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Preface to the Second Edition

It is now 10 years since the first edit ion of this book appeared in 1980. The
intervening decade has seen tremendous advances take place in mathe
matic s generally, and in number theory in particular. It would seem desir
able to treat some of these advances , and with the addition of two new
chapter s, we are able to cover some portion of this new material.

As examples of important new work that we have not included, we
mention the following two results:

(I) The first case of Fermat's last theorem is true for infinitely many
prime exponents p. This means that, for infinitely many primes p , the
equ ation x P + yP = zP has no solutions in nonzero integers with p r
.ryz. Th is was proved by L.M. Adelman and D.R. Heath-Brown and
independently by E. Fouvry . An overview of the proof is given by
Heath-Brown in the Mathematical Intellig encer (Vol. 7, No.6, 1985).

(2) Let PI , P2, and P3 be three distinct primes . Then at least one of them is
a primitive root for infinitely many primes q. Recall that E. Artin
conjectured that, if a E 7L is not 0, I, - I, or a square, then there are
infinitely many primes q such that a is a primitive root modulo q. The
theorem we have stated was proved in a weaker form by R. Gupta and
M.R. Murty, and then strengthened by the combined efforts of R.
Gupta, M.R . Murty, V.K . Murty , and D.R. Heath-Brown. An exposi
tion of this result, as well as an analogue on elliptic curves, is given by
M.R . Murty in the Mathematic:allntelligencer (Vol. 10, No.4, 1988).

The new material that we have added falls principally within the frame
work of arithmetic geometry. In Chapter 19 we give a complete proof of
L.J. Mordell's fundamental theorem , which asserts that the group of ra
tional points on an elliptic curve, defined over the rational numbers, is
finitely generated . In keeping with the spirit of the book, the proof (due in
essence to A. Weil) is elementary. It makes no use of cohomology groups
or any other advanced machinery . It does use finiteness of class number
and a weak form of the Dirichlet unit theorem; both results are proved in
the text.

The second new chapter, Chapter 20, is an overview of G. Faltings 's
proof of the Mordell conjecture and recent progress on the arithmetic of
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vi Preface to the Second Edition

elliptic curves, especially the work of B. Gross , V.A. Kolyvagin , K.
Rubin , and D. Zagier. Some of this work has surprising applications to
other areas of number theory. We discuss one application to Fermat's last
theorem , due to G. Frey, J.P. Serre, and K. Ribet. Another important
application is the solution of an old problem due to K .F . Gauss about
class numbers of imaginary quadratic number fields. This comes about by
combining the work of B. Gross and D. Zagier with a result of D. Gold
feld. This chapter contains few proofs. Its main purpose is to give an
informative survey in the hope that the reader will be inspired to learn the
background necessary to a better understanding and appreciation of these
important new developments .

The rest of the book is essentially unchanged . An attempt has been
made to correct errors and misprints. In an effort to keep confusion to a
minimum, we have not changed the bibliography at the end of the book .
New references for the two new chapters, Chapters 19 and 20, will be
found at the end of those chapters . We would like to thank Tom Nakahara
and others for submitting a list of misprints from the first edition. Also, we
thank Linda Guthrie for typing portions of the final chapters.

We have both been very pleased with the warm reception that the first
edition of this book received . It is our hope that the new edition will
continue to entice readers to delve deeper into the mysteries of this an
cient, beautiful, and still vital subject.

February 1990 Kenneth Ireland
Michael Rosen

Addendum to Second Edition . Second Corrected Printing

The second printing of the second edit ion is unchanged except for correc
tions and the addition of a few clarifying comments. I would like to thank
K. Conrad, M. Jastrzebski, F. Lemmermeyer and others who took the
trouble to send us detailed lists of misprints.

No vember 1992 Michael Rosen

Notes for the Second Edition, Fifth Corrected Printing

In 1995 Andrew Wiles published a paper in the Annals of Mathematics
which proved the Taniyarna-Shimura-Weil conjecture is true for semi-stable
elliptic curves over the rational numbers. Together with earlier results, prin
cipally the theorem of Ken Ribet mentioned on page 347, this proved
Fermat's Last Theorem. The most famous conjecture in elementary number
theory is finally a theorem!!!

April 1998 Michael Rosen



Preface

This book is a revised and greatly expanded version of our book Elements of
Number Theory published in 1972. As with the first book the primary audience
we envisage consists of upper level undergraduate mathematics majors and
graduate students. We have assumed some familiarity with the material in a
standard undergraduate course in abstract algebra. A large portion of
Chapters 1-11 can be read even without such background with the aid of a
small amount of supplementary reading. The later chapters assume some
knowledge of Galois theory, and in Chapters 16 and 18 an acquaintance with
the theory of complex variables is necessary.

Number theory is an ancient subject and its content is vast. Any intro
ductory book must, of necessity, make a very limited selection from the
fascinating array of possible topics. Our focus is on topics which point in the
direction of algebraic number theory and arithmetic algebraic geometry. Bya
careful selection of subject matter we have found it possible to exposit some
rather advanced material without requiring very much in the way of technical
background. Most of this material is classical in the sense that is was dis
covered during the nineteenth century and earlier, but it is also modern
because it is intimately related to important research going on at the present
time.

In Chapters 1-5 we discuss prime numbers, unique factorization, arith
metic functions, congruences, and the law of quadratic reciprocity. Very little
is demanded in the way of background. Nevertheless it is remarkable how a
modicum of group and ring theory introduces unexpected order into the
subject. For example, many scattered results turn out to be parts of the answer
to a natural question: What is the structure of the group of units in the ring
7L/n7L ?

Reciprocity laws constitute a major theme in the later chapters. The law
of quadratic reciprocity, beautiful in itself, is the first of a series of reciprocity
laws which lead ultimately to the Artin reciprocity law. one of the major
achievements of algebraic number theory. We travel along the road beyond
quadratic reciprocity by formulating and proving the laws of cubic and
biquadratic reciprocity. In preparation for this many of the techniques of
algebraic number theory are introduced; algebraic numbers and algebraic
integers, finite fields, splitting of primes, etc. Another important tool in this
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viii Preface

investigation (and in others!) is the theory of Gauss and Jacobi sums. This
material is covered in Chapters 6-9. Later in the book we formulate and prove
the more advanced partial generalization of these results, the Eisenstein
reciprocity law.

A second major theme is that of diophantine equations, at first over finite
fields and later over the rational numbers. The discussion of polynomial
equations over finite fields is begun in Chapters 8 and 10 and culminates in
Chapter II with an exposition of a portion of the paper" Number of solutions
of equations over finite fields " by A. Weil. This paper, published in 1948, has
been very influential in the recent development of both algebraic geometry
and number theory. In Chapters 17and 18we consider diophantine equations
over the rational numbers. Chapter 17 covers many standard topics from
sums of squares to Fermat's Last Theorem. However, because of material
developed earlier we are able to treat a number of these topics from a novel
point of view. Chapter 18 is about the arithmetic of elliptic curves. It dif
fers from the earlier chapters in that it is primarily an overview with many
definitions and statements of results but few proofs. Nevertheless, by con
centrating on some important special cases we hope to convey to the reader
something of the beauty of the accomplishments in this area where much work
is being done and many mysteries remain.

The third, and final, major theme is that of zeta functions. In Chapter 11 we
discuss the congruence zeta function associated to varieties defined over finite
fields. In Chapter 16 we discuss the Riemann zeta function and the Dirichlet
L-functions. In Chapter 18 we discuss the zeta function associated to an
algebraic curve defined over the rational numbers and Heeke L-functions.
Zeta funct ions compress a large amount of arithmetic information into a
single function and make possible the application of the powerful methods of
analysis to number theory.

Throughout the book we place considerable emphasis on the history of
.our subject. In the notes at the end of each chapter we give a brief historical
sketch and provide references to the literature. The bibliography is extensive
containing many items both classical and modern. Our aim has been to
provide the reader with a wealth of material for further study.

There are many exercises, some routine, some challenging. Some of the
exercises supplement the text by providing a step by step guide through the
proofs of important results. In the later chapters a number of exercises have
been adapted from results which have appeared in the recent literature. We
hope that working through the exercises will be a source of enjoyment as well
as instruction.

In the writing of this book we have been helped immensely by the interest
and assistance of many mathematical friends and acquaintances. We thank
them all. In particular we would like to thank' Henry Pohlmann who insisted
we follow certain themes to their logical conclusion, David Goss for allowing
us to incorporate some of his work into Chapter 16, and Oisin McGuiness
for his invaluable assistance in the preparation of Chapter 18. We would
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like to thank Dale Cavanaugh, Janice Phillips, and especially Carol Ferreira,
for their patience and expertise in typing large portions of the manuscript.
Finally, the second author wishes to express his gratitude to the Vaughn
Foundation Fund for financial support during his sabbatical year in
Berkeley , California (1979/80).

July 25, 1981 Kenneth Ireland
Michael Rosen
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Chapter 1

Unique Factorization

The notion of prime number is fundamental in number
theory . The first part of this chapter is devoted to proving
that every integer can be written as a product of primes
in an essentially unique way.

After that, we shall prove an analogous theorem in the
ring ofpolynomials over a field.

On a more abstract plane, the general idea of unique
factorization is treatedfor principal ideal domains.

Finally, returning from the abstract to the concrete, the
general theory is applied to two special rings that will be
important later in the book.

§ 1 Unique Factorization in 7L

As a first approximation, number theory may be defined as the study of the
natural numbers 1,2,3,4, .... L. Kronecker once remarked (speaking of
mathematics generally) that God made the natural numbers and all the rest
is the work of man. Although the natural numbers constitute, in some sense,
the most elementary mathematical system, the study of their properties has
provided generations of mathematicians with problems of unending fascina
tion.

We say that a number a divides a number b if there is a number c such
that b = ac. If a divides b, we use the notation alb. For example, 218,3115,
but 6,(21. If we are given a number, it is tempting to factor it again and
again until further factorization is impossible. For example, 180 = 18 x 10
= 2 x 9 x 2 x 5 = 2 x 3 x 3 x 2 x 5. Numbers that cannot be factored
further are called primes. To be more precise, we say that a number p is a
prime if its only divisors are I and p. Prime numbers are very important
because every number can be written as a product of primes. Moreover,
primes are of great interest because there are many problems about them
that are easy to state but very hard to prove. Indeed many old problems
about primes are unsolved to this day.

The first prime numbers are 2,3,5,7, 11, 13, 17, 19,23,29,31,37,41,
43, . . .. One may ask if there are infinitely many prime numbers. The answer
is yes. Euclid gave an elegant proof of this fact over 2000 years ago . We shall
give his proof and several others in Chapter 2. One can ask other questions



2 1 Unique Factorization

of this nature. Let n(x) be the number of primes between I and x. What can
be said about the function n(x)? Several mathematicians found by experiment
that for large x the function n(x) was approximately equal to x/ln(x) . This
assertion, known as the prime number theorem, was proved toward the end
of the nineteenth century by J. Hadamard and independently by Ch.-J. de la
Valle Poussin. More precisely, they proved

lim n(x) = I.
X-a) x/ln(x)

Even from a small list of primes one can notice that they have a tendency
to occur in pairs, for example, 3 and 5, 5 and 7, I I and 13, 17 and 19. Do
there exist infinitely many prime pairs? The answer is unknown.

Another famous unsolved problem is known as the Goldbach conjecture
(c. H. Goldbach). Can every even number be written as the sum of two
primes? Goldbach came to this conjecture experimentally. Nowadays
electronic computers make it possible to experiment with very large numbers.
No counterexample to Goldbach's conjecture has ever been found. Great
progress toward a proof has been given by I. M. Vinogradov and L. Schnirel
mann. In 1937 Vinogradov was able to show that every sufficiently large odd
number is the sum of three odd pr imes.

In this book we shall not study in depth the distribution of prime numbers
or .. additive" problems about them (such as the Goldbach conjecture).
Rather our concern will be about the way primes enter into the multiplica tive
structure of numbers. The main theorem along these lines goes back essen
tially to Euclid. It is the theorem of unique factorization . This theorem is
sometimes referred to as the fundamental theorem of arithmetic. It deserves
the title. In one way or another almost all the results we shall discuss depend
on it. The theorem states that every number can be factored into a product of
primes in a un ique way. What un iqueness means will be explained below .

As an illustration consider the number 180. We have seen that 180 =
2 x 2 x 3 x 3 x 5 = 22 X 32 X 5. Uniqueness in this case means that
the only primes dividing 180 are 2, 3, and 5 and that the exponents 2, 2, and
I are uniquely determined by 180.

71. will denote the ring of integers, i.e., the set 0, ± I, ±2, ±3, . . . , together
with the usual definition of sum and product. It will be more convenient to
work with 71. rather than restricting ourselves to the positive integers. The
notion of divisibility carries over with no difficulty to 71.. If p is a positive
prime, - p will also be a pr ime. We shall not consider I or - I as pr imes even
though they fit the definition. This is simply a useful convention. Note that
I and -1 divide everything and that they are the only integers with this
property. They are called the units of 71. . Notice also that every nonzero
integer divides zero. As is usual we shall exclude division by zero .

There are a number of simple properties of division that we shall simply
list. The reader may wish to supply the proofs.



§l Unique Factor izatio n in 1.

(I) ala, a :1= O.
(2) If a lb and b la, then a = ± b.
(3) If alb and bl e, then ale.
(4) If alb and a le, then alb + e.

3

Let n E 1L and let p be a prime. Then if n is not zero, there is a nonnegative
integer a such that pain but pa+1 ,rn. This is easy to see if both p and n are
positive for then the powers ofp get larger and larger and eventually exceed n.
The other cases are easily reduced to this one . The number a is called the
order of n at p and is denoted by ord, n. Roughly speaking ord, n is the
number of times p divides n. If n = 0, we set ord, 0 = 00 . Notice that
ord, n = 0 if and only if (iff) p,rn.

Lemma 1. Every nonzero integer can be written as a product ofprimes.

PROOF . Assume that there is an integer that cannot be written as a product of
primes. Let N be the smallest positive integer with this property. Since N
cannot itself be prime we must have N = mn, where I < m, n < N. How
ever, since m and n are positive and smaller than N they must each be a
product of primes. But then so is N = mn . This is a contradiction.

The proof can be given in a more positive way by using mathematical
induction. It is enough to prove the result for all positive integers . 2 is a
pr ime. Suppose that 2 < N and that we have proved the result for all
numbers m such that 2 ~ m < N. We wish to show that N is a product of
primes . If N is a prime , there is nothing to do. If N is not a prime , then
N = mn , where 2 ~ m , n < N. By induction both m and n are products of
primes and thus so is N. 0

By collecting terms we can write n = p~ 'p~2 . . . p':,.m , where the Pi are
primes and the a, are nonnegative integers. We shall use the following
notation :

n = (-IY(II)n palP),

p

where e(n) = 0 or I depending on whether n is positive or negative and
where the product is over all positive primes. The exponents a(p) are non
negative integers and , of course, a(p) = 0 for all but finitely many primes .
For example, ifn = 180, we have e(n) = 0, a(2) = 2, a(3) = 2, and a(5) = I,
and all other a(p) = O.

We can now state the ma in theorem.

Theorem 1. For every nonzero integer n there is a prime factorization

n = (_1 )' (11)Il p alPI,

p

with the exponents uniquely determined by n. Infaet, we have a(p) = ord, n.



4 1 Unique Factorization

The proof of this theorem is not as easy as it may seem. We shall postpone
the proof until we have established a few preliminary results.

Lemma 2. If a, b E 7L and b > 0, there exist q, r E 7L such that a = qb + r
with 0 :5'; r < b.

PROOF. Consider the set of all integers of the form a - xb with x E 7L. This set
includes positive elements. Let r = a - qb be the least nonnegative element
in this set. We claim that 0 :5'; r < b. If not , r = a - qb ~ b and so 0 :5'; a 
(q + I)b < r, which contradicts the minimality of r. 0

Definition. If ai' a2' .. . , an E 7L , we define (a l' a2' . .. , an) to be the set of
a ll integers of the form alx 1 + a2x2 + ... + anXn with Xl' X2' . . .• x, E 7L.

Let A = (at> a2, . . . ,an)' Notice that the sum and difference of two
elements in A are again in A . Also, if a E A and r E 7L. then ra EA. In ring
theoretic language, A is an ideal in the ring 7L .

Lemma 3. If a, b e 7L, then there is a d E 7L such that (a, b) = (d).

PROOF. We may assume that not both a and b are zero so that there are
positive elements in (a, b). Let d be the smallest positive element in (a, b).
Clearly (d) ~ (a, b). We shall show that the reverse inclusion also holds.

Suppose that c E (a, b). By Lemma 2 there exist integers q and r such that
c = qd + r with 0 :5'; r < d. Since both c and d are in (a, b) it follows that
r = c - qd is also in (a, b). Since 0 :5'; r < d we must have r = O. Thus
c = qd E(d ). 0

Definition. Let a, b e 7L . An integer d is called a greatest common divisor of
a and b if d is a divisor of both a and b and if every other common divisor of
a and b divides d.

Notice that if c is another greatest common divisor of a and b, then we
must have cldand die and so c = x.d. Thus the greatest common divisor of
two numbers, if it exists , is determined up to sign .

As an example, one may check that 14 is a greatest common divisor of
42 and 196. The following lemma will establish the existence of the greatest
common divisor, but it will not give a method for computing it. In the
Exercises we shall outline an efficient method of computation known as the
Euclidean algorithm.

Lemma 4. Let a, b E 7L . If(a, b) = (d) then d is a greatest common divisor of
a and b.

PROOF . Since a E (d) and b e (d) we see that d is a common divisor of a and b.
Suppose that c is a common divisor. Then c divides every number of the form
ax + by . In particular cld. 0
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Definition. We say that two integers a and b are relatively prime if the only
common divisors are ± I, the units.

It is fairly standard to use the notation (a, b) for the greatest common
divisor of a and b. The way we have defined th ings, (a, b) is a set. However,
since (a, b) = (d) and d is a greatest common divisor (if we require d to be
positive, we may use the article the) it will not be too confusing to use the
symbol (a, b) for both meanings. With this convention we can say that a and
b are relatively prime if (a, b) = I.

Proposition 1.1.1. Suppose that alb e and that (a, b) = I. Then ale .

PROOF . Since (a, b) = I there exist integers rand s such that ra + sb = I.
Therefore, rae + sbc = e. Since a div ides the left-hand side of this equation
we have ale. 0

This proposition is false if (a, b) # I. For example, 6124 but 6,(3 and
6,(8.

Corollary I.lfp is a prime and plbe, then either p lb or pie.

PROOF. The only div isors ofpare ± I and ±p.Thus (p, b) = 1or p ; i.e., either
pib or p and b are relat ively pr ime . Ifpi b, we are done. If not, (p, b) = 1and
so, by the proposition, pi e. 0

We can state the corollary in a slightly different form that is often usefu l:
If p is a pr ime and pr b and p ,(e, then p ,( be.

Corollary 2. Suppose that p is a prime and that a, b E 7l.. . Then ord, ab = ord, a
+ ord, b.

PROO F. Let ~ = ord, a and f3 = ord, b. Then a = p'c and b = plJd, where
p ,( c and p ,( d.Then ab = p2+Pcd and by Corollary I p ,( cd.Thus ord, ah =

Co( + f3 = ord, a + ord, b. 0

We are now in a position to prove the main theorem.
Apply the function ord, to both sides of the equation

n = (_lytn) [I pa(p)

p

and use the property of ord, given by Corollary 2. The result is

ord, n = t;(n) ordi - I) + L a(p) ordq(p).
p

Now, from the definition of ord, we have ordq( - 1) = 0 and ordip) = 0
if p # q and 1 if p = q. Thus the right-hand side collapses to the single term
a(q), i.e., ord, n = a(q), which is what we wanted to prove.
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It is to be emphasized that the key step in the proof is Corollary 1: namely,
if pl ab, then pia or plb. Whatever difficulty there is in the proof is centered
about this fact. .

§2 Unique Factorization in k[x]

The theorem of unique factorization can be formulated and proved in more
general contexts than that of Section I. In this section we shall consider the
ring k[x] of polynomials with coefficients in a field k. In Section 3 we shall
consider pr incipal ideal domains. It will turn out that the analysis of these
situations will prove useful in the study of the integers .

If f, 9 E k[x], we say that / divides 9 if there is an hE k[x] such that
9 =/h.

If deg / denotes the degree of/, we have deg /g = deg / + deg g. Also,
remember that deg / =0 iff f is a nonzero constant. It follows that fig and
gl/ iff / = cg, where c is a nonzero constant. It also follows that the only
polynomials that divide all the others are the nonzero constants. These are
the units of k[x]. A nonconstant polynomial p is said to be irreducible if
qlp implies that q is either a constant or a constant times p. Irreducible
polynomials are the analog of prime numbers.

Lemma 1. Every nonconstant polynomial is the product 0/ irreducible poly
nomials.

PROOF . The proof is by induction on the degree . It is easy to see that poly
nomials of degree 1 are irreducible. Assume that we have proved the result
for all polynomials ofdegree less than n and that deg / = n. If/ is irreducible,
we are done. Otherwise / = gh, where I =s; deg q, deg h < n. By the induc
tion assumption both g and h are products of irreducible polynomials. Thus
sois/=gh. 0

It is convenient to define monic polynomial. A polynomial/ is called mon ic
if its leading coefficient is I. For example, x 2 + x - 3 and x 3

- x 2 + 3x +
17 are monic but 2x3

- 5 and 3x4 + 2x 2
- I are not. Every polynomial

(except zero) is a constant times a monic polynomial.
Let p be a monic irreducible polynomial. We define ord, / to be the

inte-r-r a defined by the property that pQ I/but that r" 1 ,(f Such an integer
mus , exist since the degree of the powers of p gets larger and larger. Notice
that ord, I = 0 iff p,rf.

Theorem 2. Let / E k[x]. Then we can write

/ = c OpQIP),
P
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where the product is ocer all monic irreducible polynomials and c is a constant .
The constant c and the exponents a(p) are uniquely determined by I; in fact,
a(p) = ord, f.

The existence of such a product follows immediately from Lemma I. As
before, the un iqueness is more difficult and the proof will be postponed until
we develop a few tools .

Lemma 2. Let I, 9 E k[x]. If9 =1= 0, there ex ist polynomials h, r E k[x] such
that I = hg + r, where either r = 0 or r =1= 0 and deg r < deg g.

PROOF . If 9 If, simply set h = 1 /9 and r = O. If g,.rI , let r = I - hg be the
polynomial of least degree among all polynomials of the form 1- 19 with
IE k[x]. We claim that deg r < deg g. If not, let the lead ing term of r be
ax" and that of9 be bx". Then r - ab" '~-mg = I - (h + ab- t~-m)g has
smaller degree than r and is of the given form. This is a contradiction. 0

Definition. If It, 12' . . . , .I~ E k[x], then (/1 ' 12, . . . , fn) is the set of all
polynomials of the form Ilh l + .I~h 2 + ... + fnh., where hi' h2, . . . , h.
E k[x].

In ring-theoretic language (JI,[2, ' " ,[.) is the ideal generated by
L .T«. . .. ,f" .

Lemma 3. Given f, 9 E k[x] there is a d E k[ x] such that (f, g) = (d).

PROOF. In the set (J, g) let dbe an element ofleast degree. We ha ve (d) s; (f, g)
and we want to prove the reverse inclusion. Let C E (J, g) . If d,.r c, then there
exist polynomials hand ·r such that c = hd + r with deg r < deg d. Since
c and d are in (J, g) we have r = c - hd s; (J, g). Since r has smaller degree
than d th is is a contradiction. Therefore, d Ic and c E (d) . 0

Definition. Let I , 9 E k[x]. Then d e k[x] is said to be a greatest common
divisor of f and 9 if d divides I and 9 and every common divisor of I and 9
divides d.

Notice that the greatest common divisor of two polynomials is determined
up to mult iplication by a constant. Ifwe require it to be monic, it is uniquely
determined and we may speak of the greatest common divisor.

Lemma 4. Let I , 9 E k[ x]. By Lemma 3 there is a d e k[x] such that (J, g) =
(d ). d is a greatest common divisor 01I and g.

PROOF . Since js (d) and 9 E (d) we have d l/and d ig. Suppose that hiland
that h lg.Then h divides every polynomial of the form II + gm with I,m Ek [x].
In par ticular hid, and we are done. 0
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Definition. Two polynomials f and 9 are said to be relatively prime if the only
common divisors off and 9 are constants. In other words, (f, g) = (I).

Proposition 1.2.1. If f and 9 are relatively prime and f Igh, then f Ih.

PROOF. Iffand 9 are relatively prime, we have (f, g) = (1) so there are poly
nomials I and m such that If + mg = I. Thus lfh + mgh = h. Since f
divides the left-hand side of this equation f must divide h. 0

Corollary I. IfP is an irreduciblepolynomial and p Ifg, then p Ifor pig.

PROOF. Since p is irreducible (p, f) = (p) or (I). In the first case p If and we
are done. In the second case p and f are relatively prime and the result
follows from the proposition. 0

Corollary 2. If p is a monic irreducible polynomial and f, 9 E k[x], we have
ordpfg = ordpf + ordpg.

PROOF. The proof is almost word for word the same as the proof to Corollary
2 to Proposition I. I. I. 0

The proof ofTheorem 2 is now easy. Apply the function ord, to both sides
of the relation

We find that

ordqf = ord, c + L a(p) ord, p.
p

Now, since c is a constant q,r c and ord, c = O. Moreover, ord, p = 0 if
q # p and I if q = p. Thus the above relation yields ordqf = a(q). This
shows that the exponents are uniquely determined . It is clear that if the
exponents are uniquely determined by f, then so is c. This completes the
pro~ 0

§3 Unique Factorization in a Principal Ideal Domain

The reader will not have failed to notice the great similarity in the methods
of proof in Sect ions I and 2. In this section we shall prove an abstract theorem
that includes the previous results as spec ial cases.

Throughout this section R will denote an integral domain.

Definition 1. R is said to be a Euclideandomain if there is a function J. from the
nonzero elements of R to the set {O, 1,2,3, . .. } such that if a, b E R, b :f. 0,
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there exists c, dE R with the property a = cb + d and either d = 0 or
).(d) < ).(b).

The rings 7l. and k[x] are both Euclidean domains. In 7l. we can take
ordinary absolute value as the function ).; in the ring k[x] the function that
assigns to every polynomial its degree will serve the purpose.

Proposition 1.3.1. If R is a Euclidean domain and I ~ R is an ideal , then there
is an element a E R such that I = Ra = {ralr E R} .

PROOF. Consider the set of nonnegative integers {i.(b)l b E I , b :P 0). Since
every set of nonnegative integers has a least element there is an a E I, a :P 0,
such that ).(a ) ~ ).(b) for all b e I, b :P O. We claim that I = Ra . Clearl y,
Ra ~ I. Suppose that b e I; then we know that there are elements c, d ER
such that b = ca + d, where either d = 0 or ).(d) < ).(a). Since d = b 
ca E I we cannot have ).(d ) < ).(a). Thus d = 0 and b = ca ERa. Therefore,
I ~ Ra and we are done. 0

For elements a l , . • • .o; E R, define (al> a2' ... , an) = Ra, + Ra 2 +
. . . + Ran = {L i'= 1 rjadrj E R }. (a I' a2 , •.• , an) is an idea l. If an ideal I
is equal to (a I' ... , arr) for some elements a, E I , we say that I is finitely
generated. If I = (a) for some a E I, we say that I is a principal idea l.

Definition 2. R is said to be a prin cipal ideal domain (PID) if every ideal of R is
pr incipal.

Proposition 1.3.1 asserts that every Euclidean domain is a PID. The con
verse of this statement is false , although it is somewhat hard to provide
examples.

The remaining discussion in th is section is about PID's. The notion of
Eucl idean domain is useful because in practice one can show that many
rings are PID's by first establish ing that they are Euclidean domains. We
shall give two further examples in Section 4.

We introduce some more terminology. If a, b E R, b :P 0, we say that b
div ides a if a = be for some c E R. Notation: b la. An element u E R is
called a unit if u div ides I. Two elements a, b E R are said to be associates if
a = bu for some un it u. An element pER is said to be irreducible if alp
impl ies that a is either a unit or an associate ofp. A nonunit p ER is said to be
prime if p :P 0 and pi ab implies that p Ia or p Ib.

The distinction between irred ucible element and pr ime element is new.
In gene ral these notions do not co incide. As we have seen they do co incide
in 7l. and k[x] , and we shall prove shortly that they coincide in a PID.

Some of the notions we are discussing can be trans lated into the language
of ideals. Thus alb iff (b) ~ (a) . U E R is a un it iff (u) = R. a and bare
associate iff (a) = (b). p is prime iff ab E (p) implies that either a E (p) or
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b E (p). All these assertions are easy exercises. The notion of irreducible
element can be formulated in terms of ideals, but we will not need it.

Definition. d E R is said to be a greatest common divisor (gcd) of two elements
a, b E R if

(a) dla and dlb.
(b) d' Ia and d' Ib implies that d' Id.

It is easy to see that ifboth d and d' are gcd's of a and b, then d is associate
to d',

The gcd of two elements need not exist in a general ring. However,

Proposition 1.3.2. Let R be a PID and a, b E R. Then a and b have a greatest
common divisor d and (a, b) = (d) .

PROOF. Form the ideal (a, b). Since R is a PID there is an element d such that
(a, b) = (d). Since (a) s; (d) and (b) s; (d) we have dla and dlb. If d'ia
and d' Ib, then (a) s; (d') and (b) s; (d') . Thus (d) = (a, b) s; (d') and d' Id.
We have proved that d is a gcd of a and b and that (a, b) = (d). 0

Two elements a and b are said to be relatively prime if the only common
divisors are units.

Coronary 1. If R is a PID and a, b E R are relatively prime, then (a, b) = R.

Coronary 2. If R is a PID and pER is irreducible, then p is prime.

PROOF. Suppose that piab and that p.r a. Since p.r a it follows that the only
common divisors are units. By Coronary I (a, p) = R. Thus (ab, pb) = (b).
Since ab E (P) and pb E (p) we have (b) s; (p). Thus plb.

It is easy to see that a prime is irreducible. 0

From now on R will be a PID and we shall use the words prime and
irreducible interchangeably.

We want to show that every nonzero element of R is a product of irredu
cible elements. The proof is in two steps. First one shows that if a E R,
a # 0, there is an irreducible dividing a. Then we show that a is a product of
irreducibles.

Lemma 1. Let (a l ) S; (a2) S; (a3) S; . . . be an ascending chain ofideals. Then
there is all integer k such that (ak) = (ak +,)for/ = 0, 1,2, . . .. III other words,
the chain breaks off in finitely many steps.

PROOF. Let I = U;X; I (ai)' It is easy to see that I is an ideal. Thus I = (a) for
some a E R. But a E Ui= l(ai) implies that a E (ak) for some k, which shows
that I = (a) S; (ak). It follows that I = (ak) = (ak +I) = . . . . 0
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Proposition 1.3.3. Ellery nonzero nonunit of R is a product of irreducibles.

PROOF . Let a E R, a #- 0, a not a unit. We wish to show, to begin with , that a
is divisible by an irreducible element. If a is irreducible, we are done. Other
wise a = atb t , where at and b, a re nonunits. If a l is irreducible, we are done.
Otherwise a l = a2b2, where a2 and b2 are nonunits. If a2 is irreducible, we
are done. Otherwise continue as before. Notice that (a) c (a.) c (a2) c . . ..

By Lemma I this chai n can not go on indefinitely. Thus for some k, ak is
irreducible.

We now show that a is a product of irreducibles. If a is irreducible, we are
done. Otherwise let PI be an irredu cible such that Plla. Then a = PICI ' If
C 1 is a un it, we are done. Otherwise let P2 be an irred ucible such that P21 c l •

Then a = PIP2 c2 • If C2 is a unit, we are done. Otherwise continue as before.
Not ice that (a) c (c l ) c (C 2) c .. . . This chain cannot go on indefinitely
by Lemma I. Thus for some k, a = PIP2 •• • PkCko where Ck is a unit. Since
Pk Ck is irreducible, we are done. 0

We now want to define an ord funct ion as we have done in Sect ions I
and 2.

Lemma 2. Let P be a prime and a #- O. Then there is an integer n such that pilia
but P"+I ,ta.

PROOF. If the lemma were false, then for each integer m > 0 there would be
an element b; such that a = pmbm. Then pbm+1 = bmso that (b l ) C (b2) C

(b 3 ) C . .. would be an infinit e ascending cha in of ideals that does not
break off. Th is contradicts Lemma I. 0

The integer n, which is defined in Lemma 2, is uniquely determined by
P and a. We set n = ord, a.

Lemma 3. Ifa, b E R with a, b #- 0, then ord, ab = ord, a + ord, b.

PROO F. Let ex = ord , a and f3 = ord, b. Then a = p' c and b = pfJd with
p,tc and p r d. Thus ab = p2+fJcd. Since p is prime p r cd. Consequently,
ord, ab = ex + fJ = ord , a + ord, b. 0

We are now in a position to formulate and prove the main theorem of this
section.

Let S be a set of primes in R with the following two properties :

(a) Every pr ime in R is assoc iate to a prime in S.
(b) No two pr imes in S are associ ate .

To obtain such a set choose one prime out of each class of assoc iate
pr imes. There is clearly a great deal of arbitrariness in th is choice. In 7L
and k[x] there were natural ways to make the choice . In 7L we chose S to be
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the set of positive primes. In k[x] we chose Sto be the set ofmonic irreducible
polynomials. In general there is no neat way to make the choice and this
occasionally leads to complications (see Chapter 9).

Theorem 3. Let R be a PID and S a set ofprimes with thepropertiesgivenabove.
Then if a E R, a #- 0, we can write

(I)

whereu is a unit and the product is ocer all pES. The unit u and the exponents
e(p) are uniquely determined by a. Infact, e(p) = ord, a.

PROOF. The existence of such a decomposition follows immediately from
Proposition 1.3.3.

To prove the uniqueness, let q be a prime in S and apply ord, to both
sides of Equation (I). Using Lemma 3 we get

ord, a = ord, u + Le(p) ord, p.
p

Now, from the definition oford, we see that ord, u = 0 and that ord, p =
oif q #- p and 1 if q = p. Thus ord, a = e(q). Since the exponents e(q) are
uniquely determined so is the unit u. This completes the proof. 0

§4 The Rings Z[i] and Z[wJ

As an application of the results in Section 3 we shall consider two examples
that will be useful to us in later chapters.

Let i = ,j=t and consider the set of complex numbers 1:[i] defined
by {a + bi/a , b E 1:}. This set is clearly closed under addition and subtrac
tion. Moreover, if a + bi, c + di E1:[1], then (a + bi)(c + dO = ac +
adi + bci + bdi? = (ac - bel) + (ad + bc)i E 1:[1]. Thus 1:[1] is closed
under multiplication and is a ring. Since 1:[i] is contained in the complex
numbers it is an integral domain.

Proposition 1.4.1. 1:[1] is a Euclidean domain.

PROOF. For a + bi E iQli] define ).(a + bi) = a2 + b',
Let ex = a + bi and y = c + di and suppose that y #- O. ex jy = r + si,

where rand s are real numbers (they are, in fact , rational) . Choose integers
m, n E 1: such that Ir - ml ~ t and Is - nl ~ t. Set f> = m + ni. Then
i5 E1:[i] and ).« cxjy) - f» = (r - m)2 + (s - n)2 ~ ! + ! = t. Set p =
ex - yf>. Then p E 1:[1] and either p = 0 or ).(p) = ).(y«cxjy) - (j» =
).(y»).« exjy) - (j) ~ V .(y) < ).(y).

It follows that ). makes 1:[1] into a Euclidean domain. 0



Notes 13

The ring £:[/J is called the ring of Gaussian integers after C. F. Gauss,
who first studied its arithmetic properties in detail.

The numbers ± I, ±i are the roots of x 4 = lover the complex numbers.
Consider the equation x J = I. Since x 3

- I = (x - 1)(x2 + X + I)

the roots of this equation are I, ( - 1 ± F3)/2. Let w = (- 1 + F3)/2.
Then it is easy to check that w2 = (- I - F3)/2 and that I + w + w2

=0.
Consider the set £:[w] = {a + bwla, bE Z} , £:[w] is closed under

addition and subtraction. Moreover, (a + bw)(e + dw) = ae + (ad + be)w
+ bdor' = (ae - bd) + (ad + be - bd)w. Thus £:[w] is a ring . Again,
since £:[w] is a subset of the complex numbers it is an integral domain.

We remark that £:[w] is closed under complex conjugation. In fact, since

J=3 = J3i = -J3i = -F3 we see that iiJ = w2
• Thus if a =

a + bw E £:[w], then (i = a + bw = a + bw2 = (a - b) - bto E £:[w].

Proposition 1.4.2. £:[w] is a Euclidean domain.

PROOF. For a. = a + bw E £:[w] define ).(a) = a2 - ab + b2. A simple
calculation shows that ).(a) = ali.

Now, let a, [3 E £:[w] and suppose that [3 :/= O. Then al[3 = aPI[3p =
r + sea, where rand s are rat ional numbers. We have used the fact that
[3P = ).([3) is a positive integer and that ap E £:[w] since aand pE £:[w].

Find integers m and n such that Ir - ml =:; 1and Is - n\ =:; 1. Then
put y = m + nw. ).«al[3) - y) = (r - m)2 - (r - m)(s - n) + (s - n)2
=:;*+*+*<1.

Let p = a - y[3. Then either p = 0 or A(p) = A([3«aj[3) - y» =
).([3)).«aj[3) - y) < ).([3). 0

From the analysis of Section 3 we know that the theorem of unique
factorization is true in both £:[/J and £:[w]. To go further with the analysis
of these rings we would have to investigate the units and the prime elements.
There are some results of this nature in the exercises.

NOTES

Rings for which the theorem of unique factorization into irreducibles holds
are called un ique factorization domains (UFO). The fact that £: is a UFO
is already implicit in Euclid, but the first explicit and clear statement of the
result seems to be in C. F . Gauss' masterpiece Disquisitiones Arithmetieae
(available in English translation by A. A. Clark, Yale University Press ,
New Haven, Conn., 1966). Zermelo gave a clever proof by contradiction,
which is reproduced in the excellent book of G. H. Hardy and Wright
[40]. See also Davis and Shisha [120].

We have shown that every PIO is a UFO. The converse is not true. For
example, the ring of polynomials over a field in more than one var iable is a
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UFO but not a PIO. P. Samuel has an excellent expository article on UFO's
in [67]. A more elementary introduction may be found in the book of H.
Rademacher and O. Toeplitz [65].

The reader may find it profitable to read the introductory material in
several books on number theory. Chapter 3 of A. Frankel [32] and the
introduct ion to H . Stark [73] are particularly good. There is also an early
lecture by Hardy [39] that is highly recommended.

The ring l[l] was introduced by Gauss in his second memoir on biquad
ratic reciprocity [34]. G. Eisenstein considered the ring lew] in connection
with his work on cubic reciprocity. He mentions that to investigate the
properties of this ring one need only consult Gauss' work on l[t] and
modify the proofs [28 ]. A thorough treatment of these two rings is given in
Chapter 12 of Hardy and Wright [40]. In Chapter 14 they treat a generaliza
tion, namely, rings of integers in quadratic number fields . Stark's Chapter 8
deals with the same subject [73]. In 1966 Stark resolved a long-outstanding
problem in the theory of numbers by showing that the ring of integers (see

Chapter 6 of this book) in the field {l(Jd), with d negative, is a UFO when
d= -1 ,-2, -3, -7, -II, -19, -43, -67, a nd -163andfornoother
values of d.

The student who is familiar with a little algebra will notice that a "generic"
non-UFO is given by the ring k[x, y, z, w], with xy = ZW, where k is a
field. Another example of a non-UFO is iC[x, y, z], with x2 + y2 +
Z2 = I, where iC is the field of complex numbers. To see this notice that
(x + iy)(x - iy) = (I - z)(1 + z).

EXERCISES

1. Let II and b be nonzero integers. We can find nonzero integers q and r such that
II = qb + r , wher e 0 ~ r < h. Prove that (a, h) = (h, r) .

2. (continuation) If r '" 0, we can find ql and r l such that b = q1r + r l with 0 ~

r 1 < r. Show that (a, h) = (r, r I)' Th is process can be repeated. Show that it must end
in finitely many steps . Show that the last nonzero remainder must equal (a, b). The
process look s like

II = qb + r,

b = q1r + r.,

o~ r < b.

os r l < r ,

Then rk • I = (a, b) .This process of finding (a, b) is known as the Euclidean algorithm .

3. Calculate (187, 221), (6188, 4709), and (314.159).
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4. Let d = (a. b). Show how one can use the Euclidean algorithm to find numbers m
and n such that am + bn = d. (Him : In Exercise 2 we have that d = 'U I ' Express
'k+ 1 in terms of r, and 'k_t .then in terms of 'k-I and 'k-2' etc.)

5. Find m and n for the pairs a and b given in Exercise 3.

6. Let a, b. C E 7L. Show that the equation ax + by = c has solutions in integers iff
(a. b)lc.

7. Let d = (a, b) and a = do' and b = db'. Show that (d, b') = I.

8. Let Xo and Yo be a solution to ax + by = c. Show that all solutions have the form
x = Xo + t(bld), Y = Yo - t(ald), where d = (a, b) and t E 7L.

9. Suppose that u, v E 7L and that (u, v) = I.Ifu In and vln,show that uv/n. Show that this
is false if (u. v) "# I.

10. Suppose that (u. v) = I. Show that (u + v. u - v) is either I or 2.

II. Show that (a, a + k)lk.

12. Suppose that we take several copies of a regular polygon and try to fit them evenly
about a common vertex. Prove that the only possibilities are six equilateral triangles,
four squares, and three hexagons.

13. Let n I' nz• . . . • n, E 7L. Define the greatest common divisor d of nl , n2• . . . , n, and
prove that there exist integers mi. m2• . . .• m, such that nlm l + n2m2 + ... +
n,m, = d.

14. Discuss the solvability of a,x t + azxz + ... + a,x, = c in integers. (Hint : Use
Exercise 13 to extend the reasoning beh ind Exercise 6.)

15. Prove that a E 7L is the square of another integer iff ord,« is even for all primes p.
Give a generalization.

16. If (u, v) = I and uv = aZ, show that both u and v are squares.

17. Prove that the square root of 2 is irrational. i.e.• that there is no rational number
r = alb such that ,z = 2.

18. Prove that yr,;; is irrational if m is not the nth power of an integer.

19. Define the least common mult iple of two integers a and b to be an integer msuch that
dim. blm, and m divides every common multiple of a and b. Show that such an m
exists. It is determined up to sign. We shall denote it by [a. b].

20. Prove the following:
(a) ordp[a. b) = rnaxtord,«, ordpb).
(b) (a, b)[a, b) = abo
(c) (a + b, [a, b) = (a. b).

21. Prove that ordp(a + b) ~ rnintord,«, ordpb) with equal ity holding if ordpa "#
ordpb.

22. Almost all the previous exercises remain valid if instead of the ring 7L we consider
the ring k[x]. Indeed, in most we can consider any Euclidean domain. Convince
yourself of this fact. For simplicity we shall continue to work in 7L.
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23. Suppose that a2 + b2 = c2 with a, b, C E?L. For example , 32 + 42 = 52 and 52 +
122 = 132. Assume that (a, b) = (b, c) = (c, a) = 1. Prove that there exist integers u
and v such that c - b = 2u2 and c + b = 2v2 and (u, v) = 1 (there is no loss in
generality in assuming that band C are odd and that a is even). Consequently a = 2uv,
b = v2 - u2, and c = v2 + u2. Conversely show that if u and v are given, then the
three numbers a, b, and c given by these formulas satisfy a2 + b2 = c2.

24. Prove the identities
(a) x" - .I = (x - y)(x·- I + x· - 2y + ... + .I-I).
(b) For n odd, x" + .I = (x + y)(x·- I - x·- 2y + X·- 3y2 _ . . . + y. - I ).

25. If a" - 1 is a prime , show that a = 2 and that n is a prime. Primes of the form 2P - I
are called Mersenne primes. For example, 23 - 1 = 7 and 25 - 1 = 31. It is not
known if there are infinitely many Mersenne primes .

26. If a· + I is a prime , show that a is even and that n is a power of 2. Primes of the
form 22' + I are called Fermat primes . For example, 221+ 1= 5and22' + 1 = 17.
It is not known if there are infinitely many Fermat primes .

27. For all odd n show that 81n2 - 1. If 3%n, show that 61n2 - 1.

28. For all n show that 30ln 5
- n and that 421n7

- n.

29. Suppose that a, b, C, d ~ ?L and that (a, b) = (c, d) = Uf(a/b) + (e/d) = an integer,
show that b = ±d.

30. Prove that! + ! + .. . + ~ is not an integer.

31. Show that 2 is divisible by (I + i)2 in ?L[i).

32. For IX = a + bi E ?L[i] we defined ,t(IX) = a2+ b2.From the properties of ,t deduce the
identity (a2 + b2)(e2 + d2) = (ae - bd)2 + (ad + be)2 .

33. Show that IX E ?L[i] is a unit iff ,t(IX) = 1. Deduce that I, -I , i, and - i are the only
units in 7L.[i] .

34. Show that 3 is divisible by (1 - W)2 in ?L[w].

35. For IX = a + bw E ?L[w] we defined ,t(ex) = a2 - ab + b2. Show that ex is a unit iff
,t(IX) = 1. Deduce that 1, -I, w, -w, w2, and _w2 are the only units in ?L[w).

36. Define ?L[j=2] as the set of all complex numbers of the form a + bj=2, where

a, bE?L, Show that ?L[j=2] is a ring. Define ,t(ex) = a2 + 2b2 for ex = a + bj=2.
Use I to show that ?L[j=2] is a Euclidean domain.

37. Show that the on ly units in ?L[j=2] are 1 and - 1.

38. Suppose that n E ?L[i] and that ,ten) = p is a prime in ?L. Show that n is a prime in

?L[i). Show that the corresponding result holds in ?L[w] and ?L[j=2).

39. Show that in any integral domain a prime element is irreducible.



Chapter 2

Applications of Unique
Factorization

The importance of the not ion of prime number should be
evident from the results of Chapter I.

I n this chapter we shall give several proofs of the fact
that there are infinitely many primes in 71. . We shall also
consider the analogous question for the ring k[x].

The theorem of unique prime decomposition is some
times referred to as the fundamental theorem of arith
metic. We shall begin to demonstrate its usefulness by
using it to invest igate the properties of some natural
number-theoretic functions .

§1 Infinitely Many Primes in Z

Theorem I (Eucl id). III the rinq 71. there are infinitely mallY prime numbers.

PROOF. Let us consider positive primes. Label them in increasing order
PI' Pz, P3, . . . . Thus PI = 2, pz = 3, P3 = 5, etc. Let N = (PIPZ . . . Pn) + l.
N is greater than I and not divisible by any Pi ' i = 1,2, .. . , n. On the other
hand, N is d ivisible by some prime, p, and P must be greater than Pn'

We have shown that given any positive prime there is another prime that
is greater. It follows that the set of primes is infinite. 0

The analogous theorem for k[x] is that there are infinitely many monic,
irreducible polynomials. If k is infinite, this is trivial since x - a is monic and
irreducible for all a E k. This proof does not work if k is finite, but Eucl id's
proof may easily be adapted to this case. We leave this as an exercise.

Recall that in an integral domain two elements are called associate if they
differ only by multiplicat ion by a unit. We now know that in 71. and k[x] there
are infinitely many nonassociate primes. It is instructive to consider a ring
where all primes are associate, so that in essence there is only one prime.

Let PE 71. be a prime number and let 71. p be the set of all rational numbers
alb, where P.{ b. One easily checks using the remark following Corollary 1 to
Proposition 1.1.1 that 71. p is a ring. alb E 71. p is a unit if there is acid E 71. p
such that alb -cit! = 1. Then ac = bd, which implies p.{ a since p.{ band
p.{ d. Conversely, any rational number alb is a unit in Il.p if P .{ a and p.{ b.

17
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If alb E Zp, write a = pia', where p,/' a'. Then alb = pla'lb .Thus every element
of Zp is a power of p times a unit. From this it is easy to see that the only
primes in Zp have the form pcjd, where ckl is a unit. Thus all the primes of
Zp are associate.

EXERCISE

Ifalb E 7L p is not a unit. prove that alb + I isa unit.This phenomenon showswhy Euclid's
proof breaks down in general for integral domains.

§ 2 Some Arithmetic Functions

In the remainder of this chapter we shall give some applications of the unique
factorization theorem.

An integer a E Z is said to be square-free if it is not divisible by the square
of any other integer greater than 1.

Proposition 2.2.1. Ifn E Z, n can be written in the form n = ab" , where a, b E Z
and a is square-free.

PROOF. Let II = p~lp~' ... pf'. One can write a, = 2bj + ri , where r, = 0 or 1
depending on whether a, is even or odd. Set a = p~lp'i2 . .. p? and b =
p~lp~' . . . p7'. Then n = ab 2 and a is clearly square-free. 0

This lemma can be used to give another proof that there are infinitely
many primes in Z. Assume that there are not , and let PI ' P2 " '" P, be a com
plete list of positive primes. Consider the set of positive integers less than or
equal to N. If n ~ N, then n = abl

, where a is square-free and thus equal to
one of the 2' numbers p~lp~2 ... pf', where I:j = 0 or 1, i = 1, . . . , I. Notice

that b ~ ft. There are at most 2' ft numbers satisfying these conditions

and so N s 2' ft , or ft s 21
, which is clearly false for N large enough.

This contradiction proves the result.
It is possible to give a similar proof that there are infinitely many monic

irreducibles in k[x], where k is a finite field.
There are a number of naturally defined functions on the integers. For

example, given a positive integer II let ~(II) be the number of positive div isors
of II and a(i1) the sum of the positive divisors of n. For example, v(3) = 2,
~(6) = 4, and v(l2) = 6 and a(3) = 4, 11(6) = 12, and a(12) = 28. Using
unique factorization it is possible to obtain rather simple formulas for these
functions.
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Proposition 2.2.2. If n is a positive inteqer, let n = p~'pi' . .. p~' be its prime
decomposition. Then

(a) \'(n) = (a l + 1)(a2 + I)· · · (a, + I).
(b) O'(n) = «p~1 + I - I)/(PI - I»«pi' + I - 1)/(1'2 - I»· · ·

({pf' + I - 1)/(1', - I».

PROOF. To prove part (a) notice that min iff m = P~ ' p~' . . . pr' and 0 :s; b, :s; ai

for i = I, 2, . .. , I. Thus the positive divisors of n are one-to-one correspon
dence with the n-tuples (b l , b2 , ••• , h,) with 0 :s; hi :s; a, for i = I, . .. ,I, and
there are exactly (a l + 1)(a2 + I)·· · (a, + I) such n-tuples.

To prove part (b) not ice that O'(n) = L p~ lp~' .. . pr', where the sum is over
the above set of n-tuples. Thus, O'(n) = (D:=0 p~')(D~ =0 p~') . . . (D: =0 pr'),
from which the result follows by use of the summation formula for the geo
metric series . 0

There is an interesting and unsolved problem connected with the function
0'(/1). A number n is sa id to be perfect if O'(n) = 2n. For example, 6 and 28 are
perfect. In general, if 2m + I - I is a prime, then n = 2m(2m + I - I) is perfect ,
as can be seen by applying part (b) of Proposition 2.2.2. Th is fact is already in
Euclid. L. Euler showed that any even perfect number has this form. Thus
the problem of even perfect numbers is reduced to that of finding primes of
the form 2m + I - I. Such primes are called Mersenne primes. The two out
stand ing problems invol ving perfect numbers ar e the following: Are there
infinitely many perfect numbers? Are there any odd perfect numbers?

The multiplicative ana log of this problem is trivi al. An integer n is called
multiplicatively perfect if the product of the positive divisors of n is n2

• Such
a number cannot be a prime or a square of a prime. Thus there is a proper
divisor d such that d ¥- njd. The product of the divisors I, d, nld, and n is
already n2

• Thus n is multiplicatively perfect iff there are exactly two proper
divisors. The onl y such numbers are cubes of primes or products of two
distinct primes. For example, 27 and 10 are multiplicatively perfect.

We now introduce a very important arithmetic function , the Mobius J1
function . For n E 1.+, p(l) = I, p(n) = 0 if n is not squa re-free, and P(PIP2' "
P,) = ( - I )', where the Pi are distinct positive primes.

Proposition 2.2.3. If /I > I. Ldln J1(d) = O.

PROOF. Ifn = p~ 'pi" " P~', then L.tln Jl(d) = L([, .. .. .[11 p(p~' . . . PI') ' where the
I;j are zero or I. Thus

L Jl(d) = I - I+ (I) _(I) + ... + (-I)' = (I - I)' = O. 0
din 2 3

Th e full significance of the Mobius p function can be understood most
clearly when its connect ion with Dirichlet multipl ication is brought to light.
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Let f and 9 be complex valued functions on Z" , The Dirichlet product off
and 9 is defined by the formulaj'»yen) = Lf(d.)y(dz), where the sum is over
all pairs (d., dz) of positive integers such that d1dz = n. Th is product is
associative, as one can see by checking that f " (g 0 h)(n) = (f 0 y) " hen) =
Lf(ddy(d z)h(dJ), where the sum is over all 3-tuples (d I ' dz, dJ) of positive
integers such that d.dzdJ = n.

Define the function 0 by 0(1) = I and O(n) = 0 for n > 1. Then f 00 =
Oof=f Define I by I(n) = I for all nEZ+. Then f oI(/I) = I of(n) =

Lln!(d).

Lemma. 1 0 /l = /l 0 I = O.

PROOF. /l 0 I(l) = /l(I)I(1) = 1. If n > I, /l o/(n) = Lin /led) = o.The same
proof works for I 0/l. 0

Theorem 2 (Mobius Inversion Theorem). Let F(n) = Ldlnf(d). Thenf(n) =
Lin /l(d)F(n/d).

PROOF. F = f 0 I. Thus F 0 /l = (f 0 l) 0 J1 = f 0 (l 0 /l) = f 0 0 = [. This shows
that fen) = F 0 /len) = Ldln /l(d)F(n/d). 0

Remark. We have considered complex-valued functions on the positive
integers. It is useful to notice that Theorem 2 is valid whenever the functions
take their value in an abelian group. The proof goes through word for word.

If the group law in the abelian group is written multiplicatively, the
theorem takes the following form: If F(n) = ndln!(d), then fen) = nd,n
F(II/d),,(d ).

The Mobius inversion theorem has many applications. We shall use it to
obtain a formula for yet another arithmetic function , the Euler ¢ function.
For n E 7L+, ¢(n) is defined to be the number of integers between I and n
relatively prime to n. For example, ¢(I) = I, ¢(5) = 4, ¢(6) = 2, and
¢(9) = 6. If p is a prime, it is clear that ¢(p) = p - 1.

Proposition 2.2.4. Ldln ¢(d) = n.

PROOF. Cons ider the n rational numbers I/n, 2/n, 3/11, .. . , (n - I)/n, nino
Reduce each to lowest terms ; i.e., express each number as a quotient of
relatively prime integers. The denominators will all be divisors of n. If din ,
exactly ¢(d) of our numbers will have d in the denominator after reducing to
lowest terms. Thus Ldln ¢(d) = n. 0

Proposition 2.2.5. Ifn = p~ lp~' .. . pf' , then

¢(n) = n(1 - (l /p.»(1 - (I /pz» ·· · (I - (I /p,» .

PROOF. Since n=Ldln ¢(d) the Mobius inversion theorem implies that ¢(n) =
Ldln /l(d)n/d = n - 'Ii n/Pi + 'I i<j n/PiPj · · · = n(1 - (I /PI»(I - (I /pz»·· ·
(l - (I/p,» . 0
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Later we shall give a more insightful proof of this formula. We shall also
use the Mobius function to determine the number of monic irreducible
polynomials of fixed degree in k[x] , where k is a finite field.

§3 I lip Diverges

We began this chapter by proving that there are infinitely many prime
numbers in 7L. We shall conclude by proving a somewhat stronger statement.
The proof will assume some elementary facts from the theory of infinite series.

Theorem 3. I l /p diverges, where the sum is over all positive primes in 7L.

PROOF . Let PI' P2, . .. , Plln) be all the primes less than n and define ,1,(n) =
m(~ll (I - I /p;) - I. Since (I - I/p;) - 1 = I~ = 0 IIp?' we see that

,1,(n) = I (p~'p~' ... pf,) -I,

where the sum is over all I-tuples of nonnegative integers (a .. a2, .. . , al)'
In particular, we see that I + ! + ! + ... + I/n < ,1,(n). Thus ,1,(n) -> 00 as
n -> 00 . This already gives a new proof that there are infinitely many primes .

Next, consider log ,1,(n). We have
, , co

log ,1,(n) = - Ilog(1 - Pi-I) = I I (mpi'}-l
i= 1 i-;:; 1 m ;; 1

I !Xl

= p~ 1 + Pi. I + .. + p,-l + I I (mpi) -l.
;;:; I m= 2

Now, I:'" 2 (mp'f'}-I < I :'=2 Pi- m = Pi- 2(1 - Pi-I)-I ~ 2Pi- 2. Thus log ,1,(n)
< p ~1 + pit + ... + p,-l + 2(p~ 2 + Pi. 2 + .. . + p,-2). It is well known
that I :'= t n - 2 converges. It follows that I ;X; 1 Pi- 2 converges. Thus if
I P- I converged, there would be a constant At such that log ,1,(n) < M, or
,1,(n) < e", This, however, is impossible since ,1,(n) -> 00 as /I -> 00. Thus
I P- I diverges. 0

It is instructive to try to construct an analog of Theorem 3 for the ring
k[x] , where k is a finite field with q elements. The role of the positive primes
P is taken by the monic irreducible polynomials p(x). The" size" of a monic
polynomialf(x) is given by the quantity qdeg/(x).

This is reasonable because for a positive integer n, n is the number of
nonnegative integers less than n, i.e., the number of elements in the set
{O, I, 2, . . . , n - I }. Analogously, qdeg/{x} is the number of polynomials of
degree less than deg f(x) . This is easy to see. Any such polynomial has the
form QoX

m + atx
m

- t + ' " + am . where m = degf(x) - 1 and ai E k. There
are q cho ices for ai and the choice for each index is independent of the others.
Thus there are q" + 1 = qdeg /(x) such polynomials.
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Theorem 4. L q-deIlP(x/ diverges, where the sum is over all monic irreducibles
p(x) in k[x].

PROOF. We first show that L q-dCIl!(X) diverges and that L q- 2dellf(xI con
verges, where both sums are over all monic polynomialsf(x) in k[x]. Both
results follow from the fact that there are exactly q" monic polynomials of de
gree n in "[x] . Consider ~CIl!(X/"" q-dCIl!(XI. This sum is equal to L~=o qmq-m
= n + 1 Thus '\' q-dCIl!(X) diverges Similarly '\' q-2dell!(x) =. 1.. . , 1..dell!(X/ '; n

~=o qmq-2m < (I - I/q)-I . Thus L q-2dell!(x) converges.
The rest of the proof is an exact imitation of the proof of Theorem 2.

The reader should fill in the details. 0

§4 The Growth of n(x)

In the introduction to Chapter 1 we defined n(x) as the number of pr imes P,
I < P s; x. The study of the behavior of n(x) for large x involves analytic
techniques. We will prove in this section several results that require a mini
mum of results from analysis. In fact only the simplest properties of the
logarithmic function are used.

We begin with the following simple consequence of Euclid's argument
(Theorem I) which gives a weak lower bound for n(x). Throughout log x
denotes the natural logarithm of x.

Proposition 2.4.1. n(x) ~ log(log x), x ~ 2.

PROOF. Let Pn denote the nth prime. Then since any prime dividing PIP2 . .. Pn
+ 1 is distinct from Pl .. . . ' p; it follows that Pn+ I ~ PI' " Pn + 1. Now
PI < 2(2 ') , P2 < 2(2 '1 and if P« < 2(2") then Pn+ I S; 2(2 ') .2(2

2
) • • • 2(2 ") + 1 =

2 2" + I - 2 + 1 < 2(2"' ' ). It follows that n(2(2") ~ n. For x > e choose an
integer n so that ele" - ') < x ~ ele" ). If n > 3 then en - I > 2n so that

n(x) ~ n(e(e"-') ~ n(e 2" ) ~ n(22" ) ~ n ~ logtlog x) .

This proves the result for x > e'. If x ~ e' the inequality is obvious. 0

The method employed in the paragraph following Proposition 2.2.1 to
show that n(x) --+ 00 can also be used to obtain the following improvement
of the above proposition. If n is a positive integer let yen) denote the set of
primes dividing n.

Proposition 2.4.2. n(x) ~ log x/2 log 2.

PROOF. For any set of primes S define fs(x) to be the number of integers n,
1 S; n ~ x, with yen) c S. Suppose that S is a finite set with t elements.
Writing such an n in the form n = m2s with s square free we see that m ~ fi



§4 The Growth of ll(x) 23

while s has at most 21 choices corresponding to the various subsets of S. Thus
fs(x) ::; 2/fi . Put n(x) = m so that Pm+ 1 > x. If S = {PI> ... , Pm} then
clearly fs(x) = x which implies that x s 2m fi = 2"(.>:) fi.The result follows
immediately. 0

It is interesting to note that the above method can also be used to give
another proof to Theorem 2. For if L I/p. converged then there is an n such
that Lj>. I /Pj < t. If S = {Pt, ... , P.} then x - fs(x) is the number of
positive integers m ::; x with y(m) a; S. That is, there exists a prime Pj,j > n
such that pjlm. For such a pr ime there are [x /Pj] multiples of Pj not exceeding
x. Thus

[
x ] x xx - fs(x) ::; L - ::; L - < -,

j>. Pj j >. Pj 2

so that fs(x) ~ x/2. On the other hand, fs(x) s 2·fi. These inequalities

imply 2· ~ fi/2 which is false for n fixed and large x.
A function closely related to n(x) is defined by 8(x) = Lp:5.>: log P, the

sum being over all primes at most x. We will use O(x) to bound n(x) from
above. Put 0(1) = O.

Proposition 2.4.3. O(x) < (4 log 2)x.

PROOF . Consider the binomial coefficient

(
2n) = (n + 1) .. . (2n).
n 1·2 .. ·n

Clearly this integer is d ivisible by all primes P, n < P < 2n. Furthermore,
since

2. (211)(1 + 1)2. = L .,
j=O J

Hence

(
2n) p < 2.

22
• > > nP

n p >.

and therefore

p < 2.

211 log 2> L log p = 0(2n) - 0(1/).
p >.

Summing this relation for n = 1,2,4,8, . .. , 2m
- 1 gives

8(2m
) < (log 2)(2m + 1 - 2)

< (log 2)2m + I .
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If 2m
- I < X ~ r we obtain
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O(x) ~ 0(2m
) < (log 2)2m + I = (4 log 2)2m

-
1

< (4 log 2)x. o

Corollary 1. There is a positive constant C I such that n:(x) < clx/log x for
x ~ 2.

PROOF.

Thus

p $;x

O(x) ~ L log P
p > v'X

~ (log ,fi)(n:(x) - n:(fi»

~ (log ,fi)n:(x) - ,fi log ,fi.

20(x)
n:(x) ~ -,- + ,fi

ogx

s (8 log 2)-Ix +,fi. .
og x

The result follows by noting that ,fi < 2x/log x for x ~ 2.

Corollary 2. n:(x)/x ..... 0 as x ..... 00.

o

To bound n:(x) from below we begin by examining further the binomial
coefficient (~n). First of all

On the other hand by Exercise 6 at the end of this chapter we have

ord (2n) = ord (211)! = ~ ([211] - 2[~J)
p 11 P(n!)2 j~1 pI pI

where t p is the largest integer such that p'p ~ 211. Thus t p = [log 211/log p].
Now it is easy to see that [2x] - 2[x] is always 1 or O. It follows that

d (
2n) log 211or < - -

p 11 - log p .

Proposition 2.4.4. There is a positive constant c2 such that n:(x) > c2(x/log x ).

PROOF . By the above we have

2n s (211) s n pIP.
II p < 2n
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Thus
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II log 2:0::; I tp log p = I [10
1

g 2n] log p.
p <2n p <2n ogp

If log p > t log 211, i.e., p > ~, then [log 2n/log p] = I. Thus

[
log 211] p < 2n

n log 2:0::; I -- log p + I log p
p s j 2,; log P p > j2n

:0::;~ log 211 + 0(211).

Therefore 0(2n) > II log 2 - ~ log 2n. But ~ log 211/11 approaches 0
as n -+ co, so that 0(2n) > Til for some T > 0 and all n sufficiently large.
Writing, for large x, 2n:o::; x < 2n + I we have O(x) ~ 0(2n) > Tn >
T(x - 1)/2 > ex for a suitable constant C. Thus there is a constant ('2 > 0
such that O(x) > ('2X for all x ~ 2. To complete the proof we observe that

O(x) = I log p :0::; n(x) log x,
p s,X

Thus

O(x) x
n(x) ~ -I - > (' 2 -I -.

og x og x
D

The preceding two propositions were first proven by Tchebychef in 1852.
These results are subsumed under the famous prime number theorem which
asserts that in fact n(x)(Iog x/x) -+ 1 as x -+ 00 . It is not d ifficult to see that
thi s is equ ivalent to O(x )jx -+ I as x -+ 00 . The prime number theorem was
conjectured, in a slightly different form by G au ss at the age of 15 or 16. The
proof of the conjecture was not achieved until 1896 when J. Hadamard and
Ch. de la Valle Poussin established th e result independently. Their proofs
utilize complex an al ytic properties of the Riemann zeta function . In 1948
Atle Selberg was able to prove the result without the use of complex analysis.

NOTES

There are a multitude of unsolved problems in the theory of prime numbers.
For example, it is not known if there are infinitely many pr imes of the form
112 + I. On the other hand we will prove in Chapter 16 that the linear poly
nomial WI + balways represents an infin ite number of primes when (a, b) = I.
This is the celebrated theorem of Dirichlet on primes in an a rithmetic pro
gression.

It is not known wheth er th ere exist infinitely many primes of the form
2N + I, the so-ca lled Fermat primes, o r if there are infin itely many primes of
th e form 2N

- 1, the Mersenne primes.
An other outstanding problem is to dec ide whether there a re an infinite

number of pr imes p such that p + 2 is also prime. It is kn own th at the sum
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of the reciprocals of the set of such primes converges, a result due to Viggo
Brun [52].

Good discussions of unsolved problems about primes may be found in
W. Sierpinski [71] and Shanks [70]. Readers with a background in analysis
should read the paper by P. Erdos [3 I] as well as those of Hardy [38] and
[39].

The key idea behind the proof of Theorem 2 is due to L. Euler. A pleasant
account of this for the beginner is found in Rademacher and Toeplitz [65].

Theorem 3 gives a proof in the spirit of Euler that k[x] contains infinitely
many irreducibles. This already suggests that many of the theorems in classical
number theory have analogs in the ring k[x] . This is indeed the case. An
interesting reference along these lines is L. Carlitz [10].

The theorem of Dirichlet mentioned above has been proved for k[x], k a
finite field, by H. Kornblum [50]. Kornblum had his promising career cut
short after he enlisted as Kriegsfreiwilliger in 1914. The prime number
theorem also has an analog in k[x] . This was proved by E. Artin in his
doctoral thesis [2].

A good introduction to analytic number theory is Chandrasekharan [I 12].
In the last chapter of this very readable text a proof of the prime number
theorem is given that uses complex analysis. Proofs that are free of complex
analysis (but not of subtlety) have been given by A. Selberg [215] and
P. Erdos [133]. For an interesting account of the history of this theorem see
L. J. Goldstein [139]. Finally we recommend the remarkable tract Prim
zahlen by E. Trost [229] ; this 95 page book contains, in addition to many
elementary results concerning the distribution of primes, Selberg's proof of
the prime number theorem as well as an "elementary" proof of Dirichlet's
theorem mentioned above. See also D. J. Newman [198].

EXERCISES

I. Show that k[x] , with k a finite field, has infinitely many irreducible polynomials.

2. Let PI' P2, . .. , P, E Z. be primes and consider the set of all rat ional numbers r = alb,
a, b e z., such that ord , a ~ ord, b for i = 1,2, .. . , t. Show that this set is a ring
and that up to taking associates PI' P2 , " " P, are the only primes.

3. Use the formula for ¢(n) to give a proof that there are infinitely many primes.
[Hint : If PI' P2," " P, were all the pr imes, then ¢(n) = 1, where n = PtP2' " P,,]

4. If a is a nonzero integer, then for n > m show that (a 2
" + 1, a2~ + 1) = 1 or 2

depending on whether a is odd or even. (Hint : If P is an odd prime and pla2~ + 1,
then pla 2" - 1 for n > m.)

5. Use the result of Exercise 4 to show that there are infinitely many primes. (This proof
is due to G . Polya .)

6. For a rat ional number r let [r] be the largest integer less than or equal to r, e.g.,
m= 0, [2] = 2, and [3D = 3. Pro ve ord;»! = [n Ip] + [n j p2] + [lI jp J

] + ." .
7. Deduce from Exercise 6 that ord, n ! S; n/(p - 1) and that yr,;! S; nPI.'p l /CP-I).
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8. Use Exerc ise 7 to show that there are in finitely many primes. [Hint: (n !)2 ~ n".]

(Th is proof is due to Eckford Cohen.)

9. A function on the integers is said to be multiplicative if f (uh ) = f(a)f(b) whenever
(a, b) = I. Show that a multiplicative function is completely determined by its value
on prime powers.

10. If f (n) is a multiplicat ive function, show that the funct ion g(n) = ~I" f(d) is also
multiplicative.

II. Show that l/J(n) = n Ldl"Jl(d)ld by first proving that Jl(d) ld is mult iplicative and then
using Exercises 9 and 10.

12. Find formulas for ~I" Jl(d)l/J(d),~I" Jl(d )2l/J(d)2, and ~I" ll(d)/¢(d).

13. Let Gt(n) = ~I" dt. Show that at(n ) is mult iplicative and find a formula for it.

14. If f(n) is multipl icat ive, show that h(n) = Ldl"Jl(nld)f(d) is also multiplicative.

15. Show that
(a) L dlnIl(nld)v(d) = I for all n.

(b) ~I" 1l(lI ld)a(d) = n for all II.

16. Show that v(n) is odd iff n is a squ are.

17. Show that a(n) is odd iff n is a squ are or twice a squ are .

18. Prove that l/J(n)l/J(m) = ¢ « n, m» l/J([n, m] ).

19. Pro ve that l/J(mn)l/J«m, n» = (m, n)¢(m)l/J(n).

20. Prove that n dl"d = 11'1" 1/2.

21. Define 1\(n) = lor pifn isa power ofp and zero otherwise. Prove that ~I" Jl(nld) log d

= 1\(n) . [Hint : First calcula te Ldl" 1\ (d) and then apply the Mobius inversion
formula.]

22. Show that the sum of a ll the integers t such that 1 :0:; t ~ nand (t, n) = I is 1nl/J(n).

23. Let f(x) E Z[x] and let "'(n) be the number offU), j = 1,2, . . . , n, such that (fU), n)

= I. Show that "'( n) is mult iplicat ive and that "'(p') = p' - •"'(p). Conclude that

"'(n) = n np," "'(p)/ p.

24. Supply the det ails to the proof of Th eorem 3.

25. Consider the funct ion (5) = L"'=. l in' . ( 5) is called the Riemann zeta function. It
con verges for 5 > I. Prove the formal identity (Euler's id entity) ( 5) = Dp (I 
(l ip'» - I. If we let 5 assume complex values, it can be shown that ( 5) has an an alytic
continuation to the whole complex plane. The famous Riemann hypothesis states
that the only zeros of (5) lying in the strip 0 ~ Re 5 ~ I lie on the line Re 5 = 1.

26. Verify the formal identities
(a) ( 5)- 1 = L"'=. Jl(n)ln'.

(b) ( 5)2 = L"'= 1 v(n)l n' .

(c) (5)(5 - I ) = L",='I a(n )ln'.

27. Show that L' l in , the sum being over squ a re free in tegers, diverges. Conclude that
n p < N (I + l ip) -+ co as N --+ co. Since eX> I + x, conclude that Lp < N l ip -+ cc.
(Th is proof is due to I. Niven.)



Chapter 3

Congruence

Gauss first introduced the notion of conqruence in Dis
quisitiones Arithmeticae (see Notes ill Chapter I). It is
an extremely simple idea. Nerertheless, its importance
and usefulness in number theory cannot be exaqqerated.

This chapter is devoted to an exposition of the simplest
properties of congruence. In Chapter 4, we shall qo into
the subject in more depth.

§1 Elementary Observations

It is a simple observation that the product of two odd numbers is odd, the
product of two even numbers is even, and the product of an odd and even
number is even. Also, notice that an odd plus an odd is even, an even plus an
even is even, and an even plus an odd is odd. This information is summarized
in Tables I and 2. Table 1 is like a multiplication table and Table 2 like an
addition table.

e
o

Table I

e

c
c

()

c
o

e
o

Table 2

e

c
o

o

o
e

These observations are so elementary one might ask if anything interesting
can be deduced from them. The answer, surprisingly, is yes.

Many problems in number theory have the form; iff is a polynomial in
one or several variables with integer coefficients, does the equation f = 0
have integer solutions'? Such questions were considered by the Greek
mathematician Diophantus and are called Diophantine problems in his
honor.

Consider the equation x 2
- 117x + 31 = O. We claim that there is no

solution that is an integer. Let II be any integer. n is either even or odd. If II

is even, so is n2 and 11711. Thus n2
- 11711 + 31 is odd. If n is odd, then II~

28
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and 117n are both odd. Thus n2
- 117n + 31 is odd in this case also. Since

every integer is even or odd, this shows that 11 2 - 117n + 31 is never zero.
In Chapter 2 we showed that there are infinitely many prime numbers.

We shall now show that there are infinitely many prime numbers that leave
a remainder of 3 when divided by 4. Examples of such primes are 3, 7, 19,
and 59.

An integer divided by 4 leaves a remainder of 0, I, 2, or 3. Thus odd
numbers are either of the form 4k + I or 41 + 3. The product of two numbers
of the form 4k + I is again of that form : (4k + 1)(4k' + I) = 4(4kk' + k
+ k') + 1. It follows that an integer of the form 41 + 3 must be divisible by
a prime of the form 41 + 3.

Now, suppose that there were only finitely many positive primes of the
form 41 + 3. This list begins 3,7, II, 19,23, .. .. Let PI = 7, P2 = II , PJ = 19,
etc. Suppose that Pm is the largest prime of this form and set N = 4P1P2 .. .
Pm + 3. N is not divisible by any of the Pi' However, N is of the form 41 + 3
and so must be divisible by a prime P of the form 41 + 3. We have P > Pm'
which is a contradiction.

There is clearly some common principle underlying both arguments. We
explore this in Section 2.

§2 Congruence in 7L

Definition. If a, b, m E 7L and m * 0, we say that a is conqruent to b modulo m
if m divides b - a. This relation is written a = b (m).

Proposition 3.2.1.

(a) a = a (m).
(b) a =b (m) implies that b =a (m).
(c) If a = b (m) and b = C (m), then a = c (m).

PROOF.

(a) a - a = 0 and miO.
(b) If mlb - a, then mla - b.
(c) If mlb - a and mle - b, then mle - a = (c - b) + (b - a). 0

Proposition 3.2.1 shows that congruence modulo m is an equivalence
relation on the set of integers . If a E 7L, let adenote the set of integers congruent
to a modulo m. a= {n E 7L In =a (m)}. In other words ais the set of integers
of the form a + km.

If m = 2, then 0 is the set of even integers and T is the set of odd integers.

Definition. A set of the form ais called a congruence class modulo m.
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Proposition 3.2.2.

(a) a = 5 iff a == b(m).
(b) a#-5 iffa n 5 is empty.
(c) There are precisely m distinct congruence classesmodulom.

PROOF.

(a) If 5 = a, then a E a= 5. Thus a == b (m). Conversely, if a == b (m), then
a E 5. If c == a (m), then c == b (m), which shows a~ 5. Since a == b (m)
implies that b == a (m), we also have 5 ~ a.Therefore a = 5.

(b) Clearly, ifan 5is empty, then a#- 5. We shall show that an 5not empty
implies that a = 5. Let c E an 5. Then c == a (m) and c == b(m). It
follows that a == b (m) and so by part (a) we have a= 5.

(c) We shall show that 0, T, 2, . .. , m - 1 are all distinct and are a complete
set of congruence classes modulo m. Suppose that 0 ~ k < I < m. J( = T
implies that k == I (m) or that m divides I - k. Since 0 < I - k < m this
is a contradiction. Therefore J( #- T. Now let a E 71. . We can find integers
q and r such that a = qm + r, where 0 ~ r < m. It follows that a == r (m)
and that a= r. 0

Definition. The set of congruence classes modulo m is denoted by 71./m71. .
If ai' a2 , • • • , am are a complete set of congruence classes modulo m, then

{ai ' a2'···' am} is called a complete set ofresidues modulom.
For example, {O, 1,2, 3}, {4, 9,14, -I}, and {O, I, - 2, -l} are complete

sets of residues modulo 4.

The set 71./m71. can be made into a ring by defining in a natural way addition
and multiplication. This is accomplished by means of the following proposi
tion.

Proposition 3.2.3 . If a == c (m) and b == d (m), then a + b == c + d (m) and
ab == cd (m).

PROOF. If mlc - a and mid - b, then ml(c - a) + (d - b) = (c + d) 
(a + b). Thus a + b == c + d (m).

Notice that cd - ab = c(d - b) + b(c - a). Thus mlcd - ab and ab ==
~~ 0

If ii, 5E 71./m71., we define a + 5 to be a + band a5 to be abo
This definition seems to depend on a and b. We have to show that they

depend only on the congruence classes defined by a and b. This is easy.

