

How to Contact Us

Please address comments and questions
 concerning this book to the publisher:
	O’Reilly Media, Inc.
	1005 Gravenstein Highway North
	Sebastopol, CA 95472
	800-998-9938 (in the United States or
 Canada)
	707-829-0515 (international or
 local)
	707-829-0104 (fax)

We have a web page for this book, where we
 list errata, examples, and any additional information. You can access this
 page at:
	http://oreil.ly/node_upandrunning

To comment or ask technical questions about
 this book, send email to:
	bookquestions@oreilly.com

For more information about our books, courses, conferences, and
 news, see our website at http://www.oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://www.youtube.com/oreillymedia

 [image: First Edition]

 Chapter 6. Data Access

Like any web server, Node needs access to data stores for persistent storage; without
 persistence, all you have is a brochure website, which would make using Node
 pointless. In this chapter, we’ll run through the basic ways to connect to
 common open source database choices and to store and retrieve data.
NoSQL and Document Stores

The following NoSQL and document stores are increasingly popular for
 web-facing applications and are easy to use with Node.
CouchDB

CouchDB provides MVCC-based[15] document storage in a JavaScript environment. When
 documents (records) are added or updated in CouchDB, the entire dataset
 is saved to storage and older versions of that data marked obsolete.
 Older versions of the record can still be merged into the newest
 version, but in every case a whole new version is created and written to
 contiguous memory for faster read times. CouchDB is said to be
 “eventually consistent.” In a large, scalable deployment, multiple
 instances can sometimes serve older, unsynced versions of records to
 clients with the expectation that any changes to those records will
 eventually be merged into the master.
Installation

Specific CouchDB libraries are not required to access the database, but
 they are useful for providing a high level of abstraction and making
 code easier to work with. A CouchDB server is needed to test any
 examples, but it does not require a lot of work to get it
 running.
Installing CouchDB

The most recent version of CouchDB can be installed from the
 Apache project
 page. Installation instructions for a wide array of
 platforms can be found on the wiki.
If you’re running Windows, you will find a number of binary
 installers as well as instructions for building from source. As with
 many of the NoSQL options, installation is easiest and best
 supported on a Linux-based system, but don’t be dissuaded.

Installing CouchDB’s Node module

Additional modules are not strictly necessary, because CouchDB exposes
 all of its services through REST, as described in more detail
 later.

Using CouchDB over HTTP

One of the nice things about CouchDB is that its API is actually
 all just HTTP. Because Node is great at interacting with HTTP,
 this means it is really easy to work with CouchDB. Exploiting this
 fact, it is possible to perform database operations directly without any additional client libraries.
Example 6-1 shows how to generate a list of
 databases in the current CouchDB installation. In this case, there is
 no authentication or administrative permission on the CouchDB server—a
 decidedly bad idea for a database connected to the Internet, but
 suitable for demonstration purposes.
Example 6-1. Retrieving a list of CouchDB stores via HTTP
var http = require('http');

http.createServer(function (req, res) {
 var client = http.createClient(5984, "127.0.0.1");
 var request = client.request("GET", "/_all_dbs");
 request.end();

 request.on("response", function(response) {
 var responseBody = "";

 response.on("data", function(chunk) {
 responseBody += chunk;
 });

 response.on("end", function() {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.write(responseBody);
 res.end();
 });
 });
}).listen(8080);

A client connection is created with the http library. Nothing distinguishes this
 connection from any other http
 connection; because CouchDB is RESTful, no additional
 communication protocol is needed. Of special note is the request.end() line inside the createServer method. If this line is
 omitted, the request will hang.
As mentioned earlier, all CouchDB methods are exposed in HTTP
 calls. Creating and deleting databases, therefore, involves making the
 appropriate PUT and DELETE statements against the server, as
 demonstrated in Example 6-2.
Example 6-2. Creating a CouchDB database
 var client = http.createClient(5984, "127.0.0.1")
 var request = client.request("PUT", "/dbname");
 request.end();

 request.on("response", function(response) {
 response.on("end", function() {
 if (response.statusCode == 201) {
 console.log("Database successfully created.");
 } else {
 console.log("Could not create database.");
 }
 });
 });

Here, /dbname refers to the
 resource being accessed. Combined with a PUT command, CouchDB is
 instructed to create a new database called dbname. An HTTP response code of 201
 confirms that the database was created.
As shown in Example 6-3, deleting the resource
 is the reverse of a PUT: the DELETE command. An HTTP response code of
 200 confirms the request was completed successfully.
Example 6-3. Deleting a CouchDB database
 var client = http.createClient(5984, "127.0.0.1")
 var request = client.request("DELETE", "/dbname");
 request.end();

 request.on("response", function(response) {
 response.on("end", function() {
 if (response.statusCode == 200) {
 console.log("Deleted database.");
 } else {
 console.log("Could not delete database.");
 }
 });
 });

These elements aren’t very useful on their own, but they can be
 put together to form a very basic (if unfriendly) database manager
 using the methods shown in Example 6-4.
Example 6-4. A simple CouchDB database creation form
var http = require('http');
var qs = require('querystring');
var url = require('url');

var dbHost = "127.0.0.1";
var dbPort = 5984;

deleteDb = function(res, dbpath) {
 var client = http.createClient(dbPort, dbHost)
 var request = client.request("DELETE", dbpath);
 request.end();

 request.on("response", function(response) {
 response.on("end", function() {
 if (response.statusCode == 200) {
 showDbs(res, "Deleted database.");
 } else {
 showDbs(res, "Could not delete database.");
 }
 });
 });
}

createDb = function(res, dbname) {
 var client = http.createClient(dbPort, dbHost)
 var request = client.request("PUT", "/" + dbname);
 request.end();

 request.on("response", function(response) {
 response.on("end", function() {
 if (response.statusCode == 201) {
 showDbs(res, dbname + " created.");
 } else {
 showDbs(res, "Could not create " + dbname);
 }
 });
 });
}

showDbs = function(res, message) {
 var client = http.createClient(dbPort, dbHost);
 var request = client.request("GET", "/_all_dbs");
 request.end();

 request.on("response", function(response) {
 var responseBody = "";

 response.on("data", function(chunk) {
 responseBody += chunk;
 });

 response.on("end", function() {
 res.writeHead(200, {'Content-Type': 'text/html'});
 res.write("<form method='post'>");
 res.write("New Database Name: <input type='text' name='dbname' />");
 res.write("<input type='submit' />");
 res.write("</form>");
 if (null != message) res.write("<h1>" + message + "</h1>");

 res.write("<h1>Active databases:</h1>");
 res.write("");
 var dblist = JSON.parse(responseBody);
 for (i = 0; i < dblist.length; i++) {
 var dbname = dblist[i];
 res.write(""+dbname+"");
 }
 res.write("");
 res.end();
 });
 });
};

http.createServer(function (req, res) {
 if (req.method == 'POST') {
 // Parse the request
 var body = '';
 req.on('data', function (data) {
 body += data;
 });
 req.on('end', function () {
 var POST = qs.parse(body);
 var dbname = POST['dbname'];
 if (null != dbname) {
 // Create the DB
 createDb(res,dbname);
 } else {
 showDbs(res, "Bad DB name, cannot create database.");
 }
 });
 } else {
 var path = url.parse(req.url).pathname;
 if (path != "/") {
 deleteDb(res,path);
 } else {
 showDbs(res);
 }
 }
}).listen(8080);

Using node-couchdb

Knowing how to work with CouchDB over HTTP is useful, but this approach is
 verbose. Although it has the advantage of not needing external
 libraries, most developers opt for higher-level abstraction layers,
 regardless of how simple their database’s native driver implementation
 is. In this section, we look at the node-couchdb package, which
 simplifies the interface between Node and CouchDB.
You can install the drivers for CouchDB using
 npm:
npm install felix-couchdb
Working with databases

The module’s first obvious benefit is succinct program code, as demonstrated in
 Example 6-5.
Example 6-5. Creating a table in CouchDB
var dbHost = "127.0.0.1";
var dbPort = 5984;
var dbName = 'users';

var couchdb = require('felix-couchdb');
var client = couchdb.createClient(dbPort, dbHost);
var db = client.db(dbName);

db.exists(function(err, exists) {
 if (!exists) {
 db.create();
 console.log('Database ' + dbName + ' created.');
 } else {
 console.log('Database ' + dbName + ' exists.');
 }
});

This example checks for a database called users, creating one if it doesn’t already
 exist. Notice the similarities between the createClient function call here and the one from the http module demonstrated earlier. This is
 no accident; even though the module makes CouchDB’s interfaces
 easier to work with, in the end you are using HTTP to transmit
 data.

Creating documents

In Example 6-6, we’ll save a document into the CouchDB database created in
 the previous example.
Example 6-6. Creating a document in CouchDB
var dbHost = "127.0.0.1";
var dbPort = 5984;
var dbName = 'users';

var couchdb = require('felix-couchdb');
var client = couchdb.createClient(dbPort, dbHost);

var user = {
 name: {
 first: 'John',
 last: 'Doe'
 }
}

var db = client.db(dbName);

db.saveDoc('jdoe', user, function(err, doc) {
 if(err) {
 console.log(JSON.stringify(err));
 } else {
 console.log('Saved user.');
 }
});

This example creates a user named John Doe in the database
 with the username jdoe as its identity. Notice
 the user is created as a JSON object and passed directly into the
 client. No more work is needed to parse the information.
After running this example, the user can be accessed in the
 web browser at
 http://127.0.0.1:5984/users/jdoe.

Reading documents

Once documents are stored in CouchDB, they can be retrieved again as
 objects, as shown in Example 6-7.
Example 6-7. Retrieving a record from CouchDB
var dbHost = "127.0.0.1";
var dbPort = 5984;
var dbName = 'users';

var couchdb = require('felix-couchdb');
var client = couchdb.createClient(dbPort, dbHost);

var db = client.db(dbName);

db.getDoc('jdoe', function(err,doc) {
 console.log(doc);
});

The output from this query is:
{ _id: 'jdoe',
 _rev: '3-67a7414d073c9ebce3d4af0a0e49691d',
 name: { first: 'John', last: 'Doe' }
}
There are three steps happening here:
	Connect to the database server using createClient.

	Select the document store using the client’s db command.

	Get the document using the database’s getDoc command.

In this case, the record with ID jdoe—created in the previous example—is
 retrieved from the database. If the record did not exist (because it
 was deleted or not yet inserted), the callback’s error parameter
 would contain data about the error.

Updating documents

Updating documents uses the same saveDoc command as creating documents. If CouchDB detects an existing
 record with the same ID, it will overwrite the old one.
Example 6-8 demonstrates how to update a
 document after reading it from the data store.
Example 6-8. Updating a record in CouchDB
var dbHost = "127.0.0.1";
var dbPort = 5984;
var dbName = 'users';

var couchdb = require('felix-couchdb');
var client = couchdb.createClient(dbPort, dbHost);

var db = client.db(dbName);

db.getDoc('jdoe', function(err,doc) {
 doc.name.first = 'Johnny';
 doc.email = 'jdoe@johndoe.com';

 db.saveDoc('jdoe', doc);

 db.getDoc('jdoe', function(err,revisedUser) {
 console.log(revisedUser);
 });
});

The output from this operation is:
{ _id: 'jdoe',
 _rev: '7-1fb9a3bb6db27cbbbf1c74b2d601ccaa',
 name: { first: 'Johnny', last: 'Doe' },
 email: 'jdoe@johndoe.com'
}
This example reads information about the
 jdoe user from the data store, gives it an
 email address and a new first name, and saves it back into
 CouchDB.
Notice that saveDoc and
 getDoc follow the initial read,
 instead of putting getDoc inside
 saveDoc’s callback. The CouchDB
 drivers queue commands and execute them sequentially, so this
 example will not result in a race condition where the document read
 completes before the updates are saved.

Deleting documents

To delete a document from CouchDB, you need to supply both an ID and a revision number.
 Fortunately, this is easy after a read, as shown in Example 6-9.
Example 6-9. Deleting from CouchDB
var dbHost = "127.0.0.1";
var dbPort = 5984;
var dbName = 'users';

var couchdb = require('felix-couchdb');
var client = couchdb.createClient(dbPort, dbHost);

var db = client.db(dbName);

db.getDoc('jdoe', function(err,doc) {
 db.removeDoc(doc._id, doc._rev);
});

After connecting to the CouchDB datastore, a getDoc command is issued here to get the
 internal ID (the _id field) and
 revision number (_rev field) for
 that document. Once this information has been obtained, a removeDoc command
 is issued, which sends a DELETE
 request to the database.

Redis

Redis is a memory-centric key-value store with persistence that will
 feel very familiar if you have experience with key-value caches such as
 Memcache. Redis is used when performance and scaling are important; in
 many cases, developers choose to use it as a cache for data retrieved
 from a relational database such as MySQL, although it is capable of much
 more.
Beyond its key-value storage capabilities, Redis provides
 network-accessible shared memory, is a nonblocking event bus, and
 exposes subscription and publishing capabilities.
Installation

As with many of the rest of the database engines, using Redis requires
 installing the database application as well as the Node drivers to
 communicate with it.
Installing Redis

Redis is available in source form. There isn’t
 anything to do in the way of configuration; just download and
 compile per the instructions on the website.
If you are using Windows, you are on your own at the time of
 this writing because Redis is not supported on Windows. Fortunately,
 there is a passionate community behind Redis development, and
 several ports have been made available for both Cygwin and native
 compilation. The port at https://github.com/dmajkic/redis compiles to a native
 Windows binary using MinGW.

Installing Redis’s Node module

The redis module is available from GitHub, but can
 be installed using npm:
npm install redis
Optionally, you may install the mimimalist hiredis library along with Node’s
 redis module.

Basic usage

Example 6-10 demonstrates a basic set and get operation against Redis by
 Node.
Example 6-10. A basic get and set operation against Redis
var redis = require('redis'),
 client = redis.createClient();

client.on("error", function (err) {
 console.log("Error " + err);
});

console.log("Setting key1");
client.set("key1", "My string!", redis.print);
console.log("Getting key1");
client.get("key1", function (err, reply) {
 console.log("Results for key1:");
 console.log(reply);
 client.end();
});

This example begins by creating a connection to the Redis
 database and setting a callback to handle errors. If you are not
 running an instance of the Redis server, you will receive an error
 like this:
Error Error: Redis connection to 127.0.0.1:6379 failed - ECONNREFUSED,
Connection refused
Tip
Note the lack of callbacks in this example. If you need to
 perform database reads immediately after writing, it is safer to use
 a callback, to ensure your code is executed in the correct
 sequence.

After the connection is opened, the client sets basic data for a
 string key and hash key, and then reads those values back from the
 store. Library calls have the same names as basic Redis commands (set,
 hset, get). Redis treats data
 coming through the set command as strings, and
 allows for values up to 512 MB in size.

Hashes

Hashes are objects that contain multiple keys. Example 6-11 sets a single key at a time.
Example 6-11. Setting hash values one key at a time
var redis = require('redis'),
 client = redis.createClient();

client.on("error", function (err) {
 console.log("Error " + err);
});

console.log("Setting user hash");
client.hset("user", "username", "johndoe");
client.hset("user", "firstname", "john");
client.hset("user", "lastname", "doe");

client.hkeys("user", function(err,replies) {
 console.log("Results for user:");
 console.log(replies.length + " replies:");
 replies.forEach(function (reply, i) {
 console.log(i + ": " + reply);
 });
 client.end();
});

Example 6-12 shows how to set multiple
 keys at the same time.
Example 6-12. Setting multiple hash values simultaneously
var redis = require('redis'),
 client = redis.createClient();

client.on("error", function (err) {
 console.log("Error " + err);
});

console.log("Setting user hash");
client.hmset("user", "username", "johndoe", "firstname", "john", "lastname", "doe");

client.hkeys("user", function(err,replies) {
 console.log("Results for user:");
 console.log(replies.length + " replies:");
 replies.forEach(function (reply, i) {
 console.log(i + ": " + reply);
 });
 client.end();
});

We could accomplish the same thing by providing a more
 developer-friendly object, rather than breaking it out into a list, as
 shown in Example 6-13.
Example 6-13. Setting multiple hash values using an object
var redis = require('redis'),
 client = redis.createClient();

client.on("error", function (err) {
 console.log("Error " + err);
});

var user = {
 username: 'johndoe',
 firstname: 'John',
 lastname: 'Doe',
 email: 'john@johndoe.com',
 website: 'http://www.johndoe.com'
}

console.log("Setting user hash");
client.hmset("user", user);

client.hkeys("user", function(err,replies) {
 console.log("Results for user:");
 console.log(replies.length + " replies:");
 replies.forEach(function (reply, i) {
 console.log(i + ": " + reply);
 });
 client.end();
});

Instead of manually supplying each field to Redis, you can pass
 an entire object into hmset, which
 will parse the fields and send the correct information to Redis.
Warning
Be careful to use hmset and
 not hset when adding multiple
 objects. Forgetting that a single object contains multiple values is
 a common pitfall.

