough is the point of Chapter 6.
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the first of these conditions is probabilistic, the second is complexity-
theoretic. That the first is probabilistic is obvious. That the second is
complexity-theoretic follows once we conceive pattern-formulation
as problem-solving where the problem is formulating a given pattern
(here D^) and the resources constitute the given side information
(here I). If we now let a complexity measure cp estimate the difficulty
of such problems, to say that a pattern can be formulated on the basis
of side information is to say that its complexity is less than some
relevant tractability bound X (recall that we consider those problems
solvable whose complexity is less than a relevant tractability bound -
cf. Section 4.5).

Formalizing this second condition requires the notion of a bounded
complexity measure. A bounded complexity measure is any ordered
pair O = (tp, X) where q> is a complexity measure and A is a tractabil-
ity bound (cf. Sections 4.4 and 4.5 respectively). Bounded complexity
measures not only estimate the difficulty required to solve problems
(by means of the complexity measure q>), but also identify the prob-
lems that can actually be solved (by means of the tractability bound X).
Thus, for a bounded complexity measure <$> = (<p, X) and a problem-
resource pair (Q, R), Q is considered solvable provided that the com-
plexity of Q given R is less than X, that is, <p(Q | R) < X. By utilizing
both a complexity measure and a tractability bound, bounded com-
plexity measures tell us what problems we can reasonably expect to
solve in practice.

We can now list all the items that have to be in place for determining
whether a pattern is suitable to eliminate chance:

(1) A collection of events E.
(2) A descriptive language D.
(3) An event E belonging to E.
(4) A pattern D whose correspondence * maps D to E.
(5) A chance hypothesis H.
(6) A probability measure P where P(-1 H) estimates the likelihood

of events in E given H.
(7) Side information I.
(8) A bounded complexity measure <t> = {<p, X) where cp(- | I) esti-

mates the difficulty of formulating patterns in D given I, and X
fixes the level of complexity at which formulating such patterns
is feasible.
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If, therefore, we are already given an event E and a pattern D (and
thus by implication a collection of events E and a descriptive language
D), determining whether D is a suitable pattern for eliminating chance
requires that the last four items on this list be in place, namely, a
chance hypothesis H, a probability measure P, side information I,
and a bounded complexity measure <J> = (cp, k). We refer to these
last four items collectively as a requisite precondition, and denote it
by S = (H, P, I, <&).

5.3 DETACHABILITY

With this last piece of formal machinery in place, we are now finally
in a position to define the type of independence that must obtain
between a pattern and an event if that pattern is going to be suitable
for eliminating chance:

Definition. Given an event E, a pattern D (which may or may not
delimit E), and a requisite precondition E = (H, P, I, <t> — (cp, A.)),
we say D is detachable from E relative to £ if and only if the
following conditions are satisfied:

ClNDEP(£ \HSCJ) =P(E \H) for any information J generated by I.
TRACT cp(D 11) < X.

If E is clear from context, we say simply that D is detachable from E.
CINDE is short for the conditional independence condition and TRACT
for the tractability condition* Let us now turn to these conditions in
detail.

First, to motivate these conditions, let us see how they arise within
chance elimination arguments generally. The generic chance elimi-
nation argument starts with a rational agent, a subject S, who learns
that an event E has occurred. By examining the circumstances under

4 Computational complexity theorists familiar with zero-knowledge proofs will observe a sim-
ilarity between the protocols of zero-knowledge proofs and the side information that renders
a pattern detachable: Side information I which satisfies CINDE and TRACT is analogous to the
protocol of a zero-knowledge proof in that I tells us nothing about the circumstances under
which the event in question occurred (cf. the protocol in a zero-knowledge proof telling us
nothing about how actually to prove the theorem in question) while still enabling us to delimit
the event by means of a pattern (cf. the protocol nevertheless convincing us that the theorem
is true). For the basics of zero-knowledge proofs consult Goldwasser, Micali, and Rackoff
(1985) and Goldreich (1988).
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which E occurred, S finds that a chance process characterized by the
chance hypothesis H and the probability measure P could have been
operating to produce E. S wants therefore to determine whether E
occurred according to the chance hypothesis H. Now unless S can
refer E to a pattern, S will be stuck attributing E to H since chance is
always the default option in explanation.5

S therefore identifies a pattern D that delimits E. How S arrives at D
is immaterial. S may simply read D off the event E, or S may propose
D without any knowledge of E. The logic of discovery is immaterial.
The important thing is that once D is in hand, S be able to determine
whether D is the right sort of pattern to eliminate chance. How, then, is
S going to show this? Specifically, how is S going to show D capable
of eliminating H as the explanation of E? To eliminate H, S will
have to identify certain side information I wherewith S can formulate
D apart from any knowledge of E. As we saw in Section 5.2, such
side information must satisfy two conditions. The first is that the
side information I has to be conditionally independent of E given H:
Without knowing whether E happened and given H and I, S must
know no more about what event happened than if S had simply been
given H alone. ClNDE captures and makes precise this condition.

The second condition builds on the first. Having determined that I
is conditionally independent of E given H, S sets aside any knowledge
of E and assumes that whatever happened, happened according to the
chance hypothesis H. Treating E as an indeterminate event, S inves-
tigates whether I may nonetheless contain crucial information about
E. Admitting only that some event compatible with H has occurred,
S attempts nonetheless to formulate a pattern that delimits E. But S
already possesses such a pattern in D. S's task is therefore not strictly
speaking to formulate D, but rather to confirm that D could have been
formulated on the basis of I. And this is a matter of confirming that
the problem of formulating D on the basis of I is tractable for S. With
respect to a bounded complexity measure O = (cp, k) that character-
izes S's problem-solving capability (i.e., q> characterizes the degree of

5Cf. the notion of explanatory priority connected with the Explanatory Filter in Section 2.1.
In that section we gave regularity explanations priority over chance explanations, and chance
explanations priority over design explanations. Technically, therefore, the primary default
option in explanation is regularity, with chance becoming the default option once regularity
has been eliminated. But since regularity can be assimilated to chance as the special case
of probabilities collapsing to zero and one, in a broader sense we may say that chance is the
primary default option in explanation.
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difficulty S faces in solving a problem, and A. the degree of difficulty
below which S can still expect to solve problems), this is a matter of
confirming that the degree of difficulty <p assigns to the problem of
formulating D given I is strictly less than k. TRACT coincides with
this last condition.

The interrelation between CINDE and TRACT is important. Be-
cause I is conditionally independent of E given H, any knowledge S
has about I ought to give S no knowledge about E so long as - and
this is the crucial assumption - E occurred according to the chance
hypothesis H. Hence any pattern formulated on the basis of I ought
not to give S any knowledge about E either. Yet the fact that it does in
case D delimits E means that I is after all giving S knowledge about E.
The assumption that E occurred according to the chance hypothesis
H, though not quite refuted, is therefore called into question. To actu-
ally refute this assumption, and thereby eliminate chance, S will have
to do one more thing, namely, show that the probability P(D* | H),
that is, the probability of the event described by the pattern D, is
small enough. Determining just how small this probability has to be
to eliminate H is the subject of Chapter 6.

Three clarifications are worth appending to this account of chance
elimination arguments. First, the subject S, the event E, and the side
information I can just as well be counterfactual as actual. A subject S
learns that an event E has occurred and comes up with side informa-
tion I to determine whether E occurred by chance. On the one hand, S
can be a nonfictional human subject learning of an event E that actu-
ally occurred and employing side information I that is all true. On the
other hand, S may again be nonfictional, E may again have actually
occurred, but this time S considers the counterfactual information I,
and how it would affect S's determination of whether E occurred by
chance. For instance, S may flip a coin a thousand times, thereby
generating an actual event E, and then consider whether attributing
E to chance would be tenable if a psychic had predicted this event
in advance (the psychic's prediction here constituting counterfactual
information). Any combination of factual and counterfactual Ss, Es,
and Is is possible. Even the subject S can be fictional - everything
from a character in a novel to a computational agent with unprece-
dented powers to a Peircean ideal community of rational agents.

Second, at the heart of any chance elimination argument is always
the subject S who endeavors to eliminate chance. Everything depends
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on what S knows, believes, determines, and provisionally accepts. S
considers an actual or possible event E. S posits a chance process H
responsible for E. S introduces a probability measure P that together
with H estimates likelihoods for events related to E. S exhibits the
pattern D. S identifies the side information I that S will then use to
detach D from E. S determines that I is conditionally independent
of E given H. S determines that D could be formulated solely on
the basis of I without recourse to E, that is, that formulating D on
the basis of I constitutes a tractable problem. The complexity mea-
sure cp characterizes how S estimates the difficulty of problems like
formulating D on the basis of I; moreover, the tractability bound char-
acterizes where S locates the highest degree of difficulty that S can
still handle. Thus, whereas P and H characterize S's knowledge of
estimating likelihood, $ = (<p, A.) and I characterizes S's knowledge
of estimating problem-difficulty. And finally, S must establish that
the relevant probabilities are small enough so that eliminating H as
the explanation of E is warranted (cf. Chapter 6).

Third and last, identifying suitable patterns and side information
for eliminating chance requires of S insight. This contrasts with how S
identifies the other elements in a chance elimination argument. A sub-
ject S will as a matter of course confront all sorts of events that require
explanation, among them E. As for how S estimates likelihood and
problem difficulty, this can be referred to the community of discourse
to which S belongs (see Sections 3.5 and 4.3). Thus, the conditional
probability P(-1H) that characterizes S's knowledge of estimating
likelihoods and the bounded complexity measure <f> = (cp, A) that
characterizes S's knowledge of estimating problem difficulty can be
referred to S's community of discourse - specifically the norms and
practices developed by that community to estimate likelihood and
difficulty. But how S identifies the patterns and side information that
eliminate chance is less obvious. In Section 5.2, for instance, how
does one see that the pattern D^ consists of an ascending sequence of
binary numbers? Unless one knows what to look for, D^ will appear
random. What's needed is insight, and insight admits no hard and
fast rules (cf. Bourne et al., 1979, pp. 5-7). We have such insights all
the time, and use them to identify patterns and side information that
eliminate chance. But the logic of discovery by which we identify
such patterns and side information is largely a mystery.
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Having motivated the conditions defining detachability, let us now
unpack them. First ClNDE. The intuition underlying ClNDE is that I
should provide no clue about E's occurrence (i.e., I and E are epis-
temically independent). At the very least I therefore needs to be con-
ditionally independent of E given H (i.e., P(E | H & I) = P(E | H)).
This isn't enough, however, since I may contain information that is not
conditionally independent of E given H even when I taken as a whole
is conditionally independent of E given H (cf. Section 5.6).6 Side
information always constitutes background information, and as such
decomposes into elementary items of information (cf. Section 3.3). I
can therefore be constructed from items of information Ii, I 2 ) . . . , IN
by means of the logical connectives ~, &, and v.7 Now the whole
point of ClNDE is that any information J constructed from these same
Ii, I 2 ) . . . , IN by means of the logical connectives must itself be con-
ditionally independent of E given H (i.e., P(E | H & J) = P(E | H)).
For J to be constructive by means of logical connectives from the
same items of information out of which I is constructed is what we
mean by saying I generates J, or equivalently, J is generated by I.8

Next consider TRACT. The intuition underlying TRACT is that sim-
ply by using I it should be possible to reconstruct D. It's as though
we had failed to note D, but were still able to recapture D by means of
I. To be sure, we have noted D already. TRACT has us veil D and then
asks whether I is sufficient to unveil D. Whether I is up to this task
then gets unpacked as whether the problem of formulating D given
I is tractable, which is what <p(D 11) < A., the inequality that defines
TRACT, signifies. This inequality commits a mild abuse of notation.
cp(D 11) is meant to signify the estimated difficulty of formulating D
given I. What <p(D | I) literally expresses, though, is the estimated

6 This is a common occurrence when working with conditional independence, and stochastic
independence more generally. See Bauer (1981, p. 150, Example 1).

7 For simplicity I am assuming that I is finitely generated by such "elementary items of informa-
tion." By making this assumption I sidestep certain technical questions in probability theory.
For all practical applications it is enough to assume that I is finitely generated. Nevertheless, a
fully general treatment of the conditional independence condition requires the mathematical
machinery alluded to in the following note.

8 For those who prefer to do their probability theory with a- or Boolean algebras, side informa-
tion I can be viewed as isomorphic to a subalgebra of the algebra over which the probability
measure P is defined. ClNDE then says that for any element J in the subalgebra defined by
I, J is conditionally independent of E given H (see Bauer, 1981, chs. 1, 5, and 10). This
approach to ClNDE through subalgebras is more general and powerful than the one presented
here, though also less perspicuous.
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difficulty of a pattern given side information. Whereas formulating a
pattern constitutes a problem, a pattern by itself does not constitute
a problem. Within the expression <p(D 11), D must therefore be con-
strued as the problem of formulating the pattern D. It would therefore
have been more accurate (and more awkward) to write something like
<p(formulateD | I ) . 9

Verifying TRACT is not a matter of formulating D from scratch.
Typically, a subject S explicitly identifies an event E (whose explana-
tion is in question), as well as a pattern D that delimits E. In particular,
D will already be in S's hands. S's task, therefore, is not so much to
formulate D, as to convince oneself that S could have formulated D
knowing only that D delimits some indeterminate event compatible
with H, and that I provides information that may be relevant to this in-
determinate event. Having identified E and D, S pretends E and D are
still unidentified, and then determines whether the side information I
is enough to formulate D.

If S were literally to formulate D by means of I, S's strategy would
be to generate as many patterns as possible, hoping that D was among
them. Thus, to solve the problem of formulating D, S might have to
exhibit other patterns as well. It's therefore not as though S has one,
and only one, opportunity to hit the right pattern. What's crucial,
however, is that the target pattern D be among those patterns exhibited.
Thus, in the literal solution to the problem of formulating D by means
of I, we imagine S generating a list of patterns: Dt, D2, D 3 , . . . . The
problem of formulating D is then literally solved so long as this list

9 A fully formalized version of the tractability condition might therefore look as follows: given a
descriptive language D and a collection of events E, let PATT denote the set of all description-
correspondence pairs (D, *) where D is a member of D and * is a partial function from D to
E such that the description D is in the domain of definition of * (i.e., PATT is the set of all
patterns based on D and E). Next, given a subject S and the chance hypothesis H, let INFO
be the set of all items of information that S might conceivably use when examining an event
conceivably due to H. Next, take PATT, and using S and H transform each pattern D in PATT
into the problem formulateSHD, i.e., the problem of S formulating D knowing only that D is
a pattern in PATT and that D delimits some event compatible with H. Let PROB denote the
set of all such/o™Htaes HD. Next, form the set S = PROB U INFO and define a bounded
complexity measure <I> = \(p, X) on S so that <p(A | B) is defined only where A is in PROB
and B is in the powerset of INFO. (Because complexity measures are partial functions, this
is legitimate. Note that S constitutes the "sentences" on which the complexity measure (p is
defined - see Section 4.4). Then (p(formulates HD11) gives S's estimate of the difficulty S
faces formulating D, knowing that D is a pattern in PATT and that D delimits some event
compatible with H, as well as additionally knowing the side information I. Moreover, X gives
the degree of difficulty below which S can still expect to solve this problem. (p(D | I) is then a
shorthand for (p(formulates HD11), and <p(D | I) < X, the tractability condition, signifies that
S can indeed expect to solve the problem formulateSnD by means of I.
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contains D. The more patterns S is able to generate this way, the
greater S's capacity for eliminating chance.

In concluding this section, I want to describe a convention that
streamlines the tractability condition. In the tractability condition the
inequality <p(D 11) < k signifies that a subject S, simply by employing
I, is able to formulate D. Now typically the side information I will not
signify the totality of S's problem-solving capabilities, but only those
items of information specifically relevant to formulating D (cf. Sec-
tion 5.2 where I comprises six items of information, each about binary
arithmetic). We therefore distinguish S's generic problem-solving ca-
pabilities, a resource we may call G, from the side information specif-
ically relevant to formulating D, namely I. Since the resources in G
are generic, any information generated by G & I will be condition-
ally independent of E given H, and so there's no cause for concern
that G will upset the conditional independence condition. Still, it
may seem disingenuous to write <p(D 11) < k when in fact S is using
not just I, but G & I to formulate D. As a matter of convention we
therefore agree to incorporate the generic resources G directly into
cp. Letting \jf denote a complexity measure that estimates S's diffi-
culty of formulating patterns solely in relation to resources explicitly
mentioned, we then define <p as follows: <p(D 11) =def ty(D | G&I)
(cf. Proposition 4.7.2 where conditioning a complexity measure on
fixed resources yields another complexity measure). This convention
streamlines the tractability condition, focusing attention on those re-
sources specifically relevant to formulating D, namely I.

5.4 SPECIFICATION DEFINED

In relating a pattern D to an event E, detachability places no restric-
tions on what we might call the "Venn diagrammatic relationship"
between E and D* (recall that D* is the event described by D). De-
tachability simply has nothing to say about whether D* is compatible
with E, overlaps with E, entails E, is entailed by E, coincides with E,
or is inconsistent with E. For instance, D* might denote an arrow hit-
ting a target, and E might denote that same arrow landing a thousand
miles away from the target. Even if D and E are detachable (which
in this case they may very well be), by doing nothing to locate E,
D becomes useless for determining whether E occurred by chance.
Indeed, a target (= pattern) that is detachable from an arrow's flight
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(= event) can preclude chance only if the arrow hits the target. More
generally, for a pattern to preclude the chance occurrence of an event,
not only must it be detachable from the event, but it must also delimit
the event. Only such patterns are specifications.

We therefore define specification as the following relation between
patterns and events:

Definition. Given an event E, a pattern D, and a requisite precon-
dition E = (H, P, I,<$> = ((p, X)), we say that D is a specification
of E relative to E (or equivalently that D specifies E relative to T,)
if and only if the following conditions are satisfied:

ClNDE P(E \H8iJ)= P(E | H)for any information J generated by I.
TRACT <p(D|/) < A.
DELIM D delimits E.

DELIM is short for the delimiter condition. As we noted in Section 5.1,
to say that D delimits E (or equivalently that E conforms to D) means
that E entails D* (i.e., that the occurrence of E guarantees the occur-
rence of D*). Except for DELIM, this definition coincides with the
definition of detachability. We can therefore shorten this definition
by saying D is a specification of E relative to E (or equivalently that
D specifies E relative to E) if and only if D is detachable from E
relative to E and D delimits E. If E is clear from context, we simply
say that D is a specification of E (or equivalently that D specifies E).

So long as E is clear from context, we can define the following
four predicates.

detach(D, E) =def D is detachable from E.

sp(D, E) =def D is detachable from E and D delimits E.

sp(D) =def D specifies D*.10

sp(E) =def There is a pattern D such that D specifies E and

D* = E.

These predicates will prove useful for explicating the Law of Small
Probability in Chapter 6. Note that sp serves triple-duty, once as a
two-place predicate, twice as a one-place predicate, in one instance

10 Since D automatically delimits D", this definition is equivalent to saying that D is detachable
fromD*.
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applied to patterns, in the other to events. As a two-place predicate
sp coincides with the definition of specification. As a one-place
predicate sp answers either of two questions: (1) What does it mean
for a pattern to be a specification! or (2) What does it mean for an
event to be specified ?

Specification is fundamentally a relational notion, relating patterns
and events. To ask whether a pattern is a specification, or whether an
event is specified is therefore like using a transitive verb intransitively.
Strictly speaking, using a transitive verb intransitively is a mistake.
Nevertheless, if the omitted direct object is implied, the mistake is
avoided, and the intransitive use of a transitive verb becomes an ellipti-
cal expression that makes perfect sense. So too, specification, though
fundamentally a relational notion, makes perfect sense as a monadic
predicate so long as we fill in the missing term. Thus, if we want
to speak of a pattern D constituting a specification without reference
to some fixed event, we must let D* play the role of what otherwise
would be the fixed event. On the other hand, if we want to speak of an
event E as specified without reference to some fixed pattern, then we
must be able to find a pattern D that not only specifies E, but for which
D* equals E.'' sp(D) is logically equivalent to both detach(D, D*) and
sp(D, D*). sp(E) is logically equivalent to 3D[sp(D, E) &D* = E],
where the existential quantifier 3D ranges over patterns.

In concluding this section, I want to consider what it is for a pattern
not to be a specification (i.e., for a pattern to be what we've called a
fabrication). Take therefore a pattern D that delimits an event E. What
must fail for D not to specify E? Clearly D must not be detachable
from E. But what is it for D not to be detachable from E? De-
tachability is always defined with respect to a requisite precondition
E = (H, P, I, <J> = (<p, A)). What's more, H, P, and O are usually
fixed by context (usually H and P characterize the chance process sup-
posedly responsible for E, and <I> characterizes the problem-solving
ability of a subject S). It follows that once H, P, and <E> are fixed, to
show that D is detachable from E, it is enough to produce side in-
formation I satisfying the conditional independence and tractability
conditions. Thus conversely, to show that D is not detachable from E
one must demonstrate that no such side information exists.