Assume that i: = aand that a= 5. We must show that a + b = C+d and

that ab = cd, but this follows immediately from Propositions 3.2.2 and 3.2.3.
With these definitions 71./m71. becomes a ring. The verification of this fact is

left to the reader.
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Tabl e 3 Table 4

Add ition Multiplication

0 2 0 2

0 0 I 2 0 0 0 0
I I 2 0 I 0 I 2
2 2 0 I 2 0 2 I

Tables 3 and 4 give explicitly the addition and multiplication in 7L/37L.
(Bars over the numbers are omitted.) The reader should construct similar
tables for m = 4, 5, and 6.

In discussing arithmetic problems it is sometimes more convenient to
work with the ring 7L/m7L than with the notion of congruence modulo m. On
the other hand, it is sometimes more convenient the other way around. We
shall switch back and forth between the two viewpoints as the situation
demands.

We proved earlier that the polynomial x 2 - 117x + 31 has no integer
roots . It is possible to generalize this result using some of the material we
have developed.

If a == b (m), then a2 == b2 (m), a3 == b3 (m), and in general a" == b" (m).
It follows that if p(x) E 7L [x ], then p(a) == p(b) (m). All this is a consequence
of Proposition 3.2.3.

Take m = 2. Then a is congruent to either 0 or 1 modulo 2 and we have
p(a) == p(O) (2) or p(a) == p( I) (2).

If p(x) = aox" + UIX"-I + ... + a"-I x + a" , then p(O) = a" and p(l) =
ao + UI + ... + a" . Our calculations yield the following result : If p(x) E

7L [x ] and p(O) and p(1) are both odd, then p(x) has no integer roots.
x2 - 117x + 31 has constant term 31, and the sum of the coefficients is

- 85, both of which are odd . Other examples are 2x 2 + 2x + I and 3x3 +
2x 2 + X + 3.

§3 The Congruence ax = b (m)

The simplest congruence is ax == b (m). In this section we shall develop a
criterion to test this congruence for solvability, and if it is solvable, give a
formula for the number of solutions.

Before beginning we must give a definition of what we mean by the number
of solutions to a congruence. Quite generall y, let f(x I ' . .. , x") be a poly
nomial in n variables with integer coefficients and consider the congruence
/(x l , . . . , x") == 0 (m). A solution is an n-tuple of integers (a l •. . . , a") such
that f (a I' a2 , . . . • a") == 0 (m). If (b l , .. . , b") is another n-tuple such that
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b, == aj (m) for i = I, . . . , n, then it is easy to see thatf(b., .. . , bn) == 0 (m). We
do not want to consider these two solutions as being essentially different. Thus
two solutions (al, . . . , an) and (bl, . .. , bn) are called equivalent if aj == b, for
i = I, . . . , n. The number of solutions toj(x. , . . . ,xn) == 0 (m) is defined to be
the number of inequivalent solutions.

For example, 3, 8,and 13are solutions to 6x == 3 (15). 18is also a solution,
but the solution x = 18 is equivalent to the solution x = 3.

It is useful to consider the matter from another point of view. The map
from 7L to 7Llm7L given by a -+ Gis a homomorphism. Iff(a l, .. . , an) == 0 (m),
then !(Gl, ... ,Gn) = O. Here !(xl, .. . ,xn)E7Llm7L[x., . . . ,xn] is the poly
nomial obtained from f by putting a bar over each coefficient off One can
now see that equivalence classes of solutions to f(x I' . . . , xn ) = 0 are in one
to-one correspondence with solutions to !(XI' ... , x n) = 0 in the ring
7Llm7L. This interpretation of the number of solutions arises frequently.

We now return to the number of solutions of the congruence ax == b (m).
Let d > 0 be the greatest common divisor of a and m. Set a' = aid and

m' = mid. Then a' and m' are relatively prime.

Proposition 3.3.1. The congruence ax == b (m) has solutions iffdlb. Ifdlb, then
there are exactly d solutions. If X o is a solution, then the other solutions are
given by Xo + m', Xo + Zm', . . . , Xo + (d - I)m'.

PROOF. If Xo is a solution, then axo - b = myo for some integer yo. Thus
axo - myo = b. Since d divides axo - myo, we must have dlb .

Conversely, suppose that dlb . By Lemma 4 on page 4 there exist integers
Xo and Yo such that axo - myo = d. Let c = bid and multiply both sides of
the equation by c. Then a(xoc) - m(yoc) = b. Let Xo = xoc. Then axo ==
b (m).

We have shown that ax == b (m) has a solution iff Jib .
Suppose that Xo and XI are solutions. axo == b (m) and aXI == b (m) imply

that a(x l - xo) == 0 (m). Thus mla(x. - xo) and m'Ia'(xl - xo), which
implies that m' Ix 1 - Xo or x I = Xo + km' for some integer k. One easily
checks that any number of the form Xo + km' is a solution and that the solu
tions xo, Xo + m', .. . , Xo + (d - I)m' are inequivalent. Let XI = Xo + km'
be another solution. There are integers rand s such that k = rd + sand
0::; s < d. Thus Xl = Xo + sm' + rm and XI is equivalent to Xo + sm.
This completes the proof. 0

As an example, let us consider the congruence 6x == 3 (15) once more. We
first solve 6x - 15y = 3. Dividing by 3, we have 2x - 5y = 1. X = 3, y = 1
is a solution. Thus X o = 3 is a solution to 6x == 3 (15). Now, m = 15 and
d = 3 so that m' = 5. The three inequivalent solutions are 3, 8, and 13.

We have two important corollaries.

Corollary 1. If a and m are relatively prime, then ax == b (m) has one andonly
one solution.
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PROOF. In this case d = 1 so clearly dlb, and there are d = 1 solutions. 0

Corollary 2. Ifp is a prime anda =1= 0 (p), then ax == b (p) has one andonly one
solution.

PROOF. Immediate from Corollary 1. o

Corollaries 1 and 2 can be interpreted in terms of the ring 7Llm7L. The
congruence ax == b (m) is equivalent to the equation ax = [j over the ring
7Llm7L.

What are the units of 7Llm7L? a E 7Llm7L is a unit iff ax = T is solvable.
ax == 1 (m) is solvable iffdll , i.e., iffa and m are relatively prime. Thus a is a
unit iff (a, m) = 1, and it follows easily that there are exactly ¢(m) units in
7Llm7L [see page 20 for the definition of 4>(m)].

If p is a prime and a '# {j is in 7l.Ip7L, then (a, p) = 1. Thus every nonzero
element of 7Llp7L is a unit, which shows that 7Llp7L is a field.

Ifm is not a prime, then m = mlm2, where 0 < ml, m2 < m. Thus ml '# 0,
m2 '# 0, but mlm2 = m.m2 = m= O. Therefore 7Llm71. is not a field.

Summarizing we have

Proposition 3.3.2. An element a of 7Llm7L is a unit Urea, m) = 1. There are
exactly 4>(m) units in 7l.Im7L. 7Llm7L is a field iffm is a prime.

Corollary 1 (Euler's Theorem). If(a, m) = 1, then a4>lm) == 1 (m).

PROOF. The units in 7l.1m71. form a group of order ¢(m). If (a, m) = 1, a is a
unit. Thus a<Plm) = Tor a4>(m) == 1 (m). 0

Corollary 2 (Fermat's Little Theorem). Ifp is a prime and p,r a, then aP - 1 ==
1 (p).

PROOF. If p,r a, then (a, p) = 1. Thus a4>(P) == 1 (p). The result follows, since
for a prime p, 4>(p) = p - 1. 0

It is possible to generalize many of the results in this section to principal
ideal domains.

The notions of congruence and residue class can be carried over to an
arbitrary commutative ring. The first part of Proposition 3.3.1 is valid in a
PID ; i.e., ax == b (m) has a solution iff d Ib and the solution is unique iff a
and m are relatively prime. The only difference is that the number of solutions
need not be finite . In any case, using this result one proves in analogy to part
of Proposition 3.3.2 that if R is a PID and mER is not zero or a unit, then
RI(m) is a field iff m is a prime.

In particular, if k is a field, then k[xJ/(f(x» is a field iff.f(x) is irreducible.
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§4 The Chinese Remainder Theorem

3 Con gruence

When the modulus m of a congruence is composite it is sometimes possible
to reduce a congruence modulo m to a system of simpler congruences. The
main theorem of this type is the so-called Chinese remainder theorem
(Theorem I), which we prove below. This theorem is valid for any PID (in
fact, even more generally). However , we shall cont inue to work in 71. and leave
to the reader the relatively simple exercise of carrying over the proof for
PID's.

Lemma l. If ai' .. . , a, are all relatively prime to m, then so is ala2 .. . a"

PROOF.ai E 7l.1m71. is a unit. Thus so is ala2 . . . a, = ala2 .. . a" By Proposition
3.3.2, ata2 ... at is relatively prime to m. 0

Another proof goes as follows. If a la2 • •• a, was not prime to m, there
would be a prime p that divides them both. pla la2 ... a, implies that plai for
some i. It follows that (a i • m) i' I. which contradicts the hypothe sis.

Lemma 2. Suppose that at , . . . , a, all divide n and that (ai' aj) = I for i i' j.
Then alU2 . . . a, divides n.

PROOF. The proof is by induct ion on t. If t = I, there is noth ing to do. Sup
pose that t > 1 and that the lemma is true for t - l. Then a I a2 • • • a,_ I

divides n. By Lemma I, a, is prime to alG2 .. . a.: I' Thus there are integers r
and s such that ra, + sa1(/ 2 • • • (/,- 1 = l. Multiply both sides by n. Inspection
shows that the left-hand side is divisible by alG2 . . . (/, and the result follows.

o

Theorem 1 (Chinese Remainder Theorem). Suppose that m = mlm2 ... m,
and that (mj , m) = I for i i' j . Let b l ' b2, . .. , b, be integers and consider the
system ofcongruences:

x == b, (ml), x == b2 (m2)" ' " x == b, (m,).

This system always has solutions and any two solutions differ by (/ multiple
ofm.

PROOF. Let ni = mimi ' By Lemma I, (m. , n i) = I. Thus there are integers riand
Si such that r imi + Sini = l. Let e, = Sini ' Then e, == I (mj) and e, == 0 (m)
for j i' i.

Set X o = I:= I b.e. . Then we have Xo == b,e, (mi ) and consequently
X o == b, (mJ Xo is a solution.

Suppose that x I is another solution. Then x I - Xo == 0 (m,) for i =

1,2, ... , c. In other words, ml , m2' .. . , m, divide X I - Xo' By Lemma 2,
m divides XI - X o' 0
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We wish to interpret Theorem 1 from a ring-theoretic point of view. If
R1, R l , • •• , R; are rings, then R 1 Et> R l Et> •.. Et> R; = S, the direct sum of
the R j , is defined to be the set of n-tuples (r I' r2 , •• • , rn) with r j E R: Addition
and multiplication are defined by (r l , rl , , rn) + ('1' r~, .. . , r~) = (r. +
'. , . . . , rn + r~) and (r l, rl, . . . , rn) '(r'I ' r~, , r~) = (rtr'., rlr~, . .. , rnr~).

The zero element is (0, 0, . .. ,0) and the identity is (1, 1, .. . , 1). U E S is a unit
iff there is a v E S such that uv = 1. If U = (u l , • •. , un) and v = (VI ' .. • , vn),
then uv = 1 implies that Uj Vj = 1 for i = 1, . . . , n. Thus Uj is a unit for each i.
Conversely, if Uj is a unit for each i, then U= (u., U2" '" un) is a unit. For a
ring R we denote the group of units by U(R) . U(R I) x U(R l) x . . . x U(Rn)
is the set of n-tuples (u I' Ul, • • . , un), where Uj E Rj • This is a group under
component-wise multiplication. We have shown

Proposition 3.4.1. lIS = R I Et> R2 Et> •• • Et> Rn, then U(S) = U(R I ) x U(Rl)
X U(R 3 ) x ... x U(Rn).

Let mt , ml' . .. , m, be pairwise relatively prime integers. "'i will denote the
natural homomorphism from lL to lLlmilL. We construct a map e from lL to
lLlm1lL Et> lLlm2lL Et> . •. Et> lLlm,lL as follows: "'(n) = ("'I(n), "'z(n), . .. ,
ljJ,(n» for all n e Z: It is easy to check that'" is a ring homomorphism. What
are the kernel and image of ljJ?

(5.,51 , •.. ,5,) = "'(n) iff "' j(n) = 5j for i = 1,. .. , t; i.e., n == b, (mJ for
i = 1, ... , t. The Chinese Remainder Theorem assures us that such an n
always exists . Thus e is onto.

"'(n) = 0 iff II == 0 (mj), i = 1, .. . , t, iff II is divisible by m = m1ml . .. m, .
This is immediate from Lemma 2. Thus the kernel of'" is the ideal mlL.

We have shown

Theorem 1'. The map w induces an isomorphism between lLlmlL and lLlmtlL Et>
lLlrnl lL EB .. . Et> lLlm,lL.

Corollary. U(lLlmlL) ;::; U(lLlmllL) x U(lLlm2 lL) x ... x U(lLlm,lL).

PROOF . Immediate from Theorem I' and Proposition 3.4.1. o

Both sides of the isomorphism in the above corollary are finite groups.
The order of the left-hand side is ¢(m) and the order of the right-hand side is
¢(mt)¢(ml) ' " ¢(m,). Thus ¢(m) = ¢(m.)¢(ml) ' " ¢(m,).

Let m = P~'P22 . .. p~' be the prime decomposition of m. We have ¢(m) =
¢(p~ ')¢(P22) ... ¢(p~'). For a prime power, p", ¢(pa) = pa _ r:'. because
the numbers less than pa and prime to pa are prime to p. Since pal p = pa- I

numbers less than p" are divisible by p, p" - pa -. numbers are prime to p.
Notice that p" - pa- 1 = pa(l - l ip). It follows that ¢(m) = m n(1 - lip).
We proved this formula in Chapter 2 in a different manner.
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Let us summarize. In treating a number of arithmetical questions, the
notion of congruence is extremely useful. This notion led us to consider the
ring 7L/m7L and its group of units U(7L/m7L). To go more deeply into the struc
ture of these algebraic objects we write m = p~'p~' . . . p~' and are led, via the
Chinese Remainder Theorem, to the folIowing isomorphisms:

7L/m7L :;:: 7L/p~'7L Ef> 7L/P'2'7L ED· .. ED 7L/p~'7L,

U(7L/m7L) :;:: U(7L/p~"7L) x U(7L/P'2'7L) x ... x U(7L(p~r7L).

For prime powers it is possible to push the investigation much further.
This is the subject of Chapter 4.

NOTES

It would be useful for the reader to consult other treatments of the basic
material given here. See, for example, the very readable book of Davenport
[22] and (again) Hardy and Wright [40]. See also Niven and Zuckerman
[61], T. NagelI [60], E. Landau [52] and Vinogradov [77].

An interesting discussion of the various possible ways of arranging this
material can be found in P. Samuel, "Sur l'organization d'un cours
d'arithrnetique," L'Enseignment Math., 13, (1967), 223-231. A more advanced
discussion of congruences is given in the first chapter of Borevich and
Shafarevich [9]; this book also shows how the theory of congruences is
useful in determining whether equations can be solved in integers. We
mention also the beautiful treatment by J. P. Serre [69].

Historically the notion of congruences was first introduced and used
systematicalIy in Gauss' Disquisitiones Arithmeticae. The notion of con
gruence is a wonderful example of the usefulness of employing the" right"
notation.

As far as the Chinese Remainder Theorem is concerned we note that
Hardy and Wright [40] note that R. Bachman [4] notes that Sun Tsu was
aware of this result in the first century A.D. The theorem is capable of vast
generalizations, Properly formulated it holds in any ring with identity.
Surprisingly it is no more difficult to prove in general than in the special
case we have given (see Proposition 12.3.1).

EXERCISES

I. Show that there are infinitely many primes congruent to - I modulo 6.

2. Construct addition and multiplication tables for 7L/57L, 7L/87L, and 7L/I0 7L.

3. Let abc be the decimal representation for an integer between 1 and 1000. Show that
abc is divisible by 3 iffII + b + c is divisible by 3. Show that the same result is true if
we replace 3 by 9. Show that abc is divisible by II iff a - b + (' is divisible by II.
Generalize to any number written in decimal notation.



Exercises

4. Show that the equation 3x 2 + 2 = y2 has no solution in integers.

5. Show that the equation 7x3 + 2 = y 3 has no solution in integers.
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6. Let an integer n > 0 be given. A set of integers ai' a2" ' " a4>Co, is called a reduced
residue system modulo n if they are pairwise incongruent modulo nand (a j , n) = I
for all i. If(a, n) = I, prove that aal, aa2, ... , aa4>Co, is again a reduced residue system
modulo n.

7. Use Exercise 6 to give another proof of Euler 's theorem, a4>Co, == I (n) for (a, n) = 1.

8. Let p be an odd prime. If k E {I, 2, . . . , p - I}, show that there is a unique bk in this
set such that kbk == I (P). Show that k # bk unless k = I or k = p - 1.

9. Use Exercise 7to prove that (p - I)! == - I (p). This is known as Wilson's theorem.

10. If n is not a prime. show that (n - I)! == 0 (n) , except when n = 4.

11. Let ai' a2, ...• aq>co, be a reduced residue system modulo n and let N be the number of
solutions to x 2 == I (n). Prove that a la2 ... a4>{O' == (_I)Ni2 (n).

12. Let (~) = p !f(k !(p - k)!) be a binomial coefficient, and suppose that p is a prime.

If I ~ k ~ p - I, show that p divides (~). Deduce (a + l)P == aP + 1 (p).

13. Use Exercise 12 to give another proof of Fermat's theorem, ar l == I (P) if p.,r a.

14. Let p and q be distinct odd primes such that p - 1 divides q - 1. If (n, pq) = I,
show that nq

-
I == I (pq) .

15. For any prime p show that the numerator of 1 + t + l + ' " + l ip - 1 is divisible
by p. (Hint : Make use of Exercises 8 and 9.)

16. Use the proof of the Chinese Remainder Theorem to solve the system x == 1 (7),
x == 4 (9), x == 3 (5).

17. Let f(x) E Z[x] and n = p~'p'i' ... p~'. Show that f(x) == 0 (n) has a solution iff
f(x) == 0 (Pfi) has a solution.for i = 1,2, ... , t.

18. Let N be the number of solutions to f(x) == 0 (n) and N, be the number of solutions
to f(x) == 0 (Pfi). Prove that N = N I N 2 '" N, .

19. If p is an odd prime, show that I and -I are the only solutions to x 2 == 1 (PO).

20. Show that x 2 == I (2b) has one solution if b = I, two solutions if b = 2, and four
solutions if b ~ 3.

21. Use Exercises 18-20 to find the number of solutions to x 2 == I (n).

22. Formulate and prove the Chinese Remainder Theorem in a principal ideal domain.

23. Extend the notion of congruence to the ring l[i] and prove that a + bi is always
congruent to 0 or I modulo I + i.

24. Extend the notion of congruence to the ring l[w] and prove that a + bw is always
congruent to either - I, I, or 0 modulo 1 - w.
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25. Let), = I - WE l[w].1f IXE Z[w] and IX == I ().), prove that 1X3 == I (9). (Hint: Show
first that 3 = _W2).2.)

26. Use Exercise 25 to show that if~. '1, ( E Z[w] are not zero and ';3 + '13 + ( 3 = 0, then
). divides at least one of the elements ~. '1. (.



Chapter 4

The Structure of U(7L/n7L)

Haring introduced the notion ofcongruence and discussed
some of its properties and applications we shall now go
more deeply into the subject. The key result is the existence
ofprimitii:e roots modulo a prime. This theorem was used
by mathematicians before Gauss but he was the first to
qire a proof In the terminology introduced in Chapter 3
the existence of primitive roots is equivalent to the fact
that U(71. /p71.) is a cyclic group when p is a prime. Using
this fact we shall find an explicit description of the group
U(71. /n71.) for arbitrary n.

§l Primitive Roots and the Group Structure
of U(7L/n7L)

If n = p~'pi2 . . . pf', then, as was shown in Chapter 3, U(71./n71.) ~ U(71./p~'71.)

x . .. x U(71./pf '71.). Thus to determine the structure of U(71./n71.) it is sufficient
to consider the case U(71./pQ71.), where p is a prime. We begin by considering
the simplest case, U(71. /p71.).

Since 7l./p71. is a field, it will be helpful to have available the following
simple lemma about fields.

Lemma l. Let f(x) E k[x], k afield. Suppose that deg f(x) = n. Then f has at
most n distinct roots.

PROOF . The proof goes by induction on n. For On = 1 the assertion is trivial.
Assume that the lemma is true for polynomials of degree n - 1. If f(x)
has no roots in k, we are done. If a. is a root, f(x) = q(xXx - «) + r, where r
is a constant. Setting x = a. we see that r = O. Thus f(x) = q(x)(x - a.)
and deg q(x) = n - 1. If fJ :f. a. is another root of f(x), then 0 = f(fJ) =
(f3 - a.)q(f3), which implies that q(fJ) = O. Since by induction q(x) has at
most n - 1 distinct roots,f(x) has at most n distinct roots. 0

Corollary. Let f(x), g(x) E k[x] and degf(x) = deg g(x) = n. If f(a. j ) =
g(a.Jfor n + 1 distinct elements a.\, a.2 ' ... ' a.", a." + I' thenf(x) = g(x).

PROOF. Apply the lemma to the polynomialf(x) - g(x). o

39
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Proposition 4.1.1. x p
-

1
- 1 == (x - 1)(x - 2)··· (x - p + 1) (P).

PROOF. If adenotes the residue class of an integer a in 7l./p71., an equivalent
wayofstatingthepropositionisxP-1 - I = (x - I)(x - 2) · ··(x - (p - 1»
in 7l./p71.[x]. Let f(x) = (XP-I - 1) - (x - T)(x - 2) . .. (x - (p - In. f(x)
has degree less than p - 1 (the leading terms cancel) and has the p - I roots
1,2,... ,p - I (Fermat's Little Theorem). Thusf(x) is identically zero. 0

Corollary. (p - I)! == -I (p).

PROOF. Set x = 0 in Proposition 4.1.1. o
This result is known as Wilson's theorem. It is not hard to prove that if

n > 4 is not prime, then (n - I)! == 0 (n) (see Exercise 10 of Chapter 3).
Thus the congruence (n - I)! == -I (n) is characteristic for primes. We shall
make use of Wilson's theorem later when discussing quadratic residues.

Proposition 4.1.2. Ifdip - I, then xd == I (p) has exactly d solutions.

PROOF. Let dd' = p - 1. Then

xP- I - 1 (xdt - I . .
d I = d I = (Xd)d -I + (Xd)d - 2 + ... + xd + 1 = g(x).

x - x -

Therefore

x P - 1 - I = (xd - I)g(x)

and

xP- I - I = (xd - T)g(x).

If xd
- I had less than d roots, then by Lemma I the right-hand side would

have less than p - I roots. However, the left-hand side has the p - I roots
1,2, ... ,p=-l. Thus xd == I (P) has exactly d roots as asserted. 0

Theorem 1. U(71./p71.) is a cyclic group.

PROOF. For dip - I let rjJ(d) be the number of elements in U(71./p71.) of order
d. By Proposition 4.1.2 we see that the elements of U(71./p71.) satisfying
xd == I form a group of order d. Thus Lcld rjJ(c) = d. Applying the Mobius
inversion theorem we obtain rjJ(d) = Lid Il(c)d/c. The right-hand side of this
equation is equal to ¢(d), as was seen in the proof of Proposition 2.2.5.
In particular, rjJ(p - I) = ¢(p - I), which is greater than I if p> 2. Since
the case p = 2 is trivial, we have shown in all cases the existence of an element
[in fact, ¢(p - I) elements] of order p - 1. 0

Theorem 1 is of fundamental importance. It was first proved by Gauss.
After giving some new terminology we shall outline two more proofs.
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Definition. An integer a is called a primitive root mod p if ii generates the
group U(7L/p7L). Equivalently, a is a primitive root mod p if p - 1 is the
smallest positive integer such that aP - t == 1 (p).

As an example, 2 is a primitive root mod 5, since the least positive residues
of 2, 22

, 23
, and 24 are 2, 4, 3, and 1. Thus 4 = 5 - I is the smallest positive

integer such that 2" == I (5).
For p = 7, 2 is not a primitive root since 23 == 1 (7), but 3 is since 3, 32

,

33,34,35 , and 36 are congruent to 3, 2, 6, 4,5, and I mod 7.
Although Theorem I shows the existence of primitive roots for a given

prime, there is no simple way of finding one. For small primes trial and error
is probably as good a method as any.

A celebrated conjecture of E. Artin states that if a > 1 is not a square, then
there are infinitely many primes for which a is a primitive root. Some progress
has been made in recent years, but the conjecture still seems far from resolu
tion . See [35].

Because of its importance, we outline two more proofs of Theorem 1. The
reader is invited to fill in the details.

Let p - 1 = q~ 'qi2 .. . q~r be the prime decomposition of p - 1. Consider
the congruences

(I) xqr.-1

== 1 (p) .
(2) xqr• == 1 (p) .

Every solution to congruence I is a solution of congruence 2. Moreover,
congruence 2 has more solutions than congruence 1. Let gj be a solution to
congruence 2 that is not a solution to congruence I and set g = gtg2'" gr'
gj generates a subgroup of U(7L/p7L) of order qf'. It follows that ggenerates a
subgroup of U(7L/p7L) of order q~lqi2 . . , q~r = p - 1. Thus g is a primitive
root and U(7L/p7L) is cyclic. .

F inally, on group-theoretic grounds we can see that l/J(d) ~ ¢(d) for
d ip - 1. Both Ldlr I l/J(d) and Ldlp-I ¢(d) are equal top - 1. It follows that
l/J(d) = ¢(d) for all dip - 1. In particular, t/J(p - 1) = ¢(p - I). For p > 2,
¢(p - 1) > I, implying that l/J(p - I) > 1. The result follows.

The notion of primitive root can be generalized somewhat.

Definition. Let a, n E 7L .a is said to be a primitive root mod n if the residue class
of a mod n generates U(7L/n7L). It is equivalent to require that a and n be
relat ively prime and that ¢(n) be the smallest positive integer such that
a 4>(" ) == 1 (n) .

In general, it is not true that U(7L/n7L) is cyclic. For example, the elements
of U(7L/87L) are T, j , :;,7. and P = T, j 2 = T, :;2 = T, 72 = T. Thus there is
no element of order 4 = ¢(8). It follows that not every integer possesses
pr imitive roots. We shall shortly determine those integers that do.
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Lemma 2. If p is a prime and 1 ::;; k < p, then the binomial coefficient mis
divisible by p.

PROOF. We give two proofs.

(a) By definition

(~) = k! (:~ k)! so that p! = k! (p - k)! (~).

Now, p divides p!, but p does not divide k! (p - k)! since this expression
is a product of integers less than, and thus relatively prime to p. Thus p
divides m.

(b) By Fermat's Little Theorem aP - t == 1 (p) if p.r a. It follows that aP ==
a (p) for all a. In particular, (1 + a)p == 1 + a == 1 + aP (p) for all a.
Thus (1 + x)" - 1 - x" == 0 (p) has p solutions. Since the polynomial
has degree less than p it follows from the corollary to Lemma 1 that
(1 + x)" - 1 - x" is identically zero in 1:/p1:[x]

(1 + x)" - 1 - xP= :t: (~)Xk .

Thus m= 0 for 1 ::;; k ::;; p - 1, implying that plm. The only interest
in this proof is that we do not assume any information on m. 0

Lemma 3. If I ~ 1 and a == b (p'), then a" == b" (p' + 1).

PROOF. We may write a = b + cp', C E 1:. Thus a" = b" + (»bP - tcp' + A,
where A is an integer divisible by p'+2. The second term is clearly divisible
by r" I. Thus aP == bP(p'+ I). 0

Corollary 1. If I ~ 2 and p "# 2, then (1 + apy' - 2 == 1 + ap'- J (pi) for all
a E 1:.

PROOF. The proof is by induction on I. For I = 2 the assertion is trivial.
Suppose that it is true for some I ~ 2. We show that it is then true for I + 1.
Applying Lemma 3 we obtain

(1 + ap)p'-' == (1 + ap'-I)P (p'+ t).

By the binomial theorem

(1 + ap'-I)p = 1 + (napl-t + B,

where B is a sum of p - 2 terms. Using Lemma 2 it is easy to see that all these
terms are divisible by pI +2(1- II except perhaps for the last term, aPpp(I-II.
Since I ~ 2, 1 + 2(1 - 1) ~ 1+ 1, and since also p ~ 3, p(1 - 1) ~ I + 1.
Thusp'+IIBand(1 + apt -· == 1 + ap'(p'+t),whichisasrequired. 0
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Before starting a second corollary we need a definition.
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Definition. Let a, n E 7L and (a, n) = 1. We say a has order e mod n if e is the
smallest positive integer such that a" == 1 (n). This is equivalent to saying
that Ii has order e in the group U(7L/n7L).

Corollary 2. If p 'I- 2 and p.r a, then p'- I is the order of 1 + ap mod p'.

PROOF . By Corollary 1, (l +ap)P'-' == 1 +ap'(p'+t), implying that (1 +
ap)p'- ' == 1 (p') and thus that 1 + ap has order dividing p'- I. (l + ap)P' - 2 ==
1 + ap'- I (p') shows that p'- 2 is not the order of 1 + ap (it is here we use the
hypothesis p.r a). The result follows. 0

We are now in a position to extend Theorem 1. It turns out that we shall
have to treat the prime 2 separately from the odd primes. The necessity of
treating 2 differently from the other primes occurs repeatedly in number
theory.

Theorem 2. If p is an odd prime and IE 7L +, then U(7L/p'7L) is cyclic; i.e., there
exist primitive roots mod p'.

PROOF. By Theorem 1 there exist primitive roots mod p. Ifg E 7L is a primitive
root mod p, then so is g + p. If gP - I == 1 (p2), then (g + p)P- I == e" I +
(p - 1)gP-2p == 1 + (p - l)gP- 2p (p2). Since p2 does not divide (p - 1)
x gP - 2p we may assume from the beginning that g is a primitive root mod p
and that gP - 1 'f= 1 (p 2).

We cla im th at such a g is already a primitive root mod p'. To prove this it
is sufficient to prove that if e: = 1 (p ') , then ¢(p') = p'- I (p - 1)ln.

gP- I = 1 + ap, where p.r a. By Corollary 2 to Lemma 3, p'-I is the order
of 1 + ap mod p'. Since (1 + ap)" = 1 (p') we have p'-lin.

Let II = pi- In'. Th en gn = (gpl
- ' )"' == gn' (p), and therefore gn' = 1 (p).

Since g is a primitive root mod p, p - l in'. We ha ve proved th at
p' -I(p - 1)ln, as required. 0

Theorem 2'.2' has primitive rootsfor 1= 1 or 2 but notfor I ~ 3. If I ~ 3, then
{( - 1t5 b Ia = 0, 1 and 0 ::; b < 2'- 2} constitutes a reduced residue system
mod 2'. It follows that for I ~ 3, U(7L/27L.) is the direct product of two cyclic
groups, one oforder 2, the other oforder 2'- 2.

PROOF. 1 is a primitive root mod 2, and 3 is a primitive root mod 4. From now
on let us assume that I ~ 3.

We claim that (1) 52
' - 3 == 1 + 2' -

1 (2'). This is true for 1= 3. Assume that
it is true for I ~ 3 and we shall prove it is true for I + 1. First notice that
(1 + 2'-1)2 = 1 + 2' + 221

-
2 and that 21 - 2 ~ I + 1 for I ~ 3. Applying

Lemma 3 to congruence (1), we get (2) 52' - 2 = 1 + 2' (2' + I). Our claim is
now established by induction.
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From (2) we see that 52 ' - > == 1 (2'), whereas from (I) we see that 52 ' - J ¥=
I (2'). Thus 2'- 2 is the order of 5 mod 2'.

Consider the set {(-lt5b la = I, 2 and 0 ~ b < 2'-2} . We claim that
these 2'- 1 numbers are incongruent mod 2'. Since ¢(2') = 2'- I this will
show that our set is in fact a reduced residue system mod 2'.

If ( -I)Q 5b == (- It5b
' (2'), 1 2':: 3, then ( -1)Q == (-It (4), implying that

a == a' (2). Thus a = a'. Going further, a = a' implies that 5b == 5b
' (2') or that

5b
-

b
' == 1 (2'). Therefore, b == b' (2'-2), which yields b = b'.

Finally, notice that ( -lt5b raised to the 2'- 2 power is congruent to 1
mod 2'. Thus 2' has no primitive roots if I 2':: 3. 0

Consider the situation mod 8. 1, 3, 5, and 7 constitute a reduced residue
system. We have 5° == 1,5 1 == 5, _5° == 7, and _51 == 3. Table 1 represents
the situation mod 16. The second row contains the least positive residues of
the powers of 5, and the third row those-of the negative powers of 5.

Table I

+ [

[5
5

I[
9
7

13
3

Theorems 2 and 2' permit us to give a fairly complete description of the
group U(7L/n7L) for arbitrary n.

Theorem 3. Let n = 2"p~'p~2 ... pi' be the prime decomposition ofn. Then

U(7L/n7L) ;:::: U(7L/2"7L) x U(7L/p~'7L) x ... x U(7L/P'i'7L).

U(7L/P'i'7L) is a cyclic group oforder p'i,-I(Pi - 1). U(7L/2"7L) is cyclic oforder
1 and 2 for a = 1 and 2, respectively. If a 2':: 3, then it is the product of two
cyclic groups, one oforder 2, the other oforder 2Q

- 2.

PROOF. Theorems 2, 2', and Theorem l ' of Chapter 3. o

We conclude this section by giving an answer to the question of which
integers possess primitive roots.

Proposition 4.1.3. n possesses primitive roots iffn is ofthe form 2, 4, p", or 2p",
where P is an odd prime.

PROOF. By Theorem 2' we can assume that n # 2', 12':: 3. Ifn is not of the given .
form, it is easy to see that n can be written as a product m1m2' where (m l, m2)
= 1 and ml, m2 > 2. We then have that ¢(md and ¢(m2) are both even and
that U(7L/n7L);:::: U(7L/m l7L) x U(7L/m 27L). Both U(7L/m 17L) and U(7L/m27L)

have elements of order 2, but this shows that U(7L/n7L) is not cyclic since a
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cyclic group contains at most one element of order 2. Thus n does not possess
primitive roots.

We already know that 2,4, and p"possess primitive roots. Since U(Zj2paz)
~ U(Zj27l.) x U(7l./pQ7l.)

~ U(7l./paz) it follows that U(7l.j2pQ7l.) is cyclic;
i.e., 2pa possesses primitive roots. 0

§2 nth Power Residues

Definition. If m, n E Z +, a E 7l., and (a, m) = I, then we say that a is an nth
powerresidue mod m if x" == a (m) is solvable.

Proposition 4.2.1. If mE 7l. + possesses primLtive roots and (a, m) = 1, then a is
an nth power residue mod m iffaQ>lml/d == 1 (m), where d = (n, ¢(m».

PROOF. Let 9 be a primitive root mod m and a = gb, X = o'.Then the con
gruence x" == a (m) is equ ivalent to gny == l (m), which in turn is equivalent
to ny == b (lp (m». The latter congruence is solvable iff dlb . Moreover. it is
useful to not ice that if there is one solution, there are exactly d solutions.

If d Ib, then aQ>lml/d == gbQ>(m )/d == 1 (m). Conversely, if aQ>(ml/d == 1 (m), then
ybQ>(ml/d == I (m). which implies that ¢(m) divides b¢(m)jd or dlb. This proves
the result . 0

The proof yields the following additional informatio n. If x" == a (m) is
solvable, there are exactly (n, ¢(m» so lutions.

Now suppose that m = 2ep~1 . . . pf'. Then x" == a (m) is solvable iff the
system of congruences

x" == a (Y), x" == a (p~I), . . . , x" == a (pf')

is solvable. Since odd prime powers possess primitive roots we may apply
Proposition 4.2.1 to the last I congruences. We are reduced to a consideration
of the congruence x" == a (Y) . Since 2 and 4 possess primitive roots we may
further assume that e ~ 3.

Proposition 4.2.2. Suppose that a is odd, e ~ 3, and consider the congruence
x" == a (Z"), If n is odd, a solution always exists and it is unique.

If n is even, a solution exists iff a == I (4), £12< - 2/d == I (Z"), where d =
(n, 2e

- 2). When a solution exists there are exactly 2d solutions.

PROOF. We leave the proof as an exercise. One begins by writing a == (-1)55'
(2") and x == ( -l)YSZ (2e

) . 0

Propositions 4.2.1 and 4:2.2 give a fairly satisfactory answer to the ques
tion ; When is an integer a an nth power residue mod m? It is possible to go
a bit further in some cases.
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Proposition 4.2.3. If p is an odd prime, p-fa, and p-fn, then if x" == a (P) is
solvable, so is x" == a (pe) for all e ~ 1. All these congruences have the same
number ofsolutions.

PROOF. If n = 1, the assert ion is tri vial , so we ma y assume n ~ 2. Suppose
th at x" == a (pe) is sol vable. Let X o be a solution and set XI = Xo + bp". A
short computation shows x 1 == x~ + nbpex~-I (pe+I). We wish to solve
x 1 == a (pe+I). This is equivalent to find ing an integer b such that nx~-'b ==
«a - x~)/pe) (P). Notice that (a - x~)/pe is an integer and that p-fnx~-I.

Thus this congruence is uniquely sol vable for b, and with th is value of b,
x1 == a (pe+I).

If x" == a (p) has no solutions, then x" == a (pe) has no solutions. On the
other hand, if x" == a (P)has a solution, so do all the congruences x" == a (pe),
as we have just seen. By the remark following Proposition 4.2.1 the number
of solutions to x" == a (pe) is (n, ¢ (pe» provided one solution exists . If p-fn, it
is easy to see that (n, ¢ (p» = (n, ¢ (pe» for all e ~ 1. This concludes the

~~ 0

As usual the result for the powers of 2 is more co mplicated.

Proposition 4.2.4. Let 2' be the highest power of2 dividi ng II. Suppose that a is
odd unci that x" == a (2 2/ + I) is solrable. Then x" == a (2') is solvable fo r all
e ~ 21 + 1 (and consequent ly fo r all e ~ 1). Mo reover, all these congruences
hace the same number ofsolut ions.

PROOF. We leave the proof as an exerci se. O ne begins by ass uming that
x" == a (2m), m ~ 21 + l. has a so lutio n xx.Let x , = X o + br- I. O neshows,
by an appropr iat e choice of b, th at x1 == a (2'" + I). 0

Not ice th at x 2 == 5 (22) is so lva ble (for example, x = I ) but th at x 2 ==
5(23

) is not. On th e other hand, o ne can prove eas ily from the propos ition
that if a == I (8), then x 2 == a (2e

) is so lva ble for a ll e and co nve rse ly.

NOTES

Lemma 1 and its important consequence, Proposition 4.1.1, are due to
1. Lagrange (1768).

Fermat's theorem [that aP-
1 == 1 (p) if p-fa] was first proved by Euler.

Wilson's theorem was stated by E. Waring and proved by Lagrange.
The important result on the existence of pr imitive roots modulo a prime

was asserted by Euler and, as we have mentioned, was first proved by Gauss.
The proofs of this result can be modified to prove the more general assertion
that a finite subgroup of the multipl icative group of a field is cycl ic, i.e., is
generated by one element.
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There are a number of interesting conjectures related to primitive roots.
The celebrated conjecture of E. Artin asserts that given an integer a that is
not a square, and not - I, there are infinitely many primes fdr which a is a
primitive root. In the case a = 10 this goes back to Gauss and amounts to
asserting the existence of infinitely many primes p such that the period of the
decimal expansion of l ip has length p - 1. (See Chapter 4 of Rademacher
[64] for an introduction to the theory of decimal expansions.) For an excellent
survey article devoted to the Artin conjecture and related questions, see
Goldstein [35].

Lehmer [54] discovered the following curious result. The first prime of
the form 326n2 + 3 for which 326 is not a primitive root must l'fe bigger
than 10 million. He mentions other results of the same nature. It would be
interesting to see what is responsible for this strange behavior.

Given a prime p, what can be said about the size of the smallest positive
integer that is a primitive root mod p? This problem has given rise to a lot
of research. One contribution, due to L. K. Hua, is that the number in ques
tion is less than 2m + I p1 /2, where m is the number of distinct primes dividing
p - I. For a discussion of this problem and a good bibliography, see Erdos
[31]. For other interesting results and problems see [76] and [12].

There exist many investigations into the existence of sequences of con
secutive integers each of which is a kth power modulo p. Consider primes of
the form kt + 1. A basic result due to A. Brauer asserts that if m is a given
positive integer, then for all primes p sufficiently large there are m consecutive
integers r, r + I, .. . • r + m - I all of which are kth powers modulo p. The
question of finding the least such r for given p and m is a problem of current
interest. For this, and a discussion of other open questions in this area, see
the article by Mills [59].

Given a prime p, what can be said about the size of the smallest positive
integer that is a nonsquare modulo p? An interesting conjecture is the
following: For a given n the integer in question is smaller than .:fP for all
sufficiently large p. For more discussion, see P. Erdos [31] and Chapter 3
of Chowla [18].

Finally, we mention that an analog of the Artin conjecture on primitive
roots has actually been proved in the ring k[x] by H. Bilharz [8]. Bilharz
proved his theorem under the assumption that the Riemann hypothesis
holds for the so-called congruence zeta function (see Chapter II). This was
actually proved several years later by A. Weil, In recent years C. Hooley was
able to prove that Artin's orginal conjecture was correct under the assump
tion that the extended Riemann hypothesis holds in algebraic number fields
[46]. For 11 discussion of the classical Riemann hypothesis and its conse
quences, see Chowla [18]. No one at present seems to have the slightest idea
as to how to prove the Riemann hypothesis for number fields so that it seems
clear that Hooley is not about to have the same good luck that Bilharz
enjoyed.
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EXERCISES

4 The Structure of U(Z/nZ)

1. Show that 2 is a prim itive root modulo 29.

2. Compute all primitive roots for p = II, 13, 17, and 19.

3. Suppose that a isa primitive root modulo p",pan odd prime.Show that a isa primitive
root modulo p.

4. Consider a prime p of the form 4/ + 1. Show that a is a primitive root modulo
p iff - a is a primitive root modulo p.

5. Consider a prime p of the form 4t + 3. Show that a is a primitive root modulo
p iff - a has order (p - 1)/2.

6. If p = 2" + I is a Ferm at prime, show that 3 is a primitive root modulo p.

7. Suppose that p is a prime of the form 8£ + 3 and that q = (p - 1)/2 is also a prime.
Show that 2 is a primitive root modulo p.

8. Let p be an odd prime. Show that a is a primitive root module p iffa«P-1l/q;t= I (P) for
all prime divisors q of p - 1.

9. Show that the product of all the primitive roots modulo p is congruent to (_I)<I>IP-\l
modulo p.

10. Show that the sum of all the primitive roots modulo p is congruent to f.l(p - I)
modulo p.

II. Prove that Ik + 2k + ... + (p - Il == 0 (p) if p - I,./"k and -I (p) if p - Ilk.

12. Use the existence of a primit ive root to give another proof of Wilson's theorem
(p - I)! == -I (P).

13. Let G be a finite cyclic group and g EGa generator. Show that all the other generators
are of the form g\ where (k, n) = I, n being the order of G.

14. Let A be a finite abelian group and a, b e A elements of order m and n, respectively .
If (m, n) = I, prove that ab has order mn.

15. Let K be a field and G £; K* a finite subgroup of the multiplicat ive group of K.
Extend the arguments used in the proof of Theorem I to show that G is cyclic.

16. Calculate the solutions to x J
;: I (19) and x4 == I (17).

17. Use the fact that 2 is a primitive root modulo 29 to find the seven solut ions to
x7 == 1(29).

18. Solve the congruence I + x + x 2 + ... + x6
;: 0 (29).

19. Determine the numbers a such that xJ == a (p) is solvable for p = 7, II, and 13.

20. Let p be a pr ime and d a divisor of p - 1.Show that the dth powers form a subgroup
of U(7L/p7L) of order (p - l )jd . Calculate this subgroup for p = II, d = 5; p = 17,
d = 4; P = 19, d = 6.

21. Ifg is a primitive root modulo pand dip - I, show thatg(p-\l/d hasorderd. Show also
that a is a dth power iffa ;: o" (p) for some k. Do Exercises 16-20making use of these
obse rvat ions.
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22. Ifa has order 3 modulo p, show that I + a has order 6.

23. Show that x 2 == -1 (p) has a solution iff p == I (4) and that x4 == -1 (p) has a
solution iff p == 1 (8).

24. Show that ax" + by" == c(p) has the same number of solutions as ax'" + by" == c(p),
where m' = (m, p - 1) and n' = (n , p - 1).

25. Prove Propositions 4.2.2 and 42.4.



Chapter 5

Quadratic Reciprocity

Ifp is a pr ime , the discussion ofthe congruence x 2 == a (p)
is fairly easy. It is solvable iff d P - 1)/ 2 == I (p) . With this
fact in hand a complete analysis is a simple matter.
However, if the question is turned around, the problem is
much more difficult . Suppose that a is an integer. For
which primes p is the congruence x 2 == a (p) solvable?
The answer is prodded by the law ofquadrat ic reciprocity.
This law was formulated by Euler and A . M. Legendre
but Gauss was the first to pro vide a complete proof
Gauss was extremely proud of this result. He called it
the Theorema Aureum, the golden theorem.

§l Quadratic Residues

If (a, m) = I, a is called a quadratic residue mod m if the congruence x 2 ==
a (m) has a solution. Otherwise a is called a quadratic nonresidue mod m.

For example, 2 is a quadrat ic residue mod 7, but 3 is not. In fact, 12,22
,

32,42,5 2
, and 62 are congruent to 1,4,2,2,4, and I, respectively. Thus 1,2,

and 4 are quadratic residues, and 3, 5, and 6 are not.
Given any fixed positive integer m it is possible to determine the quadratic

residues by simply listing the positive integers less than and prime to m,
squaring them, and reducing mod m. This is what we have just-done for
In = 7.

The following proposition gives a less tedious way of deciding when a
given integer is a quadratic residue mod m.

Proposition 5.1.1. Let m = 2~p~' . . . pf' be the prime decomposition of In, and
suppose that (a, m) = I. Theil x 2 == a (m) is solvable iffthefollowillg conditions
are satisfi ed:

(a) Ife = 2, then a == 1(4).
If e ;;:: 3, then a == I (8).

(b) For each i we have d Pi - 11/2 == 1 (pJ

PROOF. By the Chinese Remainder Theorem the congruence x 2 == a (m) is
equivalent to the system x 2 == a (Y), x 2 == a (p~I), . .. , x 2 == a (pf/).

50
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Consider x 2
;: a (2e

) . 1 is the only quadratic residue mod 4, and 1 is the
only quadratic residue mod 8. Thus we have solvability iff a ;: 1 (4) if e = 2
and a ;: 1 (8) if e = 3. A direct application of Proposition 4.2.4 shows that
x 2

;: a (8) is solvable iff x 2
;: a (2e

) is solvable for all e ;;::: 3.
Now consider x 2

;: a (pr'). Since (2, pJ = 1 it follows from Proposition
4.2.3 that this congruence is solvable iff x 2 ;: a (pJ is solvable. To this
congruence apply Proposition 4.2.1 with n = 2, m = p, and d = (n, ¢ (m) =
(2, p - 1) = 2. We obtain that x 2

;: a (Pi) is solvable iff d P' - 1112 ;: 1 (p;).
o

This result reduces questions about quadratic residues to the correspond
ing questions for prime moduli. In what follows p will denote an odd prime.

Definition. The symbol (alp) will have the value I if a is a quadratic residue
mod p, -1 if a is a quadratic nonresidue mod p, and zero if pia. (alp) is called
the Legendre symbol.

The Legendre symbol is an extremely convenient device for discussing
quadratic residues. We shall list some of its properties.

Proposition 5.1.2.

(a) a'P- 11/2 ;: (alp) (p).
(b) (ablp) = (alp)(blp).
(c) If a ;: b (p), then (alp) = (blp)·

PROOf. If p divides a or b,all three assertions are trivial. Assume that p,r a and
that p,r b.

We know that aP- 1 ;: 1 (p); thus (a'P- I l/ 2 + 1)(alP-1)/2 - 1) = aP-1 
1 ;: 0 (p). It follows that alp -1112 ;: ± 1 (p). By Proposition 5.1.1, d P- 1)/2 ;:
1 (p) iff a is a quadratic residue mod p. This proves part (a) .

To prove part (b) we apply part (a). (abYP- 11/2 ;: (ablp) (p) and (ab)(P - 11/2
= alP- 1)/2b(P - 11/2 ;: (alp)(blp) (p). Thus (ablp) ;: (alp)(blp) (p), which im
plies that (ablp) = (alp)(blp).

Part (c) is obvious from the definition. 0

Corollary 1. There are as many residues as nonresidues mod p.*

PROOF. alP -
n/2

;: 1 (p) has (p - 1)/2 solutions. Thus there are (p - 1)/2
residues and p - 1 - «p - 1)/2) = (p - 1)/2 nonresidues. 0

Corollary 2. The product of two residues is a residue, the product of two
nonresidues is a residue, and the product of a residue and a nonresidue is a
nonresidue.

PROOF. This all follows easily from part (b) . o
• In the rem ainder of this chapter :' residue s " and .. nonrcsid ues " refer to qu ad rat ic resid ues an d
quadratic non residues.
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Corollary 3. (-I)(P- 1)/2 = (-l ip).

PROOF. Substitute a = - I in part (a).

5 Quadratic Reciprocity

o
Corollary 3 is particularly interesting. Every odd integer has the form

4k + I or 4k + 3. Using this one can restate Corollary 3 as follows: x 2 ==
- I (p) has a solution iffP is of the form 4k + 1.Thus - I is a residue of the
primes 5, 13, 17,29, . .. and a nonresidue of the primes 3, 7, 11, 19, .... The
reader should check some of these assertions numerically.

One is led by this result to ask a more general question. If a is an integer,
for which primes p is a quadratic residue mod p? The answer to this question
is provided by the law of quadratic reciprocity to whose statement and proof
we shall soon devote a great deal of attention.

Corollary 3 enables us to prove that there are infinitely many primes of
the form 4k + 1.Suppose that Pt, P2,' .. , Pm are a finite set of such primes and
consider (2PIP2 . . . Pm)2 + 1. Suppose that P divides this integer. -1 will
then be a quadratic residue mod P and thus P will be of the form 4k + 1.P is
not among the Pi since (2PIP2 .. . Pm)2 + 1 leaves a remainder of I when
divided by Pi' We have shown that every finite set of primes of the form
4k + I excludes some primes of that form. Thus- the set of such primes is
infinite .

To return to the theory of quadratic residues, we are now going to intro
duce another characterization of the symbol (alp) due to Gauss.

Consider S = {-(p - 1)/2, -(p - 3)/2, ... , -I, I, 2, . . . , (p - 1)/2}.
This is called the set of least residues mod p. If p,r a, let J1 be the number of
negative least residues of the integers a, 2a, 3a, . .. ,«p - I)/2)a. For example,
let p = 7 and a = 4. Then (p - 1)/2 = 3, and I ·4, 2·4, and 3·4 are con
gruent to - 3, I, and - 2, respectively. Thus in this case Ji = 2.

Lemma (Gauss' Lemma). (alp) = (-1)1'.

PROOF. Let ±m, be the least residue of la, where m, is positive. As I ranges
between I and (p - 1)/2, J1 is clearly the number of minus signs that occur in
this way. We claim that m, # mk if I # k and 1 ~ I, k ~ (p - 1)/2. For, if
m, = mk, then la == ±ka (p), and since p,r a this implies that I ± k == 0 (p).
The latter congruence is impossible since 1# k and Ii ± kl ~ III + Ikl ~
P - 1. It follows that the sets {I, 2, . . . , (p - I)/2} and {ml' m2, . . . , m(p-1)/2}
coincide. Multiply the congruences l'a == ±m t (p), 2 ·a == ±m2 (p), ... ,
«p - I)/2)a == ±m(p_ 1)/2 (p). We obtain

(p; I)! dP-I)/2 == (-I)I'(P ; I)! (p).

This yields d P-1)/2 == (-1)~ (p). By Proposition 5.1.2, dP-I )/2 == (alp)(p).
The result follows. 0

Gauss's lemma is an extremely powerful tool. We shall base our first
proof of the quadratic reciprocity law on it. Before getting to that, however,
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we can use it immed ia tely to get a characterization of those primes for which
2 is a quadratic residue.

Proposition 5.1.3. 2 is a quadratic residue of primes of the form 8k + I and
8k + 7. 2 is a quadratic nonresidue of primes of the form 8k + 3 and 8k + 5.
This information is summarized in the formula

G) = (_l){P2-
1)/8 .

PROOF . We leave to the reader the task of showing that the formula is equiva
lent to the first two assertions.

Let p be an odd prime (as usual) and notice that the number fl is equal to
the number of elements of the set 2· I, 2 ·2, ... , 2· (p - 1)/2 that exceed
(p - 1)/2. Let m be determ ined by the two conditions 2m~ (p - 1)/2 and
2(m + I) > (p - 1)/2. Then fl = «p - 1)/2) - m.

If p = 8k + I, then (p - 1)/2 = 4k and m = 2k. Thus fl = 4k - 2k = 2k
is even and (2/p) = 1.

If p = 8k + 7, then (p - 1)/2 = 4k + 3, m = 2k + I, and fl = 4k + 3 
(2k + 1) = 2k + 2 is even. Thus (2/p) = 1 in this case as well.

If p = 8k + 3, then (p - 1)/2 = 4k + I, m = 2k, and fl = 4k + I - 2k =
2k + I is odd. Thus (2/p) = - 1.

F inally, if p = 8k + 5, then (p - 1)/2 = 4k + 2, m = 2k + I, and
fl = 4k + 2 - (2k + I) = 2k + I is odd. Thus (2/p) = - I and we are done.

D

As an example, consider p = 7 and p = 17. These primes are congruent
to 7 and I, respectively, mod 8, and indeed 32 =2 (7) and 6 2 =2 (17). On
the other hand, p = 19and p = 5 are congruent to 3 and 5, respectively, and
it is easily checked numerically that 2 is a quadratic nonresidue for both
primes.

One can use Proposition 5.1.3 to prove that there are infinitely many
primes of the form 8k + 7. Let PI ' . .. ,Pm be a finite collection of such primes,
and consider (4PIP2 . . . Pm)2 - 2. The odd prime divisors of this number
have the form 8k + I or 8k + 7, since for such prime divisors 2 is a quadratic
residue. Not all the odd prime divisors can have the form 8k + 1 (prove it).
Let p be a prime divisor of the form 8k + 7. Then p is not in the set {PI, P2" ' "
Po} and we are done.

§2 Law of Quadratic Reciprocity

Theorem 1 (Law of Quadratic Reciprocity). LeI Pand q be odd primes. Then

(a) (-l ip) = (-I)(p - 1)/2 .

(b) (2Ip) = (_l)(p2- 1l/ 8 •

(c) (plq)(qlp) = (-l)uP- 1)/2)(q- 1)/2).
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We are going to postpone the proof until Section 3. In Chapter 6 we shall
prove the theorem once again from a different standpoint, and also indicate
something of its history. It is among the deepest and most beautiful results of
elementary number theory and the beginning of a line of reciprocity theorems
that culminate in the very general Artin reciprocity law, perhaps the most
impressive theorem in all number theory. It would take us far outside the
compass of this book to even state the Artin reciprocity law, but in Chapter 9
we shall state and prove the laws of cubic and biquadratic reciprocity.

Parts (a) and (b) of Theorem 1 have already been proven and some of
their consequences discussed. Let us turn our attention to part (c).

If either p or q are of the form 4k + 1, then «p - I )/2)«q - 1)/2) == 0 (2).
If both p and q are of the form 4k + 3, then «p - 1)/2)«q - 1)/2) == 1 (2).
This permits us to restate part (c) as follows:

(I) If either p or q is of the form 4k + 1, then p is a quadratic residue mod q
iff q is a quadratic residue mod p.

(2) If both p and q are of the form 4k + 3, then p is a quadratic residue mod q
iff q is a quadratic nonresidue mod p.

As a first application of quadratic reciprocity we show how, in conjunction
with Proposition 5.1.2, it can be used in numerical computations of the
Legendre symbol. A single example should suffice to illustrate the method.

We propose to calculate (79/101) . Since 101 == I (4) we have (79/101) =
(101/79) = (22/79) . The last step follows from 101 = 22 (79). Further,
(22/79) = (2/79)( 11 /79) . Now 79 == 7 (8). Thus (2/79) = 1. Since both 11
and 79 are congruent to 3 mod 4 we have (11/79) = -(79/11) = -(2/11).
Finally II == 3 (8) implies that (2/11) = -1. Therefore (79/101) = I; i.e., 79
is a quadratic residue mod 101. Indeed, 332 == 79 (101).

The next application is perhaps more significant. We noticed earlier that
- 1 is a quadratic residue of primes of the form 4k + I and that 2 is a quad
ratic residue of primes that are either of the form 8k + I or 8k + 7. If a is an
arbitrary integer, for what primes p is a a quadratic residue mod p'? We are
now in a position to give an answer. To begin with, we consider the case
where a = q, an odd prime.

Theorem 2. Let q be an odd prime.

(a) If q == 1 (4), then q is a quadratic residue mod p iff p == r (q), where r is a
quadratic residue mod q.

(b) Ifq == 3 (4), then q is a quadratic residue mod p iffp == ±b2 (4q), where b
is an odd integer prime to q.

PROOF. If q == I (4), then by Theorem 1 we have (q/p) = (p/q) . Part (a) is thus
clear.

If q == 3 (4), Theorem I yields (q/p) = (_I)(P-I }/2(p/q) . Assume first that
p == ±b2 (4q), where b is odd. If we take the plus sign, we get p == b2 == 1 (4)
and p == b2 (q). Thus ( _l)IP- 1)/2 = 1 and (p/q) = 1, giving (q/p) = 1. If we
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take the minus sign, then p == _b 2 == - I == 3 (4) and p == _b2 (q). The
first congruence shows that ( -l)(P- 1112 = - 1.The second shows that (plq) =
(_b 2Iq) = (-I lq)(blq)2 = (-I lq) = -I since q == 3 (4). Once again we
have (qlp) = 1.

To go the other way, assume that (qlp) = 1. We have two cases to deal
with :

(I) ( _I)(P-1l12 = -I and (plq) = -1.
(2) (_I)(P - 1112 = I and (plq) = 1.

In case 2 we have p == b2 (q) and p == I (4). b can be assumed to be odd
since if it is even we can use b' = b + q instead. If b is odd, then b2 == 1 (4)
and p == b2 (4) and thus p == b2 (4q) , as required.

In case 1 we have p == 3 (4) and p == _b2 (q). The last congruence follows
since q == 3 (4) implies that every nonresidue is the negative of a residue
(prove it). Again, we may assume that b is odd. In that case _b2 == 3 (4) so
p == _b 2 (4) and p == _b 2 (4q). This concludes the proof. 0

Take q = 3 as a first illustration. By part (b) of Theorem 2.we must find
the residues mod 12 of the squares of odd integers prime to 3. 12,52

, 72
, and

11 2 are all congruent to 1.Thus 3 is a quadratic residue of primes p congruent
to ± I (I2) and a quadratic nonresidue of primes congruent to ±5 (I 2).

Next consider q = 5. Since 5 == I (4) we are in the simpler part (a) of
Theorem 2. I and 4 are the residues mod 5, and 2 and 3 the nonresidues. Thus
5 is a residue of pr imes congruent to I or 4 mod 5 and a nonresidue of primes
congruent to 2 or 3 mod 5.

.. Numbers congruent to b mod m" and" numbers of the form mk + b" are
short hand exp ressions describing the set {b, b ± m, b ± 2m, . . .}. Thi s set is
an arithmetic progression with initial term b and difference m. In our in
vestigations so far we have seen that the answer to the question for which
prime s p is a a quadratic residue has been for those pr imes p that occur in a
certai n fixed, finite number of arithmetic progressions . Thi s situation is
enti rely general. Instead of stating this result as a theorem (the statement
would be very complicated) we shall work out a few numerical examples.

For a = -3, (-3Ip ) = (-l /p)(3Ip) . Thus -3 is a quadrat ic residue
mod p if either ( - l ip) = I and (3Ip) = I or ( - l i p) = -I and (3lp) = -1.

By our previous results the first case obtains when p == I (4) and p ==
± I (12). If p == -I (12), then p == - I (4). The only primes that satisfy
both congruences are == 1(12).

In the second case p == 3 (4) and p == ±5 (12). If p == 5 (12), then p == 1(4).
Thus the only pr imes that satisfy both these congruences are == - 5 (12).

Summarizing, - 3 is a quadratic residue mod p iff p is congruent to I or
-5 mod 12.

Now con sider a = 6. Since (6Ip) = (2Ip)(3Ip) we again have two cases:
(2Ip) = I and (3/p) = I or (2Ip) = -I and (3Ip) = -1. The first case holds
if p == 1,7 (8) and p == I , II (12). The only two pairs of congruences that are
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compatible are P == 1 (8) and p == 1 (12), and p == 7 (8) and P = 11 (12). By
standard techniques (see Chapter 3) the primes satisfying these congruences
are congruent to 1 or 23 mod 24.

In the second case we have to consider P == 3, 5 (8) and P == 5, 7 (12).
Separating these into four pairs of congruences we see that the only solutions
are congruent to 5 and 19 mod 24.

Summarizing, 6 is a quadratic residue mod P iff P == 1,5, 19,23 (24).
As a numerical check we see for the primes 73, 5, 19, and 23 that 152 ==

6 (73), 12 == 6 (5), 52 == 6 (19), and 11 2 == 6 (23).
As a final application of the quadratic reciprocity law we investigate the

question ; if a is a quadratic residue mod all primes p not dividing a, what
can be said about a? Ifa is a square, it is a residue for all primes not dividing a.
It turns out that the converse of this statement is true as well. In fact, we shall
soon prove an even stronger result. First, however, it is necessary to define
and investigate briefly a new symbol.

Definition. Let b be an odd, positive integer and a any integer. Let b =
PIP2 : . . Pm ' where the Pi are (not necessarily distinct) primes. The symbol
(a/b) defined by

(~) = (;J(:J ... (;J
is called the Jacobi symbol.

The Jacobi symbol has properties that are remarkably similar to the
Legendre symbol, which it generalizes. A word of caution is useful. (a/b) may
equal 1 without a being a quadratic residue mod b. For example, (2/15) =
(2/3)(2/5) = (-1)( -1) = 1, but 2 is not a quadratic residue mod 15. It is
true, however, that if (a/b) = -1, then a is a quadratic nonresidue mod b.

Proposition 5.2.1.

(a) (aI /b) = (a2 /b) if a, == a2 (b).
(b) (ala2/b) = (a./b)(a 2/b).
(c) (a/b.b2) = (a/b\)(a /b2 ) .

PROOF. Parts (a) and (b) are immediate from the corresponding properties
of the Legendre symbol. Part (c) is obvious from the definition. 0

Lemma. Let rand s be odd integers. Then

(a) (rs - 1)/2 == «r - 1)/2) + «s - 1)/2) (2).
(b) (r2s2 - 1)/8 == «r2 - 1)/8) + «S2 - 1)/8) (2).

PROOF. Since (r - l)(s - 1) == 0 (4) we have rs - 1 == (r - 1) + (s - 1) (4).
Part (a) follows by dividing by 2.
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r2
- 1 and 52 - 1 are both divisible by 4. Thus (r2

- 1)(52 - 1) == 0 (16)
and r 252 - 1 == (r2 - 1) + (52 - 1) (16). Part (b) follows upon dividing by 8.

o
Corollary. Let rl, r2' ... , rm be odd integers. Then

(a) I~=I (ri - 1)/2 == (rlr2'" rm - 1)/2 (2).
(b) I~= I (r; - 1)/8 == (rid ·..r;, - 1)/8 (2).

PROOF. The proof is a simple induction on m, using the lemma. 0

Proposition 5.2.2.

(a) (-lib) = (_1){b- \) i2 .

(b) (2Ib) = (_1)(b 2
- Il /8.

(c) If a is odd and positive as well as b, then

(~)(~) = (_1)«a-ll/2)({b- \)/2).

PROOF.

(-lib) = (-l/pt)( -1Ip2) ... (-l/Pm) = (-l)(p,- \)/2 ... (_1)(Pn,-tlI2
= (_1)[(pi- l l/ 2•

By the lemma I (Pi - 1)/2 == (PIP2 ... Pm - 1)/2 == (b - 1)/2 (2). This
proves part (a).

Part (b) is proved in exactly the same way.
Now if a = qlq2 . . . qt, then

(~)(~) = Q9(~)(~) = (_1)[;[j«Q,-ll /2)«p;-\)/2).

The product and sum range over 1 ~ i ~ I and 1 ~ j ~ m. Again using the
lemma we have

I I (Pi - 1))(qj - 1») == (a - 1) I fFj - ~1
ij 2 2 2 i 2

== (a ~ l»)(b ~ 1») (2).
This proves part (c). o

The Jacobi symbol has many uses. For one thing, it is a convenient aid for
computing the Legendre symbol. We now use it to prove the following
theorem.

Theorem 3. Let a be a nonsquare integer. Then there are infinitely many
primes Pfor which a is a quadratic nonresidue.
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PROOF. It is easily seen that we may assume that a issquare-free. Let a = 2eq
t qz

. . . qn' where the qi are distinct odd primes and e = 0 or 1. The case a = 2
has to be dealt with separately. We shall assume to begin with that n ;;:: 1, i.e.,
that a is divisible by an odd prime.

Let I i - Iz, •. . , Ik be a finite set of odd primes not including any qj ' Let s be
any nonresidue mod qn' and find a simultaneous solution to the congruences

x == 1 (lj), i = 1, .. . , k,

x == 1 (8),

x == 1 (qj), i = 1, 2, . . . , n - 1.

x == s (qn),

Call the solution b. b is odd. Suppose that b = PtPZ .. . Pm is its prime
decomposition. Since b == 1 (8) we have (2/b) = 1 and (qi/b) = (b/qj) by
Proposition 5.2.2. Thus (a/b) = (2/b}e(ql/b) · · · (qn-. /b)(qn/b) = (b/qt} '"
(b/qn- J)(b/qn) = {l/ql} '" (l /qn- t)(s/qn) = -1.

On the other hand , by the definition of (a/b), we have (a/b) = (a/PI}(a /pz)
. . . (a/Pm)' It follows that (a/pJ = - 1 for some i.

Notice that Ij does not divide b. Thus Pi if {I., Iz, ... , Id.
To summarize, if a is a nonsquare, divisible by an odd prime, we have

found a prime p, outside a given finite set of primes {2, II' Iz, . . . , Ik } , such
that (a/p) = - 1. This proves Theorem 3 in this case.

It remains to consider the case a = 2. Let I. , . .. , Ik be a finite set of primes,
excluding 3, for which (2/1;)' = - 1. Let b = 81 11z . . . Ik + 3. b is not divisible
by 3 or any Ii ' Since b == 3 (8) we have (2/b) = (- 1)(b2

- .)/8 = -1. Suppose
that b = P.Pz .. . Pm is the prime decomposition of b. Then, as before, we see
that (2/Pi) = -1 for some i. Pi¢ {3, It, Iz, " " Id . This proves Theorem 3
for a = 2. 0

§3 A Proof of the Law of Quadratic Reciprocity

Gauss found eight separate proofs for the law of quadratic reciprocity. There
are over a hundred now in existence. Of course, they are not all essentially
different. Many just differ in small details from others. We shall present an
ingenious proof due to Eisenste in. For a somewhat more elementary and
standard proof, see [61] .

A complex number , is called an nth root of unity if (n = I for some integer
n > O. If n is the least integer with this property, then ( is called a primitive
nth root of unity.

The nth roots of unity are I, e Z• i1n, e(Z.iln)Z, • .. , e(hiln)(n- I). Among these
the primitive nth roots of unity are e(Z. i/nJ\ where (k, n) = 1.

If ( is an nth root of unity and m == I (n), then (m = c. If ( is a primitive
nth root of unity and (m = ( I, then m == I (n) .
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These elementary properties are easy to prove.
Consider the function fe z) = e2 ni

: - e- 2 ni
: = 2i sin 2nz. This function

satisfies fez + 1) = fez) and f( - z) = - fez). Also, its only real zeros are
the half integers. In other words , if r is a real number and 2r ¢ Z, thenf(r) #- O.

We wish to prove an important identity involvingf(z), but first we need
an algebraic lemma.

Lemma. If n > 0 is odd, we have
0- 1

X
O

- y" = n(Ckx - eky), where C= e2n i
/
o

•

k= 0

PROOF . 1," C2
, • • • , Co - 1 are all roots of the polynomial ZO - 1.Since there are

n of them and they are all distinct we have ZO - 1 = nk;;~ (z - Ck
) . Let

z = x ly and multiply both sides by yo. We get X O
- y" = nk;;~ (x _ Cky).

Since n is odd as k runs over a complete system of residues mod n, so does
-2k. Thus

0 - 1

X
O- yO = n(x - e 2ky)

k=O

0- 1

= C(t +2+" '+n-l)n(Ckx - eky)
k=O

0-1

= n(Ckx - C ky).
k=O

In the last step we have used the fact that 1 + 2 + 3 + .. . + (n - 1) =
n«n - 1)/2) is divisible by n. 0

Proposition 5.3.1. Ifn is a positive odd integ er andf(z) = e2 ni
: - e - 2 0i

: , then

f(n z) ~ (On/2 f(Z + ~)f(Z _ ~) .
f ez) k=1 n n

PROO F. In the lemma, substitute x = e2n i: and y = e" 2ni:. We see that

0 -1 ( k)
f(n z) = n f z + - .

k=O n

Notice that fez + kin) = fe z + kin - 1) = fez - (n - k)ln). As k goes
from (II + 1)/2 to n - I, n - k goes from (n - 1)/2 to 1. Thus

f(n z) (0 - 11/2 ( k) 0 - 1 ( k)
-= n f z+ - n fz+ -
fez) k=1 n k=(o+ tl.'2 n

(0 -1112 ( k) 0-1 ( n - k)
= n fz+ - n f z- -

k=Ink =(0 + 11/2 n

(0 - 1)/2 ( k) ( k)= nf z+ - f z- -.
k =1 n II

o
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Proposition 5.3.2. If p is an odd prime, a E 7L, and p,{' a, then

(p- 1)/2 (Ia) _(a) (p-1J/2 (I)
nf--- n n:
f= I P P 1= I P

PROOF.As in the lemma of Section I, la == ±m, (p), where 1 ~ m, ~ (p - 1)/2.
Thus lafp and ±m,lp differ by an integer. This implies thatf(lalp) = f( ±m,lp)
= ±f(m,lp).

The result now follows by taking the product of both sides as I goes from
I to (p - 1)/2 and applying Gauss' lemma. 0

We are now in a position to prove the law of quadratic reciprocity. Let p
and q be odd primes. Then by Proposition 5.3.2

(p- 11/2 (Iq) _(q) (p -1 1/2 .(/)
nf--- nj- ·

1= I P P 1= I P

By Proposition 5.3.1

f(qllp) (q-ll/2 (I m) (I m)
- - = n f-+-f -- - ·
f(//p) m=1 P q P q

Putting these two equations together we have

(q) (q- 0 /2 (p- 11/ 2 (I 111) (I m)
- = n n f-+-f - -~ ·
P m= I 1= I P q P q

In the same way we find

(
p) (q- 0 /2 (p- 11/2 .(m I) (m I)
- = n n j -+-f--- .
q m= I 1= I q P q P

Sincef(mlq - lip) = -f(//p ·- mlq) we see that

(-I)«P- 0 /2l«q- 0/2)(~) = (~)

and therefore that

(~)(~) = (_I)«p-1 1/2)«q- 0/2).

The proof is complete. o

We conclude this chapter by giving an equivalent formulation of the law
of quadratic reciprocity.

Proposition 5.3.3. Let p and q be distinct odd primes and a ~ 1 an integer.
Then the following assertions are equivalent:
(a) (plq)(qlp) = (-l)ur- 0 /2)(q- lll2l.

(b) Ifp == ±q (4a), p,{' a. then (alp) = (alq).
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PROOF. In order to show (a) implies (b) it is enough, by multiplicativity, to
show that (b) holds when a is prime. For a = 2 the result follows from Propo
sition 5.1.3. If a is an odd prime then by (a) (alp) = (-l)((p- 1l/2)(U- 1l/2){Pla).

If p = q (4a) then (pia) = (qla) so that

(~) = (_1)((P-l)/2)((U -l)/21(~) = (_1)((P- ll/2)((a -I)/2)( _1)«q-l)/2)((a-ll/2)(~)

= (_I)((U-1 1l2)((p +q- 2 112l(~).

But p =q (4a) implies p + q - 2 =0 (4) and the result follows. If, on the
other hand p = - q (4a), a similar calculation shows

(~) = ( _l)((a- 1l/2l((P+ql/2)(~).

Since p + q =0 (4) the result also holds in this case.
To show that (b) implies (a) suppose first of all that p > q and p = q (4).

The p = q + 4a, a ~ 1. Thus

(~) = (q : 4a) = (n = (~) = (:a) = (p ~ q) = (~q)

= (-l)(P- 1)/2(~).

If P =I (4) then (plq) = (qlp) which gives (a). If p =3 (4) then q =3 (4)
and we obtain (plq) = -(qlp) which is part (a) in that case. Finally if p =
-q (4) then , p + q = 4a and

(~) = (-q: 4U) = (~) = (~) = (~) = (p; q) = (~).

Thus (plq) = (qlp) which is the assertion of part (a) since in this case at least
one of p or q must be congruent to 1 modulo 4. The proof is complete. 0

Note that by part (b) of the above proposition we see that if (r, 4a) = 1
the quadratic character of a is the same for all primes in the arithmetic
progression r + 4ut, t E"l.. In Chapter 16 we will see that infinitely many
such pr imes exist. Note also that the quadratic character of a prime of the
form r + 4ut is the same as that for a prime of the form -r + 4llt. It was in
this form that Euler first discovered this most remarkable law.

NOTES

Kronecker has pointed out that the law of quadratic reciprocity follows
immediately from a conjecture of Euler contained in the paper "Theorernata
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circa divisores numerorum in hac forma pa2 ± qb2 contentorum" (1744
1746). It also appears explicitly in a later paper of Euler entitled" Observa
tiones circa divisionem quadratorum per numeros primos." Using sufficient
conditions for the solvability of the equation ax 2 + by2 + ez2 = 0 (see
Proposition 17.3.2). Legendre (1785) was able to prove the result in special
cases. For example, the consideration of x2 + py2 = £Iz2 where p == 1 (4)
and q == 3 (4) leads to the conclusion that if q is a square modulo p then p
is a square modulo q. The first complete proof of the theorem is due to Gauss
who recorded the date of the proof in his diary on April 8, 1796. During his
lifetime Gauss published six proofs of this remarkable law. The proof we
have given in this chapter is taken from Eisenstein's paper" Applications de
l'Algebre a l'Arithmetique transcendante." Kummer in an historical study
of the laws of reciprocity, refers to this proof as one of the most beautiful of
all the proofs (" . . . einen der schonsten Beweise dieses von den ausgezeich
netsten Mathematikern viel bewiesenen Theorems . , ."). Replacing the
trigonometric function by certain elliptic functions Eisenstein was able,
without much more difficulty, to prove the laws of cubic and biquadratic
reciprocity as well.

Throughout the nineteenth century various mathematicians including
Cauchy, Eisenstein, Dirichlet, Dedekind, and Kronecker gave new proofs
to the law of quadratic reciprocity. By 1921 there were, according to P.
Bachman, 56 known proofs. Even in recent times new proofs continue to
appear. See, for example, the papers by M. Gerstenhaber [128] and R. Swan
[75]. On the other hand, the first proof of Gauss has been reconsidered
recently by E. Brown [99].

The Jacobi symbol is one generalization of the Legendre symbol. For an
interesting generalization in another direction, see the paper of P. Cartier
[14].

Quadratic reciprocity can be formulated in ring! other than 71.. Dirichlet
proved such a theorem for the ring of Gaussian integers Z[i]. D. Hilbert was
able to prove that quadratic reciprocity held for any algebraic number field,
a result that was an important stepping stone to class field theory. In another
direction it can be shown that reciprocity holds for the ring k[x], where k is a
finite field. See Artin [2] and Carlitz [10]. This result had already been stated
(though not proved) by Dedekind in 1857.

The generalization of Theorem 3 to higher powers was discovered first by
E. Trost in 1934.* Later it was stated as a conjecture by S. Chowla and sub
sequently proven by N. C. Ankeny and C. A. Rogers.t They proved that if
x" == a (p) has a solution for all but a finite number of primes p, then either
a = b"or nl8 and a = 2n/8bn

• When n is square-free and (a, n) = I, the result
can be shown to follow from the Eisenstein reciprocity law as was done by
1. Kraft and M. Rosen [211]. Their proof will be given in Chapter 14. See

• Zur Theorie der Potenzreste . Nicuw Arch . Wiskunde, Ill. (1934). 15 61.

t A conjecture or Chowla. Anll. Mm" ., 53. No .3 (1951).541 - 550.



Exercises 63

also H. Flanders [134] where the result is generalized to the case of algebraic
number fields and algebraic function fields of one variable over a finite field.

EXERCISES

1. Use Gauss' lemma to determine (~), (fr), (fJ), and (-l ip).

2. Show that the number of solutions to x 2 == a (p) is given by I + (alp).

3. Suppose that p,ra. Show that the number of solutions to ax 2 + bx + c == 0 (p) is
given by I + «b2

- 4ac)lp).

4. Prove that B:: (alp) = O.

5. Prove that L~:b«ax+ b)!p) = 0 provided that p,ra.

6. Show that the number of solutions to x 2 - i == a (p) is given by

p -I

L (I + «i + a)/p».
y=o

7. By calculating directly show that the number of solutions to x 2 - y2 == a (P) is
p - I if p,ra and 2p - I if pia. (Hint : Use the change of variables u = x + y,
I.' = X - y.)