Lists

The list type can be thought of as multiple values inside one key (see Example 6-14). Because it’s possible to push content to
 the beginning or end of a list, these collections are ideal for
 showing ordered events, such as lists of users who have recently
 received an honor.
Example 6-14. Using a list in Redis
var redis = require('redis'),
 client = redis.createClient();

client.on("error", function (err) {
 console.log("Error " + err);
});

client.lpush("pendingusers", "user1");
client.lpush("pendingusers", "user2");
client.lpush("pendingusers", "user3");
client.lpush("pendingusers", "user4");

client.rpop("pendingusers", function(err,username) {
 if(!err) {
 console.log("Processing " + username);
 }
 client.end();
});

The output from this example is:
Processing user1
This example demonstrates a first-in-first-out (FIFO)
 queue using Redis’s list commands. A real-world use for FIFO
 is in registration systems: the quantity of incoming registration
 requests is too great to handle in real time, so registration data is
 hived off to a queue for processing outside the main application.
 Registrations will be processed in the order they were received, but
 the primary application is not slowed down by handling the actual
 record creation and introductory tasks such as welcome emails.

Sets

Sets are used in situations where it is desirable to have
 lists of nonrepeated items, as in Example 6-15.
Example 6-15. Using Redis’s set commands
var redis = require('redis'),
 client = redis.createClient();

client.on("error", function (err) {
 console.log("Error " + err);
});

client.sadd("myteam", "Neil");
client.sadd("myteam", "Peter");
client.sadd("myteam", "Brian");
client.sadd("myteam", "Scott");
client.sadd("myteam", "Brian");

client.smembers("myteam", function(err, members) {
 console.log(members);
 client.end();
});

The output is:
['Brian', 'Scott', 'Neil', 'Peter']
Even though “Brian” was given to the list twice, he was added
 only once. In a real-world situation, it would be entirely possible to
 have two team members named Brian; this highlights the importance of
 ensuring that your values are unique when they need to be. Otherwise,
 the set can cause unintended behavior when you expect more elements
 than are actually present due to the removal of repeated items.

Sorted sets

Like regular sets, sorted sets do not allow duplicate members. Sorted sets
 add the concept of weighting, enabling
 score-based operations on data such as leaderboards, top scores, and
 content tables.
The producers of the American weight-loss reality show
 The Biggest Loser are real-world fans of sorted
 sets. In the 11th season of the series, the contestants were split
 into three groups based upon their age. On air, they had to perform a
 crude sorting operation by checking a number printed on everyone’s
 shirts and then line up in ascending order under the hot sun. If one
 of the contestants had brought her Node- and Redis-equipped laptop to the competition, she
 might have made a small program to do the work for them, such as the
 one in Example 6-16.
Example 6-16. Ranking a sorted list using Redis
var redis = require('redis'),
 client = redis.createClient();

client.on("error", function (err) {
 console.log("Error " + err);
});

client.zadd("contestants", 60, "Deborah");
client.zadd("contestants", 65, "John");
client.zadd("contestants", 26, "Patrick");
client.zadd("contestants", 62, "Mike");
client.zadd("contestants", 24, "Courtney");
client.zadd("contestants", 39, "Jennifer");
client.zadd("contestants", 26, "Jessica");
client.zadd("contestants", 46, "Joe");
client.zadd("contestants", 63, "Bonnie");
client.zadd("contestants", 27, "Vinny");
client.zadd("contestants", 27, "Ramon");
client.zadd("contestants", 51, "Becky");
client.zadd("contestants", 41, "Sunny");
client.zadd("contestants", 47, "Antone");
client.zadd("contestants", 40, "John");

client.zcard("contestants", function(err, length) {
 if(!err) {
 var contestantCount = length;
 var membersPerTeam = Math.ceil(contestantCount / 3);
 client.zrange("contestants", membersPerTeam * 0, membersPerTeam * 1 - 1,
 function(err, values) {
 console.log('Young team: ' + values);
 });
 client.zrange("contestants", membersPerTeam * 1, membersPerTeam * 2 - 1,
 function(err, values) {
 console.log('Middle team: ' + values);
 });
 client.zrange("contestants", membersPerTeam * 2, contestantCount,
 function(err, values) {
 console.log('Elder team: ' + values);
 client.end();
 });
 }
});

The output is:
Young team: Courtney,Jessica,Patrick,Ramon,Vinny
Middle team: Jennifer,John,Sunny,Joe,Antone
Elder team: Becky,Deborah,Mike,Bonnie
Adding members to a sorted set follows a pattern similar to the
 one for adding members to a normal set, with the addition of a rank.
 This allows for interesting slicing and dicing, as in this example.
 Knowing that each team consists of similarly aged individuals, getting
 three teams from a sorted list is a matter of pulling three equal
 groups straight out of the set. The number of contestants (14) is not
 perfectly divisible by 3, so the final group has only 4
 members.

Subscriptions

Redis supports the publish-subscribe (or pub-sub) messaging pattern,
 allowing senders (publishers) to issue messages into channels for use
 by receivers (subscribers) whom they know nothing about (see Example 6-17). Subscribers register their areas of
 interests (channels), and Redis pushes all relevant messages to them.
 Publishers do not need to be registered to specific channels, nor do
 subscribers need to be listening when messages are sent. Redis takes
 care of the brokering, which allows for a great deal of flexibility,
 as neither the publisher nor the subscriber needs to be aware of the
 other.
Example 6-17. Subscribing and publishing with Redis
var redis = require("redis"),
 talkativeClient = redis.createClient(),
 pensiveClient = redis.createClient();

pensiveClient.on("subscribe", function (channel, count) {
 talkativeClient.publish(channel, "Welcome to " + channel);
 talkativeClient.publish(channel, "You subscribed to " + count + " channels!");
});

pensiveClient.on("unsubscribe", function(channel, count) {
 if (count === 0) {
 talkativeClient.end();
 pensiveClient.end();
 }
});

pensiveClient.on("message", function (channel, message) {
 console.log(channel + ': ' + message);
});

pensiveClient.on("ready", function() {
 pensiveClient.subscribe("quiet channel", "peaceful channel", "noisy channel");
 setTimeout(function() {
 pensiveClient.unsubscribe("quiet channel", "peaceful channel", "noisy channel");
 }, 1000);
});

The output is:
quiet channel: Welcome to quiet channel
quiet channel: You subscribed to 1 channels!
peaceful channel: Welcome to peaceful channel
peaceful channel: You subscribed to 2 channels!
noisy channel: Welcome to noisy channel
noisy channel: You subscribed to 3 channels!
This example tells the story of two clients. One is quiet and
 thoughtful, while the other broadcasts inane details about its
 surroundings to anyone who will listen. The pensive client subscribes
 to three channels: quiet, peaceful, and noisy. The talkative client
 responds to each subscription by welcoming the newcomer to the channel
 and counting the number of active subscriptions.
About one second after subscribing, the pensive client
 unsubscribes from all three channels. When the unsubscribe command
 detects no more active subscriptions, both clients end their
 connection to Redis, and the program execution stops.

Securing Redis

Redis supports password authentication. To add a password, edit Redis’s
 configuration file and include a line for requirepass, as shown in Example 6-18.
Example 6-18. Snippet from Redis password configuration
################################## SECURITY ###################################

Require clients to issue AUTH <PASSWORD> before processing any other
commands. This might be useful in environments in which you do not trust
others with access to the host running redis-server.
#
This should stay commented out for backward compatibility and because most
people do not need auth (e.g., they run their own servers).
#
requirepass hidengoseke

Once Redis is restarted, it will perform commands only for
 clients who authenticate using “hidengoseke” as their password (Example 6-19).
Example 6-19. Authenticating Redis
var redis = require('redis'),
 client = redis.createClient();

client.auth("hidengoseke");

The auth command must occur before any other queries are issued. The
 client will store the password and use it on reconnection
 attempts.
Notice the lack of usernames and multiple passwords. Redis does
 not include user management functionality, because of the overhead it
 would incur. Instead, system administrators are expected to secure
 their servers using other means, such as port-blocking Redis from the
 outside world so that only internal, trusted users may access
 it.
Some “dangerous” commands can be renamed or removed entirely.
 For example, you may never need to use the CONFIG command. In that case, you
 can update the configuration file to either change its name to
 something obscure, or you can fully disable it to protect against
 unwanted access; both options are shown in Example 6-20.
Example 6-20. Renaming Redis commands
Change CONFIG command to something obscure
rename-command CONFIG 923jfiosflkja98rufadskjgfwefu89awtsga09nbhsdalkjf3p49

Clear CONFIG command, so no one can use it
rename-command CONFIG ""

MongoDB

Because Mongo supplies a JavaScript environment with BSON object storage (a binary adaption of JSON), reading
 and writing data from Node is extremely efficient. Mongo stores incoming
 records in memory, so it is ideal in high-write situations. Each new
 version adds improved clustering, replication, and sharding.
Because incoming records are stored in memory, inserting data into
 Mongo is nonblocking, making it ideal for logging operations and
 telemetry data. Mongo supports JavaScript functions inside queries,
 making it very powerful in read situations, including MapReduce
 queries.
Using MongoDB’s document-based storage allows you to store child
 records inside parent records. For example, a blog article and all of
 its associated comments can be stored inside a single record, allowing
 for incredibly fast retrieval.
MongoDB native driver

The native MongoDB
 driver by Christian Kvaleim provides nonblocking access to
 MongoDB. Previous versions of the module included a C/C++ BSON
 parser/serializer, which has been deprecated due to improvements in
 the JavaScript parser/serializer.
The native MongoDB driver is a good choice when you need precise
 control over your MongoDB connection.
Installation

To install the driver, run the following command:
npm install mongodb
Warning
“mongodb” is not to be confused with “mongo,” discussed
 later in this chapter.

Data types

Node’s MongoDB driver supports the data types listed in Table 6-1.
Table 6-1. Data types supported for MongoDB
	Type	Description	Example
	Array	A list of items	cardsInHand: [9,4,3]
	Boolean	A true/false condition	hasBeenRead: false
	Code	Represents a block of JavaScript code that is
 runnable inside the database	new BSON.Code('function quotient(dividend,
 divisor) { return divisor == 0 ? 0 : divident / divisor;
 }');
	Date	Represents the current date and time	lastUpdated: new Date()
	DBRef	Database reference[a]	bestFriendId: new
 BSON.DBRef('users', friendObjectId)
	Integer	An integer (nondecimal) number	pageViews: 50
	Long	A long integer value	starsInUniverse = new
 BSON.Long("10000000000000000000000000");
	Hash	A key-value dictionary	userName: {'first': 'Sam', 'last':
 'Smith'}
	Null	A null value	bestFriend: null
	Object ID	A 12-byte code used by MongoDB to index objects, represented as
 24-digit hexadecimal
 strings	myRecordId: new
 BSON.ObjectId()
	String	A JavaScript string	fullName: 'Sam Smith'
	[a] Because MongoDB is a nonrelational database, it
 does not support joins. The data type DBRef is used by
 client libraries to implement logical relational
 joins.

Writing records

As mentioned, writing records to a MongoDB collection involves creating a
 JSON object inside Node and printing it directly into Mongo. Example 6-21 demonstrates building a user object and
 saving it into MongoDB.
Example 6-21. Connecting to a MongoDB database and writing a
 record
var mongo = require('mongodb');
var host = "localhost";
var port = mongo.Connection.DEFAULT_PORT;
var db = new mongo.Db('node-mongo-examples', new mongo.Server(host, port, {}), {});

db.open(function(err,db) {
 db.collection('users', function(err,collection) {
 collection.insert({username:'Bilbo',firstname:'Shilbo'}, function(err, docs) {
 console.log(docs);
 db.close();
 });
 });
});

The output is:
[{ username: 'Bilbo',
 firstname: 'Shilbo',
 _id: 4e9cd8204276d9f91a000001 }]

Mongoose

Node has a tremendous base of support for Mongo through its
 Mongoose library. Compared to the native drivers, Mongoose is an
 expressive environment that makes models and schemas more
 intuitive.
Installation

The fastest way to get up and running with Mongoose is by installing it with
 npm:
npm install mongo
Alternatively, you can download the most recent version from
 source and compile it yourself using instructions from the Mongoose
 project’s home page at http://mongoosejs.com.

Defining schemas

When you use MongoDB, you don’t need to define a data schema as you would
 with a relational database. Whenever requirements change or you need
 to store a new piece of information, you just save a new record
 containing the information you need, and you can query against it
 immediately. You can transform old data to include default or empty
 values for the new field, but MongoDB does not require that
 step.
Even though schemas aren’t important to MongoDB, they are
 useful because they help humans understand the contents of the
 database and implicit rules for working with domain data. Mongoose
 is useful because it works using human-readable schemas, providing a
 clean interface to communicate with the database.
What is a schema? Many programmers tend to think in terms of
 models that define data structures, but don’t think much about the
 underlying databases those models represent. A table inside an SQL
 database needs to be created before you can write data to it, and
 the fields inside that table probably closely match the fields in
 your model. The schema—that is, the definition of the model inside
 the database—is created separately from your program; therefore, the
 schema predates your data.
MongoDB—as well as the other NoSQL datastores—is often said to
 be schemaless because it doesn’t require explicitly defined
 structure for stored data. In reality, MongoDB does have a schema, but it is
 defined by the data as it gets stored. You may add a new property to
 your model months after you begin work on your application, but you
 don’t have to redefine the schema of previously entered information
 in order to search against the new field.
Example 6-22 illustrates how to define a
 sample schema for an article database and what information should be
 stored in each type of model. Once again, Mongo does not enforce
 schemas, but programmers need to define consistent access patterns
 in their own programs.
Example 6-22. Defining schemas with Mongoose
var mongoose = require('mongoose')

var Schema = mongoose.Schema,
 ObjectId = Schema.ObjectId

var AuthorSchema = new Schema({
 name: {
 first : String,
 last : String,
 full : String
 },
 contact: {
 email : String,
 twitter : String,
 google : String
 },
 photo : String
});

var CommentSchema = new Schema({
 commenter : String,
 body : String,
 posted : Date
});

var ArticleSchema = new Schema({
 author : ObjectId,
 title : String,
 contents : String,
 published : Date,
 comments : [CommentSchema]
});

var Author = mongoose.model('Author', AuthorSchema);
var Article = mongoose.model('Article', ArticleSchema);

Manipulating collections

Mongoose allows direct manipulation of object collections, as
 illustrated in Example 6-23.
Example 6-23. Reading and writing records using Mongoose
mongoose.connect('mongodb://localhost:27017/upandrunning', function(err){
 if (err) {
 console.log('Could not connect to mongo');
 }
});

newAuthor.save(function(err) {
 if (err) {
 console.log('Could not save author');
 } else {
 console.log('Author saved');
 }
});

Author.find(function(err,doc){
 console.log(doc);
});

This example saves an author into the database and logs all
 authors to the screen.

Performance

When you work with Mongoose, you don’t need to maintain a connection
 to MongoDB, because all of your schema definitions and queries are
 buffered until you connect. This is a big deal, and an important way
 Mongoose serves Node’s methodology. By issuing all of the “live”
 commands at once against Mongo, you limit the amount of time and the
 number of callbacks to work with your data and greatly increase the
 number of operations your application is able to perform.

[15] MVCC stands for multi-version concurrency control.

Node: Up and Running

Tom Hughes-Croucher

Mike Wilson

Editor
Simon St. Laurent

Copyright © 2012 Tom Hughes-Croucher, Mike Wilson

O’Reilly books may be purchased for educational, business, or sales
 promotional use. Online editions are also available for most titles
 (http://my.safaribooksonline.com).
 For more information, contact our corporate/institutional sales
 department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
 are registered trademarks of O’Reilly Media, Inc. Node: Up and
 Running, the image of a common tree shrew, and related trade
 dress are trademarks of O’Reilly Media, Inc.
Many of the designations used by manufacturers and sellers to
 distinguish their products are claimed as trademarks. Where those
 designations appear in this book, and O’Reilly Media, Inc., was aware of a
 trademark claim, the designations have been printed in caps or initial
 caps.

While every precaution has been taken in the preparation of this
 book, the publisher and authors assume no responsibility for errors or
 omissions, or for damages resulting from the use of the information
 contained herein.

