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Preface 

This study began as an attempt to understand mechanics in the nineteenth century. 
The terms mechanics and mechanical world view were being used as general 
descriptions of nineteenth-century physicists' assumptions and interpretations of 
nature. However, there were no studies of the particulars of these assumptions 
or the range and content of these interpretations. Rene Dugas' work on classical 
mechanics focused on France. The search for the particulars of these forms of 
"mechanics" led me to explore precisely what mechanics meant to physicists of a 
century and more ago. 

However, none of Lagrange's, Hamilton's, or Jacobi's "mechanics," while ele
gant, fits easily within the history of physics. Lagrange reduced mechanics to an 
exercise in analysis; Hamilton and Jacobi used mechanics to explore solutions to 
partial differential equations. They were mathematicians doing mathematics. As I 
went deeper into the matter it became obvious that, in the nineteenth century, there 
were two kinds of mechanics, each containing a variety of forms, one physical, the 
other mathematical. There were a group of men using mechanics to understand 
nature and another group using the equations of mechanics to explore the calcu
lus. However, when tracing these two traditions back into the eighteenth century, 
physics disappeared altogether. 

The historical problem changed with eighteenth century physics. To understand 
physics required that both physics and the development of the calculus be studied 
simultaneously. Research in eighteenth century mechanics, light, sound, and some 
electrostatics, showed that physics in that era was experiment. John Heilbron's 
study of eighteenth century electrostatics confirmed this conception for me. 

There were two quite distinct kinds of mechanics in the eighteenth century. 
The first was either experimental or demonstrative in some material fashion of 
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the operations of nature through concrete examples. The second was mathemat
ical. Mathematical solutions to problems of mechanics were generating some 
highly sophisticated work in the calculus. However, there were no mathematical 
investigations into the structure and physical function of nature, and none of the 
authors, save Daniel Bernoulli, used the calculus to investigate the actual workings 
of nature. Enmeshed in both types of works on mechanics were disputes over its 
metaphysical foundations. Some of this work needed a separate classification. 

The traditional historiography of physics narrated an unbroken development for 
mechanics from the seventeenth through the nineteenth century. This traditional 
historiography ignored mathematics as an aspect of the development of physics. 
Historians assumed that mathematics was incorporated into physics as one of its 
essential elements since the seventeenth century. They also took as axiomatic that 
physicists argued theoretically in ways familiar from twentieth-century examples. 
Given Heilbron's work and the preliminary results of my own research, mathe
matics in physics became the problem. Where and how did it enter physics, then 
take over the expression and development of theoretical ideas? 

Until recently most philosophers and historians of science did not consider the 
function, role, or place of mathematics in the development of scientific ideas. 
Mathematics was sidelined, downgraded to the status of a tool. Scientists took the 
tool off the shelf, used, and then returned it. It had no role in shaping the solutions 
to physical or any other scientific problems. However, theoretical physicists speak 
of mathematics as their "language." Max Dresden passionately argued about the 
interactions between mathematics and physical imagery and the depth to which 
they are interdependent. Mathematics shaped how physicists thought about solu
tions to physical problems, while at the same time physical imagery pushed their 
mathematical language in some directions rather than others. 

The development of the calculus was a material part of the creation of modern 
theoretical physics. This meant discarding the image of mathematics as a tool and 
investigating it as language. Seeing mathematics as language, and having avail
able the recent literature on the development of calculus in the eighteenth century, 
changed the history of physics. Mathematics and physics had to be defined with the 
terms available during the eighteenth then the nineteenth centuries. Many papers 
in mechanics in the eighteenth and early nineteenth century, traditionally taken as 
physical, had to be reconsidered. Using criteria derived from what mathematics 
meant in those eras, many papers historians have tried to integrate into the history 
of physics belong in the history of mathematics. Physical implications could be 
inferred from some of the results of these eighteenth century papers. However, 
these inferences seemed never to be commented upon, developed, or seen as sig
nificant by the authors themselves. Reactions to these papers, the issues discussed, 
points over which disputes flourished and the ensuing debates confirmed the sense 
that topics taken later as important in physics were discussed in terms that were 
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mathematical. The research generated by this stream of work in mechanics in 
the eighteenth century was mathematical not mechanical, metaphysical not physi
cal. The disputes that erupted were over mathematical not physical interpretations 
or implications. As historians of eighteenth-century mathematics know well, the 
solutions to problems taken from physics and elsewhere are an important key to 
understanding much about the development of the calculus. This needed to be 
incorporated into the history of physics. 

The historical problem shifted once again. How, when and in what forms did 
the field that we know as theoretical physics emerge? In solving this problem it 
seemed crucial to keep the boundary between physics and mathematics, and the 
relationships between physicists and mathematcians firmly in view. 

With these criteria in place it became clear that eighteenth century patterns 
continued, with some important modifications, well into the nineteenth centu
ury. French mathematicians expanded the range of mathematics to "mathematical 
physics" that incorporated electrostatics, magnetism, then heat, light and electro
dynamics. Quantitative physical experiments provided new material as the starting 
points for these mathematical excursions. The new phenomena uncovered exper
imentally were subsumed by mathematics. Theoretical physics did not mediate 
the intellectual space between experiment and the calculus. Physical understand
ing of phenomena came from experimentalists or were unintended outgrowths of 
mathematical disputes. The significant elements of the mathematical papers were 
functions, coefficients, series, convergence criteria and mathematical operations. 
Indeed, acrimonious debates over the very foundations of the calculus itself erupted 
from some of these papers. 

The physical content ascribed to many of these earlier mathematical papers was 
added retrospectively in the latter half of the nineteenth century by physicists. They 
were committed to a mechanical interpretation of nature expressed in the language 
of the calculus. They remolded the history of their discipline to conform to their 
needs and the discipline they were creating, theoretical physics. Their narrative 
still informs our accounts. 

To construct theoretical physics from eighteenth and early nineteenth century 
mathematics meant remolding it and imposing new meanings upon its results. 
These meanings were not inherent in the mathematics itself. Physical meanings 
had to come from external sources. Theoretical physics was possible only after 
physical imagery and mathematical language converged and experimental results 
were integrated into the body of that theory. These convergences became possible 
only in the context of Britain and the German States, two cultures where the search 
for the actual structure of nature behind appearances was a legitimate goal of natural 
philosophers. 

The process of the emergence of theoretical physics in its myriad forms is the 
subject matter of this book. The pathways from experimental philosophy and 
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mathematics to theoretical and experimental physics were never linear. The end 
results were a rich mixture of conceptual structures, all based on the ideas of 
mechanics wedded, in a variety of ways to calculus. 

This work is one of interpretation and necessarily dependent on the work of 
colleagues in the history of physics and mathematics. Historians of the calculus 
work in a technically demanding field that is often ignored by historians of the 
other sciences. It should not be. Mathematics has become the language of choice 
for many sciences. This problem alone needs historical attention. The historians 
of mathematics I have relied on heavily include Judith Grabiner, Joan Richards and 
particularly Ivor Grattan-Guinness. On various occasions Ivor discussed with me 
many of the mathematical issues, and the absence of physical content in much of 
eighteenth-century mechanical and later papers. His remarks on Liouville's work 
made sensible to me nineteenth century French mathematical physics. Historians 
of mathematics have cheerfully tolerated my presence and my questions at their 
conferences, even though, by and large, they are concerned with the development 
of physics only as it intersects their own scholarly interests in the development of 
mathematics itself. In comparison to those concerns the focus of this book is on 
the implications of the history of the calculus in the eighteenth and early nineteenth 
centuries for the history of physics. 

Other colleagues have aided and abetted this research. Until his retirement Max 
Dresden argued with me regularly about issues in the history of physics in ways 
that were always stimulating, although often uncomfortable. I regret that he will 
be unable to give me any reactions to this book. Other colleagues include the 
members of the Eighteenth Century Consortium at Stony Brook. I am grateful 
to Arthur Donovan for discussions with him on the emergence of chemistry as a 
modern science at the end of the eighteenth century. Arthur expressed in detail 
what made chemistry with and after Lavoisier "modern" and scientific rather than 
an untidy and loosely federated set of practices and ideas. Fred Weinstein taught 
me how to think theoretically as a historian. Gary Marker and I have discussed 
eighteenth-century cultural history, especially that of Russia and the place of the St. 
Petersburg Academy in that culture and politics. He also taught me that historians 
of science and historians of culture and literacy share the same theoretical problems 
and the same sources for easing the solutions to those problems. I am particularly 
grateful to David Cassidy who read this manuscript, criticized it and forced me 
to improve it. On a less intellectual yet critical level I must thank the Interlibrary 
Loan Department at Stony Brook. Donna Sommers and the staff located sources, 
and in some cases pleaded my case with other librarians for loans of material that 
rarely left their care. Without their help I could not have completed this. 

My husband Donald has lived with this research as long as I have. He has 
endured all its transformations, helped me clarify my ideas by listening, criticizing 
but never asking when I would be done with the book. He never asked why it took 
so long to mature and I hope that he finds the wait worthwhile. 

Elizabeth Garber 
Stony Brook, New York 
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Chapter I 

Introduction 

This book traces and explains the development of modem physics from the mid
eighteenth century to the first world war. The focus is on how physicists used 
mathematics and fused it with experimental results and physical imagery to create 
a new field-theoretical physics. The emphasis in this work is on mathematics, 
because consideration of this language is usually omitted from historical narratives 
of the development of physics. Mathematics is taken for granted as a natural aspect 
of physics and assumed to be so from the seventeenth century onwards. At the end 
of the twentieth century these two disciplines draw ever closer and mathematics is 
the expected language of physical theory. 

Before the middle of the nineteenth century mathematics served only as a adjunct 
to experiment. Speculations about the physical behavior of nature were expressed 
in the vernacular. 1 Experiment and observation extended knowledge of nature 
by revealing new phenomena and this expansion was a mark of the discipline's 
success. Physics was both a body of knowledge and a discipline with widely 
varying practices. For most of these practitioners physics was an avocation not a 
profession. 

By 1870 physics was redefined socially and intellectually. Socially, it became 
a profession whose practitioners were located in the university systems of Europe 
and the United States. Intellectually, the core of physics remained experiment. 
These experiments were quantitative and performed within laboratories stocked 
with technologically sophisticated equipment and instruments usually supplied by 
some form of state or external support. Physicists reorganized their interpretations 
of experiment around a series of principles-laws of nature-and images confined 
by the scope of the mechanical concepts encompassed in those principles. Theory, 

1 The term vernacular occurs in several place in the text. It means language that was familiar 
to a broad, literate population of women and men, requiring little technical language or 
terminology. 



2 Introduction 

now systematized and guided by mathematics, usually the calculus, dominated 
physicists' interpretive enterprises. The union of physical imagery and the logical 
efficiency of the languages of mathematics proved to be a powerful explanatory 
combination. 

How did these changes come about? What were the driving forces behind 
them? In searching for answers to these questions, we look to the content, mean
ings and relationships between mathematics and physics since it is the actions 
of both mathematicians and physicists that defined and redefined their respective 
disciplines during the eighteenth and nineteenth centuries. 

Mathematics and Modem Physics 

Physicists use mathematics in many different ways that gives theoretical physics 
a range of characteristics. In some fields of physics, as in the past, physics is 
mathematics. But the context within which this occurs has changed from earlier 
centuries. Only since about 1850 have physicists consciously joined mathemat
ics and physical imagery, with the understanding that physics consists of a more 
complex search than the transformation of physical phenomena into mathematical 
terms accompanied by an argument legitimated using purely mathematical crite
ria. And when physicists produced results of interest to both mathematicians and 
physicists, they tended to publish the mathematical portions in journals directed to 
mathematicians and the physical portions in the literature directed to physicists. 

Modern theoretical physics and mathematics are closely intertwined, but al
though mathematics is the language of physics, theoretical physics is not mathe
matics. The mathematical representation of a physical situation can symbolize a 
relationship between physical entities, such as force, work and energy, for a partic
ular physical instance. The mathematical expression can also delineate a physical 
process, such as a rotation, through the mathematical operations contained within 
it. Accomplishing the transformation from physical concepts applied to a partic
ular case into a mathematical interpretation takes imagination, skill in abstraction 
so that a physical situation can be given mathematical form, and analytical ability 
to choose the mathematical relationship. However, what physicists then need to 
do to extract physical information from the particular mathematical expression is 
not clear. Just how general a mathematical solution is necessary and the ways 
of connecting the solution to principles and processes to extract physically mean
ingful results are open. The approach depends on the interplay between physical 
principles, the use of imagery and the interjections of possible experimental ex
amples into the theoretician's argument. Our hypothetical theorist may choose to 
translate his mathematical solution directly into a physical interpretation, or may 
do so through the intermediary of a particular model. 

Developing the mathematics of physics can also be research, and this is what 
some theoretical physicists do. In doing theoretical physics, when in the middle 
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of mathematically expressing a physical process, a physicist may choose the next 
step in the argument according to a mathematical or a physical set of criteria. 
Sometimes limitations on the behavior of physical systems are imposed by the 
behavior of the mathematical relationships themselves. Thus, there are limitations 
imposed on the physical system by the properties of the mathematical relationships 
and operations. Physicists have drawn physical implications directly from such 
behavior as in the case of Rudolph Julius Emmanuel Clausius' early papers in 
the mechanical theory of heat. The change in value of the function representing 
the internal energy of the system was independent of the path taken from A to 
B. Thus internal energy shared that trait. He used no property of matter to argue 
this characteristic of the physical system.2 This also means that, with the creation 
of new mathematical subfields, new languages open for possible exploitation by 
physicists.3 

Inevitably, the development of the physical process is limited by the possibilities 
available in the mathematical relationships and operations being used. Also think
ing about physical systems in terms of mathematical operations leads to physical 
processes that may be implausible while still being mathematically possible. Solv
ing the problem mathematically yields a broader set of outcomes than solutions 
that mirror legitimate pathways for the physical system. Normally in developing 
mathematics for physics, the language is explored until mathematical relationships 
are reached that embody interesting physical relationships. (It mayor may not em
body anything of interest to mathematicians.) A self-consistent, mathematically 
developed theory is also conceivable that is consistent with the initial physical 
description. The resulting mathematical system does not necessarily represent the 
behavior of even hypothetical physical systems. There is a beautiful example of 
this in James Challis, Mathematical Principles of Physics. James Clerk Maxwell 
demolished Challis' system as a physical picture of the universe. The crux of 
his argument was that a system can be logically self-consistent and physically 
nonsensica1.4 Challis' system was a permissible interpretation of the operations 
of the universe, where the self-consistency of the mathematical language was the 
main criterion of legitimacy. However, by the middle of the nineteenth century 
when Challis composed his system such discourse was abandoned and its remnants 
now seem strange as physics or mathematics. By 1870, such purely hypothetical 
worlds, no matter how logically developed, that bore no connections with current 
interpretation of the operations of nature, were not part of the discipline of physics. 
They were also marginal to the discipline of mathematics. 

2 Clausius later tried to develop a mechanical model with limited success. 

3 The most pertinent ones here are the development of vector algebra and Fourier analysis. 

4 James Challis, An Essay on the Mathematical Principles of Physics (Cambridge: Deigh-
ton Bell, 1873). For his review see Maxwell, Nature 8 (1873): 338-342. John Herschel 
made this same point earlier, as we shall see. 
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The mathematician's solution of, say, a partial differential equation of the first 
order is not that of the physicist. The myriad of arbitrary functions and coefficients 
that satisfy the mathematician's definition of a solution do not contain any neces
sary physical inferences. The mathematician needs to show that a general solution 
for that type of partial differential equation exists and, if possible, the number of 
arbitrary functions and coefficients that make up that solution. Physicists focus 
on particular solutions defined through criteria from outside of mathematics and 
imposed on the behavior of mathematical functions. Understanding how to trans
late physical criteria into limitations on the behavior of mathematical functions, 
polynomials etc., and when, in the search for the mathematical solution, to inject 
them and how to apply them, are again the marks of the theoretical physicist. 

The mathematical exploration of a relationship, a partial differential equation 
for example, is not the same as the construction of a physical theory in the math
ematical form of partial differential equations and their physical solution. The 
mathematical solution may be visualized in terms of, for example, the proper be
havior of a function. Physically the solution may lie in seeing how the physical 
conditions impact the kind of function actually sought as a solution. In this case 
mathematical rigor may give way to imaginative abstractions of possible and plau
sible experimental conditions. An understanding of the phenomena can cut into 
the intricacies of the mathematical argument and confine it to particular examples. 
These cases, usually mathematically uninteresting, can be the most fruitful for the 
immediate solution of the physical problem. 

Normally the theoretical physicist compromises the generality and purity of 
the mathematical solution to fit the needs of physical explanation. Interpretation 
rather than mathematical nicety takes priority. Physicists may also run rough shod 
over the carefully crafted definitions and conditions of validity of mathematicians. 
Exploring the linguistic structure of a particular subfield of mathematics is not a 
major concern of physicists, although it may be necessary at times. The language is 
usually a means of understanding certain natural processes. Within the discipline 
of physics, it is appropriate to subordinate mathematics to the needs of solving a 
physical problem. 

Physicists assume that mathematical operations mirror or can be connected to 
natural processes, and the developing mathematical logic related to physical oper
ations. Therefore, there is a constant dialectic, a dialogue, between mathematical 
operations and physical processes and a developing symbiosis between mathemati
cal form and physical imagery. A physical interpretation of what the mathematical 
operations represent is imposed on the development of the mathematics, while 
the characteristics of the mathematics may shape how the physical system might 
behave. Sometimes, this imposition is an intuition arising from an understanding 
of the behavior of the physical system under scrutiny. An example, without get
ting into particular physical models, is the ultra-violet catastrophe. Physically the 
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energy available in a radiating system is finite and this must be directly reflected 
in the mathematical results representing the physical behavior of the radiators. 
The understanding of what a physical system would, could, or could not do, is 
represented by the different paths into which the mathematical operations lead us. 
Thus, some directions of development may well be mathematically interesting but 
will not represent the behavior of the physical situation under discussion. 

On the other hand, the arithmetization of experimental results, even though pre
cise, is not the same as the development of a mathematical, theoretical physics. 
The vernacular remained the language of physical theory well into the nineteenth 
century after the development of quantitative experiments. Precise and clear con
ceptualization was and is not necessarily expressed mathematically. Conversely, 
mathematical theories have not always clarified physical theories and can mask 
muddled thinking. Yet both mathematics and quantitative experiment were as
pects of the development of modem theoretical physics. 

Physical interpretation is generally crucial in dictating the direction of the devel
opment of the mathematical analysis. However, such theoretical explorations of 
specific cases often lead to reinterpretation of the physical concepts that were used 
to set up the example. One of the more dramatic conceptual transformations is that 
of the second law of thermodynamics, from unavailable energy in the nineteenth to 
information propagation in the late twentieth century. Physical conceptualization 
of the problem and its subsequent reconceptualization are central to the enterprise 
of modem theoretical physics. This condition means that its practitioners learn 
early how to control and develop logical theories based on presuppositions. How
ever, general presuppositions, while necessary to theory, are not sufficient to define 
it. The same set of assumptions can lead to whole classes of theories. Theory in
volves the use of hypotheses whose implications emerge from extended strings of 
logic developed in detailed specific cases. Speculations in general terms used ad 
hoc to explain small groups of phenomena, or isolated instances, do not constitute 
theory. Nor are general ideas linked by analogy, metaphor, illustrative example or 
other rhetorical devices, to experimental cases, counted as theory.5 

5 Analogy refers here to the literary device, not the method developed in mathematical 
physics in the nineteenth century. Only recently have the issues of rhetoric and language 
penetrated the history of science. Nancy Leys Stepan, "Race and Gender: The Role 
of Analogy in Science," Isis 77 (1986): 261-282 traces the literature on analogy and 
metaphor in science. See also, Roger S. Jones Physics as Metaphor (Minneapolis, MN.: 
University of Minnesota Press, 1982). Most studies ofthe languages of the sciences focus 
on rhetorical purpose and devices, see Wilda Anderson, Between Library and Laboratory 
(Baltimore: Johns Hopkins University Press, 1987), The Literary Structure of Scientific 
Argument, Peter Dear ed. (Philadelphia: University of Pennsylvania Press, 1991), and 
Persuading Science: The Art of Scientific Rhetoric, Marcello Pera and William R. Shea 
eds. (Canton MA.: Science History Publications, 1990). On the more technical use of 
analogy in physics, see Mary Hesse, Models and Analogies in Science (Notre Dame: 
Notre Dame University Press, 1966). 
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Historically, the calculus made the discipline of theoretical physics possible by 
providing a highly developed language already linked, although only mathemati
cally when first encountered by physicists, to mechanics. Unlike their mathematical 
predecessors physicists of the mid-nineteenth century began to integrate experi
ment into the body of the theoretical enterprise. It was no longer enough to begin 
a mathematical exploration with the algebraic relations derived from the results of 
experiment. The results of experiment were used to develop theory. Sometimes 
experiments indicated what restrictions to impose on the mathematics to make the 
analysis mirror natural processes. Experiment also reflected directly upon phys
ical interpretation, which in turn interacted with the direction of development of 
the mathematical language. Theory was also developed in the light of the contin
ual scrutiny of experiment and experimental physicists. 6 Previously, mathematics 
and experimental physics existed as separate disciplines. Experimental physicists 
could dismiss mathematics. For their part, mathematicians could ignore mathemat
ically inconvenient experimental results. Theoretical physicists could do neither. 
The results of their mathematical manipulations encoded physical meanings that 
were open to exploration by experimentalists. 

Experiments have both a physical interpretation and a presence in mathematical 
theory, i.e., they are embedded into its structure, and are not merely a peripheral 
element. Experiments are also quantitative and evaluated in terms of expected 
ranges of error and instrumental performance. Mathematical theories must lead 
to numerical deductions whose values lie within the expected experimental er
ror, or, theoretical physicists need to explain the discrepancies. 7 Conversely, the 

6 On this point see, Timothy Lenoir, "Practice, Context, and Dialogue between Theory and 
Experiment," Sci. Context 2 (1988): 3-22, and Theory and Experiment: Recent Insights 
and New Perspectives on Their Relations, Diderik Batens and Jean-Paul Bendegen eds. 
(Dordrecht: Reidel, 1988). 

7 Historians are reassessing the "theory-laden" character of experiments. Experiments 
have broader uses within physics than Kuhn allowed and experimentalists more auton
omy within the profession. For a view of the place of experiment in the historiography 
of science see Frederick L. Holmes, "Do We Understand Historically How Experimental 
Knowledge is Acquired?" Hist. Sci. 30 (1992): 119-136. Holmes' paper is a review 
of recent literature in which historians have tried to reestablish a place for experiment 
in post-Kuhnian historiography. Other attempts include, Andrew Pickering, Science as 
Practice and Culture (Chicago: University of Chicago Press, 1992), 65-112, Experi
mental Inquiries: Historical, Philosophical, and Social Studies of Experimentation in 
Science, Homer E. LeGrand ed. (Dordrecht: Kluwer Academic, 1990), The Uses of 
Experiment: Studies in the Natural Sciences, David Gooding, Trevor Pinch and Simon 
Schaffer, eds. (Cambridge: Cambridge University Press, 1989), Peter Galison How Ex
periments End, (Chicago: University of Chicago Press, 1987), The Development of the 
Laboratory, Frank A. J. L. James ed. (New York: Macmillan, 1989), and Observation, 
Experiment and Hypothesis in Modern Physical Science, Peter Achinstein and O. Han
nawayeds. (Cambridge MA.: MIT Press, 1985). See also Allen Franklin The Neglect 
of Experiment (New York: Cambridge University Press, 1986), an attempt to develop a 
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physically connected and constrained mathematical language can be interpolated 
to predict the results of hypothetical experimental situations. Predictions of new 
physical phenomena from physical imagery were and are powerful legitimations 
for theories.8 Before the middle of the nineteenth century, experimental predictions 
from mathematical results came from a comparison of the mathematical forms en
compassing an older, known phenomenon, with the mathematical form deduced 
from a newly explored one.9 Later in the nineteenth century, experiments served 
important functions for theoreticians, as the initial step in the development of a 
theoretical train, an aspect of the development of that theory, or its end result. 

The above description is not of the behavior of the archetypal theoretical physi
cist. Not every theoretician in physics is a paragon who trims his mathematical 
sails to fit the winds of interpreting nature, nor does he as an individual necessarily 
develop a mathematically appropriate and physically interpreted theory integrating 
the latest experimental data. Some experimentalists dealing with the time consum
ing and frustrating details of experiments are happy to present results, legitimated 
through known procedures of testing equipment, instruments and methodologies, 
that current theory cannot explain. It is not the experimentalist who fits his data to 
theory, experimentalists are happy to point out, but the theorist who must adjust to 
their results. Yet for the community of the discipline and profession of physics the 
above paragraphs reflect generally shared values and behaviors. Individuals may 
spend their research careers solving problems that seem to be purely mathemati
cal, without appearing to glance at the vulgar realities of experiment. However, 
the majority function within the discipline between the extremes of the physicist 
fascinated by mathematics and the experimentalist ignoring the theorists. 

From the eighteenth through to the twentieth centuries, mathematicians, philoso
phers, then theoretical physicists have discussed the relationship between math
ematics and physics. Mathematicians in the late seventeenth and throughout the 
eighteenth centuries understood that physics generated the problems that became 
the foundations for new mathematics. While eighteenth-century thinkers con
sidered experimental physics and mathematics as separate disciplines, they also 
considered mathematics as completing the investigative enterprise. Immanuel Kant 
echoed this separation in his ideas on mathematics. His contention that at least 

new epistemology of experiment. 

8 And, contrary to current philosophical and sociological theorists, prediction has served 
that function for physicists. This is why James Clerk Maxwell pursued the temperature 
behavior of gases as a unexpected consequence of his kinetic theory. If confirmed, his 
unusual approach to the study of gases using probability was legitimate and his deductions 
correct. His results were also repeated by a group of rather skeptical German physicists, 
and a mini-industry of experimentally tracing the transport coefficients of gases ensued. 
The career of Oscar Meyer was based on such a search. 

9 Other cases of prediction before the mid-nineteenth century require more subtle historical 
examination. See the case of the shape of the earth in chapter III. 
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certain mathematical entities were independent of the senses guided mathemati
cians in their later struggles to legitimate their science. The character of geometry 
became problematic. While Kant believed the categories of Euclidean geome
try were independent of observation, this argument was unsatisfactory with the 
development of non-Euclidean geometries. While mathematicians also happily 
developed non-arithmetic algebras, the philosophical status of geometry created 
a philosophical ruckus in the middle of the nineteenth century. At the center of 
the dispute Hermann von Helmholtz maintained that we describe the world in Eu
clidean terms only because we live in Euclidean space. Moreover, this space is only 
a special case of the geometry developed by Bernhard Riemann that was itself a 
special case of the spherical geometry of Eugenio Beltrami. Kant's a priori's were 
no more. The axioms of any geometry bore no relationship to real things. They 
were useful because joined to mechanics they could be verified by observation. "If 
such a system were to be taken as a transcendental form of intuition and thought, 
there must be assumed a pre-established harmony between form and reality."lo 

Helmholtz nicely reemphasized the primacy of experiment in physics and coun
tered an argument used by mathematicians since the seventeenth century of such a 
"pre-established" harmony between mathematics and the structure of nature. This 
harmony guaranteed mathematics a transcendency never given to experiments or 
observations.ll At the same time as they expressed the accuracy of analysis to inves
tigate nature, mathematicians pointed out the fallibility of experiment. They never 
differentiated between qualitative or quantitative experiments; both were equally 
prone to error.12 Quantification of experiment is not the mathematization of theory 
and the two processes are not simultaneous or coterminus. As physicists annexed 
the calculus for their own purposes they reinforced the experimental core of their 
discipline and did not claim transcendence for their theoretical explorations. 

For their part, some late nineteenth-century mathematicians claimed such tran
scendence and a preestablished harmony that enabled them to subsume physical 

10 Hermann von Helmholtz, "On the Origin and Significance of Geometrical Axioms," in 
Science and Culture: Popular and Philosophical Essays, David Cahan ed. (Chicago: 
University of Chicago Press, 1995),226-245,245. 

11 However, see Peter Dear, Discipline and Experience: The Mathematical Way in the 
Scientific Revolution (Chicago: University of Chicago Press, 1995) that the transcendency 
claimed for mathematics was crucial in the seventeenth century to establishing the validity 
of experiment. 

12 Historians have begun to explore the role of quantification and mathematics in claims of 
the sciences for the transcendence that surrounded mathematics. See Philip Mirowski, 
More Heat than Light: Economics as Social Physics, Physics as Nature's Economics 
(New York: Cambridge University Press, 1989), and Theodore Porter, Trust in Numbers: 
The Pursuit of Objectivity in Science and Public Life (Princeton NJ: Princeton University 
Press, 1995). 
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theory within mathematics. 13 Physicists did not rise to this bait. Albert Einstein, 
who fretted about his lack of mathematical understanding, reminded David Hilbert 
that physics was not simply mathematics. However, some physicists, notably in 
the twentieth century, have worried about the mathematics appropriate for spe
cific physical problems.14 Ludwig Boltzmann took mathematics as the language 
of physics and was concerned, as was Max Planck and Albert Einstein, with the 
proper mathematics for theoretical physics. They all matched the characteris
tics of the mathematics to the characteristics of the physical system. They used 
summations for molecular and integrals for continuum systems. 15 

The ability to perform the difficult task of discerning, in the mathematics, pos
sibilities that are physical plausibilities is rare and justly celebrated. If physics 
becomes mathematics (as has been true in important cases in the late nineteenth 
and the twentieth centuries) members of the discipline are conscious of it. Ex
planations of the physical meaning within mathematical symbols was required by 
other members of the discipline. Physical interpretation of what is fundamentally 
a physically uninterpretable theory seems to go on. 16 

Modem Physics 

By 1870 a combination of characteristics that we recognize as theoretical physics 
existed in Europe, although not as a distinct subfield within physics. 17 In Europe, 

13 Elie Zahar, "Einstein, Meyerson and the Role of Mathematics in Physical Discovery," 
Brit. 1. Phil. Sci. 31 (1980): 1-43, 2-8, considers some of the issue raised here but from 
the point of view of the philosophy of mathematics rather than its history or the history 
of physics. 

14 See Eugene Wigner, "The Unreasonable Effectiveness of Mathematics in the Natural 
Sciences," Comm. Pure and Appl. Math. 13 (1960): 1-14. For earlier attempts to 
examine the relationship between mathematics and physics see Maxwell, "Address to the 
Mathematical and Physical Section," Rep. British Assoc. 40 (1870): 1-9. 

15 See Christa Jungnickel and Russell McCormmach, Intellectual Mastery of Nature: The
oretical Physics from Ohm to Einstein (Chicago: University of Chicago Press, 1986) vol. 
2,13,188,336-337. 

16 Particularly noteworthy are Ludwig Boltzmann's attempts to give mechanical meaning 
to his statistical derivation of entropy and Niels Bohr's attempts to interpret the quantum 
mechanics of Werner Heisenberg. 

17 This study focuses on Europe because physics in the United States followed older patterns 
of research into the twentieth century. See John Servos, "Mathematics and the Physical 
Sciences in America, 1880-1930," Isis 77 (1986): 611-629. For a discussion of the 
reorientation of physics in the United States in the 1920s, see Spencer Weart, "The 
Physics Business in America 1919-1940: A Statistical Reconnaissance," in The Sciences 
in the American Context: New Perspectives Nathan Reingold ed. (Washington DC: 
Smithsonian Press, 1979),295-358. However, S. S. Schweber, "The Empiricist Temper 
Regnant: Theoretical Physics in the United States, 1920-1950," Hist. Stud. Phys. Sci. 17 
(1986): 55-98, maintains the uniqueness of American physics well beyond the 1920s. 



10 Introduction 

theoretical physicists remained on the margins of the profession, numerically, and 
in terms of status for some decades. IS Within the research literature, recogniz
ably modern theory papers appeared regularly amongst the experimental majority. 
These theoretical papers were published separately from any mathematical insights 
that arose from the solution to the problem under investigation. Mathematical re
sults were printed in separate journals, and they were addressed to a different 
audience and written with the mathematical implications of the solution set firmly 
before the reader. The mathematical language of physical theory was usually the 
calculus coupled with physical imagery whose implications were developed in 
logical detail along with, and even through, the mathematics. Physical interpreta
tion incorporated experiment into the body of theory that was sometimes extended 
beyond the limits of known, experimental results, using mathematics, to express 
plausible, observable outcomes. I9 Predicted phenomena were the subject of sys
tematic experimental searches, initially conducted by the theorists themselves. If 
found, such phenomena were accepted as demonstrations of the physical interpreta
tion proffered by theory. This was new. In earlier uses of the calculus experiments 
were treated as confirmations of the truth of the mathematics.2o 

Even as physicists use mathematics to express their ideas, the disciplines of 
physics and mathematics remain separate. The goals of practitioners remain dis
tinct. Mathematicians have often begun their explorations within mathematics 
using problems suggested by other disciplines.21 Recently new fields within math
ematics have arisen from the problems of optimiZing resources in warfare. How
ever, mathematicians need not reflect on the impact of their mathematical results for 
the placement of artillery or machine guns, or the logistics of supply lines. These 
issues lie outside of mathematics proper. Yet when outsiders, such as physicists, 
use the mathematics thus developed, mathematicians sense that barbarians have 
invaded their territory. The standards of solution so painfully crafted by mathe
maticians are thrust aside for others. This sense of intrusion is particularly acute 

18 See Paul Forman, John Heilbron and Spencer We art, "Physics circa 1900: Personnel, 
Funding, and Productivity of the Academic Establishments," Hist. Stud. Phys. Sci. 5 
(1975): 30-32. Christa Jungnickel and Russell Mccormmach, Intellectual Mastery of 
Nature make the same important point although they do not always differentiate the title 
of a chair and the actual research of its occupant. Some physicists taught theoretical 
physics while their research was experimental. 

19 The kinetic theory of gases is the first place in which these relationships occur consistently. 

20 See James Clerk Maxwell's surprise at the predicted behavior of the viscosity of gases, 
and then his investigation of the transport coefficients, in, Maxwell on Molecules and 
Gases Elizabeth Garber, Stephen G. Brush and Francis Everitt, eds. (Cambridge MA.: 
MIT Press, 1986), 282-283, 359-386. This is in contrast to the earlier uses of experiment 
in the work of Pierre Simon Laplace, Denis Poisson and earlier mathematicians. 

21 There are even claims that pure mathematics does not exist. See Nordon Didier Les 
mathematiques pures n'existent pas! (Paris: Actes Sud, 1981). 
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when the invaders annex languages whose power and structure were revealed only 
after considerations of definition and careful examination of the language. From 
the point of view of mathematicians the rigor, precision of expression and gener
ality, the core of their discipline, is betrayed. Mathematicians see physicists using 
mathematics as sloppy, and making unjustifiable assumptions about how to use 
their language. 

On the other side of the disciplinary and professional boundary, physicists see 
mathematicians as obsessed with the wrong issues. They spend too much time 
over whether a proof is adequate or whether another, more general one might be 
necessary. The point is to use the results of these theorems, with an intuitive sense 
that the theorems seem correct. Given the same problem, the mathematician's and 
the physicist's solutions are developed with different criteria of what those solutions 
might be. This makes for lively, if acrimonious, joint sessions of two departments 
with members that have overlapping research interests. If mathematicians begin 
with a physical problem, they do not have to reflect on the implications of their 
mathematical findings for the physical particulars of that problem. This closure 
is the point of the physicist's exploration of the same issue and separates the 
practitioners of the two disciplines. The numerically correct answer to particular 
problems is crucial for the physicist because of its significance for ideas about 
nature. In a certain sense it is irrelevant to the mathematician. Mathematics 
and physics remain as distinct disciplines, expressed institutionally as separate 
academic departments, curricula, professional societies, journals, and research 
methods. Yet, as disciplines and professions, they remain locked in an historical 
symbiosis that demands investigation. 

Several elements join to characterize modern, theoretical physics. Any history 
of its development must consider all these factors and their fusion into this modern 
form. This is not merely a matter of intellectual history. Theoretical physics is 
an academic discipline, most of whose members are systematically training the 
next generation of theoretical physicists. The university also serves as the locus of 
research, much of it done by the same faculty and their students. The results of such 
research appears in the footnoted pages of specialist journals usually published by 
the professional societies, to which all claiming to be members of the discipline, 
belong. As aspiring members of the discipline, applicants to such societies must 
meet minimum requirements of certification. In turn, membership in such a society 
legitimates claims of practicing as a physicist and belonging to the profession. The 
practices of the societies' members are expressed and developed within the pages 
of its journals, and reinforced by a system of prizes, medals and other honors. 
The readership of these journals is small, usually restricted to those understanding 
the technical methods, language, and problems being addressed in their pages. 
Interpreting such publications for a broader public requires a battery of mediators. 
Access to training and practicing within physics is controlled by physicists as 



12 Introduction 

are judgments on the intellectual worth of their colleagues' research. So does 
the distributions of awards, status, and power within the discipline. The social, 
economic, and political support for the men and women who live immersed in 
research, teaching, training, and publishing comes largely from the state. 

Before 1850 none of the social structure of the profession of physics existed, nor 
did its legitimating processes and its institutional structure. The social, political and 
intellectual characteristics of modern physics coalesced during the mid-nineteenth 
century. This study explains how and when theoretical physics came into exis
tence by focussing on those aspects of the narrative and process omitted in earlier 
accounts. 

To begin we need to examine where other historians of science have found the 
origins of theoretical physics and assess their assumptions about the development 
of physics. In most accounts one characteristic of physics is taken in isolation 
while, as we shall see, a whole collection of factors was involved and these later 
fused into the newly minted theoretical physics. 

Earlier Historical Approaches to Modern Physics 

Of the various ways of treating the history of physics, the most prominent is 
still intellectual. Conceptual changes are generally used to demarcate stages in the 
development of physics. Thomas Kuhn reenforced this approach.22 This emphasis 
is unchanged whether the historian attributes the development of ideas to forces of 
change within the scientific disciplines or the larger cultural nexus. Concepts join 
science to society and culture, and for social constructivists and cultural historians 
only serve to demonstrate ideological activities.23 Only recently have historians 
turned to other factors under the rubric of practices.24 

Using conceptual change to mark the development of physics has severe limi
tations. The "origin" of modem physics depends on those concepts the historian 

22 Thomas S. Kuhn, The Structure of Scientific Revolutions (Chicago: University of Chicago 
Press, 1962). See also, Kuhn, The Copernican Revolution (Chicago: University of 
Chicago Press, 1959). 

23 The literature here is enormous and disputes between the protagonists within these ap
proaches numerous. The common element is that the ideas and goals of scientific knowl
edge are grounded in societies and their ideologies and have no independence from those 
contexts. Steven Shapin, "Here and Everywhere: Sociology of Scientific Knowledge," 
Ann. Rev. Socio. 21 (1995): 289-321, traces its development. For a recent statement of 
the ideological content of science see Joyce Appleby, Lynn Hunt, and Margaret Jacob, 
Telling the Truth about History (New York: Norton, 1994). 

24 For the range of concerns that the notion of practices brings to the history of physics 
see, Scientific Practice: Theories and Stories of Doing Physics, Jed Z. Buchwald, ed. 
(Chicago: University of Chicago Press, 1995). For some of the conceptual problems with 
the notion of practices see Stephen Turner, The Social Theory of Practices: Tradition, 
Tacit Knowledge, and Presuppositions (Chicago: University of Chicago Press, 1994). 



Introduction 13 

chooses as "modern." The seventeenth-century ideas of Galileo Galilei, Isaac 
Newton, the conservation laws developed in the mid-nineteenth, and the idea of 
the quantum of the early twentieth century have all served this purpose.25 Most of 
these historians implicitly assume that the engine of change in physics lies only in 
hypotheses, methods rarely figure as key indicators or explanations of change.26 

The fundamental limitations of the conceptual measure of change are structural. 
General principles and reasonable expectations of their outcome do not suffice to 
define theory, or theoretical physics. General notions, such as the idea that heat is a 
substance, caloric, conserved through thermal change, led to a plethora of theories 
of heat. The assumption that light was a wave in the ether also led to a range of 
detailed speculations on the nature of those waves and that of the ether itself.27 
Theory includes general hypotheses and other assumptions used to incorporate 
specific cases into the explanatory scheme. In the case of caloric it could be a fluid 
that flowed into and out of material bodies, or made up of particles that interacted 
with those of matter. We also need to consider standards of argument. Were these 
particular conceptions of caloric used consistently from one thermal phenomena 
to another? Were changes that were introduced those of the development of a 
consistent imagery or merely imagery changed to suit a particular example? How 
was the experimental evidence incorporated into the body of these theories, if at 
all? 

In earlier centuries speculations on the behavior of nature, and standards of 
demonstration were very different from those of the twentieth century. literary 
devices, analogy, metaphor, illustrative example all served the purpose of estab
lishing the viability of an explanation. The social and cultural setting of such 
speculations also impacted how practitioners defined solutions to problems of nat
ural philosophy. In caloric theories of heat, and eighteenth-century speculations in 
general, none of the standard explanatory practices that we expect in the twentieth 
century were in use. In many of these theories caloric remained a metaphysical 
entity, while the results of experiment were the subjects of a separate discourse. 

25 For recent examples see H. Floris Cohen, The Scientific Revolution: A Historiographical 
Inquiry (Chicago: University of Chicago Press, 1994), in which the sciences are still 
defined intellectually such that, "the seventeenth century marks the origin of modern 
science." For use of the concept revolution to explain change in the sciences see, I. B. 
Cohen, Revolutions in Science (Cambridge MA: Belknap Press, 1987). Here revolutions 
are related to conceptual change only. 

26 There are exceptions. See Geoffrey Cantor, "The Reception of the Wave Theory of Light 
in Britain: A Case Study Illustrating the Role of Methodology in Scientific Debate," Hist. 
Stud. Phy. Sci. 6 (1975): 109-132 and some of the recent literature on practices. 

27 See Robert Fox, The Caloric Theories of Gases from Lavoisier to Regnault (Oxford: 
Clarendon Press, 1971). See also Conceptions of the Ether: Studies in the History 
of Ether Theories, 1740-1900 G. N. Cantor and M. J. S. Hodge, eds. (Cambridge: 
Cambridge University Press, 1981). 
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If ideas about caloric were connected to the results of experiment, it was through 
illustrative examples, figures of speech, and arguments about reasonable expec
tations, not through any species of logical strings, even excluding any forms of 
mathematics. 

The usual starting place for the development of theory in modern physics is not 
from postulating the existence of a general principle or substance but through the 
solutions to problems. A particular set of physical circumstances, that is, particular 
problems associated with a narrowly defined physical system, is the locus of the 
theorist's attention. Upon these specific cases general principles may be brought 
to bear. However, these principles are in a form that relates directly to the specific 
case at hand. The starting point for Einstein's theory of relativity was the motion of 
a charged particle moving through an electromagnetic field, not the nature of space 
and time. In modern theoretical physics specific physical circumstances are joined 
to mathematics, then judgments are made about how much of the latter to use to 
reveal the workings of a particular physical system. The range of interpretations is 
limited by the structure and use of the available language, the mathematics. These 
practices were not used in physics until well into the nineteenth century. Forms of 
argument need integration into the history of physics. 

The shortcomings of histories that deal only with foundational assumptions are 
also compounded by another. Intellectual historians of science usually assume 
that all problems, ideas, and methods that are now accepted as part of theoretical 
physics have been used consistently within physics since their first appearance.28 

The usual assumption is that mathematics has been a permanent aspect of physics 
ever since Galileo's mathematization of the fall of terrestrial bodies. Isaac Newton 
in his Principia was dealing with a problem in physics, and we can expect amidst 
the struggle to develop his ideas the same mix of observation and mathematics 
that we find in theory in the twentieth century. The usual account of the history 
of physics narrates the spread of this method from mechanics to the study of 
electricity, magnetism and light. Extension of the use of mathematics has followed 
the successful development of physical ideas. 

Because mathematics is now a permanent factor within physics, intellectual 
historians tend to regard the work of Newton, the Bernoullis, Denis Poisson, or 
George Gabriel Stokes as forming a continuum with our own. For these historians, 
the issue is not whether these men produced physical solutions to problems we take 
to lie within physics, but what are the physical constituents of those solutions. This 
approach is apparent in recent histories of nineteenth-century physics. Authors 
assume the relationship between physical imagery, mathematics, and experiment 
in the early nineteenth are those of the twentieth century. They also treat theories 

28 Kuhn's descriptions of the development of physics depends on this assumption. See 
Kuhn Structure passim. 
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as having the same function within physics as in the twentieth century.29 
These suppositions mean that intellectual historians presume that mechanics 

has remained within physics since the seventeenth century. Implicit in this is the 
premise that the combination of physical imagery and mathematics that Newton 
brought to bear on the problem of the planets was read as theoretical physics in the 
seventeenth, eighteenth, and nineteenth centuries. This approach is accompanied 
by the preconception that, since the seventeenth century, anyone considering the 
same problem was also a theoretical physicist having the same general goals and 
concerns as modern physicists.3o As recent studies have shown, physics in the 
eighteenth and early nineteenth centuries was based in experiment, and speculations 
about nature were expressed in the vernacular. There are strong indications that 
Newton's Principia was read as mathematics, not physics.31 This being the case, 
historians of physics must examine the implications of the reactions of Newton's 
contemporaries, for the history of their field. 

Historians of mathematics have shown that mechanics was the means for devel
oping much of the calculus in the eighteenth century, not for deciphering nature. 
Few historians of physics have asked whether work in mechanics through the eigh
teenth century lay within physics, or whether Jean Le Rond d' Alembert, Joseph 
Louis Lagrange or Pierre Simon Marquis de Laplace might be mathematicians who 
chose problems of mechanics as a means to explore the calculus. 

Recent studies show us forcefully that throughout the eighteenth and the nine
teenth century, the disciplinary core of physics was experiment. Experiment func
tioned to broaden the reach of knowledge, to enlighten. Until the mid-ninteenth 
century interpretations of experiments or explanations of the behavior of nature 
that joined the results of experiments together were a combination of metaphysical 
commitments resting on slim evidential ground. They joined the evidence through 
analogy, illustrative example, plausibility and other rhetorical devices. Theories 
as systematic strings of argument were rare. Rarer still were theories that en
meshed experiment within the body of its development. More often, experiment 
remained on the margins of metaphysical speculations. Metaphysical principles 

29 See, Crosbie Smith and Norton Wise, Energy and Empire: A Biographical Study of Lord 
Kelvin (Cambridge: Cambridge University Press, 1989), Nahum Kipnis, History of the 
Principle of Interference (Boston: Birkhauser, 1990). Jed Buchwald, The Rise of the 
Wave Theory of Light: Optical Theory and Experiment in the Early Nineteenth Century 
(Chicago: University of Chicago Press, 1989). 

30 This is the approach of Rene Dugas, Histoire de la Mecanique (Paris: Edition Dunod, 
1950) that set the pattern of discussion by historians of physics. 

31 See Clifford Truesdell, "Reactions of Late Baroque Mechanics to Success, Conjecture, 
Error, and Failure in Newton's Principia," Texas Quart. 10 (1967): 238--258, The Annus 
Mirabilis of Sir Isaac Newton, 1666-1966 Robert Palter ed. (Cambridge MA.: MIT 
Press, 1967), and Henry Guerlac, "The Early Reception of his Physical Thought," in 
Guerlac, Newton on the Continent, 41-73. 
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and schematic systems were plentiful. Theories that centered upon experimental 
observations were phenomenological, or classified phenomena into rational lists 
tbat reduced large bodies of data to manageable size.32 Within physics, speculations 
about the operations of nature were expressed in language and images available to 
a general, literate audience using devices of argument familiar from sources out
side of science. This kind of physics does not fit into twentieth century categories. 
Harnessing metaphysics to logic, even in the vernacular, did not appear in physics 
until the nineteenth century, after physicists had definitively narrowed the forms 
and focus of the discipline. 

The shortcomings of some histories spring partly from being unaware that the 
label may stay the same, but the discipline can change profoundly. If we do 
trace the changes in the meaning and content of the terms "physics" since the 
seventeenth century, we find that mathematics only enters into its methodology 
in the latter half of its history.33 How then, did modern physics develop out of 
its experimental and metaphysical practice? We can no longer see physics as the 
residue left after chemistry and other specialities separated from the general body 
of natural philosophy. Nor can we argue that modern physics is the fusion of 
mathematics and physics without some understanding of the process of fusion.34 

The one extensive recent work on the development of modern theoretical physics 
leaves us with some dilemmas. This study by Christa Jungnickel and Russell 
McCormmach is one for which other historians should be extremely grateful. 35 
However, the subject of their study, theoretical physics, is never defined. While 
appreciating that leaving the definition moot avoids the temptation of whiggish 

32 Examples are of Charles Dufay in electricity, Karl Linnaeus in botany and William 
Herschel in observational astronomy. 

33 For changes in the meaning of the term physics see, Hans Schimank, "Die Wandlung des 
Begriff 'Physik' wahrend der ersten Halfe des 18 Jahrhunderts," WissenschaJt, WirtschaJt 
und Technik: studien zur Geschichte Munich (1969): 453-468, Fritz Krafft, "Der Weg 
von den Physikern zur Physik an deutschen Universitaten," Ber. Wissen. 1 (1978): 123-
167, and, "Alte und neue Physik," in Disciplinae Novae Christoph Scriba, ed. (G6ttingen: 
Vandenhoek und Ruprecht, 1979), 45-63, R. Hookyas, "Von Physica zur Physik," in Hu
manismus und NaturwissenschaJten Rudolf Schnitz and Fritz Krafft, eds. (Boppard am 
Rhein: Harald Bopt, 1980), 9-38, and John Heilbron, "Experimental Natural Philoso
phy," in Ferment of Knowledge: Studies in Eighteenth Century Science, R. S. Rousseau 
and Roy Porter, eds. (Cambridge: Cambridge University Press, 1980),357-387. The 
same is true of the term "element" in chemistry where Boyle's definition can be taken 
over into a modern, elementary textbook without change, until the reader becomes aware 
of Boyle's theory of matter. There are of course numerous others. 

34 This fusion is assumed in Kuhn, Structure, "Postscript," 179. Kuhn later posited two 
traditions within physics, without considering that mathematics might also be a problem
atic category. See, Kuhn, "The Mathematical and Experimental Traditions in Physics," 
J. Interdic. Hist. 7 (1976): 1-31. 

35 Jungnickel and McCormmach, Intellectual Mastery of Nature. 
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purpose, we are left with that group appointed to positions as theoretical physicists 
in the universities of Germany and middle Europe. The institutional and social 
definition does not touch on the intellectual content of physics. The authors accept 
the content of the research of these men, appointed to certain chairs in the above 
universities, as physics wherever it was placed for publication. Some of their 
research appeared in mathematics journals and yet counts as physics because the 
authors are physicists from their position in the university structure. And, the 
measure of the development of theoretical physics is in terms of ideas and theories, 
not practices. They miss the ways in which criteria of solutions and standards 
of argument change across time. They are assumed to be those we accept today. 
Mathematics is simply a "tool" although central to what theoretical physicists did 
even in the last decade of the nineteenth and the first decade of this century when 
the required tools were changing. 

These omissions mean that we cannot probe crucial differences between math
ematics and physics, mathematicians and physicists. They leave unexplained how 
the new mathematical "tool" of absolute differential calculus could transform the 
physicists' image of the world. This crucial connection between mathematics and 
physical imagery needs more investigation. While noting that some physicists 
did refer to mathematics as a language, they probe no further. However, this is 
an important key to exploring how theoretical physics came into existence as an 
intellectual discipline. To explore this process we need criteria that are broader 
than subject matter and ideas and to follow them across space and time to trace 
how physics and mathematics were distinguished. 

It seems necessary at this juncture to ask how mathematics has been used in 
physics. Most historians of physics ignore mathematics in their narratives, be they 
scholarly studies or textbooks. At best they cite formulae and derivations without 
paying any attention to their origins. Ivor Grattan-Guinness attributes this to a 
dislike of mathematics on the part of historians of science.36 However, there is a 
more pervasive problem here. Most historians and philosophers of physics treat 
mathematics as a tool, an instrument to be applied to a task, like a hammer to a 
nail, then replaced on the shelf. It is unchanging and always available. And even if 
mathematics has a history, the type of mathematics used has no impact upon pos
sible physical interpretations drawn from the mathematics. Thus, the mathematics 
in physics can be rewritten in modern form; the physics remains the same. Edmund 
Whittaker complained that physicists for whom vector analysis was not available 
did not see certain implications of their work. Whittaker and later historians then 
translated physicists' mathematics into vector form and drew implications about 
their work directly from the modern mathematical forms, not the original ones.37 

36 See Ivor Grattan-Guinness, "Does History of Science Treat of the History of Science? 
The Case of Mathematics," Rist. Sci. 28 (1990): 149-173. 

37 This is the assumption in Buchwald, The Rise of the Wave Theory and The Creation of 
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However, until the end of the nineteenth century, the mathematics of physics was 
in algebraic form and Cartesian coordinates. Historians have not considered how 
physicists have proceeded through mathematical forms to conclusions, and how 
the available mathematics might shape, or limit, those conclusions. 

Mathematics has interacted with, and become integral to physics. And, as in 
other cases, this transformation became invisible. In retrospective examinations, 
eighteenth-century mathematics was subsumed by physicists as physics. However, 
problems that arose in mechanics and astronomy were the means by which math
ematicians developed the calculus itself in the eighteenth century. The resulting 
papers were mathematical, not physical. Mechanics in its mathematical form was a 
field within mathematics. Yet, in the mid-nineteenth century mechanics became the 
explanatory core for physics. For mid-nineteenth century physicists, eighteenth
century rational mechanics became physics. Mathematical expressions were given 
physical meanings derived from methodological and conceptual commitments not 
present in the eighteenth century. In their definitive textbook on mechanics of 
the 1870s, William Thomson and Peter Guthrie Tait used Lagrangian generalized 
coordinates extensively. They accomplished the considerable task of explaining 
Lagrangian methods to engineers and physicists and of harnessing them to solve 
physical problems. In the process, Lagrange's original mathematical goals were 
largely lost. 38 This retrospective treatment of mathematics in the history of physics 
has appeared consistently since the mid-nineteenth century because mathematics 
is such an integral part of modern physics. 

New mathematical languages such as non-arithmetic algebras or non-Euclidean 
geometries had profound effects on theoretical physics, including the ways in which 
physicists envision reality. Seeing the vector quality of physical entities makes 
visualizing their behavior in space immediate in ways that their expression in alge
braic form do not. Vectors make visible the spatial aspects of the motion of a wave 
front and of moving particles but were available only after waves became a central 
feature of nineteenth-century physics. The same is true for electrodynamics.39 

Aspects of the theory of relativity became apparent after Hermann Minkowski put 
Einstein's equations into non-Euclidean geometrical form. Mathematics is repeat
edly claimed by physicists as their language. It is also seen as the one characteristic 

Scientific Effects: Heinrich Hertz and Electric Waves (Chicago: University of Chicago 
Press, 1994) among many others. It began with Edmund Whittaker A History of the 
Theories of A ether and Electricity (New York: Thomas Nelson and Sons, 1962),2 vols. 

38 William Thomson and Peter Guthrie Tait, Treatise on Natural Philosophy (New York: 
Dover reprint of 1879 edition, 1962) 2 vols. For the development and writing of this 
volume see Crosbie Smith and Norton Wise, Energy and Empire. 

39 Vector algebra developed in the 1880s. See Michael Crowe,A History of Vector Analysis: 
The Evolution of the Idea of a Vectorial System (Notre Dame: Notre Dame University 
Press, 1967). 
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of the discipline that provides any unity to the current sprawl of physics.4o 

Mathematics also has a history, as complex and contested as any other scientific 
discipline. Meanings of the fundamentals of mathematics, and in particular, the 
foundations of the calculus, have changed through time and across space.41 As 
the content of mathematics mutated, the mathematics available to physicists has 
also changed. The language forms with which physics is expressed have become 
dependent on available mathematics. Yet issues that arose in the physical world 
established the problems that mathematicians used to explore mathematics, ex
tend its range, change its character and reach. Physics has also been a source for 
mathematics. For mathematicians of the eighteenth century, their starting point 
in problems in the real world guaranteed that solutions existed. Mathematicians 
needed physics for their own purposes as surely as physicists have molded math
ematics to their own uses. For a more successful history of physics to emerge, we 
need to scrutinize this interdependence. 

The intellectual questions surrounding the relationship between mathematics 
and physics are inevitably coupled to social ones. New institutional forms were as 
integral to the creation of modern physics as its new intellectual ones. While one 
transformation need not involve the other, in this case both social context and in
tellectual content changed almost simultaneously. However, the immediate causes 
for both were not the same. In Britain, industrialization opened up opportunities 
for livelihoods in science, yet this did not dictate changes in the methodology, form 
of expression or content of physics. Those came later, under the social pressures of 
successful industrialization on older academic institutions. The changes in practice 
in the middle third of the nineteenth century followed the intellectual leadership 
of Paris.42 In the German States the social opportunities brought by the reform of 
the Prussian universities, driven by an educational ideology serving the political 
purposes of the state, involved the transformation of faculty from collegial teaching 
bodies of local importance into scholars with international research reputations. In 
this case, research into esoteric questions and issues without visible connection to 

40 James A. Krumhand, "Unity in the Science of Physics," Phys. Today, March (1991): 
33-38, and David Mermin, "What's Wrong with these Equations," same journal (1989): 
9-11, p. 9. 

41 See Judith Grabiner, "Is Mathematical Truth Time-Dependent," Amer. Math. Monthly 81 
(1974): 354-363. See also Joseph Dauben, "Conceptual Revolutions and the History 
of Mathematics,"in Transformation and Tradition in the Sciences: Essays in Honor of 
I. B. Cohen, Everitt Mendelsohn, ed. (New York: Cambridge University Press, 1984) 
81-103. For a more extended discussion see, Ivor Grattan-Guinness, The Development 
of the Foundations of Mathematical Analysis from Euler to Riemann (Dordrecht: Reidel, 
1970). See also Hans Niels Jahnke, "Mathematics and Culture: The Case of Navalis," 
Sci. Context 4 (1991): 279-295. 

42 For social transformation without intellectual change see Rachel Laudan, "Ideas and 
Organization in British Geology: A Case Study in Institutional History," Isis 68 (1977): 
527-538. 
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social use, led to particular forms of theoretical discourse in physics that depended 
on prior philosophical commitments. The educational ideology of the state did not, 
however, predetermine that Parisian scholarship in the sciences and mathematics 
be the model for German academics. Nonetheless, the French offered the most 
successful model to emulate and then transcend. During this process in Britain and 
the German States physics, as discipline and profession, was put into the forms we 
have inherited and hence labelled here, for convenience, as modern. 

Mathematics as Language 

Recently, some philosophers have discarded more traditional foundations for 
the philosophy of mathematics and have returned to the analysis of mathematics as 
a series of languages and the rules of translation between them.43 There is a group 
that claims that the history of mathematics must be understood before a philosophy 
of mathematics can be constituted for whom Ludwig Wittgenstein's philosophy of 
mathematics is the starting point. Clearly Wittgenstein's assumption that meanings 
are established through the consensus of its practitioners makes its history central 
to an understanding of his philosophy.44 The semiotics of mathematics is also 
growing.45 However, long before mathematics or physics were regarded as text, 
mathematicians and philosophers understood that mathematics was about signs 
(symbols) whose actual meanings were so abstract as to not specify any real entity, 
thus functioning as metasymbols.46 

Symbolism such as mathematics is open to annexation and interpretation along 
with the syntax and grammar of the language. This vulnerability is broader than 
with other languages, even in the language most often compared to mathematics, 
music. Both are ruthlessly efficient, have well developed formal structures that 
have been transformed from which emerged new kinds of music and mathematics. 
And, these changes came from explorations within very particular problems to 
formal considerations of definitions, structure, and syntax. Notation in music and 
mathematics is important for understanding and interpreting their content that also 

43 For our purposes we are exploring in detail only those meanings of the languages of 
mathematics as they affected and were used by physicists rather than mathematicians. 

44 Ludwig Wittgenstein, Remarks on the Foundations of Mathematics. R. Rhees, G. H. von 
Wright and G. E. M. Anscombe, eds. (London: Blackwell, 1967). See New Directions 
in the Philosophy of Mathematics, Thomas Tymoczko, ed. (Boston: Birkhiiuser, 1986), 
for the range of views on this point. 

45 Brian Rotman, "Towards a Semiotics of Mathematics," Semiotica (1988): 1-35, Rotman, 
Signifying Nothing: The Semiotics of Zero (New York: St Martins Press, 1987), and 
David R. Lachtermann The Ethics of Geometry: A Genealogy of Modernity (New York: 
Routledge, 1989). 

46 However, see, P. Hugly and C. Sayword, "Can a Language have Indenumerable Many 
Expressions?" Hist. Phil. Logic (1984). 
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changes through time. Aesthetics is also a major factor in judging any particular 
product. Subjects and forms can be reworked any number of times, as aesthetics and 
meanings attached to those subjects and themes change.47 Within both disciplines, 
individuals can be spotted in their products. When solving the same problem, 
or using the same musical form, individuals express their own "style.,,48 Even as 
d' Alembert, Euler, and Lagrange all wrote on the wave equation and its solution, 
their style is apparent in their characterization of the equation and its solution. This 
is in addition to national traditions that are obvious in mathematics throughout our 
period.49 

In regarding mathematics literally as language one can draw parallels between 
sentences and mathematical expressions, the linguistic roles played by nouns and 
terms, adjectives and coefficients, verbs and operators. 50 As in ordinary language 
much is left understood and is a major source of ambiguity. There are implicit 
assumptions that one writer may treat as shared among all practitioners but are not. 
There may be deliberate omissions and ambiguities for moral or political purposes. 
Careers and reputations depend on the judgments of other mathematicians with 
known preferences and prejudices. Lacuna or obscurity may also hide difficulties, 
or spring from not understanding the significance of aspects of the problem under 
discussion, or from implicit assumptions of a deeper kind that make discussions 
of certain issues impossible as they may destroy the foundations of the discourse. 
This of course is true of eighteenth-century calculus. 

Ambiguity and omission in mathematics can serve the same purposes as in any 
other languages. Similarly, delaying clarification may simply be a way of getting 
something expressed and out in the open. Linguistic niceties can wait. Such 
obscurities are cleared up only when implicit assumptions are forced into the open. 
The calculus was one such language that developed this way. Initially calculus 
was the algebraic description of geometric relationships: It was a language whose 
roots lay in another language. The differential represented the tangent to a curve, 
the integral the area under the curve. Calculus began to solve problems that older 
languages were inadequate to tackle. The mode of its development was the solution 
of problems, not the formal exploration of the structure and function of the calculus 

47 For example, the same musical forms have been reworked and Euclidean geometry 
reformulated many times. 

48 The concept of style is problematic. However, it is still useful. For its problems see Sci. 
Context 4, no. 2 (1991). For style in physics see, N. David Mermin, BoojumsAll the Way 
Through (Cambridge: Cambridge University Press, 1990). 

49 Joan Richards, "Rigor and Clarity: The Foundations of Mathematics in France and 
England, 1800-1840," Sci. Context 4 (1991): 297-319. 

50 For short introductions to mathematics as language and its uses in literature and as litera
ture see Helen M. Pycior, "Mathematics and Prose," and John Fauvel, "Mathematics and 
Poetry," in Companion Encyclopedia of the History and Philosophy of the Mathematical 
Sciences Ivor Grattan-Guinness, ed. (New York: Routledge, 1994). 
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itself; that came later. 
Any discussion of mathematics as language has to address the question of plot 

and narrative.51 Mathematics has a highly compressed narrative form. Plots lie in 
the progression of proofs, theorems and solutions. There are even minor characters 
introduced along the way in the form of demonstrations or lemmas that do not seem 
to have much function in the narrative until they reappear later to resolve some 
impasse. A major demonstration may require reference back to the previous ones, 
including those that seem unconnected or out of place. There may be complexity, 
theorems within other demonstrations. Plots can become hopelessly muddled 
and convoluted, and the material gets beyond the technical reach of the author, as 
series are truncated, functions transformed and coefficients become constants. The 
author can only bring a simplified plot to completion, that is solve the problem in 
particular but not the general case. 

In the eighteenth century plots begin in the establishment of a problematic ex
pression (situation) of the equations of motion or equilibrium of a mechanical 
system. Resolution occurs through the highly structured form of the demonstra
tion. Establishment of the appropriate mathematical equation was the arena for 
moral contests over metaphysical issues as well as technical understanding. The 
narrative was also an arena for contests over mastery of the form. As eighteenth
century mathematicians developed the calculus they were expected to express their 
solutions in their most general form, then to consider particular solutions. Accept
able practice precluded the use of trigonometrical series except in particular cases. 
Functional equivalents were preferred as the convergence of these series in general 
was not demonstrated satisfactorily. Truncating series, reducing functions to con
stants were also allowed although the goal of generality might be sacrificed. The 
ultimate display of technical ability came with the general solution to an equation 
previously only solved in particular cases. 52 However, what counted as a demon
stration or that a general solution had been reached changed considerably in the 
nineteenth century. Mathematical modes of proof (narrative) changed.53 

Philosophers and linguistic scholars concerned with the structural differences 

51 What is stated here about mathematics can be applied to theoretical physics. Most works 
on physics as literature focus upon the rhetorical purposes, deduced from conceptual 
presuppositions. 

52 In the eighteenth century language was regarded as a form of calculus, Turgot, "Ety
mologie," in Encyclopedie in Oeuvres vol. 2, 473-516, 506-507. For mathematics and 
language in the eighteenth century, see Robin E. Rider, "Measures of Ideas, Rule of 
Language: Mathematics and Language in the Eighteenth Century," in The Quantifying 
Spirit in the Eighteenth Century, Tore Frangsmyr, John Heilbron and Robin Rider, eds. 
(Berkeley CA: University of California Press, 1990). 

53 Other narrative forms developed in the nineteenth century, including that of the metaphys
ical novel, i.e., the search for an understanding of foundations of mathematics. Disputes 
over these issues sometimes made, broke, or redirected careers. 
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between mathematical and "natural" languages emphasize the syntactical richness 
of mathematics, while in "natural" languages contexts of meaning are far more 
important. When considering the annexation of the calculus by physicists in the 
nineteenth century, this neat distinction between syntax and semantics becomes 
somewhat clouded, yet remains useful. In the eighteenth century, mathematicians 
had developed the calculus through the solution to physical and other problems, 
themselves fraught, as we shall see, with semantic issues. For these mathematicians 
some semantic issues became battles over words as they transformed semantic 
problems into syntactical ones. A century later physicists set the developed calculus 
within a context of meaning, mechanics, related to that from which the calculus 
first emerged. Calculus provided them with a syntax developed, from their point 
of view, for their semantic needs. We cannot separate structure from meaning. 

Sometimes the structure of the language carried with it implications for the 
behavior of the physical world. Elsewhere, the syntax of the language shaped ideas 
about the behavior of physical systems. In other instances contexts of meaning 
overrode the stricter syntactical concerns of the mathematicians who had created 
the language, the calculus. For physicists, the structure of the language and the 
context of meaning converged and interacted with each other. In their treatment of 
mathematics, physicists rendered these languages closer to a "natural" language. 

None of the recent studies on the rhetoric and literary devices used in science, 
including mathematics, can account for its content. While some philosophers 
argue that metaphor is central to explanation, most recent studies of the languages 
of science focus on rhetorical issues either as social or cultural artifact.54 Content 
is secondary. Yet content matters if we are to understand how rhetoric shaped 
ideas and the development of theory. In the case of physics, content is necessary to 
examine why and how mathematics became the language of physics; what in the 
content of the calculus enabled physicists to develop their ideas about nature that 
were so much more difficult to accomplish when expressed in the vernacular. 55 

The above is only suggestive and not offered as a formal theory but as part of 
a heuristic explanation to understand some of the developments in physics in the 
eighteenth and nineteenth centuries. The process of transforming the methodolog
ically defined experimental physics of the eighteenth century into modern physics 
was, intellectually, one of annexation. It was the appropriation of the most devel
oped of the languages of mathematics, the calculus, as syntax and grammar for the 
creation of another language, that of theoretical physics. 

This appropriation was eased by the process mathematicians had used to create 
the calculus in the first place. Beginning with the specific imagery of mechanics as 

54 See the references in note 5. 

55 For metaphors see Mary Hesse, Models and Analogies in Science (Notre Dame: Notre 
Dame University Press, 1966). For a more recent study on language see Richard Rorty, 
Relativism and Truth (New York: Cambridge University Press, 1991). 
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a springboard into the exploration of the more general linguistic structures latent 
in the particular algebraic expressions of mechanics, mathematicians constructed, 
then explored those general linguistic structures. They used meanings and forms 
familiar later to nineteenth-century physicists. However, mathematicians did not 
use the results of the mathematical enquiries to reflect back upon interpretations 
of the physical entities with which they began their problem solving. In the eigh
teenth century interpretations and reinterpretations of force, and vis viva, for ex
ample, were metaphysical matters. Their existence as theoretical entities might 
emerge from experiment, observation or philosophical contemplation but having 
mathematical expression they lost all physical significance. Their function was 
mathematical, not physical. Experiment set up the terms from which mathemati
cians linguistic explorations began, and to confirm the correctness of the syntax 
and grammar that developed out of those explorations: experiment confirmed the 
mathematics, not the physics. 

Yet, the notion of mathematics as language is insufficient to explain the timing 
of the transformation process in the middle third of the nineteenth century. Why 
did this not happen in the eighteenth century? Both physicists and mathematicians 
had a common interest in problems of mechanics. However, in this era disci
plines were defined through practices exploited in the study of nature. Physicists 
used experiment and observation to explore nature and these defined their terms 
of engagement with problems, and of their solutions. Mathematicians used their 
own terms of engagement and methodologies to explore the same phenomena, and 
defined the solutions to those questions using criteria developed within mathemat
ics. At the end of the eighteenth century, within the French scientific community, 
this methodological core for physics was coupled with an attempt to repudiate the 
search for essences. This predisposition truncated any search for meanings and 
confined explorations of nature to description. Therefore, physique-mathematique 
was an extension of the calculus as a descriptive, not an interpretative, language 
for understanding the operations of nature. Given the standards and practices of 
mathematicians it was also mathematics, not physics. In these same decades, the 
implicit assumptions at the foundations of the calculus were forced into the open. 
This process of disclosure was initiated partly by external criticism and internal 
dissatisfactions with the syntax of the calculus, and challenges to the implicit limits 
of the language imposed by its practitioners. The foundations were reworked and 
the first formal and logically defensible form for the calculus emerged from that 
work. In France at least, these changes were not accompanied by the redrawing of 
the boundaries between mathematics and physics. 

Within the scientific communities of the German States and Britain, a search 
for essences was legitimate. Mechanics carried physical meanings deliberately 
avoided by the French. Because of these predispositions physique-mathematique 
seemed to physicists in Britain and Germany to promise solutions to physical prob-
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lems. Learning how to understand, use, then develop this language for the purposes 
of exploring nature viewed as a mechanism, meant the exploitation of this language 
in domains outside of its own self-reference. Learning included misunderstanding 
then replicating the standards of demonstration in physique-mathematique. Syn
tax, grammar and the method of extracting meaning from the language remained 
the same. The meanings themselves were changed by the needs of the new mechan
ical views of nature. The solutions offered by French mathematical methods were 
finally unsatisfactory in Germany and Britain. Practitioners of physics required 
explanations rather than descriptions of appearances. Mathematical solutions were 
given physical meaning. 

In other contexts historians have noted the transformation of language from one 
set of purposes into another. 56 In physics, the purposes of the language changed, 
from the expansion of the language to the interpretation of nature. The language, 
the calculus, was redirected outwards from the solution of problems set up within 
to the description of processes external to itself. The terms of expression were 
established by physical processes that also set the limits of development of the 
language. (This in tum opened to mathematicians further opportunities to explore 
aspects of the calculus that they had previously bypassed.) These borrowings 
between languages have continued into this century. 

From this process of annexation emerged a new language and literature, that of 
theoretical physics. Plots had changed. External elements, experiments, added 
sometimes unexpected twists to the narratives and as they developed the meanings 
of the initial elements could also change. Many of the characteristics of the math
ematical scheme of argument were carried over to the physical one. Mathematics 
could also obfuscate as well as clarify, intentionally at times, and used to claim ter
ritory rather than solve problems or answer questions. And as with any language, 
the issues of precision have to be separated from those of certainty. 

Organization of the Text 

The process of the transformation of physics is ordered but not completely 
explained by the annexation of mathematics. Experiment must be considered and 
how it became enmeshed in this new linguistic net. Some sense of the social 
opportunities that gave rise to this extraordinary change also needs attention. 

The narrative . is divided into three parts. In the first, a particularly revealing 
example, the first solution of the wave equation illustrates eighteenth-century dis
tinctions between the disciplines of mathematics and physics and differentiates the 

56 Garber, "Thermodynamics and Meteorology, 1850-1900," Ann. Sci. (1976): 51-65. In 
a more dramatic transformation, Darwin took language "used for hierarchical purpose 
and expression of dominance" and transformed "the same language and metaphor for 
purposes of integration rather than dominion." Gillian Beer, DarwinsPlots: Evolutionary 
Narrative in Darwin, George Eliot and Nineteenth Century Fiction (London: Routledge 
and Kegan Paul, 1983). 
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areas of competence of both disciplines in mechanics. These differences are then 
traced through other sciences as eighteenth-century meanings of mathematics and 
physics are explored in their intellectual and social manifestations. In the eigh
teenth century, the disciplines of science were defined by their methodologies, then 
by phenomena, and lastly by theoretical elements which were often metaphysical. 
These two chapters highlight the differences between eighteenth-century physics 
and mathematics and their modern counterparts. This approach serves to illuminate 
those characteristics of modern physics that were absent or that needed changing 
and then fusing together in the nineteenth century to create modern, theoretical 
physics. For our purposes the eighteenth century closes about 1790. 

The second section is devoted to exploring the period between 1790 and 1830. 
In this era Europe was redefined politically and the pursuit of science followed 
new patterns. This was especially true in France, or rather Paris, which became 
even more emphatically the center of European scientific life. In Paris the sciences 
changed in their social structure, the purposes for which the study of nature were 
pursued and the practices of research. While the foundations of mathematics were 
transformed, and the social world ofthe sciences changed, the boundaries drawn be
tween mathematics and physics still followed methodological lines. These changes 
had profound effects on disciplines in other societies and on scientific traditions 
elsewhere that were crucial for the later development of modern physics. Later 
we draw some conclusions about the "decline" of science in France during the 
nineteenth century. The narrative also looks at the communities and disciplines of 
physics and mathematics on the margins in Britain and the German States. This 
is to assess the boundaries and methods used in these disciplines and the impact 
of physique-mathematique on practitioners within the specific, yet fluid, social 
contexts. 

The final third of the text traces the development of theoretical physics in the 
universities of the German states and in Britain, 1830 to 1870. There was no one 
path to theoretical physics, and several versions were in place at the close of this era. 
It is as well to remember that physicists did not set out to create theoretical physics 
in our image. We recognized what they accomplished as theoretical physics after 
the fact. 

In an epilogue we trace the changes within theoretical physics from the estab
lishment of the German Empire to the first world war. Initially the disciplines 
of mathematics and physics drew apart. Some physicists claimed that all the 
mathematics physicists required was established by 1830. Mathematicians no 
longer did mathematics of interest to physicists. Face with the indifference of 
most mathematicians to the mathematics of physics, physicists developed forms 
of mathematics for their own purposes, i.e., vector algebra and statistical mechan
ics. We then examine the impact on the relationships between mathematics and 
physics, mathematicians and physicists, of Felix Klein's long-term campaign to 
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change his own discipline of mathematics. We conclude with a reassessment of 
the confrontation of Albert Einstein and David Hilbert over the theory of general 
relativity. 

What was meant by mathematics, its standards of proof, and definition of a 
solution to problems are discussed and contrasted with the standards and solutions 
of physics during the three periods of this narrative. The dynamic character of 
mathematics, and its meanings and its narratives, are as much a part of this inter
pretation of the development of modern physics as are the concepts that give shape 
to physicists' images of nature. 

The method is that of choosing salient examples through which to examine the 
transformation of experimental philosophy into physics. These range from the 
wave equation through Fourier analysis and elasticity, to papers in electrostat
ics, electrodynamics and electromagnetism. Besides keeping the narrative finite 
in length, limited examples keep the issues of a necessarily complex tale more 
clearly focussed. This approach also leaves space to include mention of essential 
social context. The sources are primarily printed, not private, papers. What we 
are exploring is the public face of mathematics and physics and how a group of 
practitioners created a new discipline out of its technical inheritance. In particular, 
it is important to follow the reactions of practitioners to solutions of problems 
in order to trace the grounds for dissatisfaction and improvement and how these 
were broadcast within the disciplines. Standards, methods and expectations of 
the members of those disciplines were communicated through public disputes and 
accepted solutions. Critiques and the terms of disagreements were crucial in sepa
rating disciplines and pinpointing violations of boundaries. All of these activities 
were done through the public voice in public forums. The private development of 
an individuals ideas is not an issue, unless letters were exchanged that show with 
some force disciplinary differences or boundary violations and reactions to those 
violations. We will find that there were and are important differences between 
the disciplines of mathematics and physics that altered over time. And, that the 
incorporation of mathematics into physics was and is historically contingent, de
pendent on a changing discipline of mathematics and hence on fluid languages of 
exploration and solution available to physicists to probe and interpret nature. 



Part I 

Eighteenth-Century Science 



Earlier generations pursued their own problems with their own 
instruments and their own canons of solution. 

- Thomas S. Kuhn 
The Structure of Scientific Revolutions, p. 141. 



Chapter II 

Vibrating Strings 

and Eighteenth-Century Mechanics 

Mathematics from Physics 

In the late 1740s an acrimonious dispute broke out between Jean Ie Rond 
d' AIembert and Leonhard Euler over the solution of the two-dimensional wave 
equation. The issues were the nature of legitimate mathematical functions, the 
definition of continuity, and differentiability. A description of this overheated 
exchange illustrates the relations between mathematics, metaphysics and experi
mental philosophy during the eighteenth century.l 

D' Alembert was not the first mathematician to focus on establishing mathe
matically, then solving, the equation of motion for a string under tension. In 
examining the problem, d' Alembert exploited the newly developed partial differ
ential equations. Apart from the general physical treatment he needed to establish 
the equations, d' Alembert 's work was an exercise in the development of the calcu
lus, an exploration of solutions to partial differential equations of a certain type. It 

1 For details of the mathematical issues involved and the opinions of Euler and d' AIembert 
see, Ivor Grattan-Guinness, From the Calculus to Set Theory (London: Duckworth, 1980), 
chap. 1, Jerome R. Ravetz, "Vibrating Strings and Arbitrary Functions," in The Logic 
of Personal Knowledge, (Glencoe II.: Free Press, 1961),71-88, and Clifford Truesdell, 
"The Rational Mechanics of Flexible or Elastic Bodies, 1638-1788," in Euler, Opera 
Omnia, series 2, vol. 11, part 2, (Bern: 1957),240-262, although Truesdell is too partial 
to Euler. Henk Bas also noted this partiality in H. J. M. Bos, "Mathematics and Rational 
Mechanics," in Ferment of Knowledge: Studies in the Historiography of the Eighteenth 
Century, G. S. Rousseau and Roy Porter, eds. (Cambridge: Cambridge University press, 
1980),327-355. For d'AIembert see Thomas Hankins, Jean d'Alembert: Science and 
the Enlightenment (Oxford: The Clarendon Press, 1970). Michel Paty, d'Alembert 
et son temps: Elements de biographie (Strasbourg: Universite Louis Pasteur, 1977) 
characterized d' Alembert's previous work in mechanics more as "a branch of mathematics 
than as an experimental science," in reference to d' Alembert, Traite de Mecanique (Paris, 
1743). See also Hankins, "Introduction," to Traite. See also, G. F. Wheeler and W. P. 
Crummet, "The Vibrating String Controversy," Amer. J. Phys. 55 (1987): 33-37. 
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was not the physical expression, in mathematical form, of the motion of a vibrat
ing string. What d' Alembert proposed to demonstrate for a string under tension, 
using Taylor's conditions, was that "there are infinitely many curves other than 
the companion of the elongated cycloid [sine curve] that satisfy the problem in 
question.,,2 Starting from Brooke Taylor's work, d' Alembert focussed on Taylor's 
expression for the accelerating force on an element of the string, T{3, where {3 
was the curvature and T the tension in the string. Using Newton's second law, 
d' Alembert constructed solutions to expressions for the accelerating force on the 
string that were equivalent to solving the wave equation,3 

using eighteenth-century notation. There were obscurities in d' Alembert's argu
ment but this was an attempt to introduce time into the solution to the problem of the 
motion of a vibrating string. While the physical reasoning was vague, d' Alembert 
concentrated on the functional solution,4 

y = 1jf(t + s) + D.(t - s), 

This expression included the "infinity of curves" d' Alembert promised. He pro
ceeded to demonstrate their existence and explore the mathematical nature of the 
functions, 1jf and D. a,nd their relationship for a string held taut and fixed at both 
ends, for which, 5 

y = 1jf(t + s) + 1jf(t - s). 

2 Taylor's condition was that the acceleration of the oscillating body was proportional to 
its distance from its equilibrium position, i.e., simple harmonic motion. Jean Ie Rond 
d' Aiembert, "Recherches sur la courbe que forme une corde tendue mise en vibration," 
Mem. Acad. Sci. Berlin 3 (1747) [1749]: 214-219, p. 214, and "Suite des recherches sur 
la courbe que forme une corde tendue, mise en vibration," same journal, 220-249. 

3 D' Aiembert did not use modern notation but he manipulated his expressions as the partial 
differential equation, 

a2 y T 82 y 
at2 = p 8s2 · 

See S. S. Demidov, "Creation et developpement de la tMorie des equations differentielles 
aux derivees partielles dans les travaux de J. d' Aiembert," Rev. Hist. Sci. 35 (1982): 3--42 
and Steven B. Engelmann, "D' Alembert et les equations au derivees partielles," Dix-huit. 
saxle 16 (1984): 7-203. Notation remained remarkably fluid until the late nineteenth 
century. See Florian Cajori, A History of Mathematical Notations, (Chicago: Open Court 
Press, 1929.) 

4 For a discussion of d'Aiembert's derivation of the equation of motion and its problems, 
see Hankins, d'Alembert, and Ravetz, "Vibrating Strings." 

5 D' Aiembert obtained this solution through a change of coordinates, not the method 
of separation of variables. D' Alembert called this "the method of multipliers." For 



Eighteenth-Century Mechanics 33 

Initially Leonhard Euler critiqued d' Alembert's assumptions that the vibrations 
were infinitely small so that the length of the string stayed constant and that, as 
it moved, the string formed one continuous curve. Simultaneously, Euler was in
tent on establishing the equation of motion with his own method by examining 
the balance of forces in an element of string under tension. He then turned to 
d' Alembert's handling of the initial shape of the curve. For Euler, this shape deter
mined all future motions and subsequent shapes of the curves that formed solutions 
to the equation of motion. The first motions given the string were continued in
definitely. By restricting this to analytical, i.e., geometrically continuous curves, 
d' Alembert omitted curves. At this point Euler could not offer a reasonable, gen
eral mathematical argument to counter d' Alembert's restriction. He could only 
restate his assumption that at any time, "the state of vibrations following depend 
on those preceding, and are determined through them; reciprocally by the state 
of those following, one can conclude the disposition of those which preceded." 
Therefore, if 

y = f(x + t.Jb) + f(x - t.Jb), 

then, in Euler's general solution, the form of the curve also "will represent the 
figure given to the cord at the beginning of the motion."6 

Euler rederived d' Alembert's solution but stated that it was defined only within 
the interval 0 S x s e. He then explored the properties of his function f, finding 
it periodic and odd, and extended the range of his solution to £ S x S 2£, and 
so on. If the curve was continuous, "eel-like," it would cut the axis at an infinite 
number of points. One such curve was 

Jr X 2Jr X • 3Jr X 
Y = a sin- + f3sin-- + Y Slll-- + ... 

£ £ £ 

where 2£ was the length of the cord. However, a trigonometric series was not the 
most general solution to this partial differential equation since it could not duplicate 
the initial shape of the plucked string.7 In this statement Euler was addressing the 
solution to the wave equation of a third protagonist, Daniel Bernoulli. 

discussions, see Demidov, "Creation," J. R. Ravetz, "Vibrating Strings," and Grattan
Guinness, From Calculus. D' Alembert was not the first to refer to families of curves 
rather than a generalized functional solution to a partial differential equation. See Steven 
B. Engelmann, Families of Curves and the Origins of Partial Differentiation (Amsterdam: 
North-Holland, 1984). 

6 Leonhard Euler, "Sur la vibration des cordes," Mem. Acad. Sci. Berlin 4 (1748) [1750]: 
69-85, trans. from Nova Acta Eruditorum (1749): 512-527, reprinted in Euler, Opera 
Omnia series 2, vol. 10: 63-78, p. 64 and p. 72 respectively. 

7 See Louise Ahmdt and Robert William Goliard, "Euler's Troublesome Series: An Early 
Example of the Use of Trigonometric Series," Hist. Math. 20 (1993): 54-62, and Victor 
Katz, "The Calculus of Trigonometric Functions," Hist. Math. 14 (1987): 311-324. 
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D' Alembert's paper stimulated Euler to reconsider his ideas on continuity and on 
the nature of mathematical functions. For d' Alembert, an analytic representation 
of the string may not always be possible. If it was possible, this "generating 
curve" in his terminology was arbitrary, periodic, and odd, which meant that it 
must represent some real mechanical case. The string was continuous. If it was 
not analytically representable d' Alembert claimed "the problem was insoluble." 
To be analyzable all the curves representing the string had to be differentiable. 

Euler never questioned the form of the wave equation, only the necessity of 
limiting the initial, arbitrary form of the curve and hence its final solution to such 
"eel-like" functions. In this debate Euler explored discontinuous functions. In 
this case he extended functions beyond their original intervals of validity. How
ever, neither mathematician could definitively demonstrate the validity of their 
approach.8 Within the language and concepts available to the calculus in 1750, 
things were at an impasse. The polemic became a restatement of successful ex
tensions of the notion of the function by Euler and the less successful ones on the 
part of d' Alembert. 

The dispute was complicated by the role d'Alembert was beginning to play in 
the politics of the Berlin Academy of Sciences. Euler was acting, unpaid head of 
the Academy, a position in which Frederick II would not confirm him. Frederick 
the Great's francophilia was a disadvantage the Swiss Euler could never overcome. 
While Euler's letters to bureaucrats, diplomats, and the politically powerful were 
duly deferential and contain the leaven of Academy gossip, they are straightfor
ward, if sometimes prejudiced. However, there was no lightness of touch, wit or 
bite in his comments, virtues which d' Alembert had in abundance. Euler's posi
tion in Berlin became more precarious with the Konig affair. When d' Alembert 
was approached about becoming the next president of the Berlin Academy, Euler's 
comments about him became more strident, and he began the negotiations that 
would lead him back to St. Petersburg. The thought of d' Alembert descending on 
Berlin, gaining the ear of Frederick the Great and disposing of the Academy at will 
was too much to bear. From Euler's point of view, even though d' Alembert did 
not become president, "some other Frenchman would.,,9 

8 See Euler, "Sur la vibration." D' Alembert's reply to Euler's initial critique is in d' Alem
bert, "Addition au memoire sur la courbe que forme une corde tendue, mise en vibra
tion," Mem Acad. Sci. Berlin 6 (1750): 355-360, where he in turn critiqued Euler's 
first paper. He reiterated his definition of the necessary geometric continuity for the 
curves in d' Alembert, "Recherches sur les vibrations des cordes sonores," in Opuscules 
Mathematiques (1761), vol. 1, 1-73. Euler's rejoinder appeared as Euler, "De motu 
fili ftexilis, corpusculis quotcumque onusti,"Novi Comm. Acad. Sci. Petropolitanae 9 
(1762-63): 215-245. 

9 See Euler to Milller, April 1763, in Paul Heinrich von Fuss, compo Correspondance 
mathematique et physique de quelques celebres geometres du xviiie siecle (New York; 
Johnson Reprint of 1843 edition, 1968), vol. 2, p. 215. For Euler on d' Alembert, see vol. 
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The importance of this dispute here is that the arguments were over mathematical 
questions raised in solving a partial differential equation. The origins of the equa
tion lay in a physical problem, but its solution did not. The focus of d' Alembert's 
and Euler's attention, the fights over authority, and jostling for position were all 
in the discipline of mathematics. The social locus of the solution lay within the 
Berlin Academy and patronage of the Prussian state. From this time on most of 
d' Alembert's and some of Euler's mathematical energies, apart from occasional 
skirmishes over the vibrating string problem, were turned to exploiting partial 
differential equations, the new area of the calculus so vividly illustrated by the 
vibrating string problem. lO 

Ignoring Physics 

D' Alembert, Euler, and later Lagrange continued to argue over the mathematical 
issues surrounding the wave equation. Unanimously they ignored an alternative 
vision of the problem and its solution put forward by Daniel Bernoulli. Bernoulli 
stood apart from the other mathematical members of his clan, and from other math
ematicians and physicists of his generation. He also had a long, and complicated 
relationship with Euler. Bernoulli's work encompassed experiments on vibrating 
bodies of many kinds from which he teased their equations of motion. In this he 
was more successful as an experimentalist than as a mathematician. As his ex
periments developed, they provided him with solutions to the equations of motion 
of some elastic bodies that were deeply at odds with those of his mathematical 
peers. Despite these differences, Bernoulli's work on vibrating strings cannot be 
separated from that of mathematicians concerned with figures of equilibrium and 
the motion of flexible bodies in general, or from the work on the mathematical 
analysis of musical instruments. 

Early in their mathematical careers Bernoulli and Euler published and corre
sponded with one another on the catenary problem. They both tried to find the 
principle analogous to the isoperimetrical solution to the catenary problem for 
other flexible bodies. Bernoulli suggested that for "elastic lamina," some power of 
the radius of curvature must be a minimum for the lamina to hang in equilibrium. 

2, p. 71. For his style, see also his letters to Miiller on candidates for the St. Petersburg 
Academy, and his letters to the chaplain to Frederick, Prince of Wales in vol. 3. 

10 D' Alembert's later mathematical work appeared in nine volumes, d' Alembert, Opus
cules Mathematiques, (Paris, 1761-1780). See Demidov, "Creation," for d'Alembert 
and partial differential equations. Euler's work on partial differential equations culmi
nated in Euler, Institutiones Calculi Integralis, (St. Petersburg, 1770). See Demidov, 
"The Study of Partial Differential Equations of the First Order in the Eighteenth and 
Nineteenth Century," Arch. Hist. Exact Sci. 27 (1982): 325-350. A short account of the 
history of partial differential equations is in J. Liitzen, "Partial Differential Equations," in 
Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences, 
Grattan-Guinness, ed. (London: Routledge, 1994),2 vols., vol. 1: 452-469. 
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The discussion led him to propose that the vis viva of the body must be a minimum. 
Not being able to demonstrate this, Bernoulli asked Euler for help.ll 

From his experiments Bernoulli had already deduced the oscillations of a ver
tically hung chain. Through a geometrical analysis of their oscillating forms, he 
reached the idea of simple modes and proper frequencies. 12 His first published 
account of this work, a mathematical paper, contained a number of theorems on 
the oscillations of bodies hung along a horizontal, flexible thread. He assumed 
Taylor's condition and expressed his results in the form of the length of a simple 
pendulum oscillating with the same period as the body under examination. Taking 
two bodies hung on a string, Bernoulli illustrated two possible types of motion. 
This expanded to three with three bodies suspended along the string. He then 
leaped from this case to a heavy chain, arguing that the chain moved in an infinity 
of ways to execute the vibrations he observed in his experiments. 

These and his other "theorems" were assertions, without proofs, along with 
"Scholia" that were paragraphs on his experiments that illustrated his assertions. 
This method of argument was a less rigorous form of Newton's techniques in the 
Opticks. For the chain, Bernoulli characterized each motion by the number of 
points of intersection of the chain with the vertical during its motion when the 
excursion of the free end is at its greatest. He also drew an analogy between this 
motion and that of a taut string, concluding that "experiment shows that in musical 
strings there are intersections similar to those of vibrating chains." 

Bernoulli's theorems were geometrical descriptions derived directly from exper
imental data, although they were written as if they were affirmations of theoretical 
results. In his second paper Bernoulli used these geometrical results and applied 
them to the case of two, then three bodies. He assumed the system was constrained 
and used the balance of forces to find their accelerations. From this and Taylor's 
condition, Bernoulli deduced their displacement from the vertical. At any point 
along the string, measured from the top down, the angle of contact was d 2 y / ds 2, 

where y was the horizontal displacement. The accelerating force became 

f dy dy 
d ds - (i - s)d ds 2 

which was set proportional to y. Changing variables from s to x = i - s, where 
i was the length of the string, Bernoulli obtained a linear differential equation 

n dydn +nx ddy = -y ddx, 
----------------------------

11 This discussion began in correspondence after Daniel Bernoulli left St. Petersburg and 
returned to Basel. See Fuss, Correspondance, vol. 2 and Enestrom, "Der Briefwech
sel zwischen Leonhard Euler and Daniel Bernoulli," Bibliotecha Mathematica, series 3 
(1906-1907): 126-156. 

12 Daniel Bernoulli, "Theoremata de oscillationibus corporum filo ftexili connexorum et 
catenae verticaliter suspensae," Comm. Acad. Sci. Imp. Petropolitanae, 6 (1732-33): 
108-122, and, "Demonstrationes theorematum suorum de oscillationibus corporum filo 
ftexili connexorum et catenae verticaliter suspensae," same journal, 7 (1740): 162-173. 
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where n was a proportionality constant. This was the form of the curve. There 
was no sense in his solution that the shape of the curve changed in time. 

Even before the publication of Bernoulli's second paper, Euler became interested 
in the problem and analyzed the case of a flexible, loaded string in the same way. 
He reiterated Bernoulli's results and mathematically went beyond them. 13 

Thus far, neither Bernoulli nor Euler caught the dynamical character of the 
phenomenon. Although Euler's mathematical vision was clearer, Bernoulli un
derstood that the principle of proper modes applied to all vibrating systems. He 
was already concentrating on experiments with musical instruments. By Septem
ber 1736 he claimed that, "I have quit mathematics almost completely, and if it 
was not demanded by my relationship with the Academy [St. Petersburg] I would 
abstain completely." Even allowing for hyperbole, this reflects the direction of 
his work. In his letters to Euler he discussed experiments and mathematical ex
pressions that emerged from them rather than purely mathematical issues. In the 
eighteenth-century experimentalists, such as Bernoulli and their results established 
the expressions from which emerged algebraic relationships that mathematicians 
then manipulated into "equations of motion." These equations of motion offered 
new opportunities to explore and extend the ca1culus. 14 

Bernoulli continued to report his own mathematical findings on the oscillations 
of strings, while Euler attacked the problem of elastic bodies through their equations 
of motion. At each point Bernoulli asked Euler's opinions of his ideas and Euler's 
solutions to problems of mutual interest. Initially, the tone of the letters was 
informal and an easy continuation of their relationship in St. Petersburg. Gossip 
was in French, with German as the main language that merged into Latin for 
technical discussions. However, their interaction was more complex than one 
of long-distance cooperation. Both were intensely ambitious and rivals for the 
same prizes, literally and figuratively. The correspondence contained statements 
of problems and results, no methods. The latter were matters for publication. IS 

The increasingly acrimonious rivalry between Daniel Bernoulli and his father 

13 Euler, "De oscillationibus fiJi ftexilis quotcumque ponduscuJis onusti," Comm. Acad. Sci. 
Imp. Petropolitanae, 8 (1736): 30-47. Details of Euler's derivation are in Truesdell, 
"Rational Mechanics," 162-165, and H. F. K. Burckhardt, "Entwicklungen nach oscil
lirenden Functionen und Integration der differential Gleichungen der mathematischen 
Physik," Jahresber. dtsch. Math. Verein, 10 pt. 2 (1901-1908). 

14 Bernoulli to Euler, September 1736, in Fuss, Correspondance, vol. 2 p. 434. See also 
Bernoulli to Euler, March 1739, Fuss, vol. 2, p. 456. In his November 1740 letter to 
Euler Bernoulli discussed the fundamental frequencies of pipes of different lengths, Fuss, 
vol. 2, p. 465. O. B. Sheynin also argues that Euler treated physical problems as purely 
mathematical ones. See Sheynin, "Euler's Treatment of Observations," Arch. Hist. Exact 
Sci. 9 (1972): 45-56. 

15 This correspondence is important for establishing directions of research and when each 
participant actually reached certain results. Publication of papers could be delayed up 
to a decade depending on the sponsoring Academy. Their order of publication does not 
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Johann complicated matters further, especially after Daniel learned through Euler 
of some his father's hydrodynamic work. Father and son sought Euler's support 
in their dealings with one another and Euler tried to treat them evenhandedly. Sci
entifically, they were both useful to him. Although Daniel Bernoulli's treatise on 
hydrodynamics had appeared years earlier, Euler sent his opinions on Daniel's Hy
drodynamica to him within days of doing the same for Johann on his Hydraulica. 16 

Daniel Bernoulli respected Euler and usually accepted his mathematical opinions 
without demur. However, he considered Euler's work "abstract." It did not de
scribe the real world. And, over the theory of the oscillations of vibrating systems 
and musical instruments, there was a profound rupture between the two men. 

Much of the Euler-Daniel Bernoulli correspondence was on the mutually inter
esting problem of the vibrations of "elastic lamina" fixed horizontally at one end. 
Bernoulli asked Euler whether the vis viva for elastic lamina must be a minimum or 
would the body move spontaneously? Euler replied that such curves must follow 
an extremum principle but what he wanted from Bernoulli was how to determine 
"the quantity of potential forces that lie in the bendings" of the lamina. 17 It is clear 
here, and elsewhere, that the two depended on one another, Bernoulli on Euler for 
guidance with his mathematics, Euler on Bernoulli for his understanding of the 
physical phenomenon from which he began his mathematical explorations. How
ever, the two together did not produce a mechanical understanding of the vibrations 
of "lamina," in which physical theory, expressed in the language of mathematics, 
was joined to experiment, and where the direction and depth of the mathematical 
development was bounded by the needs of the physical imagery. As their work 
developed they saw each other as rivals and stood more and more in opposition to 
each other. They offered alternative solutions, each of which excluded the other. 

By 1740 Bernoulli experimentally had distinguished the simple motions of 

reflect the development of the research. 

16 In his treatise on hydrodynamics, Hydraulica, Johann Bernoulli claimed that his son's 
hydrodynamics was based on his idea of vis viva. He also claimed to have composed his 
treatise before Daniel published the Hydrodynamica. Daniel Bernoulli on his part com
plained bitterly to Euler that his father's mathematics was based on his unacknowledged 
physical work. Indeed where Johann Bernoulli needed physical intuition, he argued 
incorrectly. See Daniel Bernoulli, Hydrodynamica and Johann Bernoulli, Hydraulica, 
trans. Thomas Carmody and Helmut Kobus (New York: Dover, 1968). Johann Ber
noulli 's comments on the shortcomings of his son's work are in his letter to Euler, March 
1739, that included the first part of his own treatise. In his letter accompanying the 
second part, August 31, 1740 he again discussed the superiority of his methods, and in 
September 1741 continued his litany of complaint. See Fuss, Correspondance, vol. 2, 
19-20, p. 43, and p. 73. Daniel Bernoulli's letters to Euler on this issues are, November 
1740, September 1741, September 1743, in Fuss Correspondance, vol. 2, p. 463, p. 475, 
and p. 530. 

17 Bernoulli to Euler, 7 March 1739, Fuss, Correspondance, vol. 2, p. 457 and Euler to 
Bernoulli 5 May, 1739, p. 459. See also Enestrom, "Der Briefwechsel." 
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strings (fundamentals or overtones) from motions made up of "irregular vibra
tions." Only the former lasted any time, the latter dying away as the string "soon 
composes itself to the curvature necessary for isochronous motion.,,18 The fol
lowing year Bernoulli connected the sounds emitted by elastic lamina to their 
isochronous motions. Isochronous motions were connected with clear sounds that 
lasted, irregular motions with obscure sounds that die away quickly, sometimes to 
"clear, free sound." By this date he also noted: 

It is extraordinary that elastic lamina give out different tones depending 
on how they are supported; they have their nodes, upon which they must 
be supported in order to emit clear tones etc. Otherwise these tones are 
indeed as the inverse squares of the lengths of the lamina of different 
lengths and similarly supported. But not only the ratio of the sounds 
but also the absolute sound may be derived for a lamina of given length, 
weight, elasticity. 

Bernoulli also asked Euler's help with a mathematical problem, to find the "poten
tial vis viva" for a lamina bent into a given curve, or the motions that would restore 
it to equilibrium. The question Bernoulli wanted answered was the curve, such 
that the lamina had the least "potential vis viva." Euler answered this and other 
mathematical questions, and, because of delays in the publication of the journals 
of the St. Petersburg Academy his solution, published in Geneva, appeared in print 
before Bernoulli's statement of the problem.19 

Bernoulli did not see his own papers of 1741 until after October 1753, by which 
time he was writing to Euler through an intermediary. The politics that delayed the 
appearance of the St. Petersburg Academy's journals also led to Euler's departure 
for Berlin. He thus missed the treatise on hydrodynamics and papers on sound 
sent by Daniel Bernoulli. At the same time Daniel Bernoulli was trying to deal 
with his father's upstaging of the same treatise. While stiffly assuring Euler of his 
continued esteem, Bernoulli complained of the delay in the appearance of his work, 
and of others (Euler and d' Alembert) that had already appeared in the Memoires 
of the Berlin Academy. If Euler no longer wanted his work for St. Petersburg, he 
would send them elsewhere. In addition, Bernoulli had ready a memoir on the 
vibrating strings problem that would "explain everything difficult or in any way 
mysterious in this subject, making it in fact very simple." This was a jab at the 

18 Bernoulli, "Commentationes de oscillationibus compositis praesertim iis quae fiunt in 
corporibus ex filo flexili suspensis," Comm. Acad. Sci. Imp. Petropolitanae, 12 (1740): 
97-108. 

19 Bernoulli to Euler, 28 January, 1741 in Fuss, Correspondance, vol. 2 p. 469. Euler 
published his solution as an appendix in Euler, Methodus inveniendi lineas curvas maximi 
minimive proprietate gaudentes (Geneva: 1744), "Additamentum I De curvis elasticis." 
For details of Euler's work see Truesdell, "Rational Mechanics," 192-219. Truesdell sees 
the exchange purely in terms of the mathematics involved and characterizes Bernoulli as 
"whining" about Euler's mathematical success while slacking off himself. 
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already available mathematical solutions of Euler and d' Alembert. He was sending 
this paper to the Berlin Academy.2o 

There were other differences. Euler wanted to deduce the curve of a lamina 
under load, a static problem, and trace its elasticity until its breaking point. Ber
noulli was interested in the motions of laminae, not their equilibrium properties. 
Mathematically he followed their motions using the balance of moments. The 
goals of his analysis were ultimately to deduce the form of the curve they traced 
as they moved isochronously, and hence obtain their frequencies of oscillation and 
compare them with the frequencies of a simple pendulum. Bernoulli deduced the 
form of the curve from the differential form, 

where G was the force on the lamina, c was the amplitude of the oscillations at the 
free end of the lamina, and m a constant determined by experiment. The y axis 
ran along the lamina, with displacements in the x direction. Bernoulli gave two 
solutions to this differential equation, one in series form, 

where ex, {3, y and 8 were arbitrary constants. 
Initial conditions and other limitations on the problem allowed Bernoulli to 

express this in a form already known from Euler's work, 

y = aex /! + bex /! + h sin arc (~ + n) 
[ 

where 1/[4 = G / m4c. Using special conditions, Bernoulli obtained values for the 
coefficients in each term and from these deduced the result that the frequency of 
the oscillations of the lamina varied inversely as the length of the lamina squared. 
He then compared his mathematical results to the clear tones emitted by lamina 

20 The delayed papers were, Bernoulli, "De Vibrationibus et So no Laminarum Elasti
carum, Commentationes Physico-Geometricae," Comm. Acad. Sci. Imp. Petropolitanae, 
13 (1741) [1751]: 105-120, and "De Sonis Multifariis quos Laminae Elasticae Di
versmode edunt disquisitiones Mechanico-Geometricae Experimentis Acusticis Illus
tratae et Confirmatae," same journal, 167-196. While both Bernoulli and Euler continued 
to publish in the St. Petersburg journals, Euler was always careful to keep in close touch 
with the remaining members of the Academy. Bernoulli's comments on the vibrating 
strings problem are in Bernoulli to Johann III Bernoulli (probably), 7 October 1753, in 
Fuss Correspondance, vol. 2. See also Truesdell, "Rational Mechanics," p. 254. 
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themselves. That is, he compared his mathematical results to the fundamentals 
for lamina of various lengths and the frequencies of the emitted tones. Bernoulli 
recognized that the equation of condition from which his frequencies were deduced 
had an infinite number of roots each of which corresponded to a different L, where 
L = gc / G , g is the acceleration due to gravity, and L the length of the equivalent, 
simple pendulum oscillating with the same frequency.21 

In his second paper Bernoulli explored the implications of these results for the 
motions of lamina and the sounds they could emit. He concluded that clear sounds 
coexisted, and their motions never interfered with one another. He claimed to have 
seen and heard three or four simultaneous sounds and their motions in one lamina. 
Bernoulli thus expressed the principle of superposition.22 He understood the phys
ical importance of this result and later called it a new mechanical principle and 
used it to defend his trigonometric series expression for the motion of the vibrating 
string. His evidence was experimental, not mathematical. His experiments made 
his analysis plausible. 

Subsequently, Bernoulli reconsidered the simple modes of a weighted string 
using a static method. The modes were combined to fit arbitrary initial displace
ments with zero velocities. He succeeded in solving the problem only for two and 
three masses. From this he extended the analysis to all small, reciprocal motions. 
He clearly treated his solution for the form of the curve, a trigonometrical series, 
as including all possible curves. By using arbitrary constants the curve could be 
made to go through any assigned points. At the same time the equation displayed 
the isochronous vibrations of the string. In a letter to his brother Johann, Bernoulli 
first expressed his solution to the equation of motion of the vibrating string as a 
sine series 

~ . x 
Y = LUnsmmr-e' 

In his letter he explicitly asked whether this solution contained all possible "curves." 
It is clear that Daniel Bernoulli thought so because through the use of arbitrary 
constants the curves would pass through "any points we please." Here was a com
bination of a physically determined, mathematically flexible solution. Inelegant, 
clumsy but in this case it worked.23 

21 Bernoulli, "De Vibrationibus." 

22 Bernoulli, "De Sonis Multifariis." 

23 The series appeared in Bernoulli to Johann II Bernoulli (probably), undated, Fuss, Cor
respondance, vol. 2. 653-655. Fuss dated this letter between 1754 and 1766. Truesdell 
narrowed the dates to between 1754 and 1755. See Truesdell, "Rational Mechanics," p. 
257. Truesdell argues that this letter was meant for Euler. Bernoulli's series appeared in 
Bernoulli, "Refiexions et eclaircissemens sur les nouvelles vibrations des cordes expo sees 
dans les memoires de I' Academie de 1747 et 1748," Nouveaux Mem. Acad. Sci. Berlin 9 
(1753) [1755]: 147-172. In a second paper Bernoulli applied the principle of superposi
tion. Bernoulli, "Sur Ie melange de plusieurs especes de vibrations simples isochrones, 
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The virtues of Bernoulli's work were experimental and physical, while the math
ematical analysis was unsatisfactory. One can sympathize with Euler's neglect of 
Bernoulli's mathematical work. Bernoulli's papers were usually in the form of 
theorems, whether the subject matter of the theorem was mathematical or experi
mental. Proofs might or might not follow. On the theorems he then hung a series 
of corollaries in which he explored the implications of the original theorem. The 
scholia were descriptions, tantalizingly brief, of experiments where he demon
strated the results of his theorems and their implications. Bernoulli gave no data 
or the formulae that transformed that data into the results confirming the theorems. 
He sketched a general method and the confirmation of the theoretical results. The 
"geometrical" aspect, the "mathematical proof" of the theorems were in separate, 
usually later papers and mathematically as incomplete as the descriptions of the 
experiments.24 His mathematical abstractions are geometrical descriptions of ex
perimental situations. In all his proofs the concrete particulars of the experiment 
are clearly before the reader. His mathematical methods are clumsy, limited, and 
inadequate to the task, although suggestive and physically correct. 

His father Johann, brother Nicholaus, and Euler clearly were in a different math
ematicalleague. Time and again Daniel Bernoulli could present physical problems 
to them in a form that highlighted the mathematical implications of the physical 
experiments he was currently engaged in. At the same time he would describe 
his experiments that impinged on the mathematical solutions to the equations of 
motions that emerged from his earlier experiments that demonstrated the truth of 
his mechanical ideas. Often he left the mathematics in mid course, as in the case 
of a vibrating chain, and asked Euler to complete it. However, Bernoulli's usual 
deference to Euler's authority broke down in the case of vibrating strings. 

On his part, in the case of the vibrating string, Euler could not reconcile Ber
noulli's physical insights with the promise of d' Alembert's mathematics. Euler 
tried to retain all the abstract, general, yet physically arbitrary quality of his own and 
d' Alembert's work, while admitting that it would be embarrassing to be "pulled 
down by a simple physical consideration." To retain his own mathematical so
lution, he argued that Bernoulli's solution, in terms of a trigonometrical series, 
was incomplete. He also indicated that, when the number of terms in Bernoulli's 
trigonometrical series became infinite, it seemed doubtful that the curve of the 
string would consist of an infinity of sine waves. Each term clearly was indepen
dent of the others. Euler also could not accept a physical limitation to the solution, 
of what was to him, a mathematical problem. Bernoulli's infinite sine series, 

nx 2nx 3nx 
y = a sin- + f3sin-- + y sin-- +"', 

a a a 

did not include all the possible curves. In addition, the initial curve of the string, 

qui peuvent coexister dans un meme sysU:me de corps," same journal: 173-195. 

24 For example see, Bernoulli, "Demonstrationes theorematum." 
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as it was plucked, was quite arbitrary and the above equation might never reduce 
to that initial form. 

These remarks followed Bernoulli's papers in the same Academy journal where 
Bernoulli set out his sine-series solution, his experiments and illustrations of su
perposition. Bernoulli declared that a series made up of sine curves was the only 
expression that represented simple, isochronous, regular vibrations of the kind Eu
ler and d' Alembert claimed to establish in their general, mathematical solutions. 
All vibrating strings, fixed at both ends, must move either in their fundamental 
mode or in an overtone, of which there were an infinite number, or in a mixture of 
these motions. As he understood them, Euler's and d' Alembert's solutions were 
simply made up of mixtures of the type that all conform to the conditions set out by 
Taylor. However, Bernoulli could not demonstrate these contentions mathemati
cally and could only argue by analogy, using the evidence gleaned from musicians 
and his own work on the behavior of musical instruments.25 

While claiming to admire the mathematical abilities of both d' Alembert and 
Euler, Bernoulli described their analyses as "arbitrary" and apt to surprise rather 
than to enlighten. They paid no attention to the simple vibrations of cords, or to 
the actual motions of real cords. The latter die away quickly unless they move as 
he, Bernoulli, had described. In particular he could not grasp what d' Alembert 
"intended to say with his infinitely, isochronous vibrations and curvatures," par
ticularly since he was always so abstract and never gave specific examples. While 
finding in the two mathematicians' papers the "most profound analysis," they ap
peared to Bernoulli arbitrary, "without synthetic examination of the question, and 
they have not led to its clarification." The actual vibrations of strings confirmed 
his trigonometric solution to the problem and by experiment he had confirmed the 
"mixture of vibrations in one and the same sonorous body which are absolutely 
independent of one another." He went on to compare this principle with that of the 
"composition of motion." 

For Bernoulli, mathematics had become an adjunct to experiment. In a letter 
to Euler during this controversy, Bernoulli closed the matter by saying that he 
"took his proofs from nature, not some principle of analysis." His understanding 
of the phenomena restricted the possible mathematical solutions of the equation of 
motion for the vibrating string. 

Such restrictions never entered into the mathematical discussions of d' Alembert 
or of Euler. Bernoulli could not make his assertions about the results of his ex
periments, the motions of strings, and the sounds of musical instruments mathe
matically sensible. He could not, therefore, change the terms in which the two 

25 Euler's critique of Bernoulli and further remarks on discontinuous functions appear in 
Euler, "Remarques sur les memoires precedentes de Mr. Bernoulli," Nouveaux Mem. 
A cad. Sci. Berlin 9 (1753) [1755]: 196-222. The papers to which Euler refers are 
Bernoulli, "Refiexions," and "Sur Ie melange." 
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mathematicians carried on their debate. They could both safely ignore him. In 
later papers Bernoulli could only reiterate his belief in his trigonometric series 
solution, and that it was the general one since it contained "an infinity of arbitrary 
quantities that make the curve pass through any given points that you wish, and 
one can identify this curve to one proposed by them to any degree of precision as 
one wishes.,,26 

The different approaches of Euler and Daniel Bernoulli are illustrated further in 
their exchanges over the science of music. Bernoulli thanked Euler for his treatise 
on the subject but noted that his mathematical deductions were not recognized by 
musicians or experimentalists, like himself, and did not represent the harmonies 
actually in use. He then went on to give Euler a lesson on the actual tuning of 
musical instruments.27 

For Euler and d' Alembert, the solution to the problem of the vibrating string re
volved around the meanings of the terms "continuity" and "function." D' Alembert 
required the function representing the curve of the string to be geometrically con
tinuous and analytical in form. Only such a function could be a "general" solution 
and contain all other possible solutions. Euler's criteria for the function was less 
rigorous, but mathematically more imaginative. The functions might be contin
uous only in certain intervals, or might be any arbitrary curve that might not 
meet d' Alembert's criterion of differentiability.28 The debate was argued solely in 
mathematical and metamathematical terms. They both abandoned further physical 
considerations of the vibrating string as a guide to the solution of the equations 
of motion. Reference to the physical problem that was the seed bed for this 
mathematical challenge was abandoned. Daniel Bernoulli's suggestion of using 
a trigonometric series solution to the wave equation already carried mathematical 

26 Bernoulli, "Lettre de M. Daniel Bernoulli a M. Clairaut au sujet des nouvelles decouvertes 
faites sur les vibrations des cordes tendues," J. des S~avans (March 1758): 157-166, p. 
157. See also, Bernoulli, "Memoire sur les vibrations des cordes d'une epaisseur inegale," 
Mem. Acad. Sci. Berlin 21 (1765): 281-306, p. 283. 

27 H. Floris Cohen, Quantifying Music: The Science of Music in the First Stage of the Scien
tific Revolution (Boston MA: Reidel, 1984) notes that Euler's theory of consonance and 
those of other mathematicians was "largely abstracted from physical and physiological 
considerations and went back to operations with number," p. 237. There was no physical 
theory of consonance until the work of Hermann von Helmholtz in the nineteenth cen
tury. See also Albert Cohen, Music in the French Royal Academy of Sciences (Princeton 
NJ: Princeton University Press, 1981) and Jamie C. Kassler, "The 'Science' of Music to 
1830," Arch. Int. Hist. Sci. 30 (1990): 111-135. 