8. Combining the result s of Exercises 6 and 7 show that

PI' ( y2 + a) = {-I, ~ f p,ra,
y=o P P - I, If pia.

9. Prove that 123 25 2 . •• (p - 2)2 == (_I)CP + 11/2 (p) by using Wilson 's theorem.

10. Let ' t , '2 • • . . ' 'lp - II,2 be the quadratic residues between I and p. Show that their
product is congruent to I (p) if p == 3 (4) and congruent to - I (p) if p == I (4).

II. Suppose that p = 3 (4) and that q == 2p + I is also prime. Prove that 2P - I is not
prime. (Hint : Use the quadrat ic character of 2 to show that ql2 P - 1.) One must
assume that p > 3.

12. Let I(x) E lEx] . We say that a prime p div ides I(x) if there is an integer n such that
pII(n). Describe the prime div isors of x 2 + I and x 2

- 2.

13. Show that any prime divisor of x4
- x2 + I is congruent to I modulo 12.

14. Use the fact that U(llpl) is cyclic to give a direct proof that (- 3/p) = I when
p == I (3). [Hint : There is a p in V(l/pl) of order 3. Show that (2p + 1)2 = -3.]

15. If r == I (5). show directly that (Sip) = I by the method of Exercise 14. [Hint : Let p
be an element of U(l lp7L) or order 5. Show that (p + p4)2 + (p + p4) - T = 0,
etc.]

16. Using quadratic reciprocity find the primes for which 7 is a quadratic residue. Do the
same for 15.

17. Supply the details to the proofof Proposition 5.2.1 and to the corollary to the lemma
following it.
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18. Let D be a square-free integer that is also odd and positive . Show that there is an
integer b prime to D such that (b/D) = -1.

19. Let D be as in Exercise 18. Show that L (a/D) = 0, where the sum is over a reduced
residue system modulo D (see Exercise 6 of Chapter 3). Conclude that exactly one
half of the elements in U(71./D71.) satisfy (a/D) = 1.

20. (continuation) Let aI ' a2, . . . , a4>ID112 be integers between I and D such that
(ai ' D) = I and (aJD) = 1. Prove that D is a quadratic residue modulo a prime p,r D,
P == I (4) iff p == a, (D) for some i.

21. Apply the method of Exercises 19 and 20 to find those primes for which 21 is a
quadratic residue . [Answer : Those p == 1,4,5,16,17, and 20 (21).]

22. Use the Jacobi symbol to determine (113/997), (215/761), (514/1093), and (401/757).

23. Suppose that p == I (4). Show that there exist integers sand t such that pI = 1 + S2 .

Conclude that p is not a prime in 71.[i). Remember that 71.[i] has unique factorization.

24. If p == I (4), show that p is the sum of two squares; i.e., p = a2 + b2 with a, b E 71..
(Hint: p = !1.p with !1. and pbeing non units in 71.[i). Take the absolute value of both
sides and square the result.) This important result was discovered by Fermat.

25. An integer is called a biquadratic residue modulo p if it is congruent to a fourth
power. Using the identity x" + 4 = «x + 1)2 + I)«x - 1)2 + l)showthat-4isa
biquadratic residue modulo p iff p == I (4).

26. This exercise and Exercises 27 and 28 give Dirichlet's beautiful proof that 2 is a
biquadratic residue modulo p iff p can be written in the form A 2 + 6482

, where
A, 8 E 71.. Suppose that p == I (4). Then p = a2 + b2 by Exercise 24.Take a to be odd .
Prove the following statements :
(a) (a/p) = 1.
(b) «a + b)/p) = (_I)uo + b}' - 1J/8.

(c) (a + W == 2ab (p).
(d) (a + b)'P-l }/2 == (2ab)'P- 1}/4 (p).

[Hint: 2p = (a + b)2 + (a - W.]
27. Suppose that f is such that b == af (p). Show that F == - I (p) and that 2'P-1 }/4 ==

P"' (p).

28. Show that x" == 2 (p) has a solution for p == I (4) iff p is of the form A 2 + 648 2
•

29. Let (RR) be the number of pairs (n, n + I) in the set 1,2,3, . .. , p - 1such that nand
n + I are both quadratic residues modulo p. Let (NR) be the number of pairs
(n, n + I) in the set 1,2,3, .. . , p - I such that n is a quadratic nonresidue and n + I
is a quadratic residue . Similarly, define (RN) and (NN). Determine the sums
(RR) + (RN), (NR) + (NN), (RR) + (NR), and (RN) + (N N).

30. Show that (RR) + (NN) - (RN) - (NR) = B= I(n(n + I»/p. Evaluate this sum
and show that it is equal to -1. (Hint : The result of Exercise 8 is useful.)

31. Use the results of Exercises 29 and 30 to show that (RR) = !<p - 4 - c), where
e = (_1)'P-1J/2 .

32. If p is an odd prime show that (2/p) = n~p=-ll t12 2 cos(2nj/p) . Use this result to give
another proof to Proposition 5.1.3.
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33. Use Proposition 5.3.2 to derive the quadratic character of - I.

34. If p is an odd prime distinct from 3 show that (3Ip) = njP=-/"2 (3 - 4 sin2(2nj/p» .

35. Use the preceding exercise to show that 3 is a square modulo p iffp is congruent to 1
or - I modulo 12.

36. Show that part (c) of Proposition 5.2.2 is true if a is negative and b is positive (both
still odd).

37. Show that if a is negative then p == q (4a), pi-a implies (alp) = (alq).

38. Let p be an odd prime. Derive the quadratic character of2 modulo pby verifying the
following steps, involving the Jacobi symbol :

G) = C~ p) = C~ 8) = C~ 8) = C: 8).

Generalize the argument to show that

(~) = C~4J a> 0, p'\-a.



Chapter 6

Quadratic Gauss Sums

The method by which we proved the quadratic reciprocity
in Chapter 5 is ingenious but is not easy to use in more
general situations. We shall give a new proofin this chapter
that is based on methods that can be used to prove higher
reciprocity laws. In particular, we shall introduce the
notion of a Gauss sum, which will play an important role
in the latter part of this book.

Section I introduces algebraic numbers and algebraic
integers. The proofs are somewhat technical . The reader
may wish to simply skim this section on afirst reading.

§l Algebraic Numbers and Algebraic Integers

Definition. An algebraic number is a complex number ex that is a root of a
polynomial aoxn + a,xn-' + a2xn-2 + .. . +an = O. where aj, a,. a2• . . . •
an E Q, and ao #- O.

An algebraic integer w is a complex number that is a root of a polynomial
x" + b,xn

-
'
+ .. . + hn = O. whereb,.b2•...• bn E 7L..

Clearly every algebraic integer is an algebraic number. The converse is
false, as we shall see.

Proposition 6.1.1. A rational number r E Q is an algebraic integer iffr E 7L..

PROOF. If r E 7L., then r is a root of x - r = O. Thus r is an algebraic integer.
Suppose that r E Q and that r is an algebraic integer; i.e., r satisfies an

equation x" + b,xn
- ' + ... + bn = 0 with b, ... , b; E 7L.. r = cid, where

c, d E 7L. and we may assume that c and d are relatively prime . Substituting cld
into the equation and multiplying both sides by dn yields

c" + b,cn-1d + ... + b, dn = O.

It follows that d divides c" and, since (d. c) = 1, that dlc. Again, since
(d. c) = 1 it follows that d = ± I. and so r = cld is in 7L..

It follows. for example. that t is not an algebraic integer. 0

The main results of this section are that the set of algebraic numbers forms
a field and that the set of algebraic integers forms a ring. We need some
preliminary work .

66
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Definition.A subset V c C of the complex numbers is called a 0 module if

(a) Yt, Y2 E V implies that YI ± Y2 E V.
(b) YE V and rEO implies that ry E V.
(c) There exist elements Y., Y2' ... ' Y,E V such that every Y E V has the form

I:; t r.t. with ri EO.

More briefly, V c C is a 0 module if it is a finite dimensional vector
space over O.

IfYt, Y2' . . . , y,EC, the set of all expressions I:=t riYi, r., r2, ... , r,EO
is easily seen to be a 0 module. We denote this 0 module by [Y., Y2,"" Y,]'

Proposition 6.1.2. Let V = [y., Y2, .. . , Y,], and suppose that oc EC has the
property that ocy E V for all }' E V. Then oc is an algebraic number.

PROOF. OCYi E V for i = I, 2, . . . , I. Thus OCYi = Ij= t aijYj, where aij EO. It
follows that 0 = D= 1 (aij - bijOC)Yj' where bij = 0 if i if:. j and bij = 1 if
i = j. By standard linear algebra we have that det(aij - bijOC) = O. Writing
out the determinant we see that oc satisfies a polynomial of degree I with
rational coefficients. Thus oc is an algebraic number. 0

Proposition 6.1.3. The set ofalgebraic numbersforms afield.

PROOF. Suppose that OC 1 and OC 2 are algebraic numbers. We shall show that
OC 1CX 2 and OC 1 + OC2 are algebraic numbers.

Suppose that oc~ + rlcx~-· + r2oc~-2 + ... + rft = 0 and that OC2 +
stoci-t + s2oci-2 + .. . + Sm = 0, where ri,SjEO. Let V be the O module
obtained by forming all 0 linear combinations of the elements OCilOC~, where
0::; i < nand 0::; j < m. For yE V we have OC1YE V and OClYE V (prove it).
Thus we also have (oc 1 + O(2)YE V and (OC1OCl)YE V. By Proposition 6.1.2 it
follows that both OC 1 + OC 2 and OC1OCl are algebraic numbers.

Finally, if oc is an algebraic number, not zero, we must show that oc- 1 is
an algebraic number. Suppose that aoocft + a1ocft-1 + ... + aft = 0, where
the ai EO. Then aftoc- ft + aft_1oc-(ft-l) + .. . + ao = O. The result follows.

o
To prove that the set of algebraic integers form a ring it is necessary only to

alter the above proofs slightly.

Definition. A subset W c C is called a 7L module if

(a) YI, Y2 E W implies that Y. ± Yl E W.
(b) There exist elements Y., Yl' . . . , Y, E W such that every j' E W isof the form

I:= 1 biYi with b,E 71..

Proposition 6.1.4. Let W be a 71. module and suppose that WEC is such that
wy E W for all yEW. Then W is an algebraic integer.
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PROOF.The proof proceeds exactly as in Proposition 6.1.2, except that now
the aij E 7L.. The equation det(a j j - DijW) = 0 when written out shows that
W satisfies a monic equation of degree I with integer coefficients. Thus W is an
algebraic integer. 0

Proposition 6.1.5. The set ojalqebraic inteqersforms a ring.

PROOF. The proof follows from Proposition 6.1.4 in exactly the same way in
which Proposition 6.1.3 follows from Proposition 6.1.2. We leave the details
to the reader. 0

Let n denote the ring of algebraic integers. If W" W2, YEn, we say that
W. == W 2 (y) (WI is congruent to W2 modulo y) if WI - (t)2 = ,'':I. with a E n.
This notion of congruence satisfies all the formal properties of congruence
in 7L..

If a, b, c E 7L., e # 0, then a == b (e) is ambiguous since it denotes congruence
in 7L. and in n. The ambiguity is only apparent, however. If a - b = ea with
a E n, then a is both a rational number and an algebraic integer. Thus a is an
ordinary integer by Proposition 6.1.1.

The following proposition will be useful.

Proposition 6.1.6. If W., W2 E nand p E 7L. is a prime, then

(WI + (2)P == w~ + w~ (p) .

PROOF. (W. + ( 2)P = D'=o mw1w~-k . By Lemma 2, Chapter 4, we have
p!mfor 1 :;; k ::; p - 1. The result follows from this and the fact that n
is a ring . 0

A root of unity is a solution to an equation of the form x" - 1 = O. Thus
roots of unity are algebraic integers, and so are 7L.linear combinations of roots
of unity.

We conclude this section by presenting several important properties of
algebraic numbers. If a is an algebraic number then clearly any nonzero
polynomial f(x) in iQ[x] of smallest degree for which f(':I.) = 0 must be
irreducible.

Proposition 6.1.7. If a is an algebraic number then a is the root of a unique
monic irreducible f(x) in iQ[x]. Furthermore if g(x) E iQ[x], g(a) = 0 then
f(x)!g(x).

PROOF. Let f(x) be any monic irreducible with f(':I.) = O. We prove the
second assertion first. If f(x) i g(x) then (f(x), g(x)) = 1. By Lemma 4,
Section 2, Chapter 1 we may write f(x)h(x) + g(x)t(x) = 1 for polynomials
h(x), t(x) E iQ[x]. Putt ing x = ':I. gives a contradiction. Uniqueness now fol
lows immediately. 0
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The polynomial defined in Proposition 6.1.7 depends therefore only
upon IX. It is called the minimal polynomial of IX. If the degree of the minimal
polynomial is n, then IX is called an algebraic number of degree n. Iff(x) is
irreducible of degree II, then, using the fundamental theorem of algebra and
Exercise 16 we see thatf(x) is the minimal polynomial for each of its n roots.
If IX, {3 are roots off(x) then IX and {3 are said to be conjugate.

The set of complex numbers g(lX)jh(lX) where g(x), h(x) E O[x], h(lX) i: 0
forms a field denoted by O(IX). Denote by O[IX] the ring of polynomials in IX
with rational coefficients. Then one has the following important result.

Proposition 6.1.8. If IX En then O(IX) = O[IX].

PROOF . Clearly O[IX] c O(IX). If h(lX)E O[IX], h(lX) i: 0, then by Proposition
6.1.7, f(x) i- h(x), where f(x) is the minimal polynomial of IX. Thus (f(x),
h(x» = I so that by Lemma 4, Section 2, Chapter 1,s(x)f(x) + t(x)h(x) = 1
for elements s(x), t(x) E O[x]. Put x = IX so that t(lX)h(lX) = I. Thus h(IX)- IE
O[IX]. If {3 E O(IX) then {3 = g(lX)h(IX) -1 for g(x), h(x) E O[x] and the above
shows that Ii E O[a]. 0

Corollary. If a is all algebraic number ofdegree II then [O(IX) : 0] = n.

PROOF . By the proposition it is enough to show [O[a]: 0] = n. Since
f(lX) = 0 it is easily seen that 1, . . . , an

- I span O[a]. If on the other hand
ao + ata + ... + an_IlXn- 1 = 0, a, E 0, then g(a) = 0 for g(x) = ao +
a1x + ... + a._tx·-I .Then,byProposition6.1.7,f(x)lg(x).Butdeg(g(x» <
deg(f(x» which implies that ao = al = a2 = .. . = an - I = O. Therefore
1, IX, ••• , IXn- I are linearly independent over O. 0

§2 The Quadratic Character of 2

Let ( = e2 ni S
• Then ( is a primitive eighth root of unity. Thus 0 = (s - 1 =

«(4 _ 1)«(4 + 1). Since (4 i: I we have (4 = - I. Multiplying by C 2 and
then adding C 2 to both sides yields C + C 2 = O. This equation is also
easily derived from the observation that (2 = ei(n/21 = i.

The quadratic character of 2 will now be derived from the relation

«( + elf = (2 + 2 + c 2= 2.

Let r = ( + (- t and notice that ( and r are algebraic integers. We may
thus work with congruences in the ring of algebraic integers.

Let p be an odd prime in 71. and notice that

r P - I = (r2 ) (P - 1l/ 2 = 2(p-1l /2 == (2jp) (p).

It follows that r P == (2jp)r (p). By Proposition 6.1.6, r P = «( + c I)p ==
(P + CP (p).
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Remembering that (8 = 1 we have (P + C P = ( + C I for p == ± 1 (8)
and (P + C P = (3 + C 3 for p == ±3 (8). The result in the latter case may
be simplified by observing that (4 = - 1 implies that e = - C I. Thus
(P + C P = -«( + C I) if p == ±3 (8). Summarizing,

(P + C P = {r, ~f p ~ ± 1 (8),
-r, If p = ±3 (8).

Substituting this result into the relation rP == (2Ip)r (p) yields

(2) p2 - 1
(-I)'r == p r (p), where s == -8- (2).

Multiply both sides of the congruence by r. Then

( -1)'2 == G)2 (p),

implying that

( -1)' == G) (p) .

This last congruence impl ies that (2Ip) = (-1)', which is the desired
result.

Euler (1707-1783), in an early paper, proved that 2 is a quadratic residue
modulo primes p == 1 (8). His method contains the key idea of the above
proof.

Euler assumed that U(7Llp7L) is a cyclic group. Gauss was the first to give a
rigorous proof of this fact (see Theorem I, Chapter 4). Let l be a generator of
U(7Llp7L) and set l' = lIP- 1)/8. Then l' has order 8, so that l = - Tand 1'2 +
1'- 2 = O. Therefore, (1' + 1'- 1)2 = 1'2 + 2 + y - 2 = 2. This shows that 2 is a
square in U(7Llp7L), which is equ ivalent to 2 being a quadratic residue
modulo p.

If p t= I (8), this proof cannot get started. However, the theory of finite
fields enables us to carry through to a complete proof of quadratic reciprocity
using Euler's idea . We shall develop the theory of finite fields in Chapter 7.

§3 Quadratic Gauss Sums

Given the relation «( + C 1)2 = 2 of Section 2, one might ask if there is a
similar relation when 2 is replaced by an odd prime p. The answer is yes, and,
moreover, the full law of quadratic reciprocity follows from this new relation
by using the method of Section 2.

Throughout this section ( will denote eh i l P
, a primitive pth root of unity.
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Lemma 1. L.f:d (al is equal to p if a :; 0 (p). Otherwise it is zero.

PROOF. If a :; 0 (p), then (a = 1, and so L.f:d (al = p. If a '1= 0 (p), then
(a #- 1 and L.f:d (at = «(ap

- 1)IW - 1) = O. 0

Coronary. p- 1 L.f:d C(x- Y) = 15(x, y), where 15(x, y) = 1 if x :; y (p) and
15(x, y) = 0 if x '1= y (p).

PROOF. The proof is immediate from Lemma 1. o

All summations for the remainder of this section will be over the range zero
to p - 1. It will simplify notation to avoid writing out this fact each time.

Lemma 2. L.t (tip) = 0, where (tip) is the Legendre symbol.

PROOF. By definition (Olp) = O. Of the remaining p - 1 terms in the sum
mation, half are + 1 and half are -I, since by Corollary 1 to Proposition
5.1.2, there are as many quadratic residues as quadratic nonresidues mod p.

o
We are now in a position to introduce the notion of Gauss sum.

Definition. ga = L.I (tlpKar is called a quadratic Gauss sum.

Proposition 6.3.1. ga = (alp)gl'

PROOF. If a :; 0 (p), then (al = 1 for all t. and ga = L. (tip) = 0 by Lemma 2.
This gives the result in the case that a :; 0 (p).

Now suppose that a '1= 0 (p). Then

We have used the fact that at runs over a complete residue system mod p
when t does and that (xlp) and (X depend only on the residue class of x
modulo p.

Since (alp)2 = 1 when a '1= 0 (p) our result follows by multiplying the
equation (alp)ga = gl on both sides by (alp). 0

From now on we shall denote gl by g. It follows from Proposition 6.3.1
that g; = g2 if a '1= 0 (p). We shall now deduce this common value.

Proposition 6.3.2. g2 = (_l)(P- ll/2p.

PROOF. The idea of the proof is to evaluate the sum L.a gag-a in two ways.
If a '1= 0 (p), then gag-a = (alp)( _alp)g2 = (-l lp)g2. If follows that

~ gag-a = (~ l)<p _ l)g2.
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Now , notice that

6 Quadratic Gauss Sums

Summing both sides over a and using the corollary to Lemma I yields

I YaY -a = I I (~)(~)6(X, y)p = (p - I)p .
a X }' P P

Putting these results together we obtain ( - l /p)(p - I)g2 = (p - I)p. There
fore, g2 = (- l/p)p. D

Let p* = (- I )IP - 1)12p, The eq uation y 2 = p* is the desired analog of the
equation r 2 = 2. Let q i= p be another odd prime. We proceed to prove the
law of quadratic reciprocity by working with congruences mod q in the ring
of algebraic integers :

u" I = (y2)(q-I)12 = p*(q- 11/2 == (:*) (q).

Thus

Using Proposition 6.1.6 we see that

It follows that gq == Yq == (q/p)g (q) and so

Multiply both sides by y, and use y2 = p*:

which implies that

(~) == (p;) (q)

and finally
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To see that this result is what we want simply notice that

(~/*) = (~lt-1 1I2 (~) = (_ \)((q- t Il2)HP-1 1I21(~).

The not ion of quadratic Gauss sum that we have used can be considerably
generalized. We shall present some of these generalizations after developing
the theory of finite fields. Cubic Gauss sums will be used to prove the law
of cubic reciprocity, and quartic Gauss sums will be used to prove biquad
ratic reciprocity.

§4 The Sign of the Quadratic Gauss Sum"

According to Proposition 6.3.2, the quadratic Gauss sum has value ±JP if
p == I (4) and ±iJPif p == 3 (4) . Thus the value of g(X'> is determined up to
sign . The determination of the sign is a much more difficult problem. The
conjecture that the plus sign holds in each case was made by Gauss and re
corded in his diary in May 180 I. It was not until four years later that he found
a proof. On August 30, 1805 Gauss recorded in his diary that a proof the
.. very elegant theorem mentioned in 180I ., had finally been achieved. He
wrote to his friend W. albers on September 3, 1805 that seldom had a week
passed for four years that he had not tried in va in to prove his conjecture.
Fin ally accord ing to Gauss " Wie de r Blitz einschlagt, hat sich das Rathsel
gelost . . ." (as lightning strikes was the puzzle solved).

Subsequently proofs were found by Dirichlet, Cauchy, Kronecker,
Mertens, Schur, a nd others. In thi s sectio n we present one of Kronecker's
proofs.

As in the previous section ' = e 1 ni! p. Then I , " . . . , (P - 1 are the roots of
x" - I.

Proposition 6.4.1. The polynomial I + x + ... + x '"' I is irreducible in
Q[x].

PROOF. By Exercise 4 at the end of thi s chapter ("Gauss'lemma") it is enough
to show that 1 + x + ... + x'"' 1 has no nontrivial factorization in £:[x].
Suppose, on the contrary, th at 1 + x + x 2 + ... + xr- 1 = j(x)g(x) where
f(x), g(x) E £:[x] and each has degree greater than one. Putting x = 1 gives
p = I( 1)g( I). Therefore we may assume g( I) = I. Using a bar to denote
reduction modulo p we conclude that y(T) :f. O. On the other hand since
pl(~),j = I, . . . , p - I, we have x" - 1 == (x - l )" (p) and division of both
side s by x - I shows that I + x + ... + x'"' 1 == (x - 1y - I (p). By
Theorem 2, Chapter I and Proposition 3.3.2 it follows that {I(x) == (x - 1)5(p)

for so me positive integer s. However, this contradict s the fact that geT) :f. (0),
and the proof is complete. 0

• In this sectio n the Ga uss su m y will be de not ed by q( /) with X(t) = ( I .p) by defin ition.



74 6 Qu adratic Gau ss Sums

o

Combining the above proposition with Proposition 6.1.7 we see that if
g(C) = 0 for g(x) E O[x] then 1 + x + .. . + x'"' l!y(X). This observation
will be useful later.

Proposition 6.4.2. n~p=-11 )/2 (~2k-1 - C m - I ,) 2 = (_I)(P-O/2 p.

PROOF. One has x" - 1 = (x - I) nf~ t (x - (j). Divide by x-I and put
x = 1 to obtain p = nr (l - ~r), where the product is over any complete set
of representative of the nonzero cosets modulo p. The integers ±(4k - 2),
k = 1,2, . . . , (p - 1)/2 are easily seen to be such a system of residues. Thus

p = n(I - ~4k-2) n(I - C(4k-2)

= n (C(2k- I) - ( 2k - l ) n (~2k-l _ C m - I )

= (_I)(P-l)i2 Il (Ck-I - C m - 1)/,

all the products being over k = 1,2, . .. , (p - 1)/2 .

Proposition 6.4.3.

(p-I)!2 { "n (~2k-1 - C(2k -I» = '!' p,
k =1 IJP,

if p == 1 (4),

if p == 3 (4).

PROOF. By Proposition 6.4.2 we have only to compute the sign of the product.
The product is

(p- II /2 (4k - 2)n
i(p - 1)/ 2 n 2 sin - - - .

k=1 P

But sin«4k - 2)/p)n < 0 if (p + 2)/4 < k ~ (p - 1)/2 . It follows that the
product has (p - 1)/2 - [(p + 2)/4] negative terms and this is easily seen
to be (p - 1)/4 or (p - 3)/4 according as p == 1 (4) or p == 3 (4), respectively.
The result follows immediately. 0

By Proposition 6.3.2 and Proposition 6.4.2 we know that

(p- 1) /2

g(x) = I:: n (~2k-1 - C(2k -I),

k= I

(I)

where r. = ± 1.The evaluation of the Gauss sum is completed by Proposition
6.4.3 if we can show that e = + 1. The following argument of Kronecker
shows that this is the case. See also Exercise 22.

Proposition 6.4.4. c = + 1.

PROOF. Consider the polynomial

p- I (p - 11/2

J(x) = L xU)x i - f. n (X 2k - 1 - xp -m-I) .

I> I k= I

(2)
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Thenf<O = 0 by (I) andj'(l ) = 0 by Lemma 2. By the comment preceding
Proposition 6.4.2 and the fact th at 1 + x + ... + x'"' I and x-I are rela
tively prime we conclude that x" - 11/(:<). Writef(x) = (x" - I)h(x) and
replace x by 1'= to obtain

p -I Ip -11/2

L xU)ej = - f. n (e(2k - l l= - e=IP-\2k-l))) = (ePZ - I)h( e=). (3)
j = 1 k = I

The coefficient of :; (p - I )12 on the left-hand side of (3) is eas ily seen to be

L"- I U).(p - 1)/2 tr : 1)/2

)«~ ~ 1~/2)! - f. )J
I

(4k - P - 2).

On the other hand by Exercise 21 the coefficient of z ( p - 1)/2 on the right-hand
side of(3) is pA IB where p,r B, A and B being integers. Equating coefficients,
multiplying by B«p - 1)/2)! and reducing modulo p shows that

p- 1 (1) (p - 1112

L XU)r- 11I2 == c~ ! n (4k - 2)(p)
j=1 2 k =1

Ip -I)/2

== /:(2 . 4 . 6 · . . (p - I» n (2k - I)
k = 1

== f. (p - 1)!

== - f. (p)

using Wil son's theorem (corollary to Proposition 4.1.1).
By Proposition 5.l.2r- I

)/ l == xU) (p) so one has

p-l

L X(j)2 == (p - I) == - I: (p)
j= 1

and therefore

e == I (p).

Since /: = ± I we conclude finally that r. = 1. This concludes the proof. 0

The result may be stated as

Theorem 1. The value of the quadratic Gauss sum g(X) is given by

() {
JP, if p == I (4),

9 X =. iJP, if p == 3 (4).

NOTES

In the famous eleventh supplement to L. Dirichlet's Vorlesunqen iiber Zahlen
theorie [127] (1893) R. Dedekind introduced the concept of an algebraic
number (§I64) as well as that of an algebraic integer (§173). However the use
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of certain algebraic integers such as Gauss sums to prove the law of quadratic
reciprocity occurs much earlier with Eisenstein, Jacobi, and others . Among
the various proofs of this theorem given by Gauss, the fourth (1811) and the
sixth (1818) are of central importance. The fourth proof is a corollary to
Gauss' remarkable calculation of the value of the classical Gauss sum.
While, as we mentioned in Section 6 he proved this result in 1805, it was not
until 1811 that he published the proof in his famous paper" Summierung
gewisser Reihen von besonderer Art" [34]. In this paper he shows more
generally that if n is any positive integer then I~~J C2 has the value fi
or ifi according as II == I (4) or II == 3 (4). Here ~ = e2n;:" . The argument
is quite ingenious. The proof can be found in English in Nagell [60], pp.
174-180. It is not difficult to derive quadratic reciprocity from this result
(see, for example, Dirichlet [125]. pp. 253-256).

The sixth and last of Gauss' published proofs of the law of quadratic
reciprocity was published in 1818 under the title" Neue Beweise und Er
weiterungen des Fundamentalsatzes in der Lehre von den Quadratischen
Resten" [34] , pp. 496-510 . He mentions in the introduction to this paper that
for years he had searched for a method that would generalize to the cubic and
biquadratic case and that finally his untiring efforts werecrowned with success
(" .. . die unermiidliche Arbeit wurde endlich von gliicklichem Erfolge
gekront."), The purpose of publishing this sixth proof, he states, was to bring
to a close that part of the higher arithmetic dealing with quadratic residues
and to say, in a sense, farewell (" . .. und so diesem Teile der hoheren Arith
metik gewissermassen Lebewohl zu sagen.") In this proof Gauss considers
the polynomial hex) = Ir:d X(t)Xkl and proves, without using roots of
unity, that I + x + .. . + xp - I divides It(x)2 - (_l)(P-(l/2 p as well as
f~(x) - (lJ!p)It(x). Reciprocity follows by noting thatf/x) ==It(x)q (q) . The
proof we have given in Section 3 amounts to putting x = ~p in the above and
working with congruences in the ring of algebraic integers. This observation
was made (at least) by Cauchy, Eisenstein, and Jacobi (in alphabetical order)
and represents the stepping stone to the study of the higher reciprocity laws
via Gauss sums.

The beginning student will do well to study several of the classical intro
ductions to the theory of algebraic numbers. Aside from Dirichlet and
Dedekind mentioned above, we cite E. Landau [165] and E. Heeke [44]. In
recent times there have appeared many texts of varying levels of difficulty.
We mention here W. Adams and L. Goldstein [84], LeVeque [180], and
H. Pollard and H. Diamond [63]. Heeke's book hasjust appeared in English
(Algebraic N limber Theory. Springer- Verlag, 1981).

EXERCISES

I. Show that ,\/2 + / 3is an algebraic integer.

2. Let x be an algebraic number. Show that there is an integer 1/ such that I/X is an
algebraic integer.
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3. If ex and fJ are algebra ic integers, prove that any solut ion to x 2 + (Xx + fJ = 0 is an
algebraic integer. Generalize this result.

4. A po lynomial f(x) E l[x] is said to be primitive if the greatest common divisor of its
coefficients is I. Prove that the product of primitive polynomials is again pr imit ive.
[Hint :Letf(x) = aox' + a1x'- 1 + .. . + a.andg(x) = boX'" + b\X",-1 + ... + b;
be primitive. If p is a prime . let a, and b, be the coefficients with the smallest subscripts
such that P,f a i and P,f bj • Show that the coefficient ofx'" j in f(x)g(x) is not divis ible
by p.] This is one of the many results known as Gauss' lemma.

5. Let (X be an algebraic integer andf(x) E O[x] be the monic polynomial ofleastdegree
such that f(ex) = O. Use Exercise 4 to show that f(x) E l[x] .

6. Let x 2 + mx + n E l[x] be irreducible and (X be a root. Show that O[:x] =
{I' + S(XI1', S EO} is a ring (in fact, it is a field). Let m2

- 4n = D5 D, where D is

square-free. Show that O[ct] = O[Jl)].

7. (continuation) If D == 2,3(4), show that all the algebraic integers in O[JD]

have the form a + bJD, where a, b e Z. If D == 1 (4), show that all the algebraic

integers in O[JD] have the form a + b« -I + JD)/2), where a, b e Z . [Hint :Show

that I' + sJD satisfies x 2
- 2rx + ( 1'2 - Ds2

) = O. Thus by Exercise 5, I' + sJD is
an algebraic in teger iff 21' and ,.2 - Ds2 are in Z] .

8. Let ta = e2• i
/
J

. w satisfies x J
- 1 = O. Show that (2w + 1)2 = -3 and use this to

determine ( - 31p) by the method of Section 2.

9. Verify Proposition 6.3.2 explic itly for p = 3 and p = 5; i.e., write out the Gauss sum
longhand and square.

10. What is B=: g. ?

11. By evaluating If (I + (elp»(' in two ways prove that 9 = I, (" .
12. Write I/I.(e) = (.'. Show that

(a) I/I.(e) = t/J.( -e) = I/I-.(e) .
(b) (l Ip) I. I/I.(e - s) = o(e, s).

13. Let f be a function from l to the complex numbers. Suppose that p is a pr ime and that
f(n + p) = f(n) for all n E l . Let !(a) = p- 1 If f(e)1/I _.(e). Prove that f(e) =
I. !(a)I/I.(e). This result is directly analogous to a result in the theory of Fourier
ser ies.

14. In Exercise 13 take f to be the Legendre symbol and show that !(a) = p-lg _a -

15. Show that II~='" (elp) I < JP log p.The inequality holds for the sum over any range.
This remarkable inequality is associated with the names of Polya and Vinogradov.
[H int : Use the relation (elp)g = g, and sum. The inequality sin x ;::: (2/rc)x for any
acute angle x will be useful.]

16. Let <1 be an algebraic number with minimal polynomial f(x) . Show that f(x) doe s
not have repeated roots in C.

17. Show that the minimal polynomial for j2 is x J - 2.

18. Show that there exist algebraic numbers of arbitrarily high degree.
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19. Find the conjugates of cos 2rr/5.

20. Let F be a subfield of C which is a finite dimensional vector space over iQ of degree n.
Show that every element of F is algebraic of degree at most n. [Note :That an element
exists with degree exactly n is more difficult to prove (see Exercise 17,Chapter 12).]

21. Let fIx) = L:'=oa.x·/n! and g(x) = L:'=ob.x·/n! be power series with a. and
b. integers. If p is a prime such that pla j for i = 0, . . . , p - I show that each
coefficient c, of the product f(x)g(x) = L~=o c.x· for t = 0, . .. , p - 1 may be
written in the form pIAl B), pi-B.

22. Show that the relation f. == I (p) in Proposition 6.4.4can also be achieved by replac
ing x by I + t instead of e'.

23. If f(x) = x" + atx·-t + ... + a., a j E 7L and p is a prime such that pla j , i =
I, ... , n, p2i-a. show that f(x) is irreducible over iQ (Eisenstein's irreducibility
criterion).



Chapter 7

Finite Fields

We have already met with examples of finite fields,
namely, the fi elds 7L/p7L, where p is a prime number .
In this chapter we shall prove that there are many more
finite fields and shall investigate their propert ies. This
theory is beautiful and interesting in itselfand, moreover,
is a very useful tool in number-theoretic investigations.
As an illustration of the latter point, we shall supply yet
another proof of the law of quadratic reciprocity. Other
applicat ions will come later.

One more comment. Up to now the great majority
of our proofs hare used »ery few results from abstract
alqebra. Although nowhere in this book will we use very
sophisticated results from algebra, from now on we shall
assume that the reader has some familiarity with the
material in a standard undergraduate course in the subject.

§l Basic Properties of Finite Fields

In this section we shall discuss properties of finite fields without worrying
a bout questions of existence. The construction of finite fields will be taken
up in Section 2.

Let F be a finite field with q elements. The multiplicative group F* of F
has q - 1elements. Thus every element a E F* satisfies the equation x q

- 1 = 1
(in this context 1stands for the multiplicative identity of F and not the integer
I), and every element in F satisfies x q = x.

Proposition 7.1.1.

x q
- x = n(x - a).

aeF

PROOF, Both polynomials are to be considered as elements of F[x].
Every element a E F is a root of x q

- x. Since F has q elements and since
the degree of x" - x is q. the result follows . D

Corollary t. Let F c K, where K is a fie/d . An element :x E K is in F iffaq = :x.

PROOF. aq = :x iff a is a root of xq
- x. By Proposition 7.1.1, the roots of

xq - x are precisely the elements of F. D

79
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Corollary 2. Iff(x) divides xq
- x, thenf(x) has d distinct roots, where d is the

degree off(x).

PROOF. Letf(x)g(x) = xq
- x, g(x) has degree q - d. Iff(x) has fewer than

d d istinct roots, then by Lemma I of Chapter 4,/(x)g(x) would have fewer
than d + (q - d) = q distinct ro ots, wh ich is not the case. 0

Theorem I. The multiplicative group ofa fi nite field is cyclic.

PROOF.This theorem is a gen eralization ofTheorem I in Chapter 4. The proof
is almost identical.

If dlq - I , then xd
- I di vides x q

- 1 - I and it follows from Corollary 2
th at x' - I had d dist inct roots. Thus the subgroup of F* consisting of ele
ments satisfy ing x d = I has order d.

Let !/J(d) be the number of elements in F* of order d. Then Lcld !/J(c) = d.
By the Mobius inversion formula

d
!/J(d) = I p(e) - = ¢(d).

cld c

In particular, !/J(q - I) = ¢(q - I) > I , unless we are in the trivial case
q = 2. This concludes the proof. 0

The fact that F* is cyclic when F is finite allows us to give the following
partial generalization of Proposition 4.2.1.

Proposition 7.1.2. Let (X E F*. Then x" = (X has solutions iff(X( q - I li d = I, where
d = (n, q - I). If there are solutions, then there are exactly d solutions.

PROOF. Let }' be a generator of F* and set (X = ./ and x = ;,)'. Then x" = (X is
equivalent to the congruence ny == a (q - I). The result now follows by
applying Propos ition 3.3.1. 0

It is worthwhile to examine wh at happens in the extreme cases nlq - I
and (n, q - I) = 1.

If nlq - I , then there are exactly (q - l )jn elements of F* that are nth
powers, and if (X is an nth power, then x" = a has n so lu tions.

If (n, q - I) = I, then every element is an nth power in a unique way ;
i.e., for (X E F*, x" = (X has one and only one solution.

We have investiga ted the structure of F*. Now we turn our attention to
the addit ive group of F.

Lemma I. Let F be a finit e field . Th e integer multiples of the identity f orm a
subfie ld of F isomorphic to 7L/p7L fo r some prime number p.

PROOF. To avoid confusion, let us temporarily call e th e identity of F* instead
of 1. Map 7L to F by taking n to ne. This is eas ily seen to be a ring homo-
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morphi sm. The image is a finite subring of F, and so in particular it is an
integral domain. The kernel is a nonzero prime ideal. Therefore , the image is
isomorphic to ll./pll. for some prime p. 0

We shall identify ll./pll. with its image in F and think of F as a finite
dimensional vector space over ll./pll.. Let II denote that dimension and let
W I' Wz , · . . ' W n be a basis.Then every element W E F can be expressed uniquely
in the form a.w. + azwz + '" + an wn, where aiE ll./pll.. It follows that F
has pn elements. We have proved

Proposition 7.1.3. The number ofelements ill afinitefield is a powerofa prime.

Ife is the identity of the finite field F, let p be the smallest integer such that
pe = O. We have seen that p must be a prime number. It is called the charac
teristic of F. For ex E F we have p« = p(eex) = (pe)ex = O· ex = O. This observa
tion leads to the following very useful proposition.

Proposition 7.1.4. If F has characteristic p, then (ex + fJV" = ex P" + W"for all
ce, fJ E F and all positive integers d.

PROOF. The proof is by induction on d. For d = I, we have

(ce + /W = exP+ PII (p) exP - kfJk+ W= aP + W·
k= . k

All the intermediate terms vanish because p Imfor 1 :s; k :s; p - 1 by Lemma
2 of Chapter 4.

To pass from d to d + I just raise both sides of'(« + fJV" = exP" + fJP" to the
pth power. 0

Suppose that F is a finite field of dimension n over ll./pll.. We want to find
out which fields E lie between ll./ pll. and F. If d is the dimens ion of E over
ll./ pll., then it follows by general field theory that d III. We shall give anoth er
proof below. It turns out that there is one and only one intermediate field
corresponding to every divisor d of n.

Lemma 2. Let F be a field. Then Xl - 1 divides x" - 1 ill F[x] iff I divides m.

PROOF. Let m = ql + 1', where 0 :s; ,. < I. Then we have

x" - I xql
- I x" - I

-- - x' - - - + - 
Xi - 1 - x' - 1 X l - I .

Since (x q, - I)/(xl - I) = (X,)q-l + (x,)q -Z + .. . + x' + I, the right
hand side of the abo ve equation is a polynomial iff (x " - I )/( x' - I) is a
polynomial. This is easily seen to be the case iff I' = O. The result follows.
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Lemma 3. If a is a positive integer, then a' - 1 divides am - 1 iff I divides m.

PROOF. The proof is analogous to that of Lemma 2 with the number a playing
the role of x. We leave the details to the reader. 0

Proposition 7.1.5. Let F be afinitefield ofdimension n over 7L/p7L. The subfields
of F are in one-to-one correspondence with the divisors ofn.

PROOF. Suppose that E is a subfield of F and let d be its dimension over 7L/p7L.
We shall show that din .

Since E" has pd - I elements all satisfying x'"" 1 - I, we have that
xPd

- I _ I divides xP" - I - I. By Lemma 2, pd - I divides p' - 1 and con
sequently, by Lemma 3, d divides n.

Now suppose that din . Let E = {IX E Fl a'1l
rl = a}. We claim that E is a

field. For if a, {3 E E, then '

(a) (a + {3VJ = iX
Pd + fJPd = a + {3.

(b) (af3)P" = a
pd

fJP" = afJ·
(c) (a-IV" = (apJ)-1 = a-I for a ;i 'O.

In step (a) we made use of Proposition 7.1.4.
Now E is the set of solutions to x p

" - x = O. Since din, we have p" 
l ip· - I and X

pL I
- I lxp"-1 - I by Lemmas 2 and 3. Thus x PJ

- x divides
x p" - x, and by Corollary 2 to Proposition 7.1.1 , it follows that E has pd
elements and so has dimension dover 7L/p7L.

Finally, if E' is another sub field of F of dimension dover 7L/ p7L , then the
elements of E' must satisfy x" - x = 0; i.e., E' must coincide with E. 0

Let Fq denote a finite field with q elements. To illustrate Proposition 7.1.5,
consider F4096 (we shall show in Section 2 the existence of such a field).
Since 4096 = 21 2 we have the following lattice diagram :
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In Section 1 we proved that the number of elements in a finite field has the
form p", where p is a prime. We shall now show that given a number p" there
exists a finite field with p" elements. To do this we shall need some results
from the theory of fields that connect our problem with the existence of
irreducible polynomials. Then we shall prove a theorem going back to
Gauss (again!) that shows that :l/p:l[x] contains irreducible polynomials
of every degree.

Let k be an arbitrary field and j '(x) be an irreducible polynomial in k[x] .
We then have

Proposition 7.2.1. There exists afield K containing k and an element ex E K such
that f(a.) = O.

PROOF. We proved in Chapter 1 that k[x] is a principal ideal domain. It
follows that (f(x» is a maximal ideal and thus k[x]/(f(x» is a field. Let
K' = k[x] /(f(x» and let ¢ be the homomorphism that maps k[~] onto K'
by taking an element to its coset modulo (f(x». We have the diagram

k[x] ~ K'

I I
k ~ ¢(k)

¢(k) is a subfield of K'. We claim that it is isomorphic to k. It is enough to
show that ¢ restricted to k is one to one. Let a E k. If ¢(a) = 0, then a E (f(x» .
If a # 0, it is a unit and cannot be an element of a proper ideal. Thus a = 0,
as was to be shown.

Since ¢ is an isomorphism of k we may identify k with ¢(k). When this is
done we relabel K' as K.

Let ex be the coset of x in K . Then 0 = ¢(f(x» = I(¢(x» = f(a) ; i.e., a
is a root ofI(x) in K. 0

We denote the field K constructed in the proposition by k(a.). The following
proposition about k(cx) will be useful.

Proposition 7.2.2. The elements I, ex, a2
, • •• , ex"- I are a vector space basis for

k(a) over k, where /I is the degree off(x) .

The proof of this proposition is the same as that of Proposition 6.1.8 and
its corollary. One replaces Q by k and the complex number a of that proposi
tion by the above a.

To turn the matter around, the proposition shows that if we want to find
a field extension K of k of degree n, then it is enough to produce an irreducible
polynomialj(x) E k[x] of degree n.
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In ~/p~[x] there are finitely many polynomials of a given degree. Let Fix)
be the product of the monic irreducible polynomials in ~/p~[x] of degree d.

Theorem 2

x'" - x = nFix).
din

PROOF. First notice that if f(x) divides x'" - x, then f(X)2 does not divide
x p

" - x. This follows since if x'" - x = f(X)2 g(X) we obtain

- 1 = 2f(x)f'(x)g(x) + f(X)2 g'(X)

by formal differentiation. This is impossible since it implies thatf(x) divides 1.
It remains to prove that iff(x) is a monic irreducible polynomial of degree

d, thenf(x)lxP" - x iffdln.
Consider K = ~/p~(rx), where rx is a root of/(x), as in Proposition 7.2.2.

It has dimension d over ~/p~ and thus pd elements. The elements of K satisfy
x Pd - x = O.

Assume that x'" - x =f(x)g(x). Then rx p
" = rx. If btrxd

-
t + b2rx

d- 2 +
.. . + b, is an arbitrary element of K, then

(btrxd - t + .. . + bd)P" = bt(rxP")d-t + ... + bd = btrxd
- t + .. . + bd·

Hence the elements of K satisfy x p
" - x = O. It follows that x'" - x divides

x'" - x, and by Lemmas 2 and 3 of Section 1 d divides n.
Assume now that din. Since rxP• = a and f(x) is the monic irreducible

polynomial for rx, we havef(x)lxPd
- x. Since din we have x Pd - x/xp

" - x
again by Lemmas 2 and 3 of Section 1.Thusf(x)lx P" - X. 0

Let N; be the number of monic irreducible polynomials of degree d in
~/p~[x]. Equating the degrees on both sides of the identity in the theorem
yields

Corollary 1. pn = ~In dNd'

Corollary 2. Nn = n - t ~In J1(n/d)pd.

PROOF. Apply the Mobius inversion formula (Theorem 2 of Chapter 2) to the
equation in Corollary 1. 0

Coronary 3. For each integer n ;?: 1, there exists an irreducible polynomial of
degree n in ~/p~[x] .

PROOF. Nn = n- t(pn - . . . + pJ1(n» by Corollary 2. The term in parentheses
cannot be zero since it is the sum of distinct powers of p with coefficients 1
and -1. 0

Summarizing, we have

Theorem 3. Let n ;?: 1 be an integer and p be a prime. Then there exists afinite
field with pn elements.
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In Chapter 6 we proved the law of quadratic reciprocity using Gauss sums
and the elements of the theory of algebraic numbers. We shall now give an
exceptionally short proof along the same lines using the theory of finite fields.

Let p and q be distinct odd primes. Since (p , q) = 1 there is an integer
II (for example, p - I) such that q" == I (p). Let F be a finite field of dimension
n over 7l./q71.. Then F* is cyclic of order q" - 1. Let y be a generator of F*
and set A. = ylq .. - I l/V. Then A. has order p. Define '0 = Ir:01 (t/p)A.°f

, where
a E 7l.. The element '0 of F is an analog of the quadratic Gauss sums intro
duced in Chapter 6. Set, 1 = r. Then the proofs of Propositions 6.3.1 and
6.3.2 can be used to show that

(I) '0 = (a/p), .
(2) ,2 = (_ I)IV- 1)/2 p.

In relation 2, p is the coset of p in 7l./q71.. Let p* = (_I)IV - 1)/2 p. Then
relation 2 can be written as ,2 = p*. This relation implies that (p*/q) = 1
iff, E 7l./q71. . By Corollary 1 to Proposition 7.1.1, this is true iff ,q = r. Now ,

By relation 1 we have 'q = (q/p)r. Thus t" = r iff (q/p) = 1.
We have proved that

This is the law of quadratic reciprocity.
A proof that (2/q) = ( _I)lq2- Il /S can be given using the same technique.

In Chapter 6 we gave Euler's proof that (2/q) = 1 if q == 1 (8). If q ¥= 1 (8), it
is nevertheless true that q2 == 1 (8). In this case one can carry through the
proof working in a finite field F ofdimension 2 over 7l. /q71.. We leave the details
to the reader.

NOTES

The first systematic account of the theory of finite fields is found in Dickson
[25], although E. Galois had axiomatically developed a number of their
properties much earlier in his note "Sur la theorie des nornbres " [33]. As
the existence of a finite field with p" elements is equ ivalent to the existence of
an irreducible polynomial of degree II in the ring F[x] we must include Gauss
once again as a founder. In his paper" Die Lehre von den Reste " he derives
the formula we have given for the number of irreducibles of degree n (see
[34]).
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The use of finite fields to give a proof of quadratic reciprocity has been
observed by a number of mathematicians, e.g., Hausner [43] and Holzer
[45, pp. 76- 78].

Our treatment of finite fields throughout this book is much more elemen
tary than is usual in modern times. Most treatments first develop the full
Galois theory of fields and apply the general results of that theory to the
special case of finite fields. This is done in A. Albert's compact book [I].
The advantage of Albert's book for those readers already familiar with the
theory of fields is that he discusses finite fields extensively in his last chapter
and provides a very long bibliography on the subject. Many interesting
references are provided.

EXERCISES

1. Use the method of Theorem I to show that a finite subgroup of the multiplicative
group of a field is cyclic.

2. Let Rand C be the real and complex numbers, respectively. Find the finite subgroups
of R* and C* and show directly that they are cyclic.

3. Let F be a field with q elements and suppose that q == I (n). Show that for a E F*
the equation x" = a has either no solutions or n solutions.

4. (continuat ion) Show that the set of a E F* such that x" = a is solvable is a sub
group with (q - I) /n elements.

5. (continuation) Let K be a field containing F such that [K: F] = n. For all a E F*
show that the equation x" = a has n solutions in K. [Hint: Show that q" - 1 is
div isible by n(q - I) and use the fact that aq

- I = 1.]

6. Let K :;:) F be finite fields with [K : F] = 3.Show that ifa E F is not a square in F, it is
not a square in K.

7. Generalize Exericse 6 by showing that if a is not a square in F, it is not a square in
any extension of odd degree and is a square iri every extension of even degree.

8. In a field with 2"elements what is the subgroup of squares?

9. If K :;:) F are finite fields, IFI = q, a E F, q == 1 (n), and x" = a is not solvable in F,
show that x" = a is not solvable in K if (n, [K : F]) = 1.

10. Let K :;:) F be finite fields and [K: F] = 2. For pE K show that pl ... q E F and more
over that every element in F is of the form pi + q for some pE K.

11. With the situation being that of Exercise 10suppose that a E F has order q - I. Show
that there is apE K with order q2 - 1 such that pi +q = a.

12. Use Proposition 7.2.1 to show that given a field k and a polynomialf(x) E k[ x] there
is a field K :;:) k such that [K : k] is finite and f( x) = (x - al)(x - a2) · · . (x - IX")
in K[x].

13. Apply Exercise 12 to k = 7L/p7L and f(x) = x P" - x to obtain another proof of
Theorem 2.



Exercises 87

14. Let F be a field with q elements and n a positive integer. Show that there exist
irreducible polynomials in F[x] of degree n.

15. Let x" - IE F[x], where F is a finite field with q elements. Suppose that (q, n) = I.
Show that x" - 1 splits into linear factors in some extension field and that the least
degree of such a field is the smallest integer J such that ql == I (n).

16. Calculate the monic irreducible polynomials of degree 4 in 1/21[x].

17. Let q and p be distinct odd primes. Show that the number of monic irreducibles of
degree q in 1/p1[x] is q- I(p9 - p).

18. Let p be a prime with p == 3 (4). Show that the residue classes modulo p in l[i] form a
field with p2 elements.

19. Let F be a finite field with q elements. IfJ(x) E F[x] has degree r, put IJ I = qt. Verify
the form al identity L1IJ I-' = (1 - ql-.)-l. The sum is over all monic polynomials.

20. With the notation of Exercise 19 let d(J) be the number of monic divisors of J and
a(J) = Llllgl , where the sum is over the monic divisors of J.Verify the following
identities :
(a) Ld(J)IfI -'=(l-ql-3)-2.
(b) L a(J)lfr' = (I - ql-S)-l(l _ q2-s)-I .

21. Let F be a field with q = p" elements. For a E F set J(x) = (x - a)(x - aP) x
(x - (Xp2) (x - apn' ') .ShowthatJ(x) E 1/p1[x]. In particular,« + aP+ .. .+e::'
and (XaPaP2 apn'

1 are in 1 /p1.

22. (continuation) Settr(a) = a + aP+ ... + apn" . Prove that
(a) tr(a) + tr(f3) = tr(a + f3) .
(b) tr(aa) = a tr(a) for a E 1 /p1 .
(c) There is an a E F such tha t tr(a) #- O.

23. (cont inuation) For a E F consider the polynomial xP - x - a E F[x] . Show that
this polynomial is either irreducible or the product of linear factors. Prove that the
latter alternative holds iff tr(a) = O.

24. Suppose that J(x) E 1 /p1[x] has the property that J(x + Y) = J(x) +
J(y) E 1 /p1[x, y]. Show that J(x) must be of the form aox + a1xP+ a2xP2+
' " + arnx

pm
•



Chapter 8

Gauss and Jacobi Sums

In Chapter 6 we introduced the notion of a quadratic
Gauss sum. In this chapter a more general notion of
Gauss sum will be introduced. These sums have many
applications. They will be used in Chapter 9 as a tool
in the proofs of the laws of cubic and biquadratic reci
procity. Here we shall consider the problem of counting
the number ofsolutions ofequations with coefficients in a
finite field. In this connection, the notion ofa Jacobi sum
arises in a natural way. Jacobi sums are interesting in their
own right, and we shall develop some of their properties.

To keep matters as simple as possible, we shall confine
our attention to the finite field 1l./p1l. = Fp and come back
later to the question of associating Gauss sums with an
arbitrary finite field.

§l Multiplicative Characters

A multiplicative character on Fp is a map X. from F; to the nonzero complex
numbers that satisfies

x(ab) = x(a)x(b) for all a, b E F; .
The Legendre symbol, (alp), is an example of such a character if it is

regarded as a function of the coset of a modulo p.
Another example is the trivial multiplicative character defined by the

relation e(a) = 1 for all a E F; .
It is often useful to extend to domain of definition of a multiplicative

character to all of Fp- If X # s, we do this by defining X(O) = O. For e we
define e(O) = 1. The usefulness of these definitions will soon become ap
parent.

Proposition 8.1.1. Let Xbe a multiplicative character and a E F;. Then

(a) x.(I) = 1.
(b) x(a) is a (p - l)st root of unity.
(c) x(a- I ) = x(a)-I = x(a).

88
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[In part (a) the 1 on the left-hand side is the unit of Fp, whereas the Ion
the right-hand side is the complex number 1. The bar in part (c) is complex
conjugation.]

PROOF . X(I) = X(1 . I) = x(l)x(l). Thus x(l) = 1, since X(I) t= O.
To prove part (b), not ice that a'": 1 = 1 implies that I = x(l) = x(aP - I) =

x(a)p-I.
To prove part (c), notice that 1 = x(I) = x(a-1a) = x(a-I)x(a). This

shows that x(a-I) = x(a)-I . The fact that x(a)-I = x(a) follows from the
fact that x(a) is a complex number of absolute value 1 by part (b). 0

Proposition 8.1.2 . Let Xbea multiplicative character. IfX t= s, then LI X(t) = 0,
wherethe sum is over all t E Fpo IfX = e, the valueofthe sum is p.

PROOF. The last assertion is obvious, so we may assume that X t= e. In this
case there is an a E F; such that x(a) t= 1. Let T = L I X(t). Then

x(a)T = L x(a)x(t) = L x(at) = T .
I I

The last equality follows since at runs over all elements of F p as t does.
Since x(a)T = T and x(a) t= 1 it follows that T = O. 0

The multiplicative characters form a group by means of the following
defin itions. (We shall drop the use of the word multiplicative for the re
mainder of this chapter.)

(1) If Xand ..1. are characters, then XA is the map that takes a E F; to x(a)A(a).
(2) If X is a character, X- 1 is the map that takes a E F; to x(a) - I .

We leave it to the reader to verify that XA and X-I are characters and
that these definitions make the set of characters into a group. The identity
of this group is, of course, the trivial character e.

Proposition 8.1.3. The group of characters is a cyclic group of order p - 1.
Ifa E F; and a t= 1, then there is a character Xsuch that x(a) t= 1.

PROOF . We know that F; is cyclic (see Theorem 1 of Chapter 4). Let g E F;
be a generator. Then every u E F; is equal to a power of g. If a = g' and X
is a character, then x(a) = X(g)'. This shows that X is completely determined
by the value X(g). Since X(g) is a (p - l)st root of unity, and since there are
exactly p - 1 of these , it follows that the character group has order at most
p - 1.

Now define a function ..1. by the equation A(gk) = e2nitk/tp- 1". It is easy
to check that ..1. is well defined and is a character. We claim that p - 1 is the
smallest integer n such that A." = e. If ..1." = s, then A"(g) = e(g) = 1.However,
A"(g) = A.(g)" = e2nil" /tP- 1l I. It follows that p - 1 divides n. Since AP- lea) =
A(a)p-' = A(ap -

t ) = ..1.(1) = I we have Ap-t = e. We have established that
the characters t;, ..1. , ..1. 2, • • • , AP - 2 are all distinct. Since by the first part of the
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proof there are at most p - 1 characters, we now have that there are exactly
p - I characters and that the group is cyclic with Aas a generator.

If a E F; and a # 1, then a = g' with p - 1.( I. Let us compute l(a).
l(a) = l(g)/ = e2 n i lll tp- II) # I. This concludes the pro of. 0

Corollary. If a E F; and a # 1, then I I x(a) = 0, where tire summat ion is
over all characters.

PROOF. Let S = Ix x(a). Since a # 1 there is, by the theorem, a character A
such that A(a) # 1. Then

A(a)S = I A(a)x(a) = I l 1.(a) = S.
1. 1.

The final equality holds since AX runs over all characters as Xdoes. It follows
th at (l(a) - I)S = 0 and thus S = O. 0

Ch aracters are useful in the study of equat ions . To illustr ate thi s, con
sider the equation x" = a for a E F;. By Proposition 4.2.1 we know that
solut ions exist iff alP- I lid = I, where d = (fl, P - I), and that if a solution
exists , then there are exactly d solutions. For simplicity, we sha ll assume that
n div ides p - I. In th is case d = (n, p - I) = n.

We shall now derive a criterion for the solution of x" = a using characters.

Proposition 8,1.4. If a E F; , n ip - 1, and x" = a is not solvable, then there is a
character Xsuch that

(a) Xn = e.
(b) x(a) # I.

PROOF. Let 9 and A be as in Proposition 8.1.3 and set X = A(P- Il /n. Then
. X(g ) = A(P- 1)ln(g) = A(g)IP - I )/n = e2ni/n. Now a = g' for some I, and since
x" = a is not sol vable , we must have n.(l. Then x(a) = X(g)' = e27ti(lln) # I.
Finally, Xn = AP- 1 = e. 0

For a E F P' let Nix" = a) denote the number of solutions of the equat ion
x" = a. If nip - 1, we have

Proposition 8.1.5. N(x" = a) = Ix":' x(a) where thesum is over all characters
of order dioidinq II .

PROOF. We claim first that there are exactly n characters of order dividing n.
Since the value of X(g ) for such a character must be an nth root of unity, there
are at most n such characters. In Proposit ion 8.1.4, we found a character
X such that 1.(g) = e2niln. It follows that f., X, X2,... , X" - 1 are II distinct
characters of order dividing n.

To prove the formula, notice that x" = 0 has .one solu t ion , namel y,
x = O. Now I x" :' x(O) = I, since e(O) = I and 1.(0) = 0 for 1. # f..
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Now suppose that a '" 0 and that x" = a is solvable; i.e., there is an
element b such that b" = a. If Xn = e, then x(a) = X(bn) = X(b)"= Xn(b) =
r.(h) = I. Thus Lx"= , x(a) = n, which is Nix" = a) in this case.

Finally, suppose that a '" 0 and that x" = a is not solvable. We must
show that Ix"=' x(a) = O. Call the sum T. By Proposition 8.1.4, there is a
character p such that pea) '" 1 and p" = e. A simple calculation shows that
p(a)T = T (one uses the obvious fact that the characters of order dividing n
form a group) . Thus (p(a) - l)T = 0 and T = 0, as required. 0

As a special case, suppose that p is odd and that n = 2. Then the theorem
says that N(x 2 = a) = 1 + (alp), where (alp) is the Legendre symbol. This
equat ion is easy to check directly.

In Section 3 we shall return to equations over the field Fp'

§2 Gauss Sums

In Chapter 6 we introduced quadratic Gauss sums. The following definition
generalizes that notion.

Definition. Let Xbe a character on Fp and a E Fp : Set ga(X) = I, x(rW',where
the sum is over all t in Fp ' and ( = e2ni

/
p

• ga(l.) is called a Gauss sum on Fp

belonging to the character 1...

Proposition 8.2.I. If 1I '" 0 and X. '" e. we have g.,(x) = x(a - l)g I (1.). If a '" 0
and X. = I-: we haveYit:) = O. If a = 0 and X. # s, we have go(X) = O. If a = 0
and 1. = 1-:, we have go(c) = p.

PROOF. Suppose that a '" 0 and that X '" 1-:. Then

x(a)gix) = 1.«(/) I x(tW' = Ix(atW' = Yt(X)·
I I

This proves the first assertion.
If a '" 0, then

Ya( l-:) = I f:(tW' = I (al = O.
I I

We have used Lemma 1 of Chapter 6.
To finish the proof notice that go(X) = I, X(t)(OI = I, x(t) . If X = s,

the result is p; if X '" r., the result is zero by Proposition 8.1.2. 0

From now on we shall denote g\(X) by g(X). We wish to determine the
absolute value of g(x). This can be done fairly easily by imitating the proof
of Proposition 6.3.2.
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Proposition 8.2.2. If X #- f., then Ig(l. )1= vip.

PROOf. The idea is to evaluate the sum La gil.){jJjJ in two ways.

If a #- 0, then by Proposition 8.2.1, gil.) = x(a - 1)g(x) = x(a)g(x) and

gb) = x(a-1)g(x)· Thus ga(X)giX) = z(a -1)x(a)g(x)g(X) = Ig(xW. Since
go(l.) =°our sum has the value (p - I) Ig(xW.

On the other hand,

giX)ga(X) = L L X(x)Z(y)("x-ay
•

x }'

Summing both sides over a and using the corollary to Lemma I of
Chapter 6 yields

L ga(X)gix) = I I x(x)x(y)c5(x , y)p = (p - I)p.
a x y

Thus (p - I) Ig(xW = (p - I)p and the result follows. 0

The relation of the above result to Proposition 6.3.2 is made clearer by the
following considerations.

What is the relation between g(X) and g(X) (X is the character that takes a

to x(a) ; i.e., it coincide with the character X-I) ?

g(;() = L X(t)C' = x( -I) I z( -t)C' = x( -I)g(i)·, ,
We have used the fact that X( -1) = X( -I), which is obvious since x( -I) =
± 1. Thus the fact that Ig(x) 12 = p can be written as g(x)g(i) = 1.( - I )p.
If Xis the Legendre symbol, this relation is precisely the result in Proposition
6.3.2.

§3 Jacobi Sums

Consider the equation x 2 + y2 = lover the field F p : Since F p is finite,
the equation has only finitely many solutions. Let N(x2 + y2 = I) be that
number. We would like to determine this value explicitly.

Notice that

N(x2 + y2 = 1) = L N(x2 = a)N(y2 = b),
a+b=1

where the sum is over all pairs a, b E Fp such that a + b = 1.Since N(x2 = a)
= I + (alp), we obtain by substitution that

N(x2 + y2 = I) = p + L (~) + L (~) + L (~)(~).
. a P b P a+b= I P P
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The first two sums are zero , so we are left with the task of evaluating the
last sum. We shall see shortly that its value is -( _l)(P- 11/2. Thus
N(x 2 + y2 = I) is p - 1 if p == 1 (4) and p + 1 if p == 3 (4). The reader is
invited to check this result numerically for the first few primes.

Let us go a step further and try to evaluate N(x 3 + l = I). As before
we have

N(x 3 + y3 = I) = L N(x3 = a)N(y3 = b).
a+b=1

If p == 2 (3), then N(x 3 = a) = 1 for all a since (3, p - I) = I. It follows
that N(x 3 + y3 = I) = p in this case. Assume now that p == I (3). Let
X i= e be a character of order 3. Then X2 is a character of order 3 and X2 i= e.
Thus I:, X' and / are all the characters of order 3, henceforth called cubic
characters. By Proposition 8.1.5 we have N(x 3 = a) = 1 + x(a) + /(a).
Thus

2 2

N(x 3 + l = I) = L Li(a) LXi(b)
a+b= I i=O i=O

The inner sums are similar to the sum that occurred In the analysis of
N(x 2 + y2 = I).

Definition. Let Xand 1 be characters of Fp and set J(X, 1) = La+b= I x(a)l(b).
J(X, 1) is called a Jacobi sum.

To complete the analysis of N(x 2 + y2 = I) and N(x 3 + y3 = I) we
need to obtain information on the value of Jacobi sums. The following
theorem not only supplies this information, but shows as well a surprising
connection between Jacobi sums and Gauss sums.

Theorem 1. Let Xand 1 be nontrivial characters. Then

(a) J(e, e) = p.
(b) J(e, X) = o.
(c) J(X,X- l ) = -X(-I).
(d) If xl i= s, then

J(' 1) = g(X)g(l)
X, g(X1) .

PROOF. Part (a) is immediate, and part (b) is an immediate consequence of
Proposition 8.1.2.
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To prove part (c), notice that

J(x, x- I
)= I x(a)[ I(b) = I x(~) = I X(_a_) .

a+b=1 a+b=1 b a~1 1 - a
b~O

Set a/(1 - a) = c. If c i= -I, then a = c/(l + c). It follows that as a
varies over Fp ' less the element I, that c varies over Fp ' less the element -1.
Thus

J(X,[I)= I x(c) = -x(-I).
c ~ - 1

To prove part (d), notice that

g(x)g(,l) = (~X(XK')(~ ,l(YW)

= I x(x),l(yW +Y
x.}'

= ~ C+~=IX(X),l(y))C. (1)

If I = 0, then Ix+y=o X(x),l(y) = I xx(x ),l( - x) = ,l(-1 ) I xx,l(x) = 0,
since X,l i= s by assumption.

If t i= 0, define x' and y' by x = IX' and y = ty' . If X + Y = t , then
x ' + y' = 1. It follows that

I x(x),l(y) = I x(tx' ),l(ty' ) = x,l(t)J(x, ,l).
x +Y = I x' + y ' = 1

Substituting into Equation (1) yields

g(x)g(,1.) = L X,l(t)J( X, ,1.K' = J(X, ,1.)g(X,1.)·
I

o

Coronary. Ifx,,1., and X,1. are not equal to e, then IJ(x, ,1.) 1= ./p.

PROO F. Take the absolute value of both sides of the equation in pa rt (d) and
use Proposition 8.2.2. 0

We now return to the analysis of N(x 2 + y2 = 1) and N( x 3 + y3 = I).
In the former case, it was necessary to evaluate the sum Ia +b= 1 (alp) x
(blp). Case (c) of Theorem 1 is appl icable and gives the result -(-l ip) =
-( _1)(P- 1l/ 2 , as was stated earl ier.

In the case of N(x3 + y3 = 1) we had to evaluate the sums
Ia +b= I i (a)xi(b), where X is a cubic character. App lying the theorem leads
to the result
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Since -I = (- 1)3 we have X(-1) = l( -1) = 1. Also notice that
X2 = X- I = X. Thus

N(x 3 + y3 = 1) = p - 2 + 2 Re leX, X).

This result is not as nice as the result for N(x 2 + y2 = 1), since we do
not know leX, X) explicitly. Nevertheless, by the corollary to Theorem 1

we know that Il(X, x)1 = JP so we have the estimate

IN(x 3 + y3 = 1) - p + 21:::;; 2JP.

If we write N p for the number of solutions to x 3 + y3 = 1 in the field
F p ' then the estimate says that N p is approximately equal to p - 2 with

an ..error term" 2JP. This shows that for large primes p there are always
many solutions.

If p == I (3), there are always at least six solut ions since x 3 = 1 and
i = 1 have three solutions each and we can write 1 + 0 = 1 and 0 + 1 = I.
For p = 7 and 13 these are the only solut ions. For p = 19 other solutions
exist ; e.g., 33 + 103 == 1 (19). These "nontrivial" solutions exist for all

primes p ~ 19since it follows from the estimate that N p ~ p - 2 - 2JP > 6
forp~19.

Using Jacobi sums we can easily extend our analysis to equations of the
form ax" + by" = I, but we shall not go more deeply into this matter now.

The corollary to Theorem 1 has two immediate consequences of con
siderable interest.

Proposition 8.3.1. If p == 1 (4), then there exist integers a and b such that
a2 + b2 = p.

If p == 1 (3), then there exist integers a and b such that a2 - ab + b2 = p.

PROOF. If P == 1 (4), there is a character X of order 4 (if ..1. has order p - 1, let

X = ..1.(p- t 1/
4

) . The values of X are in the set {I, -I, i, - i}, where i = J=1.
Thus leX, X) = Ls+f= I x(s)x(t) E lei] (see Chapter I, Section 4). It follows
that lex, X) = a + bi. where a, b e Z; thus p = Il(X, xW = a2 + V

If p == 1 (3), there is a character X of order 3. The values of X are in the
set {I, (I), w 2}, where (U = e2nif3 = (-I + N)/2. Thus leX, X) E lew].
As above, we have l(;(, X) = a + bco, where a, b e Z and p = Il~X, x)1 2 =

la + bwl2 = a2 - ab + b2. 0

The fact that primes p == 1 (4) can be written as the sum of two squares
was discovered by Fermat. It is not hard to prove that if a, b > 0, a is odd and
b is even, then the representation p = a 2 + b2 is unique .

If p == I (3), the representation p = a2
- ab + b2 is not unique even if we

assume that a, b > O. This can be seen from the equations

a2 - ab + b2 = (b - a? - (b - a)b + b2 = a2 - a(a - b) + (a - b)2.

However, we can reformulate things so that the result is unique. If p = a2


ab + b2, then 4p = (2a - b)2 + 3b2= (2b - a)2+ 3a2= (a + b)2+ 3(a - b)2.
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We claim that 3 divides either a, b, or a-b. Suppose that 3,(a and that
3,(b. If a == 1 (3) and b == 2 (3), or a == 2 (3) and b == 1 (3), then a2 - ab +
b2 == 0 (3), which implies that 31p, a contradiction. Thus 31a - b, and we
have

Proposition 8.3.2. If p == 1 (3), then there are integers A and B such that
4p = A2 + 27B2.In this representation of4p, A and Bare uniquely determined
up to sign.

PROOF . The proof of the uniqueness is left to the Exercises. 0

Theorem 1 together with a simple argument leads to a further interesting
relation between Gauss sums and Jacobi sums.

Proposition 8.3.3. Suppose that p == 1 (n) and that X is a character of
order n > 2. Then

g(X)" = X(-1)pJ(X, X)J(X, X2) . . . J(X, x"-2).

PROOF . Using part (d) of Theorem 1 we have g(X)2 = J(X, X)g(X 2). Multiply
both sides by g(X) and we get g(X)3 = J(X, 'X)J(X, X2)g(X3). Continuing in this
way shows that

g(X)"-1 = J(X, X)J(X, X2) . .. J(X, X"-2)g(X"-I). (2)

Now X"-I = X-I = X. Thus , as we have seen, g(X)g(X"-I) = g(X)gW =
X( - I)p . The result follows upon multiplying both sides of Equation (2)
by g(X). 0

Corollary. IfX is a cubic character, then

g(X)3 = pJ(X, X).

PROOF. This is simply a special case of the proposition and the fact that
X(-I) = X«-1)3) = 1. 0

Using this corollary, we are in a position to analyze more fully the complex
number J(X, X) that occurred in the discussion of N(x3 + y3 = 1). We
have seen that J(X. X) = a + bio, where a, b E Z and w = e2Ki

/
3 =

(-1 +~)/2.

Proposition 8.3.4. Suppose that p == 1 (3) and that X is a cubic character. Set
J(X, X) = a + bw as above. Then

(a) b == 0 (3).
(b) a == -I (3).

PROOF . We shall work with congruences in the ring of algebraic integers as in
Chapter 6:
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Since X(O) = 0 and X(t)3 = 1 for t#-O we have LI x(t)3e' = L,*o (31
= -1. Thus

g(X)3 = pJ(X, X) == a + bt» == -1 (3).

Working with X instead of Xand remembering that g(X) = g(X) we find that

g(X)3 = pJ('j, X) == a + biii == -1 (3).

Subtracting yields b(w - iii) == 0 (3), or bJ="3 == 0 (3). Thus - 3b2 ==
0(9) and it follows that 31 b. Since 31 b and a + bt» == - I (3), we must have
a == -1 (3), which completes the proof. 0

Corollary. Let A = 2a - band B = b13. Then A == 1 (3) and

4p = A 2 + 27B 2
•

PROOF. Since J(X, X) = a + bt»and IJ(X, xW = p we have p = a2 - ab + V
Thus 4p = (2a - b)2 + 3b2 and 4p = A 2 + 2782

•

By Proposition 8.3.4,31 b and a == - 1 (3). Therefore, A = 2a - b == 1 (3).
o

We are now ready to prove the following beautiful theorem due to Gauss.

Theorem 2. Suppose that p == 1 (3). Then there are integers A and B such that
4p = A 2 + 278 2

• If we require that A == 1 (3), A is uniquely determined,
and

N(x3 + y3 = 1) = p - 2 + A.

PROOF. We have already shown that N(x3 + l = 1) = p - 2 + 2 Re J(X, X).
Since J(X, X) = a + bt» as above, we have Re J(X, X) = (2a - b)/2. Thus
2 Re J(X, X) = 2a - b = A == 1 (3). Uniqueness is left as an exercise. 0

Let us illustrate this result with two examples, p = 61 and p = 67.
4 .61 = 12 + 27 ·32. Thus the number of solutions to x 3 + y3 = 1 inF6 1

is 61 - 2 + 1 = 60.
Now, 4 ·67 = 52 + 27 .32

• We must be careful here : since 5;j= 1 (3)
we must choose A = - 5. The answer is thus 67 - 2 - 5 = 60, which by
coincidence (?) is the same as for p = 61.

§4 The Equation XII + yll = 1 in Fp

We shall assume that p == 1 (n) and investigate the number of solutions to
the equation x" + y" = lover the field F p' The methods of Section 3 are
directly applicable.
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We have
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Nix" + y. = I) = I Nix" = u)N(y· = b).
a+b=l

Let X be a character of ord er n. By Proposition 8.1.5

. - I

N (x· = a) = I i (a).
i = O

Combining these results yields

n - 1 n- 1

N( x· + y. = I) = I I l(xi , i )·
i =O i = O

Theorem 1 can be used to est imate th is sum. When j = j = 0 we have
J(Xo, XO) = Jt e, c) = p. When j + j = n, Xi = (Xi) -l so that JCI/ , i) =
- xi( - I). The sum of these terms is - Ii:: xi( - I). Notice that Ii:~ Xi( - I)
is n when - 1 is an nth power and zero otherwise. Thus the cont ribution of
these terms is 1 - 15. ( - 1)n, where 15.( - I) has the obv ious mean ing. Finally, .
if i = 0 andj # 0 or i # 0 and j = 0, then l V ,Xi ) = o.Thus

Ntx" + y" = I) = p + 1 - b.( - I) n + IJ(Xi, Xi ).
t , j

The sum is over indices j a nd j between I and n - 1 subject to the con 
dition that i + j # II. There arc (n - 1)2 - (n - I) = (n - I )(n - 2) such

terms and they all have absolute value JP. Thus

Proposition 8.4.1.

IN(x· + y. = I ) + 15.(-I )n - (p + 1)1~ (n - 1)(n - 2)JP.

The term 15.( - I)n will be interpreted later as the number of points" at
infinity" on the curve x" + y. = I.

For large p the above estimate shows the existence of many nontrivial
solutions.

§5 More on Jacobi Sums

Theorem 1 can be generalized in a very fruitful manner. First we need a
definit ion.

Definition. Let Xl' X2 ' . ' .' X, be cha racters on Fp • A Jacobi sum is defined by
the formula

11 + . . . + 1,== 1
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Notice that when I = 2 this reduces to our former definition of Jacobi
sum.

It is useful to define another sum, which will be left unnamed :

JO(X1"'" X,) = L XI(t l)X2(t2) · ·· XI(t/).
I , + . . . +1,=0

Proposition 8.5.1.

(a) Jo(e, s, . . . , e) = J(e,e, . . , , e) = pl- I.

(b) If some but not all of the Xi are trivial, then J o(X I' X2 , ... , X,) = J(X I>

X2, . .. , XI) = 0.
(c) Assume that X, i= e. Then

( {
O, ifXIX2 "'XIi=e,

J 0 XI' X2, .. . , X,) =
XI( -l)(p - I)J(XI' X2"'" XI-I), otherwise.

PROOF. If t l, t 2, ... , t/_ . are chosen (arbitrarily) in Fp , then tl is uniquely
determined by the condition t1+ l z+ .. .+(,_ I+ C, =0. Thus Jo(e, e, . . . •e)=
p'- '. Similarly for J(e, s, ... , e).

To prove part (b). assume that XI' X2' . .. . X. are nontrivial and that
X.+I = X.+2 = ... = X, = e. Then

L X.«(I)X2(t 2) · ·· X/(t/)
II + .. . +1,=0

' •• ;2 • . • .• r, - 1

= p'-'-I(~ X.(tl))(~ Xi(2)) '" (~X.(t.)) = 0.