[image:]

O'Reilly Media

Chapter 1. A Very Brief Introduction to Node.js

Node.js is many things, but mostly it’s a way of running JavaScript outside
 the web browser. This book will cover why that’s important and the benefits
 that Node.js provides. This introduction attempts to sum up that explanation
 in a few paragraphs, rather than a few hundred pages.
Many people use the JavaScript programming language extensively for programming
 the interfaces of websites. Node.js allows this popular programming language
 to be applied in many more contexts, in particular on web servers. There are
 several notable features about Node.js that make it worthy of
 interest.
Node is a wrapper around the high-performance
 V8 JavaScript runtime from the Google Chrome browser. Node
 tunes V8 to work better in contexts other than the browser, mostly by
 providing additional APIs that are optimized for specific use cases. For
 example, in a server context, manipulation of binary data is often
 necessary. This is poorly supported by the JavaScript language and, as a
 result, V8. Node’s Buffer class
 provides easy manipulation of binary data. Thus, Node doesn’t
 just provide direct access to the V8 JavaScript runtime. It also makes
 JavaScript more useful for the contexts in which people use Node.
V8 itself uses some of the newest techniques in
 compiler technology. This often allows code written in a high-level language
 such as JavaScript to perform similarly to code written in a lower-level
 language, such as C, with a fraction of the development cost. This focus on
 performance is a key aspect of Node.
JavaScript is an event-driven language, and Node
 uses this to its advantage to produce highly scalable servers. Using an
 architecture called an event loop, Node makes
 programming highly scalable servers both easy and safe. There are various
 strategies that are used to make servers performant. Node has chosen an
 architecture that performs very well but also reduces the complexity for the
 application developer. This is an extremely important feature. Programming
 concurrency is hard and fraught with danger. Node sidesteps this challenge
 while still offering impressive performance. As always, any approach still
 has trade-offs, and these are discussed in detail later in the book.
To support the event-loop approach, Node
 supplies a set of “nonblocking” libraries. In essence, these are interfaces
 to things such as the filesystem or databases, which operate in an
 event-driven way. When you make a request to the filesystem, rather than
 requiring Node to wait for the hard drive to spin up and retrieve the file,
 the nonblocking interface simply notifies Node when it has access, in the
 same way that web browsers notify your code about an onclick event. This
 model simplifies access to slow resources in a scalable way that is
 intuitive to JavaScript programmers and easy to learn for everyone
 else.
Although not unique to Node, supporting
 JavaScript on the server is also a powerful feature. Whether we like it or
 not, the browser environment gives us little choice of programming
 languages. Certainly, JavaScript is the only choice if we would like our
 code to work in any reasonable percentage of browsers. To achieve any
 aspirations of sharing code between the server and the browser, we must use
 JavaScript. Due to the increasing complexity of client applications that we
 are building in the browser using JavaScript (such as Gmail), the more code
 we can share between the browser and the server, the more we can reduce the
 cost of creating rich web applications. Because we must rely on JavaScript
 in the browser, having a server-side environment that uses JavaScript opens
 the door to code sharing in a way that is not possible with other
 server-side languages, such as PHP, Java, Ruby, or Python. Although there
 are other platforms that support programming web servers with JavaScript,
 Node is quickly becoming the dominant platform in the space.
Aside from what you can build
 with Node, one extremely pleasing aspect is how much
 you can build for Node. Node is extremely extensible,
 with a large volume of community modules that have been built in the
 relatively short time since the project’s release. Many of these are drivers
 to connect with databases or other software, but many are also useful
 software applications in their own right.
The last reason to celebrate Node, but certainly
 not the least important, is its community. The Node project is still very
 young, and yet rarely have we seen such fervor around a project. Both
 novices and experts have coalesced around the project to use and contribute
 to Node, making it both a pleasure to explore and a supportive place to
 share and get advice.
Installing Node.js

Installing Node.js is extremely simple. Node runs on Windows, Linux,
 Mac, and other POSIX OSes (such as Solaris and BSD). Node.js is available
 from two primary locations: the project’s
 website or the GitHub
 repository. You’re probably better off with the Node website
 because it contains the stable releases. The latest cutting-edge features
 are hosted on GitHub for the core development team and anyone else who
 wants a copy. Although these features are new and often intriguing, they
 are also less reliable than those in a stable release.
Let’s get started by installing Node.js. The
 first thing to do is download Node.js from the website, so let’s go there
 and find the latest release. From the Node home page, find the download
 link. The current release at the time of print is 0.6.13, which is a
 stable release. The Node website provides installers for Windows and Mac
 as well as the stable source code. If you are on Linux, you can either do
 a source install or use your usual package manager (apt-get,
 yum, etc.).
Note
Node.js version
 numbers follow the C convention of
 major.minor.patch. Stable versions of Node.js
 have an even minor version number, and development versions have an odd
 minor version number. It’s unclear when Node will become version 1, but
 it’s a fair assumption that it will only be when the Windows and Unix
 combined release is considered mature.

If you used an installer, you can skip to
 First Steps in Code. Otherwise (i.e., if you are doing a
 source install), once you have the code, you’ll need to unpack it. The
 tar command does this using the flags xzf. The x
 stands for extract (rather than compress), z tells tar to also
 decompress using the GZIP algorithm, and f
 indicates we are unpacking the filename given as the final argument (see
 Example 1-1).
Example 1-1. Unpacking the code
enki:Downloads $ tar xzf node-v0.6.6.tar.gz
enki:Downloads $ cd node-v0.6.6
enki:node-v0.6.6 $ ls
AUTHORS Makefile common.gypi doc test
BSDmakefile Makefile-gyp configure lib tools
ChangeLog README.md configure-gyp node.gyp vcbuild.bat
LICENSE benchmark deps src wscript
enki:node-v0.6.6 $

The next step is to configure the code for
 your system. Node.js uses the configure/make system for its installation.
 The configure script
 looks at your system and finds the paths Node needs to use for the
 dependencies it needs. Node generally has very few dependencies. The
 installer requires Python 2.4 or greater, and if you wish to use TLS or
 cryptology (such as SHA1), Node needs the OpenSSL development
 libraries. Running configure will let you know
 whether any of these dependencies are missing (see Example 1-2).
Example 1-2. Configuring the Node install
enki:node-v0.6.6 $./configure
Checking for program g++ or c++ : /usr/bin/g++
Checking for program cpp : /usr/bin/cpp
Checking for program ar : /usr/bin/ar
Checking for program ranlib : /usr/bin/ranlib
Checking for g++ : ok
Checking for program gcc or cc : /usr/bin/gcc
Checking for gcc : ok
Checking for library dl : yes
Checking for openssl : not found
Checking for function SSL_library_init : yes
Checking for header openssl/crypto.h : yes
Checking for library util : yes
Checking for library rt : not found
Checking for fdatasync(2) with c++ : no
'configure' finished successfully (0.991s)
enki:node-v0.6.6 $

The next installation step is to make the project (Example 1-3). This compiles Node and builds the binary
 version that you will use into a build subdirectory of the source
 directory we’ve been using. Node numbers each of the build steps it needs
 to complete so you can follow the progress it makes during the
 compile.
Example 1-3. Compiling Node with the make command
enki:node-v0.6.6 $ make
Waf: Entering directory `/Users/sh1mmer/Downloads/node-v0.6.6/out'
DEST_OS: darwin
DEST_CPU: x64
Parallel Jobs: 1
Product type: program
[1/35] copy: src/node_config.h.in -> out/Release/src/node_config.h
[2/35] cc: deps/http_parser/http_parser.c -> out/Release/deps/http_parser/http_parser_3.o
/usr/bin/gcc -rdynamic -pthread -arch x86_64 -g -O3 -DHAVE_OPENSSL=1 -D_LARGEFILE_SOURCE ...
[3/35] src/node_natives.h: src/node.js lib/dgram.js lib/console.js lib/buffer.js ...
[4/35] uv: deps/uv/include/uv.h -> out/Release/deps/uv/uv.a

...

f: Leaving directory `/Users/sh1mmer/Downloads/node-v0.6.6/out'
'build' finished successfully (2m53.573s)
-rwxr-xr-x 1 sh1mmer staff 6.8M Jan 3 21:56 out/Release/node
enki:node-v0.6.6 $

The final step is to use make to install Node. First, Example 1-4 shows how to install Node globally for the
 whole system. This requires you to have either access to the root user or sudo privileges that let you act as root.
Example 1-4. Installing Node for the whole system
enki:node-v0.6.6 $ sudo make install
Password:
Waf: Entering directory `/Users/sh1mmer/Downloads/node-v0.6.6/out'
DEST_OS: darwin
DEST_CPU: x64
Parallel Jobs: 1
Product type: program
* installing deps/uv/include/ares.h as /usr/local/include/node/ares.h
* installing deps/uv/include/ares_version.h as /usr/local/include/node/ares_version.h
* installing deps/uv/include/uv.h as /usr/local/include/node/uv.h

...

* installing out/Release/src/node_config.h as /usr/local/include/node/node_config.h
Waf: Leaving directory `/Users/sh1mmer/Downloads/node-v0.6.6/out'
'install' finished successfully (0.915s)
enki:node-v0.6.6 $

If you want to install only for the local user
 and avoid using the sudo command, you
 need to run the configure script with
 the --prefix argument to tell Node to
 install somewhere other than the default (Example 1-5).
Example 1-5. Installing Node for a local user
enki:node-v0.6.6 $ mkdir ~/local
enki:node-v0.6.6 $./configure --prefix=~/local
Checking for program g++ or c++ : /usr/bin/g++
Checking for program cpp : /usr/bin/cpp

...

'configure' finished successfully (0.501s)
enki:node-v0.6.6 $ make && make install
Waf: Entering directory `/Users/sh1mmer/Downloads/node-v0.6.6/out'
DEST_OS: darwin
DEST_CPU: x64

...

* installing out/Release/node as /Users/sh1mmer/local/bin/node
* installing out/Release/src/node_config.h as /Users/sh1mmer/local/include/node/...
Waf: Leaving directory `/Users/sh1mmer/Downloads/node-v0.6.6/out'
'install' finished successfully (0.747s)
enki:node-v0.6.6 $

Let’s Build Twitter

The previous example shows how easy it is to write something extremely
 real-time with Node, but often you just want to write a web application.
 Let’s try to create something similar to Twitter with Node so we can see
 what it’s like to make a web application. The first thing we should do is
 install the Express module (Example 2-13). This web
 framework for Node makes it much easier to create web applications by
 adding support for common tasks, such as MVC, to the existing http
 server.
Example 2-13. Installing the Express module
Enki:~ $ npm install express
express@2.3.12 ./node_modules/express
├── mime@1.2.2
├── connect@1.5.1
└── qs@0.1.0
Enki:~ $

Installing Express is easy using the Node Package Manager
 (npm). Once we have the framework installed, we can make a
 basic web application (Example 2-14). This
 looks a lot like the application we built in Chapter 1.
Note
You can read more about npm in Chapters 6 and 7.

Example 2-14. A basic web server with Express
var express = require('express')

var app = express.createServer()

app.get('/', function(req, res) {
 res.send('Welcome to Node Twitter')
})

app.listen(8000)

This code looks pretty similar to the basic web server code from
 Chapter 1. Instead of including the http module, however, we include express. Express is actually getting http behind the scenes, but we don’t have to get
 that ourselves, because Node will automatically resolve the dependencies.
 Like with http and net, we call createServer() to make a
 server and call listen() to make it listen to a specific port. Instead of attaching
 an event listener to the request event
 with Express, we can call methods matching the HTTP verbs. In this case,
 when we call get(), we can create a
 callback function that will match GET requests only to a URL that matches
 the first argument of the call. This has immediately added two things that
 the http server didn’t have: the
 ability to filter based on HTTP verbs, and the ability to filter based on
 specific URLs.
When we get the callback, it looks a lot like the one from the
 http server—because it is. However,
 Express has added some extra methods. With the http server, we needed to create the HTTP
 headers and send them to the client before sending the body of the
 request. Express provides a convenience method on the res (http.response) object call named send(), and this method issues both the HTTP
 headers as well as a response.end()
 call. So far, we haven’t done much more than the original Hello World
 server from Chapter 1. However, this server will
 respond only to a GET request to /
 without throwing an error. This is in contrast to the previous example,
 which would respond to any request with any path.
Let’s start adding some features to this server in order to provide
 some of the Twitter functionality (Example 2-15). At
 least to start with, we aren’t going to worry about making it super-robust
 or scalable. We are going to make a few assumptions so you can see how to
 create applications.
Example 2-15. Adding a basic API
var express = require('express')

var app = express.createServer()
app.listen(8000)

var tweets = []

app.get('/', function(req, res) {
 res.send('Welcome to Node Twitter')
})

app.post('/send', express.bodyParser(), function(req, res) {
 if (req.body && req.body.tweet) {
 tweets.push(req.body.tweet)
 res.send({status:"ok", message:"Tweet received"})
 } else {
 //no tweet?
 res.send({status:"nok", message:"No tweet received"})
 }
})

app.get('/tweets', function(req,res) {
 res.send(tweets)
})

Building on the basic Express app, we’ve added a couple of functions
 to provide an extremely basic API. But first let’s talk about another
 change we made. We moved the app.listen() call to the top of the file. It’s
 important to understand why this doesn’t cause a race condition for the
 functions that respond to requests. You might imagine that when we call
 app.listen(), any requests that happen
 between the app.listen() call and the
 time it takes to run those functions will be ignored. This is incorrect
 for two reasons. The first is that in JavaScript everything happens in an
 event loop. That means new events don’t get called until we’ve finished
 evaluating the code of the existing loop pass. In this case, no request events will be called (and thus our
 request-based functions) until we’ve
 evaluated all the initialization code in the file. The other reason is
 that the app.listen() call is actually
 asynchronous because binding to a TCP port takes time. The addition of
 event listeners (via app.get() and
 app.post()), on the other hand, is
 synchronous.
To get some very basic tweeting action going, we’ve added a POST
 “route” for /send using the app.post() call. This call is a little bit
 different from the previous example. Obviously, it’s an app.post() rather than an app.get() request. This simply means it accepts
 HTTP POST requests instead of HTTP GET requests. The significant
 difference is that we’ve passed an extra argument to the function. You
 don’t need to do this on all app.post()
 calls, or any, in fact. The extra argument after the url is a middleware.
A middleware is a small piece of code that sits in between the original
 request event and the route we defined
 with app.post(). We use middleware to
 reuse code for common tasks such as authentication or logging. In this
 case the middleware’s job is to stream the POST data from the client and
 then turn it into a JavaScript object that we can use. This middleware is
 one that is included in Express itself, called bodyParser. We simply include it by specifying
 it in the arguments we give to the app.post() route. Notice that we call express.bodyParser(). This function call actually returns another function. We use
 this standard style for middleware to allow you to pass configuration to
 the middleware if you want to.
If we didn’t include the middleware, we would have to manually write
 code to accept the data event provided
 by the request (req) object. Only after we had streamed in all
 the POST data could we call the code in the app.post() route. Using the middleware not only
 helps with code reuse but also with clarity.
The express.bodyParser adds a
 property to req called req.body. This property (if it exists) contains
 an object representing the POST data. The express.bodyParser middleware will work only for
 POST requests with the content-type
 HTTP header of application/x-www-form-urlencoded or application/json. Both of these are easy to
 parse into key/value pairs as properties of the req.body object.
This means that in the app.post()
 route we made, the first thing we do is check whether express.bodyParser found any data. We can simply
 check to see whether req.body was
 created. If it was, we look for a property called req.body.tweet to represent the tweet. If we
 find a tweet, we stash it in a global array called tweets and send a JSON string back to the client
 noting success. If we couldn’t find req.body or req.body.tweet, we send JSON back to the client,
 noting the failure. Notice how we didn’t serialize the data in the
 res.send() calls. If we give res.send() an object, it automatically
 serializes it as JSON and sends the correct HTTP headers.
Finally, to make our basic API complete, we create an app.get() route that listens to /tweets. This route simply
 sends back JSON for the tweets
 array.
We can write a few tests for our simple API to make sure it’s
 working (Example 2-16). This is a good habit to get into, even if you don’t do full
 test-driven development (TDD).
Example 2-16. A test for the POST API
var http = require('http'),
 assert = require('assert')

var opts = {
 host: 'localhost',
 port: 8000,
 path: '/send',
 method: 'POST',
 headers: {'content-type':'application/x-www-form-urlencoded'}
}

var req = http.request(opts, function(res) {
 res.setEncoding('utf8')

 var data = ""
 res.on('data', function(d) {
 data += d
 })

 res.on('end', function() {
 assert.strictEqual(data, '{"status":"ok","message":"Tweet received"}')
 })
})

req.write('tweet=test')
req.end()