1' After all, any event can be specified by a tautology. Thus, for sp(E) to be an interesting
predicate, the pattern that specifies E must delimit E as tightly as possible. This is of course
best accomplished by finding a pattern D that actually matches E, i.e., D* = E.
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We now face a fundamental asymmetry. We can know with assur-
ance that a pattern is detachable from an event - we simply have to
exhibit side information that satisfies the conditional independence
and tractability conditions. But what if we are unable to exhibit such
side information? Suppose we are given a pattern D that delimits an
event E (H, P, and <J> are fixed), and are unable to discover any side
information satisfying the conditional independence and tractability
conditions. Does it therefore follow that D is incapable of being de-
tached from E? No, for it's always possible such side information
exists, but has simply eluded us. Short of an explicit proof demon-
strating that no side information is capable of detaching D from E, we
remain undecided whether a pattern we have as yet failed to detach
from an event might actually be detachable.

This asymmetry between knowing with assurance when a pattern
is detachable and never quite knowing for sure whether an as-yet
undetached pattern might in fact prove detachable is unavoidable.
This asymmetry falls under the general truth that once a problem is
solved, we can know with assurance that it is indeed solved, but un-
til a problem is solved, short of an in-principle proof demonstrating
that no solution exists, we must leave open the possibility that it has
a solution. This asymmetry was implicit throughout the examples
of Chapter 1, where we saw that design inferences could be reliably
drawn, but not that design inferences could be definitively precluded.
This asymmetry is especially apparent in the study of randomness
(cf. Sections 1.6 and 5.10), where nonrandom bit-strings can be reli-
ably identified, but random bit-strings are always in danger of being
redesignated as nonrandom (the nonrandom strings being ascribed
to design, the random strings being ascribed to chance). Or, as Persi
Diaconis once remarked, "We know what randomness isn't, not what
it is."12 The next six sections form a series of case studies elaborating
detachability and specification.

5.5 PYRAMIDS AND PRESIDENTS13

Suppose that at 10:00 a.m. Monday morning the president of the
United States is assassinated. The resident psychics at the National

12 Persi Diaconis made this remark at the Interdisciplinary Conference on Randomness, Ohio
State University, 11-16 April 1988.

13 I'm indebted to Philip Quinn for this example.
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Enquirer are caught completely off guard. In trying to make sense
of the president's assassination, the psychics recall last year's trip
taken at company expense to Egypt and the pyramids. One of the
psychics recalls an unusual inscription on one of the slabs that make
up the Great Pyramid. Without further ado the psychics announce
that this inscription predicted the president's assassination. Their
announcement forms this week's headline in the National Enquirer.

Although we are accustomed to this sort of silliness from the Na-
tional Enquirer, this example does point up the importance for the
tractability condition of simultaneously formulating both a descrip-
tion D as well as a correspondence * mapping descriptions to events
(i.e., of formulating a full-blown pattern (D, *) as opposed to merely
a description D), if detachability is going to serve as a reliable tool
for inquiry. Given all the information I that the psychics gathered
on their visit to the pyramids - information we may assume is condi-
tionally independent of the event E (i.e., the president's assassination)
given the chance hypothesis H (i.e., all the information available to
the Secret Service for gauging the president's safety) - the question
we need to ask is this: Is I adequate for formulating not merely some
description D that according to an arbitrary convention can then in
post hoc fashion be connected to the event E, but rather for formu-
lating simultaneously both a description D and a map * that maps D
to E (i.e., a pattern (D, *) that delimits E) so that there is no question
that I is genuinely informative about E?

Note that in this example no logical impossibility precludes I from
being genuinely informative about E. If for instance certain hiero-
glyphics on the Great Pyramid should be found which, when trans-
lated, describe in minute detail the circumstances under which the
president of the United States happened to die, it would be possible
for enough information to be contained in these hieroglyphic inscrip-
tions to leave no doubt that the president's assassination had been pre-
dicted. Though prophecies are typically ambiguous and fuzzy, there
is nothing in principle to prevent a given prophecy from constituting
a univocal and accurate prediction.

But of course, the inscription found by the psychics from the Na-
tional Enquirer is nothing of the sort. All that the psychics have is
some unusual markings which they have arbitrarily connected to the
assassination of the president. The psychics have focused on cer-
tain features of the inscription and interpreted them as predicting the
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assassination of the president. Their interpretation is forced. They are
putting on airs. They are claiming supernatural insights that they
don't possess. What's more, they are claiming these insights simply
to boost the circulation of their paper.

In sum, it is not enough for the side information I to yield a de-
scription D, which in conjunction with information beyond the scope
of I can then be used to formulate a correspondence * such that D
and * together then identify E. (Language after all is conventional.
If we permit ourselves free rein with the correspondence *, we can
fix any description we want - say something as simple as the sin-
gle binary digit "0" - and make it refer to anything else we want,
say Shakespeare's Hamlet. That * should make "0" refer to Hamlet,
however, is totally arbitrary.) Rather I by itself must be genuinely
informative about E, making possible the simultaneous formulation
of a description D as well as a map * which together clearly identify
E. In short, I needs to provide us with a full-blown pattern, and not
merely with a description.

5.6 INFORMATION TUCKED WITHIN INFORMATION

For detachability to serve as a reliable criterion for eliminating chance,
it is not enough that side information I be conditionally indepen-
dent of E given H; rather, what's also needed is that any information
J generated by I have this same property. To see that this latter,
stronger condition is needed in formulating the conditional indepen-
dence condition, suppose CINDE were formulated simply in terms of
the conditional independence of I from E given H, that is, suppose
CINDE simply read "I satisfies P(E | H & I) = P(E | H)," and not as it
does "I satisfies P(E | H & J) = P(E | H) for any information J gen-
erated by I." This weaker version of CINDE would then underwrite
the elimination of chance even in cases where chance is the correct
explanation.

To see this consider the following sequence of 100 coin tosses:

(ER) HHTTTTHHTHTHHTTTHHTHHHHHH
HTHTTTHHTTTHHTHHTTHHHTHHH

TTTHHTTHTTTTHTHHHHTHHHTHH
TTHHHHHTHTTHTHTTHTHTHHHHT.
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This is a genuinely random sequence of coin tosses gotten by tossing a
fair coin 100 times. We now situate ER within a requisite precondition.
We therefore identify a descriptive language D (made up of strings of
0s and Is where 0 represents tails and 1 represents heads); a collection
of events E (events that consist of 100 coin tosses); the pattern DR

consisting of a correspondence * between D and E that is the canonical
extension of the map that takes 0 to T and 1 to H, together with the
description

(DR) 1100001101011000110111111
1010001100011011001110111

0001100100001011110111011
0011111010010100101011110

which under * maps precisely onto the event ER; the chance hypothesis
H that treats coin tosses as stochastically independent, and assigns a
probability of 1/2 to heads and tails each; and a probability measure
P that assigns probabilities according to this chance hypothesis H.
What's more, we let the Greek letter a represent the first 99 tosses of
the sequence ER, that is,

(a) HHTTTTHHTHTHHTTTHHTHHHHHH
HTHTTTHHTTTHHTHHTTHHHTHHH

TTTHHTTHTTTTHTHHHHTHHHTHH
TTHHHHHTHTTHTHTTHTHTHHHH-.

ER can therefore be represented by the composite aT.
Consider now the following two items of information:

11: The first 99 coin tosses of the event that happened are without a
shadow of doubt known to be a.

I2: The last toss of the event that happened is with probability l-2~100

known to be H (in direct contradiction to ER, whose last toss
isT).

How might we have obtained these two items of information? We
can imagine that we actually did observe the first 99 coin tosses
(this gets us I,), but then got distracted and missed seeing the last
toss. Nevertheless, a friend of ours who happened to witness the last
toss was kind enough to transmit what occurred on the last toss to
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us across a communication channel. This communication channel,
however, has some noise, so that there is a small probability, namely
2~100, that an H will come across the channel as a T and vice versa.14

By some fluke, this is what happened - the T that actually happened
has come to us as an H.

Suppose now that the side information I equals I, & I2. Then it's
clear from the way I] and I2 have been defined that P(ER | H & I) =
P(ER | H) = 2~100. The side information I is therefore conditionally
independent of ER given H. Moreover, since from Ii alone it follows
that ER has to be either aT or aH, I too constrains ER to be either
aT or aH. With only two events compatible with I, the problem of
formulating patterns that match either of these events is now solv-
able in short order. In particular, the problem of formulating DR on
the basis of I is tractable. A relevant bounded complexity measure
O = (<p, A.) is one that measures the time it takes for an ordinary
human being to record bit strings of length 100, and sets k at, say, ten
minutes. Indeed, all that needs to be done is that sequence of 0s and
Is corresponding to aT and aH be written down (the correspondence
* connecting descriptions to events is already given).

It follows that for the weaker version of ClNDE (i.e., the version
requiring only that the side information I be conditionally independent
of the event given the chance hypothesis, and not that all additional
side information J generated by I be conditionally independent in
this way), the pattern DR would be detachable from ER, and thus
constitute a specification. If, therefore, detachability is the key for
eliminating chance, by substituting the weaker version of ClNDE in
the definition of detachability, we end up eliminating chance as the
explanation of ER even though chance is the right explanation (in this
case we know the causal story behind ER - that it was obtained by
flipping a fair coin; the chance hypothesis H therefore has to be the
right explanation of ER).

On the other hand, with the original version of ClNDE as it appears
in the definition of detachability in Section 5.3, DR won't be detach-
able through side information like I = I] &I2. Yes, P(ER | H&I) =
P(ER|H) = 2-100, but 1/2 = P(ER |H&I,) # P(ER|H) = 2~m

and 2-199 = P(ER | H & I2) # P(ER | H) = 2~m. It follows that even

14 Note that here and throughout the examples of this section I use the phrase "small probability"
in a pretheoretic, intuitive sense. "Small probability" receives a precise sense in the next
chapter.
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though I is conditionally independent of ER given H, there is infor-
mation tucked inside of I (i.e., information generated by I) that is not
conditionally independent of ER given H. I therefore does not satisfy
CINDE, and thus rightly fails to eliminate chance as the explanation
ofER.

5.7 PREDICTION

Although the general account of specification given in this chapter is
new, a special case of specification is well-known to us all, namely,
prediction. Consider the following argument:

Premise: Someone predicts that an event is going to happen.
Premise: Given the chance hypothesis H, the event has extremely

small probability of happening.
Premise: The event happens (subsequent to the prediction).
Conclusion: The event did not happen by chance (i.e., the chance

hypothesis H was not responsible for the event).

This argument is entirely unexceptional and receives the full endorse-
ment of the statistics community. It is the classic chance-elimination
argument (cf. Day, 1961, pp. 230-41). These days statisticians re-
fer to predictions as rejection regions. C. S. Peirce (1883 [1955],
pp. 207-10) referred to them as predesignations. Peirce himself em-
ployed predesignations to underwrite chance-elimination arguments
within scientific reasoning.

As a general rule, if E is any event that occurs by chance according
to the chance hypothesis H and probability measure P, and if I is any
information identified prior to the occurrence of E that is compatible
with H, then the conditional independence condition will be satisfied.
I fails to be compatible with H if instead of supplementing the chance
hypothesis H with further information, I substitutes an entirely new
chance hypothesis. To see how this might happen, imagine the chance
hypothesis H describes flipping a fair coin. Imagine further that right
before E occurs, we learn the coin is two-headed. The side informa-
tion we just learned is therefore incompatible with our original chance
hypothesis H. Initially we thought we were going to flip a fair coin;
next we discover we are going to flip a two-headed coin. Learning I
forces us to discard H and replace it with a new chance hypothesis.

Such incompatibilities between I and H never arise for predictions.
Predictions are a special form of side information. For I to be a
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prediction, I must assume the following form:

A subject S has exhibited a pattern D at time ti.

What makes I a prediction of E is that E occurs at some time t2 subse-
quent to time ti (i.e., ti < t2). From this it's obvious why successful
predictions are always specifications. Tractability is immediate be-
cause I contains an explicit reference to D - the problem of formulat-
ing D on the basis of I is therefore trivial. Conditional independence
is immediate as well because the patterns a subject S formulates prior
to a chance event cannot be based on any knowledge of the event, nor
can such patterns in any way constrain what will happen - if this were
not the case, casinos would quickly go out of business. To be sure,
with side information identified after an event, we must always be on
guard that we haven't smuggled in knowledge about the event's actual
occurrence. But with side information identified before an event, our
only concern is that the side information I be compatible with the
chance hypothesis H. Since this is always the case with predictions,
it follows that D is detachable from E. Moreover, for the prediction
to be successful, D must delimit E, in which case D is a specification
of E as well.

5.8 INCREASING THE POWER
OF A COMPLEXITY MEASURE

The dual notions of detachability and specification presuppose a prob-
abilistic set-up (i.e., a chance hypothesis H and a probability measure
P) and a complexity-theoretic set-up (i.e., a bounded complexity
measure <t> = (<p, X)). Suppose now that we are given a pattern D
and an event E delimited by D, and that we fix a probabilistic set-up
incorporating this pattern and event (i.e., we fix H and P), but let the
complexity-theoretic set-up vary. The question I wish now to con-
sider is this: As we let the complexity-theoretic set-up vary, how does
the detachability of D from E vary? More specifically, what sort of
relationship must exist between a pair of bounded complexity mea-
sures so that detachability with respect to one entails detachability
with respect to the other?

To see what's at stake, suppose we are given two bounded com-
plexity measures, <t> = (<p, A)and* = (ir,ix). We assume that <p and
\jr are complexity measures defined for the same problem-resource
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pairs (i.e., for any problem-resource pair (Q, R), <p(Q | R) is defined
iff i/r(Q IR) is defined). Our question can then be reformulated as fol-
lows: What has to be true about the relation between <t> and * so that
if D is detachable from E relative to <f>, D will continue to be detach-
able from E relative to * ? The simplest way for this to occur is for the
following condition to be satisfied: Whenever (Q, R) is a problem-
resource pair that is tractable for O, (Q, R) is also tractable for * ,
that is, <p(Q | R) < A entails xfr(Q | R) < /i for all problem-resource
pairs (Q, R) in the mutual domain of definition of cp and x/s. If this
relation holds between O and * , we shall say that *I> is more power-
ful than <J>.15 Thus, whenever D is a pattern that is detachable from
an event E relative to the requisite precondition E = (H, P, I, $) ,
if we then substitute for <t> a bounded complexity measure *I> that
is more powerful than <J>, D will be detachable from E relative to
E' = ( H , P , I , * ) .

In practice, the power of complexity measures varies with techno-
logical advance. As technology advances, problems that were previ-
ously intractable often become tractable.16 This is certainly the case
in computer science where any computational problem solvable on
one computer remains solvable on computers with faster processors
and more memory. Thus, we may imagine someone given a pattern
D, an event E, and a requisite precondition E = (H, P, I, <&), where
<I> measures and bounds the difficulty of problems strictly in terms
of the computational power available in 1960. To assess whether
with side information I it is feasible to formulate the pattern D is
then to assess whether computational resources as they stood in 1960
are adequate for solving this problem. Now it is plain that computa-
tional resources for solving computational problems have increased
many orders of magnitude since 1960. Thus, any bounded com-
plexity measure ^ that measures and bounds the difficulty of prob-
lems in terms of the computational power available currently will be
more powerful than <t>, with the result that past specifications will
continue to be specifications, though past fabrications (i.e., patterns
that in the past failed to count as specifications) may because of

15 This relation is transitive: if 3 is more powerful than * and * is more powerful than * ,
then S is more powerful than * .

16 There is no hard and fast rule here, however. Technological advance may also raise new
problems and exacerbate old problems. For instance, tracking down computer criminals may
be an intractable problem whereas tracking down good old-fashioned criminals may not. I
am indebted to Dorothy Grover for this observation.
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improvements in technology now become specifications. In short, in-
creasing the power of a bounded complexity measure leaves intact
what patterns were detachable previously, and may add some new
ones as well.

5.9 CAPUTO REVISITED

I want next to reconsider the case of Nicholas Caputo (cf. Sec-
tion 1.2). Recall that Nicholas Caputo was the Democratic clerk
from Essex County, New Jersey, who in forty out of forty-one times
assigned the Democrats the top ballot line in his county. When taken
before the New Jersey Supreme Court on account of this anomaly,
Caputo denied any wrongdoing. The court, however, remained un-
convinced. Given the court's finding that "the chances of picking the
same name 40 out of 41 times were less than 1 in 50 billion," the court
suggested that Caputo institute changes in the way future ballot-line
drawings would be conducted, changes that were to stem "further
loss of public confidence in the integrity of the electoral process."
By making this suggestion, the court in effect eliminated chance as
the proper explanation for how Caputo chose his ballot lines. What I
propose to do in this section is to rationally reconstruct (in terms of
the technical apparatus developed in this and the last two chapters)
the court's logic whereby it eliminated chance in explaining Caputo's
anomalous ballot line selections.

As has been stressed throughout this monograph, extreme improb-
ability by itself is not enough to preclude an event from having oc-
curred by chance. Something else is needed. What else was there in
the Caputo case? Caputo claimed to have made his ballot line selec-
tions using an urn model. If we now suppose that all selections were
strictly between Democrats and Republicans, the chance hypothesis
H can be conceived as an urn model with two balls, one labeled "D"
for Democrat, the other "R" for Republican. With respect to H any
sequence of Ds and Rs of length forty-one is equiprobable.

For concreteness, let us suppose Caputo's actual selection of ballot
lines was as follows:

(EG) DDDDDDDDDDDDDDDDDDDDDDRDDDDDDDDDDDDDDDDDD.

Thus, we suppose that for the initial twenty-two times Caputo chose
the Democrats to head the ballot line; then at the twenty-third time he
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chose the Republicans; after which, for the remaining times, he chose
the Democrats. The subscript G reminds us of Caputo's reputation
as "the man with the golden arm").17

Consider next a second possible course Caputo's career as county
clerk might have taken. Let us therefore suppose that Caputo has
again had forty-one occasions on which to select ballot lines in Essex
County, but that this time Caputo chose both Democrats and Repub-
licans to head the ballots pretty evenly - let us say in the following
order:

(Ew) DRRDRDRRDDDRDRDDRDRRDRRDRRRDRRRDRDDDRDRDD.

In this instance the Democrats came out on top only twenty times,
and the Republicans twenty-one times. The sequence of Ds and Rs
that represent E w was constructed just now by flipping a coin forty-
one times and writing down "D" for each occurrence of heads, and
"R" for each occurrence of tails. Since in this instance Caputo gave
the Republicans the top ballot line more frequently than his own
Democratic party, the subscript W signifies that Caputo is now "the
man with the wooden arm."

Clearly, had Caputo's ballot line assignments coincided with E w

instead of EG, he would not have had to face the New Jersey Supreme
Court. What then discriminated these events in the eyes of the court?
Since P(EW | H) = P(EG | H) = 2~41 (i.e., approximately one in two
trillion), probabilities alone cannot discriminate between the events
E w and EG. What besides sheer improbability, then, made the court
unwilling to attribute EG to chance? And why would the court have
been willing to attribute E w to chance?

To discriminate between E w and EG, the court needed something
more than sheer improbability. What it needed was something like
the following items of information:

I): Nicholas Caputo is a Democrat.
I2: Nicholas Caputo would like to see the Democrats appear first on

the ballot since having the first place on the ballot line signifi-
cantly increases one's chances of winning an election.

17The New York Times article in which the Caputo case was discussed and which was cited in
Section 1.2 did not explicitly mention the one place where Caputo gave the top ballot line
to the Republicans. For the sake of this discussion I'll therefore assume EG is what actually
happened.
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I3: Nicholas Caputo, as election commissioner of Essex County, has
full control over who appears first on the ballots in Essex County.

I4: Election commissioners in the past have been guilty of all manner
of fraud, including unfair assignments of ballot lines, especially
when these assignments favored their own political party.

I5: If Caputo were assigning ballot lines fairly, then both Democrats
and Republicans should receive priority roughly the same num-
ber of times.

Given the side information I = Ii &I2 &I3 &I4 &I5, it is a sim-
ple matter for the court to formulate various "cheating patterns" by
which Caputo might give the Democrats priority on the ballot. The
most blatant cheat is, of course, to have the Democrats always attain
priority. Next most blatant is to have the Republicans attain prior-
ity exactly one time (there are forty-one ways the Republicans can
attain priority exactly one time - EG being a case in point). Slightly
less blatant - though still blatant - is to allow the Republicans to at-
tain priority exactly two times (there are 820 ways the Republicans
can attain priority exactly two times). This line of reasoning can be
extended a bit further, with the Republicans being thrown a few addi-
tional sops, though still getting the short end of the stick. The point
is, given this side information I, the court is easily able (possibly with
the aid of a personal computer) to formulate and exhibit ways Caputo
could cheat, one of which would surely include EG.

What do these "cheating patterns" look like in terms of the formal
apparatus developed earlier in this chapter? If we let our descriptive
language D comprise ordinary English sentences, and let the cor-
respondence * between descriptions D and events E simply be the
ordinary way we interpret sentences in the English language, then we
obtain the following cheating patterns:

D4i: ("The Democrats got the top ballot line all 41 times," *)
D40: ("The Democrats got the top ballot line at least 40 times," *}
D39: ("The Democrats got the top ballot line at least 39 times," *}

etc.

These patterns capture the different ways Caputo might have cheated.
Of these patterns D40 is the one that particularly interests us. In-

deed, this was the pattern implicitly used by the New Jersey Supreme
Court to defeat chance as the explanation of Caputo's ballot line
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selections. D40 corresponds to an event consisting of forty-two pos-
sible outcomes: the Democrats attaining priority all forty-one times
(one possible outcome) and the Democrats attaining priority exactly
forty times (forty-one possible outcomes). Included among these
possible outcomes is of course the event EG, which for the sake of
this discussion we are assuming is the event that actually occurred. It
follows that EG entails D̂ g (i.e., EG =>• D^) and therefore that D40 is
a pattern that delimits EG.