We have used Proposition 8.1.2, Thus JO(XI.X2 , ''''X/) = 0. Similarly for
J(X•• ··· , X,)·

To prove part (c), notice that

Jo(X., X2'" . ,X,) = ~C+ . .. +~_ , = _.X.(t I) ' . . XI-I(tl-I))XI(S)

Since x/ i= e, X/(O) = 0, so we may assume that s i=°in the above sum.
If s i= 0, define t;by t, = -SC"~ Then

L XI(C I) " ·XI-.(t'-I)
II + " '+11-1 =-5

= XIX2 . .. XI-I( -s) L XI(t'.) · ,· XI-I(t'-I)
ti+ "' +lr - t = 1

= XIX2' " XI-I( -S)J(XI"'" XI-I)'

Combining these results yields

JO(XI, X2" '" Xl) = X1X2 ' " XI-I( - I )J(XI" ' " X,- d L X1X2 '" XJ(S).
• "0
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The main result follows since the sum is zero if XIX2 . . . X, =I e and p - 1
ifXIX2'" X, = e. 0

Parts (a) and (b) of Proposition 8.5.1 generalize parts (a) and (b) of
Theorem 1. Part (d) of Theorem I can be generalized as follows.

Theorem 3. Assume that Xl' X2' . . . , X, are nontrivial and also that XIX2 . .. X, is
nontrivial. Then

g(XI)g(X2) ' " g(x,) = J(XI' X2"'" X,)g(XIX2 ' " X,)·

PROOF. Let !/J : Fp --> C be defined by !/J(t) = C·Then ~I(t I + (2) = !/J(t I)!/J(t2),
and g(X) = I X(t)!/J(t). The introduction of!/J is for notational convenience.

g(XI)g(X2) ' " g(X,)

= (~XI(tl)!/J(tl») ' " (~X,(t,)!/J(t,»)

= ~ C+12+~ +lr=/I(tl)X2(t2) ' " X,(t,»)!/J(S).

If s = 0, then by part (c) of Proposition 8.5.1 and the assumption that
XI '" X, =I e

( 1 + · ··+ t r=O

If s =I 0. the substitution t, = st; shows that

I XI (t I) . . . X,(t,) = XIX2 . . . X,(s)J(X I' X2, ' .. ,X,) ·
' 1+ ... +t,.=5

Putting these remarks together, we have

g(XI) ' " y(X,) = J(XI' X2 " ' " X,) I XI X2 . .. X,(s)!/J(s)
s;OO

o

Corollary 1. Suppose that XI' X2 ,"" X, are nontrivial and that XIX2 ' " X, is
trivial. Then

g(XI )g(X2) ... g(X,) = X,(-I )pJ(x l ' X2 • . .. , X, - I)'

PRooF·g(XI)g(X2) · · · g(X,- tl = J(XI," " 1..,-I)g(XIX2· ·· X,-I) by Theorem 3.
Multiply both sides by g(X,). Since X1X2 .. . X,-I = X; I we have

o

Corollary 2. Let the hypotheses be as in Corollary 1. Then

J(XI" " 'X,) = -X,(-I)J(XI,X2, · · · .X,-I)·

[If r = 2, we set J( XI) = 1.]



§6 Applications 101

PROOF. If r = 2. this is the assertion of part (c) of Theorem 1.
Suppose that r > 2. In the proof of Theorem 3 use the hypothesis that

X1X2 ' " Xr = e. This yields

g(Xl)g(X2) . . . g(Xr) = 10(XI ' X2' ... ,Xr) + l(Xl" .. ,Xr) I ljJ(s).
s"O

Since Is ljJ(s) = 0, the sum in the formula is equal to -1. By part (c)
of Proposition 8.5.1 . we have 10(X1 • . · · • Xr) = Xr( -I)(p - l)l(Xl"' " Xr-1)'
By Corollary I, g(XI) " 'Y(Xr) = Xr(-I)pl(Xl,X2, . .. ,Xr-I)' Putting these
results together proves the corollary. 0

Theorem 4. Assume that XI ' X2' ... , Xr are nontrivial.

(a) If XIX2 . . . Xr :f. e. then

11(X1' X2 • . . . • Xr)1 = p(r- \)/2 .

(b) If XIX2 ' " Xr = s, then

110(XI ' X2' .. . • Xr)1 = (p - l)p(r/2l-1

and

11(XI> X2, " " Xr)1 = p(r/2l-l .

PROOF. IfXisnontrivial. Ig(X)1 = )p.Part (a) followsdirectly from Theorem 3.
Part (b) follows similarly from part (c) of Proposition 8.5.1 and from

Corollary 2 to Theorem 3. 0

§6 Applications

Earlier in this chapter we investigated the number of solutions of the equation
x2 + y2 = 1 in the field Fp • It is natural to ask the same question about the
equation xi + xi + .. . + x; = 1.The answer can easily be found using the
results of Section 5.

Let X be a character of order 2 (x(a) = (alp) in our earlier notation).
Then N(x2 = a) = 1 + x(a). Thus

N(xi + .. , + x; = 1) = I N(xi = al)N(xi = a2) · ·· N(x; = ar),

wherethe surn isover all r-tuplesfa., . ... ar)suchthata l + a2 + ... + ar = 1.
Multiplying out. and using Proposition 8.5.1, yields

N(xi + .. . + x; = I) = pr- I + l(X, x•. . . • X) .

If r is odd, l = X, and if r is even, Xr = e.
Suppose that r is odd. Then Theorem 3 applies and we have l(X, . .. • X) =

g(XY- I. Since g(X)2 = X( -I)p it follows thatJ(X. . .. , X) = X(_1)(r- Il/2p(r- 1)/2.
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If r is even, we use Corollary 2 to Theorem 3 and find that J(X, X, . . . , X) =
- X(-l)'/zp{'- Zl/Z . Finally, remember that X(-I) = (_l)(P-I)/Z. Thus

Proposition 8.6.1. If r ;s odd, then

N(xi + x~ + ... + x; = I) = p,-l + (_l){{'-1)/Z){{P- 1)/Z)p('- ll /Z.

If r is even, then

N(xi + x~ + ... + x; = l) = p,-I - (_l)(,/Z)(P -I)/Zlp(,/Z)-I.

The most general equation that can be treated by these methods has
the form alx'l' + azx~2 + ... + a,x~' = b, where al•. . . , a" b e Fp , and
11.lz, ... , I, are positive integers. We shall return to this subject in Section 7.
For now, we shall use Jacobi sums to give yet another proof of the law of
quadratic reciprocity.

Let q be an odd prime not equal to p, and Xthe character of order 2 on Fp

Then by Corollary 1 to Theorem 3

g(X)q+I = (_l)(P-ll/ZpJ(X, x, ...,X),

where there are q components in the Jacobi sum.
Sinceq + 1is even g(x)q+ I = (g(X)z)(q+ 1)/Z = (_l){{P-l) /Z)({q+ 1)/2).p{q+ lliZ.

Substituting into the formula we find that

(_l){{P-I)/Z)(q-1)/Zlp(q -l IiZ = J(X, X,···, X).

Now, J(X, x, . ..,X) = I X(tl)X(CZ) '" X(tq). where the sum is over all
(t l , tz •.. . ,tq) with t l + t z + ... + tq = I. If (= t l = (Z = .. . = tq, then
t = I /q , and the corresponding term of the sum has value X(I /q)q = X(q)-q =
X(q). If not all the t j are equal, then there are q different q-tuples obtained from
(t I' t z, ... ,tq ) by cyclic permutation. The corresponding terms of the sum
all have the same value. Thus

(-l){{P -I)/Z)(q - 1)/2)p(q- I)/Z == X(q) (q).

Since X(q) = (q/p) and r: I)IZ == (pjq) (q) we have

(_l){{P-l)/Z)(q -I)/Z(~) == (~) (q)

and thus

(-I){{p- Il/2l{{q-1)/2)(~) = (~) .

§7 A General Theorem

All the equations we have considered up to now are special cases of

(3)
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where al' a2, .. . , a" E F: and bE Fp • Let N be the number of solutions. Our
object is to give a formula for N and an estimate for N. The methods to be
used are identical with those already developed in the previous sections.

To begin with, we have

N = LN(x~1 = utlN(x~' = u2)" 'N(x:' = u,), (4)

where the sum is over all r-tuples (uI' u2, ". , u,) such that Li=1 aiu i = b.
We shall assume that 11 ' 12 , " . , I, are divisors of p - I, although this is

not necessary (see the Exercises) . Let Xi vary over the characters of order
dividing t; Then

Xi

Substituting into Equation (4) we get

N = L L XI(U 1)X2(U2)'" X,(u,).
XI. X2• •'" Xr 2:a,ui :::;; b

(5)

The inner sum is closely related to the Jacobi sums that we have con
sidered.

It is necessary to treat the cases b = °and b '# °separately.
If b = 0, let t, = aiui' Then the inner sum becomes

X1(a \1 )x2(a2" 1) . . . x,(a,- l)J 0(;<' I- X2' ... , X,).

Ifb '# 0, let t i = b -Iaiui ' The inner sum becomes

XIX2 . .. X,(b)XI(a\I) . . . x,(a; 1)J(XI' X2 " .. , X,).

In both cases, if Xl = X2 = .. . = X, = e, the term has the value p,-I
since J o(e, . .. ,f.) = J(r., e,. .. , s) = p'- I. If some but not all the Xi are
equal to e, then the term has the value zero. In the first case the value is zero
unless XI X2 . . . X, = f.. All this is a consequence of Proposition 8.5.1.

Putting this together with Theorem 4 we obtain

Theorem 5. If b = 0, then

N = p,-I + L Xl(a\l)xia2" I ) . .. X,(a; I)JO(XI' X2" ' " X,)·

The sum is over all r-tuples of characters XI ' X2"' " X" where xl' = s,
Xi '# f. for i = I, . . . , r, and XI X2 . .. x, = f.. If M is the number ofsuch r-tuples,
thell

If b '# 0, then

N = p,-I + LXIX2"'X,(b)Xt(a\I)' ''x,(a,-I)J(xI,X2'''''X,),

The summatioll is over all r-tuples of characters XI' " . ,x" where X: ' = e
and Xi '# e for i = I, . . . , r. If M 0 is the numberofsuch r-tuples with X11.2 . . • X,
= f., and M 1 is the numberofsuch r-tuples with XIX2 . . . X, '# s, then

IN - p' - I I ~ M 0 p(,/2 1- I + M 1p(' - 1)/2 .
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An immediate consequence ofTheorem 5 isworth noting. Leta I' a2 • . . . , a,
and b E "l.. and consider the congruence

alx'i + a2x~ + .. . + a,x~' =b (p) .

Then if p is sufficiently large, the congruence has many solutions. In
fact, the number of solutions tends to infinity as p is taken larger and larger.

NOTES

The inspiration for this chapter is the famous paper of A. WeiI [80]. The
basic relationship between Gauss sums, also known as Lagrange resolvents,
and Jacobi sums was known to Gauss [34] (unpublished), Jacobi [47],
Eisenstein [27], and Cauchy. Complete proofs of the fundamental relations
given in Proposition 8.3.3 and Theorem I were published by Eisenstein in
his paper" Beitrage zur Kreistheilung" in 1844. Eisenstein also introduced
generalized Jacobi sums (Section 5) to obtain a proof of the law of biquadratic
reciprocity (see Chapter 9).

Aside from its usefulness in obtaining the Weil -Riemann hypothesis for
certain hypersurfaces over finite fields (see Chapter II), the generalized
Jacobi sum is of importance in the theory of cyclotomy and difference sets.
For an introduction to this material , see Storer [74]. See also the difficult
but important continuation of [80] by Weil [81].

Mater ial on Gauss and Jacobi sums is scattered throughout the treatise
of Hasse [41]. He givesa systemat ic presentation in his last chapter where in
addition to developing many interesting results he shows how both types of
sum arise naturally in the theory of cyclotomic number fields. Much of the
theory in that chapter is distilled from the paper of Davenport and Hasse
[23]. The latter paper is well worth close study, but it is unfortunately of an
advanced nature and is probably inaccessible to a beginner. Somewhat less
difficult are the more recent papers of K. Yamamoto [82] and A. Yokoyama
[83]. One should also consult the classical treatise of P. Bachman [5].

More recently B. C. Berndt and R. J. Evans have studied Gauss, Jacobi,
and other classical character sums attached to characters of order 6, 8, 12,24.
For their interesting results and extensive bibliography the reader should
consult [92] and [95]. See also Leonard and Williams [177].

Theorem 2 is proved by Gauss in §358 of Disquisitiones Arithmeticae. He
does not really state the theorem explicitly. It comes out as a by-product of
another investigation. What he does, in fact, is to use the theorem to help find
the algebraic equation satisfied by certain Gauss sums. We have done the
reverse, using the theory of Gauss sums to derive the theorem. Gauss
derived other results of this type in his first memoir on biquadratic reciprocity
[34]. For further historical remarks about this subject, see the introduction
to the paper of Weil [80].

The estimates given in Theorem 5 are derived in the first chapter of
Borevich and Shafarevich [9]. They use a somewhat different method which
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we have outlined in the Exercises. In the special case of quadratic forms, i.e.,
when all the I = 2, the result goes back at least to Dickson [25].

The technique of counting solutions by means of characters lends itself
naturally to the problem of finding sequences of integers of prescribed length
having prescribed kth power character modulo p. This problem is dealt with
to some extent in Hasse [41]. In an interesting, and elementary paper,
Davenport [21] shows that the number of sequences of four successive
quadratic residues between 1 and psatisfies the inequality IR - p/8J < Kp3/4 ,

where K is a constant independent of p. Better estimates can be obtained
using the results of WeiI. For another paper along the same lines, see Graham
[36].

One final remark on Theorem 5. It is due originally to Weil and inde
pendently (and almost simultaneously) to L. K. Hua and H. S. Vandiver
(Proc. Nat. Acad. Sci. U.S.A ., 35 (1949),94-99). With a few simplifications
and addenda we have essentially followed Weil 's presentation.

EXERCISES

1. Let p be a prime and d = (m, p - I). Prove that Nix" = a) = L z(a), the sum being
over all X such that l = e.

2. With the notation of Exercise I show that Nix" = a) = N(xd = a) and conclude
that if d, = (mi' P - I), then LiaiXm. = band Li a.x": = b have the same number
of solutions.

3. Let I. be a nontrivial mult iplicative character of Fp and p be the character of order 2.
Show that L IZ(I - (2

) = J(Z, p) . [Hint : Evaluate J(Z , p) using the relation
N(x 2 = a) = I + p(a).]

4. Show, if k E Fp , k #- 0, that L X(I(k - e)) = X(k2/22)J(X, pl.

5. If / #- e, show that g(x)2 = z(2)- 2J(X.p)g(x2). [Him : Write out g(X)2 explicitly
and use Exercise 4.]

6. (continuation) Show that J(x, X) = X(2)-2J(X , p).

7. Suppose that p == I (4) and that Xis a character of order4. Then X2 = Pand J(X, X) =
1.( -1)J(x. pl. [Hint : Evaluate g(x)4 in two ways.]

8. Generalize Exercise 3 in the following way. Suppose that p is a prime, LI x(l - r") =
LAJ(x. ).). where ). varies over all characters such that ).m = e. Conclude that
ILl 1.(1 - Im)1 ~ (m - l)p' /2.

9. Suppose that p == I (3) and that X is a character of order 3. Prove (using Exercise 5)
that g(x)J = pIT, where IT = X(2)J(x, pl .

10. (continuation) Show that xp is a character of order 6 and that g(Xp)6 =
(-I)(P - 1);2 pii 4 •

II. Use Gauss' theorem to find the number of solutions to x J + y J = I in F for p = 13,
19,37, and 97.
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12. Ifp == 1 (4), then we have seen that p = a2 + b2 with a, b E ?L. If we require that a
and b be positive, that a be odd. and that b be even, show that a and b are uniquely
determined. (Hint : Use the fact that unique factorization holds in ?L[i] and that if

p = a2 + b2 then a + bi is a prime in ?L [i].)

13. If p == I (3), we have seen that 4p = A 2 + 278 2 with A, 8 E?L . If we require that
A == I (3), show that A is uniquely determined. (Hint: Use the fact that unique
factorization holds in ?L [w]. This proof is a little trickier than that for Exercise 12.)

14. Suppose that p == I (n) and that X is a character of order n. Show that g(X)" E ?L[(],
where C= e2• i/",

15. Suppose that p == I (6) and let X and p be characters of order 3 and 2, respectively.
Show that the number of solutions to y2 = x J + D in F is p + 7[ + if. where
7[ = Xp(D)J(X. p). If X(2) = I, show that the number of solutions to y2 = x3 + I
is p + A. where 4p = A 2 + 278 2 and A == 1 (3). Verify this result numerically
when p = 31.

16. Suppose that p == 1 (4) and that X is a character of order 4. Let N be the number of
solutions to x4 + y4 = I in Fp ' Show that N = p + I - D4 ( -1)4 + 2 Re J(X, X) +
4 Re J(X, p).

17. (continuation) By Exercise 7.J(X, X) = X(- I)J(X. p). Let 7[ = -JU. p). Show that
(a) N = p - 3 - 6 Re 7[ if p == I (8).
(b) N = p + 1 - 2 Re 7[ if p :; 5 (8) .

18. (continuation) Let 7[ = a + bi. One can show (see Chapter II . Section 5) that a is

odd. b is even , and a == I (4) if 41b and a == -I (4) if 4,rb . Let p = A 2 + 8 2 and
fix A by requiring that A :; I (4). Then show that
(a) N = p - 3 - 6A if p :; 1 (8).
(b) N = p + I + 2A if p :; 5 (8).

19. Find a formula for the number of solutions to xr + x~ + . .. + x; = 0 in Fr :

20. Generalize Proposition 8.6.1 by finding an explicit formula for the number of

solutions to atXr + a2x~ + .. . + a.x] = 1 in Fp •

21. Suppose that p s: I (d). C= e2
•

i
/
p

• and consider Lx c-: Show that L. C··' =
L m(r)C"', where m(r) = N(xd = r) .

22. (continuation) Prove that L. C·X
• = Lx g.(x), where the sum is over all X such

that l = e. X # e. Assume that p,r a.

23. Let !(X I.X2. .. . ,X.)EFp [ x t'X2' .. . . X.]. Let N be the number of zeros of!
in Fp ' Show that N = p.-t + p" I L."o (L., ..... x. C·!I. ' I).

24. (continuation) Let !(X\ .X2 . . .. 'X.) = atxT ' + a2xi' + + a.x;;'·. Let d, =
(mi. P - I) . Show that N = p.-l + p-I L."o n7= 1 Lx, g•• ,(Xi)'where Xi runs over
all characters such that x1' = e and Xi # e.

25. Deduce from Exercise 24 that IN - p": 11 :S (p - I)(d 1 - I) ··· (d. - l)pl./2l- I.

26. Let p be a prime. p :; 1 (4). Xa multiplicative character of order 4 on Fp' and p the
Legendre symbol. Put J(/.. p) = a + bi. Show
(a) N(y2 + x 4 = I) = P - 1 + 2a.
(b) N(l = l - x") = P + L p(1 - x").
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(c) 2a;: -( _1)(P-l)14(~m) (p) where m = (p - 1)/4 .

(d) Verify (c) for p = 13, 17,29.

27. Let p ;: 1 (3), Xa character of order 3, p the Legendre symbol. Show
(a) N(y2 = 1 - x3) = P + Ip(1 - x3).
(b) N(y2 + x3 = I) = p + 2 ReJ(x, p) .

(c) 2a - b ss - <::= nm (p) where 1('1., p) = a + bw.

28. Let p ;: 3 (4) and X the quadratic character defined on l /pl . Show
(a) n:: XX(x) = 2 I'I=-ttIl2 XX(x) - p I'!;;t1l/2x(x) .

(b) n:I Xx(x ) = 4X(2) I'I=-tlli2XX(x) - PX(2) I'I=-tl l
/
2x(x) .

(c) If p ;: 3 (8) then n:I Xx(x) /p = 1- D'=-t11
/
2 x(x).

(d) If p ;: 7 (8) then n:: XX(x)/p = I1f;;/1/2 X(x).
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Chapter 9

Cubic and Biquadratic
Reciprocity

In Chapter 5 we saw that the law ofquadratic reciprocity
provided the answer to the question. For which primes p
is the congruence x 2 == a (p) solvable? Here a is a fixed
integer. If the same question is considered for congru
ences X' == a (P), n afixedpositive integer, we are led into
the realm of the higher reciprocity laws. When n = 3 and
4 we speak ofcubic and biquadratic reciprocity.

In the introduction to his famous pair of papers,
.. Theorie der biquadratischen Reste I, II" [34], Gauss
claims that the theory of quadratic residues had been
brought to such a state of perfection that nothing more
could be wished. On the other hand, "The theory of
cubic and biquadratic residues is by far more difficult."
He had only been able to deal with certain special cases
for which the proofs had been so difficult that he soon
came to the realization that" . . . the previously accepted
principles of arithmetic are in no lVay sufficient for the
foundations ofa general theory, that rather such a theory
necessarily demands that to a certain extent the domain
ofhigher arithmetic needs to be endlessly enlarged . . . ."
In modern language, he is calling for the establishment
of a theory of algebraic numbers. As afirst step, because
this is what is needed for discussing biquadratic residues,

he investigated in detail the arithmetic ofthe ringZ[ j=T],
which we now refer to as the ring ofGaussian integers.

Curiously, although Gauss formulated and discovered
the law of biquadratic reciprocity, he did not prove it
completely. The first complete published proofs of cubic
and biquadratic reciprocity are due to G. Eisenstein.

In this chapter we shall formulate and prove the laws
of cubic and biquadratic reciprocity. We shall give two
proofs to the law of cubic reciprocity. The first is due to
Eisenstein and is similar in every way to the proof of the
law ofquadratic reciprocity given in Chapter 6. The second
proof uses Jacobi sums and is analogous to the proof of

108
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quadratic reciprocity given in Chapter 8, Sect ion 6. Our
proofofbiquadratic reciprocity is also due to Eisenstein.

In Section 10 we establish a "rational" reciprocity law
for biquadratic residues. This elegant result, discocered
by K. Burde in 1969 answers the follo ....ing problem. If
p == I (4) and q == I (4) are primes and p is a fourth
power modulo q give necessary and sufficient condit ions
that q is afourth power modulo p .

In Section II we establish, with the use ofJacobi sums,
Gauss' criterionfor the construct ibilit y ala regular polyqon.

The chapter concludes with a short discussion of
Kummer's problem concerning the distribution of cubic
Gauss sums.

§l The Ring Z[w]

109

Let w = (-1 +~)/2. The ring Z[w] was defined and discussed in
Chapter 1, Sect ion 4. Its elements are complex numbers of the form a + bw,
a, b E Z. If a = a + bw E Z[w], define the norm of a, N!X, by the formula
Na = afi. = a2

- ab + b2
• Here fi. means the complex conjugate of a.

In Chapter 1 we used the notation A(a) instead of N«. The change is merely
a matter of conforming to standard notation. For notational convenience
we shall set D = Z[w] .

We have proved earlier that D is a unique factorization domain. Our
first task here is to discover the units and the prime elements in D.

Proposition 9.1.1. a E D is a unit iff Na = 1. The units in D are I, -1, w,
-w, w 2, and _w2•

PROOF. If N« = 1, exfi. = 1, which implies that ex is a unit since eX E D.
If!X is a unit , there is a fl E D such that exfl = 1. Thus N!XN fl = 1. Since N ex

and Nfl are positive integers this implies that N« = 1.
Now suppose that ex = a + bw is a unit. Then 1 = a 2

- ab + b2 or
4 = (2a - b)2 + 3b2. There are two possibilities:

(a) 2a - b = ± I, b = ±1.
(b) 2a - b = ± 2, b = O.

Solving these six pairs of equations yields the result I, -1, w, -w,
- 1 - wand 1 + w. Since w 2 + w + 1 = 0 the last two elements are w 2

and _ w 2
. We are done. 0

To investigate primes in D it is important to realize that primes in Z
need not be prime in D. For example, 7 = (3 + w)(2 - w). For this reason
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we shall speak of primes in 7L as rational primes and refer to primes in D
simply as primes.

Proposition 9.1.2. If rc is a prime in D, then there is a rational prime p such that
Nti = p or p2. In the former case n is not associate to a rational prime; in the
latter case n is associate to p.

PROO F. We have Nn = n > I, or nit = n. n is a product of rational primes.
Thus nip for some rational primep. Ifp = rcY, yED,thenNnNy = Np = p2.
Thus either Nrc = p2 and Ny = 1 or Nn = p. In the former case y is a unit
and therefore rc is associate to p. In the latter case if tt = uq, u a unit and q a
rational prime, then p = Nrc = NuNq = q2, which is nonsense. Thus rc
is not associate to a rational prime. 0

Proposition 9.1.3. If nED is such that Nrc = p, a rational prime, then rc is a
prime in D.

PROOF . If tt were not prime in D, then we could write n = py with Np,
N,' > I. Then p = Nrc = N pN y, which cannot be true since p is prime in 7L.
Thus n is a prime in D. 0

The following result classifies primes in D.

Proposition 9.1.4. Suppose that p and q are rational primes. If q =2 (3), then
q is prime in D. If p =1 (3), then p = nit, where n is prime in D. Finally
3 = - ai CI - W)2. and I - w is prime in D.

PROOF . Suppose that p were not a prime. Then p = ny, with Nrc > I, Ny > I.
Thus p2 = NrcNy and Nrc = p. Let n = a + bw. Then p = a2 - ab + b2

or 4p = (2a - b)2 + 3b2, yielding p = C2a - b)2 (3). If 3,( p we have
p = 1 (3) for 1 is the only nonzero square mod 3. It follows immediately that
if q =2 (3), it is a prime in D.

Now, suppose that p =1 (3). By quadratic reciprocity we have

(~3) = (~I)G) = C_l)(P-t l/2(})C_1)(IP-t)/2)(3- tl/2)

= (}) = G) = 1.

Hence, there is an a E 7L such that a2 = - 3 Cp) or pb = a2 + 3 for some

b e 7L. Thus p divides Ca + j"=3)Ca - j"=3) = Ca + 1 + 2w) x Ca - 1 - 2w).
If p were a prime in D, it would have to divide one of the factors but this
cannot happen since p i= 2 and 21p ¢ 7L. Thus p = rcy with nand y nonunits.
Taking norms we see that p2 = NrcNy and that p = Nrc = rcit.

The last case is handled as follows ; x 3
- I = (x - I)(x - (I)(x - (() 2 )

implies that x 2 + x + 1 = (x - w)(x - w 2
). Setting x = 1 yields 3 =
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(I - w)(1 - W2) = (I + w)(1 - W)2 = _w 2(1 - W)2 . Taking norms we see
that 9 = N(l - W)2 and so 3 = N(l - w). Thus 1 - w is a prime. 0

As a matter of notation q will be a positive rational prime congruent to 2
modulo 3 and rc a complex prime whose norm, Nrc = p, is a rational prime
congruent to 1 modulo 3. Occasionally rc will refer to an arbitrary prime of D.
The context should make the usage clear.

§2 Residue Class Rings

Just as in the ring 7L and in the ring of all algebraic integers, the notion
of congruence is extremely useful in D. If ex, p, y E D and y =1= 0 is a non unit,
we say that ex == p(y) if y divides ex - p. Just as in 7L the congruence classes
modulo y may be made into a ring D/yD,called the residue class ring modulo y.

Proposition 9.2.1. Let rc E D be a prime. Then Dlnl) is a finite field with Nrc
elements.

PROOF. We first show that D/rcD is a field. Let ex E D be such that ex 1= 0 (x) , By
Corollary 1 to Proposition 1.3.2 there exist elements p, y E D such that
Pex + yrc = 1. Thus Pex == 1 (n), which shows that the residue class of ex
is a unit in Dfnl) .

To show that D/rcD has Nrc elements we must consider separately the
cases in Proposition 9.1.4.

Suppose that rc = q is a rational prime congruent to 2 modulo 3. We
claim that {a + bwlO :::; a < q and 0:::; b < q} is a complete set of coset
representatives. This will show that D/qD has q2 = Nq elements. Let Jl. =
m + nw E D. Then m = qs + a and n = qt + b, where s, t, a, b E 7L and
o:::; a, b < q. Clearly Jl. == a + bw (q). Next , suppose that a + bw == d +
b'w (q), where 0:::; a, b, a', b' < q. Then «a - d)/q) + «b - b')/q)w E D,
implying that (a - d)/q and (b - b')/q are in 7L. This is possible only if
a = d and b = b',

Now suppose that p == 1 (3) is a rational prime and ttii = Ntt = p.
We claim that to, 1, .. . ,p - I } is a complete set of coset representatives.
This will show that Dlnl) has p = Nrc elements. Let rc = a + bw. Since
p = a2 - ab + b2 it follows that p,r b. Let Jl. = m + nw. There is an integer
e such that eb == n (p). Then Jl. - err == m - ea (P) and so Jl. == m - ea (n),
Every element of D is congruent to a rational integer modulo rr, If IE 7L,
I = sp + r, where s, r E 7L and 0 :::; r < p. Thus I == r (p) and a fortiori
I == r (rr). We have shown that every element of D is congruent to an element
of to, 1, 2, . . . , p - I} modulo rt, If r == r ' (x) with r, r' E 7L and 0 :::; r, r' < p,
then r - r' = rcy and (r - rY = pNy, imply ing that plr - r', Thus r = r'
and we are done.

We leave the case of the prime 1 - was an exercise . 0
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§3 Cubic Residue Character

9 Cubic and Biquadratic Reciprocity

-Let n be a prime. Then the multiplicative group of D/nD has order Nn - 1.
Hence we have an analog of Fermat's Little Theorem.

Proposition 9.3.1. If n.( r:x, then

r:xNn- 1 == 1 (n) ,

If the norm of n is different from 3, then the residue classes of 1, w, and
w 2 are distinct in D/nD. To see this , suppose, for example, that w == 1(n) ,
Then nl(1 - w), and since 1 - w is prime, nand 1 - ware associate.
Thus Ntt = N(1 - w) = 3, a contradiction. The other cases are handled
in the same way.

Since {I, W, w2
} is a cyclic group of order 3 it follows that 3 divides the

order of (D/nD)*; i.e., 3/ Ntt - 1. This can be seen in another way using
Proposition 9.1.3. If n = q, a rational prime, then Nit = q2 == 1 (3). If n is
such that Nn = p, then p == 1 (3).

Proposition 9.3.2. Suppose that n is a prime such that Nn i: 3 and that n.(r:x.
Then there is a unique integer m = 0, 1,or 2 such that r:x(Nn-t) /3 == co" (n).

PROOF . We know that tt divides r:xNn- I - 1. Now ,

r:xNn- 1 _ 1 = (r:x(N,,- 1)/3 _ 1)(r:x(Nn- 1);3 _ W)(r:x(Nn- \) /3 _ w2 ).

Since n is prime it must divide one of the three factors on the right. By
the preceding remarks it can divide at most one factor, since if it divided two
factors it would d ivide the difference. This proves the proposition. 0

On the basis of this result we can make the following definit ion.

Definition. If Nti i: 3, the cubic residue character of r:x modulo tt is given by

(a) (r:x /nh = °if nlr:x.
(b) r:x(Nn-I )/3 == (r:x /nh (n), with (r:x/nh equal to I, w, or w2

•

This character plays the same role in the theory of cubic residues as the
Legendre symbol plays in the theory of quadratic residues.

Proposition 9.3.3.

(a) (r:x/nh = I iffx 3 == ex (n) is solvable, i.e., iff Yo is a cubic residue.
(b) r:x(Nn- \)/3 == (r:x/nh (n).

(c) (r:x/3/nh = (r:x/nh</3/nh.
(d) If a == /3 (n), then (r:x /nh = (/3/nh .

PROOF. Part (a) is a special case of Proposition 7.1.2. Take F = D/nD, q = Nn,
and n = 3 in that proposition.
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Part (b) is immediate from the definition. .
Part (c): (a{3/rrh =(a{3)(N"-ll/3 =aIN"-11/3{3(N"-1113 =(a/nh({3/nh (1£).

The result follows.
Part (d) : If a ={3 (1£), then (a /nh =aIN,,-1113 ={3IN"-I Jl3 =({3/rrh (1£),

and so (a/nh = ({3/nh. 0

Since we shall be dealing only with cubic characters in this section the
notation X,,(!X) = (!X/nh will be convenient.

It is useful to study the behavior of characters under complex conjugation.

Proposition 9.3.4.

(a) X,,(a) = x,,(a)2 = X,,(a2).

(b) X,,(a) = XJl(~)'

PROOF.

(a) x.(a) is by definition I, w, or w 2
, and each of these numbers squared is

equal to its conjugate.

(b)

we get

fiIN" - 11/3 = X,,(a) (n).

Since Nii = Nit this shows that Xn(fi) =X,,(a.) (rr) and thus that Xifi) =
X,,(tX). 0

Corollary. Xii) = xq(a
2) and xin) = 1 ifn is a rational integer prime to q.

PROOF. Since q = q we have xifi) = Xq(fi) = xi!X) = Xq(a.
2). This gives the

first relation.
Since ii = n we have xq(n) = xin) = Xin)2. Since xq(n) # 0 it follows

that xq(n) = 1. 0

The corollary states that n is a cubic residue modulo q. Thus, if ql # q2
are two primes congruent to 2 modulo 3, then we have (trivially) Xq ,(q2) =
Xq,(ql)' This is a special case of the law of cubic reciprocity. To formulate
the general law we need to introduce the idea of a ..primary" prime.

Definition. If 1£ is a prime in D, we say that 1£ is primary if 1£ = 2 (3).
If 1£ = q is rational, this is nothing new. If 1£ = a + bw is a complex

prime, the definition is equivalent to a =2 (3) and b =0 (3).
We need a notion such as .. primary" to eliminate the ambiguity caused

by the fact that every nonzero element of D has six associates.

Proposition 9.3.5. Suppose that Ntt = p = 1 (3). Among the associates of 1£
exactly one is primary.
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PROOF.Write n = a + bt».The associates of n are n, wn, w2n, -n, - wn, and
-w2n. In terms of a and b these elements can be expressed as

(a) a + bi».
(b) -b + (a - b)w.
(c) (b - a) - aw.
(d) -a - bw.
(e) b + (b - a)w.
(f) (a - b) + aw.

Since p = a2 - ab + b2, not both a and b are divisible by 3. By looking
at parts (a) and (b) it is clear that we can assume that 3,ra. Considering
parts (a) and (d) we can assume further that a == 2 (3). Under this assumption
p = a2 - ab + b2 leads to 1 == 4 - 2b + b2 (3) or b(b - 2) == 0 (3). If
31 b, then a + bw is primary. If b == 2 (3), then b + (b - a)w is primary.

To show uniqueness, assume that a + boi is primary. By con sidering the
congruence class of the first term in part (b) to part (e) we see that none of
these expressions is primary. Neither is the expression in part (f) since the
coefficient of w, a, is not divisible by 3. 0

For example, 3 + w is prime since N(3 + w) = 7, and -w2(3 + w) =
2 + 3w is the primary prime associated to it.

We can now state

Theorem 1 (The Law of Cubic Reciprocity). Let nt and n2 be primary, Ntu,
Nn2 # 3, and Nn 1 # Nn2' Then

X",(n2) = X"2(n 1)'

A proof will be given in Section 4, but first a few remarks are in order.

(a) There are three cases to consider. Namely, both nl and n2 are rational,
n 1 is rational and n2 is complex, and both n 1 and n2 are complex. The
first case is, as we have seen,trivial.

(b) The cubic cha racter of the units can be dealt with as follows. Since
-I = (_1)3 we have l,, ( -1) = I for all primes zt.

In Ntt # 3, then it follows from Proposition 9.3.3, part (b), that
X,,(w) = W (N,,-1 1/3 . Thus X,,(w) = I, w, or w2 according to whether
Nit == 1,4, or 7 modulo 9.

(c) The prime I - w causes particular difficulty. If Ntt # 3, we would like
to evaluate x,,(l - w). This is done by Eisenstein in [29] by a highly
ingenious argument. An elegant proof due to K. Williams is given in the
Exercises.

Theorem I ' (Supplement to the Cubic Reciprocity Law). Suppose that Nit # 3.
If t: = q is rational, write q = 3m - I. If n = a + bw is a primary complex
prime, write a = 3m - I. Then

Z,,(I - w) = w 2m
•
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We give a proof for the case of a rational prime q. Since (I - W) 2 =
-3w we have

I.il - W)2 = I.q( - 3)l.q(w ).

By the corollary to Proposition 9.3.4 we know that I.q( - 3) = 1. By
remark (b) Xq(w) = W(Nq- 11I3 = W (q2- 11/3. Thus xq(l _ W)2 = W(q L 11/3 .

Squaring both sides yields

XiI - nJ) = W(2 /3)(q'-lI .

Now, q2 - I = 9m2 - 6m so that ~q2 - I) == -4m == 2m (3). The
result follows. For extensions of these results to primary elements see
exercises 17 to 20 on page 135.

§4 Proof of the Law of Cubic Reciprocity

Let re be a complex prime such that Nit = p == I (3). Since Dlnl) is a finite
field of characteristic p it contains a copy of 7L/p7L. Both Dlnl) and 7L/p7L have
p elements. Thus we may identify the two fields. More explicitly the identifi
cation is given by send ing the coset of n in 7L/p7L to the coset of n in Dlttl) .

This identification allows us to consider Xn as a cubic character on 7L/p7L
in the sense of Chapter 8 [see Proposition 9.3.3, parts (c) and (d)]. Thus we
may work with the Gauss sums ga(Xn) and the Jacobi sum l(Xn ' Xn)'

IfXis any cubic character, we have proved (see the corollary to Proposition
8.3.3 and Proposition 8.3.4) that

(a) Y(X)3 = pl(X, X).
(b) If l(X, X) = a + bto, then a == - I (3) and b == 0 (3).

Since leX, x)l(x, X) = p, the second assertion says that leX, X) is a primary
pr ime in D of norm p.

We need a lemma. Assume tt is primary.

Lemma I. l(l.n' Xn) = rt,

PROOF. Let l{f.n.l.n) = tt'. Since ren = p = re'n' we have relre' or rein'.
Since all the primes involved are primary we must have re = n' or rr = n',

We wish to eliminate the latter possibility.
From the definitions,

l(Xn ' Xn) = L Xn(x)l.n(l - x) == L X(P-
11

13(1 - X)(p-1113 (n),
x x

where the sum is over 7L/p7L. The polynomial x(p- 11/3(1 - X)(P- II/3 is of
degree j(p - I) < P - I. By Exercise II of Chapter 4 it follows that
Lx x(P-I);\1 - X)'P -II/3 == 0 (p) . This shows that lUn , Xn) == 0 (n) ; i.e.,
n In' and therefore re = n', 0
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We can now prove the law of cubic reciprocity. We first consider the case
where 7t t = q == 2 (3) and 7t2 = 7t with N7t = p.

Raise both sides of the relation g(X,Y = pn to the (q2 - 1)/3 power. Th is
gives g(X,,)ql_t = (p7t)lq ' -t l/3 . Taking congruences modulo q we see that

g(l,.,,)ql- t == Xq(p7t) (q). .

Since xip) = 1 this leads to

g(X,,)ql == Xq(7t)g(X ,,) (q). (I)

We now analyze the left-hand side :

g(X,,)q' = (L X,,(t)~J' == LX,,(t)q ',q l, (q).

Since q2 == 1 (3) and X,,(t) is a cube root of I we have

g(X,,)ql == gq'(X,,) (q). (2)

By Proposition 8.2.1 gql(X,,) = X,,(q - 2)g(X,,) = X,,(q)g(X,,) . Thus, combining
Equations (1) and (2)

X,,(q)g(x,,) == Xq(7t)g(X,,) (q).

Multiply both sides of this congruence by g(X,,). Since g(X,,)g(X,,) = P,

X,,(q)p == Xq(7t)p (q)

or

implying that

It remains to consider the case of two complex primes 7t \ and 7t2' where
N7t1 = P I == I (3) and N7t2 = P2 == 1 (3). This case is handled by essentially
the same technique, but it is a little trickier.

Let YI = itt and y, = it2 • Then {I and Y2 are primary and PI = 7t IYI and
P2 = 7t2 Y2'

Starting from the relation g(X1,)3 = PIYI' ra ising to the (N7t2 - 1)/3 =
(P2 - I)/3 power, and taking congruences modulo 7t2. we obtain by the same
method as above the relation

(3)

Similarly, start ing from g(X",)3 = P2 7t2 ' raising to the (PI - 1)/3 power,
and taking congruences modulo 7t\, we obtain

(4)
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We also need the relation xy,(pD = X~ I(P2)' which follows from Proposition
9.3.4 since r l = it l and P2 = P2 . Now we calculate

X~ ,(7t2)X~2(PtYI) = X~ I(7t 2)l.YI(pD by Equation (3)

= X~ I(7t2)X~ I(P2) = X~ I(P2 7t2) by above remark

= x~ 2(pD = X~ 2(PI7tl rl) by Equation (4)

= X~2(7tI)X ~ 2(PI Y'>·

Equating the first and last terms and canceling X~2(PIYt) gives the sought
for result:

§5 Another Proof of the Law of Cubic Reciprocity

We present a proof of cubic reciprocity using Jacobi sums. This proof is
somewhat shorter and more elegant than the one given in Section 4. It
should be noticed, however, that more background material is used.

Consider the case 7t 1 = q, 7t2 = 7t. Let X~ = X, and consider the Jacobi
sum J(X, X, . . . , X) with q terms. Since 31 q + 1 we have by Corollary 1 to
Theorem 3 of Chapter 8,

g(;.()q + I = pJ(l. , X, . . . , X). (5)

Since g(X)3 = pn,

(6)

Now, recall that

lex, l., .. . , X) = L X(X I)X(X2)· · · X(xq),

where the sum is over all XI' X2' . .. ' xqE Z/pZ such that XI + X2 + ... +
xq = I. Consider the term for wh ich XI = X2 = ... = xq • Then qXI = 1
and X(q)X(x I) = I. Raising both sides to the qth power, and recalling that
q == 2 (3), yields X(q)2 X(X I)q = I and so X(xt)q = X(q). Thus the "diagonal"
term of le X, X, .. . , X) has the va lue X(q). If not all the Xi are equal, there are q
different q-tuples obtained from (x I' X2' ... , xq ) by cyclic permutation. The
corresponding terms of l(x, X, . .. , X) all have the same value. Thus

or

l(X, x, . . . , X) == X(q) (q).

Combining Equations (5), (6), and (7) we obtain

(p7t)(q + 1)13 == Px(q) (q)

p( q -21137t(q+ tl13 == X(q) (q).

(7)
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Raising both sides to the q - 1 power (remember that q - 1 == I (3»

r: 21/3I(q -l)n:fq'-ll/3 == X(q)q-t == X(q) (q)

Since p((q-21/3I(q - I) == 1 (q) by Fermat's theorem and n:1q2- 11/3 == Xq(n:) (q)
it follows that

and

Xq(n:) = Xn(q)·

Now consider the case of two primary complex primes n:t and n:2 ' Let
"I I = 7t ••}'2 = 7t2, Pl = n: 1Yl,andp2 = n:2 Y2.Thenpl ,P2 == 1 (3). ByTheorem
3 of Chapter 8 we have

g(Zy,)P2 = J(Xy,,· . . , Xy )g(Z~: ).

There are P2 terms in the Jacobi sum. Since P2 == 1 (3), X~: = Xy , ' Thus

[g(XyYJ(P' - 1)/3 = J(X~" ... , Xy,). (8)

By isolating the diagonal term of the Jacobi sum (as we have done a
number of times by now) we find that

J(Xy" ... , Xy,) == xy,{Pi .) == xy,(pD (P2)'

Using this and the fact that g(X,Y = Pl 'lt' we obtain from Equation (8)
the congruence

and therefore

(9)

Similarly one proves that

Xn,(P2 n2) = Xn ,(pf). (10)

Equations (9) and (10) are the basic relations. From here on one proceeds
exactly as in Section 4 to the desired conclusion Zn ,(n:2) = Xn,(n:.).

§6 The Cubic Character of 2

The law of cubic reciprocity can be used to develop the theory of cubic
residues in the same manner as the law of quadratic reciprocity led to the
results of Chapter 5, Section 2. We shall forego a development of the general
theory in favor of a discussion of an illuminating special case . Namely,
we shall ask for all primes n: in D for which 2 is a cubic residue.

To begin with, notice that x 3 == 2 (rr) is solvable iff x 3 == 2 (rr') is solvable
for any associate of n:. Thus we may assume that n: is primary. If n: = q is a
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rational prime, then xi2) = I and so 2 is a cubic residue for all such primes.
We assume from now on that n = a + bw is a primary complex prime. By
cubic reciprocity X,,(2) = xin). The norm of 2 is 22 = 4. Thus

tt = n(4-tl/3 == X2(n) (2).

It follows that Xn(2) = I iff n == 1 (2). We have proved

Proposition 9.6.1. x 3 == 2 (rr) is solvable iff rc == I (2), i.e., iff a == I (2) and
b == 0 (2).

It is possible to formulate this proposition in another way. Let n = a + bw
be a primary complex prime and p = Nn = a2 - ab + b". Then 4p =
(2a - b)2 + 3V If we set A = 2a - band B = b13, then 4p = A2 + 27B2.
According to Proposition 8.3.2 the integers A and B are uniquely determined
up to sign.

Proposition 9.6.2. If P == 1 (3), then x 3 == 2 (p) is solvable iffthere are integers
C and D such that p = C2 + 27D2.

PROOF. If x 3 == 2 (p) is solvable, so is ,'c' == 2 (n) and thus n == I (2) by
Proposition 9.6.1. We have

b
4p = A2 + 27B2

, where A = 2a - b, B = 3'

Since b is even, so are B and A, Let D = BI2 and C = A12. Then p =
C2 + 27D2

•

Suppose, conversely, that p = C 2 + 27D2. Then 4p = (2C)2 + 27(2D)2,
By uniqueness B = ± 2D; i.e., B is even and thus so is b. It follows that rc =
a + bw == 1 (2), and x 3 == 2 (n) is solvable. Since Dlnl) has p = Nrc elements
there isan integer h such that h3 == 2 (n) . It is now easy to show that h3 == 2 (P).
If nlh 3

- 2, then itlh3
- 2 and nit = pl(h 3

- 2)2. Consequently, plh 3
- 2

and we are done. 0

As an example take p = 7. Then x 3 == 2 (7) is not solvable since there are
clearly no integers C and D such that 7 = C2 + 27D2.

On the other hand, p = 31 = 22 + 27 .1 2
, Thus x 3 == 2 (31) is solvable.

Indeed, 43 == 2 (31).

§7 Biquadratic Reciprocity: Preliminaries

In his second memoir (1832) on biquadratic residues, Gauss stated, without
proof, the law of biquadratic reciprocity. The proof, he asserted, belonged to
the mysteries of the higher arithmetic. The details were to be published in
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a third memoir, which unfortunately never appeared.Subsequently Eisenstein
published several proofs (1844), using Jacobi and Gauss sums. The basic
idea is the same as in the cubic case, although the details are more extensive.
The use of Gauss sums to prove reciprocity laws is due to Gauss himself,
who utilized them essentially in his sixth proof of quadratic reciprocity.

Throughout the following three sections D denotes the ring Z[i] of
Gaussian integers. If 11. E D then (11.) = rxD is the principal ideal generated by
11.. Bya prime will always be meant a positive prime of Z. Recall from Chapter 1
that D is a Euclidean ring. Thus if n is irreducible and n IrxP then either n 111.
or niP. If N(rx) = rxa is the norm of' « then by Exercise 32 of Chapter 1,
N(rx) = I iff 'Y. is a unit. From this, one sees that the units of Dare ± I, ±i.

Lemma 1. lfn is irreduciblethen there is a prime p E Z such that nip.

PROOF. N(n) = nn = n = PI . .. Ps'Pi prirne.p, E Z. Thus nip; for some i. 0

Thus the irreducibles are found by decomposing in D all primes in Z.The
following lemma is useful.

Lemma 2. If 11. E D, and N(rx) is prime then 11. is irreducible.

PROOF. If 11. = J1A then N(rx) = N(J1)N(A). Since N(a) is pr ime it follows
that N(J1) = I or N(A) = 1.Thus either J1 or Ais a unit.

Lemma 3. I + i is irreducible and 2 = - i( I + i)2 is the prime factorization
of2 in D.

PROOF. N(1 + i) = 2 and so the first assertion follows from Lemma 2.
The second assertion results from a direct calculation.

Lemma 4. If q =3 (4) is a prime in Z, then q is irreducible considered as an
element of D.

PROOF. If q were not irreducible in D, then q = rxp with N(rx) > 1and N(P) > 1.
Taking norms we find q2 = N(rx)N(p). It follows that q = N(a). If o: = a + bi
with a, b e Z, then q = a2 + b2

• This is a contradiction since a sum of two
squares in Z is congruent to 0 or 1modulo 4, and q iscongruent to 3 modulo 4.

Lemma 5. If P is prime, p = I (4) then there is an irreducible n such that
P = n:n. Furthermore (n) =I (n).

PROOF. The first statement is part (a) of Proposition 8.3.1. Another proof not
using Jacobi sums is the following. Since P = 1 (4) there is, by Proposition
5.1.2, an integer a with a2 = -l(p). Thus pla2 + I = (a + i)(a - i). If p
were irreducible then pia + i which is absurd. Thus p = 'Y.p, N(rx) > 1,
N(P) > 1. Taking norms enables one to conclude that p = N(rx). Since N(rx)
is prime it follows by Lemma 2 that rx is irreducible . The fact that («) =I (ex)
is left as an exercise. 0
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This completes the description of the irreducibles in D.
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Definition. A nonunit IX E D is primary if IX == 1 (1 + i)3.

Lemma 6. A nonunit IX is primary iff either a == I (4), b == 0 (4) or a == 3 (4),
b == 2 (4).

PROOF. Since (I + i)3 = 2i(1 + i) it follows that a + bi is primary iff

(a-l)+bi a+b-I b-a+l .--- ----= -- - - + lED.
2 + 2i 4 4

This is equivalent to the congruences a + b == 1 (4), a - b == 1 (4). The
result follows easily from this . 0

We note that any non unit IX == 1 (4) in D is primary. Furthermore if IX

is primary then (I + i),(IX. If q is a real prime, q == 3 (4) then -q is a primary
irreducible. As for the irreducibles arising from primes p == 1 (4) one has the
following important result.

Lemma 7. Let IXE D be a nonunit, (I + i),(IX. Then there is a unique unit u
such that Uet is primary.

PROOF. There is a unit B such that Bet = a + bi where a is odd and b is even.
Multiplying if necessary by - I, Lemma 6 shows that IX has a primary
associate. If u I and U2 are units such that u tlX and U2 o: are primary then since
(1 + i),(1X it follows that U I == U2 (I + i)3 . An examination of cases shows
easily that this implies U I = U2.

Lemma 8. A primary element can be written as the product of primary ir
reducibles.

PROOF. Let IX E D be primary. Then there are rational primes qj == 3 (4),
primary irreducibles njo N(nj) == 1 (4) and a unit u such that IX = un l •••

nr( -ql) · ·· (-qs)· Reduction modulo (1 + i)3 shows that 1 == u (l + i)3.
This implies that u = I. 0

§8 The Quartic Residue Symbol

Consider an irreducible n in D.

Proposition 9.8.1. The residue class ring Djttl) is a finite field with N(n)
elements.

PROOF. The proof proceeds in exactly the same way as Proposition 9.2.1,
replacing the classification of irreducibles in ~[wJ by the corresponding
classification in D = ~[ i]. 0
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Proposition 9.8.2. If n{iX, (n)::j:. (I + i) there exists a unique integer j,°~j s 3 such that
a(N(nl- 1)/4 == i j (n).

PROOF. It is easy to see that the residue classes of 1, -I, i, - i are distinct. They
are the roots of x" == I (zr). However the residue class of ·iX(·V(n1- l l/ 4 is also a
solution to x 4 == 1 (x) by the above corollary. The result follows from this.

o
Definition. If n is an irreducible. N(n) ::j:. 2, then the biquadratic (or quartic)
resid ue character of z, for tt (a, is defined by Xn(a) = ij where j is determined
by Proposition 9.8.2. If n] IX then Xn(a) = 0.

Proposition 9.8.3.

(a) If n(a then x.(a) = 1 ¢> x"~ == IX (n) has a solution ill D.
(b) x.(a{3) = Xn(a) · xi{3)·
(c) x.(a) = X~(!i) .

(d) If n is a primary irreducible then X.( -1) = (_1)(a-tl/2, where n =
a + bi.

(e) Ifa == {3 (n) then x.(a) = X.({3)·
(f) X.(iX) = xia) if (n) = (A).

PROOF. Part (a) follows from Proposition 7.1.2. Parts (b), (c), (e), and (f)
follow immediately from the definition. Part (d) follows from Lemma 6
(see Exercise 38). 0

Proposition 9.8.4 . Let q be prime, q == 3 (4). Then xia) = 1for a E 7L, q{a.

PROOF. N(q) = q2. Thus

xia) == alq2-11/4 = (aq - l)(q+ 1)/4 == I (q).

by Fermat's Little Theorem. 0

The quartic residue character is generalized as follows.

Definition. Let a E D be a nonunit such that (1 + i),fiX. and fi ED. Write
a = OJ Ai where Aj is irreducible. If (a, fJ) = 1 define X,(fJ) by

xAfJ) = 0 h(fJ)·
i

This is well defined by Proposition 9.8.3(f) . By part (c) of that proposition
one sees that if fJ == Y (IX) then xA{3) = X,(y)·

Proposition 9.8.5. Let iX E 7L, IX ::j:. 0, and a E 7L be an odd nonunit , If(a, z) = I,
then



~9 The Law of Biquadrat ic Reciprocity 123

PROOF. We may assume a > O. Write a = nPi nLfi where Pi' qi are prime,
Pi == I (4) and qi == 3 (4). By Proposit ion 9.8.4 we need only verify that
XPi(O:) = I. If Pi = nft where n is irreducible then XPi(a) = Xn(a)Xn(a) =
I.n(a)zn(O:) = I by Proposition 9.8.3(c).

Proposition 9.8.6.1/n '# I is all integer 11 == I (4), then X.(i) = (- 1)(.- 11/
4

•

PROOF. Note that 11 may be negative. If n is a positive prime P == I (4) then
writing P = nit one has

Xp(i) = Xn(i)Xn(i) = (i(P- 11/4)2 = (-I)lP- 11/4 .

If on the other hand 11 = - q, q == 3 (4) and prime, then X_q(i) = i(q2 - 1)/4 =
(iq - I ) (q + I I/4 = (_l)(-q-IJ;4. If n == I (4) is arbitrary then one may write

/I = PI . . . Pre -ql) '" (-q,), Pi == I (4), qi == 3 (4). The result then follows
from Exercise 44. 0

§9 The Law of Biquadratic Reciprocity

The general law of biquadratic reciprocity may be stated as follows. Let A.
and n be relatively prime primary elements of D. Then

Theorem 2. Xn(A.) = X;,(n)(_l)«N('I-ll/4)(N(n) -1I/4 J.

If A. and n are primary, where A. = c + di and n = a + hi, it is simple to
see that «N(A.) - 1)/4)« N(n) - 1)/4) and «a - 1)/2)«c - 1)/2 have the
same parity, so one may write

Xn(A.) = X;,(n)( _1)«0- 11/2)(c-ll{2).

In other words if either n or A. is congruent to 1 modulo 4 then tt and A. have
the same biquad ratic character. If however both are congruent to 3 + 2i
(see Lemma 6) then n and A. have "opposite" character in the sense that
Xn(A.) = - x.(n).

Consider a primary irreducible n with N(n) = p == I (4) and let Xn be the
associated quartic residue character. Then Xn may be viewed as a multiplica
tive character on the finite field D/nD = F. Recall that F is a finite field with P
elements consisting of the residue classes of 0, 1, . . . , p - 1. If ( = e2n i

/
p let

g(Xn) = LieF Xij)(i be the Gauss sum belonging to Xn' If t/J = x; then t/J
is the nontrivial character of order 2 on F and thus is the Legendre symbol.

Proposition 9.9.1. J(Xn' Xn) = Xn( - 1)J(Xn' t/J).

PROOF. By Theorem 1, Chapter 8, one has JUn, Xn) = g(Xn)2/g(t/J). Thus

g(Xn)4
J(Xn, Xn)2 = g(t/J)2 = Xn( -1)J(Xn' Xn)J(Xn, t/J)

using Propositions 6.3.2 and 8.3.3. This gives the result. 0
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Proposition 9.9.2. g(X.)4 = pJ(X., X.)2.

PROOF. This follows immediately from Propositions 9.9.1 and 8.3.3. 0

Proposition 9.9.3. - X.( -1 )J(x" , X,,) is primary.

PROOF. Clearly

(p-1 1/2 (P + 1)2
J(X", X,,) = 2 t~2 X,,(t)X,,(1 - t) + Xrr -2- .

But any unit in D is congruent to 1 modulo 1 + i. Also p == 1 (2 + 2i).
Finally X,,«p + 1)/2)2 = (X,,(2 - 1»2 = X,,(2)-2 = X,,(2)2 = X,,( -i(1 + i?)2 =
X,,( - i)2 = X,,( -1). Thus

(
p - 3) .J(X", X,,) == 2 -2- + X,,( -1)(2 + 2/)

== -2 + X,,( -1)(2 + 2i).

Thus
- X,,( -1)J(X, X) == 2X,,( -1) - 1 (2 + 2i)

== 1 (2 + 2i),

since X,,( -I) = ± 1.

The next proposition identifies the primary element - X.( -I)J(X", X,,).

o

Proposition 9.9.4. - X,,( -1)J(X" , X,,) = n.

PROOF. By Lemma 7 of Section 7 it is enough to show that the left- and right
hand sides differ by a unit. Now J(X" , X,,) == Ir:l t (p- 11/

4(1 - t)(P -Il/4 (n),
By Exercise 11 of Chapter 4 it follows that J(X" , X,,) == 0 (n), By the corollary
to Theorem 1 of Chapter 8, N(J(X", X,,» = p. Thus J(X", X,,) is irreducible
and the proposition is complete. 0

Combining Proposition 9.9.4 with Proposition 9.9.2 gives the factoriza
tion of g(xt in D.

Proposition 9.9.5. g(X,,)4 = n3j[,

We will now prove two particular cases of the law of biquadratic re
ciprocity. The general statement will then be a formal, if somewhat tedious,
consequence.

Proposition 9.9.6. Let q > 0 be a real irreducible in D. Then
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PROOF. Since q :: 3 (4) one has

p-I

g(X,,)q == L X"Wq(qj == L x;UKqj (q)
j= 1

== X,,(q)g(X,,) (q).

Thus
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(g(X,,)4)(q+ 1)/4 = g(X,,)q + 1 == X,,(q)g(X,,) . g(X,,) (q).

By the observation following Proposition 8.2.2 and noting (see Exercise 45)
that it == nq (q) one has, by Proposition 9.9.5

n(q+3Hq+ 1l1!4 == X,,( -1)x,,(q)nq+ 1 (q)

or

n(q'- 1)/4 == X,,( - q) (q).

But n(q'-II/4 == xq(n) (q). Thus

xq(n) == X,,( -q) (q),

which implies, since both sides are units, that

xq(n) = X,,(- q).

This completes the proof. o

Notice that -q is a primary irreducible and (N(q) - 1)/4 = (q2 - 1)/4 is
even. Thus Proposition 9.9.6 is indeed a special case of biquadratic re
ciprocity.

Proposition 9.9.7. Let q be primeq == 1 (4). Then X,,(q) = xin).

PROOF. Since q == 1 (4)

g(X,,)q == LX"Wq(qj == L x"UKqj == X,,(q)g(X,,) (q).

Thus

g(X,,)q+3 == X,,(q)g(X,,)4 (q).

By Proposition 9.9.5 this becomes

(n3it)(q+ 3)/4 == x,,(q)n3it (q).

Both sides of this congruence belong to D and (q, n) = (q, it) = 1. Thus we
may divide to obtain

(n3)'q - 11/4(it)(q - 1)/4 == x,,(q) (q).

If q = ..1.,{ where ..1. is a irreducible in D then this implies

xin3)xiit) == X,,(q) (..1.).
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As in the previous case we conclude that

x;.(n3 )x ;.(1t) = iiq)·

This may be written as

or

which gives, by definition

xq(n) = Xiq)·

Taking conjugates completes the proof. o

The reader should not ice that in Proposition 9.9.7, q is not irreducible
and that the left-hand side is the generalized biquadratic residue symbol.

The following proposition is a formal exercise using Lemma 8 of Section 7,
and Propositions 9.8.6, 9.9.6, and 9.9.7.

Proposition 9.9.8. Let a be real and a ;: 1 (4) and A be primary, (,1" a) = 1.
Then XaCA) = x;.(a).

Suppose now that n = a + bi and A = e + di are primary and relatively
prime. We do not assume that N(n) i= N(A), or that they are irreducible.

Proposition 9.9.9. If(a, b) = 1, (e, d) = 1 then

Xn(A) = x;.(n)(~ 1)((a-II/2((C-ll/21.

PROOF. The hypothesis implies that (a, n) = (b,n) = (c, ;.) = (d,;.) = 1.
The relation en ;: ae + bd (}.) implies (ae + bd, ;.) = (ae + bd, n) = I. Further
more

Similarly

x;.(e)x;.(n) = x;.(ae + bd).

Xn(a)Xn(A) = Xn(ae + bd).

(I)

(2)

Taking the conjugate of (2) and multiplying by (I) one obtains the relation

x;.(e)xia)x;.(n)xn(A.) = biae + bd).

Thus we have shown, using Proposition 9.8.3(c)

(3)

Assume that c, a, and ae + bd are non units . The three terms on the right
hand side are easily computed. For an odd integer n put e(n) = (_l)(n- II /2.

Then f.(n)n;: I (4) and f.(ae + bd) = f.(a)e(e) since bd;: 0 (4). Writ ing
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(4)

X,(x) = X,(r.(x»X,(r.(x)x) for each term on the right-hand side of (3) one
obtains, noting that X,(r.(x» = X,,(e(x» and using Proposition 9.9.8 and
9.8.3(b)

x.b)x.(A) = X,·(A)x)rr)Xac + biAit).

As for the last three terms one computes, using Proposition 9.8.5

Xc(X) = Xc(e - di) = Xc( - di) = XcU),

xaCrr) = Xa(a + bi) = xaCbi) = xii),

Xac+bi itA) = Xac+bd«ad - be)i) = Xac+bdU),

Thus we have the relation

x;.(rr)x.(A) = X(ac+bdlac(i)
= (_ 1)((ac + bdlac - 11/4

= (_1)«a- 11/21«C-ll/2). (Proposition 9.8.6) (5)

The last equality is a simple exercise using Lemma 6 of Section 7. We leave
to the reader the simple task of carrying through the situation in which one
of a, c, or ae + bd is a unit. 0

The general law of biquadratic reciprocity follows easily from Proposition
9.9.9. For write rr = mea + bi), ,1.= n(e + di),(rr, A) = 1 where m == n == 1 (4),
(a, b) = I, (c, d) = l. By Proposition 9.9.8, X.(II) = x.(rr) and b(m) = Xm(A).
Also Xm(n) = x.(m) = 1 by Proposition 9.8.5. Then, since a + bi and e + di
are primary,

X,;{rr) = b(m)x;.{a + bi)

= Xm(A)x.(a + bi)Xc+di(a + bi)
= Xm(A)Xa+bi(n)Xa+bi(e + di)( _1)«a-I I/2)((c-ll/21

= X.(A)(_1)«a-1)/21«c-II/2)

= X.(A)(_1)«N(.)-ll/4)«N().)- 11/4),

where in the last line we have used the fact that m == n == 1 (4). This completes
the proof, a monument to ingenuity and persistence! 0

§lO Rational Biquadratic Reciprocity

Throughout this section p and q denote distinct primes congruent to 1
modulo 4. Then the multiplicative group (lL/plL)* has a unique subgroup
of order (p - I)/4 consisting of the residues of fourth powers of integers.
Consider the biquadratic residue character X. defined by means of an
irreducible rr in lL[i] dividing p. By Proposition 9.8.3 X.(q) = 1 iff x 4 == q (x)
has a solution with x E lL[i] .
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Lemma 1. Xn(q) = 1 iffx4 == q (P) has a solution with x E lL.

PROOF. By Proposition 9.8.1 the integers 0, 1, 2, ... , p - 1 form a complete
set of residues for the residue classes of lL[ i] modulo n. Thus Xiq) = 1 iff
x 4 == q (n) has a solution with x E lL. It follows that x 4 == q (it). However,
(n, it) = 1. Thus p = nit lx4

- q. 0

Let !/J p denote the quadratic residue cha racter.

Lemma 2. If!/Jiq) = I then Xn(q) = ± 1.

PROOF. Since q(P- tl /2 == 1 (p) it follows that X;(q) == (q(P-I )/4)2 == q(p-1)/2 ==
1 (n), Thus X;(q) = 1. 0

Thus, assuming that q is a square modulo p, Xiq) is + 1 or - 1 according
as q is or is not a fourth power modulo p. By the law of quadratic reciprocity
!/Jq(p) = + 1. Notice that the value Xn(q) depends only on p and q and not
on the choice of the irreducible n. Contrary to what one might expect the
relationship between the two integers Xn(q) and xip) where A. is an irreducible
dividing q is not a simple consequence of the law of biquadratic reciprocity.
In 1969 K. Burde [102] discovered the following remarkable reciprocity
law. Since p and q are congruent to 1 modulo 4 we may write p = a2 + b2

,

q = c2 + d2
, where a == c == 1 (2) and b == d == 0 (2). Throughout the

following we assume !/Jq(P) = 1.

The following elegant proof is due to K. Williams [244]. The law of
biquadratic reciprocity is not assumed. However the value of the quadratic
Gauss sum is used (Chapter 6, Section 4). The following proposition is of
interest in itself. (See the comment at the end of Section 12).

Proposition 9.10.1. Let n be the primary irreducible dividing p. Then

g(Xn)2 = - (-l)(p- Il /4.Jim

where .jP denotes the positive square root.

PROOF. By Proposition 9.9.4 and Theorem 1, Chapter 8 we have

g(Xn)2
J(Xn,Xn) = -Xn(-I)n = g(!/Jp)'

The proposition follows from Theorem I, Chapter 6 and the observation
that Xn( -1) = (_I)(P-t )/4. 0

Proposition 9.10.2. I] n is a primary irreducible dividing p thenX"(q)Xx(p) ==
n(q -1) /2 (q).
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PROOF. We have, in the ring of all algebraic integers,

g(x~)q = (L x~(jK i)q

== L X~(jKqi (q)

== X~(q-t)g(X~)(q)

== X~(q)g(X.) (q).

The last congruence follows because
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x.(q-t) = X~(q) = X;(q)X~(q) = X~(q)·

Thus, multiplying by g(X.)J

g(X~)4(g(X~»q- I == X~(q)g(X~)4 (q).

The two terms on the left-hand side are in Z[i] by Proposition 8.3.3 ; and
by Proposition 8.2.2 N(g(X.)4) = p", Thus one may cancel g(X~)4 to obtain

g(X~)q- 1 == X~(q) (q).

Using Proposition 9.10.1 one obtains

(g(X.)2)(q-Il /2 = p(q- 1l/4rr(q-1)/2 == X~(q) (q).

But p(q-l)/4 == xiI') (A.) and since both sides of this congruence are real it
follows, taking conjugates and noting (A., A:) = 1, that this congruence holds
modulo q. This completes the proof. 0

In the following proposition n is not assumed to be primary. Write
n = a + bi and A. = e + di.

Proposition 9.10.3. n(q-ll/2 == l/tq(d)l/tq(ad - be) (q).

PROOF. Since dn == ad - be (A.) one has

(dnyq- 1)/2 == (ad - be)(q -1)/2 (A.).

Thus

l/tq(d)n(q-ll /2 == l/tq(ad - be) (A.) .

Similarly dn == (ad + be) (A:) implies

l/tq(d)n(q-l) /2 == l/tq(ad + be)(A:).

The proof now follows from the following lemma. o

Lemma 3.l/tq(ad - be) = l/tiad + be).

PROOF. Since ('2 == _d2 (q) one has

l/tq(ad - be)l/tq(ad + be) = l/tq(a2d2 - b2e2) = l/tq(d2p) = l/tip) = 1. 0
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Note furthermore that since !/Iq( -I) = lone has as a consequence of the
above lemma !/Iq(ad - bc) = !/Ii -ad + bc) = !/Iq( -ad - bc). Thus in the
statement of Theorem 3 there is no loss of generality in assuming that 1C is
primary. With this assumption one concludes from Propositions 9.10.2
and 9.10.3 that

The proof of Theorem 3 is completed by the following lemma.

Lemma 4. Ifq = c2 + d2, C > 0, C == I (2) then !/Iq(d) = (-l)(q- 11/
4.

PROOf. Let !/Ie denote the Jacobi symbol. Then by Proposition 5.2.2 one has
!/Iic) = !/Ilq) = !/Ie(d 2

) = 1. (Cf. Exercise 26, Chapter 5). But c2 == _d2 (q)
implies C(q-tl/2 == (_1)(q-ll /4d(q - ll/2 (q). Thus !/Iic) = 1 = (_I)(q-ll /4!/1q(d).

o

§ll The Constructibility of Regular Polygons

On March 30, 1796 C. Gauss, then almost 19 years old, began a diary in
which he recorded his mathematical discoveries. The first entry reads
"Principia qui bus innitur sectio circuli , ac divisibilitas eiusdem geometrica
in septemdecim partes, etc.," a rough translation of which is" Principles upon
which the division of a circle into 17 parts depend, etc.. . .". More generally
in his Disquisitiones Arithmeticae, §365, Gauss proves, using "cyclotomic
per iods" that if pis a prime of the form 2" + I then a regular polygon with
p sides is constructible by ruler and compass.

In this section we give a short proof of this result using Gauss and Jacobi
sums.

Generally speaking the constructible complex numbers in our context
are those numbers that may be obtained from 0 by a finite sequence of
rational operations and the formation of square roots. More precisely

Definition. A complex number a E C is constructible if there exist sub-
fields of C,O = Ko C K1 C K2 C C K" such that a E K" and K; =
Ki-I(~) for some a, E Ki, i = I , n.

Here K(jJJ) denotes the field of all complex numbers a + bjJJ, a, b E K
(see Exercise 6, Chapter 6). It is easy to see that (J. is constructible iff the real
and imaginary parts of (J. are constructible. Furthermore if (J. is constructible

then fi is constructible. Let, as usual, (. = e2 ni
/
l
•

Lemma 1. (2" is constructible, n = 1,2, ... .
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PROOF. Since «(2")2 = (2"-' the result follows by induction «(1 is certainly
constructible !).

Lemma 2.

1
1,

I x(t) = p - 1,
x 0,

if t = 0,

if t = 1,
if t # 0, I,

the slim being over all characters of F;.

PROOF . If X = E, the trivial character then E(O) = 1. Thus the result holds for
t = O. It is true when' = 1 by Proposition 8.1.3 while the remaining case is
the corollary to Proposition 8.1.3. 0

Recall that a Fermat prime is a prime of the form 2" + 1.

Theorem 4. If p is a Fermat prime then (p is constructible.

PROOF. If g(x) = Ir:d x(tK~ is the Gauss sum associated with Xthen

~ gex) = ~t~ (~X(t))(~
= I + (p - 1Kp •

Thus (p = (p - I) - I( -I + Ix g(x» a nd therefore (p is constructible if each
g(X) is.

However p - 1 = 2" and since the characters form a group of order
p - 1 we see that the order of X. is 2m for some m. Then using Proposition
8.3.3 we have g(X)2~ = X( - I)pl(x., X)l(x., X2) . . . leX, X') where I = 2m

- 2.
But lex, Xi) E Z[(2"] so that by Lemma 1 g(x)2

m
is constructible. It follows

that g(X) is constructible and the proof is complete. 0

§12 Cubic Gauss Sums and the Problem of Kummer

If p is a prime p = 1 (4) then the simple argument of Proposition 6.3.2
showed that g(X)2 = P where

p-t(,) p-I p-t 2m2
g(x) = I - (~= I (~= I cos-

r e j P 1=0 1=0 P

is the classical quadratic Gauss sum. Thus with little effort g(X) was shown to
be one of the real roots of x 2

- P = O. Using a more sophisticated argument,
we have shown in Section 6, Chapter 6 that actually g(X) is always the largest
root, that is to say g(X) = JP.
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In the case of cubic Gauss sums the matter is more subtle. Let p be a
prime p == 1 (3) and consider Ir';ot cos(2nt 3jp) = G. Write p = 7tit where 7t

isa complex primary prime in l[w] and let X"be the cubic character associated
with 7t as defined in Section 3.

Lemma 1. G = g(X,,) + g(x,,)·

PROOF. If' = e2"ir then since G is real, and _ I = (_ 1)3

p-l p-I

G = I '1
3= I (1(1 + X,,(t) + X,,(t2»

1=0 1=0

= g(x,,) + g(x;)

=g(x,,) + g(1.,,)

= g(x,,) + x,,(-1)g(x,,)

= g(x,,) + g(x,,)· o
Notice that in the above proof Xcan be any character of order 3. However

in the following lemma the choice of X" is essential. Write 7t = a + bt».

Lemma 2. G is a real root of x 3
- 3px - (2a - b)p = O.

PROOF . By Lemma I, writing X for X"'

G3 = g(X)3 + g(X)] + 3g(X)g(x)(g(X) + g(X»

= pt: + pit + 3pG
= 3pG + p(2a - b).

In the second step we have used the corollary to Lemma 1, Section 4. 0

Corollary. G is a root of x 3
- 3px - Ap = 0 where 4p = A2 + 278 2

,

A == 1 (3).

PROOF . This is simply the corollary to Proposition 8.3.4. o

Thus G is twice the real part of g(X,,) and is a root of the polynomial
x 3

- 3px - Ap. In the same manner as above we see that the other roots are
2 Re (wg(X,,» and 2 Re (w 2g(X,,». Using the fact that Ig(x,,)1 = pl /2 it is a

simple matter to see that each of the intervals ( - 2JP, - JP), (- JP, JP),
and (JP, 2JP) contains precisely one of the roots (see Exercise 43). By the
corollary to Lemma I, Section 4, the value of g(x,,) is determined up to I,
w, or w2

• Unable to find an expression for this root of unity for general p,
Kummer proposed a statistical study of the distribution of those primes for
which G, say, is the largest root of x 3 - 3px - Ap. He found, for example,

that among the primes less than 500, G was in the interval (JP, 2JP) for 24

primes . The interval (-2JP,-JP) contained 7 primes and the middle
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interval 14 primes. (See [164], Vol. 1, pp. 50, 296, 353.) Putting 11 =
(-2JP, -JP), 12 = (-JP,JP), 13 = (JP,2JP) and letting Nj(B) be
the number of primes less than B such that G is in I j he noted that the ratio
N 1(500) : N 2(500): N3(500) is roughly 1 : 2 : 3.

However in 1953,1. von Neumann and H. H. Goldstine considering all
primes (== I (3» less than 9973 arrived at a ratio of roughly 2 : 3 : 4 [197].
They found N I(l04)= 138, Ni104

) = 201, N 3(10
4

) = 272. They stated,
" These results would seem to indicate a significant departure from the
conjectured densities and a trend toward randomness." Emma Lehmer ex
tended the calculations to include the first 1000 primes, p == 1 (3), and dis
covered a ratio approximately 3: 4 : 5. [176]. Thus the suspicion arose that
indeed the values of G are asymptotically uniformly distributed in the three
intervals. That th is is indeed the case was established in 1978 by D. R.
Heath-Brown and S.l. Patterson in the ir paper, "The distribution of Kummer
sums at prime arguments " [147].

We mention that 1. W. S. Cassels [108], conjectured a precise expression
for g(Xn) involving elliptic functions. This conjecture was established by C. R.
Matthews [186]. Furthermore an explicit elementary expression has been
obtained for the biquadratic Gauss sum by Matthews [186]. The result of
Matthews is as follows. Let p be prime p == 1 (4) and write p = nit, n primary,
n = a + bi. Define f3 = ±i by «p - 1)/2)! == f3 (x), If g(X,,) is the biquadratic
Gauss sum attached to Xn then by Proposition 9.10.1,g(X,,)2 =( - l)(p- 1 lJ4n.JP.
Thus gUn) = f.J( _I)IP- IlJ4nJP where the square root has positive real
part. Matthews proved that e = -f3x,,(2i)(2Ibl /a) where (2Ibl la) is the
lacobi symbol. See also 1. H. Loxton [182], and B.C. Berndt and R.l. Evans
[93].

NOTES

For the early history of cubic and biquadratic reciprocity we note that Euler,
during the years 1748-1750, conjectured Proposition 9.6.2 concerning the
cubic character of 2, as well as similar results for the integers 3, 5, and 7.
He also conjectured that 2 is a fourth power modulo p, p == 1 (4) iff p =
a2 + 64b2 (Exercise 6, Chapter 5) and stated similar results for the primes 3
and 5. All of Euler's conjectures concerning these special cases of reciprocity
were correct, a remarkable example of his "inductive" ability. The general
biquadratic character of 2 (Exercise 37) was established by Gauss in his first
memoir on biquadratic residues (1828) while the general law of biquadratic
reciprocity was stated in his second memoir on the same subject (1832).
For further historical comments on the history of these results see the
paper by M. 1. Collision [116].

Gauss wrote to Alexander von Humboldt in 1846 that Eisenstein's
mathematical talent was such as nature confers upon few in each century.
In 1844, at the age of twenty-one, Eisenstein published a total of 25 papers in
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Crelle 's journal. The proofs of cubic and biquadratic reciprocity given in
this chapter as well as the proofs of quadratic reciprocity given in Chapter 6
are among them (see [28], [130], [131]). The collected works of th is re
markable genius, dead at 29, are now available. An informative and charming
account of Eisenstein's life and research has been given by A. WeiI in his
review of the collected works [239]. One should also read the beautiful
paper by WeiI, "La Cyclotomie.jadis et naguere" [238]. In a later chapter we
shall prove a generalization of these reciprocity laws, the celebrated Eisen
stein reciprocity law. A discussion of Eisenstein's other proofs of biquadratic
reciprocity is contained in H. Smith's report [72] . As far as cubic reciprocity
is concerned Jacobi claims to have given the proof in his lectures of 1837
but the first published proof is definitely due to Eisenstein in 1844. The
dispute over priority appears to have been quite bitter.