28 Historians have traced mathematicians' understandings of functions in Jerome R. Ravetz, 
"Vibrating Strings," Grattan-Guinness, Foundation, A. P. Iushevich, "The Concept of the 
Function," Arch. Hist. Exact Sci. 16 (1976): 37-85, Pierre Dugac, "Des fonctions comme 
expressions analytiques aux fonctions representables analytiquement," in Mathematical 
Perspectives: Essays on Mathematics and Its Historical Development Joseph Dauben, 
ed. (New York: Academic Press, 1981), 13-36. 
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baggage that, in the context of eighteenth-century mathematics, demonstrated to 
mathematicians his lack of mathematical sophistication.29 

Why is this not a simple example of Mathematician meets Experimentalist? The 
familiar misunderstandings of goals and methods presented here are met in such 
disputes in the late nineteenth and twentieth centuries. However, in the eighteenth 
century the space between mathematician and experimentalist was empty. Theo
retical physicists did not flourish. There was no audience for the kind of analysis 
Daniel Bernoulli was suggesting, and no community of researchers sharing the 
same approaches to problems in experimental physics with his expectations and 
standards for their solution. His experimental work and results on vibrating strings, 
lamina, heavy chains, and musical instruments found a ready audience within the 
discipline of experimental natural philosophy. 3D It was Bernoulli's mathematical 
deductions that caused critical comments and rebuttals. His mathematical ap
proach to solving the vibrating strings problem found no such ready audience. 
It drew experimentalists beyond the simple, algebraic or geOinetrical expressions 
drawn from experimental results, that is if the experimentalists were even willing 
to go beyond putting their numerical data in more than tabular form. However, in 
the 1740s, there were not many doing even that. His solution was unsatisfactory 
for mathematicians because it fell within the boundaries of the calculus. In the 
technical terms of that discipline, the solution seemed to limit the very generality 
of solution mathematicians sought. Bernoulli transgressed disciplinary boundaries 
trying to open up a middle ground between the two. 

Daniel Bernoulli's work is isolated among both experimental philosophers and 
mathematicians. Mathematicians could safely ignore his remarks on the limited, 
physically possible, motions of vibrating bodies. D' Alembert and Euler, whatever 
they quarreled over, and their differences were deep, agreed on methodology. 
Neither could conceive of the kind of solution that Daniel Bernoulli laid claim to 
in using his experimental results. Implicit in their comments was a continuity of 
solutions, and hence a continuous spectrum of mathematically possible vibrations. 
Bernoulli was squeezed out of this particular dispute. However, almost as quickly, 
their own solutions were upstaged by the magisterial mathematical solution to the 
problem of vibrating strings by the young, ambitious mathematician, Joseph Louis 
Lagrange.3! 

29 During the eighteenth century there was no general proof for the convergence of infinite 
series of sines or cosines. Mathematicians sought functional equivalents to such se
ries. See Grattan-Guinness, Foundations, Victor Katz, "The Calculus of Trigonometric 
Functions," Hist. Math. 14 (1987): 311-324, and L. A. and R. W. Golland, "Euler's 
Troublesome Series." 

30 See Cohen, Music in the French Royal Academy. 

31 Joseph Louis Lagrange, "Recherches sur la nature, et la propagation du son," Misc. 
Taurin, 1 (1754): 1-112, and "Nouvelles recherches sur la nature et la propagation du 
son," same journal, 2 (1760-1761): 11-172. Reprinted in Oeuvres de Lagrange (Paris: 
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Lagrange's work on the problem was the culmination of over a century of math
ematical attention to vibrating strings. Historically, however, investigations of 
vibrating strings cannot be isolated from mathematicians' attention to the motions 
of elastic bodies in general or the development of the calculus.32 Lagrange's work 
encompassed the motions of elastic bodies, one of the mathematically simplest of 
which was that of the vibrating string. The roots of the modern problem lay in 
Marin Mersenne's experiments and his deduction from those experiments of the 
algebraic relationship between frequency of sound emitted by the string, its length, 
and the tension in the string. Brook Taylor was the first mathematician to deduce 
Mersenne's expression from the geometry of the string and the mechanics of con
sidering it as a row of rigid particles. Arguing, reasonably, without reference to any 
specific experiments, Taylor established that when the string's displacement from 
the equilibrium position was small, the vibrations of the string were isochronous, 
i.e., the acceleration of the string towards its equilibrium position was as its distance 
from that position. From this he deduced the "time of vibration," v, 

where 2£ was the length of the string, T the tension, and a a constant. He then 
constructed the equation of motion for the midpoint of the string, treating it as a 
simple pendulum of length U. Using fiuents and neglecting higher terms, Taylor 
found the equation for the form of the string,33 

. x 
y = U Slll-. 

a 

As well as deducing a form for the curve of the string, Taylor laid down the 
assumptions for subsequent mathematical derivations. However, there was no 
search for a curve that changed in time. The derivation was static.34 

While Taylor remarked that the shape of the curve of the string was a sine curve, 
he did not use this physical result in any way to restrict his mathematics. Yet 

Gauthier-Villars, 1867), 14 vols., vol. 1,39-148 and 151-316, respectively. 

32 For the role of elasticity in the development of the calculus see, Clifford Truesdell, 
"The Influence of Elasticity on Analysis," Bull. Amer. Math. Soc. 9 (1983): 293--310. 
This is also implicit in discussions by historians of eighteenth-century mathematics; see, 
Grattan-Guinness, From Calculus, and Foundations. 

33 Brook Taylor, "De motu nervi tensi," Phil. Trans. R. Soc. London 28 (1713): 26-32. See 
L. Feigenbaum, "Brook Taylor and the method of Increments," Arch. Hist. Exact Sci. 34 
(1985): 1-140. 

34 In 1716 Jakob Hermann (1678--1733) developed an alternative derivation. However, 
Taylor's was influential in the subsequent mathematical history of the problem. For 
Hermann, see Truesdell, "Rational Mechanics," p. 86. 
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significantly, and separately, Taylor apparently performed a number of experiments 
that agreed with this result. 35 These experiments confirmed his mathematical, not 
his physical results. Experiments substantiated the results of mathematics, not a 
physical theory. 

Further mathematical development that set the pattern for thinking about vibrat
ing strings came from Johann I Bernoulli. He accepted Taylor's basic conditions 
for setting up the problem and his assumption of a weightless string hung with mass 
points. Bernoulli complained that Taylor's derivation was not rigorous enough. 
He had only considered a finite number of weights and had not taken this number 
to infinity, that is, he was not careful in considering a continuous string. Bernoulli 
looked at the force on the kth particle for k = 1 to k = 6 obtaining the vis viva 
in each case. Redoing the problem from the point of view of statics, Bernoulli 
generalized to the continuum case to arrive at Mersenne's rule, and recognized the 
resulting form of the curve as sinusoidal, "an elongated trochoid.,,36 

While both Taylor's metaphysics and mathematics were unsatisfactory to Ber
noulli, neither could tackle the dynamics of the problem to establish the equation of 
motion of the string. To do so required that the mathematician handle a differential 
equation in more than two variables, to be bold enough,to create and solve partial 
differential equations.37 In addition, some mathematician needed to translate the 
static analysis of a chord under tension into the dynamics of vibrating motion. That 

35 See, John T. Cannon and Siglia Dostrovsky, The Evolution of Dynamics: Vibration 
Theory from 1687 to 1742 (New York: Springer-Verlag, 1981). 

36 Johann I Bernoulli, "Theoremata selecta pro conservatione virium vivarum demonstranda 
et experimenta confirmanda excerpta ex epistolis datis ad filium Danielem," Comm. 
Acad. Sci. Imp. Petropolitanae, 2 (1727): 200-207. Proofs appeared in the following 
volume in Bernoulli, "Meditationes de chordis vibrantibus, cum pondusculis aequali 
intervallo a se invicem dissitis, ubi mimirum ex principio virium vivarum quaeritur 
numerus vibrantionum chordae pro una oscillatione penduli datae longitudinis," same 
journal, 3 (1728): 13-28. 

37 The history of the calculus up to the work of d' Alembert is in Florian Cajori, "The 
Early History of Partial Differential Equations," Amer. Math. Monthly 35 (1928): 459-
467. John L. Greenberg, "Mathematical Physics in Eighteenth-Century France," Isis, 
77 (1986): 59-78 discusses the early hostility then acceptance of the calculus in Paris, 
and in Greenberg, "Alexis Fontaine's Integration of Ordinary Differential Equations and 
the Origins of the Calculus of Several Variables," Ann. Sci. 39 (1982): 1-36 explores 
the development of the calculus from Johann I Bernoulli and Maupertuis to Alexis
Claude Clairaut. S. S. Demidov examines the history of partial differential equations in 
Demidov, "La naissance de la theorie des equations differentielles aux derivees partielles," 
Proceedings of the xiv International Congress of the History of Science 2 (1974): 111-
113 and in Demidov, "The Study of partial differential Equations of the first Order in 
the Eighteenth and Nineteenth Centuries;' Arch. Hist. Exact Sc. 26 (1982): 325-350. 
For the overall development of the calculus see, Carl B. Boyer A History of the Calculus 
(New York: Dover, 1959). 
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mathematician was d'AJembert.38 D'Alembert had already exploited partial dif
ferential equations in his Traite de dynamique and in his essay in the causes of the 
winds, which captured the prize of the Berlin Academy for 1746. Euler, already in 
Berlin, had access to this essay but did not see the significance of its mathematical 
methodology for other areas of mechanics. Neither did Daniel Bernoulli. 

Having worked on problems in the motions of elastic bodies, both Euler and 
Bernoulli were overtaken by d' Alembert's fresh approach in a paper that was 
significant for their work on a particular problem and for the development of the 
calculus. Given the interest taken by mathematicians in the problems of elastic 
bodies, any solution tendered to the vibrating strings problem was bound to lead 
to disputes. What is of relevance here is that all the issues that emerged and the 
battles waged were totally within the domain of the discipline of mathematics. 
Once issues were accepted as belonging to the discipline of mathematics, physical 
considerations could be and were ignored, to the detriment of Daniel Bernoulli's 
reputation. 

Lagrange's papers cemented the mathematical approaches to solving the vibrat
ing string problem and established the basis for any future work. Physics was 
firmly excluded. And there for decades, the matter rested. For Lagrange, as for 
Euler and d' Alembert, sound and the vibrating string was a means of furthering 
the calculus by solving the wave equation. Lagrange also had to persuade his 
colleagues that his solution encompassed more than previous ones, and that his 
methods of arriving at that solution, were more judicious than those of his predeces
sors. However, Lagrange was more ambitious than this. In his papers on sound, he 
intended to establish a new foundation for the calculus using Taylor's theorem.39 

The new foundation would allow him, so Lagrange contended, to solve a num
ber of equations previously unsolvable and to extend his work to discontinuous 
functions. 4o The means to achieve these mathematical goals were the mathematics 

38 See d' Alembert, "Recherches sur la courbe," "Suite des Recherches." For how these 
papers fit into the development of the calculus see Demidov, "Creation et developpement 
de la theorie des equations differentielles aux derivees partielles dans les travaux de J. 
d' Alembert," Rev. Hist. Sci. 35 (1982): 3-42. 

39 For details of Lagrange's goals, see Grattan-Guinness, Foundations. For Lagrange's 
continuing interest in the foundations of the calculus see Judith Grabiner, The Origins of 
Cauchy's Rigorous Calculus (Cambridge MA.: MIT Press, 1981). See also Craig Fraser, 
"Joseph Louis Lagrange's algebraic Vision of the Calculus," Hist. Math. 14 (1984): 38-
53, "The Calculus as Algebraic Analysis," Arch. Hist. Exact Sci. 39 (1989): 317-335, 
and "Lagrange's Analytical Mathematics," Studies Hist. Phil. Sci. 21 (1990): 243-256. 

40 Lagrange's early interest in discontinuous functions also emerged in his correspondence 
to Euler. See Lagrange, Oeuvres vol. 14, Correspondance, letters to Euler of August 
1758 and October 1759. Mter Lagrange's paper on vibrating strings Euler's work on 
discontinuous functions appeared in Euler, "De motu vibratorio fiJi fiexilis, corpusculis 
quotcunque onusti," Novi Comm. Acad. Sci. Petropolitanae, 9 (1762-1763): 215-245, 
"EcJairissemens sur Ie mouvement des cordes vibrantes," Misc. Taurin, 3 (1762-1763): 
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of sound and in particular, the mathematics of the motions of vibrating strings. His 
paper on the subject was thus very complicated as well as discursive. Lagrange 
located in Turin, was young, and yet to make his mark in mathematics. He had to 
demonstrate that he understood the history of the problem, the points of view of 
his predecessors, and their limitations. That is, Lagrange needed to take care of 
all his footnotes. To make his new approach to the calculus plausible, Lagrange 
needed to transcend d' Alembert's restrictions on functional solutions to the wave 
equation and go further than Euler in developing alternative, functional solutions. 

Lagrange began, as did his predecessors, by considering a number of weights 
strung along a weightless string which was then plucked. Starting with the case 
of one body then two then n bodies and letting n ~ 00, he obtained the wave 
equation.41 

With a new method of integration Lagrange reached a general solution which 
he gave in the form of two integrals of a series of products of sines and cosines. 
This result allowed Lagrange to reject d' Alembert's solution. His own ideas on 
functions were less restrictive than d' Alembert's. However, Lagrange was also 
convinced that series solutions were not legitimate. Therefore, he argued for 
Euler's approach, on which he expanded at some length. He was also confident 
that Euler had gone only part of the way in exploring discontinuous functions. He 
needed to construct a functional solution that would include his series solutions. 
In the process he hoped to confound Daniel Bernoulli. His ultimate functional 
solutions in the form of exponentials were reached through exuberant displays of 
algebraic manipulation. 

Both Lagrange and Euler elaborated on their interest in discontinuous functions. 
In both cases, pulses running along cords was the illustrative example that launched 
these mathematical explorations.42 In this relationship both gained a powerful ally. 
For Lagrange, the support of Euler, the premier mathematician of Europe, was im
portant at the beginning of his career. For Euler, the support from a mathematician 
of such potential was welcome in his battles against the French in Berlin. Lagrange 

27-59, "Sur Ie mouvement d'une corde, qui au commencement n'a ete ebranlee que 
dans une partie," Mem. Acad. Sci. Berlin, 21 (1765): 307-334, "De chordis vibrationibus 
disquisito ulterior," Novi Comm. Acad. Sci. Petropolitanae, 17 (1772): 381-409, "Con
sideratio motus plane singularis qui in filo ftexili locum nature potest,"Novi Acta Acad. 
Sci. Petropolitanae, 2 (1784): 103-120. See also, Lagrange, "Recherches sur la nature 
et la propagation du son." 

41 Lagrange was not just considering a vibrating string but the propagation of a pulse through 
an elastic medium. The vibrating string was a simple example of this general problem. 

42 Lagrange was already known to Euler through correspondence. In 1754 they began 
corresponding on new methods of calculating maxima and minima as well as other issues 
in the calculus. See Craig Fraser, "J. L. Lagrange's Early Contributions to the Principles 
and Methods of Mechanics," Arch. Hist. Exact Sci. 28-29 (1983-84): 197-242. See 
also, Jean hard, "Lagrange, Joseph Louis," in Diet. Sci. Bio. Charles C. Gillispie, ed. 
(New York; Scribners, 1971), 14 vols., vol. 7,559-573. 
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was a mathematician whose talents Euler recognized early. 
In Lagrange's opinion, Daniel Bernoulli's offense was that of solving a math

ematical problem "by a kind of induction," but never demonstrating the result 
rigorously. While Bernoulli's analysis might work for a finite number of bodies 
strung along a weightless cord, it was insufficient for an infinite number of such 
bodies, the continuum case of the cord itself. 

The change that this formula undergoes in passing from one case to 
the other is such that the simple motions which make up the absolute 
motion of the whole system destroy each other for the most part, and 
those that remain are so disfigured and altered as to become absolutely 
unrecognizable.43 

Although he offered no evidence for such an inference, Bernoulli's theory of super
position, while ingenious and somewhat useful, was "false in the principal case." 
Lagrange was not the first mathematician to dismiss the principle of superposition. 
D' Alembert had argued that the secondary oscillations were not truly isochronous 
with the primary. Bernoulli was wrong.44 

Bernoulli's standards of demonstration were irrelevant to mathematicians. And, 
given the contemporary state of understanding of infinite series, Bernoulli had no 
method of demonstrating, that his trigonometric series would converge, or that it 
was the most general solution available in terms acceptable to mathematicians. 
Bernoulli was left with an intuitive argument that, if particles of the string moved 
sinusoidally, how could we describe their motion other than with the same kind of 
series. 

John Greenberg has documented in great detail a case analogous to that of 
the vibrating string in the disputes over the shape of the earth.45 The original 
mathematical problem arose within Newton's Principia. Newton reasoned that 
measurements taken with a seconds pendulum indicated that the earth was not a 
sphere. His own ideas on how to tackle this problem were scattered through the 
theorems and lemmas of the Principia and did not constitute a coherent attack on the 
central mathematical problem. By the time it was of interest to the mathematicians 
of the Academie des Sciences in Paris, it was also enmeshed in metaphysical 
issues, forced by Newtonians in the Academie. The Academie mathematicians 
transformed the problem into a mathematical one through the intermediary of 
mechanics, considering as had Newton, the equilibrium shape of a rotating mass 

43 Lagrange, "Nouvelles recherches sur la propagation du son," p. 107. 

44 Most historians of mathematics see Lagrange's 1759 paper as closing mathematical 
discussion on the vibrating strings question for some twenty years. See Grattan-Guinness, 
Foundations and Ravetz, "Vibrating Strings," p. 86. 

45 John Greenberg, The Problem of the Earth's Shape from Newton to Clairaut: The Rise 
of Mathematical Science in Eighteenth-Century Paris and the Fall of "Normal" Science 
(New York: Cambridge University Press, 1995). 
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of fluid. In addition, the struggles of mathematicians to understand and then solve 
the equations of this problem were materially involved in the development of the 
calculus in the 1730s and 1740s. Not the least accomplishment was the translation 
of some of Newton's geometrical proofs in the Principia into the language of the 
continental calculus. 46 

Once mathematicians had translated the problem into their terms, the solution 
and debates over those solutions stayed within mathematics. Pierre-Louis Moreau 
de Maupertuis attacked Pierre Bouguer's metaphysics (Cartesian) as well as his 
mathematics. Clairaut returned to Newton's original work. The case of the shape 
of the earth differs from that of the vibrating string in that values for the ellipticity 
of the earth were known. Indeed Maupertuis had led a highly publicized expedition 
to Lapland to measure the length of the angular unit of length along a meridian in 
1735. Before the expedition to Lapland, Maupertuis published articles on how the 
shape of the earth could. be deduced from the rate of increase of the arc of latitude 
along a meridian. He also published on the implications of the measurements, 
but these were colored by the polemic over whether nature was Newtonian or 
Cartesian.47 These were distinct from his mathematical papers on the shape of 
the earth. Maupertuis' mathematical work on the problem was considerably less 
successful than his observations. He defined the mathematical problem as the 
equilibrium shape of a rotating two-dimensional fluid. His solution was in terms 
of arbitrary constants that led to a generating curve for two ovals.48 However, the 
results of measurement and those of mathematics were hardly compatible. The 
mathematicians set the observations aside lightly. Maupertuis did not connect this 
mathematical problem with his astronomical and geodesic measurements. 

For Clair aut, also on the Lapland expedition, the problem of the shape of the 
earth opened a mathematical gold mine. He considered the equilibrium of fluids in 
general and the equilibrium form of a rotating mass of fluid in particular. Clairaut 
assumed the equilibrium figure to be an oblate spheroid and examined a series 
of such nested spheroids of different densities rotating about a common axis. He 

46 On Newton see Greenberg, Shape of the Earth, 119-120. On the more general issue of 
the development of the calculus in this era, see chaps. 7, 8. 

47 See Maupertuis, "Sur la figure de la terre et sur les moyens que l'astronomie, et la 
geographie fournissent pour la determiner," Mem. Acad. Sci. Paris (1733): 153-164, "Sur 
la figure de la terre," same journal, (1735): 98-105, and Examen desinteressee des 
differents ouvrages qui ont he faits pour determiner fa figure de fa terre (Oldenberg, 
1738). 

48 Maupertuis, Discours sur fes differentes figures des astres (Paris, 1732), Maupertuis, 
"De figure quas Fluida rotata induere possant," Phil. Trans. R. Soc. London (1733): 
240-256, and "Loi du repos des corps," Mem. Rist. Acad. Sci. (1740): 170-176. For a 
detailed discussion of Maupertuis' mathematics, see Greenberg, "Mathematical Physics 
in Eighteenth-Century France," Isis, 77 (1986): 59-78, and Shape of the Earth, chap. 5, 
and chap. 7, 243-258. 
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also assumed that these mathematical ellipsoids represented the earth.49 Clairaut 
worked on the problem over a long period of time and his physical understanding 
of how to establish his initial equations grew. While in this sense "mechanics 
and mathematics interacted in his work," he treated the equations after they were 
established solely as problems in the calculus. At the same time he developed 
solutions to partial differential equations, opening up more of the possibilities of 
the calculus. 

That the results from the Lapland expedition did not agree with his mathematical 
deductions did not interfere with Clairaut's assumptions or the exercise in math
ematics that this problem presented to him. Clairaut could only compare the two 
through various technical devices. In his opinion there were inevitably errors of 
observation which, if properly attended to, would bring the empirical results closer 
to his mathematical deductions. He seemed unperturbed by the discrepancies. 

This hardly seems the reaction of physicists. Maupertuis saw the issue as meta
physical and mathematical. Clairaut soft peddled the metaphysics, yet the problem 
remained mathematically bounded. Neither tried to find a physical explanation for 
the discrepancies their mathematical methods had uncovered. Neither wondered 
how the their physical model, a rotating mass of fluid, could be made plausible 
as well as mathematically possible. Greenberg sees the problem as physical and 
Clairaut as solving a physical as well as a mathematical problem. However, he 
notes that Clairaut's practices do not fit either Kuhn's description of belonging 
to the mathematical or experimental traditions in physics. Nevertheless, as he 
demonstrates, the mathematical solutions to the problem have no bearing on its 
solution as physics. That was indeed observational and he does not follow the 
observational history of the problem throughout the remainder of the eighteenth 
century. Neither of the main actors behaved as we might expect from a physicist, if 
we can impose the standards of twentieth century behavior on eighteenth-century 
figures.5o Points of dispute between the contestants here, along with others such 
as d' Alembert, were mathematical. 

Clairaut reverted to similar arguments in his later commentary on Newton's law 
of gravitation. He criticized Buffon's defense of Newton as phenomenological and 
dependent on observation. As a mathematician, he was free to explore several laws 

49 Clairaut, Theorie de fa figure de fa terre, tiree des principes de f'hydrostatique (Paris, 
1743). See also, Greenberg, "Breaking a "Vicious Circle." Unscrambling A.-c. Clair
aut's Iterative Method of 1743," Hist. Math. 15 (1988): 228-239 and Shape of the Earth, 
chaps. 6 and 9. Greenberg considers Clairaut's place in the development of the calculus 
in chaps. 7 and 8. It is well to remember that the reduction of the data was not done by 
Clairaut. 

50 Greenberg, Shape of the Earth, 626. He likens Clairaut's work to that of Heisenberg 
and Feynman in the twentieth century, both of whom reinvented aspects of mathematics 
for their physics. However, the physical implications explicit in the twentieth century 
examples are absent in Clairaut. 
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of attraction not open to "physicists." Mter arguing the impossibility of gravitation 
as a property of matter, Clairaut introduced reasoning used by other mathematicians 
later in the century. He accepted Kepler's laws as observationally grounded and 
from them deduced Newton's law of gravitation, thus using observation both ways 
to satisfy his own metaphysical position.51 

Eighteenth-century quarrels over the shape of the earth do not reduce easily to a 
problem within theoretical physics with the neat outcome of justifying Newtonian 
gravitational theory. No set of ideas was expressed mathematically, then explored 
along lines dictated by the limitations of the physical model. In the case of math
ematicians, when mathematical results were compared to observational ones, and 
from our point of view found wanting, mathematical methods were relegitimated 
and those of the opposing discipline, experimental physics, devalued, to maintain 
the disciplinary autonomy of mathematics. 

Eighteenth-Century Mechanics and the History of Physics 

There is, of course much more to the history of mechanics in the eighteenth cen
tury than the vibrating string problem and its solution. As metaphysics, mechanics 
gave both mathematicians and experimental philosophers the principles on which 
to argue the validity of their solutions to mathematical and experimental problems. 

Historians of the calculus agree that, in the eighteenth century, physical problems 
were the starting point for a great deal of the construction of new differential and 
partial differential equations.52 The solution of these equations were the means by 
which mathematicians developed the calculus.53 

51 Philip Chandler, "Clairaut's Critique of Newtonian Attraction: Some Insights into his 
Philosophy of Science," Ann. Sci. 32 (1975): 369-378. 

52 As well as Greenberg other historians of mathematics have stated this explicitly such as, 
Henk Bos, "Mathematics and Rational mechanics," in Ferment of Knowledge Rousseau 
and Porter, eds. 327-355, Grattan-Guinness, Foundations, and From Calculus to Set 
Theory, Grabiner, Origins, and, Clifford Truesdell, "The Influence of Elasticity on Anal
ysis." 

53 This begins early. Newton's fluxions emerged from his mechanics. Questions of me
chanics exercised Johann I Bernoulli and other early developers of the calculus. Of the 
mathematicians mentioned in this chapter see, Euler, Mechanica sive motus scientia an
alytica exposita (St. Petersburg, 1736), 2 vols. The calculus of variation began similarly 
in the consideration of mechanical problems by Newton, Leibniz, Brook Taylor, Johann 
I Bernoulli then Daniel Bernoulli amongst others. As a branch of the calculus Euler 
systematized it in Euler, Methodus Inveniendi Lineas Curvas Maximi Minimive Propri
etate Gaudentes (St. Petersburg, 1744). For a brief account see Craig Fraser, "Calculus 
of Variations," Encyclopedia of Hist. Philos. Math. vol. 1, 342-350. See also H. H. 
Goldstine, A History of the Calculus of Variations (New York: Springer Verlag, 1980). 
For the technical developments in mechanics see, A. T. Grigorian, "On the Development 
of the Variational Principles of Mechanics," Arch. Int. Rist. Sci. 18 (1965): 23-35. 
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Once mathematicians developed a sure grasp of a new extension of the calculus, 
they would explore it solely as a branch of the calculus; in our case, discontinuous 
functions.54 In a short time mathematicians could formulate questions within the 
calculus without reference to physical problems at all. Most eighteenth-century 
mathematicians continued to find inspiration in the puzzles set by physical situa
tions and processes while also developing the calculus on more abstract grounds. 55 

Both setting up the equations of motion for a broad range of problems in me
chanics and then solving them defined much of the activity of eighteenth-century 
mathematicians. These two activities afforded the mathematician an opportunity to 
display technical proficiency and the occasion to establish a career or enhance a rep
utation. However, both steps were subject to technical and metaphysical challenges 
from other mathematicians. The important characteristic of eighteenth-century 
mathematics here is that both steps lay in mathematics, once the mathematical 
terms of the problem were determined. 

The principles of mechanics were never fixed during the eighteenth century and 
became a metaphysical battleground for mathematicians. Mathematical problems 
derived from real physical situations guaranteed that solutions existed. Experi
ments, therefore, validated mathematical deductions. Proper derivations of equa
tions of motion and hence their solution depended upon establishing the truth of 
certain physical principles. However, these metaphysical arguments were necessar
ily without closure. The metaphysical terms of mechanics became the opportunity 
for mathematicians to parade alternative conceptual approaches to reaching the 
same equations of motion, or the terms of their solution. This accounts for much 
of the discursive nature of many mathematical papers in this period and into the 
early nineteenth century. Many mathematicians began the problem from scratch, 
discussing the merits of this or that principle versus some other approach, thus 
demonstrating to his satisfaction that earlier attempts to arrive at the sought af
ter equations of motion were flawed fundamentally. Metaphysical quarrels could 
be over whether Newtonian force, conservation of vis viva, or various minimum 

54 Both Lagrange and Euler did both. Their work discussed here led them into new channels 
of mathematics which they then explored as mathematics, not as outcomes of the prob
lems of mechanics. See Fraser, "J. L. Lagrange's Changing Approach to the Foundations 
of the Calculus of Variations," Arch. Hist. Exact Sci. 32 (1985): 151-191. Lagrange, 
Mecanique Analytique (Paris: 1788) was a text on the the calculus and partial differ
ential equations pertinent to mechanics. See also S. B. Engelmann, "Lagrange's Early 
Contributions to the Theory of First Order Partial Differential Equations, " Hist. Math. 
7 (1980): 7-23. Daniel Bernoulli's and Euler's work on the oscillations of lamina led 
Euler to a general framework for the solution of n-th order differential equations. See 
Demidov, "On the History of the Theory of Linear Differential Equations," Arch. Hist. 
Exact Sci. 28 (1983): 369-387. See also Demidov, "The Study of Partial Differential 
Equations of the First Order." 

55 The first mathematician historians accept as working completely with problems set by 
mathematics alone without reference to physical problems was Adrien Marie Legendre. 
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principles were the legitimate starting point for understanding the motions under 
discussion. 

Because the disputes were metaphysical, their terms lay outside of the particular 
problem under discussion, became bitter, and led nowhere. d' Alembert dismissed 
the vis viva controversy as a war of words. However, they were words conveying 
meanings beyond their supposed descriptions of physical reality.56 The idea of 
the Principle of Least Action was based on characteristics of God's creation, not 
on any analysis of how bodies move. In Pierre Maupertuis' words, "the quantity 
of action necessary to cause any changes in nature are the smallest necessary." 
And Maupertuis proceeded to apply this principle to the whole of animate and 
inanimate nature.57 In these metaphysical disputes the physical foundations for 
establishing the mathematical problem connected the mathematical solution to 
the real world and on this hinged the fundamental correctness of the solution. 
Metaphysics mattered. 

Once a particular form of an equation of motion was established, mathematicians 
would reach that same equation despite differences in metaphysics. However, the 
physical content of these deductions of the equations of motion was a hit and 
miss affair. Physical arguments might-and at times were-beautifully succinct and 
clear. Sometimes they were obscure and difficult to follow, other times they were 
fudged. The main point of the exercise was attainment of the mathematical form 
of the equations of motion. 

The derivation of the equations of motion and their solution were contests over 
technical issues as well. Confrontations erupted over the path a mathematician took 
from experiment or observation to the equations of motion, rarely the form of the 
resulting equations. The next step was to solve them, technically bettering one's 
predecessors. And here, as we have seen with Euler, d' Alembert, and Lagrange, 
metamathematical principles could enter into determining the completeness of 
solutions. In both steps, metaphysical and technical considerations lay within 
mathematics. No other kinds of considerations were needed in setting up or in 
solving differential equations of all kinds. Above all, there was no return to the 

56 For d' Alembert on the vis viva controversy, see Hankins, "Eighteenth Century Attempts 
to solve the vis viva Controversy," Isis, 56 (1965): 281-297, and d'Alembert. See also 
David Papineau, "The Vis Viva Controversy," Stud. Rist. Phil. Sci. 8 (1977): 111-
142, and J. Morton Briggs, "d'Alembert: Philosophy and Mechanics in the Eighteenth 
Century," University of Colorado Stud. (1964): 38-56. For Euler's metaphysics, see 
Jean Dhombres, "Les presupposes d'Euler," Rev. Rist. Sci. 40 (1987): 179-202, and 
Stephen Gaukroger, " Euler's Concept of Force," Brit. 1. Hist. Sci. 15 (1982): 132-154. 

57 For the principle of Least Action see Pierre Brunet, Etude historique sur Ie principe de 
la moindre action (Paris: Hermann et Cie, 1938), p. 6, Philip Jourdain, "The Nature 
and Validity of the Principle of Least Action," Monist, 23 (1913): 277-293. See also 
A. Kneser, Das Prinzip der Kleinsten Wirkung von Leibniz his zur Gegenwart (Leipzig: 
Teubner, 1928). 
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mechanical problem that sparked the whole discussion. In generating their general 
solutions, mathematicians were not required to interpret the physical implications 
of any of their intermediate or final mathematical results. For mathematicians the 
equations of motion were mute on what they contained in terms of how mechanical 
systems moved. Their solutions contained nothing on the characteristics of physical 
systems that they chose to explore. 

Daniel Bernoulli's appeals to experiment to guide the solution to the problem 
were simply irrelevant. The annexation of the problem and solution by mathemati
cians is emphasized by their actions once they grasped the mathematical principles 
behind linear differential and first order partial differential equations and variational 
calculus. They reversed the order of the methods of solution and the problems that 
gave rise to them both in the sense of their primacy and their place in their accounts. 
Mathematicians produced texts that treated the equations that related to physical 
problems as derivative of the mathematical techniques these problems had given 
rise to initially. Lagrange's examination of vibrating strings ended debates on 
some mathematical aspects of the legitimacy of discontinuous functions. Mathe
maticians then focussed on discontinuous functions without reference to vibrating 
strings except as an illustrative example. 

Many mathematicians working on so-called physical problems had as their goal 
was the reduction of physics to mathematics. The most well-known of these 
was Lagrange, who wanted mechanics to become a new branch of analysis. 58 For 
d' Alembert, mechanics was a completely deductive mathematical system untainted 
by any hint of experiment. Euler was far more tolerant of experiment and more 
attentive to the results of experimentation, but his work on physical, astronomical, 
and engineering problems was mathematical and deductive.59 

Euler and other mathematicians used experiment to determine the initial con
ditions of a problem from which the equations of motion would then be derived. 
In the example chosen here, the experimental starting point was Mersenne's rela
tionship between frequency of sound, tension in a plucked string, and its length. 
However, the derivation of the equations of motion were matters of analysis, based 
on metaphysical principles that were less, rather than more, connected to observa
tions of the actual motions of bodies. The instance in which experiment had the 
most effect on eighteenth-century mathematicians were the collision experiments 
of Willem Jakob van 'sGravesande. Yet the mathematicians' discussions of how 
to express the results of those experiments in mathematical form focussed on the 
metaphysical issue of the notion of "force" and its mathematical expression.60 

58 Lagrange Mecanique Analytique, "Introduction." 

59 For d' Alembert on the relation of mathematics and mechanics, see T. Hankins, d'Alem
bert, Briggs, "d' Alembert," and Gary Brown, "The Evolution of the Term' Mixed Math
ematics'," 1. Hist. Ideas, (1991): 81-102,87-94. 

60 For Leonard Euler see Truesdell, "The Rational Mechanics," and, "Euler's Contribution 
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Abstract physical problems of bodies in motion, at rest, or in collision, were 
not the only launch pad into the new mathematics. More practical problems of 
fortifications, annuities, the probability of events being accidental versus the result 
of imminent causes, the actual paths of the planets, the shape of the earth, were 
all used to display mathematical ingenuity and to extend the calculus. How much 
understanding of the behavior of real bodies in flight, at rest, in collision, or the 
construction of annuity tables, or of empherides came from all this mathematical 
activity is another matter. This was not a question of striking the correct balance 
between mathematical abstraction and the concrete needs of a solution designed 
to examine real conditions. Solutions to the equations were mathematically the 
most general possible the particular mathematician was able to deduce, unhindered 
by the special conditions presented by the physical assumptions or model used 
to set up the equations in the first place. Nor, in the case of empherides were 
mathematicians hindered by the needs of observational astronomers. The quality 
of those solutions were judged by mathematical not physical criteria or the practical 
implications of the solutions. All kinds of mathematical devices were used to 
squeeze out solutions: Changes of variables, the use of arbitrary functions or 
constants, lopping off series when mathematically convenient, without a hint of 
how these techniques related to physical processes or imagery. Conspicuously 
absent were discussions of specific restrictions to solutions that suggested possible 
experiments. If observations or experiments led to results contrary to mathematical 
analysis, arguments were presented so that they could be discounted. 

The physical problem of the vibrating string is just one example among many in 
the eighteenth century that lead to a number of conclusions about the disciplines 
of physics and mathematics. Once a problem was expressed mathematically, such 
as an algebraic relation between measurable experimental quantities, the problem 
was lost to physics and experiment. All subsequent investigation of the problem 
lay within the discipline and competencies of mathematicians. Such research was 
subject only to the values, methods and tests of mathematicians as to sufficiency 
and completeness of any solutions. Mathematics was self-sufficient for exploring 
nature. In the developing calculus lay the answers to physical problems. Input from 
experimentalists, such as Daniel Bernoulli, indicating how the physical solution 
to the problem might run were irrelevant. Also, no physical interpretation of 
the results of the integration process of the equations of motion were necessary. 
Physical meanings were not offered for mathematical results. 

Equally important, these results were read, critiqued and developed as mathe-

to the Theory of Ships and Mechanics," Centaurus, 26 (1982): 323-335, O. B. Sheynin, 
"Euler's Treatment of Observations." For an account of Will em Jakob van 'sGravesande's 
experiments see Pierre Brunet, Les physiciens hollandais et La methode experimentaLe 
en France au xviiie siecle, (Paris: Albert Blanchard, 1926), and Edward G. Ruestow, 
Physics at Seventeenth and Eighteenth Century Leiden: Philosophy and the New Science 
in the University (The Hague: Nijhoff, 1973). 
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matics, not physics. Thus, a whole series of considerations, tasks and skills taken 
for granted as physical theory in the late nineteenth and twentieth centuries were 
absent. They were clearly not part of the technical discourse of the eighteenth or 
the early nineteenth-century physics. 

In the eighteenth century, despite the excitement over electrostatic and other 
phenomena, mechanics also had a place within experimental physics.61 In the 
experimental sciences, mechanics was the focus of some steady attention from 
Daniel Bernoulli, Ernest Florens, Friederich Chladini, Jean TMophile Desaguliers, 
van 'sGravesande, James Riccati and George Atwood, among others. However, 
the purpose of these experimenters and lecturers on mechanics was not to produce 
physical theory. Of these, Desaguliers, van 'sGravesande, and Atwood intended 
to reach audiences beyond the community of other experimental practitioners. 
Desaguliers and later Atwood worked to demonstrate the principles of Newton's 
mechanics. Desaguliers went further. From demonstrating Newton's principles, 
he progressed to mechanical devices and hence to manifesting the usefulness of 
Newton's mechanics.62 

Atwood was not the first to try and develop a purely experimental approach to 
mechanics, nor was he unique in Europe in offering university courses on New
ton's mechanics featuring experiments demonstrating Newton's laws of motion. 
His lectures in natural philosophy were well attended and leavened by experiments 
in mechanics, optics, and electricity. However, there was no indication of linking 
his experiments to physical theory in the modern sense.63 Atwood's texts were not 
mathematical except when analyzing practical problems. His was a mathematics 
to display, not to explain, nature as were his experiments. With display the ex
perimental and mathematical enterprise ceased. However, he did try to develop a 
general theory of measurement and mathematics as an adjunct to experiment, not 

61 For the limitations of seeing eighteenth-century mechanics simply as rational mechanics, 
see Henk Bos, "Mathematics and Rational Mechanics," in Ferment, Rousseau and Porter 
eds., 327-355. 

62 On Desaguliers and his imitators, see Larry Stewart, The Rise of Public Science: Rhetoric, 
Technology, and Natural Philosophy in Newtonian Britain, 1660-1750 (New York: Cam
bridge University Press, 1992). 

63 See, George Atwood Treatise on the Rectilinear Motion and Rotation of Bodies (London: 
1784). On Atwood's machines and his teaching see Simon Schaffer, "Machine Philos
ophy: Demonstration Devices in Georgian Mechanics," Osiris, 9 (1993): 157-182, 
159-163. Gerard L'E. Turner, "Physical Science at Oxford in the Eighteenth Century," 
in The History of the University of Oxford vol. 5 The Eighteenth Century, L. S. Suther
land and L. G. Mitchell, eds. (Oxford: Oxford University Press, 1986), 659-681. On 
the place of experiment in general see, John Schuster and Graeme Watchins, "Natural 
Philosophy, Experiment, and Discourse in the Eighteenth Century," in Experimental In
quiries: Historical, Philosophical, and Sociological Studies of Experiment, Homer Le 
Grand ed. (Dordrecht: Kluwer Academic, 1990), 
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a means of developing theories based in experimental evidence.64 

George Atwood is used here as an illustrative example of a trend in the teaching 
of experimental physics towards the end of the eighteenth century. More orga
nized, with an abundance of textbooks to choose from, university lecturers could 
display the principles of experimental philosophy with drama and great success. 
The explanations offered for the meanings of these displays were vernacular, meta
physical, and non-mathematical.65 Others also used demonstration experiments in 
mechanics in lecture courses in natural philosophy that included other experiments 
in optics, sound, and electrostatics.66 These lectures were aimed at general audi
ences, from undergraduates broadening the liberal foundation of their education, to 
lectures behind coffee houses or, later in the century, in meeting rooms in provincial 
towns across Europe. And the setting for such lecture series could shift radically 
through the century. In the Dutch republic, interest in the natural sciences lay in 
the universities at the beginning of the century. However, the universities declined 
in importance against growing memberships in volunteer scientific societies which 
catered to broader audiences.67 

Although 'sGravesande established the experimental foundations for the meta
physical and mathematical arguments over collisions, he did not use those results 
himselfto develop a mathematical theory of collisions. His own text on mechanics 
did not, despite its English title, attempt to mathematize the experimental mechan-

64 See Simon Schaffer, "Machine Philosophy," for experiment as display. 

65 See W. D. Hackmann, "The Relation between Concept and Instrument Design in Eight
eenth-Century Experimental Science," Ann. Sci. 36 (1979): 205-224. 

66 In France such experimental forms of mechanics were more likely to be met in courses 
designed for engineers. See, Grattan-Guinness, "Varieties of Mechanics by 1800," Hist. 
Math. 17 (1990); 313-338, 321-322, see also, C. C. Gillispie Lazare Carnot, Savant: 
(Princeton NJ: Princeton University Press, 1971). 

67 On Holland, see H. A. M. Snelders, "Professors, Amateurs and Learned Societies: The 
Organization of the Natural Sciences," in The Dutch Republic in the Eighteenth Century, 
M. Jacob and W. W. Mijnhardt, eds. (Ithaca NY: Cornell University Press, 1992),308-
328. For public lecturing in Britain see, British Journal for the History of Science March 
1995 issue on this topic, Larry Stewart, The Rise of Public Science and Jan Golinski, 
Science as Public Culture: Chemistry and Enlightenment in Britain, 1760-1820 (New 
York: Cambridge University Press, 1992). On London see, A. Q. Morton, "Lectures on 
Natural Philosophy, 1750-1765: S. C. T. Demainbray (1710-1782) and the 'Inattention' 
of his Countrymen," Brit. J. Hist. Sci. 23 (1990): 411-434 and the economic hazards of 
a career in public lecturing and on the patrons of such lecture courses, John R. Milburne, 
"The London Evening Courses of Benjamin Morton and James Ferguson, Eighteenth 
Century Lecturers on Experimental Philosophy," Ann. Sci. 40 (1983): 437-455, and 
"James Ferguson's Lecture Tour of the English Midlands in 1771," same journal, (1985): 
597-415, and Colin Russell, Science and Social Change in Britain and Europe, 1700-
1900 (New York: St. Martin's Press, 1983). 
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ics within its covers.68 Mathematics was the means only of displaying the results 
of experiment more precisely. Mathematized theory is remarkable for its absence 
rather than its presence in this or any other form. 

Interpretations culled by experimentalists from the results of their work were un
touched by higher mathematics. The language of explanation was the vernacular. 
While using the same explanatory terms, force, vis viva etc., these explanations 
could conflict with the constructions of mathematicians using the same terms. 
Meanings, expressed in the vernacular and explanations ranged from the phe
nomenological to the metaphysical were only tenuously connected to the results 
of experiment through various rhetorical devices. Illustrative examples of how a 
mechanical system might work in situations that through analogy mirrored those 
of the experiment sufficed as the connection between the minute particles or the 
various ethers that were the source of mechanical activity and the real bodies of the 
laboratory. The two levels, one of the imagined world of theoretical entities and 
the material world of the laboratory were tied together only tenuously. In addition 
to illustrative example, metaphor and analogy served the function of connecting 
what later would be bound together by the ties of mathematics. And the density 
of experimental evidence drawn into this explanatory net could be very thin. 

Daniel Bernoulli was rare because he was an experimentalist who could follow 
through the maze set by the mathematicians and establish, using his continuing 
work on vibrating bodies, whether or not, that mathematics spoke to the results 
of his experiments. Most experimentalists could not. Their methods defined a 
methodological and explanatory space that precluded such mathematics. When 
used, mathematics was subordinate to the primacy of experiment and vernacular 
explanation. There was, therefore, an experimental mechanics whose practitioners 
worked independently of the mathematicians. 

Here we have distinguished experiments and experimentalists in mechanics from 
mechanical philosophy and philosophers which, in the eighteenth century, is well 
nigh impossible. Metaphysical messages within the interpretations of experiments 
were to the fore. This was especially true in lectures addressed to students and the 
socially broader audiences of the experimentalists. Discourse within the world of 
practitioners was about metaphysical and technical matters. The urgency of the 
metaphysical truths over which they battled referred to the world beyond that of 
the practitioners themselves. For some experimental craftsmen, the realm of ex
planation of their metaphysics stayed within experimental philosophy. For others, 
the implications of their ideas was far broader and the rightness of their ideas more 
urgent. As has been argued elsewhere, it was through experimental demonstrations 
that the new philosophy entered the reconstituted cultures of late seventeenth and 

68 Wilhelm Jacob van 'sGravesande, Mathematical Elements of Natural Philosophy Con
firmed by Experiment, 4th ed. (London: 1731) 2 vols. For 'sGravesande and physics as 
experiment, see Pierre Brunet, Les physiciens hollandais. 
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early eighteenth century Europe. However, the ideological content of these exper
iments was not inherent in the metaphysics and experiment until those connections 
were stated explicitly. Whether these connections were ever made depended on 
both lecturer and audience. And, such connections led in opposite explanatory 
directions ranging from the proof to the denial of God's existence as one example. 
Nature and the natural had functioned before the seventeenth century, and still 
did, to justify and even constitute a theory of the political, social, or economic 
order. Whether those interpretations were imposed on nature depended upon the 
expectations of both audience and speaker. 

Therefore, mechanical interpretations aimed at other practitioners or broader au
diences could range from descriptive, phenomenological discussions of experiment 
to mechanical philosophies arranged independently of mathematics or experiment 
for extra-scientific purposes. Many of these speculative metaphysical essays were 
written to give voice to God's structure of his universe, to prove God's existence, 
or to develop a metaphysics without calling on the necessity for a creator. The 
"systems" ranged from the radical materialism of Julien Offray de la Mettrie, Denis 
Diderot, or Baron d'Holbach to those of Christian Wolff and the Scottish Com
mon Sense philosophers. There were also the excursions into natural theology 
by British Newtonians and the continental materialists George Louis Buffon and 
Albrecht von Haller.69 Mathematicians could join in as well. Euler's letters on 
natural philosophy used non-technical language free of mathematics. The little 
mathematics that did enter, for example, the geometry of optical systems, was de
scriptive. It was not used in interpretation of the nature of light. 70 In these works on 
mechanical philosophy, mathematics had no place. A description of the operations 
of nature mayor may not depend on evidence from experiments. 

Mathematics could also be put to use for extra scientific purposes, although with 
less success than that of experimental mechanics. 71 What therefore was meant by 

69 This seems like a mixed bag but these authors fit the criterion of being more concerned 
with developing a speculative system to meet extra scientific goals than bringing in the 
details of experimental or observational data. The list could be extended. The literature 
on such important thinkers for the eighteenth century is immense and in a study of this 
size they are reduced to the status of name dropping. 

70 Leonhard Euler, Letters on Different Subjects in Natural Philosophy, addressed to a 
German Princess 2 vols. (New York: Arno reprint of 1833 edition). This was not a 
popularization as depicted in Waiter D. Wetzels, "Popularization of the New Physics: 
Euler's Letters," Stud. Voltaire Eighteenth Cent. 264 (1989): 796-800. Their metaphys
ical and "antique" character is discussed in John Heilbron, Electricity in the Seventeenth 
and Eighteenth Centuries: A Study of Early Modern Physics (Berkeley, CA: University 
of California Press, 1979), p. 72-73. See also Casper Hakfoort, Optics in the Age of 
Euler: Conceptions of the Nature of Light (Cambridge: Cambridge University Press, 
1995). 

71 See Tore Frangsmyr, "Mathematical Philosophy," in The Quantifying Spirit in the Eigh
teenth Century, Frangsmyr, Heilbron and Robin Rider, eds., 27-44. 
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mechanics depended on the author and his audience. If, as with Euler, the author 
used mechanics for a variety of purposes, the ideas expressed to one audience 
are not necessarily traceable in the ideas labeled mechanics addressed to another 
audience. However much we might try to find unity in this situation, we have to 
settle for fragmentation. 

Despite the range of audiences and purposes to which it was put, mechanics 
developed within two distinct communities of practitioners; experimentalists and 
mathematicians. When they addressed other colleagues within their communities, 
separate sets of criteria were used to define problem choice, methods, language 
and terms that defined when a solution had been reached. Overlap between these 
communities was minimal. Both disciplines were self-sufficient. If boundaries 
were transgressed, the violations were either ignored or invalidated, the violator of 
borders ridiculed, their work discounted. 

This is just one example of the eighteenth-century division of labor within the 
sciences. We now need to examine the depths of this partition, how it functioned 
across other areas of experimental philosophy, and its social manifestations. We 
can then examine the implications of this different disciplinary geography of the 
study of nature for the development of modern theoretical physics. 



Chapter III 

Eighteenth-Century Physics 

and Mathematics: A Reassessment 

We now need to examine the plausibility of this demarcation of physics and 
mathematics in the eighteenth century. Methods indeed defined other disciplinary 
fields such that there were multiple disciplines of astronomy, celestial mechanics 
and observational astronomy, as well as mechanics. There was even an attempt 
to establish a mathematical chemistry. Eighteenth century practitioners narrowed 
their specialties by the particular phenomena that yielded results to well defined 
practices. In this way chemists began to differentiate their specialty from the broad 
field encompassed by observation and experiment. Methods became a means 
of investigation and an explanation of the phenomena those methods uncovered. 
Interpretation, especially as natural philosophy, was more speculation than an 
aspect of the investigation of the structure and functioning of nature. Regarding the 
disciplines through the lens of a methodological definition, some of the important 
unique social as well as cognitive characteristics of eighteenth century science 
begin to coalesce. Histories of the sciences written in the eighteenth century by 
practitioners in their fields of specialization confirm the divisions of the sciences 
by method, as does the social structure of major scientific societies and the content 
divisions of their journals. 

This methodological understanding of the sciences in the eighteenth century 
changes the search for the social and intellectual origins of modern physics and 
propels it definitively into the nineteenth century. 

Physics as Experimental Philosophy 

In the eighteenth century physics encompassed much more than experimental 
mechanics. Physics as a term had two definitions. In its broader meaning Physics 
encompassed every discipline from observational astronomy to chemistry and the 
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natural sciences to physiology.! Physics was the whole domain of research and 
natural knowledge gained through experiment and observation. Experimental phi
losophy, or physics, included, yet was distinguished from, physics "narrowly" 
defined as the experimental investigation of light, sound, electricity, magnetism 
and mechanics. This narrower definition of physics did not confine the inves
tigator to the twentieth-century meaning of these terms. Research in light, for 
example, could include the anatomy of the eye and the perception of color. For 
Johann Heinrich Lambert, the study of light included the physiology of the eye 
and the psychology of vision. The study of sound included music, the structure 
of the ear, and the perception of sound.2 Electricity was investigated in all its 
manifestations, atmospheric and physiological, as well as those effects produced 
in the laboratory. Henry Cavendish's research into electricity also included the 
investigation of electric eels and "fishes.,,3 The study of lightning was central to 
the developing understanding of quantity of electricity and then of potential in 
the middle of the century. Luigi Galvani's focus on the reactions of frogs legs to 
atmospheric electricity was not unique.4 

These interests and their place in physics are confirmed by later work in the nine
teenth and early twentieth centuries. As uncovered by Susan Cannon, the study of 
the earth became an organizing principle for some physicists in the 1830s. This 
movement is a continuation of the earlier, broader understanding of physics. Her
mann von Helmholtz's work on sound, accepted by physicists, was encompassed 
within this broader sense of physics. In the Cavendish Laboratory, under J. J. Thom-

1 See Chapter I, note 25 for the changes in meaning of the term Physics in the seventeenth 
and early eighteenth centuries. 

2 Johann Heinrich Lambert, Photometria, 3 vols., E. Anding, trans. in Ostwald's Klassiker 
series (Leipzig: 1892. See also the work of Thomas Young. See Chapter VI for more 
details on these aspects of physics in the late eighteenth century. 

3 Henry Cavendish, "Some Attempts to imitate the Effects of the Torpedo by Electricity," 
Phil. Trans. R. Soc. London, 66 (1776): 196-225, in Electrical Researches of Hon. Henry 
Cavendish James Clerk Maxwell, ed. (Cambridge: Cambridge University Press, 1879), 
194-215. 

4 John Heilbron in his important study, Electricity, constrains this narrower meaning of 
the term physics by including much of the study of meteorological, and physiological 
electrical phenomena and electricity in animals and fish only as they were brought into 
the laboratory and were necessary to narrate the conceptual developments in the field. 
His physics is too modern. Luigi Galvani and his work on frogs appears from a narrative 
vacuum. This has been noted also by Robert Palter, "Some Impressions of Recent Work 
in Eighteenth-Century Science," Hist. Stud. Phys. Sci. 19 (1989): 349-401. As an 
antidote see, Marcello Pera, The Ambiguous Frog: The Galvani-Volta Controversy on 
Animal Electricity, trans. Jonathan Mandelbaum (Princeton NJ: Princeton University 
Press, 1992) and Giuliano Pancaldi, "Electricity and Life: Volta's Path to the Battery," 
Hist. Stud. Phys. BioI. Sci. 21 (1990): 123-160. 
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son and even Ernest Rutherford, work on meteorological phenomena continued.5 

Experiment was open-ended, and it was in a constant process of development 
both as an investigative procedure and an explanatory form. 6 Practitioners assumed 
that experiments demonstrated the workings of nature. This is visible in the struc
ture of Newton's Opticks, his geometrical treatise on light, where experiments 
replaced mathematical demonstrations as the theorems demonstrating the nature 
of light. Questions asked of nature, answered through experiment, also led to the 
improvement of experiment as a "language" for the description of nature. In the 
eighteenth century the most dramatic of these improvements was the development 
of quantitative experiments. Less dramatic but of the same kind were improve
ments in the sensitivity of instruments and the power of equipment? As experi
ment became an explanatory form, practitioners constantly criticized and changed 
techniques, standards of observation, criteria for differentiating phenomena from 
ephemera. There were also experimental philosophers bent on improving their 
instrumentation and equipment, the language of experimental philosophy, without 
performing any experiments. The fascination with equipment and instrumentation 
took over from addressing nature.8 There were parallels to this later in the cen
tury when mathematicians improved and developed the language of the calculus 
without reference to problems external to the calculus. 

As experiment became quantified, practitioners used mathematics to reduce data 
and assess results. However, the quantification of experiment and the expression 
of results in tabular form or even compressed into a general algebraic expression 
did not lead the community of experimentalists to develop of theories expressed in 
the languages of mathematics.9 Mathematical expressions were deduced directly 
from the measurables of the experiments. No theoretical structure developed from 

5 See Susan Faye Cannon, Science in Culture: The Early Victorian Period (New York: 
Science History Publications, 1978), and Peter Galison and Alexi Assmus, "Artificial 
Clouds, Real Particles," in The Uses of Experiment: Studies in theNatural Sciences David 
Gooding, Trevor Pinch and Simon Schaffer, eds. (Cambridge: Cambridge University 
Press, 1989),225-274. 

6 The beginnings of experiment in physics as an explanatory form are in R. H. Naylor, 
"Galileo's Experimental Discourse," in Uses of Experiment, Gooding, Pinch and Schaf
fer, eds. 117-134. In the same volume Willem D. Hackmann, "Scientific Instruments: 
Models of Brass and Aids to Discovery," 31-65, discusses the explanatory role of ex
periment and the function of instruments in that role. See also Jan Golinski, "Precision 
Instruments and the Demonstrative Order of Proof in Lavoisier's Chemistry," in Osiris 9 
(1994): 30-47. 

7 For the case of electrostatics, see Heilbron, Electricity, chap. XIX. 

8 See Heilbron, Electricity, on van Marum's work on electrostatic machine. 

9 The urge to quantify in the eighteenth century is examined in The Quantifying Spirit in 
the Eighteenth Century Tore Frangsmyr, John Heilbron and Robin Rider, eds. (Berkeley: 
University of California Press, 1990). 
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there.lO The measurement of a quantity required the clear understanding of how 
that quantity expressed itself within the experiment.11 This kind of understand
ing seems to imply some prior theoretical comprehension of the phenomena or, 
at least, the instrumentation and methods used in the experiment. However, this 
understanding did not necessarily depend on any prior theory expressed in even 
simple algebraic form. Conceptual clarity did not require a mathematized theoreti
cal base. The source of understanding of what was being measured did not depend 
on speCUlations about the operation of nature in specific circumstances. Sometimes 
they sprang from an understanding of instrumentation and measurement methods 
themselves. 12 In the eighteenth century instruments and experiments were useful 
in constructing the meanings of theories rather than the reverse.13 

Experimental demonstrations of Newton's laws of motion did not lead the 
demonstrator to take his audience through Newton's mathematical theory. That 
was a matter for mathematicians. 14 This did not preclude speculations about the 
operation of nature. However, interpretations were in the vernacular. Even as ex
periments became quantitative, explanations remained qualitative. This is the case 
even in Ulrich Theodosius Aepinius' work on electrostatics. IS Aepinius made one 
of the first attempts to develop a theory of the Leyden jar expressed in mathemat-

10 For the simplicity of the mathematics used and what experimentalists actually did with 
it in the eighteenth century see, Theodore S. Feldman, "Applied Mathematics and the 
Quantification of Experiment: The Example of Barometric Hypsometry," Rist. Stud. 
Phy. Sci. 15 (1985): 127-195, and John Heilbron Weighing Imponderables and other 
quantitative Science about 1800 Supplement Rist. Stud. Phy. Sci. 24 (1993), chap. 2. 

11 See Heilbron, Electricity chapter XIX. 

12 See W. D. Hackmann, "The Relationship between Concept and Instrument Design in 
Eighteenth Century Experimental Science." and "Instrumentation in the Theory and 
Practice of Science: Scientific Instruments as Evidence and as a Aid to Discovery," and 
Albert van HeIden and Thomas L. Hankins, "Introduction: Instruments in the History 
of Science," Osiris, 9 (1994): 1-6. Allan Franklin, The Neglect of Experiment (New 
York: Cambridge University Press, 1986). For a thorough examination of experimental 
practices see Peter Galison, Row Experiments End (Chicago: University of Chicago 
Press, 1987). Heilbron, Electricity assumes such prior theoretical structures always 
exist. This issue touches upon the question of "tacit knowledge," or whether there are 
other ways of investigating nature that yield rational order but are not subject to the 
limited methodologies of philosophers. See, Edwin T. Layton, "Mirror Image Twins: 
the Communities of Science and Technology," Techn. Cult. 12 (October 1971): 562-580 
on different ways of "knowing." 

13 Simon Schaffer, "Natural Philosophy and Public Spectacle in the Eighteenth Century," 
Rist. Sci. 21 (1983): 1-43. 

14 See Schaffer, "Machine Philosophy." 

15 Heilbron, Electricity, has shown the crucial role of electrostatics in the development of 
the domain of physics. This is the reason for taking it as an example here. From the 
masses of this material in the eighteenth century, we focus only on those examples usually 
seen as steps in the development of mathematized, physical theory. 
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ical form, developing an algebraic expression for the repulsive force of a charged 
plate on a particle of electric fluid. His mathematics remained largely as algebra 
and appeared after his own vernacular argument explaining the meaning of the 
phenomena under discussion. The mathematics illustrated his physics. It was not 
the means for developing his physical argument. 

Aepinius' attempt illustrates some of the missing steps that were needed to 
join theoretical ideas, expressed in mathematical form, and to develop those ideas 
through the mathematics into a physical theory whose deductions can be joined to 
physical implication about the processes through which the physical system had 
passed. In addition, this theoretical state must be related to measurable quantities.16 

He never took the algebraic expression for force, and through an argument ex
pressed and developed by mathematical rules joined the mathematical expression 
to the physical theory with which he began his mathematical exploration. How 
he expected to connect his mathematical expression to his experimental results 
was left moot. The solution of the mathematical problems posed by electrostatics 
and magnetism occurred after 1800. A physical theory expressed in mathematical 
form did not appear until the middle of the nineteenth century. 

The difficulties of constructing such arguments are also seen in Henry Caven
dish's attempt to argue, using geometry and fluxional calculus, that the particles 
of the fluid of electricity repulsed every other electric particle and those of matter 
with a force that was the nth power of the inverse of their distance apart, where 
n < 3. His propositions were physical, his theorems geometrical or fluxional. 
Cavendish took a cone of electric fluid, each particle of which repulsed the other 
electric particles and acted on a particle at its vertex with a force that was l/rn. 
He then considered the repulsion on the particle from the fluid up to a plane at a 
distance from the vertex and that from the fluid beyond the plane. He argued that 
if n :::: 3 the repulsion from beyond the plane was infinitely small compared with 
that from the plane to the vertex. The mathematics at his disposal, geometry and 
fluxions were unequal to his task. He could only demonstrate that n = 2 for a 
series of particular cases. He was far more successful in demonstrating his case 
for a repulsive force of n = 2 experimentally.17 

16 Ulrich Theodosius Aepinius,Aepinius' Essay on the Theory of Electricity andMagnetism, 
trans. P. J. Connors, Introduction, R. W. Home (Princeton NJ: Princeton University Press, 
1979). Home seems uncertain of the value of this essay, stating that it is "the first example 
of genuinely mathematical physics in which mathematical analysis is united to experiment 
in a highly fruitful alliance," although he does not investigate the nature of this alliance. 
At the same time he notes that that Aepinius' theory "as a whole never became more than 
semiquantitative at best," p. 114. 

17 Henry Cavendish, "An Attempt to explain some of the Phaenomena of Electricity by 
means of an Elastic Fluid," Phil. Trans. R. Soc. London, 61 (1771): 584-617, also in 
Electrical Researches, 140-174. Although Cavendish cites Aepinius' work here its is 
unclear what he derived from it. For his experiment see Electrical Researches, 104-
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Coulomb's experimental study of electrostatics and magnetism brought into 
experimental philosophy a new element of precision and systematic measurement 
using sophisticated instrumentation. Having mastered the phenomenon of torsion 
in hanging threads, he turned his torsion balance into an instrument to explore the 
laws of attraction and repulsion in electrostatics and magnetism. 18 Coulomb gave 
no mathematical deduction of his force law for electricity or magnetism, they were 
experiential relationships. His conclusion that there was no charge within a hollow 
conductor was also demonstrated experimentally rather than mathematically.19 He 
used mathematics to establish relationships between the moment of the torsion 
in the suspension system to those of the magnetic or electric forces. Similarly 
he established ratios between the electricity distributed over electrically charged 
surfaces of different radii. In both cases the mathematics was not rigorous and the 
variables were directly measurable quantities. 

In Coulomb's work, there were no speculations about the nature of electricity 
other than the generic "fluid" that flowed, although with no other details. He also 
chose not to investigate the internal state of matter under stresses or forces. The 
physical states of matter produced by electricity were not part of his mathematical 
investigations. This is not to devalue Coulomb's work but merely to illustrate 
what he accomplished experimentally and mathematically, but not necessarily in 
physical terms. He reduced the coefficients attached to his unknowns to constants 
that were measured and hence established through experiment. He also used 
mathematics to explore possible sources of experimental error. 

His experiments were quantitative and concisely yet clearly described and the 
results tabulated, then expressed in algebraic form. Coulomb also connected the 
measured quantities to clearly stated problems through a series of theorems. He 
was systematic in his experimental pursuit of his variables, length of the wire, 
tension, etc., in his experiments on torsion, each one varied in its turn in a distinct 
set of experiments. His method was that of the engineer.2o Speculation was at a 

113. Cavendish's work remained largely unknown until it was too late to affect the 
development of the field. For a fuller discussion of his theory see Heilbron, Electricity, 
477-479. 

18 This is an example of Hackmann's contention of instrumentation as a source of new 
physical insight and experiments, rather than theory. See, W. D. Hackmann, "Scientific 
Instruments," in The Uses of Experiment, Gooding, Pinch and Schaffer, eds., 31-65. 
Richard Sorrenson, "The Ship as Scientific Instrument in the Eighteenth Century," Osiris 
11 (1996): 221-236, argues that the ship became a scientific instrument in the voyages 
of discovery of Captain Cooke. He also notes that geographers defined their science 
through observations and facts, not theories which they disdained. 

19 Charles Coulomb, "Sur I' electricite et Ie magnetisme, quatrieme memoire, ou I' on demon
tre deux principales proprietes du ftuide electrique," Mem. Acad. Sci., Paris (1786): 67-
77, in Memoires de Coulomb A. Potier, ed. (Paris: Societe fran"aise de physique, 
1884-1891) 5 vols., vol. 1, 173-182. 

20 For a comprehensive study of Coulomb that links his work in physics with his experience 
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minimum, systematic exploration at a premium with only just enough mathematics 
to bring his experiments to fruition. He quantified certain aspects of electrostatics. 
However, mathematical demonstrations of results were not established rigorously, 
and were only pursued in the simplest of cases.21 

In venturing beyond the results of his experiments, Coulomb's deductions were 
in the form of simple, illustrative examples, taking his assumption of electricity 
as a fluid literally. He could use a geometric argument to demonstrate that the 
action of electricity was perpendicular to the surface of a conductor, and that the 
electric fluid lies within the surface, not throughout the body. While this model is 
suggestive he took it no further. 22 

Mathematics even in electrostatics, the most systematically developed area of 
physical experiment, was not used to develop theoretical ideas. In the best example, 
that of Coulomb, mathematics replaced physical imagery. At the conclusion of his 
argument, mathematical results and physical imagery were not joined to form any 
closure. Proofs and demonstrations remained within the domain of experiments. 
Mathematics expressed the results of these experiments. However, he did not use 
mathematics to explore the physical implications of his experiments, or anticipate 
any of their results. 

Experiment was the method from which systematic understanding of nature was 
teased, and then demonstrated to the world.23 In the cluster of sciences methodolog
ically defined by experiment and observation, new phenomena marked the spread 
of the methods of experimental philosophy into new areas of experience. The ex
pansion of experiment and observation was epistemologically more important than 
the introduction of new concepts to interpret their meaning or to reconceptualize 
an existing field. Theory did not hold a central, defining place within the disci
pline. Progress was the broadening of the field through the exercise of the method 
of observation and experiment. The broadening of experimental philosophy into 
socially useful domains legitimated that method, physics, as knowledge. The later 

as a military engineer see, Stewart Gilmor, Charles Augustin Coulomb and the Evolu
tion of Physics and Engineering in Eighteenth-Century France (Princeton: Princeton 
University Press, 1971). 

21 See Coulomb, "Recherches theoriques et experimentales sur la force de torsion et sur 
elasticite des fils de metal," Mem. Acad. Sci., Paris (1784): 229-269, Memoires, vol. 
1, 64-103, and, "Sur la maniere dont Ie fluide electrique se partage entre deux corps 
conducteurs mis en contact, et de la distribution de ce fluide sur les differentes parties 
de la surface de ces corps," Mem. Acad. Sci., Paris (1787): 421-467, Memoires vol. 1, 
183-229. 

22 Coulomb, "Sur I' electricite et Ie magnetisme, quatrieme memoire, ou I' on demontre deux 
principaux proprietes du fluide electrique;' Mem. Acad. Sci., Paris (1786) [1788]: 67-77. 
See also Heilbron, Electricity, 495-498. 

23 See Simon Schaffer, "Machine Philosophy,"and Jane Weiss,"Lecture Demonstrations 
and the Real World: the Case of Cartwheels," Brit. J. Hist. Sci. 28 (1995): 79-90. 
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boundary between "pure" and "applied" knowledge did not exist.24 

Explanations of phenomena even within physics were, by later standards, only 
loosely connected with the experimental base. Eighteenth century experimentalists 
did not develop theory as an extended argument encompassing known experimental 
results leading to the prediction of new ones from the body of the theory. Logical 
connection between presuppositions about nature and results from the laboratory 
were tenuous at best, and sometimes completely separated one from the other.25 

Analogy, metaphor, and illustrative example were accepted methods for establish
ing connections between the phenomena uncovered by the practices that defined 
experimental philosophy and the interpretations of those phenomena. These con
nections were often suggestive, never rigorous. They also allowed for a multiplicity 
of particular details of the theoretical elements tied to the same, usually small, em
pirical base. These can be seen.in the range of "theories" of the ether, electricity, 
and caloric.26 

No single metaphysical stance united experimentalists, except as small com
munities of practitioners within a field. Fundamental concepts were contested 
throughout the era. As metaphysics, natural philosophy served many social func
tions that went well beyond the needs of experimentalists. The social uses to which 
these presuppositions were put ranged from theology to economics. The formula
tions of these metaphysics were pursued before many audiences for a multiplicity 
of purposes. The utilitarian goals of mechanical philosophy were embedded in 
some forms of eighteenth century Newtonianism and Common Sense philosophy. 
The economic utility of these mechanical philosophies emerged in the travelling 
lecturers' series given throughout Britain. Metaphysically the mechanical phi
losophy also bolstered aspects of the official ideology of Cambridge university.27 

24 See Donald deBeaver, "Textbooks of Natural Philosophy: The Beatification of Tech
nology," in From Ancient Omens to Statistical Mechanics, J. L. Berggren and B. R. 
Goldstein, eds. (Copenhagen: University Library, 1987). This connection has recently 
been invested with immense epistemological and economic importance in Larry Stewart, 
The Rise of Public Science, chap. 1. See also, Margaret Jacob, The Cultural Meaning of 
the Scientific Revolution (New York: Knopf, 1988). 

25 The separateness of "theory" from experiment and "instrumental" levels of discourse 
is also noted in Hackmann, "Scientific Instruments," in Uses of Experiment, Gooding, 
Pinch, and Schaffer, eds. p. 58. 

26 See, Geoffrey Cantor, Optics After Newton: Theories of Light in Britain and Ireland, 
1704-1840 (Manchester: Manchester University Press, 1983), Hakfoort, Optics in the 
Age of Euler, Conceptions of Ether: Studies in the History of Ether Theories, 1700-1900 
Cantor and M. J. S. Hodge, eds. (Cambridge: Cambridge University Press, 1981), Heil
bron, Electricity, and Robert Fox, Caloric Theories of Gases from Lavoisier to Regnault 
(Oxford: Clarendon Press, 1971). 

27 See chapter II. For Cambridge see John Gascoigne, Cambridge in the Age of Enlight
enment: Science, Religion, and Political Reform from the Restoration to the French 
Revolution (Cambridge: Cambridge University Press, 1989). 
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However, it is simplistic to reduce any ideology as inherent in particular theories 
of nature.28 

As historians have become aware of the easy standards of demonstration and the 
range of available metaphysical choices, the eighteenth century is conceptually no 
longer Newton's.29 However, it still might be his methodologically. In the early 
part of the century Newton's Opticks delineated standards of experimentation that 
demonstrated the operations of nature. His successors in the emerging discipline 
of experimental philosophy copied his use of experiments as the epistemologi
cal equivalent of geometrical demonstration.3D Even as alternative metaphysical 
principles emerged, the pattern of Newton's Opticks proved a long lived standard. 
Experimental demonstrations were published along with separate metaphysical 
speculations.31 

Histories of physics, especially of physics since Newton, written by experi-

28 For the case of ideology and Edinburgh, see Steven Shapin, "The Audience for Science 
in Eighteenth Century Edinburgh," Hist. Sci. 12 (1974): 95-121. Modifying this view 
by noting the care with which utility entered into the social language of the experimental 
philosopher in Edinburgh, see Jan Golinski, Science as Public Culture: Chemistry and 
Enlightenment in Britain, 1760-1820 (Cambridge: Cambridge University Press, 1992). 
For broad claims for the mechanical philosophy and the ideological foundations of the 
industrial revolution, see Margaret Jacob, The Cultural Meaning of the Scientific Revolu
tion and Larry Stewart, The Rise of Public Science. For a specific example of mechanical 
demonstration and economic problems, see Jane Weiss, "Lecture Demonstrations and 
the Real World: The Case of Cart Wheels," Brit. J. Hist. Sci. 28 (1995): 79-90. 

29 Arnold Thackary Atoms and Powers (Cambridge MA: Harvard University press, 1970) 
liberated chemistry from Newton's grip. See Robert E. Schofield, Mechanism and Ma
terialism: British Natural Philosophy in the Age of Reason (Princeton NJ.: Princeton 
University Press, 1970). On natural philosophy in the eighteenth century, see also, Simon 
Schaffer, "Natural Philosophy," in Rousseau and Porter, Ferment, 55-91. Clifford Trues
dell, "Reactions of late Baroque Mechanics to Success, Conjecture, Error and Failure 
in Newton's Principia," Texas Quart. 10 (1967): 238-258, undermines Newton's influ
ence on eighteenth-century mechanics and mathematics, Henry Guerlac, "Newton on the 
Continent: The Early Reception of his Physical Thought," in Newton on the Continent, 
(Ithaca NY.: Cornell University Press, 1981),41-73, R. W. Home, "Out of a Newtonian 
Straitjacket," in Studies in the Eighteenth Century, R. F. Baissenden and J. C. Eade, eds. 
(Canberra: Australian National University Press, 1979), and Colin Russell, Science and 
Social Change, chap. 3 "Alternatives to Newton." Peter H. Reill has argued that the 
alternatives to Newtonianism attracted a large percentage of Europe's educated elite and 
was a discourse "within" enlightenment scientific thought not against it. Reill, "Between 
Mechanism and Hermeticism: Nature and Science in the Late Enlightenment," in Friihe 
Neuzeit-Friihe Moderne? R. Vierhaus, ed. (G6ttingen: Vandenhoek and Ruprecht, 
1992), 393-421. 

30 On the reading of the Opticks see, Henry Guerlac, "Early Reception." 

31 Although Newton's work on optics was patterned after his mechanics he never succeeded 
in complete closure. For Newton's attempts to develop a mathematical theory of color, 
see Alan Shapiro, "Experiment, and Mathematics in Newton's Theory of Color," Phys. 
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mental practitioners made visible the methodological sense of eighteenth-century 
physics. Johann Karl Fischer's history of physics was an Enlightenment piece on 
physics from "the restoration of learning to the present time." His concern was in 
narrating the development of this experimental science. The boundaries of the ex
periments spilled over into chemistry and other fields. One of his major topics was 
the development of instrumentation. He gave very short shrift to the hypotheses 
developed to explain experiments. The phenomena were the core of his discipline 
and narrative. As the method of experiment and physics expanded, so did that of the 
phenomena encompassed within physics, Fischer's narrative slowed and became 
less and less structured. Yet he maintained his discussion with only one major 
division throughout, the distinction between physics in general (broadly defined) 
and physics in particular (narrowly defined).32 The most familiar history in this 
genre written in the eighteenth century is that of Joseph Priestley on electricity. 
Although on a more narrowly defined topic his history, like Fischer's, consisted 
of paraphrases of the work of the authors he described. Priestley's narrative was 
partly a partisan history, and partly a description of the state of the field.33 For 
Priestley, the study of electricity was experiment. The focus of his attention was 
the instruments that "exhibit the operation of nature." Thus Benjamin Franklin's 
work was not discussed in terms of his ideas but of his "discoveries" through ex
periments of "facts." The closest Priestley came to ideas was in his discussion of 
lightning, but only through analogy. Ideas about electricity were separated from 
"facts" in the second volume of his chronicle.34 

The Practice of Mathematics 

Experiment was only one of the two methods that reoriented the study of nature 
during the seventeenth century. The second was mathematics.35 As in the case of 
experimental philosophy, mathematics was a language of explanation, developed 

Today, (September 1984): 32-42 and Fits, Passions and Paroxysms: Physics, Method, 
and Chemistry and Newton's Theories of Colored Bodies and Fits of Easy Reflection 
(Cambridge: Cambridge University Press, 1993). 

32 Johann Karl Fischer Geschichte der Physik seit der Weiderherstellung der Kunste und 
Wissenschaften his aufneuesten Zeiten (Gottingen, 1801-1808),8 vols. For a similar, 
though condensed account, see F. A. C. Gren, "Geschichte der Naturwissenschaft," Ann. 
Phy. 1 (1799): 167-204. 

33 He was also involved in the construction and sale of equipment. See, Simon Schaffer, 
"The Consuming Flame: Electrical Showmen and Tory Mystics in the World of Goods," 
in Consumption and the World of Goods, John Brewer and Roy Porter, eds. (London: 
Routledge, 1993),489-526. See Heilbron, Electricity, for an alternative interpretation. 

34 Joseph Priestley, History and Present State of Electricity with Original Experiments 2 
vols. (New York: Johnson Reprint of the third edition, 1966) and Robert Schofield, 
"Introduction". 

35 These were not independent of one another. See Peter Dear, Discipline and Experience: 
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and improved through solutions to the problems posed by nature and addressed 
through the languages of mathematics. At the same time mathematicians devel
oped a new language of explanation, the calculus. As problems were tackled and 
successfully solved, techniques and standards of solution changed and expanded 
the range of this new language. Demonstrable success legitimated the techniques 
and extensions and reenforced the power of the calculus to display the workings 
of nature.36 

For mathematicians, the point of mathematics was to extend the domain of their 
method into new fields, gaining access to those fields through the consideration of 
particular problems. Nature both provided the problems that needed solution and 
guaranteed that solutions existed. As problems were expressed in mathematical 
language, they were annexed to mathematics and their solutions subject to the 
techniques and standards of that developing discipline. Disputes arose over the 
nature of functions and the legitimacy of certain solutions but seldom got further 
than reiterations of preferences for certain definitions of functions. Importantly, 
solutions were judged by criteria being developed within the calculus itself; they 
were mathematical not physical. Experiments in mechanics posed the problems 
for mathematicians to solve, but gave no clues to their solution. Those solutions lay 
in the new, and developing, language of the calculus. The domain of mathematics 
also grew larger as methods were improved through solutions being reworked. 
The discipline also grew as solutions became more general as well as solutions to 
different types of differential and partial differential equations succumbed to the 
technical ingenuity of mathematicians. The invention of methods to accomplish 
this work of expansion were as important as demonstrating that such solutions 
existed. 

In the course of addressing the problems of mechanics, the metaphysical princi
ples on which the mathematical solutions were based came under close scrutiny and 
new ones entered the mathematician's repertoire. Discussions on such hypotheses 
were directed to mathematical ends, not those of producing a physical theory of 
mechanics. The appearance of a concept within a mathematical context did not 
signal, necessarily, a growing physical understanding of mechanics. At least these 
physical insights did not impact the work of the small group of experimentalists in
terested in mechanics.37 Using a physical principle to set up an equation of motion 

The Mathematical Way in the Scientific Revolution (Chicago: University of Chicago 
Press, 1995). 

36 The argument here is that mathematics and physics were distinct disciplines, not merely 
two traditions within physics as in Thomas S. Kuhn, " Mathematical versus Experimental 
Traditions in the Development of Physical Science," 1. Interdis. Hist. 7 (1976): 1-31, 
reprinted in Kuhn, The Essential Tension: Selected Studies in Scientific Tradition and 
Change (Chicago: University of Chicago Press, 1977),31-65. 

37 Perhaps we should also keep in mind that the theoretical fluids of natural philosophy 
were metaphysical and did not need the mathematical expression of the properties and 
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might or might not include an understanding of how a physical system actually 
functioned. The validity of these physical principles was recognized in retrospect 
in the nineteenth century, or read into the mathematics of the previous century. 38 

The use of minimum principles, especially the principle of least action, in the 
context of problems in mechanics was the path for the development of variational 
calculus. If we accept that in the eighteenth century, the principle of least action 
also was important for understanding the motions and characteristics of physical 
mechanical systems, we run into evidential difficulties. There is no evidence from 
that era that variational calculus renewed or changed the physical analysis of the 
motions of particles or systems of particles using minimum principles. Mathe
maticians worked on developing variational calculus, using the principle of least 
action. Mechanics was the source of problems and the vehicle for exploring this 
new branch of analysis. They did not connect these solutions within a physical 
context that might relate to issues and problems of interest to experimental physi
cists. Eighteenth-century experimental physicists did not use these ideas or develop 
physical theories of mechanics with them. To see eighteenth-century mathematics 
as solutions to physical problems requires us to read physical interpretations into 
that mathematics that do not exist in the original. Physicists appreciated and used 
this mathematical research only after the mid-nineteenth century. By that date a 
mathematical mechanics became central to the research, then to the training, of 
physicists. 

The mathematical character of eighteenth century mechanics becomes clearer 
when we look for indications in mathematical results of how they are related to 
the physical processes the mechanical system supposedly undergoes. There was 
no return to such physical considerations after the problem was expressed math
ematically. No more physical information was extracted by the author from the 
solution than entered into its initial mathematical expression. The situation in the 
case of the vibrating string was typical. There was no return to the physics of 
forces, vis viva, or bodies moving in particular ways, and hence images of nature 
interpreted from the mathematical terms and variables in terms of the vibrations 
and motions of bodies, free or constrained. With changes in variables, transforma
tions of equations and other mathematical techniques, the terms of the solutions 
often bore no visible physical relations to those in which the initial problem was 
set. Eighteenth-century mathematicians' investigations into mechanics did not set 
experimentalists upon new avenues of research. 

Physics might still lie, potentially, even pregnantly in the mathematical forms 

flow of real fluids developed by mathematicians. 

38 The conflation of mathematicians' expression of a principle with insight into the physical 
meaning of that principle or concept is widespread among historians of mechanics and 
eighteenth-century calculus. For example see, Rene Dugas, Histoire de la mecanique 
(Paris: Editions Dunod, 1950). Craig Fraser, "J.-L. Lagrange's Early Contributions," 
and Grattan-Guinness, "The Varieties of Mechanics by 1800." 
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of the solution. However, it was rarely extracted. For a physical understanding of 
the vibrations of strings to emerge from the myriad of solutions 

y = F(x + at) + F(x - at), 

required additional physical information. Mathematical reasoning was not enough. 
To channel mathematical thinking about this general solution into physical under
standing required consideration of the motions of strings moving in real time. 
This entailed physical insight or information on the way bodies actually were ob
served to move. As we have seen, mathematicians dismissed such information as 
irrelevant to their solutions to this problem. 

In ways parallel to the case of mechanics, mathematicians also turned to ob
servational astronomy as a source of problems for the calculus. In doing so they 
redefined those problems until they fell within the domain of their discipline and 
the scope of their methods. They used such problems to develop variational cal
culus, rather than to meet the needs of observational astronomers in the context 
of current instrumentation and observational methods. The abstract methods and 
analytical results of Euler, Clairaut, d' Alembert, and Laplace existed separately 
from those developed by observers. A profound effort was necessary to shape the 
analysis of mathematicians to the needs of the observational astronomer. This was 
done in the nineteenth century, literally through the translation of Laplace's celes
tial mechanics by Nathaniel Bowditch. He made his work "sensible in terms of 
an observational context through his extensive notes and expansions of Laplace's 
arguments.,,39 

During the eighteenth century the mathematical prize questions put forward by 
the Academies of Paris, Berlin, and St. Petersburg were indicators of preferred 
problems. The prize essays themselves sealed the standards of solution.4o Most 
of the questions seem directed to the solution of problems we would not consider 
as mathematical; the tides, the most effective form for an anchor, the problem 
of longitude. Solutions to these problems and many others required technically 
sophisticated mathematics and in some cases led to the invention of new domains 
in the calculus. The papers that were crowned were all mathematical in content 
and intent. These included Daniel Bernoulli on the anchor and d' Alembert on the 
winds. None of the papers addressed the practical requirements that we assume 
as part of the answer. In 1785 Lagrange was the first to pose a mathematical prize 
question directed specifically to issues within the calculus not couched as a problem 
with external references to the physical world. Significantly, Lagrange was the first 

39 Curtis Wilson, "Perturbations from Lacaille to Delambre: The Rapprochment of Obser
vation and Theory," Arch. Rist. Exact Sci. 22 (1980): 53-304. Bowditch's notes and 
corrections of Laplace's proofs can be seen throughout the volumes. 

40 E. Maindron, Les fondations de prix a I'Academie des Sciences, les laureats, 1714-1880 
(Paris: 1881). 
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mathematician to systematically develop the calculus to try and connect definitions 
and results of technical methods together into a defensible whole.41 

Lagrange's effort to establish the calculus on a logically defensible footing 
did not change the eighteenth century standard of "a reasonable demonstration" 
to rigorous proof. The words "it is easy to see that" usually covered a lacuna 
within a proof or was a standin where demonstration was necessary. The state
ment following was anything but easily deduced from the previous one. A quick 
look through Nathaniel Bowditch's translation and his footnotes shows how much 
Bowditch needed to fill out or amend many of Laplace's proofs in his Celestial 
Mechanics. Laplace's work reflects the standards of late eighteenth century math
ematicians. The eighteenth century understanding of mathematical proof parallels 
experimentalists' ideas on demonstrations as explanation in physics. Mathemati
cians replaced such standards of demonstration by more rigorous ones in the nine
teenth century. These more rigorous standards emerged from mathematicians' 
considerations of the foundations of the calculus and the development of stricter 
demonstration as proof and of results deduced from foundations.42 

Just as experimental philosophers expanded the reach and legitimated their dis
cipline by claiming social utility, mathematicians considered socially pressing 
questions.43 We can again point to the prize questions listed above.44 Mathemat
ics had its theological and philosophical uses. Theological and philosophical 
arguments were couched in mathematical forms, as axioms, and theorems. Math
ematics offered a firm foundation for logically infallible arguments that no longer 
resided in Aristotelian logic. Whether such philosophical schema developed in 
mathematical garb were even seriously applied to empirical evidence is unclear.45 

41 Grattan-Guinness, "The Emergence of Mathematical Analysis and its Foundations: Prog
ress, 1780-1830," in From the Calculus to Set Theory, Grattan-Guinness ed. On Lagrange 
see, Judith Grabiner, "Changing Attitudes toward Mathematical Rigor: Lagrange and 
Analysis in the Eighteenth and Nineteenth Centuries," in Epistemological and Social 
Problems of the Sciences in the Early Nineteenth Centuries H. N. Jahnke and M. Otte 
eds. (Boston: Reidel, 1979),311-347. 

42 Historians of mathematics usually associate the beginnings of this move towards rigor 
with Augustin Cauchy's reformulation of the calculus in the 1820s. 

43 One of the most pressing was that of longitude in which mathematicians and observa
tional astronomers vied for authority over the solution to this problem. It was solved 
technologically and John Harrison fought to have his solution recognized. 

44 For a recent bibliographic survey on the literature in praise of the utility of mathematics 
in the eighteenth century, see Robin E. Rider, "Bibliographic Mterword," in Quantifying 
Spirit, Friingsmyr, Heilbron and Rider, eds., 381-396, 384-385. 

45 For an account of a theology expressed mathematically see, Richard Nash, John Craig's 
Mathematical Principles of Christian Theology (Carbondale IL: Southern Illinois Uni
versity Press, 1991). This trend had begun earlier, see Rick Kennedy, "The Application of 
Mathematics to Christian Apologetics in Pascal's Pensees and Arnauld's The Port-Royal 
Logic," Fides et Historia, 23 (1991): 37-52. 
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Christian Wolff's popular philosophy extolled mathematics as the model for 
acquiring knowledge. Wolff also explored the relationship between mathematics 
and philosophy. His attempts were finally unsuccessful and later demolished by 
Immanuel Kant.46 In a more restricted sense of utility, taken to apply only within 
the sciences, the titles to many eighteenth-century mathematical works would 
lead us to classify them as astronomical, physical, geophysical, chemical, and 
technological. However, their results were geared to the expansion of mathematics 
not to deepening the understanding of physical phenomena, geophysics, chemistry, 
or engineering. Only in retrospect has the latter content been discerned, and even 
here, ambiguously.47 

Eighteenth-century methodological understanding of mathematics also emerged 
in the historical narratives of eighteenth-century mathematicians. Jean Etienne 
Montucla's history of mathematics claimed that the difference between ancient 
and modern physics lay in the use of mathematics. He then annexed optics, acous
tics, music, mechanics, and pnuematics for "mixted" mathematics. Montucla then 
claimed that any problem of "mixted" mathematics could be reduced to one of pure 
mathematics, and that "the particular physical circumstances are immaterial to its 
solution." His account of Newton, whom he eulogized as the "sublime" mathe
matician, was fragmented to suit Montucla's focus on narrating the development 
of the calculus.48 We also find that much of his narrative, like that of Priestley's on 
electricity, was a paraphrase of the research he was describing. His narrative was 
an introduction to the state of the field and a narration of the paths taken to that 
state. 

Treating Newton as a mathematician and fitting his achievements within math
ematicians' standards was common throughout the eighteenth century. While his 
physical ideas were described as "sublime," and "incomparable" they were as often 
either passed over without discussion, or, argued against on metaphysical grounds. 

46 See Christian Wolff, Matematisches Lexicon, in Wolff Gesammelte Werke J. E. Hofmann, 
ed. (Hildesheim: Georg Olms) Vol. XI, Pt. 1. For a short account of Wolff, his philosophy 
and reputation, see Tore Frangsmyr, "Mathematical Philosophy," in Quantifying Spirit, 
Frangsmyr, Heilbron, and Rider, eds., 27-44. 

47 For example, see Isaac Todhunter, A History of the Mathematical Theories of Attraction 
and the Figure of the Earth 2 vols., (New York: Dover reprint of 1873 edition, 1962) and 
A History of Elasticity and the Strength of Materials: From Galileo to Lord Kelvin. (New 
York: one volume Dover reprint of the 1886 and 1893 edition, 1960), Edmund Whittaker, 
A History of the Theories of Aether and Electricity, and Stephen P. Timoshenko, History of 
Strength of Materials (New York: Dover reprint of 1953 edition, 1983). All these authors 
separate the mathematical explorations from theories that were designed to uncover 
physical processes and to understand physical phenomena. 

48 Jean Etienne Montucla, Histoire des mathematiques (Paris: 1799-1802) 4 vols., vol. 1, 
p. 13. Montucla only completed the first edition that took his history to the end of the 
seventeenth century. Joseph Jerome Le Fran<;ais de Lalande finished the third and fourth 
volumes on the eighteenth century. 
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Detailed discussions were reserved for his methodological heritage. His Principia 
was discussed as mathematics, or as metaphysics, not as theoretical physics.49 

Reactions to Newton's mechanics revolved around differing notions of a satisfac
tory foundation for the calculus and acceptable solutions to a mathematical, not a 
physical problem.50 

In ways that parallel experimental physicists and their treatment of the Opticks 
as paradigmatic for their discipline, mathematicians accepted the Principia as 
mathematics. What we take as the foundations of his physics, his three laws of 
motion, his concept of force, and the idea of gravitation, were critiqued, accepted, 
discussed as the work of some predecessor, or discarded for others. Newton's 
physical problems became the basis for forays into mathematics using various 
forms of metaphysics to establish the necessary physical imagery to enter into a 
discussion of the mathematics. The result was always mathematics. 

The Intellectual Geography of Physics 
and Mathematics 

The geography of the disciplines in the sciences of the eighteenth was not that 
of later centuries. Both mathematicians and experimental philosophers shared the 
goal of increasing the explanatory range of their method by expanding the phenom
ena covered by the methods they wielded and hence the reach of their disciplines. 
For practitioners in both disciplines, there was no distinction between "pure" and 
"applied." The broadening of the investigation of nature to areas of social impor
tance, from theology to industrial production, was regarded as valuable, as notable 
as research as any esoteric, abstract result of only intellectual interest. The ultili
tarian potential of the sciences, moral, social, or material was part of its definition 
as knowledge, and were important justifications for their pursuit. Chemistry's util
ity became part of its definition.51 Joseph Priestley was equally interested in the 
chemistry of "airs" and in Josiah Wedgwood's problems with glazes and pottery 
techniques. There were also his own attempts to exploit carbonated water.52 Mem
bers of the Academies of Sciences were involved in solving technical problems 

49 For details of the reactions to Newton's Principia, see Clifford Truesdell, "Reactions of 
late Baroque Mechanics." See also, The Annus Mirabilis of Sir Isaac Newton (1666-
1966), Robert Palter, ed. (Cambridge MA.: MIT Press, 1967), and Guerlac, "Newton on 
the Continent." 

50 See, Domenico Bertoloni Meli Equivalence and Priority: Newton versus Leibniz 
(Oxford: Clarendon Press, 1993) for a discussion of these competing forms of the cal
culus. 

51 See, Arthur Donovan, "British Chemistry and the Concept of Science in the Eighteenth 
Century," Albion 7 (1975): 131-144. See also the career of Joseph Black in Joseph 
Black, A. D. C. Simpson, ed.(Edinburgh: Royal Scottish Museum, 1982). 

52 See Robert E. Schofield, The Lunar Society of Birmingham; A Social History of Provincia I 
Science in Eighteenth Century England (Oxford: Clarendon Press, 1963). Roger Hahn, 
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of states. An academician's position in his discipline was unaffected if he was 
involved in such work. On the contrary, to demonstrate the utility of science was 
to confirm its place and that of the academician in society. 53 

Eighteenth-century mathematicians devoted too much of their time to address
ing utilitarian problems for the latter to be ignored as a minor aspect of their work. 
Whether their solutions to what we call problems of engineering, observational as
tronomy, or of experimental electricity were useful to practitioners in those fields 
is another matter. It does mean that we have to expect eighteenth-century mathe
maticians to begin their mathematical work in problems that ranged from the very 
abstract to the mundane. Whether the subject of investigation lay in number the
ory, geometry, or the characteristics of real, physical bodies, mathematics defined 
the standards of solution. Mathematicians could then claim authority over future 
solutions. In this case we can use Michel Foucault's characterization of episteme. 
In the eighteenth century, language categories reflected the real world. Mathemati
cians did not apply the calculus to the solution of engineering or physics. Those 
problems were a necessary attribute of a mathematics that represented a category 
of the real world. The study of nature was a discourse, within a very constricted 
and implicitly known space. This discourse created its own landscape, delineated 
through language in which legitimate discourse could be carried on, and defined 
the terms in which discourse could occur. Rather there were two parallel dis
courses and sets of practices, one of experimental philosophy, of experimentalists 
and observers, the other of mathematics and mathematicians. 54 

In mathematics the demonstration of a proposition or theorem was Mathematics, 
even when the initial problem arose within the discipline of physics, engineering, or 

"Science and the Arts in France," Stud. Eight. Cult. 10 (1981): 77-93. For Swedish 
science see, Tore Frangsmyr, "Swedish Science in the Eighteenth Century," Hist. Sci. 
12 (1974): 29-42. 

53 See Roger Hahn, The Anatomy of a Scientific Institution: The Paris Academy of Sciences, 
1666-1803 (Berkeley CA.: University of California Press, 1965). Hahn notes that no 
member of the Academie balked at the duties placed on him by the state. See also, 
Charles C. Gillispie, Science and Polity at the End of the Old Regime (Princeton NJ: 
Princeton University Press, 1981), chap. 4 and Robin Briggs, "The Academie Royale 
and the Pursuit of Utility," Past Present, 131 (1991): 38-88. For the German states 
see Henry E. Lowood, Patriotism, Profit, and the Promotion of Science in the German 
Enlightenment: The Economic and Scientific Societies, 1760-1815 (New York: Garland, 
1991). For the Berlin Academy of Science see, Hans Aarsleff, "The Berlin Academy 
under Frederick the Great," Hist. Human Sci. 2 (1989): 193-206; Mary Terrall, "The 
Culture of Science in Frederick the Great's Berlin," Hist. Sci. 28 (1990): 333-364, and 
Roland S. Calinger, "Frederick the Great and the Berlin Academy," Ann. Sci. 24 (1968): 
239-249. 

54 See Michel Foucault The Order of Things: The Archaeology of the Human Sciences 
(New York: Vintage Books, 1973). Foucault did not use his "archeology" to examine 
science; that still existed in a separate category of knowledge. 
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observational astronomy. Closure, translating or relating that solution to abstract 
yet physical conditions, or trying to reach a mathematical form that might be 
translated into an experimental situation, was unnecessary. It was not within the 
terms of the discourse. 

We have therefore twin disciplines of astronomy, celestial mechanics and ob
servational astronomy, as well as two disciplines of mechanics, one mathematical 
and one experimental, two disciplines of hydrodynamics, and so on. Jean Baptiste 
Joseph Delambre's history of astronomy had no place for celestial mechanics. He 
merely reported Newton's work but without comment until it related directly to 
his main concern, a narration of the development of observational methods and 
the methods to reduce data to tabular form. Delambre's measure of the state of 
astronomy was the "state of astronomical tables." There was no celebration of 
Newton as theorist. Delambre had more to say on Clairaut's "inductive interpreta
tion of Newton." Clairaut had proved by observation and induction, no hypotheses 
required, the inverse square law of attraction. 55 Experiment and observation be
longed to a discipline that, in the Eighteenth century was a rival to mathematics. 
Each mutually excluded the other from its domain of competence. The potent 
combination of mathematics and experiment developed in the nineteenth century 
was precluded in the previous century by the self-sufficiency and closure assumed 
for these separate methodologies. Since mathematics and experiment were viewed 
as separate sources of truth, they defined their own criteria for explanations and 
solutions. They covered separate domains of explanation. When both experimen
tal and mathematical methods were brought to bear on the same problem, disputes 
over intellectual property broke out as disciplinary boundaries were violated, and 
livelihoods and reputations were at stake. 

Disputes were bound to occur over the legitimacy of solutions developed in 
competing spheres of discourse, especially before the practitioners had settled the 
terms within their discourse space. As the terms of the discourses were better 
defined and understood, the competing solutions from the rival methodological 
discipline could be safely ignored. Disputes usually began and ended over the 
ontplogicallegitimacy of the methods within the opposing disciplines to solve the 
problem in question. No accommodation appeared possible in the terms available 
during the eighteenth century. 

Between the two astronomies, one observational, the other mathematical (ce
lestial mechanics), controversies erupted over the rights to possession of the in
tellectual property invested in certain problems and the proper methods for their 

55 Jean Baptiste Joseph Delambre, Histoire de I'Astronomie au dix-huitieme Siecle (New 
York: reprint of the Bachelier 1821 edition, 1969),2 vols., vol. 1, p. 23. Rachel Laudan 
has drawn attention to the function of histories of the sciences for the practitioners of 
those sciences. However, she pays more attention to later eras. See Rachel Laudan, 
"Histories of the Sciences and their Uses: A Review to 1913," Hist. Sci. 31 (1993): 
1-34. 
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solution.56 These intellectual quarrels also involved issues of institutional preroga
tives and status, personal reputation and future prospects. One such ongoing battle 
was between the observational astronomers, the Cassini's, at the Paris Observatory 
and the geometres of the Academie des Sciences. The Academie controlled the 
Observatory's budget, and was responsible to the state for the Observatory. Fur
thermore its mathematicians were involved in a case of conflict of interest. J. D. 
Cassini and his successors argued that the paths of the planets could only be deter
mined through observation. Mathematics was a necessary adjunct to observation 
for the reduction of data to results. Mathematics was not the method to establish, 
in the sense of demonstration or proof, the true paths of the planets.57 The hostility 
between the mathematicians at the Academie and the Cassinis at the Observatory 
was over their conflicting claims to the solution of the same problem, the paths of 
the planets. The mathematicians believed that with the problem reduced to math
ematical form, its solution was their prerogative. Throughout the century, as the 
position of the mathematicians within the Academie rose, the physical state of the 
Observatory declined, as did the quality of its observational work. The institution 
sprang back after its independence from the Academie.58 

The Cassini case brings up some important differences between eighteenth cen
tury astronomy and that of the last century and a half. Within the latter the as
sumption is implicit that an observational matrix and mathematical, theoretical net 
are complementary facets of a common enterprise. This was clearly not the case 
in the eighteenth century. 

Another matter in which we would expect the methods of mathematics to 
complement those of observation is in the construction of astronomical tables. 
D' Alembert, Euler and Laplace used astronomy to extend the range of their math
ematical methods, not to solve the problems of contemporary observational as
tronomers. Euler turned his hand to composing lunar tables that he felt would 
be helpful to the practicing astronomer. They do not appear to have been use
ful to eighteenth-century observational astronomers. This was also true of the 
mathematical ~ork of Euler and Clairaut on the design of optical systems. These 
results might arise from social circumstances, or the lack of understanding of 
observational astronomers and of higher mathematics. Even in the latter case ob-

56 This division of astronomy into distinct disciplines, mathematical and physical is noted 
in Rainier Baasner, Das Lob der Sternkunst: Astronomies in der deutschen Aufkliirung 
(G6ttingen: Vandenhoek and Ruprecht, 1987). 

57 For another example of this use of mathematics by an observational astronomer see, Eric 
Forbes, "Mayer's Contribution to Observational Astronomy," J. Hist. Astron. 11 (1980): 
28-49. 

58 This decline might be partly explained by the positions at the Observatory being treated as 
a family prerogative. Seymour Chapin, "The Academy of Sciences during the Eighteenth 
Century: An Astronomical Appraisal," French Hist. Stud. 5 (1968): 371-404. Other 
disputes within the Academy further weakened support for the Observatory. 
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servational astronomers developed their own mathematical solutions to problems 
of data analysis.59 

The limitations of mathematicians' approaches to these problems were many, 
not the least being the technical problems of treating equations of many variables. 
The other was that, while mathematicians needed to achieve solutions compatible 
with known measurements, they were free to arbitrarily adjust constants within 
their equations and change variables. The changes in variables did not bring with 
them any need to understand what these changes implied about the motions of 
heavenly bodies or astronomical processes. Nor did mathematicians have to worry 
about what changes in constant might imply for observers.6o 

Mathematicians' calculations added nothing useful to solutions practical as
tronomers needed. Observational astronomers developed their own methods of 
dealing with data. Even when observational astronomers announced a program 
including mathematics, the mathematics under consideration was one of imme
diate use in observational astronomy, nothing more. Such was the mathematics 
of mathematical cosmography that was of interest to observational astronomers 
not mathematicians. The goals of the Mathematical Class of the Cosmographical 
Society of Nuremberg, were consistent with the mathematical needs of observers, 
not mathematicians. The only contact between the designers, builders and users of 
the instruments and observational methods with mathematicians was that of Georg 
Moritz Lowitz with Euler on problems of projection. 61 

Long before eighteenth century astronomical observers needed mathematical 
methods to deal with the spread in data points, they understood that the average 
of several readings was better than one carefully collected reading. Mter exper
iments became quantitative, such methods also became critical to experimental 
philosophers. Observational astronomers and experimentalists developed their 
own traditions of defining, and then analyzing the problem of error independent 
of mathematicians' explorations of several kinds of error curves. Daniel Bernoulli 
analyzed the errors of measurements in several papers. In these papers he clearly 
draws on his own experience. Initially Bernoulli chose to discuss the more difficult 

59 J. C. Deiman, "Optics and Optical Instruments, 1600-1800," in Mathematical Ency
clopedia, Grattan-Guinness ed., vol. 2, 1158-1164, and Brett D. Steele, "Muskets and 
Pendulums: Benjamin Robins, Euler and the Ballistics Revolution," Techn. Cult. 35 
(1994): 348-382,367. Umberto Bottazzini, "Lagrange et Ie probU:me de Kepler," Rev. 
Hist. Sci. 43 (1990): 27-78, sees the same pattern in Lagrange's solution to the anomalies 
of planets motions. 

60 See d' Alembert, Recherche sur la precession des equinoxes et sur la nutation de l' axe de 
fa terre dans Ie systeme newtonien (Paris: 1749), and Euler, Lunar Tables. D' Alembert 
saw his solution as vindicating Newton's law of gravitation. 

61 See Eric G. Forbes, "Mathematical Cosmography," in Ferment, Rousseau and Porter eds., 
417-448, p. 428, and Forbes, Tobias Mayer (1723-1762) (Gottingen: Vandenhoek and 
Ruprecht, 1980). 
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problem involving a very finite number of observations over a finite range of val
ues. His problem was to determine the most likely value for a measurement after 
all systematic errors were removed. The solution lay solely within the theory of 
probability. Bernoulli was looking for the value with maximum likelihood which 
he then assumed explicitly to be the true value. His distribution of values lay within 
a circle whose diameter spanned observations on both sides of the "true" value. If 
in the series of observations the smallest is A, the second A + a, the third A + b 
and the most probable A + x, the highest probability for x was given by taking the 
derivative of 

Bernoulli deduced the value for x for n = 1,2,3 ... , noting the tedium in work
ing out such calculations, and ended by illustrating his method with numerical 
examples.62 

Taking examples of actual results from the available astronomical literature 
Euler objected to Daniel Bernoulli's assumption that maximum likelihood was 
the true reading but offered no improvements on his arguments. Indeed Euler's 
mathematical excursions lead into territory where the error range was in danger of 
becoming imaginary and he beat a hasty retreat. Euler had other problems. In his 
example of deducing the shape of the earth from four measurements of the length of 
an arc along a single meridian, he eliminated unknown parameters from his initial 
equations. This left him with two equations in two unknowns, the corrections to 
the lengths of the arc. However, the equations led to more than two solutions, one 
of which seemed more "reasonable" than the other, although Euler did not indicate 
why.63 

While Laplace's work was important for the development of the mathematical 
theory of probability, it was less useful for experimentalists and observational 
astronomers.64 However, Laplace investigated the "probability that an error should 

lie between ex and y by 1Y f(z) dz, where f(z) is a known function of the error 

62 Daniel Bernoulli, "Dijudicatio maxime probabilis plurum observationum discrepantium 
atque versimillima inductio indeformand," Acta Acad. Sci. Petrop. (1777): 3-23, trans
lated in Studies in the History of Statistics and Probability, E. S. Pearson and M. G. 
Kendall, eds. (London: Charles Griffin, 1970), 155-167. This is noted by statisticians 
as the first discussion of maximum likelihood. 

63 Euler, "Observations on the foregoing dissertation," in Studies Pearson and Kendall, 
eds., 167-172. See also O. B. Sheynin, "Euler's Treatment of Observations," Arch. Hist. 
Exact Sci. 9 (1972): 45-56, "J.-H. Lambert's Work on Probability," Arch. Hist. Exact 
Sci. 7 (1970-71): 244-256, and "Origins of the Theory of Errors," Nature, 211 (1966): 
1003-1004. 

64 For Laplace's work in the history of the development of the mathematical theory of 
probability see Stephen Stigler History of Statistics: the Measurement of Uncertainty 
before 1900 (Cambridge MA.: Harvard University Press, 1986). 
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Z." He redefined the probability of error into a more general and more interesting 
mathematical one. He examined the Gaussian distribution as well as the behavior of 
other functions. However, Laplace offered no clues as to which function was useful 
and under what conditions for dealing with the problems of errors of observation. 65 

Karl Friederich Gauss was the exception. Together with Wilhelm Bessel, he 
changed the relationship between mathematics and observational astronomy in the 
crucial period after 1800. He defined the problem as an observational astronomer, 
"to determine the orbit of a heavenly body, without any hypothetical assumptions, 
from observations not embracing a great period of time, and not allowing a se
lection with a view to the application of special methods." Using the method of 
least squares, he worked out the principle characteristics of a new planet, Ceres, 
first observed by Giuseppe Piazzi in 1801. Franz Xaver von Zach used these char
acteristics to relocate the planet later that year.66 Gauss' account of his methods 
were directed to astronomers. He noted that "the motions of the heavenly bodies, 
so far as they take place in conic sections, by no means demand a complete theory 
of this class of curves;'67 His work was replete with specific examples taking into 
account calculations with incomplete sets of observations and completed his text 
with a set of log tables.68 

Most forays by mathematicians into the domain of experimental and obser
vational natural philosophy did not stop those philosophers seeking their own 
solutions within their terms of discourse. While mathematicians appeared to ap
propriate the problem of the shape of the earth completely, even to making the 
measurements in Peru and Lapland, they did not decide the issue. Their mathe
matical explorations of the shape of the earth did not solve the problem. Geodesic 
measurements continued throughout the eighteenth century. This measurement had 
political and imperial implications as well as being of metaphysical use. These 
efforts were, therefore, international and inconclusive. The incompatibilities of 
these measurements seemed to indicate that the shape of the earth was not the sim
ple oblate spheroid of the mathematicians. Observational closure came only with 
the measurements of P. F. A. Mechain and 1. B. 1. Delambre during the revolution-

65 Laplace, Mecanique Celeste, trans. with commentary by Nathaniel Bowditch, vol. 2, 
book 3 chap. 5. 

66 Gauss Theoria motus cor porum coellestium, Charles Henry Davis, trans. (New York: 
Dover reprint of 1857 edition, 1963). 

67 Gauss Theoria, p. 3. 

68 On the method of least squares, see Jean-Luc Chabert, "Gauss et la methode des moindres 
carres," Rev. Hist. Sci. 43 (1990): 5-26 argues that Gauss' solution was to a mathematical, 
not an astronomical problem. See also, Elizabeth Garber, "Aspects of the Introduction 
of Probabilities into Physics," Centaurus, 17 (1971): 11-39, and Forbes, "Mathematical 
Cosmography." Forbes argues that Tobias Mayer implicitly used the same postulate, that 
the algebraic sum of random errors is zero in any run of independent measurements, that 
was later the foundation of Gauss' formal theory of errors. 
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ary period.69 Chemists successfully repulsed attempts to develop a mathematical 
chemistry. Chemistry was experiment. The object of its study were real bodies and 
their reactions. The proofs chemists required for their ideas came from their own 
observationsJo Chemists and chemistry belonged on the other side of the method
ological divide within that broad, disciplinary swathe defined by experiment and 
observation, physics. 

Defining eighteenth century disciplines methodologically produces an entirely 
different research landscape from that of the twentieth century. However, disci
plines defined by method had their drawbacks. As the method uncovered phe
nomena, the field, for its practitioners and historians alike, became unwieldy. By 
the middle of the eighteenth century some practitioners circumscribed their dis
ciplines more closely. The first to be successful were the chemists. Rather than 
define themselves by adherence to a common set of concepts or presupposition, they 
demarcated their field by method and the phenomena they worked on. Chemists 
claimed jurisdiction over phenomena that yielded to their particular set of methods. 
Chemists postulated that physics, narrowly defined, only dealt with the aggregate 
properties of matter. Physical properties depended only upon the arrangement of 
the particles of the substances that were more or less complex. Only chemical 
methods could break apart these complex particles and reaggregate them into dif
ferent combinations. Only the methods of chemists could plumb the microscopic 
structure of matter.71 

Throughout the century, pinning down precisely the relationship between chem
istry and physics was not that simple. Chemists argued over the place of various 
phenomena and the status of caloric and other imponderables within their disci
pline. Historians of eighteenth-century chemistry also argue over that relationship. 
Their dispute focuses on physics, not precisely defined, as a model for chemistry 
during the era of Lavoisier. While not entering into the debate within the history 
of chemistry, it is not at all clear that physics, even if it was a model for chem
istry, was any closer to being a modern scientific discipline than eighteenth-century 

69 Heilbron, Weighing Imponderables, 213-242. 

70 Michele Sadoun-Goupil, "Les tentatives de matMmatisation de la chimie au xviiiieme 
siecle: echecs et oppositions," Sci. Techn. Persp. 1 (1981-82): 2-1-2-19. See also 
Michele Sadoun, La mathematisation de la chimie en xviiiieme siecle (Strasbourg: Uni
versite Louis Pasteur, 1974). 

71 Karl Hufbauer, The Formation of the German Chemical Community, 1720-1795 (Berke
ley CA.: University of California Press, 1982), chap. 1, claims that chemistry attained 
disciplinary autonomy in the early eighteenth century by German chemists anxious to 
separate their work from that of alchemists as well as physicists. J. B. Gough, "Lavoisier 
and the Fulfillment of the Stahlian Revolution," Osiris, 4 (1988): 15-33, p. 24. Arthur 
Donovan, Philosophical Chemistry in the Scottish Enlightenment (Edinburgh: Edinburgh 
University Press, 1975) discusses the attempts of William Cullen to define chemistry as 
an autonomous discipline, more difficult in Scotland than France, given the heavy New
tonian tradition. Cullen's definition was based on phenomena. 
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chemistry. What could physics offer chemistry in the late eighteenth century ex
cept quantified experiment. However, the quantified experiments of Lavoisier and 
Laplace on heat do not seem to change the terms of the theoretical debate about the 
nature of heat. It remained in their study in the vernacular. Their elaborate theory 
of heat as the vis viva of the particles of bodies was abandoned for the simpler as
sumption that heat entered a body as it was heated and left as it cooled. From this 
they developed their linear, algebraic expression for comparing specific heats. 72 

Physics was still a loosely held bundle of practices whose theoretical conjectures 
were as qualitative as those of chemists in the eighteenth century. 73 

The practitioners of experimental physics were as divided as chemists over 
foundational ideas, such as ether or caloric. Nor did practitioners in either discipline 
structure theories in our sense of the term. Arthur Donovan's description of pre
Lavoisian chemistry as a "dispersed and varied set of local didactic, experimental, 
and explanatory practices" works for experimental physics in the same era and into 
the next century.74 Physics in the eighteenth century shared the same characteristics 
as eighteenth-century chemistry which differentiate them both from their modern 
namesakes There is indeed more evidence that chemistry itself initiated the move 
"into science" from natural philosophy.75 Lavoisier's new chemistry reorganized 
that science around particular concepts rather than defining chemistry through 
methods and phenomena. In trying to promote the new chemistry as a revolutionary 
method, Lavoisier and the other anti-phlogistonists knew their colleagues well. 

72 Lavoisier and Laplace, Memoir on Heat, Henry Guerlac, trans. (New York: Neale Watson 
Pub., 1982), on vis viva 4-5. Their claims for precision were spurious. See also Heilbron, 
Weighing Imponderables, 101-104. 

73 On these points see the exchanges between Evan M. Melhado, "Chemistry, Physics 
and the Chemical Revolution," Isis, 76 (1985): 195-211, C. E. Perrin, "Revolution or 
Reform," Hist. Sci. 25 (1987): 395-423 and "Research Traditions, Lavoisier, and the 
Chemical Revolution," Osiris 4 (1988): 53-81. Essentially, Perrin argues for a self
contained tradition of research within chemistry, with chemistry as a disciplinary equal 
of physics. Melhado and also Arthur Donovan in Donovan, "Lavoisier and the Origins 
of Modern Chemistry," Osiris, 4 (1988): 214-231 argue that chemistry took as its model 
the methods of physics, already assumed to be a modern scientific discipline. The debate 
continued in Perrin, "Chemistry as Peer of Physics: A Response to Donovan and Melhado 
on Lavoisier," Isis, 81 (1990): 259-270, Melhado, "On the Historiography of Science: 
A Reply to Perrin," Isis, 81 (1990): 273-276, and Donovan, "Newton and Lavoisier: 
Chemistry as a Branch of Natural Philosophy to Chemistry as Positive Science," in 
Action and Reaction, P. Theerman and A. D. Seeff, eds. (Newark DEL: University of 
Delaware Press, 1993). The issue begins in Guerlac, "Chemistry as a Branch of Physics: 
Laplace's Collaboration with Lavoisier," Hist. Stud. Phys. Sci. 7 (1976): 183-276. For 
the impact of the methods of physics on Lavoisier see, Donovan Antoine Lavoisier: 
Science, Administration and Revolution (New York: Cambridge University Press, 1996), 
chap. 3. 

74 See Donovan, "Introduction," Osiris 4 (1988): 5-12, p. 11. 

75 The phrase is taken from Donovan, "Lavoisier and modern Chemistry," p. 219. 
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While Lavoisier claimed to be introducing a new nomenclature, to use that language 
required the acceptance of the new chemical principles underlying the language. 
His critics saw it as a conceptual reorganization that left the basic methods of 
chemistry intact. They were correct. Lavoisier had changed "the rules of scientific 
discourse.,,76 

Lavoisier and the other anti-phlogistonists successfully isolated chemistry as 
a discipline because they had joined together concept, theoretical explanations 
and method in a potent new form. In this new form the organizing principles of 
the theory held as high an ontological value as its methods. 77 With the adoption 
of Lavoisier's chemistry, the discipline changed and shed many of its eighteenth 
century characteristics. Physics, narrowly defined, did not make that transition 
until well into the nineteenth century. 