What, then, is it about the pattern D40 that warrants eliminating
chance in the explanation of EG? As usual we need a small probability
event. Note, however, that for a generic pattern D and a generic event
E delimited by D, the event that needs to have small probability to
eliminate chance is not E but D*. Since D delimits E, E entails
D* and hence P(E | H) < P(D* | H) (cf. Section 3.6). Thus, for
D* to have a small probability guarantees that E will have small
probability as well. The reverse, however, is not the case. For a
chance-elimination argument based on small probabilities to carry
through, it is not enough for E to have small probability.

To see this, consider the tautological pattern T, whose associated
event T* is the certain event (i.e., P(T* | H) = 1). E can now be any
event at all, even one of minuscule probability, yet T will delimit E.
What's more, since no side information whatsoever is needed to for-
mulate a tautology, T will be detachable from E as well (tautologies
automatically satisfy ClNDE and TRACT). T is therefore a specifica-
tion. It follows that for specifications to be usefully employed in
eliminating chance, it is not enough to constrain the probability of
E. Rather, any pattern D that delimits E must correspond to an event
that itself has small probability. In other words, D* - and not simply
E - needs to have small probability.

These observations now apply to the Caputo case as follows. For
the pattern D40 to warrant eliminating chance in the explanation of
EG, it is therefore necessary that P(D;J0 | H) have small probability.
And indeed, this was precisely the probability that the New Jersey
Supreme Court computed when it "noted that the chances of picking
the same name 40 out of 41 times were less than 1 in 50 billion":
P(D*0 IH) = 42 x 2~41 ^ 0.00000000002, or 1 in 50 billion. Equally
important for eliminating chance in the explanation of EG is that the
pattern D40 avoid being ad hoc, which is to say that the pattern D40

must be detachable from EG-
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To show that D40 is detachable from EG, it is enough to show that the
side information I (= I, &I2 &I3 &I4 &I5) satisfies the conditional
independence and tractability conditions. Tractability is straightfor-
ward. As noted earlier, from I it is easy to formulate the description
D40 together with the correspondence * (which is simply our ordi-
nary way of interpreting English sentences) so that D^, subsumes EG-
Indeed, once I is in hand, it is perfectly obvious which "cheating
patterns" Caputo might have employed to circumvent chance, one of
which is clearly D40. Thus, given a complexity measure <p that models
how difficult it is for the court to formulate possible sequences of bal-
lot line selections from various types of side information, <p(D40 11)
will be quite small, certainly less than any tractability bound X re-
flecting the court's ability to formulate such sequences. Thus, for the
pattern D40 (which was the pattern used by the New Jersey Supreme
Court to assess the claim that Caputo's golden arm was simply a mat-
ter of luck), Y(Dl0 IH) assumes a tiny probability whereas (p(D40 11)
assumes a manageable level of complexity (i.e., <p(D40|I) < A).
This balancing of small probabilities with manageable complexities
is typical of chance elimination arguments. Of course, for <p(D40 11)
to assume a manageable level of complexity is just another way of
saying the tractability condition is satisfied.

To show that I satisfies the conditional independence condition is
equally straightforward. We have to show that EG is conditionally
independent of H given I. To see what could go wrong here, suppose
that instead of simply the side information I consisting of the items
of information I[ through I5, we had considered the side information
I' consisting of the items of information I, through I5 together with
the following item of information, I6:

I6: Nicholas Caputo, as Essex County clerk, on forty-one occasions
selected the ballot lines in his county as follows: on the first
twenty-two occasions the Democrats got the top ballot line; on
the twenty-third occasion the Republicans got the top ballot line;
and on the remaining eighteen occasions the Democrats got the
top ballot line.

Inserting I6 into the side information for detaching D40 from EG is
clearly illegitimate. To eliminate chance in explaining EG, we need
to satisfy the tractability condition, and thus need to identify side
information that in fairly short order yields a pattern that delimits EG.
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I6, by explicitly identifying the event EG, certainly fits the bill. But I6

is an exercise in overkill. Incorporating I6 into I', to be sure, enables
us to satisfy the tractability condition (D40 can be directly read off
I6), but at the expense of the conditional independence condition.
Indeed, precisely because it incorporates I6, side information like I'
is incapable of satisfying the conditional independence condition.

The conditional independence condition prevents bogus items of
information like I6 from insinuating themselves into the side informa-
tion that's going to be used to eliminate chance. In the Caputo case all
the items of information that make up I, namely Ii through I5, as well
as any side information J generated from these items, will be condi-
tionally independent of EG given H. This is clear because each of I]
through I5 can be known and exhibited irrespective of Caputo's ac-
tual ballot line selections. Side information like I' that incorporates I6,
however, is a different story. I6 explicitly states the precise sequence
of Caputo's ballot line selections - 1 6 tells us flat out that EG happened.
I6 is therefore not conditionally independent of EG given H (2~41 =
P(EG |H) # P(EG |H&I6) = 1). It follows that I' does not sat-
isfy the conditional independence condition. I, on the other hand,
satisfies both it and the tractability condition, thereby detaching D40

from EG.

5.10 RANDOMNESS REVISITED

Persi Diaconis once remarked, "We know what randomness isn't, not
what it is."18 In uttering this remark, Diaconis hoped that someday a
positive theory of randomness would be put forward, one that would
tell us precisely what randomness is, and not simply what it isn't.
Given our discussion of detachability and specification we can now
understand why this hope is unsustainable, and why randomness must
always be approached through the back door of what in the first
instance is nonrandom. Diaconis's remark, instead of expressing a
distant hope about some future theory of randomness, thus expresses
what actually is the fundamental truth about randomness, namely, that

18This remark formed the broad conclusion of the Interdisciplinary Conference on Random-
ness held at Ohio State University, 11-16 April 1988. Persi Diaconis and Harvey Friedman
organized this conference during the height of the "chaos theory" enthusiasm. Although no
proceedings were ever published, the conference remains significant for assembling philoso-
phers, mathematicians, psychologists, computer scientists, physicists, and statisticians to
compare notes specifically on the topic of randomness.
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randomness can only be understood in reference to what is nonrandom
(cf. Dembski , 1991).

In this section I want to show how this back-door approach to
randomness has been inherent in the study of randomness all along.
Andrei Kolmogorov's (1965) seminal work on randomness is repre-
sentative here, and I shall focus on it. Specifically, I shall rationally
reconstruct his approach to randomness in terms of the formal appa-
ratus of probability, complexity, and specification developed in this
and the last two chapters. Recall that Kolmogorov's problem in for-
mulating a theory of randomness was that even in the simplest case
of flipping a fair coin, Kolmogorov had no way of discriminating
probabilistically between random and nonrandom sequences of coin
flips (cf. Section 1.7).19

For instance, consider the following two events, each conceivably
derived from flipping a fair coin:

(ER) HHTTTTHHTHTHHTTTHHTHHHHHH
HTHTTTHHTTTHHTHHTTHHHTHHH

TTTHHTTHTTTTHTHHHHTHHHTHH
TTHHHHHTHTTHTHTTHTHTHHHHT

(EN) HHHHHHHHHHHHHHHHHHHHHHHHH
HHHHHHHHHHHHHHHHHHHHHHHHH

HHHHHHHHHHHHHHHHHHHHHHHHH
HHHHHHHHHHHHHHHHHHHHHHHHH.

The causal story underlying these events differs: ER was obtained
just now by flipping a fair coin 100 times, whereas E N was produced
artificially. Now the problem facing Kolmogorov was this: Short of
knowing the causal story underlying these events, Kolmogorov had
no way on strictly probabilistic grounds for claiming that one, but not
the other, of these events could reasonably be expected by chance.
ER looks like it could have happened by chance; E N does not. Thus,
we call ER random and EN nonrandom.

Although this way of distinguishing ER from EN is intuitively com-
pelling, it needs to be made precise. To say that a sequence of heads
and tails is the result of chance is to say it is the output of a certain type

"Kolmogorov's theory of randomness is nowadays referred to as algorithmic information
theory (cf. van Lambalgen, 1989).
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of causal process, namely, a chance or stochastic process. To attribute
a sequence to chance is thus to tell a certain type of causal story (in
this case that the sequence derives from flipping a fair coin). Thus,
even a prototypically nonrandom sequence like EN would be a chance
sequence if the right sort of causal story underlies it (for instance, if
it derived from flipping a fair coin). On the other hand, to say that a
sequence of heads and tails is random is to say that it is representa-
tive of the type of sequence we could reasonably expect to occur by
chance. Now "representativeness" is always a matter of degree, de-
pending on how closely what's doing the representing matches what's
being represented. It follows that randomness is a matter of degree,
with sequences of heads and tails more or less random according to
whether they are more or less representative of what we expect to
occur by chance. In contrast, chance is all-or-nothing, with an event
either having the right causal story or not.

Now it is a curious fact that randomness qua "representativeness
of chance" cannot be cashed out in terms of the mathematical the-
ory that properly characterizes chance, namely, probability theory.
Even in as simple a case as tossing a fair coin, Kolmogorov found
ordinary probability theory, with its usual way of computing prob-
abilities, utterly incapable of distinguishing two events, like ER and
EN, according to their degree of randomness. On strictly probabilistic
grounds he could say nothing about which of these two events was
more random (ER and EN have been suggestively subscripted, "R"
for random, "N" for nonrandom). Kolmogorov wanted to say that ER

was "more random" than EN - in fact, he wanted to say that whereas
ER could readily have happened by chance, there was no way that EN

could have happened by chance. But given nothing more than ordi-
nary probability theory, Kolmogorov could at most say that each of
these events had the same small probability of occurring, namely 1 in
2100, or approximately 1 in 1030. Indeed, every sequence of 100 coin
tosses has exactly this same small probability of occurring.

Since probabilities alone could not discriminate ER from EN,
Kolmogorov looked elsewhere. Where he looked was computational
complexity theory. Identifying coin tosses with sequences of binary
digits, and employing as his measure of computational complexity
the length of the shortest program needed to generate a given binary
sequence, what Kolmogorov said was that a sequence of 0s and Is be-
comes increasingly random as the shortest computer program capable
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of generating the sequence becomes increasingly long (Kolmogorov,
1965).

Since such sequences of Os and Is can be construed as members of a
descriptive language D, the events ER and EN correspond respectively
to the following binary sequences:

(DR) 1100001101011000110111111

1010001100011011001110111

0001100100001011110111011

0011111010010100101011110

and

(DN) 1111111111111111111111111

1111111111111111111111111

1111111111111111111111111

1111111111111111111111111

where " 1 " corresponds to the occurrence of heads and "0" corresponds
to the occurrence of tails. If we now let * be the canonical extension
of the correspondence that takes 0 to T and 1 to H, then * connects the
descriptive language D to the collection of possible coin tosses, which
we denote by E. (DR, *) and (DN, *} are then patterns that match the
events ER and EN respectively (as usual, we abbreviate these patterns
by DR and DN respectively). What's more, given a chance hypothesis
H that characterizes the flipping of a fair coin, P(-1H) estimates the
likelihood of events in E. In particular, P(ER | H) = P(EN | H) =
2"100 % 1(T30.

We now cash out randomness in terms of detachability: EN is non-
random if DN can be detached from EN; ER is random if DR cannot
be detached from ER. Accordingly, we need a bounded complexity
measure <P = (<p, A) and side information I with respect to which DN

can be detached from EN (thus rendering EN nonrandom), but with
respect to which DR remains undetached from ER (thus keeping ER

random). Moreover, once <£> and I are in place, we can cash out the
degree to which EN is nonrandom in terms of the magnitude of the
complexity <p(DN 11) (the smaller <p(DN 11), the less random EN).

Kolmogorov's own approach to randomness (see Kolmogorov,
1965) paralleled this approach to randomness. In particular,
Kolmogorov proposed a computational complexity measure cp that
for a given programming environment I computes the length of the
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shortest program needed to generate a given binary sequence (a pro-
gramming environment I is a computer together with whatever soft-
ware is running on that computer; the connection with our formal ap-
paratus arises because I can also be represented as side information).
To be sure, Kolmogorov used different notation. But this complexity
measure is presupposed throughout his discussion, as is an underlying
programming environment. Indeed, the length-of-shortest-program
measure figured explicitly in Kolmogorov's approach to randomness.

Tractability bounds also figured in Kolmogorov's approach to ran-
domness. Such bounds were implicit in the way Kolmogorov discrim-
inated between random and nonrandom binary sequences. According
to Kolmogorov, binary sequences become increasingly nonrandom as
their shortest generating programs diminish in length. In designating
a given binary sequence as nonrandom (as opposed to assigning it
a degree of nonrandomness), Kolmogorov's approach therefore re-
quires a cut-off according to which binary sequences generated by
programs of length less than the cut-off are by definition nonrandom.
But such a cut-off is none other than a tractability bound A., with the
nonrandom sequences then being the ones generated by programs of
length less than X. It's therefore no great leap to view Kolmogorov
as putting forward a bounded complexity measure <& = (<p, A.).

Within Kolmogorov's approach to randomness, the bounded com-
plexity measure <1> = (tp, k) can be conceived as follows. For a binary
sequence D from the descriptive language D together with a given
programming environment I, <p(D 11) yields the length of the short-
est program that, when run within the programming environment I,
outputs the binary sequence D. Since programs can always be repre-
sented as binary sequences, we can think of the programs within I that
generate binary sequences as themselves binary sequences, and thus
measure program length as the length of the binary sequences that
represent the programs. We can, for instance, imagine I as designat-
ing a certain Macintosh personal computer running a given operating
system and having installed on it a given Fortran compiler. cp(D | I)
can then be taken as calculating the length of the shortest Fortran pro-
gram (let us say the uncompiled version in ASCII code) that within
this programming environment, when compiled and run, outputs D.

Now it is intuitively obvious that in terms of any programming
environment I that we are likely to employ, the binary sequence DN is
going to require a much shorter program to generate than the binary
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sequence DR. Indeed, any programming environment we are likely to
employ will permit loops, and thus allow DN to be compressed into
a program that functionally is equivalent to "repeat T 100 times."
DR, on the other hand, precisely because it does represent a chance
sequence generated by coin tosses, is highly unlikely to be compress-
ible in this way (there is a simple combinatorial reason for this: When
one enumerates all the possible binary sequences, there turn out to be
a lot more incompressible sequences than compressible sequences -
see Kolmogorov, 1965; compare also Barrow, 1991, pp. 14-6,44-5,
269-71).

Thus, in terms of the complexity-theoretic formalism developed in
Chapter 4, given a programming environment I capable of generating
the binary sequences DR and DN, and a complexity measure <p that
for a given programming environment measures the minimum pro-
gram length needed to generate a given binary sequence, <p(DR | I) is
going to be a lot bigger than <p(DN 11), or as it is sometimes written,
<p(DR 11) 3> <p(DN 11). What's more, to designate DR as random and
DN as nonrandom, the tractability bound X will have to sit squarely
between these two complexities, that is, <p(DN \ I) < X < <p(DR 11).

There is thus an asymmetry between what complexity tells us about
the binary sequences DR and DN, and what probability tells us about
the corresponding events ER and EN. The asymmetry consists in this:
Whereas P(ER | H) and P(EN | H) are equal, <p(DR 11) and <p(DN 11)
are sharply disparate with cp(DR 11) 3> <p(DN | I). Kolmogorov's ap-
proach to randomness hinges precisely on this asymmetry. Accord-
ingly, in his approach to randomness a binary sequence D becomes
increasingly nonrandom as the complexity cp(D 11) diminishes - the
smaller <p(D | I), the more nonrandom D. In particular, by fixing a
tractability bound X, one designates as nonrandom all D satisfying
<p(D 11) < X.

Kolmogorov's approach to randomness therefore confirms Persi
Diaconis's dictum ("We know what randomness isn't, not what it
is"); for what is random is determined strictly in relation to what is
nonrandom, and not vice versa. Once we discover a short program
that generates a given binary sequence, we know that its complexity is
small and that it is nonrandom (cf. DN). On the other hand, if our only
programs for generating a given binary sequence are long, unless we
have exhausted all programs of shorter length (something which in all
but the simplest cases itself constitutes an intractable problem), we
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shall not know whether a significantly shorter program exists (cf. DR).
Thus, we can definitely know when a binary sequence is nonrandom;
but in all but the simplest cases we can't be sure whether a sequence
is random - we may simply have missed the trick that reveals the
sequence to be nonrandom.20

This, by the way, is why the "random" numbers outputted by ran-
dom number generators are properly called "pseudo-random." In-
deed, as soon as we find the trick that shows how a long binary
sequence can be generated by a short program, the binary sequence
can no longer properly be regarded as random; on the other hand, un-
til we do find such a trick, we give the binary sequence the benefit of
the doubt and provisionally assume that it is random.21 Randomness
is thus always a provisional designation whereas nonrandomness is
not. Thus, the sequence

(D^) 0100011011000001010011100

1011101110000000100100011

0100010101100111100010011

0101011110011011110111100

which was introduced in Section 5.2 and initially appeared to be ran-
dom, was seen later to be nonrandom once we saw how this sequence
could be generated, namely by counting forward in base two (i.e., 0,
1,00,01, 10, 11,000,001,...).

Except for one loose end, this summarizes Kolmogorov's approach
to randomness, and recasts it in terms of the formal apparatus devel-
oped in this and the last two chapters. The loose end is this. Since
programming environments are concrete computer systems, a pro-
gramming environment I needs within our formal apparatus to be
construed as side information providing a complete description of
the computer system in question. Thus I, instead of being, say, a
Macintosh computer that's running various assorted software, now
becomes a complete description of this Macintosh's computer archi-
tecture together with the source code of any software running on it.

The connection between detachability and Kolmogorov's approach
to randomness is now straightforward. Since any programming en-
vironment I, now construed as side information, can be formulated
2 0 The mathematician Alan Turing used to boast that he could produce a long sequence of digits

by means of a very compact program which no one with access simply to the sequence could
reconstruct.

2 1 See Dembski (1991, p. 87), and compare Knuth (1981, p. 27).
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without reference to coin tossing, I will automatically satisfy the
conditional independence condition. In particular, for any item of in-
formation J generated by I, P(ER | H& J) = P(ER | H) = 2~m and
P(EN | H & J ) = P(EN |H) = 2-100. On the other hand, because
of <p(DN 11) < A. < <p(DR 11), I satisfies the tractability condition
only for DN. DN is therefore detachable from EN, whereas DR, at
least for now, remains undetached from ER. This makes precise what
our pretheoretic intuitions have told us all along, namely, that EN is
nonrandom and ER is random.
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Small probability

6.1 PROBABILISTIC RESOURCES

To explicate and justify the Law of Small Probability, one key concept
remains to be introduced, namely, probabilistic resources. To illus-
trate probabilistic resources, imagine that a massive revision of the
criminal justice system has just taken place. Henceforth a convicted
criminal is sentenced to serve time in prison until he flips n heads
in a row, where n is selected according to the severity of the offense
(we assume all coin flips are fair and duly recorded - no cheating is
possible).

Thus, for a ten-year prison sentence, if we assume the prisoner
can flip a coin once every five seconds (this seems reasonable), eight
hours a day, six days a week, and given that the average streak of
heads has length 2 (= Ei<i<ooi2"'), then the prisoner will on average
attempt a streak of n heads once every 10 seconds, or 6 attempts
a minute, or 360 attempts an hour, or 2,880 attempts in an eight-
hour work day, or 901,440 attempts a year (assuming a six-day work
week), or approximately 9 million attempts in ten years. Nine million
is approximately 223. Thus, if we required a prisoner to flip twenty-
three heads in a row before being released, we would half the time
expect to see him released within approximately ten years. Of course
specific instances will vary - some prisoners being released after only
a short stay, others never recording the elusive twenty-three heads!

Now consider a prisoner's reaction when after approximately ten
years he finally flips twenty-three heads in a row. Is he shocked?
Does he think a miracle has occurred? Certainly not. His reaction
is more likely to be It's about time! Given the number of opportuni-
ties for observing twenty-three heads in a row, he has about an even
chance of getting out of prison within ten years. There is thus noth-
ing improbable about his getting out of prison within this span of
time. It is improbable that on any given occasion he will flip twenty-
three heads in a row. But when all these occasions are considered
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jointly, it becomes quite probable that he will be out of prison within
ten years.

The underlying probability theory is straightforward. Given an
event E that might occur in at least one of n trials, let E(n) denote the
event that E occurs in at least one of these n trials. Suppose now that E
has positive probability p, that is, P(E) = p,1 and that E might occur
in any one of n trials. If these trials are stochastically independent
(as will be the case for prisoners flipping coins), and the underly-
ing chance mechanism is stable in the sense that probabilities don't
change over time, then from elementary probability theory it follows
that

P(E(n)) = P(E happens at least once in n trials)

P(E happens for the first time at trial i)

= £ (i - P)'-'P

Thus, given E and given n opportunities for E to occur, the question
is not whether E taken by itself is improbable, but whether E remains
improbable once all the opportunities for E to occur have been factored
in, that is, whether E(n) - and not E - is improbable. In the case of
our coin-flipping prisoner, if we let E denote the event of flipping
twenty-three heads in a row, even though the probability P(E) = 2~23

appears quite small, it is P(E(9,000,000)) « 1/2, which clearly is not
small, that gives the prisoner hope of actually getting out of prison
within his lifetime. If the prisoner's life expectancy is better than ten
years, he stands a reasonably good chance of getting out of prison.