For the actual construction of a 17-sided polygon see Hardy and Wright
[40], p. 61. Gauss' treatment of cyclotomy is contained in §7 of his Dis
quisitiones Arithmeticae [136]. In §335 he mentions that the techniques
developed there extend to other transcendental functions such as those

connected with f dx/~, the integral arising from arc length on a
lemniscate. Gauss recorded in his diary on March 21, 1797 that he has
succeeded in dividing the arc of the lemniscate into five equal parts. In 1827
Abel was able to show that, as in the case of a circle, the arc of a lemniscate
can be divided into p equal parts with ruler and compass when p is a Fermat
prime . For an examination of Abel's proof from a modern point of view
see the article by M. Rosen [212].

In recent times there has been a renewed interest in rational reciprocity
laws. The interested reader should consult the survey article by E. Lehmer
[175] as well as the paper by H. von Lienen [181].

EXERCISES

I. If ex E l[w] , show that ex is congruent to either 0, I , or -1 modulo 1 - o».

2. From now on we shall set D = lEw] and A. = 1 - os. For J! in D show that we can
write J! = ( - 1)"wbA.cn~ln~' .. . n~', where a, b, c, and the a, a re nonnegat ive integers
and the nj are primary primes.

3. Let y be a primary pr ime. To evaluate X,(J!)we see, by Exercise 2, that it is enough to
evaluate d - 1),/. ,(w),X,(A.),and xin), where n is a primary prime. Since - 1 = (- 1)3

we have '1. ,( - I) = I. We now consider X,(w) . Let.y = a + bw and set a = 3m - 1
and b = 3n. Show that X,(w) = w"+".

4. (continuation) Show that X,(w) = I, w, or w 2 according to whether y is congruent
to 8,2, or 5 modulo 3A.. In particular, ifq is a rat ional prime, q == 2 (3), then X.(w) = I,
w, or (1)2 according to whether q == 8, 2, or 5 (9). [H int : y = a + bw = - 1 +
3(m + nw), and so y == - 1 + 3(m + n) (3A.).]

5. In the text we stated Eisenstein's result X,(A.) = w2m
. Show that X,(3) = w 2

" .
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6. Prove that
(a) x,(A.) = 1 for Y== 8, 8 + 3w, 8 + 6w (9).
(b) X;O.) = w for Y == 5,5 + 3w, 5 + 6w (9).
(c) Xy(,t) = w 2 for y == 2,2 + 3w, 2 + 6w (9) .

135

7. Find primary pr imes assoc iate to I - 2w, - 7 - 3w, and 3 - w.

8. Factor the following numbers into primes in D: 7, 21,45,22, and 143.

9. Show that iX, the residue class of a, is a cube in the field DlnD iff a(Nn-ll /3 == I (n).
Conclude that there are (Nn - 1)/3 cubes in Dfnl).

10. What is the factorization of X
24

- I in DI5D?

11. How many cubes are there in DI5D?

12. Show that w,t has order 8 in DI5D and that w 2,t has order 24. [Hint :Show first that
(W,t)2 has order 4.]

13. Show that rr is a cube in DI5D iffrr == 1,2,3,4, 1 + 2w,2 + 4w,3 + w, or 4 + 3w (5).

14. For which primes tt E D is x 3 == 5 (rr) solvable?

15. Suppose that p == 1 (3) and that p = rrit, where n is a primary prime in D. Show that
x 3 == 0 (p) is solvable in 7L iff X.(o) = 1. We assume that 0 E 7L. .

16. Is.'(3 == 2 - 3w (II) solvable? Since DIIID has 121 elements this is hard to resolve
by straightforward check ing. Fill in the details of the following proof that it is not
solvable. X.(2 - 3w) = X2 _3w( 11) and so we shall have a solution iffx 3 == 11 (2 - 3w)
is solvable. This congruence is solvable iff x3 = 11 (7) is solvable in 7L. However,
.'(3 == 0 (7) is solvable in 7L iff 0 == 1 or 6 (7).

17. An element YE D is called primary if y == 2 (3). If y and p are primary, show that
-'1P is primary. If}' is primary, show that y = ±YIY2'" Y" where the Yi are (not
necessarily distinct) primary primes.

18. (continuation) If 1= ±YI12 ' " y, is a pr imary decomposition of the primary
element y, define X,(a) = Xy,(a)Xy,(a) · . . Xy,(:x). Prove that xy(a) = X,(P> if a == P(y)
and X,(ap) = xy(a)x,(p) . If P is primary, show that Xp(a)xy(a) = X-~y(a).

19. Suppose that y = A + 8w is primary and that A = 3M - 1 and 8 = 3N: Prove
that Xy(w) = W

M
+

N and that Xy(,t) = W
2M

•

20. If I and p are primary, show that xip) = Xp(y).

21. If }' is primary, show that there are infinitely many primary primes n such that
x 3 == i' (n) is not solvable. Show also that there are infinitely many primary primes
rr such that .'(3 == W (x) is not solvable and the same for x 3 == ,t (n) . (Hint : Imitate
the proof of Theorem 3 of Chapter 5.)

22. (cont inuation) Show in general that if YE D and x 3 == y (n) is solvable for all but
finitely many primary primes n, then y is a cube in D.

23. Suppose that p == I (3). Use Exercise 5 to show that x 3 == 3 (p) is solvable in 7L
iff p is of the form 4p = C2 + 24382

•
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The following three exercises give K. Williams' elegant proof of the complex case of the
supplement to the law of cubic reciprocity [245]. The reader may wish to consult the
hints at the end of the book .

24. Let 1t = a + bw be a complex primary element of D = Z[w]. Put a = 3m - I,
b = 3n, p = N(1t).
(a) (p - 1)/3 == -2m + n (3).
(b) (a 2

- 1)/3 == m (3).
(c) x.(a) = w",
(d) x.(a + b) = w 2nX.(1 - w).

25. Show that X.+b(1t) may be computed as follows .
(a) XG+b(1t) = X"+b(1 - w).
(b) X.+b(1t) = w 2' ... +n l•

26. Combine the previous two exercises to conclude that X.(l - w) = w 2'",

The following four exercises are taken from Matthews [186].

27. Let 1t = a + bi be a primary irreducible in Z[i] , b ¥- O. Show
(a) a == (_I)'P- l lI 4 (4), P = N(1t).
(b) b == I - (_1)'P- l lI4 (4).

28. The notation being as in Exercise 27 show X'<it) = x.(2)x.(a).

29. By Exercise 27, a( _1)(P-I I/4 is primary. Use biquadratic reciprocity to show
x.(a( _1)'P-I lI 4) = (_1),.2- 11/8.

30. Use the preceding two exercises to show X.(it) = X.( -2)( _1)'. ' - llI8.

31. Let p be pr ime, p == I (4). Sho w that p = a2 + b2 where a and b are unique ly
determined by the conditions a == 1(4), b == -«p - 1)/2)! a (P).

The follow ing five exercises are taken from Eisenstein [ 130], §9.

32. Let p be prime, p == I (4) and write p = 1tit, 1tE Z[i]. Show Xp(1 + i) = i,p- l lI 4 .

33. Let q be a positive prime, q == 3 (4). Show xq(l + i) = i(q + I lI 4. [Hint: (I + i)q-I ==
-i (q) .]

34. Let 1t = a + bi be a pr imary irreducible, (a, b) = 1. Show
(a) if1t == I (4) then x.(a) = i (·-l lI 2 •

(b) if1t == 3 + 2i (4) then x.<a) = -i,-· -II{2.

35. If 1t = a + bi is as in Exerc ise 34 show x.(a)x,,(l + i) = i IJ (. + b - I H/4. [Hint:
a(l + i) = a + b + i(a + bi). Generalize Exercises 32 and 33 to any integer
== I (4) and use Proposition 9.9.8. Note a + b == I (4).]

36. Remove the restriction (a, b) = 1 in Exercise 34.

37. Combine Exerc ises 32, 33, 34, and 35 to show X.(l + i) = i,·-b-b' - I lI 4 . Show that
th is result implies Exercise 26 of Chapter 5 (the " biquadratic character of 2").

38. Prove part (d) of Proposition 9.8.3.

39. Let p == I (6) and write 4p = A2 + 27B2
, A == 1 (3). Put m = (p - 1)/6. Show

(~)== -A (P)¢>2 IB.
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40. Let p == I (6), and put p = 7I:ii where 71: is primary. Write 71: = a + bw and show
(a) If X.(2) = w then 2b - a == -emm)(P).
(b) If X.(2) = w 2 then a + b == e:) (p).
(c) If X.(2) = w put A = 2a - b, B = b/3 . Show (A - 98)/2 == e:) (p).
(d) If X.(2) = w 2 put 2a - b = A and B = -b/3. Show (A - 9B) /2 == emm) (p).
(e) Show that the "normalization" of B in (c) and (d) is equivalent to A == 8 (4).

[Recall X.(2) == 71: (2) by cubic reciprocity.]

41. Let p == 1(6), 4p = A 2 + 278 2
, A == I (3), A and B odd. Put 71: = a + bui, 2a

b = A, b = 38. Let x. be the cubic residue character.
(a) If X.(2) = w show N(x J + 2y J = I) = p + I + 2b - a == 0 (2).
(b) If X.(2) = w 2 show N(xJ + 2yJ = I) = P + I - a - b == 0 (2).
(c) Show that if A == 8 (4) then, assuming X.(2) :F I, one has X.(2) = w.
(d) IfX.(2):F I, A == B (4) then 2(p- l l/ J == (-A - 38)/6B == (A + 98)/(A - 98) (71:).

(This generalization of Euler's criterion is due to E. Lehmer [174]. See also
K. Williams [243].)

42. The notation being as in Section 12 show that the minimal polynomial of g(X.) is
x J

- 3px - Ap.

43. Find the local maxima and minima of xJ - 3px - Ap and show that each of the

intervals (-2jP, -jp), (-jp, jp), (jP,2jP) contains exactly one of the
values 2 Re (wkg(X.», k = 0, 1,2 .

44. Let nE?L, n = SI " 'S" n == 1(4), Si == 1(4), i = I, .. . .r. Show (n - 1)/4 ==
L:= 1 (s, - 1)/4 (4).

45. Let 71: = a + bi E ?L[i] and q == 3 (4) a rational prime. Show 7I:q == ii (q).



Chapter 10

Equations over Finite Fields

In this chapter ~I'e shall introduce a new point of Fiew.
Diophantine problems over finit e fi elds will be put into the
contex t ofelementary alqebraic geom etry . The not ions of
affine space, project ive space, and points at infinity will be
defined.

Alter these problems of lanquaqe have been dealt with ,
we shall pro ve a very general theorem due to C. Checalley ,
which states that a polynomial in several variables with
110 constant term vver a finite fi eld always has nontrivial
zeros if the number of variables exceeds the degree.

Next, our interest turns to the problem ofgeneralizing
the results of Chapt er 8 to arbitrary finite fi elds. This
turns out to be relatively easy. These more general results
are of interest for their own sake and are crucial to the
discussion of the zeta function, which we shall take up in
Chapter II .

§1 Affine Space , Projective Space, and Polynomials

Let F be a field and An(F) the set of n-tuples (ai ' a2" '" an) with aj E F.
An(F) can be considered as a vector space by defining addition and sca lar
multipl ication in the usual way. We shall be concerned principally with the
underlying set, which will be called affine n-space over F. As usual the point
(0, 0, .. . , 0) will be called the origin. If there is no chance of confusion we
shall denote the point (a I ' a2 , ... , an) by the single letter a.

Projective n-space over F, pn(F), is a somewhat more difficult concept.
We first consider An

+ I(F), denoting its points by (ao, al"'" an)' On the
set An + I(F) - {(O, 0, . .. , O)} (affine (n + I)-space from which the origin
has been removed) we define an equi valence relation. (ao, aI' .. . , an) is said
to be equivalent to (bo, bl , . . • , bn ) if there is a }' E F* such that ao = 'lbo,
at = yb 1, ••• , an = 'lbn · Thi s is easily seen to be an equivalence relation.
The equivalence classes are called points of P''(F). If a E An

+ l (F) is distinct
from the origin, then [a] will denote the equ ivalence class containing a.
a will be called a representative of [a] . Geometrically, the points of pn(F)

138
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are in one-to-one correspondence with the lines in An + I(F) that pass through
the origin.

If F is a finite field with q elements, then clearly An(F) has qn elements.
reF) has qn + q"' 1 + ... + q + 1 elements. To see this, notice that
An + I(F) - {(O, 0, .. . , O)} has e: - 1 elements. Since F* has q - 1
elements each equivalence class has q - 1 elements. Thus P'(F; has
(qn+ I _ I) /(q _ I) = qn + qn- I + .. . + q + 1 elements.

In general P'(F; has more points than An(F). This is made more precise
as follows. If [x] E reF) and Xo # 0, set ¢([x]) = (xt/xo, X2 /XO ' .. ..
xn/xo) E An(F). This map is easily seen to be independent of the repre
sentative x.

Lemma l. Let H be the set of [x] E pn(F) such that Xo = O. Then ¢ maps
pn(F) - Hto An(F) andthismap is oneto oneandonto.(If Sand T aresets, then
S - T is the set ofelements ;n S but not ;n T.)

PROOF. If ¢([x]) = ¢([y]), then xJxo = yJyo for; = 0, 1,. . . ,n. Let ')' = yo/xo .
Then YXj = Yi for; = 0, 1, . . . , n and so [x] = [y].

If v = (VI' V2"' " Vn) E An(F), set w = (1, VI' U2' ... ' un)' Then ¢([w]) = v.
o

The set H is called the hyperplane at infinity. It is easy to see that H
has the structure of pn- l(F). Thus pn(F) is made up of two pieces, one a
copy of An(F), called the finite points, and the other a copy of P"" l(F),
called the points at infinity .

Notice that pO(F) consists of just one point. Thus pl(F) has only one
point at infinity. Similarly p2(F) has a (projective) line at infinity, etc.

Now that affine space and projective space have been defined we take
up the subject of polynomials and see how they determine sets called hyper
surfaces.

Let F[X I,X2' ''''Xn] be the ring of polynomials in n variables over F.
Iff E F[x I ' ... , xn] , then

f(x) =
(i I . iz . .... ;,,)

where the sum is over a finite set of n-tuples of nonnegative integers
(i I, ;2, . . . , in)' where ai ,i, ...in # O. A polynomial of the form Xi(1x~ ... x~n

is called a monomial. Its total degree is defined to be ;1 + ;2 + ... + in:
its degree in the variable X m is defined as;m' The degree off(x) is the maximum
of the total degrees of monomials that occur inf(x) with nonzero coefficients.
The degree in X m is the maximum of the degrees in X m of monomials that
occur inf(x) with nonzero coefficients. Call these two numbers deg f(x) and
deg; f(x) . Then

(a) deg f(x)g(x) = deg f(x) + degg(x).
(b) deg., f(x)g(x) = deg, f(x) + deg; g(x) .
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If all the monomials that occur inf(x) have degree I, then f(x) is said to
be homogeneous of degree l.

For example. if f(x) = 1 + X IX2 + X2X3 + x~ . then deg f(x) = 3.
deg, f(x) = deg, f(x) = deg, f(x) == 1. and deg, f(x) = 3. f(x) is not
homogeneous. but h(x) = x~ + x~ + x~ + XIX~X3 is homogeneous of
degree 3.

A homogeneous polynomial is sometimes called a form. A form of
degree 2 is called a quadratic form, and one of degree 3 is called a cubic
form, etc.

Suppose that K is a field containing F. If f(x) E F[x l• X2 • • •• • x"J and
a E A"(K), we can substitute aj for x, and compute f(a) .

This shows that f(x) defines a function from A"(K) to K by sending a
to f(a) . A point a E A"(K) such that f(a) = 0 is called a zero of f(x) .

If K is a finite field with q elements, then xq
- x defines the zero function

on A I(K). Thus it may happen that a nonzero polynomial gives rise to the
zero function. This cannot happen when K is infinite (see the Exercises).

Letf(x) be a nonzero polynomial and define Hf(K)= {a E A"(K)I f(a) =O}.
Hf(K) is called the hypersurface defined by fin A"(K). When K is a finite
field. H/K) is a finite set and it is natural to ask for the number of points in
H/K). In Chapter 8 we dealt with a number of special cases of this problem.

We now wish to define a projective hypersurface. Let h(x) E

F[x o• X I' • •. , x"J be a nonzero homogeneous polynomial of degree d. As
before. K is a field containing F. For y E K* we have h(yx) = ydh(x). It
follows that if a E A"+ I(K) and h(a) = O. then h(ya) = O. Thus we may
define Hh(K) = {[aJ E P"(K)lh(a) = O} . This set is called the hypersurface
defined by h in P"(K). Again , if K is finite , we can ask for the number of points
in Hh(K).

More generally if fl • ... .fm are polynomials in F[x l• . . . , xnJ define
V = {(al • • •• , an)laj E F, i = 1, . . . , n, h{al"' " an) = O. j = 1•. . . •m}. V is
called an algebraic set defined over F. If the ideal defined by fl' .. . .fm in
F[x I " • •• xnJ is prime then V is called an algebraic variety. Similarly, the
common projective zeros of a finite set of homogeneous polynomials in
F[x o•. . . ,xnJ is called a projective algebraic set.

It turns out that working with projective space leads to more unified
results than working with affine space. We shall illustrate this point after
defining the projective closure of an affine hypersurface.

Let f(x) E F[x I' X2' • • • , x"J. and define J(y) = J(yo. YI • . . . , Yn) by

J( ) = dCgff(YI Y2 Yn)Y Yo • , . . .. .
Yo Yo Yo

We shall see in a moment thatj'is a homogeneous polynomial. It will give
rise to a hypersurface in pn(K). Roughly speaking. the new hypersurface will
be obtained from H f(K) by adding po ints at infinity.
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Lemma 2.J(y) isa homogeneous polynomialofdegreeequalto deg f. Moreover,
/(1, Yt, Y2 "'" Yn) = f(Yt, Y2"' " Yn)'

PROOF. Set d = deg f and consider a monomial Xit'X~'" X~" of degree I ::;; d.
Then y~(yt/YO)il .. . (Yn/YoY" = ~-Iyh~ ... y~", which is of degree d. Thus
in J(y) all the monomials have degree d, which proves the first statement.

The second statement is immediate from the definition. 0

As examples, if f(x) = xi + x~ - I, then /(y) = yi + Y~ - yij: if
f(x) = 1 + 2xi - 3xL then /(y) = yij + 2yi - 3Yoyi .

Consider the hypersurface H f(K) c An(K). /(y) is homogeneous in
the variables Yo, Yt , .· ., Yn and so J defines a hypersurface H](K) in pn(K).
This projective hypersurface is called the projective closure of H f(K) in
pn(K).

Let kAn(K) -+ pn(K) by A(a t, a2, ... , an) = [1, at, a2"'" an]. A. is one
to one and moreover the image of Hf(K) under A. is contained in if.t<K)
since clearly J([I ,at , · .. ,an]) = f(a t,a2, . .. ,an) =0 for all aeHiK).
In general if.t<K) has more points than HiK), namely, the intersection of
HJ<K) with the hyperplane at infinity.

All this will become clearer by means of examples, but before giving
some we recall the definitions of the maps ¢ and Aand give a diagrammatic
picture of r(K):

kAn(K)-+ pn(K) by A(a t,a2, .. . ,an) = [1,a t,a2, . .. ,an],

¢ : pn(K) - if -+ An(K) by ¢([bo, bt , ... , bn]) = (:~' ::, .. .,::) .

pn(K)

im A~ An(K)
Finite points

if ~ pn-t(K)
Points at infinity

EXAMPLES

1. f(x) = xf + xi - lover the field F = 7L/p7L.
We have seen in Chapter 8, Section 3, thatf(x) = 0 has p - 1 solutions

if p == 1 (4) and p + 1 solut ions if p == 3 (4).
J(y) = yf + yi - y~ .Thesolutions[po,pI>P2],wherepo =1= Ocorresponds

to the affine solution (pt/po , P2/PO)' Suppose that [0, pr- P2] is a solution.
Then pf + pi = 0 or (P2/Pt)2 = -1. If P == 1 (4), there is an a e F such
that a2 = - 1 and in this case there are two points at infinity, namely,
[0, 1, a] and [0,1, -a]. If P == 3 (4), there is no a e F such that a2 = -1
and consequently there are no points at infinity. In both cases, then, the
hypersurface if.t<F) has exactly P + 1 points.
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2. I(x) = x~ + x~ - lover F = 7L/p7L where p == 1 (n).
We have fey) = y~ + ~ - Yo . Thus the points at infinity on Hj{K)

are of the form [0, Yt, Y2], where y~ + y~ = 0. If - 1 is not an nth power in F,
then there are no points at infinity. If an = - 1for some a E F, then there are
n solutions to x" = -I in F [this follows from Proposit ion 4.2.1 since
p == I (n)]. Call these solutions a 1 = a, (/2" ' " an ' Then [0, I, ad,
.. . , [0, I, an] are the points at infinity that are zeros of /(y). In the nota
tion of Chapter 8, Section 4, the number of points at infinity is I n( - I)n, and
N(x~ + x~ = I) + I n( -1)/1 is the number of points on the projective hyper
surface (curve) defined by y~ + y~ - Yo = 0. Since the number of points in
PI(F) is p + 1 the formula in Proposition 8.4.1 can be interpreted in the
following way: The number of points on the projective curve y~ + y~ 
Yo = °over 7L/p7L differs from the number of points on the projective line by
an error term that does not exceed (n - I)(n - 2)JP.

This result is a special case of the so-called Riemann hypothesis for
finite fields, which states, roughly, that over a finite field with q elements,
the number of points on a projective curve differs from the number of points
on the projective line by an error term that does not exceed twice the genus
(a number associated with the curve) times jq.

Special cases of the result were proved by various authors : Gauss,
G. Herglotz, Hasse, and Davenport. The theorem was proved in fullgenerality
by Weil.

3. I(x) = xi + x~ + ... + x;, - lover F = 1l../p7L, where m is even and
p # 2.

The number of finite points is given by pm - t _ ( _I)(m/2)(p-1)/2). p(m/2)-1

(see Proposition 8.6.1). Since fey) = yi + y~ + ... + y;, - Y5 the number
of points at infinity is equal to the number of solutions to yi + y~ + .. . +
y;, = °in pm-l(F). The number of affine solutions is given by N = pm-I +
(_I)(m/21((p- 11/21(p _ I)p(m/21- 1 (see Exercise 19 in Chapter 8) so the number
of projective solutions is

N - 1 = pm-2 + pm-3 + ... + P + I + (_I)(mf2)(p -1) /2p(m/2)-1.
p - I

Adding the number of finite solutions to the solutions at infinity yields
pm- t + pm-2 + .. . + P + l.

This result is rather remarkable. It says that the number of points on
the projective hypersurface given by yi + y~ + ... + y;, - Y5 =° is
exactly equal to the number of points in pm-I(7L/p7L).

There is a simpler way to achieve this result. Instead of considering
the finite and infinite points separately one simply counts the number M
of affine solutions to yi + y~ + ... + y;, - Y5 = °in A m

+ I(F) and then
calculates (M - l)/(p - I). Since m + I is odd, the number M is equal
to pm (see Exercise 19 in Chapter 8). Thus (M - l)/(p - I) = r' +
pm- 2 + ... + P + l.
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In this section F will denote a finite field with q elements.
Ifqisaprime,i .e.,F = l /ql, the equation x1- 1 + x1- 1 + .. . + x:::~ = 0

has no solution except (0, 0, . . . , 0) because aq
- I is equal to 1 or zero de

pending on whether a:/;O or a = 0 for a E F. Thus the values taken on by
the above polynomial are 0, 1,2, . .. ,q - 1and it is zero only if XI = X2 = ...
= xq _ I = O. Notice that for th is polynomial the number of variables is
equal to the degree.

In 1935 E. Artin conjectured the following theorem, which was proved
almost immediately by C. Chevalley [16].

Theorem 1. Let f(x) E F[x I' X2, . . . , xn] and suppose that

(a) f(O, 0, ... ,0) = O.
(b) n > d = degf.

Thenfhas at least two zeros in An(F).

Before giving the proof we shall deduce an immediate corollary.

Corollary. Let h(y) E F[yo, YI" ' " Yn] be a homogeneous polynomial of
degree d > O. If n + 1 > d. then Hh(F) is not empty.

PROOF . Since h is homogeneous (0, 0, . . . ,0) is a zero . By Theorem 1 h has
another zero, (ao, a l , . .. , an)' Clearly [ao. a l, . . . , an] E Hh(F). 0

We shall need the following elementary lemmas.

Lemma 1. Let f(x I ' X2 , . .. , xn) be a polynomial that is ofdegree less than q in
each of its variables. Then if f vanishes on all of An(F), it is the zero poly
nomial.

PROOF . The proof is by induction on n. If n = l,j(x) is a polynomial in one
variable of degree less than q with q distinct roots, namely. all the elements
of F. Thus f is identically zero.

Suppose that we have proved the result for n - 1and consider

f(x l , X2,"" x n) ·

We can write
q -I

f(x l , · · · , xn) = I gj(x l, ···, Xn_I)X~,
i = O

Select a l,a2, ... , an - 1 EF. Then Ir::ol gi(al'a2' . .. . an-l)x~ has q roots
and so gj(al ' a2" '" an -I) = O. By induction each polynomial gi is identically
zero and hence so is f. 0
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Remember that f(x) = x q
- x is a nonzero polynomial that vanishes

on all of A I(F), so the hypothesis of the lemma is crucial.
If a polynomial is of degree less than q in each variable, it is said to be

reduced. Two polynomials f, 9 are said to be equivalent if f(a) = g(a) for
all a E An(F). We write f ~ g.

Lemma 2. Each polynomial f(x) E F[x l , • • • , x n] is equivalent to a reduced
polynomial.

PROOF . Consider the case of one variable. Clearly xq
- x . If m > 0 is an

integer, let I be the least positive integer such that x" - x'. We claim that
I < q. If not, I = qs + r with 0 ~ r < q and s :f. O. Then Xl = (xq)Sx' 

xS +' . Since s + r < I this contradicts the minimality of I.
In the case of n variables consider the monomial XiIIX~ . .. x~". By what

has been said, xit'(~2 . .. X~" .... xj2lx~2 • • . x!.", where jk < q for k = I, 2, ... , n.
Lemma 2 follows directly from this remark. 0

We are now in a pos ition to prove Theorem I. Suppose that (0,0, . .. ,0)
is the only zero of f Then 1 - r- 1 has the value 1 at (0,0, .. . ,0) and the
value zero elsewhere.The same is true of the polynomial (1 - x1 - 1)(1 - X~- l)

... (l - X~- I). Thus

I - r -1 - (I - x1- 1)( I - x~- I) .. . (I - x~ - 1)

vanishes on all of An(F). Replace 1 - r: 1 by an equivalent reduced poly
nomial g. Then

9 - (1 - x1- 1) · · · (1 - X~-l)

is of degree less than q in each of its variables and vanishes on all of An(F).
By Lemma 1 it vanishes identically. Thus deg 9 = n(q - 1). On the other
hand, deg 9 ~ deg(l - r- I) = d(q - 1). Recall that d = deg f This
implies that n :::;; d, which is contrary to the hypothesis. Consequently f
must have more than one zero .

We shall give another proof due to Ax [3]. It is based on the following
lemma.

Lemma 3. Let ii ' i 2 , ••• , in be nonnegative integers. Then unless each i j is
nonzero and divisible by q - 1we have

I ailla~ ·· · a~" = O.
ae A"(F)

PROOF . Suppose first that n = I. If i = 0, then Iae F aO = q = 0 in F. Suppose
i :f. O. F* is cycl ic. Let b be a generator. If q - 1,r i, then

q-2 b 1q-1)i - 1
I ai = I bk i = i = O.

aeF k=O b - I
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In general

Lemma 3 is now clear.

145

o

It should be remarked that if q - 11 ij and ij =f. 0 for all j, then the value
of the above sum is (q - 1)".

To return to Theorem 1, let N J be the number of solutions of f(x) = 0
in A"(F). We shall show that piNJ' where p is the characteristic of F. This
refinement of Chevalley's theorem was first given by Warning [78].

As we have seen , 1 - [" - I has the value 1 at a zero off and the value
zero otherwise. Thus

N J = L (l-f(a)q-I),
Qe A n(F)

where NJ is the residue class of NJ mod p considered as an element of F.
Let Xit'X~2 . • • x~" be a monomial occurring in 1 - f(x)q-t . Since this

polynomial has degree d(q - 1) we must have i j < q - 1 for some j since
otherwise the degree of the monomial would exceed n(q - 1) and we have
assumedthatd < n.ByLemma3 LQeA"(F)ai"a~2 .. . a~" = O.Since l - f(x)q-I
is a linear combination of monomials it follows that NJ = 0, or piNJ'

Warning was able to prove that N J ~ «:'. In a somewhat different
direction Ax showed that qb IN J' where b is the largest integer less than
njd. See [78] and [3] for details.

§3 Gauss and Jacobi Sums over Finite Fields

Let ~p = e2
" i/ p and Fp = 7l. /p71.. In Chapter 8 the function t/J : Fp -+ C given

by t/J(t) = ,~ played a crucial role. To carryover the principal results of
Chapter 8 to an arbitrary finite field F, we need an analog of t/J for F. This
is done by means of the trace.

Suppose that F has q = p" elements. For a E F define tr(a) = a + aP +
aP2 + ... + aP" - ' . tr(a) is called the trace of 0:.

Proposition 10.3.1. If 1., fJ E F and a E Fp' then
(a) tr(a) E F p •

(b) tr( a + fJ) = tr(a) + tr(fJ).
(c) tr(aCl.) = a tr(«) .
(d) trmaps Fonte F p •
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PROOF.

(a) We have

(a + aP+ . .. + aP" -I)p = aP + ty.p
2 + . .. + aP"-1 + aP".

Since aP" = a.q = a we see that tr(:x)p = tr(a). This proves property (a)
(see Proposition 7.1.1, Corollary I).

(b) tr(« + p) = (a + p) + (a + {W + + (a + fJ)P"- 1

= (a + fJ) + (aP + fJP) + + (ar 1 + er:',
= (a + aP+ . . . + aP" - l) + (fJ + fJP + . .. + fJP"-')

= tr(a) + tr(fJ).

(c) tr(aa) = aa + aPaP+ ... + aP"-laP"-l

= a(IX + aP+ . . . + aP" - I)

= a tr(:x).

We have used the fact that aP = a for a E F p •

(d) The polynomial x + xP+ . .. + x P" - ' has at most r: roots in F.
Since F has p" elements there is an a e F such that trtx) = c :f. O. If
b e FP' then using property (c) we see that tr«blc)a) = (blc) tr(:x) = b.
Thus the trace is onto. 0

We now define t/J : F .... C by the formula t/J(a) = (~(.) . If F = FP' this
coincides with the previous definition.

Proposition 10.3.2. Thefunction t/J has thefollowing properties:

(a) ifJ(a + fJ) = t/J(a)ifJ(p)·
(b) There is an a E F such that t/J(a) :f. 1.
(c) LaeF ifJ(a) = O.

PROOF.

(a) t/J(a + fJ) = ,~(.+p) = '~(.)+lr(P) = ,~(.),~(P) = t/J(a)t/J(fJ).
(b) tr is onto, so there is an a E F such that tr(a.) = 1. Then t/J(a) = 'p :f. 1.
(c) Let S = LaeF t/J(a). Choose fJ such that ifJ(fJ):f. 1. Then ifJ(fJ)S =

LaeF ifJ(fJ)ifJ(a) = L.eF t/J(fJ + a) = S. It follows that S = O. 0

Proposition 10.3.3. Let a. x, y E F. Then

~ L t/J(a(x - y» = J(x, y),
If ,eF

where J(x, y) = I if x = yand zero otherwise.

PROOF. If x = y, then L>eF ifJ(a(x - y» = L.eF t/J(O) = q.
If x :f. y, then x - y :f. 0 and «(x - y) ranges over all of F as C( ranges

over all of F. Thus L.eF ifJ(a(x - y» = LpeF t/J(fJ) = 0 by property (c) of
Proposition 10.3.2. 0
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(2)

Proposition 10.3.3 generalizes the corollary to Lemma I of Chapter 6.
In Chapter 7 we proved that the multiplicative group of a finite field is

cyclic. On the basis of this fact, one easily see that all the definitions and
propositions of Chapter 8, Section 1, can be applied to F as well as to Fp :

It is only necessary to replace p by q whenever it occurs. Thus we may
assume that the theory of multiplicative characters for F is known.

We are now in a position to define Gauss sums on F.

Definition. Let X be a character of F and a E F*. Let gix) = LIEF X(l)l/!(at) .
g,(X) is called a Gauss sum on F belonging to the character X.

If we replace p by q, Propositions 8.2.1 and 8.2.2 can now be proved for
the sums ga(X). In the proof of Proposition 8.2.2 one needs Proposition 10.3.3.

In particular, we have IgaCx)l=ql /2 and ga(X)ga(X- I)=X(-l)q for
X i= e.

The general theory of Jacobi sums and the interrelation between Gauss
sums and Jacobi sums that is developed in Chapter 8, Section 5, generalizes
with no difficulty (just replace p by q everywhere), and all the results of
Chapter 8; Section 7, also hold. The reader may wish to go back to these
sections to assure himself that there are indeed no difficulties in generalizing
the definitions and results.

As an exercise in working with these new tools, we present a theorem that
is really a reformulation of some of our earlier work. This theorem will also
be of use in Chapter 11.

Theorem 2. Suppose that F is afield with q elements and q == I (m). The homo
geneous equation aoYO + al ,v';' + .. , + anY:;' = 0, ao, al,"" an E F*, defines
a hypersurface in pn(F). The number of points on this hypersurface is given by

qn- I + qn- 2 + ... + q + I

I
+-- L xo(aol)" ·Xn(a;I)Jo(XO,XI,· .. ,Xn), (I)

q - 1 10. XI .. •· • In

where X~ = f., Xi i= f., and XOXI ... Xn = e.
Moreover, under these conditions

I I
--1 J o(Xo, XI' . . . , Xn) = - g(Xo)g(X I) . . . g(Xn)'
q- q

PROOF. The number of points N on the hypersurface in An + I(F) defined by
aoyo + alY~ + ... + anY:;' = 0 is given by

zo- ;0 · .. . • Xn

where the characters Xi are subject to the conditions stated in Theorem 2.
This follows from Theorem 5 of Chapter 8. The number we are looking for is
(N - I)/(q - I) and this yields Equation (1).
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(4)

By Proposition 8.5.1, part (c), we have

JO<'~O ,XI'· ··'X.) = Xo(-I)(q - I)J(X1>X2 ' · · "X.), (3)

By Theorem 3 of Chapter 8

J( • ) - g(X1)g(X2) . •. g(X.)
XI ' X2' .. . ,X. - ( ) '

9 XIX2 ... X.

Multiply the numerator and denominator of the right-hand side by g(Xo).
Since XOXI .. . X. = e, we have g(XO)g(XIX2 .. . X.) = Xo( -1)q. Combining this
comment, Equations (3) and (4) yield Equation (2). 0

NOTES

There is a pleasant introduction to geometry over finite fields in the book
Excursions into Mathematics [7]. The authors discuss affine, projective,
and even hyperbolic geometry. There is also a short but useful bibliography.

Artin's conjecture on polynomials over finite fields was made much
earlier by Dickson (On the Representations of Numbers by Modular
Forms, Bull. Am. Math . Soc., 15 (1909),338-347). The first proof we gave is
the original proof of Chevally [16]. The second proof is due to J. Ax [3]
and is found in M. Greenberg [37] and Samuel [68]. E. Warning's proof of a
sharper result can be found in his original paper [78] and in Borevich and
Shafarevich [9].

A. Meyer, in 1884, was able to prove that a quadratic form over the
rationals in five or more variables always has a rational zero if it has a
real zero. Hasse was able to prove that the same result, suitably generalized,
holds over any algebraic number field. E. Artin was led by this and other
considerations to conjecture that over a certain class of number fields a
form of degree d in n > d2 variable always has a nontrivial zero. He also
made conjectures of this nature over other types of fields. For a discussion
of this area of research, see the paper of S. Lang [53], as well as the book of
Greenberg [37] , which includes a counterexample to Artin's conjecture for
p-adic fields, discovered in 1966 by G. Terjanian. Other counterexamples were
provided shortly thereafter by S. Shanuel. There is much left to discover in
this area, which is one of the most fascinating in modern number theory.

If one looks at the case where the ground field is the field of rational func
tions over a finite field, then the Artin conjecture mentioned above has been
proved by Carlitz [11]. More precisely, let F be a finite field and K = F(x) .
Then every form of degree d in more than d2 variables has a nontrivial zero
in K. The proof makes ingenious use of the theorem of Chevalley proved in
this chapter. It is a special case of a general result of S. Lang.

Many of the most important advances in number theory demand an
extensive knowledge of modern algebraic geometry. For a readable and not
too sophisticated introduction to algebraic geometry see W. Fulton [135].
A more extensive introduction is contained in Shafarevich [219]. Finally,
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for a reader with more background in commutative algebra. see R. Hart
shorne [144].

EXERCISES

I. If K is an infin ite field andj'(x I' Xl ' . . . • X.) is a non-zero polynomial with coefficients
in K. show thatfis not identica lly zero on A·(K). (Him : Imitate the proof of Lemma
1 in Section 2.)

2. In Section 1 it was asserted that H. the hyperplane at infinity in P·(F). has the
structure of P·-I(F). Verify this by constructing a one-to-one. onto map from
r: I(F) to H.

3. Suppose that F has q elements. Use the decomposition of P·(F) into finite points and
points at infinity to give another proof of the formula for the number of points in
P·(F).

4. The hypersurface defined by a homogeneous polynomial of degree I. aoxo +
a1x I + alxl + ... + a.x•• is called a hyperplane. Show that any hyperplane in
P·(F) has the same number of elements as P"- I(F).

5. Let Its«. XI. Xl) be a homogeneous polynomial of degree n in F[xo• XI . Xl] '
Suppose that not every zero of aoxo + alx 1 + alxl is a zero of f Prove that
there are at most n common zeros offand aoxo + alx1 + aZxl in pZ(F). In more
geometric language this says that a curve of degree n and a line have at most n
points in common unless the line is contained in the curve.

6. Let F be a field with q elements. Let M.(F) be the set of n x n matrices with co
efficients in F. Let SI.(F) be the subset of those matrices with determinant equal to
one . Show that SI.(F) can be considered as a hypersurface in A· '(F). Find a formula
forthenumberofpointson this hypersurface. [Answer:(q - I ) - I(q. - I)(q· - q) ' "
(q._q. - l).]

7. Let f E F[xo. XI . Xl • .. . ' X.] . One can define the part ial derivatives iJI/axo,
aj /ax I • . . . ' aflox. in a formal way. Suppose that f is homogeneous of degree m.
Prove that 2:7=0 xi(iJfliJx;) = mf. This result is due to Euler. (H im : Do it first for
the case that f is a monomial.)

8. (continuation) If f is homogeneous. a point li on the hypersurface defined by f
is said to be singular if it is simultaneously a zero of all the partial derivatives off.
If the degree of ris prime to the characteristic. show that a common zero of all the
partial derivatives of I is automatically a zero off.

9. If m is prime to the characteristic of F. show that the hypersurface defined by
ao xo + alx~ + ... + a.x~ has no singular points.

10. A point on an affine hypersurface is said to be singular if the corresponding point
on the projective closure is singular. Show that this is equivalent to the following
definition. Let f E F[x I' Xz• . . . , x.], not necessarily homogeneous. and a E Hf(F).
Then a is singular iff it is a common zero of cflox, for i = 1. 2, . .. , n.

11. Show that the origin is a singular point on the curve defined by yZ - x J = O.
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12. Show that the affine curve defined by x 2 + i + X
2y2 = 0 has two points at

infinity and that both are singular.

13. Suppose that the characteristic of F is not 2, and consider the curve defined by
ax" + bxy + c:y 2 = 1, where a. b, C E F*. If b2

- 4ac: 11 F2, show that there are no
points at infinity in p 2(F). If b2

- 4ac E F2
, show that there are one or two points

at infinity depending on whether b2
- 4ac is zero. If b' - 4ac = 0, show that the

point at infinity is singular.

14. Consider the curve defined by y2 = x 3 + ax + h. Show that it has no singular
points (finite or infinite) if4a3 + 27b2 #- O.

15. Let Q be the field of rational numbers and p a prime. Show that the form xo+ t +
px~ + I + p2xi+ I + ... + p·x~+ I has no zeros in p.(Q). (Hint : If a is a zero. one
can assume that the components of a are integers and that they are not all divisible
by p.)

16. Show by explicit calculation that every cubic form in two variables over 2 /22 has a
nontrivial zero.

17. Show that for each m > 0 and finite field Fq there isa form of degree min mvariables
with no nontrivial zero. [Hint : Let WI' W2' . .. ' Wm be a basis for Fqm over Fq and
show that f(x t .x2 , .. . , xm) = ni=-ol (wfx, + .. . + w~xm) has the required
properties .]

18. Let gl' g2 . .... gmEFq[XI.X2 . . ... X.] be homogeneous polynomials of degree
d and assume that n > md. Prove that there is nontrivial common zero. [Hint :
Let f be as in Exercise 17 and consider the polynomial f(gl(XI .... , x. ). ... ,

gm(Xl ' . .. , x.».]

19. Characterize those extensions F p" of F p that are such that the trace is identically
zero on Fp •

20. Show that if :x E Fq has trace zero. then :x = p - fJP for some f3 E Fq •

21. Let e be a map from Fq to iC*such that 1jJ(:x + p> = 1jJ(:x)IjJ(P) for all z, fJ E Fq • Show
that there is a ~' E Fq such thatljJ(x) = ~ I r l yx i for all x E Fq • where ( = e2• i

:
p

•

22. If g.(X) is a Gauss sum on F. defined in Section 3. show that
(a) g.(X) = X(:x)y(X).
(b) g(X- 1) = g(7.) = X(- 1)g(X).
(c) Ig,(;OI = ql !2 .

(d) g(X)g(X- I) = X(- I)q.

23. Suppose thatfis a function mapping F to C. Definej'(s) = (I /q) LI f(t)ljJ(st) and
prove that f(t) = Ls j(s)ljJ(st). The last sum is called the finite Fourier series
expansion of f .

24. In Exercise 23 takefto be a nontriv ial character Xand show that ;(s) = (I /q)g -,(X).
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The Zeta Function

The zeta junct ion o] £III aluebraic variety has played a
major role in recent developments in diophantine geometry.

In 1924 E. Artin introduced the notion ofa zeta function
for a certain class of curies dejined orer a jinite jield. By
analogy with the classical Riemann zeta function he con
jectured that the Riemann hypothesis was calid lor the
junct ;OIlS he had detined. III special Cll.~es he was able to
proce this . Remarkably, results of this nature can already
befound in the work ofGauss (naturally, Gauss stated his
results differentlyfrom Artin) . Weil was able to prove (in
1948) that the Riemann hypothesis for nonsinqular curies
oier a jinite field was true in general.

In 1949 Weil published a paper in the Bulletin of the
American Mathematical Society entitled .. Numbers
ofSolut ions of Equat ions over Finite Fields." In this paper
he defined the zeta function of an alqebraic cariety and
announced a number of conjectures. Weil had already
prored the calidity of his conjectures for curves . Here he
establishes the same results for a class ofprojectire hyper
surfaces. We shall q it:e an exposition of part of this
material. Most of the necessary tools hare already been
dereloped. The ma in new result that is needed is the
Hassc-Darenport relation between Gauss sums. Weilqare
a proof of this relat ion that is substant iaily simpler than
the oriqinal. We shall qire a proof due to P. Monsky that
is eren simpler than Weirs, although it is far from tririal.

In 1973 Pierre Deliqne succeeded in establishing the
ralidity of the Weil conjectures in all generality. The
proof utilizes the most adranced techniques of modern
alqebraic geometry and represents one of the most re
markable mathematical achierements of this century.

§l The Zeta Function of a Projective Hypersurface

In Chapter 7, Section 2, we showed that if F = "l./p"l. and s ~ I an integer,
then there exists a field K containing F with pS elements. The same result
holds true in general. Namely, if F is a finite field with q elements and s ~ I
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an integer, then there exists a field Fs containing F with qS elements (this is
F</. in our former terminology). The proof of the general case is almost
identical with that of the special case (see the Exercises to Chapter 7).

Now, let f(y) E F[yo , Yl"' " Yn] be a homogeneous polynomial and
let N, be the number of points on the projective hypersurface Hf(F s) c
pn(Fs)' In less fancy language, N, is the number of zeros ofJin pn(Fs)' We
wish to investigate the way in which the numbers N s depend on s.

At the end of this section we shall prove that the number N s depends
only on s and not on the field Fs • This will follow once we show that any
two fields containing F and of the same dimension over F are isomorphic.

To study the numbers N, we introduce the power series I~ I Nsu s.
In all that follows it is possible to deal only with formal power series and thus
to avoid all questions of convergence. To those who are uncomfortable with
that notion, notice that N; :::;; (qsln + t) - 1)/(qS - I) < (n + I)qsn. It follows
that our series converges for all complex numbers u such that lui < q-n
and defines an analytic function in that disc.

Let exp u = I:=o (I/s!)us.

Definition. The zeta/unction of the hypersurface defined by fis the series given
by

(

00 NUS)Zf(u) = exp I _s_ .
s=t S

It is possible to regard Z f(u) either as a formal power series or as a function
of a complex variable defined and analytic on the disc {u E C/ IuI < q- "},

It may seem strange to deal with Ziu) instead of directly considering
the series Loo= t Nsu s.The reasons are mainly historical, although as we shall
see the zeta funct ion is, in fact, easier to handle. See the remarks at the end of
this section.

As a first example, consider the hyperplane at infinity. By definit ion
this is the set of points [ao,' .. ,an] E pn(F) with ao = O. It is defined by the
equation Xo = O. As we pointed out in Chapter 10it is easy to see that Hxo(Fs)
has the same number of points as P"' l(Fs); that is,

N s = qS(n-l) + qs(n-2) + .. . + qS + 1.

It follows that

00 N US n- 1 ( 00 (qmu)s) n-tI _s_ = I I - = - I In(1 - qmu).
s=1 S m =O s =1 S m=O

(1)

We have used the identity I~ 1 WS/s = -In(1 - w). Exponentiating
Equation (I) yields

Z xo(u) = (I - qn-lu) -I(I - qn-2 u)-I .. . (1 - qU)-I(1 - U)-l.

In particular, we see that Z xo(u) is a rational function of u.
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We shall now compute a somewhat more involved example. Consider
the hypersurface defined by - Y5+ yi + y~ + y~ = O. To compute N 1

we use Theorem 2 of Chapter 10.Specializing to our case we find that

I
N 1 = q2 + q + 1 + X(-I) - g(Z)4,

q

where X is the character of order 2 on F. We know that g(Z)2 = X( - I)q.
Thus

N 1 = q2 + q + 1 + Z(- I)q.

To compute N swe must replace q by qS and Xby ZS' the character of order 2
on r; Then

N, = s" + if + I + Xs( _ l )qs.

If -1 is a square in F, then Xs( - 1) = 1 for all s. If -1 is not a square
in F, it is not hard to see that Xs( -1) = -1 for s odd and Xs( -1) = 1 for s
even.

In the first case

00 Nsus 00 (q2U)s 00 (qu)S 00 US
I =I-+2I-+I-

s =1 s s = 1 S s = 1 S s =1 S

and so

Z( u) = (l - q2u)-I(1 - qu)-2(1 - U)-I.

In the second case the last term gives rise to the sum

00 (_qu)S
I -- = -In(1 + qu).

s= 1 S

Thus in this case

Z(u) = (1 - q2U) - 1(1 - qU)-I(l + qU)-I(l - U) -I.

Notice that in the first case the zeta function has a pole at u = q" 1

of order 2, whereas in the second case there is a pole at u = q-I of order 1.
This is in accordance with a conjecture of John Tate, which relates the order
of the pole at u = q- 1 to certain geometric properties of the hypersurface.
We cannot go more deeply into this here.

As a final example, consider the curve y~ + yr + y~ = 0 over F = 7L/p7L,
p is a prime congruent to 1 modulo 3.

Specializing Theorem 2 of Chapter 10once again we find that

1 1
N 1 = P + 1 + - g(Z)3 + _ g(/)3.

P P
Here X is a cubic character on 7L/p7L. We know that g(X)3 = pn, where

n = l(Z, X), and nit = p. Thus

N 1 = P + 1 + n + it.
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It will follow from the Hasse-Davenport relation, to be proved later,
that

lVS = pS+ I - (-71)' - (_it)s.

Calculation now shows that

Z
(1 + 7lu)(1 + itu)

(u)= .
r (I - u)(1 - pu)

The numerator can be evaluated explicitly. In Chapter 8 we proved
that 7l + it = A, where A is uniquely determined by 4p = A 2 + 27B 2

and A == 1 (3).
So our final expression is

Z (u) = I + Au + pu
2

r (1 - u)(1 - pu)

In this example Z ((u) is a rational function: the numerator and de
nominator are polynomials with integer coefficients. The roots of Zr (u),
- tt " I and - it - \. both have absolute value p - \ 12 .

More generally, let Iv:«. XI' X2) E F[xo, XI ' X2] be a nonzero homo
geneous polynomial that is nonsingular over every algebraic extension of F.
Then, Wcil was able to prove that the zeta function of f has the form

P(u)

(I - u)(1 - qu)'

where P(u) is a polynomial with integer coefficientsof degree (d - I)(d - 2),
d being the degree offFurthermore, if :x is a root of P(u), then l:x I = q - \ i 2

•

The last statement is called the Riemann hypothesis for curves.
[To see the relation with the classical Riemann hypothesis, make the

changeofvariablesu = q - Sandset (r(s) = Zr<q- S).(r<s)isdirectlyanalogous
to the classical zeta function (see the end of this section). The condition that
the roots ofZr<u) have absolute value q" \ /2 isequivalent to the condition that
the roots of ( r (s) have real part t.J

In all our examples the zeta function is rational. In 1959 B. Dwork
proved that any algebraic set has a rational zeta function [26]. His proof is
extremely beautiful, but unfortunately it is based on methods that are
beyond the scope of this book .

Our examples suggest another characterization of the condition that the
zeta function is rational.

It is immediate from the definition of the zeta function that if it is ex
panded in a power series about the origin, then the constant term is I.
Consequently, if Zr(u) = P(u)/Q(u) , where P(u) and Q(u) are polynomials,
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we may assume that P(O) = Q(O) = 1 (prove it). With this assumption, the
zeta function can be factored as follows :

nj (I - Ctju)
Z/u) = ni (I - Piu)

where r:J. j , Pi E C. We can now prove

Proposition 11.1.1. The zetaJunction is rational iffthere exist complex numbers
a, and Pi such that

N, = I Pi - I Ct1 ·
j i

PROOF. Suppose that the zeta function is rational. Then by the above remarks

nj (1 - Ctjll)
Z(u) = ni (1 - Piu)

with Ct j • Pi E C. Taking the logarithmic derivative of both sides:

Z'(u) = I -Ct j - I -Pi
Z(u) i 1 - CtjU i 1 - Piu

Multiply both sides by u and then use the geometric series to expand
in a power series . One finds finally that

uZ'(u) CD ( )

Z(u) = I I Pi - I Ct: us.
,= 1 J I

(2)

We now compute the left-hand side in a different way. From the definition

CD N u'
Z(u) = exp I -'-.

,=1 s

Differentiate logarithmically both sides and then multiply both sides by u.
We find that

uZ'(u)

Z(u)

CD

I u,«.
,= 1

(3)

Comparing coefficients of u' in Equations (2) and (3) we have

N, = I Pi - I Ct1 ·
i j

The converse is an easy calculation that we have done in special cases.
We leave the details to the reader. 0

It remains to prove that the number N, is independent of the choice of
field F, . The reader may wish to simply accept this fact and proceed to
Section 2.

Suppose that E and E' are two fields containing F both with q' elements.
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Proposition 11.1.2. E and E' are isomorphic ot'er F; i.e., there exists a map
a: E -+ E' such that

(a) a is one to one and onto.
(b) a(a) = afor all a E F.
(c) a(iX + p) = a(iX) + a([3)forall a, [3 E E.
(d) a(!Xp) = a(iX)a([3) for all iX, [3 E E.

PROOF . We shall show that both E and E' are isomorphic over F to F[x] j(f(x»
for some irreducible polynomial f(x) E F[x].

To begin with there is an a' E E' such that E' = F(a') (for example, take
a' to be a primitive qS - 1 root of unity). Let f(x) E F[x] be the monic
irreducible polynomial for a'. Then E' ~ F[x] j(f(x» . Since a' satisfies
x" - x = 0 we have j'(xjjx" - x.

Since E has qS elements we have x" - x = n HE (x - IX). It follows that
f(iX) = 0 for some a E E.

Thus F(a) ~ F[x]j(f(x» is a subfield of E with qS elements. One con-
cludes that E = F(iX) ~ F[x] j(f(x» ~ F(!X') = E'. 0

We can now use the isomorphism a to induce a map a from pn(E) to
pn(E'). Namely,

a([ao,· .. , an]) = [a(iXo),··· ,a(lXn)]

a is one to one and onto. Moreover, if tts«. YI" '" Yn) E F[yo, YI' " ' ' Yn]
and we restrict a to the projective hypersurface Fi/E), it maps onto the
projective hypersurface Fif(E'). This proves the independence of the numbers
N, from the choice of field Fs • We leave the details to the reader.

We conclude this section with a discussion of the analogy between the
congruence zeta function and the Riemann zeta function.

The Riemann zeta function (s) = I:'= I n - S may be written, by the
fundamental theorem of arithmetic as an infinite product np (I _ p-S) -l

the product being over all prime numbers p (see Exercise 25, Chapter 2).
We will establish an analogous infinite product for Z /u) the product being
over certain objects called the prime divisors of the underlying algebraic
set. This will be done with a minimum of techn ical language from algebraic
geometry.

If F is a finite field with '1 elements consider any algebraic set V in An(F).
Then we may define as in Section 1 the zeta function of V over F as

(

00 NUS)
exp JI~

where N, is the number of points in An(Fq · ) satisfying the equations defining
V. We consider an affine algebraic set rather than a projective algebraic set to
simplify the discussion. Furthermore it is convenient to have a single field
K ::> F which is algebraic over F and contains an extension of degrees s
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over F for every integer s ~ I. It follows easily from Proposition 7.1.1 that K
then contains precisely one field with qS elements. A simple construction for
such a field K is given in the Exercises. This field is uniquely determined up to
isomorphism and is called an algebraic closure of F. We may then consider
An(K) and extend V to be an algebraic set still denoted by V in An(K) with
N, points whose coordinates are in Fs-.

If !X = (a i - £12' • . • • an) E V let Fq d be the smallest field containing F and
(II ' £12"'" an' We say that !X is a point of degree d. Since a" = a for a E Fit
follows that the points (x, !Xq, (Xq' •• • •• -x qd

- I are also in V where the exponent
denotes raising each coordinate to the indicated power. Furthermore these
points are distinct (by say. the corollary to Proposition 7.1.1).

Definition. A prime divisor on V is a set of the form {'XqJ jj = 0, 1,2, . . . ,d - I}
where !X is a point on V of degree d. This is somewhat at variance with
common usage . What we call a prime divisor is usually referred to as a prime
zero cycle defined over F.

Prime divisors are traditionally denoted by \.Jl. The degree of \.Jl, deg \.Jl,
is d.

The prime divisors clearly partition V c An(K). Furthermore if 'X is a
point on V with coordinates in Fqs then !X defines a unique prime divisor \.Jl
of degree d for some dis by Proposition 7.1.5. This prime divisor contains d
points on Veach with coordinates in F, s , If we define ad to be the number of
prime divisors on V of degree d (a number which is finite) then we have by the
above the following important result.

Lemma I. N s = Ld ls dad'

The main result of this section may now be stated.

Proposition 11.1.3. ZI'(II) = n.~t (1/(1 _ IIdeg'll».

PROOf . The right-hand side is clearly

ex; ( I )0"n-n '
n= 1 I - u

The logarithmic derivative of this expression is

Expanding the denominator into a geometric series and computing the
coefficient of em we obtain

1 ec ( )- L Ldad LIm
II m = 1 dim
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which by Lemma 1 becomes

Integrating and taking the exponential gives the result.

II The Zeta Function

o

This result shows that Z(u) has integral coefficients. The analogy with the
Riemann zeta function becomes even more strik ing if one introduces a new
variable s related to u by u = q"", Then we have

Z(q- S) = Q(1 _ql sdeg'V)

= QC- (l;N('ll)S»)
in perfect analogy with the Riemann zeta function .

§2 Trace and Norm in Finite Fields
In Chapter 10, Section 3, we introduce the notion of trace. Here we shall
generalize that not ion and also define the norm in finite fields.

Let F be a finite field with q elements and E a field containing F with qS
elements.

Definition. If (X E E, the trace of (J. from E to F is given by

trEiF(:x) = a. + a. q + ... + (Xq. -'.

The norm of a from E to F is given by

NE/F(et.) = (J.. (X q... et.qs - ' .

The following two propositions describe the basic properties of trace and
norm.

Proposition 11.2.1. If a, {3 E E and a E F, then

(a) trE/F(et.) E F.
(b) tr E/F(a. + {3) = trE/F(a.) + trE/F({3)·
(c) trE1F(aet.) = a trE/F(et.) .
(d) trE/F maps E onto F.

Proposition 11.2.2. If et. , {3 E E and a E F, then

(a) N E/F«(X) E F.
(b) N E/F«(X{3 ) = N EIF(a.)NE!F({3 ).
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(c) N EIF(a'Y.) = aSNEIF(CX).
(d) N EiF maps E* onto F*.

PROOF. The proof of Proposition 11.2.1 is exactly analogous to that of
Proposition 10.3.1 and will be omitted.

To prove Proposition 11.2.2 notice that

NEIF(CX)q = «(X' (Xq . .. . . (Xq' -')q = (Xq . (Xq2 . .. . . (Xq' = NE1F«(X).

Thus N EIF(ct) E F.
Now,

N m '((X{3) = «(X{3) • «(Xfi)q (ctfl)q'"

= (ct · ctq (Xq• • ') . ({J . flq . .. . . flq·· ')

= N E/F(rx)N £/F(fi)·

This proves step (b).
To prove step (c) notice that for a E F, N E/F(a) = a · aq·•· .. aq'- I = a'

since a" = a. Now apply the result of step (b).
Finally, consider the kernel of the homomorphism N ElF' i.e., the set of all

rx E E such that N £IF(ct) = 1. ct is in the kernel iff

1 = ct · ctq.. .. rxq' " = rx 1 +q+... +q'- ' = rx(q'-I)/(q-I)

Since(qS - I)/(q - l)lqs - 1we have by Proposition 7.1.2thatx(q·-I)/(q-l)
= 1 has (qS - 1)/(q - I) solutions in E. By elementary group theory it follows
that the image, N £IF(E*), has q - 1elements, but this is exactly the number of
elements in F* . Thus N ElF is onto. 0

Given a tower of fields FeE c K we have the relation [K: F] =
[K : E][E : F]. This result is easy to prove in general. If all three fields are
finite, we can prove it as follows. Let q be the number of elements in F.
Then the number of elements in E and K are qIE :FJand qIK :FJ, respectively.
Considering K as an extension of E we can express the number of elements in
K as (qIE :FliK:EI. Thus

qIK :FJ = q[E :FIIK :£1

and therefore [K : F] = [E : F][K : E].
We can now prove another simple property of trace and norm that will

be useful.

Proposition 11.2.3. Let FeE c K be three finite fields and o: E K . Then

(a) trK/F(rx) = trEIF(trK1E(ct)).
(b) N Kir(CX) = N £IF(NK/E('Y.))·

PROOF. We shall prove only property (a). The proof of property (b) is similar.
Let d = [E: F], m = [K : E], and n = [K : F]. As we have pointed out

above, n = dm.
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The number of elements in E is q\ = qd. Thus

trKiE(ex) = a. + ex 'lI + ... + a.'/;"-'

and
d-\

trE1F(trK1ECex» = I trKiE(:x)q;
;=0

d- 1 m - \

= I I ·:xq{q'
;=0 j=O

d-\ m-\

= I I exqd, o;
;=0 j=O

n- 1

= I rx
qk

k=O

I I Th~ Z~lJ Function

= tr KIF(ex).

We have used the fact that as j varies from zero to m - 1 and i varies
from zero to d - 1 the quantity d] + i varies from zero to md - 1 = n - 1.

o
Suppose now that F c K are finite fields, n = [K : F], and a. E K. Let

E = F(a.) and f(x) E F[x] be the minimal polynomial for ex over F. By
the Proposition 7.2.2 we have [E: F] = d, where d is the degree of
f(x) .

Proposition 11.2.4. Writef(x) = xd - C\Xd- 1 + ... + (-l)dcd . Then

(a) f(x) = (x - a.)(x - ex") . .. (x _:xqd
- ' ) .

(b) trX/F(ex) = (njd)c 1.
(c) N KAex) = c~td.

PROOF. Since the coefficients of/satisfy (/q = l/ we have

o= f(:x)" = /(ex").

Thusa" is a root off. Similarly,

o= f(ex")" = f(:x"').

Thus ex'" is a root off. Continuing in this manner we see that a., ex", ex"', •. . ,
ex"d - , are all roots off. If we can show that all these roots are distinct, assertion
(a) will follow.

Suppose that 0 ~ i ~ j < d and that a.q; = ex"i. Set k = j - i. We shall
show that k = O.

We have

which implies that
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and so

Since f(x) is the minimal polynomial for ex it follows that !(x) divides
x qk

- x and so by Theorem 2 of Chapter 7 we have dlk. However, 0 ~ k < d
and so k = 0 and we are done.

It follows immediately from assertion (a) that C 1 = trE/F(ex) and that
Cd = N EIF(OC).

Since ex E E = F(oc) we have trK/E<ex) = [K : E]a = (njd)ex and N K/E(ex)
=an/d.

By Proposition 11.2.3,

Similarly,

§3 The Rationality of the Zeta Function Associated to
aoxo+ a1x'r + ... + anx:

Let Its«. XI"'" xn) be the polynomial given in the title of this section
[notice that this is not the f(x) of Section 2]. Suppose that the coefficients
are in F, a finite field, with q elements and that q == 1 (m). We have to in
vestigate the number N. ofelements in HiF.), where [F. : F] = s. Theorem 2
of Chapter 10 shows that N. is given by

r:» + qs(n-2) + ... + if + 1

1+ - L xW(ao I) . .. x~)(an-l)g(X~) '" g(X~S), (4)
qS x~') ..... x!:,

where qS is the number of elements in F., and the X~S) are multiplicative
characters of F, such that x~stm = e, xY' :F e, and x~)xIS) . . . X~SI = e.

We must analyze the terms x\"(o; 1) and g(X\S). To do this we first relate
characters of F, to characters of F.

Let X be a character of F and set x' = X 0 NF./F; i.e., for ex E Fs , x'(a) =
X(NF./F(ex». Then one sees, using Proposition 11.2.2, that x' is a character of
Fs , and moreover that

(a) X :F p implies that x' :F p'.
(b) Xm = e implies that x'm = e.
(c) x'(a) = x(a)S for all a E F.
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It follows easily that as X varies over the characters of F of order dividing
m, x' varies over the characters of F, of order div iding m.

The sum in Equ ation (4) can now be rewritten as

L Xo(o (; I)' .. . Xn{an- I)'gc.~~) . .. g(X~),

xo. ·· · . x"

(5)

where Xo , " " Xn are characters of F satisfying x7 = e, Xi i= e, and XOXI . . . Xn
=f:.

It remains to analyze the Gauss sums gel). This is the content of the
following theorem of Hasse and Davenport (see [23]).

Theorem l. ( - g(x))' = - g{x').

We postpone the proof of this relation. Using Theorem I and Equations
(4) and (5) we see that N. is given by

where the second sum is restricted by the same conditions as Equation (5).
Applying Proposition 11.1.1 gives us the main result of this chapter.

Theorem 2. Let ao, l/ I ' , an E F* , where F is afinite fie ld witII q elements, and
q == I (m). Let Its« . ,xn) = aox~ + a1xT + ... + an x:;'. Then the zeta
function ZAu) is a rational function of the form

p{u)(-I)n

{I - u){1 - quv - >>(I -q" IU)'

where P{u) is the polynomial

Il (I -(-1)"+ I ~ Xo{a(; I) . .. x,,(a;l)g(Xo)g{XI)'" g(Xn)U) ,
Xa.X , • .. · . Xn q

the (n + I)-tuples Xo, XI" ' " X" being subject to the conditions xi = s, Xi i= s,
and XOXI . .. Xn = s,

A number of remarks are in order :

(I) The degree of P{u) can be computed explicitly. It is

m-I[{m - 1)n+ I + (_1)n + I{m - I)].

(2) Since Ig(x)1 = ql /2 it follows from the explicit expression for P(u) that
the zeros of Z Au) have absolute value q-Un-Il/2) . Th is is in accord with
the general Riemann hypothesis.
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(3) If we write P(u) = n(l - (Xu). then numbers (X are algebraic integers.
This is not hard to see. Each (X has the form

where ( is a root of unity and "1.0"1.1' " Xn = e. Using Corollary 1 to
Theorem 3 of Chapter 8 we see that

The Jacobi sum is a sum of roots of unity and so is an algebraic integer.
Thus (X = ("1.'< -1)1("1.0' XI"'" Xn-I) is an algebraic integer as well.

Letf(xo, XI' . . . , x n) be a homogeneous form of degree d with coefficients
in a finite field F. Assume furthermore that the partial derivativesf"Q" . . ,f,,"
have no common projective zero in any algebraic extension of F. In this
case we say that the projective hypersurface defined byf is absolutely non 
singular. Then one may consider the zeta function Z(l) of the hypersurface,
f = O. In this case the WeiI conjectures (now theorems) state the following :

(a) Z(t) is a rational function which can be written as

P(l)(- I)"

Z(t) =)( I •(I - 1 1 - ql)' .. (I - qn- t)

where pel) is a polynomial with integer coefficients .
(b) P(t) = (1 - a l r)(1 - a2l) ' " (1 - aml). The mapping a --+ qn-Ija is a

bijection of the set of reciprocal roots al>' . . , am '
(c) Iad = qln- Il /2 .

(d) The degree of pet) is d" 'r« - 1)"+1 + (_I)n+ I(d - I)] .

The statement regarding the absolute value of the roots is known as the
Riemann hypothesis for the hypersurface. The proof of (a), (b), and (d) for a
general hypersurface is due to B. Dwork [26]. The proof of the Riemann
hypothesis is due to P. Deligne (1973). For the general statement of the Weil
conjectures we refer the reader to Weil [80] and Katz [161].

§4 A Proof of the Hasse-Davenport Relation

Let F be a finite field with q elements and F, be a field containing F such
that [Fs : F] = s. Let X be a nontrivial multiplicative character of F and
l = "1. 0 N F"F ' x' is a character of F s • We wish to compare the Gauss sums
g(X) and g(/).
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Let us recall the definition ofg(X) (see Chapter 10. Section 3):

g(x) = LZ(t)r/J(l).
,. F

where r/J(t) is equal to C~It) . The trace function in this definition coincides
with the function trFiFp introduced in this chapter. Since we are considering
more than one field, it is important. to attach subscripts to tr. Now.

g(x') = L l(t)r/J'(t);
teF5

where r/J '(t) = "'F,IFt.It
). Since trFsIFp(t) = trFIFp(trF,/F(t» it follows that

r/J' = r/J 0 trFslF'
For a monic polynomial I(x) = x" - CtXn- t + .., + (-lrcn in F[x]

define J..(f) = r/J(Cl)X(Cn),

Lemma 1. J..(fg) = J..(f)J..(g)for all monicf, g E F[x].

PROOF. If g(x) = xm - btxm- t + ... + (-l)mbm• then f(x)g(x) = xn+m
(hI + ct)xn+m- 1'+ ... + (-l)n+mhmcn·ThusA.(fg) = r/J(h l + cd·X(hmcn) =
r/J(hl)r/J(cI)Z(hm)z(cn) = r/J(ht)Z(hm)r/J(ct)X(cn) = J..(g)J..(f). 0

Lemma 2. Let ex E F, andf(x) be the monic irreducible polynomialfor ex over F.
Then

J..(f)' ;d = l(rx)r/J'(cx), where d = deg f.

PROOF. This result follows easily from Proposition 11.2.4. Namely, iff(x) =

xd - CIXd-
I + ... + ( _l)dCd' then

Now, J..(f) = r/J(ct)z(Cd), so

J..(f)' ld = r/J(Ct)s/dX(Cd)s/d = r/JG C t )X(C~d)

= r/J(trFs/kJ.»X(N Fs/F(rx» = r/J'(a)l(rx). o

Lemma 3. g(x') = I (deg f)J..(f)sldeg f
, where the slim is over all monic ir

reducible polynomials of F[x] with degree dividing s.

PROOF. According to Theorem I of Chapter 7-generalized to F as base
field-xqS

- x is the product of all monic irreducible polynomials of degree
dividing s. It follows that every such irreducible polynomial has all its roots
in F, and conversely that every element in F, satisfies such a polynomial.
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Let f(x) be monic irreducible of degree d is. Let !Xt , (X2 " •• ''Xd E F, be its
roots. Then by Lemma 2

d

I i(!X ) I/I '(':1.;) = dA(f)S/d.
; = 1

Summing over all polynomials of the required type yields the result. 0

We are now in a position to prove the Hasse-Davenport relation . The
proof is based on the following identity:

I A(f)C degf = n(I - A(f)tdeg f)-l , (7)
f f

where the sum is over all monic polynomials and the product is over all
monic irreducible polynomials in F[x].

The identity is proved by expanding each term (l - A(f)tdegf)- \ in a
geometric series and using the fact that every monic polynomial can be written
as the product of monic irreducible polynomials in a unique way. The
details are left as an exercise.

Now,

We define A(l) = I, as this is necessary for Equat ion (7) to hold. For s = I
we have

I A(f) = I A(X - a) = I x(a)I/I(a) = g(x)·
deg f = I Q EF QEF

For s > I we have

L A(f) = I A(XS - c\x' - I + ... + (-1)Scs)

deg f = S c, E F

= «:' I X(Cs)I/I(c\) = q.'-2(I X(CS») (I I/I(C\») = o.
CI . e'" C's "I

Putt ing all this together we see that the left-hand side of Equation (7) reduces
to I + g(X)t. Using this, take the logarithm of both sides of Equation (7),
differentiate, and multiply both sides of the result by t. This yields

g(X)t _ '" A(f)(deg f)t
degf

1 + g(X)c - '7 1 - A(f )tdegf

Expand the denominators in geometric series. Then
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Equating the coefficients of t' yields

(-IY- Ig(X)s = L: (deg n;'(fY'degJ .
degJ ls

By Lemma 3, the right-hand side is g(x'). This completes the proof. 0

§5 The Last Entry

The last entry of Gauss's mathematical diary is a statement of the follow ing
remarkable conjecture:

Suppose that p == I (4) . Then the number of solutions to the congruence
x 2 + y2 + X

2y2 == I (p) is p + I - 2a, where p = a2 + b2 and a + hi
== I (2 + 2i).

Some explanation is in order. If p == I (4) , then by Proposition 8.3.1
we know that p = a2 + b2 for some integers a and b. lfwe choose a odd and b
even, then a and b are uniquely determined up to sign . The congruence
a + hi == t (2 + 2i) determines the sign of a. We shall givea simpler formula 
tion of this.

Lemma. If P == I (4), p = a2 + b', and a + bi == 1(2 + 2i), then a is odd and
b is even. Moreover, !/A Ib. then a == I (4), and !fA,j' b, then a == - I (4).

PROOF. a + hi == I (2 + 2i) implies that a + bi == I (2) and so a is odd and b
even.

Since 4 = -2(i - I)(i + I) it follows that if 41h, then a + bi == a == I
(2 + 2i). Tak ing conjugates a == I (2 - 2i). Thus (2 + 2i)(2 - 2i) = 81 (a - 1)2
and a == 1(4).

If 4,j'h, then b = 4k + 2 for some k. Thus a + bi == a + 2i == I (2 + 2i).
Since 2i == -2 (2 + 2i) we have a == 3 == -I (2 + 2i). As before 81(a + 1)2
and so a == - I (4). 0

Theorem. Consider the CUlTe C determined hy x 2t 2 + y2t2 + x 2y2 - (~over Fp'

where p == t (4) . Write p = a2 + b2 with a odd and b ere/I. II 41b, choose
a == I (4) ; if 4,j'b, choose a == -I (4). Then the number o] points on C in
p 2(Fp) is p - I - 2a.

The zeta function ofC is

2(u) = I - 2ml + pu
2

(l _ u).
I - pu

Before giv ing the proof a few remarks are in order.
The answer p - I - 2a differs from Gauss' p + I - 2a. The difficulty

is that Gauss counts four points at infin ity, whereas a simple calculation
shows that [0, 1,0] and [0,0, I] are the only po ints at infinity according to
our definition. Thus our answer differs from his by 2.
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Since there are two points at infinity independently of p it suffices to
count the number of finite points, i.e., the solutions to x 2 + y2 + x 2y2 = l.

As an example take p = 5. Since 5 = 12 + 21 we have 4,j'b so we must
take a = - 1. The formula p - 1 - 2a gives the answer 6 in this case.
Indeed, in addition to the two points at infinity, (1,0), ( - I, 0), (0, I), and
(0, - 1) are the other points on the curve in F p :

The form of the zeta function may be surprising. The explanation is that
the two points at infinity are singular. Thus the form of this zeta function is
not in contradiction to our earlier observations.

We now proceed to prove the theorem. Denote by C, the curve given by
x 2 + y2 + X l y2 = 1 and by C1 the curve given by 1V

2 = 1 - Z4. We shall
construct maps from C, to C2 and from C1 to C i-

Notice that

implies that

and

[(I + X
l )y ] 2 = I - x".

Thus, if (a, b) is on C" then (a, (I + al)h) is on C l . Let

A.(x, y) = (x, (1 + Xl) }'),

A. maps C, to Cz- It is easy to see that this map is one to one .
Now let

( IV )JL(:, IV) = :'.1 + ;2 '

Jl is not always defined. If a E F; is such that a l = -I, then (a,O) and
( - a, 0) are on C 2 but Jl is undefined at these points. Jl is defined at all other
points of C1 and maps these points to C , . It is easy to check that Jl is inverse
to A. where it is defined. Thus

N t=N2-2,

where N I and N 1 are the number of finite points in F p on C, and C1, re
spectively.

We can compute N 1 by using Theorem 5 of Chapter 8. Specializing
Theorem 5 to wl + ;4 = 1 we sec that

N 2 = P + J(p, X) + J(p, Xl) + J(p, /),

where p is the character of order 2 and X. is a character of order 4.
Since / = p, we have J(p, X2

) = Jip, p) = - p( -1) = - 1. Also, since
1.4 = f. we have ;(3 = 1. so that J(p, /) = J(p, X) = J(p, X).

Let IT = - J(p, 1..). Then

N 1 = P - I - n: - if ,
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p takes on the values ± 1and X takes on the values ± I, ± i. Thus n = a + bi,
where a, b e Z. Moreover IJ(p, xW = p so that a2 + b2 = nit = p. It
follows that N 2 = P - 1 - 2(1 and N 1 = P - 3 - 2a.Since C 1 has two points
at infinity, the total number of points on C 1 in Fp is given by

N = P - 1 - 2a.

By the lemma it suffices to prove that tt == 1 (2 + 2i) in order to complete
the proof of the first part of the theorem. This is accomplished by means of
the following pretty calculation given in Hasse-Davenport [23].

Notice that p(a) - 1 == 0 (2) and that x(a) - 1 == 0 (1 + i) for all a # 0
in F p • The first assert ion is obvious; the second follows from I - 1 = 0,
- 1 - 1 = - (l - i)( I + i), - i-I = - (l + i), and i-I = i(l + i). Thus
if a # 0 and b # 0, (p(a) - 1)(X(b) - 1) == 0 (2 + 2i). This congruence is
trivially true for the pairs a = 0, b = 1 and a = I, b = O. Therefore,

L (p(a)- I)(X(b) - I) == 0 (2 + 2i).
a+b=l

Expanding we see that

-n - L X(b) - L pea) + p == 0 (2 + 2i).
b a

The second and third terms are zero. Thus

n == p == 1 (2 + 2i).

The last step follows because p == 1 (4) by hypothesis, and 2 + 2i divides 4;
indeed 4 = (I - i)(2 + 2i).

To calculate the zeta function it suffices to notice that by the Hasse
Davenport relation the number of points on X 2(2 + y2(2 + X 2

y2 - (4 in
p2(F p') is given by

pS _ 1 - ( -J(p, x»S - (-J(p, X»S = pS - 1 - nS - if'.

Thus

( ) = (I - nu)(1 - itu) (1 _ )
Z LI (1 _ pu) u

= 1 - 2all + pu
2

(I _ u).
(l - pu)

NOTES

As we have mentioned, in his thesis E. Artin [2] introduced the congruence
zeta function . In that work he establishes the analog of the Riemann hy
pothesis for about 40 curves of the type y2 = f(x), where f is a cubic or
quartic polynomial. In 1934 Hasse proved that the result held in general for
nonsingular cubics (the case of elliptic curves). The Riemann hypothesis for
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arbitrary nonsingular curves was established in full generality by Wei! in
1948. His proof is far from elementary and uses deep techniques in algebraic
geometry.

Weil's conjecture that the zeta function of any algebraic set is rational was
proved in 1959 by B. Dwork using methods of p-adic analysis [26].