We need the http and assert[3] modules in order to send HTTP requests and then test the values returned.
 assert is a core module in Node that lets us test
 return values in various ways. When a value doesn’t match the expected
 criteria, an exception is thrown. By making test scripts that check an
 expected behavior of our program, we can ensure that it is doing what it
 should be.
The http library doesn’t just contain objects to serve HTTP; it also provides
 a client. In this test program, we use the http.request() factory method to create a new
 http.Request object. To create an
 http.Request, we need an
 options object. This is a configuration object we
 pass that has a list of properties defining the functionality we want the
 http.Request to exhibit. You’ll see
 config objects used for constructing other Node objects. In this case, we
 include the hostname (which will be
 resolved by dns), the port, URL path,
 HTTP method, and some HTTP headers. Here the settings of the config object
 reflect what we used when creating our Express server.
The http.request() constructor takes two arguments: the first is the config
 object, and the second is a callback. The callback is attached to the
 response event for the http.Request. It’s similar to an http.Server, except we have only one object in
 the response.
The first thing we do with the response is call setEncoding(). This
 allows us to define the encoding of all the received data. By setting this
 to utf8, we ensure that any data we
 receive will be treated as the right kind of string. Next, we define a
 variable, data, which we are going to
 use to stream all the responses from the server. In Express, we can use express.bodyDecoder to catch all the data in a request and stream it, but we
 don’t have the same luxury in the client, so we’ll do it by hand. It’s
 really easy. We simply attach a function to the data event on response. Whenever data
 happens, we append it to our data
 variable. We can listen for the end
 event of the response and then take
 further action on all of the data. The API is set up this way because
 there are many applications in which it is possible to stream data. In
 these cases, we can do all of the work in the data event listener rather than aggregating
 first.
When we get the end event on
 response, it’s because we have all the
 data from the server. Now we can run our test on whatever the server sent.
 Our test in this case is to check whether the data variable has received what we expected from
 the server. If the server is acting
 correctly, it should send us back a piece of JSON. By using assert.strictEqual, we are checking that data matches
 the expected data using ===. If it
 doesn’t, an assert exception is thrown.
 We are using the x-www-form-urlencoded
 format because that’s what a web page form would send.
Now that we’ve set up the request
 and the event handlers for it, we need to write some data to the server.
 Calling write() on
 request lets us send data (since this is a POST
 request). We send some test data to ensure that the server will respond
 correctly. Finally, we call end() to
 indicate that we are finished sending data with the request object.
When we call this script, it will access the server we set up (if it
 is running) and send a POST request. If it gets back the correct data, it
 will finish without output. If it can’t connect to the server or if the
 server responds with the wrong output, it will throw an exception. The
 goal is to have a set of scripts we can run to check that the server is
 behaving correctly as we build it.
Now that we have an API, we can start adding a web interface so that
 people can use our app. Right now, it’s basic, but the API allows people
 to send messages that everyone can receive. Let’s make an interface to
 that.
Express supports an MVC (model, view, controller) approach oriented
 around the routing of requests. The routes act like controllers, providing
 a way to join the data model with a view. We’ve already used a route
 (app.get('/', function)). In the folder
 structure shown in Example 2-17, we can see where we
 host the different parts of the views. By convention, the
 views folder holds the view templates, and within it
 a partials folder contains the “partial views” (we’ll
 discuss these more later). For applications that don’t use a content
 delivery network (CDN), the public folder is used to
 store static files, such as CSS and JavaScript.
Example 2-17. The basic folder structure of an Express app
.
├── app.js
├── public
└── views
 └── partials

To start connecting our very simple model (var tweets = []) with a view, we need to create
 some views first. We are going to create some basic view files and put
 them in the views folder. Express offers a few
 different templating languages and is extensible to allow the addition of
 more. We are going to start with EJS.[4] EJS simply embeds JavaScript into the templates with a few
 simple tags to define how the JavaScript is interpreted. Let’s take a look
 at an example of EJS, starting with the layout file in Example 2-18.
Example 2-18. EJS layout file
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <%- partial('partials/stylesheet', stylesheets) %>
 <title><%= title %></title>
 </head>
 <body>
 <h1><%= header %></h1>
 <%- body %>
 </body>
</html>

The layout file in Express defines a skeleton to use for your site. It’s some basic
 view boilerplate you will use almost everywhere. In this case, we’ve used
 a very simple HTML5 page. It has a head with some stylesheet definitions
 and a body. The body consists of an h1
 header element and some content. Notice the <% tags. These are the places in which we are
 going to insert JavaScript variables. The JavaScript to be evaluated is
 between the <% and %> tags. The tags can also start with
 = or -, which we will discuss in more detail shortly.
 Mostly you’ll just reference a piece of data. You can simply list the
 variable or reference you wish to include in the page. For example,
 <h1><%= header %></h1> includes the
 variable header into the h1 element.
There are two special things used in this template. The first is the
 call to partial(). Partials are
 mini-templates for code that is expected to repeat again and again with
 different data. For example, you can imagine the comments on a blog post
 are the same snippet of HTML repeating many times, but with different
 pieces of information for each commenter and the comment she made. The
 actual HTML template doesn’t change. Partials are a way to represent and
 store those small pieces of code that repeat often, independently of the
 pages that include them, to make it easy to update the code on all the
 pages at once. The other special thing in this layout template is the
 body variable. Because we use the
 layout template on all the pages on the site (unless we turn it off), we
 need some way to say where the specific template being rendered goes.
 Express provides the body variable for this task. This variable will
 contain the rendered contents of the specific template we load.
Let’s make a render call from a route to see what that looks
 like before we explore the other templates we’ll need (Example 2-19).
Example 2-19. Rendering the index template from the '/' route
app.get('/', function(req, res) {
 var title = 'Chirpie',
 header = 'Welcome to Chirpie'

 res.render('index', {
 locals: {
 'title': title,
 'header': header,
 'tweets': tweets,
 stylesheets: ['/public/style.css']
 }
 })
})

The route code looks like the other route code we’ve used. However,
 instead of calling res.send(), we use
 res.render() as the call to render a
 template. The first argument is the name of the specific template we want
 to render. Remember that whatever is in the index template will be
 rendered into the layout template where the body variable was. The second argument we pass
 to res.render() is a configuration
 object. In this case, we haven’t done any configuration, except providing
 some local variables. The locals
 property of the config object contains the data used to render this
 template. We’ve passed in a title, a header, the array of tweets, and an
 array of stylesheets. All of these variables will be available to both the
 layout template and the index template.
We want to define an index template that is going to take the list
 of tweets and render them so that everyone can see the messages being
 posted (Example 2-20). We aren’t going to do individual
 tweet streams just yet, but we can make a page in which everyone can see
 all the messages being posted and post their own messages using the API.
Example 2-20. An index template to show tweets and let people post new
 tweets
<form action="/send" method="POST">
 <input type="text" length="140" name="tweet">
 <input type="submit" value="Tweet">
</form>
<%- partial('partials/chirp', tweets) %>

This index template is really simple. We have a small form to
 provide an input method for new tweets. That’s just regular HTML, but we
 can make it more AJAX-y later. We also have a partial for the tweets.
 Because they are all the same, we don’t want to put in an ugly loop with
 some markup embedded in the index template. By using a partial, we can
 make one smaller template to represent tweets in those templates in which
 we want to include them. This keeps the code nice and DRY.[5] We can add more stuff later, but this gives us the basic
 functionality we need. We’ll still need to define the partial templates we
 use in the layout template and the index template (Examples 2-21 and 2-22).
Example 2-21. A partial template for rendering chirps
<p><%= chirp %></p>

Example 2-22. A partial template for rendering stylesheets
<link rel="stylesheet" type="text/css" href="<%- stylesheet %>">

Both of these templates are really simple as well. They take some data and insert it into the
 markup. Because they get passed an array, they will repeat for each item
 in the array; however, neither of them is doing anything complex with the
 items of data. The variable each partial is using to access the array is
 the same as the name of the template. The template called chirp accesses its data in a variable of the
 same name. In this case, the data is simple
 strings, but if we passed in an array of objects, we could do chirp.property or chirp['property'] to access the properties of
 the objects. Of course, you can also call methods, such as chirp.method().
Now we have an application that allows us to post tweets. It’s very
 basic, and there are some things that are pretty suboptimal. Let’s correct
 a few of those things. The first obvious problem is that when we post a
 new tweet, it takes us to the “send JSON” endpoint. It’s not bad that we
 are accessing /send, but rather that it
 treats all clients the same. The tweets are also coming out in
 chronological order and we haven’t been saving a timestamp, so we don’t
 know how fresh they are. We’ll fix that too.
Fixing the /send endpoint is
 pretty simple. When HTTP clients send a request, they can specify the kind
 of response they want in order of preference. Typical browsers request
 text/html first and then various other
 formats. When performing API requests, however, the client can specify
 application/json in order to get the
 correct output. By checking for the accept HTTP header, we can make sure we send
 browsers back to the home page but simply return JSON to API
 clients.
The accept HTTP header might look
 like text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8.
 That header is from the Chrome browser, and it contains a number of MIME
 types separated by commas. First, we need a small function to figure out
 whether text/html is in the accept header (Example 2-23),
 and then we can use that to test the header and do some logic in the
 route.
Example 2-23. A small function to check for text/html in an accept
 header
function acceptsHtml(header) {
 var accepts = header.split(',')
 for(i=0;i<accepts.length;i+=0) {
 if (accepts[i] === 'text/html') { return true }
 }

 return false
}

This function splits the header across the commas. Then we iterate
 over that array and simply return true if any of them
 match text/html; otherwise, we’ll
 return false if none of them matched. We can use this
 in our route function to check whether it is a request from a web browser
 or an API request (Example 2-24).
Example 2-24. Redirect web browsers from the /send endpoint
app.post('/send', express.bodyParser(), function(req, res) {
 if (req.body && req.body.tweet) {

 tweets.push(req.body.tweet)

 if(acceptsHtml(req.headers['accept'])) {
 res.redirect('/', 302)
 } else {
 res.send({status:"ok", message:"Tweet received"})
 }

 } else {
 //no tweet?
 res.send({status:"nok", message:"No tweet received"})
 }
})

Much of this code is the same as Example 2-10, but
 now we have a check for whether the accept header asks for text/html. If it does, we redirect back to
 / using the res.redirect command. We use a 302 status code
 because this isn’t a permanent move. Instead, we want the browser to still
 go to /send each time before redirecting.

[3] You can read more about assert in Chapter 5.

[4] More of Express’s view languages are covered in Chapter 7.

[5] Don’t repeat yourself.

Chapter 4. Core APIs

There are a lot of APIs in Node, but some of them are more important than others. These core
 APIs will form the backbone of any Node app, and you’ll find yourself using
 them again and again.
Events

The first API we are going to look at is
 the Events API. This is
 because, while abstract, it is a fundamental piece of making every other
 API work. By having a good grip on this API, you’ll be able to use all the
 other APIs effectively.
If you’ve ever programmed JavaScript in the
 browser, you’ll have used events before. However, the event model used in
 the browser comes from the DOM rather than JavaScript itself, and a lot of
 the concepts in the DOM don’t necessarily make sense out of that context.
 Let’s look at the DOM model of events and compare it to the implementation
 in Node.
The DOM has a user-driven event model based on
 user interaction, with a set of interface elements arranged in a tree
 structure (HTML, XML, etc.). This means that when a user interacts with a
 particular part of the interface, there is an event and a context, which
 is the HTML/XML element on which the click or other activity took place.
 That context has a parent and potentially children. Because the context is
 within a tree, the model includes the concepts of bubbling and capturing,
 which allow elements either up or down the tree to receive the event that
 was called.
For example, in an HTML list, a click event on
 an can be captured by a
 listener on the that is its
 parent. Conversely, a click on the can be bubbled down to a listener on
 the . Because JavaScript
 objects don’t have this kind of tree structure, the model in Node is much
 simpler.
EventEmitter

Because the
 event model is tied to the DOM in browsers, Node created the EventEmitter class to provide
 some basic event functionality. All event functionality in Node revolves
 around EventEmitter because it is
 also designed to be an interface class for other classes to extend. It
 would be unusual to call an EventEmitter instance directly.
EventEmitter has a handful of methods, the
 main two being on and emit. The class provides these methods for use
 by other classes. The on
 method creates an event listener for an event, as shown in Example 4-1.
Example 4-1. Listening for an event with the on method
server.on('event', function(a, b, c) {
 //do things
});

The on
 method takes two parameters: the name of the event to listen for and the
 function to call when that event is emitted. Because
 EventEmitter is an interface pseudoclass, the class
 that inherits from EventEmitter is
 expected to be invoked with the new keyword.
 Let’s look at Example 4-2 to see how we create a
 new class as a listener.
Example 4-2. Creating a new class that supports events with
 EventEmitter
var utils = require('utils'),
 EventEmitter = require('events').EventEmitter;

var Server = function() {
 console.log('init');
};

utils.inherits(Server, EventEmitter);

var s = new Server();

s.on('abc', function() {
 console.log('abc');
});

We begin this example by including the
 utils module so we can use the inherits method.
 inherits provides a way for the
 EventEmitter class to add its methods to the Server class we created. This
 means all new instances of Server can be used as
 EventEmitters.
We then include the events module. However, we want to access just
 the specific EventEmitter class
 inside that module. Note how EventEmitter is capitalized to show it is a
 class. We didn’t use a createEventEmitter method, because we aren’t
 planning to use an EventEmitter directly. We simply
 want to attach its methods to the Server class we are going to make.
Once we have included the modules we need,
 the next step is to create our basic Server class. This offers just one simple
 function, which logs a message when it is initialized. In a real
 implementation, we would decorate the Server class prototype with the functions that
 the class would use. For the sake of simplicity, we’ve skipped that. The
 important step is to use sys.inherits
 to add EventEmitter as a superclass
 of our Server class.
When we want to use the Server class, we instantiate it with new Server(). This instance of Server will have access to the methods in the
 superclass (EventEmitter), which
 means we can add a listener to our instance using the on method.
Right now, however, the event listener we
 added will never be called, because the abc event isn’t fired. We can fix this by
 adding the code in Example 4-3 to emit the event.
Example 4-3. Emitting an event
s.emit('abc');

Firing the event listener is as simple as calling the emit method that the Server instance inherited from EventEmitter. It’s important to note that
 these events are instance-based. There are no
 global events. When you call the on method, you attach to a specific EventEmitter-based object. Even the various
 instances of the Server class don’t
 share events. s from the code in
 Example 4-3 will not share the same events as
 another Server instance, such as one
 created by var z = new
 Server();.

Callback Syntax

An important part of using events is dealing with callbacks. Chapter 3 looks at best
 practices in much more depth, but we’ll look here at the mechanics of
 callbacks in Node. They use a few standard patterns, but first let’s discuss what is possible.
When calling emit, in
 addition to the event name, you can also pass an arbitrary list of
 parameters. Example 4-4 includes three such
 parameters. These will be passed to the function listening to the event.
 When you receive a request event from
 the http server, for example, you
 receive two parameters: req and
 res. When the request event was
 emitted, those parameters were passed as the second and third arguments
 to the emit.
Example 4-4. Passing parameters when emitting an event
s.emit('abc', a, b, c);

It is important to understand how Node calls
 the event listeners because it will affect your programming style. When
 emit() is called with arguments, the
 code in Example 4-5 is used to call each
 event listener.
Example 4-5. Calling event listeners from emit
if (arguments.length <= 3) {
 // fast case
 handler.call(this, arguments[1], arguments[2]);
} else {
 // slower
 var args = Array.prototype.slice.call(arguments, 1);
 handler.apply(this, args);
}

This code uses both of the JavaScript
 methods for calling a function from code. If emit() is passed with three or fewer
 arguments, the method takes a shortcut and uses call. Otherwise, it uses the slower apply to pass all the arguments as an array. The important thing to recognize here,
 though, is that Node makes both of these calls using the this argument directly. This means that the
 context in which the event listeners are called is the context of
 EventEmitter—not
 their original context. Using Node REPL, you can see what is happening
 when things get called by EventEmitter (Example 4-6).
Example 4-6. The changes in context caused by EventEmitter
> var EventEmitter = require('events').EventEmitter,
... util = require('util');
>
> var Server = function() {};
> util.inherits(Server, EventEmitter);
> Server.prototype.outputThis= function(output) {
... console.log(this);
... console.log(output);
... };
[Function]
>
> Server.prototype.emitOutput = function(input) {
... this.emit('output', input);
... };
[Function]
>
> Server.prototype.callEmitOutput = function() {
... this.emitOutput('innerEmitOutput');
... };
[Function]
>
> var s = new Server();
> s.on('output', s.outputThis);
{ _events: { output: [Function] } }
> s.emitOutput('outerEmitOutput');
{ _events: { output: [Function] } }
outerEmitOutput
> s.callEmitOutput();
{ _events: { output: [Function] } }
innerEmitOutput
> s.emit('output', 'Direct');
{ _events: { output: [Function] } }
Direct
true
>

The sample output first sets up a Server class. It includes functions to
 emit the output event. The outputThis method is attached to the output event as an event listener. When we
 emit the output event from various contexts, we stay
 within the scope of the EventEmitter
 object, so the value of this that
 s.outputThis has access to is the one
 belonging to the EventEmitter. Consequently, the
 this variable must be passed in as a
 parameter and assigned to a variable if we wish to make use of it in
 event callback functions.