Within our revamped criminal justice system, a prisoner's proba-
bilistic resources comprise the number of occasions (=n) he has to
produce a given number of heads in a row (=k). If the prisoner must
flip k heads in a row to get out of prison, and has n occasions on which
to flip k heads in a row, then his probability of getting out of prison is

1 Here, and wherever convenient in this chapter, we suppress the chance hypothesis H on which
probabilities are conditioned. P(-) therefore abbreviates P(-1H).

2Cf. Grimmett and Stirzaker (1982, p. 38) for their discussion of the geometric distribution.
Note that P(E(n)) is p when n = 1 and increases to 1 as n goes to infinity.
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p(k, n) = 1 — (1-2 k)n (cf. the preceding calculation). What's sig-
nificant about this formula is that for fixed k, as n increases p(k, n)
converges to 1, whereas for fixed n, as k increases p(k, n) converges
toO.

Probabilistic resources n and number of heads k thus offset each
other. If the prisoner's probabilistic resources (= n) are big enough, it
doesn't matter how many heads in a row (= k) he must obtain to get
out of prison - his probabilistic resources will then be adequate for
getting him out of prison. If, on the other hand, the number of heads
(= k) is exorbitant, the prisoner's probabilistic resources (= n) stand
little chance of getting him out of prison. Consider, for instance, a
prisoner condemned to flip 100 heads in a row (= k). The probability
of getting 100 heads in a row on a given trial is so small that the
prisoner has no practical hope of getting out of prison, even if his life
expectancy and coin-tossing ability were dramatically increased. If
he could, for instance, make 10 billion attempts each year to obtain
100 heads in a row (that's coin-flipping at a rate of over 500 flips
per second, twenty-four hours a day, seven days a week, for a full
year), then he stands only an even chance of getting out of prison
in 1020 years. His probabilistic resources are so inadequate for ob-
taining the desired 100 heads that it's pointless to entertain hopes of
freedom.

In the prisoner example probabilistic resources consisted of the
number of opportunities for an event to occur. We'll call this type
of probabilistic resource a replicational resource (cf. the number of
trials or replications for an event to occur). Replicational resources
are not the only type of probabilistic resource. Probabilistic resources
can also assume another form in which the key question is not how
many opportunities there are for a given event to occur, but rather,
how many opportunities there are to specify an as yet undetermined
event. We'll call this other type of probabilistic resource a specifica-
tional resource? Because lotteries illustrate specificational resources
perfectly, we consider next a lottery example.

Imagine, therefore, that in the interest of eliminating the national
debt, the federal government decides to hold a national lottery in

3 The distinction between replicational resources and specificational resources will be particu-
larly important in Section 6.5 where we set a universal probability bound that depends on the
total number of specifications possible in the universe.
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which the grand prize is to be dictator of the United States for a single
day. That is, for twenty-four hours the winner will have full power
over every aspect of government. By winning this lottery, pacifists can
order the wholesale destruction of all our nuclear weapons, racists can
order the mass execution of whatever races they despise, porn kings
can turn our cities into giant orgies, etc. Since moderates will clearly
want to prevent extremists from winning, moderates will be inclined
to invest heavily in this lottery.

The following consideration, however, mitigates this natural incli-
nation: The federal government has so constructed the lottery that the
probability of any one ticket winning is 1 in 2100, or approximately 1
in 1030. Indeed, the lottery has been so constructed that to buy a ticket,
the lottery player pays a fixed price, in this case ten dollars, and then
records a bit string of length 100 - whichever string he or she chooses
so long as it does not match a string that has already been chosen.
Players are permitted to purchase as many tickets as they wish, sub-
ject only to their financial resources and the time it takes to record bit
strings of length 100. The lottery is to be drawn at a special meeting
of the United States Senate: In alphabetical order each senator is to
flip a single coin once and record the resulting coin toss.

Suppose now the fateful day has arrived. A trillion tickets have
been sold at ten dollars a piece. To prevent cheating, Congress has
enlisted the National Academy of Sciences. In accord with the NAS's
recommendation, each ticket holder's name is duly entered onto a
secure database, together with the tickets purchased and the ticket
numbers (i.e., the bit strings relevant to deciding the winner). All this
information is now in place. After much fanfare the senators start
flipping their coins, beginning with Senator Amy Aaron and ending
with Senator Zig Zygmund. As soon as Senator Zygmund announces
his toss, the database is consulted to determine whether the lottery had
a winner. Lo and behold, the lottery did indeed have a winner - Sam
Slayer, leader of the White Trash Nation. Sam's first act as dictator is
to raise a swastika over the Capitol.

From a probabilist's perspective there is one overriding implausi-
bility to this example. The implausibility rests not with the federal
government sponsoring a lottery to eliminate the national debt, nor
with the fascistic prize of dictator for a day, nor with the way the lottery
is decided at a special meeting of the Senate, nor even with the fan-
tastically poor odds of anyone winning the lottery. The implausibility
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rests with the lottery having a winner. Indeed, as a probabilist, I would
encourage the federal government to sponsor such a lottery provided
it could be successfully marketed to the American public, for it is
obvious that if the lottery is run fairly, there will be no winner - the
odds are simply too much against it. Suppose, for instance, that a
trillion tickets are sold at ten dollars apiece (this would cover the
national debt as it stands at the time of this writing). What is the
probability that one of these tickets (qua specifications) will match
the winning string of Os and Is drawn by the Senate? An elementary
calculation shows that this probability cannot exceed 1 in 1018. Even
if we increase the number of lottery tickets sold by a few orders of
magnitude, there still won't be sufficiently many tickets sold for the
lottery to stand a reasonable chance of having a winner.

The relevant calculation for this type of probabilistic resource is
as follows. Given an event E and n opportunities to specify E, let
Di, D 2 , . . . , Dn be patterns that could conceivably be specifications
of E (cf. Sections 5.1 to 5.4). Without loss of generality we may
assume that each of these patterns derives from a single descriptive
language D, where D is the formal language recursively generated
from the n descriptions D[ to Dn via the logical connectives ~ , &,
and v. Given this assumption we may extend the correspondence
* from Di, D 2 , . . . , Dn to all of D so that * is a homomorphism of
Boolean algebras (i.e., disjunctions of descriptions become unions
of the corresponding events, conjunctions become intersections, and
negations become complements).

Thus, the probability that one of these patterns Di, D 2 , . . . , Dn

delimits E cannot exceed the probability of the event signified by the
disjunction D] v D2 v • • • v Dn, which is just the union of the events
D;,D;, ..., DH, that is,

(D, v D2 v • • • v Dn)* = D* U D*2 U • • • U D*.

Hence the probability that one of the patterns Di, D 2 , . . . , Dn delimits
E cannot exceed

PCD; U D ; U • • • u D*n) < Y, P(D*)

<n[maxP(D*)
I l<i<n
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If all the P(D*)s are the same and equal to P(E) = p, this last term is
just np.4

Sometimes it is necessary to consider both types of probabilistic
resources in tandem, those depending on the number of opportunities
for an event to occur (i.e., replicational) as well as those depending
on the number of opportunities to specify a given event (i.e., spec-
ificational). Suppose, for instance, that in the preceding lottery the
Senate will hold up to a thousand drawings to determine a winner.
Thus, instead of having Senators Aaron through Zygmund flip their
pennies in succession just once, we have them repeat this process
up to a thousand times, stopping short of the thousand repetitions
in case there happens to be a winner. If we now assume as before
that a trillion tickets have been sold, then for this probabilistic set-
up the probabilistic resources include both a trillion specifications
and a thousand possible replications. An elementary calculation now
shows that the probability of this modified lottery having a winner is
no greater than 1 in 1015. It therefore remains highly unlikely that this
modified lottery, despite the increase in probabilistic resources, will
have a winner.

To say that replicational resources consist of the number of sep-
arate occasions for an event to occur is not to say that the separate
occasions have to be stochastically independent or identically dis-
tributed (as was the case with the coin-flipping prisoners). Consider
the following example. An engineer is responsible for maintaining a
certain machine. Suppose k is the number of days since the machine
was last fixed, and that the probability of the machine's failure given
that it's been k days since it was last fixed is l-2~k. Thus, if the
machine was fixed today (k = 0), there is a zero probability that the
machine will break down today; if the machine was fixed yesterday
(k = 1), there is a probability of 1 /2 that the machine will break down
today; if the machine was last fixed two days ago (k = 2), there is
a probability of 3/4 that the machine will break down today; and so
on. We assume the engineer fixes the machine as soon as it fails. If

4 Probability measures can be defined both over Boolean algebras of events or over sentences that
describe events. The formulations are not only logically equivalent, but actually isomorphic
via the map *. In Chapter 3 probability measures were formulated over sentences. Here, in
this calculation, it is more convenient to employ probability measures defined over Boolean
algebras of events.
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we now let E denote the machine breaking down on a single day and
consider a block of eleven days that begins with a day on which the
machine was fixed, then n = 11 constitutes a replicational resource
for E, and E(ll) denotes the occurrence of at least one breakdown
within those days. The probability of E(l 1) can then be computed as
follows:

P(E(11)) = P(a failure occurs at least once in those 11 days)

= 1 — P(no failure occurs in those 11 days)

= 1 - (1)(1/2)(1/4)(1/8)(1/16) • • • (1/1024)

= 1 - [ono
(2~

= 1 - 2~55.

It is evident that machine failures on distinct days are not stochasti-
cally independent.

Similar complications can arise for specificational resources. Thus,
to say that specificational resources consist of the number of separate
opportunities to specify an as-yet undetermined event is not to say
that the specifications have to specify mutually exclusive events, or
have to be obtained in some prescribed manner. For instance, instead
of a lottery whose specifications qua tickets are all distinct (as in the
dictator-for-a-day example), we can consider a lottery whose tickets
can share the same identification number (as do many state lotteries),
thereby allowing multiple winners. So too, as with replicational re-
sources, probabilistic dependencies among specificational resources
can be allowed to vary.

In sum, probabilistic resources comprise the relevant ways an
event can occur (replicational resources) and be specified (specifi-
cational resources) within a given context. The important question
therefore is not What is the probability of the event in question? but
rather What does its probability become after all the relevant prob-
abilistic resources have been factored in? Probabilities can never
be considered in isolation, but must always be referred to a relevant
class of probabilistic resources. A seemingly improbable event can
become quite probable when referred to the relevant probabilistic
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resources.5 Anthropic principles that look to multiple universes bank
on precisely this point: While the emergence of intelligent life in our
universe is vastly improbable (at least by some accounts), when we
factor in all the possible universes that might have given rise to us, the
emergence of intelligent life is rendered a virtual certainty. Although
the status of possible universes other than our own remains a matter
of controversy, their role as probabilistic resources is perfectly clear
(cf. Barrow and Tipler, 1986).

Similar considerations apply to the origin of life on earth. If life
on earth originated spontaneously through the undirected activity of
prebiotic chemicals, the relevant probability is not the probability that
life could have originated spontaneously on the earth, but rather the
probability that life could have originated spontaneously on at least
one of the planets in the universe. From an evolutionary point of view,
life on earth is a historical contingency, and need not have occurred -
indeed, it might have been highly unlikely to occur on the earth as
such.6 As human beings residing on planet earth, we succumb too eas-
ily to a selection effect, mistaking the improbability of life originating
on earth for the bigger probability of life originating somewhere in
the universe. The earth was fortunate. Yet if the earth hadn't been so

5 It's important not to confuse an event's probabilistic resources with its reference class. To
understand the difference, consider the following example. Suppose a peasant in the days of
Robin Hood hears that Sherwood Forest is teeming with deer and would like to hunt there.
Unfortunately, Sherwood Forest belongs to the nobility, and so, the peasant is prohibited from
hunting there. Moreover, in the public forests where the peasant may hunt, hunters have so
thoroughly decimated the deer population that only a few stragglers remain. Suppose, now,
the peasant goes hunting in one of the public forests and happens to shoot a deer with bow
and arrow. A nobleman, who sees the peasant dragging the dead deer, claims it was felled
simply by shooting an arrow at random. This seems absurd to the peasant. Nevertheless,
the nobleman, who regularly hunts in Sherwood Forest, has felled many a deer with random
arrows.

Who's right and who's wrong? The peasant is clearly right, and the nobleman is clearly
wrong. The peasant is confined to public forests containing few deer. These forests constitute
the peasant's reference class (indeed, the nobleman's private forests are irrelevant). But note,
once the reference class is fixed - public forests for peasants, private forests for nobility - it
is a new question entirely to ask how many arrows the peasant may end up shooting. These,
of course, constitute the peasant's probabilistic resources. If the peasant could shoot a billion
arrows at random, even in forests with severely depleted deer populations, it may be quite
likely that one of these arrows will fell a deer. To sum up, the forests to which the peasant is
confined constitute the peasant's reference class, whereas the number of arrows the peasant
can shoot constitutes the peasant's probabilistic resources. In practice this difference shows
up as follows: reference classes comprise what we're given (e.g., public forests in the case
of peasants) whereas probabilistic resources comprise what we can do with what we're given
(e.g., shoot as many arrows as possible).

6Though compare Kauffman (1993, ch. 7), who thinks the origin of life by undirected means,
even when localized to the earth, constitutes a virtual certainty.
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fortunate, fortune would have smiled on some other planet (which is
not to preclude that fortune hasn't smiled on some other planet).

The number of planets therefore constitutes a probabilistic (repli-
cational) resource for the spontaneous origin of life in the universe.
Each planet provides an independent trial for life to originate spon-
taneously. As Richard Dawkins (1987, pp. 139, 141, 143-4) puts it,

We can accept a certain amount of luck in our explanations, but not too
much What is the largest single event of sheer naked coincidence, sheer
unadulterated miraculous luck, that we are allowed to get away with in our
theories, and still say that we have a satisfactory explanation of life?...
How much luck are we allowed to assume in a theory of the origin of
life on Earth?... Begin by giving a name to the probability, however low
it is, that life will originate on any randomly designated planet of some
particular type. Call this number the spontaneous generation probability or
SGP. It is the SGP that we shall arrive at if we sit down with our chemistry
textbooks, or strike sparks through plausible mixtures at atmospheric gases
in our laboratory, and calculate the odds of replicating molecules springing
spontaneously into existence in a typical planetary atmosphere [Even]
if we assume . . . that life has originated only once in the universe, it follows
that we are allowed to postulate a very large amount of luck in a theory,
because there are so many planets in the universe where life could have
originated To conclude this argument, the maximum amount of luck
that we are allowed to assume, before we reject a particular theory of the
origin of life, has odds of one in N, where N is the number of suitable planets
in the universe.

Dawkins's N constitutes a probabilistic resource.
Given an event E of probability p, we now let Q denote the proba-

bilistic resources relevant to E's occurrence. £2 then induces an event
EQ and a probability p^. The induced event En occurs just in case the
original event E occurs at least once among the probabilistic resources
that comprise Q. We think of En as factoring in all the ways E might
occur and be specified in relation to Q. The induced probability p n

is then simply the probability of En. E^ (resp. p^) will be called the
saturation of E (resp. p) with respect to the probabilistic resources Q.
Alternatively, we shall speak of E and p being saturated by £2 to form
E n and pQ respectively, and speak generically of E n as a saturated
event and pfi as a saturated probability. If we want to draw special
attention to the probabilistic resources £2, we shall also speak in terms
of Q-saturations (e.g., En is an Q-saturated event).

The probabilistic resources Q can therefore be construed as a func-
tion mapping events to events and probabilities to probabilities: Q
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inputs an event E together with its probability p, and outputs the sat-
urated event En together with its saturated probability pQ. Although
the precise mapping from events and probabilities to their saturations
is rarely made explicit, in practice there is no difficulty assigning an
exact sense to the saturated event En and the saturated probability
pfi. So long as En is an event that can be clearly identified, and has
a probability pn that can be accurately computed, or at least accu-
rately bounded, using probabilistic resources to form saturations is
unproblematic. Note that whenever the probabilistic resources Q are
not empty, the saturated probability p^ will exceed the probability
p, that is, p < pn. This is because p is the probability of E happen-
ing in exactly one circumstance whereas pfi is the probability of E
happening in that circumstance and possibly others.

6.2 THE GENERIC CHANCE
ELIMINATION ARGUMENT

With the notion of a probabilistic resource in hand, we can now
delineate the common pattern of reasoning that underlies chance-
elimination arguments generally:

(1) A subject S learns that an event E has occurred.
(2) By examining the circumstances under which E occurred, S

finds that a chance process characterized by the chance hypoth-
esis H and the probability measure P could have been operating
to produce E.

(3) S identifies a pattern D that delimits the event E.
(4) S calculates the probability of the event D* given the chance

hypothesis H, that is, P(D* | H) = p.
(5) In accord with how important it is for S to avoid a "false positive"

(i.e., attributing E to something other than the chance hypothesis
H in case H actually was responsible for E), S fixes a set of
probabilistic resources Q characterizing the relevant ways D*
(and by implication E) might have occurred and been specified
given the chance hypothesis H.

(6) Using the probabilistic resources Q, S identifies the saturated
event D^ and calculates (or approximates) the associated satu-
rated probability p«(= P(D*n | H)).

(7) S finds that the saturated probability p n is sufficiently small.
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(8) S identifies side information I and confirms that I satisfies the
conditional independence condition, that is, that for any subin-
formation J generated by I, J is conditionally independent of E
given H, that is, P(E | H & J) = P(E | H).

(9) With respect to a bounded complexity measure 4> = (<p, A.) that
characterizes S's problem-solving capability, S confirms that D
and I together satisfy the tractability condition, that is, that the
problem of formulating the pattern D from the side information
I is tractable, or equivalently, cp(D | I) < A..

(10) S is warranted inferring that E did not occur according to the
chance hypothesis H.

We refer to this pattern of reasoning as the Generic Chance Elimi-
nation Argument, or GCEA for short. We unpack the GCEA in this
section, and justify it in the next. Key to its justification is making
precise what it means for a saturated probability to be "sufficiently
small" (cf. (7)).

Since the Generic Chance Elimination Argument is explicated just
as well by example as in the abstract, let us consider an illustration
due to Richard Swinburne. Swinburne (1979, p. 138), in critiquing
the anthropic principle,7 relates the following story about a mad kid-
napper:

Suppose that a madman kidnaps a victim and shuts him in a room with a
cardshuffling machine. The machine shuffles ten packs of cards simultane-
ously and then draws a card from each pack and exhibits simultaneously the
ten cards. The kidnapper tells the victim that he will shortly set the machine
to work and it will exhibit its first draw, but that unless the draw consists of
an ace of hearts from each pack, the machine will simultaneously set off an
explosion which will kill the victim, in consequence of which he will not
see which cards the machine drew. The machine is then set to work, and to
the amazement and relief of the victim the machine exhibits an ace of hearts
drawn from each pack. The victim thinks that this extraordinary fact needs
an explanation in terms of the machine having been rigged in some way.
But the kidnapper, who now reappears, casts doubt on this suggestion. "It
is hardly surprising," he says, "that the machine [drew] only aces of hearts.
You could not possibly see anything else. For you would not be here to
see anything at all, if any other cards had been drawn." But of course the
victim is right and the kidnapper is wrong. There is indeed something ex-
traordinary in need of explanation in ten aces of hearts being drawn. The

7 For accounts of the anthropic principle see Swinburne (1979), Barrow and Tipler (1986),
Hawking (1988), Leslie (1989), and Bertola and Curi (1993).
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fact that this peculiar order is a necessary condition of the draw being per-
ceived at all makes what is perceived no less extraordinary and in need of
explanation.

The kidnapper explains the kidnap victim's survival by appealing
to chance. The kidnap victim thinks this is absurd. Who is right? To
settle this question let us recast this example as a Generic Chance
Elimination Argument. We begin by identifying the kidnap victim
with a subject S intent on eliminating chance. The event E, whose
explanatory status is in question, is then the drawing of an ace of
hearts from each of the ten decks of playing cards by the cardshuffling
machine. To S's relief, S learns that E did indeed happen and thus that
S's life has been spared. (Hence (1).) The mad kidnapper, however,
wants to convince S that E happened by chance (contrary to (10)).

To refute the kidnapper's claim, S proceeds step by step through the
Generic Chance Elimination Argument. By inspecting the cardshuf-
fling machine, S determines that so long as there is no tampering, each
of the ten decks is shuffled independently (i.e., shuffling one deck does
not affect the others), and that within a deck, each card has the same
probability of being drawn (we assume a standard deck of playing
cards consisting of fifty-two cards, so that the probability of the ace
of hearts being drawn from any one deck is 1/52). The cardshuffling
device is thus a chance mechanism that operates according to a chance
hypothesis H for which the ten decks are stochastically independent
and each card from a given deck is equiprobable. (Hence (2).)

By informing S in advance precisely which event from the cardshuf-
fling machine will save S's life (namely, the ten aces of hearts), the kid-
napper provides S with a pattern that matches E. S has therefore identi-
fied a pattern D that not only delimits E, but for which D* = E. (Hence
(3).) Next S calculates the probability of D* by means of the probabil-
ity measure P and the chance hypothesis H, where H and P together
characterize the probabilistic behavior of the cardshuffling machine.
Since D* = E, it follows that P(D* | H) = P(E|H) = (1/52)10,
which is a number between 10"18 and 10~17. (Hence (4).)