The Social Geography of Physics and Mathematics 

The methodological division of the sciences was both intellectual and social. On 
the continent, members of Academies of Science were divided into two sections, 
mathematical and physical. These membership categories were further subdivided. 
The publications of these societies reflected this same social division. In the Paris 
Academie this division between the mathematical and deductive, versus the exper
imental and observational and inductive, sciences was particularly long lived. In 
the mathematics division was geometry, astronomy and mechanics. Under physics 
was physics, anatomy, chemistry and botany. These particular subfields came un
der revision as the methodological divisions of the disciplines became unwieldy. 
Under Lavoisier's suggested reforms physics, narrowly defined, entered as a spe
cific section within the Academie. This separation of physics from chemistry 
meant that it no longer encompassed chemistry. Lavoisier reinforced chemists' 
efforts to establish their discipline as separate and equal to the experimental field 
of physics. 78 

76 To understand that Lavoisier's chemistry was based upon new principles read Antoine 
Laurent Lavoisier, Traite elementaire de chimie (Paris, 1789) trans. by R. Kerr as Elements 
o/Chemistry (Edinburgh: 1790). The phrase is taken from Jan Golinski, "The Chemical 
Revolution and the Politics of Language," Eighteenth Century: Theory and Interpre
tation 33 (1992): 238-257. Bernadotte Besaude-Vincent in, "A View of the Chemical 
Revolution Through Contemporary Textbooks: Lavoisier, Fourcroy and Chaptal," Brit. 
1. Hist. Sci. 23 (1990): 435-460 discusses the differences between Lavoisier's text 
and those of other chemists, particularly Chaptal who published texts before and after 
becoming a Lavoisian. 

77 The loud protests of chemists in the nineteenth century proclaiming their empiricism does 
not alter the place of theory within their reorganized discipline. These protests occurred 
after the acceptance of Lavoisier's revised system. His theory had become so ingrained 
in practice as to be natural, not theoretical. 

78 See Hahn Anatomy, for the divisions within the Academie, and Rhoda Rappaport, "The 
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In the G6ttingen Societiit der Wissenschaften, whose intellectual reach was 
wider, the classes were mathematics, physics, history and politics-to the exclusion 
of the "useful" arts of theology, law and philosophy. The distinctions between 
mathematics and physics was still a methodological one.79 The sections of the 
publications, and the social divisions they reflected in the St. Petersburg Academy 
of Sciences, were unstable and seem to shift with the political fortunes of the 
Academy itself.8o The position of physics changed from the mathematical to the 
physical section and back again. Looking at the journals of the Academy, the 
content of the papers reflected the sections to which physics was relegated. When 
physics was within the physics section, the papers were experimental. When it 
was shifted to the mathematics division, the papers were mathematical. 

The memberships of state-financed academies were carefully controlled, socially 
and intellectually. And only in such academies could mathematics such as the 
calculus flourish. Calculus only entered the curricula of military academies of 
the European states as it became useful for fortification design. Similarly, the 
mathematics taught at the universities of the German states and elsewhere was 
useful, to meet the needs of a gentleman on his estates, and the cameralist for a 
career within the state civil service. 

Most eighteenth century scientific societies were local and functioned scientifi
cally as centers for the experimental and observational sciences. While those on the 
continent at the apex of the cultural pyramid were arms of the state, most of these 
societies served the interests and needs of local groups. Experimental philosophy 
drew more people into the study of nature and into active participation in local so
cieties. However, the interests of the individuals that supported such societies and 
activities were very diverse. This diversity led to tensions within those institutions 
that reflected the different aspirations of their members.81 Despite the multiplicity 
of interests, local scientific societies were as important as lecture series for the 

Liberties of the Paris Academy of Science, 1716-1785," in The Analytical Spirit: Essays 
in the History of Science in Honor of Henry Guerlac, Harry Woolf, ed. (Ithaca NY.: 
Cornell University Press, 1981),225-253, and James E. McClellan III, "The Academie 
Royale des Sciences, 1699-1793: A Statistical Portrait," Isis, 72 (1981): 541-567,543-
544. 

79 See Otto Sontag, "Albrecht von Haller on Academies and the Advancement of Science: 
the Case of GOttingen," Ann. Sci. 32 (1975): 379-391. 

80 David M. Griffith, "The Early Years of the Petersburg Academy of Science," Canadian
American Slavic Studies, 14 (1980): 436-445. 

81 This was also true in the early years of the Royal Society as later in local scientific 
societies. See Marie Boas Hall, Promoting Experimental Learning: Experiment and 
the Royal Society, /660-1727 (Cambridge: Cambridge University Press, 1991). This 
changed as the eighteenth century wore on; see David P. Miller, "Into the Valley of 
Darkness: Reflections on the History of the Royal Society in the Eighteenth Century," 
Hist. Sci. 27 (1989): 155-166. 
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dissemination of knowledge of experimental philosophy.82 

We can recognize disciplines and communities of practitioners within the sci

ences, perhaps the best example being that of the chemists. Yet these communities 

did not function as professions. Twentieth-century patterns of behavior, social 

relations, training, and practices are not consistently detected in the eighteenth 

century.83 While some individuals might earn enough doing chemistry, say, to live 

comfortably, most did not, even when they were members of the Academie des 

Sciences in Paris.84 Membership in the academies conferred great social status and 

opened up opportunities to teach, consult, and even become a paid expert witness 

in legal cases. Teaching meant teaching in several places, but did not include 

training the next generation of practitioners. Neither did the institutional setting 

of teaching become the site for research. Research was pursued privately. As state 

functionaries, members of the academies were expected to aid the state in solving 

82 The social range of the membership of these societies, their purposes and their fates are 
the subject of a large literature. Most historians emphasize the provincial character of 
these institutions and the local purposes they served. For provincial French scientific so
cieties, see Daniel Roche, Le siecie des lumieres en province: Academies et academiciens 
provinciaux, 1680-1789 (Paris: Mouton, 1978), 2 vols. For Holland, see Snelders, "Pro
fessors, Amateurs and Learned Societies," in Dutch Republic, Jacob and Mijnhardt, eds. 
For Scotland, see Donovan, Philosophical Chemistry, and R. L. Emerson, "The Philo
sophical Society of Edinburgh (1737-1747)," Brit. J. Hist. Sci. 12 (1979): 154-171; 
"(1747-1780)," same journal, 14 (1981): 133-176 and "(1768-1785)," same journal, 18 
(1985): 255-303 and "Science, Origins and Consensus of the Scottish Enlightenment," 
Hist. Sci. 26 (1988): 333-336, and Kathleen Holcomb, "A Dance in the Mind: The 
Provincial Scottish Philosophical Society," Stud. Eight. Cult. 21 (1991): 89-100. For 
an early provincial English scientific society see Schofield, The Lunar Society. For the 
German states see Lowood, Patriotism. 

83 For arguments why twentieth-century sociological categories are useless for understand
ing the social behavior of scientists even at the end of the eighteenth century, see Dorinda 
Outram, "Politics and Vocation in French Science," Brit. J. Hist. Sci. 13 (1980): 27-43. 

84 For the argument that eighteenth-century chemistry was a discipline but not a profession 
see Karl Hufbauer, The Formation of the German Chemical Community, 1720-1795, 
(Berkeley CA: University of California Press, 1982), and "The Social Support for Chem
istry in Germany in the Eighteenth Century: How and Why did it change," Hist. Stud. 
Phys. Sci. 3 (1971): 205-231. John Heilbron illustrates this for "electricians," although 
he does not address the question directly, in Heilbron, Elements of Early Modern Physics,. 
Roger Hahn also argues that even under the patronage of the French State scientists can
not be defined as professionals. See, Hahn, "Scientific Research as an Occupation in 
Eighteenth-Century Paris," Minerva, 13 (1975): 501-513, and "Scientific Careers in 
Eighteenth-Century France," in The Emergence of Science in Western Europe Maurice 
Crosland, ed. (New York: Science History Books, 1975). For an alternative view, see 
Crosland, "The Development of a Professional Career in Science in France," Minerva, 
13 (1975): 38-57, and Emergence Crosland ed., 139-159, although he claims the status 
of profession in France only with the French Revolution. For a more general discussion, 
see Professions and the French State, 1700-1900, Gerald L. Geison, ed. (Philadelphia 
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its technical problems. Many did and this sometimes ended their ability to do 
sustained pieces of research. 85 Making a living in science required entrepreneurial 
skills to establish, consolidate, and sustain. 

There was no established, systematic or regulated entry into the scientific dis
ciplines. The study of nature was an integral aspect of polite, and not so polite, 
cultures throughout the eighteenth century. At the universities of Europe the sci
ences were taught as adjuncts to medicine, or some other profession, or as an 
aspect of this male, educational rite of passage into elite, adult society. While not 
on a par with dancing or fencing classes the sciences added a certain gloss to the 
universities' offerings to the sons of the rich and the upper classes. For a student 
the pursuit of science required aptitude, perseverance, and the opportunity to take 
advantage of local resources. Training to become competent enough to publish 
and enter the world of research was again a matter of personal commitment, social 
place, opportunity, and patronage. 

The arena of social and intellectual activity for most scientists in the eighteenth 
century was the local scientific society, rather than the university or college. And 
some of those studies accepted and lauded as research in the eighteenth century ap
pear from the late twentieth century to be an unending recital of observations, and 
some decidedly misplaced. Then as now, disciplinary colleagues were geographi
cally scattered and might be addressed in technical terms. Yet the expectations of 
this "imagined community" for the content of research reports were very different 
from those of professionalized disciplines of the past century and a half. Exam
ples of those were examined in the preceding chapter. This is not a matter of the 
concepts of physics having changed, or of its problems being different. That is to 
be expected. In the eighteenth century, experimentalists and mathematicians had 
different notions of what constituted a valid research problem and the criteria for 
their solution. Much that counted as explanation in the eighteenth, does not stand 
up to scrutiny as science in this century. Similarly disciplinary boundaries are not 
where we might expect them. What we find is that while names of broad disciplines 

PA: University of Pennsylvania Press, 1984). Charles Coulston Gillispie locates the 
professionalization of the sciences in France in the nineteenth century. See, Gillispie, 
The Professionalization of Science in France, 1770-1850 (Tokyo: Kyoto Doshiha Uni
versity Press, 1983). An enquiry into mathematicians and their status as "professionals" 
based on an historically shifting definition of professions is in Ivo Schneider, "Forms of 
Professionalization in Mathematics before the Nineteenth Century," in Social History of 
Nineteenth Century Mathematics, Herbert Mehrtens, Henk Bos and Ivo Schneider, eds. 
(Basel: Birkhiiuser, 1981), 89-110. 

85 See Charles C. Gillispie, Science and Polity. Frederick the Great had the same expecta
tions of his academicians in Berlin. See, Friederich II, "Discourse de I 'utilite des sciences 
et des arts dans un etat," (read by Therault Jan. 1772) Mem. Acad. Sci. Berlin (1772): 
18. Whether he was as successful in mobilizing his academicians as the French state 
is questionable. See also Calinger, "Frederick the Great and the Berlin Academy of 
Science." 
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such as physics and mathematics have remained the same, the expectations and 
practices of physicists and mathematicians have changed radically. Establishing a 
theoretical point of view, then developing it to interpret phenomena, or as a valid 
foundation for a mathematical argument, was a matter of metaphysics. The con
duct of disputes, the curve of vocations and the distribution of honors and prizes 
follow different intellectual as well as social rules. 

Historians of the eighteenth-century sciences appreciate these differences and 
take them as their starting point in analyzing their era.86 We need to take the next 
step and ask how then did the modern discipline of physics develop into a profession 
whose practitioners were located in universities? How was it that the education 
and practices of these professionals cut off most of the members of society from 
participation in or even understanding of what those practitioners were doing? 
How did the modern system of physics come into existence? 

86 Symbolic of this realization are the essays in Ferment of Knowledge R. S. Rousseau and 
Roy Porter, eds. This is continued in the review of Ferment of Knowledge by G. N. Cantor, 
"The Eighteenth Century Problem," Hist. Sci. 20 (1982): 44-63. See also J. F. Musser, 
"The Perils of Relying on Kuhn," Eighteenth Cent. Stud. 18 (1984): 215-226, and E. M. 
Melhado "Metzger, Kuhn and Eighteenth Century Disciplinary History," in Studies on 
Helene Metzger, Gad Freudenthal, ed. Corpus, 8/9 (1988). For an earlier discussion of 
the inherent difficulties of investigating science in the eighteenth century, see Crosland, 
"Editor's Foreword," in Emergence of Science Crosland, ed. The pursuit of the place 
of science in the growing consumer societies of the eighteenth century continues. See 
Consumption Brewer and Porter, eds., part IV, as well as Golinski, Science as Public 
Culture, and Stewart, Rise of Public Science. 



Part II 

Transitions, 1790-1830 



Chapter IV 

"Empirical Literalism": Mathematical 

Versus Experimental Physics in France, 1790-1830 1 

Well before 1790 Paris had become the social and intellectual center for scientific 
life in Europe. It remained at the center until after 1830. Because this era in 
the scientific life of France has been seen as the source of modern physics, we 
need to examine the workings of Parisian scientific institutions and the practices 
of mathematicians and experimental physicists. What, precisely, did this band 
of intensely competitive men change in their mathematical and physical heritage 
from the eighteenth century? After examining the social and political structures 
of scientific Paris and their workings, we will turn to a series of problems and 
prize-essay questions of the era. In France the solutions to these problems were 
the occasions for fierce contests over the practices and future of both physics 
and mathematics. The solutions also disclose what was accomplished in this era 
in terms of changing the relationships between mathematics and experimental 
physics. The mathematization of electrostatics by Poisson, and Fourier's work 
on the conduction of heat through solids, will help us distinguish the technical 
mathematician of the early nineteenth century from the theoretical physicist of a 
later era. Similarly, the development of the wave theory of light and subsequent 
work in France on elasticity will separate mathematicians from experimentalists 
and reveal the changes in physics by 1830. 

The place of science in French society and culture was strengthened in the era 
between 1790 and 1815, despite the arbitrary rule of the radical period of the 
French revolution, the instabilities of the Directory, and the manipulations of the 
Napoleonic era. There were even signs of long-term social and intellectual conti
nuity in the scientific community in the context of political change.2 Institutions 

1 Stephen Jay Gould coined this expression in, "The Stinkstones of Oeningen;' in Gould 
Hens Teeth and Horses Toes (New York: Norton, 1983) 94-106,105 to describe Cuvier's 
methodology in paleontology in his efforts to read the fossil record as it presented itself, 
with no interpolations or theoretical leaps of the imagination. 

2 This does not preclude the short-term dislocations, anxieties and even terror during the 
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changed, but as institutions they functioned in ways that were continuations of pre
Revolutionary social practices within the sciences. Paris retained its international 
leadership as the center for research and that leadership was even strengthened and 
remained unchallenged until after 1830.3 Scientists became even more important 
to the State in this era.4 

Changes in Social Geography, 1790-1830 

In these three decades, as in the eighteenth century, political forces dictated 
the social space of mathematicians and experimental physicists.s Scientists proved 
remarkably adaptable to the sometimes rapidly changing political order.6 Science 
was important for all the republican regimes. It was part of the foundation of their 
rhetoric.7 Until it was discarded by Napoleon, state scientific institutions had to be 
remade to conform with the prevailing egalitarian ideology. The "elitist" institu
tions of the old regime were destroyed without any immediate, official institutions 
to replace them.8 

1790s. See Dorinda Outram, "The Ordeal of Vocation: The Paris Academy of Sciences 
and the Terror," Hist. Sci. 21 (1983): 251-274, and HahnAnatomy, chaps. 8 and 9. 

3 The issue of the impact of the revolution and of Napoleon on science is yet to be de
cided. See Henry Guerlac, "Some Aspects of Science in the French Revolution," Sci. 
Monthly 80 (1955): 93-101, Rene Taton, "The French Revolution and the Progress of 
Science," Centaurus, 3 (1953): 73-89, L. Pearce Williams, "The Politics of Science in 
the French Revolution," in Critical Problems in the History of Science, Marshall Clagett, 
ed. (Madison WI.: University of Wisconsin Press, 1962),291-308, and Joachim Fischer, 
Napoleon und die Naturwissenschaften (Stuttgart: Franz Steiner, 1988). 

4 See Nicole Dhombres and Jean Dhombres, Naissance d'un pouvoir: sciences et savants 
en France, 1793-1824 (Paris: Editions Payot, 1989) and Terry Shinn, Sa voir scien
tifique et pouvoir social: l'Ecole Poly technique, 1794-1914 ( Paris: Presse Foundation 
Nationale des Sciences Politiques, 1980). 

5 See Charles Coulston Gillispie, "Science and Politics, with specific Reference to the 
Revolution and Napoleonic France," Hist. Techn. 4 (1987): 213-223, and Gerald L. 
Geison, Professions. 

6 The epitome for this is Pierre Simon, Marquis de Laplace who flourished under the Old 
Regime, survived the Revolution, Directory, Napoleon and the Restoration. Others were 
less fortunate and suffered at certain periods, among them Augustin Fresnel, Joseph 
Fourier, and Gaspard Monge. The fate of Antoine Laurent Lavoisier lies outside of our 
story. 

7 Gillispie, "The Encyclopedie and Jacobin Philosophy of Science," In Critical Problems, 
Clagett, ed., 255-289. 

8 Hahn discusses The fate of the Academie des Sciences and the academicians in Hahn, 
Anatomy. Maurice Crosland The Society of Arcuei/. A View of French Science at the Time 
of Napoleon I (London, 1967) recounts the attempts of some scientists to continue their 
research careers during the chaos of the 1790s. However, this represents only a small 
number of established scientists and their protegees. 
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Scientists gained a refuge in the new educational institutions established and 
sustained by the various regimes. It was largely within these new institutions that 
scientists regained their sense of collective identity, the physical and social space, 
and resources for the resumption of their research. For our purposes, the most 
important of these new educational institutions was the Ecole Poly technique. 9 The 
establishment of the Grand Ecoles and later the University changed the teaching 
of science.lO At the Ecole Poly technique the sciences were taught as subjects in 
their own right, whether or not the student was destined for a career as an engineer, 
a teacher, or some other state functionary. There were courses in chemistry and 
mathematics with the systematic introduction of material of increasing difficulty. 
The next generation of mathematicians and experimentalists were trained through 
this systematic educational scheme. Establishment of the national university also 
increased the availability of such instruction. These same educational institutions, 
rather than the Academie then Institut and finally Academie, became the setting 
for renewed research and recruitment of the next generations of mathematicians 
and experimental physicists.u Further public instruction in the observational and 
experimental sciences was also available at other state institutions such as the 
Bureau des Longitudes and Le Musee des Sciences Naturelles. 

The establishment of the Ecole Poly technique, together with the changed pur
poses for teaching science and the increased numbers of students led to the first 
discernible structure of professions within the sciences. The new importance of 
science and the expansion of teaching created possibilities for positions, although 
cumul intensified.12 Patronage still determined the early years of a developing ca-

9 See The Organization of Science and Technology in France, 1808-1914, Robert Fox 
and George Weisz, eds. (New York: Cambridge University Press, 1980), and Geison 
Professions. For a history of the Bcole Poly technique, see Ambroise Fourcy, Histoire de 
I 'Ecole Poly technique (Paris: Belin, reprint, 1987), and Terry Shinn, Sa voir scientifique 
et pouvoir social, l'Ecole Poly technique, 1794-1914. For the later challenge to the 
hegemony of the Bcole Poly technique, see Antoni Malet, "The Bcole Normale and the 
Education of the Scientific Elite in Nineteenth-Century France;' Asclepio, 43 (1991): 
163-187. 

10 However, see Grattan-Guinness, "Grand-Bcoles, petits Universites: Some Puzzled Re
marks on Higher Educations in Mathematics in France, 1795-1840," Hist. Univ. 7 (1988): 
197-225. 

11 The title and organization of the premier French scientific society supported by the state 
changed with the political turbulence from 1790 to 1820. The Academie des Sciences in 
Paris was disbanded in August, 1793 and replaced by the Institut at the end of 1795. The 
Institut was organized into three classes, the first of which covered the sciences. These 
included mathematics, physics, chemistry, botany and medicine. At the restoration of 
the monarchy, the Institut reverted in March 1816 to the Academie des Sciences. 

12 Cumul refers to the custom of accumulating positions in state teaching institutions that 
exacerbated the competition for place within the sciences in early nineteenth-century 
France. 
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reer in the sciences. No one was more adept and able at dispensing this patronage 
than Laplace. Positions and preferment went wherever possible to young men 
willing to use his ideas and approaches to the solutions of problems in physics 
and mathematics. Biot's obsequiousness towards Laplace and his work in celestial 
mechanics would be comical if it were not for the results. It worked. Biot's career 
path was easier than that of other young colleagues. One of the latter was Augustin 
Fresnel who offended the Laplacians and never invoked Laplace's intellectual au
thority in his own work. However, Fresnel had the help of Fran<;ois Arago. Arago's 
position at the Observatory, obtained originally through the patronage of Laplace, 
and as editor of Annales de Chimie allowed him in turn to dispense patronage. 
Poisson's early election to the physics section of the Institut was similarly a matter 
of political patronage. His election was a further demonstration of the power of 
a small group within the Institut to direct its affairs. The election of promising 
scientists to sections not especially connected to their research specialty had been 
used even before the Revolution. For Poisson, with no private income, election to 
the Institut was crucial. 13 

Patronage and political power within the institutions of science shaped the ca
reers of individuals, the prizes they might, or might not be awarded, and the publica
tion, or lack of publication of prize essays by the Institut. However, these political 
forces did not prevent independent assessment of intellectual worth. While Joseph 
Fourier's prize-winning essay on heat was not published by the Institut (or with 
the restoration the Academie) for over a decade, its contents were well known to 
mathematicians in Paris. He was also elected to the post of Executive Secretary in 
1820, a sure indication of the decline of Laplacian influence. Fourier, being older 
and a high-level government official, had the ability and connections to stay the 
course. 14 

13 While not delving into the politics ofInstitut elections, there is no evidence that Poisson's 
election was other than another political victory for Laplace. His election may even have 
been a payment on a political debt. Pierre Costabel, "Poisson, Simeon-Denis," Diet. Sci. 
Bio. vol., 10, 480-490, 481. Neither Poisson nor anyone else regarded his papers on 
electrostatics as other than mathematics, or marking a definitive change in the analysis 
of physical problems. For an alternative interpretation, see R. W. Home, "Poisson's 
Memoirs on Electricity: Academic Politics and A New Style in Physics," Brit. J. Hist. 
Sci. 16 (1983): 239-259. 

14 For the impact of Institut politics on the publication of Fourier's essay of 1811 see, 
Grattan-Guinness and Jerome RavetzJoseph Fourier (1768-1830). A Survey of his Life 
and Work (Cambridge MA.: MIT Press, 1972). For the impact of patronage in mathemat
ics in general in this era see, Grattan-Guinness, Convolutions in French Mathematics, 
1800-1840 (Boston: Birkhiiuser, 1990), 3 vols., vol. 1, chap. 2. For Biot, see Eu
gene Frankel, "Career-making in post-revolutionary France: The Case of Jean-Baptiste 
Biot," Brit. J. Hist. Sci. 11 (1978): 36-48, and "Corpuscular Optics vs. the Wave The
ory of Light: The Science and Politics of a Revolution in Physics," Soc. Stud. Sci. 6 
(1976): 141-184. See also, Crosland, Science under Control: The French Academy of 
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The Laplacians wielded great political clout within the scientific community for 
a crucial period but this power should not be confused with intellectual authority. 
In the long run, becoming a "Laplacian" did not garner those men secure reputa
tions in French science. Poisson's scientific reputation peaked early in his career 
and declined thereafter, even as his political power rose. The assessment of his 
intellectual accomplishments sank to the point that, after his death Poisson, was 
regarded as someone who used other's ideas to develop his own career. 

The Laplacians were unsuccessful in stilling alternative visions of physical pro
cesses, and of alternative foundations for the calculus. Laplace could and did 
influence the choice and the wording of prize-essay questions in the mathematical 
and physical sections of the Institut and later in the Academie. However, when 
it came to awarding prizes, Laplace's influence was less monopolistic. Augustin 
Fresnel's work was crowned even though his methods and ideas were not in accord 
with those of Laplace, and despite Laplace's skepticism about the validity of his 
mathematical methods so was Fourier's. The delayed publication of these works 
became scandals that damaged the Academie and Laplace, not Fresnel or Fourier. 
From 1790 on, in addition to Academie journals, others existed independent of 
its influence. Fourier and Fresnel could make their ideas known and establish a 
reputation beyond Laplace's influence. Indeed this multiple outlet for publications 
in science made that tight centralized control impossible. 

The name might change, and function of the Academie des Sciences might be 
more restricted than in the old regime, yet entry into it capped a life in science. 
Membership was the ultimate legitimation of a scientist's research and it was still 
the most prestigious scientific institution in Paris.15 The social structure of the 
academy continued to reflect the changing disciplinary structure of the sciences. 
While physics, narrowly defined, was already a section, others also appeared in 
the Institut. This reflected the fragmentation of the experimental and observational 
sciences already threatening the Academie's institutional monopoly of science in 
the 1780s. However, the Academie no longer had a corner on the presentation and 
publication of research. Important issues in chemistry were published elsewhere, 
and the AnnaLes de Chimie and the Bulletin des Sciences par La Societe Philo
matique de Paris offered alternative, and quick publication of important issues in 
physics. 16 The ponderous pace of the full account of research that would appear 
from the academic press bequeathed a polished presentation to posterity. Alter
native journals were more attractive to address colleagues on important research 

Sciences, 1795-1914 (Cambridge: Cambridge University Press, 1992),44-49. Patron
age prevailed in other disciplines, see Dorinda Outram, Georges Cuvier (Manchester: 
Manchester University Press, 1984). 

15 The changes in the Academie are detailed in Hahn, Anatomy, chap. 9. 

16 Crosland, In the Shadow of Lavoisier: The Annates de Chimie and the Establishment 
of a New Science (Oxford: British Society for the History of Science, 1994), chap. 2, 
discusses the changes in possible publication outlets for research in this era. 
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issues. The continuation of such journals signaled a paying audience engaged as 
practitioners in the experimental sciences. However, for most of these journals, 
economic viability meant pleasing an audience with diverse sets of interests in each 
issue. Physics needed to be published in its broadest sense. Even the Annales de 
Chimie added physique to its purview in the Napoleonic era. 

Experimental Physics 

Physics as a term still carried both broad and narrower meanings. The work of 
Arago and Alexander von Humboldt on geomagnetism kept the broader goals of 
physics alive, although physics could no longer lay claim to the broad methodologi
cal field of observation and experiment. Chemistry and the life sciences marked out 
their own domains of competence. Physics in the narrower sense still included the 
experimental exploration of sound and hearing, light and color. While experiment 
still defined the discipline, the phenomena covered depended largely on individual 
interpretation, or a journal editor, and the needs of the marketplace. 17 Experiments 
were expected to be careful, quantitative laboratory experiments whose results were 
often encapsulated in algebraic form. Speculations about the operation of nature 
stayed close to the tabulated results of these quantitative experiments, and rarely 
ventured beyond the phenomenological. Simultaneously, physics and chemistry 
were seen as drawing closer together through electrochemistry. An instrument 
developed in experimental physics had implications for some important problems 
of experimental chemistry. While the goals of their research might diverge practi
tioners in both disciplines shared a common methodological standard. 

All of these developments bring early, nineteenth-century French physics closer 
to that of the twentieth century. But whether this physics marks the definitive 
breaking point between natural philosophy and physics in the modern sense still 
requires closer examination. Relying on conceptual realignment to distinguish 
between the two is clearly insufficient. 18 The concepts introduced between 1800 
and 1850, while important are symptoms of change, not causes. Conceptual change 
taken in isolation tells us nothing about practices. 19 

17 For an alternative interpretation of the range of meaning of the term, see Crosland, Science 
Under Control, 34-36. Crosland does not take into account the broader sense of the term 
inherited in this era from earlier in the eighteenth century. 

18 For example, see Pearce Williams, "The Physical Sciences in the First Half of the Nine
teenth Century: Problems and Sources," Hist. Sci. 1 (1962): 1-15. 

19 Robert Silliman, "Fresnel and the Emergence of Physics as a Discipline," Hist. Stud. 
Phys. Sci. 4 (1974): 137-162, with a nod to methodological factors locates physics in 
the introduction of the wave theory of light. 
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Clearly the era between 1790 and 1830 in France marked some kind of watershed 
noted by more than one historian. Using textbooks in experimental physics Cannon 
claimed that "physics itself was invented by the French around the years 1810-30." 
Rene Hauy's Traite Elementaire de Physique of 1803 was definitely not physics 
while Biot's Traite de physique experimentale et mathematique of 1816, "was 
beginning to grasp at something like our concept of physics." Yet Cannon neither 
detailed what physics was, or is, nor the differences between physics of Hauy and 
Biot, nor those aspects of Biot that make him more "modern" contrasted with what 
Hauy was doing. In short there is no detailed exploration of what the changes 
were or the process of change. There is merely a sense that things progressed in 
a direction that makes the product more familiar to us, although not completely. 
Cannon named those men in the nineteenth century, Michael Faraday and John 
Herschel who were not, and those of the mid-nineteenth century, James Clerk 
Maxwell, who were physicists in our sense of the term without delineating what 
differentiated the two groupS.20 

John Heilbron also has located the beginnings of modern physics in the same 
era and country through a detailed history of the practices of experimentalists and 
the "theoretical work" of Laplace, Biot, and Poisson. Poisson's speculations about 
electricity and its action were vague. His strengths lay in his mathematics, as "exact 
description" over "a qualitative model deemed intelligible." Heilbron assumes here 
an inherent clarity of mathematical over vernacular descriptions of phenomena and 
ignores the history of mathematics. Vernacular descriptions of physical processes 
are not inherently muddier than mathematical ones even though qualitative. And, 
mathematics can be used to obfuscate and hide conceptual muddle while bringing 
quantitative precision to physics.21 He accepts the term "physique-mathematique" 
as physics, not mathematics.22 

In this era, if mathematical physics was mathematics, we need to understand 
what precisely was changing in physics to then decide where the origins of the 
modern discipline might lie. We must judge whether the development of carefully 
designed and executed quantitative experiments, whose results were analyzed for 
error and then algebraically joined to the mathematical expression of those results, 
is sufficient to define physics. If so, in what sense was the physics that these men 
created "modern." 

20 Susan Faye Cannon, "The Invention of Physics," in Cannon, Science in Culture: The 
Early Victorian Period (New York: Neale Watson, 1978) 111-136, 115. 

21 For an alternative view see Elizabeth Garber, "Simeon-Denis Poisson: Mathematics ver
sus Physics in Early Nineteenth-Century France," in Beyond History of Science, Garber, 
ed. 156-176. 

22 For mathematical physics as mathematics in early nineteenth-century France, see Grattan
Guinness, "Mathematical Physics in France, 1800-1835," in Epistemological and Social 
Problems Jahnke and Otte eds., 349-370 and Convolutions, chap. 7. 
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Electricity and Magnetism 

The quantification of electrostatics began in Charles Augustin Coulomb's ex
periments of the 1780s. The mathematical exploration of Coulomb's results was 
the work of Simeon-Denis Poisson. In 1811 in two long memoirs, Poisson devel
oped a mathematical theory from Coulomb's systematically gathered and analyzed 
results.23 Poisson was closely associated with Laplace and explicitly used Laplace's 
methods and extended them in his work. Therefore, we must examine Laplace to 
understand Poisson and the other "Laplacians" and whether they developed a mod
ern form of "physics." 

In the 1780s Laplace turned his attention to experimental physics in order "to 
extend the realm of geometry.,,24 To interpret this and Lagrange's statements in 
the same decade as despairing of the calculus and seeing it drying up is to miss 
the point. 25 In the 1780s physical experiments became quantitative and the results 
of these experiments expressed algebraically. These algebraic expressions were 
potential raw material for the calculus. The extension of the calculus through 
solving the problems of mechanics was becoming more difficult. This new source, 
experimental physics, might possibly open up untold opportunities for mathematics 
and mathematicians. 

Also, in the 1780s, Lavoisier drew Laplace into experiments on specific heats. 
After their successful completion of these experiments, Laplace returned to the 
calculus in his work on light, capillarity, and the paths of the planets.26 Whether 
because of his experiences as an experimentalist or not, Laplace retained respect 
for the results of experiment and observation in his later forays into the calculus. 
In planetary theory he insisted that the mathematical theory must account for the 
observed deviations of the planets. Mathematicians could not explain them away 
as had d' Alembert and Clairaut. 27 While Laplace expended energy on very detailed 
calculations, he never doubted the superiority of the calculus over experimental 
physics or observation. In spite of the need to accommodate the results of ob-

23 Poisson, "Sur la distribution de I'electricite a la surface des corps conducteurs," Mem. 
Institut (1811): 1-92, and "Seconde Memoire sur la distribution de I'electricite a la 
surface des corps conducteurs," same journal, (1811): 163-274. 

24 Letter from Laplace to Lagrange in Lagrange, Oeuvres de Lagrange J. A. Serret, ed. 
(Paris, 1867-1892), vol. 14, 124. 

25 Eugene Frankel so interprets Lagrange's remarks, in Frankel, "Biot and the Mathemati
zation of Experimental Physics," Hist. Stud. Phys. Sci. 8 (1977): 33-72,34-35. 

26 At the outset Laplace seems to have been ambivalent about the collaboration. See Grattan
Guinness, "Laplace," in Diet. Sci. Bio., Gillispie ed., Supplementary volume, 273-403, 
315. 

27 For a full, contemporary assessment of Laplace's work in the light of early work on plan
etary motions see, John Playfair, "Review of Laplace, Mecanique Celeste," Edinburgh 
Rev. 11 (1807): 249-284. 
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servation, which were always subject to error, the mathematician must remain as 
independent as possible of "every empirical process, and to complete the analysis, 
so that it shall not be necessary to derive from observations any but indisputable 
data."28 In addition Laplace believed that only empirical laws and the calculus were 
necessary for the exploration of nature. 

Laplace's interest in physical phenomena was as a source of problems within 
the calculus. The physical problems he chose to examine could be directly related 
to problems in astronomy, or those that could be reduced to the mathematics that 
stemmed out of his work on celestial mechanics. The pattern of his approach was 
to assume that the physical phenomena, refraction, capillarity etc., were caused 
by central forces acting between the particles of matter at insensible distances. 
Even while admitting that the effect might be macroscopic and there was no way 
of knowing the force law that was operative, Laplace assumed that the force law 
acted over sensible distances. Once this was accomplished, all the mathematical 
techniques he had developed in celestial mechanics were brought to bear on the 
problem at hand. And the amount of analysis brought to bear was prodigious. 
Laplace approached these problems as he did the mathematics of celestial me
chanics. 

Laplace made his mathematical reputation by analyzing the complex interac
tions of the planets, considering the planets themselves as finite bodies, taking into 
account the subtle influence of their shape on their motions and the irregularities 
of their paths. The key to his mathematical success in celestial mechanics was in 
considering terms in series neglected by others, or integrating functions not inte
gratable before, or by the invention of new mathematical techniques. To consider 
the planets as finite mathematical bodies, Laplace needed a mechanics for finite, 
masses. He established this mechanics by first deducing the law of universal grav
itation "from observation." Kepler's laws were then used to establish the elliptical 
paths of the planets and the parabolic paths of comets. Experiments on pendula 
and astronomical observations verified this mathematical result for the earth from 
which Laplace argued that every particle of matter on the earth must be such a 
source of force or the centre of gravity of the earth would shift. Newton's name 
did not appear anywhere in this discussion.29 Whether his derivation was valid or 
not, Laplace took Newton's law of gravitation not as an assumption about the oper
ations of nature but as a statement deduced through mathematics from the results of 
observation. No speculations about the operations of nature were necessary. The 
law was operative everywhere, and became his foundation for the mathematical 
field of physique-mathematique. 

28 Laplace, Traite de Mecanique Celeste, translated with a commentary as Celestial Me
chanics by Nathaniel Bowditch, vol. I, Bk. 1. 

29 However, to get from Kepler's laws to universal gravitation, Laplace needed Newton's 
third law. See Laplace, Celestial Mechanics Vol. 1, 256. 
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Physical principles did not exist for Laplace as independent sources of order. 
There were only two such sources, experiment and analysis. Of these two, analysis 
was clearly the more dependable. In the first book of Mecanique Celeste there was 
no attempt at detailed physical reasoning to establish his general mechanics.3o 

Discussion of physical points was at a minimum. This led to less than satisfactory 
explanations of physical circumstances. A particle moving on a sphere described a 
great circle because "there is no reason why it should deviate to the right rather than 
the left of this great circle." Not a word about forces acting on the particle on the 
sphere. Having set up the most general laws of mechanics the rest of his celestial 
mechanics was, as far as possible, a deductive system rooted in mathematics with 
minimal reference to an empirical base. His deduction and then assumption of 
the operation of gravitation between matter, macroscopically and microscopically, 
only limited his mathematics by defining a relationship between the form of the 
function that was the first derivative of the force and the function that represented 
the force law. Mathematically, Laplace had introduced the potential function. Its 
physical implications remained unexplored. 

Laplace did not use his physical model to guide or limit the development of his 
mathematics. Mathematical need was the criterion for deciding which terms, vari
ables, or functions were eliminated or reduced to the status of constants or simply 
dropped. There was no attempt at offering a physical justification for a mathemati
cal necessity.31 He did not discuss the physical significance of eliminated variables, 
and their disappearance is mathematically necessary but physically mysterious. In 
short, all manipulations were mathematically, not physically, convenient. 

Because of the overwhelming importance of analysis, Laplace deduced results 
that were known empirically. His derivation of Snell's law never referred to its 
empirical foundation nor did he mention that experiments existed that confirmed 
his analytical result. He did not note that his deduction might provide evidence 

30 Laplace, Celestial Mechanics opens with a general discussion of the laws of mechanics. 
Laplace noted the conservation of vis viva and angular momentum and the Principle of 
Least Action. This last principle did not, in Laplace's opinion, require a metaphysical 
justification, it "is in fact nothing more than a remarkable result of the preceding differ
ential equations." Of all the principles of mechanics, only the law of inertia and that of 
force being proportional to the velocity depend on observation. See Laplace Celestial 
Mechanics vol. 1, bk. I, chap. ii & viii. 

31 This is particularly obvious in his theory of capillarity which is explicitly based on central 
forces acting at insensible distances. Laplace set up an integral of a general function. The 
form of the function remained undefined, although it could be limited if he introduced the 
physical terms that he used to set up the problem. Also note the criteria he used to change 
variables etc. See, Laplace, Celestial Mechanics, vol., IV, Supplement to bk., X. Jean 
Dhombres, "La tMorie de la capillarite selon Laplace: mathematisation superficielle ou 
etendue?" Rev. Hist. Sci. 43 (1990): 43-77, sees Laplace's work as a "separation of 
physical inspiration from analytical calculation." 
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for his basic physical hypothesis.32 For Laplace, the empirical evidence supplied 
by experiments on capillarity were confirmations of his mathematics. There were 
several instances in his discussions of analytically deduced results where he missed 
the opportunity to comment on them physically, or see them as occasions for 
experiment. They occur in the middle of an argument and are mathematically 
uninteresting. The results finally deduced are physically incorrect or uninteresting 
from an experimental point of view.33 The physical fruits of all this complicated 
calculus were very few. The results Laplace reproduced were known empirical 
results. For all his analysis Laplace was unable to penetrate further into the structure 
of matter or of the interaction of light and matter than contemporary, vernacular 
theories. 

Laplace did not integrate his physical model with his mathematical analysis. 
There was no sense of what physical process was represented by the mathematics. 
He did compare certain analytical results with experiment and the formulae were 
interpreted mechanically, but not in terms of microscopic or macroscopic forces. 
The explanations were vernacular and based on the changes of velocities of moving 
particles.34 The model and the analysis were decoupled. In complicated situations 
he tended to add causes, to further complicate the physical description. This was 
analogous to his work in celestial mechanics. Nor did he argue which of these 
disturbing causes (friction in the case of capillarity, the attraction of particles of 
heat to light in the case of refraction) could be put into analytical form, or how, or 
indicate which terms they were represented by in his analytical relationships. 

On balance Laplace does not seem to be doing modem mathematical physics. 
He was adding a vernacular explanation to an eighteenth-century mathematical so
lution to a mathematical problem defined in the context of a physical phenomena.35 

Physical phenomena were still serving mathematical purposes. Solutions to the 
kinds of mathematical problems Laplace built out of the problem of the motions 
of the planets required the utmost confidence in complicated analysis, along with 
a technical brilliance in its manipulation to solve increasingly difficult differen-

32 The simplifications that he introduced to obtain this result are not strictly warranted by the 
physical situation. Laplace Celestial Mechanics vol. 4, bk. X, 453, See also Bowditch's 
note on p. 469 and his comment on p. 47l. 

33 See his deduction of the limitation of the internal reflection of light, Laplace Celestial 
Mechanics vol. 4, bk. X, 462. His attention was on the velocity of the particles of light 
as they passed through several media. He argued that the velocity in the final medium 
will be the same as if the light passed from the first to the final medium without passing 
through all the intermediary ones. 

34 See his explanation of total internal reflection, Laplace, "Memoires sur les mouvements 
de la lumiere dans les milieux diaphanes," Mem. Institut (1808): 300-342. 

35 This in contrast to Robert Fox, "The Rise and Fall of Laplacian Physics," Hist. Stud. 
Phy. Sci. 3 (1971): 89-136, and Roger Hahn, Laplace as a Newtonian Scientist (Los 
Angeles CA.: University of California Press, 1967). 
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tial equations with new methods or with the unexpected use of older ones. This, 
together with the tenacity to work through such complexities with mathematical 
imagination, produced methods that, if not elegant, were from an imagination that 
delighted in complexity. 

Poisson took much of Laplace's approach to problems, his goals of going beyond 
colleagues' previous solutions through the construction of complex mathematical 
problems, and the attachment to a particular, mathematically constructed model of 
matter to annex electrostatics to "geometry." This annexation was the first success 
in expanding the range of the calculus beyond mechanics. Beginning in Coulomb's 
experimental results, Poisson literally transferred the methods of Laplace 's celestial 
mechanics to the case of electrostatics. He noted in passing that, in the latter case, 
there was attraction as well as repulsion, then focussed on attraction. Beginning 
with Coulomb's results that the attractive force at a point within a closed conductor 
was zero, Poisson commented that Laplace in his Mecanique Celeste had shown 
that the "attraction of surfaces that were almost spherical to interior points was 
zero." The physical cases of gravitation and electrostatics were mathematically 
equivalent. Poisson then considered the mathematical problem of the depth of the 
electric fluid over a spheroidal and almost spheroidal surface so that the attraction 
at any interior point was zero. To do this, he had to look for the action of the electric 
fluid on any point, within, on, or outside of the surface. Poisson then stated that 
the result of his analysis was that the effect of the electric fluid was proportional 
to its depth, and that while the problem appeared simple, it was actually tricky and 
he had found a defect in previous analyses. Poisson considered the attraction of 
spheroids covered with a thin layer made up of molecules between which central 
forces act for which, 

the components of attraction or repUlsion that a body exerts at a given 
point, were expressed by the partial differentials of a certain function 
of the coordinates of this point, namely, the function that represents the 
sum of the molecules of the body divided by their respective distances 
to the given point: therefore we designate the sum as V.36 

Having defined V mathematically, no more was said of its physical origins. 
Poisson did not connect the results deduced using this definition of V to either 
Coulomb's law or the results of Coulomb's experiments. While V = V(x, y, z), 
Poisson did not use the functional relationship between the coordinates, given the 
force-law he has defined above, to limit the kinds of solutions he sought. In using 
the potential function Poisson deduced the equivalent of Gauss' law, but did not 
connect it to the physical result that he seemed to be addressing. Immediately after 
obtaining Gauss' law, Poisson then investigated the distribution of the electric fluid 
to satisfy the condition that, in equilibrium, the force in the interior of the sphere 

36 Poisson, "Memoire sur la distribution de l'electricite a la surface des corps conducteurs," 
Mem. Institut (1811): 1-92,14. 
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is null. His argument was complex and designed to show mathematically that the 
force at the surface of the spheroid has no tangential component. 

The mathematical thrust of Poisson's work was further emphasized in his second 
paper on electrostatics. The main point of the paper was to draw mathematicians' 
attention to his transformation of series that did not appear to converge into others 
that did and that lead to a solution in finite form. These were important issues for 
mathematicians of the time and so was the second issue on which he concentrated, 
avoiding definite integrals.37 

The physics used in the introduction to the paper came directly from Coulomb's 
works. And while he deduced important new physical results, Poisson did not 
recognize them as such. They existed in a stream of analysis that climaxed in the 
solution of a mathematical not a physical problem. Here, as in his later papers, 
Poisson began with a specific physical model which was quickly translated into 
a mathematical expression for a force. All the analytical apparatus of rational 
mechanics could operate upon this expression and both model and physical problem 
become irrelevant to the solution. The model of electricity as a fluid that spread 
over the surface of the spheroid came from Coulomb, as did the idea that the depth 
of the fluid was proportional to the intensity of the electric force. Poisson deduced 
the depth of the fluid for many different particular cases of spheroids and spheres 
acting on each other. He calculated V at some point due to spheres and spheroids 
at very large, and at very close, distances in terms of the depth of the electric fluid. 
The important issue was to reduce the expression for V into finite form and there 
his interest in the function ceased. The electrical aspects of the case did not enter 
into his solution, as he did not explain how the expressions containing V were 
connected to the action of electricity. In his work were many clever mathematical 
techniques without much indication of how all the analysis might be relevant to 
the physics of electrified bodies. 

Under these circumstances it is difficult to see Poisson's work on electrostatics 
as "pivotal in the development of a new vision of physics.,,38 Poisson accomplished 
what Laplace had hoped to do-extend the range of analysis beyond mechanics and 
into experimental physics to create a physique-mathematique. The unification of 
physics and mathematics was still in the future.39 The problem Poisson solved 
had been set as a prize problem by the mathematical section of the Institut. From 
the reactions of his colleagues, Poisson had solved a mathematical not a physical 

37 Poisson, "Second memoire sur la distribution de l'electricite a la surface des corps con
ducteurs," Mem. Institut (1811): 163-274. These same patterns are followed also in his 
later papers on magnetism. 

38 Home "Poisson's Memoir in Electricity," 259. Heilbron, Electricity, shares the view that 
Poisson's work was crucial for physics. 

39 Garber, "Simeon-Denis Poisson," treats Poisson's work as mathematics and sets it in the 
context of early nineteenth-century French mathematics. 
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problem. The problem was to express a phenomena in analytical form, and then 
apply the calculus to solving the resulting equation, a partial differential equation 
of the first order. Poisson did so by fixing on the force between the particles of the 
fluid. The mathematics of these problems were already explored. Electrostatics 
was opened to annexation by the calculus. 

This is not to belittle Poisson's achievements but to recognize that if Poisson 
did not discuss the physical significance of his analysis, neither did any of his 
contemporaries. From the lack of hostile reactions to Poisson's papers on electro
statics, we have to conclude that they were a satisfactory mathematical solution 
to the problem in the terms acceptable to the French scientific community.4o He 
had considerable talent for mathematics, which is evident even in his early papers, 
but not for physics. He was inventive at solving mathematical problems not com
pleted by others. Laplace's solution of the attraction of spheroids gave Poisson the 
opportunity to solve it for more complex cases while encompassing a new domain 
of experimental physics within the calculus. Even as the direction of mathemat
ics changed, Poisson remained convinced that the proper direction of research in 
mathematics lay in the solution of the partial differential equations emerging from 
physical problems. The partial differential equations that were the proper focus of 
mathematicians were those of the same form as the equations of mechanics.41 

While Poisson turned his attention to a field of experimental physics that had 
resisted mathematization for decades, Andre Marie Ampere mathematized a com
pletely new and unexpected phenomenon, the connection discovered by Hans 
Christian Oersted between current electricity, magnetism, and mechanical force. 
Ampere was initially a member of the mathematical division of the Institut and 
had published in the growing controversy over the foundations of the calculus. In 
1820, he turned to the experimental investigation of Oersted's results.42 Ampere 
was a mathematician blessed with manual dexterity and an interest in metaphys
ical speculations as well as experiments. He assisted Arago in demonstrating 
Oersted's experiment to the Academie and within the month reported on his own 
experiments.43 

40 This assessment of Poisson is also shared by Grattan-Guinness, Convolutions, and by 
Louis L. Bucciarelli, "Poisson and the Mechanics of Elastic Surfaces," in Simeon-Denis 
Poisson, Michel Metivier, Pierre Costabel and Pierre Dugac, eds. (Paris: Vrin, 1981), 
75-104. 

41 See Costabel, "Poisson, Simeon-Denis," Diet. Sci. Bio., Supplementary vol., 482. 

42 See, Judith Grabiner, Origins, chap., 5. Ampere's early publications in mathematics were 
in the theory of functions, the integration of partial differential equations, the calculus of 
variations and on doing without the "infinitely small" in the calculus. On this last problem, 
see Thierry Guitard, "La querrelle des infiniments petits a l'Ecole Poly technique au xix" 
siecle," Hist. Sci. (1986): 1-61,5-21. 

43 See Ampere, "De l'action mutuelle des deux courans electriques," Ann. Chim. 15 (1820): 
59-76. His experiments on current-carrying wires were announced in Ampere, "Note 
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Oersted had demonstrated the reciprocity of the mechanical effect of a current
carrying wire on a magnet and of a magnet on a current-carrying wire. Ampere then 
speculated that two current-carrying wires might mechanically affect one another, 
then demonstrated the parameters delimiting their interactions. In the middle 
of his series of experiments, in which Ampere responded to the work of other 
experimentalists, including Biot and Savart, and Michael Faraday, he produced his 
law of force between two current elements, namely, 

F = r-n {sina sintJ siny + k cosa costJ}ii' ds ds' 

where ds and ds' were the current-carrying elements, i and i' were the "strengths" 
ofthe respective current, r was the distance between the current elements, a , tJ were 
the angles between the current elements and the line joining them, and y was the 
angle between the plane of the connecting line and one of the current elements.44 

There was a difference between this force law and algebraic expressions of the 
results of experiments previously put into mathematical form. In previous cases 
the expression was an algebraic reflection of the experimental results. Ampere's 
expression was in differential form and extrapolated, mathematically, beyond the 
geometry of the laboratory. The mathematician already operated to abstract a 
generalized law of force from the realities of the research laboratory.45 To determine 
nand k, Ampere continued to experiment. In an analogy with gravitation Ampere 
speculated that n = 2. Experiments seemed to confirm this analogy.46 Experiment 
also indicated that k = -1/2. 

His continuing experiments were accompanied by non-mathematical specula
tions on the possible action of the electric fluid within the wires and across the 

sur un memo ire lu a Academie Royale des Sciences, 4 Decembre 1820," [Sur l'action 
mutuelle de deux elements de courans electriques,) 1. Phys. (1820): 226-230. Details 
of Ampere's involvement and experiments are in Christine Blondel, A. -M. Ampere et la 
creation de l' electrodynamique (Paris: Bibliotheque Nationale, 1982). However, see the 
exchange between Blondel, "Ampere and the Programming of Research," Isis, 76 (1985): 
559-561 and Pearce Williams' reply. Whether or not Ampere's work was programmatic 
or, at a crucial stage, depended on chance does not affect the argument here. See also 
Alfred Kastler, "Ampere et les lois de l'electrodynamique," Rev. Rist. Sci. 30 (1977): 
143-157. See also J. R. Hoffmann Andre-Marie Ampere (Oxford: Blackwell, 1995). 

44 Ampere, "Memoire sur la determination de la formule qui represente l'action mutuelle 
de deux portions infiniment petits de conducteurs voitaiques," Ann. Chim. 20 (1822): 
398-42l. 

45 Ampere was not the first mathematician to perform his own experiments. Etienne Louis 
Malus did his own experiments on refraction then polarization and developed his own 
mathematical exploration of the phenomena. Jean Baptiste Biot first published papers on 
the calculus and a companion volume to the mathematics of Laplace, Mecanique Celeste 
before turning to experimental physics. Biot's first experimental work was in electricity, 
sound and then in 1804, heat conduction. 

46 For a discussion see Kastler, "Ampere et l'electrodynamique," 153-154. 
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space between the conductors. However Ampere did not connect these hypotheses 
with the results of his continuing experiments. When he drew his experimental 
results together to develop a mathematical theory of "electrodynamics," he used 
none of these ruminations. Ampere's final statement on this stage in his electro
dynamic work was presented in the mathematically elegant memoir of 1823.41 His 
mathematics was based on a series of experimental results together with the results 
encapsulated in his initial force law. 

Ampere was at pains to separate his approach to the mathematization of electro
dynamics from that ofBiot and Savart. The latter had their own mathematical forms 
based on keeping intact the Laplacian approach to the mathematization of experi
mental physics and retaining the distinction between magnetism and electricity.48 
To obtain results for whole circuits, rather than circuit-elements Ampere needed 
to use both line and surface integrals. This was the first time that such mathe
matical techniques were required to bring a domain of experimental physics into 
mathematical form.49 

In its final form the reader was presented with two papers, rather than one. The 
first part of the memoir presented the phenomena and the non-mathematical phys
ical model to explain the phenomena in terms of molecular forces and molecular 
currents. 50 The second part was a generalized mathematical theory devoid of any 
physical modelling or processes. The molecular models did not enter into either 
the setting up of the problem nor in choosing how the mathematical development 
of the problem might proceed. The two approaches existed fully developed in 
their own spheres, both clear, both worked out in detail: Metaphysics and exper
iment are contained in the first half, experimental results expressed algebraically 
as the starting point for the mathematical second. The differences of Ampere's 
from previous presentations in this tradition lay not in the simultaneous production 
and presentation of a series of new experimental results, interpreted physically in 
non-mathematical terms, together with their integration into an expanding domain 
of mathematics. His uniqueness lay in his experiments and in the sophistication 
of his mathematical techniques. The ultimate result does not read as theoretical 

47 Ampere, "Memoire sur la theorie mathematique des phenomenes electrodynamiques 
uniquement deduite de l'experience," Mem. Acad. Sci., Paris 6 (1823) [1827]: 175-388. 

48 See Biot and Felix Savart, "Sur l'aimantation imprimee aux metaux par l'electricite 
en mouvement," J. Savants (1821): 221-235. However, it is difficult to see Ampere's 
work as Laplacian, as in Christine Blondel, "Vision physique etherienne, mathematicien 
laplacien: l'electrodynamique d' Ampere," Rev. Hist. Sci. 43 (1990): 123-137. It was 
in this contested context that Poisson produced his mathematical papers on magnetism. 
Poisson, "Deux memoires sur la theorie du magnetisme," Mem. Acad. Sci., Paris 5 (1822): 
247-338,488-533. 

49 For a discussion of the mathematics of Ampere's work see, Grattan-Guinness, "Lines of 
Mathematical Thought in the Electrodynamics of Ampere," Physis 28 (1991): 115-129. 

50 Ampere, "Sur la theorie mathematique des phenomenes electrodynamiques," 175-200. 
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physics with the integration of theoretical ideas, mathematically expressed and 
developed to reveal physical significancies. Physics was again used to explore 
mathematically important integrals and techniques. 

J. R. Hoffmann rightly emphasizes the need to not take this final presentation as 
indicative of how Ampere's work actually proceeded. However, he sees Ampere 
as having "broader ambitions" of producing a physical theory based on oscillation 
in the etherial fluid. This might be true, but Ampere's physical imagery remained 
speculative and non-mathematical, only experimental results were extrapolated to 
a mathematical form. While his experimental work and the metaphysical gloss are 
familiar from eighteenth-century predecessors, there is no sense of the development 
of a physical point of view in the mathematical half of this massive paper.51 

Historians tend to focus exclusively either on the physical concepts or on the 
mathematics in Ampere's work. Historians of physics examine the physical ideas 
in Ampere's experimental papers and the first half of his 1823 paper where he 
used physical models to explain the mutual interactions of the current-carrying 
wires.52 Historians then assume that Ampere must be doing physics also in the 
second half of that paper. However, only his experimental results are used to set 
up the initial statement of his mathematical problem and no physical ideas guide 
his solutions to those problems. His experimentally-deduced force law allowed 
Ampere to argue that his equations were of the same type as those of mechanics. He 
could thus apply all of the techniques of that mathematical trade to their solution. 
However, as the mathematics developed, neither his molecular models nor his 
experiments impinged on the direction of that development. We are still some way 
from theoretical physics. 

Heat 

Both historians of mathematics and physics claim Joseph Fourier's work in the 
conduction of heat for their disciplines. And, his work was indeed significant for 
mathematics immediately, theoretical physics decades later.53 Our concern here is 
how Fourier's work on heat conduction fitted into the disciplines of physics and/or 
mathematics in the early decades of nineteenth-century France. Its later absorption 

51 J. R. Hoffmann, "Ampere, Electrodynamics and Experimental Evidence," Osiris, 3 
(1989): 45-76. For Ampere's ideas on the ether, see Keith Cavena, "Ampere, the Ethe
rians and the Oersted Connection," Brit. J. Hist. Sci. 13 (1980): 121-138. 

52 See, Theodore M. Brown, "The Electric Current in Early Nineteenth-century French 
Physics," Hist. Stud. Phys. Sci. 1 (1969): 61-104, and L. Pearce Williams, "Ampere's 
Electrodynamic Molecular Model," Contemporary Physics 4 (1962): 113-123. 

53 For a discussion of Fourier's work as mathematics in the first half of the nineteenth cen
tury see, Garber, "Reading Mathematics, Constructing Physics: Fourier and his Readers, 
1822-1850," in No Truth Except in the Details, A. J. Kox and D. M. Siegel, eds. (Nether
lands: Kluwer Academic, 1995): 31-54. 
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into other disciplines will be considered elsewhere. Given the standards of practice 
of French mathematicians in the first two decades of the nineteenth century and 
the reactions of his colleagues, it makes more historical sense to place Fourier's 
work in the history of mathematics. To judge how far Fourier was from being a 
theoretical physicist, we need to consider the controversies surrounding Fourier 
series when they first appeared and examine changes in the calculus that came to 
fruition in the 1820s. We must, therefore explore the history of French mathematics 
in two crucial decades and Fourier's work in development of the first, logically 
defensible form of the calculus. 

Historians of physics have retrospectively claimed Fourier for their discipline 
from the importance of his mathematics for later developments within physics. 
They have argued that his influence was crucial for the development of concepts 
and as a means of expressing all manner of wave phenomena and arbitrary functions 
that occur in physics and engineering. This later importance does not, however, 
tell us how Fourier's work on heat or Fourier analysis was regarded and used in the 
first decades of the nineteenth century. So important did Fourier's methods and the 
concept of flux become for physicists that they and some historians have inverted 
his purposes. The physics that was retrospectively seen within Fourier's work by 
middle and late nineteenth-century physics must have been his intended object of 
study in the first place. 

Fourier followed the standard practice of early nineteenth-century mathemati
cians by choosing a physical problem to explore a mathematical domain, arbitrary 
functions. His initial attempt at transforming experimental results on the conduc
tion of heat along a bar of metal into mathematical form was using a mechanical 
model. He abandoned this approach, as it was only successful in some particular 
mathematical cases and a mathematical failure in the general one.54 

Fourier's work also has been seen as creating a new theory of heat within physics, 
conceptually beyond that of earlier caloric theories.55 However, as most historians 
of physics agree, none of the molecular or other processes Fourier used for the 
conduction of heat ever entered into his mathematical analysis of the problem. 
As Fourier noted, "if the mathematical laws which the effects of heat follows 
are carefully examined, it is seen that the certainty of these laws does not rest 
on any physical hypothesis."56 Fourier repeated the claim that the principles of 

54 For an analysis of this initial attempt, its eighteenth-century mathematical roots and its 
shortcomings, see Grattan-Guinness and Ravetz, Joseph Fourier, chap. 3, 36-81. See 
also Amy Dahan, "J. Fourier: L'elaboration de la tMorie analytique de la chaleur," Sci. 
Techn. Persp. 1 (1981): 7.1-7.41. 

55 Robert Marc Friedman, "The Creation of a New Science: Joseph Fourier's Analytical 
Theory of Heat," Hist. Stud. Phys. Sci. 8 (1977): 73-100. 

56 Fourier, "Theorie du mouvement de la chaleur dans les corps solides," Mem. Acad. Sci., 
Paris 4 (1819-1820) [1824]: 185-555, 192. This appears also in Fourier, Analytical 
Theory, 40-41. Fourier, "TMorie," listed here is the first part of Fourier's memoir 
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his work depended upon, "a very small number of primary facts, the causes of 
which are not considered by geometers, but which they admit as the result of 
common observations confirmed by all experiment.,,57 Immediately following this 
disclaimer, Fourier gave a descriptive, molecular explanation of the conduction 
process, one of radiation from molecule to molecule. But he did not put this 
physical process into a generalizable mathematical form. Fourier abandoned the 
approach. However, physical descriptions survived, scattered through the text 
although they remained unrelated to the mathematical analysis of the problem. 
Fourier published a separate account of the physical theory of heat conduction and 
radiation.58 

On another level, historians of physics see Fourier as developing the important 
concept of flux and giving it particular meaning in his theory of heat.59 While flux 
became important for later developments within physics, Fourier himself neither 
named it, nor attached any physical significance to it.6o Fourier established the 
equation for the motion of heat on the basis of the principle of "the uniform, linear 
movement of heat." He went to some lengths to demonstrate that the notion we 
name flux emerged from experimental sources that supported his analysis of the 
flow of heat into, then out of, a thin slab and the losses across its thickness. His 
reasons for his detailed discussion were mathematical, "because the neglect of it has 
been the first obstacle to the establishment of the mathematics." He argued further 
that if we did not make a complete analysis of the elements of the problem, "we 
should obtain an inhomogeneous equation, and, a fortiori, we should not be able to 
form the equations which express the movement of heat in more complex cases.,,61 
Within the context of his mathematics, Fourier was careful to avoid definitions 
that were not phenomenological or deduced directly from experiment. All this 
has been said before in the context of connecting Fourier to the later, intellectual 

presented to the Institut in 1811. The second part was published as, Fourier, "Suite du 
memoire intitule: Theorie du mouvement de la chaleur dans les corps solides," same 
journal, (1821-1822) [1826]: 153-246. By the time these papers appeared their contents 
were already published as Fourier, Theorie analytique de la chaleur, (Paris, 1822), trans. 
by Alexander Freeman as Fourier, The Analytical Theory of Heat. This translation 
follows the original closely and the translator's comments are carefully separated from 
the author's original. Such is not the case in the version of this work in Fourier's collected 
works. 

57 Fourier, Analytical Theory of Heat, 6. 

58 Fourier, "Questions sur la theorie-physique de la chaleur rayonnante," Ann. chim. phys. 
6 (1817): 259-303. 

59 John Herivel, Joseph Fourier: The Man and the Physicist (Oxford: Clarendon Press, 
1975) chap. 9, emphasizes the importance of this as a contribution to physics. See also 
Friedman, "Fourier." 

60 The first time I have seen the name used was by Philip Kelland. 

61 Fourier, Analytical Theory, 59. 
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movement of positivism. However, Fourier was echoing what was a commonality 
amongst French mathematicians of this era. 

Much has also been made of the experiments Fourier performed and their in
tegration into his mathematical analysis. However, his experiments were used to 
establish the initial equations of motion for heat under particular circumstances, 
that is, Fourier used experiment in the same ways as his mathematical contem
poraries. In fact the experiments Fourier used to establish his equation were a 
disparate lot and he offered no physical reasons for doing them. However, they 
did allow him in ordered mathematical fashion to generalize his mathematical 
equations of motion for heat. 62 These experiments were described briefly, and no 
results were given in the text. In places where Fourier worked out the analysis 
fully and the form of the function could be compared with experiment, the latter 
were mentioned as confirming the results of the analysis. Again the descriptions 
were brief with no data.63 

Fourier used experiment in the same way as Poisson, Laplace and other mathe
maticians of this era. In Fourier's case they were more critical because he built his 
mathematical case through a series of particular examples. Usually mathemati
cians developed their mathematical case by trying for the most general possible 
solution of the partial differential equations, then considering a series of particular 
solutions. Fourier reversed this usual practice. He was then compelled to argue that 
his method of going from the particular to the general was indeed mathematically 
legitimate.64 

All this was necessary because, while Fourier could demonstrate in particular 
cases that his trigonometric series solutions for the equation of motion for heat 
were mathematically defensible, he could not do so in the general case. Fourier 
used infinite series of trigonometric functions to represent arbitrary functions. His 
proofs for their convergence behavior and hence legitimacy as continuous functions 
that were differentiable and integrable were questionable. Since the vibrating string 
controversy, these particular series had been banished from analysis as functions 
that did not behave well. Lagrange's seemingly definitive solution of the wave 
equation managed to avoid their overt use. In insisting on using them, Fourier 
went beyond the boundaries of accepted mathematical practice.65 

Fourier also called upon experiments in other ways. Nature still guaranteed 

62 The examples used are a row of disparate bodies, generalized into a line, a ring for the 
two-dimensional equilibrium case, and various shaped bars for the three-dimensional 
cases. 

63 Fourier cited an experiment on a metal ring heated at different points and its temperature 
taken at other points and claimed that these experiments "fully confirm" his mathematics. 
Fourier, Analytical Theory, chap. 2, p. 90. 

64 Fourier, Analytical Theory, 85. 

65 AIl of Fourier's work on heat theory was completed before Cauchy began his lectures on 
the calculus where he replaced the older calculus with new definitions of the derivative, 
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French mathematicians that solutions existed. Other mathematicians used ex
perimental results as confirmation of their mathematical solutions to particular 
mathematical cases, without being careful about matching the mathematical to the 
idealized experimental case. Fourier needed a close match between experiment 
and mathematical derivation. Nature was the only guarantor of the validity of his 
mathematical work. He justified his procedure in two different ways, firstly with 
the general, unremarkable assertion that, "nature is the most fertile source of math
ematical discoveries." The second was his concentration on the particular cases 
worked out after his development of Fourier series, that is, after stating the general, 
important mathematical consequences of his work for the expression of arbitrary 
functions. These particular cases were all physically significant. He explicitly 
defined and defended this method against the usual mathematical approach of go
ing through all mathematically particular cases without regard to their physical 
significance.66 

That not only does Fourier develop the general equations for the prop
agation of heat, then follows the solutions out but gives these solutions 
in a form which eases numerical application. He [Fourier] regards this 
interpretation of the calculus as a degree of perfection that is necessary 
to obtain in all applications of analysis to the natural sciences.67 

If this is not done "the truth is not the less hidden in the formulae of analysis than 
it was in the physical questions themselves." Fourier also made claims for the 
importance of the flow of heat to the physics of the earth and the economy. His 
own attention to such problems were as particular examples of his mathematical 
methods. In the extended abstract that Fourier published in 1816 and 1817 of 
his prize essay of 1811, he did not dwell on those physical aspects of his theory 
that were important later. After describing the content of the various sections, he 
focussed on the mathematical accomplishments of the author.68 

Fourier's title to his work, Theorie analytique de la chaleur, and his claim that 
rational mechanics was his model, clinch his place in early nineteenth-century 
mathematics. While denying that the laws of motion for heat were reducible to 

continuity, and the integral that he then used to prove the simple and not so simple 
results of the calculus that others had taken for granted. For a full discussion of the 
mathematical difficulties of Fourier's work, see Grattan-Guinness and Ravetz, Fourier, 
and Grattan-Guinness, Convolutions, chap. 9, 597-602. Cauchy enters in chapter 10. 

66 For particular examples See, Fourier, "Sur la temperature des habitations et sur Ie mou
vement varie de la chaleur dans les prismes rectangulaires," Bull. Soc. Philo. (1818): 
1-11, and "Extrait d'une memoire sur Ie refroidissement seculaire du globe terrestre," 
Ann. Chern. Phys. 13 (1820): 418-438. More papers by Fourier on the secular cooling 
of the earth appeared in the 1820s after the publication of his Analytical Theory. 

67 Fourier, "Extrait de theorie de la chaleur," Ann. Chirn. Phys. 3 (1817): 350--375. 

68 Fourier, "Extrait," and Fourier, "Note sur la chaleur rayonnante," Ann. Chirn. Phys. 4 
(1817): 259-303. 
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those of mechanics, he may well have had in mind Poisson's criticisms and the 
latter's mechanical model for the flow of heat rather than rational mechanics that 
he referred to repeatedly as a model. What he accomplished for heat had been 
done already for mechanics. Even while the forms of the fundamental equations 
were quite different both domains of physics were now encompassed by analysis.69 

Rational mechanics appeared in analogy to his work in several places and as an 
exemplar throughout his preliminary discourse. Although the Laplacian model of 
matter and the mathematical form for the equations of motion and other funda
mental laws of mechanics might not apply specifically, rational mechanics was the 
model Fourier tried to imitate. 

As recent research in the history of mathematics amply demonstrates, the solu
tion of problems defined mathematics as a discipline in the eighteenth and early 
nineteenth centuries. The solutions of problems taken from mechanics were used 
as arguments for the mathematical surety of the calculus before mathematicians 
secured any rigorous foundation for the calculus. Problems grounded in reality 
that the calculus could solve were guarantees of its mathematical validity. This 
was the level of the usual response to criticisms of the calculus, especially that of 
Bishop Berkeley.70 On this score Fourier echoed his contemporaries to reinforce 
the validity of the shaky foundations of his own mathematics. 

The profound study of nature is the most fertile source of mathematical 
discoveries. Not only has this study, in offering a determinate object to 
investigate, the advantage of excluding vague questions and calculations 
without issue; it is besides a sure method of forming analysis itself, and 
of discovering the elements which it concerns us to know, and which 
natural source we ought always to preserve.?1 

Fourier went on to observe that the analytical equations first introduced into math
ematics by Descartes (the calculus), unknown to the ancient geometers, extend to 
all natural phenomena, and, 

There cannot be a language more universal and more simple, more free 
from errors and from obscurities, that is to say more worthy to express 
the invariable relations of natural things. 

The reactions of Fourier's contemporaries to his work were to his mathematics, 
complicated by the disputes already brewing over the proper foundations for the 
calculus. Physical problems and the solutions to the equations they generated were 
the battleground for the very soul of the calculus. By the time Fourier's work in 

69 Clifford Truesdell also notes this in The Tragi-comical History of Thermodynamics, 
1822-1854 (New York: Springer-Verlag, 1980), 51-58, 53. He views Fourier as a 
mathematician. 

70 See Grattan-Guinness, Development, and From Calculus to Set Theory, and Judith Gra
biner, Origins. 

71 Fourier, Analytical Theory, 7. 
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heat theory appeared, a rigorous foundation for the calculus was becoming urgent. 
His work allowed other mathematicians to draw clearer battle lines. In his initial, 
incomplete paper of 1807, Fourier challenged standard mathematical practice. He 
used the separation of variables to solve partial differential equations of the second 
order, as well as trigonometric series in mathematical situations where functional 
alternatives were the more normal approach.72 Before Fourier's paper could appear 
in print, its mathematical lacunae were pointed out by Poisson. While noting the 
incorrectness of the physical foundations of Fourier's physics, Poisson detailed the 
problems with his mathematics.73 Lagrange saw Fourier's mathematical approach 
as simply unacceptable. This was hardly surprising. Lagrange had also developed 
the only defensible formulation of the calculus whose canons of practice Fourier 
so clearly violated. 

Fourier responded to his critics both publicly and through Laplace. The issues 
centered upon the ultimate legitimacy of Fourier's mathematics in its general form 
and his competency as a mathematician. Fourier bested his major critic, Poisson, 
even though Poisson persisted with his own version of a mathematics of heat pub
lished years after Fourier 's death.74 He refused to answer Biot in public. Fourier 
had gained some crucial insight into the mathematical expression of the temper
ature distribution along a bar from Biot's experiments and Biot's mathematical 
expression of those results. Fourier did not acknowledge this debt. Ungracious as 
this was, Biot's expression of his results was stated as the sum of two exponential 
functions, with the remark that any mathematical theory of the phenomenon would 
have to take the complexity of his data into account. Biot gave no details of how 
he obtained this expression. This was the solution to the problem whose original 
equation of motion was Fourier's quarry. Biot was not, in Fourier's eyes, a math
ematician, only an experimentalist supplying grist for his mathematical mil1.75 In 
his first paper Biot described in the vernacular the equation for the conduction of 

72 For details of Fourier's mathematical methods and how they differed from his colleagues, 
see Grattan-Guinness and Ravetz, Fourier. 

73 Poisson, "Memo ire sur la propagation de la chaleur dans les corps solides," Bull. Soc. 
Philo. (1807): 112-116. These arguments are repeated in Poisson, "Sur la distribu
tion de la chaleur dans les corps solides," J. Phys. 80 (1815): 434-441. Both were 
published before Fourier's text. For details of this criticism and Fourier's reaction, see 
Grattan-Guinness and Ravetz, Fourier and Herivel and Costabel,Joseph Fourier face aux 
objections contre sa theorie de la chaleur, lettres inedits, 1808-1816 (Paris: Bibliotheque 
Nationale, 1980). 

74 See Grattan-Guinness and Ravetz, Fourier, 463-471 for the derivative character of much 
of Poisson's mathematics in this area. 

75 Biot wrote both experimental and mathematical papers on the conduction of heat in 1804. 
See, Biot, "Memoire sur la propagation de la chaleur, et sur un moyen simple et exact de 
mesurer les hautes temperatures," J. des Mines 17 (1804): 203-224, and, Biot, "Sur la 
loi mathematique de la propagation de la chaleur," Bull. Soc. Philo. 3 (1804): 215-216. 
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heat along, and the radiation of heat from, a bar in thermal equilibrium. The equa
tion itself was not written down or solved until the second, separate mathematical 
paper.76 

Despite criticism and delays in the publication of his early work, Fourier ex
tended his discussion of the expression of arbitrary functions in terms of trigono
metric series, then developed their expression in integral form, that is, developed 
Fourier analysis. All of this mathematics lay in the hands of the secretary of the 
Institut, then of the Academie des Sciences, until the 1820s, and, as Fourier worked 
his way into the inner circles of power within science. In 1822 the third version of 
his Analytical Theory was published in the same year that he was elected secretaire 
perpetuel of the Academie. This publication was his first opportunity to give an 
extended account of his work, and to defend it publicly. 77 

Given the practices of mathematicians in early nineteenth-century France, we 
must place Fourier's work within the history of that discipline. Placing Fourier's 
work on heat in the history of mathematics makes his use of his own experimental 
work more understandable. This does not detract from the obvious value of the 
work nor its position of influence in the later development of physics, mathematics, 
and engineering. In examining reactions to Fourier's heat theory papers, we can see 
patterns in the discussions that reveal what aspects of that theory were important 
to his contemporaries. Fourier's mathematics were dissected. Equally important 
are those issues passed over in silence, that is his experimental work. 

The other aspect of early nineteenth-century French work on heat that became 
crucial for the later development of physics was Sadi Carnot's examination of 
the heat engine. This was passed over in silence by most of his contemporaries in 
physics and mathematics for two reasons. The first was political. As a son of Lazare 
Carnot, his work was without social grounding in the governmental institutions of 
restoration France. It could be political folly simply to notice it. The other was 
that he was an engineer and he addressed engineers and the problems they faced 
in understanding steam engines rather than in producing a mathematical theory of 
heat. 

He followed the tradition of French engineering in reducing his steam engine 
to an idealized, general form of a heat engine. Historians have seen Carnot's 
understanding of the cyclic nature of the operation of the heat engine as derived 
from his father's work in mechanics. However, his understanding of what was 

76 Truesdell, The Tragicomical History, 51, suggests that Biot was not capable of thinking 
on this level and that his equation was suggested by Laplace. There are indications that 
in earlier mathematical problems, Biot was guided in his choice by Lacroix. His solution 
of a problem in the partial differential equation of sound is pendantic. See Biot, "Sur 
l'integration des equations differentielles partielles et sur les surfaces vibrantes," Mem. 
Institut 4 (1802): 21-111. See also Eugene Frankel, "Career Making." 

77 The publication of the 1811 prize paper was predictably slow. It oozed from the presses 
of the Academie in two parts, appearing in 1824 and 1826. 
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physically happening along each of the four stages of the cycle was his own. And 
his explanation of these stages was non-mathematical and in terms of caloric, and 
its conservation in the complete cycle of the engine. The fall of caloric from a 
higher to a lower temperature made the extraction of mechanical work possible. 
While Carnot's description of the physical processes involved in completing a cycle 
of his ideal heat engine was clear, his goals were those of an engineer. His aim was 
an expression for the efficiency of such an idealized system, and understanding the 
operating conditions for real steam engines to maximize their performance. Carnot 
also needed to make plausible his assumption that the operation of his idealized 
heat engine extended to all types of working substances. All his results on the 
behavior of the specific heats of gases were deduced from known experiments. 
The construction of his mathematical derivation for the temperature dependence 
of the "motive power" of heat was relegated to a long footnote. This derivation came 
directly from known gas laws and was completely independent of his assumptions 
about the nature of heat. In the 1830s yet another engineer, Emile Clapyeron 
constructed a mathematized theory based on Carnot's analysis of the heat-engine 
cycle, and experiments on the specific heats of gases. Clapyeron specifically 
based his mathematics only on well established hypotheses and distanced his work 
from that of Lavoisier and Laplace. Neither work stirred the imagination of other 
mathematicians or physicists until the late 1840s.78 

Light and Elasticity 

The last historical problem set we will consider is on the changes in ideas about 
the nature of light that engendered a complex of mathematical theories in elasticity. 
Some of these mathematical theories became important in the middle decades of 
the nineteenth century as physicists adopted mathematics as the language of theory. 

Until the early nineteenth century the phenomena of light were assumed as 
empirically understood, although physical explanations of its nature and interaction 
with matter remained problematical. In the eighteenth century, interpretations 
of the nature of light remained as contested as those of caloric. The primary 
assumptions were either that light was a stream of particles, or a disturbance 
propagated through a substance that pervaded space. These hypotheses left the 
details of the action of light to subsidiary assumptions, and all manner of tropes, 
similes, and metaphors.79 The principal area of difficulty for both sets of physical, 

78 Sadi CarnotRejlexions sur la puissance motrice dufeu (Paris: Vrin reprint of 1826 edition, 
1979). Emile Clapyeron, "Memoire sur la puissance motrice de la chaleur," J. Ecole Poly. 
16 (1834): 153-190. Truesdell, Tragicomical discusses Clapyeron's mathematics. See 
also Jean Dayantis, "Carnot, Clapyeron et la theorie calorique au dix-neuvieme siecle," 
Rev. Quest. Sci. 164 (1993): 105-130. 

79 The ranges of such physical speculations have recently been explored by Casper Hakfoort, 
Optics in the Age of Euler, and Geoffrey Cantor, Optics after Newton. 
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vernacular theories lay in the phenomena where light and matter interacted, namely 
double refraction and to a lesser extent simple refraction. Laplace's political power 
within the Institut in the first decade of the nineteenth century and his analytical 
interest in light, as an offshoot of his work in celestial mechanics, guaranteed that 
the problem areas of of light would become the subjects of prize essays. The 
subject of the prize essay made public in December 1807 was double refraction.8o 

In 1810 the work of Etienne-Louis Malus was crowned. His prize essay included 
the detection, experimental establishment, and analysis of a new phenomenon, po
larization. This new phenomenon complicated the explanatory picture and guar
anteed further prize questions on the same subject. Malus had presented his ex
periments on the refractive power of opaque crystals to the Institut one month 
before the prize problem was announced. In working further on Iceland spar, he 
discovered the polarization of reflected light.81 As Buchwald has amply demon
strated, Malus' experiments changed experimental optics. Malus worked with 
sophisticated instrumentation, reported, then analyzed his results carefully. 82 

If we explore his long prize essay, we find that it falls into three sections, each 
one separate from the others. The first section is mathematical on "Des questions 
d' optiques qui dependent de la geometrie." This section consisted of the mathe
matics of known phenomena dependent on light being propagated in straight lines. 
When light is reflected or refracted from a surface, the equation for the system of 
rays emerging from the encounter was 

x - x' y - y' z - Z' ----- = ----- = ----
m n o 

where m, n, 0 were "arbitrary functions of x', y', Z'." SO far no physics. Malus 
was working towards the general problem of considering, 

a system of right lines emanating from all points of a curved surface, 
that obey any analytical law whatsoever, this system being regarded as 
the locus of the intersection of two systems of developed surfaces. 83 

Malus proceeded to treat all the mathematical cases he could and expressed 
them in general functional form. In the case of refraction, Malus used the notion 
that at the surface light was turned through an angle by a force perpendicular to 
that surface. This assumption reduced optics to the mathematics of mechanics. To 

80 Events leading up to this prize problem and work done previously by William Hyde 
Wollaston on double refraction are recounted in Jed Buchwald, The Rise of the Wave 
Theory of Light (Chicago: University of Chicago Press, 1989) chaps., 1, 2. 

81 The phenomenon was announced in 1809, Malus, "Sur une propriete de la lumiere 
reflechie par les corps diaphanes," Bull. Soc. Philo. 1 (1809): 266-269. 

82 Malus, like Coulomb who achieved the same transformation in the study of electricity, 
was a military engineer. For the details of Malus' experiments, see Buchwald, Rise, 
31-36. 

83 Malus, "Traite d'Optiques," Mem. Institut, Paris 2 (1811): 214-302,221. 
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Malus it was irrelevant how the force operated on the light to cause it to deviate 
from its straight-line path. It was only "necessary to calculate its effects."84 Malus 
handled double refraction in the same way.85 The physical explanation of refraction 
and polarization existed separately and escaped "all quantitative determination." 
Malus relied on the speculative construction of short-range attractive and repulsive 
forces acting close to the surface of the refracting body as physical, explanatory 
devices.86 He did not put these ideas into analytical form, nor could he in principle 
subject them to experimental examination.87 

Experiments on polarization also became the ground on which Biot made his 
professional mark. Initially Biot worked with Arago on the experimental deter
mination of the indices of refraction of various gases.88 He claimed to deduce 
results only trivially different from those of Laplace in his Mecanique Celeste. 
The mathematical part of the paper showed that Biot had developed his own ana
lytical expression for the refracting power of gases and traced through Laplace's 
work on the refraction of light for formulae corresponding to the conditions of his 
experiments. However, the analytical derivation was in terms of rays of light and 
their angular changes of path as they pass through different media. The vernacular 
description of what occurred as the light passed through the media was in terms 
of the forces causing these deviations. These forces were not connected to the 
analytical derivations from his experiments.89 

Biot continued with a series of careful, quantitative experiments coupled with 
long analytical deductions from his results. Yet, even while explicitly denying any 
use of hypotheses, his papers on light are peppered with them.9o In the mathe
matical exploration of the results of his experiments on the polarization of light in 
birefringent crystals, Biot expressed the equation of motion for the changes in the 

84 Buchwald notes that this section contains no physics and is purely analytical, Buchwald, 
Rise, 38. 

85 Malus, "Theorie de la double refraction," in "Traite," 303-508. 

86 See Malus, "Sur une propriete des forces repulsives qui agissent sur la lumiere," Mem. 
Soc. Arcueil2 (1809): 143-158. 

87 For details of Malus' work, see A. Chappert, Etienne-Louis Malus (1775-1812) et la 
theorie corpusculaire de la lumiere (Paris: Vrin, 1977), p. 124. 

88 Biot and Arago, "Sur les affinites des corps pour la lumiere, et particulierement sur les 
forces refringentes des differents gaz," Mem. Institut 7 (1806): 301-387. The analytical 
part of the paper is "Part II," 363-387. 

89 For the cutthroat conditions in the competitive domain of experimental physics and in 
particular the competition between Arago and Biot, see Buchwald, Rise, 79-88. Arago 
did not follow the new trend toward experimental physics and quantification using com
plicated instrumentation. Biot chose an aggressive prosecution of this new methodology 
for experimental optics. 

90 For example, see Biot, "Sur un nouveau genre d' oscillation que les molecules de la lumiere 
eprouvent en traversant certains cristaux," Mem. Institut 12 (1812) [1816]: 1-371, p. 60. 
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axis of polarization of the light as 

dx 2 

dt 2 =¢(i-X)-¢I(i-X), 

where ¢ is the force and x the angle of the axis of polarization at time t. This 
problem was worked out in its most general form only to be truncated into simple 
harmonic motion to obtain numerical results that could be compared with experi
ment. 

In the introduction to this long paper, Biot claimed that his experiments showed 
the successions of oscillations of the "luminous molecules." The equation of 
motion of the planes of polarization were the equations of motion of these particles 
of light. After assuming this he developed a non-mathematical, physical theory of 
the changes undergone by the particles of light. This physical theory was devoid 
of mathematical, although not of logical, reasoning or clarity of concept. While 
his experiments on the polarisation of light in birefringent crystals were careful 
and reported at length in the Memoires of the Institut, his theoretical account was 
less than successful. The experiments recounted the changes in reflected and 
transmitted light in birefringent crystals for all the colors of the rainbow. These 
results and the differences in the colors of the reflected and two refracted rays were 
important in his attempt to draw together the Laplacian theory of matter and light; 
centre of force molecules acting on luminous particles that set up oscillations in 
those luminous particles.91 Biot combined the particulate theory of matter and of 
light that produced waves. However, this phenomenon was more easily explained 
by waves than particles. His assumption was that the axis of polarization of the 
light was gradually changed by the action of the molecular forces as the light 
particles traveled through the medium.92 

There were other conceptual problems. He implicitly assumed that the equation 
of motion of the polarization axis was the same as the equation of motion of the 
luminous molecules. Biot then investigated this simple harmonic motion for a 
single molecule. However, his comparisons were between the mathematics of a 
microscopic structure and experiments of macro-phenomena. No consideration 
was given as to how this micro-motion led to the macroscopic effect. He assumed 
they were the same. There were problems as well in the mathematical part of 
the paper. The wave motions of the luminous molecules were reduced to the 
simplest of motions without considering how this motion led to an ordinary and 
extraordinary ray within the crystal. Again we have both a physical theory and a 

91 See Biot, "Sur une nouvelle application de la tMorie des oscillations de la lumiere," Mem. 
Institut (1812) [1816]: 1-38. 

92 Biot continued to develop this vernacular, physical theory in Biot, Recherches experimen
tales et mathematiques sur les mouvements des molecules de la lumiere (Paris: 1814), and, 
"Nouvelles experiences sur Ie developpement des forces polarisantes par la compression 
dans tous les sens des cristaux," Ann. Chim. Phys. 3 (1816): 386-394. 
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mathematical one existing in their separate spheres of explanation. Significantly, 
Biot tried to bring the mathematical theory into a form that could be compared 
legitimately with his experimental results. 

Into this battleground between the Laplacians in the Institut strode another out
sider, also an engineer, Augustin Fresnel. Fresnel entered into a field already 
occupied and in terms of the early nineteenth century well covered both mathemat
ically and physically. It would be rough going. He disturbed both mathematicians 
and experimental physicists by demonstrating the inadequacy of physical emission 
theories of light with a new phenomenon, diffraction.93 The majority of the first 
six papers Fresnel wrote on diffraction remained unpublished during his lifetime. 
He claimed priority for his work in the Annales de Chimie et Physique under the 
auspices of Arago, who had recently joined its editorial board.94 Arago had been 
squeezed out of the developing field of studies on polarized light and became a 
valuable ally for Fresnel in the Academie. 

Fresnel showed considerable sophistication as an experimental physicist. He 
devised a number of simple yet ingenious experiments to demonstrate numerically 
as well as qualitatively the fallacies in the "Newtonians'" theories of light and to 
establish the plausibility of the wave theory.95 He used the very methods, quan
titative experiments that the Laplacians prided themselves as their innovation, to 
show the inconsistencies in their reasoning. His experiments on diffraction were 
quantitative and exact and deceptively simple. From them he deduced a series of 
algebraic relationships that illustrated in detail the wave nature of light. From sim
ple geometry he deduced the fringe spacings of the interference waves, including 
those of different orders, from which he obtained a value for the wave length of 
light. 96 He repeated this and used a geometrical argument, based on the idea that 
points on the wave surface were the center of wave motion, as an explanation for 

93 Buchwald details Fresnel's early life and experiments on light and the circumstances 
under which they were performed in Buchwald Rise, chap. 5. 

94 Fresnel, "Memoire sur la diffraction de la lumiere," Ann. Chim. Phys. 1 (1816): 239-
281. Some of these early memoirs were deposited at the Institut and later the Academie 
des Sciences, and/or read by Arago at sessions of these institutions. All of his early 
papers were published in Fresnel, Oeuvres completes H. de Senarmount, E. Verdet and 
L. Fresnel eds., (Paris: Imprimerie Imperiale, 1866-1870), 3 vols. Fresnel's work on 
light is in the first two volumes. 

95 The first occurrence of these arguments is in Fresnel, "Premier memoire sur Ie diffraction 
de la lumiere," Oeuvres vol., 1,9-34, 10-15. The best presentation is in his prize essay, 
Fresnel, "Memoire sur la diffraction de la lumiere," Mem. Acad. Sci. Paris (1821-1822) 
[1826]: 339-487, 341-349 where he builds a case that the emission theory contradicts 
itself. Fresnel always referred, discretely, to the emission theory as "Newtonian." 

96 Fresnel, "Premier memoire sur la diffraction de la lumiere," Oeuvres vol., 1, 9-34, 25-34. 
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reftection.97 The above arguments were then repeated along with a group of im
proved measuring techniques.98 

Fresnel was asked by the Academie committee considering the work that became 
his prize essay, to add an analytical part to it. They deemed it incomplete.99 In 
his amended prize essay the mathematical work that accompanied his experiments 
included an expression for the wave length of light that did not depend on any 
particular model for the mode of action of light. The detailed development of 
his ideas on the nature of light itself was accomplished through his experiments 
and expressed clearly and argued logically in the vernacular. Fresnel did not 
actually develop a mathematical theory of the nature of light and its action based 
on his physical descriptions of its nature. The purpose of his mathematics was 
not to explore the nature of light or its propagation or interaction with matter 
but to replicate the expressions he had already deduced by geometry and algebra 
from his experiments. Fresnel demonstrated graphically how the maxima and 
minima of intensity represented by the fringes of his experiment occurred through 
the superposition of waves. From the geometry of his experiment, he deduced 
the algebraic relationship between the wavelength of the light, the distance of 
the fringe maximum from the center of the pattern of fringes, and the distance 
between the screen and the source of the diffraction pattern. The more sophisticated 
mathematics of the calculus replicated these earlier results. 100 

Analysis and the calculus did not bear much weight with Fresnel. In contrasting 
the Newtonian and his own theory of light, Fresnel put forward his criteria for 
choosing between the two. The choice must be made on the basis of the con
ceptual simplicity of the hypotheses necessary to explain the phenomena, not on 
the calculus, although the latter was more easily applied to the Newtonian than 
the wave theory of light. In invoking the economy of nature, Fresnel noted that 
"nature is not troubled by the difficulties of analysis," and appeared to produce the 
maximum number of phenomena through the minimum number of causes. 101 

97 See Fresnel, "Complement au memoire sur la diffraction," Oeuvres, vol. 1,41-6l. 

98 Fresnel, "Memoire sur la diffraction de la lumiere," Ann. Chim. Phys. 1 (1816): 239-281; 
reprinted in Oeuvres vol. 1, 93-122, and in Fresnel, "Supplement au deuxieme memoire 
sur la diffraction de la lumiere," in Oeuvres vol. 1, 131-170. 

99 We'll take the charitable view that the committee, consisting of Arago, Biot, Gay-Lussac, 
Laplace, and Poisson, a majority of Laplacians, was taking as standard practice that both 
quantitative experiments and analytical development of their results be accomplished in 
a prize-winning essay. Malus and Biot had the effect of increasing expectations. 

100 For the first statement of this, see Fresnel, "Memoire sur la diffraction de la lumiere," 
Ann. Chim. Phys. 1 (1816): 239-281, in Oeuvres, vol., 1, 89-122, 93-100. In the 
prize essay, Fresnel, "Memoire sur la diffraction de la lumiere," Mem. Acad. Sci. Paris 5 
(1821-1822): 339-475,361-364. 

101 Fresnel, "Memoire sur la diffraction de la lumiere," Mem. Acad. Sci. Paris 5 (1821-1822): 
339-475,340. 
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And yet analysis had its uses. In the mathematical addition to his prize essay 
Fresnel took over the available mathematics of fluid motion. He also accepted 
the assumption that the velocity of propagation of the waves was the same for 
all wavelengths and that the intensity of the wave motion was proportional to the 
amplitudes of the motions of the particles. In addition to deducing the positions 
of the maxima and minima for the fringes produced by diffraction at a slit, Fresnel 
tried to find expressions for the intensity of the bright fringes. There was no attempt 
at a complete theory of light, that is, to follow the particular motions of the ether 
to produce the required intensities. Fresnel began with the total intensity of the 
light at point P. This was defined as the sum of the elementary waves spreading 
through P. The sum of all the "small motions at P," the actual intensity, was 

(f (a + b))2 (f' (a + b) )2 
dzcos(Jrz2 abA) + dzsm(Jrz2 abA ) , 

where the limits on the integration were zero and infinity. dz was any small distance 
along the primary wave and z was the distance of P from the source. A was the 
wavelength of the light and a and b were the distances of the point on the wave 
front from the source and from the screen, respectively.102 

Fresnel presented a confused mathematical argument. The goal of the mathe
matical investigation was limited to the replication of his experimental results so 
that he could undertake a direct comparison between the two. Biot and Malus had 
done the same but from the basis of a more detailed analytical development of the 
mathematical implications of their experiments. Much of the uniqueness attributed 
to Fresnel by Robert Silliman is therefore undermined. Both Malus and Biot did 
careful, numerate experiments, analyzed, and we could argue then developed their 
ideas mathematically with far more confidence and mathematical skill than Fresnel. 
However, we no longer accept the physical foundation for the analyses of those 
experiments. Their efforts have been undervalued. Because we do still accept the 
grounds for Fresnel's explanation, we overlook many of his shortcomings. 103 Fres
nel did not have that kind of control or interest in the mathematical material. Both 
Buchwald and Nahum Kipnis postulate much more mathematical and physical co
herence in Fresnel's work than his papers suggest. Many of the physical concepts 
made explicit in their analyses are implicit in Fresnel papers. His mathematics 
is fragmented and needs frequent interpolations on their part.104 While Fresnel's 

102 Fresnel added all the waves that reach P from points that were ,X and 1/ 4,X and so on from 
each other. See Fresnel, "Note sur la theorie de la diffraction," Oeuvres vol. 1, 171-181, 
and "Memoire sur la diffraction de la lumiere," Mem. Acad. Sci. Paris (1819): 339-487, 
383-407. 

103 See Silliman, "Fresnel and the Emergence of Physics as a Discipline," Hist. Stud. Phys. 
Sci. 4 (1973): 137-162. 

104 Buchwald, Rise and Kipnis, History of the Principle of Interference (Boston: Birkhauser, 
1991). 
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physical understanding of interference, the transverse nature of the ether waves 
and Huygens' principle became more confident, his grasp of the mathematics of 
wave motion was only ever partial.105 

By transposing all the mathematics of the early nineteenth century into vec
tor form, Buchwald actually diminishes the mathematical difficulties with which 
Fresnel grappled in trying to mold wave theory to his needs. Fresnel worked in 
Cartesian coordinates and algebraic equations, standard analytical equipment for 
that era. Given the mathematical state of wave theory in the early nineteenth cen
tury, it is not surprising that Fresnel's work in it was so fragmented. The problems 
of waves in elastic continua were problems that promised great rewards within 
rational mechanics for any mathematician able to bring them within the domain of 
the calculus. Even before Fresnel's prize essay on interference, Poisson and So
phie Germain were again addressing the conceptually difficult and mathematically 
challenging problem of the mathematics of continua. 106 Fresnel's work stimulated 
more mathematical work on elasticity in the I820s that changed the context of his 
later work on double refraction. Fresnel did not use any of this recent mathematical 
work in his own construction of transverse waves in a now solid ether. He jus
tified the necessity for transverse waves from the phenomena of polarization and 
constructed the ellipsoidal wavefront within birefringent crystal largely through 
physical arguments, geometrical illustrations and some calculus. While he used 
the device of theorems, the arguments in the theorems were a combination of phys
ical theory developed logically in non-mathematical language joined in places to 
geometrical illustrations and algebraic extensions of his ideas. He again argued 
that his idea of the transverse wave emerged from experiment. If mathematicians' 
equations of motion of fluids did not agree with this hypothesis, it was because they 
are based on "mathematical abstraction." While these equations might represent 
some of the properties of fluids, the mechanical ideas they were based on did not 
take all the motions of actual elastic fluids into account. 107 

Contemporary assessments of Fresnel's work focussed on his experiments, not 
on his mathematics. As far as his contemporaries were concerned, his work be
longed to the experimentally defined discipline of physics. Fresnel's early experi
ments stimulated mathematicians' elaborate explorations of wave motions in elastic 
solids. These explorations in turn were later used to explore physical theories of 

105 See Humphrey Lloyd, "Report on the Progress and Present State of Physical Optics," Rep. 
British Assoc. (1834): 295-413,387. See also Grattan-Guinness, "Review of Buchwald, 
The Rise of the Wave Theory of Light," Ann. Sci. (1989): 185. 

106 For Poisson and Cauchy on waves see Grattan-Guinness Convolutions, vol. 2, chap. 10. 
For Sophie Germain see Louis L. Bucciarelli and Nancy Dworsky, Sophie Germain: An 
Essay in the History of the Theory of Elasticity (Dordrecht: Reidel, 1980). Some aspects 
of Poisson's work in the mathematics of elasticity is dealt with in Garber, "Poisson." 

107 Fresnel, "Memoire sur la double retraction," Mem. Acad. Sci. Paris, 7 (1827) [1830]: 
45-176,80. 
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the ether. lOS The problem of transforming physical images into a mathematically 
expressed, physical theory of light was not solved easily. Cauchy developed the ra
tional mechanics of the continuum that later was imbued with physical meaning. 109 

By the second decade of the nineteenth century, there were two Parisian ap
proaches to exploiting the mathematical opportunities offered by the deformation 
of solids under external forces and constraints to produce internal motions. These 
approaches were symbolized by the work of Lagrange versus that of Laplace. The 
problem where these two methodologies clashed was in the analysis of Sophie 
Germain and Denis Poisson on the vibration of elastic plates. 110 The goals of the 
study of elasticity ranged from understanding engineering problems, as in the case 
of Coulomb, to the explorations of the calculus afforded mathematicians by this 
particularly difficult branch of rational mechanics. 

Ernst Chladini's experiments on vibrating plates stimulated the Institut to offer, 
as the prize essay for 1809, the mathematics of vibrating plates and to compare 
the results with experiments. The question had to be reset twice before it was 
awarded, with reservations, to Sophie Germain. Her flawed derivation of the 
equations of motion for the elastic surface was based on Lagrangian mechanics. 
In his Mecanique Analytique Lagrange reduced the physical properties of bodies 
to geometry and used the principle of virtual velocities and variational calculus 
to obtain equations expressing extremum conditions. He drew into one analytical 
net the mathematical problems of both statics and dynamics. He also managed 
to withdraw the mathematical consideration of both of these physical subjects 
from the domination of hypotheses to the elegance of algebra. With analogical 
reasoning, Germain argued that the sum of the curvatures of the plate would play 
the same role in the theory of plates, as the curvature of the elastic central-line 

108 There is no modern book-length study of early nineteenth-century mathematics of elas
ticity. For Cauchy and Navier see Grattan-Guinness Convolutions vol. 2, chap. 15. There 
is a short overview in J. J. Cross, "Theories of Elasticity," in Companion Encyclopedia 
Grattan-Guinness, ed. vol. 2, 1023-1033. However, modern vector notation is used 
throughout which makes the development of these mathematical works look deceptively 
easy. For a difficult source see Todhunter, A History of the Theory of Elasticity and the 
Strength of Materials. The aspects of these theories that relate to theories of light and 
the ether are also in Whittaker, A History of the Theories of Aether and Electricity. The 
difference between a mathematical and physical theory expressed in mathematical lan
guage is missing from Whittaker. He also uses modern notation so much ofthe historical 
context and content of all this work is lost. 

109 In later chapters we will examine the reactions of physicists to these explorations of the 
mathematics of elasticity and what they found wanting in those explorations. 

110 Amy Dahan-Dalmedico, "La mathematisation des theories de l'elasticite par A-L Cauchy 
et les debats dans la physique mathematique fran~aise (1800-1840)," Sci. Techn. Persp. 9 
(1984-1985): 1-100. Note especially her scheme for clearly placing the mathematicians 
within various traditions and the changes in those traditions through the maze of published 
papers. 
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did in the theory of rods. She used Euler's work on vibrating rods and extended 
his reasoning to vibrating plates. Germain argued that the action of the forces 
on the plate was proportional to the sum of the inverse of the change in the radii 
of curvature of the plate. Using the principle of virtual work, she obtained an 
equation for the vibration of the elastic surface. Her basically incorrect equation 
was reworked by Lagrange into the form Germain adopted and then solved for 
particular casesyl 

Denis Poisson was hot on Germain's mathematical trail. He criticized her work 
on technical and conceptual grounds. 112 Poisson argued that the only foundatiop for 
the mathematical analysis of physical problems was the consideration of the forces 
between the molecules making up bodies.The problem with Germain's analysis was 
that it was geometrical and lacked any appropriate hypotheses for the mathematical 
study of physical phenomenaY3 Germain was a stand-in for Lagrange whom 
Poisson also criticized on the same grounds. He had also recently published his 
own text in mechanics, a rival to that of Lagrange. He then rederived Germain's 
revised equation of motion on what he took to be more appropriate foundations. 

In his first paper on the equilibrium of elastic surfaces, Poisson looked at an 
isolated molecule and assumed that deformation of the surface changed the distance 
between molecules and sought the force that would return the surface to its original 
form. 114 Poisson also derived the equation of motion for a vibrating plate that 
required the expansion and then truncation of series. All relationship to either the 
original problem, or the model of matter used to set up the equations, were lost. 
His paper was derivative at best and a demonstration of mathematical acrobatics 
in search of a known goal. 115 Navier later questioned Poisson's actual use of his 

111 Her solution was published as Sophie Germain, Recherches sur la tMorie des surfaces 
elastiques, (Paris 1821). For details of Germain's derivation of her equation of motion 
and solutions, see Bucciarella and Dworsky, Sophie Germain. While they do not spare 
Germain's essay from criticism, they make the importance of being male and having 
powerful, committed patrons in the mathematical world of early nineteenth-century Paris 
all too evident. 

112 As soon as the professional mathematicians entered into the fray Germain was marginal
ized. Her isolation from the discipline and inability to gain the necessary technical 
training meant that her work could not be technically as sophisticated or regarded with 
anything but condescension. 

113 Poisson, "Memoire sur les surfaces elastiques," Mem. Institut (1812) [1814]: 167-226. 
Bucciarella and Dworsky, Sophie Germain argue that the prize essay was initiated by 
Laplace to further Poisson's career, although they offer only circumstantial evidence. 
However, Poisson's paper on the prize topic was published by the Institut even as he 
withdrew from the competition on his election to that institution. 

114 Poisson had introduced this model in 1811 in Poisson, Traitede Mecanique (Paris: 1811), 
1833 edition translated by H. H. Harte asA Treatise on Mechanics (London, 1842). 

115 Even Todhunter notes this might be a display of analytical skill that did not add to the 
physical discussion of the problem. See Todhunter, History of Elasticity vol. 1, 212. 
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model and Germain pronounced it "useless if not harmful." 
In this paper and in his earlier ones on electricity, Poisson established a pattern 

of claiming to use forces acting at insensible distances to establish the equations 
to be solved. The restrictions that central forces might put on the derivation of 
the equation of motion or its solution were never enforced. Poisson developed 
the mathematics as generally as possible and the solutions he attempted were at 
the most general level he could complete. Both were achieved with all manner of 
technical mathematical devices that might make nonsense of the physical problem 
that initiated the mathematics. Poisson never distinguished the physically plausible 
from the mathematically interesting. In the terms within which he worked, the 
coincidence of mathematical results with previously obtained experimental ones 
confirmed all the mathematical apparatus brought to bear on the problem. 

Poisson used each and every opportunity to bring his mathematical talents to 
bear in every domain of physics. Simultaneously, he began to defend the calculus 
against the assaults of the work of Fourier and Cauchy. Much of his work was 
devoted to arguing against the mathematical continuity between integration and 
summation in Cauchy's calculus. Poisson insisted on the use of summations in 
any problem relating to mathematical problems dealing with molecules. This 
insistence was rhetorical. Poisson could not solve such problems himself without 
using integrals.116 We need to see these papers as part of the ongoing debate between 
the mathematical professionals over the foundations and methods and legitimacy 
of the results of the calculus. It was not a debate within physics or about the 
foundations of a physical theory of elasticity. Poisson's concerns were the proper 
foundations of mathematics. He also sought more legitimate ways of expressing 
solutions to equations deduced from physical problems. The mathematics should 
reflect the structure of the physical world.117 

In the 1820s, a three-cornered fight over the mathematics of elastic solids erupted 
among Poisson, Navier, and Cauchy. Navier investigated the general equations of 
motion of elastic solids. Beginning with center of force molecules N avier assumed 
that the forces between the molecules, when they are drawn apart, was proportional 

Bucciarella and Dworsky, Sophie Germain, 75-76, note the mathematical character of 
this paper. 

116 Poisson, "Memoire sur l'integration de quelques equations lineaires aux differences par
tielles, et particulierement de l'equation generale du mouvement des ftuides elastiques," 
Mem. Acad. Sci. Paris 3 (1818) [1819]: 121-176, and "Sur les integrales definies," J. 
Ecole Poly. 11 (1820): 295-341. For a discussion of Poisson's mathematical concerns 
see, D. H. Arnold, "The Mecanique Physique of Simeon-Denis Poisson: The Evolu
tion and Isolation in France of his Approach to Physical Theory (1800-1840)," Arch. 
Rist. Exact Sci. 27 (1984): 248-367, vol. 28 (1984-1985): 27-266, 287-307, and 
Grattan-Guinness Convolutions. 

117 This argument is in contrast to Arnold, "Poisson," who treats Poisson's molecular model 
not as a necessary start for his mathematics but as a physical theory. 
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to the increment in and some function of the initial distance. He developed an 
expression for the component of the force acting on the displaced molecule, and 
from this obtained the equations of motion of the molecules in terms of their 
displacements along the axes (a, b, c). The component of force, X, along the a 

axis was 

where 17 was the integral, 

17= -p4F(p)dp 100 2rr 

a 15 

and F (p) is the force between two points at distance p apart. To eliminate F (p) was 
a mathematical exercise in Lagrangian mechanics. Essentially Navier constructed 
the work done by all the forces that he assumed acted upon a single molecule from 
all the molecules in the solid. Using the calculus of variations for the equilibrium 
case, Navier deduced the differential equations above and the boundary conditions 
at the surface of the body. 

As Navier recognized, this was an exercise in mathematics.us He had taken the 
simplest case for the external forces. Cauchy weighed in with the more general case 
of forces acting at any angle to the surfaces of the solid. Cauchy also considered 
the solid as a continuum. The paper was not published by Cauchy in full until 
1828.119 

Among the stream of papers on analysis Cauchy published during the 1820s 
and into the 1830s were several on the mathematics of elastic bodies. In these 
papers he clearly represented the internal physics of bodies under various forces. 
While setting up the equations of equilibrium and motion within the elastic solid, 
the physical imagery of stresses and strains could be vivid and explicit. However, 
they were not consistent, and the physics of elasticity was not developed from 
the back and forth between Poisson, Cauchy, and Navier in these mathematical 
papers of the 1820s. All three derived similar, if not identical, equations from 
different physical starting points. They all quarreled over the validity of their 

118 Navier, "Memoire sur les lois de l'equilibre et du mouvement des corps elastiques," 
Mem. Acad. Sci. Paris 7 (1821) [1827]: 375-393, an abstract appeared in Bull. Soc. 
Philo. (1823): 177-183. 

119 An abstract appeared earlier as Cauchy, "Recherches sur I'equilihre et Ie mouvement 
interieur des corps solides, ou ftuides elastiques," Bull. Soc. Philo. (1823): 9-13. The 
full paper was published in three installments, "De la pression ou tension dans un corps 
solide," "Sur la condensation at la dilation des corps soli des," and "Sur les equations 
qui expriment les conditions d'equilibre ou les lois de mouvement interieur d'un corps 
solide," in Cauchy Exercises de mathematiques vols. 2 and 31827 and 1828 respectively. 
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various mathematical results. l2O The point was to best one's competitors in being 
able to solve the partial differential equations of the motions of elastic bodies for 
cases that one's competitor had failed to solve. Or, to add complexity to a solution 
in some other case, turning a factor assumed to be a constant into a function. These 
were exercises in mathematical proficiency not physical insight. Between Poisson 
and Cauchy there was also the serious mathematical issue of how, or if, summations 
should replace integrations. They both used integrations to obtain solutions to the 
particular equations that they could in principle solve. Poisson mathematically 
deduced a ratio for lateral contraction to longitudinal elongation for a thin bar that 
was not valid in general.121 Cauchy also extracted other such seemingly measurable 
ratios from his mathematics. Experiments that were difficult did not decide the 
issue of the validity of either mathematical approach.I22 

These strenuous mathematical exercises were given added urgency with the 
development of Fresnel's theory of light. Mathematical exploration of the prop
agation of waves through solids and liquids was given renewed impetus. The 
mathematical theories of elastic solids were elaborated along the lines of Cauchy's 
approach during the 1830s and 1840s by Gabriel Lame. The physical muddle that 
resulted was sorted out later in the century by George Gabriel Stokes and others 
when mathematical theories of the ether became an urgent issue in the developing 
discipline of physics in Britain. 

French Mathematics and Physics c. 1830: Some Conclusions 

To assess the changes in both French mathematics and physics between 1790 
and 1830, we need to keep in mind the differences between these two disciplines in 
terms understood in that era. Even as the calculus was redefined through the work 
of Cauchy in the 1820s, mathematicians continued to appropriate the expanding 
domains of experimental physics. The algebraic expressions of experimental re
sults remained the starting points for excursions into the mathematics of light, heat, 
and elasticity. Cauchy's analysis opened up new avenues of mathematical explo
ration and expression. The display of mathematical virtuosity through problem 
solving was still an important route to a reputation and career in French mathe
matics. Joseph Liouville used Cauchy's analysis to explore generalizations of the 
mathematics of heat conduction. He promoted the coefficient of conductivity from 

120 Grattan-Guinness, Convolutions, chap. 15. 

121 The ratio appeared in Poisson, "Memoire sur I'equilibre et Ie mouvement des corps 
elastiques," Mem. Acad. Sci. Paris 8 (1828): 357-570,623-627,451. 

122 For an assessment of Poisson's work in elasticity see, Garber,"Poisson," and L. L. Buc
ciarella, "Poisson and the Mechanics of Elastic Surfaces," in Simeon-Denis Poisson et la 
science de son temps, Michel Metevier, Pierre Costabel, and Rene Dugas, eds. (Paris: 
Ecole Poly technique, 1981),75-104. 



132 Physics and Mathematics 

a constant in Fourier's original work into a generalized function in three dimen
sions. Electrodynamics served to lead him in other mathematicai directions. As 
his recent biographer has claimed "many of Liouville's most important mathemat
ical ideas continued to be inspired by physics.,,123 This statement holds for many 
mathematicians in nineteenth-century France. 

Despite the transformation of the foundations of the calculus in France, math
ematics remained a method that reached into other disciplines for its problems to 
expand its domain. Poisson gave this search the name of mathematical physics. 
The mathematics of the nineteenth century was more sophisticated than that of the 
pre-1820s era. The mathematical explorations offered by the expanding fields of 
experimental physics were done by professionals who, in the state institutions of 
higher education, taught the following generation of mathematicians, and above all, 
engineers. By 1830, major new physical phenomena uncovered by experiment in 
the early decades of the nineteenth century were the starting point for mathematics, 
explored from various points of view. However, the work of such mathematicians 
did not develop into theoretical physics. The mathematicians sought the most 
general solutions possible from the equations deduced from physical phenomena. 
The arbitrary functions and coefficients used in the solutions to partial differen
tial equations were not connected to physical conditions, processes, or the model 
establishing the initial mathematical problem. 

This was true even of the Laplacians who claimed to root their mathematical 
physics in a particular physical model. In Laplace's case, his physical model was 
the starting point for his mathematical forays into a broad range of physical phe
nomena, provided they could be reduced to forces acting at a distance. He could 
then operate on the problem with all the analytical power of rational mechanics. 
However, after Laplace gave the initial statement of his model of matter the mathe
matical problem was expressed in terms of general equations of motion. Solutions 
to these equations were arbitrary functions. No restrictions were placed on their 
behavior that derived from the physical input of his initial model of matter. He did 
not use any criteria to separate the physically plausible from the mathematically 
possible. Obtaining a result that coincided with known experimental results were 
noted, but Laplace did not indicate the implications inherent in the mathematics for 
other physical situations. What was most striking about both Laplace and Poisson 
was that their physical model never changed even as they reworked and extended 
their mathematics. 

In Poisson's solutions the physical model remained sketchy and only minimally 
connected to the mathematics at the beginning of the problem. Thereafter physical 
model and mathematics did not meet. His criteria for choosing the direction of 
development of his reasoning were solely mathematical. Any consideration of 

123 See Jesper Liitzen, Joseph Liouville (1809-1882): Master of Pure and Applied Mathe
matics (New York: Springer-Verlag, 1990), 22. 
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Poisson's work was complicated by his place in the transformation of mathematics 
in France during the first two decades ofthe nineteenth century. Resolutely Poisson 
held to conservative opinions with respect to continuous and hence differentiable 
functions, proper series, the representation of arbitrary functions, and integrals. 
Even as Ampere, but above all others Cauchy, were redefining the integral so 
that many definite integrals would become finite and hence useful in problem 
solving, Poisson argued that summations of forces between molecules could not 
be transformed into definite integrals. 124 

Cauchy's attempts to redefine the integral as the limit of a summation pro
cess threatened Poisson's physical model. The model guaranteed the existence of 
solutions to those problems Poisson regarded as the core of mathematics itself. 
Therefore, Poisson tried to tie his physical model more closely to mathemati
cal methods in a scheme that even he found unworkable in practice. 125 Indeed 
Cauchy's calculus was a great threat to Poisson and his reputation which had been 
built upon the eighteenth-century tradition of transforming what had been asserted 
to be divergent series into functional solutions. His years of toil improving the 
mathematics of others to bring a recalcitrant partial differential equations to inte
gration using the restricted series and functions available in the older calculus were 
being devalued. 126 

In 1807, when Poisson initially criticized Fourier's use of trigonometric series, 
he was voicing conventional mathematical opinion. However, by 1830 Poisson was 
an isolated, mathematical conservative. He persisted in reworking the solutions of 
others to fit his own pattern of mathematics. This only made those solutions more 
difficult to accomplish. His work could be discounted by the younger generation 
of mathematicians. 127 

If the Laplacians cannot be seen as doing theoretical physics, neither can their 
more mathematically adventurous contemporaries. The mathematics they created 

124 However, in his mathematics the function representing that summation of forces bore no 
relationship to the law of force between the molecules through which Poisson established 
his equations of motion. Poisson, "Memoire sur l'equilibre et Ie mouvement des corps 
elastiques," 366. See Garber, "Poisson." 

125 Poisson published papers on purely mathematical issues throughout his life. The ones 
of concern here are Poisson, "Sur les integrales definies," J. Ecole Poly. 9 (1813): 
215-246. "Sur l'integration de quelques equations lineaires aux differences partielles, 
et particulierement de l'equation generale du mouvement des fluides elastiques," Mem. 
Acad. Sci. Paris 3 (1818) [1819]: 121-176 and "Sur la maniere d'exprimer les fonctions 
par des series de quantites periodiques, et sur l'usage de cette transformation dans la 
resolution de diffCrents problemes," J. Ecole Poly. 11 (1820): 417-489. 

126 Representing a sum by an integral whenever convenient did not appear to bother him in 
his earlier papers. 

127 Reworking Fourier's methods on heat, to reproduce both his equations of motion for heat 
and his solutions to those equations under various boundary conditions, took Poisson over 
two decades. Poisson, Theorie mathematique de la chaleur (Paris: Bachelier, 1835). 



134 Physics and Mathematics 

using problems drawn from physics were rich in physical implications that were 
deciphered by others. However, the physics from which they drew their problems, 
while still centered on experiment, had changed radically. Emblematic of those 
changes were the textbooks by Rene Hauy and Jean-Baptiste Biot examined by 
Cannon. 128 Both textbooks were popular, yet they addressed different audiences. 
Hauy described physics as the science of familiar phenomena. The instruments 
described and the objects of study were deliberately chosen to explain the com
monplace. This was a text for the general public, or a text on an elementary level. 
In Hauy's text the relationships used to express experimental results were in terms 
of simple geometry. At its center were the descriptions of phenomena, not the dis
cussion of the instrumentation, methods of taking measurements, or their expected 
accuracy. However, Hauy text was up-to-date with references to current research 
and researchers and was liberal with descriptions of their work. 