Socket.IO

Socket.IO is a simple little library that’s a lot like Node’s core net library. Socket.IO allows you to send
 messages back and forth with browser clients that connect with your Node
 server, using an efficient, low-level socket mechanism. One of the nice
 things about the module is that it provides a shared interface between the
 browser and the server. That is, you can write the same JavaScript on both
 in order to do messaging work once you have a connection
 established.
Socket.IO is so named because it supports the HTML5 WebSockets
 standard on browsers that support it (and have it enabled). Fortunately,
 the library also supports a number of fallbacks:
	WebSocket

	WebSocket over Flash

	XHR Polling

	XHR Multipart Streaming

	Forever Iframe

	JSONP Polling

These options ensure that you’ll be able to have some kind of
 persistent connection to the browser in almost any environment. The
 Socket.IO module includes the code to power these connection paths on both
 the browser and the server side with the same API.
Instantiating Socket.IO is as simple as including the module and
 creating a server. One of the things that’s a little different about
 Socket.IO is that it requires an HTTP server as well; see Example 7-16.
Example 7-16. Creating a Socket.IO server
 var http = require('http'),
 io = require('socket.io');

server = http.createServer();
server.on('request', function(req, res){
 //Typical HTTP server stuff
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('Hello World');
});

server.listen(80);

var socket = io.listen(server);

socket.on('connection', function(client){
 console.log('Client connected');
});

The HTTP server in this example could do anything. In this case,
 we simply return “Hello World.” However, Socket.IO doesn’t care what the
 HTTP server will do; it simply wraps its own event listener around all
 requests to your server. This listener will look for any requests for
 Socket.IO’s client libraries and service these requests. It passes on all
 others to be handled by the HTTP server, which will function as
 usual.
The example creates a socket.io
 server by calling io.listen(),
 which is a factory method for the Listener
 class. listen() takes a function as an
 argument, which it uses as a callback when a client connects to the
 server. Because the sockets are persistent connections, you aren’t dealing
 with a req and res object as you do with an HTTP server. As
 with net, you need to use the passed
 client object to communicate with each
 browser. Of course, it’s also important to have some code in the browser
 (Example 7-17) to interact with the
 server.
Example 7-17. A small web page to interact with a Socket.IO server
<!DOCTYPE html>
<html>
 <body>
 <script src="/socket.io/socket.io.js"></script>
 <script>
 var socket = io.connect('http://localhost:8080');
 socket.on('message', function(data){ console.log(data) })
 </script>
 </body>
</html>

This simple page starts by loading the necessary Socket.IO client
 library directly from the Node server, which is localhost on port 8080 in
 this case.
Note
Although port 80 is the standard HTTP port, port 8080 is more
 convenient during development because many developers run web servers
 locally for testing that would interfere with Node’s work. In addition,
 many Linux systems have built-in security policies preventing
 nonadministrator users from using port 80, so it is more convenient to
 use a higher number.

Next, we create a new Socket
 object with the hostname of the Socket.IO server we are connecting to. We
 ask the Socket to connect with socket.connect(). Then we add a listener for the message event. Notice how the API is like a Node
 API. Whenever the server sends this client a message, the client will
 output it to the browser’s console window.
Now let’s modify our server to send this page to clients so we can
 test it (Example 7-18).
Example 7-18. A simple Socket.IO server
 var http = require('http'),
 io = require('socket.io'),
 fs = require('fs');

var sockFile = fs.readFileSync('socket.html');

server = http.createServer();
server.on('request', function(req, res){
 res.writeHead(200, {'content-type': 'text/html'});
 res.end(sockFile);
});

server.listen(8080);

var socket = io.listen(server);

socket.on('connection', function(client){
 console.log('Client connected');
 client.send('Welcome client ' + client.sessionId);
});

The most striking change in this example is the addition of the
 fs.readFileSync function, which brings
 the web page’s external file into the socket server. Now instead of
 responding to web browser requests with “Hello World,” the Node server
 will respond with the contents of socket.html.
 Because readFileSync is a
 synchronous function, it will block Node’s event loop until the file is
 read, ensuring that the file is ready to be delivered to clients
 immediately when the server becomes available for connections.
Now whenever anyone requests anything from the server, unless it is
 a request to the Socket.IO client library, he will get a copy of
 socket.html (which might be the code in Example 7-17). The callback for connections has been
 extended to send a welcome message to clients, and a client running the
 code from Example 7-18 might get a message in its
 console like Welcome client
 17844937089830637. Each client gets its own sessionId. Currently, the ID is an integer
 generated using Math.random().
Namespaces

Creating websockets as shown is fine when you are in full control of your
 application and architecture, but this will quickly lead to conflicts
 when you are attaching them to an existing application that uses sockets
 or when you are writing a service to be plugged into someone else’s
 project. Example 7-19 demonstrates how namespaces
 avoid this problem by effectively dividing Socket.IO’s listeners into
 channels.
Example 7-19. A modified web page to interact with Socket.IO
 namespaces
<!DOCTYPE html>
<html>
 <body>
 <script src="/socket.io/socket.io.js"></script>
 <script>
 var upandrunning = io.connect('http://localhost:8080/upandrunning');
 var weather = io.connect('http://localhost:8080/weather');
 upandrunning.on('message', function(data){
 document.write('

Node: Up and Running Update
');
 document.write(data);
 });
 weather.on('message', function(data){
 document.write('

Weather Update
');
 document.write(data);
 });
 </script>
 </body>
</html>

This updated socket.html makes two Socket.IO
 connections, one to
 http://localhost:8080/upandrunning and the other to
 http://localhost:8080/weather. Each connection has
 its own variable and its own .on()
 event listener. Apart from these differences, working with Socket.IO
 remains the same. Instead of logging to the console, Example 7-20 displays its message results within the web
 browser window.
Example 7-20. A namespace-enabled Socket.IO server
var sockFile = fs.readFileSync('socket.html');

server = http.createServer();
server.on('request', function(req, res){
 res.writeHead(200, {'content-type': 'text/html'});
 res.end(sockFile);
});

server.listen(8080);

var socket = io.listen(server);

socket.of('/upandrunning')
 .on('connection', function(client){
 console.log('Client connected to Up and Running namespace.');
 client.send("Welcome to 'Up and Running'");
});

socket.of('/weather')
 .on('connection', function(client){
 console.log('Client connected to Weather namespace.');
 client.send("Welcome to 'Weather Updates'");
});

The function socket.of splits
 the socket object into multiple unique namespaces, each with its own
 rules for handling connections. If a client were to connect to
 http://localhost:8080/weather and issue an emit() command, its results would be processed
 only within that namespace, and not within the
 /upandrunning namespace.

Using Socket.IO with Express

There are many cases where you would want to use Socket.IO by itself
 within Node as its own application or as a component of a larger website
 architecture that includes non-Node components. However, when it’s used
 as part of a full Node application using Express, you can gain an
 enormous amount of efficiency by writing the entire software
 stack—including the client-facing views—in the same language
 (JavaScript).
Save Example 7-21 as socket_express.html.
Example 7-21. Attaching Socket.IO to an Express application: client
 code
<script src="/socket.io/socket.io.js"></script>
<script>
var socket = io.connect('http://localhost:8080');
socket.on('news', function(data) {
 document.write('<h1>' + data.title + '</h1>');
 document.write('<p>' + data.contents + '</p>');
 if (data.allowResponse) {
 socket.emit('scoop', { contents: 'News data received by client.' });
 }
});
</script>

This example starts by connecting to the Socket.IO on port 8080.
 Whenever the Socket.IO server sends a “news” event, the client writes
 the new item’s title and contents to the browser page. If the news item
 allows a response, the client socket emits a “scoop” event. The scoop
 wouldn’t be very interesting to a real reporter; it only contains an
 acknowledgment that the client received the original news.
This being an example press, the news server responds to the
 “scoop” event by emitting another news story. The client will receive
 this new story and print it to the screen also. To prevent this cycle
 from continuing out of control, an allowResponse parameter is sent with the news
 story. If it is false or not present at all (see Example 7-22), the client will not send a scoop.
Example 7-22 shows the Express server.
Example 7-22. Attaching Socket.IO to an Express application: server
 code
var app = require('express').createServer(),
 io = require('socket.io').listen(app);

app.listen(8080);

app.get('/', function(req,res) {
 res.sendfile(__dirname + '/socket_express.html');
});

io.sockets.on('connection', function(socket) {
 socket.emit('news', {
 title: 'Welcome to World News', contents: 'This news flash was sent from Node.js!',
 allowResponse: true
 });
 socket.on('scoop', function(data) {
 socket.emit('news', {
 title: 'Circular Emissions Worked',
 contents: 'Received this content: ' + data.contents
 });
 });
});

The Express server is created first and then passed into Socket.IO
 as a parameter. When the Express application is started with the
 listen() function, both the web
 server and socket server are activated. Next, a route for the base path
 (/) is defined as a pass-through for sending the
 client-side file created in Example 7-21.
The server-side code for the news broadcaster looks very similar
 to the client-side code for good reason. The same events (emit, on
 message, connection) behave similarly in Node and in the web browser,
 making connectivity straightforward. Because data is passed as
 JavaScript objects between both endpoints, no additional parsing or
 serialization is needed.
Clearly, we can very quickly gain a lot of power by plugging
 Socket.IO into Express, but astute programmers will realize that this is
 one-way communication of limited value, unless the connection initiated
 by the user’s web browser is represented in the socket stream. Any
 changes (logout, profile settings, etc.) should be reflected in any
 socket actions, and vice versa. How to accomplish that? Sessions.
To illustrate the use of a session for authentication, let’s look
 first at the client-side code, views/socket.html, shown in Example 7-23.
Example 7-23. Client HTML (Jade template): Socket.IO sessions
!!! 5
html(lang='en')
 head
 script(type='text/javascript', src='/socket.io/socket.io.js')
 script(type='text/javascript')
 var socket = io.connect('http://localhost:8080');
 socket.on('emailchanged', function(data) {
 document.getElementById('email').value = data.email;
 });
 var submitEmail = function(form) {
 socket.emit('emailupdate', {email: form.email.value});
 return false;
 };
 body
 h1 Welcome!

 form(onsubmit='return submitEmail(this);')
 input(id='email', name='email', type='text', value=locals.email)
 input(type='submit', value='Change Email')

When rendered in a web browser, this page will display a form text
 box with a “Change Email” call to action whose default value comes from
 Express’s session data through the locals.email variable. Upon user input, the
 application performs these actions:
	Create a Socket.IO connection and send all of the user’s email
 updates as an emailupdate event.

	Listen for emailchanged
 events and replace the contents of the text box with the new
 email from the server (more on this soon).

Next, have a look at the Node.js portion of Example 7-24.
Example 7-24. Sharing session data between Express and Socket.IO
var io = require('socket.io');
var express = require('express');
var app = express.createServer();
var store = new express.session.MemoryStore;
var utils = require('connect').utils;
var Session = require('connect').middleware.session.Session;

app.configure(function() {
 app.use(express.cookieParser());
 app.use(express.session({secret: 'secretKey', key: 'express.sid', store: store}));
 app.use(function(req, res) {
 var sess = req.session;
 res.render('socket.jade', {
 email: sess.email || ''
 });
 });
});

// Start the app
app.listen(8080);

var sio = io.listen(app);

sio.configure(function() {
 sio.set('authorization', function (data, accept) {
 var cookies = utils.parseCookie(data.headers.cookie);
 data.sessionID = cookies['express.sid'];
 data.sessionStore = store;
 store.get(data.sessionID, function(err, session) {
 if (err || !session) {
 return accept("Invalid session", false);
 }
 data.session = new Session(data, session);
 accept(null,true);
 });
 });

 sio.sockets.on('connection', function(socket) {
 var session = socket.handshake.session;
 socket.join(socket.handshake.sessionId);
 socket.on('emailupdate', function(data) {
 session.email = data.email;
 session.save();
 sio.sockets.in(socket.handshake.sessionId).emit('emailchanged', {
 email: data.email
 });
 });
 });
});

This example uses Connect, a middleware framework that simplifies
 common tasks such as session management, working with cookies,
 authentication, caching, performance metrics, and more. In this example,
 the cookie and session tools are used to manipulate user data. Socket.IO
 is not aware of Express and vice versa, so Socket.IO is not aware of
 sessions when the user connects. However, both components need to
 use the Session object to share data.
 This is an excellent demonstration of the Separation of Concerns (SoC) programming
 paradigm.[19]
This example demonstrates using Socket.IO’s authorization, even
 after connection, to parse the user’s headers. Because the session ID is
 passed to the server as a cookie, you can use this value to read
 Express’s session ID.
This time, the Express setup includes a line for session
 management. The arguments used to build the session manager are a secret
 key (used to prevent session tampering), the session key (used to store
 the session ID in the web browser’s cookie), and a store object (used to
 store session data for later retrieval). The store object is the most
 important. Instead of letting Express create and manage the memory
 store, this example creates a variable and passes it into Express. Now
 the session store is available to the entire application, not just
 Express.
Next, a route is created for the default (/)
 web page. In previous Socket.IO examples, this function was used to
 output HTML directly to the web browser. This time, Express will render
 the contents of views/socket.jade
 to the web browser. The second variable in render() is the email address stored in the
 session, which is interpreted and used as the default text field value
 in Example 7-23.
The real action happens in Socket.IO’s 'authorization' event. When the web browser
 connects to the server, Socket.IO performs an authentication routine to
 determine whether the connection should proceed. The criteria in this
 case is a valid session, which was provided by Express when the user
 loaded the web page. Socket.IO reads the session ID from the request
 headers using parseCookie (part of
 the Connect framework), loads the session from the memory store, and
 creates a Session object with the
 information it receives.
The data passed to the authorization event is stored in
 the socket’s handshake
 property. Therefore, saving the session object into the data object
 makes it available later in the socket’s lifecycle. When creating the
 Session object, use the memory store
 that was created and passed into Express; now both Express and Socket.IO
 are able to access the same session data—Express by manipulating the
 req.session object, and sockets by
 manipulating the socket.handshake.session object.
Assuming all goes well, calling accept()
 authenticates the socket and allows the connection to continue.
Now suppose the user accesses your site from more than one tab in
 his web browser. There would be two connections from the same session
 created, so how would you handle events that need to update connected
 sockets? Socket.IO provides support for rooms, or
 channels if you prefer. By initiating a join() command with sessionId as the argument in Example 7-24, the socket transparently created a dedicated
 channel you can use to send messages to all connections currently in use
 by that user. Logging out is an obvious use for this technique: when the
 user logs out from one tab, the logout command will instantly transmit
 to all the others, leaving all of the user’s views of the application in
 a consistent state.
Warning
Always remember to execute session.save() after changing session data.
 Otherwise, the changes will not be reflected on subsequent requests.

[19] SoC refers to the practice of breaking down software into
 smaller single-purpose parts (concerns) that have as little
 overlapping functionality as possible. Middleware enables this style
 of design by allowing totally separate modules to interact in a
 common environment without needing to be aware of each other.
 Although, as we have seen with modules such as
 bodyParser(), it remains up to the programmer to
 understand how the concerns ultimately interact and use them in the
 appropriate order and context.