Even though S distrusts the kidnapper's claim that E happened by
chance, S doesn't want to be hasty. After all, highly improbable events
happen by chance all the time. What if S is not the only victim ever
kidnapped by the madman. Suppose that prior to S being kidnapped,
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the madman kidnapped billions and billions of other hapless victims,
placing them all inside identical cardshuffling machines, and that
in each case the cardshuffling machine failed to deliver ten aces of
hearts, thereby exploding and killing the victims. S might therefore
be an incredibly lucky survivor amidst a stream of carnage. And let's
not forget all the other mad kidnappers out there who didn't hook up
their victims to exploding cardshuffling machines, but still subjected
them to probabilistic experiments in which only an incredibly unlikely
event would spare the victim. When all these other victims are factored
in, might not S's luck be properly explained as a selection effect, like
what happens at a lottery: Even though it's highly unlikely any one
individual will win a lottery, that the lottery should have a winner is
typically assured. Lottery winners are invariably surprised by their
own good fortune at winning a lottery, but their sense of surprise is
hardly a reason to doubt that the lottery was run fairly (i.e., that the
lottery's outcome was due to chance).

Appealing to a selection effect to explain why the cardshuffling
machine didn't kill S wears thin very quickly. S is a human being.
Throughout recorded history, the number of humans has not exceeded
a trillion, that is, 1012. Even if every one of these human beings was
kidnapped by mad kidnappers, placed inside exploding cardshuffling
machines, and subjected to the same cardshuffling experiment as S,
even with this many kidnap victims, it would still be highly unlikely
for any victim to survive. Thus, even if S is supremely generous
in assigning probabilistic resources for the occurrence of D* = E,
identifying 1012 possible replications of the mad kidnapper's experi-
ment with the relevant probabilistic resources Q - even then it remains
highly unlikely that any victims will survive. As far as S is concerned,
Q easily comprises all the probabilistic resources needed to avoid a
false positive - that is, attributing D* to something other than H when
in fact H was responsible for D*. (Hence (5).)

Because separate card shuffles, whether from the same or from
distinct cardshuffling machines, are stochastically independent,8 the
1012 possible replications of the mad kidnapper's experiment (— S's
probabilistic resources Q) are themselves stochastically independent.

8 By definition, a shuffle is not properly a shuffle unless it is stochastically independent from
other shuffles. For the mathematics of cardshuffling see Diaconis (1988). Diaconis approaches
cardshuffling through group actions.
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The saturated event D^ therefore consists of at least one occurrence
often aces of hearts by chance in the 1012 possible replications of the
mad kidnapper's experiment. Given that p = P(D* |H) = (1/52)10 <
10~17, the saturated probability pn of D^ is therefore bounded above
as follows:9

pn = P(D*n | H)

= P(D* happens at least once in 1012 trials | H)
n a PP e n s f°r t n e first time at trial i | H)

*» 1012 x p [because log(l — p) « — p for p close to zero]

< 1012 x 1CT17

= 1(T5.

At the same time

pn as 1012 x p

. > 1012 x 10-18

= 10"6.

It follows therefore that 10~6 < pn < 10~5. This turns out to be a
close enough approximation of pn for S's purposes. (Hence (6).)

Is pn "sufficiently small" so that if the conditional independence
and tractability conditions are also satisfied, S will be warranted in-
ferring that E did not happen according to the chance hypothesis H?
S started with a pattern D, a pattern that matches E, and found that
the probability p of D* given H was bounded above by 10~17, which
certainly appears to be a small probability. But until the probabilis-
tic resources relevant to an event are factored in, it is not possible
to tell whether what seems like a small probability isn't actually a
much larger probability that only seems small because S overlooked
a selection effect. S will therefore be generous and factor in what-
ever probabilistic resources £2 might be relevant to the occurrence

9 Cf. the calculation at the beginning of Section 6.1 for the event E(n), the event that E happens
in at least one of n independent and identically distributed replications.
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of D*. Thus, S incorporates into Q 1012 stochastically independent
replications of the cardshuffling experiment. But even with proba-
bilistic resources this generous, the resulting saturated probability p^
remains small, that is, less than 10~5. Is this small enough for S to
eliminate chance in case the conditional independence and tractability
conditions are also satisfied? For the moment let us say yes. A full ac-
count of what it means for a saturated probability to be "sufficiently
small" will be given in the next section. (Hence - provisionally -
(7).)

Although S has identified a pattern D that matches E, the question
remains whether S is able to detach D from E. As it is, S has already
identified the side information I needed to detach D from E. Indeed,
before shutting S in the room with the cardshuffling machine, the
mad kidnapper explicitly informed S of the precise outcome from the
cardshuffling machine that prevents the machine from exploding and
killing S, namely, the occurrence of ten aces of hearts. In informing
S of this possible outcome, the mad kidnapper therefore supplies
S with side information I that explicitly identifies D. I is therefore a
prediction. Moreover, as we saw in Section 5.7, successful prediction
is always a special case of specification. It follows that the conditional
independence and tractability conditions are satisfied.10 (Hence (8)
and (9), respectively.)

Having successfully traversed (l)-(9), S need no longer take seri-
ously the kidnapper's appeal to chance. Rather, S will with Richard
Swinburne conclude that the kidnapper is mistaken, and that chance
was not responsible forE. As Swinburne (1979, p. 138) put it, "There
is indeed something extraordinary in need of explanation in ten aces
of hearts being drawn. The fact that this peculiar order is a necessary
condition of the draw being perceived at all makes what is perceived
no less extraordinary and in need of explanation." Having satisfied
(l)-(9), and in particular having fixed a stringent set of probabilistic

10 In a sense the mad kidnapper has made things too easy for S. Even if the kidnapper had said
nothing about which card draw would save S's life, simply by examining the structure and
dynamics of the cardshuffling machine, S could learn that one and only one set of card draws
from the cardshuffling machine will save S's life, namely, the ten aces of hearts. Having
discovered that this is the only set of card draws that could save his life, S would essentially
have constructed I from scratch, instead of simply being handed I by the mad kidnapper. S
can therefore successfully traverse (l)-(10) of the Generic Chance Elimination Argument
without depending on the mad kidnapper supplying I.
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resources Q, S is warranted inferring that E did not occur according
to the chance hypothesis H. (Hence (10).)

6.3 THE MAGIC NUMBER 1/2

In unpacking the Generic Chance Elimination Argument in Sec-
tion 6.2, we left a key question unanswered, namely, How small does
a saturated probability pfi have to be for pn to be "sufficiently small"
(cf. (7) of the GCEA)? The aim of this section is to answer this ques-
tion, and thereby justify the GCEA. In answering this question, we
need first to be clear that the question itself is well-posed. For at first
blush, the very idea of a saturated probability being sufficiently small
seems incoherent. Indeed, in regarding a saturated probability as suf-
ficiently small, a subject S seems to walk right into an infinite regress.

For consider a subject S proceeding step by step through the GCEA.
Starting with an event E, S identifies a pattern D that delimits E, and
thereupon computes p = P(D* | H). Having fixed a set of proba-
bilistic resources Q, S next identifies the corresponding saturated
event D^ and calculates the corresponding saturated probability p n =
P(D^ | H). In determining whether to eliminate the chance hypothe-
sis H, S uses the probabilistic resources Q to induce a "second-order
probability" p n which - if sufficiently small - would serve to elimi-
nate chance in explaining the "first-order events" E and D*. But why
should S stop with second-order probabilities and second-order events
like pn and D^? Having employed the probabilistic resources £2 to
induce second-order probabilities and events, what is to prevent S
from introducing still further probabilistic resources that induce still
higher order probabilities and events?

The basic intuition underlying probabilistic resources is that an
event has small probability only if its probability remains small after
all the probabilistic resources relevant to its occurrence have been
factored in. But this way of stating the basic intuition seems to make
an infinite regress unavoidable, for why not treat D^ as an event that in
turn needs probabilistic resources relevant to its occurrence factored
in, say the probabilistic resources £2', thereby inducing a "third-order
event" [D^]n, together with a "third-order probability" [pojo,-? Unless
this regress can be stopped - and stopped quickly - the GCEA will
founder and the concept of a small probability will remain elusive,
depending on ever higher orders of probability.
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Fortunately, this regress can always be avoided by collapsing suc-
cessive saturations by multiple sets of probabilistic resources into a
single saturation by a grand set of probabilistic resources. To see this,
consider a human subject S who possesses a fair coin and wants to
know whether by tossing this coin, a hundred heads in a row might
reasonably be expected by chance. S therefore starts by fixing as
probabilistic resources £2 a trillion replications on which S can at-
tempt to obtain a hundred heads in a row. Having factored in these
trillion replications, S notes that obtaining a hundred heads in a row
still seems incredibly unlikely. S therefore takes the (higher order)
event of getting a hundred heads in a row over the course of these
trillion replications, and factors in the further probabilistic resources
Q' consisting, let us say, of a billion persons each with the ability to
produce a trillion replications.

Now the point to realize is that factoring in first £2 and then Q'
into the occurrence of a hundred heads in a row (i.e., first a trillion
replications and then a billion persons each responsible for a trillion
replications), is equivalent to simply factoring in a billion trillion
replications from the start. This maneuver is entirely typical of prob-
abilistic resources. To factor a set of probabilistic resources Q into an
event, thereby obtaining an event saturated by Q, and then to factor in
still a further set of probabilistic resources Q', thereby obtaining an
event successively saturated by Q and £2', is equivalent to factoring in
from the start a grand set of probabilistic resources that incorporate
both Q and fi'.

Thus, rather than cumulating probabilistic resources piecemeal,
S should from the start factor in all the probabilistic resources that
according to S's interests and needs are going to be relevant to elim-
inating chance. The precise form and extent of these probabilistic
resources will be determined contextually, admitting no hard and fast
rules, and depending principally on how stringently S needs to con-
trol for false positives, that is, to control for mistakenly eliminating
chance when in fact chance was operating. When someone's life is
in the balance, as in a criminal case involving a capital offense, S
will want to control false positives much more stringently than, say,
in social sciences research, where the danger of false positives is al-
ways mitigated because, at least in principle, the scientific enterprise
is self-correcting. In the case of capital punishment, there is no op-
portunity to rectify a false positive once the sentence is carried out.
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The scientific literature, on the other hand, can always be challenged,
critiqued, and corrected.

S therefore has to think carefully about what set of probabilistic
resources to use in eliminating chance. Moreover, having fixed a set
of probabilistic resources Q, S better not introduce a further set of
probabilistic resources Q' later down the line. Rather, any such Q'
should be incorporated into the initial set of probabilistic resources
Q right from the start. Once S fixes Q, all the relevant probabilistic
resources have to be there. Any regress beyond a first-order saturated
event and first-order saturated probability indicates poor planning on
S's part.

But once S has fixed a relevant set of probabilistic resources Q, how
is S to assess whether the saturated probability in (7) of the GCEA
(i.e., pa) is indeed "sufficiently small" to warrant the elimination of
chance in (10) of the GCEA (provided of course that the rest of the
GCEA is satisfied)? First off, let us be clear that the elimination of
chance in (10) is never a logical deduction from (l)-(9) unless pn

equals zero, in which we case we don't need the GCEA to tell us that
the elimination of chance is warranted, for events of zero probability
have by definition no chance of happening. But if pn is strictly greater
than zero, the possibility always exists that E did happen by chance.
The relation between (l)-(9) and (10) in case pQ > 0 is therefore
never a logical entailment; rather, the possibility always remains that
it was a mistake to eliminate chance.

To say that a pattern of reasoning is fallible, however, is not to
say it leads us astray. Indeed, a fallible pattern of reasoning may
be so constitutive of rationality that to contradict its deliverances
would be to go astray - even when its deliverances are mistaken. An
example due to C. S. Peirce (1878 [1988], p. 1313) illustrates this
point:

If a man had to choose between drawing a card from a pack containing
twenty-five red cards and a black one, or from a pack containing twenty-five
black cards and a red one, and if the drawing of a red card were destined to
transport him to eternal felicity, and that of a black one to consign him to
everlasting woe, it would be folly to deny that he ought to prefer the pack
containing the larger portion of red cards.

The "mistake" of picking a black card has a far greater likelihood
if the man draws a card at random from the predominantly black
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deck as opposed to the predominantly red deck. Given a choice of
decks and the aim to avoid drawing a black card, the rational thing
to do according to Peirce is to choose the predominantly red deck. To
choose the predominantly black deck, even if one is lucky enough to
draw a red card, is folly. Alternatively, to choose the predominantly
red deck, even if one is unlucky enough to draw a black card, remains
sound.

Why? Underlying all such claims about what constitutes the ra-
tional thing to do within a given probabilistic set-up is a collection
of likelihood principles. These principles regulate the rational use of
probabilities, apportioning our beliefs and conforming our actions to
the estimated likelihood of events. These principles are so fundamen-
tal for regulating how finite rational agents like ourselves navigate
through life's uncertainties that even basic texts on probability and
statistics frequently omit stating them. For instance, the likelihood
principle underlying Peirce's example is the following:

LI. Suppose a subject S desires that an event E happen. Suppose
further that to make E happen, S must select one from among n
chance processes characterized by the chance hypotheses H\, H2,
... ,Hn. Then S should select a chance process whose chance hypoth-
esis Hk renders E most probable, that is, Hk satisfies P(E \ Hk) =

So too, a likelihood principle underlies the GCEA. This principle
regulates when a saturated probability pn is sufficiently small to war-
rant eliminating chance. If pfi in (7) of the GCEA is strictly greater
than zero, the possibility of mistakenly eliminating chance in (10) can
never be entirely precluded. Nevertheless, this possibility of error di-
minishes as pn gets smaller. How small is small enough? We can
turn this question around: What is the largest positive real number co
such that whenever pn < co, p^ satisfies (7) of the GCEA (i.e., how
big can a saturated probability be, and still be sufficiently small)?

Without an "w-level" like this to decide when a saturated probabil-
ity pn is sufficiently small, it will be impossible to justify the GCEA.
For without such an cu-level, any subject S who wants on the basis
of (l)-(9) to infer that the event E did not happen by chance always
faces the charge that pn isn't quite small enough. And how is S to
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respond to this charge, for S knows that the smaller pQ is in (7), the
smaller is the possibility of error in (10)? p n may be small enough
as far as S is concerned to warrant eliminating chance in (10). But
what about convincing someone else? A caviller can always chal-
lenge S by claiming that if pn had only been smaller, it would have
been legitimate to eliminate chance - but alas, p n wasn't quite small
enough.

What, then, is the largest positive real number co such that whenever
p n < o), p n satisfies (7) of the GCEA? The answer is co — 1/2. This
value follows from the following likelihood principle:

L2. Suppose a chance process characterized by the chance hypothe-
sis Hproduces an event E that as yet is unknown to a subject S. Sup-
pose further that S has explicitly identified n events Fl: F2,..., Fn,
and is going to conjecture that one of these events subsumes E. Then
S should conjecture any Fk having maximal probability, that is, any
Fk such that P(Fk \ H) = max,<,<n P(Fi \ H).

To see how L2 works, consider a modification of Peirce's card-
drawing example. Suppose this time one is given just a single deck of
playing cards consisting of twenty-five red cards and a single black
card. Suppose further one is forced to conjecture either of two events -
either the event F[ that a red card will be chosen at random, or the
event F2 that a black card will be chosen at random. Suppose that
conjecturing the event that happens transports one to eternal felicity,
but that conjecturing incorrectly consigns one to everlasting woe.
Which event should one conjecture? The answer is clearly F,, the
event that a red card will be drawn (the probability of F, equals 25/26
whereas the probability of F2 equals 1/26).

That co equals 1/2 is now a corollary of L2. For suppose a subject S
is given that a chance process characterized by the chance hypothesis
H produces an event E that as yet is unknown to S. Suppose further
that S has explicitly identified a single event F. Since S has explicitly
identified F, S knows the conditions under which not only F, but also
its complement P occurs. The event F, once explicitly identified, thus
induces two events-the original event F, and the complementary
event P . Because F and P are mutually exclusive and exhaustive, it
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follows from the axioms of probability theory (cf. Section 3.6) that

P(F U F° | H) = P(F | H) + P(F° | H) = 1,

and therefore that P(F | H) and P ( P | H) both equal 1 /2, or that one of
these probabilities is strictly less than 1 /2 and the other strictly greater
than 1/2. In particular, P(F | H) < 1/2 if and only if P(F | H) <
P(FC | H). The following likelihood principle is therefore an immedi-
ate corollary of L2:

L3. Suppose a chance process characterized by the chance hypoth-
esis H produces an event E that as yet is unknown to a subject S.
Suppose further that S has explicitly identified a single event F for
which P(F\H) < 1/2. Then in conjecturing that either F or Fc

subsumes E, S should reject F and conjecture Fc.

L3 in combination with the GCEA justifies setting co equal to 1 /2. In
the GCEA a subject S learns that an event E has occurred and notes that
E could conceivably have occurred according to the chance hypothesis
H (cf. (1) and (2)). In learning of E's occurrence, S explicitly identifies
E. Nevertheless, because S has produced a pattern D (cf. (3)) that is
detachable from E (cf. (8) and (9)), S can work exclusively with this
pattern and bracket the fact that E has already been identified. S can
therefore treat E as an as-yet-unknown event produced by H.'' Having
produced the pattern D, and for now treating E as a free-floating,
unidentified chance event due to H, S now proceeds through steps (4)-
(7) of the GCEA. Thus, S calculates the probability of the event D*
given the chance hypothesis H, that is, P(D* | H) = p (cf. (4)). Next S
identifies probabilistic resources £2 that characterize the relevant ways
D* (and by implication E) might have occurred and been specified
given the chance hypothesis H (cf. (5)). Next S uses £2 to identify the
saturated event D^ and calculates the associated saturated probability
p n = P(D* |H)(cf.(6)).

Suppose now that S lets D£, correspond to F in L3 and discovers
from (6) that p n = p(D£ | H) = P(F | H) < 1/2. Because S is still

1' This move was justified in Section 5.3. To say that D is detachable from E is to say that D can
be formulated on the basis of side information I that in turn is conditionally independent of E.
Since conditional independence models epistemic independence, to say that I is conditionally
independent of E is to say that I can be known independently of E. But since D can be
formulated on the basis of I, it follows that D can be known independently of E as well.
Hence the permission to treat E as an unknown, unidentified, indeterminate event.
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treating E as an unknown event, in trying to subsume E under either F
or P , S is going to choose P over F. Without knowing any specifics
about E, S will conjecture that P rather than F subsumes E. But
according to (3), D delimits E, which is equivalent to D* subsuming
E. Moreover, since factoring probabilistic resources into an event can
only expand an event, the saturated event F = D^ must also subsume
E (cf. Section 6.1). S is therefore confronted with two conflicting
claims: On the one hand, because D is detachable from E, S is entitled
to bracket the identity of E, and infer that if H was operating, then
it is more likely that P rather than F occurred. Thus, as long as the
identity of E is bracketed, the rational course to take according to L3
is to suppose that P and not F occurred. On the other hand, by not
bracketing the identity of E, S finds that F, and not P , subsumes the
event that actually occurred (i.e., E). The only way out of this conflict
is to infer that H was never responsible for E in the first place (cf. (10)).

Although the conflict just described does not constitute a logical
inconsistency, it does constitute a probabilistic inconsistency - and
one that needs to be resolved. What exactly needs to be resolved in
a probabilistic inconsistency? Certainly, situations like the following
do not engender a probabilistic inconsistency: A subject S decides to
flip a fair coin twice, issuing in an event E; before flipping the coin, S
explicitly identifies the event F, consisting of two heads in a row; upon
flipping the coin S discovers that E coincides with F, that is, that two
heads in a row were indeed flipped. Now the fact that P has probabil-
ity 3/4, and therefore exceeds the probability of F, whose probability
is 1/4, cuts no ice in eliminating chance here. Until S learns that the
event E has happened, S will be guided by L3, preferring to think that
P will happen. But once S finds that E actually did happen and that
E coincides with F, S immediately dispenses with P (and rightly so),
without ever doubting that E occurred by chance. Yet in the GCEA, S
dispenses not with P (whose probability is also bigger than the prob-
ability of F), but with the chance hypothesis H. Why is there a conflict
that needs to be resolved in the GCEA (specifically, by eliminating
chance), but not in this coin-tossing example? What is the difference?

The difference is that in the coin-tossing example S failed to factor
in the probabilistic resources relevant for heads to occur twice in a
row. Any ordinary human subject S will flip hundreds if not thousands
of coins during the course of a lifetime. Once these probabilistic
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resources are factored in, they render the occurrence of two heads
in a row highly probable - certainly better than a probability of 1/2.
But suppose instead that a human subject S is going to flip a coin not
twice, but two hundred times. The event E that will occur as a result
of these two hundred flips is as yet unknown to S. Yet prior to flipping
the coin two hundred times, S identifies the event consisting of two
hundred heads in a row - call this event R (R corresponds to D* in
the GCEA). S also notes that if all human beings that ever existed
were continuously engaged in flipping coins for every moment of
their waking existence, the event F that at least one of these human
beings flips two hundred heads in a row would have a minuscule
probability, certainly less than 1/2 (F equals the saturation of R by all
the occasions on which humans might flip coins, and thus corresponds
to D ,̂ in the GCEA). F therefore has probability greater than 1/2,
and in line with L3 S will think that if chance is responsible for E,
then E will fall under P rather than F (in particular, E will not be
expected to coincide with R).