In 1969 S. A. Stepanov succeeded in giving an elementary proof of the
Riemann hypothesis for curves [222]. A complete account of Stepanov's
method is given in the book by W. M. Schmidt, Equationsover Finite Fields:
An Elementary Approach [218]. This method was simplified further by E.
Bombieri , who, using the Riemann-Roch theorem, gives a complete proof
in five pages [98] . Sharper estimates in special cases have been obtained by
H. Stark [221] . For an analysis of Deligne's proofand an historical discussion
of the entire issue the reader should consult N. Katz's" Overview of Deligne's
proof . . ." [161]. This paper also contains an extensive bibliography of the
subject. See also the survey [248].The discovery of these remarkable theorems
is discussed by Weil in the first volume of his Collected Papers, [241], pp.
568-569. Finally we mention the paper by J. R. Joly, ..Equations et varietes
algebriques sur un corps fini" [160].

Section 5 on Gauss' conjecture is logically out of place since it could have
been given in Chapter 8. We felt it was appropriate at this point since the
relation between this conjecture and Weil's Riemann hypothesis reveals once
again the remarkable acuity of Gauss' insight and how his imposing presence
continues to make itself felt to this very day.

A new edition of the mathematical journal of Gauss, translated from
Latin to German, with an historical review by K. Biermann and comments
by H. Wussing is now available [137]. This important historical document
records the major discoveries of Gauss between the years 1796 and 1814.
It is interesting to note that both the first entry (Section 11 of chapter 9)
and the last entry are concerned with cyclotomy. For more biographical
information on Gauss see T. Hall [143] and the recent biography by W. K.
BUhler [101].

EXERCISES

1. Suppose that we may write the power series I + a 1u + a2u2 + ... as the 'quotient
of two polynomials P(u)/Q(u). Show that we may assume that P(O) = Q(O) = 1.

2. Prove the converse to Proposit ion 11.1.1.

3. Give the details of the proof that Ns is independent of the field F, (see the concluding
paragraph to Section I).

4. Calcul ate the zeta function of XOX 1 - X2X3 = 0 over Fp •

5. Calculate as explicitly as possible the zeta function of uox5 + a\xi + ... + a.x;
over Fq , where q is odd . The answer will depend on whether n is odd or even and
whether q == 1 (4) or q == 3 (4).
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6. Consider x~ + x~ + x~ = 0 as an equation over F4. the field with four elements.
Show that there are nine points on the curve in p 2(F 4 ) . Calculate the zeta function.
[Answer : (1 + 2u)2/«I - u)(1 - 4u».]

7. Try this exercise if you know a little projective geometry. Let N, be the number
of lines in P"(Fp')' Find N, and calculateL~ 1 N,u'/s. (The set of lines in projective
space form an algebraic variety called a Grassmannian variety. So do the set of
planes. three-dimensional linear subspaces, etc.)

8. If J is a nonhomogeneous polynom ial. we can consider the zeta function of the
projective closure of the hypersurface defined by.r (see Chapter 10). One way to
calculate this is to count the number of points on H j(F.) and then add to it the
number of points at infinity . For example. consider y2 = x 3 over F p" Show that
there is one point at infinity . The origin (0. 0) is clearly on this curve. If x # O.
write (y /X)2 = x and show that there are p' - 1 more points on this curve. Al
together we have p' points and the zeta function over Fpis (I - flu) - I .

9. Calculate the zeta function of y2 = x 3 + x 2 over Fp •

10. If A # 0 in F. and q = 1 (3). show that the zeta function of y2 = x 3 + A over Fq

has the form Z(u) = (1 + au + qu2)/(I - .uX I - qu). where a E Z and lal :5 2ql /2.

11. Consider the curve l = x 3
- Dx over F p' where D # O. Call this curve C r- Show

that the substitution x = -!(u + v2
) and y = iv(u + v2

) transforms C 1 into the curve
C 2 given by u2

- v4 = 4D. Show that in any given finite field the number of finite
points on C 1 is one more than the number of finite points on C2 '

12. (continuation) If p =3 (4). show that the number of projective points on C1 is

just p + 1.If p =1(4). show that the answer is p + I + X(D)l(Z. X2
) + X(D)l(X. X2

).

where X is a character of order 4 on Fp •

13. (continuation) If p =1 (4). calculate the zeta function of y2 = x 3
- Dx over F

in terms of n and XeD). where n = -leX. x2
) . This calculation in somewhat sharpened

form is contained in [23). The result has played a key role in recent empirical work
of B. J. Birch and H. P. F. Swinnerton-Dyer on ellipt ic curves.

14. Suppose that p =I (4) and consider the curve x4 + y 4 = lover Fp • Let X be a
character of order 4 and n = - leX. 1. 2

) . Give a formula for the number of projective
points over F p and calculate the zeta function. Both answers should depend only
on n, (Hint : See Exercises 7 and 16 of Chapter 8. but be careful since there we were
counting only finite points.)

15. Find the number of points on x 2 + y2 + X 2y2 = I for p = 13 and p = 17. Do it
both by means of the formula in Section 5 and by direct calculation.

16. Let F be a field with q elements and F, an extension of degree s. If X is a character of
F. let x' = Z 0 NF. /F' Show that
(a) x' is a character of F, .
(b) X # p implies that l i- p'.
(c) Xm = e implies that "1m = c.
(d) lea) = z(a)' for a E F.
(e) As Xvaries over all characters of F with dividing m. x'varies over all characters
of F, with order dividing m. Here we are assuming that q = 1 (m) .
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17. In Theorem 2 show that the order of the numerator of the zeta function, P(u) has
degree m-l«m _ 1)"+ I + (-1)" +I(m - I».

18. Let the notation be as in Exercise 16. Use the Hasse-Davenport relation to show that
)(x'I,xi •. . . ,x~) = (-I)('-111" -II)(XI .X2 ... ·'X")'. where the Xi are nontrivial
characters of F and X1X2 . . · X" # £.

19. Prove the identity L ).(f)ldeg
/ = n(I - ).(f)ldeg

/ ) - 1, where the sum is over all
monic polynomials in F[I] and the product is over all monic irreducibles in F[l].
). is defined in Section 4.

20. If in Theorem 2 we keep I fixed but consider the base field to be F, instead of F,
we get a different zeta function. Z}'I(U). Show that Z}'I(U) and Z/(u) are related by
the equation Z}' )(u') = ZAu)Z/(pu) ' .. Z/(p,-I u), where p = e2ni t' .

21. In Exercise 6 we considered the equation x~ + x~ + x~ = 0 over the field with
four elements. Consider the same equation over the field with two elements. The
trouble here is that 2 ¢ J (3) and so our usual calcu lations do not work . Prove that
in every extension of Z /2Z of odd degree every element is a cube and that in every
extension of even degree, 3 divides the order of the multiplicative group. Use this
informat ion to calculate the zeta function over Z /2Z. [Answer: (1 + 2u2

)/

(I - u)(1 - 2u).]

22. Use the ideas developed in Exercise 21 to show that Theorem 2 continues to hold
(in a suitable sense) even when the hypothesis q := 1 (m) is remo ved.

23. Let PI < P2 < P3 < .. . denote the positive prime numbers arranged in order. Let
Nm= P~P'i" .. P::; and let Em denote the field with q"'m elements. Show that Em
can be considered as a subfield of Em + I and that E = U Em is an extension of Eo= F,
a finite field with if elements. with the following property ; for every positive integer
II. E contains one and only one subfield F"with q"elements.



Chapter 12

Algebraic Number Theory

In this chapter we shall introduce the concept of an
algebraic number field and develop its basic properties.
Our treatment will be classical, developing directly only
those aspects that will be needed in subsequent chapters .
The study of these fields , and their interaction with other
branches of mathematics forms a vast area of current
research. Our objective is to develop as much of the
general theory as is needed to study higher-power recip
rocity . The reader who is interested in a more systematic
treatment of these fields should consult anyone of the
standard texts on this subject, e.g., Ribenboim [207],
Lang [168], Goldstein [140], Marcus [183].

We will assume that the reader has some familiarity
with the theory of separable f ield extensions as can. be
found .for example, in Herstein's Topics in Algebra [150].
Some of the results assumed are given in the Exercises.

§1 Algebraic Preliminaries

In this section we will recall some facts from field theory and prove some
results about discriminants.

Let LIK be a finite algebraic extension of fields. The dimension of LIK,
[L : K], will be denoted by n.

Suppose ai' a2' .. . ' an is a basis for LIK and a E L. Then «a, = Ii aijai ,

with aij E K.

Definition. The norm of 0:, N LIK(O:), is det(a j ) . The trace of :x, tL1K(:X), is a II +
an + .. . + ann ·

It is easy to check that this definition is independent of the choice of a
basis. In what follows, norm and trace will be denoted by Nand t since the
extension LIK will be fixed.

If :x, pEL and a E K then N(ap) = N(a)N(p), t(a + p) = tea) + t(P),
N(ap) = anN(P), and t(ao:) = at(a). If a #- a then N(a)N(a- l

) = N(aa- I
) =

N(l) = l.Thus.if« #- a,N(o:) #- a,andN(a- l
) = N(a)-I .IfLIKisseparable,

then t is not identically zero . Ifchar K = athis is easy to see since then t( 1) =

172
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/I # O. The only fields of characteristic p > 0 that we will consider are finite
fields and in this case the result follows from Proposition 11.2.1(d).

Suppose LIK isseparable and let a" a2' . . . , anbethedistinct isomorphisms
of L into a fixed algebraic closure of K which leave K fixed. For rx E L denote
a/rx) by rx(jl. The elements rx(j) are called the conjugates of z. Here ~(I) is rx.

One can show using linear algebra (see Exercises 21-23). t(~) = rx(1) +
~(2) + ... + !X(n) and that N(!X) = Ct(1 )rx(2) . .. :xlnl. If !X E L consider f(x) =
(x - rx( ")(x - rx(2) . . . (x - !Xlnl). Then f(x) E K[x]. The coefficient of x"- I

is - t(!X) and the constant term is ( -ltN(rx).The reader should verifythat our
definitions of norm and trace generalize those of Chapter 11, Section 2.

Definition. If !X( , rx2" ' " rxn is an n-tuple of elements of L we define the
discriminant ~(!XI" ' " an) to be det(t(ajCt) .

Proposition 12.1.1 . If ~(a " ,!Xn) # 0 then :x l' . .. '!Xn is a basis for LIK.
If LIK is separableand !XI ' ,an is a basisfor LIK then ~(rxl" .. ,:xn) =f. O.

PROOF: Suppose :x I' . .. ' !Xn are linearly dependent. Then there exist
al" '" an E K, not all zero, such that I a,«, = O. Multiply this equation by
rxj and take the trace. One finds

I a;t(!Xjrx) = 0, j = 1,2, . .. , n.
j

This shows that the matrix (t(~j:X) is singular and so its determinant is
zero.

Now suppose a" " "!Xnis a basis and ~(a" .. . , rxn) = O. Then the system
of linear equations

j = 1,.. . ,n,

has a nontrivial solution x, = a, E K, i = 1, . . . , n. Let ~ = I ajaj =f. O.
Then, t(exrx) = 0 for j = I, 2, . . . , n, and since ex" . . "!Xn is a basis it follows
that t(!Xfl) = 0 for all fl E 1. This implies t is identically zero which it is not
since LIK is separable . This establishes the second assertion. 0

Proposition 12.1.2. Suppose !X" ' !Xn and fll ' . . . , fln are bases for LIK. Let
IX j = Ij ajA, a ij E K. Then ~(IX" , !Xn ) = det(aij)2 ~(fll " '" fln)·

PROOt'. Take the trace of both sides of the identity !X j:J(k = Ij I, aijak,[lj[J, .
Let A = (t(:J( j:J( j»' B = (t(ffjll,», and C = (aj). Then we find the matrix
identity, A = CBC, where C is the transpose of C. Tak ing the determinant
of both sides of this matrix identity and noting that det C = det C gives the
result.

Proposition 12.1.3. For :J( l ' ~2, , Ct. ELand LIK separable we hare

~(!XI' ,!Xn) = det(!X~j) 2 .
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PROOF. t(ap) = (J.~\)CLrl + (J.~2)fJ.?) + ... + a~n )CLt) . Let A = (t(fJ.;a:)) and
B = «(J.~k)) . Then A = BB'. Tak ing determinants of both sides of this matrix
equation gives the result. 0

Proposition 12.1.4. Suppose I, {J, . .. , {In- 1 are in L and linearly independent
over K. Let f(x) E K[ x] be the minimal polynomial for {J over K. If LIK is
separable then

11(1 , {J, . . . , {In- 1) = (_I){n1n- 1))/2 N(f'({J))

where f'( x) is the formal derivative off(x) .

PROOF. The matrix «{J(j)i) where j = I, . .. , II and i = 0, .. . , n - I is of
Vandermonde type and so its determinant is

n({JU) - {J(i)).
i < j

Thus we have

11(1, {J, . . . , fln -I) = ( _1)(11(11-1))/2 n(fJU) - fl(i)) .
i~j

Now, f(x) = ni(x - {J(i)), so f'(fl(j)) = ni (flU) - {J(i)) with i # j. Since
J'(flU}) = (f'(ff))U) the result follows by taking the product over j. 0

§2 Unique Factorization in Algebraic Number Fields

Elementary number theory is concerned with the properties of the natural
numbers 1,2,3, . .. . In the course of studying these properties it became
necessary to take into account the ring of integers 7L and then the field of
rational numbers 0 . In his attempt to understand biquadratic reciprocity
Gauss introduced the ring 7L [i]. Likewise to study higher reciprocity laws and
Fermat's Last Theorem (see Chapter 14) other rings were introduced.
Eventually a general definition of an algebraic number fields and rings of
algebraic integers emerged, principally through the efforts of E. Kummer and
R. Dedekind.

Definition. A subfield F of the complex numbers is called an algebraic number
field if [F :0] is finite . IfF is such a field, the subset of F consisting of algebraic
integers forms a ring D,called the ring of algebraic integers in F.

Proposition 6.1.2 shows that an algebraic number field consists of alge
braic numbers (just take V = F and choose 11" . . , tn to be a basis for F
over 0).

Let n be the set of all algebraic integers. Then Proposition 6.1.5 shows n
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is a ring. Since D = Q n F. D is also a ring. We will often refer to D simply
as the ring of integers in F.

It turns out that in general D is not a unique factorization domain
(Exercise 7). However D does have a property which is almost as good .
Namely. every nonzero ideal can be written uniquely as a product of prime
ideals. An integral domain with th is property is called a Dedekind ring .
In this section we will prove that D is a Dedekind ring following a method
due to A. Hurwitz [154J (pp. 236-243).

Throughout the discussion the word ideal will mean nonzero ideal.
Hopefully, this will not cause confusion.

Lemma I. Suppose P E F. There is a b e "l., b t= 0, such that bP ED.

PROOF. P satisfies an equation aopn + alpn- I + ... + an = 0 with the
a,E "l., ao t= O. Multiply both sides by ao- I and notice that (aoP)n + a I(aop)n- I

+ ... + anao- I = O. This shows aoll is an algebraic integer since for all i,
aja~-I «r. 0

Proposition 12.2.1. Every ideal A ofDcontains a basisfor Faver O.

PR(X)F. Let PI"'" Pn be a basis for F over O, By the preceding lemma there is
s b e "l., h t= 0, such that bfJ I ' . . . , bPn E D. Choose IX E A, IX t= O. Then the
clements hfJ t IX, . .. ,bIIn ::1. are in A and are a basis for F over O. 0

In the first section we considered a field extension LIK and considered
the trace. norm, and discriminant of a basis. Here we fix the extension FlO
and consider all these concepts with respect to this extension.

If IX E D we claim N(IX) and t(IX) are in "l.. To see this notice that if IX satisfies
a monic polynomial with coefficients in "l. so do the conjugates of IX. Thus
N(IX) and t(:t) which are respectively the product and sum of the conjugates
ofx are algebraic integers. They are also in 0 so by Proposition 6.1.1 they are
in "l.. The fact that the trace has this property shows that if IX I, • • . , IX n is a
basis for F over 0 and all the ':X; ED then ~(:tl" .. , IXn ) E "l..

Before proceeding we remark that the discriminant of a basis can be

negative. For example, let i = J=1and consider the basis I, i for O(i»)Q. A
simple calculat ion shows ~(I, i) = -4.

Proposition 12.2.2. Let A be an ideal in D and suppose IX I' . . . , IXnE A is a basis
[or FlO with I ~( IX I" ' " IXn)! minimal. Theil A = "l.1X 1 + "l. IX 2 + ... + "l.lXn.

PROOF. Since the absolute value of the discriminant of a basis in A is a positive
integer, there is such a basis with 1~(1X1 "'" exn)1 minimal.

Suppose IXEA and write ':X = 11IX I + Y21X2 + . .. + In:tn with YjEO.
We need to show that the /'; are in "l.. Suppose not. Then some 'Ii rt "l. and by
relabeling if necessary we can assume YI rt "l.. Write 'II = m + 0 where m E"l.

and 0 < () < I. Let fit = IX - m':X l , fJ2 = :t2, ... ,/ln = :tn' Then PI' /3 2 " " ,
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PnEAandisabasisforF/O.Sincefl , = D«, + ,'l'Xl + .. . + I'n'Xnthe matrix
of trans ition between these two bases is

(

o '/2 13 I II )
o 1 0 0

o 0 1 0
o 0 0 I

By Proposition 12.1.2 we find 13.(PI"'" Pn) = Ol13.(exl'· ·· ' ';n) which
contradicts the minimality of !13.('X I, " " exll)1 since 0 < 0 < 1. Thus all the
Ii E 7L and A = 7L(X1 + ... + 7L exll as asserted. 0

If (XI' (Xl" ' " 'XII E A is a basis for F over 0 and A = 7L ex l + ... + 7L'Xn
we say that ex l , .. . , exn is an integral basis for A. It follows from Proposition
12.1.2 that the discriminants of any two integral bases for A are equal. This
common value iscalled the discriminant of A, written 13.(A). The discriminant
of D is particularly important and, by "abuse of language," c5 F = 13.(D) is
called the discriminant of FlO.

We now apply the last proposition to deduce some important properties
of the ring D. Recall our convention that all ideals are nonzero ideals.

Lemma 2. If A c D is all ideal then A n 7L t= O.

PROOF. Let ex E A, C( t= O. There exist a i E 7L such that o" + (/ .,;1/1- 1 + ...
+ am = O. Since we are working in a field we may assume am t= O. But then,
o t= am E A r, 7L. 0

Proposition 12.2.3. For any ideal A, D] A isfinite.

PROOF. By the lemma ihere is an a E A n 7L, a t= O. Let (a) be the principal
ideal generated by a in D. Since Dj(a) maps onto DjA it is enough to show
Dj(a) is finite. In fact we will show it has precisely an elements.

By Proposition 12.2.2 we may write D = 7Lw l + 7LWl + .. . + 7Lwn.
Let S = {I ' iw;lO =:; }'i < a}. We claim S is a set of coset representatives for
Dj(a). Suppose w = I m.ca, E D. Write mi = q.a + "i with 0 =:; Ii < a.
Then clearly w == I / iWi (a). Thus every coset of A contains an element of S.
If I YiWi and I Y;'Wiare in S and in the same coset modulo (a) then using the
linear independence of the W i we see I i - , '; is divisible by a in Z. Since
o =:; "Ii,Y; < a it followsthat y, = ";. Thus S is a set ofcoset representatives and
Dj(a) has an elements as claimed. 0

Corollary 1. D is a Noetherian ring, i.e., every ascending chain of ideals
Al cAl C A3 C .. . terminates. /11 other words, there is an N > 0 such that
Am = Am+ I for all m ~ N.

PROOF. Since DjA I is finite there are only finitely many ideals containing
AI ' 0
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Corollary 2. Every prime ideal of D is maximal.

PROOF. If P is a prime ideal then DIP is a finite integral domain. Such a ring
is necessarily a field (see Exercise 19). Thus DIP is a field and so P is maximal.

D

The ring D is also integrally closed. This means that if (X E F satisfies a
monic polynomial with coefficients in D then 0: E D. This is not too hard to
establish using Proposition 6.1.4. In standard algebra texts it is shown that
if an integral domain is Noetherian, integrally closed, and every nonzero
prime ideal is maximal then every ideal is a product of prime ideals in a
un ique way, i.e., such a ring is a Dedekind domain. We will establish the fact
that D is a Dedekind domain in a different way using a very important
property of number fields. namely that the class number of D is finite (see
below).

Our initial goal is to prove the following two results:

(i) If A, B. and C are ideals and AB = AC, then B = e.
(ii) If A and B are ideals and A c B. then there is an ideal C such that A = Be.

These will be proved later. We begin by establishing a special case of (i).

Lemma 3. Let A c D be all ideal. If IJ E F is such that IJA c A then fJ ED.

PROOF. By Proposition 12.2.2 A is a finitely generated 7l. module so the result
follows from Proposition 6.1.4. 0

Lemma 4. If A and B are ideals in,D and A = A B then B = D.

PROOF. Let IX ), il2, . . . , ::in be an integra l basis for A. Since A = A B we can
find elements bi j E B such that :Xj = Lj b ij(X j ' It follows that the determinant
of the mat rix (bij - c)jj) is zero. Writing th is out sho ws I E B, i.e., B = D. D

Proposition 12.2.4. Let A, BcD be ideals and suppose W E D is such that
(w)A = BA . Then (OJ) = B.

PROOF. If fJ E B we see (fJlw)A c A so by Lemma 3. fJl w E D. It follows that
B c (01) and so 01-) BcD is an ideal. Since A = UJ- 1BA , Lemma 4 shows
01 - 1B = D and so B = (01) as required . D

The following definit ion play s a major role in algebraic number theory.

Definition. Two ideals A, B cD are said to be equivalent. A .... B, if there
exist nonzero 0:, fJ E D such that (o:)A = (fJ)B. This is an equivalence relation.
The equivalence classes are called ideal classes. The number of ideal classes,
hF , is called the class number of F. (We will see that hF is finite .)

We lea ve the easy verificat ion that A .... B is an equ ivalence rela tion to
the reader.
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It is worthwhile to point out that hF = 1 if and only if D is a principal
ideal domain (PID). To see this suppose hF = I and let A be an ideal. Since
A ...... D there are nonzero ex, 13 E D such that (ex)A = (f3)D = (13). Thus f3lex E A
and A = (f3lex). Every ideal is principal. On the other hand it is obvious that
if D is a PID then hF = I.

Thus we see that the class number measures, in some sense, how far D is
from being a PID (see Exercises 15, 16 and Masley [184]).

The following lemma is due to A. Hurwitz [154], p. 237. We will use it to
show hF is finite. It is to be noticed that the lemma is a (weak) generalization
of the Euclidean algorithm to an arbitrary number field.

Lemma 5. There exists a positive integer M depending only on F with the
following property. Given ex, 13 E D, 13 #- 0, there is an integer t, 1 ~ t ~ M,
and an element WED such that' Nit« - wf3)' < IN(f3) I.

PROOF. We first reformulate the statement slightly. Let Y = exlf3 E F. Then it is
sufficient to show that for all y E F there is an M such that INit » - w) I < 1
for some 1 s t s M and WED.

Let W.' W2 " ' " ai; be an integral basis for D. For )' E F, y = I.7:. YjWj
with Yj E Q. Notice that

'N(y)' = Iry (~Yjw\j')! ~ c(m~xIYjr

where C = nj(I.dw,'ill). Choose an integer m > YC and set M = m".
For y E F, y = I.7:. yjWj, write Yj = a, + b, where a, E 7l.. and °~ b, < 1.

Let [y] = I.7: I ajWj and {y} = L.7: I bjwi • Then y = [y] + {y} where
[y] ED and {y} has coordinates between °and I.

Map F to Euclidean n-space IRn by ¢(L.7: I Yjw;) = (Y., Y2 ,.", Yn)' For
any YE F, ¢( {y}) lies in the unit cube. Partition the unit cube into mn subcubes
of side 11m. Consider the points ¢({ky}) for 1 ~ k ~ mn + 1. By the pigeon
hole principle two of them, at least, must lie in the same subcube, say those
corresponding to hyand Iy. Ifwe write hy = [hyJ + {h{'} and Iy = [Iy] + {ly}
and subtract we find Iy = W + <5 where (assuming h > f) t = h - I ~ mn

= M, wED, and the coordinates of <5 have absolute value less than or equal
to 11m.

By our previous remark, N(lI) s C( Ijmt = C[m" < I. 0

Theorem 1. The class number of F is finite.

PROOF. Let A be an ideal in D. For ex E A, ex i= 0, ,N(ex)' is a positive integer.
Choose 13 E A, 13 i= 0, so that IN(f3)' is minimal. For any ex E A there is a t,

1 ~ t ~ M, such that IN(lex - wf3)' < IN(f3) Iwith WED. Since lex - wf3E A
we must have ta - wf3 = 0. It follows that M! A c (/3). Let B =
(1If3)M! A c D. B is an ideal and M! A = (13)8. Since 13 E A, M! 13 E (f3)B
and so M! E B. By Proposition 12.2.3 M ! can be contained in at most finitely
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many ideals. We have shown A - B where B is one of at most finitely many
ideals . Thus hF is finite, as asserted. 0

An interest ing and significant application of th is theorem .is the following
proposition.

Proposition 12.2.5. For any ideal A c D there is an integer k, I ~ k ~ hF ,

such that Ak is principal.

PROOF. Consider the set of ideals {A il l ~ i ~ hF + I}. At least two of these
ideals must lie in the same class, say Ai - Ai with i < j . There exist a, pE D
such that (:x)Ai = (P)Ai. Let k = j - i and B = A k

• We will show that B is
principal.

Since, clearly, (IX)A i = (P)BA i we see (alP)A i c A i so alP E D. Let w = IXIP.
Then (w)A i = BA i

. By Proposition 12.2.4, (w) = B. 0

We remark that the set of ideal classes can be made into a group. Let if
denote the class of A. We define the product of Ii and B to be AB. One can
check. without trouble that this is well defined, i.e., if it = it 1 and 13 = 13 I

then A B = AlB I' Associativity follows from the fact that ideal multiplication
is associative. The class of D serves as an identity element. Finally, the last
proposition shows that an inverse to if is the class Ak

-
I

• The structure of the
class group has been a major research problem ever since the concept was
invented.

One consequence of the fact that the ideal classes form a group is that
AhF is principal for all ideals A. This will not be needed in the remainder of
this chapter.

We ca n now give proofs for the two results mentioned earlier (before
Lemm a 3).

Proposition 12.2.6. If A, B, and C are ideals, and AB = AC, chen B = C

PROOF. By the Jast proposition, there is a k > 0 such that Ak = (IX). Multiply
AB = AC on both sides by A k

-
I . We find (a)B = (IX)C It follows that

B=C 0

Proposition 12.2.7. If A and B are ideals. such char B :J A, chen there is an
ideal C such char A = BC

PROOF. As above there is a k > 0 such that Bk = (P).
Now, since A c B we have Bk

-
I A c Bk = (fJ) so C = (l lfJ)Bk -IA cD

is an ideal.
Thus, BC = ( 1/ f1) BkA = (I IP)(P)A = A. 0

Thi s prop osition can be phr ased " to contain is to divide."
We now have all the tool s we need to establ ish unique factorizat ion into

pr ime ideals.
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Proposition 12.2.8. Every ideal in D can he written as a product ofprime ideals.

PROOI'. Let A be a proper ideal. Since D/A is finite, A is contained in a maximal
ideal P, (using Zorn's lemma one can show that in an arbitrary commutative
ring with identity a proper ideal is contained in a maximal ideal). By the last
proposition A = P.B. for some ideal B i - If B. "" D then B, is contained in a
maximal ideal P2 and so A = P.P2B2 • If B2 "" D we can continue the
process. Notice that A c B( C B2 ••• is a proper ascending chain of ideals.
By Corollary I to Proposition 12.2.3 we see that in finitely many steps B, = D.
Thus A = P 1P2 .. • P" 0

Let P be a prime ideal. The descending chain P :::J p 2
:::J p 3 • • . is proper

since if p i = p i+
I for some i then pp i = pi and so P = D by Lemma 4.

This fact is the basis of the following definition.

Definition. Let P be a prime ideal and A an ideal. Then ord, A is defined to
be the unique nonnegative integer csuch that P' :::J A and P'+' P A.

Proposition 12.2.9. Let P be a prime ideal and A and B ideals. Th en

(i) ord; P = I
(ii) lIP' "" P is prime ord; P' = 0

(iii) ord; AB = ord, A + ord, B

PROOI'. The first assertion is clear. As for (i i) assume ord, P' > O. Then
P :::J P'. Since pr ime ideals are maximal P = P' contradicting the assump
tion .

Let c = ord, A and s = ord; B. By Proposition 12.2.7 we have A = PiA.
and B = PSB I ' By the same proposition we must have P P A I and P t> BI'

Now, AB = P' +IA,B, . If pS+I+' :::J AB then AB = ps+t+'C and so by
Proposition 12.2.6, PC = A lB i - This implies P :::J A I B I and since P is prime
that P :::J A, or P :::J B I ' This is a contradiction.

Thus ord; AB = c+ s = ord; A + ord, B. 0

Theorem 2. Let A c D be an ideal. Then A = n pa(P ) where the produce is
over the distinct prime ideals of D, and the a(P) are nonn egative inteqers all
hut finiteiy many of which are zero. Finally, the inteqers a(P) are uniquely
decermined hy a(P) = ord; A .

PROOI'. The product representation follows from Proposition 12.2.8.
Let Po be a prime ideal and apply ordpo to both sides of the product given

in the theorem. Using Proposition 12.2.9 we see

ord p u A = La(P) ordpo(P) = ('( Po)·
p

o
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Let P be a prime ideal of D. By Lemma 2, P n 7l. is not zero. Since it is clearly
a pr ime ideal of 7l. it must be generated by a prime number p.

Definition. The number e = ordp(p) is called the ramification index of P
(here (p) is the principal ideal generated by p in D).

DIP is a finite field containing 7l.Ip71. . Thus the number of elements in DIP
is of the form pI for somef ;::: I. The number fis called the degree of P.

Let p E 7l. be a prime number and let PI' P2 , •.• , P, be the primes in D
containing (p). Let e, and}; be ramification index and degree of Pi ' By
Theorem 2, (p) = P';' P'2' . . . P"'g.

There exists a remarkable relation among the numbers ej,j;, and n.

Theorem 3, If=\e;;; = n.

We postpone the proof until we have developed some necessary back
ground.

Proposition 12.3.1. Let R he a commutatioe rinq with identity. Suppose 04\,
04 2 " " , Ag are ideals such that A j + Aj = RjiJr i:f. j . Let A = 04 104 2 " , Ag •

Then

PROOF. Let l/t; be the natural map from R to RIA j and define l/t: R ....
RIAl Ef) · · ·Ej)RIAg by l/t(y) = (l/tI(Y), l/t2(y),· · .,l/tiY)). We will show l/t is
onto and the kernel is A.

To show l/t is onto, it is sufficient to show that for any I I' 12' . .. , ,'g E R
the set of simultaneous congruences x == ,' j(A;), i = I, ... , g is solvable.

Expanding the product (A I + 04 2)(04 1 + 04 3 ) " • (A I + Ag) = R we see
that all the summands, except the last, are in A r- Thus A I + 04 204 3 " , Ag =R.
There exist elements VI E A I and U I E 04 2 " , Ag such that III + VI = I. Then
III == I (A \) and III == 0 (A,) for i :f. I. Similarly, for each j there is a IIj

such that IIj == I (A) and IIj == 0 (A i) for i :f. j . It is then clear that x =
}' t ll l + (2 112 + ... + ;'gllg is a solution to our set of congruences.

Having shown that l/t is onto, we now investigate the kernel. Clearly,
ker l/t = A I n 04 2 n . .. nAg. We must show that under the hypotheses the
intersection is equal to the product. This can be done by induction on g.
Suppose g = 2. Then, since Al + 04 2 = R, there exist a l E A l and a2 E 04 2
such that a l + a2 = I. If a E Al n.4 2 then a = (la l + (1(12 E A tA 2. This shows
A I n 04 2 C A I 04 2 , The reverse inclusion is obvious so the result follows for
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9 = 2. Now suppose 9 > 2 and we know the result for 9 - I. Then A I n
A2 n ·· · n Ag = Al n A2A 3 · · · Ag. However, Al + A2A 3 · · · Ag = R by the
first part of the proof. Thus, A I n A 2 A 3 • • • Ag = A IA2 .. • Ag and the proof
is complete. 0

This proposition is called the Chinese Remainder Theorem for rings. We
return from a general commutative ring R to D.

Proposition 12.3.2. Let P c D be a prime ideal and let pI be the number of
elements ill DIP. Th e number of elements in D'[P" is p.l.

PROOF. The assertion is true for e = I. If e > I then DIP" has p. -I lpe as a
subgroup and the quotient is isomorphic to Dlpe- 1 (second law of isomor
phi sm). If we can show P"" Ilpe has pI elements then the result will follow
by induction.

Since P" c P"" I properly we can find an a E P"" I such that art P". We
claim (a) + P" = P'"' I . Since P' c (a) + P" the latter ideal must be a power
of P. Since (1:) + P' c P"" I we must have (a) + P" = P"" I .

Map D to P"" lIP' by }' -> ya + P'-. This is easily seen to be a homo
morphism onto. An element y is in the kernel if and only if }'a E P", i.e., iff
ordl'(ya) ~ e. Now, ordp(y:X) = ordp(y) + ord, :x = ord p(l') + e - I. Thus
}' is in the kernel iff ordp(i') ~ I which is equivalent to saying }' E P. Thus
DIP ~ P"- lIP' and so the latter group has pI elements. 0

We can now prove Theorem 3. Rem ember (p) = PI' P'2' . . . P;-'. It is
not hard to see th at p~. + Pi' = D for i i= j (see Exercise 25). By Propos ition
12.3.1

DI(p) ~ DIPI' ® DIP'2' ® . . . ® DIP;-.

The proof of Proposition 12.2.3 shows IDI(p)I = p", On the other hand
Proposition 12.3.2 shows IDIpr'I has ped , elements. Thus

It follows that 11= eJt + e212 + .. . + eg/g as asserted. o

When FlO is a Galois, that is, when a ll the isomorphisms of F into iC
are actually autornorphisms, Theorem 3 can be strengthened. Suppose
FlO is Galois and let G be the Galois group. If A is an ideal and a E G let
aA = {aal a E A}. One eas ily checks that aA is again an ideal. Also , aD = D.
Thus DjaA = a Il lo A ~ D/A. In particular th is shows that if P is a prime
ideal, then cP is also a prime ideal.

Proposition 12.3.3. Let p E 7L be a prime number. Suppose P, and Pj are prime
ideals of D containinq [I . Then there is a a E G such that aP, = Pj'
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PROOF . Suppose there is a prime ideal Po containing p and not in the set
{nP j Ia E G}. By Proposition 12.3.1 we can find an a E D such that a == 0 (Po)
and « == I (aP i ) for all a E G.

Then N(:J.) = noeG a« E Po n 1l. = p1l.. It follows that N(rx) E Pi and so
aa E P, for some a since Pi is prime. But then a E a- 1Pi contradicting
a == I (a-· P;). 0

Theorem 3' . Suppose FlO is a Galois (!xteIlS;OI1. Let p E 1l. be l/ prime number
alit! II'rite(p) = P~' P~!· · · p~-, Theil 1.', = 1.'2 = . . . = eqand], = f2 = . . . = jq. If
e and I denote these common oalues, then efy = 11 .

PROOF . For a given index i there is a a E G such that aI", = Pj' Since DIP I :::::

Dla? 1 = DIP j we findfl = /; . Thus all the/;'s are equal.
Apply a to both sides of (p) = PfIPP' " p;". Since p E 1l. it is clear that

a(p) = (p). Thus

(p) = (aP I)e'(aP2t ' ·· ·(aP g )'9.

In this product we see the exponent of P; = aPt is e•. In the first expression
the exponent of P, is e.. By uniqueness of prime factorization we must have
e, = e, and so all the e.sare equal.

Finally, since I e.], = Il we see immediately that efq = n. 0

We conclude this section by discussing, without proofs, some important
facts about number fields. In our applications we will be able to do without
this general theory.

Let P c D be a prime ideal with ramification index e. Let P n 1l. = p1l. .
We say that P is a ramified prime if e > 1. One can show that P is ramified
only if p divides br = t.'!(D), the discriminant of F. In particular, only finitely
many primes are ramified. If p,j"i5F then (p) is a product of distinct prime
ideals in D. An important result of Minkowski asserts that if [F: 0] > 1
then IJf'l > 1. In fact Minkowski found a more precise result, namely an
explicit lower bound for Ibrl. An important consequence is that every
number field strictly bigger than 0 contains ramified primes.

Now suppose FlO is a Galois extension with group G. Associate with a
prime ideal P the group G(P) = {aEGlaP = P}. G(P) is called the de
composition group of P. DIP is a finite field conta ining 1l.1p1l.. The field
DIP is a Galois extension of 1l. jp1l.. Call the Galois group G. There is a homo
morphism from G(P) to G given as follows . If a E G(P) and iX denotes the
residue class of a. in DIP define ii by the equation ii(iX) = aa.. This is well
defined, ii E G, and a -t ii is a homomorphism. One can show this homo
morphism is onto (Exercise 26). Let T(P) be the kernel. T(P) is called the
inertia group of P. We have

G(P)IT(P) :::: G.

It is not hard to see thatlGI = fand IG(P)I = nlg = ef. It follows that
IT(P) I = e. Thus, if Pis unramified G(P) ::::: G.
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From the theory of finite fields G is a cyclic group generated by the
automorphism c/>p which takes :i to :ip

• If P is unrarnified there is a unique
(jp E G(P) such that ii p = c/>p' This automorphism (ip is called the Frobenius
automorphism associated to P. Notice that the order of (jp is equal to the
order of cjJp which is]. the degree of P. As it turns out, a large part of the
arithmetic theory of algebraic number fields centers around the properties
of the Frobenius automorphism. We will see illustrations of this in the next
chapter.

NOTl:s

The fact that the ring of integers in an algebraic number field form a Dedekind
ring is due to R. Dedekind and appears in the eleventh supplement to
Dirichlet's Vorlesunqen uber Zahlentheorie [127]. This result was subse
quently also proven by Kronecker, Hilbert, and Hurwitz. The inertia and
decomposition groups were introduced by Hilbert (1894) in his "Grundzuge
einer Theorie des Galoisschen Zahlkorpers" (see also *39 of Hilbert's
"Zahlbericht " [151] and Dedekind [121], Vol. 2, pp. 43-49).

It can be shown more generally that if D is a Dedekind ring with field of
fractions k and K is a finite separable extension of k the integral closure of
D in K (Exercise 27) is a Dedekind ring . This follows from a theorem of E.
Noether characterizing Dedekind rings as Noetherian domains which are
integrally closed and in which every nonzero prime ideal is maximal. For this
approach see Samuel-Zariski [214]. In our approach. as in other classical
approaches, essential use is made of the fact that the residue class ring modulo
a nonzero ideal is finite. The idea of deriving the Dedekind property from the
finiteness of the class number is due to Hurwitz. It will be noticed that in our
approach no use is made of the fact that the number of elements in the residue
class ring is a multiplicative function of the ideal. Butts and Wade [103] have
shown that the multiplicativity of this map implies the Dedekind property.
The usual classical approach is to show by a suitable generalization of Gauss'
lemma (Exercise 4, Chapter 6) that the ideal classes form a group.

Recently the characterization of fields F with class number 2 due to
Carlitz (see Exercises 15 and 16) has been generalized by A. Czogala [117].
He proves, among other things, that a number field has an ideal class group
which is cyclic of order 2, cyclic of order 3, or the Klein four group iff the
product of two irreducibles may be rewritten as the product of at most three
other irreducibles.

A deep result conjectured by Hilbert and proved by Furtwangler asserts
the existence, for each number field F. of an extension E satisfying the follow
ing conditions. First of all the degree of E over F is equal to the class number of
F. Every prime ideal'll of F decomposes into the product of hF/I distinct
prime ideals in E where/is the order of the ideal class of '13 in the class group.
Every ideal of F becomes principal in E. Finally the ideal class group of F
is isomorphic to the Galois group of E over F. The field E is unique and is
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called the Hilbert class field of F. The existence of the Hilbert class field is a
valuable tool in studying the structure of the ideal class group.

The actual calculation of the class number is a difficult matter. Even for
quadratic number fields of small discriminant the calculation requires
estimates (due to Minkowski) which we have omitted. These matters are
discussed in most standard texts on algebraic number theory. We recommend
the treatment in D. Marcus [183]. This book contains a large number of
interesting exercises.

In more recent texts it is customary to describe the ideal class group in
terms of fractional ideals. If D is an integral domain with field of fractions F, a
fractional ideal A is a D submodule of F for which there exists an element d
in D with dA c D. Fractional ideals can be multiplied in the obvious way.
It can be shown that D is a Dedekind ring iff the (nonzero) fractional ideals
form a group [214]. The subgroup of fractional ideals of the formjD with
j in F are the principal fractional ideals. It is not difficult to show that the
ideal class group of an algebraic number field is isomorphic to the quotient
group of the group of fractional ideals by the subgroup of principal fractional
ideals.

EXERCISES

1. Find the minimal polynomial for fi + fl.
2. Compute the discriminant ofiQ(J2 + fi) .
3. Describe the units in iQ(fi).

4. Let D be the ring of integers in iQ(Jd). Show that, given N > O. there are at most
finitely many integers x E D with rnaxt]« ], lex'l) ~ N. where ex' is the conjugate of ex.

5. Generalize Exercise 4 to an arbitrary number field.

6. If D is the ring of in tegers in an algebraic number field and IlJ is a prime ideal such
that IlJ = (z) then show that ex is irreducible.

7. Show that the class number ofiQ(.j=5) is greater than one .

8. Let F be a number field. Show that the discriminant OF is congruent to 0 or '] modulo
4. This is one of Stickel berge r's theorems. The proof is tricky (cr.[207] , p. 97).

9. Compute the discriminant t!( I, !x, !(
2

) , relative to iQ(:x). where !X is a root of the
redu cible cubic x 3 + px + q, p, q EO.

10. If ReS are integral domains z E S is said to be integral over R if !Xm + bt :xm
- I + . ..

+ b; = 0 for suitable m; b1• • • • , b.; E R. S is called integra l over R if every element of
S is integral over R. Prove that if S is integra l over R then S is a field iff R is a field.

11. Let ClI ••• • , !Xn E D, the ring of integers in a number field F, t!(:x l , • • •• exn) '" O. Show
that if t!(!X I ' •.• • an)is a product of distinct primes (i.e., t! is square free) then :XI ' .. . , x,
is an integral bas is. Conclude that if d is square free d == I (4) then (I + fl) /2, I

form an integral basis for the ring of integers in iQ(Jd).
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12. Show that sin(n/12) is an algebraic number.

13. Show that (3, 1 + ;=5) is a proper idea l in Z[;=5]. Is it prime?

14. Construct an irreducible cubic polynomial over O with only real roots.

IS. Let F be an algebraic number field. D its ring of integers. Suppose the class number
of F is 2. Show that if 11 is an irr ed ucible such that (n) is not prime then (n) = IIItill 2

where III I' III2 are (not necessarily distinct) prime ideals.

16. (L. Carl itz) Let F. D be as in Exercise 15. Show that if :t E D. a = nI' . • • • rr, =
A••. . .• A,are two decompositions of a into the product or irred ucib les then s = t.
[Note :The converse is also true! (cf. Carlitz [106]).]

17. Letf(x ). g(x) be the respective min imal polynomials of Ct. and Pof respect ive degrees
nand m. Let the roots in C of f(x) and g(x) respectively be Ct. = Ct.l. Ct.2' .•. , a. and
P= PI ' P2' ·· ·. Pm · Recall by Exercise 16. Chapter 6. there are no repeated roots.
Choose t EO so that a j + tPi 01- Ct. + tP,j 01- 1, all i. Put y = Ct. + IP. Show that
(a) fe y - IX), g(x) have greatest common divisor (in C[x]) x - p.
(b) (on the other hand) the greatest common div isor of fe y - IX) and g(x) is in

O( y)[x].
(c) PEO( y). CXE 0(1'). .

18. (Theorem on the primitive element.) If F is an algebraic number field show that
there exists an element ( E F such th at 0 (1') = F.

19. Show that a finite integral domain is a field.

20. Let K = F2(X) and L = K(,/~). Show that the trace map is identically zero. (Recall,
F 2 is the finite field with two elements.)

21. Let F be an algebra ic number field ofdegree n. If:x E F.let T be the linea r transforma
tion defined by T( y) = Ct.y. Show that det(x/ - T) = f(x )' where I = n/deg(f),
andf(x) is the minimal polynomial of Ct.

22. Let FeE be algebra ic number fields. Show that any isomorphism of F into C
extends in exactly [E :F] ways to an isom orphism of E into C.

23. Let F be an algebraic number field of degree n and let al • . . . ' a. be the d ist inct
isomorphisms of F into C. Show that , for CtE F. the notat ion being as in Exercise 21,
f( x)' = m=I (x - aj(Ct.».

24. The notation being as in Exercise 23 show that

NF:Q(Ct.) = naj(cx) and tFIQ(:X) = I a,(a).
i= t i= t

25. Let F be an algebraic number field with ring of integers D. Show that if P and Q are
distinct prime ideals then (P", Qb) = D, where a and b are posit ive integers.

26 . Let P be a prime ideal in the ring of integers D of an algebraic number field F.
If F is Galois show that the natural map from the decomposition group of P to
the Galois group of the residue class field is onto .

27. If k is a field containing a ring D the set of all elements in k which are integral over D
(Exercise 10) is called the integral closure of D in k. Show that the integral closure
is a ring and that it is integrally closed.
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28. Let D be the ring of integers in a number field F. Suppose (p) = p 2A for p prime in
7l. and a prime ideal P. Show
(a) There exists :x EPA. :x !J p 2 A.
(b) (:xf3)P E pD all {I E D.
(c) (!r(:x{IW == tr«IIf3)P) (pD) .
(d) pltr(:xp) all lIED.
(e) p l~. the discriminant of F.
(Be sure to use the fact that IIrt pD.)

29. Let F be a Galois extension of Q with abelian Galois group. Show that if p E Q is
unram ified in F then Up = Up" for prime ideals P and P' dividing p in F, where Up

denotes the Frobenius automorphism.

30. Let p be an odd pr ime and consider Q(JP). If q =F p is prime show that uq(JP) =

(p/q) .jP where Uq is the Frobenius automorphism at a prime ideal in Q(JP) lying
above q.

31. Let F be an algebraic number field and ~ an ideal in the ring of integers of F. Show
that there is a finite extension L of F with ring of integers S such that ~S is principal.

32. Let P be a prime ideal in the ring of integers D of a number field F. If a == b (P,) and
ord, b < t show that ord, a = ord, b.

33. Let K c L be number fields with rings of integers Rand S respect ively. If A and B
are ideals in R such that AS divides BS then show that A div ides B.

34. The notation being as in Exercise 33 show that AS f1 R = A.



Chapter 13

Quadratic and Cyclotomic Fields

In the last chapter we discussed the general theory of
algebraic number fields and their rings of integers. We
now consider in greater detail two important classes of
these fields which were studied first in the nineteenth
century by Gauss, Eisenstein, Kummer, Dirichlet, and
others in connection with the theory of quadratic forms,
higher reciprocity laws and Fermat's Last Theorem. The
reader who is interested in the historical development of
this subject should consult the book by H. Edwards [128]
as well as the classical treatise by H. Smith [72].

We will develop in this chapter only those results that
will be needed for the applications in later chapters. The
fundamental result describes the manner in which rational
primes decompose into a product ofprime ideals. However,
we could not resist giving yet another proofof the law of
quadratic reciprocity based on the decomposition laws of
these fields.

§l Quadratic Number Fields

An algebraic number field F will be called a quadratic number field if
[F : 0] = 2. Let D c F be, as usual, the rings of integers in F. Our first goal
will be to find an explicit integral basis for D.

Let F = O(IX). The element IX must satisfy a quadratic equation ax 2 +
bx + c = 0 with a, b, c E 7L. Thus

-b ± Jb 2
- 4ac

a= .
2a

Let A = b2
- 4ac. Then, clearly, F = O(fl). Let A = AiA 2 where

A I' A2 E 7L and A2 is square-free. Then F = O(jA";). Changing notation, we
have shown that every quadratic number field has the form Q(Jd) where d
is a square-free integer.

If a is any isomorphism of FlO into C we apply a to (Jd)2 = d and

find (aJd)2 = d. Thus ajd = ±jd. It follows that FlO is a Galois

188
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extension. The Galois group has two elements. the identity and an

automorphism taking Jd to -J"d.
Every element of F has the form t:J. = r + s}d with r, S E 0. The nontrivial

automorphism takes :x to (I.' = r - sjd. Thus, t«(I.) = (I. + (I.' = 2r and
N«(I.) = ':1.(1. ' = r 2

- ds',
If y ED then t(y) and N(y) E 71.. Conversely. if these conditions hold then y

satisfies 0 = (x - y)(x - y') = x 2 - t(y)x + N(i') E 71.[x] showing that y E D.
Thus y ED iff t( i') and N(y) E 71..

Proposition 13.1.1. If d == 2.3 (4) then D = 71. + 71.}d.
If d == 1 (4) then D = 71. + 71.« -I + Jd)/2).

PROOF. Suppose}' = r + s}d, r, s E 0. Then l' E D iff 2r and r 2 - s2d E 71..
Since 2r E 71. it follows from the second condition that 4s2d E 71.. Since d is
square-free it follows that 2s E 71.. Set 2r = m and 2s = n. Then, r 2 - ds' E 71.
implies /1)2 - dn2 == 0 (4).

Recall that a square is congruent to either 0 or 1 modulo 4.
If d == 2,3 (4) then m2

- dn2 == m2 + 2n2 or m2 + n2 (4) . The only way
that m2 + 2n2 or m2 + n2 can be divisible by 4 is for both m and n to be even.
This is the case iff rand s are in 71. . This establishes the first assertion.

If d == 1 (4) then m2
- dn2 is congruent to m2

- n2 modulo 4. But
111

2
- n2 == 0 (4) iffm and n have the same parity. i.e.• they are either both odd

or both even . Thus D = {(m + nJd)/2Im == n (2)}. Notice

m + nJd m + n (-I + Jd)
2 =-2-+ n 2 .

Since m == n (2), (m + 11)/2 E 71.. Thus D c 71. + 71.( -1 + jd)/2. To

establish the reverse inequality we simply notice that ( - I + Jd)/2 E Dsince
d == 1 (4). 0

We can now calculate the discriminant of quadratic number fields.

Proposition 13.1.2. Let i5F denote the discriminant of F.
lfd == 2,3 (4) then i5F = 4d.
lfd == 1 (4) then DF = d.

PROOF. If d == 2.3 (4) set WI = 1 and W2 = jd. Then

(t(wjw) = (~ ~J
Thus 1\ = det(t(wjwj » = 4d.

If d== 1 (4) set WI = 1 and W2 = (-1 + Jd)/2. Then

( 2 -1)
(t(Wjw) = -I (1 + d)/2 .

Thus i5F = det(t(wjw) = d. o
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Having investigated D and OF we now want to determine how rational
primes p E 7L split in D. From Theorem 3' of Chapter 12 we know efg = 2,
so we have three cases; e = 2,/ = l,g = lore = 1,/ = l,g = 2,ore = 1,
f = 2, 9 = 1. We say, respectively, that p ramifies, splits (decomposes), or is
inertial (remains prime).

If p is a prime in 7L let P be a prime ideal in D containing p. Let P' =

{y'IYEP} .

Proposition 13.1.3. Suppose p is odd.
(i) ljp,f't5F and x2 =d (p) is solvable in 7L then (p) = PP', P '# P'.

(ii) lfp,f't5F and x 2 =d (p) is not solvable in 7L then (p) = P.
(iii) ljplt5F then (p) = p 2

.

PROOF. In case (i) suppose a2 =d (p) with a E 7L. We claim that (p) =
(p, a + Jd)(p, a - Jd). In fact, (p, a + Jd)(p, a - Jd) = (p)(p, a + jd,

a - Jd, (a 2
- d)/p). The latter ideal is D since it contains!!-:and 2a and these

two numbers are relatively prime. We claim (p, a + v'd) '# (p, a - Jd).
If equality held then the ideal would contain p and 2a and so would equal D
and it would follow that (p) = D. Thus P splits as asserted.

In case (ii) we claim P has degree 2. If degree P is 1 then D/P has p elements.
Since 7L/p7L injects into D/P it would follow that every coset of D/P is repre

sented by a rational integer. Let a E 7L be such that a =Jd (P). Then a2 =
d (P) and a2 = d (p) contrary to assumption. Thus p remains prime as
asserted.

Finally, in case (iii) we claim (p) = (p, Jd)2. In fact, (p, jd)2 = (p)

(p, Jd, dip)· The latter ideal is D since p and dip are relatively prime (re
member that d is square-free). Thus p ramifies as asserted. 0

We now discuss the decomposition of the prime p = 2. Remember that by
Proposition 13.1.2 we have 2,f'c5F if and only if d = 1 (4).

Proposition 13.1.4. Suppose p = 2.

(i) lf2,f't5F and d = 1 (8) then (2) = PP' and P #- P'.
(ii) lj2,f'c5F and d = 5 (8) then (2) = P.

(iii) lf2lc5Fthen(2) = p 2
•

PROOf. If d =1 (8) we claim that (2) = (2, (l + Jd)/2) (2, (I - jd)/2) . In

fact (2, (1 + Jd)/2)(2, (1 - Jd)/2) = (2)(2, (1 + jd)/2 , (1 - Jd)/2,

(1 - d)/8) . The latter ideal is D since it contains I = (1 + Jd)/2 +
(l - Jd)/2. Moreover, (2, (l + Jd)/2) #- (2, (I - Jd)/2) since otherwise
the ideal contains 1 and it would follow that (2) = D.

If d = 5 (8) we claim P has degree 2. If not (as in part (ii) of the last pro-

posit ion) there is an integer a E 7L such that a = (I + jd)/2 (P). Since

(I + jd)/2 satisfies x 2
- x + (1 - d)/4 = 0 we would have a2

- a +
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(I - d)/4 == 0 (P) and so a2
- a + (1 - d)/4 == 0 (2). For all a E 71., a2 - a is

even. It follows that (1 - d)/4 == 0 (2) or d == 1 (8) contrary to assumption .
Now suppose 21bF • We must have d == 2,3(4). If d == 2 (4) then (2) =

(2, jd? and if d == 3 (4) then (2) = (2, 1 + jd)2. We leave the simple
verification to the reader. 0

We note that we can state the decomposition law for odd primes in a
succint manner using the Legendre symbol. Namely, if (DFlp) = 1 then p
splits, if (DFlp) = -1 then p remains prime, and if(6Flp) = 0 then p ramifies.
Furthermore the decomposition of p, p odd, depends only on the residue
class of pmodulo bF • For ifd == 2 or 3 modulo 4 then i5F = 4d and the result
follows from Proposition 5.3.3 and Exercise 37 of Chapter 5. If d == 1(4) then
we may argue as follows. Since d == 1 (4) we have i5F = d. Thus

(i5;) = (_I)((V- 11/2)(ltl F -
Il/21(:J = (:J

The value of (p/i5 F ) depends only on the residue class of pmodulo bF •

Next we determine the structure of the group of units in D. It is simple to
see that o: is a unit iff N(r:x) = ± l. Consider first the case of an imaginary
quadratic field, so that d < O. Let V d denote the group of units in D.

Proposition 13.1.5. If d < 0 and square free then
(a) V_I = {I ,i, -I, -i} .
(b) V -3 = {± I, ±w, ±w2

}, where (I) = (-1 + N)/2.
(c) V d = {I , -I}fard < -3,ord = -2.

PROOf . If d == 2 or 3 (4) then any unit may be written in the form x + fly,
x, yE 71.. ThusN(r:x) = ± 1 is equivalent to x 2 + Idly2 = l. If d = -1 we
obtain (a). If Idl > 1 then clearly Vd = {+ 1, -I}.

If d == 1 (4) write = (x + Jdy)/2 where x == y (2). Then N(a) = ± 1 is
equivalent to x2 + Idli = 4. If d = - 3 the solutions to x 2 + 3i = 4 give
part (b) while if ltil > 3 the equation x 2 + Idli = 4 clearly gives V d =
{+ 1, -I}. This completes the proof. 0

Thus the determination of the unit group is quite simple in the imaginary
case. The case of a real quadratic field is considerably more difficult.

If d > 0 and square-free the equation x 2 - dy2 = 1 is called Pell's
equation. In Chapter 17, Section 5 it is shown that this equation has a solution
in nonzero integers x, y. The proof is elementary. Assuming this result we
describe the units in D in the real quadratic case.

Proposition 13.1.6. If D is the ring ofintegers in Q( fl), d > 0 then there exists
a unit u > 1 such that every unit is of the form ±u", mE 71..

PROOF. By Proposition 17.5.2 there exist positive nonzero integers x, y such

that x2
- dy 2 = + I. Thus x + Jd y = u is a unit in D, II > l. Let M be a
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fixed real number, M > u. By Exercise 4, Chapter 12 there are at most a
finite number of (X E D with I(X I < M, I(x ' I < M where (x' is the conjugate of (x.

If Pis a unit I < P< M then N(P) = PfJ' = ± 1. If {1' = -l iP then - M <
-l iP < M and if P' = liP then also -M < liP < M . Thus here are only
finitely many units Pwith I < P< M and there is at least one.viz., u. Let e
be the smallest positive unit e > I. If r is any positive unit then there is a
unique integer s (not necessarily positive) with e5 ~ r < E

5 + 1. Then I ~
re- 5 < s and since t e - 5 is a unit we have Tf. -5 = 1. If r is negative then - r is
positive and - r = e' . This completes the proof. 0

The unique unit f. defined in Proposition 13.1.6 is called the fundamental

unit of O(Jd}. The set of d > 0 for which the norm of f. is -I has not been
determined. However there are many interesting results in that direction (see
[196] , pp. 124-126). It has been conjectured that for d = P, P == I (4) and

prime, and e = (u + vJP}/2 that Pi- v [86]. The fundamental unit, even for
small discriminants. can be difficult to compute. For example, the fundamental

unit of Q(J9"4) is 2143295 + 221064-/94.
These results on units are special cases of the important Dirichlet unit

theorem which gives the structure of the group of units in an arbitrary
number field. This theorem states that the group of units modulo the sub
group of roots of unity in the field is a finitely generated group with r + s - I
generators, where s is the number of pairs of complex conjugate roots and r is
the number of real roots of a generator for the field. In the case of quadratic
fields this number is clearly 0 or I according as the field is imaginary or real,
which agrees with the above results .

As regards the class number there is an exceedingly rich theory for quad
ratic number fields. In fact there exist explicit formulas. discovered by
Dirichlet. We give a particularly elegant special case. Suppose q > 3 is a

prime and q == 3 (4), Let F = O(j="q}. Let Vand R represent the sum of the
quadratic nonresidues and quadratic residues modulo 'I , respectively, among
the numbers 1,2,3, .". q - I. Then !If = (I !q}(V - R),

For example , let q = 7. Then V = 3 + 5 + 6 = 14 and R = I + 2 + 4
= 7. Thus hf = ~14 - 7} = 1.

If we restrict our attention to d < 0 then C. L. Siegel proved that In
hf/lnl6fll i2 -> I as 16f l -> 00 . It follows that there are at most finitely many
d < 0 for which O(J=d} has class number below a fixed bound.

Gauss conjectured that the only d for which the class number of O(J=d}
is I are d = -I, -2. -3, -7, -II, -19, -43, -67, and -163. The first
generally accepted proof was provided by H. Stark . In essence a proof had
been given earlier by K. Heegner, but because of obscurities in the exposition
his proof was at first not thought to be valid.

For positi ve d. Gauss conjectured that infinitely many of the fields O(Jd}
have class number I. Th is, however. remains an open problem .

A beautiful formula that determines the class number of a real quadratic
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field of discriminant p, p a prime congruent to I modulo 4, is ch =n(sin(n:j/p»- xUl where e is the fundamental unit, Xis the Legendre symbol,
and the product is over the numbers} = I, .. . , (p - 1);'2. A similar formula
holds for arbitrary discriminant. For these results and their proofs see
Borevich and Shafarevich [9], Chapter 5.

We conclude this section by mentioning several other results whose proofs
are beyond the scope of an elementary treatment. Consider an imaginary
quadratic field of discriminant d. Then the class number of this field is
divisible by 2' - 1 where t is the number of distinct prime divisors of d.Thus the

class number of iQl(\,/=2IO) is divisible by 8. It turns out that the class
number is exactly 8. A similar result holds for real quadratic number fields.

The following most remarkable fact has been discovered by F. Hirzebruch.
Let p be a prime congruent to 3 modulo 4 and assume that the class number of
iQl(.JP) is one . Then the class number of the imaginary quadratic field

iQl(J'-p) is one third of the alternating sum as - as - 1 + as - 2 - •• • ± (11'

where the continued fraction of .JP is, in the standard notation,

(£1 0 , lI\, lI2 "'" liS>, (see Stark [73]. Chapter 7). For example, both iQl(J67)
and iQl(J='67) have class number one and

.)67 = (8,5,2, I, I, 7, 1, 1,2,5, 16).

§2 Cyclotomic Fields

Let m be a positive integer and (m = e2n i/m. The number (m satisfied x" - 1
= 0 as do all the powers of (m' Thus, we have x" - I = (x - l)(x - (m)' "
(x - (::;-1). It follows that the field F = iQl«(m) is the splitting field of the
polynomial x" - 1.Thus Fj iQl is a Galois extension .

We call F = iQl«(m) the cyclotomic field of mth roots of unity . It was first
studied by Gauss in connection with his investigations into the construct
ability of regular polygons (see Chapter 9, Section 11).

Proposition 13.2.1. Let Gbe the GaloisgroupofFjiQl. There is a monomorphism
() : G -+ U(7L /m7L) such that for (1 E G

(1(m = (~(1l .

PROOF. Since (::: = 1 we have «(1(m)m = 1. Thus (1(m = (~a) where 0«(1) is an
integer modulo m. If r = (1- 1 then (m = ,(1(m = ,«(~a) = (~t)O(al. Thus
0(,)0«(1) = T(where T is the coset of I in 7L jm7L). Thus (J : G -+ U(7L jm7L). It is
easily checked that () is a homomorphism. Finally, if O(CT) = Tthen CT(m = (m
implying (1 is the identity of G since (m generates F over iQl. 0

Corollary. [iQl«(m): iQl] divides ¢(m).

We will show later that in fact [iQl«(m) : iQl] = ¢(m).
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Definition. Let <1>m(.x) = a.. ml =t (x - (~ ) where I ~ a < /n . This polynomial
is called the mth cyclotomic polynomial.

The roots of <1>m(.x) are precisely the primitive /nth roots of unity, i.e., those
mth roots of unity of order m. Clearl y the degree of <1>m(x) is ¢(m).

Proposition 13.2.2. x" - 1 = ndlm <1>ix).

PROOF.

m-I

xm - I = n (x - (~) = n n (x - (~).
i =O dim (i.ml=d

We claim n(i.m)=d (x - (~) = <1>m!ix). The proposition will follow from
this .

If (i, m) = d, let i = dj. Then (~ = (::! = u: Moreover, (j, mid) = 1. Thus

n (x - (~) = n (x - (~:d) = <1>m!ix). 0
li.m)=d Ii.m/d) =1

Corollary. <1>m(X) E 1'[x].

PROOF. We proceed by induction on m. <1>l(X) = x-I. Now suppose the
corollary has been established for integers less than m. By the proposition,
<1>m(x) = (x" - 1)!I(x), where f (x ) is a monic polynomial which by the
induction hypothesis is in 1'[x ]. It follows by " lo ng di vision" that <1>m(x) E

1'W . 0

An alternate proof of the corollary goes as follows. Every (J E G permutes
the primitive mth roots of unity. Thus the coefficients of <1>m(x) are left fixed by
G and so are in O. Since they are clearly algebraic integers they must be in 1'.

From now on we write ( m = (, F = 0 (0, and D for the ring of integers in F.

Proposition 13.2.3. Suppose p is a rati onal prime and p,j'm. Let P be a prime
ideal in D containing p. Then the cosets of 1, ( , ( 2, .. . , ( m- 1 in DIP are all
distinct. If f denotes the degr ee of P then pi == 1 (m) .

PROOF . For wED let wdenote its coset in DIP.
Divide both sides of x" - 1 = n(x - (i) by x -I. We find

m-I

I + x + .. . + x'" - 1 = n (x _ (i).
i= 1

Let x = I in this identity. We find m = n(l - (i) where I ~ i ~ III - 1.
Thus iii = n(I -(I). Since iii t= 0 it follows that ~i t= I for I s i ~ m - I,
and so ~i t= ~j for 0 ~ i. ] ~ m - 1.

The elements {~i I O ~ i ~ /n - I} form a subgroup of order m in the
multiplicat ive group of DIP. The latter group has order pI - 1. Therefore
pI == I (m) . 0
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Theorem 1. The mth cyclotomic polynomial, <I>m(x), is irreducible in £:[x].

PROOF. Let f(x) E £:[x] be the monic irreducible polynomial for (. The fact
that f(x) has coefficients in £: follows from the fact that ( is an algebraic
integer (Exercise 16,Chapter 6). Ifp,j' m is a prime wewillshow that (P is also a
root of f(x) . If a E £:, and (a, m) = I, then by factoring a into a product of
primes it will follow that (a is a root of f(x). Thus deg f(x) ;::: 4>(m). On the
other hand, since <I>mCO = 0, f(x) divides <I>m(x) which has degree 4>(m). It
will then follow that f(x) = <I>m(x).

Now, let p be a prime, p,j'm, and let P be a prime ideal of D containing p. As
usual, if WED then wwilldenote the residue class of win Dj P. We have x" - I
= f(x)g(x) and so x" - T= !(x)g(x) in £: jp£:[x]. By the last proposition

x" - Thas distinct roots in DjP . It follows that lex) and g(x) have no com
mon root. Suppose f((P) f= O. Then g((P) = 0 and gW) = O. The coefficients
of g(x) are in £: jp£: and are thus equal to their own pth power . From this we
see 0 = gW) = g(~)P and so 0 = g(~). It follows that /(0 :f. 0 which is not
true because feo = O. One concludes f«(P) = 0 as asserted .. 0

Corollary 1. [O«(m):0] = 4>(m).

Corollary 2. The map () of Proposition 13.2.1 is an isomorphism of G onto
U(£: jm£:).

PROOF. Both G and U(£: jm£:) have 4>(m) elements . Since () is one-to-one it must
be onto. 0

By Corollary 2 w~ see that for every a E £: with (a, m) = I there is a
(fa E G such that (fa( = (a. The map a ...... (fa gives rise to a homomorphism
from U(£: jm£:) to G which is inverse to O.

If p is a prime, p,j'm, we wish to study more closely the automorphism as:
Before we do so, some preliminary work is needed.

Lemma 1. Let FjO be an algebraic numberfield ofdegree n. Let D c F be the
ring of integers and al,a2, . .. ,':1.nED afield basis for FjO. Let ~ = ~(al'

':1.2' • •• , an) be the discriminant of this basis. Then ~D c £:':1.1 + £:CX2 + ...
+ £:':1.n·

PROOF. Let WED. We have W = L rj!Y. j with r jEO. Multiply both sides by x,
and take the trace. We find t(waj ) = L r jt(cxj':1.). The elements t(wa) and
t(:x jcx) are all in £: since they are traces of algebraic integers. Using Cramer's
rule to solve for the r, we see that each rj is an integer divided by ~. The
result follows. 0

Lemma 2. The discriminant ~ = ~(I , (, . . . , (<J>(ml-I) divides mcP(m).

PROOF. Differentiate both sides of x" - I = <I>m(x)g(x). We find mxm-
1 =

<I>~(x)g(x) + <I>m(x)g'(x) . Substitute x = ( . The result is m(m - I = <I>~(()gCO.
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Now take the norm of both sides. Using Proposition 12.1.4and the fact that
N(O = ± 1 we find ±m4>(m) = liN(g(O), We note by Theorem 1, that, 1,
( , • • • , (4)(m) - 1 is a field basis for 0(0/0 so that Ii( 1, (, . .. , ( 4)(m ) - 1) *O. 0

Proposition 13.2.4. Let p E Z be a prime such that p,{' m. Let wED the ring of
integers in 0(0. There is an element L ai(i E Z[(] such that w == L ai(i(p).

PROOF, Let Ii = Ii(1, (, . . . , (4)(m) - 1). By Lemma 2, p,{' Ii. Thus there is a
Ii' E Z such that Ii'li == 1 (p). Thus w == Ii'liw (p). By Lemma 1, AwE Z[n
Thus the result. 0

We remark that in fact D = Z[(] but this is not so easy to prove for general
m. When m is a prime however, the proof is reasonably easy (see Proposition
13.2.10).

Corollary. Suppose p,{'m and n > 0 is such that p" == 1 (m). Then.for WE D we
have w

pn == w (p).

PROOF. By the proposition, w == Lai( i (p) with the ai E Z. Since af == a, (p) we
must have wP == L ai(pi (p). Repeating this process n times and using the fact
that p" == 1 (m) implies (P" = ( yields the result. 0

Proposition 13.2.5. II p is a prime and p,{'m the every prime ideal P in D
containing p is unramified.

PROOF. Assume P is ramified. Then (p) c p 2
• Let w be an element of P not in

p 2
• By the above corollary wp" == w (p) and so wpn == W (P 2

) . Since p" ~ 2 it
follows that WE p2

, a contradiction. 0

We will see later that the converse of this proposition is ..almost" true.
See Proposition 13.2,8.

Recall that, for p prime, p,{' m the automorphism ap sends ( to (P.

Proposition 13.2.6. For all wED we have apw == wP(p).

PROOF, By Proposition 13.2.4we have w == Lai(i (p). Apply apto both sides.
We find that apw == L ai(pi (p). Since the a, E Z we have L ai(pi == L af(Pi ==
(L ait v (p). Thus ap w == wP (p) as asserted . 0

Corollary. Let P be a prime ideal of D containing p. Then apP = P.

PROOF, If WEP then apw == wP == O(P) and so a.P c P. Since apP is a
maximal ideal we have equality. 0

Theorem 2. Let p be a prime, p,{'m. Let I be the smallest positice integer such
that r' == I (m), Then in D c O«() we have

(p) = P1P2 • • • Pg ,

where each Pi has degree f and 9 = 1J(m)j[.
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PROOF. We first observe that it followsdirectly from the definition that f is the
order of the automorphism (J p.

Now, pl. = IDIPII where j, is the degree of PI' Since DIP I is a finite field
we have wP/' =w (P I) for all WED and fl is the smallest positive integer with
this property.

By the last proposition, we have IV =a~(IV) =wPJ(P I ) for all IV E D. It
follows that II s f.

On the other hand, o: = ( (P I) implies (PI, = ( by Proposition 13.2.3.
Thus ph = 1 (m) and it follows thatf ~ I I.

We now see I = II = degree of P I . All the P, have degree f. By Proposi
tion 13.2.5 all the Pi are unramified. Using the relation efg = ¢(m) we con
clude g = ¢(m)1f. 0

Corollary. With the notation of the theorem, let P he one of the Pj. Define
G(P) = {a E GIrTP = Pl. Then G(P) is a cyclic qroup generated hy ap :

PROOF. By the corollary to Proposition 13.2.6 we know apE G(P). Let <ap)
be the cyclic group generated by ap: Then <ap) c G(P). By Proposition
12.3.3 we have gIG(P)1 = ¢(m). Thus IG(P)I = ¢(m)lg = I = l<ap)1 and
we are done. 0

Theorem 2 is a very satisfactory result on the decomposition of primes
which do not divide m. One can also find the decomposition of those primes
which do divide m. We content ourselves with the following important special
case.

Proposition 13.2.7. Let I he (/ prime in 71. Then, ill 0 «(,), I ramifies completeiy.
More precisely, let L = (l - ( ,). Theil L is a prime ideal and (I) = e- 1

Moreover L has degree l.

PROOF.As in the proof of Proposition 13.2.3 we have I = n (l - (D where the
product is over 1 ~ i ~ I - l.

Letui=(l- (i)/(I-O= I + (+ ... + (i-I.Weclaimthatuiisaunit.
Since l"r i there is aj E Z such that ij = 1 (I). Thus, lIi- 1 = (I - OI( I _ (i) =
(I - (ij) /( I - (i) = I + (i + .. . + «(i)i- 1 is an algebraic integer which
proves the claim.

It follows that I = n(I - (i) = (1 - 0'- 1 nIIi and so (I) = L 1- 1. Using
the relation eIg = ¢(I) = I - I we see L must be prime, I.' = I - I, g = I,
andf = l. 0

Proposition 13.2.8. Let P he a prime ideal ill O( Sm) and sec P n 7l. = p71.. If pis
odd then P is ramified iffptm.Lfp = 2 then P is ramifiedijj'4Im.

PROOF. By Proposition 13.2.5 we know that p"rm implies P is unramified.
Suppose p is odd and plm.Then O(';:p) c O(';:m). Let Dpand Dm be the rings

of integers in O(';:p) and O«(m) respectively. By the last proposition pDp =

(1 - ( p)P- 1. Write (I - (p)Dm = PIP 2 • •• PIwhere the Pi are, not necessarily
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distinct . prime ideals in Dm . Then pDm = (P 1P2 • • • rv:'. Since P - I > I
all the primes in Dm containing p are ramified.

Now suppose p = 2. If 21m but 4 ,j'm then m = 2mo . with mo odd. In this
case, - (mu is a primitive mth root of unity so O«(m) = O«(m). Since 2 (mo.
P is unramified.

Finally, suppose p = 2 and 41m. Then (4 = J-=1 = i E O«m)' Since
(I - i) 2 = - 2i we see 2Dm = «I - i)Dm)2 and it follows. as before. that all
the primes in Dm containing 2 are ramified. 0

Suppose p is a prime and p,j'm. For later use (in the next chapter) we need
to know how p decomposes in the field O«(p . ( m)'

Lemma 3. lfim, n) = 1 then O(~m' ~.) = O«(m.)'

PROOF. Since (:::. = ( . and ( ::'n = ( m we have O(~m' (.) c O«(m.)·
On the other hand. since (Ill. n) = I there exist integers LI and v such that

LIm + VII = I . Thus (m. = (~~(~~ = (~(::. E O«(m' (.). 0

Proposition 13.2.9. Let p he II prime such that p,j'm. Let D he the rinq of
inteqers in O«(p , ( m)' Theil

pD = (P ,P2 • • • Pgy-I.

where the Pi are distin ct prime ideals a/degree f and 9 = ¢(m)j / . The inteqer /
is the least positive inteqer such that pi == I (m).

PROOF. Since 1Q«(p) c 1Q«(p. ( m) we see, as in the proof of the last proposition,
that all the ramification indices of primes in D conta ining p are divisible by
p - I. Thus

pD = (P 1P2 • • • r.r:» (*)

where the Pi are dist inct prime ideals of degree j". say, and e' ;;::: 1 is some
integer.

Let Dm be the ring of integers in 1Q«(m)' By Theorem 2

pD.. = pt P2 • • • Pg

where the Pi are pr ime ideals in Dm of degree / and g = ¢(III)jf.
By considering the prime decomposition of Pi D and comparing with

equation (*) we see I' ;;::: f and g' ;;::: g.
From equation (*) and Lemma 3 we see

(p - l)¢(m) = ¢(pm) = e'(p - l)j"g' ;;::: e'(p - 1)/ ¢jn:) .

It follows that ¢(m) ;;::: e'¢(m). Thus e' = 1 and all the inequalities are
equalit ies, i.e., j" = f and g' = 9 = cjJ(m)/ f. This concludes the proof. 0

We conclude this section by showing that D = .:l [~ ,] when I is prime. This
result holds even when I is not prime but the proof is more difficult (see. for



§3 Quadratic Reciprocit y Revisited 199

example, pp. 265- 268. [207]). The case when { is pr ime will be needed in
Chapter 17 where a special case of Fermat's conjecture is discussed.

Proposition 13.2.10. lfI is prime then D = if[(rJ.

PROOF. Clearly if[(I] cz D, If a ED there exist ao, a, •.. . , al-2 rational
numbers such that a = ao + a, ( + ... + al_ 2(1-2. We show first of all that
la,E if, i = 0, . . . • { - 2. For if tr denotes the trace map from 0(0 to 0 then
one computes easil y tr ( j = - I if ( t j . using say. Corollary 1 of Theorem 1.
Thus one sees that tr(a(- S) = -ao - a ! - . .. - as - 1 + (l - I)as - as + 1

- .. . - QI_ 2 ' Therefore tr(aC S
- a() = {as , S = 0, ... , { - 2. Since aC s a' EDit follows that {as E if . If A. = I - ( then by Proposition 13.2.7 one has

(..1.)1- I = (I) . By the above there exist bo, . . . , bl - 2 in if such that la =
bo + b,..1. + ... + bl _ 2..1.' -2 . Thus ..1.lbo and taking norms shows that IIbo.
Thus ..1.1- 'Ibo and reduction modulo ..1. 2 given ..1.2/b

1..1. so that ..1.lb! . Again this
implies lib!. Clearly. successive reduction modulo higher powers of A. leads to
{Ibj , j = 0, ... , { - 2 and division by (then shows that IXEif[ (,J. 0

§3 Quadratic Reciprocity Revisited

As an appl ication of some of the theory deve loped in th is chapter we give yet
another proof of quadratic reciprocity. The idea for this proof goes back, in
essence , to Kronecker.

Let p be an odd prime and consider the field O«(p). We claim that this field
contains the square root of( -1)(P- I lt 2p = p", Th is follows from Proposition
6.3.2. However. in order to make our present considerations independent of
the theory of Gauss sums, we give a direct proof using the relation

p r: I

P = n(l - (i).
i = 1

We combine the term s corresponding to i and p - i as follows

(I - n (l - (p-i ) = (I - ( i)(1 _ (-i) = - Ci(l _ ( i)2.

Thus

Let C E if be such that 2c == 1 (p). Then ( b = «( hC)2. It follows that p* is a
squ are in 0 (0 as asserted. Let r 2 = p" .