Processes

Although Node abstracts a lot of things from
 the operating system, you are still running in an operating system and may
 want to interact more directly with it. Node allows you to interact with
 system processes that already exist, as well as create new child processes
 to do work of various kinds. Although Node itself is generally a “fat”
 thread with a single event loop, you are free to start other processes
 (threads) to do work outside of the event loop.
process Module

The process module enables you to get information about and change the
 settings of the current Node process. Unlike most modules, the process module is global and is always
 available as the variable process.
process events

process
 is an instance of EventEmitter,
 so it provides events based on systems calls to the Node
 process. The exit event provides a final hook before the Node process exits (see
 Example 5-14). Importantly, the event loop will
 not run after the exit event, so
 only code without callbacks will be executed.
Example 5-14. Calling code when Node is exiting
process.on('exit', function () {
 setTimeout(function () {
 console.log('This will not run');
 }, 100);
 console.log('Bye.');
});

Because the loop isn’t going to run again,
 the setTimeout() code will never be
 evaluated.
An extremely useful event provided by process
 is uncaughtException (Example 5-15). After you’ve spent any time with Node,
 you’ll find that exceptions that hit the main event loop will kill
 your Node process. In many use cases, especially servers that are
 expected to never be down, this is unacceptable. The uncaughtException event provides an
 extremely brute-force way of catching these exceptions. It’s really a
 last line of defense, but it’s extremely useful for that
 purpose.
Example 5-15. Trapping an exception with the uncaughtException
 event
process.on('uncaughtException', function (err) {
 console.log('Caught exception: ' + err);
});

setTimeout(function () {
 console.log('This will still run.');
}, 500);

// Intentionally cause an exception, but don't catch it.
nonexistentFunc();
console.log('This will not run.');

Let’s break
 down what’s happening. First, we create an event listener for uncaughtException. This is not a smart handler;
 it simply outputs the exception to stdout. If this Node script were
 running as a server, stdout could easily be used to save the log into
 a file and capture these errors. However, because it captures the
 event for a nonexistent function, Node will not exit, but the standard
 flow is still disrupted. We know that all the JavaScript runs once,
 and then any callbacks will be run each time their event listener
 emits an event. In this scenario, because nonexistentFunc() will throw an exception,
 no code following it will be called. However, any code that has
 already been run will continue to run. This means that setTimeout() will still call. This is
 significant when you’re writing servers. Let’s consider some more code
 in this area, shown in Example 5-16.
Example 5-16. The effect on callbacks of catching exceptions
var http = require('http');
var server = http.createServer(function(req,res) {
 res.writeHead(200, {});
 res.end('response');
 badLoggingCall('sent response');
 console.log('sent response');
});

process.on('uncaughtException', function(e) {
 console.log(e);
});

server.listen(8080);

This code creates a simple HTTP server and
 then listens for any uncaught exceptions at the process level. In our
 HTTP server, the callback deliberately calls a bad function after
 we’ve sent the HTTP response. Example 5-17
 shows the console output for this script.
Example 5-17. Output of Example 5-16
Enki:~ $ node ex-test.js
{ stack: [Getter/Setter],
 arguments: ['badLoggingCall'],
 type: 'not_defined',
 message: [Getter/Setter] }
{ stack: [Getter/Setter],
 arguments: ['badLoggingCall'],
 type: 'not_defined',
 message: [Getter/Setter] }
{ stack: [Getter/Setter],
 arguments: ['badLoggingCall'],
 type: 'not_defined',
 message: [Getter/Setter] }
{ stack: [Getter/Setter],
 arguments: ['badLoggingCall'],
 type: 'not_defined',
 message: [Getter/Setter] }

When we start the example script, the
 server is available, and we have made a number of HTTP requests to it.
 Notice that the server doesn’t shut down at any point. Instead, the
 errors are logged using the function attached to the uncaughtException
 event. However, we are still serving complete HTTP requests. Why? Node
 deliberately prevented the callback in process from proceeding and calling console.log(). The error affected only the
 process we spawned and the server kept running, so any other code was
 unaffected by the exception encapsulated in one specific code
 path.
It’s important to understand the way that
 listeners are implemented in Node. Let’s take a look at Example 5-18.
Example 5-18. The abbreviated listener code for EventEmitter
EventEmitter.prototype.emit = function(type) {

...

 var handler = this._events[type];

...

 } else if (isArray(handler)) {
 var args = Array.prototype.slice.call(arguments, 1);

 var listeners = handler.slice();
 for (var i = 0, l = listeners.length; i < l; i++) {
 listeners[i].apply(this, args);
 }
 return true;

...

};

After an event is emitted, one of the
 checks in the runtime handler is to see whether there is an array of
 listeners. If there is more than one listener, the runtime calls the
 listeners by looping through the array in order. This means that the
 first attached listener will be called first with apply(), then the second, and so on. What’s
 important to note here is that all listeners on
 the same event are part of the same code path. So an uncaught
 exception in one callback will stop execution for all other callbacks
 on the same event. However, an uncaught exception in one instance of
 an event won’t affect other events.
We also get access to a number of system
 events through process. When the
 process gets a signal, it is exposed to Node via events emitted by
 process. An operating system can
 generate a lot of POSIX system events, which can be found in the
 sigaction(2) manpage. Really common ones
 include SIGINT, the interrupt signal. Typically, a SIGINT is what happens when you press
 Ctrl-C in the terminal on a running process. Unless you handle the
 signal events via process, Node
 will just perform the default action; in the case of a SIGINT, the
 default is to immediately kill the process. You can change default
 behavior (except for a couple of signals that can never get caught)
 through the process.on() method
 (Example 5-19).
Example 5-19. Catching signals to the Node process
// Start reading from stdin so we don't exit.
process.stdin.resume();

process.on('SIGINT', function () {
 console.log('Got SIGINT. Press Control-D to exit.');
});

To make sure Node doesn’t exit on its own,
 we read from stdin (described in Operating system input/output)
 so the Node process continues to run. If you Ctrl-C the program while
 it’s running, the operating system (OS) will send a SIGINT to Node,
 which will be caught by the SIGINT event handler. Here, instead of
 exiting, we log to the console instead.

Interacting with the current Node process

Process contains a lot
 of meta-information about the Node process. This can be very helpful
 when you need to manage your Node environment from within the process.
 There are a number of properties that contain immutable (read-only)
 information about Node, such as:
	process.version
	Contains the version number of the
 instance of Node you are running.

	process.installPrefix
	Contains the install path (/usr/local,
 ~/local, etc.) used during
 installation.

	process.platform
	Lists the platform on which
 Node is currently running. The output will specify
 the kernel (linux2, darwin, etc.) rather than “Redhat
 ES3,” “Windows 7,” “OSX 10.7,” etc.

	process.uptime()
	Contains the number of seconds
 the process has been running.

There are also a number of things that you
 can get and set about the Node process. When the process runs, it does
 so with a particular user and group. You can get these and set them with process.getgid(), process.setgid(), process.getuid(), and process.setuid(). These can be very useful for making sure
 that Node is running in a secure way. It’s worth noting that the set
 methods take either the numerical ID of the group or username or the
 group/username itself. However, if you pass the group or username, the
 methods do a blocking lookup to turn the group/username into an ID,
 which takes a little time.
The process
 ID, or PID, of the running Node instance is also available as
 the process.pid property. You can set the title that
 Node displays to the system using the process.title property. Whatever is set
 in this property will be displayed in the ps command. This
 can be extremely useful when you are running multiple Node processes
 in a production environment. Instead of having a lot of processes
 called node, or possibly node app.js, you can set names intelligently
 for easy reference. When one process is hogging CPU or RAM, it’s great
 to have a quick idea of which one is doing so.
Other available information includes process.execPath, which shows the execution
 path of the current Node binary (e.g., /usr/local/bin/node). The current working
 directory (to which all files opened will be relative) is accessible
 with process.cwd(). The working directory is the directory you were in when Node
 was started. You can change it using process.chdir() (this will throw an exception if the directory is unreadable
 or doesn’t exist). You can also get the memory usage of the current
 Node process using process.memoryUsage(). This returns an object specifying the size of the memory
 usage in a couple of ways: rss
 shows how much RAM is being used, and vsize shows the total memory used, including
 both RAM and swap. You’ll also get some V8 stats: heapTotal and heapUsed show how much memory V8 has
 allocated and how much it is actively using.

Operating system input/output

There are a number of places where you can
 interact with the OS (besides making changes to the Node process in
 which the program is running) from process. One of the main ones is having
 access to the standard OS I/O streams. stdin is the default input stream to the process, stdout is the
 process’s output stream, and stderr is its error stream. These are exposed with process.stdin,
 process.stdout, and process.stderr, respectively. process.stdin is a readable stream, whereas
 process.stdout and process.stderr are writable streams.
process.stdin

stdin is a really useful device for interprocess communication. It’s
 used to facilitate things such as piping in the shell. When we type
 cat file.txt | node program.js,
 it will be the stdin stream that receives the data from the cat command.
Because process is always available, the process.stdin stream is always initialized
 in any Node process. But it starts out in a paused state, where Node
 can write to it but you can’t read from it. Before attempting to
 read from stdin, call its resume() method (see Example 5-20). Until then, Node will just fill the
 read buffer for the stream and then stop until you are ready to deal
 with it. This approach avoids data loss.
Example 5-20. Writing stdin to stdout
process.stdin.resume();
process.stdin.setEncoding('utf8');

process.stdin.on('data', function (chunk) {
 process.stdout.write('data: ' + chunk);
});

process.stdin.on('end', function () {
 process.stdout.write('end');
});

We ask process.stdin to resume(), set the encoding to UTF-8, and
 then set a listener to push any data sent to process.stdout. When the process.stdin sends the end event, we pass that on to the process.stdout stream. We could also
 easily do this with the stream pipe()
 method, as in Example 5-21, because stdin and
 stdout are both real streams.
Example 5-21. Writing stdin to stdout using pipe
process.stdin.resume();
process.stdin.pipe(process.stdout);

This is the most elegant way of
 connecting two streams.

process.stderr

stderr is used to output exceptions and problems with program execution.
 In POSIX systems, because it is a separate stream, output logs and
 error logs can be easily redirected to different destinations. This
 can be very desirable, but in Node it comes with a couple of
 caveats. When you write to stderr, Node guarantees that the write
 will happen. However, unlike a regular stream, this is done as a
 blocking call. Typically, calls to Steam.write()
 return a Boolean value indicating whether Node was able to write to
 the kernel buffer. With process.stderr this will always be true,
 but it might take a while to return, unlike the regular write(). Typically, it will be very fast,
 but the kernel buffer may sometimes be full and hold up your
 program. This means that it is generally inadvisable to write a lot
 to stderr in a production system, because it may block real
 work.
One final thing to note is that process.stderr is always a UTF-8 stream.
 Any data you write to process.stderr will be interpreted as
 UTF-8 without you having to set an encoding. Moreover, you are not
 able to change the encoding here.
Another place where Node programmers
 often touch the operating system is to retrieve the arguments passed
 when their program is started. argv is an array containing the
 command-line arguments, starting with the node command itself (see Examples 5-22 and 5-23).
Example 5-22. A simple script outputting argv
console.log(process.argv);

Example 5-23. Running Example 5-22
Enki:~ $ node argv.js -t 3 -c "abc def" -erf foo.js
['node',
 '/Users/croucher/argv.js',
 '-t',
 '3',
 '-c',
 'abc def',
 '-erf',
 'foo.js']
Enki:~ $

There are few things to notice here.
 First, the process.argv array
 is simply a split of the command line based on
 whitespace. If there are many characters of whitespace between two
 arguments, they count as only a single split. The check for
 whitespace is written as \s+ in a
 regular expression (regex). This doesn’t count for whitespace in
 quotes, however. Quotes can be used to keep tokens together. Also,
 notice how the first file argument is expanded. This means you can
 pass a relative file argument on the command line, and it will appear as
 its absolute pathname in argv.
 This is also true for special characters, such as using ~ to refer to the home directory. Only the
 first argument is expanded this way.
argv
 is extremely helpful for writing command-line scripts, but it’s
 pretty raw. There are a number of community projects that extend its
 support to help you easily write command-line applications,
 including support for automatically enabling features, writing
 inline help systems, and other more advanced features.

Event loop and tickers

If you’ve done work with JavaScript in browsers, you’ll be familiar
 with setTimeout(). In Node, we have
 a much more direct way to access the event loop and defer work that is
 extremely useful. process.nextTick() creates a callback to be executed on the next “tick,” or
 iteration of the event loop. While it is implemented as a queue, it
 will supersede other events. Let’s explore that a little bit in Example 5-24.
Example 5-24. Using process.nextTick() to insert callbacks into the event
 loop
> var http = require('http');
> var s = http.createServer(function(req, res) {
... res.writeHead(200, {});
... res.end('foo');
... console.log('http response');
... process.nextTick(function(){console.log('tick')});
... });
> s.listen(8000);
>
> http response
tick
http response
tick

This example creates an HTTP server. The
 request event listener on the server creates a
 callback using process.nextTick().
 No matter how many requests we make to the HTTP server, the “tick”
 will always occur on the next pass of the event loop. Unlike other
 callbacks, nextTick() callbacks are
 not a single event and thus are not subject to the usual callback
 exception brittleness, as shown in Examples 5-25 and 5-26.
Example 5-25. nextTick() continues after other code’s exceptions
process.on('uncaughtException', function(e) {
 console.log(e);
});

process.nextTick(function() {
 console.log('tick');
});
process.nextTick(function() {
 iAmAMistake();
 console.log('tock');
});
process.nextTick(function() {
 console.log('tick tock');
});
console.log('End of 1st loop');

Example 5-26. Results of Example 5-25
Enki:~ $ node process-next-tick.js
End of 1st loop
tick
{ stack: [Getter/Setter],
 arguments: ['iAmAMistake'],
 type: 'not_defined',
 message: [Getter/Setter] }
tick tock
Enki:~ $

Despite the deliberate error, unlike other
 event callbacks on a single event, each of the ticks is isolated.
 Let’s walk through the code. First, we set an exception handler to
 catch any exceptions. Next, we set a number of callbacks on process.nextTick(). Each of these callbacks
 outputs to the console; however, the second has a deliberate error.
 Finally, we log a message to the console. When Node runs the program,
 it evaluates all the code, which includes outputting 'End of
 1st loop'. Then it calls the callbacks on nextTick() in order. First
 'tick' is outputted, and then we throw an error.
 This is because we hit our deliberate mistake on the next tick. The
 error causes process to emit() an uncaughtException event, which runs our function to output the error to the
 console. Because we threw an error, 'tock' was not
 outputted to the console. However, 'tick tock'
 still is. This is because every time nextTick() is called, each callback is
 created in isolation. You could consider the execution of events to be
 emit(), which is called inline in
 the current pass of event loop; nextTick(), which is called at the beginning
 of the event loop in preference to other events; and finally, other
 events in order at the beginning of the event loop.

Child Process

The child_process module allows you to create child processes of your main Node
 process. Because Node has only one event loop in a single process,
 sometimes it is helpful to create child processes. For example, you
 might do this to make use of more cores of your CPU, because a single
 Node process can use only one of the cores. Or, you could use child_process to launch other programs and let
 Node interact with them. This is extremely helpful when you’re writing
 command-line scripts.
There are two main methods in child_process. spawn() creates a child process with its own stdin, stdout, and stderr
 file descriptors. exec() creates
 a child process and returns the result as a callback when
 the process is complete. This is an extremely versatile way to create
 child processes, a way that is still nonblocking but doesn’t require you
 to write extra code in order to steam forward.
All child processes have some common
 properties. They each contain properties for stdin, stdout, and stderr,
 which we discussed in Operating system input/output. There is
 also a pid property that contains the OS process ID of the child. Children
 emit the exit event when they exit.
 Other data events are available via the stream
 methods of child_process.stdin,
 child_process.stdout, and child_process.stderr.
child_process.exec()

Let’s start with exec() as the most straightforward use case.
 Using exec(), you can create a
 process that will run some program (possibly another Node program) and
 then return the results for you in a callback (Example 5-27).
Example 5-27. Calling ls with exec()
var cp = require('child_process');

cp.exec('ls -l', function(e, stdout, stderr) {
 if(!e) {
 console.log(stdout);
 console.log(stderr);
 }
});

When you call exec(), you can pass a shell command for the
 new process to run. Note that the entire command is a string. If you
 need to pass arguments to the shell command, they should be
 constructed into the string. In the example, we passed ls the -l
 argument to get the long form of the output. You can also include
 complicated shell features, such as | to pipe commands. Node will return the
 results of the final command in the pipeline.
The callback function receives three
 arguments: an error object, the result of stdout, and the result of
 stderr. Notice that just calling ls
 will run it in the current working directory of Node, which you can
 retrieve by running process.cwd().
It’s important to understand the
 difference between the first and third arguments. The error object
 returned will be null unless an
 error status code is returned from the child process or there was
 another exception. When the child process exits, it passes a status up
 to the parent process. In Unix, for example, this is 0 for success and
 an 8-bit number greater than 0 for an error. The error object is also
 used when the command called doesn’t meet the constraints that Node
 places on it. When an error code is returned from the child process,
 the error object will contain the error code and stderr. However, when
 a process is successful, there may still be data on stderr.
exec()
 takes an optional second argument with an options
 object. By default, this object contains the properties shown in Example 5-28.
Example 5-28. Default options object for child_process.exec()
var options = { encoding: 'utf8',
 timeout: 0,
 maxBuffer: 200 * 1024,
 killSignal: 'SIGTERM',
 setsid: false,
 cwd: null,
 env: null };

The properties are:
	encoding
	The encoding for passing characters
 on the I/O streams.

	timeout
	The number of milliseconds the
 process can run before Node kills it.

	killSignal
	The signal to use to terminate the
 process in case of a time or Buffer size
 overrun.

	maxBuffer
	The maximum number of kilobytes that
 stdout or stderr each may grow to.

	setsid
	Whether to create a new session
 inside Node for the process.

	cwd
	The initial working directory for
 the process (where null uses Node’s current
 working directory).

	env
	The process’s environment variables.
 All environment variables are also inherited from the
 parent.