But what if S now learns that E coincides with two hundred heads in
a row (i.e., E = R), and thus falls under F? As in the previous example,
where the coin was only flipped twice, S can shift gears, repudiate
P , and continue attributing E to chance. Though this move does not
entail a logical inconsistency (unless E has zero probability), it does
entail a probabilistic inconsistency. By a probabilistic inconsistency
I mean a threefold conflict between

(1) what the likelihood principle L3 tells us to expect if chance were
responsible for E, viz., that E should fall under P , whose proba-
bility is strictly greater than 1/2;

(2) the observation that E did in fact fall under F, and this despite F
being identified without knowledge of E; and

(3) the fact that all the probabilistic resources relevant to E's occur-
rence have been factored into F.

Whereas for two heads in a row only the first two of these conditions
were satisfied, for two hundred heads in a row all three conditions
were satisfied.

Schematically we can represent a probabilistic inconsistency as
follows (in line with L3, this schematic assumes that F was identified
without knowledge of E):
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E should fall under F*

because Fc's probability is

greater than a half

E actually fell under F

despite F's probability

being less than a half

All the probabilistic

resources relevant to E have

been factored into F

Probabilistic inconsistencies are the probabilistic equivalent to logical
inconsistencies. Both lead to a reductio ad absurdum. Both demand
resolution. Both are resolved by eliminating an offending hypothesis.
In the case of probabilistic inconsistencies, the offending hypothesis
is chance.

To sum up, a saturated probability p n is sufficiently small just in
case it is strictly less than a half. Item 7 of the GCEA can therefore
be rewritten as follows:

(7) S finds that the saturated probability pn is strictly less than 1/2.

Given that this is what it means for a saturated probability to be suf-
ficiently small, we can in turn define what it means for an unsaturated
probability p to be small relative to a set of probabilistic resources:

Definition. For an event E and a chance hypothesis H, the probabil-
ity p = P(E | H) is small relative to a set of probabilistic resources
Q just in case the saturated probability pn = P{EQ \ H) is strictly
less than a half.

A probability is therefore never small simpliciter, but small only in
relation to a set of probabilistic resources Q. Given this definition, we
can combine (6) and (7) of the GCEA, and rewrite it more compactly
as follows:

(6-7) S finds that the probability p = P(D* | H) is small relative to Q.
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6.4 STATISTICAL SIGNIFICANCE TESTING

In defining a probability as small whenever its corresponding satu-
rated probability is strictly less than a half, we answer a long-standing
question in the logic of statistical decision theory. Given a chance hy-
pothesis H and a rejection region R, how small does the probability
of R given H have to be (i.e., how small P(R | H)?) so that if an event
E falls within R (i.e., if R subsumes E), then the chance hypothesis H
can be legitimately rejected? This is the key conceptual difficulty that
to this day remains unresolved in Ronald Fisher's theory of statistical
significance testing. The problem is to justify a "significance level"
a (always a positive real number less than one) such that whenever
E falls within R and P(R | H) < a, then the chance hypothesis H can
be legitimately rejected as the explanation of E. To date the problem
has been that any proposed value for a has seemed arbitrary, lacking
what Howson and Urbach (1993, p. 178) call "a rational foundation."

Specifically, Howson and Urbach (1993, pp. 178-80) direct the
following criticism against Fisher's theory:

Fisher seems to have seen in significance tests some surrogate for the
process of refutation, and he frequently went so far as to say that a theory
can be "disproved" in a significance test (e.g., Fisher, 1947, p. 16) and that
such tests, "when used accurately, are capable of rejecting or invalidating hy-
potheses, in so far as these are contradicted by the data" (Fisher, 1935; italics
added). If Fisher intended to imply that tests of significance can demonstrate
the falsity of a statistical theory, and it is difficult to see what else he could
have meant, then clearly he was wrong.... Fisher seems to be saying that
statistical hypotheses may be actually falsified; but the experimental results
used in a significance test clearly do not logically contradict [n.b.] the null
hypothesis.

Fisher was, of course, aware of this, and when he expressed himself more
carefully, his justification for significance tests was rather different. The
force of a test of significance, Fisher then claimed, "is logically that of the
simple disjunction: Either an exceptionally rare chance has occurred, or the
theory of random distribution [i.e., the null hypothesis] is not true" (Fisher,
1956, p. 39). But in thus avoiding an unreasonably strong interpretation,
Fisher plumped for one that is unhelpfully weak, for the significant or critical
results in a test of significance are by definition improbable, relative to the
null hypothesis. Inevitably, therefore, the occurrence of a significant result is
either a "rare chance" (an improbable event) or the null hypothesis is false, or
both. And Fisher's claim amounts to nothing more than this necessary truth.
It certainly does not allow one to infer the truth or falsity of any statistical
hypothesis from a particular result
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Expositions of Fisherian significance tests typically vacillate over the
nature of the conclusions that such tests entitle one to draw. For example,
Cramer said that when a hypothesis has been rejected by such a procedure,
"we consider the hypothesis is disproved" (1946, p. 334). He quickly pointed
out, though, that "this is, of course, by no means equivalent to a logical
disproof." Cramer contended, however, that although a rejected theory could
in fact be true, when the significance level is sufficiently small, "we feel
practically justified in disregarding this possibility" (original italics altered).
No doubt such feelings do often arise;... but Cramer offered no grounds
for thinking that such feelings, when they occur, were generated by the type
of reasoning employed in tests of significance, nor was he able to put those
feelings onto any systematic or rational basis.

I submit that the probabilistic apparatus developed in the last three
sections provides just such a systematic and rational basis for why we
can "feel practically justified" eliminating chance in a test of statisti-
cal significance. As Howson and Urbach rightly note, there is never
a logical contradiction in refusing to eliminate chance in a test of
statistical significance - save in the case where the rejection region
R has probability zero with respect to H and the event E happens to
fall within R. Short of this, it is always a logical possibility that E is a
chance outcome due to the chance hypothesis H, regardless whether
E falls within or outside the rejection region R. But precisely because
this is a strictly logical point, one does not have to be a statistician to
appreciate it. Indeed, it is precisely the statistician's task to tell us how
to explain E when the rejection region does not have zero probability.

Is there, then, a systematic and rational basis by which the statis-
tician can properly explain E in reference to H when the rejection
region R does not have zero probability? The Generic Chance Elim-
ination Argument provides just such a basis. In Fisher's theory, a
statistician/subject S is justified eliminating H as the explanation of
E whenever (1) E falls within a rejection region R, and (2) the proba-
bility of R given H is sufficiently small (i.e., P(R | H) < a for some
a-level). Although this is certainly part of the story, it is not the
whole story. The whole story consists in taking Fisher's account of
statistical significance testing, and embedding it in the GCEA, whose
systematic and rational basis has been established.

The whole story therefore looks like this. S is about to witness an
event E that provisionally will be taken to derive from a chance process
characterized by the chance hypothesis H (hence (1) and (2) of the
GCEA). Prior to witnessing E, S designates a pattern D that will serve
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as a rejection region (hence (3)). Specifically, the rejection region R
will be the event D* corresponding to the pattern D. Because S has
identified D prior to the occurrence of E, S is able to detach D from
E (hence (8) and (9); recall that rejection regions are predictions -
cf. Section 5.7). S now factors in the probabilistic resources Q that
S regards as relevant to S's needs and interests for guarding against
mistakenly eliminating H in case H actually was operating to produce
E (hence (4) and (5)). Factoring Q into the rejection region R induces
the saturated event Rn(= D^). S now finds that P(Rn | H) is strictly
less than 1/2, and thus that P(R | H) has small probability relative to
«(hence (6-7); cf. Section 6.3). With (l)-(9) of the GCEA satisfied,
S is warranted inferring that E did not occur according to the chance
hypothesis H (hence (10)).

From this rational reconstruction of statistical significance testing,
it's now clear why the significance levels a of 0.05,0.01, and the like
that regularly appear in the applied statistics literature (e.g., the social
sciences literature) are arbitrary, a is supposed to bound the proba-
bility of the rejection region R, that is, P(R | H) < a. As a rejection
region, R is going to be employed to eliminate the chance hypothesis
H in explaining the observed event E provided E falls within R. The
problem is that a-levels like 0.05 and 0.01 are typically instituted
without any reference to the probabilistic resources relevant to con-
trolling for false positives. (As usual, a false positive is the error of
eliminating H as the explanation for E when H actually is responsible
for E. Statisticians refer to false positives as "type I errors.") Suppose,
for instance, an academic journal in the social sciences institutes an
a-level of 0.01 to control for false positives. In this case, articles that
record what would be an interesting theoretical result so long as the
result is not due to chance are accepted for publication only if the
result falls inside a rejection region whose probability is 0.01 or less.
Any number of journals in experimental psychology, for instance,
require an a-level of 0.01 for submission of manuscripts.

But what does such an a-level accomplish? In general, for ev-
ery hundred experiments in which chance actually was operating, on
average one experiment will satisfy an a-level of 0.01 (as is customary,
we assume that separate experiments are stochastically independent).
Thus, for a journal requiring an a-level of 0.01, for every hundred
experiments conducted by researchers in the journal's field of special-
ization, and in which chance actually was operating, on average one in
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a hundred of those experiments will slip through the cracks and form
the basis of an article acceptable to that journal. Does an a-level of
0.01 therefore provide stringent enough controls on false positives for
such a journal? The answer depends on the number of experiments
conducted by researchers in the field who submit their findings to the
journal. As this number increases, the number of experiments in which
chance actually was operating, but for which chance will be (falsely)
eliminated, will increase, thus increasing the number of false positives
that could conceivably slip into the journal. A journal requiring an
a-level of 0.01 will on average allow one in a hundred of such experi-
ments into its pages. More generally, a journal requiring a significance
level a will on average allow the proportion a of such experiments
into its pages. The more experimental research there is in the journal's
field of specialization, the more likely the journal is to include false
positives. The relevant probabilistic resource here is therefore the
replicational resource consisting of the number N of separate experi-
ments performed by researchers in the journal's field of specialization.

Although the amount of research activity in the journal's field of
specialization determines the number of false positives that could
conceivably slip into the pages of the journal, in practice the precise
a-level a journal sets to control for this error will depend on the
needs and interests of the editors of the journal. If the field to which
the journal is directed is good about correcting past mistakes, there
may be no problem setting the a-level high (e.g., a = 0.05). On the
other hand, if the field to which the journal is directed is bad about
correcting past mistakes, it will probably be a good idea to set the
a-level low (e.g., a = 0.0001) so that what errors do make it into the
journal will be few.

Nevertheless, from the vantage of the GCEA, the choice of any
such a-level is not arbitrary, but obtains a definite meaning only in
reference to probabilistic resources. Given an event E, a rejection re-
gion R, a chance hypothesis H, and a significance level a, Fisher's
theory does little more than press the fundamental intuition that H
ought not to be viewed as responsible for E so long as E falls within
R and P(R | H) is small (meaning P(R | H) < a) . But how small is
small enough? The account of small probabilities given in Section 6.3
provides the answer. In the case of a journal that requires a signif-
icance level of size a, a will be small provided that the probability
of a false positive worming its way into the journal remains strictly
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less than 1/2 once all the probabilistic resources relevant to E's oc-
currence are factored in. But since in this case probabilistic resources
consist of N stochastically independent experiments governed by the
chance hypothesis H, for a to be small means that for N stochasti-
cally independent events R1, R 2 , . . . , RN each with probability a, the
following inequality has to be satisfied:

P(RiOr R2 or • • • or RN | H) < 1/2.

An elementary probability calculation now shows that N must be
bounded as follows (the logarithm here and throughout is the natural
logarithm):

N < l o g l / 2

log(l — a) a

Thus, from the vantage of the GCEA, an a-level in a test of statistical
significance is small enough to eliminate chance for an event falling
inside a rejection region so long as the total number N of stochastically
independent opportunities for the event to occur (= probabilistic re-
sources) is less than (l/a)(log 2). Alternatively, onceN (— probabilis-
tic resources) is fixed, for an a-level to constitute a small probability,
the following inequality must be satisfied:

log 2

6.5 LOCAL AND UNIVERSAL
SMALL PROBABILITIES

There are two types of small probabilities, local and universal. To
understand the difference, consider the following story about Alice,
Bob, and Cathy. Imagine that Alice is about to become the editor of a
new journal in experimental psychology. In setting editorial policies
for her journal, Alice must institute an a-level to control for false
positives (i.e., type I errors) slipping into her journal. How is Alice
going to choose an a-level? Since Alice is schooled in the logic
of small probabilities, Alice is not simply going to copy the a-level
of some existing journal in her field. Rather, she will select a set of
probabilistic resources £1 commensurate with her needs and interests
for controlling false positives, and she will then determine the largest
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probability p such that for a rejection region R, if P(R | H) = p, then
P(Rfi IH) = pn < 1/2. The largest such p will then constitute the
a-level of her journal.12

To select the probabilistic resources Q relevant to her journal, Alice
adopts the following rationale. Because her journal is highly spe-
cialized, Alice determines that in a given year no more than 600
researchers are performing experiments that might enter her jour-
nal. Moreover, given the rate at which these experiments can be per-
formed, Alice determines that in a given year a given researcher will be
unable to conduct more than 20 experiments that might enter her jour-
nal. Finally, in reviewing the longevity of most journals historically,
Alice determines that her journal will be lucky to survive 100 years
without folding. Thus, she reasons that throughout the journal's exis-
tence, there will be no more than NA = 600 x 20 x 100 = 1.2 x 106

separate experiments that might enter her journal.
To ensure that the probability of a false positive slipping into Al-

ice's journal remains less than a half, Alice therefore employs the
inequality at the end of Section 6.4, and calculates a significance level
aA = (Iog2)/(1.2 x 106) « 5.77 x 10~7. So long as all the articles
submitted to Alice's journal set the probabilities of their rejection
regions below 5.77 x 10"7, the probability that even a single false
positive will slip into Alice's journal during its projected 100 years
remains less than a half. Alternatively, it's more likely than not that
throughout its lifetime Alice's journal will be free from false positives.

To continue our story, imagine that several years have passed since
the inception of Alice's journal, and that Bob now comes along while
Alice's journal is in full swing. Bob too is an experimental psychol-
ogist schooled in the logic of small probabilities. In perusing the
editorial policies of Alice's journal, Bob finds that Alice has fixed
an a-level of 5.77 x 10~7. Moreover, from reading the fine print
on the inside cover page of Alice's journal, Bob learns the rationale
underlying Alice's choice of a. Upon further reflection, however, Bob
is troubled. Granted, Alice's choice of a guarantees it's more likely
than not that her journal will be free of false positives throughout the
journal's lifetime. But what about all the other journals Bob employs
in his research? Bob estimates there are about 200 journals he needs
to consult professionally. It may be fine for Alice that her journal

12 More precisely, a will equal the least upper bound of the set of real numbers (p: for all
rejection regions R such that P(R | H) = p, P(RQ | H) = pn < 1/2).
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has a better than even chance of excluding false positives throughout
its lifetime. Bob, however, wants all the journals he is ever going to
consult to have a better than even chance of excluding false positives
throughout their lifetimes.

For Bob's purposes, therefore, an a-level of 5.77 x 10~7 is not
going to be small enough. What then is going to be an appropriate
a-level for Bob? To select probabilistic resources £2 that induce an
appropriate a-level, Bob adopts a rationale similar to Alice's. But
whereas Alice determined that no more than 600 researchers could
conceivably submit articles to her journal in a given year, surveying
the field of experimental psychology as a whole, Bob determines that
in a given year up to 90,000 researchers could conceivably submit
articles to the 200 journals Bob uses for his own research. Whereas
Alice determined that the rate at which research is conducted in her
field of specialization precludes a researcher from conducting more
than 20 experiments in a given year, Bob determines that research
in some areas of experimental psychology permits experiments to be
conducted at the faster rate of up to 40 experiments per year. Finally, in
reviewing the longevity of most journals historically, Bob determines
that even though most journals will be lucky to survive a hundred
years without folding, a few of the journals he consults are well into
their second century. Thus, Bob will want to keep false positives from
entering the journals he consults not just for 100 years, as did Alice,
but for 200 years.

Bob therefore calculates that no more than NB = 90,000 x 40 x
200 = 7.2 x 108 separate experiments can conceivably enter the jour-
nals he consults. Corresponding to NB, Bob calculates a significance
level aB = (log2)/(7.2 x 108) « 9.63 x lO"10 (cf. the inequality at
the end of Section 6.4). If it were up to him, Bob would require that all
the articles submitted to the journals he consults set the probabilities
of their rejection regions below 9.63 x 10~10. Given this a-level, the
probability of even a single false positive slipping into any of these
journals would remain strictly less than a half.

Finally, consider Bob's friend Cathy. Cathy has observed Bob's cru-
sade to institute more stringent a-levels for the journals he consults
(in Bob's case, journals related to experimental psychology). Cathy
is concerned, however, where Bob's crusade will end. Cathy too is
schooled in the logic of small probabilities. But though trained as an
experimental psychologist, Cathy no longer works in experimental
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psychology per se. Rather, Cathy belongs to an interdisciplinary
think-tank whose researchers revel in crossing disciplinary bound-
aries. Unlike Bob, Cathy and her think-tank are therefore not limited
to a mere 200 journals. Cathy and her think-tank are free to dip into
any of the 30,000 or so journals that constitute the scientific literature
worldwide.

If Cathy now adopts Bob's rationale for selecting probabilistic re-
sources Q, to keep false positives from entering the journals available
to her, Cathy will need to expand Bob's probabilistic resources con-
siderably. Thus, whereas Bob determined that no more than 90,000
researchers could conceivably submit articles to the journals he con-
sults in a given year, by surveying the totality of scientific research,
Cathy determines that in a given year as many as 10,000,000 re-
searchers could conceivably submit articles to the 30,000 journals
available to her. Whereas Bob determined that the rate at which re-
search is conducted in his field precludes a researcher from con-
ducting more than 40 experiments in a given year, Cathy deter-
mines that research with computer simulations permits experiments
to be conducted at much faster rates - with present computational
speeds even one per minute is not inconceivable. Thus, to be safe
Cathy allows as many as 60 x 24 x 365 & 500,000 experiments
per researcher per year. Finally, despite the relatively recent in-
ception of most journals historically, Cathy decides to do Bob one
better and allow that a journal might survive a millennium. Thus,
Cathy will try to keep false positives from entering the journals avail-
able to her not just for a two centuries, as did Bob, but for 1000
years.

Cathy therefore concludes that Nc = 10,000,000 x 500,000 x
1,000 = 5 x 1015 sets an upper bound on the number of separate
experiments that might enter the journals available to her. It follows
that if Cathy were to adopt Alice's and Bob's rationale, Cathy would
set her probabilistic resources to Nc = 5 x 1015 experiments, and then
compute a significance level ac — (log 2)/(5 x 1015) « 1.38xl0~16.
But if Cathy is willing to go this far, why should she stop simply with
false positives that threaten to slip into the scientific literature? In the
ordinary circumstances of life there are plenty of opportunities to err
with false positives, attributing events to something other than chance
when they actually did result from chance. What if Cathy decides to
incorporate into her a-level these ordinary circumstances of life? Her
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a-level seems to be heading off asymptotically to zero. Where will
this chain of reasoning end?13

In practice this asymptotic vanishing of a-levels does not arise.
Indeed, one's need to control false positives is typically balanced by
one's desire to get work done, which requires relaxing control over
false positives. An overconcern to avoid error almost invariably sti-
fles inquiry. Thus, in practice the tendency to decrease a-levels and
increase probabilistic resources to control false positives is checked
by a desire to foster inquiry. What's more, false positives can always
be corrected through further research. It follows that moderation typ-
ically guides the choice of a-levels and probabilistic resources £2.
Moreover, once a and Q are chosen, they tend to remain stable (un-
like the Alice-Bob-Cathy story).

All the same, it is important to understand what happens when we
disregard our need to get work done and foster inquiry, and instead
focus exclusively on controlling for false positives. If we do this, we
do not enter the infinite regress suggested by the Alice-Bob-Cathy
story, but rather a finite regress that ends abruptly. Indeed, we find at
the end of this regress a privileged set of probabilistic resources A
that encompasses all the probabilistic resources a finite rational agent
operating in the actual world need ever consider. This privileged set
of probabilistic resources A is such that whenever a probability p is
small relative to A, p remains small relative to any other set of prob-
abilistic resources £2 that might arise in practice. The startling thing
about A is that it is well-defined and reasonably compact so that it is
useful in practical applications.

A derives from the total number of specifications capable of fitting
in the actual world. Physics strictly limits this number, not just for
the present, but throughout cosmic history. Call this number N. N
will be computed shortly, but for now I want simply to show why
a certain probability induced by N, namely 1/(2N), is the smallest
probability we'll ever need. Given that the actual world can contain

13 Although I won't take this approach, one way to end this chain of reasoning is to look to a
Peircean ideal community. According to Peirce (1878 [1988], p. 1315), "logicality inexorably
requires that our interests shall not be limited. They must not stop at our own fate, but must
embrace the whole community. This community, again, must not be limited, but must extend
to all races of beings with whom we can come into immediate or mediate intellectual relation.
I must reach. . . beyond this geological epoch, beyond all bounds. He who would not sacrifice
his own soul to save the whole world, is, as it seems to me, illogical in all his inferences,
collectively. Logic is rooted in the social principle." Instead of looking to an ideal community
of rational agents, I will look to the limitations of matter/energy in the universe.
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no more than N specifications, consider what it would mean for even
one specified event of probability strictly less than 1/(2N) to hap-
pen by chance. The total number of specified events is N. The total
number of specified events of probability strictly less than 1/(2N) is
therefore some number K that cannot exceed N (i.e., K < N). The
(saturated) probability that even one specified event of probability
strictly less than 1/(2N) ever happens by chance is therefore strictly
less than K/(2N), which in turn is less than or equal to 1/2 (since
K < N). It follows there is less than an even chance that even one
specified event of probability strictly less than 1/(2N) will happen by
chance throughout cosmic history. It's therefore safer to conjecture
that none of these specified events ever happens by chance.