Biot's audience were clearly pre-professionals, those planning careers as engi
neers or physicists for whom discussions of the commonplace would be digres
sions. The laboratory and quantitative experiments were the focus of Biot's text. 
In it Biot devoted large amounts of space to instrumentation, and the results of 
experiments and their analysis. Yet the only mathematics in the text was con
tained in the algebraic relationships Biot drew up between measured quantities. 
And these became unduly complicated because Biot insisted on the primacy of the 
data. No mathematical development of theoretical ideas intruded. What theory 
existed was expressed non-mathematically, if technically. Biot's modernity lies in 
his focus upon the technical details of experiments and their results. These were 
clinically dissected and analyzed. Mathematics was subordinated to the needs 
of the experimentalist and this was Biot's meaning of "physics experimental and 
mathematical.,,129 Biot was a Laplacian, but on the other side of the disciplinary 
divide, an experimentalist for whom theory was still expressed in the vernacular. 
His objections to Fresnel were matters of physics, not mathematics, and expressed 
in the non-mathematical terms used by physicists. In his papers as a mathematical 
Laplacian, particular solutions of equations could well match specific, idealized 
experimental situations. This was an important innovation. 

By 1830 the practices of experimentalists had redefined the discipline but not 
its relationship to mathematics. Experiment was still the heart of the discipline, 
but it was quantitative experiment conducted with elaborate instrumentation so 
that the measurements taken and their accuracy could be understood and analyzed. 
This self-conscious understanding and analysis of methods was a function of the 
increasing competition for priority in the development of a reshaped field. As 

128 Rene Hauy, Traite Elementaire de Physique, and Jean-Baptiste Biot Traite de physique 
experimentaie et mathematique. 

129 Frankel's argument cannot be sustained by either Biot's textbook or his research. See 
Frankel, "BioI." 
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important were the constant improvement in those methods. Physical hypotheses 
had changed their function and were integrated by experimentalists in new ways 
into the discipline. While hypotheses still emerged from experiment, and along 
with their implications kept in non-mathematical language, they were subjected to 
the systematic cross-examination of auxiliary experiments. The numerical results 
of experiments put into algebraic form might also be extrapolated using geometric 
arguments. However, there was no development of physical theory from first 
principles through to predicted experimental results, all expressed in mathematical 
language where physical imagery and mathematics interacted and experimental 
results were embedded in the very mathematics of the theory. 

One aspect of being an experimentalist had changed. Experimentalists were 
expected to produce, to first order at least, the mathematical explorations of the 
results of their laboratory labors. This may have resulted from the fact that many 
of the most imaginative experimentalists began their careers either as students of 
mathematics or engineers. Within physics itself mathematics was molded to the 
narrow needs of the experimentalist. Experimental physics was also becoming a 
discipline of professional practitioners. In France experimental physics was no 
longer embedded in the general culture. Nature had retreated to the laboratory 
and was becoming the exclusive property of men intent on examining the esoteric 
details of its operations. The goals of those measurements, remeasurements, and 
detailed understanding of instruments were towards much more narrowly defined 
goals. The broader notion of physics, still seen in the research of Arago, was no 
longer the path to an academic career. 

None of the mathematicians or experimentalists of France separated their work 
from the needs of the state or the consideration of solving practical problems. 
French mathematicians and experimentalists pursued their renewed disciplines as 
professions with the boundaries of those disciplines that were laid down in the 
eighteenth century. The transformations occurred within those boundaries and did 
not allow physicists to transcend them. The creation of theoretical physics occurred 
within the different cultural contexts of Britain and the German States to which we 
now turn. The rich complex of mathematical explorations of physics and the legacy 
of quantitative experiment inherited from the French changed both disciplines in 
Britain and Germany. Both British and Germans reinterpreted that legacy and 
through those reinterpretations they broke through some of its limitations. 



Chapter V 

On the Margins: Experimental Physics 

and Mathematics in the German States, 1790-1830 

Prologue 

Paris was not the only site for the practice and development of mathematics and 
experimental philosophy around the turn of the nineteenth century.l Throughout 
the eighteenth century, in Britain and the German States, experimental philoso
phers and mathematicians built their own traditions, interacting with, but not over
whelmed by, the research of the French. After 1800 the achievements of French 
experimentalists and mathematicians intruded into those traditions and began to 
change them. These intrusions reoriented research problems and the terms of their 
solution by both experimentalists and mathematicians. At the same time and on 
a broad scale, British and German societies went through metamorphoses. In the 
German states, the invasion and occupation of the Rhineland by the French accel
erated these changes. Experiences in the Napoleonic wars added to the structural, 
economic translocations already affecting Britain. 

In these countries the changes wrought by war and economic transformation re
cast the educational systems and the place within those societies of both the study 
of nature and mathematics. New opportunities and social forms for the practice of 
experimental philosophy and mathematics emerged within either new or renewed 
educational institutions. While the details of the patterns of these developments 

1 Although this narrative focuses on events and changes in Britain and the German States, 
other sites in Europe continued their own traditions in the study of nature and interacted 
with those states. Among the more important in this period are those of Sweden and 
Denmark. Physics in the United States does not enter this account until physics became a 
profession and only in the person of Josiah Willard Gibbs. American physics had its own 
distinct social history. However, the pervasive "baconianism" that Robert Bruce, The 
Launching of Modern American Science, 1846-1876 (New York: Alfred Knopf, 1987) 
Prologue, found so dismal was not so different from the standards of Europe of similar 
eras. 
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were unique to each society within the German States and Britain, the general trend 
and end results were the same for experimental philosophy and mathematics. Ex
perimental philosophers and mathematicians became professionals, mainly within 
institutions of higher learning. The actual practices of mathematicians and exper
imental philosophers within these newly professionalized disciplines were quite 
different from those of earlier generations. Alterations in these disciplines were 
shaped by changes internal to their particular societies. Socially, these re-formed 
disciplines became the modern scientific professions of physics and mathematics. 
The social function of research became the advancement of careers rather than the 
affirmation of social place within a general literate culture. The social justifications 
for such research quickly became moral, economic, and political to secure then 
consolidate these new professions within the emerging industrial societies of the 
nineteenth century. 

Intellectually members of these disciplines also reacted to, and then tried to 
emulate, the achievements of early nineteenth century French mathematicians and 
experimentalists. The intellectual reorganization of the practices of both British and 
German mathematicians and experimentalists manifested these reactions. How
ever, emulation did not reach replication. British and German mathematicians 
and experimentalists interpreted French mathematics and experimental physics in 
light of practices already in place. In both societies the French example and native 
traditions led to reconstitutions of mathematics and physics. These reconstitutions 
required periods of students hip, followed by reappraisal, then refashioning the 
complex heritage of methods, problems and standards of solution available from 
the French after 1800. 

The periods of social and cognitive reappraisal set mathematics and physics 
into new channels that led to the redefinitions of both research problems and their 
solutions. One outcome of these reorientations was that France was replaced by 
Britain, and then Germany as the center of scientific life in Europe. 

The ultimate effects of these processes take us beyond 1830. In the era, 1790-
1830, France remained the center of the scientific life of Europe and Britain and 
Germany were still on the margins. The period of emulation of the French by 
the British and the Germans began in the 1820s. The cultural matrices of the 
educated elites of the German states and Britain led natural philosophers and 
experimentalists, in their interpretations of the French experimental physics and 
mathematical physics, to struggle with problems the French no longer worried 
about. These problems emerged from the interaction of experimental philosophy, 
natural philosophy, and mathematics. Both mathematicians and experimentalists 
in these societies were drawn into a series of philosophical dilemmas because 
members of both these disciplines believed that examinations of the appearances 
of nature could reveal its underlying operations. 

In the German States and Britain, one of the more important issues that was 
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debated was the relationship between empirical and deductive knowledge. Other 
more specific metaphysical topics exercised experimental physicists and philoso
phers. As in earlier metaphysical disputes, general guiding principles upon which 
theories might be established could be a node of consensus. The actual working 
out of those speculations about nature led in their details to a myriad of different 
theories. General principles had to be supplemented by other hypotheses which 
directed theories in wildly different directions. This was especially true in an 
era when analogy and illustrative example still filled the place that mathematical 
exposition served later. 

The diverse social and cultural settings of the German States and Britain led 
to quite different interpretations of the French heritage they all sought to emu
late. The particular institutional forms that emerged to house British and German 
mathematicians and experimentalists who reshaped this French heritage were also 
quite different. This was partly due to the forms already available and the differ
ing opportunities that opened up within these societies between 1790 and 1830. 
Therefore we will examine them separately. However, after 1830 this more open 
access began to close. Entering into the disciplines of mathematics and experi
mental philosophy began to be mediated by new formal educational requirements. 
Formal education became a prerequisite to joining the research community. These 
educational requirements also intruded into merely understanding the content of 
mathematics and experimental philosophy. Intermediaries between the research 
communities and the broader, educated public became necessary. The general au
dience was disengaged from the practice of the investigation of nature and became 
more passive observers of the feats of scientific professionals. 

Thus the era from 1790 to 1830 was pregnant with possibilities of which only a 
few were brought to term and safely delivered. 

Physics and Mathematics in the German States, 1790-1830 

To study experimental philosophy in the German States in the late eighteenth 
and early nineteenth centuries, we have to take seriously aspects of that work that 
seem most alien to the standards of the twentieth century. There was no one in
stitutional setting for physics. The private laboratory and literary salon as well as 
universities and academies of science were centers for the discussion and devel
opment of physical ideas. Other factors separating the physics of this era from 
our own include a passionate discussion of metaphysics by experimental philoso
phers. As important, and discussed at great length, were the proper philosophical 
foundations for a genuine experimental knowledge of nature that was not purely 
empirical and the legitimacy of mathematics within the practice of experimental 
philosophy. In some of these debates, experimental natural philosophy became a 
branch of philosophy. And much of what was written as "theory" seems specula
tive, even non-scientific. However, the issues discussed in such unlikely social and 
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intellectual settings haunted physics in Germany long after 1830, as later changes 
transformed the discipline into its modern social forms. 

Physics in this era was still experimental philosophy and a part of the shared 
culture of intellectuals. In German-speaking areas of Europe, natural philosophy 
and philosophy could not be separated. This was partly because of the belief that the 
study of experimental phenomena could uncover the actual workings and structures 
of nature. The findings of experimental philosophers and interpretations of the 
meanings of their results contained within them metaphysical and philosophical 
implications no philosopher could ignore. Debates within the sciences were of 
vital interest to philosophers. Yet within this vital, contentious culture there was no 
one metaphysics, experimental or explanatory approach available to experimental 
physicists.2 

Historians trace this fragmentation ultimately to the fragmented character of the 
German-speaking world. Yet there existed a semblance of social cohesion in the 
group interested in the relationship between philosophy, metaphysics, and experi
mental philosophy. The community consisted of the faculty at state universities, of 
private secondary or higher educational institutions, state civil servants, members 
of the professions of law or medicine, members of the state academies of science 
or letters, and finally private scholars. This corps saw itself and self-consciously 
acted as a distinct group in the varied German societies. Members of this com
munity were self-recruited from the full range of social ranks from aristocracy to 
burgers to skilled artisans.3 They no longer acted as members of the social rank 
into which they were born. As a group they exhibited no attachment to a particular 
place or state. Careers came before social or political identity. To enhance their 
individual careers, they moved from one state to another, and from the service of 
one state to that of another. 

Throughout the disruptions of the Napoleonic wars, small gatherings of such 
like-minded individuals would discuss, sometimes passionately, the ties of experi
mental philosophy to metaphysics. Historians have traced the common metaphys
ical ground shared by philosophers and experimentalists through the eighteenth 

2 The fragmented intellectual and social character of this era has been detailed by David 
Knight, "German Science in the Romantic Period, 1781-1831," in The Emergence, 
Crosland, ed. 161-178, and Barry S. Gower, "Speculation in Physics: The History 
and Practice of Naturphilosophie," Studies Hist. Phil. Sci. 3 (1973): 301-356. For recent 
studies on Romanticism and science, see Romanticism and the Sciences, Cunningham 
and Jardine, eds. (Cambridge: Cambridge University Press, 1990) and Romanticism 
and Science in Europe (1790-1840), Stefano Possi and Mauritz Bossi, eds. (Dordrecht: 
Kluwer Academic, 1994). For a useful survey of the literature, see Trevor Levere, " Ro
manticism, Natural Philosophy, and the Sciences: A Review and Bibliographical Essay," 
Persp. Sci. 4 (1996): 463-488. 

3 For a full discussion on these points, see C. E. McClelland, State, Society and University 
in Germany, 1700-1914 (New York: Cambridge University Press, 1980). 
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century. The most influential philosopher in Germany before Immanuel Kant on 
some of these issues was Christian Wolff. However, Wolff's writings seem to 
describe the usual division of labor at the University, rather than offer a structural 
explanation of, for example, the relationship between mathematics and experimen
tal philosophy. Kant reemphasized some of the accepted ties between experimental 
philosophy and metaphysics, and made others problematic. He also changed the 
debate by focussing upon analytical categories rather than descriptive terminol
ogy. Simultaneously, he established a pattern of thinking about the experimental 
sciences and their relationship to philosophy. Experimental philosophy would 
uncover the real workings of nature, that is, explore essences. For Kant, under
standing that inner structure was both a matter of intuition and deduction as well 
as empirical exploration.4 

While Kant distinguished between experimental philosophy and metaphysics, 
the distinction remained obscure to his contemporaries.5 Kant did sketch a place 
for mathematics in the understanding of nature. This was a less than complete 
discussion and was illustrative rather than analytical. His model for a complete 
theory was Newton's theory of gravitation which he accepted as both empirically 
grounded and deductively developed through mathematics. From his philosophy of 
mathematics, Kant developed the notion that the truths of geometry come from the 
method of constructing its proofs. Universal gravitation was "mixed." It was both 
derived from a priori laws and deduced from data. He did not explore this further. 
His philosophy needed interpretation to establish a legitimate place for mathematics 
within experimental philosophy. This was urgent, because in eighteenth-century 
German universities, mathematics and experimental physics were quite distinct 
disciplines. Also, Kant did not explain how Newton had merged these separate 
discipline or how they might be related on some general, philosophical level. He 
merely stated through his example of Newton's work that they were necessary for 
the full understanding of nature. Others would investigate this problem later. He 
also sketched a philosophy of mathematics itself.6 Kant was also a champion of 
new standards of scholarship. Research and scholarship was a search for truth. 
However, while Kant might challenge the state's interference in the search for 

4 Frederick Gregory, "Kant's Influence on Natural Scientists in the German Romantic 
Period," in New Trends in the History of Science, R. P. W. Visser, H. J. M. Bos and C. 
Palm, eds. Proceedings of a Conference at the University of Utrecht, 1986 (Amsterdam: 
Rodopi, 1989), 53-66. See also Michael Heidelberger, "Some Patterns of Change in 
the Baconian Sciences in Early Nineteenth-Century Germany," in Epistemological and 
Social Problems, Jahnke and OUe, eds. 3-18. 

5 See Gregory, "Kant's Influence," 58, and Gower, "Speculations in Physics," 310-320. 

6 See Michael Friedman, "Kant on Concepts and Intuition in the Mathematical Science," 
Synthese, 84 (1990): 213-257, and Friedman, Kant and the Exact Sciences, (Cambridge 
MA.: Harvard University Press, 1992) and Kant's Philosophy of Mathematics, Carl J. 
Posy, ed. (Dordrecht: Kluwer Academic, 1992). 
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truth, he also accepted an explicitly utilitarian function for the university. 
By 1800 the philosophical, metaphysical, and physical bequest of Kant had be

come a mixed blessing. Kant's acceptance of utility as a goal of academic life was 
an idea in serious jeopardy in the realm of the Gelehrte. He was also a Newtonian. 
Most German intellectuals associated Newton with French atomism and mecha
nism and these ideas were very much out of German intellectual fashion. Further, 
in the early 1800s, mathematics did not seem very useful in solving the unexpected 
and fascinating puzzles presented by recent experimental findings, especially those 
associated with electrochemistry. In this case, other aspects of Kant's metaphysics 
still helped. While Kant contended we only observe matter, underlying the surface 
phenomena was a reality of forces that brought about change. The forces were 
polar, and equilibrium was a dynamic balance between competing forces. Despite 
their disclaimers, the notion of polar forces and dynamic equilibrium became an 
important explanatory form in German natural philosophy and later in theoretical 
physics. 

Alternative philosophies of nature, native and hence anti-French, were far more 
attractive. The most important of these alternatives was Naturphilosophie that, in 
the context of research, seemed to lead its adherents into new areas of investigation 
unthinkable in mechanistic terms.7 Proponents of a German philosophy of nature, 
including Naturphilosophie, distanced themselves from Kant in their rhetoric, yet 
used many of the principles guiding his philosophy of the sciences. One of these 
was the unity of nature. Another principle from Kant that endured were in the 
terms used in explanations of phenomena. The dynamic, biploar forces of Kant 
appear in Naturphilosophie and its rivals in this era. However, the focus of the 
explanations changed. 

After 1800 what needed explaining was not matter but the processes of change 
themselves. In a different context, German chemists criticized and rejected the 
"atomic" and "mechanical" theory of Lavoisier because it did not address the 
fundamental problems of chemistry, affinity and cohesion; the problems associated 
with chemical activity itself. For experimental philosophers, processes established 
a new matrix of research problems. Forces and other common elements ranked 
above structure as in such an explanatory framework for those processes. However, 
principles did not determine the detailed content of such explanatory schemes or 
theories. Hence versions of Naturphilosophie multiplied.8 This was especially true 

7 See S. R. Morgan, "Schelling and the Origins of his Naturphilosophie," in Romanticism 
and the Sciences, Cunningham and Jardine, 25, Gregory,"Kant, Schelling and the Admin
istration of Science in the Romantic Era," Osiris, 5 (1989): 17-35. See Knight, "German 
Science," on the reasons for the rejection of Kant by Schelling, the leading philosopher 
in the Naturphilosophie group. 

8 For an overview of the varied versions of, and ways in which, Naturphilosophie was 
used as explanation in physics, see Keith Caneva, Mayer, chap. 3. See also Gregory, 
"Romantic Kantianism and the End of the Newtonian Dream in Chemistry," Arch. Int. 
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because in Germany as elsewhere in the early nineteenth century, ideas developed 
into theories through literary devices and illustrative examples. Eighteenth-century 
standards of argument still prevailed in the philosophy of nature. 

In the philosophically charged atmosphere surrounding experimental philoso
phy, particular phenomena were invested with great significance. Those of electro
chemistry were taken as especially meaningful, whether or not the experimentalist 
identified himself with Naturphilosophie or some other explanatory scheme. While 
experimentalists agreed that such phenomena seem to draw experimental physics, 
in the narrow sense, and chemistry closer together, the significance of this renewed 
connection remained elusive. Hans Christian Oersted, for example, saw physics 
and chemistry as intertwined in theory, method, and language.9 Through exper
iments he was planning, Oersted looked for a relationship between heat, light, 
and "electrical confiict.,,1o Ludwig Wilhelm Gilbert's renaming oftheAnnalen der 
Physik to Annalen der Physik und Chemie encapsulated the sense of the closeness 
of experimental physics and chemistry and the significance of that closeness. Yet 
he only sketched the significance he saw in that relationship as did the next editor 
of the Annalen, Johann Christoff Poggendorff.11 

Historians differ over the importance of Naturphilosophie for the development 
of experimental physics in Germany in the nineteenth century.12 Interpretations 
depend on how closely historians expect individuals to hold to the details of a chosen 
version of Naturphilosophie. While Oersted's work follows a general pattern that 
might put him in the Naturphilosophie camp when we examine the philosophical 
ideas he explicitly discussed those notions are KantianP Johann Wolfgang von 

Hist. Sci. 34 (1984): 108-123. 

9 See letter from Oersted to Weiss, 12 May, 1829, Oersted, Correspondance avec divers 
savants, M. C. Harding, ed. and trans. (Copenhagen: H. Aschenhoug and Co., 1920), 
280-289,285. 

10 Oersted, Correspondance, and Walter Kaiser, Theorien der Electrodynamik im Neun
zehnten Jahrhundert (Hildesheim: Gerstenberg, 1981), 22. 

11 See Poggendorff, "Vorwort," Ann. Phy. 1 (1824): vii. 

12 See See Gower, "Speculation in Physics," and Gregory, "Influence," for general discus
sions of the influence of N aturphilosophie on physics. H. A. M. Snelders, "Romanticism 
and Naturphilosophie and the inorganic natural Sciences, 1797-1840: An Introductory 
Survey," Stud. Romant. 9 (1970): 193-215, argues that Naturphilosophie "deeply" influ
enced scientific life in Germany. See also Snelders, "Point Atomism in nineteenth-century 
Germany," Janus, 58 (1971): 194-200. See also Walter D. Wetzels, "Johann Wilhelm 
Ritter: Romantic Physics in Germany," in Romanticism, Cunningham and Jardine, eds. 
199-212. 

13 Gower, "Speculation in Physics," puts Oersted in Schelling's camp. Kaiser, Electro
dynamik, does not. H. A. M. Snelders, "Oersted's Discovery of Electromagnetism," in 
Romanticism, Cunningham and Jardine, eds., 228-240 argues that in his research Oersted 
believed in the unity of nature, yet also accepted Kant's critical theory. See also Oersted, 
Correspondance, for his discussions of philosophical issues. 
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Goethe also opposed both Naturphilosophie and Newtonianism. Yet his work 
followed patterns of problems and of solutions that fit into the Naturphilosophie 
approach to the study of nature. 14 

In these specific examples and those of many others, the philosophical issues 
central to physical theories and general speculations about the operations of na
ture were shared with other experimental philosophers of differing philosophical 
persuasions. This shared, general understanding of the important problems to be 
solved, and the terms in which the solutions to those problems should be couched, 
continued throughout the nineteenth century in German physics. Explanations of 
the operation of nature in terms of bipolar forces continued through several decades 
and generations of physicists. Specific adherence to Naturphilosophie might later 
be denied, but investigation of change and the explanation of change in terms of 
forces remained. Also shared was the belief that the investigation of the appear
ances of nature, the phenomena, would uncover the real structures and processes 
of nature. Experimental philosophy was not merely descriptive but penetrated the 
actual workings of nature. 

Whatever divisions there were within the German physics community, physics 
as a discipline was still defined broadly, in the eighteenth-century sense of the 
term. It covered all the experimental sciences and included the important areas of 
mineralogy, meteorology, and climatology. This range of concerns was reflected 
in the pages of the first journal addressed to German experimental philosophers, 
Journal der Physik. In 1790 the manifesto of its editor, F. A. C. Gren proclaimed 
that the journal was addressed to a narrow audience, not those who "merely lecture 
as a pastime," or, "write diverting essays." However, this was not a research 
journal. It was one of news in experimental philosophy. He reprinted material 
from foreign and domestic journals and used its pages to argue for phlogiston 
and other issues in chemistry. IS The next editor, L. W. Gilbert inherited Gren's 
chair in chemistry and physics, and his journal. Gilbert's own research was in the 
domain of what he called "physical chemistry" or "chemical physics." While he 
sketched Lavoisier's chemical ideas, he also used explanatory components taken 

14 For Goethe's work on light and opposition to Naturphilosophie see Keld Nielsen, "An
other Kind of Light: The Work ofT. J. Seebeck and his Collaboration with Goethe," Hist. 
Stud. Phys. Sci. 20 (1989): 107-178,21 (1991): 317-397. See also H. D. Irmscher, 
"Goethe und Herder im Wechselspiel von Attraction und Repulsion," Goethe Jahrbuch, 
106 (1989): 22-52. 

15 Gren, "Vorrede," J. der Phys. 1 (1790): 137. See also Dieter B. Hermann, Die Entste
hung der Astronomischen Fachschriften in Deutschland, 1798-1821 (Berlin: Archen
hold-Sternwarte, 1972), 137. Thomas H. Broman, "J. C. Reil and the "Journalization" 
of Physiology," in The Literary Structure of Scientific Argument, Dear, ed. 13-42, estab
lishes the same pattern of publication, news and reprinted materials, in the early years of 
the Archiv for die Physiologie, although in other ways it represented a break with earlier 
medical journals. 
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from atomism, together with the language and imagery of dynamics and forces. He 
was also highly critical of the theories of both Schelling and Hegel as speculative. 
He continued Gren's policy of reprinting articles. However, the articles were 
explicitly limited to articles from journals of physics, not mathematics. It was 
through this journal that a great deal of the new, French, quantitative experimental 
physics became known in Germany. 16 

Some historians have taken the reprinting of articles from foreign journals as 
evidence of the low quality of the sciences in the German states in this era. How
ever, Gren and Gilbert's journal was not backed by state funds, as were those of 
academies of science. We must see the journal as performing a different function 
for a different audience than that of the research journal for a profession. The con
tent of this journal followed the same pattern as other eighteenth-century journals 
for a general, elite audience. In this case, the audience sought was not quite so 
broad and the content of the publication narrower than usual, yet the eighteenth
century form continued. Gilbert and Gren's venture was private. To be successful 
they had to appeal to a broad audience, but did not have enough active contributors 
for this new medium of publication-the journalP In the early 1800s the presen
tation of ideas in texts that served student needs was more rewarding, financially 
and professionally for the German professoriate. 

Johann Karl Fischer's history of physics also reflected the broad and inclusive 
meaning of the term in the Journal. Fischer distinguished physics, broadly and 
narrowly, and decried the current fashion of trying "to derive natural phenomena 
and their laws as mere conclusions a priori." For Fischer, physics was a discipline 
grounded in experiment and the goals of its practitioners were to understand the 
processes of nature. His account of physics ranged over experiments and obser
vations in physics and chemistry, observational astronomy etc. This wide range 
and experimental bias is also present in J. D. Reuss' organization of physics in his 
Repertorium. 18 

Physics as reflected in these pages, Gren's, and then Gilbert's journal, and else
where was an empirical science, not necessarily quantitative, but done with care 
and precision. Theory was presented in non-mathematical terms understood by a 
broad general educated audience and theorizing meant launching oneself into meta
physics. Vague ideas and experiments whose goals were obscure were present in 
the literature. Yet carefully delineated, qualitative experiments and descriptions 

16 Hans Schimank, "Ludwig Wilhelm Gilbert und die Anfange der 'Annalen der Physik'," 
Sudhoff's Archive, 47 (1963): 360-372. 

17 Journals in natural philosophy published in Britain and France in the same era as com
mercial ventures shared the same mix of reportage, replication and articles. 

18 Johann Karl Fischer, Geschichte der Physik, and J. D. Reuss, Repertorium Commen
tationum et Societatibus Litterariis Editarum (New York: Burt Franklin reprint of the 
G6ttingen edition of 1805) 6 vols., vol. 4 Physics. 
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with clear explanations of the meanings of the results also existed in the same 
journals. As in the work of Oersted and Ohm, and the later work of Michael 
Faraday, the absence of quantification did not necessarily preclude clarity either of 
experimental purpose and accomplishment, or of physical interpretation. Clarity 
was more than quantity. And numbers can only convey meaning if they measure 
something that is predetermined on other grounds as meaningful. 

In such a discipline, seen as related to chemistry with interpretations of ph en om
ena tied closely to metaphysics and philosophy, mathematics held only a marginal 
place. At its most useful it served the purpose, for experimentalists doing quanti
tative experiments, of reducing their data and expressing those results in algebraic 
form, if they took the analysis of their work that far. Most experimentalists were 
suspicious of the use of mathematics within physics. For some it was impossible to 
believe that any knowledge of nature could be gained through mathematics. This 
was the opinion of Seebeck and a loudly voiced, majority opinion. Analysis (the 
calculus), it was argued, was devoid of the imagery necessary to develop ideas 
about the real structure of the external world and its processes. In the case of 
electromagnetism, 

The mathematician conceives the phenomena of electromagnetism, in the 
first instance only as diverse modifications of motions; if he succeeds in 
setting up a fundamental equation into which all the factors that influence 
the kind and magnitude of the motion enter as elements, whose particular 
values, exactly determinable by the formula itself, exactly specify the 
motion itself, then he has incontestably satisfied the demands placed on 
the so-called mathematical physics. 19 

In mathematical versions of electromagnetism, attractive and repulsive forces 
appear merely as positive or negative quantities. A mathematical investigation 
could proceed no further. The source of such effects was of no concern to mathe
matics, as the latter gives only a quantitative account of the phenomena. A physical 
explanation, however, demanded such an exploration into the sources of the posi
tives and negatives. Only physical theories were "capable of capturing the essence 
of the phenomena." This criticism was mild compared with those launched by ad
herents to a metaphysics in which mathematics was taken to be a purely deductive 
form, a product of the mind, that in principle could not relate to phenomena of the 
real world.2o 

Not all experimentalists with such philosophical commitments were necessar
ily hostile to mathematics. In Oersted's opinion, mathematical abstractions were 

19 Quoted from C. H. Pfaff, a chemist, in Kenneth Caneva, "From Galvanism to Electro
dynamics. The Transformation of German Physics and its Social Context," Hist. Stud. 
Phys. Sci. 9 (1978): 63-159,86. 

20 See Caneva, "Galvanism to Electrodynamics," for some of these reactions to French 
mathematical physics. 
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different from physical quantities and hence distinct from them. The disciplines 
that formed around these different entities were complementary. On philosophic 
grounds, Jakob Friederich Fries rejected Goethe's color theory because there was 
no mathematical development to complete it. Fries represented an important, mi
nority, opinion.21 Pfaff also placed himself in this minority camp when he added 
that, at the same time, physical explanations must also be mathematical. While 
he did not explain exactly what he meant, there were experimentalists prepared 
to concede that both a physical explanation of phenomena and a mathematical 
description of those phenomena might be equally valid. Yet these two kinds of 
examinations of nature remained in separate disciplines. Johann Tobias Mayer 
went so far as to acknowledge that when branches of physics became subject to 
mathematical treatment, they were handed over to mathematicians to become part 
of mathematics. Mathematical physics of the French variety was the domain not 
of physicists but of mathematicians. He regarded the work of Euler and Lagrange 
on sound and Fourier on heat as mathematics, not physics.22 Opinion on the rela
tionship of the experimental investigation of nature and mathematics ranged over 
the map, and was expressed only in general terms. 

While the relationship between the empirical results of experiment and the anal
ysis of those results by mathematicians had to be addressed in the philosophically 
charged atmosphere of early nineteenth-century German science, no experimen
talist did it very systematically. With the triumphs of French mathematical and 
experimental physics, a more systematic handling of this issue was in order. In ad
dition to Fries, Ernest Gottfried Fischer tried to develop a generalized, systematic 
study of this relationship. For Ernest Fischer, knowledge of nature came from both 
investigations into the nature of forces and their effects on bodies. Working from 
Kant's ideas of the necessity of deductive thought in the construction of knowledge, 
he argued that a philosophy of nature was only possible when expressed in the most 
general fashion, and that was impossible without mathematics. Physics provided 
the observations, the foundation upon which mathematicians could build. Fischer 
used Kant's idea that most general knowledge of bodies lay in their motions, and 
that necessarily introduced mathematics. Yet mathematics only entered into the 
picture to attain a complete synthesis once all knowledge of the phenomena was 

21 Heidelberger, "Some Patterns of Change," in Epistemological and Social Problems, 
Jahnke and Otte eds., 3-18, argues that in this era no mathematics was possible in 
physics. For Seebeck and Fries see, Nielsen, "Other Kind of Light. Part I," 162-163 and 
"Part II," 341-343. For Fries on mathematics see, F. Gregory, "Neo-Kantian Founda
tions for Geometry in the German Romantic Period," Rist. Math. 10 (1983): 184-201, 
and, "Die Kritik von J. F. Fries an Schelling's Naturphilosophie," Sudhoff's Archive, 67 
(1983): 145-157. See also Fries, Abteilung 3. Schriften zur angewandte Philosophie 
II Naturphilosophie und Naturwissenschaft (Darmstadt: Scientia Verlag Aalen, 1979 
reprint) 5 vols., Gert Konig and Lutz Geldsetzer introd., vol. 1. 

22 See also Jungnickel and McCormmach, Intellectual Mastery of Nature, voU, 44-45. 



148 Physics and Mathematics 

completed.23 Mathematics explored the quantitative, physics the qualitative aspects 
of nature.24 Fischer did not change the mathematics-physics boundary. What was 
new in his discussion of experiments was the emphasis on exactness of measure
ment, corrections for possible errors, and the theory of instruments. Mathematics 
was a adjunct to experiment. As disciplines, mathematics and physics remained 
distinct. In general, the difference between analysis and experimental physics 
was that the latter led to an understanding of nature which was not possible with 
mathematics because it was purely deductive. 

By the 1820s some of the experimental physicists trying to argue for a place for 
mathematics in the study of nature were already emulating the French.25 In the same 
decade there were also German mathematicians already following the French and 
entering the new mathematics through problems presented to mathematicians from 
the results of quantitative, experimental physics. In the early nineteenth-century 
German universities taught enough mathematics for the needs of the landed, the 
higher echelons of the civil service, technical state functionaries and the medical 
profession. By the 1820s mathematics as a university study was being promoted 
through the new Wissenschaftideologie and reflected a rapidly changing institution 
for, and philosophy of, education. 

University Reform and Career Opportunities 

In the third decade of the nineteenth century, the practices of physicists and 
mathematicians changed again, driven by institutional opportunities and cogni
tive realignments. The cumulative impacts of the first generation of appointments 
made to reform the Prussian universities become manifest in the 1820s. This re
forming impulse brought with it a new philosophical foundation for the study of 
mathematics. This new philosophy would indirectly affect the practice of physics 
and mathematics in later decades. At the same time experimentalists and math
ematicians faced the issue of the relationship between mathematics and physics 
more systematically. In addition to this philosophical topic was the more prag
matic one of developing research problems and solutions that brought recognition. 
The obvious model was that of French mathematics and quantitative, experimental 
physics. Firstly, mathematicians needed to argue that mathematics was a study 
that on philosophical grounds belonged legitimately within the university. 

The philosophical debates to justify the study of mathematics within the newly 
constituted universities and attempts to domesticate French methods did not lead 

23 Ernst G. Fischer, Lehrbuch der mechanischen Naturlehre 2 vols., (Berlin: G. C. Nauck, 
1826-27), vol. 1 part 2, 3. 

24 For other examples see Fritz Krafft, "Der Weg von den Physiken zur Physik an den 
deutschen Universitaten," Ber. Wissen. 1 (1978): 123-167. 

25 In terms of doing accurate, quantitative Experiments, there was one huge obstacle, money. 
See Jungnickel and McCormmach, Intellectual Mastery, vol. 1, chap. 3. 
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to any single set of practices in mathematics or physics. Discussions continued 
between individuals concerned with fundamental philosophical issues surround
ing the source of their knowledge. These seemed as urgent as the debates over 
the results that French methods might generate. The decade of the 1820s as never 
before was one in which opportunities opened up for the practice of research in 
the university context as never before. But this was not without some cost. In 
emulating French research, practitioners gradually excluded the general, educated 
elite from entering into the research process. In experimental physics, the special
ized equipment, training in its use, and techniques necessary for its manipulation, 
began to separate the general public from the experimentalists. Howls of protest 
and moans of regret about the direction of such "modern" research were part of the 
chatter of the 1820s. The work of the laboratory became remote from the world of 
the educated elite. Experimentalists and the educated public soon could only meet 
in the context of the debate over philosophical issues generated by the results of 
work within the laboratory. 

The intellectual arguments outlined in the previous section took place against 
the political and military turmoil of the last years of Napoleon's domination of 
continental Europe. Until that matter was Settled, the reforms already begun of the 
Prussian university system could not be followed through and take hold. Nor could 
the philosophy guiding those reforms inform debates over scholarship, especially 
in the sciences. However, the reforms in practice of both experimentalists and 
mathematicians were developed through the solutions to specific problems, not 
through the contemplation of the principles of problem solving or experimental 
practice. We must therefore address the function of both the social reform of 
the German university and the rhetoric of Wissenschaftideologie in guiding the 
disciplinary changes in mathematics and physics. 

Historians have long argued over the impetus behind the reform of the German 
university system and the impact, or lack of it, of the rhetoric of the educational 
philosophy in which those reforms were expressed. Even if we accept that rhetoric 
at face value, it is not at all clear that university reform was a simple translation 
of this new ideology-of the university as moral training through research as pure 
knowledge-into institutional form. 26 

Actual reforms were carried out within the context of political practicability and 
fiscal possibility. The most philosophically minded minister in charge of education, 

26 This is of course the traditional historiography of the German university reform. F. 
Paulsen, The German Universities and University Study, Frank Thilly, trans. (New York: 
Charles Scribner, 1906) is the most obvious example of this genre. For a recent example 
see Elinor S. Shaffer, "Romantic Philosophy and the Organization of Disciplines: the 
Founding of the University of Berlin," in Romanticism, Cunningham and Jardine, eds. 
37-54. One can add to this numerous histories of specific universities across Germany 
published in the late nineteenth and early twentieth centuries. 
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Wilhelm von Humboldt, lasted less than one year in his civil-service post.27 His 
successors, who actually forged the institutional reforms within the universities 
were compromisers, bureaucratic realists, and ambitious for careers within the 
Prussian civil service. Their ambitions were also hedged by the limitations of their 
budgets and of available personne1.28 

The rhetoric surrounding the philological seminar spread, along with the method 
of the seminar, as the teaching mode in other university disciplines. However, these 
did not help to define research problems and methods specific to those other disci
plines such as mathematics and physics. Acceptance of the rhetoric of description 
from philology and the use of research as the teaching model meant that mathemat
ics could shed the stigma of "bread study." The choice of problems discussed in 
seminars and the standards of solution passed to students came from other sources. 
However, it followed that only those with specialized training could claim a place 
in that discipline and that training was only available at the university, inculcated 
in the context of the new teaching mode of the seminar. When this model became 
the norm in both mathematics and physics, access to even experimental physics 
was narrowed and proscribed for many.29 

However, no one has denied the opportunities for the pursuit of careers in the 
sciences that opened up in these revitalized state institutions of higher education. 
Yet we cannot see the career opportunities as determining, in and of themselves, 
either the success, or the directions of development, of research in either the disci
plines of mathematics or of physics. Social change did not necessarily determine 
cognitive realignments. 30 

Interpretations of cognitive changes in the sciences, specifically physics that 
are solely based on sociological criteria, cannot explain why the disciplines in 
the natural sciences were cognitively transformed in the nineteenth century.31 The 
problems shared by Marxist scholars, ethnomethodologists, sociologists of knowl
edge, and cultural contextualists is that no explicit, general connections can be 
made between social structure, ideology, or cultural context and the details of the 

27 Paul R. Sweet, Wilhelm von Humboldt: A Biography 2 vols., (Columbus OH.: Ohio State 
University Press, 1980), gives ample evidence that Humboldt was only happy as a private 
citizen. He shed public offices as soon as possible. 

28 For details of these and other limitations, see McClelland, State, Society and University 
in Germany, 122-132. 

29 An example of this was Seebeck's attempts to obtain a university post and the reasons 
for his difficulties in doing so. See Nielson, "A Different Kind of Light, Part II." Ohm 
suffered similar difficulties. 

30 We shall examine France in the nineteenth century in chapter IX. See also Laudan, "Ideas 
and Organization," for a case of active organization without intellectual redirection. 

31 For a discussion of the problems of social constructivism, see Stephen Cole, Making 
Science: Between Nature and Society (Cambridge MA.: Harvard University Press, 1992). 
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results of physical arguments.32 The theory that the university formed the vanguard 
of bourgeois hegemony with the privat docent as its proletariat must explain why 
the particular form of the intellectual changes that occurred in the sciences can 
be linked to the bourgeoisie and no other class.33 It has been argued that the uni
versities gave unprecedented career opportunities for the sons of the bourgeoisie. 
Ideology and social change did the work of economic interest.34 Yet it is not ap
parent that through much of the nineteenth century, the German bourgeoisie held 
the universities in high regard. Many of the men discussed in this and subse
quent chapters were the sons of gymnasia teachers, the clergy, civil servants, or 
minor aristocracy. In another highly regarded sociological approach, Stichweh's 
exploration of the development of the modern scientific disciplines is descriptive 
rather than interpretive. None of the details of the actual contents of the research 
problems that implicitly define his notion of physics enter into his analysis.35 

Recent sociological examinations of the nineteenth-century German university 
systems emphasize the role of the state in extending its power over the previously 
autonomous corporations ofthe universities.36 The problem with this interpretation 
is that it is not at all clear why the Prussian state would support reform within the 
universities when its goal was control. Yet the state was largely successful in this 
enterprise. Or was it? The expansion of the role of the state in the reform suggests 
that the state bureaucracy reclaimed its elite position in Prussian society by captur
ing the universities through the creation and wielding of Wissenschaftideologie. 37 

32 Elizabeth Garber and Fred Weinstein, "History of Science as Social History," in Advances 
in Psychoanalytic Sociology, Rabow and Platt, eds. (Malabar FL.: Krieger Pub., 1987), 
279-298. 

33 Alexander Busch, Geschichte des Privatdocenten (G6ttingen: Abhandlungen zur Sozi
ologie, 5 (1959» for this Marxist interpretation. This and other interpretations of the 
development of the universities in the German states are outlined in McClelland, State, 
Society and the University, chap. 1. 

34 One has to question just how many young men from the bourgeoisie, or any other class, 
could be absorbed by the university system. The rigors of the course of study, then 
the shear physical stamina to attain the status of Ordinarius even in the middle of the 
nineteenth century must have defeated most aspirants. There are indications that the 
education ministry of the Prussian state discouraged university attendance when careers 
that required a university education were, in their opinion, overcrowded. McClelland, 
State, Society, University, chap. 3. 

35 Rudolph Stichweh, Zur Entstehung des modernen Systems wissenschaftlicher Diszi
plinen: Physik in Deutschland, 1740-1890 (Frankfurt am Main: Suhrkamp, 1984.) 

36 R. Steven Turner, The Prussian University and the Research Imperative, 1806-1848, 
unpublished PhD dissertation, 1973. 

37 By Wissenschaftideologie is meant here "the active pursuit of integrated, meaningful and 
pure knowledge" as "the highest calling of man," McClelland, State, Society, University, 
p. 24. The social conservatism of Wissenschaftideologie is discussed in Turner, "The 
Prussian Professorate and the Research Imperative, 1790-1840," in Epistemological and 
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In such an interpretation political compromise was necessary. The monopoly of 
entry to the university through the Gymnasia, and Wissenschaftideologie reinforced 
the old social barriers between the cultivated classes and the laboring majority of 
the population.38 

None of these interpretations explore how institutional reforms led to the specific 
disciplinary changes that can be mapped through the first half of the nineteenth 
century. 

There is some indication that the rhetoric of this ideology emerged from the 
state of affairs already existing at Gottingen and Halle and other universities. The 
rhetoric was partially descriptive as well as prescriptive.39 Rather than look to 
the explicit statement of this ideology in the early nineteenth century, the origins 
of the redefinitions of mathematics and physics must be found in the changes in 
philology begun decades before in Gottingen and Halle and given a philosophical 
gloss later.4o 

Jacobi's mathematics seminar at Konigsberg was modeled on August Boeckh's 
philological seminar in Berlin. This explains the emphasis on teaching through 
research. However, this does not give us any criteria to understand why certain re
search problems were picked out, and used as model problems for students to solve. 
The model of philology also does not indicate how German mathematicians under
stood when those problems were solved. Finally, the philology seminar model does 
not demonstrate how that modelled to a new definition of the discipline and pro
fession of mathematicsY The question remains as to how Wissenschaftideologie 

Social Problems, Jahnke and Otte, eds. 109-122, although he does not link it with the 
aristocracy. 

38 McClelland State, Society, University. Kees Gispen supports this view in his explanation 
of the place of engineers in German society in the nineteenth century. Kees Gispen, New 
Profession, Old Order: Engineers in German Society, 1815-1914 (Cambridge: Cam
bridge University Press, 1989) chap. 1. One can challenge his ideas on the commitments 
of all academics later in the century to the notions of social hierarchy he claims they 
accepted. Hermann von Helmholtz's son Richard became an engineer, a career he fol
lowed with the encouragement of his father. Helmholtz also understood the economic 
need for research institutions for industry, part of the justification for the establishment 
of the Physikalisch-Technische-Reichanstalt. See David Cahan, An Institute for an Em
pire: The Physikalisch-Technische-Reichanstalt, 1871-1918 (Cambridge: Cambridge 
University Press, 1989). 

39 McClellandState, Society, University, p. 112, who finds Wilhelm von Humboldt's rhetoric 
a nostalgic recollection of his years of freedom as a student at Halle then Gottingen. See 
also Robert S. Leventhal, "The Emergence of Philological Discourse in the German 
States, 1790-1810," Isis, 77 (1986): 243-260. 

40 See William Clarke, "On the Dialectical Origins of the Research Seminar," Hist. Sci. 27 
(1989): 111-139, offers a more complex description of the origins of the nineteenth
century seminar over a long time period. 

41 See R. Steven Turner, "The Growth of Professorial Research in Prussia, 1818 to 1848-
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changed actual disciplines.42 

The problem with all these interpretations is that none of them integrate the ac
tual paths of intellectual change that occurred across the scholarly spectrum within 
the German higher educational systems, either in ideas, methods or language. It is 
not at all clear that acceptance of Wissenschaftideologie necessarily carried with it 
the demand to redefine the foundations of a discipline, its methods, problems or the 
criteria defining solutions to those problems. Research as a moral calling did not 
define what was researched, how that research was done, nor did it define when a 
solution to a problem was reached. These decisions were made by mathematicians 
and experimentalists choosing to follow the model of the French. One can argue 
that the "research imperative" with its disdain for "bread-study" turned the attention 
of mathematicians from the solutions of problems to the more esoteric issues of the 
nature of number, space, and function. But these developments in mathematics did 
not come to fruition until long after Wissenschaftideologie had lost its rhetorical 
force. In the first decades of change in the German States, mathematicians solved 
problems, many of them from physics, and through them uncovered new avenues 
of research in mathematics. This approach, inherited directly from French math
ematicians, was followed by Jacobi, Lejeune Dirichlet, and Bernard Riemann, all 
individuals important for the initial successes of mid-nineteenth-century German 
mathematics. The emphasis of some German mathematicians on the foundations 
of the calculus was available in the work of Lagrange, Cauchy, Fourier and others. 
Foundational issues were also part of the inheritance from France.43 

The historiography of mathematics is dogged by the rhetoric of Wissenschaftide
ologie. The first histories of nineteenth-century mathematics were those of math
ematicians and are purely intellectual narratives.44 Written by mathematicians 
brought up within the rhetoric of German mathematics, the image of the disci-

Causes and Context," Hist. Stud. Phy. Sci. 3 (1971): 137-182,148-149. 

42 Functional theories of the scientist do not bring us any closer to a solution of this dilemma. 
See, Joseph Ben-David, The Scientist's Role in Society: A Comparative Study (Engle
wood Cliffs NJ: Prentice-Hall, 1971). The concept of role simply leads to a narrative of 
events, not an interpretation of those events. 

43 The pursuit of foundational issues by German mathematicians was not unique as we 
shall see when we discuss Britain. What foundational issues were found to be important 
within these two sets of practitioners was different. 

44 See Die Mathematischen Wissenschaften, Felix Klein ed. (Leipzig: Teubner, 1914). 
Volumes included in the series covered the teaching of mathematics in Germany, its 
philosophy and the nature of mathematics as a science. The history volumes, Vorlesungen 
iiber Geschichte der Mathematik, M. Cantor,ed. (Leipzig: Barth, 1894-1907)4vols., was 
a collection of essays by mathematicians on various aspects of the history of mathematics. 
This older historiography of mathematics is discussed in Dirk Struik, "The Historiography 
of Mathematics from Proc1us to Cantor," NTM 17 (1980): 1-22. 
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pline was the model of "Wissenschaft" pure, intellectual, universa1.45 Yet Felix 
Klein had another program for mathematics which he propagated and expanded 
upon through the authors of the series he edited. Mathematics was indispensable 
for and actually subsumed the other sciences, most notably physics.46 There was 
a power struggle within the mathematics profession in the late nineteenth century 
that had its roots and manifestations in the ways in which both the philosophy 
and the history of mathematics were portrayed, as well as in the problems and 
methods of mathematics itself. Recent historiography of mathematics developed 
by professional historians includes the intellectual history of the discipline with a 
consciousness of its social and cultural context.47 

Yet the changes that redefined what problems mathematicians worked on as re
search, and the training offered by the research seminar, could only effect changes 
in the profession if the trainees from the seminars could be placed. This in turn 
depended on gaining enough social support to continue training the next genera
tion. This was not assured, and it took time. The new mathematics spread slowly. 
Indeed the two processes, social and intellectual occurred simultaneously. During 
the 1820s mathematicians elaborated a philosophy of mathematics that claimed 
purity from their redefinition of mathematics.48 In their research German mathe
maticians annexed the problems and methods of the French before creating their 
unique research traditions in mathematics based on their understanding of "pure" 
in mathematical terms. 

Experimental physicists were less burdened than mathematicians with the need 
to justify their work as "pure." However, it took longer for physicists to change 
their discipline structurally. They too took their models from France and through 
learning, then practicing these methods refashioned their discipline. In the devel
opment of both disciplines we see the same patterns of emulation, then reworking 
of French methods and problems into new channels. 

45 On this see H. N. Jahnke, Mathematik und Bildung in der Humboldtschen Reform 
(Gottingen: Vandenhoek und Ruprecht, 1990.) 

46 On this see, Lewis Pyenson, Neohumanism and the Persistence of Pure Mathematics in 
Wilhelmian Germany (Philadelphia: American Philosophical Society, 1983) and David 
E. Rowe, "Klein, Hilbert and the Gottingen Mathematical Tradition," Osiris 5 (1989): 
186-213. 

47 On the problems and excitement of this approach, see Herbert Mehrtens, "The Social His
tory of Mathematics," in Social History of Nineteenth-Century Mathematics, Mehrtens, 
Bos, and Schneider, eds. 257-280. This collection also includes a bibliography on the 
subject. On the early nineteenth century, see Mehrtens, "German Scientific Renaissance 
in Mathematics," in Social and Epistemological Problems, Jahnke and OUe, eds. 

48 Gert Schubring has argued that mathematicians used Wissenschaftideologie to create 
the modern German mathematical profession. See Gert Schubring, "The Conception of 
Pure Mathematics as an Instrument in the Professionalization of Mathematics," in Social 
History, Mehrtens Bos and Schneider, eds. 111-134. 
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Changes in Physics in the 1820s 

During the decade of the 1820s physicists, especially those of the first generation 
trained in the reformed Prussian universities, turned away from Naturphilosophie 
and towards the French for models of investigating nature. This did not change 

the sense that physics was an empirical study, or, removed the problem that Ger
man physicists saw in the relationship between such empirical knowledge and the 
deductive knowledge of mathematics.49 

Perhaps the first German experimental physicist whose research revealed the 
direct influence of the French was Georg Ohm. However, the subject of his research, 
galvanic electricity, was not one in which the French had shown any interest. 
Using galvanic electricity, the French explored the relationship between electric 
currents, and between electricity and magnetism. Ohm examined the properties of 
current electricity itself. He was also explicitly influenced by Fourier and based 
his own research patterns on Fourier's work.50 His 1827 mathematical paper on 
galvanism was preceded by a series of experimental papers on many aspects of the 
behavior of the galvanic circuit and its components. Through these experiments 
Ohm developed laws of conduction that took into account all of the components of 
the circuit, and included measurements on the conductivity of the different metals 
in the circuit. In this context Ohm developed the notion of "equivalent length" as 
a measure of the resistance of a component under study compared to a standard 
wire.51 None of these experimental papers included any mathematics other than 

49 This interpretation clearly diverges from that of Jungnickel and McCormmach Intellectual 
Mastery, vol. 1, who accept as physics much of what was mathematics in the early 
nineteenth century. While they recognize the importance of French mathematical physics, 
they do not explore what that discipline was, or, how the Germans understood that 
discipline. They also do not define what they mean by the discipline whose history they 
are narrating, that is, theoretical physics. On this last point, see also Cahan, "Pride and 
Prejudice in the History of Physics: The German Speaking World, 1740-1945," Hist. 
Stud. Phys. Sci. 19 (1988): 173-191, and Pearce Williams, "Review of Intellectual 
Mastery of Nature," Hist. Math. 15 (1988): 389-392. 

50 There are numerous references to Fourier in Ohm's mathematical paper on galvanic 
electricity. See Kenneth Caneva, "Ohm, Georg Simon," Diet. Sci. Bio. vol. 10, 186-194, 
188. 

51 See John L. McKnight, "Laboratory Notebooks of G. S. Ohm: A Case Study in Experi
mental Method," Amer. 1. Phys. 35 (1967): 110-114,111-112. The first paper in which 
this comparative measure of resistance appears is Ohm, "Vorlaufige Anzeige des Geset
zes, nach welchem Metalle die Contact-Electricitat leiten," 1. fUr Chem. Phy. 44 (1825): 
110-118, reprinted in Ann. Phy. 4 (1825): 79-88, and Ohm, GesammelteAbhandlungen, 
E. Lommel ed., (Leipzig: Barth, 1892), 1-8. Ohm described experiments comparing the 
conductivity of several metals and ordering them with respect to their conductivity in 
Ohm, "Uber Leitungsfiihigkeit der Metalle fUr Elektricitat," 1. Chem. Phy. 44 (1825): 
245-247, reprinted Ohm,Abh., 9-10. He argued with the work of Becquerel and Barlow 
on conductivity in Ohm, "Uber Electricitatsleiter," same journal and volume, 370-373, 
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the statement of the algebraic laws deduced from his data relating "loss of force" 
to various "equivalent lengths of the conductors" in his circuit and one simple 
differentiation and integration to reach a more general form of his empiricallaw.52 

The development of the mathematical implications of his law were published 
separately. In the first half of this paper, Ohm used a geometrical analogy to 
illustrate the meaning of "electroscopic force" and "tension" for the overall circuit 
excluding the electrochemical cell, and reconstructed his experimental law through 
this analogy.53 Physically Ohm was trying to develop a language for the potential 
in the galvanic case, much as Priestley and Cavendish had in the electrostatic one. 54 
Because Ohm used accepted explanatory terms, most importantly force, and did 
not clearly differentiate between force and potential he complicated his physical 
explanations. 

Ohm then investigated the circuit by considering the "flow" of electricity at 
individual points of the circuit, excluding the electrochemical cell. His language 
in this section directly reflected Fourier's in his theory of heat, for example his 
observations on the "diffusion" of electricity. Taking the annulus as an appropriate 
analogy for a circuit, Ohm constructed a partial differential equation for the diffu
sion of electricity in a closed annulus, which is precisely the form given by Fourier 
for the diffusion of heat in the same geometrically shaped thermal conductor.55 

du d 2u bc 
y-=k---u. 

dt dx 2 w --------------
reprinted Ohm, Abh. 11-13. 

52 The mathematical manipulation appeared in Ohm, "Voriaufige." The linear form of 
his law appeared in Ohm, "Bestimmung des Gesetzes, nach we1chem Metalle die Con
tacte1ektricitat lei ten, nebst einem Entwurfe zu einer Theorie des Voltaischen Apparate 
und des Schweiggerischen Mutliplicators," J. Chem. Phy. 46 (1826): 137-166, reprinted 
Ohm,Abh., 14-36,25. 

53 Ohm, Die galvanische Kette, mathematisch bearbeitet (Berlin, 1827), reprinted, Ohm, 
Abh., 61-186, translated as Ohm, "The Galvanic Circuit, Investigated Mathematically," 
in Scientific Memoirs, selected from the Transactions of Foreign Academies and Learned 
Societies and from Foreign Journals, Richard Taylor, ed. vol. 2 (New York: Johnson 
Reprint of 1841 edition, 1966),401-506, that closely follows the German edition. The 
geometrical analogy appears on pps., 405-416. 

54 It is best to keep in mind that in the 1820s, while one can connect electrostatic and galvanic 
phenomena, they were kept separate, even seen as two kinds of electricity. See Thomas 
Archibald, "Tension and Potential, Ohm to Kirchhoff," Centaurus, 31 (1988): 141-163 
on the development of the concept. Gustav Robert Kirchhoff, "Uber eine Ableitung der 
Ohm'sche Gesetze, we1che sich an die Theorie der Elektrostatik anschliesst," Ann. Phy. 
76 (1849): 50&-513, translated as, Kirchhoff, "Ohm's law and Electrostatics,"Phil. Mag. 
37 (1850): 463-468, drew Ohm's work and electrostatics together. 

55 Ohm, "Galvanic Circuit," Scientific Memoirs, 451. This equation appeared in Fourier 
Analytical Theory of Heat, 88. The differentials are partial differentials. See also Bernard 
L. Pourprix, "La mathematisation des phenomenes galvaniques par G. S. Ohm (1815-
1817)," Rev. Hist. Sci. 42 (1989): 139-154, on the mathematical aspects of Ohm's work. 
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In setting up his equation Ohm applied Fourier's arguments in the thermal cases 
directly to the galvanic circuit.56 Leading up to the above derivation was a long dis
cussion on whether such inhomogeneous partial differential equations were proper 
in mathematics. Ohm traced this mathematical quarrel back to Fourier and Poisson 
on the one hand and Laplace on the other. He argued against Laplace because, in 
transforming physical phenomena into differential form, Ohm assumed that the ef
fects of forces between infinitely small bodies could only extend a certain distance. 
Laplace did not limit his microscopic forces to microscopic distances. However, 
Ohm's actual mathematics depended neither on microscopic forces between par
ticles, nor on the assumption that matter is made up of particles. The derivation 
was appropriated from Fourier.57 

There was no explanation in Ohm's construction of his partial differential equa
tion of physical processes. Nor did Ohm attach any physical significance to the 
constants in the functions of integration. The special case Ohm explored, where 
b = 0, was the steady state case, although this was not stated as such by Ohm.58 

The final expression that Ohm obtained for u, the "electroscopic force" was, 

a ;~{ 1 . in(£+x) _k'7T2;2tll2} 
u = -x + a ~ -Sill e 

2£ ;=1 in £ 

To reach this solution Ohm used the functional methods of Laplace and Poisson 
as much as the mathematically more radical ones of Fourier. There were actually 
two exponential terms, the functional equivalent of the Fourier series, which were 
reduced to one by taking a mathematical condition so that only the negative ex
ponential was left. Ohm asserted that, as t ~ 00, the expression would become 
linear with only the first term remaining. In this linear, rump equation, x was the 
direction in which the electricity flowed, and a was left undefined physically. 

Ohm was not merely influenced by Fourier but annexed pages of Fourier to 
solve the problem of reducing the galvanic circuit to mathematics. He then solved 
the mathematical equation following the methods of Fourier and other French 
mathematicians. In hewing to the French model, Ohm examined a mathemati
cally special case to replicate the empirical results of his experiments. This would 

56 Heidelberger, "Change in the Baconian Sciences," argues that in accepting Fourier Ohm 
abandoned ontology. This meant that Ohm went against the prevailing notion in physics 
that knowledge of nature could not be gained using mathematics. He was, therefore, 
judged to be doing bad physics. Ohm suffered outraged criticism from Georg Friedrich 
Pohl, a Hegelian, and his experiments were also criticized by Gustav Theodor Fechner. 
However, the evidence is that in the 1820s a commitment to physical explanation did not 
preclude investigating the mathematical implications of empirically deduced relations 
given the opinions current amongst mathematicians and physicists. 

57 This was noted also by Caneva, "Ohm,"190, although his language is more muted than 
my own. 

58 This was also noted by Caneva, "Ohm," 191. 
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validate his mathematics. He did not consider whether the special, mathemati
cal case mirrored the conditions of his experimental one. An omission seen also 
amongst French mathematicians.59 Ohm was working closest to French mathe
matical physics. While he did not create the mathematics, he explored it in some 
depth. And, this was hardly surprising, Ohm was a mathematician and a teacher 
of mathematics at the Koln gymnasium.6o Ohm's subsequent mathematical papers 
on the same subject were further manipulations of the mathematical equations of 
his 1827 paper. They were also published separately from his physical, vernacular 
explanation of the difference between force and tension. 61 

In his practices Ohm was replicating the French. He presented the complete 
solution to a problem, experimental in physics, and the mathematical implications, 
in mathematics. And in the mathematical papers Ohm discussed only mathemat
ically significant cases. In his answers to criticisms of his empirical law, Ohm's 
defense of his work was confined to his experiments and the physical models of 
his rivals.62 This pattern of considering the mathematics of physical phenomena as 
mathematics reappeared in his subsequent work on sound and light. Again Ohm 
took all kinds of mathematically developed special cases and connected them to 
empirically known results without any specific assumptions about light or sound 
other than their wave nature. They were exercises in the mathematics of waves 
moving through homogeneous substances.63 

The later, physical model and physical interpretative weight placed on this 1827 
paper did not appear in the original. To label Ohm as a physicist and his math
ematical work as physics was to miss the point of what he was actually trying 
to accomplish. At the beginning of his 1827 paper, Ohm echoed Fourier in his 
belief that his investigation would "secure incontrovertibly to mathematics the 

59 Yet physical information lies within the mathematics. The rate at which the exponential 
term approaches zero depends on k'7r2i2t / £2 where e is the length of path, k' is the 
conductivity, and i = 1,2, etc. Ohm did not investigate this physically or mathematically. 

60 Jungnickel and McCormmach, Intellectual Mastery vol. 1, see Ohm's purposes as phys
ical because Ohm did not test for the convergence of the series he was using. His model, 
Fourier, did not either. By contemporary standards both were doing mathematics. 

61 Ohm, "Nachtrage zu seiner mathematischen Bearbeitung der galvanischen Kette," Ar
chive for die gesammte Naturlehre 14 (1828): 475-493. The physical explanation ap
peared in Ohm, "Nachweisung eines Uberganges von dem Gesetze der Elektricitatsver
breitung zu dem Spannung," same journal 17 (1829): 1-25. 

62 See Ohm, "Zur Theorie der galvanischen Kette," J. Chem. Phy. 67 (1833): 341-354, 
reprinted in Ohm, Abh., 560-572. 

63 See Ohm, "Uber die Definition des Tons, nebst daran geknupfter Theorie der Sirene und 
ahnlicher tonbildender Vorrichtungen," Ann. Phy. 59 (1843): 513-565, reprinted Ohm, 
Abh., 587-633, and Ohm, "Erklarungen in einaxigen Krystallplatten zwischen geradlinig 
polarischtem Lichte wahrnehmbaren Interferenz-Erscheinungen in mathematischer Form 
mitgetheilt," Abh. der Math.-Phy. Ct. Konig. Bayerische Akad. Sci. 7 (1853): 43-149, 
267-370, reprinted Ohm, Abh., 665-855. 
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possession of a new field of physics, from which it had hitherto remained almost 
totally excluded."64 Ohm's experimental results were physically important but his 
goal was not to produce a physical interpretation of those results in mathematical 
form. 65 

Neither can we straighforwardly interpret Franz Neumann's research as physics. 
In the same decade as Ohm, Neumann emulated the French in producing exper
imental results and separate, mathematical explorations arising from his experi
ments. Neumann's early research followed a pattern he exploited all his life. In 
all his work, experimental and mathematical, he had predecessors on which he 
modeled his own work. The focus of much of his early experimental research was 
the exploration of the physical properties of crystals, initially extending the work of 
Gustav Rose. In the mathematical analysis of the properties of crystals, Neumann 
used Joseph Fourier for heat, Augustin Fresnel, Navier, Cauchy, and Poisson for 
light. In his work in electromagnetism he followed Ampere. 

As in all mathematical physics, Neumann tried to push the mathematical analysis 
beyond the solutions of his predecessors into more general mathematical territory. 
However, much of this mathematical work was limited by physical considerations. 
In his mathematical work on heat conduction in crystals, he went beyond Fourier's 
work on homogeneous solids, where thermal conductivity was a constant, into 
solids in which conductivity became a function of the symmetry of the crystal. 
In his work on light, the elasticity of the ether also became a function of the 
symmetry of the crystal, not a constant of its motion as in homogeneous solids. In 
electromagnetism, Neumann included more geometrical cases than those explored 
already in the experimental results of Heinrich Friederich Emil Lenz and Faraday. 
In this last example Neumann was able to develop a general mathematical approach 
from which all the physical occurrences of electromagnetic induction could, in 
principle, be deduced. In the case of his work on crystals there was no general 
mathematical expression or function from which he could deduce the physical 
cases that led to the experimental results which were the starting point of his 
mathematical work. 

Neumann's position was difficult. He had examples of completed solutions 
to physical problems, both the experimental and the mathematical part, but he 
did not share with his French predecessors the same level of formal training in 
mathematics. He did understand the mathematical game enough to know that in 
mathematical physics points were scored through the display of technical prowess. 
The mathematical problem usually emerged as a partial differential equation to be 

64 Ohm, "The Galvanic Circuit," 404. 

65 Initial reactions to Ohm's law were to his experiments. In 1831 Fechner carried out 
an extensive series of experiments to test Ohm's experimental results that were in turn 
criticized by Ohm. Fechner, Maassbestimmungen iiber die galvanische Kette (Leipzig: 
F. A. Brockhaus, 1831). Fechner was followed over the century by many others. For the 
fate of Ohm's Law see Caneva, "From Galvanism to Electrodynamics." 
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solved either for the first time, or in a more general form than before. Thus if the 
density, in the case of elasticity, had already been considered as a constant, the 
next technical step was to assume the density p = p(x, y, z). After reconstructing 
the equations of motion for such a material, the solution might be pushed further 
by particular cases by assuming a given functional form for p, or, for the general 
case. The only limitation on the mathematical exercise was that the mathematician 
had to begin in known experimental results and replicate other known results. This 
was usually done by imposing restrictions on the mathematical solution obtained, 
without actually noting whether the restrictions were physically plausible. 

To complement his mathematical work, Neumann extended previous experimen
tal work into new domains. He began with heat conduction in crystals. Neumann 
also added the new German passion for precision. He applied the example set 
by Bessel and his analysis of astronomical measurement to all his experiments on 
crystals.66 Neumann's experimental research began as an extension of the quanti
tative methods of French physics into mineralogy. His purely geometrical exam
ination of crystal symmetry became his dissertation in which he developed new 
methods of stereographic projection.67 

His subsequent experimental work on crystals was published separately and kept 
distinct from his mathematical work on crystals. In doing both he was following 
his model in the exploration of heat, Joseph Fourier. Fourier was an early and 
crucial influence upon Neumann and his research methods. Neumann copied 
from Fourier's theory of heat at least enough to remember his results, if not his 
derivations. He also copied Fourier's justification for his theory of heat, 

The differential equations of the propagation of heat express the most 
general condition and reduce the physical questions to problems of pure 
analysis and this is the proper object of theory.68 

66 See Kathryn M. Olesko, Physics as a Calling: Discipline and Practice in the Konigsberg 
Seminar for Physics (Ithaca NY: Cornell University Press, 1991), chap. 2 for a discussion 
of Bessel's analysis of the second-pendulum, and Neumann's use of Bessel's approach 
in the analysis of experimental data. 

67 The experimental methods were developed in Franz Ernst Neumann, Beitrage zur Krys
tallonomie (Berlin: 1823). Neumann published one paper on crystal symmetry before 
his dissertation, Neumann, "Uber das Crystallsystem des Axinits," Ann. Phy. 4 (1825): 
63-76. Neumann's dissertation was published as, "De tactionibus atque intersectionibus 
circulorum et in plano et in sphaera sitorum, sphaerarum atque conorum ex eodem vertice 
pergentium commentatio geometrica,"/sis, (1826): cols., 349-369, 468-489, see Franz 
Ernst Neumann, Gesammelte Werke, M. Krafft, E. R. Neumann, H. Steinmatz and A. 
Wangerin, eds. 3 vols. (Leipzig: B. G. Teubner, 1906-1928), vol. 1. In these papers 
Neumann displayed his ability to visualize relationships in space that is so apparent in 
his work in optics and electromagnetic induction. 

68 Olesko, Physics as a Calling, 123. Olesko is the latest to note this. See Woldemann 
Voigt, "Gedachtnissrede," in Neumann, Gesammelte Werke vol. 1,3-19. The quotation 
is from Fourier, Analytical Theory, 6. 
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This remained Neumann's goal. Mathematical physics was distinct from physics 
itself which was quantitative experiment. Mathematical physics was, and remained 
for Neumann, part of mathematics. His research commitment was to solving 
problems completely, both the experimental and the mathematical part. 

As a potential new faculty member within the reformed Prussian University 
system, Neumann asked that his teaching assignment match his research com
mitments. He wanted a post where he might teach the mathematics that would 
complement his experimental research, namely, mathematical physics. He there
fore requested a position where he could teach those aspects of physics which 
had "received a higher mathematical development or those which are capable of 
being so treated.,,69 He also set about teaching experimental physics, which he 
accomplished quickly. To reach the goal of teaching mathematical physics took 
longer. He also spent the next twenty years expanding his research into a complete, 
experimental and mathematical understanding of crystals. 

His later experimental work on the specific heats of minerals was new and distin
guished by the ways in which Neumann treated his data, not in his stance towards 
"mathematical" developments. Here he used Fourier's expression for the loss of 
heat from the surface of a sphere to correct an expression in the reduction of data 
from the method of mixtures. Neumann was using analysis, not a theory, to ex
amine data. What was new was his ability to appropriate Fourier's analysis into a 
novel experimental situation. Fourier allowed him to improve, in ways parallel to 
Bessel's work in observational astronomy, his understanding of his data. This was 
not the experimental confirmation of deductions from a generalized mathematical 
solution for an equation expressing physical processes. His models were geomet
rical and algebraic. As an experimentalist, Neumann's considerable innovations 
were directed to improving physics as experiment and grafting mathematics onto 
that. In these early papers there was no new image of mathematical physics. 

We have in the 1820s two important specific examples of German physicists 
emulating the French in the pursuit of experimental and mathematical physics. 
Their mathematical sophistication was decidedly below that of their model. Given 
the quality of the training available in mathematics for them as students, it was re
markable that Ohm and Neumann accomplished so much in this decade. However, 
available mathematical training for would-be mathematical physicists in Germany 
was about to change. 

Changes in Mathematics in the 1820s 

During the 1820s mathematicians developed a new philosophical justification for 
the practice of their discipline that reflected the values of the current neo-humanist 

69 Luise Neumann, Franz Neumann Erinnerungs bliitter von seiner Tochter (Leipzig: F. S. 
B. Mohr, 1904),226. Also quoted in Olesko, Physics as a Calling, 129. 
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philosophy of the Prussian university system.70 With this new philosophical jus
tification, mathematicians could claim the ultimate value of mathematics-training 
the mind. The mathematician most successful in articulating this philosophy was 
August Crelle. He also embodied that new philosophy in the title and contents of 
a new journal, Journal fUr Reine und Angewandte Mathematik. 71 To develop his 
philosophy of mathematics, Crelle reached back to the ideas of Immanuel Kant. 
Among other aspects of Kant's philosophy he adopted was the separation of math
ematics into "pure" and "applied." "Pure" mathematics was the mathematics of 
quantity, pure number-pure because it was the product of human intellect alone.72 
Geometry was not such a pure product of the human intellect, being both depen
dent on reason and experience and hence "applied." Crelle made this philosophy 
manifest in the contents of his journal. Within its covers were papers on both the 
algebraic and geometrical parts of mathematics. 

Crelle and others carried the banner of this new philosophy and content of Ger
man mathematics into the institutional forms made available through the reformed 
university systems. Mathematicians quickly remade their discipline into an aca
demic profession that became the pattern sought by organizing members in other 
scientific disciplines. 

These values were successful within the university but led to less happy out
comes for other institutions. One such struggle was over the curriculum for the 
proposed Berlin Polytechnic.73 The curriculum both defined the social place of the 
institution and its graduates. 74 For Crelle, mathematics was the foundation of all 
technical education. The crucial issue here was what Crelle would have included 
in "mathematics" both pure and applied. Mathematics also embraced "the mathe-

70 We will only consider those aspects of German mathematics that affected physics in this 
era. 

71 See Wolfgang Eccarius, "Der Techniker und Mathematiker August Leopold Crelle (1780-
1855) und sein Beitrag zur Forderung und Entwicklung der Mathematik im Deutschland 
des 19 Jahrhunderts," NTM, 12 (1975): 38-49, and, "Zur Griindungsgeschichte des 
Journals fi.ir reine und angewandte Mathematik," NTM, 14 (1977): 8-28. 

72 See Gert Schubring, Die Entstehung des Mathematiklehrerberufs im 191ahrhunderts 
(Basel: Beltz Verlag, 1983), and Jahnke and OUe, "Origins of the Program of the 
'Arithmetization of Mathematics'," and Gert Schubring, "The Conception of Pure Math
ematics," in Social History, Mehrtens, Bos and Schneider, eds. 21-49 and 111-134 
respectivel y. 

73 Many hands and opinions tried to shape this institution. Alexander von Humboldt tried 
to add chemistry to its curriculum and make the institution a second Ecole Poly technique. 

74 Kees Gispen, New Profession, Old Order, chap. 1, 15-43 sketches the problems of en
gineers in German society against the general social and cultural background and the 
role of education in the defining of engineers in German society in the early nineteenth 
century. 
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mati cal parts of physics.,,75 Mathematics was to train the mind and number, space, 
and force were its subjects. 76 

This was neohumanism at its most forceful but not necessarily at its most suc
cessful. When it was finally established, the Berlin Polytechnic did not have a 
curriculum based on Crelle's ideas.77 However, Crelle was successful, along with 
Jacobi, in establishing this definition of mathematics in universities and of remold
ing mathematics there. Jacobi claimed the high ground for mathematics because 
of its esoteric nature. In a letter to Alexander von Humboldt, Jacobi voiced the 
opinion that the most "lofty of sciences were the most impractical." He considered 
his work in astronomy (the subject under discussion was Neptune) as in the proper 
sense mathematics. In this work he had never considered its application to actual 
astronomical problems.78 Jacobi delighted in the consternation he caused at the 
1841 meeting of the British Association when expressing similar opinions.79 

Crelle's definition of the content of mathematics also emulated the content of 
French mathematics. Mathematical physics and the mathematical parts of physics 
remained mathematics. Although the problem with the French, in Crelle's opinion, 
was that they emphasized application too much. 

Crelle's assessment of what the discipline of mathematics covered, number, 
space and force, was commonly adopted amongst mathematicians and younger 
academics. Jacobi and the other young faculty would create this new academic 
profession and discipline of mathematics and outstrip the French. Not that there 
emerged from these efforts one exclusive set of practices that defined mathematics. 
However, by the last third of the nineteenth century, the approach to mathematics 
through the solution of physical problems was relegated to the level of a secondary 

75 Schubring, "Mathematics and Teacher Training: Plans for a Polytechnic in Berlin," Hist. 
Stud. Phys. Sci. 12 (1981): 161-194,174. 

76 Crelle defended the "purity" of mechanics in Crelle, Encyklopiidie deutsche Darstellung 
der Theorie der Zahlen (Berlin: 1845), vol. 1, iii-iv. See also Schubring, "Mathematics 
and Teacher Training," 178. 

77 Gispen, New Profession, Old Order, notes that the Polytechnic and its curriculum re
flected the now lowly place given "bread study." The mathematics in the curriculum 
was low-level and the Berlin Polytechnic became the training ground for engineers. The 
Polytechnic was overseen by the Trade Ministry rather than the Kultus Ministerium which 
had important political outcomes as well as effects on the curriculum. 

78 K.-R. Biermann, "Uber die F6rderung deutscher Mathematiker durch Alexander von 
Humboldt," in Alexander von Humboldt: Gedenkschrift zur 100 Wiederkehr seines 
Todestages (Berlin: Akademie Verlag, 1959) 83-160, p. 88. See also Biermann,"Der 
Briefwechsel zwischen Alexander von Humboldt und G. J. Jacobi tiber die Entdeckung 
des Neptun," NTM, 6 (1969): 61-67. 

79 See Briefwechsel zwischen C. G. J. Jacobi und M. H. Jacobi, W. Ahrens, ed. (Leipzig: 
B. G. Teubner, 1907) 22. 
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art in the hierarchy of German mathematics.8o 

Physicists and physics were not untouched by the philosophical issues surround
ing the necessary use of some mathematics in the newly quantified experimental 
physics. While historians have detected a turn away from Naturphilosophie in the 
1820s, this did not include an automatic realignment of physics along the lines 
of the modern discipline. Nor did this theoretical turn necessarily point the way 
to a physics in which experiment and mathematics were integrated into a recog
nizable form of theoretical physics As German physicists turned to the French as 
a model for doing physics, given the discussion and philosophical context of all 
their science, the issue of the relationship between physics and mathematics was 
problematic. If physics was still the search for essences and physical imagery 
necessary for theory, what had purely deductive knowledge, mathematics, to do 
with physics? 

Although a philosopher, and neither a mathematician nor a physicist, Jakob Fries 
justified to both Georg Wilhelm Muncke and Gauss the use of mathematics in exper
imental philosophy. Fries systematically developed Kant's ideas on mathematics 
and its relation to natural philosophy to reestablish Kantian categories and a place 
for Newtonian gravitational theory in the sciences. For Fries, mathematics had 
two parts "pure" mathematics, which can only give us knowledge of laws in their 
general form, and "applied" mathematics in which the particular characteristics of 
the case emerge. Mathematics was necessary for the complete understanding of 
"external" nature through mechanics, the mathematics of the corporeal world.81 

In the 1830s Muncke became one of the editors of Physikalisches Worterbuch 
and wrote the entry on physics. Muncke described physics in Kantian terms; it 
was empirical, yet not merely a descriptive (historical) study of nature because it 
was also explanatory. For the latter, hypotheses were necessary. Mathematical 
physics began where experimental and theoretical physics ended because it started 
with the quantities uncovered by experimental physics. Because it was a deductive 
science mathematical physics was also "pure.,,82 

Muncke's statements were more illustrative assertions and analogies made be
tween physics and astronomy and the history of mathematical physics than a co
herent argument for how these elements might be pulled together into a single 
discipline. He had no way of actually connecting the two disciplines except to 

80 In the 1820s we detect similar divisions of the intellectual territory between mathematics 
and physics in the new philosophical context in the short-lived ZeitschriJt for Physik und 
Mathematik edited by Andreas von Baumgartner and Andreas von Ettingshausen. 

81 Gurt Konig, "Einleitung zur Abteilung," to Jakob Friedrich Fries, Siimtliche SchriJten vol. 
13, Schriften zur Angewandten Philosophie II Naturphilosophie und Naturwissenschaften 
(Darmstadt: Sci entia Verlag reprint, 1979),7-15,12-14. 

82 Muncke, "Physik," in Physikalisches Worterbuch 11 vols (Leipzig: Schweikert, 1825-
1845) vol. 7 (1833): 493-573, 510-51l. His effort to distinguish theoretical and exper
imental physics appear on pages 503-504. 
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claim that "as long as we neglect to use mathematical methods" physics was in
complete. He could only point to the example of the French and their role in 
developing mathematics and to state simply that, for the further study of phenom
ena, the calculus and geometry were as important as experiment. 

Many statements reinforcing this view of mathematics and physics occurred in 
the entry on "Mathematics" by Heinrich Wilhelm Brandes. Pure mathematics was 
about quantity and had no bearing upon the empirical realm. He did not include 
geometry in pure mathematics because it referred to experience, only quantity 
qualified for inclusion. While mathematics was independent of experience, it 
did develop the consequences of hypotheses in the sciences through the rules of 
arithmetic and geometry. In its development there were no contradictions, unless 
from human frailty. From the rules of arithmetic, those of algebra and the calculus 
followed "in a natural sense." Reducing natural phenomena to mathematical form 
had much to recommend it, as mathematics could easily examine the correctness 
of hypotheses. Brandes gave some general, loose justifications for a relationship 
between physics and mathematics but no systematic understanding of how this 
might be accomplished in practice. Also Brandes did not seem to understand the 
difficulties of examining the correctness of hypotheses with mathematics.83 

Other definitions of physics existed that did not generate such tensions. Poggen
dorff published a manifesto, as he began his long career as editor of the Annalen 
der Physik und Chemie. Only purely scientific matter was to appear. The drift 
of physics towards chemistry was overwhelming but his volumes would include 
work in meteorology and physical geography. Pure mathematics lay outside its 
coverage. Mathematics was included only in so far as it "made experiments more 
precise or where a series of data can be brought together into an essential rela
tionship through a theory created from the principles of mechanics." Poggendorff 
assumed, along with his colleagues, that mechanics was a branch of mathematics. 
Overuse of formulae would be avoided and mathematics would find a place in his 
journal only "when it reflects the true interests of physicists.,,84 

In his first decade as editor, Poggendorff reprinted many foreign articles in exper
imental physics, but afterwards domestic research papers predominated. It was not 
until the 1840s that mathematical physics entered the journal as a steady stream 
in papers on the wave theory of light, and electricity. Many of them were also 
translations from foreign journals.85 In the 1840s most of the papers were experi-

83 Brandes, "Mathematik," in Physikalisches Worterbuch, vol. 6 part 2,1473-1485. 

84 Poggendorff, "Vorwort," Ann. Phy. 1 (1824): vii. 

85 See Jungnickel and McCormmach, Intellectual Mastery, vol. 1, chap. 5 for some of the 
details of the types of articles published during the 1840s. Their comments on the content 
of this, and other joumals in chapter 2 are based on the assumption that "mathematical 
physics" was physics in the 1820s. The overlap in coverage between Poggendorff's and 
Crelle's journal in their account is left unexplained. 
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mental, some were on instrumentation and Poggendorff still published articles in 
chemistry, meteorology, and climatology. 

Not that algebra, even expressions using the calculus did not appear in An
nalen papers. However, the role these expressions played and their relationship 
to physical concepts, and the exploration of the implications of these concepts for 
the behavior of phenomena, require some examination. Poggendorff published 
an account of Ampere's electrodynamics without any mathematics at all. This is 
hardly surprising because the physics of Ampere's work was self-contained. On 
the other hand, Laplace's mathematical theory of capillarity appeared in full. But 
in this version the mathematical part by Laplace was separated from the physical 
explanation of Biot. In 1831 Poggendorff published a translation of Airy's work on 
the theory of light with a footnote that this well known mathematician had made 
a particular study of the subject. The subject was clearly mathematical but an 
important one for physicists and he referred to other papers on light included in the 
same volume. Among those papers was Fresnel's mathematical paper on double 
refraction. The kind of mathematics that reflected the true interests of physicists 
was broadening. Something was changing but the consequences and direction of 
those changes were still unclear. 

Mathematical discussions of physical phenomena were becoming of more in
terest to the real needs of physicists. Yet mathematical physics was still identified 
as a branch of mathematics, and when published, lay in juxtaposition to the ex
perimental papers on the journal's pages. If we assume that Poggendorff's journal 
mirrored the state of research in physics during these decades, theoretical physics 
did not appear in the Annalen in any recognizably modern form until the middle of 
the 1840s. Prior to the 1840s, articles in mathematical physics were usually trans
lations. Clearly both Poggendorff and his readers assumed mathematical physics 
was, at the very least important for physics, but not as yet physics. Nothing had 
changed to redefine the boundaries between mathematics and physics. 

The process from a separate experimental physics and mathematical discipline 
of mathematical physics to theoretical physics was difficult, piecemeal and some
times elliptical rather than linear. The triumph of theoretical physics in the last 
third of the nineteenth century has made the disciplinary distinctions prevailing 
in the first part of the century invisible. Retrospective interpretations of the con
tents of, say Ohm's or Neumann's work similarly mask the transformations these 
men helped to bring about within their disciplines. Recent accounts of nineteenth
century theoretical physics see the discipline as a cluster of approaches to theory 
without distinguishing their origins within German physics or outside that disci
pline's assumed boundaries. Every paper that refers to what has become accepted 
as physical has been treated as such. Thus, we have a narrative of what physicists 
did, but not what theoretical physics was, or how it came into existence. In these 
accounts theory in physics becomes a smudgy mess of different practices with no 
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particular reason for their existence except for their usefulness at the time, and 
the personal preferences of the historical actors. It also leads to some complex 
problems of accounting for certain forms of physics such as Neumann's. And it 
does not explain why mathematical physics continued to be considered different 
from theoretical physics and treated as such. It also ignores how and why mathe
maticians could still publish in areas of "physics" and loudly claim the domain of 
mathematical physics as their own. 

What this historical approach does require is that we accept any mathematical 
expression of a physical problem and its mathematical development as physics. 
This belies the contention that theoretical physics was created in the reformed 
universities of Germany in the nineteenth century. Such mathematical solutions 
to physical problems were available from the time of Newton. We need to pay 
attention to the descriptive language of these two intellectual disciplines. No one 
in Germany used the terms mathematical and theoretical physics interchangeably, 
or simultaneously. The first was an inheritance from the French, the second a 
creation of the nineteenth century. 

Changes occurred in both the professions and disciplines of mathematics and 
physics that were interconnected and form a continuum of interests through time 
and across changing disciplinary boundaries. Both disciplines later laid claim 
to the mathematical development of physical problems. German mathematicians 
continued to use emerging areas of physics as sources for research problems in 
mathematics. At the same time academics who became physicists or who held 
appointments as physicists began to publish mathematical investigations of the 
same physical phenomena. Initially the investigations within either discipline were 
mathematics. In the 1840s these mathematical investigations began to diverge as 
the aims of physicists became more closely defined and included the conscious 
exploitation of hypotheses. Mathematicians continued to develop their version 
of mathematical physics using the mathematics of physics problems, solved in 
more general ways. Simultaneously, physicists were creating a new discipline, 
theoretical physics. Physicists annexed parts of that domain, mathematical physics, 
that had belonged exclusively to mathematicians, then reconfigured it to match their 
changing disciplinary needs through the consideration of a few crucial problems 
in electrodynamics, light, and heat. 



Chapter VI 

On the Margins: Experimental Philosophy 

and Mathematics in Britain, 1790-1830 

Experimental philosophers in Britain developed their own forms of theoretical 
physics during the same period as the Germans. In broad outlines, the processes 
through which these transformations occurred were the same. Socially experi
mental philosophy became a profession rather than an avocation; passage into the 
research community narrowed from self-education to formal, certified educational 
levels within the universities of Britain. Access to entry into the research communi
ties was consequently constrained by these formal, educational gateways. Training 
became the modem apprenticeship of graduated courses, problems sets, and text
books along with laboratory courses. Access narrowed to the social institutions 
of science that had appeared as open and serving many cultural, economic, and 
social purposes in the late eighteenth century. Their memberships and purposes 
became limited to the professional, research oriented physicist. The institutions 
that had been intellectually universal and geographically local became narrowly 
specialized and geographically national. 

Research itself was transformed in its practices, purposes, subject matter, and the 
outlets available for its dissemination. The coverage in scientific journals changed 
from being broad to increasingly specialized. The style of their contents changed 
from the loquacious to the more terse, footnoted prose of the scientific paper. Texts 
were replaced by journals as the major outlet for research. Yet, the core of physics 
remained experiment. While speculation was always allowable, if hedged with 
cautions as to its use, the development of such speculations into theories, through 
loose argument by analogy, illustration and metaphor, were jettisoned for theory 
expressed in the languages of mathematics. The myriad forms of theories were 
replaced by fewer alternatives, subject to the test of quantitative experiment. In 
this, physicists gained the ability to predict the outcomes of experiments. French 
mathematical physics and quantitative experimental physics were the instruments 
for much of this process. The outcome was not a copy of French science. As in the 
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German case, native traditions mutated this newly acquired heritage into unique 
forms. 

All of these processes began in the thirty years that are the subject of this chapter. 
They were not completed until the last third of the nineteenth century. 

One of the social costs of these changes was the isolation of physicists from 
the general public and the need for mediators between research practitioners and 
that public. In the nineteenth century these mediators were often professionals 
who understood the different audiences that they needed to address, research peers, 
student-apprentices, students destined for other careers, an informed public and the 
more general, interested public. These various listeners were looking for different 
kinds of understanding through physics and each required different languages of 
explanation, depth of coverage, and the kind of argument necessary to draw that 
audience into the subject matter. 

Many of these changes were completed after 1830. Yet by 1830 the possibilities 
so apparent in the early nineteenth century for the practice of experimental philos
ophy had narrowed in form, access, and content. While the final outcomes of these 
transformations can be described in general outline in language close to the de
scription of developments in the German states, the passage to professionalization 
and theoretical physics was unique, much more diffuse, and driven by economic 
as well as ideological and political forces. The net results were quite different in 
detail from those of Germany. Within the three decades described here, only a 
few of the social and intellectual forms explored became lasting possibilities. The 
universities of Oxford and Cambridge retained, for the most part, their function 
of a general education for the elite. By the middle third of the nineteenth century, 
with the economic development of southern Scotland, Scottish universities offered 
an alternative more open to the educational needs of the industrial economy. At 
the end of our period, symbolically, if not practically, London University was be
ginning to do much the same. Higher education was opening up for more men 
further down the social scale. The education offered was for a society, economy, 
and political order of a different kind from that assumed and still operative in the 
educational philosophy of Oxbridge. 

Social Institutions 

The particular dates chosen for this section emphasize this era's essential so
cial and intellectual continuity of the study of nature with the eighteenth century. 
However, the social and intellectual forms of the eighteenth century came under 
increasing strain during the 1820s and then dissolved to re-form during the 1830s 
and 1840s. 

In the decades around 1800 experimental philosophy was still an avocation for 
most of its practitioners who formed a loosely connected network. Experimental 
philosophy still defined a set of practices rather than a specific series of research 
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problems or a theoretical stance. Physics still covered, for example, every aspect 
of electricity from static electricity to the physiology of electric fishes. The study 
of sound and optics included the anatomy of the ear and eye and the perception, 
as well as the nature of, sound and light and their propagation through space. The 
study of nature was an increasingly popular aspect of a general culture shared 
by many varied groups in society. Institutions to inform, demonstrate, and even 
develop the study of nature multiplied during this era. They catered to all groups 
and classes under a broad range of economic, cultural, and ideological hats. 

Many of the institutions that supported the study of nature were volunteerist and 
provincial. Their titles, purposes and functioning often included much more than 
experimental philosophy. Their success depended upon meeting the aspirations 
and interests of a broad, local, audience. I While these institutions were local, their 
members were not isolated or scientifically unsophisticated.2 The societies might 
function for social or cultural self-improvement, as a center for sharing information, 
research results amongst local practitioners, friends of science and local "worthies" 
of science.3 Some institution offered the enterprising an opportunity to transmute 

1 For the diversity represented in such organizations, see Metropolis and Province: Science 
in British Culture, 1780-1850, Ian Inkster and Jack Morrell, eds. (London: Hutchinson, 
1983). See also Ian Inkster, "Cultural Enterprise: Science, Steam, Intellectual and 
Social Class in Rochdale, circa 1833-1900," Soc. Stud. Sci. 18 (1988): 291-330; Jack 
Morrell, "Early Yorkshire Geological and Polytechnic Society," Ann. Sci. 45 (1988): 
153-167, and "Bradford Science, 1800-1850," Brit. J. Rist. Sci. 18 (1985): 1-23; J. 
N. Hays, "Science in the City: The London Institution 1819-1840," BritishJ. Hist. Sci. 
7 (1974): 146--162, and "London Institution," Ann. Sci. 39 (1982): 229-274. The 
localism and attempts to preserve it in Edinburgh as natural philosophy became science, 
and national rather than local, are detailed in Steve Shapin, "The Audience of Science in 
Eighteenth-Century Edinburgh." D. S. L. Cardwell Organization of Science in England 
in the Nineteenth Century second edition (1973), makes little mention of these institutions 
while focussing on mechanics institutes and the redbrick universities. The narrative of 
the mechanics institutes is well known, its meaning still contested. See Roy Heyden, 
"The Glasgow Mechanics Institution," Phil. J. 10 (1973): 107-120; Steve Shapin and 
Barry Barnes, "Science, Nature and Control: Interpreting Mechanics Institutes," Soc. 
Stud. Sci. 7 (1977): 31-74; Ian Inkster, "Science and Mechanics Institutes, 1820-1850: 
The Case of Sheffield," Ann. Sci. 32 (1975): 451-474, and, "The Social Context of 
the Educational Movement: A Revisionist Approach to English Mechanic's Institutes, 
1820-1850," Oxford Rev. Educ. 2 (1976): 277-307. See also Gordon W. Roderick and 
Michael D. Stephens, Scientific and Technical Education in Nineteenth-Century England 
(New York: Barnes and Noble, 1972) chaps., 8 and 9. 

2 For a sense of the networks these institutions formed see, Jack Morrell and Arnold Thack
ray, Gentlemen of Science: Early Years of the British Association for the Advancement 
of Science (Oxford: Clarendon Press, 1981), chap. 2 and Appendix II, 544. 

3 Nathan Reingold's classification of the supporters and practitioners of science, while 
developed for the American context, seems apt for this period in early nineteenth-century 
Britain. 
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their association with such an institution into a career in science.4 

There was no set pattern for the management or day-to-day operations of these 
volunteerist organizations. Trustees set policy that was carried through by a paid, 
or unpaid administrator. Many shared a financial hand-to-mouth existence, as 
trustees tried to match institutional programs with perceived local social and cul
tural demands. Much of the financial distress resulted from the desires of trustees 
for a concrete form for their interests and aspirations.5 If they were lucky, such 
institutions met on the premises of earlier cultural institutions. 

Appeals to a large audience were necessary for economic survival, unless the in
stitution had access to local philanthropists. The audiences and hence the libraries, 
field excursions, lectures, and lecture series of these societies varied as much as 
their purposes. The ideologies that drove programs varied from the radical to the 
conservative. Nature might serve all these purposes simultaneously.6 However, 
there appeared to be no correlation between class and the ideological purposes that 
science was seen to represent. 7 

The utility of science was almost universally accepted, even if not acted upon in 
the institutions' programs. Where utility was a part of the institutions' programs, 
the economic purposes of these foundations were revealed in the ties assumed by 
the entrepreneurs, professional, and skilled workers between an understanding of 

4 Arnold Thackray,John Dalton: A Critical Assessment ofhis Life and Science (Cambridge 
MA: Harvard University Press, 1972) chaps. 4 and 5, details the ways John Dalton 
fashioned his career at the Manchester Literary and Philosophical Society. Dalton was not 
the first to do this through the Manchester institution, see Frank Greenaway, John Dalton 
and the Atom (Ithaca NY.: Cornell University Press, 1966), 91-95 on Thomas Henry. 
There were also Humphry Davy and Michael Faraday at the Royal Institution. For John 
Phillips at the Yorkshire Philosophical Society see Morrell and Thackray, Gentlemen 
of Science and Martin Rudwick, The Great Devonian Controversy: The Shaping of 
Scientific Knowledge among Gentlemanly Specialists (Chicago: University of Chicago 
Press, 1985.) On Charles Lyell's use of London institutions in his early career see, Jack 
Morrell, "London Institutions and Lyell's Career, 1820-41," Brit. J. Hist. Sci. 9 (1976): 
132-146. 

5 The Royal Institution and many Mechanics institutes were caught in this situation. For the 
links between architectural form and social values see Sophie Forgan, "The Architecture 
of Science and the Idea of a University," Studies Hist. Phil. Sci. 20 (1989): 405-443. 

6 For a case study of such political purposes see, Steve Shapin, " 'Nibbling at the Teats of 
Science': Edinburgh and the Diffusion of Science in the 1830s," and Michael Neve, "Sci
ence and Commercial Utility: Bristol, 1820-1860," in Metropolis and Province, Inkster 
and Morrell, eds. 151-178 and 179-204, respectively. See also Shapin, "Mechanics 
Institutes," and Thackray, Science in Manchester. The ideological purposes of the Bristol 
Pneumatic Institution should also be noted here. 

7 See Dorinda Outram, "Science and Political Ideology, 1790-1848," in Companion to the 
History of Modern Science R. C. Olby, G. Cantor, J. R. R. Christie, and C. Hodge, eds. 
(New York: Routledge, 1990), 1008-1023. 
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nature and improvements in manufacturing and personal economic status.s 

The Royal Society of London and the Royal Institution fit into this pattern, 
although their source of patronage and membership were national rather than local. 
Active members and attending audiences were local. In the case of the Royal 
Society, its scientific purpose represented only one of its functions in the early 
nineteenth century. Membership was a mark of social status guaranteed by the 
Society's ties to the politically powerful and the socially prominent.9 Scientifically 
prominent members were elected to the society after their scientific worth was 
guaranteed from other, authoritative sources; unless the science was accompanied 
by the social attribute of money, or noble birth. The Royal Society was a gathering 
of the learned to reinforce their social place at the metropolitan center rather than 
as leaders in research. The conduct of their meetings reinforces this impression. 10 

Initially, the Royal Institution was intended as the complement of the Royal 
Society. Sir Joseph Banks was on its first board of directors. In diffusing useful 
knowledge, the Royal Institution put into social form the contentions of natural 
philosophers that what they did was indeed useful. The Royal Society remained 
with the more gentlemanly function of pursuing natural philosophy. In his lectures 
as professor of natural philosophy at the Royal Institution in 1801, Thomas Young 
tried to "diffuse useful knowledge." His attempt was a disaster. In his lectures on 
mechanics, Young crammed in the principles of mechanics, the laws of motions, 
forces, levers, and collisions, followed by a discussion of architecture, carpentry, 
machinery, clocks and the raising and moving of large weights. 11 His lectures as
sumed his audience shared a level of knowledge and seriousness of purpose that 
matched his own. Given the lectures and materials available elsewhere, Young's 
expectations were unrealistic. The subject matter of his lectures hardly lent them
selves to the visual displays that Humphry Davy used in the same institution to much 
the same audience. Young seemed to drive away the economically essential audi
ence even as Davy attracted it. He acknowledged his defeat by resigning in 1803. 

8 For such goals in the foundation of some societies see, Arnold Thackray, Science in 
Manchester and Robert E. Schofield, The Lunar Society. 

9 Physicians were a significant percentage of its membership. It was still important for 
ambitious physicians to be seen as learned advisers as well as mere healers, and as having 
social contact with the wealthy and powerful. See Harold Cook, "The New Philosophy 
and Medicine in Seventeenth-Century England," in Reappraisals of the Scientific Revo
lution, David Lindberg and Robert S. Westman, eds. (Cambridge: Cambridge University 
Press, 1990) 397-436. For the Royal Society'S social function and political ties, see Marie 
Boas Hall, All Scientists Now: The Royal Society in the Nineteenth Century (Cambridge: 
Cambridge University Press, 1984), chap. 1. 

10 The diversity, intensity, productivity and independence of the research done by John 
Dalton in Manchester, Humphry Davy, Michael Faraday, and Thomas Young at the 
Royal Institution argues for this social function of the Royal Society. 

11 Thomas Young,A Course in Natural Philosophy (London: Joseph Johnson, 1807) 2 vols. 
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The institution was shaped by Davy and his career and was reshaped to attract 
the fashionable London audience. 12 By 1807 the syllabus of the Royal Institution 
included lectures on moral as well as natural philosophy, drawing, engraving, 
music, and poetry. Count Rumford's vision of an institution for the diffusion of 
useful knowledge was gone. Yet the Royal Institution flourished even as its appeal 
for funds on a national level floundered. It became one of the most successful local 
cultural institutions of the early nineteenth century. 

The multiplication of these institutions and their popularity in the early decades 
of the nineteenth century meant that a career in experimental philosophy was not 
consumed by constant, countrywide, itinerant lecturing or teaching. A base in 
London or some institution in a large city could support a career. Dalton did some 
lecturing, usually in the summer in the Lake District for the tourist trade. 13 Such 
professionals also brought tensions into the institutions that housed them. Their 
needs sometimes clashed with the survival of the institution. Research brought 
recognition but not income. The lecture series such professionals had to deliver 
were for large audiences and directed to entertainment as well as enlightenment. 
It was rare that they could repeat Davy's success and combine the two. Michael 
Faraday separated the two functions, instituting the Friday night lecture series at 
the Royal Institution. 

For a fee, these institutions offered the public opportunities for an education in 
natural philosophy unavailable except for the privileged few who attended univer
sity. How many besides Faraday transformed such opportunities into careers is 
still obscure.14 As obscure is the role that these institutions played in educating 
the working class in those scientific principles that were commonly seen as the 
foundation for the arts they practiced. According to this philosophy of progress, 
knowledge of such sciences should improve their economic future. It was also a 
means of cultural and moral uplift. However, in the institutions controlled by the 
working class, indications are that, in the interest of survival, systematic lecture 
series in the sciences were sacrificed for less demanding and more entertaining 
fare. Only those institutions catering to the upper and middle classes could afford 
to offer lecture series in natural philosophy. And these were only delivered in large 
cities where a significant percentage of the population could afford the expense. 
Lectures in experimental philosophy delivered over several weeks were more likely 

12 On the uses that Humphry Davy made of the Royal Institution in shaping his career see, 
Jan Golinski, "Davy and the 'Lever of Experiment,''' in ExperimentalInquiries, Homer 
LeGrand, ed., 99-136. 

13 For Dalton and his lecturing see Thackray, Dalton, and Greenaway, Dalton and the Atom, 
chap. 5. For London see J. N. Hays, "The London Lecturing Empire, 1800-1850," in 
Metropolis and Province, Inkster and Morrell, eds. 91-119. 

14 Jan Golinski has traced chemists active in London in the early nineteenth century, their 
education and their professions before they specialized in chemistry. See Jan Golinski, 
Science as Public Culture, chap. 8. 
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to be offered at universities. Whether we like it or not, the universities remained 
the locus for education in physics, and hence directed at a privileged minority in 
British society. 

Natural Philosophy and the Universities 

The university was a more promising ground for a systematic introduction to 
experimental philosophy. The aspects of experimental philosophy taught depended 
on the interests of the faculty of the university. Most students, if they were to 
enter a profession, were training to become clergy, lawyers, or physicians. Of 
these only medicine required a systematic training in any experimental science. 15 

Experimental philosophy was directed to the cultural, not the professional training 
of students. Liberal doses of natural theology and moral philosophy dotted the texts 
for and lecture notes derived from these courses. Chemistry was the first field to 
break this mold, as chemical skills were in demand in the growing industrial cities 
of the north and Scotland. It was not coincidental that in 1819 Thomas Thomson 
established the first chemistry laboratory course for students. In the 1820s, the 
government made more effort to regulate the medical professions. Private lecture 
series and courses multiplied in training hospitals directed to future physicians and 
pharmacists. These courses in purpose, structure, and function form a decisive 
break with the prevailing teaching in experimental philosophy. Their purpose was 
to produce competent practitioners, not the liberally educated. 16 

In general, experimental philosophy courses were untouched by this changed 
social purpose for experimental skills. University courses in experimental philos
ophy remained as general surveys, meant to display the characteristics of nature 
through factual information and demonstration experiments. 17 Judging by the con
tent of texts, even in Scotland where such surveys were bolstered with claims for 
the utility of experimental philosophy, there were few connections made between 
course material and technology. Lectures were liberally scattered with references 
to the creator and natural theology lurks in the background, if not the foreground 
of all of them.18 There were no systems of courses of graduated difficulty leading 

15 Evidence for the most systematic education in chemistry available in Britain was at 
Edinburgh University, the locus of the best medical training. 

16 See Metropolis and Province, Inkster and Morrell, eds. 

17 The empirical foundation of the sciences assumed in Britain in this period has been 
emphasized more than once. See Michael Shortland, "A Mind for the Facts, some 
Antimonies of Scientific Culture in early nineteenth century Britain," Arch. Int. Hist. Sci. 
36 (1986): 294-324. 

18 However, authors of texts in natural theology were already feeling the pressures of ex
perimental philosophy and natural history. They had to adjust their arguments to accom
modate new phenomena and current interpretations of a mechanical world. On William 
Paley see, Neil Gillispie, "Divine Design and the Industrial Revolution: William Paley's 
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the student from novice to professional competence. Nor was there any need for 
certification as an end to such an educational enterprise. 

There was one great difference between the lectures given by university faculty 
in England and the lecturers such as Young, Davy, and later Faraday. These three 
men constructed their careers through their lecture courses and drew their audiences 
into their research. Their audiences were at the very creation of the knowledge, 
not just exposed to a demonstration of nature's readily repeated characteristics. 
In those audiences were their research peers as well as the general public.19 Such 
professional lecturers were freer to question the prevailing, broadly Newtonian, 
explanations of the phenomena revealed in their lectures. They could offer very 
successful alternatives to long-standing research issues in experimental philosophy 
and chemistry. 

The same imperative to introduce students to research results did not motivate 
most university faculty. They were primarily expected to transmit to their students 
the rudiments for entry into gentlemanly culture. A faculty member who developed 
a reputation as a good teacher would enhance his income. Assuming that he did 
research, he was not under the same pressure to present his research results to his 
audience. Some faculty did present their research within their lectures to students, 
the most obvious being Joseph Black at Edinburgh. The pressures to do so could not 
match the imperatives of survival in the newly created scientific institutions such 
as the Manchester Literary and Philosophical Society and the Royal Institution. 
At a university, research and teaching need not be integrated. In some settings, the 
problem of losing status existed if the university lecturer was seen as pushing his 
ideas upon the public, as a projector pushed his schemes for making money.20 

The function of the faculty, to pass to the next generation the accepted cultural 
foundations for a gentlemanly existence, actually worked against the intrusion of 
research results into lectures. At Cambridge, as the Tripos became more important, 
students were reluctant to attend courses that did not "pay." Unless the material in 
the course was related to the subject of likely examination questions, classrooms 
were mostly empty. 

University texts for students offered a blander, more acceptable form of experi
mental philosophy for their students than the texts of independent lecturers. These 
texts share some common features. Courses on experimental philosophy were sur
veys dominated by experimental demonstrations. The broadest terms were laid out 
by John Playfair as, "the knowledge of the general laws obeyed by the phenomena 
of nature, whether in the intellectual or the material world." Playfair's description 

abortive Reform of Natural Theology," Isis, (1990): 214-229. Gillispie points out that 
Paley's audience included the urban middle class as well as Cambridge students. 

19 See Jan Golinski, Science as Public Cu/tllre, chap. 7. 

20 See Jan Golinski, Science as Public Culture, chap. 2 and William Cullen's problems with 
"speculation" at Edinburgh University. 
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betrayed the presence of Common Sense and the educational philosophies of Scot
tish universities. Other texts do not go so far as to include psychology in the net 
of natural philosophy.21 

University lecturers shared the same Newtonian, non-mathematical and non
technical explanations for the phenomena that were the heart of their lectures.22 

In this vernacular Newtonianism, as at Oxford, the "mathematical approach is ap
parently deliberately avoided."23 The subject matter of the lectures joined natural 
theology to natural philosophy that elevated the mind and, with demonstration ex
periments, proved God's power.24 Utility was popular, although proclaimed rather 
than systematically explored.25 

The only mathematics in these unrelenting factual narratives punctuated with 
descriptions of experiments and physical explanations were algebra and geometry. 
Many experiments were qualitative, very few quantitative as in Biot's text of the 
same era.26 The sample experiments were chosen to demonstrate as simply as 
possible an explanation of the operation of mills, machines, etc. 

This utilitarianism reaches into other sections of the lectures as well. Playfair's 
section on physical astronomy was descriptive. His discussion of the regularities 

21 For Cambridge see the textbooks discussed in chapter II. In the Scottish universities the 
same pattern prevailed. See, John Playfair, Outline of Natural Philosophy (Edinburgh: 
A. Constable, 1812-1814), 2 vols., as 1. The volumes are clearly from notes for lectures. 
They are too cryptic for delivery to students. See also John Robison, Elements ofMechan
ical Philosophy, being the Substance of a Course of Lectures on that Science (Edinburgh: 
Constable and Co., 1804). The broad sweep of the meaning of the term "physics" in this 
era is in Michael Short land, "On the Connexion of the Physical Sciences: Classification 
and Organization in Early Nineteenth-Century Science," Hist. Scientiarium 41 (1991): 
17-36. 

22 For a discussion of mechanical philosophy and its inclusive character, see Crosbie Smith, 
" 'Mechanical Philosophy' and the Emergence of Physics in Britain: 1800-1850," Ann. 
Sci. 33 (1976): 3-29, 6-14. Smith locates the beginnings of this tradition in Robison's 
lectures and sees the same patterns in William Meikleham's lectures in natural philosophy 
at Glasgow University from William Thomson's notebooks on those lectures. 

23 Gerald L. E. Turner, "Experimental Science in Early Nineteenth-Century Oxford," in 
Hist. Univ. 8 (1989): 117-135, 123. 

24 The ends of science, as expressed by natural philosophers themselves in this era, are dis
cussed by G. A. Foote, "Science and its Function in Early Nineteenth-Century England," 
Osiris 11 (1954): 438-454. 

25 Predictably, Davy saw the ends of science as Truth. The relationship between early 
nineteenth-century science in Britain and the ideas and values of Romanticism are tenuous 
at best. Very few natural philosophers expressed even Davy's early commitments. Utility 
was far more compelling within the changing economic environment of northern England 
and Scotland. 

26 A need was however seen for such a text because Biot was translated. See Jean-Baptiste 
Biot, Traite de physique experimentale et mathematique 4 vols., (Paris: Dateville, 1816), 
translated by John Farrar. 
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of the planets was in terms of Kepler's laws put into geometrical form. Fluxions 
were mentioned in his definition of velocity and acceleration, then dropped. He 
noted Laplace's Mecanique Celeste but did not explore it. On the basis of the 
rest of the course students would have a hard time making any sense of Laplace. 
Algebra and geometry were used to express empirical laws, such as those of optics. 
From these empirical laws, other, equally empirical results were deduced, some of 
which had already been demonstrated. Beyond a statement of Newton's laws of 
motion and gravitation, the Principia did not enter into experimental philosophy. 
There were no problem sets. 

Initially in the lectures, the definition of experimental philosophy was broad. 
The actual topics covered were narrowly defined by mechanics with some optical 
phenomena thrown in. The patterns discussed here for lectures were replicated in 
all universities including the later ones of Dionysius Lardner at London. 

In short the lectures read as protracted encyclopedia articles, many of which 
were indeed written by the same lecturers. They were both lectures and articles 
intended for the same audience to serve similar cultural purposes. John Robison's 
article on "Physics" in the Encyclopedia Brittanica remained unchanged from the 
third through the seventh editions. In his article on mechanics Robison separated 
mechanical philosophy from mathematics. D' Alembert and Lagrange were, 

merely employing the reader in algebraic operations, each of which 
he perfectly understands in its quality of an algebraic or arithmetical 
operation, and where he may have the fullest conviction of the justness 
of his procedure. Well all this may be (and, in the hands of an expert 
algebraicist, it generally is,) without any notions, distinct or indistinct, 
of the things, or the processes that are represented by the symbols made 
use of.27 

Study of the natural world and the manipulations of mathematical entities were 
distinct activities. Similarly, astronomy was based on accurate observations, nec
essary for "philosophical inference." Mathematics did not enter into Robison's 
discussion.28 

John Play fair made much the same distinctions. However, Playfair set the sci
ences in a hierarchy with mathematics in first place. Its "progress" has been 
"one principal instrument applied by the moderns to the advancement of natural 
knowledge." The other instrument of progress was experiment and the method of 
induction. Bacon's philosophy and experiment received far more attention than 
did mathematics. Even in this systematic account of the sciences mathematics 
entered only by deducing results logically from principles established "by experi-

27 John Robison, "Dynamics," A System of Mechanical Philosophy, with notes by David 
Brewster (Edinburgh: John Murray, 1822) 4 vols., vol. 1,157-158. These are Robison's 
articles for the Encyclopedia Brittanica. 

28 Robison, System, vol. 3. 
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ence." The example used was Galileo's relationship between the distance fallen by 
a body and the square of the time taken for the descent. There was a decided gap 
between Playfair's claims for the importance of mathematics and his demonstrated 
use of it in both experimental philosophy and astronomy.29 Playfair discussed the 
development of mathematics only so far as Descartes and the invention of loga
rithms, ending on a Scottish note. There was no mention of fluxions or the calculus 
with which Playfair was very familiar. He divided experimental philosophy into 
divisions, mechanics, astronomy, optics, then the imponderables, heat, electricity 
and magnetism. His narrative was organized to illustrate the central function of 
induction in the "progress" of the sciences. 

John Leslie's article on the eighteenth century made even stronger claims for 
mathematics in the development of natural philosophy but had no better illustration 
of this claim than Playfair's. Leslie stated that in the eighteenth century mathemat
ics, when introduced into physics and the practical arts, had brought great results. 
He classified all of the sciences into two great classes, the "pure or speculative" 
and the "applied or practical." The latter included optics, electricity, magnetism 
and theories of heat and their application in the mechanical arts. "Pure physics" 
was now limited to magnetism and electricity, neither of which contained much 
"geometry." Since Leslie only stated the basic principles behind each of his sci
ences, how their application worked on the mechanical arts was no clearer than 
how mathematics was applied in the other sciences. These essays also give us 
an idea of the history of natural philosophy from the Edinburgh point of view in 
the early nineteenth century. It was unrelentingly empirical, inductive, and experi
mental. Mathematics entered only after experiment, to confirm, with its generality, 
the results of those experiments.3D 

Published from Edinburgh, the Encyclopedia Brittanica displayed, wherever 
possible, the concerns of Scottish academics for philosophical consistency. The 
Encyclopedia Metropolitana had quite different goals and a different set of authors. 
The editors and contributors were either educated or taught at the University of 
Cambridge which heavily influenced the classification and content of the entries 
on the sciences. The philosophical categories of Samuel Taylor Coleridge dictated 
the organization of the text. In their turn his categories reflected the concerns of 
contemporary German academics, for whom the pure sciences were those of the 

29 John Playfair, A General View of the Mathematical and Physical Sciences since the 
Revival of Letters in Europe in Stewart, Mackintosh, Playfair and Leslie, Dissertations 
on the History of Metaphysical and Ethical and of Mathematical and Physical Sciences 
(Edinburgh: Adam and Charles Black, 1824-1835), (Edinburgh: 1824), 2 vols., as 
one, 433-572. Richard Yeo, "Reading Encyclopedias: Science and the Organization of 
Knowledge in Dictionaries of Arts and Sciences, 1730--1850," Isis, 82 (1991): 24-49 
discusses the function of these discourses. 

30 John Leslie, A General View of the Progress of Mathematical and Physical Science, 
chiefly during the Eighteenth Century in Stewart et ai, Dissertations. 
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mind, separated from the "mixed sciences" such as mechanics, optics, and astron
omy. In Coleridge's hierarchy there was also a third level, the applied sciences that 
depended on changes in bodies. These sciences included electricity, magnetism, 
and chemistry. These applied sciences did not rest on any general, purely intel
lectual source for the knowledge they generated and hence were on a decidedly 
lower intellectual plane. This philosophical hierarchy was reinforced by the order 
of publication of the volumes, starting from the top down. Articles only referred to 
material already published displaying the intellectual dependency in Coleridge's 
scheme.3 ! 

The content of the individual articles reflected the content and organization of 
current teaching at Cambridge. The mathematics included geometry, algebra, and 
fluxional calculus. Mechanics was included in the volumes on mixed mathematics, 
yet treated as a subfield of mathematics.32 John Herschel's article on physical as
tronomy was also in the volume on the "mixed" sciences. Neither of the articles on 
mechanics and physical astronomy could be read with any understanding without 
intimate knowledge of fluxions or the French calculus respectively. Audiences 
for this level of treatment was small and the enterprise failed. The volumes also 
reflected some of the crucial changes occurring in sciences in the 1820s. Articles 
were narrowly focused and written by specialists. Herschel on astronomy detailed 
the new standards of measurement. He also showed how to use the mathematical 
results of celestial mechanics and turn them to solving problems of observational 
astronomy, both uses of mathematics that were recently imported from Germany. 
By the time the Encyclopedia Metropo!itana began publication, the older, long 
accepted intellectual geography of the sciences was under considerable strain, as 
was their social organization. Simultaneously, in the late 1820s agitation began 
for an education to meet the expectations of the middle class and a generation that 
needed technical training for the new economy. 