Let’s set some of the options to put
 constraints on a process. First, let’s try restricting the
 Buffer size of the response, as demonstrated in
 Example 5-29.
Example 5-29. Restricting the Buffer size on child_process.exec()
 calls
> var child = cp.exec('ls', {maxBuffer:1}, function(e, stdout, stderr) {
... console.log(e);
... }
...);
> { stack: [Getter/Setter],
 arguments: undefined,
 type: undefined,
 message: 'maxBuffer exceeded.' }

In this example, you can see that when we
 set a tiny maxBuffer (just 1
 kilobyte), running ls quickly
 exhausted the available space and threw an error. It’s important to
 check for errors so that you can deal with them in a sensible way. You
 don’t want to cause an actual exception by trying to access resources
 that are unavailable because you’ve restricted the child_process. If the child_process returns with an error, its
 stdin and stdout properties will be unavailable and attempts to access them will
 throw an exception.
It’s also possible to stop a Child after a set amount of time, as shown
 in Example 5-30.
Example 5-30. Setting a timeout on process.exec() calls
> var child = cp.exec('for i in {1..100000};do echo $i;done',
... {timeout:500, killSignal:'SIGKILL'},
... function(e, stdout, stderr) {
... console.log(e);
... });
> { stack: [Getter/Setter], arguments: undefined, type: undefined, message: ... }

This example defines a deliberately
 long-running process (counting from 1 to 100,000 in a shell script),
 but we also set a short timeout.
 Notice that we also specified a killSignal. By default, the kill signal
 is SIGTERM, but we used SIGKILL to show the feature.[14] When we get the error back, notice there is a killed property that tells us that Node
 killed the process and that it didn’t exit voluntarily. This is also
 true for the previous example. Because it didn’t exit on its own,
 there isn’t a code property or some
 of the other properties of a system error.

child_process.spawn()

spawn()
 is very similar to exec().
 However, it is a more general-purpose method that
 requires you to deal with streams and their callbacks yourself. This
 makes it a lot more powerful and flexible, but it also means that more
 code is required to do the kind of one-shot system calls we
 accomplished with exec(). This
 means that spawn() is most often
 used in server contexts to create subcomponents of a server and is the
 most common way people make Node work with multiple cores on a single
 machine.
Although it performs the same function as
 exec(), the API for spawn() is slightly different (see Examples
 5-31
 and 5-32). The first argument is still the
 command to start the process with, but unlike exec(), it is not a command string; it’s
 just the executable. The process’s arguments are passed in an array as
 the (optional) second argument to spawn(). It’s like an inverse of process.argv: instead of the command being split() across spaces, you provide an array
 to be join()ed with spaces.
Finally, spawn() also takes an options array as the
 final argument. Some of these options are the same as exec(), but we’ll cover that in more detail
 shortly.
Example 5-31. Starting child processes using spawn()
var cp = require('child_process');

var cat = cp.spawn('cat');

cat.stdout.on('data', function(d) {
 console.log(d.toString());
});
cat.on('exit', function() {
 console.log('kthxbai');
});

cat.stdin.write('meow');
cat.stdin.end();

Example 5-32. Results of previous example
Enki:~ $ node cat.js
meow
kthxbai
Enki:~ $

In this example, we’re using the Unix
 program cat, which simply echoes
 back whatever input it gets. You can see that, unlike exec(), we don’t issue a callback to
 spawn() directly. That’s because we
 are expecting to use the Streams
 provided by the Child class to get
 and send data. We named the variable with the instance of Child “cat,” and so we can access cat.stdout to set events on the stdout
 stream of the child process. We set a listener on cat.stdout to watch for any data events, and
 we set a listener on the child
 itself in order to watch for the exit event. We can send our new child data using stdin by accessing its
 child.stdin stream. This is just a regular writable stream. However,
 as a behavior of the cat program,
 when we close stdin, the process exits. This might not be true for all
 processes, but it is true for cat,
 which exists only to echo back data.
The options that can be passed to spawn() aren’t exactly the same as exec(). This is because you are expected to
 manage more things by hand with spawn(). The env, setsid, and cwd properties are all options for spawn(), as are uid and gid, which set the user ID and the group ID,
 respectively. Like process, setting
 the uid or the gid to a username or a group name will block
 briefly while the user or group is looked up. There is one more option
 for spawn() that doesn’t exist for
 exec(): you can set custom file
 descriptors that will be given to the new child process. Let’s take
 some time to cover this topic because it’s a little complex.
A file descriptor in Unix is a way of keeping track of
 which programs are doing what with which files. Because Unix lets many
 programs run at the same time, there needs to be a way to make sure
 that when they interact with the filesystem they don’t accidentally
 overwrite someone else’s changes. The file descriptor table keeps
 track of all the files that a process wants to access. The kernel
 might lock a particular file to stop two programs from writing to the
 file at the same time, as well as other management functions. A
 process will look at its file descriptor table to find the file
 descriptor representing a particular file and pass that to the kernel
 to access the file. The file descriptor is simply an integer.
The important thing is that the name
 “file descriptor” is a little deceptive because it doesn’t represent
 only pure files; network and other sockets are also allocated file
 descriptors. Unix has interprocess communications (IPC) sockets that
 let processes talk to each other. We’ve been calling them stdin,
 stdout, and stderr. This is interesting because spawn() lets us specify file descriptors
 when starting a new child process. This means that instead of the OS
 assigning a new file descriptor, we can ask child processes to share
 an existing file descriptor with the parent process. That file
 descriptor might be a network socket to the Internet or just the
 parent’s stdin, but the point is that we have a powerful way of
 delegating work to child processes.
How does this work in practice? When
 passing the options object to spawn(), we can specify customFds to pass our own three file
 descriptors to the child instead of
 them creating a stdin, stdout, and stderr file descriptor (Examples 5-33 and
 5-34).
Example 5-33. Passing stdin, stdout, and stderr to a child process
var cp = require('child_process');

var child = cp.spawn('cat', [], {customFds:[0, 1, 2]});

Example 5-34. Running the previous example and piping in data to
 stdin
Enki:~ $ echo "foo"
foo
Enki:~ $ echo "foo" | node

readline.js:80
 tty.setRawMode(true);
 ^
Error: ENOTTY, Inappropriate ioctl for device
 at new Interface (readline.js:80:9)
 at Object.createInterface (readline.js:38:10)
 at new REPLServer (repl.js:102:16)
 at Object.start (repl.js:218:10)
 at Function.runRepl (node.js:365:26)
 at startup (node.js:61:13)
 at node.js:443:3
Enki:~ $ echo "foo" | cat
foo
Enki:~ $ echo "foo" | node fds.js
foo
Enki:~ $

The file descriptors 0, 1, and
 2 represent stdin, stdout, and
 stderr, respectively. In this example, we create a child and pass it stdin, stdout, and stderr
 from the parent Node process. We can test this wiring using the
 command line. The echo command
 outputs a string “foo.” If we pass that directly to node with a pipe (stdout to stdin), we get
 an error. We can, however, pass it to the cat command, which echoes it back. Also, if
 we pipe to the Node process running our script, it echoes back. This
 is because we’ve hooked up the stdin, stdout, and stderr of the Node
 process directly to the cat command
 in our child process. When the main Node process gets data on stdin,
 it gets passed to the cat child
 process, which echoes it back on the shared stdout. One thing to note
 is that once you wire up the Node process this way, the child process
 loses its child.stdin, child.stdout, and child.stderr file descriptor references.
 This is because once you pass the file descriptors to the process,
 they are duplicated and the kernel handles the data passing.
 Consequently, Node isn’t in between the process and the file
 descriptors (FDs), so you cannot add events to those streams (see
 Examples 5-35 and 5-36).
Example 5-35. Trying to access file descriptor streams fails when custom
 FDs are passed
var cp = require('child_process');
var child = cp.spawn('cat', [], {customFds:[0, 1, 2]});
child.stdout.on('data', function(d) {
 console.log('data out');
});

Example 5-36. Results of the test
Enki:~ $ echo "foo" | node fds.js

node.js:134
 throw e; // process.nextTick error, or 'error' event on first tick
 foo
 ^
TypeError: Cannot call method 'on' of null
 at Object.<anonymous> (/Users/croucher/fds.js:3:14)
 at Module._compile (module.js:404:26)
 at Object..js (module.js:410:10)
 at Module.load (module.js:336:31)
 at Function._load (module.js:297:12)
 at Array.<anonymous> (module.js:423:10)
 at EventEmitter._tickCallback (node.js:126:26)
Enki:~ $

When custom file descriptors are
 specified, the streams are literally set to null and are completely inaccessible from
 the parent. It is still preferable in many cases, though, because
 routing through the kernel is much faster than using something like
 stream.pipe() with Node to connect
 the streams together. However, stdin, stdout, and stderr aren’t the
 only file descriptors worth connecting to child processes. A very
 common use case is connecting network sockets to a number of children,
 which allows for multicore utilization.
Say we are creating a website, a game
 server, or anything that has to deal with a bunch of traffic. We have
 this great server that has a bunch of processors, each of which has
 two or four cores. If we simply started a Node process running our
 code, we’d have just one core being used. Although CPU isn’t always
 the critical factor for Node, we want to make sure we get as close to
 the CPU bound as we can. We could start a bunch of Node processes with
 different ports and load-balance them with Nginx or Apache Traffic
 Server. However, that’s inelegant and requires us to use more
 software. We could create a Node process that creates a bunch of child
 processes and routes all the requests to them. This is a bit closer to
 our optimal solution, but with this approach we just created a single
 point of failure because only one Node process routes all the traffic.
 This isn’t ideal. This is where passing custom FDs comes into its own.
 In the same way that we can pass the stdin, stdout, and stderr of a
 master process, we can create other sockets and pass those in to child
 processes. However, because we are passing file descriptors instead of
 messages, the kernel will deal with the routing. This means that
 although the master Node process is still required, it isn’t bearing
 the load for all the traffic.

[14] SIGKILL can be invoked in the shell through kill
 -9.

First Steps in Code

This section will take you through a basic Node program before we
 move on to more in-depth programs.
Node REPL

One of the things that’s often hard to understand about Node.js is that, in
 addition to being a server, it’s also a runtime environment in the same
 way that Perl, Python, and Ruby are. So, even though we often refer to
 Node.js as “server-side JavaScript,” that doesn’t really accurately
 describe what Node.js does. One of the best ways to come to grips with
 Node.js is to use Node REPL (“Read-Evaluate-Print-Loop”), an interactive
 Node.js programming environment. It’s great for testing out and learning
 about Node.js. You can try out any of the snippets in this book using
 Node REPL. In addition, because Node is a wrapper around V8, Node REPL is an ideal place to easily try out
 JavaScript. However, when you want to run a Node program, you can use
 your favorite text editor, save it in a file, and simply run node filename.js. REPL is a great learning and
 exploration tool, but we don’t use it for production code.
Let’s launch Node REPL and try out a few
 bits of JavaScript to warm up (Example 1-6).
 Open up a console on your system. I’m using a Mac with a custom command
 prompt, so your system might look a little different, but the commands
 should be the same.
Example 1-6. Starting Node REPL and trying some JavaScript
$Enki:~ $ node
> 3 > 2 > 1
false
> true == 1
true
> true === 1
false

Note
The first line, which evaluates to
 false, is from http://wtfjs.com, a collection of weird and amusing
 things about JavaScript.

Having a live programming environment is a really great learning tool, but you
 should know a few helpful features of Node REPL to make the most of it.
 It offers meta-commands, which all start with a period (.). Thus,
 .help shows the help menu, .clear
 clears the current context, and .exit quits Node REPL (see Example 1-7).
 The most useful command is .clear,
 which wipes out any variables or closures you have in memory without the
 need to restart REPL.
Example 1-7. Using the metafeatures in Node REPL
> console.log('Hello World');
Hello World
> .help
.clear Break, and also clear the local context.
.exit Exit the prompt
.help Show repl options
> .clear
Clearing context...
> .exit
Enki:~ $

When using REPL, simply typing the name of a
 variable will enumerate it in the shell. Node tries to do this
 intelligently so a complex object won’t just be represented as a
 simple Object, but
 through a description that reflects what’s in the object (Example 1-8). The main exception to this involves
 functions. It’s not that REPL doesn’t have a way to
 enumerate functions; it’s that functions have the tendency to be very
 large. If REPL enumerated functions, a lot of output could scroll by.
Example 1-8. Setting and enumerating objects with REPL
Enki:~ $ node
> myObj = {};
{}
> myObj.list = ["a", "b", "c"];
['a', 'b', 'c']
> myObj.doThat = function(first, second, third) { console.log(first); };
[Function]
> myObj
{ list: ['a', 'b', 'c']
, doThat: [Function]
}
>

A First Server

REPL gives us a great tool for learning and experimentation, but the main
 application of Node.js is as a server. One of the specific design goals
 of Node.js is to provide a highly scalable server environment. This is
 an area where Node differs from V8, which was described at the beginning of
 this chapter. Although the V8 runtime is used in Node.js to interpret
 the JavaScript, Node.js also uses a number of highly optimized libraries
 to make the server efficient. In particular, the HTTP module was written
 from scratch in C to provide a very fast nonblocking implementation of
 HTTP. Let’s take a look at the canonical Node “Hello World” example using an HTTP server (Example 1-9).
Example 1-9. A Hello World Node.js web server
var http = require('http');
http.createServer(function (req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('Hello World\n');
}).listen(8124, "127.0.0.1");
console.log('Server running at http://127.0.0.1:8124/');

The first thing that this code does is
 use require to include the
 HTTP library into the program. This concept is used in
 many languages, but Node uses the CommonJS module format, which we’ll talk about more in
 Chapter 8. The main thing to know at this point is
 that the functionality in the HTTP library is now assigned to the
 http object.
Next, we need an HTTP server. Unlike some
 languages, such as PHP, that run inside a server such as Apache, Node
 itself acts as the web server. However, that also means we have to
 create it. The next line calls a factory method from the HTTP module
 that creates new HTTP servers. The new HTTP server isn’t assigned to a
 variable; it’s simply going to be an anonymous object in the global
 scope. Instead, we use chaining to initialize the server and tell it to
 listen on port 8124.
When calling createServer, we passed an anonymous function as an argument. This function
 is attached to the new server’s event listener for the request event. Events
 are central to both JavaScript and Node. In this case, whenever there is
 a new request to the web server, it will call the method we’ve passed to
 deal with the request. We call these kinds of methods
 callbacks because whenever an event happens, we “call back” all the
 methods listening for that event.
Perhaps a good analogy would be ordering a
 book from a bookshop. When your book is in stock, they call
 back to let you know you can come and collect it. This
 specific callback takes the arguments req for the request object and res for the response object.
Inside the function we created for the
 callback, we call a couple of methods on the res object. These calls modify the response.
 Example 1-9 doesn’t use the request, but
 typically you would use both the request and response objects.
The first thing we must
 do is set the HTTP response header. We can’t send any actual response to the client without
 it. The res.writeHead method does
 this. We set the value to 200 (for
 the HTTP status code “200 OK”) and pass a list of HTTP headers. In this
 case, the only header we specify is Content-type.
After we’ve written the HTTP header to the
 client, we can write the HTTP body. In this case, we use a single method
 to both write the body and close the connection. The end method closes the HTTP connection, but since we also passed it a
 string, it will send that to the client before it closes the
 connection.
Finally, the last line of our example uses
 the console.log. This simply prints information to stdout, much like the browser counterpart
 supported by Firebug and Web Inspector.
Let’s run this with Node.js on the console
 and see what we get (Example 1-10).
Example 1-10. Running the Hello World example
Enki:~ $ node
> var http = require('http');
> http.createServer(function (req, res) {
... res.writeHead(200, {'Content-Type': 'text/plain'});
... res.end('Hello World\n');
... }).listen(8124, "127.0.0.1");
> console.log('Server running at http://127.0.0.1:8124/');
Server running at http://127.0.0.1:8124/
node>

Here we start a Node REPL and type in the
 code from the sample (we’ll forgive you for pasting it from the
 website). Node REPL accepts the code, using ... to indicate that you haven’t completed the
 statement and should continue entering it. When we run the console.log line, Node REPL prints
 out Server running at
 http://127.0.0.1:8124/. Now we are ready to call our Hello
 World example in a web browser (Figure 1-1).
[image: Viewing the Hello World web server from a browser]

Figure 1-1. Viewing the Hello World web server from a browser

It works! Although this isn’t exactly a
 stunning demo, it is notable that we got Hello World working in six
 lines of code. Not that we would recommend that style of coding, but we
 are starting to get somewhere. In the next chapter, we’ll look at a lot
 more code, but first let’s think about why Node is how it is.