The reasoning here is identical to that in a lottery: Given a lottery
with k tickets each of which has probability strictly less than l/(2n)
of winning, and given that k does not exceed n, the probability of the
lottery having a winner is strictly less than k/(2n), which in turn is
less than or equal to 1/2 (since k < n). Since the probability of the
lottery having a winner is therefore strictly less than 1/2, it's safer to
conjecture that the lottery will have no winner. Of course in practice,
should such a lottery have a winner, we would tend to attribute it to
chance. For most lotteries this is innocuous since typically we can
expand our probabilistic resources to include other lotteries, thereby
rendering chance plausible. But with the collection of all specified
events of probability strictly less than 1/(2N), we no longer have this
option. This is the lottery to end all lotteries.

Let us now flesh out this argument. We start by considering the
following historical table containing every specification within the
actual world throughout its entire history:

Subject Event Specification

Si

s2

SK-I

SK

E I

E2

EK-I

E K

D,
D2

DK-i
D K

DN
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Each row of this table denotes a subject Sj specifying an event E,
with a pattern Dj (hence Dj is detachable from Et, and D* subsumes
Ej). Because this is a historical table, all the specifications in it are
actual. In particular, specifications that might have been but never
were (i.e., counterfactual specifications) have no place in it. Note
that the subjects Sj are not limited to humans. Any finite rational
agent instantiated in the physical stuff of the universe will do (e.g.,
extraterrestrial intelligences or cybernetic computers).

How big is N? Physical constraints strictly limit both the number
of subjects that can exist at any one time and the speed with which
any subject can generate specifications of events. Specifically, within
the known physical universe there are estimated to be no more than
1080 elementary particles. Moreover, the properties of matter are such
that transitions from one physical state to another cannot occur at a
rate faster than 1045 times per second.14 Finally, the universe itself
is about a billion times younger than 1025 seconds (assuming the
universe is around ten to twenty billion years old). If we now assume
that any subject that ever specifies an event within the known physical
universe must comprise at least one elementary particle, then these
cosmological constraints imply that the total number of specified
events throughout cosmic history cannot exceed

1080 x 1045 x 1025 = 10150.

This is N.15

Note that the units in this equation are as follows: 1080 is a pure
number - an upper bound on the number of elementary particles in
the universe; 1045 is in hertz - alterations in the states of matter per
second; 1025 is in seconds - an upper bound on the number of seconds
that the universe can maintain its present integrity (i.e., before col-
lapsing back on itself in "the big crunch" or undergoing heat death by

14 This universal bound on transitions between physical states is based on the Planck time,
which constitutes the smallest physically meaningful unit of time. See Halliday and Resnick
(1988, p. 544). Note that universal time bounds for electronic computers have clock speeds
between ten and twenty magnitudes slower than the Planck time. See Wegener (1987, p. 2).

15 We can now see why the distinction between replicational and specificational resources is
so crucial. Specifications are easily individuated and numerically manageable. Replications
are not. Consider, for instance, the number of distinct ways to individuate 500,000 coin
tosses among a total of 1,000,000 coin tosses. This number computes to the combinatorial
(1,000,000!)/(500,000!)2 =s 10300000. It follows there are lO3OOo6° distinct ways to replicate
500,000 coin tosses among these 1,000,000 coin tosses (note, however, that these replications
are not stochastically independent). This number is vast, and far exceeds N = 1 0 .
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expanding indefinitely). Technically, 10150 is the total number of state
changes that all the elementary particles in the universe can undergo
throughout the duration of the universe. But since any subject making
a specification undergoes a state change, and since any such subject
comprises at least one elementary particle, it follows that 10150 bounds
the total number of specifications by subjects in the universe. 10150 is
a supremely generous bound. Indeed, the only subjects we know that
specify events are animals and computers, each of which comprise a
vast ensemble of elementary particles, and generate specifications in
time periods vastly slower than the Planck time. In setting N equal
to 10150, we therefore ensure that the preceding table includes all
the specifications of events ever formulated by subjects throughout
cosmic history.16

Because each row of the preceding table denotes a subject Sj spec-
ifying an event E, with a pattern Dj, implicit in each row is a chance
hypothesis Hj, side information Ij, and a bounded complexity mea-
sure <$>j = ((p,, Xi). Each of these must be present for Sj to establish
that Dj is a specification of Ej. Consider now the probability

150S = 1/(2N) = 1/2 x 1/10

and focus only on those rows for which the probability P(D* |H,) =
is strictly less than 8, that is,

Without loss of generality we may assume the preceding table (see
p. 208) has been so arranged that the first K rows are precisely the

16 Nor does quantum computation offer to increase the number of specifications that can be con-
cretely realized. Though quantum computation offers to dramatically boost computational
power by allowing massively parallel computations, it does so by keeping computational
states indeterminate until the very end of a computation. This indeterminateness of compu-
tational states takes the form of quantum superpositions, which are deliberately exploited in
quantum computation to facilitate parallel computation. The problem with quantum superpo-
sitions, however, is that they are incapable of concretely realizing specifications. A quantum
superposition is an indeterminate state. A specification is a determinate state. Measurement
renders a quantum superposition determinate by producing a pure state, but once it does
so we are no longer dealing with a quantum superposition. Because quantum computation
thrives precisely where it exploits superpositions and avoids specificity, it offers no means
for boosting the number of specifications that can be concretely realized in the universe (for
an overview of quantum computation see DiVincenzo, 1995).
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ones that satisfy this inequality. We then define the specificational
resources A as these first K rows (i.e., the "5-bounded rows").

Suppose now that a subject S specifies an event E with a pattern D,
and that this specification is made in relation to a chance hypothesis H,
side information I, and a bounded complexity measure 0 = (<p, X.).
Suppose further that P(D* | H) < S. The triplet (S, E, D) is therefore
one of the first K rows of the preceding table (in particular, D is one
of the DjS for 1 < i < K). Define next the saturated event D^ as the
disjunction of all the D*s, that is,

D; = D? v D* v • • • v D£.

D^ is the event that at least one Ej falls under D* for 1 < i < K.
Moreover, the probability of D^ is the probability that at least one E(

falls under D* by chance.
What, then, is the probability of D^? Clearly, any chance hypothe-

sis H characterizing the chance occurrence of D^ has to be consistent
with the chance hypotheses Hj through HK, and therefore satisfy
P(D* | H) = P(D* | HO for 1 < i < K (if H fails adequately to char-
acterize the chance occurrence of the disjuncts of D*A, much less will
it adequately characterize the chance occurrence of D p . Any such H
therefore satisfies the following inequality:

< P(DJ | H) +
= P(Dt 1 H,) 4
< K&

= K/(2N)

P(D*
-P(D

|H) +
2 ) -

• •• + ]P(DR 1 H)
-P(D*|HK)

It follows that the probability of D^ cannot but be strictly less than
1/2, and therefore that D* has small probability with respect to the
probabilistic resources A.17

17Note that H neither presupposes the Kolmogorov Consistency Theory (see Bauer, 1981,
pp. 371-4) nor miscarries should the Bell's inequalities be violated (see Sudbery, 1988,
pp. 198-201). H simply enables us to establish an upper bound for the probability of D^,
not to calculate it precisely.
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We now face a probabilistic inconsistency (cf. Section 6.3): (1)
The complement of D^ has probability strictly greater than 1/2; (2)
E fell under D^ even though D^ has probability strictly less than 1/2,
and even though D^ was identified without knowledge of E (this last
point holds because D specifies E and D is a disjunct of D^); and (3)
all the probabilistic resources relevant to E's occurrence have been
factored into D^. The only way to resolve this probabilistic incon-
sistency is by concluding that E did not occur by chance. True, this
conclusion is relativized to the probabilistic resources A. Thus, for S
to continue attributing E to chance, S will have to doubt A's adequacy
for controlling false positives and thereby eliminating chance (much
as Bob doubted the adequacy of Alice's probabilistic resources, and
Cathy in turn doubted Bob's). But S cannot legitimately entertain this
doubt, for S has factored in all the probabilistic resources that can
conceivably specify E by means of a 5-bounded pattern; and once
all these (5-bounded patterns are factored in, the probability that E by
chance conforms to at least one of them still remains strictly less than
1/2.

The small probability 8 at once resembles and diverges from the
significance levels in the Alice-Bob-Cathy story. Thus, just as it's
more likely than not that throughout its lifetime Alice's journal will
be free of false positives if the significance level of Alice's journal is
set at aA = 5.77 x 10~7, so too it's more likely than not that through-
out cosmic history the universe will be free of false positives if the
level at which chance is eliminated is set at 8 — 1/2 x 1/10150. On
the other hand, unlike Alice's journal, whose a-level can be chal-
lenged because of the existence of other journals, given the total-
ity of specifications throughout cosmic history there are no missing
pieces to challenge 8. With Alice employing a significance level
aA = 5.77 x 10~7, Bob and Cathy can point to other journals that
haven't been factored into Alice's a-level. But with a subject S em-
ploying the probability bound 8 — 1/2 x 1/10150, there is noth-
ing a fellow subject S' can point to that hasn't been factored into
8 already. When Bob confronts Alice over the inadequacy of her
a-level, it's as though Alice just learned that a lottery she's been
playing is less difficult to win than she initially thought. On the other
hand, by employing the probability bound 8, a subject S ensures
that of all the lotteries actually being played, S has chosen the most
difficult.
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The difference between local and universal small probabilities is
the difference between Alice's a of 5.77 x 1(T7 and S's 8 of 1/(2N) =
1/2 x 1/10150. Probabilities less than Alice's a are small probabilities
relative to probabilistic resources that, depending on circumstances,
may need to be augmented to ensure that false positives remain less
likely than not. Probabilities less than S's 8, on the other hand, are
small probabilities relative to a maximal set of probabilistic resources
that, irrespective of circumstances, need never be augmented to ensure
that false positives remain less likely than not.

We thus define a local small probability as a small probability
relative to a set of probabilistic resources that, depending on cir-
cumstances, may need to be augmented. On the other hand, we de-
fine a universal small probability as a small probability relative to a
privileged set of probabilistic resources that, irrespective of circum-
stances, need never be augmented (A is a case in point). Given these
definitions, it is useful to introduce two further distinctions: The
probabilistic resources used to define local (resp. universal) small
probabilities will be known as local (resp. universal) probabilis-
tic resources; what's more, the probability bounds a (resp. 8) below
which probabilities become local (resp. universal) small probabilities
will be called local (resp. universal) probability bounds}*

Although the logic of the Generic Chance Elimination Argument
is identical for local and universal probability bounds, it simplifies
considerably for the universal probability bound 8. Since the univer-
sal probabilistic resources A that define 8 are fully adequate for all
circumstances, we can combine (5), (6), and (7) of the GCEA, and
rewrite it more compactly as follows:

(5-7) S finds that p = P(D* | H) is strictly less than 8.19

Given the universal probability bound 8, the GCEA therefore reduces
to a subject learning that an event E has occurred (1), identifying a

18 Universal probability bounds, though not called by that name, appeared in Emile Borel's work
on small probabilities. Borel (1962, p. 28) referred to probabilities falling below a universal
probability bound as "probabilities which are negligible on the cosmic scale." According to
him, "when the probability of an event is below this limit [= universal probability bound], the
opposite event may be expected to occur with certainty, whatever the number of occasions
presenting themselves in the entire universe." Borel held to a universal probability bound
of 10~50. Without a clear conception of specification and probabilistic resources, Borel's
derivation of this number was less than fully rigorous. My own <5 = 1/2 x 1/10150 is a
rigorous version of Borel's universal probability bound.

"Explicit reference to A can be omitted here since A is implicit in <5.
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pattern D that delimits E (3), computing the probability of D* ((2) and
(4)), checking that this probability is strictly less than S (5-7), and
finally establishing that D is detachable from E ((8) and (9)). Once
these conditions are satisfied, S is warranted inferring that E did not
occur by chance.

6.6 THE INFLATIONARY FALLACY

In justifying the universal probability bound 8 (= 1/2 x 1/10150),
I assumed a noninflationary big-bang cosmology. In an inflationary
universe, what we regard as the known physical universe (i.e., the sum
total of energy that can potentially interact with us causally) is just one
of a multitude of causally isolated subuniverses. According to Alan
Guth, the totality of these causally isolated subuniverses contains
many more than the 1080 elementary particles constituting the known
physical universe, which for Guth is just the subuniverse we happen
to inhabit (see Guth and Steinhardt, 1989). Whereas a noninflation-
ary universe is a rather small place with room for few probabilistic
resources, an inflationary universe is a much bigger place with room
for, by some accounts, infinitely many probabilistic resources. The
question therefore arises whether in hitching my universal probability
bound 8 to a noninflationary big-bang cosmology, I haven't under-
cut its ability to demarcate small probabilities. Cosmological theories
come and go. Why, then, should we take 8 seriously?

The only reason not to take a probability bound seriously is if we've
omitted relevant probabilistic resources. The key word here is "rele-
vant." Not every set of probabilistic resources is relevant for deciding
whether an event happened by chance. Consider two state lotteries
both of which have printed a million lottery tickets. One lottery sells
all million tickets, the other sells only two tickets. Ostensibly both
lotteries have the same number of probabilistic resources. Neverthe-
less, the relevant probabilistic resources for deciding whether the first
lottery produced a winner by chance greatly exceed those of the sec-
ond. Probabilistic resources are opportunities for an event to happen.
To be relevant to an event, these opportunities need to be actual and
not merely possible. Lottery tickets sitting on a shelf collecting dust
might just as well never have been printed.

This much is uncontroversial. But suppose next we know nothing
about the number of lottery tickets sold, and are informed simply
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that the lottery had a winner. Suppose furthermore the probability of
any lottery ticket producing a winner is extremely low. Now what
do we conclude? Does it follow that numerous lottery tickets were
sold? Not at all. We are entitled to this conclusion only if we have
independent evidence that numerous lottery tickets were sold. But
absent such evidence, we have no grounds for asserting the existence
of numerous lottery tickets, or even that the lottery was conducted
fairly and that its outcome was due to chance. It is illegitimate to
take an event, decide in advance it must be due to chance, and then
propose numerous probabilistic resources because otherwise chance
would be implausible. This is the inflationary fallacy, and it is utterly
bogus.

We do not invent probabilistic resources simply to prop an other-
wise failing chance hypothesis. Rather, we determine independently
whether there really are enough probabilistic resources to render
chance plausible. This reversal of commonsense logic where we fix-
ate on chance, and then madly rush to invent the probabilistic re-
sources necessary to preserve chance is the great pipedream of late
twentieth-century cosmology and biology. It leads to such fanciful
statements as "the universe is a free lunch" and "life is a cosmic
imperative." The moment one posits infinitely many probabilistic
resources, anything possible becomes certain (probabilistically this
follows from the Strong Law of Large Numbers). The inflation-
ary fallacy blurs the distinction between the actual and the possible.
Moreover, it does so tendentiously in hopes of escaping the claims
of the actual. The bubble universes of inflationary cosmology, the
many worlds of quantum physics, and the possible worlds of meta-
physics all serve to inflate our probabilistic resources so that what
otherwise seems absurd to chance becomes not only plausible but
inevitable.

Call them what you will - bubble universes, many worlds, possible
worlds - there is something deeply unsatisfying about positing these
entities simply because chance requires it. In each case the posited
entities are causally isolated from our space-time manifold. Hence the
only evidence in their favor is their ability to render chance plausible.
This is pushing inference to the best explanation too far. It is legitimate
to posit an entity to explain a phenomenon only if the entity is at least
in principle capable of interacting with the phenomenon. But entities
posited simply to inflate probabilistic resources are utterly inert and
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self-contained. They do not interact with our space-time manifold.
They exist solely to make chance intelligible.

And yet, intelligibility is precisely what these posited entities un-
dermine. Unlimited probabilistic resources are an epistemological
nightmare. They transform Hume's problem of induction, which in
the end amounts simply to an acknowledgment that our inductions
might be wrong, into a positive reason for thinking that anything might
happen anywhere at anytime. Despite a life of unremitting charity
and self-sacrifice, did Mother Teresa in her last days experience a
neurological accident that caused her to become an ax murderer?
Though bizarre, this is a logical possibility. Moreover, as a logical
possibility, it is sure to happen in some possible world. And what is
to prevent that world from being ours? So long as our probabilis-
tic resources are limited, a Generic Chance Elimination Argument
quickly dispenses with this possibility - to be sure, not with abso-
lute certainty (Hume's problem of induction is after all a problem),
but to a moral certainty beyond reasonable doubt. But with unlim-
ited probabilistic resources, we lose any rational basis for eliminating
chance.

The problem here is that statistical decision theory breaks down for
probabilistic resources that are causally disconnected from our space-
time manifold. For instance, it is illegitimate to argue against Mother
Teresa becoming an ax murderer by arguing that the subcollection of
possible worlds where she becomes an ax murderer has small proba-
bility. Such higher-order probabilities are incoherent. We can assign
probabilities within possible worlds, but not to collections of possible
worlds. Possible worlds are fully self-contained. Consequently, there
exists no chance process to pick out the possible world we inhabit.
Indeed, no law, no reason, no chance process, no God - nothing -
determines why we are in this possible world as opposed to another
(laws, reasons, chance processes, and divinities belong strictly inside
possible worlds, and cannot transcend them). Alternatively, there can
be no epistemological road-map to guide us through the set of possible
worlds to our own actual world. Perhaps Shakespeare was a genius.
Perhaps Shakespeare was an imbecile who just by chance happened
to string together a long sequence of apt phrases. Unlimited proba-
bilistic resources ensure not only that we'll never know, but also that
we have no rational basis for preferring one to the other.
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We can now answer our earlier question, Why should we take 8
seriously? We need to take <5 seriously because it omits no relevant
probabilistic resources. Once we reject the inflationary fallacy, we are
back to our own little universe. As long as we haven't underestimated
the probabilistic resources in our universe, 8 will incorporate all the
probabilistic resources we ever need. How, then, do we know we
haven't underestimated the probabilistic resources in our universe?
Certainly I don't mean to suggest that 8 is written in stone. 8 is based
on our best current understanding of physics and cosmology. As this
understanding develops, 8 may well need to be revised (whether up
or down is unclear). In making this admission, however, let's be clear
what it would mean to underestimate the probabilistic resources in our
universe. Three numbers determine 8: (1) the number of elementary
particles in the universe, (2) the rate at which physical states can
change, and (3) the length of time during which the universe can
sustain specifying agents like ourselves. In Section 6.5 I provided
upper bounds for these numbers, respectively, 1080, 1045, and 1025.
8 varies inversely with these numbers, so that as they increase, 8
decreases. Hence if these numbers are off, then so is 8.

To underestimate the probabilistic resources in our universe is
therefore to underestimate one of these numbers. Are there more than
1080 elementary particles in the universe? Is the rate at which physical
states can change greater than 1045 per second? Does the length of
time during which the universe can support specifying agents exceed
1025 seconds? Our best current science answers a firm No to each of
these questions. This is not to say these numbers won't change. But
it is to say they better not change simply to prop an otherwise failing
chance hypothesis. If these numbers change, it will be because exper-
imental scientists have done the hard work of uncovering new facts
about the universe's extent, duration, structure, and dynamics. On the
other hand, it will not be because armchair theorists have propounded
yet another inflationary fallacy.

6.7 THE LAW OF SMALL PROBABILITY

All the pieces are now in place to explicate and justify the Law of
Small Probability (LSP). In Section 2.2 we identified the Law of Small
Probability with the claim that specified events of small probability
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do not occur by chance. We then rewrote this claim as the following
formula in the first-order predicate logic:

WX[oc(X) & sp(X) & SP(X) -* ~cA(X)].

Here VX denotes a universal quantifier that ranges over events, &
denotes conjunction, ->• denotes implication, ~ denotes negation,
and oc, sp, SP, and ch denote the one-place predicates oc(X) — X has
occurred, sp(X) — X is specified, SP(X) = X has small probability,
and ch(X) — X is due to chance.

Because these predicates were formulated in the pretheoretic days
before we had an adequate account of specification and small proba-
bility, we now need to reformulate them. We therefore fix a subject
S who identifies both a requisite precondition E = (H, P, I, <J> =
(<p, X)) and probabilistic resources ft. Together S, E, and ft serve as
parameters (i.e., background constants) for the reformulated predi-
cates. The reformulated predicates are now defined as follows:

oc(E) =def S learns that E has occurred.
sp(E) =def S has identified a pattern D such that D* = E and D is

detachable from E with respect to E.
SP(E) —de{ S finds that P(E | H) has small probability with respect to

ft.
ch(E) =def S is not warranted inferring that E did not occur according

to the chance hypothesis H.

Here E is an arbitrary event. Note that because S, E, and ft are param-
eters, they are actually embedded in these predicates. Technically,
therefore, we could write, oc(E) — oc(E; S, E, ft), sp(E) — sp(E; S,
E, ft, SP(E) = SP(E; S, E, ft), and ch(E) = ch(E; S, E, ft), with
variables to the left of the semicolon, parameters to the right.