Intellectual Organization of Research, 1800-1820 

Material directed to colleagues within a research context still displayed the 
eighteenth century classification of the sciences. Science still held the eighteenth
century meaning of knowledge in a general sense. Philosophy could mean moral 
philosophy, that is practical philosophy, or the study of nature, natural philosophy 
and physics. In dictionaries of technical terms physics was not defined formally 
as the experimental study of nature. However, the various entries on the study 

31 For a detailed discussion see Yeo, " Reading Encyclopedias." 

32 For example, in the section on the equilibrium of elastic lamina the equations were solved 
in terms of equations of condition without any indication of the physical condition the 
equilibrium represented. Although the author noted that the integration of the equa
tions was only possible when the oscillations of the lamina were small. Peter Barlow, 
"Mechanics," Encyclopedia Metropolitana vol. III, 1-140. 
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of the powers of nature, properties of natural bodies, and their interactions, the 
objects of study of physics, restricted its methods to those of experiment. And, 
experiment was defined as the trials made to uncover these attributes of nature. 
Natural philosophy encompassed ideas and theories about those powers, proper
ties and interactions and was coextensive with experimental philosophy. After a 
statement of Newton's laws of motion, Newtonian philosophy was discussed at 
some length non-technically as a gloss on the books of the Principia. Charles 
Hutton included mechanics, however, as a "mixed mathematical science." Mixed 
mathematics itself was the effort to, 

reason mathematically upon physical subjects, such just definitions can
not be given as in geometry: we must therefore be content with de
scriptions; which will be of the same use as definitions, provided we be 
consistent with ourselves, and always mean the same by those terms we 
have once explained.33 

Geometry belonged to abstract or pure mathematics, the "science of quantity." Pure 
mathematics was speculative but also had the advantage of leading more surely to 
truth than experiment. To end a dispute in pure mathematics, all one needed to 
do was to show that an opponent had not stuck to his definitions, or had argued 
incorrectly. 

From 1790 to 1820 research in experimental philosophy followed these same 
patterns. The encyclopedia literature only occasionally reflected the new principles 
introduced into natural philosophy. These new principles were not introduced by 
university professors and dons, the contributors to those articles. They came mainly 
from outsiders, constructing new ways of doing natural philosophy both socially 
and cognitively. 

While John Dalton worked within a Newtonian tradition, his concept of the 
atom was only tenuously connected to Newton's commitments. In Dalton's work 
the ultimate physical and chemical particles of matter became one. His theory, 
developed within the net of questions of meteorology, poached upon ground that 
chemists had regarded as theirs. The sometimes fierce opposition from chemists 
to Dalton's ideas was only partly due to the incompleteness of Dalton's evidence 
and the arbitrary nature with which Dalton was forced to construct his molecular 
formulae.34 Specialist boundaries were breached and the newly established claims 
of chemists to empiricism were called into question.35 

33 Hutton, "Mixed Mathematics," in Mathematical and Philosophical Dictionary contain
ing An Explanation of Terms and an Account of the several Subjects under the Heads 
Mathematics, Astronomy, and Philosophy, both Natural and Experimental, C. Hutton, 
ed. (New York: Georg Ohms Verlag, reprint of 1796 edition, 1973), 2 vols. 

34 For a recent study of this opposition see, L. A. Whitt, "Atoms or Affinities? The Am
bivalent Reception of Daltonian Theory," Studies Hist. Phil. Sci. 21 (1990): 57-89. 

35 For Dalton's theory, see Greenaway,John Dalton andAtomism, and for a critical appraisal, 
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Dalton's opponents used hypotheses as freely as he, yet chemists were not able 
to acknowledge a place for "speculation" for many decades. Experimental philoso
phers already had recognized the necessity for hypotheses.36 Natural philosophy 
was both a method of exploring nature and, properly separated and reported, a 
series of speculative ideas about nature. The same consciousness of both method 
and hypotheses are in the lectures of Robison and other university lecturers on 
mechanical philosophy. Disputes between experimental philosophers were not 
over the use of hypotheses as such but whether particular hypotheses met current 
criteria for legitimacy. 

In the early decades of the nineteenth century, Dalton was forced to defend his 
ideas on many fronts. So was Thomas Young. Claiming also to be a Newto
nian, Young fractured that heritage beyond his contemporaries' recognition of it.37 

Young's lectures and research on light conformed to inherited patterns of natural 
philosophy, but with a new emphasis on certain aspects of experimental philosophy 
emerging from France. His work in optics emerged from his medical interest in 
vision, and that followed his earlier work in acoustics.38 The latter encompassed 
both the phenomena of sound and their explanation, the functioning of the ear as 
the organ of hearing, and the sense of hearing itself. Optics, therefore, included 
the phenomena of light and their explanation, as well as consideration of the eye 
and vision. 

Young's contemporaries made no clear distinction between the phenomena of 
sound and hearing, light and vision. The means of detection and observation of light 
and sound were direct and depended upon the acuity of the observer's hearing and 
sight. Even in an age in which musical ability was an important social skill, there 
were disputes about the phenomena of sound, that is, what could be heard. The 
all-encompassing aspects of these studies, which mirrored the breadth of natural 
philosophy itself, led to many misunderstandings of Young's intentions and the 
meanings that underlay his analogy between sound and light as wave phenomena. 

see Thackray, John Dalton. For the arguments surrounding his theory and chemists' 
claims of empiricism, see Allen J. Rocke, Chemical Atomism in the Nineteenth Century 
from Dalton to Cannizzaro (Columbus OH.: Ohio State University Press, 1984). 

36 For the reality behind the rhetoric of the chemists, see Rocke, "Methodology and its 
Rhetoric in Nineteenth-Century Chemistry: Induction versus Hypothesis," in Beyond 
History of Science, Garber ed., 137-155. Geologists were also less able to see any legiti
mate function for hypotheses during this era. See Rachel Laudan, "Ideas and Organization 
in British Geology." 

37 As much research has recently demonstrated, Newton's work was sufficiently complex as 
to admit of a broad range of theoretical opinions being attached to his name. For example, 
see Thackray, Atoms and Powers, and Conceptions of Ether, Cantor and Hodge, eds. 

38 Young's work in vision begins with Thomas Young, "Outlines of Experiments and En
quiries respecting Sound and Light," Phil. Trans. R. Soc. London, (1800): 106-150, and 
"Mechanism of the Eye," same journal (1801): 23-88. He retained this interest in his 
lectures at the Royal Institution. See Young, Lectures on Natural Philosophy. 
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One phenomenon over which there was much dispute was that of beats in sound. 
Some experimentalists claimed that they existed, others that they did not. 39 Young's 
wave theory of light was dismissed on grounds that no longer apply in the study 
of sound and light. Young differentiated sound and light from hearing and vision, 
but did not explicitly express this to his contemporaries. Many of them, besides 
Henry Brougham, had difficulty understanding Young's experiments. These men 
included John Robison and Robert Woodhouse who needed repeated exposure to 
Young's work to finally extract from it Young's principle of interference.4o 

At the same time Young had to invent a language in which to express physi
cal ideas that he was uncovering piecemeal. The idea of wavelength is absent, 
although Young used the ambiguous term "breadth" of an undulation without fur
ther explanation. Similarly, amplitude was absent, although Young wrote of the 
height and depth of a wave.41 Young inherited the term frequency from acoustics 
but did not relate this to any of the other characteristics of his waves.42 He also did 
not use the kind of geometrical diagrams developed by Fresnel that eased the task 
of his audience with visual representation. Young's work was within experimental 
philosophy and his explanations were verbal. 

And finally, Young's hypothesis that light was a wave motion was at odds with 
contemporary ideas about light. He also embedded that hypothesis within his 
narrative account of his experiments, not as a climatic statement at the end of the 
series. He drew his new concept of light out of analogies between well-known 
phenomena in acoustics with known results in experiments on light. Explaining 
Newton's rings, Young noted that rings of the same color occurred at distances 
from the center of the pattern where the distance between the two glass plates 
were in an arithmetic progression, that is, at d, 2d, 3d, and so on. This was the 
same relationship that occurred with the production of the same note in "organ 
pipes which are different multiples of the same length." If light was a continuous 
impulse of ether, "it may be conceived to act on the plates as a blast of air does on 
organ pipes, and to produce vibrations regulated in frequency by the length of the 
lines that are terminated by the two refracting surfaces.,,43 Young also contrasted 

39 Nahum Kipnis, Principle of Interference, chaps. II, and III, notes this in his account of 
the criticisms of Young's early work on acoustics and vision. 

40 See Kipnis, Principle of Interference, for Robison, 56 and Woodhouse, 147-148. 

41 The notion of wavelength did not exist mathematically, although the idea of amplitude 
was defined mathematically. 

42 Young was further hampered by an inability to communicate his own work and ideas, 
especially to a general audience. See George Peacock, Life of Thomas Young (London: 
John Murray, 1855), 135 and Alexander Wood, Thomas Young, Natural Philosopher, 
1773-1829 (London: Cambridge University Press, 1954), 137. 

43 Young, "Outline of Experiments." The phenomena are, however, different. The colors 
from thin plates are the result of refraction, then interference. The organ pipe phenomena 
are from standing waves. 
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Huygens' and Newton's theories of light and the difficulties with the latter in 
explaining refraction. 

The acceptance of Young's suggestion that light was, like sound, an undulation, 
in the ether rather than in the air depended upon his audience accepting his interpre
tation of Newton, a series of his own experiments, and the reinterpretation of other 
still controversial phenomena. He used the principle of superposition to explain 
beats as well as interference, yet the annihilation of sounds from different sources 
contradicted experience.44 Young was exposed on various grounds. In his replies 
Young leaned towards the undulatory theory because of the phenomena of colors, 
and it was here that he focussed his own research, presenting his experiments, and 
the new phenomenon of interference, in his two Bakerian Lectures.45 

To emphasize his Newtonian roots in his first Bakerian lecture, Young presented 
his theory in the form of Propositions and Scholia. The only demonstrations offered 
were analogies to the behavior of fluids and sound. In his second Bakerian lecture, 
and in his lectures at the Royal Institution, he intermixed experiments and theories. 
Young therefore lost the dramatic climax of usual accounts of empirical research 
where piling up empirical evidence appeared to force the researcher by induction 
into a particular theoretical position. As his ideas and experiments developed 
and he reacted to criticism, Young also changed details of his explanation of the 
phenomena.46 

Most of his readers and audience did not dispute the quality of his experiments. 
Many of those experiments included measurements, thicknesses of glass plates, the 
distance of the diffracting object from the eye and the screen. He also included other 
factors. In his algebraic relationships were sines, cosines and tangents of measured 
angles.47 In other cases his data were presented raw to the reader with no further 
explanations. Neither Young's use of measurement, nor of geometry and algebra to 
deduce a general relationship from his data, were points of comment in the barrage 

44 Technically the most serious criticisms were from John Robison, "Temperament of the 
Scale of Music," Supplement to Encyclopedia Brittanica 3rd., ed. This was a reply to 
Young's earlier work on sound. The more damaging critique from Brougham was yet to 
come. 

45 Young, "The Bakerian Lecture [1801]. On the Theory of Light and Colors," Phil. Trans. 
R. Soc. London (1802): 12-48, and, "The Bakerian Lecture [1803]. Experiments and 
Calculations relative to Physical Optics," same journal, (1804): 1-16. Between these 
two lectures Young had presented a brief description of his two-slit experiment in his 
lecture series at the Royal Institution. 

46 His papers give a more than usually intimate account of the evolution of his ideas, 
complete with imprecisions, muddles, and backtracking in the research process. This 
interpretation is in contrast to that of Kipnis, Interference of Light who sees Young's work 
as a linear progression moving towards a modern, generalized theory of wave motion. 

47 See Young, Lectures, figure 442 for his two-slit experiment; "Bakerian Lecture [1803]," 
171 and "[1801 ]," 160. 
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of criticism that ensued. Yet his work hardly constituted a mathematical theory 
of light, or even of interference. In his lectures and papers on natural philosophy 
what mathematics he did develop was presented separately from his physical work, 
experiment and hypotheses.48 Despite Young's radical stance in denying Newton's 
theory of light and in his presentation of his own ideas, he did not challenge 
contemporary demarcations between physics as experiment and hypothesis, and 
mathematics, generated from the results of physical experiments.49 

Young's presentation of his ideas on light were complicated by his multiplication 
of hypotheses about the ether and its relationship with matter, and effect of this 
interaction on light. In 1801 he explained the production of fringes inside and 
outside the shadow of a small object as depending upon the refraction of light in 
the ether atmospheres surrounding the particles of matter. By 1803 he explained 
interference by the difference in the length of path traveled by two portions of light 
reflected from two parts of the body. Young admitted that ether atmospheres were 
unnecessary. 50 

Between his two Bakerian lectures Young delivered a long series of lectures on 
natural philosophy at the Royal Institution, the last of which were on light. Like 
Davy, Young drew his audience into his research, to enhance the credibility of 
his ideas, and answer his critics which, by this time included Henry Brougham. 
Brougham had performed experiments on light himself and had his own strongly 
held views on its nature. In his opinion, Young's experiments were not new and the 
phenomena well known, irrelevant, or irreproducible, and his interpretations of all 
his experiments were incorrect. Nothing Young had done merited the name philo
sophical. Young's work challenged the methodology of Brougham's one domain of 
direct research experience. Since method defined the field of experimental philos
ophy, Young's challenge was fundamental. Brougham was defending a philosoph
ical tradition, and the carefully constructed rhetoric of experimental philosophy 
where empirical evidence led to, but was not intermingled with, hypotheses.51 

Young's answer to Brougham came in his lectures at the Royal Institution. He 

48 Kipnis argues that Young "must" have had a mathematical theory of the interference of 
light although there is no evidence for it. He even argues that Young also understood the 
modern concept of wavelength and its relationship to the frequency of a wave motion. 

49 See Young, Lectures, vol. 2. In this volume is a catalogue of some 2,000 published items, 
many of which are followed by Young's remarks on their contents along with those of 
other authors. Many items are from continental mathematicians. 

50 See G. Cantor, "The Changing Role of Young 's Ether," Brit. J. Hist. Sci. 5 (1970): 44-62, 
for a discussion of Young's ether. 

51 Henry Brougham, "Bakerian Lecture on Light and Colors," Edinburgh Rev. 1 (1803): 
450-456. Brougham was writing for the same kind of audience that attended Young's lec
tures. See also G. Cantor, "Henry Brougham and the Scottish Methodological Tradition," 
Stud. Hist. Phi/os. Sci. 2 (1971): 69-89. I would put more weight on the significance of 
this challenge because of the central place of method in defining experimental philosophy. 
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presented an overview of optics, from physical optics to vision and the anatomy 
of the eye. Young repeated much of his previous work, including his criticism of 
Newton's theory of light, but the tone had changed. The emphasis was on denying 
the validity of the particle theory of light, rather than compiling evidence for the 
undulatory alternative. Beginning with the assumption of light as an undulation in 
an elastic Medium, Young stated that light must display the phenomena of superpo
sition, as do sound and water waves. Here Young needed to define superposition, 
then describe clearly its visual effects. He described the phenomenon by asserting 
that waves travelling along different paths could destroy or enhance each other 
at certain points. This led to the production of dark fringes when the difference 
in path length was some multiple of an odd number of half "undulations." The 
bright fringes were formed from path differences of whole undulations.52 From his 
experiments, Young estimated the wavelengths of the various colors. He discussed 
the effect of varying slit-width and of removing the barrier between the slits. After 
a survey of the production of colors from thin plates and soap bubbles, together 
with interpretations in terms of diffraction, interference, refraction and reflection, 
colored bodies, and their lack of fringes. The meteorological production of color 
rounded out his survey. Clearly Young was the master of the subject. Brougham 
was reduced to ad hominum attacks. 

Young's lectures on optics, like Davy's on chemistry, were important in the 
presentation of his research to the public within whose culture his results would 
be judged. However, rather than focussing simply on his research Young plunged 
into a protracted survey of the whole of optics, describing many phenomena, in
struments, and experiments. This avalanche of empiricism buried the significance 
of his own research. Young violated the general principles of instruction that 
Davy clearly exploited, especially those particular to the cultural context of his 
audience. Cruickshank's satirical cartoons of Davy's performance at the Royal 
Institution catch one important feature missing in Young's lectures, the need to 
entertain as well as inform.53 Young had that opportunity. While experiments on 
light were not as dramatic as those of Davy's chemistry, they had a beauty and 
even a romantic appeal he seemed unable to exploit. 

On several grounds Young needed the support of this group. His ideas evolved 
rapidly and his idiosyncratic presentation of hypotheses intermingled with ex
periments worked against acceptance of those hypotheses. Within the group of 
specialists wedded to particular practices that Young transgressed, his experiments 
were admired, his ideas ignored. Young, therefore failed, in this unique cultural 
enterprise. Davy prevailed and established his research as knowledge in front ofthe 
audience at the Royal Institution before his research colleagues accepted his exper-

52 Young, Lectures, vol. 1, 464, for the definition of superposition, 464-464, for his de
scription of fringes. 

53 See Golinski, Science as Public Culture, for science as theater. 
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iments and results as valid. Despite some early disasters, Davy built a successful, 
very public career in science. He drew into both chemistry and experimental phi
losophy ideas alien to the prevalent Newtonian tradition. For natural philosophy, 
these innovations lay in his focus upon the agents of change, or power, and his 
concept of the unity of nature.54 Davy's dramatic experiments in electrochemistry 
gave currency to his emphasis on power and on his chemical theory of galvanic 
electricity. While Davy's speciality was chemistry, his research had an impact on 
ideas on the nature of matter and helped to reorient experimental philosophers to 
the agents of physical change. 

Such lectures and the production of research in this era pinpoints that education 
and practice in experimental philosophy was very dependent upon the individual. 
While an education in experimental philosophy could on the individual level be 
systematic, there were no institutional forms for such training.55 The product of 
such self-education was a diversity of interpretation and variety of approaches 
to the study of nature that has to be understood individual by individual. The 
labels with which practicing natural philosophers covered such discrepant ideas 
imply that the labels point to subtexts rather than the scientific questions at hand. 
Newton's name still added respectability to ideas and his work was still a rich 
source for hypotheses, most of which Newton would not have recognized as his 
own.56 Possibilities in terms of hypotheses multiplied partly because there were 
no tight disciplinary matrices into which individual experimental philosophers had 
to fit. Only a series of loose confederations existed, made up of others of similar 
philosophical persuasion. 

About the only consensus available was the common understanding that natural 
philosophy was first and foremost experiment. Opposition sprang up whenever 
the primacy of experiment was undermined as in the case of Young, Davy, and 
Dalton. This trio of outsiders to the gentlemanly vocation of natural philosophy 
made natural philosophy a means of earning a living and forced new ways of using 
experiment onto their colleagues. They gave a new emphasis to hypotheses as a 
necessary aspect of natural philosophy. We can hardly see these three men as con
stituting any coherent group, other than in their social climbing and abilities to use 
opportunities to secure careers in science. While we can argue that Dalton's work 
lay in the broad tradition of Newtonianism, he did not share the all encompassing 
mechanism of many other natural philosophers. Young's rejection of Newton's 

54 See Golinski, Science as Public Culture, chap. 7, and "Humphry Davy and 'the Lever of 
Experiment' ," in Experimental Inquiries, Legrand ed., 99-136. 

55 As an illustration the example of Michael Faraday points to the possibilities of such 
an education. That his training was largely through the Royal Institution lectures and 
reading points to social disorganization. 

56 The subtexts could be ideological or social-simply using a name to enhance a fledgling 
career. 
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work was on entirely different grounds than those of Davy, but as radical within 
experimental philosophy as Davy's rejection was in chemistry. One could hardly 
connect Young to Davy's romantic vision of both the cognitive and the cultural 
aims of the study of natureY The intellectual spread among these three men might 
be broader than among their academic brethren but the differences, in their visions 
of the cultural place and uses of the study of nature were a mirror of the breadth 
of possibilities for that study in the early nineteenth century. 

However, the wide ranging possibilities of such plurality enhanced by these 
early entrepreneurs began to narrow during the 1820s, as the standards of French 
experimental physics and of mathematics began to change the practices of British 
natural philosophers. Economic changes were also forcing the study of nature 
into new, narrower paths as attempts to regulate education in, and the practices of, 
experimental philosophy and mathematics came to a head in the 1830s.58 

Mathematics in Britain, 1790-1820 

Having sketched the social, institutional and intellectual boundaries of natural 
philosophy in this era, we now have to consider the social and intellectual domains 
of mathematics and mathematicians. Until the recent work of a handful of histo
rians, mathematicians in Britain in the eighteenth and nineteenth centuries were 
depicted as isolated from their continental peers and trapped in the cramped in
tellectual quarters of Newtonian fluxional calculus. Mathematicians were neither 
isolated nor cramped.59 However, during the eighteenth and early nineteenth cen
turies, mathematics served very different cultural purposes in Britain than those 
on the continent. As the foundation of a "liberal education" at Cambridge, mathe
matics served a social and cultural function unknown in continental Europe. The 
type and level of mathematics taught was directed towards developing standards 
of logical consistency rather than technical competence. Not coincidentally, part 
of the Cambridge mathematics curriculum consisted of liberal doses of Newton's 
Principia. Mechanics was mathematics in Britain as well as on the continent. 
Mathematics was also a part of the general culture of the middle and upper classes 

57 Recent biographers see Davy's commitment to certain key ideals of romanticism one of 
the few aspects of his life that gave it any coherence. David Knight, Humphry Davy: 
Science and Power (Oxford: Blackwell, 1992). See also Trevor H. Levere, "Humphry 
Davy, "The Sons of Genius" and the Idea of Glory," in Science and the "Sons of Genius ": 
Studies on Humphry Davy, Sophie Forgan, ed. (London: Science Reviews, 1980), 
33-58, and Christopher Lawrence, "The Power and the Glory: Humphry Davy and 
Romanticism," in Romanticism and the Sciences, Cunningham and Jardine, eds., 213-
227. 

58 The nature of this study does not allow me to explore the ways in which the working 
class constructed their own versions of experimental philosophy for their own purposes. 

59 For example, see the correspondence between Colin MacLaurin and Clairaut in Green
berg, The Shape of the Earth, 412-425. 
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with mathematical problems appearing in general magazines. These problems 
were not simplistic and were devised by professional mathematicians. A particu
larly successful solution of such a problem could lead to a career in mathematics.6o 

The only institution in which mathematicians could replicate themselves was 
Cambridge University. However, there were many other institutions that afforded 
careers for mathematicians, other universities and military schools being some 
of the alternatives. A university post, other than at Cambridge, meant teaching 
more than mathematics, as we can see in the lives of both John Leslie and his 
successor at Edinburgh, John Playfair. Given Playfair's interest and competence 
in French mathematics, and his reputation as a teacher of mathematics, the lack 
of any mathematics in his lectures on natural philosophy reinforces the idea of 
their separation throughout this era. For those men teaching mathematics at either 
universities or military colleges such as Sand hurst, Woolwich, or Portsmouth, 
research and teaching remained separate. Mathematics, even in military colleges, 
was grounded in the useful, gunnery and navigation, and usually consisted of 
courses in geometry and algebra. 

As Guicciardini has shown, fluxional calculus was not in its dotage, although 
it suffered under severe structural limitations. However, by 1800 mathematicians 
in Britain were beginning to turn to the alternative continental calculus. By 1810 
these men were using French sources and exploring beyond them into mathemati
cal territory that they opened up for themselves. They had also begun to introduce 
the French calculus to a broader audience by publishing in the Philosophical Trans
actions. And in an attempt to introduce students to these methods, they began to 
publish textbooks and translate French texts into English. For a public beyond this, 
there were the articles on the calculus in Hutton's dictionary.61 

Before the stunning annexations of heat, light, galvanism, and electromagnetism 
by French mathematicians, British mathematicians had taken over the mathematics 
that referred to familiar problems through their use of fluxions, namely mechan
ics and celestial mechanics. Playfair's lament on the state of mathematics in 
Britain in his review of Laplace's Systeme du Monde and Mecanique Celeste was 
overdrawn.62 Play fair claimed that continental calculus was a closed book to British 

60 Niccolo Guicciardini, The Development of Newtonian Calculus in Britain, 1700-1800 
(Cambridge: Cambridge University Press, 1989) details the development of fluxional 
calculus. He discusses the level of competence of mathematicians in Britain in the later 
decades of the century in chap. 7, and the place of mathematics in general culture in chap. 
8. 

61 Hutton, Mathematical and Philosophical Dictionary. For comments on Hutton's dictio
nary see Grattan-Guinness, "French calcul and English Fluxions around 1800: some com
parisons and Contrasts," lahrbuch Uberblicke Mathematik (1986): 167-178,171-172. 
See also Grattan-Guinness, "Before Bowditch: Henry Harte's Translation of Laplace's 
Mecanique Celeste," NTM, 24 (1987): 53-55 on early translations. 

62 Playfair, "Review of Laplace's, Mecanique Celeste," Edinburgh Rev. 11 (1807): 249-
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mathematicians. They neither knew the principles nor the methods that continental 
mathematicians could take for granted in their readers. Playfair blamed the reward 
system in science, the value placed on utility, and the hostility of the Royal Society 
of London towards mathematics. The reference to the Royal Society was code for 
Sir Joseph Banks its president. By 1800 his hostility to mathematics and mathe
maticians was legendary. A near rebellion in the ranks of the Society's fellows in 
the 1780s, many of whom were mathematicians, began with the removal of Charles 
Hutton as foreign secretary of the society. The discontent was against what was 
seen as Banks' arbitrary rule and hostility to mathematics and the mathematicians 
within the society. Order and Banks were restored.63 

James Ivory and William Wallace, both employed as teachers at military col
leges, made significant steps towards understanding continental calculus. In the 
1790s Wallace abandoned fluxions for the French calculus and was anticipated by 
Legendre in some methods in perturbation theory.64 In 1819 Wallace succeeded 
Leslie as professor of mathematics at the University of Edinburgh.65 Together with 
Charles Hutton and Peter Barlow, Wallace introduced the French calculus to British 
mathematicians. In the first decade of the nineteenth century, other mathemati
cians, such as Ivory, abandoned fluxions altogether. By 1814 Toplis had translated 
Laplace and Ivory was following some points in the Mecanique Celeste on the at
traction of ellipsoids using Euler's notation for partial differentials and developing 
aspects of Legendre's mathematics.66 

Long before the agitation of the Cambridge "Analysts" there was a network 
of mathematicians, many outside of Cambridge, working to bring attention to the 
new continental calculus.67 Analysis in the sense used by the Cambridge group was 
broad and meant the use of algebraic rather than geometric methods to solve math
ematical problems. It also included the use of algebraic definitions of functions, 

284, and "Review of Laplace's System of the World," same journal, 15 (1808): 396-417. 
Playfair was not alone in this lament. See, John Toplis, "On the Decline of Mathematical 
Studies, and the Sciences dependent upon Them," Phil. Mag. 20 (1805): 25-31. 

63 For an account of this disturbance, see Russell McCormmach, "Henry Cavendish and the 
proper Method of Rectifying Abuses," in Beyond History of Science, Garber ed. 35-50, 
37-38. See also David P. Miller, "Into the Valley of Darkness." 

64 Wallace translated Legendre as well as Lagrange into English in the Mathematical 
Repository . 

65 For Wallace's role in the mathematical importations from the continent see M. Pantiki, 
"William Wallace and the Introduction of Continental Calculus to Britain: A Letter to 
George Peacock," Hist. Math. 14 (1987): 119-132. 

66 See James Ivory, "On Attraction of Homogeneous Ellipsoids," Phil. Trans. R. Soc. 
London, 99 (1809): 345-372, and same journal 102 (1812): 1-45. 

67 For a reassessment of the role of the Cambridge group see Phillip Enros, "The Analytical 
Society, 1812-1813: Precursor to the Renewal of Cambridge Mathematics," Hist. Math. 
16 (1983): 24-47. 
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and the acceptance of the new French calculus and their notation. The brash young 
members of the Analytical Society emphasized the use of notation, but that was 
not the heart of the matter. In ways parallel to Lavoisier's new chemical notation, 
French mathematical notation carried with it different notions of differentiation, 
integration, and the nature of functions, as well as their representation. 

Much of the rhetoric of the Cambridge group was exaggerated and self-serving. 
While Robert Woodhouse might have been the first to introduce French mathemat
ical notation in his textbook, he was not as isolated as the Analysts pictured him. 
Although he used differential notation in his textbook, Woodhouse's attempt made 
little impression on his colleagues and students at Cambridge.68 Woodhouse's fail
ure was probably because French methods did not "pay" in terms of the Cambridge 
examination system that was already driving the curriculum.69 Similarly the under
graduates of the Analytical Society were ineffective until 1817 when they began to 
infiltrate the Senate House Examination system.7° By 1800 the lowest denomina
tion of a "pass" degree was well established and might meet the criteria for a liberal 
training of the mind. What constituted the upper limit, the best, was open ended. 
This became even more crucial as honors in mathematics, doing well in the Senate 
House examinations, could lead to a position at one of the Cambridge Colleges. 
By 1800 the examination was so competitive that the curriculum was designed to 
meet the expectations of the examiners.71 Teaching might be in the hands of the 
Colleges, but the dons had to cover the topics that would arise in the examinations. 
These subjects included Euclid, algebra, conic sections, trigonometry, fluxions, 
fluents, Book I of Newton's Principia, the mathematics of astronomy, mechanics, 
and hydrostatics. The transformation of mathematics in Britain accelerated with 
the capture of the examination system at Cambridge. 

Examination questions and textbooks reveal the meaning of mathematics at Cam-

68 Robert Woodhouse, The Principles of Analytical Calculation (Cambridge: University 
Press, 1803). See J. M. Dubbey, "The Introduction of the Differential Notation into 
Great Britain," Ann. Sci. 19 (1963): 37-48. Much of Dubbey's argument on the role of 
the Cambridge Analysts has been superseded. 

69 See Enros, "Cambridge University and the Adoption of Analytics in the Early Nineteenth
Century England," in Social History of Mathematics, Mehrtens, Bos and Schneider, eds. 
135-148. 

70 Grattan-Guinness, "Mathematical Research and Instruction in Ireland: 1782-1840," in 
Science in Ireland, 1800-1930: Tradition andReform, Nudds, et al eds., strongly suggests 
that French mathematical methods were integrated into Trinity College Dublin more 
quickly than into the Cambridge curriculum. 

71 For the development of the Senate House examinations into the Tripos, see W. W. R. Ball, 
A History of the Study of Mathematics at Cambridge (Cambridge: Cambridge University 
Press, 1889), and The Origin and History of the Mathematical Tripos (Cambridge: E. 
Johnson, 1880). The change in the function of the examination is mapped by John Gas
coigne, "Mathematics and Meritocracy: The Emergence of the Cambridge Mathematical 
Tripos," Soc. Stud. Sci. 14 (1984): 547-584. 
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bridge. Whether written in the fluxional or continental tradition of mathematics, 
most of the textbooks were in "mixed mathematics." At Cambridge "mixed math
ematics" were mixed in that the principles in which the mathematical problems 
began were observational or experimental. Physical problems were used to open up 
mathematical discussion and solution of problems, not to teach physics.72 Other 
courses and textbooks examined the physical principles of Newtonian mechan
ics on which the mathematical superstructure was later erected. No mathematics 
beyond simple algebra or geometry graced the pages of those texts on natural 
philosophy. Mathematical problems and solutions were posed and solved in a sep
arate sequence of texts and courses. In Wood's and Vince's text the mathematical 
matter was in volume 1, on algebra, and volume 4, on trigonometry. The volumes 
on astronomy and mechanics were descriptive and non-mathematical. Newton's 
laws of motion were presented as empirical, observational, and approached using 
Atwood's experiments.13 Texts on astronomy also presented the material in two 
different forms, the observational with any calculations derived from the tradition 
of observational astronomy. Mathematical astronomy was the subject of other 
textbooks.74 

The physical principles in the textbooks on natural philosophy were those of 
Newton's mechanics, with a short discussion of the physical principles of optics. 
The educational foundation of the Cambridge curriculum was indeed narrow but 
followed the agreed upon disciplinary geography and separated natural philosophy 
from mathematics. While the form of the mathematics might differ profoundly 
from that on the continent, the source for mathematics was held in common, the 
problems of mechanics whose solutions lay in mathematics. 

As if to reinforce this disciplinary division, the research publications of Cam
bridge faculty also mirror these divisions. Woodhouse published papers in mathe
matics. After his appointment as Plumian Professor of Astronomy and Experimen
tal Philosophy he published descriptive accounts of the instruments at Cambridge 

72 An easily available example of this is in Ball, Origin, in the examination questions for 
1801,30-33, and in Cambridge Problems: Being a Collection of the Printed Questions 
proposed to the Candidates for the Degree of Bachelor of Arts at the General Examination, 
1801-1810 (Cambridge: J. Deighton, 1810). 

73 James Wood and Samuel Vince, The Principles of Mathematics and Natural Philosophy 
(Cambridge: J. Burges, 1795-1799) 4 vols. 

74 Woodhouse An Elementary Treatise on Astronomy (Cambridge: J. Smith, 1812) was 
largely descriptive. The equation of time and method of computing eclipses derived from 
the tradition of observational astronomers. Woodhouse explained that unlike geometry 
astronomy did not spring from simple principles followed by logically deductible results. 
Everything was connected and accuracy achieved through successive approximations. 
Woodhouse, Treatise on Astronomy, Theoretical and Practical (Cambridge: J. Smith, 
1821) separated the physical from the mathematical treatment of the subject. He included 
the mathematical techniques of Laplace but no discussion of the physical implications of 
all these manipulations. 
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university observatory.75 Though of a lesser caliber Vince's publications also fall 
into eighteenth-century categories. These include descriptions of unusual meteo
rological phenomena, criticism of a recent paper on gravitation, with a separate set 
of mathematical papers. 

In the 1820s this gentlemanly, comfortable eighteenth-century existence was 
already under close scrutiny. Change was being demanded, and not just from 
within the university from a small coterie of brash undergraduates. The economic 
and social changes that were beginning to reorient both the teaching and the research 
practices in the sciences in the 1820s would stir changes within Cambridge, slowly 
and against powerful inertia, but changes nevertheless. 

Natural Philosophy and Mathematics in the 1820s 

During the 1820s the general public began to lose its role in scientific institutions 
and as actors in the production and dissemination of research that had been so 
important for the first professional scientists in the early years of the nineteenth 
century. This, paradoxically, was because of increasing opportunities to engage in 
research, and to obtain a more systematic education in natural philosophy. 

At the same time that the number of opportunities to engage in research opened 
up, positions in the older university were filled with younger men committed to 
research as well as teaching. Nationally, the number of men practicing within 
certain subfields of experimental philosophy expanded. Increasingly, the numbers 
engaged in closely allied research problems reached a critical mass that could sup
port a society dedicated to the narrowly defined needs of this research community. 
The membership, provincial in its intellectual interests, became geographically 
national, inverting the intent and the geographical reach of the older, culturally 
broad, geographically provincial societies.76 These specialist societies launched 
their own journals, and restricted membership in the societies to individuals ac
tively engaged in the research the membership regarded as legitimate. The journals, 
meetings, papers, discussions, and the management of the society focussed upon 
the needs of this group. The tensions inherent within the earlier, philosophical 
societies that sought cultural support by appealing to local educated groups were 

75 For example, Woodhouse, A Treatise on /soperimetrical Problems and the Calculus 
of Variations (New York: Chelsea Pub. Co. reprint, 1964), "On the Independence of 
the Analytical and Geometrical Methods of Investigation," Phil. Trans. R. Soc. London, 
(1802): 85-125, and "Methods of Investigation of the Integration of Certain Expressions 
with which Problems in Physical Astronomy are connected," same journal, (1802): 85-
125, and, same journal (1804); 219-278. After his appointment, Woodhouse, "Account 
ofthe Transit Instrument made by Mr. Dolland and lately put up at Cambridge University," 
Phil. Trans. R. Soc. London, (1825): 418-428, (1826): 15-36, and "On the Derangement 
of Certain Instruments by the Effects of Temperature," same journal, (1827): 144-158. 

76 For example, the Geological Society was already organized in this fashion in 1807, the 
Royal Astronomical Society in 1820. 
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no longer present. They were replaced by intellectual and social tensions of a 
different kind.77 

Since most of the men engaged in research were gentlemen, or at least had 
access to private funds, such societies effectively marginalized, or excluded the 
participation of the lower classes in the development and legitimation of research. 
Many of the specialist societies met in London and only in the social season, 
November to June. 78 In this they followed the Royal Society of London, that 
bastion of gentlemanly science that the founders of the specialist societies broke 
away from. The founding members of these breakaway groups complained of 
the tyranny of Sir Joseph Banks. The Royal Society itself was a mockery of a 
scientific society that claimed national representation when it served the needs of 
a small group of London social and political climbers and ignored the real needs 
of research. 79 However, when the opportunity arose, members of these breakaway 
groups all accepted election to the Royal Society. For the individual membership in 
the Royal Society represented the kind of social acceptance and entry into political 
spheres that membership in no other scientific or cultural group could vouchsafe. 
This was true, whether the individual in question deplored the society's connection 
to "old corruption" or not.80 The Royal Society thus enjoyed the fruits of the 
eighteenth-century patronage system, such as still existed by the 1820s. Those 
members who had earlier opted for the Astronomical or the Geological society 
later enjoyed and exploited these connections for their own research purposes.81 

Specialists tried to co-opt supervision of some of the Royal Society's functions 
as their own. Astronomical specialists deplored the quality of the Royal Society'S 
work overseeing the Board of Longitude and the content of the Nautical Almanac. 
The Astronomical Society membership was particularly vociferous as they counted 

77 See Rudwick, The Great Devonian Controversy, for an account of these new tensions, 
complicated by the search for the correct social tone that would not undermine the 
gentlemanly pretensions of its practitioners. 

78 The social divisions that rent the Geological Society in a later decade are detailed in 
Rudwick, The Great Devonian Controversy. The care with which the British Association 
orchestrated its social and cultural place in British society throughout the 1830s is detailed 
in Morrell and Thackray, Gentlemen of Science. 

79 For the struggles of the geologists see, Rudwick, "The Foundation of the Geological Soci
ety of London: Its Scheme for Cooperative Research and its Struggle for Independence," 
Brit. J. Hist. Sci. 1 (1962): 325-355. 

80 For example, see the humiliations that Michael Faraday was prepared to endure to be
come elected to the Royal Society in 1824, June Z. Fullmer and Melvyn C. Usselman, 
"Faraday's Election to the Royal Society: A Reputation in Jeopardy," Bull. Hist. Chern. 
11 (1991): 17-28. 

81 For example see John Cawood, "The Magnetic Crusade: Science and Politics in Early 
Victorian Britain," Isis, 70 (1979): 493-518. 
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these activities as part of their specialist purview.82 The Royal Society yielded to 
reform slowly. In the 1820s Humphry Davy was able to institute improvements 
in running the actual meetings of the Royal Society, the quality of the papers 
delivered and published by the society, and began to run the library as a more 
scholarly institution. He even opened up the social intermingling of fellows, that 
is those elected for their social and political connections and the scientific fellows. 
However, he managed to alienate politically powerful groups within the Society, 
including those that had helped to elect him. He resigned the presidency in 1827. 
His reforms did not address the systemic problems of the society, its relationships 
with the government and its function as a social ladder for London physicians 
that was so offensive to the growing group of scientific professionals. In 1828 
any structural reform was precluded with the election of the Duke of Sussex as 
president. Jostling for power within the society and hence for control over its future 
continued until the 1840s.83 

By the time that the Royal Society was controlled by professional scientists its 
function as the major site for the display of science and its intellectual develop
ment had been usurped by the British Association for the Advancement of Science. 
However, membership in the Royal Society never lost its place as the crowning 
social achievement in a career. The overlapping membership of the British Associ
ation and the Royal Society helped the former to consolidate its place in Victorian 
society and helped to divert government largesse to the the Association and the 
Society.84 

Specialist societies, dedicated to the needs of the research community, also 
locked out the general public from participation in the process of the creation, 
display, and legitimation of research that were the structural support of the careers 
of Dalton, Davy, and Young. The audience that was so important for science to 
acquire the correct cultural tone in the early nineteenth century were increasingly 
only allowed into the conversaziones or the Friday evening general lectures of the 
Royal Institution and other scientific societies. Social and intellectual mediators 
became necessary between those engaged in the sciences and the general public. 

82 See William J. Ashworth, "The Calculating Eye: Baily, Herschel, Babbage and the 
Business of Astronomy," Brit. 1. Hist. Sci. 27 (1994): 409-441. 

83 For a narrative ofthese events, see Marie Boas Hall,All Scientists Now. For a sociological 
analysis, see Roy Macleod, "Whigs and Savants: Reflections on the Reform Movement 
in the Royal Society, 1830-1848," in Metropolis and Province, Inkster and Morrell, eds. 
55-90. On Davy's tenure as president, see David P. Miller, "Between Hostile Camps: 
Sir Humphry Davy's Presidency of the Royal Society, 1820-1827," Brit. 1. Hist. Sci. 16 
(1983): 1-47. 

84 For the patronage of the sciences in this era, see, Cawood, "The Magnetic Crusade," and 
J. B. Morrell, "The Patronage of Mid-Victorian Science in the University of Edinburgh," 
in The Patronage of Science in the Nineteenth Century, G. L' E. Turner, ed. (Leiden: 
Noordhoff, 1976),53-93. 
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Not insignificantly many of those intermediaries between the world of science and 
of general culture were women. They were still essential for the enterprise, even 
when pushed to its margins.85 

During the same decade criticism, educational, social, and political, began to 
be directed against Oxford and Cambridge. Part of this critical barrage claimed 
that their curricula were antiquated. It was no longer enough to train the mind 
the man must be trained in a particular branch of the arts or the sciences. The 
professional was defined. Simultaneously, this pressure to reform was felt acutely 
by the Scottish Universities. Their curriculum, management, and parochial focus 
was under the scrutiny of a central government ready to economize at any oppor
tunity. While the reforms reached into parts of the fiscal management of these 
universities, neither the curriculum nor the distinct function that the universities 
saw that they filled within Scottish society seemed to have been affected.86 The 
opening of University College, London introduced other educational alternatives 
that claimed to offer a more modern curriculum. In large cities philosophical 
societies also began to offer such courses of study in the 1820s. These courses 
tended to be systematically delivered on narrowly defined subjects and replaced the 
broadly conceived surveys in natural philosophy. The rhetorical appeals to moral 
and intellectual improvement no longer appealed to an audience bent on specific 
knowledge for economic purposes rather than for entertainment or cultural and 
social uplift. They were also taught by men recognized for their more narrowly 
focussed technical abilities and accomplishments.87 Such courses attracted smaller 
numbers of students, that is men bent on using the course work in their economic, 
not their cultural, lives. Appeals to aesthetic ideals and cultural uplift were largely 
replaced by strict utility as justifications for studying nature. The latter was usually 
emphasized by mechanical philosophy that pointed in general to the connections 
of mechanics to mechanisms. Truth was replaced by narrow economic aims.88 

85 The preeminent examples are Jane Marcet in chemistry and Mary Somerville in astron
omy. See Somerville, Mechanism of the Heavens (London: J. Murray, 1831), a translation 
and commentary on Laplace's Mecanique Celeste, and Preliminary Dissertation on the 
Mechanism of the Heavens (London: 1832). See Elizabeth Patterson, Mary Somerville 
and the Cultivation of the Sciences, 1815-1840 (The Hague: Nijhoff, 1983). Faraday 
became his own mediator, establishing Friday evening lectures at the Royal Institution. 

86 See J. B. MorreIl, "Science and Scottish University Reform: Edinburgh in 1826," Brit. 
J. Hist. Sci. 6 (1972): 39-56. 

87 This can be seen in the courses offered by Michael Faraday at the Royal Institution in 
the 1820s. For changes in lecturing content and styles in London during the 1820s see, 
1. N. Hays, "The London Lecturing Empire," in Metropolis and Province, Inkster and 
MorreIl, eds. 91-119. 

88 See George A. Foote, "Mechanism, Materialism, and Science in England, 1800-1850," 
Ann. Sci. 8 (1953): 152-161, and "Science and Its Function," Osiris, 11 (1954): 438-
454. 
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None of these criticisms, agitations and changes in the ways in which natural 
philosophy was taught appeared to change the intellectual boundaries of exper
imental philosophy as a research discipline. With the new phenomena of light 
and electromagnetism, British experimentalists became more sensitive to French 
research. Yet experimentalists in Britain took note only of French experimental 
results, not mathematical physics. David Brewster was actively involved in the 
early research into polarization and fought a losing battle against the hypothesis of 
undulations. As such, he reacted to the experimental work of Fresnel and even of 
Thomas Young but not the mathematics of Cauchy or any other mathematician. 

In Brewster and Faraday we can see the interaction of British experimental 
philosophers with French experimental physics. Neither succumbed to precise 
quantitative experiments or the seduction of French ideas about light in Brewster's 
case, nor electricity, magnetism and their interaction in that of Faraday. Faraday's 
experiments in electromagnetism were precise and developed in a sequential series 
that allowed him to explore the specific consequences of his own ideas on electricity 
and magnetism in great detail. The clarity of the expression of his ideas defies 
the notion that mathematics was a necessary development for the intelligibility 
of theories in physics. Later Faraday regretted his ignorance of mathematics, 
yet in the I820s he did not feel compelled to address Ampere's mathematical 
electromagnetism. He confined himself to answering the physical ideas expressed 
in Ampere's experimental papers.89 

In the I820s the mathematical side of the disciplinary divide was kept intact in 
George Green's work on electricity and magnetism. Scientific life in Nottingham 
in the early nineteenth century centered upon the Bromley House subscription li
brary. There Green had access to Laplace in Toplis' translation, Charles Hutton's 
Course in Mathematics and other resources in the new French mathematics. He 
also had the encouragement of Sir Edward Ffrench Bromhead, one of the original 
founders of the Analytical Society at Cambridge.9o While Green's work in elec
tricity and magnetism was classified as "mixed" mathematics, it was mathematics. 
Green explored the mathematical properties of the "potential function" and the 

89 The interaction of experiment and hypothesis in the development of Faraday's thought is 
explored in David Gooding Experiment and the Making of Meaning (Dordrecht: Kluwer 
Academic, 1990). Faraday's reactions to Ampere are detailed in L. Pearce Williams, 
Michael Faraday (New York: Basic, 1965), and "Faraday and Ampere: A Critical 
Dialogue," in Faraday Rediscovered: Essays on the Life and Work of Michael Faraday, 
1791-1867, David Gooding and F. A. J. L. James, eds. (London: Macmillan, 1985), 
83-104. 

90 Sources on Green are few. See H. Gwynedd Green, "George Green," in Studies and 
Essays in the History of Science and Learning, offered in Homage to George Sarton (New 
York: Schumann, 1947), 552-593. For the richness of the local Nottingham scientific 
culture in the late eighteenth and early nineteenth centuries, see Ian Inkster, "Scientific 
Culture and Education in Nottingham, 1800-1843," Transactions of the Thoroton Society 
of Nottingham shire, 82 (1978): 45-50. 
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systematic reduction of partial differential equations of the second order to those 
of the first. His starting point for this mathematical exploration was Poisson's 
mathematical essays on electrostatics and magnetism, as well as known empirical 
laws on the same subjects. Along with following the French mathematical example 
in general, Green echoed Fourier's sentiments on the uses of the physical sciences 
for mathematics, 

The application of analysis to the physical sciences have the double 
advantage of manifesting the extraordinary powers of this wonderful 
instrument of thought, and at the same time of serving to increase them.91 

Green made explicit the connection with Fourier's work on heat in the next sentence, 
although he traced his mathematical subject matter back to Laplace and his methods 
were derived from Lagrange. 92 

Green's goal was to generalize Poisson's mathematical work. Poisson offered 
no systematic theory of equations of the type 

a= Jp d; - JXdX+YdY+ZdZ. 

In this case p was the density of electricity on the surface of a conducting sphere of 
radius r, and da was an element on the surface. The components of the electrical 
force from an external charge at the surface were X, Y, Z. The first integral 
ranged over the whole surface, and the expression X dx + Y d y + Z dz was an exact 
differential. Poisson had performed the integrations in particular cases and the 
solutions "must be looked upon as an effect of chance rather than of any regular 

and scientific character.,,93 To attack this problem Green wrote V = f pd a / r 

where V satisfied, 
a2v a2v a2v 

0=-+-+-. 
ax2 ay2 az2 

Green systematized the mathematics implicit in Poisson's work and rederived 
some of the latter's results far more directly, noting at the same time that many 
were also available in Laplace. He developed all the mathematical examples for 
which he could reach explicit solutions. He also noted in the case of the Leiden jar 
that the sum total of electricity on all surfaces was zero. He remarked that such a 
result, while surprising, "would not be difficult to verify" by experiment. Clearly 
he was concerned with the mathematical, not the experimental literature. Green 

91 George Green, An Essay on the Application of Mathematical Analysis to the Theories 
of Electricity and Magnetism (Nottingham: 1828) reprinted in Green, Mathematical 
Papers, N. M. Ferrers, ed. (New York: Chelsea Pub. Co. reprint of 1871 edition, 1970), 
1-117, p. 7. 

92 For the impact of Fourier on Green and others, see Garber, "Reading Mathematics, 
Constructing Physics," in No Truth Except in the Details, Kox and Siegel, eds. 

93 Green, Essay, 16. 
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then proceeded to reach many of Poisson's results in magnetism using the same 
elegant mathematical approach.94 

In the 1820s the boundaries between mathematics and physics remained in
tact. While mathematical methods were transformed by the importation of French 
mathematics they only reinforced traditional boundary lines between experimental 
philosophy and mathematics. The starting point for mathematics remained the 
same. Yet some of the critical changes in the development of theoretical physics in 
Britain were effected by the graduates and faculty at the university of Cambridge 
to which we must, from now on, give increasing amounts of attention. 

Cambridge was changing, being forced in new directions by its teachers, its 
students, and the world beyond the Fens. These changes were symbolized by the 
establishment of the Cambridge Philosophical Society in 1819, and the improved 
pulse of research at Cambridge and the kind of research done by its faculty. On 
the student's side was the Apostle's Club in the 1820s. Affecting both students 
and faculty was the formalization of Cambridge examination practices with the 
establishment of the Mathematical Tripos in 1824.95 

Even as their educational philosophy denied this as their goal, the establishment 
of the Tripos guaranteed that Cambridge would graduate professional mathemati
cians. With the Tripos, mathematical proficiency defined intellectual excellence. 
Since honors in the Tripos led to college and university appointments, college 
tutors, fellows, and university professors became professional mathematicians. 
With the introduction of analysis into the university examination system, research 
in mathematics developed in several different directions.96 

The selection system for faculty and teaching, now driven by the formalized 
system for honors in mathematics, negated the official educational philosophy of 
Cambridge. By 1830, despite Whewell's efforts, the Tripos no longer served as a 
means for a liberal education but as the technical training ground for mathemati
cians. If the Analytical Society was a symptom of this change, the Apostle's Club 
was its confirmation. The initial purpose of the Apostles Club was to give to a se
lect few undergraduates interested in literature much that was intellectually absent 

94 Green's theorem, the transformation of a surface into a volume integral, is discussed in 
J. J. Cross, "Integral Theorems in Cambridge mathematical Physics," in Wranglers and 
Physicists: Studies in Cambridge Physics in the Nineteenth Century, Peter Harman, ed. 
(Manchester: Manchester University Press), 112-148, 130-132. 

95 Another sign of change was the small, yet enthusiastic group of students and faculty 
attending John Henslow's lectures, field trips, and laboratory exercises in natural history. 
See Adrian Desmond and James Moore Darwin: Tortured Evolutionist (London: Michael 
Joseph, 1992), and Browne, Darwin. 

96 See Grattan-Guinness, "Mathematics and Mathematical Physics from Cambridge, 1815-
1840: A Survey of Achievement," in Wranglers and Physicists, Harman, ed. 84-111, 
95-101. 
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in Cambridge.97 The narrowness of the curriculum and the consequent isolation of 
such students were recorded in the bitterness with which the non-mathematically 
talented or inclined students recalled their years at Cambridge.98 

What the Apostles Club did for some undergraduates, the Philosophical Soci
ety did for faculty seriously engaged in research. It gave them a forum for the 
mutual exploration of common interests not available elsewhere at Cambridge.99 

Many of the faculty became specialists in their research William Whewell's re
search in the 1820s on mineralogy was a case in point. The only aspect of the 
Philosophical Society that marked it off from a modern scientific society was the 
broad range of research topics discussed in its meetings and its Transactions. 100 

While the aim of the society was specifically directed to natural philosophy and 
natural history, mathematics appeared to be the unifying interest of the members 
of the society. A strictly inductive approach was adhered to in reports on ex
periments or observations, and the extension of mathematics to new domains of 
research, mineralogy and geology in the 1829s was evident in Sedgewick's geo
metrical geology and Whewell's mineralogy. Sedgewick was the "mathematical 
geologist."lOl Whewell's papers in mineralogy fall into two groups, descriptive, 
and mathematical.102 

97 See Peter Allen, The Cambridge Apostles: The Early Years (Cambridge: Cambridge 
University Press, 1978). 

98 See A Don [Leslie Stephen] Sketches from Cambridge (London: Macmillan, 1865), 
32-47. Frances M. Brookfield, The Cambridge Apostles (London: Pittman and Sons, 
1906), chap. 1. Arthur Gray, Cambridge University, an Empirical History (New York: 
Houghton Mifflin, 1927), p. 276, on Tennyson's view of his tutor, William Whewell, 
"Billy Whistle." Thackray got revenge in The Book of Snobs where Crump, Master of St. 
Boniface was based on William Whewell, as was Dr. Sargent in Lowe the Widower. John 
Clive, Macaulay: The Shaping of the Historian (New York: Knopf, 1973), p. 21 recounts 
the disappointment of both Macaulay and his family in the 1830s at his Cambridge record. 
Macaulay saw himself as an academic failure because he was not a mathematician. See 
also the agonies of Darwin trying to understand mathematics and struggles to achieve 
a pass degree. See Desmond and Moore Darwin, and Browne Darwin. On students 
see Sheldon Rothblatt, "The Student Sub-Culture and the Examination System in early 
Nineteenth-Century Oxbridge," in The University in Society, Stone, ed. (Princeton NJ: 
Princeton University Press, 1973) 2 vols., vol. 1,247-303. 

99 For the establishment and the initial aims of the Cambridge Philosophical Society, see A. 
Rupert Hall, The Cambridge Philosophical Society: A History, 1819-1969 (Cambridge: 
Philosophical Society, 1969). 

100 The same process occurred at Oxford in the same period. See Sheldon Rothblatt, The 
Revolution of the Dons (New York: Basic Books, 1968) and Arthur Engel, "Emerg
ing Concepts of the Academic Profession at Oxford, 1800-1854," in The University in 
Society, Stone, ed. vol. 1,305-351. 

101 See Crosbie Smith, "Geologists and Mathematicians: The Rise of Physical Geology," in 
Wranglers and Physicists, Harman ed., 49-83, 52. 

102 William Whewell, "Report on Recent Progress in Mineralogy," Rep. British Assoc. 
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Students who did attend the reactivated lectures by university professors were 
treated to a different form of knowledge than earlier generations. The lectures were 
more narrowly defined and closely linked to the research interest of the faculty. 103 

During this decade the generation that began the transformation of the Cambridge 
examination system scattered geographically and intellectually. As their careers 
developed, their attitudes to mathematics and its function in the other sciences and 
in the Cambridge curriculum spread across a broad spectrum of opinion. These 
changes were driven by their experiences beyond Cambridge, even for those like 
Herschel whose earliest publications were in the mathematics so recently imported 
from France.104 

John Herschel lost direction after he left Cambridge until he entered the family 
trade of observational astronomy. By 1820 he already had learned the craft of 
grinding mirrors and the techniques of astronomical observation. Simultaneously 
he reported to the Cambridge Philosophical Society on his own experiments on 
double refraction and polarization.105 These were not his first forays into experi
mentation. He was already exploring chemistry as well as the optical properties of 
various substances. Herschel did not invite mathematics into experimental philos
ophy, yet he appreciated the new concern with quantification and error in experi
ment. He also began to establish, then develop an epistemology along with ideas 
concerning the place of mathematics within experimental philosophy. The disci
plines of physics and mathematics were distinct and experiment the surer method 
of exploring nature. While hypotheses were a legitimate aspect of experimental 

(1831-32): 322-365, is a convenient place to see how Whewell separates the hypo
thetical and physical from the geometrical and mathematical. 

103 This is best seen in the geology lectures by Adam Sedgewick, as well as those of E. D. 
Clark, followed by the lectures of Henslow and Whewell. 

104 John Herschel and Charles Babbage published on functional equations and operational 
methods of the calculus. Herschel's first papers appeared in Memoirs of the Analytical 
Society (1813) and continued into the 1820s in the Philosophical Transactions of the Royal 
Society of London and the Transactions of the Cambridge Philosophical Society. They 
continued to appear even as his research began to focus on chemistry and observational 
astronomy. See Gunther Buttman, The Shadow of the Telescope: A Biography of John 
Herschel, Bernard Pagel, trans. (New York: Scribner's Sons, 1970), and Aspects of the 
Life and Thought of Sir J. F. Herschel, S. S. Schweber ed. (New York: Arno Press, 
1981), 2 vols. Babbage's first paper on functional analysis appeared in 1815. See 
J. M. Dubbey, The Mathematical Work of Charles Babbage (New York: Cambridge 
University Press, 1978). His assessment of Babbage's achievement must be modified in 
light of contemporary French work in the same field. See Grattan-Guinness, "Babbage's 
Mathematics in its Time," Brit. J. Hist. Sci. 12 (1979): 82. 

105 See, Buttman Shadow. His work on double refraction was published as Herschel, "Double 
Refraction as a Deviation from Newton's Scale," Trans. Cambridge Phil. Soc. 1 (1822): 
21-42, and that on polarization as, Herschel, "Polarization," Trans. Cambridge Phil. Soc. 
(1823): 1-52. 
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philosophy, his epistemology was based on his own experience in observational 
astronomy, chemical and optical experiments.106 There was room in Herschel's 
philosophy of the experimental sciences for hypotheses, however, the place for 
mathematics was less clear. 107 

In some of his papers on Light, Herschel discussed the physical meaning of 
terms that enter his equations without discussing any physical hypothesis about 
the absolute nature of light. Some properties simply emerged from a series of 
experiments with no theoretical context to tie them together. Here he was careful 
to avoid physical hypotheses and extracted most of his descriptions of the properties 
of light from experiments, further explicated in geometric or algebraic form. For 
Herschel, the experiment provided the laws upon which "mixed" mathematics 
was based. lOS He also pointed out that, for all their labor, mathematicians might 
achieve results that were analytically correct but which were shown by further 
experiments to be irrelevant to the behavior of nature. Mathematicians might also 
wander off into analytical paths that experiments revealed as irrelevant because 
of problems in the initial observations on which the mathematics was based. His 
specific example was taken from double refraction, where the physical implications 
extracted from analysis were rendered nonsensical by Fresnel's recent experimental 
work. The two realms existed separately and interacted only at those places where 
such measurements could be made. In addition nature was primary, mathematics 
was a secondary art. 

In physical astronomy such clearcut distinctions between observation and math
ematics were less easily made. Mathematics was necessary for reducing the data 
and dealing with various anomalies of the motion of the planets, sun and moon. 
Herschel made the physical results of such mathematical manipulations clear in 
the example of constructing the orbit of a comet from observations. His solutions 
to the perturbations of planets from elliptical orbits were accomplished using char
acteristics that could be easily traced in the reduction of the data. He dealt with 
astronomy in the tradition of observers not mathematicians. His standards for his 
readership were high, as he expected them to follow him through the new calculus. 

106 See Herschel, Admiralty Handbook of Scientific Enquiry (London: Dawson reprint, 
1974). His ideas also appeared in his various encyclopedia articles that are examined 
below. 

107 Systematic discussion of Herschel's ideas on the place of hypotheses in "science" appear 
in Richard Yeo, "Reviewing Herschel's Discourse," Studies Hist. Phil. Sci. 20 (1989): 
541-542, "Reading Encyclopaedias," and in Defining Science: William Whewell, Natu
ral Knowledge, and Public Debate in early Victorian Britain (Cambridge: Cambridge 
University Press, 1993), 92-99. 

108 See Herschel, Treatise on Physical Astronomy, Light, and Sound (London: Richard 
Griffin and Co., n. d.). These were reprints, with the original pagination, of articles 
from the Encyclopedia Metropolitana of, "Physical Astronomy," vol. 3, 647-729, 647; 
"Light," vol. 4, 314-586; "Sound," vol. 4, 747-824, 747. 
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In his own research he had used Bessel's methods and could extract just the 
right amount of mathematics to make visible the physical reasons for its use. Yet 
in his general discussion of the relationship between the experimental and the 
mathematical sciences nothing had changed. "Pure" mathematics was a higher 
form of attainment than "mixed" mathematics. The former depended only on 
the "intuitive perception of abstract truth" and hence led to absolutely correct 
conclusions. Mixed mathematics, although a lesser art, was definitely mathematics, 
as he demonstrated in his section on mechanics. Clairaut was the first to derive 
"the correct and general laws which regulate the equilibrium of a fluid mass acted 
on by any force, and to point out their connexion with the equations of condition 
which render a function an exact differential.,,109 He began in physics and ended in 
mathematics. The mathematics of mechanics culminated in the works of Laplace 
and Lagrange. Lagrange's MecaniqueAnalytique "is a compendium of the general 
formulae and analytical artifices necessary for the treatment of every problem which 
can be proposed in the equation of motion of matter." Mathematics, not physics. lID 

As Herschel's research turned to observational astronomy, mathematics became 
a tool for experimentalists and observers. Anything more was superfluous and for 
the most part irrelevant, an opinion shared and expressed more vehemently and less 
eloquently by George Biddell Airy. Airy had not taken part in the initial debates 
over the new analytical methods. He was one of the first students to go through 
the examination system at Cambridge after these methods were in place. lll Very 
quickly Airy developed his own ideas about mathematics that particularly suited his 
own talents and from which he developed a singular career. In his autobiography 
Airy claimed to dislike "mere theoretical problems." This was written after a 
lifetime of work making mathematics practical at Greenwich Observatory "at any 
cost oflabor." He viewed skeptically any mathematical result that were not based in 
the physical entities of space, time, and matter. While expressing what seems like 
a traditional understanding of the relationship between mathematics and physics 
Airy narrowed this view. He could not see any value in mathematics not used in 
solving the problems posed by nature. Airy's earliest texts and papers bear out 
these values, made more explicit and general later. His Mathematical Tracts were 
purely utilitarian treatments of those parts of Newton's Principia required for the 
Cambridge examinations, translating physical problems into analytical form and 

109 On the term "mixed mathematics" and its changing meanings, see Gary I. Brown, "The 
Evolution of the Term "Mixed Mathematics"," J. Hist. Ideas (1991): 81-102. Brown 
points out that during the nineteenth century the term was dropped and replaced by 
applied mathematics but does not discuss any reasons for this change. 

110 Herschel, "Mathematics," Edinburgh Encyclopedia, David Brewster, ed. (Edinburgh: W. 
Blackwood, 1830) vol. 13, pt. 1,359-383. On Clairaut see p. 381. See also p. 382 where 
Herschel noted that Clairaut was a mathematician not an astronomer. For Lagrange see 
p.383. 

111 He was Senior Wrangler in 1823. 



204 Physics and Mathematics 

developing only that much mathematics necessary to solve those problems. He also 
took the student through the problems as if they were observational astronomers. 112 

Airy's mathematical tract on the undulatory theory of light was not so obviously 
a training manual. Airy differentiated between the "geometrical" part of the theory 
that depended only on assuming that light was a transverse wave that traveled at 
different velocities in different media and the "mechanical" part of the theory 
that depended upon hypotheses, "far from certain" on the internal behavior of 
the ether. In developing mathematical methods, he used only those that were 
necessary to solve specific problems. The general solution to the wave equation 
was discarded for various particular ones that were related to actually observed 
phenomena. Physical interpretations of mathematical results were explicit and 
unnecessary hypotheses were avoided. Mathematics was focussed here on the 
needs of physics. 

Airy left Cambridge for Greenwich in 1835 and was replaced by James Challis 
as Plumian Professor. Challis therefore took over the training of students as astro
nomicalobservers. He interpreted his responsibilities as having to teach astronomy 
as natural philosophy. His astronomy lectures dealt with the instrumentation and 
observational techniques of astronomy; diagrams and drawings were used as illus
trations. After the construction of the university observatory, Challis drew students 
into the observation process and the reduction of data and developed a fine teaching 
and research facility, a result that surprised the French. l13 Similarly, in his demon
stration lectures on natural philosophy, mathematics only entered as the expression 
of the laws extracted from his experiments. However, in his research Challis de
veloped his own mathematical theories of physical phenomena on a grand scale, 
closer to French mathematical physics than theoretical physics.114 

George Peacock, one of the original members of the Analytical Society, was 
at the other end of the mathematical spectrum. Peacock stayed at Cambridge 
long enough to become embroiled in the debates over the content of the Cam
bridge curriculum. He defended algebra that was as mathematics legitimate as 

112 George Biddell Airy, Mathematical Tracts on Physical Astronomy, The Figure of the 
Earth, and the Calculus of Variations designed for the Use of Students in the University 
(Cambridge: Deighton, 1826). 

113 See Harvey Becher, "Voluntary Science in Nineteenth-Century Cambridge to 1850," Brit. 
1. Hist. Sci. 19 (1986): 57-87,68-70. 

114 James Challis,Notes on the Principles of Pure and Applied Calculation: and the Appli
cation of Mathematical Principles to Theories of Physical Force (Cambridge: Deighton, 
Bell and Co., 1869). Challis reduced gravity, heat and other forces of nature to mechanical 
pressure in a fluid ether. While analytically defensible, James Clerk Maxwell described 
Challis' work as self-consistent mathematically, but physically indefensible. Challis' 
fluids could not behave as ordinary fluids. See Maxwell,"Challis' 'Mathematical Prin
ciples of Physics' ," Nature, 8 (1873): 279-280, reprinted in Maxwell on Molecules and 
Gases, Garber, Brush and Everitt, eds. (Cambridge MA.: MIT Press, 1986), 126-132. 
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geometry for training the mind. Geometry had this primary function in the Cam
bridge liberal education philosophy and teaching at the university. Continuing the 
eighteenth-century tradition geometry was a mathematics rooted in the physical 
world. Philosophically geometry was well grounded and based on axioms and 
definitions and connected through theorems to known results. It could also be 
taught that way as well and justified as training for the mind. Algebra could claim 
no such philosophical or pedagogical structure. This criticism threatened the very 
methods ofthe analysis so recently introduced into Cambridge. Peacock countered 
these arguments by putting algebra on the same foundations and creating for it a 
logical structure. He thus met head-on Whewell's growing opposition to analysis 
in the curriculum. lI5 This exploration of the foundations of algebra did not lead 
Peacock to Cauchy's calculus but to the development of symbolic algebra-algebra 
as logic. For Peacock, arithmetic was a restricted form of algebra. Algebra was 
a generalized form of arithmetic but non-commutative algebra, for example, was 
impossible.lI6 

During the 1830s and 1840s Whewell appeared to win the battle over the cur
riculum. However, the examinations system worked against his proclaimed goal 
of using mathematics as the foundation of a liberal education. The competition for 
place in the Tripos ensured that the examination, rather than the curriculum, mat
tered among ambitious students. This in turn guaranteed that Cambridge trained 
the narrowly educated, yet technically accomplished, mathematician Whewell de-

115 Whewell's opinions on analysis and its place in the curriculum changed over time and in 
the context in which he was placed and the subject discussed. As his career at Cambridge 
developed his defense of geometry against the inroads of French analysis grew. For the 
arguments over the Cambridge curriculum and the meaning of a liberal education see, 
Martha McMackin Garland, Cambridge before Darwin: The Ideal of aLiberal Education, 
1800-1860 (Cambridge: Cambridge University Press, 1980). M. V. Wilkes has explored 
the roles of Peacock, and Herschel in shaping the Cambridge curriculum in the middle 
of the nineteenth century in Wilkes, "Herschel, Peacock, Babbage and the Development 
of the Cambridge Curriculum," Notes Rec. Roy. Soc. London 44 (1990): 205-219, that 
of Whewell in Harvey Becher, "William Whewell and Cambridge Mathematics," Hist. 
Stud. Phys. Sci. 11 (1980): 1-48. 

116 Peacock, Treatise on Algebra (Cambridge: Deighton, 1830). For a survey of the his
toriography and the development of symbolic algebra, see Menachem Fisch, "'The 
Emergency which has arrived': the Problematic History of Nineteenth-Century British 
Algebra-a Programmatic Outline," Brit. J. Rist. Sci. 27 (1994): 247-276. For the de
velopment of British explorations of "foundational" issues in mathematics see, Elaine 
Koppelman, "The Calculus of Operations and Rise of Abstract Algebra," Arch. Hist. Ex
act Sci. 8 (1971): 155-242, Joan Richards, "The Art and Science of British Algebra: A 
Study in the Perception of Mathematical Truth," Rist. Math. 7 (1980): 343-365, Helen 
Pycior, "George Peacock and the British Origins of Symbolical Algebra," same journal 
8 (1981): 23-45, "Early Criticism of the Symbolic Approach to Algebra," same journal 
9 (1982): 392-412, Joan Richards, "Rigor and Clarity: Foundations of Mathematics in 
France and England, 1800-1840," Sci. Context 4 (1991): 297-319. 
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plored. This was the French model of the mathematician he began to criticize in the 
1820s. While the Analytical Society began at the tail end of the process of introduc
ing the new French mathematics into Britain, the Analysts were largely successful 
in introducing it into the Cambridge examination system. Initially, Cambridge 
mathematicians took the forms of the calculus of Lagrange, Laplace, and Poisson, 
while ignoring the debates that had divided these mathematicians earlier in the 
nineteenth century. They also largely ignored or criticized the physical models 
that informed the mathematics of Laplace and Poisson. The Cambridge Tripos 
carried on the tradition of French mathematical physics, using the mathematics en
capsulated within Lacroix's texts and now largely abandoned by the French. Thus 
it was unnoticed by the French. Their French models also gave them the physical 
subjects upon which the Cambridge mathematicians built. The mathematics they 
developed initially was generated by mechanics and celestial mechanics, which 
formed the basis of examination questions and research problems. 

After 1830, later forms of the calculus developed by Cauchy and Fourier became 
a source of problems and of methods for English mathematicians none of whom 
explored the incompatibilities between their earlier sources and these later French 
mathematicians. In the late 1830s, the sources for their mathematics had spread 
into light, electricity, and magnetism. 

What this education and research did not guarantee was a turn towards natural 
philosophy or theoretical physics. At Cambridge as in France, physical problems 
continued to be the inspiration for forays into mathematics. Theoretical physics 
did not appear at Cambridge until after 1850. In the 1820s we already have the 
development of extremes with respect to mathematics, with Herschel and Airy, 
proclaiming it as a tool, and Peacock defending what became a uniquely British 
form of pure mathematics. We also have both Airy and Herschel trying to connect 
mathematics and its manipulation to physical understanding of their observational 
results. However, both were suspicious of the use of hypotheses within what they 
regarded as the purely empirical and inductive sciences. 

Yet out of this mix of battles over the curriculum and uncertainty over the place 
of hypotheses in the experimental sciences, theoretical physics emerged in some 
of its incarnations during the late 1840s and into the 1850s in the work of George 
Gabriel Stokes, William Thomson and James Clerk Maxwell. 



Part III 

Transformations, 1830-1870 



Mathematics constitutes the language through which alone 
we can adequately express the great facts of the natural world. * 

• Ada, Lady Lovelace, "Sketch of the Analytical Engine invented by Charles Babbage," in 

Taylor's Scientific Memoirs, (1843): 696. 



Chapter VII 

From Natural Philosophy and 'Mixed Mathematics' 

to Theoretical and Experimental Physics: 

Britain, 1830-1870 

Most accounts of physics in the mid-nineteenth century focus on the conceptual 
transformations of the field. The date when conservation of energy and field theory 
became embedded in the research life of the discipline determines periodization.1 

These accounts are closely connected to the sense that the history of physics is 
written in the lives of the singular individuals that first clarified and stated these 
concepts.2 Historians recently have focussed on communities of fellow practition
ers and their interactions with their fellows rather than a few individuals in their 
isolated grandeur as thinkers.3 The legacy of intellectual leaders is often seen as 
less clearcut and more given to diverse interpretation than in earlier depictions. 
Above all, they are seen more often than not as a product of their time and place. 
Physics has become a product of many hands.4 

Nowhere is this more certain than in Britain in the middle of the nineteenth 
century for all the "inductive" and "mathematical" sciences. In a conscious effort 
to assert a place within British society and at the same time define their cultural 
function, practitioners of nineteenth-century science developed new social and in
tellectual forms and introduced new definitions and descriptions of their work. In 

1 This was made explicit by Thomas Kuhn, Revolutions, and L. Pearce Williams, "The 
Physical Sciences in the First Half of the Nineteenth Century: Problems and Sources," 
Hist. Sci. 1 (1962): 1-15. For Williams the history of nineteenth-century physics after 
the discovery of the conservation of energy was a footnote to what had gone before. 

2 Williams," The Historiography of Victorian Science," Viet. Stud. 9 (1966): 1977-204. 

3 The clearest documented example of this thus far is Darwin's network of colleagues and 
acquaintances from which he gleaned support, information, and opinions. On a much 
smaller scale this can be seen in the mutual support system of Maxwell, Thomson, and 
Tait. 

4 The historiography, difficulties, and advantages of biographies in science are discussed in 
Telling Lives in Science: Essays on Scientific Biography, Michael Shortland and Richard 
Yeo, eds. (Cambridge: Cambridge University Press, 1996). 
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creating these new social forms, nineteenth-century British scientists responded 
to the demands of society and took the opportunities of those demands to develop 
careers. They also used their new institutions as well as older ones to forge a 
particular image for their disciplines which located science and its practitioners 
firmly within the socially respectable, ideologically safe classes in British society. 
Similarly the transformations of their practices were neither random nor arbitrary. 
These new practices described the changes occurring in the sciences and encap
sulated their practitioners ideal vision of their work, their place, and function in 
society and culture. These were given visible form in the establishment of the 
British Association for the Advancement of Science. Taking advantage of the eco
nomic developments and the call for educational reform in mid-century, scientists 
forged academic and consulting careers for themselves in government and indus
try. In doing so they increased the distance between their practices and the general 
public for whom they continually claimed their work was so central. 

The emergence of physics as a distinct field within the sciences took place and 
reflected the changing practices, functions, and cultural place of the sciences in 
nineteenth-century Britain. The transformation of mixed mathematics and ex
perimental and natural philosophy into applied mathematics and theoretical and 
experimental physics exemplified the professionalization of science. These pro
cesses also demonstrated the fragmentation of natural philosophy into specialties, 
its development into an autonomous culture, and its increasing isolation from the 
general public, even as it became more important for the industrial economy. These 
displacements also led to transformations in teaching and research practices within 
natural philosophy and mathematics as they were molded into physics. The site 
of many of these changes was Cambridge University. Most of the men who cre
ated theoretical physics were trained to excel in the Mathematical Tripos. While 
written against general disciplinary and social changes, the transformation of this 
mathematical training into a research career in physics is highlighted through the 
work of a few individuals, George Gabriel Stokes, William Thomson and James 
Clerk Maxwell. Of these, only Maxwell examined the process they had put into 
motion, yet they all acted as though they were aware that the goals of their work 
set them apart from the mathematical majority at Cambridge. They behaved as if 
they already belonged to an international discipline with members scattered across 
Europe and the United States. 

Keywords 

During the early decades of this period, a number of keywords were introduced 
into the general discourse of science or changed their meanings significantly. Doc
trine became theory. Theory connoted a logically developed sequence of conse
quences from a set of defined ideas. Metaphor and analogy alone no longer served 
to connect experimental results to hypotheses about nature. Hypothesis replaced 



Britain 1830-1870 211 

speculation to describe conjectures about nature's structure and functioning. Spec
ulation now carried the connotation of recklessness and intellectual infelicity, if not 
a general coarseness of thinking. Renaming brought respectability and reflected 
the understanding, both formal and informal, that suppositions about nature were 
necessary and central to the practice of science. Hypotheses were at the same 
time of narrower signification than speculation. The latter encompassed the whole 
theorizing process, analogs, and metaphors, onto which phenomena were loosely 
attached. Hypotheses signified the foundational ideas upon which a conjectural, 
yet logical structure was built and into which observations and experimental results 
were embedded. Finally the study of nature was no longer philosophy but science. 
This indicated the autonomy that practitioners demanded and established a claim 
for the results of their explorations of nature which earlier philosophers were wary 
of. The meaning of this term was also narrowed and clarified by the methods that 
these practitioners professed as theirs alone to reveal a truth not vouchsafed to 
other methods or practitioners. 

In a revealing invention that built on this new meaning for the term science, 
William Whewell encompassed the new practices and social function of his col
leagues in the term scientist. Whewell recognized that philosophy had lost its unity 
and limited science to the study of the natural, but not the moral world. He also 
understood that, as he wrote, science itself was fragmenting. The tendency of sci
ence was fragmentation, "the mathematician turns from the chemist," and chemist 
from the mathematician, and, if left to themselves, the mathematicians divide into 
the "pure" and the "mixed." Later he differentiated and named the physicist in an 
English imitation of the French term physicien. Experimental philosopher was a 
term of the past. While he understood the symptoms of the changes in practice 
around him, named and classified them, Whewell also investigated them histori
cally and philosophically. These investigations were colored by his understanding 
of the research on the tides he was simultaneously engaged in.5 For our purposes, 
the most important aspect of Whewell's study of science lies in his understanding 
of the necessity for hypotheses within the "inductive" sciences that he formally 
established as philosophically legitimate.6 

Whewell also detected changes in the actual methods used to study nature and 
the influence of the French mathematics and experiment. 7 He noted that the prac-

5 For his remarks on science, scientist, and physicist, see William Whewell, "Review of 
Mary Somerville, Connexion of the Sciences," Quarterly Rev. 51 (1834): 58-68,59-60. 
See also S. Ross, "Scientist: The Story of a Word," Ann. Sci. 18 (1962): 65-85. 

6 See Richard Yeo, Defining Science. Of his contemporaries John Herschel admired his 
philosophical work yet disagreed with him, as did Airy and Brewster. 

7 Geoffrey Cantor has investigated the juxtaposition of natural philosopher versus scientist 
on more philosophical grounds in Cantor, "The Reception of the Wave Theory of Light 
in Britain: A Case Study illustrating the Role of Methodology in Scientific Debate," Hist. 
Stud. Phys. Sci. 6 (1975): 109-132. However, Cantor assumes that all papers on wave 
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tice of experimentalists was now self-consciously quantitative. The exactitude so 
evident in observational astronomy was only just being introduced into experimen
tal physics.8 The growing importance of precision and measurement was signaled 
also in the establishment of a Statistics Section of the British Association in 1833.9 

The end result of performing quantitative experiments was the narrowing of 
access to experimental and observational research. Instrumentation and apparatus 
became ever more expensive, required institutional resources, the resources of the 
very rich, or the government. The manipulation of instruments and expensive 
apparatus required systematic training in their use and an understanding of the 
meanings encoded in the quantities measured. Training included an understanding 
of how instrument and theory met, hence what was measurable and the limitations 
of the measurement methodology. As the lower limit on resources to enter the 
experimental sciences escalated, so did the lower limits on experimental skill. 
Fewer men could expect to enter the research community. Both the practices of 
research and training to enter the research community were reorganized. 

Simultaneously the changes in institutional structure made the transformation 
in research manifest and then standard within the experimental sciences. In the 
vanguard of the display of this new form for the experimental sciences was an 
equally new organization, the British Association for the Advancement of Science. 

The Crucial Tum: the 1830s 

The British Association for the Advancement of Science gave scientists a na
tional institutional unity that was previously lacking. Some historians have seen 
the rich diversity of pre-Association scientific institutions as dividing the scientific 
community into intellectual, methodological, religious, and ideologically warring 
factions. Others have tied the lack of a unified social structure for science to pre-

theory lie within physics without looking at the role of physical imagery in some papers 
where it is marginal at best. 

8 British observational astronomers then physicists went beyond the quantitative French 
experimentalists in their investigations of the limitations of these new methods. For the de
velopment of these methods, see Zeno G. Swijtink, "The Objectification of Observation: 
Measurement and Statistical Method in the Nineteenth Century," in The Probabilistic 
Revolution, Lorenz KrUger, Lorraine J. Daston and Michael Heidelberger, eds. (Cam
bridge MA.: MIT Press, 1990),2 vols., vol. 1,261-285, Simon Schaffer, "Astronomers 
Mark Time: Discipline and the Personal Equation," Sci. Context 2 (1988): 115-145. See 
also John Cawood, "The Magnetic Crusade." Cawood narrates the advent of accurate 
geomagnetic measurement as well as a major lobbying effort to gain funds from the 
government for this worldwide, long-term effort. 

9 This was not the only function of the Section. See Lawrence Goldman, "The Origins of 
British 'Social Science': Political Economy, Natural Science, and Statistics, 1830-1835," 
Hist. J. 26 (1983): 587-616. 
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vailing social values of individualism, voluntarism, and laissez-faire economics.lO 
No argument addresses the reasons for scientists to actually form a new voluntarist 
organization. Nor do they explain why the British Association was a success right 
from its first meeting at York. We need to accept that criticisms and attempts at 
reform of the Royal Society, the cries of distress at the lack of government sup
port for science, and other discontents expressed in the late 1820s and early 1830s 
were more than demands for funding, or cultural and personal ambition, although 
the latter were certainly ingredients in the mix. While the British Association 
ostensibly was based on the Gesellschaft Deutsche Naturforscher und .Artze, its 
purposes were somewhat different. A national forum seemed essential to address 
the needs of and give collective identity to practitioners of the sciences. From 
the perspective of Britain, France and the German States already possessed such 
organizations as well as the attention of their governments. Funding of research 
also could be taken for granted. By 1830 science in France and in the German 
universities was a profession. The added advantage of the German professoriate 
was that their universities were government institutions. They were Civil Servants. 
No such attention or assurances of even minimal funding existed in Britain. At 
those early meetings, scientists could point to both French and German institutions 
that gave scientists a communal identity and a social place that British scientists 
had to forge for themselves. In Britain in the 1820s, experimental philosophers 
were already fast becoming scientists and their numbers were multiplying. In this 
era the increasing volume of research around clearly defined problems conveys a 
sense of disciplinary identity that transcended locality. This was already expressed 
socially in the establishment of some specialist societies. 

The British Association from its first meeting met the need for a national or
ganization for practitioners of science. The sections devoted to specialist reports 
recognized the ongoing intellectual changes within the sciences and gave them 
social expression. The general meetings of the whole body reinforced a sense of 
identity in a new endeavor within British society. In its first decade, the British 
Association largely defined that identity. 

The public and the government had to be educated in the utility of research 
and the necessity for government funding. British scientists were also under other 
political restrictions. The Great Reform Bill was generating pressures for change 
along with social tensions and political suspicion. ll In science these tensions and 

10 The differences are emphasized in Parliament a/Science, Roy Macleod and Peter Collins, 
eds.(Norwood: Science Reviews, 1981) and glossed over in Morrell and Thackray, Gen
tlemen a/Science. For Individualism, see J. B. Morrell, "Individualism and the Structure 
of British Science in 1830," Hist. Stud. Phys. Sci. 3 (1971): 183-204. 

11 For a recent discussion on the historiography of the Reform Act, see John A. Phillips and 
Charles Wetherell, "The Great Reform Act and the Political Modernization of England," 
Amer. Hist. Rev. 100 (1995): 411-436. The authors argue that despite recent scholarship 
1832 marked a watershed in the political life of England. 
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suspicions were exacerbated by the battles within the Royal Society and the Decline 
of Science debates. Political damage to the founding of a national organization 
became very possible unless handled carefully because of the Royal Society's 
connections with the government and the criticisms of those connections. As well 
as fostering external skepticism and suspicion, the debates forced divisions within 
the ranks of the scientists making the practical problem of drawing them together 
that much more difficult. 12 

William Whewell wanted to retain the monopoly of Cambridge University over 
mathematics, the science regarded as a key element of the change from natural 
philosophy to science. Any changes in the status quo, including governmental 
funding, threatened this primacy.13 He quickly moved to help frame the British 
Association when convinced that the movement would be out of his grasp if he 
did not join. John Herschel was not against government funding, although he 
considered himself above the political fray because of his wealth. This public 
persona gave him immense credibility as a spokesman for science. While Charles 
Babbage, Herschel, and Whewell could join David Brewster in arguing for the 
utility of science, that utility was tied to the "higher" aims of national government. 
Herschel and Whewell did not see utility in terms of commerce, industry or the 
lives of ordinary citizens, closer to Brewster's concerns. 

Personal disputes and ambitions could become other reasons to wreck the fledg
ling organization unless kept within reason. If the British Association was to 
act as a national organization, scientists with reputations to match had to be at 
its center. If government was to be convinced that science was important to the 
nation, scientists with access to the government were necessary to lead that same 
organization. This new national institution had to be suitably framed and tamed to 
pose no social, cultural, or ideological threat in such a tense political atmosphere.14 

Internally the purposes of the Association meshed with those of emerging pro
fessionals. Reports and papers delivered in the sections were geared to the research 
community of the various disciplines. Cultivators of science were welcomed, their 
numbers helped to demonstrate and add to the claims for government attention. 
They had no say in the shaping of the institution. The scientific business of the 
Association was in the hands of specialists who arranged the meetings, chose the 
programs, and vetted submitted papers. They also chose who addressed the gen
eral public in the open sessions, and hence represented science to the laity. In the 
1830s the clerisy could define and control this image and even the doing of sci
ence within the Association. However, there were already signs that such control 

12 These conflicts and the solutions to them are detailed in Morrell and Thackray, Gentlemen 
of Science, chap. 2. 

13 However, Whewell was not above accepting government monies later in the 1830s. 

14 The British Association, its social and cultural framing and the maintenance of this stance 
are detailed in Morrell and Thackray, Gentlemen of Science, chap. 3. 
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was impossible beyond the annual meetings and even within some sections of the 
Association as well. 

The very size and public display of the annual meeting did not meet with univer
sal acceptance. The theatrical aspects of the meetings, the sightseeing expeditions, 
the social spectacle all guaranteed that the message that the study of nature was 
being done in new ways was not lost on the public.15 Yet this new enterprise still 
functioned within the confines of particular cultural norms. Science remained a 
gentlemanly pursuit while proclaiming that it was culturally, economically, intel
lectually, and morally necessary to the nation. In cutting its annual swath through 
British society, members of the British Association separated themselves visibly 
from the values expressed in the Royal Society with the latter's ties to outmoded 
political values and forms. The Association managed to do this without visible 
signs of political entanglements. 

Within a decade the Association was indispensable for the practitioners of the 
sciences. The Association met many needs of the growing professions within 
science whether or not the rank and file of the sciences shared the political ideology 
and cultural pretensions of its leaders. Careers were launched with papers at the 
sections. New work presented in its meetings was important for physicists and 
mathematicians who formed no national, disciplinary societies of their own. It 
united individuals through the research they shared at the annual meetings. If this 
was not enough, there was a steady stream of commissioned review articles on 
various branches of the sciences. In the 1830s the subject matter, content, and 
viewpoints expressed within these reports helped to define what science was. 

During the 1830s the papers of Section A helped to define the practices of math
ematicians and physicists. The reports in physics and mathematics were narrowly 
focussed on the tides, electricity and magnetism, conical refraction, algebra, etc. 
Their authors were all centrally placed in the research community of those subjects. 
They did not necessarily alter every aspect of those disciplines. The influence of 
the French was heavy in terms of the problems chosen as subjects of reports. The 
French also provided the results and methodologies in attacking research prob
lems whose solutions were the subject of annual progress reports. Exploitation of 
French practices only reinforced the traditional geography and boundaries between 
the experimental science of physics and mathematics. In detail the reports often 
reflect the practices and prejudices of the individual making the reports rather than 
present a coherent sense of either experimental physics or mathematics. They also 
served other purposes. Both Whewell's and Peacock's reports were intellectual 
salvos in the ongoing battle over the Cambridge curriculum. 

15 See A. D. Orange, "Idols of the theater: The British Association and its Early Critics," 
Ann. Sci. 32 (1975): 277-294. For the growing unease of some religious leaders over 
the developing cultural power of science, see Frank M. Turner, "The Victorian Conflict 
between Science and Religion: A Professional Dimension," Isis 69 (1978): 356-376. 
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Reports to Section A share some common characteristics. Mathematics based 
on the algebraic relationships deduced from quantiiative experiments provided a 
descriptive development. It did not provide an explication of physical processes. 
Hypotheses were accepted as an aspect of the search for understanding the pro
cesses of nature and rightly belonged within physics. Theoretical considerations 
were provided separately usually in a non-mathematical, physical addition to the 
report. Reports in mathematics also set known, experimental results within a net of 
mathematics. Occasionally the mathematician might predict a new physical result, 
but not give a physical explanation for its occurrence. 

Physics was still experiment. Both Baden Powell's report on radiant heat and 
Brewster's report on optics were concerned wholly with observations, experimental 
work and their interpretation. No mathematical deductions or algebraic generaliza
tions grace either paper. Powell induded tables of data but deduced nothing from 
them. The same was true of S. Hunter Christie's report on terrestrial magnetism. 
The only difference lay in Christie's inclusion of Gauss' suggestions on methods 
of observation.16 

On the other side of the disciplinary boundary was George Peacock's report 
on analysis. Peacock was at pains to establish algebra as equally deductive and 
rigorous as geometry. He placed French mathematics within the context of his own 
interest in symbolic algebra. He emphasized that modern analysis bore the same 
relationship to physics as did geometry to the real world. In principle, analysis 
was a legitimate "mixed" form of mathematics. Peacock pointed out that while 
"speculative" mathematics began in principles and definitions that were absolute, 
the mathematics of the physical sciences were based on contingent definitions 
and principles that were constantly the subject of experimental research and re
examination. These principles were "the basis of those interpretations which are 
perpetually required to connect our mathematics with the corresponding physical 
conclusions." Peacock gave some space in his report to defending Fourier analysis, 
and showed how Fourier's methods could be applied to discontinuous functions. 
He even provided a geometrical illustration of how Fourier's solutions could rep
resent such a function, although Peacock also noted the unsatisfactory nature of 
some of Fourier's proofS.17 

16 David Brewster, "Report on Recent Progress in Optics," Rep. British Assoc. (1832): 
308-322; Baden Powell, "Report on Our Present Knowledge of the Science of Radiant 
Heat," Rep. BritishAssoc. (1833): 259-301; S. Hunter Christie, "State of Our Knowledge 
Respecting the Magnetism of the Earth," Rep. British Assoc. (1834): 105-130. See also 
James David Forbes, "Report on recent Progress and present State of Meteorology," Rep. 
British Assoc. 1 (1831): 196-258. 

17 George Peacock, "Report on the Recent Progress and Present State of Certain Branches of 
Analysis," Rep. British Assoc. (1833): 185-352, his discussion of Fourier, 248-259. For 
Peacock's mathematics, see Koppelman, "The Calculus of Operation," Arch. Hist. Exact 
Sci. 8 (1972): 155-242; Richards, "The Art and Science of British Algebra,"; Helene 
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The critical issue of the relationship between mathematics and observation arose 
in the reports on experimental physics, which also had been the subject of sustained 
mathematical development. Humphry Lloyd gave voice to a new relation between 
experiment and mathematics. Vague physical speculations were no longer enough 
when mathematicians compared experimental results to those of their mathemat
ics. However attractive an hypothesis, "it is only when it admits of mathematical 
expression, and when its mathematical consequences can be numerically compared 
with established facts, that its truth can be fully and finally ascertained." This was 
important for Lloyd to state because the point of his report was not to investigate 
"mathematical optics" in detail but to establish the validity of the hypothesis that 
light was a transverse wave in the ether. He presented the mathematics of William 
Rowan Hamilton, Augustin Cauchy, James MacCullagh and Augustin Fresnel 
as mathematical theories. 18 Lloyd pointed out Cauchy's work as, "an interesting 
department of analysis" but not strictly a physical theory. This was because in 
Cauchy, 

the phenomena of light are not connected directly with any given physical 
hypothesis; but are shown to be comprehended in the results of the 
general theory, in virtue of certain assumed relations among the constant 
which that theory involves.19 

Cauchy chose the coefficients in his equations for the wave fronts in a crystal so 
that they were compatible with Fresnel's experimental results. The actual behavior 
of light in a crystal remained a mystery. 

Physically detailed theories were not part of mathematics. Experiment only 
tested the foundations of the mathematics, the hypotheses on which they were 
based. Physical explication remained in non-mathematical language and belonged 
to physics proper. In Lloyd's case, he gave Cauchy's mathematics physical meaning 
(wave fronts) but realized that arbitrary constants added nothing to the physical 
explanation of the behavior of light. What he did not tell his listeners was how he 
deduced the physical meaning he had found in Cauchy's analysis. 

In a similar fashion Whewell used geometry to treat mineralogy as a branch of 
mathematics. The physical foundations for mineralogy lay in the optical, and other 
measured, properties of minerals.2o James Challis shared the common view that 

Pycior, "Internalism, Externalism and Beyond: Nineteenth-Century British Algebra," 
Hist. Math. 11 (1984): 424-441, and Menachem Fisch, "'The Emergency which has 
arrived'." For a discussion on the impact of Fourier on mathematics in Britain, see 
Garber, "Reading Mathematics, constructing Physics," in No Truth Except in the Details, 
Kox and Siegel, eds. 31-54. 

18 Hamilton's work on optics, as Lloyd knew, stood apart from any specific hypothesis of 
the nature of light. 

19 Lloyd, "Report on the Progress and present State of Physical Optics," Rep. British Assoc. 
(1834): 295-413,39l. 

20 Whewell, "Report on the recent Progress of and present State of Mineralogy,"Rep. British 
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problems of physics were the source of mathematical exercises. These types of 
studies, "the highest department of the physical sciences, may be properly denom
inated Mathematical Physics." The source for his mathematics and the physical 
model on which they were based lay in Laplace and Poisson. The problem of 
universal gravitation was solved only on a macroscopic level, the evidence of its 
validity was mathematical. Similarly, evidence for the theory of the attraction of 
particles on the molecular level on which theories of capillarity were based was also 
mathematical. Challis regarded the results of experiments that matched mathemat
ical solutions as confirming those mathematical solutions. He also noted that such 
mathematical theories were full of constants to be determined by experiments.21 

In his report on capillarity, Challis confronted mathematical deductions with the 
results of ongoing experiments. Yet the details of the molecular-force model and 
the phenomenological results that it led to were still expressed in the vernacular. 
There was no explanation of how resultant molecular forces could be expressed al
gebraically, although their effects were vouched for by experiment. 22 Challis took 
over a particular form of French mathematical physics and was more successful 
than either Poisson or Laplace at explaining the actual forces between molecules. 
Whether Challis practiced mathematical physics or "physical mathematics," it was 
not theoretical physics. It is difficult to see whether the point of his report was the 
development of mathematics using solutions to physical problems or merely their 
confirmation through experiment. He saw the mantle he assumed as coming ulti
mately from Newton. And Challis' commitment to this foundation of his version 
of Newtonianism and analysis was lifelong.23 His research on fluids was based on 
his conviction that the internal structure of matter depended upon attractive and re
pulsive forces that were only expressible mathematically, and that the mathematics 
for this expression was in the work of Laplace and Poisson. 

Any analysis of Whewell 's reports to the British Association has to deal with the 
complication of his ongoing battle to define the curriculum at Cambridge. In his 
report on the mathematical theories of electricity and heat, Whewell disparaged 
Fourier's mathematics. He did not have too many good things to state about 
Poisson's either, although he only reported on Poisson's mathematical theory of 
electricity and magnetism.24 His actual examination of Poisson's work was cursory 

Assoc. (1832): 322-365 

21 James Challis, "Report on the Analytical Theory of Hydrostatics and Hydrodynamics," 
Rep. British Assoc. 3 (1833): 131-151. 

22 James Challis, "Report on the Theory of Capillary Action," Rep. British Assoc. (1834): 
253-294. 

23 See Challis, Remarks on the Cambridge Mathematical Studies and their Relation to 
Modern Physical Science (Cambridge: Deighton Bell and Co., 1875). An alternative 
title might be "Back to Newton." 

24 Whewell apparently was ignorant of Green's work. 
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as Whewell restricted his remarks to those cases where Poisson compared his 
analytical results directly with experiment. Whewell chose to quibble with the 
physical model from which Poisson extracted his mathematics. Yet Whewell took 
Poisson's comparisons at face value. He assumed that the analytical conditions 
reflected those of the experiments. When he dealt with the differences between 
mathematical and experimental results, inaccuracy belonged to the observations. 
Yet he concluded that mathematics and experiment "coincide as near as could be 
expected." 

Whewell understood Poisson's mathematics as its form was that of Laplace's 
celestial mechanics and grounded in problems familiar from the Cambridge cur
riculum. He was not so charmed by Laplace's mechanism for the conduction of 
heat in a body. Nor for that matter did he like Fourier's. He judged Fourier's physi
cal reasoning incorrect. However Whewell had to accept Fourier's equation for the 
conduction of heat. Hammering away at Fourier, Whewell insisted that he could 
not dispense with molecular reasoning in his account of the cooling of the earth. 
He echoed Poisson's criticisms as well. Fourier's solution for the equilibrium 
conduction of heat in a lamina, 

such as T = e-mx cos my, were only particular solutions. For a complete solution 
to this equation boundary conditions for the temperature, T, must be introduced 
in the form of some "prescribed law." This led him to the consideration of discon
tinuous functions, a "curious and perplexing part of analysis." 

He focused on one issue, an example of the equilibrium radiation of heat from a 
sphere. He had to consider the work of French mathematicians but regretted that 
the mathematics of Fourier, Laplace, Poisson and Libri, 

has not been in all respects favorable to the progress of the subject as 
a branch of experimental and inductive science. The great beauty and 
curiosity of meaning of the mathematical investigations which offered 
themselves to our analytical discoverers, have led them to wander in that 
deep and charmed labyrinth much longer and farther than the demands 
of physical science required.25 

Whewell assumed that mathematics contained physical significance and he fo
cussed on unearthing those significances by directly comparing mathematical de
ductions and experimental results. However, he accepted the methods of math
ematicians as sufficient to define the interactions with experiment. He assumed 
that mathematical theories were necessary but that the focus of the French was 
mathematics, not the investigation of the physical properties of heat, electricity, 

25 Whewell, "Report on the Recent Progress and Present Condition of the Mathematical 
Theories of Electricity, Magnetism, and Heat," Rep. British Assoc. (1835): 1-34,29. 
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or magnetism. However, he did not indicate here how to proceed to reorient this 
kind of study. He could only complain that the French left the majority of mathe
maticians behind them. Some simpler form of mathematics might suffice, that of 
Newton perhaps, although Whewell conceded this would mean some sacrifice of 
rigor and generality. 

During the 1830s Whewell's was not the only report on heat given before the 
British Association. In 1837 Phillip Kelland wrote a text on the subject partially 
encompassing Fourier's work. In both text and report, Kelland tried to develop a 
physical model for heat. He rejected caloric theory because it could not explain 
radiation and turned to a vernacular version of Poisson's molecular model. When 
he developed his mathematical theory of heat, he used Fourier. The text remained 
in two distinct parts. This was not a copy of French mathematics since Kelland de
veloped special cases that led to real physical circumstances. These circumstances 
were reflected in experiments whose results could be directly compared to the math
ematics. He focussed on this aspect of his work in his British Association report. 
He was hard put to do this given the relationship of physical model to mathematics 
in his own work and the absence of physical process in Fourier's mathematics. He 
worked out specific examples that might be tried experimentally. The four mathe
matical theories did not allow him to do this. Kelland noted that mathematicians, 
Poisson in particular, had "not presented their results in a form sufficiently tangible 
to direct or suggest the application of experiment to them." Experiments in and 
of themselves could not decide among the various mathematical interpretations. 
Available experiments also were not consistent enough to lead to anyone empirical 
law of conduction. Kelland went on to suggest some experiments that might do 
that and the difficulties they presented to the experimenter.26 

Kelland's work on heat was characterized later as mathematically ingenious but 
physically flawed. Supposedly Kelland confused heat flow and temperature and 
wrote of "temperature flow." In his research Kelland sought a physical expres
sion for the mathematical generalization of Fourier's relation that heat flow was 
proportional to temperature difference. Kelland changed this linear relationship 
into the more general one where heat flow was dependent on some function of the 
temperature.27 Kelland was a mathematician who was trying to find an empirical 
foundation for the mathematical work of Fourier. He then tried to to validate this 
mathematics as his French models did by comparing experiment and mathemat
ics. However, the experimental results at his disposal were inadequate. He was 
a mathematician and generalized the conditions of Fourier's work mathematically 

26 Kelland, Theory a/Heat (Cambridge: J. J. Deighton, 1837) and Kelland, "On the Present 
State of our Theoretical and Experimental Knowledge of the Laws of Conduction of 
Heat," Rep. British Assoc. (1841): 1-25,25. 

27 George Chrystal and Peter Guthrie Tait, "The Reverend Professor Phillip Kelland," Proc. 
R. Soc. Edinburgh 10 (1879): 319-321. 
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in ways analogous to the mathematically more successful work of Liouville. 
In his 1837 text Kelland did more than misunderstand Fourier. He examined 

all the available mathematical theories of heat for their physical content. He 
extracted that content from the particular solutions of the equations of motion of 
heat presented by each of his mathematicians. He then tried to compare the results 
of this analysis to known experimental results. This skill was not appreciated in 
the British Association, nor in Cambridge. 

Kelland's was by far the most sophisticated use of mathematics within experi
mental physics in these early years of the British Association. It matched that of 
Airy's in astronomy. In addition, Kelland did not seem to wish to limit mathe
matics strictly to the immediate needs of physics, as Airy did in astronomy. Airy 
complained that Laplace had "banished empiricism from astronomy" in his com
ment's on Laplace's work on the perturbations of the orbit of Jupiter. Similarly 
he considered that in Gauss' work on secular variations, "the ingenuity of trans
formation [of variables] etc., deserves notice, but the theory of perturbations has 
gained nothing.,,28 Airy considered both the Mecanique Celeste and Gauss' work 
in astronomy as mathematics. His concern was the use to which such mathematics 
could be turned for the astronomer. And he judged most mathematical efforts 
harshly. 

All these reports reflect some common assumptions and expectations but di
verge in details. The French were the model for experimental physics and the 
mathematics that arose from that physics.29 Yet in the majority of cases the goal 
was to understand the actual workings of nature. These explanations belonged to 
physics and were not inherent in the mathematics. At least, the hypotheses from 
which the mathematics was developed belonged to physics. These, along with the 
results of careful quantitative experiments, were the starting point of mathematical 
"theories." Because each report was essentially a review article, the issue of what 
precisely the mathematical development of physical hypotheses added to the in
ductive enterprise was usually left moot-Until we come to Airy and Kelland. Airy 
seriously doubted the necessity for all the analytical baggage attached to the par
ticulars that could be used by the observational astronomer in search of ever more 
accurate results. For Kelland, experiment was not definitive in deciding which set 

28 Airy, "Report on Recent Progress in Astronomy in the present Century," Rep. British 
Assoc. 1 (1831): 125-188, p. 172. Airy's extreme utilitarian streak appalled William 
Rowan Hamilton who reported that Airy stated "the Liverpool and Manchester Railway, 
he said, playfully perhaps, but, I think sincerely, he considered as the highest achievement 
of man." Hamilton's hesitation may well mean Airy also had a sense of humor. See Robert 
Percival Graves, Life of William Rowan Hamilton (New York: Arno Press reprint of 1882 
edition, 1973), 3. vols., vol., 1, 444. 

29 We should, however, state that with Peacock's work in algebra the British developed their 
own sense of "pure" mathematics distinct from those of either France or Germany. See, 
Joan Richards, "Rigor and Clarity." 
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of mathematically expressed hypotheses reflected the actual workings of nature. 
These reports represented the first systematic attempt to take stock of French 

research. No one offered an alternative to the French approach except in the most 
general of terms. All of the reports touched on the difficulties that full acceptance 
of French methodologies and research goals posed for native traditions of practice 
and the purposes for research in experimental physics. 

The development of some alternatives were apparent in embryonic form. Em
ulation was not the path of the majority. Both Lloyd and Kelland interpreted the 
mathematics in specific cases in physical terms and compared results with exper
iments. Yet these comparisons neither confirmed the mathematics nor physical 
hypotheses. They opted for quantitative experiment and mathematics, but which 
mathematics? Even here there was no consensus. Whewell would deny the need 
for any modern French mathematics just as surely as the other commentators chose 
them. But the form of analysis they chose ranged from Lagrange to Laplace and 
Poisson to Fourier. 

Quite how this rich mixture of French mathematical and experimental physics 
was transformed into theoretical physics of various kinds requires that we turn to 
the universities and concentrate on Cambridge, the battle over what mathematics 
was taught there, and the contingencies of making academic careers in Britain in 
physics during the middle third of the nineteenth century 

Cambridge University, the Cambridge Mathematical Journal, 
and Theoretical Physics 

In the middle third of the nineteenth century all British universities, including 
Cambridge, came under pressure to update their curricula and broaden the social 
spectrum of its students. In reaction Cambridge reinforced the narrow foundations 
of its curriculum and only grudgingly acknowledged the existence of the natural 
sciences in its examination system in the 1850s. Cambridge seemed to retreat from 
the new continental mathematics. 

In mathematics and physics, other universities responded to the French leader
ship by reforming the content of their courses and systematizing their teaching of 
them. Natural philosophy remained a subject taught separately from mathematical 
physics. However, the content of the natural philosophy courses shifted. Term, or 
even year-long courses on particular fields in physics, were available to students. 
Faculty made concerted efforts to include courses on heat, light, and other fields of 
research in physics while much of the material was encompassed within a mechan
ical explanatory net,30 Such focussed courses were empty of the mandatory ties to 
natural theology of the first decades of the century. The universities of Edinburgh 

30 See David Wilson, "The Educational Matrix: Physics Education at Early Victorian Cam
bridge, Edinburgh and Glasgow Universities," in Wranglers and Physicists, Harman, ed. 
12-45, for the courses at Glasgow and Edinburgh. For James David Forbes' work in this 
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and Glasgow further adapted the teaching of mathematics and natural philosophy 
to the needs of engineers and other future professionals. 

New French mathematics and experimental physics had a more immediate im
pact in Dublin in terms of changes in teaching and in research.31 The most important 
research to emerge during the early decades of this influence was that of William 
Rowan Hamilton. His research in optics and dynamics were in the French math
ematical tradition. His optics began as an investigation into the mathematical 
properties of systems of rays and the surfaces light formed in passing through 
optical systems. He then turned to the work of other mathematicians on double 
refraction and the surfaces formed by the ordinary and extraordinary rays in bi
axial crystals. Although he preferred the wave theory, Hamilton understood that 
his mathematical results were independent of any assumptions about the nature of 
light. His work was, 

not to discover new phenomena, nor to improve the construction of 
optical instruments, but with the help of the differential or fluxional 
calculus to remold the geometry of light, by establishing one uniform 
method for the solution of all problems in that science, deduced from 
the contemplation of one central, or characteristic relation.32 

Hamilton's goal was to reduce optics to analysis as Lagrange had reduced 
mechanics.33 While only "a secondary result," this deductive method had lead 
to "some unexpected conclusions." Out of his consideration of the mathematics of 
Fresnel's work on biaxial crystals Hamilton deduced that the surface of the wave 
front within the crystal, 

1 st has four cusps (at the ends of the optic axes) at each of which the 
tangent planes are (not, as he [Fresnel] thought, two but) infinite in 
number; and 2nd, four circles of plane contact, along each of which the 
ray is touched, in the whole extant of the circle, by a plane (parallel to 

direction see also, John Campbell Shairp, Peter Guthrie Tait and A. Adams-Reilly, Life 
and Letters of James David Forbes (London: Macmillan, 1873). Forbes also introduced 
written examinations into Edinburgh. 

31 See Grattan-Guinness, "Mathematical Research and Instruction in Ireland, 1782-1840," 
in Science in Ireland 1800-1930, J. R. Nudds et. aI., eds. and the account of Hamilton's 
education at Trinity College, Dublin in Thomas L. Hankins, Sir William Rowan Hamilton 
(Baltimore: The Johns Hopkins University Press, 1980),22-23. 

32 Hamilton to Samuel Taylor Coleridge, October 1832, in Graves, Hamilton, vol. 1,592. 
Graves notes that this letter was actually never sent. See also Hankins, Hamilton, 61-62. 
Hankins gives a detailed discussion of Hamilton's work on optics, chaps. 4 and 5, and 
conical refraction in chap. 6. Hamilton identified the characteristic function with the 
principle of least action, or "least time." 

33 Hamilton made this comparison explicit in Hamilton, "An Account of a Theory of a 
System of Rays," Trans. R. Irish Acad. 15 (1824) [1828]: 69-174; 16 (1830): 4-62; 16 
(1831): 85-92; 17 (1837): 1-144. In this paper Hamilton was careful to refer to both 
fluxions and the calculus, although he used continental methods. 
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one of the circular sections of the surface of elasticity);34 
Hamilton deduced "from these geometrical properties, a single incident and unpo
larized ray would undergo, not double but conical refraction." 

This result emerged from the geometrical properties of the rays themselves. It 
was not a result of any physical assumptions or arguments. Humphry Lloyd inter
preted these results in experimental terms and confirmed Hamilton's mathematics. 
As Lloyd noted in his British Association report conical refraction, because it was 
independent of any physical assumptions about the nature of light, could not decide 
any issue about its nature.35 There were no analytical tricks to disguise whether the 
mathematical and experimental case might or might not be identical. To bring ana
lytical results and experiment together, Hamilton interpreted the results of analysis 
in geometrical terms. Hamilton repeated this in his work on quarternions.36 

Hamilton extended his approach to dynamics. Here also was a physical foun
dation for this mathematics. He began with a mechanical system made up of a set 
of attractive and repulsive points. He wanted to introduce mathematical economy 
into the study of such systems by reducing the motion of such points to the search 
for, and differentiation of, a single function that satisfied two partial differential 
equations of the first order and second degree. Hamilton characterized the potential 
for his method in mathematical not physical terms. While the method had been 
used in dynamics and optics, 

the peculiar combination which it involves, of the principles of variations 
with those of partial differentials, for the determination and use of an 
important class of integrals, may constitute, when it shall be matured by 
the future labors of mathematicians, a separate branch of analysis.37 

34 Hamilton to Herschel, December 18, 1832, Graves, Hamilton, vol. 1, 627. See also 
James G. O'Hara, "The Prediction and Discovery of Conical Refraction by William 
Rowan Hamilton and Humphry Lloyd," Proc. R. Irish Acad. 82A (1982): 231-257. 
Emphasis in the original. 

35 Lloyd, "On the Phenomena presented by Light in its Passage along the Axes of Biaxial 
Crystals," Phil. Mag. 2 (1833): 112-120,207-210,116--117, his report to the British 
Association, Lloyd, "Conical Refraction," Rep. British Assoc. (1833): 370, reprinted in 
Lloyd, Miscellaneous Papers Connected with the Physical Sciences (London: Longmans 
Green, 1877), 1-18. Hamilton's report to the British Association on his optical work 
appeared as Hamilton, "On Some results of the View of a Characteristic Function in 
Optics," Rep. British Assoc. (1833): 360-370. 

36 Hankins in Hamilton, sees his real strengths in analysis which, in the formal sense of 
the papers Hamilton produced and his importance within mathematics, is true. However, 
what is striking in his account is Hamilton's ability to translate analytical results into 
geometrical imagery where the reader can visualize the result. 

37 Hamilton, "On a General Method in Dynamics," Phil. Trans. R. Soc. London, pt. II 
(1834): 247-308, reprinted in Hamilton, The Mathematical Papers of Sir William Rowan 
Hamilton, A. W. Conway andJ. L. Synge, eds. (Cambridge: Cambridge University Press, 
1931) 3 vols., vol. 2, Dynamics, 103-211, 105. Hamilton had previously reported on his 
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However, the first mathematical results of Hamilton's work was not a new branch 
of analysis but a new method for the integration of partial differential equations. 
These were also published as a series of lectures on dynamics.38 

Hamilton drew no new physical conclusions about the motions of point centers 
of force and while Hamilton put Boscovich's ideas into mathematical form the 
physical implications of any of his results were seemingly of no interest to him. In 
general he accepted the idea of light as a wave motion and the idea of immaterial 
matter. He did not explore either to develop physical theories of the behavior of 
light or of matter. As with French mathematicians specific physical issues set 
Hamilton exploring new mathematical possibilities.39 

While Hamilton was the most prominent, James MacCullagh also took a math
ematical approach to the theory of light. In his papers on double refraction Mac
Cullagh noted that the phenomena were just so many isolated facts. He supplied 
the connective tissue of mathematics by explaining known experimental laws "hy
pothetically, by introducing a differential coefficient of the third order into the 
equations of vibratory motion" -a mathematical fix, but with no imagery to catch 
a physical process.40 MacCullagh required that his mathematical relationship lead 
to known experimental laws but his system was still deductive. While his image 
of the ether was of a particulate medium, MacCullagh did not use its properties 
to derive his equation of motion. He began with an examination of the geometri
cal properties of ellipsoids and concluded from the results of Fresnel's work that, 
since the wave front in a biaxial crystal was an ellipsoid, the particles of the ether 
could only move in certain directions with respect to the wave fronts within the 
crystal. From these deductions, he derived Biot's Law and argued by analogy that 
his results agreed with Brewster's law as well. Important for his future work were 
MacCullagh's deductions of the mathematical form for the elastic force and the 

work in dynamics and its roots in optics in Hamilton, "On the Application to Dynamics 
of a general mathematical method previously applied to Optics," Rep. British Assoc. 
(1834): 513-518. 

38 See Hankins, Hamilton, 196-197. 

39 On Boscovichean atomism in Hamilton, see Robert Kargon, "William Rowan Hamilton 
and the Revival of Boscovichean Atomism," l. Hist. Ideas 26 (1965): 137-140, and, 
"William Rowan Hamilton, Michael Faraday and Boscovichean Atomism," Amer. l. 
Phys. 32 (1964): 792-795. 

40 James MacCullagh, "On the Laws of Double Refraction of Quartz," Proc. R. Irish A cad. 
1 (1836-40): 385-386. Reprinted in MacCullagh, The Collected Works of lames Mac
Cullagh, John H. Jellett and Samuel Houghton, eds. (Dublin: Hodges, Figgis and 
Co., 1880), 63-74, 63. MacCullagh published a series of papers on double refraction 
and reflection, and refraction throughout the 1830s and 18405. See MacCullagh, "On 
the Double Refraction of Light in a crystallized Medium, according to the Principles of 
Fresnel," Trans. R. Irish Acad. (1830-32): 79-84; "On the Properties of Surfaces of the 
second Order," Trans. R. Irish Acad. (1836-40): 89-90 and "On the Dynamical Theory 
of crystalline Reflection and Refraction," Trans. R. Irish Acad. 21 (1848): 17-50. 



226 From Natural Philosophy to Physics 

elasticities as functions of the principal axes of the ellipsoid. Physical properties 
and conclusions arose from his mathematical manipuiations, as he observed his 
deduction of Brewster's law emerged after "some complicated substitutions in the 
primary equations.,,41 

As in the mathematical physics of the French, MacCullagh began in a specific 
physical problem. He was more careful that his deductions really were in line 
with experiment, or rather, with the experiments he considered as crucial, first 
Brewster's then Fresnel's work in refraction and polarization. It was the geometry 
of Fresnel's theory that led MacCullagh to his own notion of "the equivalence 
of vibrations." In addition to cleaving close to Fresnel's work, he assumed that 
since the ether was a mechanical body that all mathematical theories must be 
compatible with known mechanical principles and rejected Cauchy's work. He 
did not consider that the geometry of polarized light which he translated into 
physical terminology constituted a physical theory. The hypotheses he accepted 
out of Fresnel's work and deduced from his own mathematical development of it 
"are nothing more than fortunate conjectures." The problem was that the inner 
structure of the ether was a mystery. Its interaction with light as a transverse wave 
and the particles of matter were "utterly unknown." The mathematics of the ether 
was, therefore, subject to changes indicated by experiment. MacCullagh willingly 
altered the physical properties of his ether since experiment dictated but never 
presented a coherent set of notions about its physical character. He was fascinated 
by the relationships between ellipsoids and their tangent planes and stretching these 
geometrical properties to include light in crystals. Mathematical manipulations 
were the center of his attention. He continued to change, then generalize his 
mathematics, and in 1841 MacCullagh was approaching the problem of refraction 
and reflection in biaxial crystals using the potential function. 