Relational Databases

There are still many good reasons to use a traditional database with
 SQL, and Node interfaces with popular open source choices.
MySQL

MySQL has become the workhorse of the open source world for good
 reason: it provides many of the same capabilities as larger commercial
 databases for free. In its current form, MySQL is performant and
 feature-rich.
Using NodeDB

The node-db module provides a native code interface to popular database
 systems, including MySQL, using a common API that the module exposes
 to Node. Although node-db supports more than just MySQL, this section
 focuses on using MySQL in your application code. Since Oracle’s
 purchase of Sun Microsystems, the future of MySQL and its community
 has come under much speculation. Some groups advocate moving to a
 drop-in replacement such as MariaDB or switching to a different
 relational database management system (RDBMS) entirely. Although MySQL
 isn’t going away anytime soon, you need to decide for yourself whether
 it will be the right choice of software for your work.
Installation

The MySQL client development libraries are a prerequisite for the Node
 database module. On Ubuntu, you can install the libraries using apt:
sudo apt-get install libmysqlclient-dev
Using npm, install a package named db-mysql:
npm install -g db-mysql
To run the examples in this
 section, you will need to have a database called
 upandrunning with a user
 dev who has the password
 dev. The following script will create the
 database table and basic schema:
DROP DATABASE IF EXISTS upandrunning;

CREATE DATABASE upandrunning;

GRANT ALL PRIVILEGES ON upandrunning.* TO 'dev'@'%' IDENTIFIED BY 'dev';

USE upandrunning;

CREATE TABLE users(
 id int auto_increment primary key,
 user_login varchar(25),
 user_nicename varchar(75)
);

Selection

Example 6-24 selects all ID and user_name columns from a WordPress user
 table.
Example 6-24. Selecting from MySQL
var mysql = require('db-mysql');

var connectParams = {
 'hostname': 'localhost',
 'user': 'dev',
 'password': 'dev',
 'database': 'upandrunning'
}

var db = new mysql.Database(connectParams);

db.connect(function(error) {
 if (error) return console.log("Failed to connect");

 this.query()
 .select(['id', 'user_login'])
 .from('users')
 .execute(function(error, rows, columns) {
 if (error) {
 console.log("Error on query");
 } else {
 console.log(rows);
 }
 });
});

As you can probably guess, this executes the equivalent of the
 SQL command SELECT id, user_login FROM
 users. The output is:
{ id: 1, user_login: 'mwilson' }

Insertion

Inserting data is very similar to selection because commands are chained in the same
 way. Example 6-25 shows how to generate the
 equivalent to INSERT INTO users (
 user_login) VALUES ('newbie');.
Example 6-25. Inserting into MySQL
var mysql = require('db-mysql');

var connectParams = {
 'hostname': 'localhost',
 'user': 'dev',
 'password': 'dev',
 'database': 'upandrunning'
}

var db = new mysql.Database(connectParams);

db.connect(function(error) {
 if (error) return console.log("Failed to connect");

 this.query()
 .insert('users', ['user_login'], ['newbie'])
 .execute(function(error, rows, columns) {
 if (error) {
 console.log("Error on query");
 console.log(error);
 }
 else console.log(rows);
 });
});

The output is:
{ id: 2, affected: 1, warning: 0 }
The .insert command takes three parameters:
	The table name

	The column names being inserted

	The values to insert in each column

The database drivers take care of escaping and converting the
 data types in your column values, so you don’t have to worry about
 SQL injection attacks from code passing through this module.

Updating

Like selection and insertion, updates rely on chained functions to
 generate equivalent SQL queries. Example 6-26
 demonstrates the use of a query parameter to filter the update,
 rather than performing it across all records in the database
 table.
Example 6-26. Updating data in MySQL
var mysql = require('db-mysql');

var connectParams = {
 'hostname': 'localhost',
 'user': 'dev',
 'password': 'dev',
 'database': 'unandrunning'
}

var db = new mysql.Database(connectParams);

db.connect(function(error) {
 if (error) return console.log("Failed to connect");

 this.query()
 .update('users')
 .set({'user_nicename': 'New User' })
 .where('user_login = ?', ['newbie'])
 .execute(function(error, rows, columns) {
 if (error) {
 console.log("Error on query");
 console.log(error);
 }
 else console.log(rows);
 });
});

The output is:
{ id: 0, affected: 1, warning: 0 }
Updating a row consists of three parts:
	The .update command,
 which takes the table name (users, in this case) as a
 parameter

	The .set command, which
 uses a key-value object pair to identify the
 column names to update and their values

	The .where command,
 which tells MySQL how to filter the rows that will
 be updated

Deletion

As shown in Example 6-27, deletion
 is very similar to updates, except that in the case of
 a delete, there are no columns to update. If no where conditions are specified, all
 records in the table will be deleted.
Example 6-27. Deleting data in MySQL
var mysql = require('db-mysql');

var connectParams = {
 'hostname': 'localhost',
 'user': 'dev', 'password': 'dev',
 'database': 'upandrunning'
}

var db = new mysql.Database(connectParams);

db.connect(function(error) {
 if (error) return console.log("Failed to connect");

 this.query()
 .delete()
 .from('users')
 .where('user_login = ?', ['newbie'])
 .execute(function(error, rows, columns) {
 if (error) {
 console.log("Error on query");
 console.log(error);
 }
 else console.log(rows);
 });
});

The output is:
{ id: 0, affected: 1, warning: 0 }
The .delete command is
 similar to the .update command, except it does not take
 any column names or data values. In this example, wildcard
 parameters are demonstrated in the “where” clause: 'user_login = ?'. The question mark is
 replaced by the user_login
 parameter in this code before execution. The second parameter is an
 array, because if multiple question marks are used, the database
 driver will take the values in order from this parameter.

Sequelize

Sequelize is an object relational mapper (ORM) that takes much of the
 repetition out of the tasks performed in the preceding sections. You
 can use Sequelize to define objects shared between the database and
 your program, then pass data to and from the database using those
 objects rather than writing a query for every operation. This becomes
 a major time-saver when you need to perform maintenance or add a new
 column, and makes overall data management less error-prone. Sequelize
 supports installation using npm:
npm install sequelize
As the database and example user were already created for the
 examples in the previous section, it’s time to create an
 Author entity inside the database (Example 6-28). Sequelize handles the creation for you, so
 you don’t have to take care of any manual SQL at this point.
Example 6-28. Creating an entity using Sequelize
var Sequelize = require('sequelize');

var db = new Sequelize('upandrunning', 'dev', 'dev', {
 host: 'localhost'
});

var Author = db.define('Author', {
 name: Sequelize.STRING,
 biography: Sequelize.TEXT
});

Author.sync().on('success', function() {
 console.log('Author table was created.');
}).on('failure', function(error) {
 console.log('Unable to create author table');
});

The output is:
Executing: CREATE TABLE IF NOT EXISTS `Authors` (`name` VARCHAR(255), `biography`
TEXT, `id` INT NOT NULL auto_increment , `createdAt` DATETIME NOT NULL, `updatedAt`
DATETIME NOT NULL, PRIMARY KEY (`id`)) ENGINE=InnoDB;
Author table was created.
In this example, an Author was defined as an
 entity containing a name field and a biography field. As you can see in the
 output, Sequelize added an autoincremented primary key column, a
 createdAt column, and an updatedAt column. This is typical of many
 ORM solutions, and provides standard hooks by which Sequelize is able
 to reference and interact with your data.
Sequelize differs from the other libraries shown in this chapter
 in that it is based on a listener-driven architecture, rather than the
 callback-driven architecture used elsewhere. This means that you have
 to listen for both success and failure events after each operation,
 rather than having errors and success indicators returned with the
 operation’s results.
Example 6-29 creates two tables with a
 many-to-many relationship. The order of operation
 is:
	Set up the entity schemas.

	Synchronize the schemas with the actual database.

	Create and save a Book object.

	Create and save an Author object.

	Establish a relationship between the author and the
 book.

Example 6-29. Saving records and associations using Sequelize
var Sequelize = require('sequelize');

var db = new Sequelize('upandrunning', 'dev', 'dev', {
 host: 'localhost'
});

var Author = db.define('Author', {
 name: Sequelize.STRING,
 biography: Sequelize.TEXT
});

var Book = db.define('Book', {
 name: Sequelize.STRING
});

Author.hasMany(Book);
Book.hasMany(Author);

db.sync().on('success', function() {
 Book.build({
 name: 'Through the Storm'
 }).save().on('success', function(book) {
 console.log('Book saved');
 Author.build({
 name: 'Lynne Spears',
 biography: 'Author and mother of Britney'
 }).save().on('success', function(record) {
 console.log('Author saved.');
 record.setBooks([book]);
 record.save().on('success', function() {
 console.log('Author & Book Relation created');
 });
 });
 }).on('failure', function(error) {
 console.log('Could not save book');
 });
}).on('failure', function(error) {
 console.log('Failed to sync database');
});
To ensure that the entities are set up correctly, we do not
 create the author until after the book is successfully saved into
 the database. Likewise, the book is not added to the author until
 after the author has been successfully saved into the database. This
 ensures that both the author’s ID and the book’s ID are available
 for Sequelize to establish the association. The output is:
Executing: CREATE TABLE IF NOT EXISTS `AuthorsBooks`
 (`BookId` INT , `AuthorId` INT , `createdAt` DATETIME NOT NULL,
 `updatedAt` DATETIME NOT NULL,
 PRIMARY KEY (`BookId`, `AuthorId`)) ENGINE=InnoDB;
Executing: CREATE TABLE IF NOT EXISTS `Authors`
 (`name` VARCHAR(255), `biography` TEXT,
 `id` INT NOT NULL auto_increment , `createdAt` DATETIME NOT NULL,
 `updatedAt` DATETIME NOT NULL, PRIMARY KEY (`id`))
 ENGINE=InnoDB;
Executing: CREATE TABLE IF NOT EXISTS `Books`
 (`name` VARCHAR(255), `id` INT NOT NULL auto_increment ,
 `createdAt` DATETIME NOT NULL, `updatedAt` DATETIME NOT NULL,
 PRIMARY KEY (`id`)) ENGINE=InnoDB;
Executing: CREATE TABLE IF NOT EXISTS `AuthorsBooks`
 (`BookId` INT , `AuthorId` INT , `createdAt` DATETIME NOT NULL,
 `updatedAt` DATETIME NOT NULL,
 PRIMARY KEY (`BookId`, `AuthorId`)) ENGINE=InnoDB;
Executing: INSERT INTO `Books` (`name`,`id`,`createdAt`,`updatedAt`)
 VALUES ('Through the Storm',NULL,'2011-12-01 20:51:59',
 '2011-12-01 20:51:59');
Book saved
Executing: INSERT INTO `Authors` (`name`,`biography`,`id`,`createdAt`,`updatedAt`)
 VALUES ('Lynne Spears','Author and mother of Britney',
 NULL,'2011-12-01 20:51:59','2011-12-01 20:51:59');
Author saved.
Executing: UPDATE `Authors` SET `name`='Lynne Spears',
 `biography`='Author and mother of Britney',`id`=3,
 `createdAt`='2011-12-01 20:51:59',
 `updatedAt`='2011-12-01 20:51:59' WHERE `id`=3
Author & Book Relation created
Executing: SELECT * FROM `AuthorsBooks` WHERE `AuthorId`=3;
Executing: INSERT INTO `AuthorsBooks` (`AuthorId`,`BookId`,`createdAt`,`updatedAt`)
 VALUES (3,3,'2011-12-01 20:51:59','2011-12-01 20:51:59');

PostgreSQL

PostgreSQL is an object-oriented RDBMS originating from the University of
 California, Berkeley. The project was started by professor and project
 leader Michael Stonebraker as a successor to his earlier Ingres database system, and from 1985 to 1993 the Postgres
 team released four versions of the software. By the end of the project,
 the team was overwhelmed by support and feature requests from its
 growing number of users. After the Berkeley run, open source developers
 took over the project, replacing the original QUEL language interpreter
 with an SQL language interpreter and renaming the project to PostgreSQL.
 Since the first release of PostgreSQL 6.0 in 1997, the database system
 has gained a reputation as a feature-rich distribution that is
 especially friendly to users coming from an Oracle background.
Installation

A production-ready client for PostgreSQL, used by large sites such as
 Yammer.com, can be downloaded from the npm
 repository, as shown here:
npm install pg
pg_config is required. It can be found in
 the libpq-dev package.

Selection

Example 6-30 assumes you have created a database called upandrunning and granted permission to user
 dev with password dev.
Example 6-30. Selecting data with PostgreSQL
var pg = require('pg');

var connectionString = "pg://dev:dev@localhost:5432/upandrunning";
pg.connect(connectionString, function(err, client) {
 if (err) {
 console.log(err);
 } else {
 var sqlStmt = "SELECT username, firstname, lastname FROM users";
 client.query(sqlStmt, null, function(err, result) {
 if (err) {
 console.log(err);
 } else {
 console.log(result);
 }
 pg.end();
 });
 }
});

The output is:
{ rows:
 [{ username: 'bshilbo',
 firstname: 'Bilbo',
 lastname: 'Shilbo' }] }
This is a big difference from the chainable methods used by the
 MySQL driver. When you’re working with PostgreSQL, it will be up to
 you to write your own SQL queries directly.
As in previous examples, calling the end() function closes the connection and
 allows Node’s event loop to end.

Insertion, updates, and deletion

When typing the SQL queries by hand, as we have seen, you might find it
 tempting to throw data values directly into the code through string
 concatenation, but wise programmers seek out methods that protect
 against SQL injection attacks. The pg library
 accepts parameterized queries, which should be leveraged everywhere
 that you use values taken from external sources (such as forms on
 websites). Example 6-31 demonstrates an insertion, and Examples
 6-32 and
 6-33 show
 updates and deletes, respectively.
Example 6-31. Inserting into PostgreSQL
var pg = require('pg');

var connectionString = "pg://dev:dev@localhost:5432/upandrunning";
pg.connect(connectionString, function(err, client) {
 if (err) {
 console.log(err);
 } else {
 var sqlStmt = "INSERT INTO users(username, firstname, lastname) ";
 sqlStmt += "VALUES ($1, $2, $3)";
 var sqlParams = ['jdoe', 'John', 'Doe'];
 var query = client.query(sqlStmt, sqlParams, function(err, result) {
 if (err) {
 console.log(err);
 } else {
 console.log(result);
 }
 pg.end();
 });
 }
});

The output is:
{ rows: [], command: 'INSERT', rowCount: 1, oid: 0 }
The query command accepts the SQL statement in the first
 parameter, and an array of values in the second parameter. Whereas the
 MySQL driver used question marks for the parameter values, PostgreSQL
 uses numbered parameters. Numbering the parameters gives you a lot of
 control over how variables are constructed.
Example 6-32. Updating data in PostgreSQL
var pg = require('pg');

var connectionString = "pg://dev:dev@localhost:5432/upandrunning";
pg.connect(connectionString, function(err, client) {
 if (err) {
 console.log(err);
 } else {
 var sqlStmt = "UPDATE users "
 + "SET firstname = $1 "
 + "WHERE username = $2";
 var sqlParams = ['jane', 'jdoe'];
 var query = client.query(sqlStmt, sqlParams, function(err, result) {
 if (err) {
 console.log(err);
 } else {
 console.log(result);
 }
 pg.end();
 });
 }
});

Example 6-33. Deleting from PostgreSQL
var pg = require('pg');

var connectionString = "pg://dev:dev@localhost:5432/upandrunning";
pg.connect(connectionString, function(err, client) {
 if (err) {
 console.log(err);
 } else {
 var sqlStmt = "DELETE FROM users WHERE username = $1";
 var sqlParams = ['jdoe'];
 var query = client.query(sqlStmt, sqlParams, function(err, result) {
 if (err) {
 console.log(err);
 } else {
 console.log(result);
 }
 pg.end();
 });
 }
});