Although these reformulated predicates appear to take some liber-
ties with the original predicates, in fact they capture precisely what
the original predicates were trying to assert. Moreover, they are pre-
cisely what we need to justify the Law of Small Probability. Indeed, I
am going to justify the Law of Small Probability by deriving it from
the Generic Chance Elimination Argument. Since the Generic Chance
Elimination Argument was itself justified in Sections 6.1 through 6.3,
deriving the Law of Small Probability from it will suffice to justify the
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Law of Small Probability. It's clear from inspection that the Law of
Small Probability and the Generic Chance Elimination Argument are
engaged in substantially the same task, namely, eliminating chance
through small probabilities by means of specifications. By refor-
mulating these predicates as we have, the Law of Small Probability
logically encapsulates the Generic Chance Elimination Argument, so
that the antecedent oc(E) & sp(E) & SP{E) entails (l)-(9) of the
GCEA and the consequent ~c/z(E) is logically equivalent to (10)
(cf. Section 6.2).

Let us now consider the rationale behind these reformulations.

oc(E). As originally formulated, this predicate asserts that E has oc-
curred. So formulated, this predicate says nothing about the rational
agent who learns that E has occurred. Since this predicate and the
others need to be formulated specifically for their role in eliminating
chance, the rational agent who attempts to eliminate chance needs to
be explicitly cited in these predicates. As the chief item of interest in
a chance-elimination argument, E does not occur in isolation from
rational agents. Chance-elimination arguments are after all argu-
ments that rational agents produce in response to events about which
they have knowledge - unidentified events have no place here. To be
of use in a chance-elimination argument, it therefore isn't enough for
an event simply to have occurred. Rather a rational agent - what we
are calling a subject S - must know that the event has occurred. This
is the rationale for reformulating oc(E).

sp(E). As originally formulated, this predicate asserts that E is spec-
ified. For E to be specified, however, presupposes a pattern D that
matches E {i.e., D* = E), as well as a requisite precondition E =
(H, P, I, <f> = (cp, A)) that detaches D from E - see Sections 5.4 and
5.2 respectively (note that because D matches E, it occurs in this
predicate as a bound variable, and thus can be suppressed). More-
over, as part of a chance-elimination argument, D, E, and E cannot
be taken in isolation from a subject S who employs £ to show that D
specifies E. This is the rationale for reformulating sp(E).

SP(E). As originally formulated, this predicate asserts that E has
small probability. The very idea of an event having small probability,
however, presupposes a set of probabilistic resources £2 with respect
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to which small probabilities can be evaluated (cf. Sections 6.1-6.3).
Moreover, since this predicate is going to appear in a chance-elimi-
nation argument, there has to be somebody - a subject S -to establish
that E has small probability with respect to £1. This is the rationale
for reformulating SP(E).

ch(E). As originally formulated, this predicate asserts that E oc-
curred by chance. Nonetheless, because our concern with this predi-
cate is how it enters a chance-elimination argument, to deny or affirm
that E occurred by chance is not in the first instance to make a meta-
physical claim about the causal process underlying E 's occurrence.
Rather, it is to make an epistemic claim about a subject S 's warrant
for attributing E toa chance hypothesis H. Given a chance hypothesis
H that could conceivably explain E, S is obliged to retain H as a live
possibility until a positive warrant is found for rejecting it. Chance-
elimination arguments are after all elimination arguments. Because
chance is always the default option, only active refutation eliminates
it. To eliminate chance, a subject S must have positive warrant for
inferring that E did not occur according to the chance hypothesis
H. On the other hand, to retain chance a subject S must simply lack
warrant for inferring that E did not occur according to the chance
hypothesis H.

Prima facie, our reformulation of ch{E) seems unnecessarily
roundabout. We want to know whether an event E has occurred by
chance, and not whether we lack warrant for attributing E to some-
thing other than chance. As an epistemic matter, however, we can
only know the latter, and not the former. Indeed, it is only by means
of the latter that we can assert the former {i.e., it is only by lack-
ing/possessing warrant for attributing E to something other than
chance that we can assert that E did/didn't occur by chance). Al-
though the two negations that appear in our reformulation ofch(E)
seem to complicate matters unduly, one of these negations drops out
when we negate ch(E):

~c/i(£) — S is warranted inferring that E did not occur

according to the chance hypothesis H.

ch is therefore more naturally formulated in terms of^ch rather than
the other way round. Here, then, is the rationale for reformulating
ch(E).
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Suppose now we are given an arbitrary event E, a subject S who
identifies both a requisite precondition E = (H, P, I, O = {<p, X))
and probabilistic resources Q., and the predicates oc, sp, SP, and ch
as we have just reformulated them. Next, consider the conjunction

oc(E)&sp(E)&SP(E).

To assert this conjunction against this background is then logically
equivalent to asserting (1) through (9) of the GCEA for the special
case where the pattern D matches E (because D matches E, it occurs
in this conjunction as a bound variable, and thus can be suppressed).
To prove this equivalence is a simple matter of bookkeeping.

As soon as (1) through (9) obtain, the GCEA automatically ap-
proves (10), namely, that S is warranted inferring E did not occur ac-
cording to the chance hypothesis H. But this last claim is just ~c/i(E).
It follows that ~c/i(E) is a consequence of oc(E) & sp(E) & SP(E),
and hence that the relation between these formulas takes the form of
a conditional:

oc(E) &sp(E) & SP(E) -* ~c/i(E).

What sort of conditional is this? Certainly not an entailment (it's
logically possible for the consequent to be mistaken despite the an-
tecedent being true). What's at stake in this conditional is epistemic
justification, or what philosophers who study conditional logic call
assertibility. Thus, given the antecedent oc(E) & sp (E) & SP (E), we
are epistemically justified asserting the consequent ~c/i(E).20

We can generalize the preceding conditional slightly. The predicate
sp(E) asserts that some pattern D matches E (i.e., D* = E). But in the
GCEA, all that's required is for S to identify a pattern D that delimits
E (i.e., E entails D*). Given the parameters S, S, and ft, we therefore
define the following predicate:

sp(D, E) =def S has identified the pattern D such that D delimits E
and D is detachable from E with respect to S.

Here D is an arbitrary pattern and E an arbitrary event. Given this
predicate we now form the following conditional:

oc(E) & 3D[sp(D, E) & SP(D*)] -* ~c/i(E).

20Cf. Adams (1975), Lewis (1976), Ellis (1978), Appiah (1985), and Jackson (1987; 1991).
Conditional logic is a vast field of study, and one best left for another occasion.
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Here the existential quantifier ranges over patterns. For this condi-
tional, the antecedent is logically equivalent to (1) through (9) of the
GCEA, and the consequent is logically equivalent to (10). As before,
proving these equivalences is a matter of bookkeeping.

This, then, is the final form of the Law of Small Probability. Note
that it logically encapsulates the Generic Chance Elimination Argu-
ment of Section 6.2. Because E is arbitrary in this conditional, we can
place it under the scope of a universal quantifier. If we do this, we ob-
tain the following definitive statement of the Law of Small Probability:

The Law of Small Probability. Suppose a subject S has identified
both a requisite precondition E = (H, P, I, <$> = {up, k)) and proba-
bilistic resources Q. Then the following formula defines the Law of
Small Probability:

VX{oc(X) & 3D[sp(D, X) & SP(D*)] -* ~ch(X)}.

Here X ranges over events and D over patterns.

In Section 2.2 we formulated a statement of the design inference
that employed the earlier, weaker version of the Law of Small Prob-
ability. If we now substitute this last version of the Law of Small
Probability, we obtain the following definitive statement of the de-
sign inference (cf. Section 2.2):

The Design Inference. Suppose a subject S has identified all the rel-
evant chance hypotheses H that could be responsible for some event
E. Suppose further that S has identified (1) a probability measure P
that estimates likelihoods with respect to the chance hypotheses in H,
(2) side information I, (3) a bounded complexity measure <£> — (<p, X)
that characterizes S's problem-solving ability, and (4) probabilistic
resources £2 that characterize S 's needs and interests in controlling
false positives. Then the following argument defines the design infer-
ence:

PI: oc(E)
P2: (VH e W)(3D)fop(D, E; H) & SP(D*; H)]
P3: (VX)(VH € H){[oc(X)&(3D)[sp(D,X;U)&SP(D*;H)]] -+

P4:
P5: reg(E) v (3H e H)ch(E; H) v des(E)
C: des(E).
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A few clarifications are in order. First, the validity of this argument
is straightforward (cf. Section 2.2). Second, once H in H is fixed,
the predicates oc, sp, SP, and ch operate with the usual parameters
S, 2 = (H, P, I, 0 = ((p, A)), and £2. Hence quantifying over the
parameter H makes perfect sense in P2, P3, and P5. Third, P2 properly
combines and strengthens what were Premises 2 and 3 in Section 2.2.
Fourth, since the Law of Small Probability holds for all parameters
S, E = (H, P, I, $ = (q>, A.)), and Q, placing the Law of Small
Probability under the quantifier VH e H in P3 is perfectly legitimate
so long as S, P, I, $ = (cp, X), and Q, remain fixed (which in this case
they do). Fifth, we define reg(E) and des(E) as in Section 2.2 (note
the discussion there): reg(E) =def there is some regularity R that
accounts for E; des(E) =def ~reg(E) & (VH 6 H) ~c/i(E; H). Our
discussion of the Law of Small Probability and the design inference
is now complete.
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7
Epilogue

I want in these closing pages to tie together some loose ends. Let's be-
gin with a criticism of the design inference. The question can be raised
whether the design inference isn't merely a technique for detecting
coincidences, and if so, whether design isn't in the end a trivial mode
of explanation. What underlies this criticism is the identification of
coincidence with brute concurrence of events for which explanation
is not only superfluous, but downright unwelcome. Galen Pletcher
(1990, pp. 205-6) describes this sense of coincidence as follows:

To call something a "coincidence" explains nothing. It does exactly the
opposite: it asserts that the fact that two events are closely related - in
time, and in other ways - does not need to be explained. It says more than
that the relation between them cannot (at present) be explained To call
something a coincidence is to express (even if only implicitly or perhaps even
unwittingly) the opinion that it is misguided to search for an explanation (in
the proper sense) of the coinciding of the phenomena at issue.

This criticism fails to recognize that not all coincidences are best
left unexplained. Yes, the fact that the Shoemaker-Levy comet crashed
into Jupiter exactly 25 years to the day after the Apollo 11 moon land-
ing is a coincidence probably best left unexplained. But the fact that
Mary Baker Eddy's writings on Christian Science bear a remark-
able resemblance to Phineas Parkhurst Quimby's writings on mental
healing is a coincidence that deserves to be explained, and is best ex-
plained by positing Quimby as a source for Eddy (cf. Martin, 1985,
pp. 127-30).

The term "coincidence" properly speaking has two senses. The
most basic sense is simply that of a concurrence (i.e., two or more
things coming together), with no prejudice against how the concur-
rence is to be explained or whether the concurrence even has an
explanation. The other sense is that of a concurrence for which in-
quiring after an underlying explanation is misguided and destined to
fail. How do we know when it is fruitless to explain a coincidence?
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Presumably, as we go through life trying to understand the world, we
don't have an a priori list of items deemed unworthy of explanation.
Rather, we conclude that something is unworthy of explanation only
after we have given it the old college try, and found that in attempting
to explain it we're in worse shape than before we started. Coinci-
dences always begin as open problems and only later, after repeated
frustration, become closed books.

How then do we distinguish the fecund coincidences, those worth
explaining, from the sterile coincidences, those better left unexplain-
ed? The design inference leaves this decision to the Explanatory Filter
(cf. Section 2.1), letting it decide whether a coincidence is best ex-
plained in terms of a regularity, chance, or design. As we have seen
repeatedly throughout this monograph, there are plenty of coinci-
dences that cry out for explanation, that are readily submitted to the
Explanatory Filter, and that upon being submitted to the Explanatory
Filter yield one of these three modes of explanation.

On the other hand, there are coincidences for which we haven't
a clue how to submit them to the Explanatory Filter. Consider the
following coincidence recounted by Carl Jung (1973, p. 10):

I noted the following on April 1, 1949: Today is Friday. We have fish for
lunch. Somebody happens to mention the custom of making an "April fish"
of someone. That same morning I made a note of an inscription which read:
"Est homo totus medius piscis ab imo." In the afternoon a former patient
of mine, whom I had not seen for months, showed me some extremely
impressive pictures of fish which she had painted in the meantime. In the
evening I was shown a piece of embroidery with fish-like sea-monsters in it.
On the morning of April 2 another patient, whom I had not seen for many
years, told me a dream in which she stood on the shore of a lake and saw
a large fish that swam straight towards her and landed at her feet. I was at
this time engaged on a study of the fish symbol in history. Only one of the
persons mentioned here knew anything about it.

What explains the overwhelming amount of fish imagery that bom-
barded Jung around the first of April 1949? All attempts to explain
this coincidence, much less submit it to the Explanatory Filter, have
struck me as fruitless. This coincidence seems best left unexplained
and regarded as a sterile coincidence.

The criticism that the design inference attempts the futile task of
explaining sterile coincidences is therefore easily dispensed with.
Not all coincidences are sterile, and for those that are not the design
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inference provides a useful explanatory tool. Even so, there is a re-
lated worry that the design inference might inadvertently get applied
to sterile coincidences and end up assigning them a significance they
don't deserve. Specifically, the worry is that absent a suitable nat-
uralistic story, attributing a coincidence to design is tantamount to
invoking supernatural powers.

To appreciate what's at stake here, recall the case of Nicholas
Caputo (cf. Section 1.2). Caputo, as the Democratic clerk from Essex
County, New Jersey, selected the Democrats to head the ballot line
forty out of forty-one times in his county. Caputo was supposed to
have obtained his ballot line selections - which unduly favored his
own political party - by chance. Nevertheless, if chance was respon-
sible, Caputo succeeded in bringing about a specified event of proba-
bility one in fifty billion. An application of the design inference thus
concluded that Caputo's ballot line selections were not due to chance
but to design. Now it's clear that there is a naturalistic story to be told
here. The simplest one is that Caputo cheated, pretending the ballot
line selections were obtained by chance when in fact he deliberately
rigged them to favor the Democrats.

But consider now the following scenario which from a probabilis-
tic point of view is isomorphic to the Caputo case: A parapsychology
experiment is under way. Alice is the subject and Bob is the exper-
imenter. Bob flips a coin forty-one times, each time asking Alice to
predict the face of the coin that is about to appear. In forty out of
the forty-one times Alice predicts correctly. If chance is operating,
Alice has therefore succeeded in specifying an event of probability
one in fifty billion. As in the Caputo case, an application of the design
inference concludes that the coincidence between Alice's predictions
and Bob's coin tossing was not due to chance but to design. No doubt,
there are naturalistic stories to be told here as well. For example, Bob
may have been cheating so that instead of flipping the coin, he secretly
compelled it to land as predicted by Alice (this is essentially what Bill
Murray did playing a parapsychologist in the movie Ghostbusters).
Suppose, however, that experimental controls were tight, and that
cheating was precluded. If the experiment happened as described,
what's wrong with attributing the outcome to design?

In Chapter 2 we defined design as the set-theoretic complement
of the disjunction regularity-or-chance. Nothing in this definition en-
tails a causal story, much less an intelligent agent, much less still a
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supernatural or occult power. Taken in its most fundamental sense, the
word design signifies ^pattern or blueprint. The key step in any design
inference is showing that an event conforms to a pattern. Frequently
the reason an event conforms to a pattern is because an intelligent
agent arranged it so (cf. Section 2.4). There is no reason, however,
to turn this common occurrence into a metaphysical first principle.

We can determine whether an event conforms to a pattern without
having to explain why the conformity exists. Thus, even though in
practice inferring design is the first step in identifying an intelligent
agent, taken by itself design does not require that such an agent be
posited. The notion of design that emerges from the design inference
must not be confused with intelligent agency. Though they operate in
tandem, the two are separate notions. Whether an event conforms to a
pattern is a separate question from what caused the event to conform
to the pattern. The reference to "design" in the design inference arises
in the first instance because in the structure of the inference, patterns
and events coincide.

When the design inference infers design, its primary effect is to
limit our explanatory options. Only secondarily does it help identify
a cause. To identify a cause we need to investigate the particulars of
the situation where design was inferred. Simply put, we need more
details. In the Caputo case, for instance, it seems clear enough what
the causal story is, namely, that Caputo cheated. In the probabilisti-
cally isomorphic case of Alice and Bob, however, we may have to live
without a causal explanation. To be sure, we can follow the parapsy-
chology community in positing psi, that factor or faculty supposedly
responsible for parapsychological coincidences. Nevertheless, the ex-
planatory benefits of invoking psi remain far from clear.

If we now leave aside the worry that inferring design may require
us to tell unacceptable causal stories, still another worry is likely
to remain. Consider the Shoemaker-Levy coincidence mentioned in
passing a few pages back. The Shoemaker-Levy comet crashed into
Jupiter exactly 25 years to the day after the Apollo 11 moon landing.
What are we to make of this coincidence? Do we really want to
explain this coincidence in terms of design? What if we submitted
this coincidence to the Explanatory Filter and out popped design?
Granted, as a noncausal notion design doesn't require that we invoke
supernatural powers. Our intuitions strongly suggest, however, that
the comet's trajectory and NASA's space program were operating
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independently, and that at best the coincidence should be referred to
chance - certainly not to design.

This worry is readily dispatched. The fact is that the design infer-
ence does not yield design all that easily, especially if probabilistic re-
sources are sufficiently generous. It is simply not the case that unusual
and striking coincidences automatically generate design as the con-
clusion of a design inference. There is a calculation to be performed.
Do the calculation. Take the numbers seriously. See if the underlying
probabilities really are small enough to yield design. Martin Gardner
(1972) is quite correct when he notes, "The number of events in which
you participate for a month, or even a week, is so huge that the proba-
bility of noticing a startling correlation is quite high, especially if you
keep a sharp outlook." The implication he means to draw, however, is
not correct, namely, that therefore startling correlations/coincidences
may uniformly be relegated to chance.

I stress again, Do the probability calculation! The design inference
is robust and easily resists counterexamples of the Shoemaker-Levy
variety. Assuming, for instance, that the Apollo 11 moon landing
specifies the crash of Shoemaker-Levy into Jupiter (a generous con-
cession at that), and that the comet could have crashed at any time
within a period of a year, and that the comet crashed to the very second
precisely 25 years after the moon landing, a straightforward proba-
bility calculation indicates that the probability of this coincidence is
no smaller than 10~8. This simply isn't all that small a probability,
especially when considered against the backdrop of the entire solar
system. Certainly this probability is nowhere near the universal prob-
ability bound of 10~150 calculated in Section 6.5.1 have yet to see a
convincing application of the design inference that infers design for
coincidences that our ordinary inclination attributes to chance.

Having shown how the design inference withstands certain criti-
cisms and worries, I want to conclude this epilogue by stating what I
take to be the main significance of the design inference for science.
It is this: The design inference detects and measures information.
Increasingly, scientists are recognizing the importance of informa-
tion. Manfred Eigen, for instance, regards information as the central
problem of biology, and one he hopes to unravel through algorithms
and natural laws (1992, p. 12). David Chalmers, in attempting to ex-
plain human consciousness, proposes that "just as physics assumes
the existence of properties of nature such as space, time, energy,
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charge and mass, so must a theory of consciousness posit the exis-
tence of a new fundamental property: information" (Horgan, 1994,
p. 94; see also Chalmers, 1996, ch. 8). Keith Devlin (1991, p. 2) pon-
ders whether "information should be regarded as . . . a basic property
of the universe, alongside matter and energy (and being ultimately
interconvertible with them)."

Like design, information is a noncausal notion. The transmission
of information, though frequently mediated by transfers of energy
across a communication channel, is properly understood in terms of
the correlations between what happens at the two ends of a communi-
cation channel - and thus without reference to any intervening causal
process. As Fred Dretske (1981, p. 26) remarks,

It may seem as though the transmission of information . . . is a process
that depends on the causal inter-relatedness of source and receiver. The way
one gets a message from s to r is by initiating a sequence of events at * that
culminates in a corresponding sequence at r. In abstract terms, the message
is borne from s [to] r by a causal process which determines what happens
at r in terms of what happens at s.

The flow of information may, and in most familiar instances obviously
does, depend on underlying causal processes. Nevertheless, the information
relationships between s and r must be distinguished from the system of
causal relationships existing between these points.

How, then, does the design inference detect and measure informa-
tion? For information to pass from a source 5 to a receiver r, a message
M' emitted at s must suitably constrain a message M" received at r.
Moreover, the amount of information passing from s to r is by def-
inition the negative logarithm to the base 2 of the probability of M'
(see Dretske, 1981, chs. 1 and 2). For the design inference to detect
information, the message M' emitted at 5 has to be identified with a
pattern D, and the message M" received at r has to be identified with
an event E. Moreover, for M' to suitably constrain M" must then mean
that D delimits E. Under the provisional assumption that E is due to
the chance hypothesis H, one detects the transmission of information
from ^ to r provided that D is detachable from E and P(D* | H) has
small probability. Moreover, one measures the amount of information
transmitted from s to r as —log2 P(D* | H). This account of informa-
tion in terms of design is entirely consistent with the classical account
in terms of symbol strings (cf. Shannon and Weaver, 1949).
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