Now suppose q is an odd prime q -:f. p. Con sider the automorphism aq •

Then (Jq r = ± r with the plus sign hold ing iff r1q is in the Galois group of
O (( p)/O (r ). Since the Galois group G of 0 (0/0 is isomorphic via () to
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UCl/p7L) and the latter group is cyclic of order p - I we see (Jq r = riff (Jq is a
square in G and this is so iffq is a square in U(l/p7L). In other words

rrqr = (~)r.
Let Qbe a prime ideal in D c Q(O containing q. ByProposition 13.2.6 we

have

(Jq r = t" (Q) .

Thus (q/p)r =rq (Q) implying (p* /q) =p*lq-ll/2 =rq
-

1 =(q/p) (Q) .
This latter congruence implies (p* /q) = (q/p) since Qdoes not contain 2.
It may be thought that this proof, pretty as it is, is much more complicated

than the previous proofs and so does not add much. This is not the case,
because the ideas involved provide the key to studying higher reciprocity
laws.

NOTES

There is an introduction to the arithmetic of quadratic number fields in
1. Sommer's Introduction a la Theorie des Nombres Alqebriques (Hermann :
Paris, 1911). This book is based upon D. Hilbert's lectures in 1897-1898. See
also F. Chatelet [III], W. Adams and L. Goldstein [84], and H. Stark [73].

As mentioned earlier all imaginary quadratic fields whose ring of integers
form a unique factorization doma in have been determined . The imaginary
quadratic fields of class number two have also been determined . There are 18

such fields, the one with smallest discriminant being Q(J -427).
In the case of cyclotomic fields Masley has shown that if m is a positive

integer, m r= 2 (4), then there are exactly 29 values of m for which Q«(m) has
class number one. Furthermore, the prime cyclotomic fields Q(~p) of class
number one are given by p = 3, 5, 7, II , 13, 17, 19 a result due to Uchida and
Montgomery. For more details see the surveys by Masley [184], [185].

For a more thorough treatment of the arithmetic of quadratic and
cyclotomic number fields the reader should consult the treatise of Borevich
and Shafarevich [9].

In Section 3, we saw that Q(j ( _ljir=1iI2p) is a subficld of Q(~p). More
generally, according to a theorem of Kronecker and Weber any algebraic
number field which is Galois with an abelian Galois group is a subfield of
Q(~m) for some m. For a proof of thisdifficult theorem see P. Ribenboim [207].

EXERCISES

I. Show that an algebraic number field of odd degree cannot contain a primitive nth
root of unity /l > 2.

2. Let F be a real quadratic field . Show that if F has an element of norm - I then no
prime r == 3 (<l) is ramified.
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3. Prove that if F is an algebraic number field such that e2
•

iin e F for some n ~ 3 then
the norm of any nonzero element of F is positive.

4. Find the fundamental unit forO( j5),O(Jj5),O(j2),O( .)3),O( j624).

5. Show that a q uadrat ic number field cannot contain JP and jq for two distinct
primes p and q.

6. List the subfields of 0 «( 8)'

7. Let F be a real quadratic field. Show that there a re algebraic integers in F arbitrarily
close to I and distant from I.

8. Show that the class number ofO(.jlO) is not I.

9. Let p be an odd prime and consider O«(p).
(a) ShowthatN(1 + 0 = I where Ndenotes the norm fromO«(p) toO.
(b) Show that n(l + (') = A, the product being over the squ ares modulo p, is in

O(JP).

(c) If p == I (4), show that A = (r + uJP)l2 with t == u (2).
(d) Conclude from (a) that «(2 - pu2)/4 )IP- 1)12 = + I so that
(e) (2 - pu2 = ±4.
(f) Show that A :f. - 1 by showing that A > 0 (compare Exercise 3).

Now let p == 5 (8).

(g) Show that A :f. 1 by considering the po lynomial n,(1 + x') - I,
s = 12, 22, ... ,«P - I)/ 2)2. (See also Exerci se 9, Chapter 16.) This exercise is
adapted from Hartung [145].

10. For which d does O(Jd) have an integral basis of the form IX, IX' where IX' is the
conjugate of IX?

I!. Show that _«(J + (2) is a un it in 0 (0, ( = e2
•

il S
• What is the relation between th is

un it and the un its in 0 (j5)?

12. Show that sin(rrj/p)/ sin( rr/p) is a unit in O «(p), 1 ~ j ~ p - I.

13. Show that if p == 1 (4), P prime, then the ring of integers in O«(p) always contains an
infinite number of un its.

14. Let p be prime. Show that the d iscriminant d of O«(p) is n i<i «(i - ( i )2, I ~ i,
i s:o > I.

15. The notation being as in Exerci se 14 show
(a) - p( - i/(l - (i) = n«(i - n the product over all i.j, i of. l , I ~ i.] ~ P - I.
(b) Multiply for j = 1, 2, . . . , p - 1 to obtain d = (_l)IP - 11/2pp- 2.

16. Use Proposition 13.2.8 to show that i rt O(Cp), p odd.

17. Use Propositions 13.2.7 and 13.2.8 to show that (. rt O«(p) if p and q are odd primes
p :f. q.

18. Show that if p is a prime congruent to 3 modulo 4 then Q(JP) is contained in the
cyclotomic field 0«(4p)'

19. Show that any quadratic number field is contained in a cyclotomic field.
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20. Show that the fundamental unit of the real quadratic field iQI(jIO) is 3 + jIO and
using the formula given in the text determine the class number of the field.

21. Let a E 7l., a not a square. a:; 0 (4) or a :; 1 (4). Define the Kronecker symbol x.
as follows : If1'/a, '1.'<1') = O. If I' 'j.a, is an odd prime then x.(p) = (all') the Legendre
symbol; X.(2) = 1 if a == 1 (8), '1..(2) = -1 if a:; 5 (8). Finally X'<b) = n= 1 '1..(1';)
if ±b = PI . . . P" Show
(a) For b odd x.coincides with the Jacobi symbol.
(b) Ifb > O. (a.b) = l ,a = 2'ewith codd then X.(b) = X2(b)'Xb(cX _ 1)11'- 1112)((b-I l/21

(c) .%.<x) = x.(y) if x :; Y (a).

22. Let K be a quadratic number field with discriminant d, and let Xd be the Kronecker
symbol. Show. for p allY prime,
(a) I' splits in K iff XAP) = 1.
(b) p is inertial iff xlI') = - I.
(c) I' ramifies iff xlI') = O.

23. Using the table in Stark [73J, p. 340, along with the tables in Borev ich-Shafarevich
[9J, pp. 422-425 verify the Hirzebruch formula stated at the end of Section 1 for
the primes 7,19,23,31.43.47,67.83. Furthermore check the class numbers for the
imag inary quadratic fields using Dirichlet's formula. Show that, knowing the class

number ofiQI(J=91) to be 2,iQI(j91) is not a principal ideal ring.

24. Let K be the field of I'th roots of un ity, I' an odd prime . Show, without using Gauss
sums, that the unique quadratic subfield of K has discrim inant (_l)IP- 1112p.

25. The situation being as in the preceding problem, let fbe the order of q modulo 1',
1', for an odd prime q =I p. If E denotes the quadratic subfield of K show that q
spl its in E iff E is contained in the subfield D of degree (p - 1)/f. Show furthermore
that th is is the case iff q is a square modulo p. Using the preceding exercise derive
a new proof of the law of quadratic reciprocity.

26. Count the number of proofs to the law of quadratic reciprocity given thus far in this
book and de vise another one .

27. Show that there are no primes which remain prime inO«(s). Can you generalize?



Chapter 14

The Stickelberger Relation and
the Eisenstein Reciprocity Law

Harinq developed the basic properties ofcyclotomic fields
Ive will prore two beautiful and important theorems which
playa fundamental role in the further development of the
theory of these fields .

The Eisenstein reciprocity law generalizes some of our
precious work on quadratic and cubic reciprocity. It lies
midway between these special cases and the more general
reciprocity laws investigated by Kummer and Hilbert,
proven first by Furtwitnqler and then in full generality by
Artin and Hasse . In the last section of this chapter we will
give two interesting applications of Eisenstein's result .
The first concerns Fermat's Last Theorem and the second
the theory ofpower residues.

The St ickelberqer relation is the basis for the proof
we qice of Eisenstein reciprocity. Its importance goes far
beyond that. In recent years the theory of cyclotomic
fields has been dramatically advanced principally due to the
efforts of K. Iwasawa. In his work the Stickelberger
relation occupies a central position . It has also turned out
to be of importance in arithmetic alqebraic geometry.

§l The Norm of an Ideal

We will need a few more results from the general theory of algebraic number
fields.

Let K IrfJ. be an algebraic number field, D the ring of integers in K, and
A an ideal. We define N(A), the norm of A, to be the number of elements in
DIA. We continue to assume that ideals are nonzero.

Proposition 14.1.1. If A, BcD are ideals, then N(AB) = N(A)N(B).

PROOF . If A and B are relatively prime, then DIAB ~ DIA EB DIB so the
assertion is clear in this case.

Let A = P';! Pi? .. . P~l be the prime decomposition of A. We claim
N(A) = (N(P,W'(N(P 2»"'···(N(P,»"'. On the basis of what has been

203
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said it will be sufficient to prove N(pa
) = (N(P)t for any prime ideal P.

This, however, is just a reformulation of Proposition 12.3.2.
Now, in the general case, decompose A and B into a product of prime

ideals, multiply, apply the above result, and rearrange terms. The result
follows . 0

Proposition 14.1.2. Suppose Kio. is a Galois extension with group G. Then

Il a(A) = (N(A».
aeG

PROOF. Since both sides are multiplicative in A it suffices to prove the result
when A is a prime ideal P.

Let PI' P2 , .. . , Pg be the distinct prime ideals in the set {a(P)laEG}.
Then IGI = gIG(P)1 where G(P) = {a E Gla(P) = P}. Since efg = n =
[K : o.J = IGI we see IG(P)I = ef, Thus, using Proposition 12.3.3 and
Theorem 3', Chapter 12

na(P) = (P 1P2 • • • PgrJ = (p)f = (pI), where Pi (\ 7L = p7L.
aeG

Since N(P) = IDIPI = pI, this completes the proof. o

Propositiun 14.1.3. Let Kio. be Galois with group G. Let a E Dand let A = (a)
be the principal ideal generated by a. Let N« be the norm of a. Then N(A) =
IN(a)l ·

PROOF. (N(A» = na(A) = na«a») = nCaa) = (na(a)) = (N(a)). Thus
N(A) and N(a) differ by a unit. Since they are both in 7L they can differ
only by sign. Since N(A) is, by definition, positive, we have N(A) = IN(a) I
as asserted. 0

We remark that the above proposition is true even if Kio. is not a Galois
extension. The proof in the general case is somewhat more complicated.

§2 The Power Residue Symbol

Let m be a positive integer, and denote by Dm the ring of integers in o.(~m) '

Let P be a prime ideal in Dmnot containing m. Let q = N(P) = IDmIPI. By
Proposition 13.2.3 we know that the cosets of 1, ~m ' ..• , ~:::- I are distinct
and q == 1 (m).

Proposition 14.2.1. Let a E Dm , a ¢ P. There is an integer i, unique modulo m,
such that

a(q- Il /m == ~~ (P).
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PROOF. Since the multiplicative group of D"JP has q - 1 elements we have
a.q-

I =1 (P). Thus
m-In(ex(q-Il /m - (~) =0 (P) .
i = O

Since P is a prime ideal there is an integer i, 0 ~ i < m such that ««: \lIm =
(~ (P) . If i ;j: j (m) then (~ ;j: (~ (P), so i is unique modulo m. 0

Definition. For a. E Dm and P a prime ideal not containing m, define the
mth power residue symbol, (rx/P)m' as follows:

(a) (a./P)m = 0 if rx E P.
(b) If a. ¢ P, (a. / P)m is the unique mth root of unity such that a.(NP - 111m =

(a./P)m (P) .

Proposition 14.2.2.

(a) (ex/P)m = 1 iffxm = a. (P) is solvable in Dm.
(b) For all a. E o.; a.(NP- 111m =(a./P)m (P).

(c) (a/3/P)m = (rx/P)m(/3/P)m'
(d) If a. = /3 (P) then (a./P)~ = (/3/P)m'

PROOF. Since the result has been proven earlier for m = 2,3, and 4 we may
safely leave the details to the reader. 0

Corollary. Suppose P is a prime ideal not containing m. Then

(
(m) = (:;;P-1l/m.
Pm .

PROOF. From part (b) of the proposition, both sides of the above equal ity
are congruent modulo P. Since they are both mth roots of unity and m rt P,
it follows that they are equid. 0

It is important to extend the definition of (a/P)m in such a way that
(a./fJ)m makes sense when /3 is prime to m. This is done as follows:

Definition . Suppose A c Dm is an ideal prime to m. Let A = PIP2 • · • P; be
the prime decomposition of A. For a. E Dm define (a./A)m = ni(a./P i)m '
If fJ E Dmand fJ is prime to m define (a//3)m = (a./(/3»m '

Proposition 14.2.3. Suppose A and B are ideals prime to (m). Then

(a) (a/3/A)m = (a./A)m(fJ/A)m'
(b) (a./AB)m = (a./A)m(a./B)m.
(c) If a. is primeto A and x" = ex (A) is solvablein Dmthen (a./A)m = 1.

PROOF. All three assertions are straightforward to prove using the last
proposition and the above definition. We remark that the converse of part
(c) is not true. 0
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We will need to see how the symbol (exIA)m behaves with respect to auto
morphisms in the Galois group G of 1Q«(m)/lQ.

From now on we will use exponential notation for automorphisms.
If a E G and a E 1Q«(m) we will write a<1 instead of a«. Similarly if A is an ideal,
we will write A<1 instead of a(A). This notation is, in fact, more conventional
and it has certain advantages.

Proposition 14.2.4. Let A be all ideal prime to m and a E G. Then

PROOI' . Since both sides of the asserted equality are multiplicative in A it
will be enough to check the case where A = P is a prime ideal. By definition

a(NP-ll/m == (~t (P).

Applying a to this congruence we find

(a,,)(NP-ll /m == (~): (p<1).

It follows that (a<1Ip(1)m == (exl P)':.. (p<1) and so (r:J.<1IP")m = (alP)':.. . Note
that we have used N(P<1) = N(P). 0

We end this section by stating the Eisenstein reciprocity law. We need an
important definition first.

Let I be an odd prime number. Recall that in DI we have (I) = (l _ (1)'- t

and (1 - ( I) is a prime ideal of degree 1.

Definition. A nonzero element a E D1 is called primary if it is not a unit and is
prime to I and congruent to a rational integer modulo (1 _ (1)2.

In the case I = 3 we demanded r:J. == 2 (1 - (3)2 so the above definition
is a bit weaker in this case. It is, however, sufficient for our purposes. The
following lemma shows that primary elements are plentiful.

Lemma. Suppose a E DI and r:J. is prime to I. There is an integer C E 71, unique
modulo I. such that (,' a is primary.

PROOF . Let A = 1 - (I' Since the prime idea l (A) has degree 1 there is an
integer a E 71 such that a == a (A). Now, (x - a)/A E D1 so there is s b e 71
such that (x - a)/A == b (A). Consequently, r:J. == a + bA (A2

) .

Since (, = 1 - A we have (,' == 1 - d (A2
). It follows that

(;r:J. == a + (b - ac)A. (A2).
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The integer a is not divisible by I since otherwise AI (X and we are assuming
(X is prime to I. Choose c to be a solution to ax == b (I). Then C, (X == a (A 2)
and so C, (X is primary.

The uniqueness of c modulo I is clear from the proof. 0

Theorem 1 (The Eisenstein Reciprocity Law). Let I be an odd prime. a E 1l.
prime to I, and (X E D{ a primary element . Suppose moreover that ex and a are
prime to each other. Then

The proof of this elegant theorem will be given in Section 5. It is a conse
quence of the Stickel berger relation which will be stated in the next section
and proven in Section 4. Since this process is long, and somewhat involved,
the reader may wish to skip to the last part of the chapter. Section 6,
where three interesting appl ications of Eisenstein reciprocity are given.

§3 The Stickel berger Relation

From the very way they are defined Gauss sums are elements of cyclotomic
fields. We will investigate the prime ideal decomposition of Gauss sums
in these fields.

Let F be a finite field with pI = q elements, X a multiplicative character
of order m, and e a nontrivial additive character. Then the values of X are
mth roots of unity and the values of'" are pth roots of unity . Consequently,
g(x., t/J) = LrtF X(t)t/J(t) E Q( Cm ' Cp ) . The arithmetic of this field was dealt
with in the last chapter.

Before beginning it is necessary to normalize matters by specifying the
characters X and t/J. This is done as follows .

Let P be a prime ideal in Dm c Q(Cm) and suppose m rt P. Let p1l. =
P n 1l. and N(P) = q = pl . Finally set F = D"JP. Recall that pi == 1 (rn),

We define a multiplicative character xp on F as follows. Let 0 '# t E F
and let}' E Dm be such that y = t. Here y is the residue class of}' modulo P.
Let

xp(t) = (~)~l = (~t .
By Proposition 14.2.2. xp(t) is well defined and is a multiplicative character.

The reason for taking the inverse of the power residue symbol instead of the
symbol itself will become apparent later.
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For the additive character we choose the character e defined in Chapter 10,
Section 3. We recall the definition. First one defines tr : F -> 1Llp1L by tr(t) =

t + t" + t P 1 + ... + tP I
-

I
• Then !/J is defined by !/J(t) = (~'O.

With these choices we define g(P) = g(/p, !/J). We also define <1>(P) =
g(p)m.

Proposition 14.3.1.

(a) g(P) E O«(m, (p).
(b) Ig(P)12 = q.
(c) <1>(P) E O«(m).

PROOF. (a) has already been d iscussed. (b) follows in the same way as when F
is the prime field. (c) follows from Proposition 8.3.3 which is stated over
1Llp1L but generalizes easily to F.

We will give another proof of (c) based on Galois theory. Consider the
diagram of fields

The Galois group of O«(mp)/O is given by the automorphisms a, where
(c, pm) = I. We remark

(i) a, leaves O«(m)element-wise fixed iff c == I (m).
(ii) rIc leaves .O«(p) element-wise fixed iff c == I (p) .

To show <1>(P) E O«(m) it will suffice to show <1>(P)C1c = <1>(P) whenever
c == I (m) .

Apply a, with c == I(m) to g(P) = L xp(t)!/J(t). Since lAt)C1c = xp(t) and
!/J(t)C1c = !/J(t)C= !/J(ct) we have

g(P)"c = L lAt)!/J(ct) = xp(c)-tg(P).

Raising both sides to the !nth power shows that <1>(P) is invariant under a,
as asserted . 0

Before proceeding to discuss the pr ime decomposition of g(P) and <1>(P)
in the general case it is illuminating to review the situat ion when nr = 2, 3,
and 4.

When m = 2, 0«(2) = O. If p is the positive generator of P we have
g(p)2 = (-l)tr- IJi2p.

When m = 3, 0«(3) = O(j=}). Suppose P has degree I and P = (rr)
where rr is primary. From the results of Chapter 9, Section 4, we may deduce
g(p)3 = <1>(P) = pii = rrii2 (bar denotes complex conjugation).
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For m = 4, iQ«(4) = iQ(J=1). Suppose P is a prime ideal of degree I
and P = (rr) where rr is primary. From Chapter 9, Section 7, we may deduce
g(P)4 = <l>(P) = pTf. 2 = rrTf. J (again, bar denotes complex conjugation).

To see the pattern, and to state the generalization a notational device
known as "symbolic powers" is very useful. Suppose K/iQ is a number
field, Galois over iQ, with group G. The group ring lEG] is defined as the
set of formal expressions LaEG a(O")O" where the coefficients a(O") E l. Later,
we will show how to make this set into a ring. If o: E K we define

aIu(,,)a = nO"(at(nl.
a

If A is an ideal we define its symbolic power by an element of the group
ring in the same way.

Let 0" be the nontrivial automorphism of iQ(J=3)fiQ. Our result for
m = 3 takes the form <I>(P) = rrl +2a.

Similarly if r denotes the nontrivial automorphism of iQ(J=1)/iQ our
result is <I>(P) = rrl + J' .

In general we cannot expect a factorization of <I>(P) into irreducible
elements since Dm is not always a unique factorization domain. However,
these special cases generalize beautifully as follows.

Theorem 2 (The Stickelberger Relation). Let P be a prime ideal in Dm 1I0C

containinq III. Theil

(<I>(P» = pI,a,-t.

The sum is over all I :::;; c < m which are relatively prime co m.

The proof of Theorem 2 is long. It will occupy the next section entirely.

§4 The Proof of the Stickelberger Relation

We begin with three elementary results which will be needed later.

Lemma I. Let p > I be a positiue inteqer. Every positice inteqer can be
wriccell uniquely in theform L7=0 a.p' where 0:::;; a, < p.

PROOf. Let a be a positive integer. There is a unique nonnegative integer n
such that p" :::;; a < pn+ 1. By the division algorithm we have a = anpn + r
where 0 :::;; r < p". The number an is less than p since otherwise a ~ p"+ I .

Apply the same process to r, etc. In finitely many steps we have an expression
for a of the required form.

The uniqueness can be shown as follows. Suppose L aipi = L hipi where
0:::;; a., hi < p. Then p divides ao - ho. Since lao - hoi < P we have ao = boo
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o

Subtract ao from both sides, divide by p. and repeat the reasoning. This
yields at = b: In finitely many steps we see a, = b, for all i. 0

Definition. Let q = pl. If0 ~ a < q - 1write a = '[J=-Ol a.p' with 0 ~ aj < p
and define Sea) = ,,[J';ol a.. For an arbitrary positive integer a define Sea) =
S(r) where a == r (q - I) and 0 ~ r < q - 1.

Definition. For a real number u define <u) as II - [u] where [u] is the largest
integer less than or equal to u. The number ( u), which is in the interval
[0, I). is called the fractional part of u.

Lemma 2. Sea) = (p - I) '[J=-ot <pia/(q - I».

PROOF. Both sides are unchanged if a mult iple of q - 1 is added to a. Thus
we may assume 1 ~ a < q - I.

Write a = ao + a.p + ... + al _lpl - I where 0 ~ a, < p. Since v' =
q == 1 (q - I) we ha ve

a = ao + atp + ... + al_tpl-l,

pa == a1- t + aop + ." + a1- 2 pI - 1 (q - I),

p2a = al-2 + al-tp + .. . + al_ 3pl -l iq - I),etc.

The right-hand sides of these congruences are all less than q - I so that
<pia/(q - I » is equal to the right-hand side of the ith congruence divided
by q - 1. Thus

I- l( p~ ) 1 .I - - = - - S(a)( 1 + p + ... + r:»
i=O q - 1 q - 1

This yields the lemma.

Lemma 3. D= f Sea) = (f(p - 1)(q - 2»/2.

,PROOF. Write a = ao + aip + ... + al-lpl - I with 0 ~ aj < p. Notice
that q - 1 = (p - I) + (p - l)p + ... + (p - I)pl-l . It follows that
q - 1 - a = (p - 1 - ao) + (p - 1 - al)p + ... + (p - 1 - a/-l)pl- I

and so

Sea) + Seq - 1 - a) = f(p - I).

Sum both sides from a = 1 to a = q - 2. The result is 2 D= i Sea) =
f(p - I)(q - 2). 0

The Gauss sum g(P) considered in the last section is an element of
iQ«(m. ( p)' The proof of Theorem 2 which we will give requires that we work
in the bigger field iQ«(q_ I' (p) . This has the advantage that all the (q - I)st
roots of un ity can be used freely. On the other hand. more fields means more
confusion. We will try to minimize the confusion by carefully keeping

. track of which field we are working in.



§4 The Proof orthe Stickelberger Relation 211

The following diagram will be useful in following the arguments.

PJ> c D(q_ lIP -> D(q_1)P/PJ>
I I I

'13 C Dq_1 -> Dq_l/~

I I I
P c o; -> DmlPj
I I 1.1'
p c 7L -> 7Llp7L

In the above diagram P, ~, and f!J' are prime ideals in the indicated ring
of integers. Recall from Section 3 that p'} m,f is the order of p modulo m,
so that pI == 1 (m), and q = pl. For the remainder of this section Ap = 1 - (p '

Lemma 4.

(I) ord,..(pD(q_ lIP) = P - I.
(2) ord,,.(Ap) = 1.
(3) ord,..{P) = p - 1.

PROOF . To prove (I) apply Proposition 13.2.9 with m (in the notation of
that proposition) replaced by q - 1. Since :!J lies over p it appears in the
decomposition of pD and one has ord, pD(q-llp = P - 1. Again by the
same proposition and Proposition 13.2.7 one has pDp(q_l) = (pDp)Dp(q-11 =
A~-IDp(q_l) = ('<?P I .. · PJ>h)P- I, where, say, PJ>I = PJ>. Hence ApDp(q _l) =
9"I . .. f!Jh and (2) follows. To prove (3) one sees easily using Theorem 2
of Chapter 13 and Proposition 13.2.9 that PP2 • · · Ph ' D(q-IIP = (!J[J}I2 ' "

&\y- I where all the primes are distinct and P, P2 , ••• , Ph are pairwise
relatively prime. Thus PD(q-t)p = f/JP- I and the result follows. 0

Lemma 5. DmlP ~ Dq_I/~.

PROOF . There is a natural monomorphism from DmlP to Dq_I/~. To show
this is an isomorphism it suffices to show both fields have the same number
of elements . By Theorem 2 of Chapter 13 we have IDq- d~1 = pI' where j"
is the smallest positive integer such that pI' == 1 (q - 1). Since q = pI it
is clear that/, = fand so IDq-l /~1 = pI = IDmIPI . 0

By Proposition 13.2.3 we know that the elements 1, (q_I' ... , q:::i have
distinct images in Dq _ I /~. The following definition imitates the definition
of the mth power residue symbol.

Definition. For !XE Dq _ I define

(a) (!X/~) = 0 if !XE ~.

(b) If (J. ¢~, «(J./~) is the unique (q - l)st root of unity such that (J. ==
(!X/~) (~).
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One easily checks that «(X{3/~) = «(X/~)({3/~) and (X =: {J (~) implies
«(X/~) = ({3/~). The following lemma is also clear from the definitions.

Lemma 6. lfa E Dm, ((X/~)(q- Il /m = (;x/P)m.

We now define a multiplicative character on IF ~ Dq _ l /~ as follows

'(}')w(t) = 'l!'

where f E Dq _ , is such that y = t. The proof that w is well defined and is a
multiplicative character is immediate from the previous remarks.

Lemma 7. w(~~ _ t) = (~- t-

PROOF. Immediate from the defin ition. o

Consequently, w has order q - 1 and thus generates the group of multi
plicative characters on IF.

Definition. Let a be a nonnegative integer. Define ga = g(w-a, 1/;).

We note that g(P), defined in the last section, is equ al to ga for a =
(q - l)/m.

Theorem 2 is a consequence of the following result.

Theorem 3. ord,?(ga) = Sea), where I :::;; a < q.

PROOF. To begin with we show that ord,?(g,) = 1. Recall

o, = L UJ(t)-'(~Ul.
Ie IF

Using Lemma 7 we will convert this into a sum over the powers of (q_, '

Let Ini be a positive integer such that In ; =: tr(~~_ ,) (p) . Also recall that
(p = 1 - Ap• Then .

q- 2

e. = L (;;! t(1 - Ap)m;.
i = O

Now, n1 j Ap =: (c~- 1 + (~~ , + ... + c~ :' ~ I, )Ap (y 2
) . Substituting we find

q - 2

gl =: - L c;;! I( (~-I + (:~, + ... + (~:' -t)AI' (.0"2).
i = O
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All h ,q-2~(pJ-lli ' - I 2 f I' hil '-0 't esumsL,i=ol.,q-1 ,J- , " . . , - arezerow leJ- gives
the value q - I. Since q = pf == 0 (&,2) we have

g 1 == Ap (21'2) .

By Lemma 4, part (2), we see Ap E i!Jbut Ap ¢ :!J2, Thus ordj, 91 = 1.

Let s(a) = ord., g. , We will establish a number of properties of the
function s(a).

(i) S(ll + h) S s(a) + s(b) provided I s a, b,a + b < q - 1.

By Theorem 1 of Chapter 8 we have 9.gb = Jtio :", W- b)9a+b' Taking
ord , of both sides yields the result.

(ii) s(a + b) == s(a) + s(h) (p - I).

Notice that the Jacobi sum J(w-·, (I)-b) is in iQ(~q_ d. It then follows
from the fact that iJD(q-llP = {flIP-I) that p - 1 divides ordj>(J(w- a

, w- b».
The result is thus again an immediate consequence of the relation 9.9b =
J(w-·, W-

b)9. +b'

(iii) s(pa) = s(a).

To see this observe gpa = I w(t)-p·t/J(t) = I w(tP)-.t/J(tP). We have
used the fact that tr(l) = tr(t P) which is clear from the definition of trace.
Now t -> I P is an automorphism of IF. We conclude that gpo = ga and so
s(pa) = s(a),

In the first part of the proof we found s(l) = 1. Using (i) and (ii) we see
s(a) = a for 1 S a < p.

For any a between 1 and q - 1 write a = ao + alP + ... + af_Ipf- l ,
os ai < p. Using (i) and (iii) we find

f-I
s(a) s I s(aj{l) = I s(a) = I aj = S(a).

j= 0 j j

We now have s(a) s S(a) for all a in the range under consideration. To
prove the theorem it will be enough, in the light of Lemma 3, to show

(iv)
q-2_ f(p - I)(q - 2)
JIs(a) = 2 .

In general, for Gauss sums, we have the relation g(X- I
) = X(-1)g(X)

(here "bar" denotes complex conjugation). Thus g.gq_I_. = w( -I)"q =
w( _I)apf . We know by Lemma 4 that ordJ>(p) = p - 1. It follows that

s(a) + s(q - 1 - a) = f(p - I).

Sum both sides over a from 1 to q - 2. The result is 2 I::f s(a) =
f(p - I)(q - 2).

This completes the proof of Theorem 3. D
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Corollary. ord p(<1>(P» = (m!(p - l)S«q - l) /m).

PROOF . Using Lemma 4, part (3), we have (p - 1)ord p(<1>(P» = ord..,(<1>(P».
Now, ordgo(<1>(P» = m ord9'(g(P» = mS«q - 1)/m) where the last equality
follows from the theorem because g(P) = go with a = (q - 1)/m. 0

This corollary gives the first step in deriving the full prime decomposition
of <1>(P). To go further we first notice that the only prime ideals in Dmcon
taining <1>(P) are those containing p. This follows from parts (b) and (c) of
Proposition 14.3.1 which show

1<1>(PW = q" = pfm.

If P' is another prime ideal of Dm containing p then by Proposition 12.3.3
there is an automorphism a, of Q«(m)/Q such that P' = P" '. For 1 ::;; C < m
and (r, m) = 1 define P, = p<1,- '•

. Lemma8. ord p,(<1>(P» = (m/(p - l»S(c«q - 1)/m».

PROOF . It follows quickly from the definitions that

ord p,(<1>(P» = ord p(<1>(P)<1,).

Choose an integer t' such that t' == c (m) and c' == 1 (p) . Then

g(P)<1, · = (L xp(r)rjJ(r»)<1
I

• = LXp(r)'rjJ(r).
reF rEF

Thus. we have

<1>(P)'" = (L x~(r)rjJ(r»)m .
reF

The second term in the above equality is g': where (/ = c({q - l)/m).
The proof of the lemma is now concluded by the same reasoning as in the
corollary to Theorem 3. 0

We may now, finally, conclude the proof of Theorem 2.
By the corollary to Theorem 2 of Chapter 13 the group

G(P) = {a E G(Q«(m)/Q)lpa = P}

is the cyclic group generated by ap :

Let ct, t2' . . . , cg be a set of integers representing the cosets of U(7L/m7L)
modulo the cyclic subgroup generated by the image of p. In other words,
if 1 ::;; C < m, (r, m) = 1 then C == cjpi (m) for a unique pair (i, j), O::;;j < f,
1 ::;; i ::;; g. By Lemma 8 the prime decomposition of <1>(P) is given by

pi where v' =~l t S(C i q - l)a,~ 1.
p - j=1 m
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Using Lemma 2 we can write y' as follows

215

The index i goes from 1 to g and the index j goes from 0 to f - I. Since aP

leaves P fixed, y' has the same effect on Pas

y = m I I / piti)a-Ia-,I
j j \ m I , Pi

\ t)= m I - a-I
Imodm m r

= I ta,- I where 1 ::s: t < m and (r, m) = I.

This concludes the proof. 0

For future reference we note

(<I>(P» = pmO

where e= I,modm ( tlm)a,- I, (r, m) = 1. The element eE O[G] is called
the Stickelberger element,

§S The Proof of the Eisenstein Reciprocity Law

We will need two results on roots of unity.

Lemma 1. The only roots ofunity in O«(m) are ± (~ i = 1,2,. , .• m.

PROOF . In the proof of Theorem 1 we only need this result when m is an odd
prime, We will leave the proof for general m as an exerc ise and assume
m = I, an odd pr ime.

Suppose ( n E 0«(,). If 41 n then J=1 E 0«(,), However, 2 is ramified in

0(J=1) and is not ramified in 0«(,), Thus 4,r n. If n = 2no, no odd, then
{ (~ } = {±(U, we may assume that n is odd, If l' is an odd prime dividing
n then (" E 0«(,). However, l' is ramified in 0«(1') and I is the only prime
ramified in 0«(/)' Thus I = l' and n must be a power of I, la say . Since ¢(Ia) =
la-'(l - I) is the dimension of Q «(,,, ) over 0 and 1- 1 is the dimension
of 0«(,) over 0 we must ha ve a = 1.The result follows from this. 0

Lemma 2. Let KIO be an alqebraic number field and let a I ' a 2 • • • • , an be rhe
n = [K : 0 ] isomorphisms of K into C. If ex E K is such thar I ~(J ; 1 s 1f or a1/
i = 1,2, . . . , n then ex is a root ofunity.
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PROOF . :L is a root of

14 The Stickelberger Relat ion and the Eisenstein Reciprocity Law

/I

I(x) = n(x - x· i
) E Z[x].

j= t

The hypothesis of the lemma implies that the coefficient of x'" in j(x) is
an integer bounded by the binomial coefficient (~) . Thus only finitely many
polynomials of degree n is Z[x] can arise in this way.

If :L satisfies the hypothesis of the lemma so do all the powers of a. Since
finitely many polynomials can have only finitely many roots it follows that
two distinct powers ofz must be equal. Thus a isa root of unity. 0

The next step is to define I1>(A) for an arbitrary ideal of Dm , A prime to m,
and to investigate the properties of this function. In particular, it will be
important to determine 11> on principal ideals.

Definition. Let A c Dm be an ideal and assume A is prime to m. Let A =
p t P2 • • • P/I be the prime decomposition of A. Define

I1>(A) = I1>(P t)I1>(P 2 ) .. · 11>(PII ) .

Proposition 14.5.1. Let A, B c Dm be ideals prime to m, x E Dm all element
prime to til, and recall,' = I ta,- 1 1 ~ t < 111 and (r, til) = I. Then

(a) I1>(A)I1>(B) = I1>(AB).
(b) II1>(AW = (NA)m.
(c) (I1>(A» = At
(d) 11>«:L» = 1:(!X)a t where I:(x) is a ullit in Dm •

PROOF . (a) is clear from the definition.
Since both sides of (b) are multiplicative in A we can assume A is a prime

ideal P. In that case II1>(P)1 2 = Ig(P)12m = (NP)m by Proposition 14.3.1,
part (b).

Both sides of (c) are multiplicative in A so again we may suppose A is a
prime ideal P. In this case the result is the assertion of Theorem 2.

To do part (d) notice

(11)((!X))) = (!XY = (!X t )

by part (c). Thus l1>«a» and at generate the same principal ideal. 0

From now on we will write 11>(!X) instead ofl1>«x) .
It will be important to determine the unit c(:L) more closely. In fact we

will show it is a root of unity.

Lemma3. Suppose A c Dm is an ideal prime to mand let a he till automorphism
oj' iQI( ' m)/ iQI. Then

I1>(A)" = I1>(A").
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PROOF. To see this it is convenient to write y(P) in the following form

g(P) = L (~r t ~~(i\

where the sum is over a set of representatives for the cosets of DmIP.
Let abe an automorphism of O!«(m, (p)IO! which restricts to a on O!«(m)

and the identity on O!«(p) (see the proof to Lemma 8). By Proposition
14.2.4 we have

g(Pt = L (;:):t(~(i).

Since tr(:'X) E 7l.1p71. we have tr(ja) = tr(:'X). It follows that y(P)t1 = g(pa
) .

Raising both sides to the mth power gives the result when A is a prime ideal.
By multiplicativity the result follows in general. 0

Lemma 4. For (X E Dm, I:x'12 = IN:xlm.

PROOI'. The automorphism a_I is complex conjugation on O!«(m) since it
takes (m to (~' = (m' Thus

Now, (J_,}' = a_I L t(J/-l = L ta=,' . Clearly, (Jm-t = a_/, and y =
L(m - t)a;;;~t· Thus, using t = m - (m - t) we find

(l + a_I h' = 111 L a t- ' .

Since N(X = n(Xa,' I = (Xf.f1,' t the result follows. 0

Proposition 14.5.2. Let a E Dm , :x prime to m. Then <I>(:x) = r.(:x)a;' where
f.«(x) = ±(~for some i.

PROOF. In the light of part (d) of the last proposition it is enough to prove the
assertion about r.«(X). We have I<I>(:x) 12 = (N(:x))m by Proposition 14.5.1 and
1(X'12 = INxim by Lemma 4. By Proposition 14.1.3, N«(X) = IN:xl.

Putting all this together we conclude that Ic«(X) I = 1. Using Lemma 3
we find in the same way that Ic«(x)" I = 1 for all a E G. It now follows from
Lemma 2 that r.«(X) is a root of unity . Finally' since r.(:x) E O!Gm) we have
r.«(X) = ±(~ by Lemma I. 0

We are now in a position to begin the proof of the Eisenstein reciprocity
law. The pattern of proof of the following proposition should be familiar
from our proofs of quadratic, cubic, and biquadratic reciprocity. It is itself
a .. reciprocity" statement.

Proposition 14.5.3. Suppose P, P' c Dm are prime ideals both prime to m.
Suppose[urther that N P and N P' are relatively prime. Theil

(<I>(~)) = (NP') .
P m P m
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PROOF. Let q' = p'J' = NP'. Recall q' == 1 (m). The following congruences
are taken modulo p' in Dm

g(P)q' == Lxp(tt!/J(tt

== Lxp(t)!/J(q't)

== (~t g(P) .

On the other hand

g(P)Q'-l = <1>(P)(Q'- l)1m :x (<1>~)t (P') .

It follows that

.(<1>~)t == (N;'t(P ') .

Since m rt P' the two sides of this congruence must be equal. o

Corollary 1. Suppose A, B c Dm are ideals prime to m and that N A and NB
are prime (0 each other. Then

PROOF. As usual, the corollary follows from the proposition by multi
plicativity. 0

Corollary 2. Suppose A and B are as in Corollary 1 and moreover that A = (!X)

is principal. Then

(
c(iY.») (~) = (NB) .
B m NB m o: m

PROOF. To begin with

Notice that (a,,,,-I /B)m = (':I.",-I/B)'". = (iY.",-I/B)~' = (':I./B"')m by Proposi
tion 14.2.4. Thus

( !X

Y

) (:I.'"'' ') ( !X ) ( !X )- =n - =n - = - .
B m , B m . , B'" m NB m

To obtain the final equality we have used Proposition 14.1.2.

From now on we will assume m = I. an odd prime number.

Lemma 5. If A c D, is an ideal prime to I, then <1>(A) == ± 1 (I) .

o
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PROOF. It is enough to show that <D(P) == - I (I) where P c D1 is a prime
ideal prime to l. Well,

<D(P) = g(p)1 == I X.pct)I!/J(t)' (I)
1

== I !/J(lt) == - I (I).
1"0

The last congruence follows from the fact that / .... !/J(lt) is a nontrivial
additive character on D,/P and so the sum of its values over all t is zero.
Since !/J(O) = I the result follows. 0

Recall that a E D is called primary if a is prime to / and ex == x (I - ( ,)2,
for some x E 7L.

Lemma 6. If ex E D is primary, (hell t:(ex ) = i I.

PROOF. Since (l - ( ,) is the unique prime above / in D, we have (l - ( ,)" =
(l - ( ,) for all (J E G. It follows that (l - ( ,)' c (I - ( I)'

Since <D(a) = t:{!x)a' we have by Lemma 5 that r.(:x)aY == i I (I).
Since C( == x (I - ( ,)2 with x E 7L we find

a Y == x' == X 1 + 2 + ··· + tl - 1)(l _ ( ,)2.

Now, X(/- 1)/2 == i I (l) , so

a' == (iI)' == il (I _ (, )2.

It follows that t:( 'X) == i I (l - ( ,)2. From Proposition 14.5.2 we know
t:(:x) = i (l. To conclude the proof we must show that / divides i. This
follows from the uniqueness part of the lemma in Section 2, but it may be
worthwhile to do it directly.

We ha ve (I == i I (I - (, / . Wr iting ( , = I - (I - ( ,) we find

I - i( I - ( ,) == i I (l - ( ,)2.

The plus sign must hold since otherwise I - (, would divide 2. But then,
subtracting I from both sides, we see I - ( , divides i which implies /1 i. 0

Proposition 14.5.4. If C( E D, is primary, and B is an idea/ prime to l, and N B
is prime to ex, then

(:B), = (~B),.
PROOF. By Corollary 2 to Proposition 14.5.3 we need only show (t:(a)/B), = l.

Since C( is primary t:(a) = i I by the above lemma. Since / is odd, (i I)' =
i I and we are done. 0

We can now complete the proof of Theorem l.
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Let p E 7L be a prime, p #: I, and p prime to lX in DI • Let P be a prime ideal
in DI containing p. Then N P = pl. In the proposition we have just proven
we substitute P for B. The result is

Since f II - I = [0«(,) : 0] we have (f, I) = 1. Thus

(~), = (~)"
From this and (one last time) multiplicativity, we deduce (a/a)1 = (a/a)1

for a ll a E 7L prime to I and a, provided IX is primary. 0

§6 Three Applications

In Chapter 5 we proved that if a is an integer such that x 2 == a (p) is solvable
for all but finitely many primes then a is a square. This has been generalized
to nth powers by E. Trost. The result was later rediscovered by N. C. Ankeny
and C. A. Rogers. The result states that if x" == a (p) for all but finitely many
primes p then a = b" if 8 ,r n and a = b"or a = 2n/2bn if 8 1n. Using Eisenstein
reciprocity we will prove a portion of this when n = I an odd prime. See
also [211], [134] and the Notes to Chapter 5.

Theorem 4. Suppose a E 7L and that I ,r a where I is an odd prime. lfx' == a (p)
is solvable for all but jinitely many primes p then a = b'.

PROOF . We can restate the theorem as follows. If a is not an Ith power then
there a re infinitely many primes p such that x' == a (p) is not solvable.

Assume a is not an Ith power in 7L . Let aD, = P'I'P'i' .. . P:" be the prime
decomposition of a in D,. We claim that l ,r a, for at least one ai' To see
this , let Pi7L = Pi n 7L. Since l,r a we have I #: Pi and so Pi is unramified in
D,. Consequently ord, a = ordp , a = ai • If Ilaj for all i it would follow that
a is an Ith power in 7L. We may thus assume l,r an'

Let {Q t , Q2' . . . , Qd be a finite set of primes Qi different from the Pi and
from (I - (,) .

Using the Chinese Remainder Theorem we can find an element rED,
such that r == I (Qi) for i = 1,2, ... , k, r == I (I), r == I (P) for j = 1,2, . . . •
n - I, and r == (X (Pn) where a is chosen so that (a/Pn)1 = (,.

Since r == I (I), r is primary. Thus, on the one hand

(~) = (~) = n(~)a, = ( 'i" #: 1.
i ), a, Pi
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On the other hand , let (r) = RIR z ' " Rm be the prime decomposition
ofr. Then

(~) = n(~)r, j n, I '

It follows that for somej, (aiR), i= 1.
From the congruences that r satisfies it follows immediately that Rj ¢

{QI' Qz ,·· · , Qk} u {(I - ( ,)} U {PI" ' " Pn}'
We have shown that there are infinitely many prime ideals Q such that

x' == a (Q) is not solvable. Let qll. = Qn 71.. Then x' == a (q) is not solvable
and there are infinitely many such q since every rational prime is contained
in only finitely many prime ideals in D,. 0

The second application of Eisenstein reciprocity we wish to make is to
Fermat's conjecture. This states that if n > 2 is an integer there is no solution
to X" + yn + z" = 0 in non-zero integers . The fascinating history of this
conjecture will be sketched in a later chapter.

It is easy to see that if Fermat's conjecture is true for n then it will be true
for any multiple of n. Since any integer bigger than 2 is either divisible by 4
or by an odd prime we may restrict our attention to the cases n = 4 or
n = I an odd prime. The case n = 4 was settled , affirmatively, by L. Euler.

When I is an odd prime it is traditional to consider two cases. We say
we are in case one if x' + y' + z' = 0 and 1% xy z. Otherwise we are in case
two. In 1909 A. Wieferich published the following important result ([166] ,
Vol. 3).

Theorem 5. If x' + y' + Zl = 0 is solvable i/1 nO/1-zero inteqers such that
1% xyz then 21

- I == 1W).

It has been shown that the only two primes less than 3 x 109 which
satisfy 2'- 1 == 1 (lZ) are 1093 and 3511. It is not known if there are infinitely
many primes of this type.

In 1912 Furtwiingler proved a theorem which contains Theorem 5 as a
corollary. Namely,

Theorem 6. Let x, y. £111I1 : he 11O/1-z(;'ro inteqers. relatively prime in pairs. such
that x' + yl + :' = O. Assume 1% yz. Let p be a prime factor of y. Then
pl-l == 1 W).

It is a simple exercise to see that the condition that x, y, and z be relatively
prime in pairs is no loss of generality.

To see how Theorem 5 follows from Theorem 6, assume 1% xyz. Since
x' + y' + z' = 0 not all three numbers x, y, and z can be odd . By symmetry
we can assume 21 y. By Theorem 6 we have 2'- 1 == I (12).



222 14 The Stickelbercer Relation and the Eisenstein Reciprocity Law

We proceed to prove Furtwangler's theorem. Let ( = (, be a primitive
Ith root of unity. We have

(x + y)(x + (y)· · .(x + ('-t y) = (-z)' .

Lemma 1. Suppose i # j and 0 ~ i, j < I. Then x + (i y and x + ( iy are
relaticeiy prime in D,.

PROOF . Suppose A c D, is an ideal containing x + (iy and x + (i y. Then
«(i _ (i)X and «(i - (i)y are in A. Since x and yare relatively prime it follows
that (i - (i is in A. It follows that A. = 1 - (e A. Since (A.) is a maximal
ideal, either (A.) = A or A = D,. If (A.) = A, then from equation (*) we see
(-z)e(A.) which implies ze(A.) and liz, contrary to assumption. Thus
A = D, and we are done. 0

Corollary. The ideals (x + ( iy) are perfect Ith powers.

Consider the element a = (x + y)'- 2(X + (y) . We claim

(i) The ideal (a) is a perfect Ith power.
(ii) ex == 1 - UA. (A. 2) where u = (x + y)'-2y.

Property (i) follows from the corollary to the lemma.
To prove property (ii) notice x + (y = x + y - yA.. Thus,

IY. = (x + y)'- 1 - A.u.

Now, x' + y' + Zl == X + Y + z (/). If lI(x + y) it would follow that liz
contrary to assumption. Therefore l,r (x + y) and (x + y)'- 1 == 1 (I).
Property (ii) follows.

Consider r:« We have

C"a = (1 - A.)-"a == (1 + UA.)(l - UA.) == 1 (A. 2
) .

It follows that C"a is primary. By Eisenstein reciprocity we have

( p) (C"a) (()-"(ex)
C "IY. I = -:P I = P,P " (**)

Since the ideal (C "x) = (x) is an Ith power, the left-hand side of (**) is
equal to 1.

Since ply, a == (x + y)'-I (p). Thus

(=) = (x + y)I-I) = ( P I 1), = 1,
P,P I (x + y)

because the ideal (x + y) is an lth power.
It now follows from (**) that «(/p)'t = 1. To conclude the proof we must

evaluate «(/P)"
Let pD, = p t P2 • • • Pg be the prime decomposition of pin D,. We know

NPi = v' and, since P # I, e = 1, and so gf = I - 1.
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By the corollary to Proposition 14.2.2

(f) = n(1) = n ( p l - Ilil = ( gl(p l- IJII)

p, i Pi ' i

The relat ion «(Ip)i = 1 now leads to the congruence

pI - 1
ug -

I
- == 0 (l).

Since gl1- 1,11' g. Since u = (x + y )' -2y, 11'u. Thus

pI - 1
- I - == 0 (I) or pI == 1 (/2).

The theorem is now immedia te sincef II - 1.
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o

We conclude with an application of Theorem 2 which concerns the struc

ture of the ideal class group of 0 (j=7) where I > 3 is prime I == 3 (4). Let
p be an odd pr ime p == 1(1). Then since p splits completely in 0 «(,) it also

split s in 0(j=7) (why ?). One can also see this by ob serving ( -lip) =
(_I )(P - 1 l/2(pl l)( _1)((P- l l/ 2 )((l - I J/ 2 J = (PII) = 1 and applying Proposition

13.1.3. In the ring of integers D of 0(j=7) write p = 1.l3~ . If Ddenotes the
ring of integers in 0«(,) we have

Lemma 2. 'llD = nP": where P is a prime ideal ofD, P 11 D = 1.l3, and s runs
over the nonzero squares modulo l.

PROOF. Th e set of as in the statement of the lemma form the G alois group of

0«(,) over 0(j=7). Since pD = pl:: : I <1, and a.(l.l3) = ~ for a nonsquare n
modulo I it follows that I.l3D is di visible by precisely the as(P), each with
exponent 1. 0

By Theorem 2 we ha ve (g(p)' ) = pl:/<1,- ' , t= 1, 2, .. . , 1- 1. Applying
I a" s a square modulo I gives (cc)D = 1.l3l:/<1'-' . D = l.l3l:s . ~l:" . D where
cc ED and n runs over the nonsquares modulo I in the interval [1, I - 1].
Put R = I s, N = I n. By Exercise 34 of Chapter 12 it follows that ccD =
I.l3R~N . If ['ll] denotes the equivalence class of the ideal'll and 1 is the unit
class then [l.l3r I = [~]. Thus [I.l3Y - R = 1. On the other hand if 1 ::; r ::;

I - 1 by Exercise 6(or Lemma 3, Section 3, Chapter 15),one has g(P)<1,- r = f3
for some {1 E D. Raising to the /th power, using Theorem 2, and applying
L Us give s. for r a squa re f. I, (~R~N )I -r6 = ("1 )'6 for so me "I E D . It
follows that ([~I (N -R )I/ )' -' = I (it is easy to show l iN and I IR ). But from
the abov e ([~I (N -R )II)' = I. Since (r - I. I) = 1 we have proven the
following result.

Propo sition 14.6.1. Let I.l3 be a prime ideal of degree 1 in O(;-=-l )for I E:; 3
a prime such tha t I == 3 (4). Then, [1.l3](N-RJ/1 = 1.
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While it is elementary that (N - R)/I is an integer it is by no means
obvious that it is positive. All known proofs of this fact use analysis. We
will give a short proof due to Moser in the Exercises to Chapter 16. For
other proofs of the positivity as well as many other interesting results of
this type see the paper by B.Berndt [94]. It turns out, as mentioned in Chapter
13 that (N - R)/I is indeed the class number of O(R) but again the
proof is analytic . When, by direct calculation N - R = I it follows that I.p
is a principal ideal. If one assumes, as can be shown, that each ideal class
contains a prime ideal of degree 1 then one can conclude that for such I,
O(R) is a unique factorization domain. In this manner one checks that
the imaginary quadratic fields with discriminant -7, -II, -19, -43,
-67, -163 all have class number 1. Referring again to the proposition
~(N- R)t' = (a) where a = (x + Ry)/2 ; x, y E 1. Taking norms gives the
following interesting corollary.

Corollary. l] P == 1(1), 1== 3(4), I > 3, then4p(N-R)/1 = x 2 + ly2, with X, y E 1 .

NOTES

In his paper " Uber eine Verallgemeinerung der Kreistheilung" (1890) [224],
the Swiss mathemat ician Ludwig Stickelberger (1850-1936) (see [148])
succeeded in determining the prime decomposition of a Gauss sum attached
to an arbitrary multiplicative character defined on a finite field (Theorem 2
of this chapter). Actually he proved a more precise result. Namely, using the
notation of this chapter

( A)Sla)= - - ( J,AS(a) + I)ga - .7 .
GO!a l! " 'GJ-l!

This, of course, implies Theorem 2. The special case of this theorem when m
is prime and P == 1 (m) had already been proven by Kummer in 1847. It
is interesting to note that Kummer derived the result by first determining
the decomposition in O(~m) of certain Jacobi sums, which in turn was made
possible by the congruence J(w"', w") == - [em + n) !ln! m!](P), known to
Jacob i, Eisenstein and Cauchy. (See Kummer [164] , Vol. I, pp. 361-364,
pp. 448-453, and Exercises 1 and 2). An elegant proof of Kummer's result
can also be found in Hilbert's "Zahlbericht " [151] (Theorem 135), where
the use of Jacobi sums is avoided by using an argument involving ramifi
cation. This special case of Stickelberger's theorem was the missing link in
the program initiated by Gauss, Eisenstein and Jacobi to establish higher
power reciprocity laws. Indeed, in 1850 [132] Eisenstein published his
proof of the reciprocity law bearing his name (Theorem 1),making use of the
then relatively new language of ideal numbers due to Kummer. A complete
proof can be found also in Vol. 3 of Landau [166] as well as in Hilbert's
"Zahlbericht " (Theorem 140), where in order to overcome the restriction
that P == I (l) he uses the finiteness of the class number for O«(,)! Hilbert
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views the Eisenstein law as an indispensible lemma for the Kummer reci
procity law. The proof of Theorem 2 that we have given follows that found
in the important paper by Hasse and Davenport [23] (see also Chapter 7
of Joly [160]), while the derivation of Eisenstein's law from Kummer's
Theorem closely follows the treatment in Weil's elegant historical study
"La cyclotomie jadis et naguere" [238]. This paper of Weil along with his
review of Eisenstein's" Mathematische Werke" [239] and his introduction
to the collected papers of Kummer [164] provide a detailed and insightful
history of the efforts of Jacobi, Eisenstein, and Kummer to prove higher
power reciprocity laws with the use of Gauss sums. In this text we have
followed this development up to the work of Eisenstein. The subsequent
development leads to the research of Kummer, Hilbert, Furtwangler, and
Takagi, and eventually, to the celebrated Artin law of reciprocity. For the
history of these developments see Iyanaga [158] and Hasse [110]. For an
interesting, and perhaps more elementary, discussion of the nature of
reciprocity laws see Wyman's paper" What is a reciprocity law?" [246].

The use of Theorem 2 to show that the ideal class group of Q(j=/),
1== 3 (4) is annihilated by (l fl) L~~ll x(xll) goes back to Kummer and
appears as Theorem 145 of Hilbert's "Zahlbericht ". The corollary to
Proposition 14.6.1 was originally observed by Jacobi who, on its basis,

conjectured the class number formula for Q(Fl). (See also the comment
of Weil [238], pp. 252-253.) Stickelberger, in the above-mentioned paper,
returns to this application of cyclotomy to the arithmetic of quadratic

forms and obtains similar results for Q(j=m), for general m.
There are other applications of Theorem 1 to Fermat's Last Theorem.

For example, a well-known result of Mirimanoff states that if x, y, and z
are integers such that xP+ yP + zP = 0, p 't xyz then 3P- 1 == 1 (p2) (see
Theorem 1041, Landau [166]). Also Vandiver has shown, using similar
methods, that if xP+ yP + zP = 0, (x, y, z) = 1, p > 3 then x" == x (p3),
yP == Y (P3), Z3 == Z (p3) (Landau [166], Theorem 1046). For further results
on Fermat's Last Theorem that utilize Eisenstein reciprocity see Lecture 9
of the beautiful book by P. Ribenboim /3 Lectures on Fermat's Last Theorem
[206].

EXERCISES

Throughout these exercises the notation is as in this chapter.

\. Show that if 1 $ II < q - I, 1 ::; m < II - I then
(a) J(w-n.w-m)=-[(m + n)! /n!m!] ('1.\)
(b) If I < a < q - I, a = ao + alP + ... + af_lpf- 1 then J(w- I , w-Ia-I) =

-ao(Ill)·

2. In the proof to Theorem 2 we showed that 91 =).p (,3"!).
(a) If I $a<p-I show Yu=(-I)"+I).~/a!(.'!Ia+l) where Cl:={JUi'") means

ord9'(a - (J) 2: n.
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(b) If the Stickelberger congruence go == (_I)I ,s'o 'A.~,o 'lao ! a, ! " , af -.!(.gl'1 ,5(0')

holds for some 1 $; a < q - 1 and pa < q - 1 then show it also holds for gpo'
(c) Establish the general Stickelberger congruence.

3. Show that if m > 2 then g(P)p-l /2 is not an algebraic integer (see also Chowla
[113]).

4. Let rand s be positive integers m1- r + s. Show that (J(X;', Xj.)) = P" where (J. =
I « rtlm) + (s tlm) - ( [(r + s)t]lm»a,-' the sum being over /, I ~ t < m,
(r, m) = 1.

5. Check that the argument in Section 4 showing g. == A.p (&2) is valid for p = 2,
modd.

6. If(r, pm) = I, I $; r < pm, then g(p)"r -r EO«(nr)'

7. Verify Lemma 1 of Section 5.

8. Let p == 1 (m). where m is prime. Without using Exercise 4 show that J(X, I),
I $; k ~ p - 2 is a product of distinct prime ideals each with exponent 1. Use
Exercise 1 to determine the decomposition of J(X, t) and use Proposition 8.3.3
to give a direct proof, in this case. of Theorem 2 (Kummer).

9. Let KjF be a Galois extension with cyclic Galois group of order p and generator a.
Define , for x E K,f(x) = 1 + x + xa(x) + ... + xa(x) '" aP-J(x). Let p be prime,
F = O«(p_ d, K = o«; ( p- I) ' Show that g(X) = B::: X(x)(; = (p j«(P- '(~- I),

where t is a primitive modulo p, X(I) = (P-' and a is the automorphism of KIF
for which cr«(p- I) = ( p- l and cr«(p) = (~ . Conclude that the Gauss sum is the great
grandfather of cohomology theory (Kummer [164]. p. 10).

10. Use Theorem 2 to show that O(g(pr) is the fixed field of the decomposition group
of p, also known as the decomposition field of p.

11. For a prime I a nd positive integers r, s, and / satisfying r + s + I = / put Hr.s., =
{hlh E F,·, Iii- + lis + hI = I} where ii denotes the smallest nonnegative residue of a
modulo I. Show that Hr . s . , is a set of coset representatives for the subgroup of order
2 in Ft-

12. Consider the curve rover Fp defined by r' = x'( I - x)', the notation being as in
Exercise 11.
(a) Show that the zeta function of r can be written z(u) = g(u) j(1 - uXI - pu),

where g(u) = np (I + J( XP' Xj,)uf ) where P ranges over the prime idea ls in 0«(,)
over p and the notation is as in the text ; i.e., '!.P is the Ith power residue symbol.

(b) Show that (JXp, Xj,» = r-«: where k E H r•s . , .

(c) Show that if the order of p modulo I(i.e.,f) is even, then complex conjugation is in
the decomposition group of P.

(d) Ifjis even , (J(Xp, XJ.» = (pJ:2).
(e) J(Xp. X~) = upf/2, where u is an Ith root of unity.
(f) Show that u = 1.

(Exercises II and 12 are from a paper by B. H. Gross and D. E. Rohrlich [142].)

13. Let I be prime. X i= e a multiplicati ve character of F" Put B, = (I II) B,::'. ax(a).
Consider the elements of the group ring of the Galois group G of 0«(,),0 with
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coefficients in 0('1) defined by &l = (1/(1- I)) I~':A x(af10'a, 8 = flll) I:;;: 10',-1,

where O'a(~/) = ~:. Show
(a) f.l«(/)I;C '«(,) = x( -1)(1 _ 1)- 21.
(b) -I = (I - (/)«(, + 2(,l + ... + (1- IKI- 1) .

(c) &.( -(i/(1 - (,» = BlI;i(/),

(d) 0&1.= -Br'&l' where one defines (lj;;:a'O'IHlj;;:b,O',)=I:;;:c,O', with
c, = Ivv=,(/)avbv' I s u, v < I.

(This exercise is taken from Iwasawa [157], pp . 115-117.)

14. Let pand Ibe prime, I > 3. Ifp l' land IXE il[(/] is real, (0:, I) = I show that (alp), = 1.

15. Let p l' I be primes, I > 3. Show
(a) «(,ip), = (11/-1)/fIupf-I)f/), wherefis the order of Pmodulo I.
(b) «(i/P), = I implies p'- 1 == I W).

16. Read Satz 1039 and Satz 1041 in Landau [166], Vol. 3.

17. Let m = I, an odd prime, and let .fiJ be a prime ideal in O«(PI) containing (I - 'I)'
Show
(a) g(P) == -I (I - (,),
(b) g(P) == - I + c(1 - (I) (.fiJ2) with c E il[(p] .
(c) (-g(P))"' == (-g(P» ' (.fiJ2) for (r, l) = I and 0', the automorphism of Q«(p/)

such that O',«(p) = (p and 0',«(/) = 'I .
(d) g(P)u,- , == (-1)'+ 1 «(I _ (,)2).

(e) If I ~ a, b < I, Ii-a + b then J(X;',~) == -I (I _ ,/)2 .

This exercise is taken from Iwasawa [156].



Chapter 15

Bernoulli Numbers

In this chapter we will introduce an important sequence of
rational numbers discovered by Jacob Bernoulli (1654
1705) and discussed by him in a posthumous work Ars
Conjectandi (1713). These numbers, now called Bernoulli
numbers , appear in many different areas ofmathematics.
In the first section we give their definition and discuss their
connection with three different classical problems. In the
next section we discuss various arithmetical properties of
Bernoulli numbers including the Claussen-con Staudt
theorem and the Kummer congruences. The first of these
results determ ines the denominators of the Bernoulli
numbers, and the second gives information about their
numerators. In the last section we prove a theorem due to
J. Herbrand which relates Bernoulli numbers to the
structure of the ideal class group of Q«(p) . The material
in this section is somewhat sophisticated but we have in
cluded it anyway because it provides a beautiful and
important application of the Stickelberqer relation which
was proven in the last chapter.

§l Bernoulli Numbers; Definitions and Applications

We begin by discussing three problems, each of historic interest.
The first concerns finding formulas for summing the kth powers of the

first n integers. Jacob Bernoulli was aware of the following facts

n(n - 1)
1 + 2 + 3 + .. . + (n - I) = 2 '

12 2 2 3 2 (1 2 n(n-I)(2n-l)+ + +' ''+n-)= 6 '

n2(n _ 1)2
13 + 23 + 33 + ... + (n - 1)3 = 4 '

as well as corresponding, less well known, formulas for exponents up to 10.
For each exponent k the sum ]k + 2k + ... + (n - l)k turned out to be a
polynomial in n of degree k + 1. In his efforts to determine the coefficients
of these polynomials for general k, Bernoulli was led to define the numbers

228
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(2)

which bear his name. He was completely successful in answering the original
problem and proudly remarks (in his book Ars Conj ectandii that in less
than a half of a quarter of an hour he was able to sum the tenth powers of
the first thousand integers [220].

Another outstanding problem of that period was to eva lua te the sum

1 1 1 1
e(2) = 1 + - + - + - + - + . . .
, 4 9 16 25

and more generally ( 2m) where ~(s) = I :'=I n - " is the Riem ann zeta
funct ion . After long effort L. Euler showed in 1734 that ( 2) = rr1/6.
Sub sequently he determined ( 2m) for all pos itive integers Ill.

The third problem is the celebra ted Fermat's Las t Theorem. If II is an
integer greater than 2. Fermat asserted that x" + y" = z" has no solution
in pos itive integers. This assertion has never been proved in general. It is
easily seen that the conjecture is true if it is true whenever n = p. an odd
prime. In 1847 E. Kummer proved the conjecture is true for a certain set of
primes called regular primes. A prime p is called regular if it does not divide
the class number of Qi(~p) . Furthermore, Kummer disco vered a beautiful
and elementary criterion for regularity wh ich involves divi sibility properties
of the first (p - 3)/2 non van ish ing Bernoulli numbers.

We will discu ss these three problems in turn.
Define Sm(n) = l " + 2m + .. . + (II - I )m. We first give a simple in

ductive method for evalu ating these sums. The binomial theorem implies

(m+ 1) (m + 1) (Ill + I)(k+l)m +l_km+I=I+ I k+ 2 kZ+ . .. + III k'".

Substitute k = 0, 1,2, ... . II - I and add . The result is

(
m + I) (m + I) (111 + 1)11m+ , = 11 + I S,(n) + 2 Sz(n) + .. . + In Sm(II). (1)

If one has formulas for 51(11 ), Sz(n)• .. . , Sm -1(1I) then Equation (I )
allows one to find a formula for Sm(n). Bernoulli observed that Sm(n) is a
polynomial of degree 111 + I in n with leading term 11m + ' /m + I. This follows
easily by induct ion from Equ ation (1). Also. the constant term is always
zero. The value of the other coefficients is less obvious. By direct computa
tion one finds the coefficient of II to be -!. t,0, - 3

1
0' 0, 4

1Z' 0, - 3
10

' 0, ;6

for 111 = 1, 2... .. 10. Further empirical observation of the formulas led
Bernoulli to the follow ing definit ion and theorem.

Definition. The seq uence of numbers Bo• B I • Bz• .. . . the Bernoull i numbers,
are defined induct ively as follows . Bo = 1 and if B I • Bz , ' .. • Bm - I are al ready
determined then Bm is defined by

m -I (m + 1)(Ill + I )Bm = - k~O k Bk •
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Written out this becomes the sequence of linear equations

1 + 2B I = 0

1 + 3B I + 3B2 = 0

1 + 4B I + 6B 2 + 4B 3 = 0

1 + 5B I + IOB2 + IOB3 + 5B4 = O.

One finds BI = - t,B2 = ii, B3 = 0, B4 = - 3
10

' B5 = 0, B6 = 4
12"

' " etc.
We shall prove later that the nonzero Bernoulli numbers alternate in sign.
Furthermore we shall see that the Bernoulli numbers with odd index bigger
than 1 vanish.

Lemma l. Expand tl(e' - I) in a power series about the origin as follows
tl(e' - I) = 2::'=0 bm(tmlm!) . Then for all m, b.; = Bm·

PROOF . Multiply both sides bye' - 1 to obtain

Equating coefficients of r: I gives 1 = bo for m = °and

f (m ~ I)bk = °
k =O k

in general. This is the same as the system of Equation (2) which defines the
Bernoulli numbers. Since Bo = bo = 1 it follows that Bm = b; for all m. 0

We now give the answer obtained by Bernoull i to the que stion of eval
uating the sums Sm(n).

Theorem l. For m ~ 1 the sums Sm(n) satisfy

;. (m + I)B m +l -k(m + I)Sm(n) = k~O k k n .

PROOF . In e" = 2::'=0 km(tmlm!) substitute k = 0, 1,2, . .. , n - 1 and add .
This results in

00 t"
1 + el + e2 1 + ' " + e(n-I)I = 2: Sm(n), .

m=O m.

The left-hand side is

(3)

(3')
e"' - 1 e" - 1 t co tk - 1 00 t j

-1- - = ---,- - = 2: nk _ , 2:Br:r '
e - 1 t e - I k=1 k. j = O ) .

Equating the coefficients of t" on the right-hand sides of Equations (3)
and (3') and multiplying by (m + I)! gives the result. 0
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We may reformulate the result of Theorem I by introducing an important
class of polynomials known as Bernoulli polynomials. Define

Bm(x) = Jo (~)Bkxm-k .

Thus B1(x) = x - t, B2(x) = x 2 - X + !, etc . Then Theorem I may be
stated as

We remark in passing that Lemma 1 yields an easy proof that B2k + t = 0
for k :2: I. Since B) = --!- we have

t t m ~

~l + -2 = 1 + L e,-k"e k= 2 •

The left-hand side is the same as (t/2)«e' + l)/(e' - I)) which is un
changed if t is replaced by - t, i.e., it is an even function of t. This implies the
coefficients of odd powers of t on the right-hand side are zero .

We now turn to the relationship between Bernoulli numbers and the
numbers ( 2m) for m = 1,2, 3, . ... The following result is due to Euler and
constitutes one of his most remarkable calculations. For the history of this
result and its relation to the functional equation of the Riemann zeta function
the reader should consult the article of Raymond Ayoub [88].

Theorem 2. For m a positive integer

(21t)2m
2(2m) = (_I)m + 1 -(- , B2m •

2m).

PROOF . The proof of this result requires a fact from classical analysis. Namely,
we need the part ial fraction expansion for cot x.

(4)

There are several ways to derive this expansion. Perhaps the simplest
way is to substitute t = 1 in the Fourier expansion of cos at , Alternatively,
the result follows from taking the logarithmic derivative of the infinite
product expansion of sin x

:xl ( x2 )sin x = x n 1 - 2""2 .
"= I n 1t

This is a standard result in texts on complex variables but it is possible
to give a completely elementary proof (see Chapter 2 of Koblitz [162]).
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Using the formula for the geometric series we can expand the right-hand
side of (4) in a power series about O. This yields

00 x2m
.v cot X = I - 2 I (2m)~.

m= I n:
(5)

We expand the left-hand side of Equation (5) in another way. Recall

2i

e'" _ e- ix

sinx = ----eix + e- ix

cos x = 2 and

From these expressions we derive

. 2ix ex> (2ix)"
x cot x = IX + 2ix 1 = 1 + I B"--.

e - "=2 n!
(6)

Comparing coefficients of x 2m on the right-hand sides of Equations (5) .
and (6) yields

2 22m

- 2m (2m) = ( _l)m (2 )1 B 2m •
n: m .

This is Euler's result. o

As examples , take m = 1,2 and 3. Since B2 = i. B4 = - 310' and B6 = ;b
we find (2) = n:2/6, (4) = n:4/90, and «6) = n:6/945.

A consequence of Theorem 2 is that ( _l)m+ I B2m > 0 for m ~ 1. This is
because (2m) is a positive real number for such m. Thus, the even indexed
Bernoulli numbers are not zero and alternate in sign.

Theorem 2 also enables one to estimate the growth of B2m • Namely,
one sees

(7)
2(2m)!

IB 2m l > (2n:)2m'

Here we have used the simple observation that (2m) > 1. Using the
obvious inequality e" > n"/n ! (look at the series expansion for e") we find

IB2ml > 2(:ym. (8)

This shows that the even indexed Bernoulli numbers grow at a very rapid
rate. A consequence which we will use later is IB2./2n1-> 00 as n -> 00 .

We summarize the above properties of Bernoulli numbers in the following
proposition.

Proposition 15.1.1

(a) For k > 1 and odd, B, = O.
(b) (_l)m+ 1B2m > Ofor m = 1,2, .. ..
(c) IB 2m/2ml-> 00 as m -> 00 .
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The third problem that we discuss in this section deals with the relationship
between Bernoulli numbers and the Fermat equation x P + yP = z". This
discussion will be purely expository for the result of Kummer is quite deep
and requires analytic techniques that we have not developed. However we
will introduce the important notion ofa regular prime and state the Claussen
von Staudt congruence which we will prove in the following section. First of
all we introduce the notion of a p-integer.

Let p be a prime number. A rational number r E IQ is said to be a p-integer
if ordp(r) ~ O. In other words r is a p-integer if r = alb, a, b e 7L. and p,r b.
One also says with slight ambiguity that p does not divide the denominator
of r. It is an important observation that the set of p-integers forms a ring.
Denote this ring by 7L. p. If rand s belong to 7L. pwrite r == s (p") if ordir - s) ~
n, or equivalently, if r - s = alb, p,r band p"la, a, b e 7L.. The following
theorem proved independently by T. Claussen and C. von Staudt describes
the denominator of B2m • No such complete description of the prime divisors
of the numerator is known.

Theorem3. For m ~ 1, B2m = A2m - Lp-tl2m lip where A2m E 7L. and the
sum is over all primes p such that p - 112m.

Corollary. If P - 1 ,r 2m then B2m is a p-inteqer. IIp - 112m then pB2m + 1
is a p-integer. More precisely if p - 112m then

ord(pB 2m +1) = ord P(B 2m +~) = 1 +ord(B2m +~) ~ 1

';0 that pB2m == -1 (p). Finally we notice that 6 always divides the denominator
of B2m , m ~ 1, since 2 - 1 and 3 - 1 divide 2.

Kummer introduced the notion of a regular prime as follows.

Definition. An odd prime number p E 7L. is said to be regular if p does not
divide the numerator of any of the numbers B2 , B4 , •• . , Bp - 3' If P is not
regular it is called irregular. The prime 3 is regular.

By the corollary to Theorem 3, B2 , B4 , • • • ,Bp _ 3 are p-integers. Therefore
p is regular if ord, B2i = 0 for i = 1, . .. , (p - 3)/2. It is easily seen that the
un its in 7L. p are precisely the elements x with ord, x = O. Thus p is regular
if B2 , B4 , •• • , Bp-3 are units in 7L. p. Equivalently p is irregular if some B2i ,

I < i ::; (p - 3)/2 is a nonunit in 7L. p • The first irregular pr imes are 37 and
59 for it is known that ord3iBn ) = 1 and ords9(B4 4 ) = 1 [234]. The
first few irregular primes are 37, 59, 67, 101, 103, 149 and 157. It was proven
by Jensen in 1915 that there are infinitely many irregular primes of the form
4n + 3. In the next section we give a short proof due to L. Carlitz (1953)
that infinitely many irregular primes exist. It has not been proven that
infinitely many regular primes exist. This is somewhat unfortunate in view
of the following remarkable result of Kummer (1850).
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(10)

(9)

Theorem 4. Let p be a regular prime. Then x" + y P = z" has no SO/Ill ion in
positive integers.

Actually Kummer proved that Fermat's conjecture is true if p does not
di vide the class number of Q«(p). In other,words the criterion is that for an y
non principal ideal A in Z[(p] , A p is not principal. Thi s condition is equivalent
to the regularity of p. We will not prove this, but the material in the third
section of this chapter is closely related.

C. L. Siegel has given a plausible argument to sugg est that the density of
irregular primes is I - e" 1/2 = 0.3935 . .. W. Johnson has checked th is for
primes less than 30,000 with good results [159]. S. WagstatThas established
the validi ty of Fermat's conjecture for all primes less than 125,000 [234].
Furthermore the informat ion found by Johnson ha s now been extended by
him to all primes less than 125,000 [234].

If a prime p is irregular one can ask how many nonzero Bernoulli numbers
in the set {B 2 , B4 , ... , Bp - 3 } are divisible by p. This number is called the
index of irregularity of p. The first prime of index 2 is 157. One of the most
rema rkable discoveries made with the aid of the computer is the existence
of two primes of index 5 [234]. Finally we point out that thus far no pair p,
B2 ; , 1 ~ i ~ (p - 3)/2 has been found for which ord, B2i > 1. For the
above remarks and their relation to the celebrated Iwasawa invari ants see
the paper by W. Johnson in the bibliography.

§2 Congruences Involving Bernoulli Numbers

We will now prove a number of arithmetic prop erties of the Bernoull i
numbers.

To begin with we d irect our effort s toward proving Theorem 3 of the
preceding sectio n. Notice that for m ~ k on e has

(m: I) = mI:; ~ 1(;)
as follows immediatel y from the definit ion of the binomial coefficients. Thus,
Theorem I of the last section becomes

m (m) /1m + I -k

Sm(n) = k0
0

k e, m + 1 - k '

Now , using (k) = (m~ k) we see that

m (m) nk
+ 1

Sm(n) = k0
0

k Bm - k k + 1

(
m) n2 /1," + 1

= B n + B _ - + .. . + --.
m I m 12 m +1

In addition to Equ at ion (10) we need the following simple lemma.
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Lemma 1. Let p he a prime number and k ~ 1 an inteqer. Then

(a) l j(k + 1) is p-inteqral.
(b) pkj(k + 1) == O(p) ifk ~ 2.
(c) l-2j(k + 1) is p-inteqral ifk ~ 3 and p ~ 5.

PROOF. To prove (a) we show that k + 1 ::::; pkfor k ~ 1. If k = 1 the result is
true. If k + 1 ::::; pk then k + 2 ::::; pk + 1 < 2pk ::::; l + I. Now write k + 1 =
paq where (q, p) = 1. Then pkj(k + 1) = pk -ajq. Since pkj(k + 1) ~ 1 we
conclude that k ~ a, i.e., we have proven (a). To prove (b) we notice that
k + 1 < pk for k ~ 2. The proof is the same as for (a) . Therefore k > a
which proves (b).

As for part (c) use induction to show that k + 1 < pk- 2 for k ~ 3 and
p ~ 5. This time one concludes that k - 2 > a, so that pk-2/(k + 1) =
pk- 2 - 't« is p-integral (and in fact divisible by p). 0

Proposition 15.2.1. Let p be a prime and m ~ 1 an integer. Then pBm is p
integral. If m ~ 2 is even then pBm == Sm(P) (p).

PROOF . The first assertion states that if Pdivides the denominator of Bm then
p2 does not. First of all, pB 1 = - p/2 which is indeed p~integral for all p.
We proceed by induction.

Suppose m > 1. Applying Equation (10) with n = p we see that, since
Sm(P) E 1L, it suffices to prove that

(Ill) nk+ 1 (m) l
k Bm-kk + 1 = k pBm-k k + 1 (II)

is p-integral for k = 1, 2, ... , m. By induction pBm - k is p-integral for k ~ 1.
Also by Lemma I, part (a), p' j(k + 1) is p-integral. It follows pBm is p-integral.