Physical imagery had different places in the mathematics of Hamilton and Mac
Cullagh. Hamilton's work was replete with metaphysical necessities from which 
he drew his mathematics. Physical theory did not emerge from either his mathe
matics or his metaphysics. For MacCullagh, flexible physical imagery allowed him 
to correlate the results of his geometry of wave fronts to the small number of avail
able experimental results. We cannot argue that either Hamilton or MacCullagh 
sought a systematic physical theory of light. Systematics lay within mathematics. 

The Irish were not isolated and their work unknown. The British Association 
met in Dublin in 1835, and on the last day of the meeting, Hamilton was knighted. 
Hamilton corresponded on scientific, literary, and philosophical matters with Her
schel, Whewell, Coleridge and many others in Britain. His work, Lloyd's, and 
MacCullagh's are epitome's of the responses across Britain to French experimen-

41 MacCullagh, "A Short Account of Some Recent Investigations concerning the Laws of 
Reflection and Refraction at the Surface of Crystals," Rep. British Assoc. (1835): 7-8. 
Reprinted in MacCullagh, Collected Papers, 55-57, 56. 



Britain 1830-1870 227 

tal and mathematical research. British mathematicians seemed blind to the quarrels 
that separated the French into different mathematical camps. Hamilton did not see 
that embracing a form of metaphysics favored by Poisson and Laplace forced 
him to abandon the geometric elegance of Lagrange's mathematics. MacCullagh 
used whatever mathematical results and methods suited his immediate needs. One 
mathematician that the Irish did not seem to know or to use was Fourier. 

The same could no longer be said of Cambridge mathematicians. By the late 
1830s, despite the campaign of Whewell to purify the curriculum and rid the uni
versity of the French threat, Fourier and the mathematical promise of his methods 
had infiltrated Cambridge. However, any account of Cambridge mathematics in 
this era must include Whewell's struggle for control ofthe curriculum and the ways 
in which he ultimately lost that struwe. 

Whewell and Peacock were both on the side of "reform," although they differed 
over just what aspects of change they were prepared to support. Peacock, along with 
other teachers at Cambridge, wanted to retain the French mathematics introduced in 
the early 1820s in the examination system and in the official curriculum. Whewell 
would have none of this and he had a good pedagogical point. A Cambridge 
education trained the mind and the next generation of clergy for the Church of 
England. A few highly-trained mathematicians schooled in the esoteric arts of 
analysis were not an advertisement for the claims he and other reformers were 
making about the Cambridge curriculum. Peacock's work on the foundations 
of algebra undermined Whewell's contention of the philosophical barrenness of 
analysis. In their battle over the curriculum at Cambridge, Peacock and Whewell 
needed to reach two audiences. The first consisted of mathematicians, a minority 
community within Cambridge but with allies outside Cambridge. They also had 
to reach the tutors and other faculty within Cambridge, and this is where the 
philosophical voice was so important. In this struggle Peacock won over the 
mathematicians. Together with the long term effects of the examination system at 
Cambridge, this annulled Whewell's short term gains over the curriculum. 

Whewell's behavior in the struggles over the curriculum mirrored his actions 
within the British Association. After his initial offense at Brewster's slurs on Cam
bridge intellectual life, Whewell wholeheartedly supported the new organization. 
He also worked to ensure that control of this new venture remained in safe social 
and political hands. The Association never strayed into radical territory. It was re
liable in the sense that the power relationships of the status quo were not upset. At 
Cambridge Whewell also sought to keep the power relationships intact.42 This was 

42 There is ample evidence that national politics and the internal upheavals in Cambridge 
were closely linked. For the involvement of both see Joseph Romilly, Romilly's Cam
bridge Diary, annotated and introduced by J. T. Bury (Cambridge: Cambridge University 
Press, 1967). Romilly notes those occasions at which politics did not enter the conver
sations during 1831 and 1832. For the impact of political reform on Cambridge, see 
Garland, Cambridge Before Darwin, chap. 2. 
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precisely what Whewell set out to accomplish within Cambridge. Power relation
ships between College and Universities would remain the same. The educational 
function of the university would not change. This commitment to conservation 
crystallized with the development of Whewell's career which was nurtured by 
those same power relationships. And to reiterate, as Master of Trinity he had to 
concern himself with the education of the whole body of students not merely a 
handful of wranglers. During the 1830s and 1840s, career, experience in teaching 
and research, and developing philosophical interests mixed with ambitions were 
channelled into his growing hostility against French mathematics. 

By 1840 Whewell had lost the war within Cambridge and growing pressure from 
Westminster was to force reform on Cambridge in the early 1850s. Whewell's was 
a holding action. The subjects Whewell did not want introduced into the Natural 
Science Tripos appeared the year after he died.43 

As Menachem Fisch has pointed out, Whewell approached the issues of re
form in practical ways as well as philosophical ones. He wrote textbooks. It is 
through those textbooks and developing philosophical ideas that Whewell argued 
against the new mathematics, not simply on pedagogical grounds but as mathe
matics. However, his attempt to provide a philosophically defensible alternative 
to continental analysis was incomplete.44 These textbooks were only part of his 
motivation and only one aspect of his published assault. In his Bridgewater Trea
tise, Whewell argued that those who were truly great inductive scientists were 
drawn to God through their scientific work, "the very imperfection of the light in 
which he works his way, suggests to him that there must be a source of clearer 
illumination at a distance from him." Among those in this group were Robert 
Boyle, Nicholas Copernicus, Galileo Galilei, and Johannes Kepler. In the group of 
lesser scientists who gained no religious sense through their science he included 
d' AIembert, Clairaut, Euler, Laplace, and even Lagrange. This rogue's gallery 
of mathematicians, whom Whewell knew to be mathematicians not inductive sci
entists, were the very men whose work he was arguing should be left out of the 
Cambridge curriculum. Their work formed the foundation for the mathematics 
that would displace Newton's formulation of mechanics, fluxions, and geometry 
as the educational mainstay of the university.45 

43 See Lewis Campbell and William Garnett, The Life of James Clerk Maxwell (New York: 
Johnson reprint of 1882 edition, 1969), 325, chap. 12. 

44 See, Fisch, "The Emergency that has arrived', " 266-276. 

45 Whewell, Astronomy and General Physics considered with Reference to Natural The
ology, Third Bridgewater Treatise, 1833 (London: W. Pickering, 1834). This treatise 
went through many editions during his lifetime. The title alone indicated that Whewell 
was categorizing astronomy and physics as observational and experimental sciences, 
not mathematical ones. See also Richard Yeo, "William Whewell, Natural Theology, 
and Philosophy of Science in Mid-Nineteenth Century Britain," Ann. Sci. 36 (1979): 
493-516. 
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Whewell's texts on mechanics were consistent in one goal, to draw students 
into the study of mathematics through the consideration of physical problems. 
Through examples Whewell opened up mathematical methods on a successively 
abstract level.46 He introduced new physical principles as he went along to reach 
new levels of mathematical abstraction. What changed was both his opinion and 
use of the available physical principles bequeathed him by mathematicians and 
the actual mathematics he wanted his students to be exposed to. Therefore, he 
continually altered the content of the succession of textbooks that he wrote for 
Cambridge students. Simultaneously, he published papers against the calculus 
introduced after Lagrange and Laplace, particularly that of Fourier, and against 
continental mathematics in general. He also argued against the physical principles 
upon which these continental mathematicians had built their mathematicsY As 
Todhunter noted of his introductory text, the principles of statics could be more 
easily learned from "simple experimentallectures.,,48 Whewell was not a physicist. 
He approached mechanics as a source for mathematics, and, increasingly from his 
developing philosophy of the sciences. The laws of mechanics must be both 
logically and empirically defensible, because they were the foundation of mixed 
mathematics.49 

The mathematics these texts were designed to teach veered from the radical 
new analysis in 1819 to the conservative geometry and algebra by 1836. Even the 
later textbooks were accompanied by higher level mathematical ones that included 

46 Some of Whewell's own research in mathematics have pedagogical goals, see Whewell, 
"Rotary Motion of Bodies," Trans. Cambridge Phil. Soc. 2 (1827): 11-20. 

47 For Whewell's remarks on Fourier, see Whewell,"Report on the Progress and Present 
Condition of Electricity, Magnetism," 24-28. His work on the foundations of mechanics 
is in Whewell, "On the Principles of Dynamics as stated by French Writers," Edinburgh 
J. Sci. 8 (1827-28): 27-39, and, "On the Nature of the Truth of the Laws of Motion," 
Trans. Cambridge Phil. Soc. 5 (1834): 149-172. Whewell does not always differentiate 
the various meanings of the term force used by the authors under discussion. See also 
Whewell, On the Free Motion of Points and on Universal Gravitation including the 
Principal Propositions of Books I and II of the Principia. First Part of a Treatise on 
Dynamics (Cambridge: Deighton, 1833) for a later version of his mechanics. 

48 Todhunter, William Whewell (New York: Johnson reprint of 1876 edition, 1970) p. 25. 
He also discusses the problems of Whewell's understanding of the physics. 

49 The question of the empirical status of the various forms of mechanics in Newton, Leibniz, 
Euler and later French authors such as Laplace and Poisson can also be traced through 
the various editions of his texts. See especially Whewell, An Elementary Treatise on 
Mechanics designed for the Use of Students in the University (Cambridge; Deighton, 
1819), second edition 1824, further editions appeared in 1828, 1833, 1836 and 184l. 
The last edition appeared in 1847. The physical content of each of these editions is 
detailed in Todhunter, Whewell, chap. 2. Whewell fiddled with the contents of his texts 
in other ways. In 1833 he separated Statics from the fourth edition of his mechanics as 
Whewell, Analytical Statics (Cambridge: Deighton, 1833) as a supplement to the fourth 
edition of his elementary text on mechanics. 
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integral and differential calculus. Yet Whewell never completed a smooth transition 
from physical example to increasingly difficult mathematics that culminated in the 
calculus. Because of his growing hostility to analysis, at best he managed only to 
graft the calculus intuitively on to specific problems. 50 

Whewell consistently narrowed the mathematics addressed to the majority of 
Cambridge students. He could thus refuse a place for the study of the new mathe
matical domains of light, electricity and magnetism. These subjects represented the 
locus of the new analysis. However, he could not control the choice of examiners for 
the university examinations. Nor could he stop college tutors or university profes
sors pursuing French mathematics. Because the university examinations seemed 
beyond his grasp, the actions of Whewell and other conservatives to stave off the 
French mathematical menace only aggravated the schizoid situation at Cambridge
a situation that students understood by the 1820s.51 The college curriculum was so 
inadequate that any student striving for honors needed a private tutor. There was 
an official and an unofficial teaching stream at Cambridge. The training required 
for students to excel in university examinations demanded "very extensive and sin
gularly accurate knowledge, in a wide range of mathematical subjects, combined 
with perspicuity of thought and language in answering the questions proposed in 
the examinations." The teaching they received from their college was inadequate 
"to instruct and discipline the student so as to enable him to attain to that degree 
of excellence in these points to which he is capable of attaining.,,52 

Two systems existed at Cambridge, the official curriculum, which if followed 
would lead to a pass degree. Distinction of any kind required students and tutors 
to acknowledge this and supply the necessary training. The teaching members of 
this underground system were integrated socially into university society. Their 
teaching function was clandestine and subversive. Private tutors coached students 
in the aspects of French analysis demanded by the last half of the Tripos examina
tion. William Hopkins was preeminent among these tutors, training more senior 
wranglers than anyone else of his generation. Important here is the training he gave 
to three key Cambridge students, James Clerk Maxwell, George Gabriel Stokes 
and William Thomson. His lectures were grounded in Lagrangian mechanics and 
mathematics, elegant and an example of French mathematical physics. Rather 
out of date in terms of its mathematics by the 1850s but required for the Tripos. 

50 Harvey Becher, "William Whewell and Cambridge Mathematics," argues for the mathe
matical goals of Whewell's texts. However, the unity he sees in the physics and mathe
matics is in question. 

51 Peter Allen, The Cambridge Apostles, chap. 1. 

52 William Hopkins, "Remarks on the Mathematical Teaching of the University of Cam
bridge," Trinity College Library. These are notes for Hopkins presentation before the 
1851 Parliamentary Commission. As a private tutor Hopkins needed to understand the 
problems of the system. His livelihood depended upon it and discerning how to bridge 
the gap. 
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Physics still generated mathematics.53 

The same pattern can be seen in Hopkins research in geology. His geology 
was in line with the prevailing Cambridge method, of making mathematics from 
empirical evidence. Following the French and Cambridge goals, his geological 
mathematics was descriptive, not prescriptive of nature.54 Geological hypotheses 
shaped the initial equations for his mathematical exploration of the dynamics of the 
earth's crust. His solutions to those equations were, like Fourier's on heat, whose 
mathematics he used, purely mathematical. Geological conclusions emerged from 
those mathematical conclusions. This perhaps is why his actual geological ideas 
seem so obscure.55 Following the French model Hopkins performed experiments 
during the 1850s to support the validity of his mathematics. This was the approach 
he passed on to his students. 

In the 1830s mathematicians at Cambridge developed a great interest in Fourier's 
work and the possibilities that it offered them as mathematicians. This mathemati
cal culture extended beyond Cambridge to mathematicians in London, Edinburgh, 
and Dublin. Many were also aware of the work of German mathematicians. Interest 
in the philosophy of mathematics was also not confined to Whewell and Peacock. 
A mathematical culture nurtured in Cambridge included graduates, students, col
lege tutors and university professors interested in the new analysis matured in the 
1830s. Its ultimate expression became the Cambridge Mathematical Journal. 

The journal was designed to meet the needs of "reading men" as well as tutors 
:and graduates. The main focus of its first editor Duncan Gregory was the math
I~matical problems whose solutions were not encompassed by the mathematical 
methods of mechanics. The mathematics of heat and light introduced the problem 
IJf discontinuous functions and their representations, a problem intimately con
mected to the theory of definite integrals. 56 Over the next decade, the journal was 
a forum for French analysis. It evolved into an exclusively research publication 
jfor work of mathematicians such as Hamilton, George Boole, and Augustus de 
Morgan.57 

53 Hopkins never published a text. These remarks are derived from the lecture notes of 
Maxwell, Thomson and Stokes in the Cambridge University Library. It is interesting to 
note that all three preserved these notes. 

54 Hopkins, "Researches in Physical Geology," Trans. Cambridge Phil. Soc. 6 (1835) 
[1838]: 1-84. Crosbie Smith, "William Hopkins and the Shaping of Dynamical Geology, 
1830-1860," Brit. J. Hist. Sci. 22 (1989): 27-52, sees Hopkins work as geology, while 
not understanding that during the 1830s and 1840s Hopkins' goal was literally to make 
mathematics from the empirical foundations of geology. In this case the mathematics 
was the geometry of geology. 

55 See Stephen G. Brush, "Nineteenth-Century Debates about the Inside of the Earth, Solid, 
Liquid or Gas," Ann. Sci. 36 (1979): 225-254. 

56 Duncan Gregory, "Preface," Cambridge Math. J. 1 (1837-1839): 1-2. 

57 In 1850 the journal became Quarterly Journal of Mathematics. In 1845 it had already 



232 From Natural Philosophy to Physics 

In its early years students were able to brush up on the physical foundations 
of Tripos questions through discussions of physical principles of mechanics and 
astronomy. In the first five volumes there were a string of articles on new ways of 
solving problems, useful methods, and reminders of important points sure to come 
up on examination questions. There were also articles amounting to short courses 
for students on aspects of the calculus and others reworking Tripos topics in ways 
that were clearer than those usually encountered in textbooks and lectures. The 
articles directed to students were usually short, and most of them were on strictly 
mathematical subjects. They ranged from subjects encountered in the first year to 
more esoteric methods, such as the solution to linear equations of finite and mixed 
differences to Jacobi's methods of solving partial differential equations. In fact 
the journal contained a great deal on the solutions to partial differential equations, 
analytical geometry, and so on. 

Yet even in these volumes many authors were outside of Cambridge. 58 Many of 
the papers were on specific problems, many of which began in physics. In the early 
1840s there was also a great deal of discussion of mathematical theories of light. 
The physical theory of Fresnel was discussed as well as his mathematical work. 
Archibald Smith noted that Fresnel usually used "mixed geometry" which was the 
best method of establishing theorems even though clumsy and tedious. He planned 
to establish the same theorems in the more general form of algebraic geometry. 
In a later paper Smith considered Fresnel's work on crystals, made reference to 
Hamilton's work, and included his mathematical deduction of conical refraction 
from the properties of the surfaces of the wave fronts. Physics led to mathematics, 
then returned to phenomena directly from the mathematics.59 

Papers also addressed mathematical issues directly from French mathematical 
physics. The subjects incorporated the work of Joseph Liouville and Gabriel Lame. 
And more and more articles represented research, done by mathematicians and 
written for an increasingly professional audience. Within five years the number of 
articles addressed to students fell, although William Thomson as editor from 1845 
to 1850, hoped to revive them. As if to emphasize the journal's commitment to the 
new calculus, Gregory wrote the first article on Fourier analysis. It was an attempt 
to rewrite Fourier's results in functional form because Fourier's proofs were unsat
isfactory. The improvement of Fourier's proofs was the subject of Thomson's first 
paper in 1841.60 Gregory returned to Fourier in his attempts to develop a differential 

expanded into the Cambridge and Dublin Mathematical Journal signalling that its audi
ence was mathematicians. The needs of students were becoming less and less the concern 
of the editors. 

58 These include Arthur Cayley, George Boole and others. 

59 Archibald Smith, "The Wave Theory of Light," Cambridge J. Math. 1 (1839): 3-10, 
and, Smith, "Notes on the Undulatory Theory of Light," 84-95. 

60 Gregory, "Notes on Fourier's Heat," Cambridge J. Math. 1 (1837-1839): 104-107. 
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operator calculus. This was an extension of Peacock's approach to algebra which 
separated the "symbols of operation from those of quantity." Gregory pushed this 
method beyond Fourier whom he described as having "had some unwillingness to 
give himself up to it entirely." In this first volume, the particular concerns of British 
mathematicians were already shaping how French mathematics was explored and 
exploited.61 

These particular concerns loomed larger and larger on the journal's pages as 
its editor, Thomson, lamented to Stokes. The majority of papers with supposedly 
physical titles on light, heat, electricity, and occasionally magnetism turn out to 
be on mathematical points that arise within those SUbjects. Even as Thomson 
took over as editor in 1845, the balance of the contents of the journal did not alter 
significantly.62 Increasingly the pages reflected the research interests of the leading 
mathematicians of Britain, especially Cayley, Boole, and Hamilton. 

William Thomson 

The papers William Thomson published as a student at Cambridge and as edi
tor of the Cambridge Journal of Mathematics fit into contemporary mathematical 
practices. Given the standards of the time, they cannot be considered as physics. 
When Thomson moved to Cambridge as a student in 1841, he was already well 
versed in French mathematics. His papers on Fourier fit the French mathematical 
model. In his first papers Thomson discussed sine series separately from cosine 
series, a subject neglected by Fourier. In the course of his discussion, Thomson 
defended Fourier and pointed out mathematical errors in Kelland's Theory of Heat. 
The paper had a purely mathematical point.63 The connections Thomson saw be
tween the motion of heat and electrostatics lay in their shared mathematical forms. 
He thus extended to heat the analogies that others had previously drawn between 
electrostatics and gravitation. This is accepted by all historians. He did not see this 
as a path to a physical analogy. Thomson used those same mathematical forms to 

William Thomson, "On Fourier's Expansion of Functions in trigonometric Series," same 
journal 2 (1939-1841): 258-262. Thomson's second paper was also an exercise in 
Fourier analysis. Thomson, "Notes on a Passage in Fourier's Heat," same journal 3 
(1841): 25-27. 

61 Gregory, "On the Solutions to partial Differential Equations," Cambridge J. Math. 1 
(1837-1839): 123-131. See also Gregory, "On the Integration of simultaneous differ
ential Equations," CambridgeJ. Math. 1 (1837-39): 173-181, and "On the real Nature 
of Symbolical Aigebra,"Trans. R. Soc. Edinburgh (1838) [1840]: 208-216. There were 
many articles in the following decade on differential operators. Grattan-Guinness refers 
to it as a "fad." Grattan-Guinness, "Mathematics and Mathematical Physics from Cam
bridge, 1815-40," in Wranglers and Physicists, Harman, ed. 84. 

62 The early editors of the journal were Gregory then Robert Leslie Ellis, William Thomson 
to 1850, and Thomson and William Ferrers to 1855 and then Ferrers. 

63 Thomson, "On Fourier's Expansion of Functions in Trigonometric Series." 
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mediate solutions to some mathematically tricky problems in electrostatics, heat, 
and gravitation. By inverting the process, Thomson converted theorems in the 
mathematics of the attraction of ellipsoids into mathematical statements about the 
flow of heat. He then replaced a series of sources of heat, electric charge, or grav
itational attraction by an "isothermal surface." He also noted that by replacing the 
particular constants in his basic equations, the problems of heat, electrostatics, and 
gravitation were reduced to the solution of the same mathematical equation-hardly 
the statement of a physicist for whom the differences between these forces of nature 
were constitutive of a study of them.64 

Thomson's examination of isothermal surfaces followed that ofthe French math
ematicians J. M. C. Duhamel and Liouville. "Isothermal" referred to a surface with 
certain mathematical not physical properties. He finished this series of papers by 
using the mathematics of heat to develop ideas about particular kinds of orthogonal 
surfaces. He defined a point using curvilinear coordinates and then traced what 
kinds of surfaces were generated by the equations of motion for heat. 65 Aspects 
of these papers are confusing to a reader unfamiliar with this method of referring 
to and constructing mathematics. Thomson moved back and forth between the 
mathematics identified by the physical problems from which they emerged. The 
physical names labeled a type of mathematics that did not refer to anything else. 
To demonstrate the rightness of his mathematical approach, Thomson confirmed 
a proposition in Gauss' work on attraction by replacing material points by his 
surface. He then examined the properties of these functions and surfaces. He 
finished in standard mathematical fashion with an experimental result. The ab
sence of charge within a hollow conductor was a result that "is confirmed" by 
mathematics. 66 Physics generated mathematics. Thomson was moving towards a 
generalized mathematical method of treating these disparate physical cases through 
one mathematical approach opened up by Fourier. 

Historians usually cast Thomson as a physicist, building a new physics based 
in the mathematics of "geometric," that is, macroscopic entities. This approach is 
traced back to the unique philosophical framework of Common Sense philosophy 

64 Thomson, "On the uniform Motion of Heat in Homogeneous Solid Bodies and its Connec
tion with the Mathematical Theory of Electricity," Cambridge J. Math. 3 (1841-1843): 
71-84. Gravitation is introduced on p. 83. Helmholtz, "Sir William Thomson's Math
ematical and Physical Papers," Nature 32 (1885): 25-27 also noted the mathematical 
character of Thomson's early work. See also Cross, "Integral Theorems," p. 35. 

65 Thomson, "On the Equilibrium of the Motion of Heat referred to Curvilinear Coordi
nates," Cambridge J. Math. 4 (1843-1845): 33-42, and "On the Lines of Curvature of 
Surfaces of the second Order," same journal 4 (1843): 279-286. 

66 Thomson, "Demonstration of a Fundamental Proposition in the Mechanical Theory of 
Electricity," CamhridgeJ. Math. 4 (1843-1845): 223-226. He was referring to Gauss, 
"Allgemeine Lehrsatze," in which Gauss stated that gravitation, electrostatics and mag
netism are "special cases of the particular mathematical solutions being sought." p. 241. 
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infiltrating the natural philosophy courses at all Scottish universities that set them 
apart from their English counterparts. Most historians of physics do not worry 
about what constituted mathematics in the middle of the nineteenth century, nor 
the common elements shared by Scottish and English scientists through that math
ematics. If we do consider mathematics, then the disciplinary boundaries derived 
from twentieth century practice dissolve and reform into a different geography. 
The inheritance of historians of physics included categories created in the mid
dle of the nineteenth century partly by the rewriting of the history of mechanics 
by, among others, William Thomson. The early disciplinary geography and the 
changes in boundaries and relationships between physics and mathematics became 
invisible.67 

At Glasgow University, even if mathematical and experimental natural philos
ophy were taught by the same professor, they were kept distinct. The first was 
mathematics, the second the phenomena and vernacular explanations of those 
phenomena. Experimental results were the starting points for the mathematics de
veloped in the mathematical physics course. The evidence of textbooks indicates 
that the courses lived alongside, yet largely unconnected, to each other.68 Meik
leham's course in natural philosophy was phenomenologically grounded with no 
mathematical development of the principles drawn from experiment. 

Thomson was, therefore, familiar with the frame of reference of Cambridge 
teaching. He was also trained in mathematics by using physical problems to 
generate mathematical conclusions and even new branches of analysis. He quickly 
became a Cambridge mathematician in the radical camp of mathematical research at 
the university. Continuing his work on the mathematics of electrostatics, Thomson 
argued that both Coulomb's and Faraday's results were true. What was needed 
was a mathematics that brought them together. In at least three places he pointed 
out that his was a mathematical theory, "independent of physical hypotheses." 

67 Crosbie Smith and Norton Wise, Energy and Empire: A Biographical Study of Lord 
Kelvin (Cambridge: Cambridge University Press, 1989), have done precisely this. They 
also treat Thomson as a physicist not as someone who helped to create this new discipline. 
While Norton Wise has argued that Thomson was led to energy conservation through 
mathematics he treats all the methods that Thomson used as aspects of physics, thus 
reading twentieth-century givens back into the 1840s. See Wise, "William Thomson's 
mathematical Route to Energy Conservation: A Case Study in the Role of Mathematics 
in Concept Formation," Hist. Stud. Phys. Sci. 10 (1979): 49-83, and Harold Sharlin, 
"William Thomson's Dynamical Theory: An Insight into a Scientist's Thinking," Ann. 
Sci. 32 (1975): 133-147. 

68 This is reinforced in Thomson's case as his father was professor of mathematics at Glas
gow and wrote textbooks for his own courses covering some of the new analysis. See 
Smith and Wise, Energy and Empire, chap. 1, where they claim that the elder Thomson 
in his texts minimized abstraction. This is an indication that he followed the mathemat
ical path of the French closely in outline, physical problems leading to mathematical 
excursions, if not in the details of techniques. 
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Fourier's laws for the motion of heat constitute a mathematical theory, 
properly so-called; and when we find the corresponding laws to be true 
for phenomena presented by electrical bodies we may make them the 
foundation of the mathematical theory of electricity: and this may be 
done if we consider them merely as actual truths, without adopting any 
physical hypothesis.69 

He accomplished his mathematical goal using a combination of the mathematical 
analogies he had already drawn from Green and Gauss in his papers on heat and 
electrostatics. 

This paper was written in Paris during the pivotal period of 1845. Thomson spent 
eight to ten hours a day in Regnault's laboratory, then rushed over to Liouville's 
for mathematical company. The dual nature of his existence, and the separation of 
physics and mathematics were symbolized by the geography of his life. Thomson 
began to break down this separation in the next five years, after his appointment 
as professor of natural philosophy at Glasgow university. At Glasgow he had to 
teach students destined to become engineers, not liberally educated gentlemen. He 
also had to show faculty, administration, and town that he was not merely a clever 
Cambridge mathematician.7o He turned to experiment, developed a taste for it, and 
enlisted the voluntary labor of his students.71 

In mathematical physics there was no place for hypotheses or models that would 
interfere with the mathematical generality of solutions. After completion of the 
mathematics, particular solutions were compared with experiment. Very rarely did 
mathematics lead to prediction. Experiment and mathematics interacted only at 
beginning and the end of the mathematical process. To develop any kind of theo
retical physics Thomson had to transcend these limitations. He had to accept that 
hypotheses could be developed into theories that subordinated mathematics to the 
needs of physical imagery. Then, mathematical physics and experimental physics 
provided him with a dilemma that could not be resolved through mathematics 
alone. 

In the months that Thomson spent in Regnault's laboratory, he was introduced 
to Clapyeron's mathematical investigation of Carnot's physical theory of heat. 
He extended and generalized Clapyeron's mathematics, and directly from this 
mathematics drew physical implications about the measurement of temperature. 

69 Thomson, "On the Mathematical Theory of Electricity in Equilibrium," Cambridge 
Dublin Math. 1. 1 (1845): 75-95, 86. This paper was a translation, with additions 
of the paper Thomson had published in Liouville's journal earlier. See Thomson, "Note 
sur les lois elementaires d'electricite statique," Liouville 1. 10 (1845): 209-221. 

70 Thomson initially taught experimental physics and mathematical physics as separate 
courses. 

71 This did not constitute systematic laboratory training for experimental physics or engi
neering students. Students were thrown directly into his research in both physics and 
engineering. 
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From this he created the absolute scale of temperature. 72 This was reinforced by his 
brother James' equally physical deduction from mathematics-that the freezing 
point of a substance decreased with an increase in pressure. William Thomson 
devised and performed the experiments that confirmed the mathematics.73 

However, James Prescott Joule's experiments indicated the conversion of heat 
into work and work into heat. These experiments posed a direct challenge to the 
principle of the conservation of heat upon which Thomson and Clapyeron based 
their mathematics.74 Already doubting Carnot's physical theory of heat, Thomson 
nevertheless published his mathematical generalization of Clapyeron's work. 75 

Thomson then refereed William J. C. Macquorne Rankine's paper on the me
chanical theory of heat. In Rankine's work, the idea of heat as work was given 
explicit mathematical expression as the vis viva of the motion of the particles of 
bodies. Rankine then assumed that the forces between the particles of bodies were 
some function of the density of the body. With this assumption, Rankine deduced 
Joule's relationship between heat and work, and other known gas laws. Rankine 
limited his mathematics to physically plausible cases, ignoring the mathematically 
generalized ones. Yet he deduced his physical results from his mathematics without 

72 Heat and its measurement, along with temperature, were important in marine engineering. 

73 William Thomson, "On an Absolute Scale of Temperature founded upon Carnot's Theory 
of the Motive Power of Heat, and Calculated from the Results of Regnault's Experiments 
on the Pressure and Latent Heat of Steam," Phil. Mag. 33 (1848): 313-317. James 
Thomson, "Theoretical Considerations on the Effects of Pressure in Lowering the Freez
ing Point of Water," Trans. R. Soc. Edinburgh 16 (1849): 575-580, Cambrdge Dublin 
Math. J. 5 (1850): 248-255. The experiments were reported in William Thomson, "On 
the Effect of Pressure on the Freezing Point of Water, experimentally demonstrated," 
Proc. R. Soc. Edinburgh 2 (1850): 267-271, Phil. Mag. 37 (1850): 123-127. Neither 
the absolute scale of temperature, nor the lowering of the freezing point, depended on any 
assumptions about the nature of heat itself. It can be deduced directly from the form of 
the equations, giving the symbols their initial physical meanings. See Clifford Truesdell, 
The Tragicomical History of Thermodynamics. 

74 In 1847 Joule read an account to the British Association of improved experiments that he 
was convinced demonstrated the conversion of mechanical work into heat and suggested 
the reverse transformation should also take place. See James Prescott Joule, "On the 
Existence of an equivalent Relation between Heat and Ordinary Forms of Mechanical 
Power," Rep. British Assoc. (1847): 55, in full in Phil. Mag. 31 (1847): 173. For 
accounts of Joule's experiments and the origins of his work in heat, see John Steffens, 
James Prescott Joule (New York: Science History Pub., 1979), D. S. L. Cardwell,James 
Joule: A Biography (Manchester: Manchester University Press, 1989), and William 
Cropper, "James Joule's Work in Electrochemistry and the Emergence of the First law 
of Thermodynamics," Studies Hist. Phil. Sci. 19 (1988): 1-15. 

75 Thomson, "An Account of Carnot's Theory of the Motive Power of Heat with Numerical 
Results deduced from Regnault's Experiments on Steam," Proc. R. Soc. Edinburgh 24 
(1849): 198-204 and in full in Trans. R. Soc. Edinburgh 16 (1849): 541-574. 
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reference to his molecular hypothesis.76 Rankine went further in generalizing his 
physical notions, giving them mathematical expression by introducing the concept 
of energy.77 Thomson was convinced even before this later step, that Rankine had 
demonstrated a mathematical alternative to caloric theory that reproduced known 
experimental results. More significantly, Rankine had changed the relationship 
between physical imagery and mathematics. He only pursued the mathematics 
necessary for the production of physically meaningful results, that is, results that 
could be compared directly with experiment. 

Whatever philosophical struggles Thomson had over accepting the new ideas 
on heat, he reworked his earlier paper on caloric theory. He altered only those 
results that required mathematical change in light of Joule's principle which he 
now accepted as the foundation for the mathematical theory of heat. In this series 
of papers Thomson expressed his physical understanding of what the changes in 
mathematics meant for the behavior of heat. However, his physical remarks were 
in terms of the general principles not in terms of anyone mechanical model of 
heat. 78 As he published this series of papers in which physical interpretation was 
integrated into mathematical development, Thomson was embroiled in a dispute 
with Rudolph Clausius on the cause of the decrease in temperature of a vapor 
rushing through an orifice. Clausius opted for a thermal, Thomson a mechanical 
explanation.79 

Thomson realized that this was an "un-reversible" phenomenon. Irreversibility 
was physically as well as mathematically rea1.80 From this date for Thomson, neg-

76 William J. C. Macquorne Rankine, "On the Hypothesis of Molecular Vortices, or Cen
trifugal Theory of Elasticity, and its Connexion with the Theory of Heat," and "On the 
Mechanical Action of Heat especially in Gases and Vapors," Trans. R. Soc. Edinburgh 
20 (1850-1851) [1853]: 87-120, 147-190, 565-589, and Phil. Mag. 7 (1854): 1-21, 
111-122,172-185,239-254. 

77 For Rankine's thermodynamics and its significance see, Keith Hutchinson, "Der Ursprung 
der Entropiefunktion bei Rankine und Clausius," Ann. Sci. 30 (1973): 341-364; "w. 
J. M. Rankine and the Rise of Thermodynamics," Brit. J. Hist. Sci. 26 (1981): 1-26. 
Hutchinson notes the mathematical character of Rankine's work yet judges it only in 
terms of its physical conceptual clarity. 

78 Thomson, "On the Dynamical Theory of Heat with Numerical Results deduced from Mr 
Joule's "Equivalent of a Thermal Unit," and M. Regnault's "Observations on Steam"," 
Trans. R. Soc. Edinburgh 20 (1851) [1853]: 261-288. 

79 Clausius, "Uber der bewegende Kraft der Warme und die Gesetze die sich daraus flir 
die Warmetheorie selbst ableiten lassen," Ann. Phy. 79 (1850): 368--397, 500-524, 
translated into Phil. Mag. 2 (1851): 1-21,102-119,16-17. Thomson's challenge was in 
Thomson, "On a Remarkable Property of Steam connected with the Theory of the Steam 
Engine," Phil. Mag. 37 (1850): 386-389. The argument continued in later issues in this 
and the following year of both the Philosophical Magazine and Annalen der Physik. 

80 The suddenness of this idea and the importance Thomson attached to it is revealed by its 
insertion in the string of papers on modifying his mathematical development of Carnot's 
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ative time values were meaningless. Mathematical expressions for a system at zero 
time now carried cosmic as well as physical significance.81 Thomson stated his 
new found physical understanding of irreversibility and changed his interpretation 
of his own earlier work on Fourier, "when heat is diffused by conduction there is a 
dissipation of mechanical energy, and full restoration of it to its primitive condition 
is impossible." From this proposition Thomson deduced the mechanical work ex
tractable from an unequally heated body by equalizing the temperature of that body. 
This was the mechanical equivalent of the heat "put out of existence." Although he 
never published a mathematical derivation of this result, Thomson understood that 
in every cycle of a heat engine, some energy becomes "unavailable" for work and 
was cast out as heat. This loss was inevitable and irreversible. Thomson followed 
this statement with an integral expression for the final temperature in the cycle of 
a heat engine coupled with his conclusion of the heat death of the universe. For 
detailed mathematical arguments for the cosmical consequences of irreversibility 
Thomson relied on Fourier and the cooling of the earth as the concrete physical 
example.82 

Within a short period of time Thomson's research had changed radically. His 
experiences with heat convinced him of the necessity for theories of physical 
processes. Within those mathematical theories the mathematics was limited by 
requirements of the mechanical model, under the guidance of the principle of 
conservation of energy. Like many of his contemporaries, Thomson explored the 
mathematical implications of the principle of conservation of energy, but in his case 
there was now a real integration of mechanical principles, with mathematics con
fined to physically plausible outcomes along with the integration of experimental 
work to exemplify this tight connection.83 

Thomson became bold in predicting the physical meanings encoded in mathe
mati cal language that went beyond known experimental results. His early daring is 
best exemplified by his work on the Atlantic Telegraph and his explanation of signal 

theory. See Thomson, "On the Universal Tendency in Nature to the Dissipation of 
Mechanical Energy," Phil. Mag. 4 (1852): 304--306, and Proc. R. Soc. Edinburgh 3 
(1852) [1857]: 139-142. 

81 In the papers he published on Fourier analysis in the 1840s Thomson dealt with negative 
time as a mathematical quantity. It had no physical significance. See Thomson, "Note 
on Some Points in the Theory of Heat," CambridgeJ. Math. 4 (1843-1845): 67-72. 

82 See Joe Burchfield, Lord Kelvin and the Age of the Earth (New York: Science History 
Publications,1975). See also Smith and Wise, Energy and Empire, chaps. 4, 5,16. 

83 See Thomson's papers on thermoelectricity. He enlisted his students in the experimental 
half of the labor. Thomson first mentions thermo-electric phenomena in Thomson, "On 
the Dynamical Theory of Heat," (1851): 15-16. Other papers followed, see, Thomson, 
"Account of Researches in thermo-electricity," Proc. R. Soc. London 7 (1854--1855): 
49-58; "On the Dynamical Theory of Heat. Part VI Thermoelectric Currents," Trans. R. 
Soc. Edinburgh (1854): 123-172, Phil. Mag. 11 (1856: 214--225,281-297,379-388, 
433-446. 
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attenuation. His physical grasp of the problem was encompassed in that expla
nation, and in his recommendations for countermeasures.84 His physical theories 
became dependent on ever more intricate mechanical molecular models. They 
were specific, mechanical systems that on the micro-level were miniature systems 
that obeyed the same mechanical laws as macro-phenomena. Directly from the 
mechanical properties and behavior of these molecules, Thomson shaped the func
tioning and operation of the macroscopic physical system. The most graphic of 
his later physical approach to phenomena were in his models of the ether. Me
chanical models became Thomson's way of visualizing the operations of nature. 
If he could not make a mechanical model of a theory, he could not understand it. 
His mechanical models were models whose motion could be grasped visually as 
well as expressed mathematically. Whether these models were compatible with 
one another to make a coherent picture was a lesser problem. Thomson invented 
them to solve one physical problem at a time.85 

Thomson's approach to the solutions of physical problems was encapsulated in 
his textbook on mechanics authored with Peter Guthrie Tait. This text was not just 
a reworking of mechanics using energy conservation as its conceptual foundation. 
It redefined the subject pedagogically. Force, not a concept either Thomson or 
Tait used in their research, physically tied the fields of mechanics together. This 
replaced the analysis that mathematicians used to hold mechanics together. Math
ematicians moved from statics to dynamics through virtual displacement. 86 Here 
the text began in kinematics. Through the balance of forces, statics became a 
special case of dynamics. Dynamics supplied the explanations for the motions of 
bodies described kinetically. Thomson and Tait devoted a lot of space to statics 

84 For details on Thomson's work on the Atlantic telegraph, see Smith and Wise, Energy 
and Empire, chap. 19,661-684. Usually seen as evidence of the marriage of research 
and engineering the experiments done by Thomson and his students on the electrical and 
chemical properties of the copper in the cables are another indication of his commitment 
to the experimental investigation of nature. 

85 See Kelvin (Thomson), Baltimore Lectures and Modern Theoretical Physics: Historical 
and Philosophical Perspectives, Robert Kargon and Peter Achinstein, eds. (Cambridge 
MA.: MIT Press, 1987). This is a reprint of the notes of the lectures as they were given, 
rather than the longer version published later, along with historical and philosophical 
essays. The models that appear in almost every lecture are made up of various combina
tions of spring systems or vortices. See, 9-10, 48-52, 77-81, 82-94, 108-111, 120-124, 
125-128,135-144,145-150,152-157. The focus of the lectures was on the difficulties 
besetting the mechanical, molecular theories of dispersion, refraction, and fluorescence. 
For the power and limitation of Thomson's models see Smith and Wise, Energy and 
Empire, chaps. 12, 13. For Thomson on vortex atoms see Robert Silliman, "William 
Thomson: Smoke Rings and Nineteenth-Century Atomism," Isis, 54 (1963): 461-474. 
For mechanical atomic models and their limitations see, Garber, "Molecular Science in 
Late Nineteenth-Century Britain," Hist. Stud. Phys. Sci. 9 (1978): 265-297. 

86 The other approach was to separate the two subjects, motion and statics altogether. 
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and elasticity, both important subjects for their engineering students. Elasticity 
was also becoming important in Thomson's own research into the ether and its 
interactions with matter. 

Thomson and Tait also rewrote the history of mechanics. 87 Theorems were taken 
from Euler, Green, Gauss, Legendre, and others in mathematical isolation. The 
only criteria applied was the theorem's relevance to the solution of the physical 
problem at hand. The theorems were stated mathematically, then explained phys
ically and applied to solve specific mechanical problems. Many problems sprang 
from Tripos questions. Yet they were exercises in statics, kinematic, and dynamics 
not mathematics. Physical explanations of the results of the mathematics followed 
during and at the end of the mathematical solutions. Mechanics became a sub
ject of physics, not a launch pad into mathematics. The authors developed the 
mathematics they needed to solve physical problems. Physics remained the focus 
of their attention.88 And they conceptually refocussed mechanics by interpreting 
many results in terms of potential and kinetic energy.89 

Thomson and Tait had annexed mechanics for physics and it became a source 
for colleagues as well as students. Their approach meant that they could reinter
pret the mathematics of Euler, Green, Gauss, Legendre, and others in terms of 
the physics implicit in their mathematics. Therefore, "Euler discovered that the 
kinetic energy acquired from rest by a rigid body in virtue of a impulse fulfills a 
maximum-minimum condition.,,9o By attributing to Euler a concept only recently 
developed, the foundation of their physics was given a respectable ancestry al
though it falsified Euler's understanding of the problem. They also contended that 
Lagrange extended this to a connected system of bodies struck with any impulse.91 
They forced the past of mechanics, which had been part of mathematics, into 
their version of what it must have really been physically. They made the past of 
mechanics over into physics.92 All of this is understandable given the audacious 

87 Smith and Wise, Energy and Empire, chap. 11, recount the writing of the text and its 
historical importance in terms of the new conceptual foundation of energy conservation. 
However, they also accept much of Thomson and Tait's interpretation of the work of their 
predecessors without comment or investigating the reasons for their interpretations. 

88 This explains, in part, the popularity of the text and its rapid translation into German. 

89 The clearest examples of this are in their treatment of Green's potential. See Thomson 
and Tait, Principles, vol. 2, article 482, 28-29. This physical interpretation is in marked 
contrast to Thomson's mathematical uses of the potential in the 1840s. See Thomas 
Archibald, "Physics as a Constraint on Mathematical Research," 

90 Thomson and Tait, Principles, vol. 1, article 311, 285. 

91 Thomson and Tait, Principles, part 2, article 37. 

92 Their reworking of the history of mechanics and its reshaping into the concept of energy 
was not always successful. Horace Lamb and George Darwin made additions to later 
editions and noted that Thomson and Tait's "attempt to deduce the principle of virtual 
velocities from the equation of energy alone can hardly be regarded as satisfactory." 
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character of their text, and their need to establish credentials that would give to 
them a respectable pedigree. They were successful and erased the mathematical 
context of the development of mechanics. 

While Thomson and Tait accepted the use of hypotheses within natural philoso
phy, they never addressed this issue formally, although they discussed the grounds 
for believing in the hypotheses they did use. That ground was experimental evi
dence. Mathematical theories of planetary motion were well grounded, those of 
geometric optics were carried "far beyond the limits of experiment." The hypothe
sis that heat was a form of energy came from experiment although many formulae 
were still "obscure and uninterpretable," as the mechanics of the motions of the 
particles of matter were unknown. Only mathematical analysis existed in those 
physical fields of the lowest tier of this hierarchy of surety, electricity, magnetism, 
heat and light. 

The contingencies of building careers in the new professions opened up by the 
sciences led Thomson and Tait into investigations of nature and away from their 
common starting point in Cambridge mathematics. Yet that transition was never 
quite complete. For Thomson, mechanical models were means of solving indi
vidual problems. The consistency with which he used mathematical methods was 
absent from his mechanical models. The details of the latter depend entirely on 
the specific problem at hand and could change radically even when dealing with 
the same physical body, such as the ether. Models were heuristic and necessary for 
Thomson to grasp the mathematics and its physical meaning. Consistent with this 
were the ways in which Thomson taught. Experimental and mathematical physics 
were separate courses. He limited use of his mechanics text to the mathematical 
physics course for honors students for the MA.93 Comprehensive physical theories 
expressed in the language of mathematics did not emerge from his work, although 
his research contained streams of ingenious solutions to particular problems based 
on the mathematical analysis of mechanical models. Tait was even less interested 
in physical, rather than mathematical, consistency. His quarrel with Josiah Willard 
Gibbs in the 1880s over vectors revolved around Gibbs' desecration of the mathe
matical integrity of quartemions. The issue of the usefulness of vectors for physics 
did not enter into his argument. 

Thomson and Tait published a model on how to teach this new discipline; others 
had already done this in their teaching. Although he left no textual monument with 
which to bedevil historians, the most important of these men was George Gabriel 
Stokes. Stokes was quite clear on where mathematical argument was appropriate 

Thomson and Tait, Principles, vol. 1, 266, footnote. 

93 See David B. Wilson, Kelvin and Stokes: A Comparative Study in Victorian Physics (Bris
tol: Adam Hilger, 1987), chap. 3. For the division of his thought into the mathematical 
then the experimental see Thomson, "Elasticity," Encyclopedia Brittanica, ninth edition, 
vol. 3,1-112, the experiments are described, 1-84, mathematical theory, 84-112. 
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and where physical hypotheses began and the extent of their legitimacy. And it is 
with Stokes, we see the first conscious and consistent separation of mathematical 
issues on the one hand and the needs of physical theory on the other. 

George Gabriel Stokes 

William Thomson was not alone in recognizing and transcending the limitations 
of Cambridge mathematics in the exploration of nature. George Gabriel Stokes 
had begun earlier, yet his work followed a different line of development from 
Thomson's. While committed to a mechanical view of nature, Stokes was a good 
deal more discerning in its use. Like Thomson, Stokes was trained in the Cam
bridge mathematical tradition and was able to extend that mathematics through the 
consideration of physical problems. However, from the beginning of his career 
Stokes's research papers were of three types. He worked within Cambridge math
ematical tradition by using physical problems to extend other mathematicians' 
work. His first papers on hydrodynamics were improvements upon the theorems 
of Cauchy and Poisson and the mathematics of Laplace. What he was after were 
better solutions to certain partial differential equations.94 

Secondly, Stokes clarified and examined key issues about the physical hypothe
ses being actively pursued by his contemporaries. At the time he graduated as first 
Wrangler and Smith's Prizeman, Stokes was performing experiments and specu
lating about the nature of the ether. His early physical papers on the ether contain 
a minimum of mathematics. Stokes claimed results without going through the 
analytical details and speculated on whether the ether was at rest, or was dragged 
along with the earth. His focus was on the physical implications of Fresnel's 
and later authors' mathematical work. Stokes concluded that the laws of reflec
tion and refraction were unaffected by any motion of the ether and there were no 
experimental tests available to choose between the two hypotheses.95 Published 
separately from his mathematical work Stokes dealt here with a subject entirely 
within natural philosophy. The interaction of the ether and matter was speculative 
and hypothetical.96 

94 See Stokes, "Steady Motion of Incompressible Fluids," Trans. Cambridge Phil. Soc. 7 
(1842): 439--454,465; "Some Cases of Fluid Motion," same journal 8 (1849): 105-137, 
409-414, abstract in Phil. Mag. 31 (1847): 136-137, and, "On the Theories of the 
Internal Friction of Fluids in Motion, and of the Equation and Motion of Elastic Solids," 
Trans. Cambridge Phil. Soc. 8 (1849): 287-319, abstract in Phil. Mag. 29 (1846): 
60-62. Stokes' mathematical work is discussed in Cross, "Integral Theorems," 136-137, 
144-145. 

95 Stokes, "On the Aberration of Light," Phil. Mag. 27 (1845): 9-15, and, "On Fresnel's 
Theory of the Aberration of Light," same journal (1846): 76-8l. 

96 Stokes, "On the Constitution of the Luminiferous Ether, viewed with reference to the 
Phenomenon of the Aberration of Light," Phil. Mag. 29 (1846): 6-10. 
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Thirdly, Stokes separated those of his mathematical papers deliberately written 
to explore the physical implications of the mathematical analysis that emerged 
from a branch of physics. Physics led to mathematics and then back to physics. 
In these papers physical hypotheses were the means to establish basic equations. 
These hypotheses were kept deliberately on a general level, relating for example, 
to the general behavior of fluids, rather than descending to the particulars of the 
internal structure of fluids to generate the equations of motion. He began in the 
equations of motion for a homogeneous, compressible fluid and the equation of 
continuity. These were restricted by noting that small oscillations meant that he 
could omit terms denoting the compressible character of the fluid. Sometimes 
specific physical problems led him to extend theories of fluids. In the case of his 
work on pendula, it was the failure of mathematical theories to meet the results 
of Sabine's carefully performed experiments. These experiments led Stokes to 
believe that internal friction operated in fluids and the equations of motion of 
fluids needed to be generalized to take this into account. 

Stokes restricted the general equations of motion to cases that modeled partic
ular physical circumstances whose solution would allow him later to compare his 
numerical results directly with a series of experiments.97 Mathematicians might 
have delighted in seeking the mathematical consequences of heterogeneous fluid 
flow but the case of a tangential stress being developed in the fluid mirrored the ex
perimental cases Stokes wanted to address. This mathematical case was therefore 
the one he focussed upon. Also the course of his mathematics was further re
stricted to expressions from which he extracted physical consequences. The point 
of this paper was to extract physical information and experimental consequences. 
No molecular models, no explanation of how friction within a fluid might arise. 
Stokes described what happened and gave mathematical expression to the fluid's 
behavior. 

He began with the general equations of motion of a fluid with internal friction, 

dp au au au au a2u a2u a2u - = p(x - - - u- - v- - w-) + f1(- + - +-) 
dx at ax ay az ax2 ay2 az2 

f1 d du dv dw 
+"3 dx(dx + dy + dz)' 

with similar equations for dpjdy and dpjdz, where u, v, w were the components 
of the velocity of the fluid along the x, y, z axes, p the pressure and t the time, 
p the density of the fluid and f1 "a certain constant dependent on the nature of the 
fluid." Stokes then confined himself to a series of special cases of these equations 
that were dictated by physical conditions. The motions of the fluid were small so 
that terms in the squares of the velocities could be neglected and the density could 

97 The experiments he referred to were those performed by Bessel in the 1820s and by 
Sabine and others on the seconds pendulum. 
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be treated as a constant. He also took the force X, Y, Z as a component of gravity. 
The monster equation above was reduced to, 

. . . au av aw . . 
and the equatIOn of contmUlty, - + - + - = O. Workmg systematIcally ax ay az 
through the mathematics, Stokes eliminated cases by imposing physical conditions 
until he could consider pendulums that were cylinders and spheres performing small 
oscillations in spaces restricted by other cylinders and spheres. These conditions 
meant that the number of arbitrary constants introduced into his solutions was 
restricted to one. Stokes called this the "index of friction" of the fluid which could 
be determined by experiment. Taking a qualitative demonstration of its existence, 
he developed a theory based on the general mathematized properties of fluids, 
expanded to include this new phenomena, then reduced the mathematics to a state 
of direct comparison with several different experiments.98 

In his report to the British Association on hydrodynamics, Stokes interpreted 
the results of all mathematicians physically. He only dealt at length with those 
results that had physical content. He mentioned Ostrogradsky's paper in passing, 
although it was on the motion of a fluid in a cylindrical basin. However, "the 
interest of the memoir, however, depends almost exclusively on the mathematical 
processes employed, for the result is very complicated, and has not been discussed 
by the author.,,99 In another case Stokes suggested that a mathematical investigation 
was characterized as "one of great complexity and very little interest," that is, of 
physical interest. lOO Here Stokes also gives explicit physical meaning to the terms 
in the mathematics of fluids. 101 

Quite explicitly Stokes separated his physical and mathematical understanding 
of the same piece of work. 102 In his discussion of Fourier series, he was at pains to 
show the mathematical advantages of Fourier analysis over functional solutions to 
the same partial differential equations. Here the point was mathematical, to extend 

98 Stokes, "On the Effect of the Internal friction of Fluids on the Motion of Pendulums," 
Trans. Cambridge Phil. Soc. (1851): 8-106. 

99 Stokes, "Report of Recent Researches in Hydrodynamics;' Rep. British Assoc. Part 
I (1846): 1-20, reprinted in Stokes, Mathematical and Physical Papers (Cambridge: 
Cambridge University Press, 1880) vol. 1, 157-187, 162. 

100 Stokes, "Report," 168. 

101 See Stokes, "Report," 183-184 where he explains physically what terms St. Venant used 
to describe the motion of fluids where the pressure was not equal in all directions, and 
the physical results of these suppositions. 

102 In the case of fluorescence Stokes could not complete the transition from experiment to 
mathematics and physics. The physical foundation of his mathematics were insufficient 
to analyze even his own experiments. 
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Fourier series to cases beyond their usual range. Temperatures become functions 
of coordinates, and the results of these mathematical explorations were not referred 
back to measurable temperatures or other physical conditions. He left the results 
in terms of functions and arbitrary constants. The results illustrated mathematical 
methods, but did not elucidate any physics. 103 

Stokes was quite conscious of his separation and treatment of mathematics from 
physics. He was also clearheaded about his use of physics to generate mathematics. 
He put it to Cayley that 

Thomson and I are at present writing to each other about potentials. 
I think that potentials may throw light on the interpretation of f (x + 
Hy). How horrible you would think it to prove, even in one's own 
mind, a proposition in pure mathematics by means of physics.104 

Whether Cayley was horrified or not, his report on dynamics of 1857 served to 
show the distance between mathematicians and physicists in the middle decades 
of the nineteenth century. Cayley's report traced "the investigations of geometers 
in relation to the subject of analytical dynamics." He recounted the successive 
development of mathematical methods. In conclusion Cayley reminded his au
dience that the differential equations of dynamics "are only one of the classes of 
differential equation which have occupied geometers." He then noted the work 
of Jacobi and Pfaff in the theory of the solution of partial differential equations. 
Mathematicians could still claim mechanics. 105 

Stokes' ability to differentiate mathematical nicety from physical meanings was 
put to the test when he was appointed as Lucasian professor of mathematics at 
Cambridge. In this capacity he took over the lecture demonstrations on hydrostatics 
and optics from Challis. As one student later put it, before Stokes, 

we had to get up natural philosophy by a painful exercise of the imagi
nation on diagrams and descriptions, and the abstractions formulated by 
mathematicians to make calculations possible which presented Nature 
as a lifeless statue.106 

103 Stokes, "Critical Values of the Sums of Periodic Series," Trans. Cambridge Phil. Soc. 8 
(1849): 533-583, abstract in Phil. Mag. 33 (1848): 309-31l. 

104 Stokes to Cayley, 29th Oct., 1849 in David B. Wilson, The Correspondence between Sir 
George Gabriel Stokes and Sir William Thomson, Baron Kelvin of Largs (Cambridge: 
Cambridge University Press, 1990),2 vols. vol. 1,81 footnote. This runs contrary to the 
usual interpretation of Stokes' work which is seen as dominated by physics. See David B. 
Wilson, Kelvin and Stokes, and E. M. Parkinson, "George Gabriel Stokes, 1819-1903," 
Dict. Sci. Bio., vol. 13,76-79. 

105 Arthur Cayley, "Report on the Recent Progress of Theoretical Dynamics," Rep. British 
Assoc. (1857): 1-42. 

106 G. D. Liveing, in Memoir and Scientific Correspondence of the Late George Gabriel 
Stokes, 1819-1902, Joseph Larmor, ed. 2 vols. (Cambridge: Cambridge University 
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Stokes "at once set the study on a new footing" with his experiments. He demon
strated conical refraction, a result that was well known and liable to be on the 
Tripos. 

Stokes was well aware of his audience. Professional audiences were now becom
ing large enough that papers on the different aspects of one topic, mathematical, 
experimental and hypothetical were placed in different publications. He used these 
publication alternatives to address specific issues. By the middle of the 1840s with 
the Cambridge Mathematical Journal, mathematicians had an outlet that catered 
to their interests.107 Physical speculations were of no interest to this group unless 
they led to new mathematical puzzles. Stokes explained the physical content of 
mathematical theories in articles published in Philosophical Magazine that catered 
to experimental physicists. Stokes' physical interpretations appeared here without 
losing his audience in a sea of impenetrable analysis. Stokes' papers, therefore, 
had clearly delineated purposes that he followed through in their structure. Those 
directed towards mathematical investigations and those of physical interpretation 
and investigation were quite distinct. 

The clarity and shift of priorities were a break with mathematical physics at 
Cambridge where any physics emerged from the particulars of a generally devel
oped mathematics. In Stokes' work mathematical physics became a branch of 
physics as well as one of mathematics. In the mathematical physics addressed to 
physicists, Stokes focussed only on the amount of mathematics necessary to make 
the physical points clear. In addressing mathematicians, the physical meanings of 
the mathematics was either absent or a minor point of the paper. 

Stokes' and Thomson's interests and talents complemented one another. In their 
early correspondence Stokes and Thomson explored the mathematics and physics 
of their separately favored subjects, fluids for Stokes, electrostatics for Thom
son. In all cases Stokes was the more perceptive mathematician.108 He also helped 
Thomson to define his physical cases from which the mathematics developed more 
precisely. In trying to understand Gregory's recent work on differential and in
tegral calculus, Thomson used examples from physical cases. Physics generated 
and made mathematics intelligible. While Stokes did not follow Thomson into ex
periments in electricity he could, through mathematics, advise Thomson on both 
his physics and mathematics. Stokes chose not to speculate physically in the same 
way as Thomson or even Maxwell. However, both of the latter referred to him and 

Press, 1907), vol. 1, 91-97, 96. Liveing points out the costs to Stokes of all this work. 
Stokes had to set up the demonstration experiments on his own, at great expense in time 
and trouble. 

107 The Cambridge Philosophical Society together with the Royal Societies of London and 
Edinburgh as before published papers over a broad range of topics to their members. 

108 See Stokes' comments on Thomson's paper on orthogonal surfaces. See Stokes to Thom
son, 10th April, 1847, in David B. Wilson, Correspondence vol. 1,23-25,25. 
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deferred to his judgment on both physical and mathematical issues. 109 

Stokes was important to both Maxwell and Thomson on two counts. The first 
was his ability to clarify issues of physics, versus those of mathematics. The second 
was his ability to present research where he differentiated the goal of exploring 
the mathematical implications of a physical situation from exploring just how 
the mathematics might be tamed to meet physically plausible conditions and hence 
expose the physical content within the mathematics. Stokes remained an important 
source of mathematical support and a judicious critic of physical speculations for 
both men. 

Stokes' career and his reputation was never on a par with those of Maxwell and 
Thomson. He was neither an entrepreneur, nor did he have a private income. As one 
of the secretaries of the Royal Society, he expended enormous amounts of energy on 
the work of others. The standards with which he shaped his research did not fit well 
into a discipline and profession that began to judge a career in terms of conceptual 
innovation. Clarifying what within French mathematical physics was important 
for the physical understanding of nature, versus that which opened up new areas of 
analysis, seemed less important to later generations who could take those criteria 
for granted. In the actual development of theoretical physics in Britain, such an 
ability was crucial in investing mathematical expressions with physical meaning 
and knowing when the mathematics was not speaking to the physical problem at 
hand. It is no wonder then that both William Thomson and James Clerk Maxwell 
held Stokes in such high regard, both as a source for mathematical insight and as a 
critic of their physical speculations. The relationship with Maxwell was so close 
that, at Maxwell's death, Stokes became the executor of his intellectual estate. 

James Clerk Maxwell 

Maxwell was closer to Stokes in methodology and consciousness of his own 
usage of hypotheses, their delights and dangers, than any other colleague. He was 
also more systematic than Stokes in his exploration of his own uses of hypotheses 
and in the more general question of when and where they were necessary. By 
the time Maxwell graduated from Cambridge in 1854 he had a range of types of 
physical explanation to draw on from the work of Thomson, Stokes, and others. 
He also inherited their experimental work and the integration of those experiments 
with their theoretical interests. This included Thomson's mathematical work on 
electricity, his integration of experiment with heat theory in thermoelectricity, and 
his examples of nature as mechanism. From Stokes, Maxwell could draw on his 
experiments on friction in gases and on the motion of pendula together with his 

109 This was captured by Tait in "George Gabriel Stokes," Trans. Cambridge Phil. Soc. 18 
(1904): 303-304 and in Scientific Correspondence of Stokes, Larmor ed., vol. 1. It was 
echoed in Thomson's remarks on the same occasion, 277. 
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hydrodynamics, as well as his work in light and on the ether that was an extension 
of his work in fluids. 

Maxwell shared with Stokes and others an interest in the relationship between 
images of nature and reality, and the particular example of Stokes' clear criticism 
of mechanical models of the ether. Much has been made of the roots of Maxwell's 
philosophy in the unique aspects of his Scottish education. However, in looking at 
the group of natural philosophers and physicists in Scotland and England as well 
as Ireland, the same philosophical issues and range of responses to the problems 
posed by the relationship between images of nature and its reality are found across 
cultural and social boundaries. The assumption of the uniqueness of the Scottish 
philosophical heritage of Thomson and Maxwell cannot explain the baroque na
ture of Thomson's later detailed molecular models of the ether, magnetism, and 
electricity. Within these accounts Stokes' distance from these same models also re
mains somewhat mysterious given his educational background. Stokes' research 
matched the "geometrical" descriptions given to the kind of natural philosophy 
that supposedly emerged from Scottish natural philosophy. Maxwell's use then 
discarding of the same kind of mechanical models as Thomson's speaks for a 
continuing search for heuristic methods to explore nature, rather than a lifelong 
commitment to any philosophical program. 

The argument over the special place of geometry within this Scottish philo
sophical tradition also fails, if we take into account the research interests as well 
as the textbooks of many professors of natural philosophy and mathematics in 
ScotlandYo What these physicists had in common was intensive mathematical 
training at Cambridge. What they did with that training depended on the contin
gencies of their careers. Stokes remained at Cambridge. The research problems 
of interest there and the requirements of his chair led him to consider some physi
cal problems rather than others. The opportunities of Glasgow and study in Paris 
changed the direction of Thomson's work. Maxwell was able to exploit several 
different approaches to the exploration of nature. Unlike the other two, he had an 
independent income that distanced him for some years from the immediate needs 
and the social context of a profession. It allowed him to pursue theoretical physics 
along several different fronts simultaneously. 

What also joined these and other physicists of the mid-nineteenth century was 
the conviction that they were searching out the true structure and functioning of 
nature. Maxwell simultaneously explored the philosophical grounds on which 
to develop theories of nature while constructing them in mathematical form and 
interpreting them physically. Early in his career Maxwell explored the physical 

110 On this heritage, see Richard Olson, "Scottish Philosophy and Mathematics, 1750-1830," 
J. Hist. Ideas 32 (1971): 29-44, and Scottish Philosophy and British Physics (Princeton 
NJ.: Princeton University Press, 1975). See also Peter Harman, "Edinburgh Philosophy 
and Cambridge Physics: the Natural Philosophy of James Clerk Maxwell," in Wranglers 
and Physicists, Harman, ed., 202-224. 
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importance of mathematical expressions in his discussion of Faraday 's electrotonic 
state. lli This search and its results were of greater consequence for the develop
ment of theoretical physics than the parallel descriptive, mathematical efforts of 
his French predecessors. Interest in what we characterize as the philosophical 
aspect of theories about the physical operation of nature were a integral part of 
the development of theoretical physics in Britain. Philosophical issues therefore 
surface within otherwise technical papers in the work of Maxwell as he consciously 
structured new kinds of explanations of physical phenomena. Although we might 
find the appearance of such discussions out of place, they did not seem to disturb 
his contemporaries. 

Much of Maxwell's discussion revolved around the relationship between mod
els of nature and reality that Stokes had touched upon in less formal ways, and 
of the role of mathematics in constituting those images. Maxwell explored how 
explanations of nature ought to be structured while simultaneously structuring ex
planations of specific phenomena and processes. He shared a general commitment 
to a mechanical world view with Thomson and Stokes. Yet he dropped the use of 
mechanical models in the mode of Thomson for the more defensible foundation of 
the Langrangian and Hamiltonian formulations of mechanics. If we argue that his 
detailed vortex model of the ether must be taken seriously as a Maxwellian model 
of reality, we have to ignore his detailed discussions on analogy and his later me
chanical and electrical reformulations of his electromagnetic theory.l12 To claim 
Maxwell's adherence to specific models of the ether, historians and philosophers 
must ignore parallel developments of Maxwell's theory of gases, from specific 
molecular models to increasing abstraction, from mechanical specifics to statis
tical mechanics. In this last stage Maxwell used the Hamiltonian formulation of 
mechanics and hence his gases obeyed only the most general laws of mechanics. 113 

111 Maxwell, "Faraday's Lines of Force," Trans. Cambridge Phil. Soc. 10 (1856): 27-83, 
reprinted in Maxwell, Scientific Papers vol. 1, 155-229, 188-189,209. 

112 Maxwell's commitment to the specific mechanism of vortices has been reaffirmed in 
Daniel M. Siegel, Innovation in Maxwell's Electromagnetic Theory: Molecular Vortices, 
Displacement Current and Light (Cambridge: Cambridge University Press, 1991), and, 
"Mechanical Image and Reality in Maxwell's Electromagnetic Theory," in Wranglers 
and Physicists, Harman, ed. 180-201, and "Thomson, Maxwell and the Universal Ether 
in Victorian Physics," in Conceptions of Ether, Cantor and Hodge, eds. 239-268. 
Maxwell's reformulations of his electromagnetic theory are discussed in C. W. F. Everitt, 
James Clerk Maxwell Physicist and Natural Philosopher (New York: Charles Scribner's 
Sons, 1975),80-111. 

113 Other historians and philosophers also maintain Maxwell's skepticism towards models 
and specific mechanisms. See Peter Harman, "Edinburgh Philosophy and Cambridge 
Physics," in Wranglers and Physicists, Harman, ed. 202-224, and "Maxwell and Modes 
of Consistent Representation," Arch. Hist. Exact Sci. 6 (1970): 171-213. Others have 
argued that aesthetic principles guided at least Maxwell's theory of the electromagnetic 
field. See, Alfred M. Bork, "Maxwell's Displacement Current and Symmetry," Amer. J. 
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The dichotomies in recent Maxwell historiography arise from seeing him as 
either a displaced philosopher, or a working physicist. As a physicist, lifetime 
philosophical consistency and rigor is a secondary consideration. 114 Yet if we 
exclude either aspect of his life and work that run consistently through both, we 
can make no coherent sense of him.lIs Maxwell's philosophical concerns were 
constitutive of the new enterprise in which he was engaged, the construction and 
defense of what we now call theoretical physicsy6 

Maxwell's discussion of the relation of physical imagery to reality began in his 
discussion of analogy.1I7 He claimed that analogies only signified mathematical 
likenesses not physical ones. His discussion of specific mechanical models was 
a method of constructing a mathematical likeness of nature, not a replica of it. 
Maxwell was not drawn into the pursuit of mathematics but held more closely to 
the goal of the exploration of nature. He was able to distinguish those aspects 
of his mathematics that led to physically plausible results and those that were 
mathematically interesting. He also published them separately. Maxwell quickly 
learned that neither experiment, nor mathematics alone were adequate paths to 
the construction of physical theory. In 1849 while a student at Edinburgh with 
James David Forbes, he began an experimental investigation into the perception of 
color. He continued this work for nearly two decades, throughout the period of his 
early work on electricity, magnetism, and gases. He also performed experiments 
to confirm the predictions of his theories on electromagnetism and gases so that 
the direct juxtaposition of experiment and mathematics continued throughout his 
life. Maxwell also saw the limitations of both in that, 

experiment furnishes us with the values of our arbitrary constants, but 
only suggests the form of the functions. Mterwards, when the form is 
not only recognized but understood scientifically, we find that it rests on 
precisely the same foundations as Euclid does, that is, it is simply the 
contradiction of an absurdityYs 

Phy. 31 (1963): 854-859, and Joan Bromberg, "Maxwell's Displacement Current and 
his Theory of Light," Arch. Hist. Exact Sci. 4 (1967): 218-234. 

114 See Daniel Siegel, "The Origins of Maxwell's Displacement Current," Hist. Stud. Phys. 
Sci. 17 (1986): 19-146. 

115 M. Norton Wise, "The Maxwell Literature and British Dynamical Theory," Hist. Stud. 
Phys. Sci. 13 (1982): 175-205, noted this impasse. 

116 For the importance of philosophical issues throughout his life see, Lewis Campbell and 
William Garnett, The Life of James Clerk Maxwell (New York: Johnson Reprint of 1882 
edition, 1969), passim. 

117 For Maxwell on physical analogies, see Joseph Turner, "Maxwell on the Method of 
Physical Analogy," Brit. J. Hist. Sci. 6 (1955): 226-238, and Robert Kargon, "Model 
and Analogy in Victorian Science: Maxwell's Critique of the French Physicists," J. Hist. 
Ideas 30 (1969): 423-436. 

118 Campbell and Garnett, Life, p. 261. 
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Mathematics could express relations between things, and indeed relationships of 
the same form could describe separate physical processes. Recognizing these same 
forms when going from a known to an unknown process could be helpful. The 
relationships established by mathematics did not distinguish the two processes 
physically.119 The analogy between fluids, heat, and electricity was mathematical, 
"a similarity between relations, not a similarity between things related.,,120 

Maxwell's work on analogies was based in William Thomson's mathematical 
analogies between electrostatics, heat, and gravitation. Maxwell used the idea of 
mathematical analogy in his attempt to give mathematical form to Faraday's ideas 
on lines of force which he accepted as empirically grounded. To mathematize 
them, Maxwell drew the physical analogy between lines of force and the stream
lines of an incompressible fluid. This analogy allowed Maxwell to adopt all the 
mathematical apparatus of hydrodynamics. By doing so he replicated known laws 
in electrostatics, magnetism, and current electricity. The vernacular physical rep
resentation was matched by the mathematical expression of hydrodynamics and 
known laws of magnetism, electrostatics, and current electricity. Maxwell then 
went beyond the replication of known results. He distinguished between magnetic 
induction and magnetic force, between a flux and a force, by looking at the flow 
of his fluid through a resistive medium and the changes in its flow as it crossed 
a boundary into a medium of different porosity. The flow of the fluid was con
tinuous but there was a pressure difference across the boundary. The direction 
of flow of the fluid in the second medium was not necessarily that of maximum 
pressure drop. Physically translating the symbols into their electric and magnetic 
counterparts, Maxwell noted the distinction between current density and electric 
intensity, magnetic induction and magnetic force. 

This first sortie into electricity and magnetism was an exercise in Stokes' ap
proach to mathematical physics. In a second such exercise Maxwell tackled the 
Adams prize question of 1856-the stability of Saturn's Rings. The essay was laid 
out in proper tpathematical style as a series of propositions pursued in logical order 
by reducing the steps in the investigation to mathematical form. However, this was 
an exercise in physical astronomy rather than celestial mechanics. The mathe
matics was kept under control. Every proposition had a physical point to it and 
Maxwell accompanied each mathematical result with a physical interpretation. He 
accompanied the mathematical condition that delimited stability for a solid ring by 
a physical explanation. He based his conclusion that a solid ring was unlikely on 
observations and accepted laws of planetary astronomy. This was mathematical 

119 Maxwell, "Analogies. Are there Real Analogies in Nature?" in Campbell and Garnett, 
Life, 235-244, 243. 

120 Maxwell Elementary Treatise on Electricity William Garnett ed. (Oxford: Clarendon, 
1881), section 64. For a more extended discussion see, Maxwell, "Faraday'S Lines of 
Force," in Scientific Papers, vol. 1, 155-229, 156-158. 
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physics from a physical point of view. To demonstrate the plausibility of his rings 
of small satellites, Maxwell transformed his mathematical model into mechanical 
reality. He had models constructed to demonstrate the motions of these satellites 
as a disturbance travelled as a wave around a circle of the particles that made up a 
ring.121 

By 1860 Maxwell had moved beyond Stokes on two fronts. He was construct
ing two theories, one of gases, the other of magnetic phenomena based upon the 
particular physical behavior of specific mechanical models, pursued mathemati
cally and interpreted physically. The first was on the interaction of the molecules 
of gases, the other his vortex model of the action of magnets and of electromag
netism. The first focussed on matter, the other was a material representation of 
physical change. Both of these mechanical models led to predictions that Maxwell 
followed up himself. Taken from Clausius, his kinetic model of a gas made up 
of billiard ball molecules randomly colliding with one another led to predictions 
about the thermal behavior of the transport properties of gases. The viscosity of 
such a gas was independent of its pressure, a very unexpected result, and varied 
as the square root of its absolute temperature.122 While his experiments seemed to 
confirm his model for a gas, Maxwell took them as only confirming the rightness 
of his mathematical conclusions. They did not tell him anything of the validity of 
his molecular model. 123 

The steps from his vortex model of electromagnetic interactions to the labo
ratory were less direct than those from kinetic theory to the measurement of the 
transport properties of gases.124 When Maxwell first began to study electricity and 
magnetism, the range of phenomena to be covered by any mathematical theory was 
orders of magnitude greater than in gas theory. Mathematical theories abounded to 

121 See Maxwell, On the Stability of the Motion of Saturn's Rings (Cambridge: Macmillan 
and Co., 1859), reprinted with commentary in Maxwell on Saturn's Rings, Stephen G. 
Brush, C. w. F. Everitt and Elizabeth Garber, eds. (Cambridge MA.: MIT Press, 1983). 

122 These earl y kinetic theory papers are reprinted with commentary in Maxwell on Molecules 
and Gases, Elizabeth Garber, Stephen G. Brush and C. W. F. Everitt, eds. (Cambridge 
MA.: MIT Press, 1986). His experimental work on viscosity became the Bakerian 
Lecture of the Royal Society in 1866. 

123 Maxwell, "Illustrations of the Dynamical Theory of Gases," Phil. Mag. 19 (1860): 19-
32,20 (1861): 21-37, and, "On the Viscosity or Internal Friction of Air and other gases," 
Phil. Trans. R. Soc. London, 156 (1866): 249-268. 

124 Details of Maxwell's model and its mathematical expression are in Siegel, Innovation, 
chap. 3. Maxwell, "On Physical Lines of Force. Part I The Theory of Molecular Vortices 
Applied to Magnetic Phenomena," Phil. Mag. 21 (1861): 161-175, "Part II The Theory 
of Molecular Vortices Applied to Electric Currents," same journal (1861): 281-291, 
"Part III The Theory of Molecular Vortices Applied to Statical Electricity,"same journal 
23 (1862): 12-24, "Part IV The Theory of Molecular Vortices Applied to the Action of 
Magnetism on Polarized Light," same journal (1862): 85-95. Reprinted as Maxwell, 
"On Physical Lines of Force," in Maxwell, Scientific Papers, vol. 1,451-513. 
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cover aspects of these phenomena but no one theory unified all of them. Michael 
Faraday had shown that galvanic and static electricity were the same and extended 
the work of Oersted and Ampere to show how mechanical force, current elec
tricity and magnetism were inextricably linked. Maxwell began his mathematical 
constructions in magnetism as he had with his fluid analogy. In working on the 
mathematical expression of the mechanics of vortices, Maxwell found that the 
mathematics representing the centrifugal force of the rotating vortices acted as the 
magnetic force. The mathematical form representing the motions of the particles 
acting as idler wheels between the vortices behaved as the electric current. The 
mathematics that represented the changes in the velocity of the vortices was the 
same as that for electromagnetic induction. 

To complete the mathematical description of the full range of phenomena, Max
well needed a mathematics of some mechanical property of his vortices that could 
represent the phenomena of electrostatics and then link those to the equations 
representing current electricity.12s To do this Maxwell endowed his vortices with 
elasticity. With a medium endowed with elasticity, Maxwell could bring to bear 
all the mathematics of the ether and capture light in his mechanical net by tracing 
the propagation of elastic waves through his mechanical medium. His mechanical 
model from which he could deduce the mathematics of known electromagnetic, 
electrical, and electrostatic phenomena led him to predict the velocity of propaga
tion of these elastic waves (the ratio of electrostatic to electromagnetic units) as 
the velocity of light. He extended his mechanical model in other directions that 
led to a relationship between the refractive index of a dielectric with its dielectric 
constant. Neither prediction was brought to the experimental fruition Maxwell had 
hoped for. 126 

The mechanical model from which Maxwell developed a unified mathematical 
theory of electricity, magnetism, and light depended on Stokes' understanding that 
solids and fluids differed only in the degree of their mechanical properties, not in 
kind. Simultaneously Maxwell used fluid-theory mathematics in his parallel devel
opment of electromagnetism and a second version of his theory of gases. In his gas 
theory he avoided the specifics of a molecular model until it was necessary to deduce 
expressions for the transport coefficients. He then used a centers-of-force model 
that allowed him to integrate a crucial equation and bring about mathematical and 
physical closure. 127 While uniting a broad range of phenomena mathematically it 
is unclear that Maxwell accepted these molecular models as representing physical 

125 This was a crucial development as Wilhelm Weber's theory, the only serious rival to 
Maxwell's, had accomplished just that. 

126 Siegel documents Maxwell's responses to the relevant experiments in Siegel, Innovation, 
155-158. 

127 On the importance of the mechanics of fluids in Maxwell's physics see Maxwell on 
Molecules and Gases, Garber, Brush and Everitt, 23-26. 
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reality. It was heuristic. In the manipulations of his equations, the mechanics of the 
model allowed him to follow physical processes that were mechanically defensible 
and consistent. Only mathematical manipulations with such mechanical counter
parts were recounted and followed through in his papers. This was a search for an 
understanding of the processes of nature, not a coherent mathematical description 
of a broad, experimentally connected set of phenomena. Mathematical extensions 
were through the development of the mechanical properties of the medium, not 
the manipulation of equations. Mathematics was subordinated to the extensive 
exploration of a mechanism. 128 

Maxwell did not take these specific mechanical models as the image of nature. 
He later reformulated both his gas theory and his electromagnetic theory of light. 
He reworked them so that all his results depended on the general principles of me
chanics, not on the particular characteristics of anyone model.129 He also explored 
the shortcomings of theories based on mechanical models. Maxwell preferred a 
more Stokesian approach, basing his theories on general hypotheses that simply 
assumed the phenomena only depended upon the configuration and motion of a 
material system. 130 

He used models to generate mathematical relations and guide the development 
of the mathematics along physically defensible lines. The mathematics and model 
together also allowed Maxwell to reach beyond known experimental evidence to 
create new encounters between mathematics and experiments. Only mathemat
ics guided by possible mechanical processes could lead to plausible outcomes. 
Mechanical models were necessary for him to structure his physical theories. As 
an image of nature and her operations, he found mechanical models less than 
satisfactory. 

Maxwell was both a theoretical and experimental physicist who made few con
tributions to pure mathematics. Those he did make were in his Treatise and his 
final paper on gas theory. In the Treatise, pure mathematics was confined to two 

128 For his mechanical models in electromagnetism see Maxwell, "Physical Lines of Force." 
For gases see Maxwell, "Illustrations," and, "On the Dynamical Theory of Gases," Phil. 
Trans. R. Soc. London 157 (1867): 49-88, reprinted in Scientific Papers, vol. 2, 26-78, 
and Maxwell on Molecules and Gases, 419-470. 

129 For Maxwell's reformulation of his electromagnetic theory see Maxwell, "A Dynamical 
Theory of the Electromagnetic Field," Phil. Trans. R. Soc. London, 155 (1865): 459-
512, and for the papers leading to his form of statistical mechanics, with commentary 
see Maxwell on Heat and Statistical Mechanics: On "Avoiding all Personal Enquiries of 
Molecules" Garber, Brush and Everitt, eds. (Bethlehem PA.: Lehigh University Press, 
1995). 

130 For Maxwell on mechanical models in general see Maxwell, Treatise on Electricity and 
Magnetism (New York: Dover reprint of third edition, 1945), vol. 2, chap. 5. Maxwell 
added a chapter, "On the Equations of Motion of a Connected System," in the second 
edition of his treatise. For Maxwell's criticisms of specific molecular models including 
vortices, see Garber, "Molecular Science in Late Nineteenth-Century Britain," 275-279. 
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chapters separated from those on the physics of electricity and magnetism.131 
By the 1870s Maxwell was sufficiently aware of the difference between the 

enterprise he, Thomson, and Tait were engaged in and that of the mathematicians to 
see a new relationship between mathematics and natural philosophy. In his review 
of Thomson and Tait's Elements of Natural Philosophy, Maxwell pointed out two 
ways in which natural philosophy was usually taught. The first was as training in 
pure mathematics where the student "at once appreciates the language if not the 
ideas of the new subject and where progress is equated with bringing that science 
under the power of the calculus." The other method was as training in experiment. 
Neither led to the development of powers of reasoning or the development of 
new powers of thought. Mathematics was a transfer of effort from thinking about 
natural phenomena to contemplating equations. In his opinion all mathematicians 
should put their ideas into words to enlighten the world and themselves. Maxwell 
himself doubted "whether the ideas as expressed in symbols had ever quite found 
their way out of the equations into their minds." He briefly described the contents 
of the text and noted, with regret, that the authors had not used vectors, although 
one of them was "a follower of Hamilton." Maxwell expressed his sympathy 
with their efforts to divest "scientific truths of that symbolic language in which 
mathematicians have left them," and put them in precise, vernacular terms. The 
experimentalist was bogged down in details that obstructed their ability to reach 
for "higher forms of thought." Yet there was a third method, 

where each department in turn is regarded, not merely as a collection of 
facts to be coordinated by means of the formulae laid up in stone by the 
pure mathematicians, but as itself a new mathesis by which new ideas 
may be developed.132 

In keeping both experiment and pure mathematics together and acknowledging that 
both required hypotheses, a new form of mathematical knowledge could emerge. 
For Maxwell, mathematics was symbolic and unless the physical meanings of those 
symbols were kept before the mind, the student would gain little understanding of 
the physical universe promised by the mathematics. Nevertheless in understand
ing the mathematical characteristics of the quantities being signified, mathematical 

131 Maxwell Treatise, vol. 1, chap. 5, "General Theorems," where there is a generalized 
discussion of Green's theorem, and chap. 9, "Spherical Harmonics." Spherical harmonics 
are also the subject of an addition to Maxwell, "On Stresses in Rarified Gases from 
Inequalities in Temperature," Trans. R. Soc. London, 170 (1880): 231-256. Reprinted 
in Maxwell, Scientific Papers, vol. 2, 681-712. See Maxwell on Heat and Statistical 
Mechanics, Garber, Brush and Everitt, 77-78 for a discussion. Maxwell also published 
on reciprocal statics, curvilinear coordinates, and the calculus of variations. 

132 Maxwell "The Elements of Natural Philosophy by Professors William Thomson and 
Peter Guthrie Tait (Macmillan and Co., 1873)," Nature, 7 (1873): 324-328, reprinted in 
Maxwell, Scientific Papers, vol. 2, 324-328. 
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analogs were quickly built.133 He based his proposed classification of these analo
gies on the physical effects he saw signified by the mathematical quantity. Curl 
thus signified a rotation, convergence, a focussing at a point. 

By the time of Maxwell's death in 1879, several approaches to and goals for the 
study of nature using mathematics had emerged, several of which he had defined, 
shaped and made credible. Mathematicians whose forays into analysis began in 
problems of physics continued to use the new domains of physics for their own 
purposes. They frequently inverted the direction of the development of these fields 
by using physical problems to illustrate the uses of new mathematical domains. 
This constituted "mathematical physics" as practiced by mathematicians. This 
type of mathematics was quickly being reclassified as a branch of "applied math
ematics," and relegated to a secondary place in a changing hierarchy of research 
in mathematics. The newer pursuit of research into foundations constituted the 
highest rung of the research ladder in "pure" mathematics. Mathematicians also 
developed mathematical theories based in physical hypotheses which they claimed 
were theories of physical phenomena that bore no relationship or points of contact 
through experiment with any aspect of physical reality. These were not confined to 
James Challis; it was even a characteristic British exercise in mathematics. Some 
German mathematicians indulged in the same kind of research that Maxwell found 
irksome and fundamentally useless. 

Not all explorations of the purely mathematical kind that began in physical prob
lems were without interest for those using mathematics to interpret the functioning 
of nature. Mathematical conclusions, especially using particular cases, were ex
amined for their physical content. These examinations were no longer done with 
the casual assumptions of Poisson et aI., but required that the behavior of the orig
inal physical entities encoded in mathematical symbolism be traced through the 
mathematical manipulations. This was to make sure that those manipulations con
sistently represented plausible physical processes and the conclusions were a truly 
idealized version of real experimental circumstances. Such examinations began 
with Herschel and Whewell and culminated in the work of Stokes who used such 
a generalized approach masterfully. 

To go further and generate physical meanings, not merely seeing them retrospec
tively in mathematics already developed, required that each step in the evolution 
of the mathematical operations, going from one equation to the next, carried phys
ically consistent meanings. A certain mathematical operation always represented 
a rotation, etc. In addition, this operation was only of interest if and when the 
physical results of it were consistent with the general physical characteristics of 

133 He extended this idea of mathematical analogy from algebra to geometry and formally 
began the transition from quarternions to vector analysis. See Maxwell, "On the Math
ematical Classification of Physical Quantities," Proc. London Math. Soc. 31 (1869-71): 
224-232, reprinted in Maxwell, Scientific Papers, vol. 2, 241-266. 
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the system under study. Conservation laws for example and other accepted prin
ciples had to be obeyed. Even if only such generalities were followed, the results 
of mathematical manipulations might be unexpected. If these results were physi
cally plausible, they were allowable. The paths taken by the mathematician were 
hedged about by the needs of physical plausibility and consistency in the meanings 
attached to mathematical operations. The meanings of mathematical operations, 
as well as its symbols, were becoming infused with physical meanings. Every 
mathematical result was reached to make a physical point, or bypassed. Or such 
results might be passed over in silence and explored later before a mathematical 
audience. 

Further sUbjugation of the languages of mathematics to the purposes of physical 
interpretation came by using the specifics of mechanical models. The range of 
both mathematical and physical validity was more limited, although they might 
be physically suggestive and insightful. Thomson's growing preference for this 
approach meant that his work in physics was piecemeal, while the mathematics 
that he used was consistent. He produced insights into physical problems without 
developing any broad theories of any type of physical phenomena.134 

There were also cases where both physical imagery and the logical outcomes of 
mathematical manipulation joined together more equably. The logical structure of 
the mathematical manipulation suggested directly how a physical system ought to 
behave. This was true in the development of thermodynamics and is most easily 
seen in English in Maxwell's Theory of Heat. 135 

Practitioners of all these different methods shared the assumption that mathe
matics was central to understanding nature. All three approaches led to predictions 
of new phenomena through the extension of mathematics guided by physical prin
ciples, or models, beyond the confines of known behavior and experimental results. 
Maxwell understood the power of this new use of mathematics that was indepen
dent of the older experimental methods of natural philosophy. He also exploited 
the potential of these predictions to justify this new discipline. He also understood 
that the failure of mathematical results to meet those of experiment doomed the 
theoretical enterprise and was a forceful argument against the use of theory in the 
study of nature. It was however this new combination of mathematics, detailed 
physical imagery, and experiment that characterized the new discipline. Experi
mental results were integrated into the justification of using mathematics in one 
way rather than in another through the behavior of postulated physical systems. 

134 For the popularity of Thomson's vortex atom see Robert Silliman, "William Thomson: 
Smoke Rings and Nineteenth-Century Atomism." For other atomic and molecular models 
see, Garber, "Molecular Models." 

135 Maxwell, Theory of Heat (London: Longmans Green, 1871). This text went through 
several editions in Maxwell's lifetime. See the section in the later editions on Gibbs's 
thermodynamic surface. See also Maxwell on Heat and Statistical Mechanics, Garber, 
Brush and Everitt, eds. 48-51,232-247. 
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For Maxwell and his contemporaries, predictions did not necessarily mean that 
the physical imagery that led to the experimental result represented the actual work
ings of nature. Such philosophical subtleties were lost on following generations 
who took for granted the power of models and hypotheses to mimic and predict the 
operations of nature. This heady combination of mathematics, physical imagery, 
and experiment characterized a new discipline. Yet the mix and actual usage of 
these elements depended on the individual and even the specific problems under 
study. In Britain this range remained within the practices of theoretical physicists 
throughout the nineteenth and into the twentieth century. Mechanical models of 
the ether were not the only characteristic of British physical thought as Pierre 
Duhem would have us accept.136 The centrality of mathematics to this new dis
cipline meant that new developments within mathematics might have immediate 
implications for theoretical physics. And withina generation, vector analysis had 
such an effect in the reformulation of electromagnetic theory by Oliver Heaviside 
and Josiah Willard Gibbs.137 

In Britain the inheritance of French mathematical physics was transformed 
through the traditions of natural philosophy. The descriptive function of French 
mathematical physics was inadequate. Philosophical issues were fundamental to 
and necessary for the development of theoretical physics, as was training in the 
mathematical languages. All practitioners of this first generation of theoretical 
physicists shared training in French mathematical physics and natural philosophy. 
For those educated at Cambridge, especially at Trinity, the philosophical interests 
of Whewell were never far from the surface of their experience and their letters. 
This reenforced the philosophical discussions within the demonstration courses 
in natural philosophy that all were exposed to both before and during their math
ematical training. These factors, together with the contingencies of developing 
careers in the middle of the nineteenth century in the new professions within the 
sciences, converged to give a few extraordinary individuals opportunities for the 

136 For example, in the 1890s George Hartley Bryan argued from general principles that no 
mechanical model could represent the behavior of the second law of thermodynamics. 
In Britain, at least, mechanical mimicry of thermal systems ended. Through the same 
papers efforts to propose mechanical models to avoid the implications of the equipartition 
theorem came to a similar end. See Brush, The Kind of Motion we Call Heat (New York: 
North-Holland, 1976),2 vols., vol. 2, chap. 10. 

137 On Oliver Heaviside see Bruce Hunt, The Maxwellians, chap. 3. For Gibbs on vectors 
see Gibbs, Elements of Vector Analysis, arranged for the Use of Students of Physics 
(New Haven, 1881). Reprinted in Gibbs, The Scientific Papers of J. Willard Gibbs Henry 
Andrews Bumstead and Ralph Gibbs Van Name, eds., ( New York: Dover reprint of 
1906 edition) 2 vols., vol. 2, 17-90. While printed privately Gibbs' text on vectors fell 
into the hands of Tait and Gibbs defended vectors in a series of papers in Nature in 1891 
and 1893. Reprinted in his collected papers. On the mathematical history of vectors see 
Michael J. Crowe, A History of Vector Analysis: The Evolution of the Idea of a Vectorial 
System (Notre Dame: University of Notre Dame Press, 1967). 
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contemplation of and the solution to long standing problems of natural philosophy. 
Britain was not the only society with a long history of natural philosophy, or 

an academic community struck by the stunning success of French mathematical 
physics which they then sought to annex for themselves. The Germans, like the 
British, transformed French mathematical physics, combined with experiment and 
physical imagery to produce their own particular forms of theoretical physics. This 
was accomplished within the same time period in Britain, although the specific con
tent was intellectually different and the professional outcomes unique to German 
society. 



Chapter VIII 

Physics and Mathematics 
in the German States, 1830-1870 

By 1830 in the German States the new opportunities to make careers within the 
sciences and mathematics were secure within the reformed universities. Teaching 
was no longer the only expected activity of faculty. Research had become a defining 
quality for appointment to and promotion within universities across the German 
states. This ideal was complicated by the justification for continued state support 
for these renewed institutions, the training and certification of future teachers in 
the lower echelons of the education systems within each state. l 

Entry into the research community in the sciences required a student to navigate a 
series of formal steps. He had to be trained and certified as competent in a specialty 
by a university.2 The specialist training was offered in demonstration lectures and 
seminars, and the first laboratory courses in the experimental sciences. Seminars 
and laboratories were apprenticeships in the practices of the disciplines. Ultimate 
certification was through the acceptance of a PhD dissertation. The dissertation 
certified the ability of the author to understand a body of material, identify a 
problem, then bring to bear and manipulate the methods of that specialty in the 
search for its solution.3 

These general remarks outline the formalized academic training at any Ger
man university in any scientific discipline. What redefined both mathematics and 

1 Jungnickel and McCormmach, Intellectual Mastery of Nature give the details of the 
formalized, German academic system as it affected the members of the discipline of 
physics, and then the problems of physicists in obtaining adequate support. The first 
volume covers the period of this chapter. 

2 It was no longer possible for someone like August Crelle for example, who studied math
ematics privately, to obtain their PhD. Nor were the cases of Friedrich Wilhelm Bessel 
and Joseph Fraunhofer repeated, where two men who began their lives as craftsmen over
came social and intellectual barriers to gain appointments as professors at universities. 
Hermann von Helmholtz was trained as a physician, i.e., in a learned profession, so that 
his transition to physics was possible. 

3 Certification in teaching in a university required a further dissertation, the Habilitation. 
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physics lay in the details of the practices developed by mathematicians and physi
cists as they confronted specific research problems and passed the skills of solutions 
on to their students. Precisely what the practices of mathematics and physics were 
to become depended upon the subject matter of the lectures, the methodologies 
taught in the seminars and laboratories of these same universities. There was no 
consensus about these crucial, defining elements. What specifically was taught 
and how depended on the occupants of the chairs, the heads of seminars, and the 
directors of the research institutes. They introduced their experiences and prac
tices to their students and passed on to them their particular sense of the important 
problems in mathematics and physics, as well as how to attack them. Distinct 
traditions in mathematics were crystallized in the same decades.4 Equally distinct 
traditions of research arose in physics in the universities of Konigsberg, Berlin and 
Bonn. The older historiography of physics in the German university system placed 
the mathematics-physics seminar at Konigsberg, begun in the 1830s, as the unique 
source for the development of research in German physics and mathematics. It 
was the first, but its influence on the subsequent development of the disciplines is 
more difficult to trace. The actual impact of the physics half of this seminar and 
the laboratory, also conducted by Franz Neumann, is harder to judge than even the 
impact of Jacobi's training in the mathematics seminar.5 Neumann trained future 
gymnasium teachers as he was creating the methods to do so. He inspired many 
students but student publications emerging from that seminar were few compared 
to those from the mathematics seminar. Recent research indicates that modern 
forms of physics developed more gradually and in several centers.6 

The model from which both physicists and mathematicians began was that of 

4 The main rival traditions in mathematics developed at the universities of Berlin and 
Gi:ittingen. Joseph Dauben, "Mathematics in Germany and France in the Early Nineteenth 
Century: Transmission and Transformation," in, Epistemological and Social Problems, 
Jahnke and Otte, eds. 371-399. Dauben restricts his comments on German mathematics 
to Berlin. For later decades see Thomas Hawkins, "The Berlin School of Mathematics," 
in Social History of Nineteenth-Century Mathematics, Mehrtens, Bas, and Schneider, 
eds. 233-245. On Gi:ittingen see David E. Rowe, "Klein, Hilbert and the Gi:ittingen 
Mathematical Tradition," Osiris, 5 (1989): 186-213. 

5 The number of Jacobi's students were small but some lived the same ideal of research 
within the German university system, even though the next generation of mathematics 
seminars was not established until the 1860s. His research approach was repudiated by 
later generations of mathematicians centered at the University of Berlin who dominated 
the profession from the 1860s to the 1890s. Assessment is also clouded by the symbolic 
value of Jacobi for liberal historians and for mathematicians. During the revolution of 
1848 Jacobi ran afoul of the King of Prussia and lost the support of other academics in 
the Prussian university system. His jewish background added to his problems, although 
that is softpedalled in all the accounts. See Alexander von Humboldt and Carl Gustav 
Jacob Jacobi, Briefwechsel, (Berlin: Akademie Verlag, 1987). 

6 The range of the training in physics offered by different universities is given in Jungnickel 
and McCormmach, Intellectual Mastery of Nature. See Kathryn Mary Olesko, The 
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the French. The French gave German experimental physicists a model of practice, 
from measurement techniques to interpretations of experimental results. French 
mathematics and mathematical physics offered both German physicists and math
ematicians a series of research problems and forms for their solutions.7 

Mathematical Physics as Mathematics 

Carl Gustav Jacob Jacobi epitomized the opportunities of the reform university 
and redefined the mathematics of the university as "pure," then successfully trained 
students in this new brand of mathematics. Jacobi captured the ideology of the new 
system and then demonstrated his commitment to this ideal in his early research 
into transcendental functions, his methods for the solution of partial differential 
equations, and his teaching in his mathematical seminar through research. Students 
in the seminar produced publishable research that usually appeared in Crelle's jour
nal. The origins of Jacobi's research were in the mathematics of Euler, Lagrange, 
and Legendre, among others. Physical problems and their direct expression in 
mathematical form was not the starting point for his mathematics.8 Physics was 
reduced to the role of supplying illustrative examples for his methods. 

Jacobi was not initially interested in mechanics and was only drawn to it by the 
work of William Rowan Hamilton. Jacobi had labored for some years to develop 
a general method of solving partial differential equations of the first order in n 
unknowns. Building his methods as he went he generalized his findings for three, 
five, then more unknowns. In 1834, just as his research was beginning to bear 
fruit, it looked as though he had been anticipated by Hamilton. Hamilton began 
with Lagrange's analytical formulation of mechanics, based upon the principle 
of Least Action, restricting himself to time-independent central forces. He then 
examined the variation of the time-Action integral V written as a function of the 
initial and final coordinates of the path of a particle. He then varied the end-points 
of the path and found linear, partial differential equations in V, the initial and final 
coordinates of the system, and H, a constant. Hamilton reduced the problem of 

Emergence of Theoretical Physics in Germany: Franz Neumann and the Konigsberg 
School of Physics. Unpublished PhD dissertation, Cornell, 1980, and Physics as a 
Calling, for Konigsberg. Two other traditions of training in physics have been studied in 
detail in Jungnickel, "Teaching and Research in the Physical Sciences and Mathematics 
in Saxony, 1820-1850," Hist. Stud. Phy. Sci. 10 (1979): 3-47, and Schubring, "The Rise 
and Decline of the Bonn Natural Science Seminar," Osiris 5 (1989): 57-93. 

7 The uses nineteenth-century German mathematicians made of physical problems is ex
plored in Mikolai N. Stuloff, "Die mathematischen Methoden im 19. Jahrhundert und 
ihre Wechselbezeichungen zu einigen Fragen der Physik," Technikgeschichte, 33 (1966): 
52-71. This is a survey, from Leibniz to Weierstrass, of the development of "pure" 
mathematics in Germany through the consideration of problems originating in physics. 

8 Jacobi only attacked such problems successfully in the company of an astronomer or 
physicist. 
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finding V, the "Characteristic Function" ofthe system to solving two, simultaneous, 
partial differential equations for the endpoints of the path.9 Hamilton developed a 
"Calculus of Principle Relations." The principal function S was related to V by 
the expression, 

S = V - Ht. 

He used this method in his examination of a number of the mathematical problems 
presented by the wave theory of light and electromagnetism. 

Jacobi's reaction to Hamilton's papers was negative. A solution to Hamilton's 
equations might not necessarily exist, and why did Hamilton need two partial 
differential equations? The most general solution was obtainable from one such 
equation, and this reduced by half the number of arbitrary constants in the solution. 
His concern was to achieve the the most general solution possible, and establish 
sufficient and necessary conditions for that solution. lO 

For Jacobi, the equations of mechanics were but one example of the class of 
partial differential equations he was exploring. One of the last series of lectures 
Jacobi delivered at the University of Konigsberg was on these methods of solu
tion. Mechanics served as examples of their use. The examples were simple, the 
solutions well known, and were used only to demonstrate how to obtain the prin
cipal and characteristic functions and how to compose the one partial differential 
equation that required solution. ll It is difficult to see what use any of the mechan
ical problems, many taken as simple exercises in Keplerian astronomy, and the 
proposed solutions would have been to any physicists in their research during that 
decade. The lectures were addressed to the pedagogical needs of the discipline 
that Jacobi was helping to define. Besides his work on transcendental functions, 
Jacobi imposed more rigor in various areas of the calculus and demonstrated tech-

9 Hamilton's final version was also reached through successive attacks on a specific prob
lem, the mathematical problem of the perturbed orbit of a planet. His goal was to develop 
a conceptually simpler mathematical method than those currently available. See Robert 
Percival Graves, Hamilton. 

10 Jacobi, "Uber die Reduction der Integration der Partielle Differentialgleichungen erster 
Ordnung zwischen irgend einer Zahln Variabeln auf die Integration eines einzigen Sys
tems gewohnlicher Differentialgleichungen," J. ReineAngew. Math. 17 (1837): 97-162, 
and, "Note sur l'integration des equations differentielles de la dynamique," Comptes 
Rendus 5 (1837): 61-67. The paper was translated in full as, Jacobi, "Sur la reduction 
de l'integration des equations differentielles partielles du premier ordre," J. Math. Pures 
Appliques 3 (1838): 60-96, 161-202. It was still important for German mathematicians 
to have their worked noticed by the French. Jacobi was careful to send his earlier work 
to Legendre, whose informed appraisal of it eased Jacobi's appointment at Konigsberg. 

11 These lectures were edited and then published posthumously as, "Lectures on Dynamics." 
This title might well be that of the editor rather than Jacobi. See Carl Gustav Jacob 
Jacobi, Vorlesungen iiber Dynamik, Alfred Clebsch, ed. In Jacobi, Gesammelte Werke, 
Karl Theodor Wilhelm Weierstrass, ed. (New York: Chelsea Pub. Co., reprint of second 
edition, 1969), vol. 8. 
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nical brilliance in transforming intractable integrals or differential equations into 
simpler, well-known and soluble forms. He also saw the implications of his own 
work in the calculus for geometry and brought new perspectives to bear on both 
these fields. 

We also need to assess the work of other German mathematicians and the re
lationship of their result with research work in contemporary physics. Historians 
have claimed that the research of some mathematicians, among the most prominent 
being Gustav Peter Lejeune Dirichlet, was important for physics during these cru
cial mid-century decades. I2 We cannot simply accept methods that became useful 
to theoretical physicists later as useful in this time period. We have to examine 
whether the results sit within mathematics or physics and whether they were used 
or useful for Dirichlet's contemporaries in physics. Dirichlet, a close friend of 
Jacobi, spent the years from 1822 to 1826 as a student in Paris meeting many 
prominent mathematicians and scientists. One of the most important and influen
tial was Fourier.13 Many of Dirichlet's later research papers drew on the work of 
French mathematicians and hence, from the point of view of later mathematicians, 
from physics. I4 However, in these and other papers Dirichlet's attention was di
rected to the mathematical flaws, or to extensions of the mathematics, not to its 
physical significance or its possible use by physicists. 

All his papers on mathematical physics during the 1830s are addressed to the 
mathematical issues in previous solutions to the same problems. In his work on the 
stability of the solar system, he criticized the mathematical methods of Poisson and 
Laplace. Dirichlet noted that they had neglected terms of order higher than two 
without sufficient mathematical justification, and approached the problem from a 
new perspective that avoided the issue. IS In his examination of boundary-value 
problems, his attention was on extending the analysis of the potential function 
to any number of dimensions. While boundary-value problems were to become 
important in physics, Dirichlet did not connect his mathematical work directly to 

12 Such claims were made initially in histories of mathematics written largely by mathemati
cians themselves. Many of those mathematicians were strongly allied to Felix Klein's 
views of mathematics and its relationship with physics. See also Paul L. Butzer, "Dirich
let and his Role in the Founding of Mathematical Physics," Arch. Int. Hist. Sci. 37 (1987): 
49-82. Butzer's argument cannot be sustained on two grounds. In considering only the 
German context the French origins of mathematical physics is ignored. In addition, given 
the definitions of mathematics of the era, the work is mathematical, not physical. 

13 Not even Fourier as secretary of the Academie was able to obtain a post for Dirichlet in 
Paris and he returned to Berlin. 

14 For the interaction of German mathematicians with Fourier's work, see Garber, "Reading 
Mathematics, Constructing Physics," in No Truth Except in the Details, Kox and Siegel, 
eds.31-54. 

15 Dirichlet, "Bedingungen der Stabilitat des Gleichgewichts," J. Reine Angew. Math. 32 
(1846): 85-88. 
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physics. His work lay within mathematics. 16 

Similarly, Dirichlet's lectures on inverse square forces introduced students to 
progressively more general mathematical cases of the potential function. He used 
physical cases to illustrate how such mathematical forms could be collapsed into a 
more general mathematical method of treatment. He also focussed on the condi
tions under which the potential had mathematical meaning. His remarks at the end 
of his chapter on "static electricity" were on the mathematical significance of the 
material in the chapter, not its physics. It would take some work and understanding 
on the part of physicists to select those aspects of the text of interest to them or 
their students, and decipher them in physical termsY 

Dirichlet began by deducing expressions for the component of the resultant 
force of a system of point masses on a single mass. When all the masses were 
reduced to unity, as was the gravitational constant, each of these forces became the 
partial differential quotients of a single function. The mathematical expressions he 
deduced for the gravitational case were also valid for the magnetic and electrical 
cases, except that there were, as he noted, cases of the "masses" being -1. As a 
mathematician he found the physical differences between gravitation, electrostatics 
and magnetism uninteresting. He also examined the potential function at the 
surface of a sphere where the value of the function inside the surface was not 
the same as that on the outside, although the function was continuous across the 
surface. Thus he examined a v / ax and a2 V / ax 2 and found that the first partial 
differential of V was continuous throughout space. These lectures explored the 
theory of functions where electrostatics, magnetism, and gravitation served as 
demonstration exercises. 

Although Dirichlet followed his French models by often rooting his mathemat
ics in physical problems, he did not attempt to compare specific numerical results 
of his mathematics to the results of experiment. Mathematics needed no support 
from physics to justify its methodologies or results. His mathematics began in 
physical problems, but their analysis quickly became and remained exercises in 
mathematics, or explorations of new mathematical territory. Some of this math-

16 Dirichlet, "Uber ein neuen Ausdruck zur Bestimmung der Dichtigkeit einer unendlich 
dunnen Kugelschale, wenn der Werth des Potentials derselben in jedem Puncte ihrer 
oberflache gegeben ist," Ber. Berlin (1850): 99-116, published in fuJI in J. Math. Pures 
Appliques 2 (1851): 57-80. Dirichlet also improved the methods of the new calculus. 
In 1829 he critiqued Cauchy on his work on the convergence of trigonometric series 
and then made convergence tests more rigorous. Dirichlet, "Sur la convergence des 
series trigonometriques qui servent a representer une fonction arbitraire entre des limites 
donnes," J. Reine Angew. Math. 5 (1829): 157-169, and, "Solution d'une question 
relative a la theorie mathematique de la chaleur," J. Reine Angew. Math. 5 (1829): 
287-295. 

17 Dirichlet, Vorlesungen fiber die im umgekehrten Verhiiltnis des Quadrats der Entfernung 
wirkenden Kriifte, F. Grube, ed. (Leipzig: B. G. Teubner, 1876). 
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ematical work was recognized later as important for physics. This subsequent 
importance cannot be used in retrospect to color either his intentions or our own 
reading of his papers.18 

Bernhard Riemann's goal of producing a mathematics that united the whole of 
physics was a mathematical exercise and seems remote from the mathematical 
needs of physicists in the middle decades of the nineteenth century. Riemann 
studied physical questions to develop a "self-contained mathematical theory" that 
encompassed all of mechanics, thermodynamics, electricity and magnetism and he 
did not distinguish between them.19 Physicists were left to themselves to decipher 
the physics locked within this mathematical physics and reorient that language for 
their own purposes. 

Much the same can be said of Riemann's text on partial differential equations and 
"their application to physical problems." These were lectures on definite integral 
solutions to the partial differential equations of Fourier's theory of heat. Riemann 
initially established all the required mathematical techniques, then launched into a 
section on ordinary differential equations before turning to the issue of linear partial 
differential equations of the second order. He turned his attention to Fourier by 
setting up the most general form of the partial differential equation for the flow of 
heat in three dimensions. He took a series of mathematically special cases that lead 
to definite integral solutions. All were mathematically defined through systematic 
restrictions-mathematical boundary conditions on the generality of the equation 
he first started with. None of these mathematical developments were accompanied 
by a hint of a physical explanation. The physicist would have to figure out what the 
various sets of boundary conditions meant in physical terms, then chase down the 
physical meanings of the processes represented by the accompanying mathematical 
details. What use this might be to a physicist in this era is far from obvious and rather 
is a counterexample to the claims of historians that many German mathematicians 
worked on physical problems or in areas that physicists would find useful.2o 

A more accessible example of Riemann's approach to the solution of physi
cal problems was in the essay of 1860 submitted in a prize competition of the 

18 As a antidote to this see Oystein Ore, "Gustav Peter Lejeune Dirichlet, 1805-1859," Diet. 
Sci. Bio., vol. 4, 127, where the mathematical focus of Dirichlet's work is emphasized, 
even as the writer noted where the solutions were important for physics, without stating 
where or how. 

19 See Thomas Archibald, "Riemann and the Theory of Electrical Phenomena: Nobili's 
Rings," Centaurus, 34 (1991): 247-271,259. 

20 B. Riemann, Partielle Differentialgleichungen und deren Anwendung auf physikalisehe 
Fragen, K. Hattendorff, ed. (Brunswick: Friederich Viewig und Sohn, 1896) The text 
consisted mainly of Riemann's lectures for the winter semester of 1860-1861. Because 
they were edited after Riemann's death, the title mayor may not have been his choice. 
The lectures are another example of the impact of Fourier and physical problems on the 
development of mathematics. 
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Academie des Sciences in Paris on the theory of heat. The essay demonstrates 
the cryptic nature of Riemann's mathematics, criticized by the Academie, and the 
reason he was not awarded the prize. Riemann stated the general equation for the 
conduction of heat in three dimensions but did not obtain particular solutions to 
the general partial differential equation as the starting point of the mathematical 
exercise. Instead he investigated, on the most general level possible, methods 
to reach particular solutions. He was interested in the characteristics of classes 
of particular solutions rather than the solutions themselves. These classes were 
then described in geometrical terms. In some cases Riemann demonstrated how a 
certain type of solution might be obtained in principle. Riemann apologized for 
the incompleteness of his solutions and blamed his already deteriorating health. 
This approach shows Riemann's concerns. His interests lay in function theory and 
mathematics, not the physical meaning of the solutions he obtained.21 

These arguments can be extended to a discussion of Rudolph Friedrich Alfred 
Clebsch's work in physical subjects, particularly elasticity, one subject of interest 
to contemporary physicists working on light and the properties of the aether.22 No 
contemporary physicist working in this area refers to, or appears to use, Clebsch's 
work. 

Finally we must consider the reputation of Gauss for publishing significant 
results in "theoretical" physics. If we look at Gauss's mathematical work on 
physical problems, we find that they are mathematical exercises. His paper on 
inverse square forces was an exercise in the mathematics of the potential function. 
After working on a mathematically general level, Gauss turned to the particular 
cases of gravitation electrostatics and magnetism and lumped them all together. The 
mathematical results covered all physical cases as a "special case of a particular 
solution," a phrase only a mathematician could use.23 In the body of the paper 

21 Ruth Farwell and Christopher Knee, "The missing Link: Riemann's 'Commentatio', 
Differential Geometry and Tensor Analysis," Hist. Math. 17 (1990): 223-255. The 
authors' main contention is that this essay is not an early intimation of his work in 
differential geometry and tensor analysis. They present an English translation of the 
essay in an appendix. 

22 Alfred Clebsch, Theorie der Elasticitiit Jester Korper (Leipzig: Teubner, 1862). 

23 Gauss, "Allgemeine Lehrsatze in Beziehung auf die im verkehrten Verhaltnisse des 
Quadrats der Entfernung wirkenden Anziehungs- und Abstossungs-Krafte," Resultate 
(1840): 1-51, reprinted in Gauss, Werke vol. 5, 196-242, 241. Translated in Taylor's 
Scientific Memoirs 3 (1843): 153-196. Ch.-J. de la Vallee Poussin, "Gauss et la tMorie 
du potentiel," Rev. Quest. Sci. 23 (1962): 315-330, also sees Gauss' work in potential 
theory as a branch of "pure mathematics." Kenneth O. May, "Gauss, Carl Friederich, 
1777-1855," Diet. Sci. Bio., vol. 5, 298-314, argues that this was "the first systematic 
treatment of potential theory as a mathematical topic." May also considers that it was im
portant for the rigor Gauss introduced into the subject. More recently Thomas Archibald, 
in "Physics as a Constraint on Mathematical Research," in The History oj Modern Math
ematics, David Rowe and John McCleary, eds. 2 vols, vol. 2, 29-75, argues that this 
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were a number of theorems proving the existence and continuity of the potential 
function. There were also theorems for transforming volume integrals into integrals 
of functions over corresponding surfaces. The paper was the formal demonstration 
of the mathematics he had published on the characteristics of the magnetic potential 
over the surface of the earth. 

Gauss' work in geomagnetism fell into two types. The first, done in conjunction 
with Wilhelm Weber, was in the development and use of more accurate methods for 
observing the components of the earth's magnetic field. In reporting these methods, 
Gauss included long tables of the results of these observations. Along with these, 
copious tables of scrupulously observed data were exhaustive discussions of the 
errors of observation of very small quantities and methods to minimize them. These 
demonstrate the general German concern with accuracy and Wilhelm Weber's 
passion for "measurement physics." The papers also convey a sense of a developing 
confidence in data that grew from such discussions of errors and their careful 
minimization. Gauss was one of the first to initiate such extensive discussions of 
observational error in his work on geodesy for the Hanover government.24 At the 
same time Gauss was supervising the establishment of the observatory at G6ttingen. 
Until the year of his death Gauss observed regularly, reduced his own data, and 
reported his results. 

Gauss was unusual in that he undertook imaginative work in physics, considered 
as the complex of observational and experimental sciences, and mathematics.25 

This eighteenth-century definition of disciplinary boundaries fitted Gauss' own 
sense of his relationship to the State of Hanover and his attitude towards the publica
tion of his mathematical work.26 None of these activities suggest that Gauss sought, 
let alone established, any changes in the disciplinary boundary between the obser
vational and the mathematical sciences. Studies within the observational sciences 
gave him ample opportunity to explore mathematical problems. To change the 
boundaries required the injection of specific physical notions that Gauss rejected. 

This division of labor was reinforced in his mathematical paper on the earth's 
magnetic field. Given that there were two magnetic poles, Gauss discussed the 
mathematical characteristics of the magnetic potential. His discussion included 
the general, closed form of the equipotential lines on the surface of the globe. Al
gebraically he represented the potential by an infinite series of spherical functions. 

paper is important physically as well as mathematically. However, he does not specify 
what that physical importance was, or why. 

24 Gauss, "Bestimmung der Genauigkeit der Beobachtungen," Zt. Astron. 1 (1816): 185-
197. 

25 His practical mathematical work in observational astronomy is covered in chap. III. 

26 May, "Gauss," sees Gauss as an eighteenth-century servant of the state who never made 
the transition to a nineteenth-century academic. He analyses Gauss' geodesic work in 
the context of Gauss' sense of his social place in the state of Hanover. 
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The lengthy tables of data included from the world-wide network of magnetic 
observations enabled Gauss to evaluate the first twenty-four coefficients in this 
series. Thus, the mathematical mapping of the magnetic potential was possible. 
Its physical meaning remained a mystery. Gauss quite specifically separated his 
theory from all current models of magnetism that might have led to the specific 
form he explored mathematically.27 

We can perhaps now understand the mixed reception given his work in terrestrial 
magnetism. The carefully collected data and his observational methodology fitted 
the criteria for quantitative work within "Humboltian" science. He did not offer 
the physical qualitative explanatory interpretation that usually accompanied such 
observational results. The "theory" was not a physical theory at all but an exercise 
in mathematics and a piece of research at that. No wonder the group interested in 
the geosciences were mystified.28 

The one area in which Gauss was actually a physicist in the modern sense was 
in his work on the measurement of the earth's magnetic force in absolute units. 
In this he acknowledged the help of Weber who extended his own interests in 
the measurement of non-mechanical phenomena in his work on electricity. This 
was, however, a paper on the problems of experimental physics and included no 
theory on the nature of the earth's magnetic field. Terrestrial magnetism remained 
a mystery.29 Therefore, the arguments made by Jungnickel and McCormmach 
cannot be sustained with respect to Gauss, Dirichlet, or Riemann. They give only 
general statements as to the necessity of higher mathematics being recognized by 
physicists, but no statements from specific physicists on this subject. Nor do they 
give specific examples of physicists using the mathematical methods they claim as 
important for them in this era.30 

Most historians of mathematics and physics follow the statements of the earliest 
historical accounts and accept all work in mathematical physics as related to and 
pertinent for the development of physics. This is not the case for physicists working 
in the middle decades of the nineteenth century and the research of their mathe
matical colleagues using the results of their experiments to generate mathematical 
puzzles. Even if that mathematical research began with a problem of interest to 
contemporary physicists, the solution was not the source for the development of 
physical understanding of the problem. Only in retrospect was such abstract math-

27 Gauss, "Allgemeine Theorie des Erdmagnetismus," Resultate (1839): 1-57, 146-148, 
translated in Taylor 2 (1841): 184-251,313-316. 

28 James Gabriel O'Hara, "Gauss and the Royal Society. The Reception of his Ideas on 
Magnetism in Britain, 1832-1841," Notes Record Roy. Soc. London 38 (1983): 17-78. 

29 Gauss, "Intensitas vis magneticae terrestris ad mensuram absolutam revocata," Gott. 
Comment 8 (1833): 3-44, Ann. Phy. 28 (1834): 241-273, 591-614. This was not, 
contrary to May's contention, the first time this problem had been discussed within 
physics. Coulomb had faced this issue in his experiments on electricity. 

30 Jungnickel and McCormmach, Intellectual Mastery, vol. 1, chap. 7. 
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ematics useful in restructuring physicists' understanding of a domain in physics, 
not while the subject was under active research consideration in physics itself.31 

Most of the above mathematicians were involved in the transformation of mathe
matics in the middle third of the nineteenth century that amounted to a revolution. 
An important aspect of the transformation of mathematics in the German states 
was still rooted in exploring the mathematical implications of physical relation
ships. What we have in the same decade in mathematics and physics is a phase 
in which both German mathematicians and physicists adopted French methods. 
The mathematicians quickly surpassed the French and injected new standards into 
mathematics to such an extent that they changed the core of the discipline from 
solving problems to the examination of "foundational" issues.32 

While the content of the discipline of mathematics was changing, its relationship 
to experimental physics was unaltered by the work of mathematicians in their 
versions of mathematical physics. And in the career and research of of Julius 
Plucker for example, we find the same general pattern that we see in mathematicians 
of his generation. His research was both in mathematics and experimental physics. 
His experimental work was initially inspired by Faraday. While PlUcker is usually 
considered as a mathematician, his work does not fall easily into the categories 
available through modern definitions of either field. This was also true of other 
members of his generation who confronted French mathematics and physics. Franz 
Neumann is usually considered a physicist on the basis of his own definitions of 
his work and from his official position. However, his research and teaching do not 
easily fit into later images of physics. Yet his research and teaching did much to 
create one particular strand of physics within Germany to which we need now to 
turn in detail. 

The Transformation of Physics: The First Generation 

In common with German mathematicians wanting to annex the research work 
of the French and create their own discipline, physicists needed to understand, 
replicate, and then develop the methods of the French. Some German physi
cists accepted that the mathematical physics of the French was indeed relevant to 
understanding nature. These physicists interpreted French mathematical physics 
directly as physics. They therefore had to decipher the mathematics to unearth the 

31 Later in the century, Felix Klein wrote of the work of mathematical physics done by 
the above mathematicians as a part of mathematics. He regarded the work of Clausius, 
Kirchhoff, and Helmholtz as research that required mathematics but was of a different 
order and did not call it mathematics. Felix Klein, Vorlesungen iiber die Entwicklung der 
Mathematik im neunzen Jahrhundert (Berlin: Springer, 1927.) Klein did not investigate 
those differences. 

32 By foundational issues I mean the examination of the mathematical meanings of the 
foundational ideas of mathematics, such as number, space, function etc. 
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physics within, teach themselves those methods and how to use them in their own 
areas of research. They also needed to create the institutional forms to train the 
next generation of German physicists in those methods and interpretations. While 
experiment remained the disciplinary core of physics, the relationship between 
experiment, speculation, and the mathematics that grew out of those experiments 
and speculations was about to change dramatically. 

Some of the first indications of change came in Gustav Theodor Fechner's Reper
torium der Experimental Physik. 33 This was a report on the state of research in 
physics. Fechner focussed upon those references that were difficult to acquire, and 
he had clearly as he claimed read the originals. The table of contents promised 
a survey that seems extremely modern. The layout of the text betrayed his own 
preferences for French methodology and Kantian metaphysics. Yet the foundation 
of physics remained as experiment coupled with vernacular interpretations. He 
recounted Poisson's theory of matter as atomic, with bodies made up of particles 
of "imperceptible size" which even in the aggregate were still "imperceptible" and 
between which were the material stuff of electricity, magnetism, and heat.34 These 
particles attracted each other and the particles of heat, but this aspect of the theory 
was not emphasized. Cauchy's ideas on matter were dealt with similarly. Fech
ner's account of the mathematics of heat, electricity, magnetism, and mechanics 
were given separately. However, Fechner claimed that Poisson and Cauchy treated 
the equations of motion of bodies on the basis of their physical assumptions. 

Fechner's description of the physical ideas and their mathematical development 
were necessarily short and schematic, and he did not address how the two were 
connected. What Fechner did give was a comparison of the content and the results 
of various mathematical theories. He also related the mathematical benefits of 
the various approaches. Cauchy treated elasticity very generally and never got 
down to "particular" problems. Fechner reported that Navier obtained differential 
equations without bothering to integrate them to find further cases for application. 

33 Gustav Theodor Fechner, Repertorium der Experimentalphysik, enthaltend eine voll
stiindige Zusammenstellung der neuen Fortschritte dieser Wissenschaft. Supplement zu 
neuen Lehr- und Worterbiichern der Physik. (Leipzig: Leopold Voss, 1832), 3 vols. 
Very few historians have considered Fechner as a physicist. "Gustav Theodor Fechner, 
1801-1887," Diet. Sci. Bio. vol. 2, 556-559 focuses on his importance in psychology 
not physics. Jungnickel and McCormmach, Intellectual Mastery, vol. 1, focus on his 
experimental work on Ohm's law and in electrodynamics, 58-61, 137-138. See also 
Wolfgang Schreier, "Gustav Theodor Fechner als Physiker," NTM 24 (2) (1987): 81-85. 
He had no students and his career in physics was relatively short. The Repertorium was 
published as an effort to earn a living since the salary from his academic position was 
meager. 

34 This was a possible interpretation of Poisson as he never clarified the notion of elec
tricity and magnetism as fluids, the imagery with which he began his physical account. 
The imagery with which he started his mathematical development of the theory of both 
electricity and magnetism was that of forces. 



German States, 1830-1870 273 

In comparison Poisson put these differential equations into a more general form, 
then integrated them anew and found various applications for them although the 
results were "less than practical." Fechner also included a bibliography of the 
literature on the integration of partial differential equations. 

Fechner began to compare the results of the mathematics directly with those of 
experiment. He confronted the results of French mathematics and tried to extract 
physical significance from that mathematics. In this he had to argue which phys
ical cases were encapsulated in the mathematics of Cauchy, Navier, and Poisson 
without giving the analytical details. He claimed to get mathematically deduced 
frequencies of the various oscillation of bodies from Poisson and Cauchy. He 
used one or the other as it suited his needs without telling the reader how he got 
the frequencies he reported. From Poisson he took the expression for the ratio 
of the longitudinal to translational elastic moduli and frequencies of oscillation. 
Fechner took data from various experiments and directly compared the mathe
matical and experimental numbers, without giving the criteria he used to decide 
whether the mathematical cases actually matched the idealized experimental con
ditions. The numbers deduced from the two sources were listed in tables without 
comment. 

It is clear that Fechner worked through the mathematics to extract the physics. 
However, he used results from any and all mathematical sources without referring 
back to theory and passing on a sense of a theoretical image carried through the 
mathematical deductions. He had taken mathematics and transformed it where 
possible into a discussion about physical entities. Mathematical results were made 
over into physical characteristics and compared directly with what physicists actu
ally measured in their experiments. There is no sense that mathematical physics is 
actually a part of physics not mathematics. Lest we expect too much, many pages 
of the Repertorium is unremitting reportage of experiments, especially in the areas 
of his own research, galvanic electricity and its connection with chemistry.35 

This was an important change but was not echoed in the work of his immediate 
contemporaries. Both Henri-Gustav Magnus and Heinrich Dove, two of the more 
prominent examples, were experimentalists. Helmholtz's biographer noted that 
Magnus, 

regarded experimental and mathematical physics as separate depart
ments and warned him [Helmholtz] repeatedly against undue partiality 
for mathematics, and the attempt to bring the remote provinces of physics 
together by its means.36 

35 In this respect it is interesting that Fresnel's work on light appeared only in the experi
mental section, not in his account of the mathematics of light where Fechner discussed 
only the work of Poisson and Cauchy. 

36 Leo Koenigsberger, Hermann von Helmholtz (New York: Dover Pubs., reprint of 1906 
edition, 1965). Translated by Francis A. Welby, 38. See Jungnickel and McCormmach, 
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At the University of Berlin, Magnus was instrumental in establishing laboratory 
training as a crucial aspect of the education of physicists, even though he had to 
teach these laboratories and accompanying seminars privately.37 In 1845 the Berlin 
Physics Society emerged from the meetings and the "Physics Colloquium" at his 
house. However, we cannot see this as a specialist, scientific society whose mem
bers' work matched that of later societies of similar title. Many of its first members, 
including Hermann von Helmholtz, were interested in physiology. Physics still 
retained the eighteenth-century meaning of experimental philosophy. 

Franz Neumann 

It is not with Fechner that we see a sustained confrontation between the needs 
of German experimental physicists and the works of the French mathematicians. 
Franz Neumann succeeded in connecting mathematical to experimental results 
in the context of a new form of mathematical physics.38 Yet it took Neumann 
decades to develop a method that made the characteristics of the physical phenom
ena limit the mathematics and guide its development. He developed one approach 
to bending the mathematics of the French to the needs of the physicist, based on 
his assumption that physical meaning lay in the mathematics without the need for 
speculations about the operations of nature. He rejected the hypothetical ram
blings of Naturphilosophie and eschewed, as far as he could, all speculations about 
physical processes. If he used hypotheses, he kept them to a minimum and they 
were of the most general kind. While Fourier was clearly a major influence on his 
mathematics, he used the results and methods of Poisson and others as it suited his 
immediate purpose. Physics was more important than mathematical consistency. 

Despite his development of a new form of mathematical physics, for Neumann 
the core of physics was measurement. Mathematical physics was a complement to 
this core. His first accomplishment in mathematical physics was the extension of 
Fourier's methods into the related physical domain in crystals. Fourier generalized 
his mathematics through idealized physical examples. Neumann took the physical 
specifics from the laboratory. He first generated a mathematical expression of an 
experimentally defined relationship or process, then moved on to a more general 
physical and geometrical arrangement. The physical elements changed from linear 

Intellectual Mastery, vol. 1, 119-126. 

37 The political complexities of the establishment of experimental physics at the University 
of Berlin are outlined in Armin Herman, "Von Paul Erman zu Hermann von Helmholtz: 
Die Anfiinge der Physik an der Universitat Berlin," in Berlinische Lebensbilder Naturwis
senschaftler, Wilhelm Treue and Gerhard Hildebrandt, eds. (Berlin: Colloquium Verlag, 
1987). Jungnickel and McCormmach,I ntellectual Mastery, vol. 1, 15-18 discuss the eco
nomics of the physics department. See also, "Life and Labors of Henri-Gustav Magnus, 
1802-1870," Smithsonian Report (1872): 223-230. 

38 Neumann's work in the 1820s is covered in chap. V. 
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to circular to a more general shape and their relationships changed from planar 
to three-dimensional. Neumann put these experimental, geometric possibilities 
directly into mathematical form. In general he did not explore the mathematics 
any further than necessary to delve into those particular physical cases. 

Neumann was practicing a form of mathematical physics grounded in physics. 
Yet there was, for example, no discussion of flux as a physical concept. All such 
physical ideas were treated as mathematical functions. In crystals these were de
pendent on the geometric symmetries of the crystal. Unlike Fourier, Neumann 
usually could not develop mathematical expressions from which all physical cases 
would then follow. He hedged the mathematics about with the limitations of his 
chosen physical cases. Neumann stuck closely to possible experimental configu
rations. His examples were physically connected yet sat in mathematical isolation 
from one another. This necessarily limited what he allowed the mathematics to 
accomplish. The mathematics was also dense, less than elegant, and always tied 
to particulars. 

Neumann repeated this pattern in his work on crystal optics in which he relied 
upon the experimental results of Fresnel and others. He could no longer avoid using 
some hypothesis about the nature of light, but he avoided any assumptions about 
the interaction of light and matter in the interior of solids. Neumann could only 
replicate the experimental results established by Fresnel. He also concluded, as had 
his predecessors, that Fresnel's wave front was necessary for the production of such 
phenomena. Neumann's mathematical attempts at understanding the polarization 
phenomena of solids shared the problem of physical implausibility with those of 
the mathematicians that preceded him whose work became the starting point for 
his own research.39 

Neumann chose Navier's hypothesis that the displacement force acting on a 
particle of a solid was proportional to its displacement. For crystals Neumann 
generalized this force to a function of the angle between the direction of the dis
placement and the crystal axis. He then treated this function with all mathematical 
generality, apart from the mathematical simplifications introduced by assuming the 
displacement was very small.4o He arrived at a generalized equation of motion for 

39 For a statement of the generic problems of Neumann's approach to the theory of light see 
Whittaker, A History of the Theories of Aether and Electricity vol. 1, 136-139. Whittaker 
points to the arbitrary physical nature of theories that tried to reconstruct experimental 
results mathematically, beginning with Cauchy and finishing with McCullagh and Neu
mann. To see the physical content of Neumann's argument, see his rejection of Fresnel's 
assumption that refraction is due to changes in the density of the aether in different me
dia. Neumann, "Theoretische Untersuchung der Gesetze, nach weJchen das Licht, an der 
Grenze zweier vollkommen durchsichtigen Medien refiectirt und gebrochen wird," Abh. 
Akad. Wissen. Berlin (1835): 1-160, 7-8. 

40 Neumann, "Theorie der dopplten Strahlenbrechung, abgeleitet aus den GJeichungen der 
Mechanik," Ann. Phy. 25 (1832): 418-454. 
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a disturbance propagated through the medium which was characterized by six con
stants. He deduced the relationships between the constants, but not their numerical 
values. The latter Neumann noted was done through experiment. When Neumann 
examined the case of a homogeneous solid, the equation of motion reduced to 
Navier's. So far this was mathematics. 

Neumann explored the problem further only for physically plausible cases. He 
investigated homogeneous, non-crystalline and crystalline solids where functions 
reflected the symmetry characteristics of particular materials. He then faced inte
grating experiment with mathematics more directly. He began with empirical laws 
and the same assumptions with which he structured his mathematics and tried to 
establish Fresnel's expression for the polarization of light reflected off metals.41 

Neumann hoped to replicate Fresnel's trigonometric expressions for the ratio of the 
intensities and amplitudes of the incident and reflected rays along with their known 
directions of relative polarization. As with previous mathematicians Neumann had 
to replicate Fresnel's expression for the shape of the wave front within the solid. 
Neumann then extended this to crystalline substances by generalizing the behavior 
of the elasticity of the aether. Elasticity became a function of direction. 

What separated Neumann's work from earlier mathematical theories of light 
was the way he constructed his mathematics. He considered a series of specific 
physical cases, each more complicated than the last. He moved from homogeneous 
solids, where he could directly replicate Fresnel's results, to crystals. In both he 
dealt with incident, reflected, refracted rays with concomitant intensities, ampli
tudes and polarization directions. While more complicated to visualize and keep 
track of on the page, Neumann constructed those quantities for some of the solids 
whose characteristics Fresnel had already measured. Neumann could compare 
his mathematical results directly with experiment. Mathematically, he did not go 
beyond reconstructing these quantities. Thus his mathematics was limited. 

Neumann's method becomes clearer in his 1841 paper on light. His handling of 
the problems of optics was surer when he connected them, first analogically, then 
directly with the conduction of heat. Here there were mathematically more general 
cases. But because Neumann would not investigate hypothetical mechanisms that 
might account for the change in the character of the light in its passage through 
the solid, many critical constants in his equations were taken from observations 
already at hand. Only the consistency of these equations could be tested. It was 
by no means a complete theory or mathematical description.42 

The same limitations surfaced in his work on electromagnetic induction. Neu-

41 Neumann, "Theorie der elliptischen Polarisation des Lichtes, weIche durch Reflexion 
von Metallfliichen erzeugt wirden," Ann. Phy. 26 (1832): 89-122. 

42 Neumann, "Die Gesetze der Doppelbrechung des Lichtes in comprimirten oder ungleich
formig erwiirmten uncrystallinischen K6rpern," Abh. Akad. Wissen. Berlin (1841) Part 
II: 1-254. 
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mann developed mathematical expressions for the interaction of primary and sec
ondary circuits and of circuits and moving magnets of evermore geometrical com
plexity. He did this through consideration of the specific geometries of the circuits, 
or magnets, and the geometries of their motions. His cases were limited to closed 
circuits, or their equivalent magnetic fields. The induced emfs were from the 
movement of either circuit or magnet. Neumann assumed that the induced current 
was proportional to the velocity of the motion. The proportionality factor, L, was a 
function of the Amperean force on the secondary circuit because it changed its sign 
with any change in direction of the motion of the moving element. The simplest 
form of dependence of L on this force was linear. Therefore, "the intensity of the 
induced current is proportional to the component of the electrodynamic force in 
the direction of motion." His justification for this assumption was that it worked. 
Neumann could reproduce the known laws of induction.43 

Lenz's and Ampere's experimental laws allowed Neumann to set up a general 
equation for a series of relationships between the elements of two circuits moving 
with respect to one another in a completely general geometrical sense. The result 
of the movement of one or both of the elements was an induced emf. Neumann 
took the simplest case of linear circuit elements. Having got an expression for the 
induced emf for that case, he considered what happened when each expression for 
the induced emf changed in time, that is, if the velocity of the moving element was 
not constant, or the current in the primary was a function of time. He then escalated 
the cases to non-linear circuits. Here his expression for the induced emfs were all 
local. To obtain the effect of the whole circuit line integrals were necessary. This 
took his mathematical case from infinitesimal elements to the physically probable 
and observable. His analysis began with carefully chosen directions to the motions, 
and coordinate system etc., to give him known currents in known directions. Any 
physical constants in these initial equations came from experiment. However, any 
coefficients introduced as the mathematics developed or constants introduced into 
the integration were defined mathematically, their physical significance remaining 
unexpressed. Their values are left in general integral form. Neumann deduced 

43 Neumann, "Allgemeine Gesetze inducirten elektricischer Strome," Abh. Akad. Wissen. 
Berlin (1845): 1-88. Abstract in Ann. Phy. 67 (1845): 31-44. Neumann's arguments 
are difficult to follow in large part because of his idiosyncratic mathematical notation not 
used elsewhere in his mathematical physics. It seems to have a point in that it kept the 
mathematical operations on both the electrical and geometrical elements of the circuit 
quite distinct from one another. At this date notation within the calculus was by no 
means standardized. Previously, Neumann had distinguished partial, full derivatives and 
variations none of which was done here. His son Carl commented on the paper and 
translated Neumann's notation into more conventional form. Franz Neumann, Uber ein 
allgemeines Princip der mathematischen Theorie inducirter elektrischer Strome, Carl 
Neumann, ed. (Leipzig: Wilhelm Engelmann, 1892). For the history of notation in the 
calculus see Florian Cajori A History of Mathematical Notations (Chicago: Open Court 
Pub., 1928-1929), 2 vols. 
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known, physical cases and could replicate known experimental results. His work 
here paralieled his earlier accomplishments in mineralogy using geometry. What 
Neumann did accomplish was the transformation of the physical problem directly 
into differential form without the intervention of any physical hypothesis. 

In this first paper he did not rise above the consideration of particular cases 
until he reworked the whole by following the mathematical implications of one 
of his examples. Here Neumann's use of Fourier was explicit and successful. 
He constructed an expression for the induced current, then reconstructed it by 
considering the flow of electricity into an element, ds, of a closed circuit, in this 
case a ring, in a short period of time. The primary induced a difference in "electric 
tension," U, between two elements of the circuit that produced an emf, E. The 
fluid thus had a tendency to move from a region of high to one of lesser tension, 
and 

dU 
E=--. 

ds 

The quantity of electricity traversing a cross section q of the element ds in unit 
time was, -q k (dU Ids), where k was the velocity of flow of the electricity for a 
unit emf in unit time. 

Neumann then used Fourier's argument for constructing the flow of heat in a ring, 
substituting electricity for heat, and tension for temperature.44 He then constructed 
an expression for the accumulation of electricity in this section as 

( d 2U dE) qk -- - - ds, 
ds 2 ds 

where, U = U(s, t), was the potential effective at ds at time t. Here U was anal
ogous to temperature in Fourier's work. At this point Neumann parted company 
with Fourier. He did not examine the flow out of this element. Neumann simply 
equated the increase in electricity to q ds(dU Idt) and equated the two expressions, 
obtaining 

dU = k (d 2U _ dE). 
dt ds2 ds 

He then constructed mechanical expressions that related the induced current to 
the electrodynamic force that produced the induced current. This was one of the 
simpler examples where the circuit and its motion were geometrically restricted. 
More general motions and circuit geometries led to more intricate mathematical 
expressions. 

When he examined the expression for the current induced in a circuit in motion 
in the field of a magnet, Neumann found that it depended only on the changes in 

44 Compare, Fourier, Heat, 86-87, for the flow of heat in a closed ring, and Neumann, 
"Allgemeine Gesetze," (1845),18-19. 
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a function caused by the motion itself.45 This function represented the potential 
between the circuit and the magnet, when a unit of current traversed the circuit. 
Neumann therefore reformulated his ideas on the basis of this potential function.46 

By the end of the 1840s, Neumann rose above the mathematical particulars of 
each physical case when he recognized a mathematical function the potential which 
allowed him to reorganize his description of induction. He used this function as 
the organizing principle to recreate the series of physical appearances which he 
had previously used to construct his mathematical cases. This is an example where 
Neumann was able to shake off the limitation of the particular physical cases 
that produced only isolated mathematical results. It remained the only example 
where a consistent mathematical point of view generated a connected series of 
physically significant and known examples. Elsewhere, his insistence upon a 
ready reference to the physically particular and the needs of the empirical referent 
stifled investigations into the physical questions of his research. His mathematical 
descriptions of physical processes was dogged by the particular and evidential. 

Neumann did not produce traditional mathematical physics. It was not possi
ble through particular physical examples to arrive at a mathematical theory that 
would cover all possible cases without jettisoning the particularities of the physics. 
Neumann achieved this just once. He did refashion mathematical physics to the 
needs of physicists by considering only those cases of known physical significance. 
Despite these limitations, his legacy to his colleagues and students was important. 
Neumann deciphered the mathematically particular cases of his French predeces
sors in physical terms. However, his approach did not allow him to develop the 
physical implications of some of the mathematics developed. He limited his ideas 
on theory to the improvement of experiment and enmeshed the results of the latter 
in a context of mathematical description. The focus of his work in physics was 
experiment, with the mathematics too tightly controlled to enable Neumann to 
explore regions of physics not already visualized experimentally.47 

Neumann was exploring new ways of doing physics. Much of it was in the realm 
of the mathematical expression of specific, complicated physical cases in which 
both physical cases and mathematical descriptions of them were obscure. This is 
one reason why he had a marginal role in developing theoretical physics as a distinct 
domain of research. The other reason was the development of electrodynamics that 
was more in keeping with metaphysical principles accepted by German physicists, 

45 Neumann, "Allgemeine Gesetz," (1845), sect. 9,57. The equation to which he refers is 
on p. 56. 

46 Neumann, "Uber ein allgemeines Princip der mathematischen Theorie indukirter elec
trischer Strome," Abh. Akad. WissenBerlin (1847), Part 11: 1-72. 

47 See Carl Neumann in his commentary on Franz Neumann's paper on induction in Franz 
Neumann, Allgemeines Princip. 
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even while they denied that they used those principles at all.48 

In his published lectures on mathematical physics, his closeness to the French 
mathematical tradition reasserted itself. In the section on hypotheses from his lec
tures on elasticity, Neumann assumed bodies were made up of moving mass points 
between which forces act. Yet after setting up a molecular level expression for 
pressure and tension, he dropped this approach and only considered macroscopic 
pressures and forces. This was the starting point for his mathematical theory. 
When he got down to physical specifics, he discussed cases that emerged from 
mathematical particulars, not physically significant cases that imposed limits on 
the mathematics.49 In the case of Elasticity, Neumann followed the French model 
of constructing a highly abstract mathematical theory with few connections to ex
periment and no systematic pattern of connecting the two. It is immaterial here 
that, in the eyes of his students who were better trained in mathematics than he, 
his mathematics was not "the most elegant or the most general from the point of 
view of the mathematician."so 

In his research he gave his students and contemporaries an example of how to 
confront the problem of relating the constructs of mathematicians with the empir
ical evidence of physicists. For the next generation, better trained in mathematics 
and in the measurement physics he helped to create, Neumann's was a legacy that 
was discarded in detail but one that was richly suggestive. 

Tracing Neumann's influence within the work of his younger colleagues and 
students is more than usually problematic. There is no question that he inspired 
many students, and in general established a model of how to be a physicist. The 
particular kinds of mathematical methods and solutions he developed in his research 
left few traces in the work of others. 

The one exception was in the research approach of Gustav Kirchhoff and partic
ularly in his use of the potential. Kirchhoff's work on current networks was done 
while he was a student in Neumann's Physics Seminar. Even as a student Kirchhoff 
was better prepared mathematically than Neumann. His first paper was published 
in the form of a general mathematical theory of the distribution of electricity in a 

48 Olesko, Physics as a Calling notes that we must largely ignore accounts of Neumann's 
work published by his students. They overstated his importance in an effort to gain 
what they thought was his rightful place in an already crowded profession in the late 
nineteenth century. While they, better trained in mathematical physics, could see physical 
implications in his work, we cannot attribute those physical insights to Neumann himself. 
As an example of such a student assessment see Woldemann Voigt, "Gedachtnissrede," 
in Neumann, Werke, vol. 1,3-19. Voigt claimed that many of Neumann's papers were 
groundbreaking but was unable to state exactly what ground they actually broke. 

49 Franz Neumann, Vorlesungen iiber mathematische Physik gehalten an den Universitiit 
Konigsberg, 7 vols (Leipzig: 1883). 

50 Voigt, "Gedachtnissrede," 10, Wangerin, "Neumann als Mathematiker," in Franz Neu
mann, Werke, vol. 1. 
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thin infinite plane. This paper was followed by an account of his own experiments 
to establish the form of the curves that represented equipotential surfaces across 
a disc. Kirchhoff tried to use Neumann's method of literally using experiment 
to establish the forms of the mathematical functions that represented the physical 
entity he would then examine mathematically. In ways strongly reminiscent of 
the French and Neumann, his physical concepts were measurables, and relation
ships with which he began his analysis were those that emerged from his own 
experiments. 

His mathematical analysis was not limited to just those experimental cases. 
His work also covered the distribution of current electricity in three-dimensional 
networks.51 Kirchhoff assumed only the validity of Ohm's law rewritten in terms 
of a function u that determined the flow of the current. This function had the 
properties of the potential function and allowed Kirchhoff to use some of the 
mathematical results of Gauss' paper on the subject. He then looked for closed 
curves of equal "tension." To get results back down to physically plausible cases 
and experiment Kirchhoff took the example of a circular plate. Details of his 
measurement techniques and results followed together with their comparison with 
his mathematics. 

Kirchhoff extended this work to the physical conditions under which Ohm's law 
was valid and mathematically generalized these conditions. He started by asserting 
that Ohm's demonstration of his law was only true when the density of electricity 
within the conductor was the same in all directions. He considered an electrical 
conductor in equilibrium and the force of "free" electricity on a point within the 
conductor. Kirchhoff mathematically identified Ohm's electroscopic force and 
electrostatic potential. He also demonstrated mathematically that Ohm's condition 
was the only one possible. What Kirchhoff achieved was to show the mathematical 
compatibility between electrostatics, Ohm's work on current electricity, and his 
own work in the same domain.52 

Separated from this mathematical exercise were some of Kirchhoff's rumina
tions on the various conjectures about the nature of electricity.53 These conjectures 

51 Gustav Robert Kirchhoff, "Uber der Durchgang eines elektrischen Stromes durch eine 
Ebene, insbesondere durch eine kreis formige," Ann. Phy. 64 (1845): 497-514. Kirch
hoff, "Nachtrag zu dem Aufsatze: Uber den Durchgang eines elektrischen Stromes durch 
eine Ebene, insbesondere durch eine kreisfOrmige," Ann. Phy. 65 (1846): 344-349, 
Kirchhoff, "Uber die Anwendbarkeit der Formeln fUr die Intensitaten der galvanischen 
Strome in einem Systeme linearer Leiter auf Systeme, die zum Theil aus nieht !inearen 
Leitern bestehen," Ann. Phy. 75 (1818): 188-205. 

52 Kirchhoff, "Uber eine Ableitung der Ohm'schen Gesetze welche sieh an die Theorie 
der Electrostatik anschleisst," Ann. Phy. 76 (1849): 506-513, Phil. Mag. 37 (1850): 
463-468. 

53 Jungnickel and McCormmach, Intellectual Mastery, vol. 1, 154-155, see these papers as 
physics and hence consider the conjectures of Kirchhoff at the end of his paper as part 
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played no role in the mathematical parts of the paper. Kirchhoff's later work in 
electrodynamics and elasticity show the same reluctance to use specific hypothe
ses about molecular processes in nature. He preferred to base his mathematical 
physics on general principles and statements of laws deduced from experiments. 
His was mathematical physics directed towards the needs of physicists.54 

Kirchhoff combined the two paths along which Neumann's students appear 
to direct their careers. Some became "measurement" physicists who replicated 
his concern with error analysis and carefully constructed experiments to measure 
small quantities. Others used the emerging methods of mathematics to construct 
a mathematical physics that soared far above the concerns of the empirical base 
that gave them the starting point for their mathematical developments. What they 
did share with Neumann was an aversion to hypotheses. While his students might 
succumb to the blandishments of highly abstract theory, Neumann's insistence 
that the physically plausible lay at the root of mathematical physics meant that this 
discipline became the mathematics of physicists and was no longer the exclusive 
province of mathematicians. 

Wilhelm Weber 

Wilhelm Weber began his career in the same decade as Neumann with the same 
French models and resources before him for both experimental and mathematical 
physics. However, because of his chosen research problems, Weber followed other 
models of performing experiments and mathematical physics. The interests of 
Neumann and Weber coincided in the 1840s when both converged on the problem 
of induction and the work of Ampere. The end results of that particular convergence 
of interests were very different. They presented to their colleagues contrasting 
ways of approaching an experimental and theoretical problem and visions of what 
constituted their solution. 

Weber's interest in physics began in exact experiment withoutseriously branch
ing out into mathematical physics. He analyzed the results of Poisson, Cauchy, 
and Navier in their theories of elasticity to extract physically meaningful results. 
He explicitly compared the results of the mathematicians with the experiments 
of physicists. However, Weber's passion was measurement. Beginning with the 
papers published with his brother, he examined every aspect of the act of obser
vation, measurement, and the reduction of data. They extended this research into 
consideration of the psychological aspects of the relationship between observer 
and observed. Both Weber and Neumann were struggling with the same problems 
of interpreting the French and creating a methodology for a discipline. 

of his argument within the paper. 

54 This is seen most systematically, not in his research papers but in his lectures on math
ematical physics. See Kirchhoff, Vorlesungen iiber mathematische Physik, Kurt Hensel, 
ed. (Leipzig: B. G. Teubner, 1876-1891),4 vols. 
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Weber's training at the University of Halle was more systematically focussed 
in mathematics and physics than Neumann's. He studied mathematics with J. F. 
Pfaff, one of the few mathematicians of his generation to understand and add to 
the development of analysis, and experimental physics with J. S. C. Schweigger. 
Weber frequently worked with collaborators in his research throughout his profes
sionallife. This began with his brother and a careful experimental examination of 
past work on waves, both mathematical and experimental.55 In their experiments 
the Weber brothers examined both water and sound waves. They carefully defined 
their terminology and developed methods of producing certain kinds of oscillations 
on strings, plates, and in hollow cylinders. This work culminated in Wilhelm's 
dissertation in 1826 on organ pipes (1826) and his Habilitation on coupled oscil
lators (1827). The "laws" developed in this research were all phenomenological 
and descriptive, and expressed in non-mathematical language. 

The brothers faced the issue of extracting physically meaningful results from 
the morass of mathematics on elasticity and wave propagation. Wilhelm Weber 
continued this in his investigation of the results of Poisson's theory of elasticity. 
He examined the ratio Poisson had deduced for changes in thickness and length 
for wires under tension. Further, Weber examined Poisson's ratio of the latitudinal 
to transverse vibrations of thin plates and compared them with his own measure
ments. Weber expressed this as, n' = 2.05610ne/i where i was the length, e 
the thickness of the plate, and nand n' the frequencies of the vibrations of the 
longitudinal to transverse vibrations. There was no extended analysis of why these 
particular results of Poisson's could be directly related to experiment. The results 
Weber deduced from his experiments were simply listed alongside the results de
rived from Poisson without comment. Weber's immediate papers were similarly 
experimental, although increasingly sophisticated in their assessment of the math
ematics of elasticity and its relationship to experimental physics. Weber's ultimate 
publication on this subject was a review paper on experiments in the elasticity of 
wires and a discussion of new experimental methods.56 

In work with Gauss at Gi:ittingen (1831-1839) Weber's experimental energies 
shifted to terrestrial magnetism, its instrumentation, improvement of both instru
mentation and measurement techniques for the measurement of small quantities. 
This included a discussion of the bifilar magnetometer and improvements in its 
design, and the precise layout of the terrestrial magnetism observation station in 
Gi:ittingen.57 

55 This resulted in Wilhelm Eduard and Ernst Heinrich Weber, Wellenlehre, aufExperimente 
gegruiidet, oder iiber die Wellen tropfbarer Fliissigkeiten mit Anwendung auf die Schall
und Lichtwellen, Leipzig: Fleischer, 1825. 

56 Wilhelm Weber, "Uber die Elasticitat fester Karper," Ann. Phy. 54 (1841): 1-17. This 
work emerged from Weber's sustained examination of the operation of the magnetometers 
used at Gattingen to measure the earth's magnetic field. 

57 Weber, "Bemerkung tiber Einrichtung magnetischer Observatorien, und Beschreibung 
der darin aufzustellenden Instrumente," Resultate (1837): 13-33. "Beschreibung eines 
kleinen Apparats zur Messung des Erdmagnetismus nach absolutem Maass fUr Reisende," 
Resultate (1837): 63-89, "Bemerkungen tiber die Einrichtung und den Gebrauch des 
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Weber's interests did not remain with instrumentation, measurement and data 
reduction. His role in the development of Gauss' ideas on absoiute measurements 
is unclear but seems substantial.58 The issue of absolute measurement became 
more important as he investigated how to use the magnetometer as a galvanometer 
using the phenomenon of induction. 59 This led him to a study of induction and the 
question of the measurement of electrodynamic quantities that converged in his 
first massive paper on the subject.6o 

Within "measurement physics" Weber continually confronted the problem of 
making plausible connections between what he observed with his instruments, 
motions due to mechanical forces, and what he was supposedly measuring, mag
netic then electrical quantities.61 Weber confronted the need for a theory connecting 
the three domains of physics-the mechanics of measuring instruments, magnetism 
and then galvanic electricity.62 The phenomena that drew these three domains of 
experimental physics together were those of electrodynamics and induction. The 
systematic expression of their relationships were in Ampere's empirical laws on 
electrodynamical phenomena and Faraday's on induction. Weber began his search 
for a theoretical net that connected these different domains of physics together in 
a theory of the measurement in absolute, i.e., mechanical terms, of the measur
abIes of Ampere's and Faraday's experiments. This was a theory that originated 
in the new measurement physics. Measurement did not merely serve to present 
mathematicians with expressions that formed the initial and/or final points of their 

Bifilar-Magnetometers," Resultate (1837), "Uber den Einfluss der Temperatur auf den 
Stabmagnetismus," Resultate (1838): 38-57. 

58 See May's remarks in May,"Gauss," Diet. Sci. Bio. and Archibald, "Tension and Poten
tial," Centaurus, 31 (1988): 141-163. 

59 Weber, "Der Induktor zum Magnetometer," Resultate, (1839): 86-101, "Der Rotations
inductor," Resultate, (1839): 102-117, and "Unipolare Induktion," Resultate, (1840): 
63-90, and "Messung starker galvanischer Strome bei geringem Widerstande nach ab
solutem Maasse," Resultate, (1841): 83-90. 

60 Weber, "Elektrodynamische Maassbestimmungen," Abh. Leipzig (1846): 209-378, and 
in Weber, Werke, 6 vols., (Berlin: Springer, 1892-1894) vol. 3, 27-214. Abstracted 
in Ann. Phy. 73 (1848): 193-240. The abstract was translated as Weber, "On the 
Measurement of Electrodynamic Forces," in Taylor's Scientific Memoirs 5 (1852): 489-
529. The painstaking experiments to examine Ampere's law were cut short in the abstracts 
as were Weber's descriptions of his instrumentation. Only the skeleton of his theory 
remained. 

61 This is different from Neumann's measuring problems in his work on heat and light 
because thermal and optical properties were measured directly by the instrumentation. 

62 For an account of the political complications of Weber's academic career and his rela
tionship with Gauss and the role of Gauss in the development of his ideas, see Jungnickel 
and McCormmach, Intellectual Mastery, vol. 1, 130-140. Their account pps. 140-144, 
of the contents of Weber's first electrodynamics paper discussed here is different from 
my own and assumes a great deal that I am exploring as problematic. 
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analysis. The analysis of the problems of measurement themselves were the step
ping stones into a discussion of a theory that joined distinct types of phenomena 
together with imagery and mathematics. Experiment was enmeshed finally in spe
cific physical imagery, expressed mathematically, whose physical meaning was 
investigated using mathematics as the language of exploration. Physical imagery, 
as Weber knew, did not come with measurement; it was hypothetical and necessary. 

In the abstract to his paper Weber made this explicit by comparing the devel
opment of electrodynamics with astronomy. In the former, no principle linked 
the laws of magnetism and electromagnetism together. This was unlike astron
omy where Kepler's laws were joined together through Newton's principle of 
gravitation. Newton's theoretical leap led to much research in astronomy. In elec
trodynamics Ampere's work had not led to such research. The known induction 
phenomena were discovered independently of Ampere's research. To press the 
point home Weber cited Faraday's work. If one could develop the "true" laws of 
Electrodynamics, they would serve as a "guide to different classes of phenomena" 
as had happened in astronomy. Unlike astronomy, there was no serviceable com
bination of theory and observation available in electrodynamics. While Ampere 
provided the mathematics, there was no idea equivalent to gravitation that joined 
disparate aspects of electrodynamics together. A vital link was missing, 

in the development of electrodynamics no such combination of observa
tion with theory has occurred as in that of the general theory of gravi
tation. Ampere who was rather a mathematician than an experimenter, 
very ingeniously applied the most trivial experimental results to his sys
tem and refined this to such an extent, that the crude observations im
mediately in question no longer appeared to have any direct relation to 
it.63 

Ampere's mathematics was remote from its experimental foundations. Its origins 
could no longer be traced through the refinements of the mathematics. 

Part of Weber's objection was that Ampere did not actually measure the quan
tities he examined in his experiments because his were nUll-point experiments. 
Ampere had not demonstrated what he claimed. The solution lay in improving 
methods of observation and in the careful comparison of specific points of theory 
with experiment. This would provide for the introduction of the "spirit of theory in 
observation, without the development of which no unfolding of its powers is possi
ble." This meant that Weber was committed to the development of a theory that did 
not lose sight of its physical, empirical foundations. In addition Weber had further 
ambitions, to join into one theoretical whole electrostatics and electrodynamics as 
well as induction. 

His massive paper had many layers to it. To characterize it as the presentation 

63 Weber, "Elektrodynamische Maassbestimmungen," 214, Werke, 30-31, and Taylor's 
Scientific Memoirs, 490. 
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of a theory of electrical action misses many of Weber's intentions, and most of the 
text. Weber devoted much space to reestablishing Ampere's law experimentally. 
His problem was to construct the fundamental laws of electrodynamics through the 
actual measurement of electrodynamic forces, not through the precarious balancing 
of such forces against one another. By investigating the rotation of one coil within 
another, while both carried currents, Weber reconstructed Ampere's law.64 

Weber immediately inverted the role of Ampere's law. It became the foundation 
for the measurement of all electrodynamic quantities. To do this Weber had to 
demonstrate that using Ampere's law he could construct the moment of rotation 
for a coil in motion induced by a current. By comparing experimental results to an 
extended form of Ampere's law, Weber established that the moment of inertia for 
this rotation gave a direct measure of the current.65 Mechanical quantities, move
ments, rotations, moments of inertia, were a direct measure of electrical quantities. 
Weber then launched himself into an empirical examination of induction. What 
he hoped to establish, although he could only state it not prove it, was that the 
induction phenomena Faraday had uncovered could not be used as a foundation 
for understanding Ampere's law. Only the inverse was possible.66 Weber thus se
cured the absolute status of mechanical measurement and quantities over electrical 
or magnetic ones. Weber contended that if we begin with Faraday's results and 
induction, we could only reach Ampere's law on a case by case basis by replacing 
the electrodynamic activity of the current by an equivalent magnet. Constant cur
rent phenomena were not encompassed in this analysis. In contrast, Ampere's law 
assumed constant currents but offered the possibility of striking out beyond this 
case by assuming the general mathematical case of currents as functions of time, 
and hence contained the possibility of explaining induction. 

Weber approached the problem of induction in several steps, while also intro
ducing his fundamental assumptions about the nature of electricity and electric 
currents in as low key and unobjectionable a way as possible. At the same time 
he developed more and more general mathematical cases as his argument became 
less tied to laboratory visualization. In so doing Weber drew together all three 
aspects of electrical science. At work in this section of the paper are three levels 
of concern, mathematical abstraction, physical hypotheses, and the development 
of the imagery made possible by expressing the hypotheses in the language of 
mathematics. 

It was no accident that Weber began in electrostatics and from there deduced 

64 After his series of experiments Weber concluded that the agreement between observed 
and calculated values could not have been better. Ampere's fundamental law was con
firmed in its most general and important consequences. Weber, "Elektrodynamische 
Maassbestimmungen," 249, Werke, vol. 3, 69. 

65 Weber, "Elektrodynamische Maassbestimmungen," 249-268. 

66 Weber, "Elektrodynamische Maassbestimmungen," sect. 18, 305-307, Werke, 132. 
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Ampere's law. The introduction of electric charge as a center of force was un
objectionable to his German audience. Weber was not the first to assume that 
electric current was the motion of oppositely charged particles within a conductor. 
Fechner had introduced the idea a year earlier. Fechner's unlike charges attracted 
when they moved in opposite directions. Fechner had explained induction for the 
case of parallel wires starting in Ampere's electrodynamic law.67 Weber set his 
charges in motion parallel to one another and then took only their relative motions 
into account. The resultant force that emerged from all possible combinations of 
moving charge interactions was 

ee' 2 I +8-2 a uu, 
r 

where a2 was a constant, e and e' were charges with velocities u and u' at a distance 
r apart. He then generalized this particular case to one with relative accelerations 
of his point charges as well as velocities. A term of the form, 

2(dr)2 d 2r I-a - +b-, 
dt dt2 

had to be multiplied into the expression for the force. 
To get from electrostatics to induction, Weber introduced mathematical results 

deduced from Faraday's work to show the plausibility ofthe approach, if not a cast
iron mathematical case. Weber was looking for a general differential mathematical 
expression for induction. Therefore, he started with the most general expression of 
Ampere's law, reworked into a form deduced from his starting point, electrostatics. 
He had to construct expressions for each possible moving charge in one conducting 
element acting on the two possible moving charges in the other element separating 
from one another to produce the current. By translating both the velocities and the 
cosines of the angles involved into differentials of distance and manipulating them 
algebraically, Weber obtained an expression for the force between two charges that 
contained accelerations along the conducting elements 

ee' (1_a 2(dr)2 +2a2r d 2r). 
r2 dt dt2 

Weber claimed this expression as the basic law of electrical action that stemmed 
from Ampere's laws. It was a "precise expressions for an extensive class of cases" 
and was "without hypotheses.,,68 

He followed this by reconstituting Ampere's law from electrostatics in the case 
for constant currents.69 He concluded that the important elements were relative 

67 Fechner, "Uber die Verkntipfung der Faraday'schen Induktion-Erscheinungen mit den 
Ampereschen elektro-dynamischen Erscheinungen," Ann. Phy. 64 (1845): 337-344. 
Weber appraised Fechner's ideas in his section on induction, Weber, "Elektrodynamische 
Maassbestimmungen," 347. 

68 Weber, "Elektrodynamische Maassbestimmungen," 327, Werke, 157. 

69 Weber, "Elektrodynamische Maassbestimmungen," sect. 22, 327-334. 
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motions and accelerations of the charges as well as their masses and distances 
apart. 

Weber required one additional assumption to deduce the laws of induction from 
his basic imagery of moving electric charges; the induced emf was measured as the 
difference between the forces acting on the moving charges of the secondary by the 
moving charges of the primary. He took the simplest case, the imbalance of force 
from the unequal motions, however produced, of the charges moving in the primary 
circuit induced the emf in the secondary circuit. Since the emf was measured 
along the circuit element of the secondary, he needed only that component of the 
resultant force. 7o Assuming constant currents and one circuit moving with respect 
to another and through some ingenious algebraic manipulations of the velocities as 
derivatives with respect to time of their distances from one another, Weber obtained 
an expression for the induced emf for parallel closed circuits where currents were 
flowing parallel and antiparallel. In the last section of his paper Weber confronted 
the results of Fechner's paper and Neumann's first paper on induction. 

Both Weber and Neumann built their mathematical case through the consider
ation of physical particulars. Yet, Weber's is truly a physical theory of electrical 
and electrodynamical phenomena, developed in the language of the calculus. The 
physical imagery was powerful, developed mathematically as far as was necessary 
to demonstrate a particular known physical case, and in certain circumstances the 
general case. Like Neumann, Weber started from empirical laws and constructed 
other, known laws directly. However he used the specifics of a physical model 
and the actions of moving electric charges. Neumann's path was mathematically 
convoluted and offered no sense of the underlying physical process. In contrast, 
Weber constructed a specific physical model and traced physical processes through 
that model. Beginning with his ideas on electric currents as the separation of 
charges, Weber constructed known empirical laws. The consistency, simplicity 
and Kantian familiarity of the imagery were powerful. Finally, Weber kept math
ematics subservient to the requirements of the physical cases and the physicality 
of the mathematics was obvious. He introduced into physics that which Neumann 
avoided, specific imagery. In his commentary on his mathematics, Weber wrote 
in terms of the physical content of the mathematics, velocities, distances, forces, 
emfs, not in terms of functions, coefficients, etc. The latter were part of Neumann's 
commentary on his developing mathematics even as the physical case that set up 
the mathematics is visually explicit. 

One of Weber's criticisms of Neumann's induction paper was physical. While 
Neumann could replicate the known laws of induction, there was essentially no 
physical sense of what was actually going on. To Weber, induction arose from a 
"mutual exchange of electric currents" and any explanation of these phenomena 

70 Weber, "Elektrodynamische Maassbestimmungen," sects. 24-25, 336-346, and Werke, 
116-126. 
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"must be based on the consideration of this mutual exchange." This pointed to the 
foundations of what physical theory should consist of and its relationship to process. 
There was, for Weber, no "inner coherence" in Neumann's work on induction. 
The inner coherence of mathematics was no longer sufficient. For Weber it was 
"remarkable" that Neumann's law agreed with known empirical rules.11 Whether 
we take this as irony or not, Weber had not spotted the coherence and conjunction 
between the mathematics of their approaches that lay in the potential. 

More importantly, Weber was calling for a new foundation upon which to build 
physical theory. What Weber constructed here, through simple powerful imagery 
based on philosophically familiar assumptions, was a theory of the processes of 
nature that drew together a wide range of phenomena that had, until then, remained 
isolated on an explanatory level. Neumann's mathematical description also drew 
some of these same phenomena together, but as Neumann acknowledged, there 
was a mystery at the bottom of his mathematics which eluded him. 

There was only one aspect of theoretical physics not encompassed in Weber's 
massive paper, prediction. There was also a price to pay for using specific im
agery, alternatives that appeared quickly and often after the publication of Weber's 
work. The basis of Weber's work remained an hypothesis that could, at best, be 
compatible with phenomena, but could never be established as necessary beyond 
its usefulness.72 

Whatever the ontological difficulties of using specific physical imagery, or the 
direction of Weber's career after this 1846 paper, the terms of this achievement 
were the basis for theory within German physics.73 

The terms of the debate shifted. Arguments were about specific physical models, 
their adequacy as images of the operation of nature, their implications as images 
of nature, and whether they were understood by their protagonists or not. Mathe
matical prowess was no longer an issue within the community of physicists. It was 
assumed as a prerequisite for entry into the discipline. The grounds upon which its 
use were judged had also changed. Was the mathematics suitable and employed 
well enough for the physical cases at hand? Physicists had established criteria 
of judging theories within physics expressed in the language of mathematics that 
were no longer dominated by the criteria of mathematicians. German physicists 
used mathematics in a variety of ways to explore the structures and processes of 
nature, from the formal and highly abstract to the exploration of the implications 

71 Weber, "Elektrodynamische Maassbestimmungen," and Werke. 178. 

72 See, Maxwell, Treatise on Electricity and Magnetism, vol. 2, 486-487. Even though 
Maxwell was writing about an approach that rivaled his own, he had already moved 
away from specific imagery as a foundation for his electromagnetic theory. He chose the 
foundation of the general laws of mechanics. 

73 Measurement remained Weber's passion and he explored absolute measurement in other 
areas of electrodynamics. For details of Weber's later research see, Jungnickel and 
McCormmach, Intellectual Mastery, Vol. 1, 144-148. 
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of very specific mechanical models. 
From the publication of Weber's paper, hypotheses and imagery were accepted 

and became integral facets of German physics. By 1870 a full range of such 
approaches was exploited in this community, and two important figures that con
solidated the use of mathematics, imagery combined with experiment within the 
discipline of physics were Rudolph Julius Emmanuel Clausius and Hermann von 
Helmholtz. 

Clausius and Helmholtz 

As Weber and Neumann reached the midpoints of their careers, a new genera
tion of physicists, some of whom they trained, began to publish their first pieces of 
research. This later generation had before them a series of research problems, to
gether with examples of solutions that incorporated the new standards and methods 
of physics. This younger generation also could take advantage of the systematic 
training now offered in both the experimental and mathematical aspects of this 
new discipline, together with training in higher mathematics offered at German 
universities. However, the profession and discipline of physics was not so well 
defined that the unorthodox might not enter. Hermann von Helmholtz, one of the 
most important members of the generation that came to maturity in the late 1840s, 
received no systematic training in higher mathematics or mathematical physics. 
At the other end of this educational spectrum, Rudolf Julius Emmanuel Clausius 
received all the training now offered for an aspiring physicist. At the University 
of Berlin he worked with Dove and Magnus in experimental physics and heard 
Dirichlet's courses in mathematics. 74 

Clausius' research was never the familiar nineteenth-century mix of experiment 
and mathematics. He was a theoretical physicist and never published any exper
imental research although he was always well aware of it. Experimental results 
were the starting point of all his research, and incorporated into his explanatory 
compass. 75 His career and the courses he taught reflect the deviant and difficult pro
fessional path he chose.76 He was also one ofthe first German physicists to be fully 

74 The courses from Dirichlet included potential theory and differential equations. He also 
heard Dirksen's lectures on analytical functions and Steiner on function theory. 

75 He included in his research the problems of engineers, publishing a text on the steam 
engine and on the design of electric motors. See Clausius, "Uber die Anwendung der 
mechanischen Warmetheorie auf die Dampfmaschine," Ann. Phy. 97 (1856): 441-476, 
533-558. Clausius, "Zur Theorie der dynamoelectrischen Maschinen," Ann. Phys. 20 
(1883): 353-391. 

76 From 1844-1850 Clausius taught at a Gymnasium in Berlin and from 1850 was professor 
of physics at the Royal Artillery and Engineering School. He received a call as Ordinarius 
to the Polytechnic in Zurich in 1855 and then Wiirzburg in 1867, returning to Prussia 
and the University of Bonn in 1869. In Berlin and Zurich he taught physics courses to 
engineers. 
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competent in contemporary mathematics, and to manipulate it for his own ends. 
The paramount importance of mathematics for physics in the 1850s is illustrated 
by Clausius' reaction to criticism of the quality of the mathematics in his theory of 
heat. In a subsequent edition he published a chapter on the differential equations 
of thermodynamics. 77 Even in his dissertation and first publications, the explana
tion of the physical processes behind the mathematics was important to Clausius. 
He traced the pathways of the light within hollow vesicles in the atmosphere that 
formed rainbows and other meteorological color phenomena.78 However, Clausius 
soon became bolder and his work more central to the changing range of research 
problems and methods of mid-century German physics. Clausius was matched in 
his mathematical and theoretical ability by Helmholtz and throughout their careers 
they dogged each other's theoretical steps. 

Helmholtz's training lay in medicine. The only mathematics or physics he heard 
formally was that appropriate to his future career as a physician. His doctoral dis
sertation was a thorough exercise in systematic observational, microscopic physi
ology. His observations on the nervous systems of invertebrates was important and 
workmanlike. As with Clausius' equally workmanlike dissertation in physics, this 
research established his competence in his field. As a medical student Helmholtz's 
training appears to have been thorough, thoroughly academic, and requiring sheer 
physical stamina to stay the course. Recounting the well-known details of his early 
career Helmholtz, along with his mentor Johannes Muller and his other students, 
were determined to make physiology an exact, experimental and quantitative sci
ence. Beyond that they shared a commitment to explanatory schemes that relied on 
physics and chemistry. This determination to excise vitalism from physiology and 
substitute a mechanistic explanation of life was fraught with political overtones 
that instantly labeled the whole group radical. This label persisted despite the fact 
that neither Helmholtz nor Du Bois-Reymond supported such political visions. 79 

In the first decade of his career Helmholtz pursued academic research while a 
practicing physician for the army. Although Helmholtz attacked vitalism directly, 
his research depended on his army postings. The subject of his early research 
was a study of putrefaction and fermentation. With respect to the question of 
vitalism, the outcome of these experiments was ambiguous. This line of research 

77 See Clausius, "Uber die mechanische Wiirmetheorie," Poly. J. 150 (1858). The mathe
matical parts of this paper were expanded and published as Chapter 1 of Clausius, Ab
handlungen iiber die mechanische Wiirmetheorie (Braunschweig: Vieweg, 1864--1867) 
2 vols, translated into English by T. Archer Hirst as The Mechanical Theory of Heat 
(1867). 

78 Clausius, "Uber die Lichtzerstreuung in der Atmosphiire," J. Reine Angew. Math. 34 
(1847): 122-147: "Uber die Intensitiit des durch die Atmosphiire reflectirten Sonnen
Iichts," same journal 36 (1848): 185-215. 

79 See Frederick Gregory, Scientific Materialism in Nineteenth Century Germany (Hingham 
MA.: Reidel, 1977). 
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was cut short by his posting from Berlin to Potsdam, far enough to cut him off from 
necessary laboratory resources of Muller. Helmhoitz then turned to the study of 
animal heat and the heat generated by muscular action. Here he demonstrated that 
chemical changes occurred in working muscles and a year later, 1848, that heat 
was generated by muscle contractions. 

In 1847, in the middle of this research Helmholtz published "On the Conservation 
of Force." The extent of his physicalist image of life became clear, as well as the 
Kantian foundation of his physics. His physical explanations were based upon the 
idea that matter was made up of point masses between which were attractive or 
repulsive forces. Helmholtz's work in the 1880s on the Principle of Least Action 
served to reemphasize his commitments.8o 

In 1848, the considerable pressure friends at the center of Prussian academic 
life in Berlin brought to bear on the army and the Kultus-Ministerium, together 
with Helmholtz's research, led to his release from his army obligations. He never 
practiced medicine again, although his research over the next twenty years was 
mainly in physiology beginning in his experimental work on the velocity of nerve 
impUlses. His research again was guaranteed to undermine confidence in vitalism 
and build his own physicalist ideas. It also led him into the instrumentation of 
electrical experiments and their improvement to measure small time intervals and 
electric pulses. Helmholtz treated physiological problems with the quantitative 
methods of experimental physics.81 

These same physiological problems became the starting point for many of 
Helmholtz's forays both experimental and theoretical physics. The experiments 
on nerve impulses led him to consider electric pulses and this expanded into an 

80 Helmholtz, Uber die Erhaltung der Kraft, eine physikalische Abhandlung vorgetragen 
in der Sitzung der physikalischen Gesellschaft zu Berlin am 1847 (Berlin: G. Reimer, 
1847), translated as "On the Conservation of Force," Taylor's Scientific Memoirs 2 (1853): 
114-162, trans., John Tyndall. This essay was republished throughout Helmholtz's 
life. In the edition of 1881 Helmholtz reaffirmed his commitment to Kantianism. See 
Helmholtz Uber die Erhaltung der Kraft, eine physikalische Abhandlung in Helmholtz, 
Wissenschaftliche Abhandlungen (Leipzig: Barth, 1882-1895) 3 vols., vol. 1, 12-68, 
Appendix. On Helmholtz's Kantianism see, Peter Heiman, "Helmholtz and Kant: The 
Metaphysical Foundations of Uber die Erhaltung der Kraft," Studies Hist. Phil. Sci. 5 
(1974): 205-238. On Helmholtz's monocycIes see Gunther Bierhalter, "Zu Hermann 
von Helmholtzens mechanischer Grundlegung der Warmelehre aus dem Jahre 1884," 
Arch. Hist. Exact Sci. 25 (1981): 71-84, and "Die von Helmholtzschen Monozykel
Analogien zur Thermodynamik und das Clausiussche Disgregationskonzept," same jour
nal 29 (1983): 95-100. 

81 Helmholtz, "Uber die Dauer und den Verlauf der durch Stromesschwankungen inducirten 
elektrischen Strome,"Ann. Phy. 83 (1851): 505-540. Helmholtz needed a theory of his 
measuring instruments to convince his colleagues, even Muller, of the physiological va
lidity of his work. His work using this instrumentation led later to a specific image of color 
reception. See Timothy Lenoir, "Helmholtz and the Materialities of Communication," 
Osiris, 9 (1994): 185-207. 
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interest in the problems of induction and his critical overview of the whole domain 
of electrodynamics of the 1870s. He followed the same general path in his inves
tigation of the sense of hearing. Hearing led him to the consideration of the actual 
motion of air in open-ended pipes to the motion of air at the end of those pipes 
and problems of gases with internal friction and hydrodynamics. For Helmholtz, 
physiology led to more general experimental physical issues and more abstract 
questions of "theoretical" physics. 

It was not until 1870 that Helmholtz received the call to Berlin and a chair in 
Physics. His research work in physiology ceased. This is a reminder of just how 
long it took him to formally enter the profession he had published in with great 
distinction for twenty years. Helmholtz's career is also a reminder of how fluid the 
term "Physics" still was in mid century. All of this is to set Helmholtz's research 
in physics in the context of the constraints of his education, then opportunities that 
his research gave him to transcend those limitations and encroach on the turf of the 
field that he worked to make his own. Throughout the 1840s Helmholtz educated 
himself in higher mathematics, initially to understand how to use mathematics 
in physiology. Helmholtz realized that his vocation was physics and took every 
opportunity to drive his research into physics. 

The closeness of his work in physiology and physics is illustrated in his work 
on conservation of force. The principle itself was actually stated in a review 
paper on animal heat of 1845.82 After surveying work done by Davy and Lavoisier 
on the issue, he examined Leibig's paper on the origins of animal heat. Stating 
that it was of interest to physics in general as much as physiology, Helmholtz 
asserted that the principle of the constancy of force-equivalence was already used 
as the foundation of mathematical theories. As examples he cited Carnot's and 
Clapyeron's determination of the work contained in a given quantity of heat and 
Neumann's theory of currents induced by moving magnets. Helmholtz took his 
principle of "conservation of force" as empirically grounded and "theoretically 
stated and well known." The material theory of heat was doomed. Helmholtz 
then conjectured that, "if we substitute the motion theory of heat for the material 
theory of heat, we see heat as originating from mechanical force." From this 
it followed that chemical, electrical, and mechanical force were equivalent, and 
Helmholtz cited some of the experimental evidence he would use in his 1847 paper 
to demonstrate this. 

Ifwe accept heat as motion we can firstly assume mechanical, electrical, 
and chemical forces as equivalent to one another, as complement to a kind 
of transformation of one force into another. For mechanical force exists 
yet no experiment demonstrates this; the work of Carnot and Clapyeron 

82 Helmholtz, "Bericht tiber die Theorie der physiologischen Warmeerscheinungen ftir 
1845," Fort. Phys. (1845) [1847]: 346-355. Reprinted in Helmholtz, Wissenschafte 
Abhandlungen, vol. 1, 1-11. 
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and Holtzmann seem not to point to the production but to the diffusion 
of heat. In the case of chemical forces the heat equivalent (latent heat) 
has been determined for a series of chemical processes and the law of 
the constancy of heat production which bind two substances together is 
known. For constant electric current it follows from the law of Ohm and 
Lenz and established empirically by Becquerel from the heat developed 
during electromechanical change.83 

This was the outline of his argument in the paper on the conservation of force. 
What was missing, and added to the 1847 paper, was a vision of matter that 
allowed him to illustrate mathematically what he believed was the universality of 
his principle. Helmholtz's paper on the conservation of force was ambitious. In 
describing this paper as one in physics, Helmholtz was using the term in its older 
sense, not in the sense that had been built up through the research, discipline and 
profession called physics over the previous two decades. "Physics" included all the 
experimental sciences and he drew on evidence from chemistry etc., in arguing for 
the conservation of force. Helmholtz read his paper on the conservation of force 
to the Berlin Physical Society. Similar papers were read after he left the city. Even 
though the physicists from the University of Berlin also attended, few understood 
the implications of the paper until it was explained to them by Dubois-Reymond. 
Reactions to the paper seem to reflect the idea that this was a paper in a discipline 
not defined by the contents of the Annalen der Physik to which it was submitted. 
While Poggendorffwas busy narrowing the definition of the discipline, Helmholtz 
was trying to urge a broadening of it in directions that Poggendorff had repudiated 
as a young editor in the 1820s. 

Mathematical physicists might begin with the generalized mathematical solution 
to a problem from which particular solutions were extracted, Helmholtz began 
from the most general metaphysical principles, from which he extracted specific 
physical results in mathematical form. This led him from mechanics to other 
important research areas within physics, namely electricity and the nature of heat. 
Forces brought about change yet they were themselves conserved. For Helmholtz 
the physical question was the measurement of this conservation. In his model force 
was reduced to the mechanical forces of attraction and repulsion. In a closed system 
of mass particles, change was measured by alterations in vis viva. Helmholtz 
reexpressed this change in terms of the changes in the "intensity of the force," that 
is in the potential of the forces that acted between such particles, 

1 2 1 2 lR -mv - -mv = cpdr 
2 I 2 2 r ' 

where, m is the mass of the particle, whose velocity changes from VI to V2. cp 
was the intensity of the force constructed by considering changes in v2. Both 

83 Helmholtz, "Bericht tiber physiologische Wiirmeerscheinungen," (1845), 6. 
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the velocity and force X, Y, Z were functions of the coordinates x, y, z only and 
Helmholtz expressed this as 

1 
"2md(v2) = Xdx + Ydy + Zdz. 

Defining the x-component of the intensity of the force as X = (x jr)</J Helmholtz 
showed that for central forces, if the vis viva was conserved, then so was the 
intensity of the force. He then generalized this to a system of an arbitrary number 
of such centers of force. 

In his discussion of heat Helmholtz used examples from physiology, chemistry, 
and electricity to argue that heat was not a substance but a measure of the vis 
viva of thermal motions. (Latent heat, a measure of the forces between atoms that 
changed with the changes in position of those atoms.) The nature of atomic mo
tions were unknown and unknowable. It was sufficient simply to understand that 
heat was motion. To make this plausible, Helmholtz turned to systems in phys
iology in which vis viva was not conserved, and Joule's experiments on friction. 
In both cases heat was generated but until now neither the increase in "tensional" 
force within the body, nor the extraction of mechanical effect, had been taken into 
account. Helmholtz asked whether in these cases the "force" developed equaled 
the mechanical force lost and when mechanical force disappeared was a definite 
amount of heat always developed? If so, then there was a quantity of heat equiv
alent to mechanical force. The evidence Helmholtz introduced for this argument 
included experiments on exothermic chemical reactions and Joulean heating. To 
counter the objection that in induction no heat was generated, Helmholtz stated that 
there was no source of heat because there was no transfer of material substance. 
To reach an estimate for the mechanical equivalent of heat, he cited Joule's and 
Holtzmann's experiments on the compression of gases, those on the velocity of 
sound, latent heat, and the expansion of water vapor with temperature. 

The unifying concept throughout this paper was "tensional" force and its inten
sity. Helmholtz used this concept to extend his argument into electricity to obtain 
the "force equivalent" of electrical processes. Thus, using his principle, the change 
in the vis viva of two charges moving from distance r to R apart was 

12 ~md(v2) = _JR </Jdr, 
1 2 r 

He identified </J with Gauss' potential function. With his paper Helmholtz gave the 
potential function physical meaning. He then drew into this new conceptual net of 
force equivalence the heat generated by galvanic currents and a physical analysis 
of the results of Neumann's first paper on induction. 

The physiological intention of the paper surfaced in Helmholtz's afterword. He 
wanted to address issues for live matter, but could only show such principles for 
inanimate processes. Hypotheses, and the condensation of the meaning of disparate 
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phenomena into one general principle, had once again entered German physics. In 
this paper Helmholtz displayed a pattern of argument that he repeated throughout 
his life. He surveyed an existing set of known phenomena and their explanations 
in a domain replete with conceptual ambiguity and explanatory confusion and 
contestation. He then cut through the confusion to bring out the physical essentials 
of the cases and pinpointed a method, experimental, mathematical, or in this case 
conceptual, to sweep away the ambiguities and confusions and open up new ways 
of dealing with whole domains of physics. He then explored these new domains 
himself, mathematically and experimentally. 84 

Sweeping metaphysical principles, and undemonstrable models of matter even 
if they led to useful results were the antithesis of the systematic, experimental 
quantitative approach and the mathematical description of these results that consti
tuted many pages of the Annalen der Physik. Weber, in the theoretical sections of 
his electrodynamics paper, had kept close to his own experimental results. He had 
introduced his moving, charged particles as a principle only after discussing the 
problems of the approaches of physicists that denied the necessity for hypotheses. 
He also used hypotheses only to unify phenomena he had investigated himself. 
Helmholtz had done none of the experiments he cited. The mathematical content 
of his paper was minimal, just enough to demonstrate the physical point but no 
more. There were no sophisticated developments of its implications, and certainly 
not of the mathematical caliber already displayed by Clausius.85 When Clausius 
addressed the same mechanical problem of deducing a conservation law for a 
system of mass points his mathematical understanding of the problem was much 
deeper and more carefully stated.86 

The place of Helmholtz's paper within the body of the discipline of physics in 
the 1840s was peculiar. It simply set aside all the standards of the discipline and 
was a measure of Helmholtz's distance from it. Reaction to the paper was less 
than enthusiastic. It was not surprising that this brilliant but rambling paper was 
rejected for theAnnalen der Physik. Many physicists could not follow his argument. 

84 See his work in hydrodynamics, of the 1850s, that had implications for both mathemat
ics, as well as acoustics, and the physics of gases. He performed experiments on the 
behavior of gases and examined fluid behavior mathematically. This was repeated in his 
reexamination of electrodynamics. He was less successful in his attempt to bring unity 
to the physical sciences using the Principle of Least Action. 

85 This is not to say that Helmholtz was incapable even at this early stage in his career of 
understanding or producing such mathematics. See his analysis of Challis' theory of 
sound published the following year. Helmholtz, "Bericht tiber die theoretische Akustik 
betreffenden Arbeiten von Jahre 1819-1848," Fort. Phys. 4 (1849): 101-118, 124-125, 
and 5 (1850): 93-98. He recognized Challis' work as an exercise in mathematics rather 
than physics. Challis was chasing a particular integral in the equations of hydrodynamics. 

86 Clausius, "Uber das mechanischen Aequivalent einer elektrischen Entladung und' die 
dabei stattfindende Erwarmung des Leitungsdrahles," Ann. Phy. 86 (1852): 337-375. 
Translated in Tay/or's Scientific Memoirs (1853): 1-32. 
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Helmholtz's use of the term force was ambiguous. It was a mUltipurpose word 
to cover much the same ground as Ohm's usage of it thirty years beforehand. By 
force Helmholtz meant vis viva, potential, a term he took from Gauss but only saw 
in relation to galvanic electricity, and mechanical potential. Kirchhoff had only 
recently explicated Ohm's law in terms of potential. Helmholtz had to personally 
win over Neumann to his ideas . 

... after a severe struggle, I have converted a bold mathematician, who 
gets confused over non-mathematical logic, and is himself a lecturer in 
mechanics, to the doctrine of conservation of force, so that it is now 
official doctrine in this University. Neumann is rather difficult to get at; 
he is hypochondrical and shy, but a thinker of the first order.87 

Older physicists such as Magnus were dubious, even hostile to his work.88 

In the period immediately following its publication, Helmholtz's memoir was 
not mentioned in the debates over the nature of heat and the mathematics in which 
to express it. Of the younger physicists Clausius was the one who understood 
Helmholtz's work, its limitations, and the challenge that it offered his own work in 
the domain of heat theory. Clausius' approach to the theory of heat was similarly 
dependent on the experiments of others. His analysis of the problems with current 
ideas on heat depended on the ambiguities inherent in the experimental record 
itself. In addition, he did not leap from these contradictions to a grand principle 
of nature. Instead he built up his case for his assumptions about the nature of heat 
through a series of well considered, special physical cases presented in a succession 
of mathematical papers. 

In these mathematical papers Clausius reinterpreted Clapyeron's mathematical 
version of Camot's work.89 His reworking meant that Clausius kept much of the 
mathematical analysis developed by Clapyeron. Its physical foundation required 
reexamination and Clausius gave many of Clapyeron's results physical meaning. 
For Clausius the mathematical characteristics of the functions that entered his 
equations determined the physical characteristics of his system. The only functions 
and equations he pursued were those he saw as having physical utility. In his 
analysis of the Camot cycle, Clausius chose the ideal gas as his physical system. 
He reduced the general problem of the ideal heat engine to analyzing the changing 
state of a gas as it traversed an infinitely small cycle. Clausius constructed the 
expression for the heat added or expelled for each leg of this cycle.9o He then 

87 Letter from Helmholtz to DuBois-Reymond in, Konigsberger, Helmholtz, 64. 

88 Those enthusiastic about his work were physiologists, such as DuBois-Reymond already 
committed to a mechanical vision of life. 

89 The mathematical character of Clausius' papers is examined in Eri Yagi, "Clausius' math
ematical Method and the Mechanical Theory of Heat," Hist. Stud. Phys. Sci. 15 (1984): 
177-195. 

90 Clifford Truesdell, The Tragicomical History of Thermodynamics argues that Clausius' 
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constructed the expression for the inverse of the mechanical equivalent of heat, A, 
as the ratio of the heat expended over the work produced, "the equivalent of heat 
for the unit of work." He then added all his expressions for the heat added going 
around the cycle. Using the accepted mathematical expression for the work done 
by an ideal gas, the area within the cycle in the P-V diagram, A became 

~(dQ) _ ~(dQ) = A.R, 
dt dv dV dt v 

where d Q was the heat added, a + t the absolute temperature of the gas, and V 
its volume. R was the gas constant. Clausius continued that the above expression 
showed that, 

Q cannot be a function of V and t as long as the two latter are indepen
dent of one another. For otherwise, according to the known principles of 
the differential calculus, that when a function of two variables is differ
entiated according to both, the order in which this takes place is a matter 
of indifference, the right side of the equation must be equal to zero.91 

The equation could be brought under the form of a complete differential, 

a +t 
dQ = dU +A.R--VdV, 

where U was an arbitrary function of volume and temperature. The above expres
sion was not integrable until the relationship between V and t was established. 
Clausius gave both U and the other terms in this equation physical significance. 
U was the heat necessary for internal work, and depended only on the initial and 
final condition of the gas. The second term, the external work, depended on the 
initial and final states of the gas and the path taken between those two states. In 
his succeeding papers on the second law, Clausius introduced liT, where Twas 
the temperature, as a multiplier of d Q to make a complete differential of the form 
Xdx + Ydy.92 

This was the antithesis of Helmholtz's approach. Clausius avoided philosophical 
explanations of any kind and hid his particular theory of matter. He drew his 
theoretical conclusions on the nature of heat directly from the results of experiment 

analysis is less general than Thomson's two years later. Mathematically this is true. 
Physically it is irrelevant because Clausius reasoned, as had Carnot, that there was a 
unique maximum to the mechanical work equivalent of a unit of heat. The working 
substance in the ideal engine was irrelevant. 

91 For an ideal gas V and t were related through the ideal gas laws. Clausius, "lIber die 
bewegende Kraft der Warme und die Gesetze, welche sich daraus fUr die Warmelehre 
selbst abl~iten lassen," Ann. Phy. 79 (1850: 368. Translated in Phil. Mag. 2 (1851): 
1-21, 102-120,12. 

92 Clausius, "lIber eine veranderte Form des zweiten Haupsatzes der mechanischen Warme
theorie," Ann. Phy. 93 (1854): 481-506. 
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and a physical interpretation of the properties of the terms in his equations. The 
mathematical path of a function became the physical path of the physical entity 
represented by the mathematical symbol. Like Helmholtz, Clausius had to make 
this reevaluation of Carnot plausible. He therefore turned to experiments on the 
latent heat of vapors and the velocity of sound to draw them into a single explanatory 
net. 

On a more abstract level Clausius showed that the mechanical theory of heat 
was conceptually better than Carnot's. Carnot had to assume that perpetual motion 
could not exist to argue for the conservation of heat. The mechanical theory 
of heat ruled out the possibility of perpetual motion from the beginning. If the 
mechanical theory was not accepted, heat could move from a colder to a hotter 
body, which went against all observational evidence. Arguing mathematically 
from these assumptions Clausius established that Carnot's function C was simply 
the absolute temperature. To make this conclusion plausible Clausius compared 
values of C deduced from his theory with William Thomson's experiments. To 
drive the point home he examined the behavior of vapors as they deviated from 
the gas laws, comparing temperatures of maximum density from his theory and 
Regnault's experiments. 

This long excursion into Clausius' methods demonstrates that his papers on 
the mechanical theory of heat were as speCUlative as Helmholtz's. However, his 
presentation and methodology lay well within the standards of German physics 
while extending those standards into new domains of explanation. In the next 
three years Clausius published a series of papers exploring various phenomena to 
demonstrate the range and significance of the principle underlying his work. This 
included both electrical and thermoelectrical phenomena. Helmholtz, meanwhile, 
pursued physiological research and only began publishing review articles on the 
mechanical theory of heat after 1855. 

In Clausius' pursuit of the mechanical theory of heat there was a consistency 
of perception and a systematic methodology tied closely to experimental results. 
This makes Clausius' argument more compelling than Helmholtz's of 1847 that 
he did not follow up until much later.93 

Clausius criticized the work of Helmholtz and Holtzmann in the theory of heat 
over the consistency of their physical interpretations and their usage of mathemat
ics. In 1853 Clausius argued that Helmholtz's demonstration of his conservation 

93 Helmholtz later claimed that he saw his 1847 paper as simply a review of the literature; 
his principle not being so remarkable a thing to come by. However, while ceding the 
credit for the idea to Mayer he accepted all the credit for its development. See, Helmholtz, 
"Erhaltung der Kraft," (1881), Appendix. See also his letter to Tait used by the latter as 
an "impartial" account of the early history of thermodynamics to counter Clausius' com
plaints of mistreatment in Tait Sketch of Thermodynamics (Edinburgh: David Douglas, 
1877), chap. 1. For more details see Garber, Brush and Everitt, Maxwell on Heat and 
Statistical Mechanics 34-44. 
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law was only valid for his particular model of matter. Helmholtz had not, math
ematically, established it in general. In addition Heimholtz had not understood 
the notion of the potential or used it consistently in the electrical examples he 
chose to illustrate his principle. Clausius added an illustration, inherent in a paper 
Helmholtz had missed.94 

In his criticism of Helmholtz on the potential, Clausius separated the physical 
potential from its mathematical expression, Gauss' potential for which Clausius 
preferred Green's expression the potential function. Helmholtz was stung by the 
criticism. It undermined his position within physiology as well as the profession 
he was fast discovering he ought to be in, physics. His reply then acknowledged 
the validity of Clausius' criticism, while demonstrating he could do his sums as 
well as anyone. On the question of his model being particular, Helmholtz could 
only reply that he was concerned with "real" forces, not those abstract, generalized 
concerns of "mechanicians [Mechaniker ]," i.e., mathematicians. A nice putdown 
but hardly an answer to the nub of Clausius' point.95 

Clausius clearly knew both the mathematical and physical aspects of this ques
tion. He also had a particular vision of the structure of matter that surfaced at the 
end of the decade. He had suppressed it earlier for the sake of an analysis based on 
more acceptable foundations and experimentally demonstrable assumptions. Later 
Clausius was to explore the actual molecular motions that constituted heat through 
a theory of gases. He developed the concepts of disgregation and the virial while 
deepening his own understanding of the physical significance of the second law of 
thermodynamics.96 

In the early 1850s both men were equally able to manipulate modern mathematics 
and express the results of their mathematics in the language of a chosen physical 
imagery. While Helmholtz had begun this in a manner guaranteed to disturb the 
very audience he wanted to reach, by 1860 he demonstrated his control of their 
methods in such a way that he could no longer be ignored. In 1858 Helmholtz 
published a paper in Crelle's journal that put together a mathematical argument 
through physical illustration. This was not new, but the implications he drew from 
the solutions to the partial differential equations were put in purely physical terms. 

94 Clausius, "Uber einige Stellen der Schrift von Helmholtz 'Uber die Erhaltung der Kraft' ," 
Ann. Phy. 89 (1853): 568-579, and 91 (1854): 601-604. Helmholtz's reply is sand
wiched between in Helmholtz, "Erwiederung auf die Bemerkungen von Her. Clausius," 
Ann. Phy. 91 (1854): 241-261. Clausius' criticism of Helmholtz's inconsistent under
standing of the idea of the potential was stated in his earlier papers on galvanic electricity. 
Clausius' criticism of Holtzmann appeared as, "Erwiederung auf die im Marz-hefte der 
Annalen enthaltenen Bemerkungen des Hrn Holtzmann," Ann. Phy. 83 (1851): 118-125. 
On both counts Clausius was correct and later Helmholtz acknowledged this. 

95 Helmholtz, "Erwiederung ," and "Erhaltung," (1881), Appendix. 

96 See Garber, Brush and Everitt, Maxwell on Heat and Statistical Mechanics, 45-46, and 
the literature cited there. 
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The problem was in hydrodynamics. Helmholtz argued that the solutions to the 
general hydrodynamical equations offered from Euler to Stokes ignored friction, 
both internal to the fluid, and between the fluid and fixed bodies. Helmholtz 
demonstrated mathematically that if a "velocity potential" existed, that is a perfect 
fluid, there could be no rotations within the fluid. While not being able to investigate 
the question in general, Helmholtz was able to demonstrate the mathematical and 
physical characteristics of such rotations, should they exist.97 Helmholtz had no 
notion of the mathematical forms of two types of friction he identified and it was 
unlikely, even if he could do so, that the resulting differential equation would be 
integrable. For the particular cases that he could investigate, Helmholtz used both 
Green's theorem and the analogies he could draw from the forms of his equations 
when they resembled those of electrodynamics. At each stage in the development 
of his mathematical cases, Helmholtz referred to a physical description of what 
was going on in the fluid, sometimes in analogy to an electrodynamical case. And 
he was only interested in physical cases. Purely mathematical ones were not his 
concern, although he knew full well that he was solving a previously unsolved 
mathematical problem. 

A more limited domain for mathematics was evident in Clausius' later work, 
none more so than in his 1859 treatise on the potential. This was a text in mechanics 
in which conservation of energy was seen as a less general way of understanding 
physical processes than the potential. For both Helmholtz and Clausius, mechanics 
and electrodynamics were expressed in terms of potential and force, and eventu
ally least action, in preference to energy. In this text we see Clausius' training in 
mathematics, especially his understanding of Dirichlet's work on the potential.98 

Just as Helmholtz had done the previous year, Clausius developed the mathematics 
only so far as it was useful for making his physical point. In fact the mathemat
ics is somewhat sloppy, although Clausius argued in such a way that mechanics, 
electricity, and magnetism were separated simply by the value of a constant in his 
fundamental equation for the force law. The potential as a physical concept unified 

97 Helmholtz, "Uber die Integrale der hydrodynamischen Gleichungen we1che den Wirbel
bewegung entsprechen," J. Reine Angew. Math. 55 (1858): 25-55. Helmholtz then 
investigated fluids and their internal friction experimentally. See, Helmholtz and G. 
von Piotrowski, "Uber Reibung tropfbarer Fliissigkeiten," Ber. Berlin 40 (1860): 607-
658. This was followed by Helmholtz, "Uber discontinuirliche Fliissigkeitsbewegungen," 
same journal (1868): 215-228, translated into Phil. Mag. 36 (1868): 337-346. This list 
does not include the work that followed on gases, acoustics and sound. 

98 Thomas Archibald, "Physics as a Constraint on Mathematical Research," has argued that 
the development of understanding of the potential was hampered by its investigation by 
physicists rather than mathematicians. My point is that physicists had their own purposes 
for investigating the potential. Those of mathematicians they now left to mathematicians. 
Perhaps it would be more useful to ask why mathematicians during the 1850s and 1860s 
did not see the potential function as offering them interesting mathematical problems to 
solve. 
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these fields of physics. 99 

He characterized his force components as X = - (a v i ax) and so on. Force 
could then be represented by a function of the coordinates only. Clausius merely 
stated that from this we obtain 

ax 
ay 

ay az 
= az ay' 

az ax 
-=-
ax Bz 

There was no generalized pursuit of an expression for a function with particular 
mathematical characteristics in terms of generalized coordinates, etc. The force 
function was developed only in terms of Cartesian coordinates. What we have 
is the pursuit of a physics of central forces with frequent illustrative mechanical 
examples to demonstrate the physical significance of the mathematical points. 

Clausius preferred Hamilton's terminology of force and force-function to po
tential and potential function. The force function was the function whose partial 
differentials were the components of the force. It was a function of the coordinates, 
and was the physical equivalent of the potential. IOO He dealt with the components 
of force along arbitrary directions in space to show the form of the relationship 
between force and the force-function. This led into an example to show that knowl
edge of the force-function at any point in space contains within it knowledge of 
the force itself. Yet Clausius only dealt with inverse-square force laws. He made 
it clear that he knew there was mathematically more to what he was doing than he 
chose to display in his text. 

This was Clausius' attempt to rework mechanics on the foundation of the poten
tial. And he presented it as a mathematical resource, an approach to the problems 
that physicists had to solve in many different areas of research. In his case it served 
him well. From this approach he developed a particular form of the potential, the 
ergal, and from this the virial theorem. In the mechanics of a closed system the 
conservation of energy was a subordinate result. It was the the sum of the ergal 
and the vis viva that was a constant. IOI It was through this form of mechanics that 
Clausius understood and explored the nature of gases and the actual motion that 
was heat. 

By 1860 there existed in German physics a theoretical physics, pursued along 
similar lines by Helmholtz and Clausius, in which mathematics was understood 
and developed for the physics it contained. Mathematics as a language was tamed. 
It was not investigated for the physics that could be deduced from a generalized 
form or function. The function spoke directly to the physical process, or physicists 
were not interested. If they were they pursued and published it as mathematics 

99 Clausius, Die Potential function und das Potential: ein Beitrag zur mathematischen Physik 
(Leipzig: Barth, 1859), 14. The text went through four editions in Clausius' lifetime. 

100 Clausius, Die Potential, 8, 10. 

101 Clausius Die Potential, 149-158. 
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not physics. In Clausius' case we have a prolific author who published in every 
field of importance in research during the three decades from 1850 to 1880. With 
Helmholtz there was a clarity of physical vision that allowed him to control the 
mathematical language lacking in previous generations of German physicists. Af
ter having made the mathematical point the physical one had to follow. If it did not, 
the mathematics was of no interest to them. The adopted languages of mathematics 
now described physical processes. 

In the German States we also have a series of approaches to the issue of the inter
pretation of natural processes and structure that parallel those of British physicists, 
yet were set upon different foundations. Force and potential were the conceptual 
basis for German physics, energy conservation and engineering mechanical models 
for the British. In both groups there were individuals who appreciated the need to 
rise above the particulars of models to establish more defensible grounds for this 
new enterprise of theoretical physics. The British and the Germans produced com
plementary, yet quite different visions of the same processes when solving shared 
research problems. In their work they collectively created a range of possible ap
proaches to the interpretation of physical phenomena for which mathematics, and 
especially the calculus, was the crucial, common language, reshaped to the needs 
of the discipline they were at the same time creating. 

While we might disagree with some of their premises, much of their methodology 
is familiar. Too familiar, for we forget that it had first to be recognized, practiced, 
then molded to purposes that were defined by the very research problems they 
chose to pursue. Twentieth-century physicists extended and developed the power 
of these practices, and their success obstructs our view of the very processes through 
which this physics came into existence. This is the process that this exploration 
has attempted to render visible once again. 



Part IV 

Conclusions and Epilogue 



Chapter IX 

Physics About 1870 

and the "Decline" of French Physics 

Theoretical physics did not come into existence as a subfield of physics until 
the 1860s. By 1870 physicists had accepted mathematics as the natural language 
of physics and put into place their own ways of training and using the diverse lan
guages of mathematics. Physicists such as John Tyndall were anachronisms within 
the profession. While he performed quantitative experiments, he was not obsessed 
with accuracy, even though trained within the German academic system. He also 
did not deduce algebraic relationships from his results that were by that time ex
pected of physicists.1 Tyndall's statements about the structure and functioning of 
nature were qualitative and in the vernacular. And his audiences consisted of the 
general public, as well as his colleagues within the profession. His career harkened 
back to the era before the formalized, academic and professional structure of the 
discipline which he entered in the 1860s. Physicists had withdrawn into a profes
sion of peers that largely addressed each other. The general public was not privy 
to the research process as they had been in the first half of the nineteenth century. 
The mathematics now necessary to penetrate the theories of physicists meant that 
only the most general of ideas and sketchiest of plans of their understanding of 
nature were available to the vast majority of the general public. 

However, theoretical physics was not just mathematics. Mathematics encapsu
lated a physical situation, or process in symbolic form. It represented a relation
ship between physical concepts, or an operation, interpreted in a particular case 
expressed in algebraic or geometrical form. The direction and depth in which the 
symbolic forms of this language were developed through mathematical operations 
and transformations were now firmly controlled through the physical meanings 
embedded in the symbolic forms and operations of the mathematics. The possible 

1 Tyndall's experimental results on the intensity of radiation emitted at a fixed wavelength 
were the starting point for Josef Stefan's deduction of the Stefan-Boltzmann law for black 
bodies. See Brush, The Kind of Motion we call Heat, vol. 2,513-517. 
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changes to the physical system encapsulated in mathematical operations had to be 
compatible with the expected behavior of the physical system under examination. 
Physical interpretation was, therefore, imposed on the mathematics, to narrow its 
focus to the physically meaningful or significant. It was no longer sufficient that 
mathematical results were compatible with experimental results. The physical 
conditions represented by the mathematical forms must necessarily match, in de
tail, plausible, physical possibilities. Results of mathematical interest were only 
of secondary importance for physicists, and presented to the appropriate audience 
of mathematicians in separate publications. 

While possible directions for the development of solutions to the equations that 
emerged from consideration of physical processes were broad, most were of no 
interest within physics. Self-consistent, mathematically developed worlds were 
not a part of physics. Theories needed to include within their explanatory net 
known, quantitative, experimental results. Experiments were now integrated into 
the body of theory. This meant that while experiments were the core of physics, 
they were now caught within theoretical nets and also critical to the plausibility of 
those theories. Experiments were still the starting point for theoretical explorations 
of physical phenomena, known results were required to be a necessary result of 
mathematically expressed theories, and were the predicted outcomes of the physical 
processes visualized mathematically. 

Experiment thus served several critical functions within this new subdiscipline. 
As in the earlier mathematical physics, experiment was the starting point for the
oretical physics. Known experimental results could be used in the development 
of theory to guide the mathematics along physically plausible paths. However, 
standards had shifted and known experimental results had to be derived from the 
mathematical specifics of theory in such a way that the conditions of the exper
iment, in idealized form, were mirrored within the structure of the mathematics. 
Mathematical technicalities to reduce the generalities of mathematical deductions 
to forms paralleling known experimental results were no longer sufficient indica
tion of the validity of the deductions. Physicists had to be able to trace the physical 
processes in detail through mathematical manipulations. The outlines of the ex
periment, idealized in abstracted form, had to be visible through the mathematical 
language. 

Conversely, mathematical results needed to be structured in such a way that 
experimentalists could develop models of the operation of nature under specific 
conditions and mimic those mathematical results. Language had to be replicable 
in the laboratory. And that replication needed to be precise. Mathematical theo
ries were now expected to lead to numerical results that could be visualized and 
repeated in the laboratory. It was also possible to directly visualize, through the 
imagery encapsulated in mathematical form, how a physical system might perform 
under possible conditions not yet established in laboratories. Predictions, taken 
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directly from the physical extrapolations of a theory, were now possible. Analogies 
developed from the mathematical forms appearing within distinct physical situa
tions were no longer satisfactory as a guide to predictions.2 Maxwell was surprised 
with the results of his kinetic theory of gases. In general, the internal friction of 
gases appeared to be independent of pressure and varied as the square root of the 
temperature. This prediction did not include any details of the specific geometry 
of an experiment to mimic this result. Maxwell had to develop the details of his 
experiment through the mathematical example of circular plates oscillating in a 
horizontal plane about a vertical axis. 

The elegance of the experiment and the precision with which he captured the 
results of his deductions did much to validate his ideas on gases.3 They also were 
instrumental in changing the function of experiments. Because theories now con
tained precise physical imagery and led to results that were directly reproducible 
in the laboratory, experimentalists could literally test the predictions of theories. 
Their work became necessary for the validation of theories.4 Mathematicians' 
dismissals of experimental results were no longer sufficient to stifle criticism of 
mathematical derivations. If an expected phenomenon was not detected, the theory 
was in more trouble than if it was found to be of the wrong order of magnitude. 
Yet theories might survive, given ongoing disputes between experimentalists over 
methods and accuracy.5 However, experiment could refute theory.6 

Experiment was the other half of a new enterprise of physics. While problematic 
experiments reflected upon theories, not mathematics: Mathematics had become a 
given. The power that the mathematics of the calculus brought to physics changed 
the very nature of the theoretical structures physicists could use to interpret the 
operations of nature. The range of phenomena that could be encompassed within 
the net of an hypothesis broadened. The most dramatic example was a theoretical 

2 For such an example see Garber, "Poisson," 162. 

3 Maxwell, "On the Viscosity, or Internal Friction, of Air and Other Gases," Phil. Trans. 
R. Soc. London, 156 (1866): 249-268. For an account of the impact of this result and 
other deductions from his theories of gases and the experiment that resulted see, Maxwell 
on Molecules and Gases, Garber, Brush and Everitt, eds. 18-37. 

4 For an example of an experimental physicist who lived through and understood the change 
in the use and function of experiment see David Cahan, "From Dust Figures to the Kinetic 
Theory of Gases: August Kundt and the Changing Nature of Experimental Physics in 
the 1860s and 1870s," Ann. Sci. 47 (1990): 151-172. 

5 See Bruce J. Hunt, The Maxwellians, chaps. 2, and 7 for an account of the prediction 
of, then search for, electromagnetic waves. For the differences in interpretation given 
the experimental methods that arose from Maxwell's predicted behavior of the transport 
coefficients of gases see Maxwell on Molecules and Gases, Garber, Brush, and Everitt, 
eds. 18-40. 

6 See the fate of Joseph Larmor's vortex ring model of the ether at the hands of Oliver 
Lodge, in Hunt, Maxwellians, 212-215. 
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tissue created to encompass phenomena that ranged from electrostatics, through 
current electricity, to electrodynamics. Theory in the modern sense of the term 
came into existence with the creation of these theories, while at the same time 
exemplifying the powers of this new approach to understanding physical processes. 

Despite the power the languages of mathematics brought to physicists, the cal
culus was not sufficient to create modern theoretical physics. Hypotheses and the 
physical imagery generated from them were also necessary and central to the new 
enterprise. Conflicting imagery could and did use and generate the same mathe
matical forms. There were two major theoretical structures covering electrical and 
magnetic phenomena, if we ignore the variations on the action-at-a-distance and 
field theories. However, the mathematical forms used in field theory led to mathe
matical results, and physical conclusions that were not obvious from the imagery 
and mathematics in use in action-at-a distance theories. In this case experiment 
might validate one imagery over another, or, spur theoreticians to replicate the 
results mathematically within the alternative imagery. This is seen clearly in the 
case of the mathematics of electrodynamics and that of the caloric theory of heat 
that were reinterl?reted in the terms of the rival mechanical theory of heat. 

Sometimes, experiment would not, or could not, decide the issue between rival 
imageries. Standards introduced into physics, that lay beyond both experiment 
and mathematics, were brought to bear to decide the case. Hypotheses were 
incorporated back into a discipline whose members had previously decried their use 
in the empirical enterprise of experimental physics. On several levels hypotheses 
might be used to guide the structure and then the direction of development of 
the mathematical expression of those hypotheses. Specific detailed models of 
the structure of matter and the processes of nature were modeled mathematically. 
Some German physicists favored center of force and action-at-a-distance imagery; 
British physicists preferred engineering models of mechanical devices for matter. 
These models were valid over a much more restricted domain of phenomena than 
those now based on far more general, yet just as mechanical, principles of nature. 

Quite how much hypothetical imagery was allowed into the mathematical ex
position was a decision made by individuals and was one of almost personal pref
erence. And, one approach did not necessarily exclude any other. Maxwell, 
Helmholtz, and Clausius found mechanical models of matter useful, yet each 
seemed to work towards the goal of basing the results of their theories on more and 
more abstract and generalized mechanical principles. Maxwell, in both his theo
ries of electromagnetism and gases, moved from specific models to Hamiltonian 
dynamics. Clausius, in his theory of heat, moved from abstract principles to spe
cific models to abstraction and Hamilton's Principle of Least Action. Helmholtz 
also followed this same general path from a specific model of matter to Hamilton's 
principle of Least Action as an organizing principle of nature in his theory of heat. 
This path might be reversed. Mechanical models offered the guidance of specifics 
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that made the mathematics physically visible with a specificity that generalized 
principles did not offer. 

The use of specific mechanical models to constrain mathematical language led 
to compromises in mathematicians' definitions and understanding of the terms and 
operations that were the elements of that language. The extent of the compromises 
the physicist allowed himself also was a matter of choice. Yet even in the case 
where, after 1870, in Boltzmann's work in statistical mechanics, physics again be
came mathematics, the context of that choice changed how the work was received 
and what was then done with it. Boltzmann's work on the second law was contro
versial within physics because there was no mechanical imagery to visualize the 
physical processes that the H-theorem was meant to express.? Boltzmann himself 
felt the need to reexpress his theorem in mechanical terms, to give it a real physical 
meaning. He finally abandoned these efforts.8 

Mathematics was both structural and expressive of ideas. It was structural in that 
it was used to express relationships. At the same time mathematics also allowed 
for the exploration of what could happen, given the limitations of mathematical 
structures and operations, and the processes allowable through the consideration 
of physical hypotheses. Mathematics also limited and tamed speculations with the 
necessity for mathematical consistency. The characteristics of mathematical func
tions or coefficients could suffer immediate physical interpretation with subsequent 
consequences for the visualization of how the physical system could behave. Clau
sius' understanding of internal energy, mechanical work and heat are obvious cases 
in point. Mathematics was also itself used as the source for analogies for under
standing the mathematics of one domain of physics from another. Mathematically 
identical structures were also richly suggestive of physical behavior in physically 
isolated cases. Both could and did evolve together and were thus processes of 
interpretation in mathematical language and physical imagery simultaneously.9 

Experiment, hypotheses, and mathematics were the foundations for new ways of 
investigating and interpreting the processes of nature. The fusion of these aspects 
of physics can be seen in the changes in textbooks during the last third of the nine
teenth century. German texts of lectures in mathematical physics barely mention 
experiment. Mathematical methods, consistency and their manipulation to obtain 
theoretically interesting results were the focus of attention. Those in theoretical 
physics, starting with Thomson and Tait's text, joined concepts, experiment and 
mathematics together. They offered students an introduction to both concepts and 

7 For the H-theorem see, Brush, The Kind of Motion we Call Heat, vol. 1, chap. 6. 

8 See Martin J. Klein, "Boltzmann, MonocycJes, and Mechanical Explanation," in Boston 
Stud. Phil. Sci. 11 (1974): 155-175. 

9 In this sense theories are about themselves as well as the external world. See Enrico 
Bellone, A World on Paper: Studies in the Second Scientific Revolution (Cambridge 
MA.: MIT Press, 1980). 



312 Physics 

mathematical methods. This was coupled to numerous examples of how the lan
guage of mathematics couid and should be manipulated and interpreted to yield 
physically meaningful results. The practice, used within French mathematical 
physics, of beginning in specific examples was taken over into theoretical physics. 
However, the purpose of the mathematical exercises was now the investigation and 
interpretation of nature, not the generation of mathematics. 

The "Decline" of French Physics 

French physics, and most of the other sciences, fit awkwardly into any account 
of nineteenth-century science under the assumptions that historians make about 
the markers of excellence or intellectual development. What French scientists did 
in the nineteenth century does not easily fall into line with the work of scientists 
in the same fields in either Germany or Britain. The easy way out is to omit them 
altogether, or, simply mention those men and their work who are necessary in 
marking the intellectual development of a field. Either way historians avoid the 
issue of French Science altogether. However, French names and research crop up 
too often to ignore the question of what makes French science different from that 
of Germany or Britain in the nineteenth century? 

Accepting the sociologist's solution of labeling French science as in "decline" 
hardly solves the problem. Sociological categories define the sciences using twenti
eth century criteria. These categories are not the best instruments for understanding 
the intellectual differences that existed in the sciences across national and cultural 
boundaries over a century ago. Sociological factors and political circumstance 
dominate theories on nineteenth-century French science, although the adequacy 
of this approach has recently been questioned. lO These factors and circumstances 
are used to measure the intellectual place of French scientists and mathematicians 
amongst the other European nations. 11 

One recent examination of physics and mathematics of France in the nineteenth 
century focussed upon research productivity in an effort to draw together an inte
grated picture of French science during this era. 12 The political economy of science 
can point to restrictions in opportunities, and hence decline in the numbers of sci
entists and their productivity. However, quality is not necessarily equal to quantity. 

10 MaryJo Nye, "Scientific Decline: Is Quantitative Evaluation Enough," Isis, 75 (1984): 
697-708. 

11 For a discussion of the issue of decline see Harry W. Paul, "The Issue of the Decline in 
Nineteenth-Century French Science," French Hist. Stud. 7 (1971): 416-450. Paul also 
criticizes the theories that explain "decline" in political and social terms without taking 
the intellectual quality of French science into account. 

12 Terry Shinn, "The French Science Faculty System, 1808-1914: Institutional Change and 
Research Potential in Mathematics and the Physical Science," Hist. Stud. Phys. Sci. 10 
(1979): 271-332. 
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Putting the issue of how to measure "quality" aside, a decline in quantity of pub
lished research does not address the continuing importance of the research results 
of French scientists to scientists in Germany and Britain in the nineteenth century. 
British and German physicists had to take the work of French experimentalists into 
account especially in the study of heat and light. To learn the practices of exper
imental physics, William Thomson spent months toiling in Regnault's laboratory 
in the 1840s. German experimentalists and mathematicians still made pilgrimages 
to Paris to meet their peers. French assessments of German experimentalist's work 
were germane in their files for promotion. This was even more true in mathematics 
and mathematical physics. A measure of the importance of French physics to their 
German and British colleagues can be made by looking at the reports carried in 
German and British journals of French scientific work in French scientific journals 
and the publications of scientific societies across France. It is also vividly reflected 
in the footnotes to, remarks and reports on, and uses made by British and German 
physicists of those works in their own journals. They also pepper their private cor
respondence. French journals were still required reading. French experimentalists 
and mathematicians were important colleagues. 

The work of French physicists still mattered to their British and German col
leagues. Simply to point out that before 1830 there was one major center for 
scientific research in Europe, namely Paris, and after that date there were several, 
namely London, Cambridge and the Scottish Universities as well as the Universi
ties of Berlin, Heidelberg, Bonn and Konigsberg, names the phenomenon without 
explaining it. Perhaps we need to consider how French scientists practiced their 
crafts during the nineteenth century before we declare "decline." 

During the first three decades of the nineteenth-century French physicists and 
mathematicians developed a highly successful set of practices that defined the dis
ciplines of experimental physics and mathematics. The intellectual boundaries 
of these disciplines were fixed even as the institutional setting for their pursuit 
changed from a vocation and the Academie to the Universite and the Ecole Poly
technique and a profession. These intellectual boundaries were stable throughout 
the nineteenth and into the twentieth century. French physics and mathematics 
did not decline. The practices of the members of the disciplines conformed to the 
highly successful practices developed during that first third of the century.13 

French experimental physicists were skeptical of "speculation" and hypotheses, 
other than those that had become so accepted within the community of French 
physics as to not seem hypothetical at all. The subject matter of their experiments 
also related to areas that had been successfully explored during those decades of the 
early nineteenth century. These areas included the phenomena of light, within the 

13 The social institutions also formed a continuum with those of the early nineteenth century. 
See Maurice Crosland, Science under Control: The French Academy o/Sciences, 1795-
1914 (Cambridge: Cambridge University Press 1992). 
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context ofthe wave theory, and heat, within the context ofthe caloric theory of heat. 
Many experiments also related to other areas of strength developed by the French 
in those same early decades of the century, including astronomy.14 Astronomy and 
precision experiments in optics were closely related. Nineteenth-century French 
emphasis on particular aspects of optics begins to make sense. 

Within France, the ideological and social barriers erected in the German States 
between research that was esoteric and "pure" and that which was practical and 
by implication of lesser intellectual value, did not exist. While universities were 
teaching institutions, research both esoteric and useful was pursued there even 
before the 1870s. After the Franco-Prussian War stringencies of the budgets from 
Paris required that physicists and chemists seek local sources of support. The utility 
of science was pursued and made manifest in the work of physicists in industry 
and for industry. There was a constant flow of scientists from industry to the 
university and back again. I5 Henri Victor Regnault's work on the physical constants 
of gases was commissioned by the French government in an effort to improve the 
design of steam engines. Regnault completed this research at the College de 
France as professor of physics. Regnault was by training and previous research a 
chemist. Regnault's experiments included redetermining the composition of air and 
respiration, a remarkably broad range of experiments that crossed the disciplinary 
lines being drawn in both Germany and Britain, yet remaining inside physics within 
the borders of France. 

In France, the foundations for the practices and standards of experimental physics 
established in the early decades of the nineteenth century deliberately excluded hy
potheses. Knowledge was based on observation and measurement. Experimental 
physicists in France regarded their work as purely empirical and devoid of all hy
potheses. These physicists were reduced to narrow domains of endeavor because 
they could not embrace the speculations being investigated as fast as possible by 
British and German experimentalists. This trait was particularly marked in exper
iments on, and speculations about, the nature of heat. Clapyeron's mathematical 
explorations ofCarnot's ideas on heat of the 1830s had not contained any deductions 
that drew them into contact with experiment, or observation, or the development 
of the caloric theory of heat. Regnault's work was empirical and his conclusions 
based on phenomenological reasoning. While French experimentalists reported 
work that indicated the equivalence of mechanical work and heat they were largely 

14 John L. Davis, "The Influence of Astronomy on the Character of Physics in Mid
Nineteenth Century France," Hist. Stud. Phys. Sci. 16 (1986): 59-82. Davis notes 
the intellectual precedents for French superiority in astronomy that were built into insti
tutions that offered paths to careers for experimentalists. These were important factors 
in the choice of research subject matter for experimentalists. 

15 Harry W. Paul, "Apollo courts the VuIcans: The Applied Science Institute in Nineteenth
Century French Science Faculties," in The Organization of Science in France, 1808-1914, 
Fox and Weisz, eds., 155-181. 
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ignored, as was that of the engineer, F. Reech. 16 

The molecular theory of matter was another area in which hypotheses proved 
fruitful for experimental and theoretical research for both German and British 
physicists. It was still a point of contention within the French scientific commu
nity in 1900. Finally the experiments of Jean Perrin, who claimed to map the actual 
motions of molecules, convinced his reluctant colleagues of their existence.17 Per
rin actually established the validity of Einstein's formula for the mean displacement 
of molecules and Paul Langevin's law of horizontal displacement. Einstein was 
either unaware, or unconcerned with the problem of whether molecules existed or 
proving that they did. Perrin and Langevin were. 18 

French physicists as experimentalists worked within a distinct set of practices 
that they had defined earlier in the nineteenth century. In tandem with this French 
mathematicians continued their own practices defining their research problems and 
solutions according to the tradition defined in the same period of time. They could 
not come to terms with some aspects of the research being accomplished by both 
British and German physicists. Mathematics based in physical problems continued 
as an important research node of the French discipline. 

These differences extended into the philosophies of science developed by sci
entists. Pierre Duhem's philosophy can be seen, in part, as an attempt to validate 
French practices and standards in physics. Experiment remained the core of the 
discipline. Physical theory was mathematics, and at best an exercise in "natural 
classification." Mathematics described but could not interpret nature. Attempts by 
the German and British to uncover the realities behind the appearances revealed 
by experiment were wrongheaded and futile. Essences could never be known. 19 

Hypotheses were necessary, and built into experimental practices. However, only 
certain types of hypotheses were legitimate. Those based in mechanical images 
of nature, whether based on action-at-a-distance forces or the mechanical mon-

16 For a discussion of Reech's work see Clifford Truesdell, The Tragicomical History of 
Thermodynamics, chap. 10, and, Appendix. 

17 See MaryJo Nye Molecular Reality: A Perspective on the Life of Jean Perrin (New York: 
American Elsevier, 1972). These were also the standards of French chemists who only 
reluctantly accepted atomism by 1900. See Terry Shinn, "Orthodoxy and Innovation on 
Science: The Atomist Controversy in French Chemistry," Minerva, 18 (1980): 539-555. 

18 See Perrin, "Mouvement brownien et grandeurs moleculaires," Ann. Chim. Phys. 18 
(1909): 1-114, translated by Frederick Soddy as Brownian Movement and Molecular 
Reality (London: Taylor and Francis, 1910). See also Perrin, "Rapport sur les preuves 
de la realite moleculaire," in La theorie du rayonnement et les quanta, Paul Langevin and 
Louis de Broglie, eds. (Paris: Gauthier-Villars, 1912), 153-250. 

19 Pierre Duhem The Aim and Structure of Physical Theory, P. Wiener, trans. (Princeton: 
Princeton University Press, 1954.) We have omitted any reference to the religious goals 
of Duhem's philosophy of science. See also Bruce Eastwood, "A Second Look: On 
the Continuity of Western Science from the Middle Ages, A. C. Crombie's Augustine to 
Galileo," Isis, 83 (1992): 84-99, 88. 
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strosities of Maxwell's electromagnetic theory, were insufficient. Theory must be 
grounded in postulates, whose consequences could be deveioped aiong any path, 
provided there were no logical inconsistencies. Only the conclusions of those the
ories were required to conform to the results of experiments. And only those con
clusions stood or fell. The intermediate steps from postulate to conclusions were 
immune from such a fate. Mathematical theories could take flight as long as they 
were logically consistent; only their conclusions were subject to the test of reality. 

Duhem was also describing the relationship currently existing between mathe
matics and experimental physics in France. After 1830 mathematicians constantly 
used the problems of physics as a source for their mathematical. explorations. 
Fourier and the analytical theory of heat served generations of French mathemati
cians as the starting point for their research, from J. M. C. Duhamel and Joseph 
Liouville to Henri Poincare.2o They also returned to mechanics, and the theory of 
elasticity and light as well, and, in the case of Poincare, to celestial mechanics.21 

Poincare's philosophy of science reemphasized the central place of mathematics 
within the sciences, echoing French mathematicians of almost a century earlier. 
His conventionalist ideas of natural law were a restatement of the idea that the 
search for essences was a wild goose chase. All that scientists could achieve in their 
expressions of natural law were more and more efficient descriptions of phenomena. 
The laws themselves were expressions of a consensus among experimentalists. In 
this context mathematics was the most efficient and effective descriptive language 
available. And, mathematical descriRtions subsumed those of Qh~sics. 

After 1870 this reaffirmation of values that had defined physics as experiment, 
and mathematics that encompassed physics as mathematical physics still sepa
rated the work of French physicists from their colleagues in Britain and Germany. 
French science was not in "decline." In France, particularly in physics and math
ematics science was defined and practiced according to quite different and older 
criteria. The goals and expected outcomes of the work of these mathematicians 
and physicists were also distinct from those of experimentalists and mathemati
cians elsewhere on the continent. There was no place for the detailed, specific 
theories of physical processes that guided the research of both British and German 
theoretical physicists in the late nineteenth century. General principles, such as the 
wave nature of light or the principle of conservation of energy, and, eventually the 
second law of thermodynamics, became the foundations for extended forays into 
mathematics. Theoretical physics, as it existed in Germany and Britain, could not 
exist within the prevailing culture of French science. 

20 See Jesper Liitzen Joseph Liouville. On French mathematicians' use of Fourier, see 
Garber, "Reading Mathematics, Constructing Physics." 

21 Poincare's work in celestial mechanics focussed on the three-body problem and examined 
the mathematical properties of recurrent orbits. See, Henri Poincare, "Sur Ie probJ(:me 
des trois corps et les equations de la dynamique," Acta Math. 13 (1890): 1-270. 
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Some Conclusions 

We can no longer assume that physics, with its modern standards and practices, 
has existed since Newton, Galileo or anyone person. Nor can we claim, as did 
Cannon some twenty years ago, that physics "was invented by the French between 
1810 and 1830." Historians of physics now agree that social institutions shape 
the lives of their practitioners and the functioning of disciplines. The institutions 
and standards of modern physics were not in place in Europe until the 1860s. In 
addition, the research practices that shaped the discipline into its modern form were 
created in the nineteenth century. Those practices, together with the institutional 
forms in which they functioned, were the keys to making modern physics. 

In this study we have focussed upon the ways in which theories about the structure 
and functioning of nature shaped the practices of what we call theoretical physics. 
Foundational ideas, the general principles upon which speculations about nature 
rested, are insufficient to define what theories are and what physicists did in creating 
theoretical physics. Meaning is conveyed only through the exploitation of those 
principles in the context of specific problems. The implications of mechanical 
principles were interpreted and reinterpreted through the results of explorations of 
the behavior of bodies under well defined circumstances. General principles needed 
often to be coupled with sets of subsidiary hypotheses to bring those principles to 
bear upon the solutions of particular problems. Specific analyses of these particular 
problems are the hallmarks of theory. 

The language that eased the development of such detailed working out of the 
implications of general ideas was the calculus. Without the investigation of how 
mathematics became the language of physics, any account of the development of 
theory is hollow. Mathematics was necessary to the development of theory. Before 
its widespread use within physics, natural philosophy was speculative and closer to 
metaphysics than the experiments that formed the core ofthe discipline in the eigh
teenth century. Mathematics has shaped and reshaped physicists' interpretations 
of nature. Different forms of mathematics have allowed physicists to reinterpret, 
to literally, envision phenomena and their interpretation in new ways.22 

Theory also encompassed experiment in ways that the older speculative natural 
philosophy and mathematical physics did not. Experiments were integrated into 
the very body, into the detailed implications, of the physical ideas making up that 
theory. Mathematics gave physicists the flexibility to develop ideas on high levels 
of abstraction, while also allowing them to descend into the detailed functioning 

22 The most dramatic nineteenth century example of this lies in the introduction of vector 
analysis into the theory of electromagnetism. In another context Ana Millan Gasca has 
discussed how different mathematical approaches affected the biological sciences and the 
images of biological systems the mathematics brought with them in Gasca, "Mathematical 
Theories versus Biological Facts: A Debate in mathematical population Dynamics in the 
1930s," Hist. Stud. Phys. Sci. 26 (1996): 347-403. 



318 Physics 

of specific cases where experiment might be mirrored, in ideal terms, within the 
compass of the formalisms of mathematics. Mathematics could be reduced to 
particular, numerate cases. As a language mathematics could be used to extrapolate 
beyond the confines of known experimental results to predict the results of specific, 
theoretically visualizable, yet still unrealized experimental conditions. This was no 
longer a deduction from mathematical analogy but specific, physical juxtapositions 
that might be put into experimental form. Both the use of mathematics as the 
language of speculation and the ability to integrate experimental findings into the 
body of theory changed the nature of speculations about nature and what was 
acceptable as speculation about nature. 

At the same time that physicists were creating theoretical physics, experiment 
was reconfirmed as the center of the discipline. Theoreticians did not take over the 
discipline. They remained a minority in numbers and their output was subject to the 
searching probes of experimentalists who were apt to mold theoreticians results 
to their own purposes. They were also apt to modify, if not deny, the validity 
of theories. And theoretical physicists felt compelled to follow the dictates of 
experiment.23 The dominance of experiment was also reaffirmed in the 1890s with 
the detection and exploration of x-rays and radioactivity. It was not yet plausible 
to declare the independence of theory from experiment. Even in the 1930s it was 
still possible to state that physics was experiment, the rest was only mathematics.24 

The complex of methods that made up theoretical physics by 1870 and the tan
gled relationships that developed between mathematicians and physicists can only 
be clearly understood if we distance ourselves from the concerns of philosophers 
and the histories of physics written by physicists. In the late nineteenth-century 
philosophers took as their model of physics descriptions of physics and its de
velopment written by contemporary physicists. Philosophers have defined the 
essentials of physics for historians of physics ever since. And, as these essentials 
have changed, so have the narratives of historians. During the late nineteenth 
century, physicists in Germany and Britain remade their history to conform to the 
new disciplinary boundaries and practices they had created. This makeover was 
done both in formal histories of physics and in the reinterpretation of the content 
of technical papers written in the eighteenth and early nineteenth centuries. In 
this they were aided and abetted by mathematicians also busily rewriting their own 
history which discounted the standards of eighteenth-century mathematical prac
tices. Physicists were able to claim as physics many of the papers written within 
mathematics in the eighteenth century, by interpreting the mathematical results of 
those paper in physical terms where none existed in the original. Tait gave the 
notion of the conservation of energy a pedigree that reinterpreted the meaning of 

23 Witness Lorentz's reaction to the results of the Michelson-Morley experiment. 

24 See Laurie Brown and Helmut Reichenberg, "The Development of the Vector Meson 
Theory in Britain and Japan, 1937-38," Brit. J. Hist. Sci. 24 (1991): 401-433,417. 
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Newton's work that was historically and technically dubious. In general, New
ton's significance was redrawn to conform to late nineteenth-century standards of 
physics as a discipline.25 Euler, Lagrange, Poisson, Fourier and a host of others 
were soon accepted as working within physics as well as mathematics and became 
prodigious heros with deep physical insight as well as exulted mathematicians. 
Physics was redefined by their inclusion in its pantheon.26 Within these narratives 
physics, since Galileo and Newton, was a discipline driven by theory and expressed 
mathematically. 

Historians of physics have taken these histories far too seriously. They have as
sumed that throughout the eighteenth and nineteenth centuries papers, treatises, and 
textbooks bearing titles that place them within the boundaries of late nineteenth
century physics were written as physics papers, treatises and textbooks. And 
because their mathematical methods became part of the practice of theoretical 
physicists, historians accepted their designation as "physics" at their time of pub
lication. 

We have to discard the idea that once a method was introduced into physics 
It remained part of the practice of the discipline. We also have to rethink The 
notion that what we regard as theoretical physics was always read as such in the 
past three centuries. Specifically, we need to consider what mathematics meant 
in the eighteenth and early nineteenth centuries to judge whether, mechanics for 
example, was indeed an aspect of physics or a branch of mathematics in those eras. 
We must consider the practices of mathematicians and physicists simultaneously 
before such assumptions become historically reasonable. Perhaps mathematics 
has only been seen as the "natural" language of physics for the last century and a 
half. 

By 1900 mathematics had become so essential and integrated into the practices 
of theoreticians that the idea of a preestablished harmony between the the two 

25 Perhaps the last history of physics published that took experiment as its core was that 
of Poggendorff's in the 1870s. See J. C. Poggendorff, Geschichte der Physik (Leipzig: 
Zentral-Antiquariat of the DDR reprint of 1879 edition, 1964). The history of Max
imilien Marie, Histoire des sciences mathematiques et physiques (Paris: Kraus reprint 
of Gauthier-Villars edition of 1883-1888, 1979) is a history familiar from eighteenth
century France. The narrative is biographical with some technical discussion of what 
the list of characters did. All biographies are treated strictly chronologically. The only 
explicit value judgments that enter are those directed against astrologers and alchemists. 
This is another indication of the uniqueness of French mathematics and physics in this 
era and their connections to their eighteenth-century roots. 

26 Rachel Laudan, "Definitions of a Discipline: Histories of Geology and Geological His
tory," in Functions of Disciplinary Histories, Loren Graham, Wolf Lepenies and Peter 
Weingart, eds. (New York: Reidel, 1983) has followed the same pattern of the ap
propriation of history by geologists. See also Paula Findlen, Possessing Nature on the 
rewriting of the history of natural history in the eighteenth century that rendered the work 
of Renaissance naturalists invisible. 
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disciplines made invisible the actual appropriation of mathematics into physics.27 
Mathematics became the "natural" language of physics. In the historical devel
opment of physics, mathematics disappeared as a factor that required explanation. 
Following this new history philosophers and historians of physics relegated math
ematics to the status of a tool. It was and is always there in a myriad of forms 
that miraculously fitted the needs of the job at hand, to be used and replaced upon 
the shelf. Its function in structuring the very ways in which physicists interpreted 
nature became invisible. Some thoughtful physicists continued to ask themselves 
why mathematics was so effective in describing then interpreting the operations 
of nature. Others spoke, and still speak, of mathematics as their language, thus 
acknowledging it as a constituent of their very thinking about the operations of 
nature. 

We have tried to make mathematics visible again to historians and physicists 
alike. In the process we also begin to understand yet again that physicists in previ
ous centuries neither acted as we expect, nor were they striving to become twentieth 
century versions of physicists. Rather than impose on physicists of the eighteenth 
and nineteenth century categories of behavior derived from twentieth-century ex
pectations, it was instructive to simply let the actors speak, then try to figure out 
what precisely physicists thought they were doing. From this anthropological 
stance, the richness and diversity of the development of physics and the creation of 
theoretical physics along multiple paths revealed itself. The range of practices that 
are encompassed within current theoretical physics now have roots that make them 
historically understandable. As a bonus, this methodology has added to our un
derstanding of the diversity and complexity of practices in contemporary versions 
of Physics. 

27 See Lewis Pyenson, "Relativity in Late Wilhelmian Germany: The Appeal to a Preestab
lished Harmony between Mathematics and Physics," Arch. Hist. Exact Sci. 27 (1982): 
137-155. The author thanks David Cassidy for pointing out this argument and its impor
tance for twentieth century physicists. 



Chapter X 

Epilogue: 

Forging New Relationships, 1870-1914 

By 1870 both physics and mathematics had become distinct academic specialties 
within universities across Europe and, in these forms, spread to the United States, 
Japan and elsewhere. The research center of physics was in the laboratory and 
in the pursuit of quantitative experiments of increasing accuracy tied consciously 
to the development of theory. Theory was an accepted research activity and its 
language was the calculus, that is, ordinary and partial differential and integral 
calculus as it stood within mathematics in the 1830s. This might be the end of the 
beginning except that theoretical physics as an accepted subfield within physics, 
with theoreticians forming a distinct subcommunity within physics, did not coa
lesce until the twentieth century. Theoretical physicists formed a loosely connected 
set of individuals within the discipline and profession of physics itself. To form a 
subfield within academic physics, theoreticians needed to develop a set of practices 
that were distinct from those of their experimental peers. They also had to replicate 
themselves by training students as theoreticians, rather than students merely taking 
courses in theory. Even if they did not develop their own specialist societies and 
journals, their work needed the recognition of experimentalists as valuable and 
complementary to their own research. These processes as well as the development 
of a sense of collective identity as theoreticians unfolded within physics during the 
forty odd years between 1870 and World War I. This growing awareness was fos
tered also through a series of intense, competitive interactions with mathematicians 
in the 1890s and early 1900s. While in 1870 both disciplines reached a maturity 
marked by autonomy, within forty years members of both disciplines had forged 
new relationships across their respective disciplinary boundaries. These were not 
so much alliances as sometimes fierce competitive interactions that have marked 
the development of theoretical physics throughout the twentieth century. 

In the first two decades after 1870, the center of research activity in physics 
shifted decisively to universities of the newly established German Empire. How
ever, within German universities the disciplines of mathematics and physics drew 
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steadily apart.! Although this separation was only temporary, the terms under which 
mathematicians and physicists interacted with one another in the early twentieth 
century were different from those of the mid-nineteenth century. By 1900 mathe
matics was taken for granted as a part of physics and included along with laboratory 
courses in the training of physicists. In the same decades physicists developed their 
own versions of the calculus for their students and, more significantly, had begun 
to develop mathematics beyond the calculus, directed to their own needs without 
the mediation of mathematicians. 

In the same decades mathematicians in Germany focussed on research prob
lems that emerged from mathematics, not the problems of physics. Not all math
ematicians engaged in this form of research, yet, those involved in "foundational 
problems" and pure mathematics dominated the departments of the prominent uni
versities, influenced professional appointments, and sat on the editorial boards 
of the major mathematical journals. This state of affairs changed only in the first 
decade of this century through the efforts of Felix Klein and others with their belief 
that their interests in certain types of mathematical problems coincided with those 
of physicists. Thus began a series of interactions of mathematicians and physicists 
that were mutually beneficial, yet shot through with mutual misunderstandings. 

The patterns discernible in the institutions and discipline within Germany cannot 
be superimposed upon the profession or the research produced within France, 
Britain, or the United States.2 These three communities followed their unique paths 
of development where theoretical physics held an even less prominent position than 
in the German universities. 

One common characteristic of all academic disciplines in this era, whatever the 
national differences in their internal organization, was their international charac
ter. Both mathematicians and physicists addressed their respective international 
research communities.3 A second common characteristics was that articles in jour
nals addressed a small international audience of mathematicians or physicists that 
excluded all but the authors' immediate colleagues engaged in the same cluster of 
research problems. Addresses to colleagues across physics was becoming more 
difficult except in general terms and those to colleagues across the academic cam
pus were reduced to philosophical issues with minimal technical content. 

Significant aspects of the emergence of theoretical physics to a central position 
within the discipline of physics lay in the solutions to research problems that 

1 The reasons for this isolation were both institutional and intellectual. The relationships 
between the disciplines also depended heavily on the particular institution under discus
sion. See Jungnickel and McCormmach, Intellectual Mastery of Nature vol. 2 chaps. 
21-23. 

2 This account is skewed towards German universities because the institutions and intel
lectual development of physics and mathematics elsewhere have been less studied. 

3 We should remember the advent of International Conferences in mathematics and physics 
began in the early twentieth century. 
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required physicists to develop mathematical languages that led them beyond the 
calculus, the mathematical language that seemed to define their subfield at its 
inception. 

The subject matter of this chapter falls naturally into three overlapping themes; 
the range of ways in which physicists used mathematics as the languages of theory 
and how these languages related to both general laws of nature and specific models; 
the kinds of mathematics they used and/or developed in their research and the 
kinds of mathematics that they taught to the next generation of physicists; the 
development of a new set of relationships between mathematicians and physicists 
within the context of the modern professions in the first two decades of this century. 
We confine ourselves to how physicists appropriated the languages of, as well as 
developed new ones useful for their own purposes. While it is usual to trace 
changes in theory through ideas, imagery and experiments, these enter into this 
account only on its margins. We trace mathematics, the language of theory that 
had become so thoroughly integrated into practice that it was almost invisible, a 
"tool." A tool it has remained in historical accounts. Supposedly the real work 
of theorists was in the development of ideas about nature, not the development of 
languages in which to express those ideas.4 

The Limitations of Autonomy 

After 1870, research produced by the group within physics that we recognize as 
theorists integrated mathematics, physical imagery and experimental results into 
a form familiar in the twentieth century. The autonomy enjoyed in the German 
university systems by mathematicians and physicists changed the ways in which 
research within their disciplines was structured, to whom it was addressed, and the 
training available for the next generation of professionals. These activities were 
geared to maintaining the autonomy of the discipline and to training students as 
future professionals. These processes had the cumulative effect of isolating math
ematicians and physicists from one another. Another component aiding isolation 
was limited resources, the budgets of even Prussia could not expand indefinitely 
as the university system expanded. The competition for limited resources and the 
standards used in distributing those resources led inexorably to several character
istics shared by mathematics and physics. 

In general, career patterns depended on both teaching and research. For advance
ment to chairs at major universities it was necessary to develop an international rep
utation within a disciplinary research field. For a successful career the physicist or 

4 Throughout this chapter a distinction is understood between mathematical physics and 
theoretical physics. This lies essentially in the level of abstraction to which the math
ematics is carried and its relationship, drawn up by the author, to the physical problem 
under consideration. Added to this is the institutional place of the author and the disci
plinary character assigned him by his colleagues. While being somewhat arbitrary this 
distinction is however useful. 
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mathematician had to be well aware of the type of research that would actually lead 
to recognition, and hence promotions, and the teaching and research support that 
went with them. In physics this meant minutely analyzed precision experiments, 
costly in themselves in terms of equipment and human resources. Excursions into 
theory needed to be coupled to experience in the laboratory.5 Although courses 
in theoretical physics developed in all universities, systematic training specifically 
for theorists with courses of increasing sophistication and difficulty still lay in the 
future. 

Since theory was an accepted aspect of the research enterprise, it was integrated 
into the training of physicists. However, the research interests of the teachers of 
such courses often lay in experiment not theory. As significant, the occupants 
of chairs in theoretical physics were, extraordinarius not ordinarius, professors. 
Even as the sense of identity of "theoretical physics" within physics grew, "theo
retical physicists" were still a minority within the discipline and profession. For 
many physicists their primary field of research was experiment and the theory they 
explored was particular to their experimental concerns. Experiment was still con
sidered the core of the discipline.6 In the German Empire at the end of the century 
some chairs in theoretical physics were offered to experimentalists if they agreed 
to teach the smaller, specialized classes in theoretical physics. The larger, more 
lucrative classes were for the full professors, and those classes were in general 
and experimental physics.7 Even though theoretical physics flourished during the 
last decades of the nineteenth century, we should not overestimate the numbers or 
importance of the field in physics during the closing decades of that century. 

Experimental precision remained the key that separated the professional from 
the amateur. To gain the necessary skills, systematic training was required. Ed
ucation in the manual skills of precision offered moral training for the specialists 

5 Max Planck was the first physicist to develop a career with no experimental research. 
Helmholtz, and Boltzmann did experimental research as well as theoretical even though 
only Helmholtz contributed significantly to experimental physics. Clausius taught ex
perimental physics and controlled the resources of an experimental, research laboratory. 
Hemholtz also was the only one of this group to head a major research laboratory. Dur
ing his career in Berlin Helmholtz's experimental skills were well appreciated while his 
research throughout the 1870's was theoretical. Boltzmann and Clausius spent time try
ing to restrict their duties to teaching theory rather than overseeing the time consuming 
laboratory courses. Jungnickel and McCormmach, Intellectual Mastery vol. 2., chaps., 
14, 16, vol. 1, chap., 8, 12. 

6 David Cahan, "The Institutional Revolution in German Physics, 1865-1914," Hist. Stud. 
Phys. Sci. (1985): 1-65 demonstrates that the resources poured into the physics institutes 
built at the end of the century was for experimental, not theoretical, research and teaching. 

7 See Paul Forman, John Heilbron and Spencer Weart, "Physics circa 1900. Personnel, 
Funding and Productivity of the Academic Establishment," Hist. Stud. Phys. Sci. 5 
(1975). 
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needed in the developing industrial economies, or so the arguments for support for 
these training laboratories and institutes went.8 Most of the research reports in the 
pages of the major physics journals of Europe were experimental, or theoretical 
investigations limited to points that emerged from experimental work. 

However, by the 1890s young physicists such as Ernest Rutherford abandoned 
the precise methods of their immediate predecessors and were ready to risk their 
careers in the exploration of the newly discovered phenomena of radioactivity or 
x-rays.9 These phenomena emerged from experimental research and were remote 
from the concerns of contemporary theoretical physicists. 

Physics was still institutionally one field, and theory a decidedly secondary 
aspect of it. 1o Support, within the university and at the ministerial level was luke
warm. Theory had to prove itself to the experimentalists and they had to convince 
the various departments of education of its intrinsic worth. This did not come 
together until after 1900. 

Mathematics as an integral part of theory was also an aspect of the introduc
tion of students to theoretical physics. Students of physics were even encouraged 
to attend lectures in mathematics departments. Yet, after 1870, with few excep
tions, less and less that was taught in mathematics departments seemed relevant 
or even vaguely connected to the needs of physicists, mature or neophyte. During 
the same decades that physicists reconstructed physics, mathematicians in both 
Germany and Britain changed their own discipline. Mathematicians turned away 
from the eighteenth-century practice of using the solution of problems to generate 
mathematics. Direct examination of the foundational concepts of mathematics 
and development of their linguistic possibilities from within became the hallmark 
of a first class mathematician. What constituted the foundations of mathematics 
that now required such extensive examinations differed in Britain and Germany. 
This new vision of mathematics was shared only by a minority of mathematicians 
in Britain and also split the German mathematical community into two hostile 
camps.11 

8 See Cahan, "Institutional Revolution." This was also true in Britain, see Graeme Gooday, 
"Precision measurement and the Genesis of physics teaching laboratories in Victorian 
Britain," Brit. J. Hist. Sci. 23 (1990): 25-5l. 

9 Isobel Falconer, "J. J. Thomson and 'Cavendish Physics'," in The Development of the 
Laboratory, James, ed. 104-117, argues that Thomson abandoned precision experiments 
as head of the Cavendish Laboratory in the 1880s. However, he made no attempts to 
recruit students or convert them to his approach to experimental physics. 

10 See Jungnickel and McCormmach, Intellectual Mastery vol. 2, chap. 15. 

11 See David E. Rowe, "Klein, Hilbert, and the Gottingen mathematical Tradition," Osiris, 
5 (1989): 186-213 and Lewis Pyenson, Neohumanism and the Persistence of Pure Math
ematics in Wilhelmian Germany (Philadelphia PA.: American Philosophical Society, 
1983). For the debates and tensions the various avenues of developing mathematics 
created amongst mathematicians in the late nineteenth and early twentieth centuries see 
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Mathematics had likewise become a profession driven by research and the needs 
of younger mathematicians to make research reputations in fields recognized as 
significant by the leading faculty at major universities across Germany. After 
about 1860 the kinds of mathematical problems deemed important, and the solu
tions regarded as significant, were defined by the mathematicians associated with 
the Berlin "school." This included Karl Weierstrass in analysis, Ernst Kummer in 
algebra, and Leopold Kronecker in number theory. Absent from their approach to 
mathematics was geometry or any concern with a mathematics that might be gener
ated through the consideration of problems that originated outside the boundaries 
of mathematics itself. Collectively these mathematicians narrowed the impor
tant research problems for mathematicians. Kronecker ultimately narrowed the 
foundations of mathematics down to arithmetic to which all other branches of 
mathematics were subordinate. The development of this approach was coupled 
with, then justified by, a neo-Kantian philosophy of mathematics. Arithmetic was 
a product of the mind and the only purely intellectual foundation for mathematics. 
Space and time had a reality that lay outside of their intellectual contemplation, 
and were contaminated sources. Mathematical proofs had to stand on rigid evi
dential grounds that only arithmetic met. This philosophical grounding was not 
new but was well suited to the development of an autonomous profession within 
the Prussian university system. 12 

The dominance of the Berlin approach to mathematics had more than an intellec
tual impact on the field. Their standards began to affect the assessment of research 
and the effectiveness of the teaching of individual mathematicians throughout the 
German Empire. Professorships at the more prominent universities went to those 
mathematicians whose research met the expectations of the Berlin mathemati
cal faculty.13 This did not mean that all mathematicians abandoned other lines 
of research, or that the Berlin mathematicians agreed completely on how or what 
research issues to pursue. However, some research possibilities were judged as sec
ondary and it was increasingly difficult for their practitioners to gain appointments 
to other than provincial universities.14 

Herbert Mehrtens, Moderne Sprache Mathematik: Eine Geschicte des Streits um die 
Grundlagen der Disziplin und des Subjekts formaler Systeme (Frankfurt: Suhrkamp 
Verlag, 1990). 

12 For the development of these changes see Umberto Bottazzini, The Higher Calculus: A 
History of Real and Complex Analysis from Euler to Weierstrass (New York: Springer, 
1986), Ivor Grattan-Guinness Foundations, and Harold M. Edwards "Kronecker's Views 
on the Foundations of Mathematics," in The History of Modern Mathematics, Rowe and 
McCleary, eds. 2 vols. (New York: Academic Press, 1989), vol. 1,67-78. 

13 See Gert Schubring, "Pure and Applied Mathematics in divergent institutional Settings in 
Germany: The Role and Impact of Felix Klein," in Modern Mathematics vol. 2, 171-220. 

14 Bernhard Riemann and Hermann Grassmann are cases in point. Their lives and careers 
were not blessed by easy appointments to major university departments of mathemat-



Forging New Relationships 327 

As in other academic disciplines, mathematicians in the German universities 
focussed on teaching the next generation of mathematicians rather than the mathe
matics needed by students in other disciplines. Given the developing professional 
dynamics within their discipline, mathematicians were less likely to want to teach 
the kind of mathematics for even advanced students in physics. While physics stu
dents always entered mathematics courses on terms set by mathematicians, in the 
last third of the nineteenth-century mathematicians almost ceased to teach mathe
matics that physicists might be able to relate to their own research problems. There 
was a tendency to downgrade and neglect by attrition courses of study and areas 
of research in mathematics that might interest physicists, engineers, or indeed any 
other professional whose research interests intersected those of mathematicians. 

In their turn physicists set out to teach their students the mathematics they re
quired to become physicists. Beginning with Thomson and Taits' text in mechan
ics, treatises, and volumes of lectures established the mathematical foundations 
for the solutions to physical problems. I5 In Thomson and Tait's text mathematics 
was dispersed throughout. Until mathematics became necessary to further the dis
cussion, physics developed in the vernacular. The authors only introduced enough 
mathematics from the appropriate field to solve the physical problem. Mathematics 
entered the middle ofthe discussion of kinematics. Similarly with simple harmonic 
motion and Fourier analysis, with only enough Fourier to solve the problems of 
"sonorous vibrators." More extended discussion of mathematical issues were in a 
series of appendices extending Green's theorem, spherical harmonics and so on. 
Mathematics was in the context of specific physical problems, for the solution to 
those problems. 

Textbook writers assumed that physics students needed to be familiar with dif
ferential and integral calculus. However, it was calculus molded to the needs 
of solving problems. In the case of Thomson and Tait, the problems were in 
mechanics. 16 

Unlike Thomson and Tait's text, Maxwell's Treatise was in a new field of theo
retical physics. It served as a survey of the fields of electro- and magneto-statics 
and the whole of electrodynamics. In addition the text presented his own theories 

ics. For Riemann's geometry see J. J. Gray, Ideas of Space: Euclidean, non-Euclidean, 
and Relativistic (Oxford: Oxford University Press, 1989). For a recent assessment of 
Grassmann and his influence into the twentieth century see Hermann Gunther Grass
mann (1809-1877), Gert Schubring, ed. (Dordrecht: Kluwer Academic, 1996). For the 
philosophical aspects of his mathematics see A. C. Lewis, "Hermann Grassman 1844 
Ausdehnungslehre and Schleiermacher's Dialetik," Ann. Sci. 34 (1977): 103-162. 

15 Helmholtz oversaw and wrote the introduction to the German translation of Thomson 
and Tail's text in the 1870s. 

16 William Thomson and Peter Guthrie Tail, Treatise on Natural Philosophy (New York: 
Dover reprint, 1962). The mathematics for kinematics begins on p. 3, that for simple 
harmonic motion is between, 38-59. 
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on these subjects, current electricity and the theory of the electromagnetic field. 
However, Maxweii treated mathematics in a simiiar manner. After a description of 
the phenomena of electrostatics came a discussion of its mathematics and proofs 
of some fundamental theorems. In other chapters the characteristics of the poten
tial function were explored and then used in the solution of physical problems. 
Green's theorem appeared elsewhere and another section was devoted to spherical 
harmonics and surfaces. In the second volume mathematics was inserted again 
where and how much Maxwell judged necessary for the physics that surrounded 
itY 

In the above examples mathematics and physics occur in immediate contact. 
Less intimate relations between the two occurred in texts from the continent. Clau
sius presented the mathematics of the potential function in a chapter separate from 
the physics of the potential. Helmholtz and Kirchhoff introduced the mathematics 
necessary for the physics in separate lectures. 18 

Hendrik Antoon Lorentz took this trend further. He produced a textbook in 
mathematics for physics students whose needs he claimed were not met by existing 
textbooks. Mathematical definitions and proofs were rigorous enough. However, 
Lorentz only took the mathematics as far as was necessary to solve the physical 
problems that form the problem sets at the end of each chapter. He built the subject 
matter from one chapter to the next with repeated use of mathematical techniques 
in examples. 

Lorentz used definitions of the derivative and integral of limited use to a mathe
matician. They were sufficient for him to then deduce expressions for the motion 
of falling bodies. In the rest of the text mathematics was presented as a series of 
techniques to solve physics problems. The physics presented a unified whole, the 
mathematics was fragmented. As important, the mathematics is used then reduced 
to a numerical expression to demonstrate the behavior of physical phenomena. 

Lorentz began in algebra, and ended with Fourier series and differential 
equations. Because he used Taylor series his chapters on calculus from a mathe
matical point of view were of limited use. He also found it necessary to defend 
his extended presentation of Fourier series and complex analysis for physics stu
dents. The text, clearly for undergraduates, demonstrated the distance between the 
calculus of the physicist in the 1870s and that of the mathematician of the same 
era. Much of this mathematics harked back to a mathematics that was sixty years 

17 James Clerk Maxwell, Treatise on Electricity and Magnetism (New York: Dover reprint 
of third edition, 1954), vol. 1 chap. xii on electrostatic equilibrium and conjugate functions 
where Maxwell puts various functions to particular physical uses, 284-316. 

18 Clausius, Die Potential function und das Potential: ein Beitrag zur mathematischen Physik 
(Leipzig: Barth, 1859), Helmholtz, Vorlesungen iiber die theoretische Physik 3 vols., 
(Leipzig: Barth, 1903). In the volume on electrodynamics there is a chapter on the 
potential function. Kirchhoff, Vorlesungen iiber mathematische Physik 4 vols. (Leipzig: 
Teubner, 1876-1895). 
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01d.19 In physics textbooks the standards of solution to differential equations, con
vergence criteria, and other mathematical processes, remained those of an earlier 
era in mathematics, that of the first third of the nineteenth century. These were 
well below the standards demanded by mathematicians of the middle of the nine
teenth century. Mathematics was becoming codified into a skill, on a par with the 
manipulative ones routinely taught students for successful work in the laboratory. 
Students needed only that amount of mathematics to demonstrate the validity of 
the physics expressed mathematically. Beyond that mathematics could be safely 
ignored. 

In the decades after 1870 physicists, along with courses in laboratory practice, 
developed parallel courses to develop fluency in the language of theory, inde
pendent of mathematicians. Most physicists found contemporary mathematics 
irrelevant for their research or their teaching. Some deplored the loss of the close 
relationship that physicists once had with their mathematical colleagues. Simulta
neously they lamented that recent research by mathematicians had become useless 
for physicists. Indeed some physicists declared that mathematical research ceased 
to be of interest to physicists after 1830.20 Yet to even study the subject of theo
retical physics, students of the 1870s and 1890s needed a knowledge of ordinary 
and partial differential and integral calculus. Whether the students were taught 
these subjects within the physics department or in the mathematics department by 
mathematicians depended largely on the interests and talents of both physicists and 
mathematicians and their interactions at specific institutions.21 

Another measure of the separation of these two disciplines was the attempts of 
theoretical physicists to express the differences between theoretical physics, math
ematical physics, and mathematics. Even given the formal context in which many 
of these nineteenth-century ruminations were made and the limitations of address
ing a general audience, some factors remain as commonalities. Mathematics was 
taken for granted. There was no need to defend its use or explain its place within 
theoretical physics. What required more attention was the status of certain hy
potheses, their uses within theoretical physics and the necessity for hypotheses in 
physics.22 The use of hypotheses and mathematics together, as Maxwell remarked 
in the 1870s, marked the emergence of a new discipline. 

19 Hendrik Antoon Lorentz, Lehrbuch der Differential- und Integralrechnung und der An
fangsgrunde der Analytischen Geometrie (Leipzig: Barth, 1900). The original Dutch 
edition appeared in 1882. 

20 See Jungnickel and McCormmach, Intellectual Mastery, vol. 2. 

21 For the variety of such arrangements, see Jungnickel and McCormmach, Intellectual 
Mastery vol. 2. 

22 Boltzmann, "On the Development of the Methods of Theoretical Physics in Recent 
Times," in Boltzmann, Theoretical Physics and Philosophical Problems, Brian McGuin
ness, ed. (Dordrecht: Reidel, 1974),77-99. 
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Mathematics in Physics 

Mathematics had become almost taken for granted as a skill that was now simply 
necessary to become a physicist. That mathematics was in a form that spoke 
directly to the needs of physicists and to the solutions to their problems. For 
mature physicists and students alike, only aspects of theorems and areas of analysis 
or results directly pertinent to the solution of physics problems received detailed 
attention. Green's and Stokes' theorem and Fourier analysis were tailored to the 
needs of physicists. Mathematics had been domesticated. 

No physicist, experimentalists included, could afford to ignore mathematics. It 
was the language required to understand the operation of their instrumentation, ap
paratus, and the meaning of their results. Also physicists now expected theoretical 
discussions to be a combination of mathematical language, with aspects of mathe
matical methods of proof, together with a measure of physical insight coupled with 
experimental evidence. Yet the balance of mathematics, imagery and empirical 
evidence remained a matter of individual choice. In theory development there re
mained a spectrum of uses of mathematics. This included a mathematical physics 
in which there was more concern with mathematical standards that troubled most 
other colleagues within physics. Some physicists would not have been out of place 
in a mathematics department. 23 At the other extreme there were experimentalists 
who used and required of others only the minimum of mathematics. 

In the 1870s for some theoreticians, such as Helmholtz, physical results sprang 
directly from mathematics without the intermediary of models. Others used models 
to create then guide the development of the mathematics and interpret the results 
of their manipulations. Maxwell moved freely from one end of this spectrum to 
the other. He was well aware of the limitations of using models and the added 
credibility results acquired when grounded in a mathematically expressed physics 
based in the general principles of mechanics. 

In German physics departments during the last third of the nineteenth century 
we can see a trend away from theory based in the specifics of models towards 
one based in principles.24 This trend is illustrated through the physical work of 
Helmholtz during this period. By 1870 Helmholtz had acquired the reputation of 
an intellect in a class by himself. This was further enhanced by his institutional 
position as recently appointed director of the new physics institute at Berlin uni
versity. During the next decade Helmholtz's research focussed in one of most 
intensely researched and competitive areas of physics, electrodynamics.25 While 

23 Examples include Ludwig Boltzmann and Carl Neumann. For a short period of time in 
the 1870s Boltzmann was professor of mathematics at Vienna University. 

24 One notable exception to this is Rudolph Clausius, but his career began in the 1840s. 
The other is Ludwig Boltzmann. 

25 This was closely connected with the increasing economic importance of the telegraph, the 
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most historians of physics have focussed on the physical content of Helmholtz's 
papers few have looked seriously at the language within which those physical ar
guments were expressed and the role that mathematics played in establishing the 
ideas they zealously explored.26 

For Helmholtz mathematics functioned both as a mediator between principles 
and experiment and a means to rise above the particularities of the different ap
proaches to electrodynamics of Weber, Franz Neumann and Maxwell. His investi
gations into electrodynamics began as a critical survey of the field put into general 
mathematical form. They continued both as a defense of his interpretations and 
an attempt to improve what others had begun. Helmholtz explicitly recognized 
the validity of other approaches, specifically of using models, having "no essential 
objections" to them. However, he noted his aversion to the inexplicable in physics, 
although mechanics should not be merely a "field for mathematical exercises." He 
found far more satisfactory "the simple representation of physical facts and laws in 
the most general form, as given in systems of differential equations," and adhered 
to the latter which he found also safer.27 He chose to construct an electrodynamics 
that was based on the results of experiment and the laws deduced directly from them 
(Ampere's law for example). Expressing these laws with mathematical generality, 
he attempted to encompass in one expression all known experimental results, and 
this allowed him to judge the validity of the particularist theories of Weber, and 
Maxwell, and the mathematical theory of Franz Neumann.28 

Beginning with Ampere's and Coulomb's laws, Helmholtz constructed an ex
pression for the potential between two current elements, or at least reached an 
expression that behaved as a potential and then treated it as such. The potential 
was equivalent to work done. This allowed him to reach an expression for the 
conservation of force in a domain of physics outside of mechanics, without as
suming a mechanical character to the system. The potential law was fundamental 
to electrodynamics and brought to its study a unity not available with any other 

telephone, electric motors, and finally the development of the grid system. See Thomas 
Hughes, Networks of Power. 

26 For example Jed Z. Buchwald, The Creation of Scientific Effects: Heinrich Hertz and 
Electric Waves (Chicago: University of Chicago Press, 1994), Part I, and Appendices 
2 and 3 where Helmholtz's mathematics is transposed into vector form, and Buchwald, 
From Maxwell to Microphysics (Chicago: University of Chicago Press, 1985), Part IV. 
See also S. D' Agostino, "Hertz and Helmholtz on Electromagnetic Waves," Scientia 106 
(1971): 637-648, and "Hertz's Researches on Electromagnetic Waves," Hist. Stud. Phys. 
Sci. 6 (1975): 261-323,273-279. These are examples, the practice is commonplace. 

27 Helmholtz, "Preface," in Heinrich Hertz, The Principles of Mechanics, D. E. Jones and 
J. T. Walley, trans. (New York: Dover reprint of 1896 trans., 1956). 

28 Jungnickel and McCormmach, Intellectual Mastery, vol. 2, 22, discuss the links between 
Helmholtz's electrodynamics papers and his earlier, experimental work on the timing of 
nerve impulses. 
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approach.29 Also it reduced some second order differential equations to first order 
making their solution feasible. 

His general expression for the potential between two current elements was 

1 . . ( ) -2A21: [1 + k]cos(Ds, Da) + [1 - k]cos(r, Ds)cos(r, Da) DsDa, 

where current intensities i and j pass through circuit elements Ds and Da at a 
distance r apart. Of the two constants in this expression, A was the reciprocal of 
the velocity of light and the value of k identified the expressions for the potential 
from the different theories of Weber, Neumann and Maxwell. The value of k, 
k = -1,0, +1, carried physical significance and the physical consequences were 
hunted down and judgments made as to the validity of the three approaches. If 
k = -1 the velocities became infinite, a result incompatible with the conservation 
of force. Hence his judgment against Weber's theory.3o 

From experiment and physical principles Helmholtz moved to mathematics, and 
from the mathematics deduced physical significances in terms of the entities from 
which he began his argument. In the case of electrodynamics, mathematics allowed 
him to demonstrate the superficial character of many of the details of the modelling 
he encountered and show such modelling was irrelevant to the physical analysis 
he was seeking.31 

Helmholtz made judgments in terms of the physics represented by the func
tions, terms, coefficients, etc. The mathematics carried physical significance.32 

29 See Helmholtz, "Kritisches zur Electrodynamik," Ann. Phy. 153 (1874): 545-556. 

30 Helmholtz, "Uber die Bewegungsgleichungen der Electricitat fur ruhende leitende Kar
per," J. Reine Angew. Math. 72 (1870): 57-129. This judgment reinforced an earlier one 
made in Helmholtz, Erhaltung der Kraft. Other papers in this series include, Helmholtz, 
"Uber die Fortflanzungsgeschwindigkeit in elektrodynamischen Wirkungen," Monats. 
Akad. Berlin (1871): 292-298. In "Uber die Theorie der Elektrodynamik," J. Reine 
Angew. Math. 75 (1873): 35-66, Helmholtz considered induction, in "Die elektrody
namischen Krafte in bewegten Leitern," same journal 78 (1874): 273-324 where he 
introduced ponderomotive forces. Shorter versions of the arguments of these papers 
appeared elsewhere. 

31 While it is true here and elsewhere, this is only useful after the fact; it was a pattern that 
Maxwell followed about the same time. Both were seeking a physics based in general, 
physical principles. See Maxwell, A Treatise on Electricity and Magnetism, vol. 2, chap. 
vi for his attempt to put his electromagnetic theory in Lagrangian form. The limitations 
of Maxwell's attempts are discussed in Tetu Hirosige, "Origins of Lorentz's Theory of 
Electrons and the Concept of the Electromagnetic Field," Rist. Stud. Phys. Sci. 1 (1969): 
151-209,192. 

32 This differs from the analysis of Buchwald in, Scientific Effects, of Helmholtz's work 
in electrodynamics. Buchwald interprets Helmholtz's work as resting on a physical 
argument that is "implicit" in Helmholtz, that has a "natural energetic interpretation." 
Maybe, but only from the perspective of the twentieth century. 
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Helmholtz tied his mathematics in this series of papers directly to principles; in the 
first paper to that of the "conservation offorce." Until 1873 the dominant physical 
language of the papers in this series is about force and potential, not energy.33 
However, energy arguments gave Helmholtz further points upon which to criticize 
Weber's electrodynamics.. The terms in any expression for the conservation of 
energy must be positive. From the mathematical form of a two-part term in his 
interpretation of Weber's work, Helmholtz argued that in Weber's theory energy 
could become negative and perpetual motion was possible. The argument hinged 
on the mathematical representation of physical quantities that, because they were 
physical had to behave according to general physical principles. While appearing 
excessively mathematical, and Helmholtz did construct the most general mathe
matical cases, he followed only the implications of physically significant cases. 

There were serious limitations to this approach. Constants appearing in equa
tions could only be determined by experiment, if such coefficients were amenable 
to experiment. There was no direct connection between mathematics and the lab
oratory because the differential equations and their solutions were so general. To 
go further than present experiments required some kind of modelling. Further
more, mathematics even in known cases was not an infallible guide to physical 
consequences. Helmholtz's original argument against Weber's theory was that 
the function representing the potential could, in certain circumstances, become 
negative. This implied that the velocities of the electrical particles could become 
infinite. In the ensuing exchange, others pointed out that any increase in velocity 
would lead to an induced force that would decrease the particles' velocities.34 To 
clinch his argument and choose between these theories required experiment. De
vising these, then carrying them through, or at least getting his students to do so, 
was a difficult task that consumed much of the decade of the 1870s.35 

Helmholtz passed this potent combination of experiment and mathematics to all 
his students and in particular to Heinrich Hertz. Eventually Hertz realized the lim
itations of Helmholtz's approach. Physical imagery was necessary and in this area 
Helmholtz's mathematical approach led to inconsistent physics. With this insight 
Hertz began to understand experimental results that had puzzled him and he was 

33 While Helmholtz had remarked in 1869 that his conservation of force had been renamed 
conservation of energy, potential rather than energy remained the mathematically pre
ferred form in German physics into the 1870s. See Norton Wise, "German Concepts 
of Force, Energy, and the electromagnetic Ether: 1845-1880," in Conceptions of Ether, 
Cantor and Hodge, eds., 269-307. 

34 See Weber, "Maasbestimmungen," Ann. Phy. 4 (1878): 366-373. This was finally 
recognized by Helmholtz in an afterword (1881) added in his collected papers. See 
Helmholtz, "Uber die Theorie der Elektrodynamik," 1. Reine Angew. Math. 75 (1873): 
35-66, reprinted in Abh. vol. 1,647-687, "Zusatz (1881)," 684-687. 

35 For a discussion of this aspect of Helmholtz's work, see Jungnickel and McCormmach, 
Intellectual Mastery, Vol. 2, 25-30. 



334 Epilogue 

free to explore his own theoretical investigations into Maxwell's theories. Under 
limiting conditions Helmholtz's equations replicated Maxwell's, but they were not 
physically equivalent. There was only mathematics. In this case "the physical ba
sis of Helmholtz's theory disappears.,,36 Physical imagery was necessary to clothe 
the mathematical forms. He set about rethinking the physical underpinnings of 
his own and Maxwell's theories. However, Hertz was finally reduced to accept
ing the situation that he saw as a flaw in Helmholtz's work. Hertz was unable to 
reconcile Maxwell's ideas and his mathematics, and he was resigned to accepting 
Maxwell's equations as Maxwell's theory. He then went on to claim that the "inner 
significance" of his own and Maxwell's equations, although different in form, were 
the same. To explain his experimental results in terms of electromagnetic waves 
in the ether, Hertz simply assumed Maxwell's equations. His focus then shifted 
to explaining their physical implications and the legitimacy of his experimental 
results.37 A fuller version of his theoretical ideas followed, in which he gave gen
eral mathematical expression to a physically consistent image of the origins of 
electric and magnetic forces in the ether.38 

Many German theoretical physicists did not accept Helmholtz's judgments on 
Weber's electrodynamics and long a lasting schism opened up between supporters 
in both camps that affected careers into the next generation. For some, the issue be
came Helmholtz's mathematics and whether his differential equations represented 
Weber's fundamental laws. Beyond the mathematics was a physical imagery, 
which if successfully challenged, would destroy more than Weber's work.39 De
spite these tensions Helmholtz renewed a pattern of doing theoretical physics in 
Germany that was universal. Mathematics offered a unity for physics through its 
abstractions as the analytical language of physics.4o The principles of mechanics 
was the center, the means to draw together the other branches of physics, heat, 

36 For the most detailed consideration of Hertz's break with Helmholtz and the develop
ment of his experimental work and its relations to his rethinking and reformulation of 
electrodynamics, see Buchwald, Scientific Effects. 

37 Hertz, "The Forces of Electrical Oscillations treated according to Maxwell's Theory," 
(1889) in Hertz, Electric Waves, D. E. Jones trans. (New York: Dover reprint of 1893 
edition, 1962), 137-159. 

38 Hertz, "On the Fundamental Equations of Electromagnetic Bodies at Rest," (1890) in 
Hertz, Electric Waves, 195-240. This demand for the generality of mathematics together 
with a defensible, consistent physical imagery also drove Hertz in the production of his 
text on mechanics. See Hertz, The Principles of Mechanics, D. E. Jones and J. T. Walley, 
trans. (New York: Dover reprint of 1896 trans., 1956). 

39 For a discussion of this see Buchwald, Scientific Effects, Appendices 6 and 16. This was 
in the same period that Helmholtz was arguing with mathematicians and philosophers 
over the foundations of geometry. Helmholtz, "The Origin and Meaning of Geometrical 
Axioms," (1870) in Science and Culture: Popular and Philosophical Essays, David 
Cahan, ed. (Chicago Ill: University of Chicago Press, 1995), 226-248. 

40 For the theme of unity in science and physics in particular and its professional and 
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electrodynamics, light, the study of solids, and gases. The creation of a mathemat
ical language that transcended the particularities of these separate domains was 
sometimes the explicit goal of theoretical physicists. In others it can be seen in the 
pattern of their work throughout their lifetimes.41 

This same approach to theory through the grand unifying principles of physics 
was reflected in the next generation in the work of Max Planck. While not rederiv
ing equations familiar to his readers, he discussed only those aspects of the physical 
issue at hand that were new. It is a spare style that was unusual in the late nineteenth 
century. Theoreticians were apt to rederive in their own way all the equations they 
might need. Use of mathematics was an indication of the seriousness and the 
professionalization of the theoretical enterprise. Planck simply imported them as 
needed. He developed just enough mathematics necessary to make his physical 
argument. No superfluity of generalization to demonstrate mathematical prowess. 

Planck claimed later that mathematics was a mere instrument, and that his focus 
was on a physics based in the most general principles possible.42 However, all 
his physical arguments depend directly on the mathematical forms in which those 
principles were expressed. Because his physics was one of principle there was no 
intermediary models, or particularist assumptions. The only medium for the de
velopment of his ideas was in the structure of the language he used-mathematics. 
And contrary to later statements, he appears to have understood this. A theory 
stood or fell with its equations. The physical imagery was flexible, and might 
be omitted altogether; the proof of the equations was another matter. He para
phrased Heinrich Hertz stating that Maxwell's electromagnetic theory of light was 
his equations. Planck went further to claim that equations were essential, all else 
besides the mathematics could be discarded, hardly a tool-like judgment.43 This 
was especially the case in his early papers on thermodynamics where he focussed 
on entropy. Here sophisticated mathematics was of far less use to Planck than 
to his contemporaries enmeshed in the complexities of electrodynamics.44 Math-

cultural meaning in late nineteenth-century Germany see Peter Galison, "Introduction: 
The Context of Disunity," in The Disunity of Science, Peter Galison and David J. Stump, 
eds. (Stanford: Stanford University Press, 1996), 1-33. 

41 This was not unique to Helmholtz. This was true of J. J. Thomson and Joseph Larmor 
who also used Hamilton's principle to achieve such a unity. 

42 See D. de Causabon, "Le role des mathematiques dans la physique, Planck, 1894-1900," 
Fund. Sci. 6 (1985): 281-197, and Jungnickel and McCormmach, Intellectual Mastery. 

43 Max Planck, "Die Maxwellsche Theorie der Elektrizitat von der mathematischen Seit 
betrachtet," Jahresber. Dtsch. Math. Ver. 7 (1899): 77-89. 

44 In the last three decades of the nineteenth century, the bulk of theoretical papers in the 
Annalen der Physik, although the majority of them were experimental, was in electrody
namics. This was also true of the mathematical and theoretical papers by physicists in 
the Journaljiir Reine undAngewandte Mathematik. See Jungnickel and McCormmach, 
Intellectual Mastery, vol. 2, chap. 1. 



336 Epilogue 

ematical complexity would not lead him into physically fruitful directions. His 
initial work was on the significance of entropy and the implications of the first 
and second laws of thermodynamics in specific cases.45 Planck was after physical 
connections but gaining those connections directly from the mathematics. And 
Planck managed to squeeze as much physical significance as possible out of the 
partial differential equations at his disposal. No mathematical expression was left 
without physical comment or explanation. He also made no attempt to generalize 
them. His mathematics referred only to physical cases and conditions, preferably 
linked directly to numerical data. In his papers on critical states Planck specified 
those states without any assumptions about the inner structure of matter; thus the 
numerical aspects of the papers lent him the specificity necessary for theory in the 
1870s. 

Even as Planck turned his attention to electromagnetism and black body radia
tion, these same characteristics mark his papers from those of his colleagues. He 
imported equations where he could, using mathematics itself sparingly. His physi
cal explanations were as spare as his mathematics and stuck to the essential points 
of principle and their implications in the example at hand. Planck made as few 
assumptions as possible about the nature of his resonators or the electromagnetic 
radiation with which they interacted.46 He introduced the notion of "natural radia
tion" in his fourth paper on the subject. In the last paper he pulled together the work 
he had accomplished thus far on the problem, and here began to use Fourier series 
to characterize the radiation impinging on a resonator, as well as investigating the 
energy and entropy of the same resonators. 

His first two papers in quantum theory exemplify his approach. Initially he 
stated only the new mathematical expression for the energy distribution and the 
new thermodynamical foundations on which the expression was based. He had 
previously established that the energy distribution was determined once the entropy, 
S of a resonator was known as a function of its vibrational energy U. As he had also 
already determined, the second law was not sufficient to calculate this function. To 
arrive at his new law, Planck constructed "completely arbitrary expressions for the 
entropy" that would not lead to Wien's law and satisfied both thermodynamical and 
electromagnetic considerations. Not specifying what this expression was, Planck 

45 See his dissertation, Max Planck,"Uber zweitzen Haupsatz der mechanischen Warme 
Theorie," Munich 1879 in Physikalische Abhandlungen und Vortriige 3 vols. (Braun
schweig: Vieweg und Sohn, 1958), vol. 1, 1-60, and Planck, "Verdampfen, Schmeltzen 
und Sublimiren," Ann. Phy. 15 (1882): 446--475,Abh. 1,134-163. 

46 The series of papers Planck produced on black body radiation begins with Planck, "Ab
sorption und Emission elektrischer Wellen durch Resonanz," Ann. Phy. 57 (1896): 1-14, 
and continues with "Uber elektrische Schwingungen, welche durch Resonanz erregt und 
durch Strahlung gedampf werden," same journal 60 (1897): 577-599, and a five part 
series, "Uber irreversible Strahlungsvorgange," Sitz. K. Preuss. Akad., Berlin (1897): 
57-68,715-717,1122-1145, (1898): 449-476,440-480. 
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stated he was led to it from 

Ci 

- -(U-(-{3 -+-U-) , 

where Ci and {3 are constant and U is the energy of the resonator. From this the 
radiation law followed, 

CA-5 
E = ---0-:-::--:e:1l:r -1. ' 

where E is the energy density between the wavelengths A and A + dA.47 

While this might be taken as a short statement establishing Planck's priority 
for deriving this expression, his follow up was only a mathematical skeleton of 
those aspects of the theory that were new and presented just to give physical 
meaning to the above expression. Planck found it necessary to turn to Boltzmann 
for a new physical understanding of entropy. Entropy was disorder, and that 
meant irregularity in the changes in amplitudes, and phases of the radiation of 
the oscillators even in a stationary radiation field. This disorder could only be 
understood using probability, introduced into thermodynamics by Boltzmann. 

The complete deduction of his final equation for the energy density would re
quire Planck to recapitulate much of his work in electromagnetism along with 
the full thermodynamical deduction of the energy of a resonator. Planck merely 
sketched what was new. Viewing resonators as groups as before, he constructed 
the distribution of energy not by considering the resonators themselves, but by 
looking at the distribution of energy over the frequencies of the oscillations to find 
the energy of the whole as a function of the vibrations and the temperature of the 
system. Unlike Boltzmann, Planck did not, as was still usual in statistical argu
ments in physics, treat energy as a continuum, and thus introduced the element of 
discontinuity into the mathematics of physics, pushing that mathematics further 
beyond the calculus.48 Planck assumed that his audience was familiar with per
mutations and probabilities. He gave only one simple numerical example before 
presenting the general expression for the number of permutations of P "energy 
elements" among N resonators. He then looked for the most probable distribution 
of the total energy among all the ways of distributing that energy in P amounts 
among N resonators. He further adds the necessary thermodynamic expressions 
to reach 

47 Planck, "Uber eine Verbesserung der Wien'schen Spektralgleichung," Verh. Dtsch. Phy. 
Gesell. 2 (1900): 202-204. 

48 The most extensive examination of Planck's use of discontinuity in his expression for 
the energy distribution function was that by Thomas Kuhn, Black-Body Theory and the 
Quantum Discontinuity, 1894-1912 (New York: Oxford University Press, 1978). Kuhn 
revised his argument in Kuhn, "Revisiting Planck," Hist. Stud. Phys. Sci. 14 (1984): 
231-252. 
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for energy distributed between the frequencies v and v + dV.49 

The systematic treatment promised by Planck was not forthcoming until his 
text on heat radiation was published six years later.50 By this date, there were 
several areas in physics in which the calculus no longer sufficed as a satisfactory, 
descriptive language. Those areas included both electrodynamics and the behavior 
of gases. And in both of these subfields of theory, models and particulars played 
a crucial role in their conceptual and linguistic development. 

Beyond the Calculus 

Two points need to be made about this era in nineteenth century physics. First, 
mathematics was taken as a natural aspect of physics. Secondly, the skill of the
oretical physicists was judged on their creative development and manipulation of 
physical imagery. Especially valued was imagery on the highest level of abstrac
tion that unified ever broadening types of phenomena across different domains of 
physics. However, during the 1890s these two characteristics were challenged. 
Mathematics came to the foreground. The calculus no longer seemed adequate to 
describe some of those domains in physics that were the most promising for uni
fying physics, that is electrodynamics and thermodynamics. Greater unification in 
physics was not reached through abstraction but through the specificity of models, 
much of it the work of Lorentz and Boltzmann. 

Lorentz worked and then reworked his electrodynamics throughout his career.51 

Like the structure of his papers, his return to the same central issues in theoretical 
physics were systematic and driven by the need to incorporate new experimental 
work, to clarify, then extend previous work. 52 His basic model was of a continuum 
ether with only electromagnetic properties in which were embedded charged par
ticles. All interaction between matter and the ether were through these particles. 
Lorentz began with a physical case that led to equations that were then added 
to term by term as he developed the physical situation. He translated physical 

49 Planck, "Zur Theorie des Gesetzes der Energieverteilung im Normalspectrum," Verh. 
Dtsch. Phy. Gesell. 2 (1900): 237-245. 

50 Planck, Vorlesungen iiber die Theorie der Wiirmestrahlung (Leipzig: J. A. Barth, 1906). 
A second edition that was reworked in terms of quantum theory and published in 1913 
and this edition was translated into English. See Planck, The Theory of Heat Radiation, 
Morton Masius, trans. (Philadelphia: P. Blakiston's Son and Co., 1914). 

51 This focus of research emerged with his dissertation in 1875, Lorentz, " Sur la theorie de 
la retlexion et de la refraction de la lumiere," Leiden, 1875 in Collected Papers, Pieter 
Zeemann and A. D. Fokker, eds. (The Hague: Martinus Nijhoff, 1935-1939), vol. 1193-
383. Lorentz constructed the laws of reflection and refraction using the electromagnetic 
theory of light. 

52 Here we are focussing on Lorentz's use of mathematics. For the development of his 
physical ideas, see Jungnickel and McCorrnmach, Intellectual Mastery, vol. 2, 232-236 
and the sources cited there. 
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characteristics and processes directly into separable mathematical entities that car
ried with them identifiable physical outcomes. The details of his physical model 
were added as the complexity of the interactions of ether and matter developed. 
Thus he mathematically and physically separated electrostatic phenomena from 
those involving the motion of particles, "ions," within their "holes," i.e., dielectric 
displacement, and those from the motion of the molecules themselves, i.e., elec
trodynamical effects.53 Each state led to forces that were represented as distinct 
terms that were added one to the other. 54 

Once the physical situation was represented, Lorentz brought all the devices 
of the calculus to solve the equations. He expressed sets of partial differential 
equations in terms of potentials, thus reducing them from second order to first order 
and possible solution. He used Taylor expansions that might later be simplified to 
conform to physical conditions, and Green's theorem, and so on. 

He also constructed his papers like mathematical papers. His first conclusions 
were a set of straightforward mathematically deduced physical results. These 
were called upon later as he built his argument from electrostatics to the motion 
of "ions" through the ether and the appearance of electromagnetic waves. While 
the mathematics was elegant and might be developed with some generality, it was 
also tightly bound to the pursuit of his physical quarry. A function represented 
a physical quantity that was named and followed throughout his mathematical 
excursions. The only cases he pursued were those that led to physically significant 

results. However, mathematics imposed its own limitations on the behavior of the 
entities they represented. The functions representing the ether were continuous 
and the ether therefore defined rigorously. 

With the acceptance of Hertz's experimental findings and the reality of elec
tromagnetic waves established, Lorentz and other theorists could take that aspect 
of Maxwell's theory as an experimental given. In 1892 Lorentz's work on elec
trodynamics was reoriented and put into a unified mathematical structure where 
he continued Maxwell's effort to put field theory into a "dynamical" Lagrangian 
formulation. Using the energy equation and the Principle of Least Action (here 
reduced to d' Alembert 's principle) Lorentz brought mathematical simplicity to his 
theory. In this new mathematical form, he replicated previous results and integrated 
dieletric displacement into this view. While claiming its "dynamical" character 
Lorentz had actually developed a formal, mathematical theory in which physical 

53 See Lorentz, "Concerning the Relation between the Velocity of Propagation of Light 
and the Density and Composition of the Media," Verhand. K. Akad. Weten. Amsterdam 
18 (1878): 1, in Collected Papers, vol. 2, 1-119. His ions had only electromagnetic 
properties from p. 23 until part III of the paper when he introduced dispersion and his 
particles were then endowed with inertia. 

54 See Lorentz, "Concerning the Relation," p. 35-36 where he reconstructs the forces gen
erated in the ether from moving "molecules" that he has built up in pieces especially over 
pps.21-35. 
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entities were treated as mathematical ones, as functions, terms, and constants. 
However, once in these mathematical forms, they were not translated back into 
physical form unless Lorentz was at a point where he could compare his theoreti
cal speculations directly with experiment. He needed many mathematical tricks to 
replicate known results, and one of these was the retarded potential. The retarded 
potential kept the form of the function for electricity and magnetism complete 
analogs with potentials from the simpler case without charged particles moving 
through the ether.55 

In this 1892 paper Lorentz's derivations were obscure as was the physical mean
ing to be attached to some of them. This changed in his next reworking of electro
dynamics of 1895. For us, much of the clarification was due to the mathematical 
form in which the physics appeared-vector analysis.56 He used this recently devel
oped algebra to simplify and emphasize the physical content of an argument that 
only three years before was wrapped in the algebra of differential calculus. It is 
here that Lorentz presented a form of electrodynamics that is physically recogniz
able to us. The origin of electrodynamical effects lay in his "ions" i.e., electrons, 
not in the field.57 Given that he still worked within the physical framework of the 
ether, the physical point to this long papers is far more visible and sensible to the 
late twentieth century. 58 His assertions about the existence of ions, from chemical 
evidence, was firmer and he simply assumed the validity of Maxwell's equations 
in vector form and no longer sought to derive them. However, in 1895 his notion 
of ions was still controversial. "Ions" were posited only through indirect, chemical 
means. 1.1. Thomson's experiment that demonstrated their physical characteris
tics were three years in the future. Equally unusual was the mathematical form 
in which he presented his physics. Lorentz did sprinkle the older, component 
forms of some crucial relationships alongside their vector forms, especially in the 
earlier chapters. This may be in recognition of the novelty of his use of vectors, 
and the need to reassure colleagues. The vector form of his argument may well 
account for the lack of immediate enthusiasm of his contemporaries for this work. 

55 Lorentz, "La theorie electromagnetique de Maxwell et son application aux corps mou
vants," Arch. neerl. 25 (1892): 363, Collected Papers vol. II; 164-343, p. 299. While 
this paper is important for the clarification of Lorentz's physical ideas on the nature of the 
interaction of matter and the ether, it is its mathematical character that concerns us here. 
For the physics see, Hirosige, "Origins," and Buchwald, From Maxwell to Microphysics, 
194-196. 

56 Lorentz Versuch einer Theorie der electrischen und optischen Erscheinungen in bewegten 
Korpern (Leiden: Brill, 1895), reprinted in Collected Papers, vol. 5, 1-137. 

57 For a discussion of the transition from Maxwell's electromagnetic theory of light to 
Lorentz's "microscopic" theory see, Buchwald, From Maxwell to Microphysics. 

58 Because of his theoretical commitment to seeing the origins of electromagnetic effect 
in electrons and their motions Lorentz had to reinterpret, yet again, crucial aspects of 
Maxwell's theory such as the displacement current. 
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He also focussed on one general issue, the motion of ponderable matter through 
the ether, not on the front burner for most other theoretical physicists working in 
electrodynamics.59 

Lorentz demonstrated a mastery of vectors, yet his use of mathematics itself 
and its relationship to his physical ideas remained the same. Maxwell's equations 
and common relationships in electrodynamics were all translated into vector form. 
His focus on the problem of charged bodies moving through the ether meant that 
Lorentz only sketched in the aspects of electrodynamics that did not pertain to 
this main problem. However, when he reached the main issue, mathematics still 
carried much of his argument. Mathematical devices maintained Maxwell's laws 
when he transformed his reckoning of them from the "stationary" coordinates of 
one set of "ions" to the set of "ions" moving through the ether.6O The relationship 
between time and the coordinates between the two systems were introduced as 
"new variables." Only the time-transformation was commented upon physically. 
Time measured in the moving system is "local," and he referred the reader back 
to the mathematical relationship for the conversion from one to the other. The 
relationship is mathematical rather than physical. 

Vectors, the algebra that seems to us to make the physics of Lorentz's argu
ments visible in ways in which his earlier mathematical treatments do not, were 
still a marginal mathematical form for physicists in 1895, and of no interest to 
mathematicians. Along with statistical arguments, they had been developed by 
physicists strictly for their own uses within the context of their own problems. It 
was only later that mathematicians were to take up either again as mathematics 
and generalize both statistics and vector algebra. 

While combinatorial methods were considered a legitimate aspect of mathemat
ics in the nineteenth century, the calculus of probability and statistics challenged 
the prevailing thrust of mathematicians towards rigor. Rigor implied that proofs 
were either correct or incorrect, with truth established in some absolute form. 
Arguing probabilities did not fit this search for certainty and firm foundations. 
Additionally, these methods studied by mathematicians in the eighteenth and early 
nineteenth centuries arose in the context of social and experimental concerns in 
other disciplines, also recently repudiated as a source for research problems in 
mathematics. As recent work has demonstrated, the mathematical development of 
statistics shows a hiatus between the work of Laplace and the English biometricians 
of the late nineteenth century. 61 

59 On this point see Buchwald, From Maxwell to Microphysics, p. 198-199. 

60 This is stated deliberately to capture Lorentz's concerns to replicate Maxwell's equations, 
rather than those of the twentieth century by not using the term "invariance." 

61 See Lorraine Daston, Classical Probability in the Enlightenment (Princeton NJ: Princeton 
University Press, 1988) for mathematicians in the eighteenth century. Stephen M. Stigler, 
The History of Statistics: The Measurement of Uncertainty before 1900 (Cambridge MA: 
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The advent of probability to describe then explain the regularities in phenomena 
opened up new relationships between physical imagery and the mathematical lan
guages in which they were expressed. This ultimately forced physicists to abandon 
the continuity inherent in the calculus and embrace a physics of the discontinuous 
in quantum physics. This final break was avoided during the nineteenth century. 
While both Maxwell and Boltzmann worked from the interactions of particular 
mechanical systems in collisions, they realized that probability expressed the fre
quency with which events occurred in a collection of systems and did not reflect 
the inner workings of the systems that made up the collection. Both men began 
by considering particular interactions between particles of certain types, then con
structed the average of the characteristics, such as density of particles, and the 
distributions of velocity, momentum, or kinetic energy, in a system in equilibrium. 
The averages of these quantities reflected the macroscopic behavior of the systems, 
in this case of gases. 

Merely specifying that probability arguments were introduced into physics is 
inadequate to describe precisely how they were used. This general description does 
not determine how probability was defined and then expressed mathematically and 
what properties of molecules in motion Boltzmann or Maxwell chose to follow, 
or the regularities they chose to express and link to macrophenomena. From his 
first papers Maxwell developed expressions for the density, and the distribution of 
velocity, momentum, kinetic energy, etc. He then argued from the macroscopic 
behavior of diffusion, viscosity, and heat conduction which particular integral 
expressing what average linked the behavior of the collection of molecules to their 
observed phenomena. He went further and developed expressions for the mean 
free path of a molecule and an estimate of Avogadro's number. The consistency of 
his own and others' experimental results on the transport properties of gases in the 
1860s argued for the plausibility, not just the convenience, of considering matter 
as made up of molecules.62 

While they influenced each other, there were technical differences beginning 
with their definitions of probability. Maxwell and Boltzmann had distinct purposes 
in studying gases that centered on different physical issues. Maxwell's interests 
were on transport properties and his remarks on the second law of thermodynamics 
and its relationship to probability were casual and illustrative, not mathematical. 

Harvard University Press, 1986) is a study of how a field, statistics, came into being from 
its origins in several other areas of study, scientific and social. His work overlaps that 
of Daston somewhat for mathematicians in the late eighteenth century. Theodore Porter, 
The Rise o/Statistical Thinking (Princeton: Princeton University Press, 1986), traces the 
use of statistics in the social sciences from Quetelet through Galton and Pearson. 

62 For Maxwell's papers on kinetic theory and statistical mechanics with a critical introduc
tion, see Maxwell on Molecules and Gases, Garber, Brush and Everitt, eds., and Maxwell 
on Heat and Statistical Mechanics: On "Avoiding all Personal Enquiries of Molecules," 
Garber, Brush and Everitt, eds. (Bethlehem PA: Lehigh University Press, 1995). 
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Boltzmann's major focus was on the meaning of the second law while his remarks 
on transport phenomena, mathematically more thorough, were peripheral to the 
main thrust of his research. 

There were further differences in the level of mathematical apparatus brought 
to bear on their various problems. Maxwell's proofs reflect the mathematics of 
Cambridge at mid-century where the curriculum incorporated standards of early 
nineteenth-century France. Boltzmann's proofs reflect the mathematical standards 
of Germany through Andreas von Ettingshausen at the University of Vienna. His 
proofs were more rigorous, and eventually physics became mathematics.63 Boltz
mann realized more clearly and quickly than Maxwell that the mathematics actually 
removed the necessity of considering the particulars of the molecules' interactions. 
The molecules in motion in the gas become just so many "individuals" in differ
ent states of motion and "if the number which on average have known states of 
motion stays constant, the characteristics of the gas remain constant." During a 
collision, not specified, the states of the molecules involved changed, represented 
by a change in their kinetic energy from x to S but in equilibrium the energy, E, 
of the gas remained constant. Boltzmann constructed the quantity E, an integral 
of functions of the coordinates, velocities and density of all the molecules in the 
gas. Through mathematical manipulations Boltzmann expressed E as64 

E = loc f(X,t)[log~,t) -l]dX. 

To examine the rate of change of E, Boltzmann reconstituted E, then dE / d t in 
the form 

dE _l°Cl°Clx+x' logf(X,t)[f f(x+x'-s,t) _ f(x',t) f(X,t)] 
- r.; (s, t) vf c; r.;. 

dt 0 0 0 yX sv'x+x'-s yX' yX 

He examined the behavior of the right hand side of this equation, and through his 
use of particular integration techniques and changes of variables, the above was 
reduced to 

dE ll°C 1°C lx+x' log(ss') [, ,] , - = - aa - 5S rdxdx ds. 
dt 4 0 0 0 aa' 

where 
f(x, t) , f(x', t) 

s - --- s - -=---=~ -y'x'-y'xi' 

63 The development of Boltzmann's statistical ideas are discussed in Brush The Kind of 
Motion we call Heat, vol. 1,566-616, and Kuhn, Black Body Radiation. 

64 Boltzmann, "Weitere Studien tiber das Warmegleichgewicht unter Gasmolekiilen," Ber. 
Wein 66 (1872): 275-370, translated in Brush, Kinetic Theory, 3 vols. (New York: 
Pergamon, 1966), vol. 2, 88. 
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and 

!(;, t) 
a=---

~' 

, 
a = 

!(x+x'-;,t) 

";x +x' - ~ 

r = "J;"Xi1/l(x, x', ~). 

The function 1/1 depended on the type of collision and remained unspecified. ! (x , t) 

represented the number of molecules in unit volume whose kinetic energy lay 
between x and x + dx. The product 

55' [, 'J log-- aa - 5S 
aa' 

was intrinsically negative. Whatever mechanical system one chose, a quantity 
existed that had the properties of the thermodynamic relation - f d Q / T < 0, for 
irreversible cycles. For such a system in equilibrium, 

!(x, t) = Cy'xe-hx • 

The properties of the physical system came directly from the behavior of the 
mathematics. 

From criticisms of his gas theory, Boltzmann was goaded into rethinking the de
termination of thermal equilibrium in terms of probability alone. He reinterpreted 
the expression for entropy in terms of the number of ways the total energy of a 
gas could be distributed among the molecules constituting the gas.65 Boltzmann 
assumed that the probability of the energy state for the gas was proportional to 
the number of ways it could be constituted on a molecular level. Entropy was 
directly related to probability without any considerations of the structure of in
dividual molecules or their interactions with their fellow molecules in the gas.66 

Even if the gas was initially in an improbable energy state, the system would pass 
to a more probable one, and finally, if left undisturbed, to the most probable state, 
that of thermal equilibrium.67 

65 Boltzmann, "Uber die Beziehung zwischen dem zweiten Haupsatze der mechanischen 
Wiirmetheorie und der Wahrscheinlichkeitsrechnung, respective der Siitzen tiber des 
Wiirmegleichgewicht," Ber. Wien 76 (1877): 73. See also Boltzmann, Lectures on Gas 
Theory, Stephen G. Brush, trans. (Berkeley CA: University of California Press, 1964) 
chap. 1. 

66 Boltzmann also published papers on the mathematical aspects of kinetic theory and 
statistical mechanics. See Boltzmann, "Uber die Integrallinearer Differentialgleichungen 
mit periodischen Koeffizienten," Ber. Wien 18 (1868): 54-59, "Einige allgemeine Siitze 
tiber Wiirmegleichgewicht," same journal 63 (1871): 679-711, "Uber die Aufstellung und 
Integration der Gleichungen weIche die Molekularbewegungen in Gasen bestimmen," 
same journal 14 (1876): 503-552. 

67 Objections to the physical implications of Boltzmann's argument in his 1872 and later 
papers are discussed in Brush, The Kind of Motion, vol. 2, 602-608. 
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Boltzmann's papers were carefully constructed mathematically. He also ap
preciated Kirchhoff's, and what he understood to be Hertz's, goal "to represent 
directly observed phenomena in basic equations, without the colourful wrappings 
of hypotheses that our imagination lends them.,,68 

Boltzmann was unsatisfied with a purely statistical interpretation of entropy as 
he explored mechanical models in the 1880s.69 Nor was he consistent in his un
derstanding of the relationship between probability and the second law. However, 
even in popular lectures on the second law, Boltzmann retained its probabilistic 
explanation.7o His careful mathematics was not pedantic but came from the train
ing he received at the university of Vienna, and in a real sense, for Boltzmann 
mathematics was always the center of physics, although he never denigrated or 
abandoned the use of models and imagery. However, he never confused the help 
they offered in reaching the "bare equations" with their actual existence in na
ture. He combined a vigorous defense of the use of atoms and mechanical models 
against the Energeticists coupled with equally pointed comments on the inadequacy 
of their mathematics.71 Yet for Boltzmann, the intellectual attraction and beauty 
of mathematics paled before physics precisely because mathematics did not deal 
with the real world. 

In a similar fashion, and in the same decade, physicists began to see the need for 
mathematical representations of vector quantities and an algebra that distinguished 

68 Boltzmann, "On the Methods of Theoretical Physics,"5-12, 8-9. This argument is re
peated in Boltzmann, "On the Development of the Methods of Theoretical Physics in 
Recent Times," 77-100, 87-91 along with arguments about the dangers of relying on 
mathematics alone in Boltzmann, Theoretical Physics and Philosophical Problems, Se
lected Writings, Brian McGuinness, ed. (Boston: Reidel, 1974). 

69 Boltzmann, "Uber die Eigenschaften monozyklischer und anderer damit verwandter Sys
teme," f. ReineAngew. Math. 98 (1884): 68-94: 100 (1887): 201-212. The examination 
of these mechanical systems, some of whose internal motions did not affect the sys
tem's macroscopic thermodynamic properties, was begun by Helmholtz, "Principien der 
statik monozyklischer Systeme;' f. ReineAngew. Math. 97 (1884): 111-140,317-336. 
See Gunther Bierhalter, "Die von Hermann von Helmholtzschen Monozykel-Analogien 
zur Thermodynamik;' Arch. Hist. Exact Sci. 29 (1983): 95-100, "Zu Hermann von 
Helmholtzs mechanischer Grundlegung der Wiirmelehre aus dem Jahre 1884," same 
journal 25 (1981): 71-84; "Boltzmanns mechanische Grundlagung des zweiten Haup
satzes der Wiirmelehre aus dem Jahre 1866," same journal 24 (1981): 195-205,207-220. 

70 See Boltzmann, "Relationships of Applied Mathematics," in Physics for a New Century: 
Papers presented to the 1905 St. Louis Congress, K. R. Sopka, compiler (New York: AlP, 
1986), 267-279, Boltzmann, "On the Significance of Theories," and "The Second Law 
of Thermodynamics," in Theoretical Physics, 33-36, 12-32 respectively. 

71 On Energetics see Boltzmann, "Zur Energetik," Ann. Phy. 58 (1896): 39 and "Uber 
die Unentbehrlichkeit der Atomistik in der Naturwissenschaft," same journal 60 (1897): 
231. 
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their behavior from that of scalars.?2 For this we again need to return to Maxwell 
and his examination of mathematics from the point of view of the physicist. 73 

Maxwell pointed to an important distinction for physicists between scalar and 
vector quantities, recognized by Hamilton in his work on quarternions. He indi
cated the mathematical results from quarternions and what they indicated about 
the properties of scalars and vectors. However, while quarternions were important 
for geometry they were not what was needed by physicists because the distinc
tions between scalars and vectors needed to be kept in mind at all times. Using 
quarternions, kinetic energy for example was always negative. Maxwell focussed 
on Hamilton's operators and what they represented physically as well as present
ing to the mathematicans his own nomenclature for these operators, convergence 
(divergence), curl, and the combination of the two. 

Maxwell persisted. His correspondence with Peter Guthrie Tait over the next 
decade frequently included comments or questions about quarternions or results 
he had deduced. They appear most conspicuously in Maxwell's Treatise. He in
troduced them in the mathematical sections of his introductory chapter, along with 
the operators above and Laplace's operator. Throughout both volumes Maxwell 
noted the quarternionic equivalent of results. In his second volume vectors were 
introduced into his mathematical arguments themselves and he began to stress the 
type of quantity being dealt with. However, extensive mathematical manipula
tions were in Cartesian form, and where appropriate, with references to Hamilton 
or Tait's work on quarternions. His most extended discussion was in his chapter on 
the electromagnetic field. Maxwell equations appear in vector form. Yet although 
appearing throughout the text, vectors were marginal; the main mathematical ar
guments were in Cartesian form, their results expressed in the equivalent vector 
format. 74 

For over a decade work proceeded in electrodynamics without the benefit of 
vector algebra. Heaviside's introduction of them into the subject was piecemeal. 
Judging from reactions from his colleagues their usage was neither obvious nor 
easy for physicists accustomed to thinking in Cartesian, or quarternionic terms.75 

Responding to Heaviside's demonstration of the usefulness of vectors in electrody-

72 This section depends heavily on Michael Crowe, A History of Vector Analysis: The 
Evolution of the Idea of a Vectorial System (New York: Dover reprint of 1967 edition, 
1985), although I disagree on some specific points. 

73 Maxwell, "On the Mathematical Classification of Physical Quantities," Proc. London 
Math. Soc. 3 (1871): 224-232. He had begun this discussion in Maxwell, "Address to 
the Mathematical and Physical Sections of the British Association," Rep. British Assoc. 
(1870): 1-9, reprinted in Scientific Papers, vol. 2, 215-229, and Maxwell on Molecules, 
Garber, Brush and Everitt, eds. 89-97. 

74 Maxwell Treatise, vol. 1, 10-32, vol. 2, 247-259. 

75 See also Crowe, Vector Analysis, on George Francis FitzGerald's review of Heaviside's 
Electromagnetic Theory, and his use of vectors, 175-176. 
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namics, Hertz replied that it was difficult to follow Heaviside's symbols, especially 
as he did not use the vector potential at all. He could not understand Heaviside's 
symbols and "mode of expressing yourself. You know mathematical symbols are 
like a language and your writing like a remote dialect of it...,,76 By this date in 
his papers on electromagnetism, Heaviside had published on vector analysis and 
its use in electromagnetism. However, it was not until 1893 with the publication 
of Heaviside's Electrical Theory that he treated vector analysis systematically, if 
polemically. From this date vectors began to make some impact on physicists.77 

Heaviside's vector analysis was taken up, not in Britain but in Germany in 
the textbook of August Foppl on Maxwell's theory. The first part of this text is 
a systematic exposition of vector analysis necessary for electrodynamics. The 
definition of a vector is followed by that for the unit vector, the vector product 
and the transformation of coordinates. Foppl also introduced examples, using as 
his vector the velocity of a particle, an indication that he saw extensions of their 
use in mechanics. He introduced the key differential operators and, again taking 
examples from mechanics, demonstrated their importance and also illustrated their 
relationships with one another. In the last section to this chapter he dealt with the 
integration of vectors and the potential as a scalar. His final words on the subject 
were on the Laplacian operator. The whole text was written in vector form, using 
Maxwell's nomenclature throughout. 78 

Lorentz's Versuch appeared the following year. Despite the popularity of Foppl 's 
textbook, vectors did not replace Cartesian methods easily or quickly even in the 
domain of electrodynamics. In 1904 Lorentz still published his equations in both 
Cartesian and vector forms. 79 Albert Einstein's initial papers on electrodynamics 
and relativity were similarly in Cartesian form. Vector analysis seeped into the 
research and probably the teaching of physics in Germany in the last decade of the 
nineteenth and the first decade of this century.80 It was not until German mathemati-

76 Quoted in J. G. O.'Hara and Willibrand Pricha, Hertz and the Maxwellians, (London: 
Peter Peregrinius, 1987), Hertz to Heaviside, March 21,1889,62-63. 

77 See Crowe Vector Analysis 169-174 for Heaviside's system and 174-177 for its reception. 
I leave any account of Gibbs' and Grassmann's work on vector analysis until the next 
section. 

78 AugustF6ppl, Einfiihrung in die Maxwell'sche Theorie der Elektricitiit: mit einem ein
leitenden Abschnitte iiber das rechnen mit Vectorgrossen in der Physik (Leipzig: B. G. 
Teubner, 1894). See also Crowe, Vector Analysis, 176,226-227. 

79 Lorentz, "Electromagnetic phenomena in a System moving with any Velocity less than 
that of Light," Proc. Amsterdam K. Akad. Sci. 6 (1904). 

80 Neither Woldemar Voigt, Kompendium der Theoretischen Physik (Leipzig: Veit, 1895) 
2 vols., nor Paul Drude, The Theory of Optics C. Riborg Mann and Robert A. Millikan, 
trans. (New York: Dover reprint of 1902 edition) and other theoretical physics texts used 
vectors. However, Larmor,Aether and Matter (Cambridge: Cambridge University Press, 
1900) devoted a section to vectors and their advantages for electrodynamics. However, 
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cians turned their attention to the mathematical possibilities of physical problems 
thai the power and possibilities of vector, then of tensor analysis, began to shift 
the mathematical language of physics decisively away from that of Descartes, in a 
process which forged a new relationship between mathematicians and physicists. 

Physicists Versus Mathematicians 

The transitions to these new relationships were neither smooth nor easy. There 
were early and acrimonious confrontations between mathematicians and physi
cists. Tait and G. G. Knott, ardent quarternionists, took Gibbs to task because of 
his misuse of Hamilton's mathematical invention. Their criticism was that Gibbs 
had merely invented a new notation and had actually made mathematical matters 
worse by not using Hamilton's quarternions. From the point of view of the math
ematician's, Gibbs had missed the mathematical point of quarternions. And from 
the point of view of the history of mathematics Gibbs work has been judged as 
"not highly original."81 Yet from his first publications Gibbs went beyond Tait 
and others in his ability to treat physical problems. He demonstrated how vector 
analysis could be used in astronomy, even when his main purpose was to teach its 
methods to students.82 

Gibbs did not produce a systematic study of vector algebra to really bring out 
its power to make physical processes visible. In contrast Oliver Heaviside both 
transformed vector algebra and Maxwell's electromagnetism. The latter was sim
plified into a geometrically vivid form centered on the notions of electric and 
magnetic force rather than on the analytical potential functions. Heaviside intro
duced a much improved notation and developed vector algebra in more detail than 
Gibbs.83 While he derived his vector analysis from Hamilton's quarternions he did 
it for the purpose of expressing electromagnetic theory simply and graphically. 
During the 1890s quarternionic mathematicians argued against this truncated al
gebra. In Great Britain Heaviside prevailed while the independent development of 
vectors by Hermann Grassmann gained acceptance on the continent. 84 

Heaviside was not so fortunate in his development of operational calculus. The 
Royal Society refused him publication in its Proceedings even though this was 
an accepted perk for society fellows. To explain this refusal Hunt invokes the 
shifting boundaries of mathematics, and that mathematicians now claimed the 

mathematics was not a prominent aspect of his argument here. 

81 See Michael J. Crowe, History 0/ Vector Analysis. 

82 Gibbs, "On the Determination of the Elliptical Orbits from three Complete Observations," 
Mem. Nat. Acad. Sci. 4 part II (1889): 79-104. 

83 Heaviside, criticized for the compactness of his arguments noted that Gibbs' text on 
vectors was "a condensed synopsis." See Crowe, History o/Vector Analysis, 158. 

84 Crowe, History o/Vector Analysis, chap. 6, and Hunt, The Maxwellians, for the specifics 
of the arguments over vectors and Heaviside's polemical skills. 
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self-generation of mathematics from within. Mathematics generated from phys
ical problems was no longer rigorous enough.85 The boundaries of mathematics 
had certainly shifted. However, those trying to practice a form of mathematics 
that did not spring from the consideration of physical problems formed a besieged 
minority in the discipline within the British mathematical community.86 Mathe
matical physics, that is mathematics that developed out of physical problems, was 
still a dominant tradition in Britain, especially at Cambridge. Heaviside's work 
in operational calculus was mathematically unimportant, despite its future use by 
engineers and physicistsP In the case of Heaviside and operational calculus, the 
opposition was from one mathematician, William Burnside, on the Council of the 
Royal Society and politically positioned to thwart Heaviside's ambitions. 

Tn th", "'''T1v tUl",nti",.th C'P.ntI1TV nPTTTI"n TTI"thpTTI"tiri"n" T",,,nnpypr! VPC'tnT" fTnTTl 

the physicists, and rewrote the history of its development. Their historical ac
counts subsumed theoretical physics within the mathematician's forms of mathe
matical physics. Mathematicians' systematizations of recently developed domains 
of theoretical physics such as electrodynamics, and later special relativity, brought 
clarification and gave physicists new physical insights into the possibilities of that 
theory. However, mathematicians were unconcerned with the operations of nature 
and aimed at mathematical systematization or the exploration of a mathematical 
language. They were therefore able to systematize theories already in mathemat
ical form, yet could not, much to the frustration of Hilbert, actually encompass 
theoretical physics. Mathematicians did not have to ponder the implications of 
their results for the structure and functioning of nature. This was the dividing line 
between the two disciplines. 

In the 1890s the isolation of mathematics and physics, and between mathemati
cians and physicists, was the subject of comment in German academic departments, 
then of some concern. This anxiety came from different sources within the two 
disciplines but led ultimately to a greater interest in the research interests of each 
other.88 Just as physicists publicly bemoaned the growing isolation of mathemat
ics from their field and the abstractions of mathematicians' research and teaching 
German mathematics changed yet again. 

Symbolizing this reorientation of mathematics as a discipline is the career of 
Felix Klein. Klein was a student of Julius Plucker and had been his laboratory 

85 Hunt, "Rigorous Discipline: Oliver Heaviside versus the Mathematicians," in The Liter
ary Structure of Scientific Argument, Peter Dear, ed. 72-96. 

86 See Ivor Grattan-Guinness, "University Mathematics at the Turn of the Century," Ann. 
Sci. 28 (1972): 369-384. See also G. H. Hardy A Mathematician 'sApology (Cambridge: 
Cambridge University Press, 1920). 

87 Paul J. Nahin, Oliver Heaviside: Sage of Solitude (New York: IEEE Press, 1988). 

88 For the place of mathematics within the German university system see Gert Schubring, 
"Germany to 1933," in Companion to History and Philosophy of Mathematics Grattan
Guinness ed., vol. 2 Part II Higher Education and Institutions, 1442-1456, 1448-1453. 
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assistant in physics in the 1860s. From these beginnings Klein's research lay in 
the then unfashionable and professionally disastrous field of geometry. In this he 
joined other mathematicians such as Alfred Clebsch who shared Klein's interest in 
the mathematical problems that emerged from technical and physical problems.89 

Klein combined extraordinary mathematical ability with equally forbidding po
litical and organizational talents that forced long-term changes in the profession. 
With the rapid development of an industrial economy, Technische Hochschule be
gan to replace universities as the mathematical training ground for engineers. In 
an effort to halt the hemorrhage of students and maintain a future for mathematics, 
Klein set out to recapture the teaching and what he considered the proper place of 
mathematics with respect to the exact sciences and engineering.90 

In his efforts Klein successfully led university mathematicians in retaining con
trol of the teaching of their subject in higher education. He also cultivated and 
broadcast the idea that mathematics was the key to all the sciences and engineering. 
Physics and engineering became "applied mathematics," although Klein's mean
ing of this term was crucially vague.91 However, Klein's notion of mathematics 
as being key to the development of these other disciplines did not lead him to see 
them as equal in this endeavor. Mathematics was not at the center of some vast 
horizontal network binding all the specialist studies together. It was an hierarchi
cal relationship. Klein saw the connections of mathematics to engineering and 
the sciences as the key to revitalizing the discipline and becoming the intellec
tual center for rapidly fragmenting technical fields that were quickly losing touch 
with one another. However, mathematics subsumed all these other fields within 
itself. While the applied sciences were a source of new discoveries in mathematics, 
they were intrinsically inexact. Only pure mathematics developed from axiomatic 
foundations could lead to the structure required by the other technical knowledge 
bases. 

89 Klein's interest in physical problems as a source for mathematics can be traced back to his 
Erlanger Program of 1871. See David Rowe, "Felix Klein's' Erlanger Antrittsrede' ," Hist. 
Math. 12 (1985): 123-141, which was his inaugural lecture as extraordinary professor at 
Erlangen. The text of his lecture is reproduced here. For more details on Klein's career 
and its personal costs see Rowe, "Klein, Hilbert and Gottingen Mathematical Tradition." 

90 The details of Klein's twenty year campaign is complicated by fundamental changes in 
German higher education. How this entwines with his vision of mathematics and its posi
tion with respect to the exact sciences and engineering is detailed in Lewis PyensonNeo
humanism and the Persistence of Pure Mathematics in Wilhelmian Germany (Philadel
phia PA: American Philosophical Society, 1983). See also Rowe, "Klein, Hilbert, and 
Gottingen," Gert Schubring, "Pure and Applied Mathematics in Divergent Institutional 
Settings: the Role and Impact of Felix Klein," in History of Modern Mathematics, Rowe 
and McCleary, eds. vol. 2,171-220, and Lewis Pyenson, "Mathematics, Education, and 
the Gottingen approach to physical Reality, 1890-1914," Europa II (1970): 91-127. 

91 Schubring has examined Klein's writings on this term. See Schubring, "Pure and Applied 
Mathematics," 192-197. 
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While statements like these in the context of changing educational policies led 
to clashes with the very groups Klein hoped to cultivate, he was able to convince 
both government and private resources to underwrite these intellectual visions in 
more concrete forms. He also gathered a group of mathematicians around him at 
G6ttingen that seriously investigated the mathematics of the physical sciences and 
developed a program that attracted many bright students to this newly invigorated 
study. These efforts, begun in the 1890s, came to fruition during the second decade 
of the twentieth century. 

Whether physicists or engineers would accept his vision and that of likeminded 
mathematicians at G6ttingen, among the most outspoken of which was David 
Hilbert, of the role of mathematics in their respective specialities is another matter. 92 

Physicists in particular would more than once echo Einstein's complaint that the 
mathematical axiomatization of an area of physics could be useful but could only be 
done after the fact. So far as the development of physical theory in an unchartered 
domain, the axiomatic approach offered by mathematicians was useless.93 

In their renewed encounters between roughly 1900 and the first world war, 
a changed relationship between these two disciplines would emerge that would 
reshape both disciplines. One of the symptoms of this renewed relationship was 
the growing interest of mathematicians in the mathematics physicists now needed 
for their research. During the early decades of this century texts by mathematicians 
appeared on vectors, the partial differential equations of physics, etc.94 

However, the first example that we find of a mathematician seriously involved 
in the scrutiny and then reworking of a contemporary field of physics lay not in 
Germany but France. This is not surprising seeing that the structural changes that 
the universities underwent in France in the nineteenth century did not include the 
separation of the "pure" from the practical. If anything, after the Franco-Prussian 
War, political changes in the funding of higher education in France reinforced the 
mutual support of theoretical and practical interests of French academics in the 

92 See David Hilbert, "Die Grundlagen der Physik," Math. Ann. 92 (1924): 1-32, in 
Gesammelte Abhandlungen, 3 vols. (New York: Chelsea reprint, 1965), vol. 3, 258-289 
on the general theory of relativity, and, "Naturerkennen und Logik," Naturwissenschaften 
(1930): 959-963, Abh. vol. 3, 378-387. 

93 For such an axiomatic approach see Hilbert, " Bemerkungen tiber die Begrtindung der 
eiementaren Strahlungstheorie," Gottingen Nach. (1912): 773-789, (1913): 409-416, 
(1914): 275-298 in Gesammelte Abhandlungen 3 vols. (New York: Chelsea reprint of 
1935 edition, 1965), vol. 3, 217-257. 

94 See Heinrich Weber, Die partiellen Differential-Gleichungen der mathematischen Physik 
nach Riemann's Vorlesungen (Braunschweig: F. Vieweg, 19900-01), 2 vols., Richard 
Gans, Einfilhrung in der Vektoranalysis mit Anwendungen auf die mathematische Physik 
(Leipzig: Teubner, 1905). Also see the articles in Encyklopiidie der mathematischen 
Wissenschaften. Mit Einschluss ihren Anwendungen, Felix Klein ed. (Leipzig: Teubner, 
1904-1922). 



352 Epilogue 

sciences.95 Henri Poincare followed in a long line of nineteenth-century French 
mathematicians who found in physical and other problems a fruitful source for 
research in mathematics. He was also used in the early twentieth century by 
German mathematicians as a contemporary example of what mathematicians could 
accomplish for physics. 

Poincare's involvement with theoretical physics lasted from the 1880s until 
his death. In his examinations of the problems of physics he chose those of 
current importance to theoretical physicists. Poincare saw his work in mathematical 
physics as of two kinds: Work on the differential equations of physics and criticism 
of physical theories.96 In his examination of the differential equations of physics he 
examined equations of various forms, the simplest of which was Vu = ku, where 
V was the Laplacian, then moved to solutions of equations of the form V u = 
k(du/dt) and Vu = k(d2u/dt2). Most problems of physics could be reduced to 
solutions of equations of these forms of increasing mathematical difficulty. His 
solutions were in the form of functions with particular properties under certain 
mathematical conditions. He did not specify the physical significance or meanings 
of these mathematical conditions. 

Poincare's work lay within the tradition of French mathematical physics that 
we have discussed previously. However, to determine the significance of his work 
across disciplinary boundaries is not necessarily straightforward. Until 1908 his 
contemporaries in physics saw his work in electrodynamics as that of an astute 
critic not as a developer of an alternative theory of electrodynamics or the electron. 
And this needs consideration, given the judgments made about his importance in 
the development of the theory of special relativity. 

His most sustained work was on the theories of electrodynamics and optics.97 

He initially critiqued existing physical theories as he reduced them to mathematical 
form. However, his criticisms were based upon logical and mathematical criteria, 
not their physical content.98 He compared and judged electro dynamical theories 

95 Terry Shinn, "The French Science Faculty System, 1808-1914: Institutional Change and 
Research Potential in Mathematics and the Physical Sciences," Hist. Stud. Phys. Sci. 16 
(1979): 271-332. See also Maurice Crosland, Science Under Control. 

96 Poincare, "Analyse de ses travaux scientifiques," Acta Math. 38 (1921): 116-125, in 
Oeuvres, 9 vols. (Paris: Gauthier-Villars, 1954), vol. 9., 1-14. 

97 Poincare also published papers on the mechanical foundations of thermodynamics, ther
mal conduction, elasticity, capillarity and the theory of errors as well as on electricity 
and optics. Aspects of Poincare's work on electrodynamics and optics initially appeared 
as a series of papers, then reappeared as published lectures in the 1890s and early 1900s. 
The papers took up particular aspects of the subject matter (electric waves) or the work of 
particular physicists including Weber, Larmor, Lorentz and Hertz. The lectures were pub
lished as Poincare, tlectricite et Optique. La lumiere et les theories electrodynamiques 
Lectures at the Sorbonne, 1888, 1889, 1899 (Paris: Carre Naud, 1901). 

98 Olivier Darrigol, "Henri Poincare's Criticism of Fin de Siecle Electrodynamics," Stud. 
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through their differential equations, reducing them in many cases to mathematical 
equivalence. Their physical incompatibilities or differences were irrelevant.99 This 
made a difficult subject deceptively simple and disguised the very real conceptual 
differences between the authors he discussed. For Poincare their essential content 
lay in their mathematics. 

No matter what their age or interest in current physics Poincare examined the
ories within an area of his interest as if they were of equal significance to his 
contemporaries in physics. Thus he examined both mechanical and electromag
netic theories of light with the same seriousness. He did not seem to understand 
that by 1890, many of the former had been abandoned for physical reasons. lOO In 
these ongoing studies experiment and mathematical consistency was of paramount 
importance, physical imagery malleable. Assumptions made by physicists were 
sometimes turned directly into mathematical forms, sometimes were the result of 
convoluted mathematical manipulations. He introduced Lorentz's transformation 
without its physical justification, the constants within its terms were designated 
as arbitrary and yet to be determined. For Poincare, Lorentz's electromagnetic 
field equations were "not altered by a certain transformation (which I will call the 
Lorentzian)."lOl In the fuller version of this paper Poincare identified this type of 
transformation as a group.102 

In Lorentz's papers the constants in his transformations were physical. Poincare 
cast them adrift and argued at length to demonstrate that Lorentz had assumed 
certain values for these constants. From this he further argued that Lorentz's 
electrodynamics was the only form consistent with the inability to detect abso
lute motion. His main target here was Max Abraham.103 Such a procedure was 
mathematically allowable, physically it was arbitrary unnecessarily convoluted and 

Hist. Phil. Mod. Phys. 26 (1995): 1-44, notes this foundation for Poincare's judgments, 
although he still treats his work as physics, not mathematics. Darrigol also notes the 
clarity and the quality of his language throughout his papers and lectures. 

99 Darrigol, "Poincare," also notes that he conflated physical ideas and reduced one theory 
(Maxwell's) to a special case of another (Helmholtz's). 

100 This was, and still is a strong tradition in mathematics where the mathematics of the 
eighteenth century can still be a stimulus for research in mathematics whereas in physics 
such is not the case. In the twentieth-century physics Newton's mechanics is of historical 
but not of research interest. 

101 Poincare, "La dynamique de l'electron," Compte Rendu, 140 (1905): 1504-1508) in 
Oeuvres, vol. 9, 489-493, 490. 

102 Henri Poincare, "Sur la dynamique de l'electron," Rendiconti del Circolo matematico di 
Palermo 21 (1906): 129-176, in Oeuvres vol. 3, 494-550, 513-515. This long paper 
was written in reaction to Lorentz, "Electromagnetic Phenomena in a System moving 
with any Velocity smaller than that of Light," Proc. Amsterdam K. Akad. Sci. 6 (1904): 
809-831, and as an attempt to improve it. As Darrigol, "Poincare," indicates Poincare 
and Lorentz corresponded closely throughout this decade. 

103 Poincare, "l'electron," Rendiconti. He compares Abraham's and Lorentz's hypotheses, 
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seriously muddied the physical arguments. 
Poincare's shortcomings should not stop us from noting his importance as a critic 

that lead Lorentz and Abraham to redirect their own ideas. His place outside of the 
physical mainstream allowed him to develop some radical ideas, whether reached 
on mathematical or physical grounds. He announced these ideas, the principle 
of relativity, the speed of light as the upper limit of all velocities, and the death 
of the ether before developing them systematically.104 For Poincare local time is 
a consequence of the principle of relativity, that we can only measure relative 
not absolute velocity. Einstein developed a kinematics based upon this principle 
raised to a postulate and added another, that the velocity of light is the same in 
all measuring systems. These assertions affected the expression and interpretation 
of other key phenomena involving light and moving bodies, Doppler effect and 
radiation pressure. The range of implications for physics in Einstein's case was 
much broader than those from Poincare's theory of the electron. 

In his criticisms Poincare returned repeatedly to a mathematical test, to under
stand whether or not a particular theory, or his mathematical expression of that 
theory, conformed to Lorentz's transformation, a mathematical judgment in his 
case, or whether they conformed to his experimental counterpart, "the impossibil
ity of demonstrating absolute motion." Not that physicists did not also use the same 
arguments but they were enmeshed, as Lorentz's, in a net of physical arguments. 
Poincare's net was mathematics and observation, not physical theory. 

This plunge into Poincare's work has two goals. First, to illustrate the different 
ways in which a mathematician deeply and on a long term basis went about math
ematical physics, and secondly to illustrate that to claim a rivalry in the history 
of the development of relativity theory between Einstein and Poincare makes no 
historical sense. They were going about two different sorts of business. Their 
goals in these enterprises were also quite different. 

To make electrodynamics into a deductive, mathematically consistent theory is 
one enterprise. To just think of Einstein's theory as developing a consistent physical 
theory of electrodynamics without mentioning his broader goals in examining 
the electrodynamics of moving bodies was quite another. Poincare's search was 
dominated by the standards of mathematics: Einstein was creating a physical 
theory. Poincare's began with Lorentz's theory of the electron and ended in trying 

523-529. The Abraham paper Poincare refers to is Abraham, "Dynamik des Electrons," 
Gottingen Nach. pt. 1 (1902): 20-41. 

104 See Poincare, "The Principles of Mathematical Physics," Physics at St. Louis, 281-299. 
The argument he made for the upper limit on velocity was based on the limitations of 
measurement techniques. Because measurement techniques were visual and dependent 
on the velocity of light we cannot measure any velocity greater than that. See also, 
Poincare, "La dynamique de l'electron," Rev. gen. sci. pures et app/iquees 19 (1908): 
386-402, in Oeuvres, vol. 9, 551-586, 574. He argued for the elimination of the ether, 
575-576. 
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to improve on and them develop his own. From the beginning Einstein was out to 
refashion both mechanics and electrodynamics. Both based the idea of the death 
of the ether on experimental grounds, the relativity of measurement that leads to 
the notion of local time and the velocity of light as an upper limit. In addition, 
and not incidentally, there was Einstein's commitment to a particular aesthetic for 
physical explanation with which he opened his first relativity paper. Explanations 
should reflect the symmetries of the phenomena they are developed to explain. 

What then did they accomplish with these ideas? Poincare could not release 
himself from the notion that somehow time was a coordinate different from the 
other space coordinates. He explored local time and discussed a four-dimensional 
space with coordinates x , y, z, t.J=I, but in relation to his discussion ofthe Lorentz 
transformation group and the invariance of certain functions that after manipulation 
demonstrated the velocity of propagation of gravitation. Einstein merely remarked 
on the group character of his transformations, nothing more. He discussed his 
transformation equations in a section on "The physical meaning of the equations 
concerning moving rigid bodies and clocks.,,105 Einstein made the rest of his first 
paper on special relativity an exploration of some of the implications for mechanics, 
electrodynamics, and optics of using his postulates, as well as placing time on the 
same footing as space coordinates. The mathematical apparatus was minimal. He 
imported equations as he needed them. The steps that drove the argument and 
the mathematics forward were physical. While the mathematical expression of 
electrodynamics might be the same as in earlier theories the physical meanings 
of those equations needed rethinking. 106 This was not an exhaustive investigation 
but an exploration using particular physical cases such as the Doppler effect, and 
radiation pressure. 

At this point Whittaker's judgments, and those that followed him, on the respec
tive merits and claims of the mathematician Poincare versus the physicist Einstein 
were not wrong but wrongheaded.107 His account only stands if the mathemati
cal form is the solution, no further explanation being necessary. One must also 
assume that the statement of physical implications at the end of a string of anal
ysis is entirely equivalent to its statement as a matter of physical principle. That 
equivalence encompasses the theory that follows, worked out in detail, with re
spect to the changes in the interpretation of physical processes expressed in the 
equations that follow from those assumptions. Assuming Poincare's priority here 

105 Poincare, "I 'electron," Rendiconti, 541-543. Albert Einstein, "On the Electrodynamics 
of Moving Bodies," Ann. Phy. 17 (1905): 891-921, in The Collected Papers of Albert 
Einstein, vol. 2, Anna Beck, trans. (Princeton NJ: Princeton University Press, 1989), 
140-171,156. 

106 Einstein, "On the Electrodynamics," 159. 

107 Edmund Whittaker History of the Theories of Aether and Electricity, vol. 2, chap. II The 
Relativity Theory of Poincare and Lorentz. In this chapter Whittaker consistently diverts 
attention and credit from physicists to mathematicians. 
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is to equate foundational ideas with theory development itself. This is no longer 
feasible. Principles do not uniquely define the theories based upon them. Even if 
Einstein had taken Poincare's statements with respect to the velocity of light, the 
impossibility of knowing absolute motions, and the death of the ether, the theory 
of special relativity is still not specified. Neither Poincare nor Lorentz developed 
it. Physics is more than mathematical deductions. Einstein explored the impli
cations of what were for Poincare conclusions. The physical issues that Einstein 
realized was of paramount importance, simultaneity, needed more exploration and 
explanation of its mathematical expression for its physical implications for both 
mechanics and electrodynamics to emerge. Poincare's mathematics was still tied 
to an older form of mechanics. 

Therefore while their physics might be expressed in the same mathematical 
forms, as was Lorentz's for that matter, the meanings that each author drew from 
these equations were quite different. This does not rule out the possibility of shared 
concerns and interests between mathematicians and physicists, or that they see each 
other as rivals, or that the mathematicians might not see physics as simply a branch 
of mathematics, that is as applied mathematics. Nor does this get rid of the problem 
that physicists did not at times appreciate the concerns or potential of mathematics 
until the work of mathematicians so overlapped their own research interests that 
mathematical solutions become obviously relevant. All these dynamics developed 
in the German mathematics and physics community in the first two decades of this 
century. From across their disciplinary boundary, mathematicians and physicists 
could benefit each other, yet think and work in terms of standards and expectations 
of their respective fields. 

Throughout the first decade of his career in physics, Einstein's output was prodi
gious. His attention was focussed on one issue, the disparity in physics between 
descriptions of mechanical versus electromagnetic phenomena. He examined this 
disparity from several different points of view, largely from that of mechanics. !Os 
In addition he wrote many review articles on thermodynamics, as well as papers on 
the size of molecules, and the implications of quantum theory. By comparison the 
papers in special relativity were few in number. He addressed some specific points 
that emerge from his 1905 paper, but it was Max Planck who began to explore 
relativistic dynamics. Einstein was working in other directions. 

The paper that began to turn his attention back to relativity was that of Hermann 
Minkowski of 1908. However, this was not because Minkowski in his work was 
addressing Einstein's papers on relativity directly.109 His starting point was the 

108 His early commitment was to the "molecular-kinetic" theory of heat and the fundamental 
nature of the laws of thermodynamics, as interpreted statistically. For a discussion of 
mechanics at the turn ofthe twentieth century and the role of thermodynamics in Einstein's 
work see Martin Klein, "Mechanical Explanation at the End of the nineteenth Century,'; 
Hist. Stud. Phys. Sci. 1 (1969): 127-149. 

109 Lewis Pyenson, "Hermann Minkowski and Einstein's Theory of Relativity," Arch. Hist. 
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work of Poincare and Lorentz. 11o Minkowski located the "theorem of relativity" 
in the covariance of the original equations of Lorentz's electrodynamics of 1895 
through the transformations explored by Poincare. He took this as "purely mathe
matical." This theorem depended on the form of the differential equations for the 
propagation of waves with the velocity of light. 

Minkowski claimed that no one had as yet followed through the implications of 
this theorem for matter, hence it was as yet a postulate. Minkowski recognized Ein
stein's 1905 paper as the clearest on the postulate. However, Einstein's argument 
was based on phenomena and new ideas about the concept of time. The principle 
of relativity had not yet been formulated for the electrodynamics of moving bodies. 
Then, in vector form he stated the Lorentz equations for the electrodynamics of a 
moving body. These were rewritten to demonstrate their symmetry with respect 
to the indices attached to the four coordinates Xl, X2, X3, X4. Minkowski redefined 
the Lorentz transformation as a rotation and demonstrated that the equations of 
electrodynamics are invariant under such a rotation. For Minkowski the Lorentz 
transformation introduced a modification of the coordinate X4, the "time parame
ter." He then plunged into a short section on simultaneity. The Lorentz transform 
permits us to consider time exactly as we do the other three space coordinates. 
This, Minkowski claimed, should be easier for mathematicians as they were used 
to dealing with four dimensional and non-Euclidean geometry. Minkowski referred 
the reader to Einstein's 1905 paper for an account of the physical explanation. 

Minkowski constructed two types of vectors invariant under the Lorentz trans
formation, then demonstrated that the electromagnetic equations for a body at rest 
could be rewritten in terms of these types of vectors and were therefore themselves 
invariant. He turned to moving bodies and transposed the coordinate system to the 
moving body, with respect to which the electrodynamic equations for a body at 
rest must hold. He had already demonstrated that these equations were invariant 
under such a transformation, hence so were those for the moving body. 

Minkowski generalized his mathematical treatment of the Lorentz transforma
tion, putting the argument into matrix form.lll Theorems on particular matrices 
followed and their invariance under the Lorentz transformations. He pointed out 
that many results of electrodynamics simply fall out of the algebraic characteristics 

Exact Sci. 17 (1977): 71-96, established how little Minkowski knew or understood of 
Einstein's special relativity. 

110 In his first paper Minkowski referred to Lorentz, Versuch, and his piece for Klein's 
Encyklopiidie der mathematischen Wissenschaften on Maxwell's theory and electrons 
and and Poincare's Rendiconti paper. See Hermann Minkowski, "Die Grundgleichungen 
fUr die elektromagnetischen Vorgange in bewegten K6rpem," Gottingen Nach. (1908): 
53-111, in Gesammelte Abhandlungen, 2 vols (New York: Chelsea, reprint of 1911 
edition, 1967), vol. 2, 352-404, 352. 

111 The format of the equations in the first sections of the paper give away the direction in 
which Minkowski would take the argument. 
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and manipulations of these matrices. In a short addition Minkowski addressed the 
issue of mechanics. Newtonian mechanics was equivalent to mechanics with the 
relativity postulate if we assume the velocity of light is infinite. In the context of 
turning to the case when the velocity of light was finite, Minkowski introduced the 
geometric analog to the algebraic form he had worked with thus far. 

This first paper again subsumes the electrodynamics of moving bodies within 
an algebra and it was this form of Minkowski's paper to which Einstein and Ja
cob Laub, his first collaborator, responded. 112 Their response was to particular 
electrodynamical, not mechanical results in the paper. 

The reworked geometrical version of Minkowski's paper was to claim far more 
for mathematics than he ventured in his initial work.113 Space and time were 
joined in space-time, no longer could they be thought of separately. Orthogonality 
remained and within this geometry all the laws of mechanics and electrodynamics 
were invariant under particular group G c transformations.114 In space-time the 
relativity postulate as the requirement for invariance under these transformations 
became a much more grandiose claim. 

The postulate comes to mean that only the four-dimensional world of 
space and time is given by phenomena, but that the projection in space 
and in time may still be undertaken with a certain degree of freedom, I 
prefer to call it the postulate of the absolute world (or briefly the world
postulate ).115 

The laws of physics were written in the language of the geometry of this four 
dimensional space because "the validity of the world postulate, I like to think, is the 
true nucleus of the electromagnetic view of nature, which discovered by Lorentz, 
and further revealed by Einstein, now lies open to the light of day." 116 Minkowski 
also conjectured that further mathematical development of the mathematical con
sequences of the world postulate would lead to suggestions for experimental veri
fications of the postulate. 

112 For Jacob Laub and Einstein's work in relativity in this era and its mathematical, physical 
and institutional context see Pyenson, The Young Einstein: The Advent of Relativity 
(Boston: Adam Hilger, 1985). 

113 Peter Galison, "Minkowski's Space-Time: From Visual Thinking to the Absolute World," 
Hist. Stud. Phys. Sci. 10 (1979): 85-121, sees Minkowski as a "visual thinker," and like 
previous scholars emphasizes the geometrical aspects of his thought. However, there is 
only passing mention of the geometrical representation in his first published version of 
his work on space-time. 

114 Lorentzian rotations. 

115 Minkowski, "Raum und Zeit," Phys. Zt. 10 (1909): 104-111, in The Principle of 
Relativity, W. Perrett and G. B. Jeffery, trans. (New York: Dover reprint of 1923 edition, 
nd), 75-91, 83. This was an address given to the Naturforscher-Versammlung September 
1908. 

116 Minkowski, "Raum und Zeit," 91. 
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Physics had become geometry, and it was a stunning achievement. 
For mathematicians and Minkowski this work on relativity became the example 

of the relationship between mathematics and physics. There was a preordained 
harmony between mathematics and physics. Mathematicians held the key to this 
harmony, for mathematics provided deeper meanings to the gropings of physi
cists forever doomed to reinvent the mathematics they neededY 7 Mathematicians 
became convinced that they could infuse physics with the rigor and clarity of math
ematics, and demonstrate how physics should be done in the future. Einstein later 
bemoaned his early neglect of mathematics and accepted its immense powers as 
keys to understanding phenomena. However, experience remained "the sole cri
terion of the physical utility of a mathematical construction."118 More than once 
Einstein reminded mathematicians that their intellectual constructions were all very 
well and very elegant but did not "correspond to reality." Physicists contested this 
intrusion and rudely reminded mathematicians that there was more to physics than 
the formulation of a generalized, mathematical coherence. Physical imagery dis
tinguished the physically significant from the myriad mathematical possibilities. 
Minkowski had chosen his group G c rather than any other group of transformations 
because of its significance already indicated in mechanics and electrodynamics. 

In the development of general relativity, the interactions and rivalries between 
mathematicians and physicists intensified. Mathematicians developed the mathe
matics at the same time that physicists required it in their research. David Hilbert, 
following Minkowski's lead, regarded physics as a derivative of mathematics. 
However, he was dependent upon physicists to interpret and accept the physical 
implications of his deductions. While Einstein called upon Marcel Grossmann's 
mathematical skills his judgment of their collaborative work was made on physical 
groundsy9 Einstein felt that he needed tensor analysis and absolute differential 
calculus to develop a physics that encompassed electrodynamics and mechanics 
independent of any coordinate system. To accomplish this required that he rein
terpret the meaning of measurement, and this impacted the very foundations of 
physics. The subsequent tensor law that replaced Newton's law of gravitation 
contained a set of mathematical functions. The specific forms of these functions 

117 Minkowski made this last remark, repeated later by Klein, in the draft notes to a lecture on 
relativity in 1907. See Galison, "Minkowski," 95-96, and Pyenson, "Relativity in Late 
Wilhelmian Germany: The Appeal to a Preestablished Harmony between Mathematics 
and Physics," Arch. Hist. Exact Sci. 27 (1982): 137-155, 147. The idea of preestablished 
harmony can be traced back to Leibniz. 

118 Einstein, "The Methods of Theoretical Physics," in The World as I see It (London: 1935), 
quoted in Pyenson, Einstein, p. 153. 

119 It is interesting to note that their paper of 1913 is in two parts, a physical one by Einstein, 
and a discussion of the mathematics and proof of crucial theorems by Grossmann. See, 
"Entwurf einer verallgemeinerten Relativitatstheorie und einer Theorie der Gravitation," 
Zt. Math. Phys. 62 (1913): 225-261. 
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were limited by physical laws and postulates that set the criteria the mathematics 
needed to satisfy.120 The mathematical choices were still iarge. His subsequent 
misgivings and then abandonment of his 1913 formulation were based on the ar
gument that the gravitational field equations were not themselves covariant, but 
also that the motion of the perihelion of Mercury deduced from it was too small. 121 

His goal, a physics that was independent of all coordinate systems. "The laws of 
physics must be of such a nature that they apply to systems of references in any 
kind ofmotion."122 His concerns were physical, expressed in mathematical form. 

The problem of gravitation and general relativity attracted numerous others 
besides Einstein, many of them mathematicians, especially those educated or as
sociated with Gottingen. One of the most active and intent was David Hilbert.123 

Hilbert recognized that mathematics and physics had drawn together, and both had 
changed. Previously mathematics had treated physical problems too mathemati
cally and physicists had only taken necessary formulae from mathematics. With 
the example of his close colleague Minkowski before him, Hilbert concluded that 
physics needed pure mathematics. However, since mathematicians could learn 
physics easily while physicists found it impossible to follow modern mathematical 
papers, mathematicians would complete the union by solving physicists' problems 
for them. He would invite prominent physicists, such as Einstein, to give lecture 
series, and thus informed mathematicians would solve their problems. 

Einstein gave such a series of lectures on the status of general relativity theory 
at Gottingen in the summer of 1915. Hilbert's solution to the problem of general 
relativity was based on axioms, the first of which was that "the laws of physical 
phenomena are determined by a world function H" that had certain mathematical 
properties. Hilbert treated H as a generalized Hamiltonian that was invariant under 
any transformation of any world coordinate. 124 Hilbert went further in defining H 
as the sum of two other functions. Relationships between these functions, K and L, 
contained all of electrodynamics and the "equations of gravitation." While Hilbert 
explored the mathematical properties of H, the physical conclusions that he drew 

120 See Einstein, "Zum gegenwartigen Stande des Gravitationsproblems," Phy. Zt. 14 
(1913): 1249-1262, in Collected Papers, vol. 4,198-222,198-200. See also the discus
sion in Jungnickel and McCormmach, Intellectual Mastery, vol. 2, 325-328. For a full 
account of Einstein's path to his general field equations of 1915 see Abraham Pais "Subtle 
is the Lord ... " The Science and Life of Albert Einstein (Oxford: Oxford University Pres, 
1982), chaps., 12-14. 

121 See John Norton, "How Einstein found his Field Equations: 1912-1915," Hist. Stud. 
Phys. Sci. 14 (1984): 253-316,298-299 .. 

122 Einstein, "Die Grundlage der allgemeinen Relativitatstheorie," Ann. Phy. 49 (1916): 
769-822, in The Principle of Relativity, 109-164, 113. Emphasis is in the original. 

123 This account relies heavily on Pyenson The Young Einstein, 183-193. 

124 Hilbert's world function clearly derived from Minkowski but its immediate predecessor 
was an equally mathematical function in Gustav Mie's electrodynamics. 
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from these manipulations were minimal. 125 

Einstein would voice regrets at his youthful neglect of mathematics and under
stood his own debts to mathematicians, but he was skeptical of these mathematical 
efforts.126 He countered most of these theories with criticisms grounded in physical 
considerations.127 He was equally critical of Hilbert's attempts to reduce gravita
tion to mathematics. Physical considerations overruled mathematical formulations 
no matter how comprehensive they seemed to be. While he was deeply interested in 
joining together the seemingly disparate parts of physics, it had to be done through 
the consideration of physical principles, even if it destroyed the mathematical unity 
of the effort. 

These interactions between mathematicians and theoretical physicists in these 
few years set a pattern for their future throughout the twentieth century. Hilbert 
was right, members of both disciplines needed those of the other. Physicists needed 
mathematics as it was developing in the research of mathematicians. Mathemati
cians often found the subject matter of their research once again in the problems 
of physics. However, the tensions inherent in the exchanges of these early decades 
in the twentieth century would resurface later. 

With the achievements of special then general relativity, Einstein and theoretical 
physicists and their sub field were thrust to the center of their discipline where their 
position was reinforced by the development of quantum mechanics in the 1920s. 
By this time theoretical physicists had grown in numbers and their speciality in 
importance. In the 1920s training in that specialty meant that they began to repro
duce themselves, rather than taking one or two courses in the subject. Theoretical 
physics was at last a respectable and respected disciplinary partner to experimental 
physics. Part of that partnership was also a commitment to mathematics as the 
powerful languages in which theorists now expressed themselves. The cost was a 
distancing of their work even from their colleagues, except other theorists equally 
equipped with the mathematics they now required. They could no longer safely 
trust in a decades old mathematical tradition but had to maintain a close relationship 
with mathematicians, even sharing the same facilities and buildings. For their part, 
mathematicians would no longer ignore problems that physics or other sciences 
might present them. They might be the occasion for new mathematical insight. 

However, tensions would remain, and physicists and mathematicians continued 
warily to court one another, even as the standards and values of their respective 

125 See David Hilbert, "Die Grundlagen der Physik," GottingenNach. part I (1915), reprinted 
in Gesammelte Abhandlungen vol. 3, 258-289. Hilbert discussed the motion of mass 
points, 285-289. 

126 For a discussion on Einstein on mathematics, see Jungnickel and McCormmach, Intel
lectual Mastery, vol. 2, 334-340. 

127 See, "Discussion" following the lecture on Einstein "Zum gegenwarten Stande," reported 
in Phy. Zt. 14 (1913): 1262-1266, in Collected Papers, vol. 4, 223-230, on Gustav Mie, 
Max Abraham, and Gunnar Nordstrom's efforts. 
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fields drove them in opposite directions. No matter the aesthetic pleasures of 
mathematics in the end physicists had to side with Einstein. 

The instrument that mediates theory and praxis, thought and experiment 
is mathematics: it binds them together and forms their inner essence. 
Therefore, it appears that our contemporary culture in as far as it rests on 
the contemplation and manipulation of nature, depends on mathematics. 
- David Hilbert128 

It still seems to me that you very much overrate the value of purely formal 
points of view. These are quite precious if there is an already-discovered 
truth finally to be formulated, but they almost always fail as a heuristic 
aid -Einstein to Felix Klein129 

128 David Hilbert, "Naturerkennen und Logik," Naturwissenschaften (1930): 959-963, in 
Gesammelte Abhandlungen, 3 vols (New York: Chelsea Publishing, reprint of 1935 
edition, 1965), vol. 3, 378-387, 385. 

129 Einstein to Felix Klein 15, Dec. 1917. Quoted in Lewis Pyenson, "Mathematics, Edu
cation, and the G6ttingen Approach to physical Reality, 1890-1914," Europa II (1979): 
91-127, 125. 
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