To establish the congruence it is enough to show that .

ordp(:)(PBm-kk : 1) ~ 1 for k ~ 1.

By Lemma 1, part (b) this is true for k ~ 2. For k = 1we need to show

ordp(~(PBm_I)P) ~ 1,

which is also true since m is even . Actually, for m even, Bm - I = 0 for m ~ 4,
and so it is only necessary to check it for III = 2 where it is obvious. 0

Lemma 2. Let P be a prime. Then if P - 1,rm, Sm(P) == 0 (p). II p - 11m
then Sm(P) == - 1(p).

PROOF . Let 9 be a primitive root modulo p. Then

Sm(P) = l" + 2m +.. .. + (p - l)"

== l " + q" + g2m + ... + g(p-2)m(p).



236 15 Bernoulli Numbers

Thus (gm - l)Sm(P) == r-:» - 1 == 0 (p). If p - 1 .r m then gm ;f. 1 (p) and
Sm(P) == 0 (p). On the other hand, ifp - 11 m then Sm(P) == 1 + 1 + ... + 1 ==
P - 1 == - 1 (p). 0

We are now in a position to prove Theorem 3, Assume m is even. Then by
Proposition 15.2.1 we know pBm is p-integral and pBm == Sm(p)(P). By the
lemma just proven it follows that Bm is a p-integer if p - 1 .r m and pBm ==
-1 (p) if p - 11m. Thus

1
Am = Bm+ L 

p-I !m P

is a p-integer for all primes p. It follows that Am E 7L and the proof is complete.
The reader may suspect by this time that the consequences of Equation

(10) have not been exhausted. The following proposition is another important
consequence of that equation. Write the mth Bernoulli number Bm= Um/Vm
where (Um , Vm ) = 1 and Vm > O. We are assuming m to be even.

Proposition 15.2.2. If m is even, m ~ 2 then for all n ~ 1 we have

VmSm(n) == Umn (n2
) .

PROOF. Consider the terms in Equation (10) for k ~ 1 and fixed n

(:)(Bm - k k
n k

; 1
1
)n2 = A~n2. (12)

We will show that for pin and p i= 2, 3 ordp(A~) ~ O. Furthermore if 21n
then ordiA~) ~ -1 and if 31n then ord3(A~) ~ -1. This will imply that
the greatest common divisor of n and the denominator of A~ is a divisor of
6 and thus this will also be true of the sum of the Ai:'. In other words one
can write

An 2

Sm(n) = Bmn + IB'

where (B, n) = 1 and /16. Multiplying by BVm and recalling that 6IVm by
Corollary to Theorem 3 the result follows immediately .

In order to prove the ord, estimates we use the Corollary of Theorem 3
which implies that ordp(Bm_k) ~ - 1 for all m - k ~ 0 and all p. Assume
first of all that p i= 2, 3, pin. The cases k = 1, 2 are simple by inspection
using the fact that B, = 0 for t > 1 and odd, and that B I = -t, and that
ord p 3 = O. If k ~ 3, then

ordp(Bm_ k k
n: II) ~ -1 + (k - 1)ord, n - ordik + 1)

~ k - 2 - ordp(k + 1) ~ 0 (13)

by part (c) of Lemma 1.
Consider now p = 2. If k = 1 then Bm - I = 0 for m > 2 (m is even)

while for m = 2, A~ becomes 2· B I . t = -t which has ord - 1. For k > 1
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we notice that Bm - k = 0 unless k is even or k = m - 1. But k even implies
ord2(k + 1) = 0 while for k = m - 1, A:::_ I = -tnm

-
2 which has ord ,

greater than or equal to - 1.
Finally considerthe case p = 3,31n.Then ord3(Ai) ~ -1 and ord 3(Aj ) ~

1 as one easily checks. But for k ~ 4 one shows exactly as in the lemma that
ord 3(3

k
- 2/(k + 1)) ~ 0 so that ordiAZ') ~ O. This completes the proof. 0

As a simple numerical illustration of this proposition consider B2 = i,
V 2 = 1, V2 = 6 and let n = 6. The congruence reads

6(12 + 22 + Y + 42 + 52) == 6 (36)

and more generally

Corollary. Let m be even and p a prime such that p - 1 -r m. Then

Sm(P) == BmP (p2).

PROOF. By Theorem 3, p -r Vm • In the proposition, put n = p, and divide
both sides of the resulting' congruence by Vm which is permissible since
p -r Vm • The result follows. 0

We are now in a position to prove the very useful congruences of G.
Voronoi. According to the book of Uspensky and Heaslet [230], Voronoi
discovered these congruences in 1889 while still a student.

Proposition 15.2.3. Let m ~ 2 be even and define V m and Vm as in the last
proposition. Suppose a and n are positive integers with (a, n) = 1. Then

(am _ I)U;" == ma"" 1 VmnIlr -1 [ja] (n), (14)
j=1 n

where [~] is the unique integer k such that k ::=; rx < k + 1.

PROOF. For 1 ::=; j < n write ja = qjn + rj where 0 ::=; rj < II. Then Ua/n] =
qjand since (a, n) = 1 the two sets {I, 2, 3, ... , n - I} and {rl' r2," " rn - d
are identical. By the binomial theorem

ram == rj + mqjnrj-I (n2).

Since rj == ja (n) we have

ram == rj + mam-In[~~]r- I (n2
) .

Summing over j = 1, 2, . .. , n - 1 gives

Sm(n)am == Sm(n) + ma"" InnIlr: I [!!!.] (n2).
j= I n

The result now follows from the congruence of Proposition 15.2.2. 0
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Corollary. Let p be a prime, p == 3 (4). Set m = (p + 1)/2. Then if p > 3

where (xlp) denotes the Legendre symbol.

PROOF . Notice m - 1 = (p - 1)/2 so by Euler's criterion am :- 1 == (alp) (p)
for all integers a.

In Voronoi's congruence set a = 2 and n = p. Using the above remark
we find

Now, [2jjp] = 0 for 1 ~j ~ m - 1 and [2jjp] = 1 for m <] < p. Also,
2m == 1 (p) and p,r Vm by Theorem 3. Thus

Since Lf~ 11 (j/p) = 0, the proof is complete. o

This corollary can be used to prove an interesting result relating class
numbers to Bernoulli numbers. Let p be a prime, p == 3 (4) and consider the

imaginary quadratic number field Q(j"=P). Let h denote its class number.
It can be shown that if p > 3

( (2)) ''(x)2- - h- L -
P 1 ':;.«p·2 P

For a proof, see Chapter 5, Section 4 of the book by Borevich and
Shafarevich [9]. Combining the corollary with this formula for h gives the
following remarkable congruence.

h == -2BcP+lIIZ(P).

The Voronoi congruences lead to many properties of Bernoulli numbers.
The following proposition is often attributed to 1. C. Adams. It gives some
information about the numerator of Bm •

Proposition 15.2.4. If P - l,r m then Bmlm is a p-inteqer.

PROOF. By Theorem 3, Bm is a p-integer. Write m = p'mo where p,r mo·
In the Voronoi congruence, Equation (14), put n = p'. Then (am - I)U m ==
o(p'). Choose a to be a primitive root modulo p. Since p - 1 ,r m we have
p,r am - I. Thus, Um == 0 (p'), and Bmlm = Umlm Vm is a p-integer. 0
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As a numerical illustration take m = 22 and p = 11. Then B2 2 =
11 · 131· 593 /2 ·3·23 so Bn/22 is integral at 11. Indeed it is a unit at 11.
As a further example take m = 50 and p = 5. One can factor B50 as follows

5 ·5 ·417202699 ·47464429777438199
B - - ----::-----::----:--c-- - --

50 - 2 .3 .11

Clearly, B50 /50 is a unit at 5. Less clear is the fact that the 17 digit number
in the numerator is a prime!

The following theorem in the case e = 1 is due to Kummer. These con
gruences are now referred to as the Kummer congruences.

Theorem 5. Suppose m ~ 2 is even, p a prime, and p - 1 ,r m. Define Cm =
(I - pm- 1)Bm/m. If m' == m (¢(p")) we have Cm' == Cm (p").

PROOF . Write, as usual, Bm= Um/Vm. Let t = ord pm. Proposition 15.2.4
shows p'IU m ' In Equation (\4) set n = p"?', Since p' divides both m and Um

we may divide the resulting congruence throughout by p'. Since (m/pl)Vm
is prime to p we arrive at the following congruence

( m 1)B p' •• - 1 [ .]_a_ - m = m - 1 '\' 'm - 1 J!!..- ( ")
- a L.. } '+1 p.

In j= 1 P
(15)

This congruence will lead the way to a full proof of the theorem. We will
give the proof first in the case e = 1. This case reveals the ma in idea, which
is quite simple, and avoids a slightly messy calculation which is necessary
when e > 1.

In the above congruence assume e = 1. On the right-hand side we may
omit those j which are divisible by p. If p,ri. then jP- 1 == 1 (p). Also, since
p,r a, a'"' \ == 1 (p). Thus modulo p the right-hand side is unchanged if
we replace m by m' with m' == m (p - 1). It follows that

(am' - I)Bm. = (am - I)Bm( )
-'---- --:-,--'--::.:... - p .

m m

Choose a to be a primitive root modulo p. Since p - 1 ,r m we have
am' - 1 == am - 1 1= 0 (p). Consequently,

e; s;
- , == -(p).
m m

When e > 1 this procedure must be modified because the terms involvingj
divisible by p are not so easily disposed of. What we do is to separate them
out and rewrite the corresponding sum. More precisely,

p" '-\ [ .] p"'-I [ .] p.. '- I - l [. ]
'\' 'm - 1 ..!..('.- = '\' 'm - \ )!!.- + m - I '\' 'm - 1 _IQ_ .
L.. } "+ 1 L.. } .+, P L.. I "+1-1

j " I P j= 1 P i =1 P
(p. j)= 1
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(16)

Consider the congruence (15) with e replaced by e - I and recall that
m - 1 ;::: 1. We find

m- I(m I)B p' • • - I - 1 [. ]p a - m= m-l m-I ,. 'm- l _IQ_ ( ' )
- paL I e+'- I p.

m 1= 1 p

Putting all this together, yields

(1 - m - 1)(am _ I)B p" I - 1 ['a ]P m= m- 1 ,. 'm - 1 _J_ (e)
- a L J ,+/ p.

m j = l P
(p. j )= 1

If p l' i , and m' == m (¢(pe» then r -1 == r- 1 (p'). Thus the right-hand
side of(l6) is unchanged modulo p" ifm is replaced by m' with m' == m (¢(p'».
The proof now proceeds exactly as in the case e = 1 and yields the full
result. 0

We make a short detour to indicate a modern interpretation of the
Kummer congruences.

Recall the Riemann zeta function '(s) = I :'= 1 n", In Exerci se 25 of
Chapter 2 we 'mentioned that '(s) can be extended to a function holomorphic
on the entire complex plane except at s = I where it has a simple pole with
residue 1. Moreover, it can be shown that ' (s) satisfies the functional equation

W - s) = 2(27t)-SCOsCr;)r(S)((S).

The f-function is defined and discussed in Chapter 16, Section 6. All we
require here is the fact that r(m) = (m - I)! when m is a positive integer.

Assume m ;::: 2 is an even integer. Combining the above functional
equation with Theorem 2 we find

-BW _m)=_m.
m

Define ' *(s) = (I - p-S)((s). Then '*(1 - m) = -(I - pm -I)Bm/m and
Theorem 5 states that if m' == m (¢(p'» then

'*( 1 - m') == ' *(1 - m)(p'). (17)

For a fixed prime p, the function d(n, m) = p-ordp(n-m) defines a metric
on 7!.., the p-adic metric. In this metric two integers are close if their difference
is divisible by a high power of p.The congruence (17) may be stated informally
as follows: if m' and m are close p-adically, and m' == m (p - 1), then '*( I - m')
and '*( I - m) are close p-adically. This suggests the possibility of extending'*to the metric completion of 7!.. , the ring of p-ad ic integers. These ideas
were made precise by H. Leopoldt and T. Kubota who were the first to
construct p-adic zeta functions and investigate their properties. Since then
many other approaches have been devised. In the method due to B. Mazur
the Bernoulli numbers are expressed as a certain p-adic integral of the
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functions x", The Kummer congruences have a very natural proof in this
context. For details the reader is referred to Chapter 2 of [162]. The truly
remarkable fact that properties of p-<wic zeta functions (and p-adic L
functions) are intimately related to the structure of class groups of cyclo
tomic fields is due to K. Iwasawa. Iwasawa gives a rather condensed and
austere account of his theory in his monograph [155]. Another exposition
of these matters is found in S. Lang [167].

We conclude this section with an application of Theorem 5. Namely
we will prove that there exist infinitely many irregular primes. This proof
is due to L. Carlitz [105].

Theorem 6. The set of irregular primes is infinite.

PROOF, Let {PI' . . . , Ps} be a set of irregular primes. We will find an irregular
prime not in this set.

Let k ~ 2 be even and set II = k(p I - 1) · · · (Ps - I), If the set is empty
choose II = k. By Proposition 15.1.1, part (c), choose k so large that I8 n/nI >
I. Choose a prime p with ordp(8Jn) > O. By Claussen -von Staudt p - 1 ,( n.
Thus P #- Pi> i = 1,. , ., s. Also p #- 2. We will show that p is irregular.

Let 11== m(p - 1) where 0::; m < p - 'I. Ther. m is even and m #- O.
Thus 2 ::; m ::; p - 3. By the Kummer congruence

e, _ e; ( )
- = - p .
II III

Since ordi8n/n) > 0 and ordp(8n/n - 8 m/m) > 0 it follows that

ordp(~nm) = ord, 8m > 0

which shows that p is irregular. 0

§3 Herbrand's Theorem

Let Dm be the ring of algebraic integers in the cyclotomic number field
Q«(m) and let P be a prime ideal of Dm not containing m. Thus if p is -the
rational prime in P then p,( m. In Section 3 of Chapter 14 we associated
to P a Gauss sum g(P) and showed g(pr = et>(P) E Dm . The Stickelberger
relation proved in Theorem 2 of that section gave the prime ideal decomposi
tion of et>(P) in Dm , namely

(et>(P» = pf.'CI,- '.

Here the exponent is an element of the integral group ring 1:: [ G] of the
Galois group G of Q«(m) and t ranges over the integers between 1 and m
which are relatively prime to m. The automorphism (1, sends (m to (~. We
remind the reader that the a bove exponential notation is a shorthand for
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(cI>(P» = nU.m ); 1 (CT,- I(P»'. If A is an ideal relatively prime to m then A
1 :5 l < m

is a product of prime ideals not containing m. It follows that Al:'a,- I is prin-
cipal. The following proposition will be needed. We postpone the proof
until later.

Proposition 15.3.1. Let K be an algebraic numberfield and let M be a fixed
ideal in the ring of inteqers of K . Then every ideal class of K contains an ideal
prime to M.

If ex is in the group ring ;E[G] where G is the Galois group of O«(m) then a.
operates in the obvious way on the ideal class group of O«(m)' The above
proposition implies that if :x = I tCT,- 1 then ex sends every ideal class to the
identity class. One says that ex annihilates the class group. It is natural to
ask if there are other such elements of the group ring. Further annihilating
elements are given below. First we need a definition.

Definition. The element 0 = I (tlm >a,-l, where t runs over a set of re
presentatives for the residue classes relatively prime to m, is called the
Stickelberger element. Here ( tim> denotes the fractional part of tim, which
depends only on the residue of t modulo 111. V is an element of the rational
group ring O[G]. If b is an integer prime to til let rb = (ab - b)O.

The follow ing proposition, whose proof we will postpone, is very important.

Proposition 15.3.2. The elements rbare in .l [G] and annihilate the class group.

We will see later that this proposition follows without much difficulty
from the Stickelberger relation.

With these preliminaries and assumed propositions in mind we proceed
to the principal goal of this section, the statement and proof of Herbrand's
theorem.

Let m = I, an odd prime. Roughly speaking, Herbrand's theorem states
that if I does not di vide a certa in Bernoulli number, then a piece of the class
group of O(~l ) is missing. To make this statement precise we need a few
definitions.

Let d be the subgroup of the ideal class group of 0«(,) consisting of
elements whose order divides I. In other words, an ideal class is in s:.1 if it
contains an ideal whose lth power is principal.

Definition. Let 1 ~ i ~ I - 1. Define

d j = {A E .t1 1An, = A';, 1 s t < I}.

It is easily seen that each .Nj is a subgroup of d. Also , since each element
of S:)/ has order dividing I, the exponents can be computed modulo I, i.e.,
d is acted on by the group ring ;Ei l;E [G]. If t E .l we denote by t its residue
cla ss modulo I.
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Lemma 1.d is the direct product ofthe d;. In other words, d = d\d2 . . . d/- 1

and d j (\ TIj ,oj d j = e (the identity class) for i = 1,2 , .. . , I - I.

PROOF. For each i with I ~ i ~ 1 - I we define elements r.; E l / ll [G] by
the formula

1-(

Ej = - L i:»;
,=I

Replacing t by ts in the formula lead s to the relation (J, E:j = Sir.j provided
that 1,r s. It follows that sic, s d j • On the other hand, if A E .rd j then

AI' = A -1: i - ' <7 . = A -(/ - 1) = A.

It follows that d " = ,Wi'
By Lemma 2 of Section 2 we see that 1':1 + 1:2 + .., + 1': /_ I = (JI, the

ident ity automorph ism. Thus

Suppose i"# j. Using the relation a.e, = sjej , the definition of ei, and
Lemma 2 of Section 2, we see ejej = O. It follows that dJ' = e. Let
A E d j (\ TIj ,oj sIj. On the one hand AC

' = A and on the other hand AC
' = e.

Thus, A = e and the proof is complete. 0

The follow ing theorem of J. Herbrand [149] gives a Bernoulli cr iterion
for the triviality of d j • The proof emerges from the interplay of the St ickel
berger relat ion and the Voronoi congruences.

Theorem 7 (J. He rbrand). Let i be a'1 odd int eger 1 ~ i < 1 and define j by

i + j = I.
Then .W I = (e). II i ~ 3 and l ,r B j th en .s¥; = (e).

PR OOF. Let A E .WI ' Th en, by Stickelberger's relation

This shows .w1 = (e) as asserted.
Now suppose i is odd and 3 ~ i ~ 1- 2. Let A E .f:l j • By Proposition

15.3.2 Arb = e where b is any integer prime to I. We ana lyze this relat ion
more carefully.

By defin ition rb = «(Jb - h)O. Now,

(JbO= L( t/ I) (Jb(J,- 1 = L( t/ I) (J"I:_ I" = L( bt/ I) (J ,- I.

Thus
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Write in = q,l + s, with 0 ~ s, < I. Then (hi ll) - b(ill) = s,ll - bill =
-q, = - [hi//]. This shows rb = - L [htll]lT,-1 E ~[G].

Suppose A E ..c1; . Applying (1,- 1 to A has the effect of raising A to the
power t'- 1-; = tj

- I . Thus, applying rh to A has the effect of raising A to
the power - L[htll]t j

-
I

•

Write e, = UiVj with tu; Vj) = 1. The Voronoi congruence, Pro
position 15.2.3, shows after some relabeling

(bj
- I)U j == jb j

-
I V/II

[htJt j
-

1 (I) .
r = 1 I

By the previous observations the right-hand side of this congruence
annihilates any element A E .c1;. Thus, for such an element Albj-1lUj = e.
Choosing b to be a primitive root modulo I we see l,r b! - 1 and so AUj = e.
If I ,r Bj , then l,r Uj and so A = e. Thus l,r B, implies d ; = (e) as asserted.

o

We remark that the converse of Herbrand's theorem was established by
K. Ribet in 1976 [208]. Namely, he showed that if j is even and 2 ~ j s
I - 3 then IIBi implies ·..el i # (e) for i = I - j. This beautiful existence
theorem depends on subtle arithmetic properties of modular forms and is,
unfortunately, beyond the scope of this book.

Writes! = «r,«: wherec/ ' = -W2 ·r:l4 · · ·.C'/'-1 andc/" = .w3 .cl s · · ·
.ri ,- 2 • Then .d = «r«: and .C'/+ (\ .r;/- = (e) (see Exercise 23). The
theorem of Herbrand implies 1.(';- I = 1 if l,r B, for j = 2, 4, . . . , 1- 3.
This was already known to Kummer who also showed, in essence, that
1.<1-1 = I implies I·CJI+ I = I. Thus, as we mentioned earlier, Kummer
showed that l,r Bj for j = 2,4, . . . , I - 3 implies the class number of O(~,) is
not divisible by I.

One of the most famous open problems in algebra ic number theory is
the conjecture of H. S. Vandiver. This states that the group .w+ of the
previous paragraph is always trivial. It is not too hard to show this is equ i
valent to the assertion that the class number of 0 «(/ + (,-I) = Q(cos(2n:/l))
is not divisible by I. Vandiver made this conjecture around 1920. See his
article on Fermat's Last Theorem [231]. If true the conjecture has many
important consequences. S. Wagstaff has shown Vandiver's conjecture
is true for all primes less than 125,000. This seems to be impressive evidence,
but Larry Washington has shown on probabilistic grounds that 125,000
is too small for the evidence to be convincing.

We conclude this chapter by giving proof of Propositions 15.3.1 and
15.3.2.

We begin with Proposition 15.3.1. Let K be an algebraic number field
and D its ring of integers. Let M c D be a fixed ideal. For any ideal A in D
let A denote its ideal class . Given A we will construct an ideal C such that
(C, M) = I and A-I = C. Th is shows the inverse of any class conta ins an
ideal prime to M. Thus every class contains an ideal prime to M. To construct
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C we proceed as follows , Let {Pt, P2 , , •• , P,; be the set of primes dividing
M which do not divide A. This set may be empty. If P IA let, as usual, a(P) =
ord; A denote the exponent of P in the prime decomposition of A. Choose

1t(P) E palPl _ pa(P)+ 1•

By the Chinese Remainder Theorem we can find an ex ED such that

cx == 1t(p)(pa(PJ+ 1) for PIA

IX == 1 (P i) for i = 1,2, .. . , t.

One checks easily that (ex) = AC with (C, M) = 1. Thus A- 1 = C and
the proof is complete. 0

Finally, we turn to the proof of Proposition 15.3.2. We will need the
following lemma which is proven in the same way as the special case m = I
done during the proof of Theorem 7.

Lemma 2. Let G denote the Galois group of Q«(m}/Q. The element rb =
(ab - b)O E .:l[G]. In fact, rb = - L [bt/m]a,- 1 where the sum is over 1 ~ t <
m with (r, m) = 1.

Let P be a prime ideal in Dm the ring of integers in Q«(m)' Assume m ¢ P
and let P n .:l = (p) . As in Section 3 of Chapter 14 we associate a Gauss
sum g(P) to P. We know g(P) E Q«(m, (p) = Q«(pm)'

Lemma 3. Let b be an integer prime to m. Determine b' by the conditions
b' == b (m) and b' == 1(p). Let ab' be the corresponding automorphism oj
Q«(pm)' Then

g(p)"b·-b E Q«(m)'

PROOF . The automorphisms of Q«(pm) which leave (m fixed are of the form
a, where (c, pm) = 1 and c == 1 (m). Let

Qb(P) = g(P)"b·-b.

We will show Qb(P)"< = Qb(P). This proves, by Galois theory, that Qb(P) E

Q«(m)'
Recall that g(P) = L l)t)"'(t) where the sum is over a reduced residue

system modulo m. Since Xp(t) E Q«(m) and "'(t) E Q«(p) we have

g(P)"b' = Lljt)b"'(t)

and

g(P)"b'''< = LXp(tt"'(t)"

= LXp(t)b"'(ct) .
Thus

(I)
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Similarly, we find
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(2)

Raising both sides of (2) to the bth power and dividing the result into
Equation (I) give flh(P)"<= flh(P) as asserted . 0

We are now in a position to complete the proof of Proposition 15.3.2.
Let P c Dm be a prime ideal not containing m. Stickelberger's relation
asserts that g(p)m E Q((m) and (g(p)m) = p m6. Applying (lb' - b to both
sides shows that (flb(p)m) = P'">. By Lemmas 1 and 3 above, this becomes,
in Don' the equation (flh(p))m = (prb)m. It follows from unique factorization
for ideals that P'" = (flh(P» . Thus P'» is a principal ideal and therefore
Arb is principal for any ideal A relatively prime to (m) . By Proposition
15.3.1 we conclude that rb annihilates the class group of Don . This completes
the proof. 0

NOTES

In 1960 Vandiver published a survey article in which he remarks that some
1500 papers on Bernoulli numbers had been published [232]. Clearly,
this sequence of numbers has considerable fascination and importance.
The most extensive treatise that has appeared on Bernoulli numbers is the
classic by N. Nielsen [199]. A more accessible modern source is the first
two chapters of the book on analytic number theory by H. Rademacher
[204]. This book has an exposition of the Euler--Macl.aurin summation
formula, an important application of the Bernoulli numbers which we have
not considered .

The evaluation of ( (s) at the positive even integers by Euler was a major
accomplishment. It is surprising that almost nothing is known about the
values of ( (s) at positive odd integers. In 1978 the French mathematician
R. Apery created a sensation by finding an extraordinarily ingenious proof
that ( (3) is irrational. See the entertaining article by A. van der Poorten
[133].

The relation of Bernoulli numbers to Fermat's last Theorem and the
arithmetic of cyclotomic number fields is very close as is evident from the
numerous references to them in the scholarly book by P. Ribenboim [206];
see, in particular, Section 2 of Lecture VI. The short expository article by
Vandiver [231] is also worth consulting .

The paper [159] by Johnson has a very readible discussion of regular and
irregular primes and mentions a number of interest ing open problems.
We follow his brief history of the calculation of irregular primes. Kummer
himself determined that 8 of the first 37 primes were irregular. In the 1930s
Vandiver and others extended the calculation to all primes less than 618.
In 1955 Vandiver, D. H. Lehmer, Emma Lehmer, Selfridge, and Nicole
worked up to 4001. In 1964 Selfridge and Pollack announced computations
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up to 25,000. These were not published. In 1970 Kobelev published tables up
to 5500 and in 1973 Johnson attained 8000. In 1975 Johnson made it up
to 30,000. As stated earlier, the current record is due to Wagstaff, 125,000.
The art of computing has come a long way!

The following result was discovered independently by T. Metsankyla
[188] and H. Yokoi [247]. Let m > 2 be an integer and H a proper-subgroup
of U(7Ljm7L). There exist infinitely many irregular primes p such that the
congruence class of p modulo m is not in H. By contrast, there is not a single
modulus m > 2 known for which there exist infinitely many irregular
primes p == 1 (m).

The main theorem of Section 3 was published by Herbrand in 1932
[149]. A proof relying on p-adic numbers and congruences for generalized
Bernoulli numbers can be found in Ribet's paper [208]. See also Chapter 1
of Lang's book [167]. There are a number of important conjectures which
concern the p-primary component of the class group of Q«(p). The introduc
tion to the paper of A. Wiles [242] describes a conjecture which makes
Herbrand's theorem more precise.

EXERCISES

1. Using the definit ion of the Bernoulli numbers show B10 = 5/66 and BJ 2 =
-691 /2730.

2. If a E 71., show a(am - I )B.. E 71. for all m > O.

3. If a E 71., show am(am - I)B..[m E 71. for all m > O.

4. If m ~ 4 is even, shov 2Bm == 1(4).

5. If p is an odd prime and p - 11m show (B.. + p-I - I)/m is p-integral. This result
is due to L. Carlitz.*

6. For m ~ 3, show IB 2.. + 2 1> IB 2.. 1. (Hint : Use Theorem 2.)

7. Let m ~ 2 be an even integer. Show there exist infinitely many n ~ m such that
B; - B.. E 71. . [Him : Let q be a prime such that q == I «m + I)!) and try II = qm.
The existence of infinitely many such primes q is shown in Chapter 16. This result
is due to R. Rado.]

8. Consider the power ser ies expansion of tan(x) about the or igin :

<Xo xH- 1

l: 7k ' .
k = I (2k - I)!

Show T,. = (-I)k-1 (B21 /2k)(22k
- 1)221• Note that 7k E 71. for all k by Exerc ise 3.

9. Using Lemma I in Section I show the radius of convergence of l::=0 Bn(tnjll!) is
2n:. As a consequence show that for a ny C, k > 0 there are infinitely many II such that
IB.I > cw . (This result is weaker than the estimate given by Equation (8) of
Sect ion 1.On the other hand, it is much easier to obtain.)

• L. Carlitz . Some congruences for the Bernoulli numbers. Amer . J. Math ., 75 (1953), 163-172 .
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10. Use the Voronoi congruences to obtain the follow ing result of Kummer.

I(_1)4(r) B~' +4(P -1 1 =o(p')
4 =0 k 211 + k(p - I)

pro vided 2 ~ r + I $ 211 and p - 1 ,( 2/1. This is a bit tricky. With minor changes
in notation the pro of is contained in Section 8 of Chapter IX of the book by
Uspen skyand Heaslet [230].

II. Those familiar with the approach of B. Mazur to p-adic zeta and L-funct ions can
try the follow ing. Let II. be the normalized " Ma zur measure " on 1l.p • Use the
Vor onoi congruences to prove st X4 - 1 du; = (0: - 4 - 1)(1 - p4 - 1) ( -B4/k ). For
the not at ion and the definition of the Ma zur measure the reader can consult
Ko blitz [162].

12. Recall the definit ion of the Bernoulli polynomials ;

Bm(x) = f (m)B4 X
m- 4

.
4 = 0 k

Show that te ,x/(e' - I) = I ;:,'=oBm(x)(tm/m !).

13. Show Bm(x + I) - Bm(x ) = mxm- I
•

14. Use Exerc ise 13 to give a new pro of of Theorem I.

15. Suppose I(x) = IZ = 0 a. x4 is a polynomial with complex coefficients. Use Exercise
13 to find a poly no mial F(x) such that F(x + I ) - F(x ) = f ix).

16. For II ~ I show (d/dx)B. (x ) = IIB. _I ( x ).

17. Show B.(I - x) = (-I)"B_(x).

18. Use Exercises 13 and 17 to give a new pro of that B_ = 0 for II odd and II > I.

19. Suppose II and F a re integers and II , F > O. Show that

F-I ( a)
B.(Fx) = F' - I I B. x + - .

0= 0 F

(Him : Use Exercise 12.)

20. Suppose H( x ) is a polynomi al of degree II with complex coefficient s. Suppose that
for a ll integer s /I . F > 0 we have H(Fx) = F" -I I :,:-J H(x + (a/F»). Show that
H(x ) = CB.(x ) for some con stant C. (Him : Use Exerc ise 16 and induct ion on n.)

21. Show B.W = (I - 2· - I )B• .

22. More generally, show that (1 - F" -' )B. = I :,:-i B.(a/F).

23. Prove the assertionst .s/ = st +.Qr and .w+r, .>1 - = (e).



Chapter 16

Dirichlet L-furictions

The theory ofanalytic functions has many applications in
number theory. A particularly spectacular application was
discovered by Dirichlet who proved in 1837 that there are
infinitely many primes in any arithmetic progression
b, b + m, b + 2m, . . . , where (m, b) = 1. To do this he
introduced the Lfuncuons which bear his name. In this
chapter we will define these functions , investigate their
properties, and prove the theorem on arithmetic pro
gressions. The use of Dirichlet L-functions extends
beyond the proof of this theorem. It turns out that their
values at negative integers are especially important . We
will derive these values and show how they relate to
Bernoulli numbers.

For the most part we will use only basic calculus. How
ever, in Section 6 where we discuss the value of the L
functions at 1 we use complex function theory in an
essential way . This can be avoided but to do so involves
sacrificing both depth and elegance. All the necessary
background can be found in any standard treatise . The
book of L. Ahlfors [85] is a convenient reference. In
Sections 1-4 the letter s wiII stand for a real variable,
s > I.

§1 The Zeta Function

The Riemann zeta function ( s) is defined by (s ) = I :=1 n:'. It converges
for s > 1 and converges uniformly for s ~ 1 + b > 1, for each b > O.

Proposition 16.1.1. For s > 1

( s) = n (1 - p-S)-l ,
P

where the product is over all primes p > O.

PROOF. For s > 1, p-s < 1, so we have (1 - p-S) -l = I :=o p-ms. By the
theorem of unique factorization

Il (1 - p -S)-l = I n ? + RN(s).
p s, N «s »

249
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Clearly, RN(s) ~ L:'=N+ I « : Since (s) converges, RN(s) -> 0 as N -> 00. The
result follows. 0

The behavior of (s) as s -> 1 is very important. Since L:'= I n- I diverges
we, of course, suspect (s) -> 00 as s -> 1. In fact,

Proposition 16.1.2. Assumes > 1. Then

lim (s - l)«s) = 1.
s-I

PROOF. For fixed s, t " is a monotone decreasing function of t. Thus,

(n + 1)-s < f+ I r: dt < n" .

Summing from n = 1 to 00,

«s) - 1 < S:" t -s dt < (s).

The value of the integral is (s - 1)-1 . It follows that 1 < (s - 1)(s) < s.
Taking the limit as s -+ 1 gives the result. 0

Corollary. As s -> 1 we have

In (s) -> 1.
In(s - 1)-1

PROOF. Let (s - 1)(s) = p(s). Then In(s - 1) + In (s) = In p(s) so we have
In (s)/In(s - 1)-1 = 1 + (In p(s)/In(s - 1)-1).

As s -+ I, p(s) -+ 1 by the proposition. Therefore, In p(s) -> 0 and the
result follows . 0

Proposition 16.1.3. In (s) = Lp p-s + R(s) where R(s) remains bounded as
s -+ 1.

PROOF. We use the formula -In(1 - x) = x + x 2/2 + x 3/3 + .. . which is
valid for - 1 < x < 1.

By Proposition 16.1.1 we have

(s) = Il (1 - p-s)-IAN(S),
p$N

where AN(S) -> 1 as N -> zc, Taking the logarithm of both sides yields
In (s) = Lp$N L:=I m-Ip-ms + In AN(S).

Taking the limit as N -> OCJ
00

In (s) = L L m-Ip-ms
P m= I

00

= L p" + L L m-Ip-ms.
P P m= 2



§2 A Special Case

The second sum is less than

(J)

L L p- m. = Lp- 2'(1 - P-.) - 1
p m=2 p

s (1 - 2-T ' LP-2.:::; 2(2).
p

Throughout we have used the assumption that s > 1.
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Definition. A set of positive primes 9 is said to have Dirichlet density if

lim Lpe9" p-'
.-1 In(s - 1) 1

exists. If the limit exists we set it equal to d(9) and call d(9) the Dirichlet
density of 9 .

Proposition 16.1.4. Let ~ be a set ofpositive primenumbers. Then

(a) If9 is finite, then d(9) = O.
(b) If 9 consists of all but finitely many positive primes, then d(9) = 1.
(c) If .9 = f!}1 U ~2 where&'1 and 9 2 are disjoint and d(9,) and d(~2) both

exist, then de&') = d(&',) + d(92).

PROOF. Parts (a) and (c) are clear from the definition of Dirichlet density.
Part (b) follows quickly from the corollary to Proposition 16.1.2 and Proposi
tion 16.1.3. 0

We are now in a position to state the main theorem of this chapter. The
proof will be spread out over the next three sections.

Theorem 1(L. Dirichlet). Supposea, m E 7L., with (a, m) = 1. Let &'(a ;m) be the
set of positive primes p such that p = a (m). Then d(~(a; m» = ll¢(m).

Note that Theorem 1 certainly implies &'(a; m) is infinite, since if it were
finite its density would be zero.

§2 A Special Case

We will first prove Theorem 1 in the case where m = 4. The basic ideas of the
proof are all present in this special case but the details are more transparent.

Define a function X from 7L. to {O,± I} as follows; x(n) = 0 if II is even,
X(II) = I if II = I (4), and X(II) = -I if II = 3 (4). It is easily seen that
x(mll) = x(m)x(n) for all m, II E 7L..
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Define L(s, X) = I:;I1.(n),,- S = 1 - r s + 5- s
- r s + .... For all n

we have Ix(n),,-S I :s; n -SoIt follows that the terms of L(s, 1.)are dominated in
absolute value by the terms of (s) . Thus L(s, 1.)converges and is continuous
for s > 1.Since X is completely multiplicative the proof of Proposit ion 16.1.1.
shows that

us.X) = n(1- Z(p)p-S) -l .
p

It is useful to modify ( s ) so as to suppress the even terms. Define ( *(s ) =
I"Odd «:: Since

00

(s) = I n- S = I ,,-s+ I n- S = (*(s) + rS( s)
n;;:: 1 n odd n even

we have (*(s) = (1 - 2- S )( s ) and so

(*(s) = n(l - p - S)-l.
podd

Using the method of proof of Proposition 16.1.3 we find

In L(s, I.) = I 1.(p)p- S + R.<.~),
podd

In (*(s) = I o" + R 2(s),
podd

(i)

(ii)

where R1(s) and R 2(s) remain bounded as s ..... 1.
We have 1 + X(p) = 2ifp =1 (4) and 1 + X(p) = Oifp =3 (4). Similarly,

1 - 1.(p) = 2 if p =3 (4) and 1 - X(p) = 0 if p =1 (4). From (i) and (ii) we
deduce

In (*(s) + In L(s, X) = 2 I v" + R 3(s),
p= 1 (4 )

In (*(s) - In L(s, 1.) = 2 I p-S + R 4(s),
p=3(4)

(iii)

(iv)

where R3(s) and R4 (s) remain bounded as s ..... 1.
The next step is to show that In L(s , X) remains bounded as s ..... 1. To see

this write L(s, X) = 1 - r s + 5- s
_ = (1 - r S

) + (5- S
- r S

) + ...
= 1 - (3-s - 5- S) - (r S - 9- S) - It follows that for all s > 1 we have
i < L(s, X) < 1. Thus, for s > 1 we have In i < In L(s, 1.) < In 1 = O.

As a final preparatory step we note that In (*(s) = In(1 - r S
) + In (s) so

by the corollary to Proposition 16.1.2. we have In (*(s)/In(s - 1)-1 ..... 1 as
s ..... 1.

Now divide each term of Equations (iii) and (iv) by In(s - 1)- I and take
the limit as s ..... 1. The result is
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Proposition 16.2.1. d(::!i'(I; 4)) = t anti d(.?I'(3; 4» = t.
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To prove Theorem I in the general case we need to generalize X and
L(s, X). This leads to the introduction of Dirichlet characters and Dirichlet
L-functions.

§3 Dirichlet Characters

The function Xconsidered in the last section can be obtained from the follow
ing construction. Consider the group U(7L/47L). This group has two elements
I + 47L and 3 + 47L. Define x': U(7L/47L) -> {± I} by x'(l + 47L) = 1 and
/(3 + 47L) = -1. Then x' is a homomorphism from U(7L/47L) to 1[* . For
II E 7L define X(II) = 0 if (n, 4) > I and x(n) = l(n + 47L) if (n, 4) = 1. This
function x:7L -> 1[* coincides with the function X of the last section.

This construction is easy to generalize. Let III be a fixed positive integer.
Let 1.' : U(7L/m7L) -> 1[* be a homomorphism. Given l define X: 7L -> 1[* as
follows; if (n, m) > 1 set x(n) = 0, if (n, m) = 1 set x(n) = x'(n + m7L). The
functions X defined in this manner are called Dirichlet characters modulo Ill.

Another characterization is given by the following three conditions on a
function x: 7L -> 1[*

(a) x(n + 111) = I.(n) for all n E 7L
(b) x(kn) = l.(k)X(II) for all k, n E 7L
(c) x(n) -# 0 if and only if (n, m) = I.

It is an easy exercise to see that these three conditions specify the set of
Dirichlet characters modulo Ill.

To investigate the properties of Dirichlet characters we begin by studying
a more general problem.

Let A be a finite abelian group (written multiplicatively). A character on A
is a homomorphism from A to 1[* . The set of such characters will be denoted
by A. If X' t/J E A define I.t/J to be the function which takes a E A to I.(a)t/J(a).
Then I.t/J is also a character. We show that this product makes Ainto a group.
Define Xo, the trivial character, by Xo(a) = 1 for all a E A. If XE Adefine X-I

by [I(a) = x(a) - I for all a EA. It is easily seen that [I E Aand X[ I = Zo 
With these definitions A becomes an abelian group with 1..0 as the identity
element. We omit the more or less obvious details.

Let n be the order of A. If a E A, then an = e, the identity element of A. So, if
I. E A we have x(ar = 1, i.e., the values of Xare nth roots of unity. It follows
that I.(a) = x(a)-I = 1.- ' («), where bar denotes complex conjugat ion . Thus
[1 is sometimes written 1. and called the conjugate character of X.
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Two questions present themselves immediately. How big is A? What is its
structure'? The questions are easy to answer when A is cyclic. In the general
case we will use a theorem from group theory which asserts that a finite
abelian group is a direct product of cyclic groups (see l. Herstein [150]).
When A = U(71. jm71.), the case of interest to us, this result follows from Theorem
3 of Chapter 4.

Suppose that A is cyclic and generated by an element 9 of order n. Let
(n = e2niln. If XE Awe have X(g) = (: for some uniquely determined integer e
such that 0 ::; e < n. Since X(gm) = X(g)m, X is determined by its value at g.
Conversely, if 0 ::; e < n define X(gm) = G,e. It is easy to see X is well defined
and is a character. Thus there are exactly n characters on A. Let XI E Abe such
that XI(g) = (n' If XE A and X(g) = (~, then X(g) = XHg) which implies
X = xi · This shows that A is cyclic and generated by XI' Thus A ::::: A.

In general A is a direct product of cyclic groups. This means that there are
elements g .. g2" '" g, E A such that

(i) The order of g; is ni •

(ii) Every element a E A can be uniquely written in the form a = gi'gi' ... g';"
where 0 ::; m; < ni for all i.

If the order of A is n, then clearly n = n ln2·· · nt •

Suppose XE A. Then X is determined by the values X(gi) = (~: where 0 ::;
ei < ni ' Conversely, given at-tuple (c., e2" ' " er) with 0::; e, < nJor all i we
can define a character Xas follows. For a E A write a = gi tgi' . . . g';" as in (ii)
and set x(a) = ~::,..e l'::'" e ,~~, e, . It can easily be checked that Xis a character.
There are thus n I n2 • • • n, = n characters on A. Moreover, let Xi be specified by
the conditions X;(gi) = (n.and Xi(gi) = 1for i #- j .Then Xihas order ni and A is
the direct product of the cycl ic subgroups generated by the Xi' This shows
A::::: A.

The next two results will be of importance in the next section.

Proposition 16.3.1. Let A be a finite abelian qroup.Tfy, l/J E Aand a, b E A, then

(i) LU€A x(a)l/J(a) = nc5(x, l/J) where c5(X, X) = I and c5(X, l/J) = 0 if X#- l/J .
(ii) Lxd x(a)x(b) = nc5(a, b) where c5(a, a) = 1 and c5(a, h) = 0 if a #- b.

PROOF . Since Ia€A x(a)l/J(a) = La€A Xl/J-I(a) it will be enough to show (i)
that we can prove La€ Ax(a) = n if X = Xo and La€ Ax(a) = 0 if X #- Zo- The
first assertion is clear by definition. Assume X #- Zo -Then there is e b e A such
that X(b) #- 1. We have Ia x(a) = La x(ba) = x(b) Ia X(o) and so (X(b) - 1)
Ia x(a) = O. Since X(b) - 1 #- 0 this implies La x(a) = O.

To prove (ii) we first note that Lx x(a)x(h) = Lx x(ab - I) . It suffices to
show Lxx(a) = n if a = e and Lx x(a) = 0 if a #- e. The first assertion is
clear. Assume a #- e. We claim there is a character l/J such that l/J(a) #- 1.
To see this write a = gi'g';' . . . g';" with 0 ::; Ini < ni for all i. Since a #- eat
least one mi #- O. Then X;(u) = Xi(g;)m , = ~::: ' #- I. Take l/J = Xi' Then.
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Ix x(a) = Lx l/tx(a) = l/t(a) Ix x(a) and so (I/I(a) - 1) Lx x(a) = O. Since
l/t(a) - 1 =f:. 0 we have Ix x(a) = O. 0

The relations given by (i) and (ii) are called the orthogonality relations.
We now interpret these for Dirichlet characters modulo m. Here we take
A = U(7L/m7L). Dirichlet characters are defined on 7L but induce and are
induced by elements in the character group of U(7L/m7L). Hence there are
exactly ¢(m) Dirichlet characters modulo 111. From the definition and the last
proposition wededuce

Proposition 16.3.2. Let Xand l/t be Dirichlet characters modulo m, and a, b E 7L.
Then

(i) L::d x(a)l/t(a) = ¢(m)t5(x, l/t),
(ii) Lx x(a)x(b) = ¢(m)t5(a,h).

I n part (ii) the sLIm is over all Dirichlet characters modulo m, and t5(a, b) = 1
if a == b (m) mid t5(a, h) = 0 if a ¥= b (m). •

§4 Dirichlet L-functions

Let X be a Dirichlet character modulo m. We define the Dirichlet L-function
associated to X by the formula

00

L(s, X) = L x(n)n -So
n=1

Since Ix(n)n-SI =:; n : ' we see that the terms of L(s, X) are dominated in
absolute value by the corresponding terms of '(s). Thus L(s, X) converges
and is continuous for s > 1. Moreover, since Xis completely multiplicative we
have a product formula for L(s, X) in exactly the same way as for '(s). Namely,

L(s, X) = n(l - X(p)p-s)-I.
p

Since X(p) = 0 for pim the above product is over positive primes not
dividing m. The formula is valid for s > 1.

There is a close connection between L(s, Xo) and '(s). In fact,

L(s, Xo) = n(l - p-s)-I
Pt m

= n (1 - p- S)n (1 _ P- S) - I

p im p

= n(I - p-S)~(s).
pjm
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From Proposition 16.1.2 we see lims _ t (s - 1)L(s, Xo) = np!m (I _ p - 1) =
¢(m)/m. In particular L(s, Xo) -+ 00 as s -+ I.

To generalize the proof of Proposition 16.2.1 we will need to consider
In L(s, X). Even if we restrict s to be real, the values of Lis, X) are in general
complex so it is necessary to worry about the fact that In z is multivalued as a
function ofa complex variable z. One way around this is to define In L(s, X)by
an infinite series.

Let Xbe a Dirichlet character and define G(s, X) = Lp L = t (l /k)X(pk)p- ks.
Since 1( I /k)X(pk)p- ks l :S; p-ks and since ( s) converges for s> I and con
verges uniformly for s ~ 1 + b > 1 we can conclude the same assert ions are
true for G(s, X). Consequently G(s, X) is continuous for s > 1. Moreover, for z
a complex number with [z] < 1 we have exp(L<Xl=t (I /k) Zk) = (1 - Z)-l ,
where exp denotes the usual exponential function . Subst ituting z = X(p)p-S
we find exp(Lk= 1 (l/k)X(pk)p -kS) = (I - X(p)p-S)- t and a simple argument
then shows exp G(s, X) = L(s, X) for all s > .1.Thus the infinite seriesG(s, X)
provides an unambiguous definition for In L(s, X) . To avoid confusion we
work directly with G(s, X).

From the definition and the argument used in the proof of Proposition
16.1.3 we find

G(s, X) = L X(p)p- S+ Rx(s),
pt m

(i)

where Rl~) remains bounded as s -+ I. Multiply both sides of (i) by x(a)
where a E 7L, (a, m) = I. Then sum over all Dirichlet characters modulo m.
The result is

L x(a)G(s,X)= Lp-s Lx(a)x(p) + Lx(a)Rx(s).
z ptm x x

Using Proposition 16.3.2, part (ii), we see

L x(a)G(s, X) = ¢(m) L p-s + Rx.O<s),
x p ;;,a(m)

(ii)

where Rx.O<s) remains bounded as s -+ 1.
To conclude the proof of Theorem 1 we need the following proposition.

Proposition 16.4.1. If Xo denotes the trivial character modulo m, then lims _ t

G(s, Xo)/In(s - 1)- 1 = 1. Ifx is a nontrivial Dirichlet character modulo m, then
G(s, X) remains bounded as s -+ 1.

PROOF . The first assertion is easy. L(s, Xo) is a real valued function of
positive real numbers. We have seen Lis, Xo) = nplm (I - p-SK(s). It follows
that G(s, Xo) = Lplm In(l - p- S) + In (s). The assertion now follows from
the corollary to Proposition 16.1.2.

The second assertion is quite deep. It is the most difficult part of the proof
of Dirichlet's theorem on arithmetic progressions. We postpone the proof to
the next section.

Now, assuming the above proposition, the proof of Dirichlet's theorem
follows quickly from Equation (ii). We simply divide all the terms on both
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sides by In(s - 1)-1 and take the limit as s -+ 1. By the above proposition, the
limit on the left-hand side is 1 whereas the limit on the right-hand side is
¢ (m)d(:!J(a; m)). Thus d(:!J(a ; m)) = Ij¢(m) and we are done. 0

§5 The Key Step

Up to now all our funct ion s ha ve been defined for s > 1.We will show how to
extend the domain ofdefinition to s > O. In particular, if Xis nontrivial we will
see th at L( I, X) is a well defined complex number and prove that L(l , X) # O.
This is the key step. Once we know this it is a relatively simple matter to show
G(s, X) remains bounded as s -+ 1. This was what was left unproved in
Sect ion 4.

In what follows we will consider s as a complex variable. Write s =
(J + it where (J and t a re real. The symbol (J will be used throughout to denote
the real pa rt of s.

Ifa > 0 is real then IaSI = a". F rom this observation we see that the series
de fining (s ) and L(s, X) con verge and define an ana lyt ic function of the
complex var iab le s in the half plane {s E CJ (J > I }.

Lemma I. Suppose {an} and {bn} fo r n = 1,2,3, ... are sequences ofcomplex
numbers such that L :'=I a.b; converges. Let An = a l + a2 + ... + an and
suppose Anbn -+ 0 as /I -+ 00 . Then

"" 00L a.b; = L Ai bn - bn + I )'
n = 1 n= 1

PROOF. Let SN = L;= I an bn· Set Ao = O. Then

N N N
S,y = L (An - An- I)bn = L Anbn - L An-I bn

n = 1 n= 1 n =1

N N- I

= L Anbn - L Anbn+ I
n =1 n=1

N- I
= AN b,v + L An(bn - bn+ I)'

n=1

T ak ing the limit as N -+ o: yields the result. o

Propo sition 16.5.1. (s ) - (s - 1)- I can be continuedto ananalyticfunction on
the region {s E el er> O}.

PROOF. Assume a > 1. Then, by the lemma

00 00

(s) = L n"" = L n(n- S - (n + 1)- S).
n= l n=t
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For a real number x recall that [x] is the greatest integer less than or equal
to x and ( x) = x - [x]. From the above expression for (s ) we find

( s) = s.~t n f+\-.-I dx

= S'~l f+I [x]x- S
-

I dx

= s Joo [x]x-'- I dx

= S f.<Xl x - s dx - S f.<Xl ( x)x - S
-

I dx

= _ s _ _ s 5 °O (X )X- s - t dx.
s - 1 1

Since 1( x) 1 ~ 1 for all x the last integral converges and defines an analytic
function for (J > O. The result follows . 0

We will use the same technique to extend L(s, X) but first we need another
lemma.

Lemma 2. Let I. he a nontrivial character modulo m. For all N > 0 we have
I I~=o 1.(n) 1 ~ ¢ (m).

PROOF. Write N = qm + r where 0 ~ r < m. Since 1.(n + m) = X(1I) for all n
we see

J/n) = qCt>(1I») + .tl.(n).
By the Propos ition 16.3.2, (pan i), we have I::d x(n) = O. Thus,

IJ/ (n)I= l.t1.(n) I~ :t~I1.(n) 1 = ¢(m). 0

Proposition 16.5.2. Let X be a nontricial Dirichlet charac ter modulo m. Then ,
L(s. X) can be continued to WI analytic fun ction in the region {s E q (J > O}.

PROOF, Define S(x) = I. sx 1.(n).
By Lemma 1 we have for (J > 1,

00

L(s , 1.) = I S(n)(n - S - (n + 1)- S)
n = 1

00 fl/ +1

= S'~l S(n). X-
s

-
I

dx

=S f "'S(X)X -S-1dX.
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By Lemma 2, ISex) I s ¢(m) for all x. It follows that the above integral
converges and defines an analytic function for all s such that a > O. 0

Our goal is to show that for Xnontrivial L(I, X) =I O. The next proposition
willenable us to give a simple proof in the case where Xisa complex character,
i.e., a character which takes on nonreal values.

Proposition 16.5.3. Let F(s) = Ox L(s, X) where the product is over all
Dirichlet characters modulo m. Then,for s real and s > I we have F(s) ~ 1.

PROOF. Assume s is real and s > 1. Recall that

<Xl I
G(s, X) = L L - X(l)p-ks.

p k= I k

Summing over Xand using Proposition 16.3.2, part (ii), we find

1I G(s, x) = ¢(m) Lkv:"
X

where the sum is over all primes p and integers k such that pk == I (m).
The right-hand side of the above equation is nonnegative (in fact, it is

positive). Taking the exponential of both sides shows Ox L(s, X) ~ I as
asserted. 0

Proposition 16.5.4. If X is a nontrivial complex character modulo m, then
LO, X) =I o.

PROOF. From the series defining L(s, X) we see that for s real, s > I. L(s, X) =
L(s, X). Letting s tend towards I it follows that L(l, X) = 0 implies L(l, X) = O.

Assume L( I, X) = 0 where X. is a complex character. The functions L(s, X)
and L(s, X) are distinct and both have a zero at s = 1. In the product F(s) =nx L(s, X)we know L(s, Xo) has a simple pole at s = I and all the other factors
are analytic about s = 1. It follows that F(!) = O. However, Proposition
16.5.3 shows F(s) ~ 1 for all real s > 1. This is a contradiction. Therefore,
L(I, X) =I O. 0

It remains to consider the case where X is a nontrivial real character, i.e.,
x(n) = 0, I, or - I for all n E 71... Dirichlet was able to prove L(I, X) =I 0 by
using his class number formula for quadratic number fields (to be more
accurate, for equivalence classes of binary quadratic forms of fixed dis
criminant). We will use an elegant proof due to de la Vallee Poussin (1896),
following the exposition of Davenport [119].

Lemma 3. Suppose f is a nonnegative, multiplicative/unction on 71.. +, i.e.,for all
Ill, n > 0 with (m, n) = I, f(mn) = f(m)f(n) . Assume there is a constant



260 16 Dirichlet L-functions

c such that f(l) < c for all prime powers l . Then I :'= I f(lI)n - s COli verges
for all real s > 1. Moreover

J/(n)II-
S = Q(~ + J/(l)p-ks).

PROOF. Fix s > 1. Let a(p) = Ik= I f(pk)p-ks. Then ~(p) < cp-s Ik= (l p-ks =
cp-s(l - p-S)-l,andsoa(p) < Lcp"", For positive x one has 1 + x < expx.
Thus

n (1 + a(p» < n exp a(p) = exp I a(p).
p :5, .'V p :5,N p:5,.'V

Now, Ip:5, N a(p) < 2c Ip p-s = M. From the definition of a(p) and the
multiplicativity off we see I~= I f(lI)n - s < np :5,N (1 + a(p». It follows that
I~= 1 f(n)n - S < exp M for all N . Since f is, by assumption, nonnegative we
have I:'= I I(n)II- S converges.

The last assertion of the lemma follows from the same reasoning used in
the proof of Proposition 16.1.1. 0

Theorem 2. Let Xbe a liontrivial Dirichlet character modulom. Theil L(l, X) i= O.

PROO F. Having already proved that L(l, X) i= 0 if Xis complex we assume Xis
real.

Assume L(l, X) = 0 and consider the function

ljJ(s) = L(s, X)L(s, Xo)
L(2s, Xo)

The zero of L(s, X) at s = 1 cancels the simple pole of Lis, Xo) so the
numerator is analytic on (J > O. The denominator is nonzero and analytic for
(J > 1- Thus ljJ(s) is analytic on (J > t. Moreover, since L(2s, 1.0) has a pole at
s = t we have ljJ(s) --+ 0 as s --+ t.

We assume temporarily that s is real and s > I. Then ljJ(s) has an infinite
product expansion

ljJ(s) = n(1 - X(p)p -S) -I(l - Xo(p)p-S)-I(l - XO(p)p-2s)
p

(1 _ p-2S)

= L! (1 - p-s)(l - X(p)p S)

If X(p) = -1 the p-factor is equal to 1. Thus

1 + p- s
ljJ(s) = n 1 s'

xlpl= I - P

where the product is over all p such that l.(p) = 1. Now ,

1 + p ~: = (l + P-S)( f p-kS) = 1 + Lp? + 2p-2s + ... +.
1 - P k=O
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Applying Lemma 3 we find that I/I(s) = I:,= 1 a.n " where an ~ Uand the
series converges for s > 1. Note that a I = L (It is possible, but unnecessary to
give an explicit formula for an)'

We once again consider I/I(s) as a function of a complex variable and ex
pand it in a power series about s = 2, I/I(s) = I;,=o bm(s - Z)", Since I/I(s) is
analytic for a > t the radius of convergence of this power series is at least l
To compute the b.; we use Taylor's theorem, i.e., bm= I/Ilm'(2)/m! where
I/II"')(S) is the mth derivative ofl/l(s). Since I/I(s) = I:'= 1 ann-s we find l/I(m)(2) =
I:,= t an( - 1/1 n)m/l-2 = (-I)"'cmwith Cm ~ O. Thus I/I(s) = I:,=o cm(2 - s)"
with em nonnegative and Co = 1/1(2) = I:,= t ann-

2 ~ at = 1. It follows that
for real s in the interval (t, 2) we have I/I(s) ~ L This contradicts I/I(s) --> 0 as
s --> t, and so L(I, X) #- O. 0

We are now in a position to prove Proposition 16.4.1. Suppose X is a non
trivial Dirichlet character. We want to show G(s, X) remains bounded as
s --> 1 through real values s > L

Since L(l, X) #- 0 there is a disc D about L(I, X) such 0 ¢ D. Let In z be a
single-valued branch of the logarithm defined on D. There is a <5 > 0 such that
L(s, X) E D for s E (1, 1 + <5). Consider In L(s, X) and G(s, X) for s in this
interval. The exponential of both functions is L(s, X). Thus there is an integer
N such that G(s, X) = 2rr.iN + In L(s, X) for s E (1, 1 + <5). This implies
lims _ t G(s, X) exists and is equal to 2rr.iN + In L(1, X). Since G(s, X) has a limit
as s --> I it clearly remains bounded.

§6 Evaluating L(s, X) at Negative Integers

In the last section we showed how to analytically continue L(s, X) into the
region {s E CI (J > O}. Riemann showed how to analytically continue these
functions to the whole complex plane. As noted earlier this fact has important
consequences for number theory. For example, the values L(1 - k, X), where k
is a positive integer, are closely related to the Bernoulli numbers. A knowledge
of these numbers has deep connections with the theory of cyclotomic fields. .
We will analytically continue L(s, X) and evaluate the numbers L(1 - k, X)
following a method due to D. Goss [141].

Before beginning we need to discuss some properties of the r-function.
This is defined by

r(s) = f 'e-'rs
-

t dt, (i)

It is not hard to see that the integral converges and defines an analytic
function on the region {SE CIa> O}. For a> 1 we integrate by parts and
find
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(iii)

It follows that r(s) = (s - 1)r(s - 1) for a > 1. Since F(l ) = Sa e:' dt
= I we see r(n + I) = n! for positive integers n.

The funct ional equation r(s) = (5 - I)r(s - I) enables us to analytically
continue f(s) by a step by step process.

If a > -1 we define f l(5) by

1
fl(s) = - f(s + I). (ii)

s

For a > 0, f I(S) = I'(s). Moreover, I'1(s) is analytic on a > - 1except for
a simple pole at s = o.

Similarly, if k is a positive integer we define

1
fk(s) = ( I) ( k I) f(s + k).ss+ · · · s + -

f k(5) is analytic on {s E C]a > -k} except for simple poles at s= 0, - I, . . . ,
I - k and fk(s) = f(s) for a > O. These functions fit together to give an
analytic continuation of f(s) to the whole complex plane with poles at the
non positive integers and nowhere else. From now on I'(s) will denote this
extended function. We remark, without proof, that r(S) -1 is entire.

We will now show how to analytically continue (5) by the same process.
It is necessary to express (s) as an integral. In Equation (i) substitute nt for t .
We find, for a > I

n-'f(s) = {"e- nrt5
-

1 dt.

Sum both sides of (iii) for n = I, 2, 3, . . . . It is not hard to justify inter
changing the sum and the integral. The result is

1
00 -I

r(s)(s) = leI t'" 1 dt.
o - e

(iv)

If we tried to integrate by parts at this stage we would be blocked by the
fact that 1 - «: is zero when t = O. To get around this we use a trick. In (iv)
substitute 2t for t. We find

1
00 -21

21 - ' r(s)( s) = 2 I e _ 21 t'" 1 dt.
o - e

(v)

(vi)

Define (*(s) = (l - 21
-

5 )( S) and R(x) = xj(1 - x) - 2(x 2j(1 - x 2».
Subtracting (v) from (iv) yields

r(s)(*(s) = 100

R(e-I)t· - I dt.

What has been gained? A simple algebraic manipulation shows R(x) =
xj(l + x). Thus R(e- ') = e-tj(l + e") has a denominator that does not
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(vii)

(viii)

vanish at t = O. The integral in Equation (vi) thus converges for a > 0 and
this equation provides a continuation for (s) to the region {s E Cia> O}.

Let Ro(t) = R(e - I) and for m ;::: I , Rm(t) = (dmldtm)R(e-'). It is easy to see
that Rm(t) = e-tPm(e-t)(l + e -t) -zm where F; is a polynomial. It follows
that Rm(O) is finite and RII/(t)le- t is bounded as I ~ 00. These facts enable
us to repeatedly integrate by parts in Equation (vi).

Take u = R(e- I) and dv = ts
-

I dt. Then du = R t(t)dt and v = t'[s. Thus

I I'" I 1'"r(s)(*(s) = - tSRo(t) - - Rt(t)tSdt
s 0 s 0

and so

ro + I)(*(s) = - L'"R.(t)tSdt.

The integral in (vii) converges to an analytic function in {s E CI a > - I},
and provides an analytic continuation of ( s ) to th is region . Continuing this
process we find for k a I?ositive integer

r(s + k)(*(s) = (_I)k L'" Rit)ts+ k
- I dt,

where the integral converges to an analyt ic function of s for a > -k. This
procedure provides an analytic continuation of (s ) to the whole complex
plane. We continue to use the notat ion (s) for the extended funct ion.

Proposition 16.6.1. Let k be a positive integer. Then, ( 0) = -t and for
k > I, W - k) = - Bklk where Bk is the kth Bernoulli number.

PROOF . In Equat ion (viii) substitute s = I - k. The result is (*(1 - k) =
(_I)k SO' Rk(t)dt. Since Rk(t) = (dldt) Rk-I (t) . we deduce (I - 2k)((1 - k) =
(- It- •R, _ t (0). By definition Rk - I (r) is the (k - 1)st derivat ive of

e- I e- 21 I (t 2t)
I - e I - 2 I - e ZI = t e' - 1 - e2 1 - I .

By Taylor's theorem , R, -r I (0) is (k - I)! times the coefficient of tk
-) in the

power series expansion of this function about t = O. Since tl(e' - I) =
L;=o (Bk lk!)t k we find W - k) = (- I)k-JBklk . If k = I, then (0) = B, =
- toIf k > I and odd , then Bk = O. Thus for k > I , W - k) = -Bklk . 0

Assume now that X is a nontrivial character modulo m. To handle L(s, X)
we proceed in exactly the same way as for ( s). In Equation (iii) mult iply both
sides by x(n) and sum over n. The result is r(s)L(s, X) = SO' Fie- t)tS-1 dt,
where

co m 00 Itt e -at

Fie - I) = I x(n)e- nt = I x(a) I e -\o+km ll = I x(a) ml'
n=1 0=1 k =O 0=1 l-e
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If we define L*(s, X) = (I - 21- S)L(s, X), then in the same way as we derived
Equation (vi) we find

(ix)

(xi)

where

Rix) = Fix) - 2Fx(x
2)

f x(a)(I ~a m- 2I~2a 2m)
a=1 X X

m ( I+xm-2xa )
a~/(a)Xa (I - .\")(1 + X + ... + X2m- l ) •

For each value of a we see X = I is a root of I + x" - 2xa
, and it follows

that Rix) has the form

x/ex)
Rx(x) = I + + + 2m- l'X . .. X

where/ex) is a polynomial. Let Rx.o(t) = Rx(e- I
) and Rx,n = (dn/dtn)Rx(e- I

) .

By repeated integration by parts we find in the same way that we derived
Equation (viii) that

res + k)L*(s,X) = (-It f "Rx.k(t)tS+k -1 dt, (x)

The integral in (x) converges to an analytic function in {sE Cia> -k}.
These formulas provide an analytic continuation of L *(s, X) and thus Lis, X)
to the whole complex plane.

Before attempting to evaluate L(s, X) at the negative integers we need a
definition.

Definition. Let X be a nontrivial Dirichlet character modulo m. The general
ized Bernoulli number Bn• x is defined by the following formula

m teal co B
a~ya) eml _ I = Jo :;x r.

In the literature it is usual to define Bn• x in this manner only ifXis a primitive
character modulo m. We will discuss this point later.

Lemma I. tFie-l) = L:'= o( -I)"{Bnjn!)tn.

PROOF. Simply substitute -t for t in Equation (xi). o

Proposition 16.6.2. Let k be a positive integer. Then L(I - k, X) = -Bk.x/k.
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PROOF . In Equation (x) substitute s = I - k. The result is (I - 2k)L(l - k, X)
= (_I)k JO' Rx,k(t)dt, Since Rx.k(t) = (d/dt)Rx .k-1(t) it follows that

(I - 2k)L(l - k, X) = (- I)k -lRx.k-I(O), Since

dk - 1

Rx.k-1(t) = dtk- I Rx<e-
t
)

and Rx<e-/) = Fx(e- /) - 2Fx(e- 2/
) = (I /t) Lk'= I (- l)k(1 - 2k)(B

k.x/k !)tk

(by Lemma I) we see that (-I)k-1Rx,k_I(O) = -(I - 2k)(B
k.x/k). Thus,

L( I - k, X) = - Bkjk as asserted. 0

It follows from Equation (xi) that the numbers Bk• xare in the field generated
over Q by the values of X. Thus, in particular, they are algebraic numbers.

As mentioned earlier it is usual to define Bn• x by Equation (xi) only when X
is a primitive character modulo m. This means that X when restricted to
{n E ;ll(n, m) = I} does not have a smaller period than m. The trivial char
acter is primitive only for the modulus 1. From Equation (xi) we then have

co B tel t eo BL n. XO t" = -- = t +-- = 1 + it + L -.!! t"
n=O n! er-l el-l n=2 n ! '

Thus - B i , zo = B1 and Bn•xo = B; for n -:1= 2. It is in this sense that the Bn•x
are" generalized Bernoulli numbers."

The Bn• x have many interesting arithmetic properties. The interested
reader should consult Chapter 2 of Iwasawa's monograph [155]. This mono
graph is devoted to showing how the equation L( I - k, X)= - Bk,/. /k leads
to p-adic L-functions and to the remarkable connection between these
functions and the theory of cyclotomic fields. Another approach to these
topics are the books ofS. Lang [167] and [171]. More accessible to the novice
than these works is the book of N. Koblitz [162].

NOTES

Legendre attempted, without success, to prove the existence of infinitely
many primes in an arithmetic progression a + bn, (a, b) = 1. Dirichlet
states that, unable to overcome the difficulties in completing Legendre's
argument, he was subsequently led to study a class of infinite series and
products analogous to those considered by Euler (see [124]). The results of
Dirichlet's investigation are far reaching for the development of algebraic
and analytic number theory. In addition to proving the existence of primes in
an arithmetic progression Dirichlet was able, using the analytic techniques he
introduced, to derive explicit formulas, conjectured in part by Jacobi (see the
Notes to Chapter 14), for the class numbers of quadratic number fields. For
example, if p is prime, p> 3 then the class number of Q(J='P) is

(n/JP)L( 1, X) where X is the Dirichlet character associated to the Legendre
symbol. The well-known expression (- LxX(x»/p for the class number is
then obtained by deriving a closed form for L(I, X) (see [9], p. 343). This in
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turn is obtained using the value of the classical Gauss sum . Since class
numbers are posit ive we see that this approach shows L(l, X) # o.

If F is a Galois extension of Q of degree n then one may show by an
extension of the methods of this chapter, that the set of prime numbers p that
split completely in F, i.e., that are the product of n dist inct prime ideals in F,
has Dirichlet density lin. As a corollary it can be shown that if f(x) is an
irreducible polynomial with integer coefficients then the set of primes p for
whichf(x) is the product oflinear factors modulo p has density lin where n is
the degree of the splitting field of f(x).

The generalized Bernoulli numbers for quadratic characters appear in
A. Hurwitz [153]. In this paper Hurwitz derives the functional equation for
L(s, X), X quadrat ic, through consideration of the partial zeta functions
I;';o I/(mt + a)s. The values at negative integers of these latter functions
may be found by either the classical method or that of Goss, as done in this
chapter. A suitable linear combination of these values then yields the ex
pression for L(l - k, X) (Proposition 16.6.2). N. C. Ankeny, E. Artin, and
S. Chowla also introduced generalized Bernoulli numbers for quadratic
characters in connection with certain remarkable congruences relating the
class number ofa real quadratic field and the components of the fundamental
unit [86]. The definition and basic properties of generalized Bernoulli
numbers are given in H. Leopoldt [178] who employs them elsewhere to
obtain a generalization, to arbitrary abelian extensions of Q, of Kummer's
criterion for the divisibility of the class number of Q«(p) (see the comment
following Theorem 4, Chapter 15). Leopoldt proves in this paper a theorem of
the von Staudt-Claussen type of B;..c See also Carlitz [104] and the mono
graph on p-adic L-functions by K. Iwasawa [155].

EXERCISES

1. Using the method of Section 2 compute the density of the set of primes congruent to
I modulo 3.

2. Let PI' ... , P. be primes congruent to 1 mod ulo 4. IfP is a primedividing(2 ni=I Pi)2
+ I show that P == I (4) and P ~ Pi' i = I, . . . , n.

3. Compute the set of Dirichlet characters modulo 8 and modulo 12.

4. Let X be the nontrivial Dirichlet character modulo 3.Show that

00 1
L(I, X) = L .

• = 0 (3n + 1)(3n + 2)

Can you find the exact value of L(I , X)? (See Exercise 8.)

5. Use Theorem 2, Chapter 13 to determine the Dirichlet den sity of the set of primes P
which factor into the product of 4 distinct prime ideals in the ring of integers in O«),
, = e2niiS.

6. Generalize Exercise 5 to O«(m) for general m.
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7. By considering <1>m(.x) modulo p give an algebraic proof that there are an infinite
number of primes in the progression mk + I. k = I. 2. 3, . . . .

8. Let g(X) be the classical Gauss sum L;:: X(x )C . X the Legendre symbol. ( =
ehi,p, p prime. Define P = n(I - n n(I - n -\where n,r run over respectively
the nonsquares and squa res modulo p. Show that

P = exp(g(x)L(I, X»·

9. Using Exercise 8 compute L(I, X) where X is the nontrivial quadratic character
modulo 5.

10. (Chowla) The notation being as in Exercise 8 show that P -# I (and thus L(I. X) -#
O!!) as follows. Choose C a nonsquare modulo p. Prove that P = I implies

Obtain a contradiction by specializing x !

11. Use Dirichlet's theorem to show that Galois extensions of Q exist with an y pre
scribed finite cycl ic group as group of automorphisms.

12. Derive the irreducibil ity over Q of the cyclotomic polynomial <1>,,(x) from Dirichlet's
the orem (Landau [166], Vol. 2).

13. Let I. be a Dirichlet character modulo m, X(2) -# O. Show

00 1.(2n + I)
L(s . ) = (I - 2- s , (2» - \" . .

, X I. 1.... (? + I)'n =O _n

The following exercises adapted from Moser [193] give a short proof that there are more
squares than nonsquares on the interval [I, (p - I)/2] for p := 3 (4), p pr ime. In Exercises
14. IS, 16, 17, p := 3 (4) .

14. Let p := 3 (4). Show that

P~\ (X) . 2nx I-
1.... - Sin - = V p.

x e 1 P P

15. Show that, using Exercise 14,

L (~) ~ = _I Pil (~) L sin(2mm/p)
"odd P n JP 1=1 P modd m

[Hint : replace x by nt and sum .]

16. Using the elementary fact from Fourier series

f sin(2n - I )x = {n/4,
"=1 211 - 1 - n/4,

show that

if 0 < x < n,

ifn < x < 2n,

(
11) I tt [IP-t"Z (t) p- \ (t)]L - - - -- L - - L -

" odd P 11 - 4JP ,=1 P 1=lp +I HZ P

_ n IP-II;Z(t)
- ---r= L - .

2.Jp ' =1 P
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17. Since D~11J12 (t ip) i: 0 (why?) conclude that L.Odd (nlp)(l ln) > 0 and thus
LY~'-11112 (t ip) > O. Recall p == 3 (4).

18. Let m ~ 2, (a, m) = I. Ifa has order f in the group of units modulo m show that there
are infinitely many primes p such that (p) = PI ... P" t = Ij)(m)/f, Pi distinct prime
ideals in Q('..). What is the density of this set of primes?



Chapter 17

Diophantine Equations

In Chapter 10 we discussed Diophantine equations over
finitefields. In this chapter we consider special Diophantine
equations with inteqral coeffi cients and seek integral or
rational solutions. The techniques used vary from elemen
tary conqruence considerations to the use ofmore sophist i
cated results in algebraic number theory . In addition to
establishing the ex istence or nonexistence of solutions we
also obtain results of a quant itative nature, as in the
determination of the numb er of representations of an
integer as the sum offour squares. All of the equations
considered in this chapter are classical, each playing an
important role in the historical development of the subject.

§l Generalities and First Examples

By a Diophantine equation will be understood a polynomial equation

(1)

whose coefficients are rational integers. If this equation has a solution in
integers x I ' . . . , x, then we shall say that (x l' . .. , xn) is an integral solution.
If (1) is homogeneous then a solut ion d istinct from (0, ... , 0) is called non
trivial. A solution to (I) with rational X I ' . . . , x, is called a rational solution.
Clearly, in the homogeneous case the problem of finding a rational solution is
equ ivalent to that of finding an integral solution.

While ihe degree of f (x 1, • • • , xn) controls to some extent the difficulty of
the problem, the existence or nonexistence of a solution is often related to
subtle invariants and even perh aps the complex differential geometry of (I)
over the complex numbers.

We begin by considering the linear Diophantine equation

(2)

Here ai ' . . . , an , m are rational integers. Then by Ch apter 1 (see Exercises 6,
13, 14of that chapter) it follows that a solution in integers exists iffthe greatest
common divisor of a 1, •• • , an divides tn .

If n = 2 and d = (ai ' a 2) the Euclidean algorithm gives an explicit pro
cedu re for constructing a solutio n to al xl + 0 2X2 = d (Exercises 2 and 4,
Chapter I). Multiplying the solution by mid gives a solution to (2). For

269
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/I > 2 one may proceed by induction using the simple observation that
«at,···, an-I), an) = (al> .. . ' an)·

If (I) has an integral solu tion then for each prime p the congruence

I(x) == 0 (p) (3)

has a solution. If therefore one can find a prime p for which (3) has no solution
then (I) also has no solution. This method can be applied in many special
cases to obtain nonexistence theorems. We will consider several examples of
this technique.

For example, consider the equation

(4)

(5)

If (4) has a solution then x is odd. For otherwise reduction modulo 4 would
imply that 3 is a square modulo 4 which is not the case. Write (4) as

y2 + 1 = (x + 2)(x 2
- 2x + 4)

= (x + 2)«x - 1)2 + 3).

Now since (x - 1)2 + 3 is of the form 4/1 + 3 there is a prime p of the form
4/1 + 3 dividing it and reduction of (5) modulo p implies that - 1 is a square
modulo p. But this contradicts Proposition 5.1.2, Corollary 3. Of course this
ingenious argument works only because one chose x 3 + 7. There are many
results concerning the rational and integral solutions of the equation

y2 = x 3 + k (6)

for special values of k (see Section 10). The interested reader should consult
Mordell [189] for an indication of the vast array of techniques used to discuss
(6). We mention in passing that it follows from deep theorems of Mordell and
Siegel that (6) has only a finite number of integral solutions. The question of
rational solutions leads to the famous conjectures of Birch and Swinnerton
Dyer. A statement of these conjectures will be given in the next chapter.

Consider next the equation

y3 = px + 2. (7)

Here p is a prime p == 1 (3). We note that this Diophantine equation is
equivalent to the congruence

y3 == 2 (p). (8)

By Proposition 9.6.2, Equation (7) has a solution iff p = C2 + 27D2 for
suitable integers C and D. Thus the Diophantine problem (7) is related to the
question of the representability of p by the quadratic form x 2 + 27y 2 .

In a similar manner quadratic reciprocity can be used to show that

.1'2 = 41x + 3 (9)

has no solution. For reduction modulo 41 shows that 3 is a square modulo 41.
But since 41 == 1 (4) quadratic reciprocity implies 41 is a square modulo 3
which is not the case.
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A well-known Diophantine equation is given by

x2 + y2 = Z2.

271

(10)

The solutions in integers are known as Pythagorean tr iples. We solve th is
problem using Proposition 1.4.1 which states that .l[ i] isa un ique factorization
domain. A proof that do es not use complex numbers can be found , for
example, in Hardy and Wright [40] , p. 190. Assume that (10) has a solution
and that (x, y) = I. Thus x and yare not both even and reduction of (10)
modulo 4 shows that z is odd . Factor (10) in .l[i] to obtain

(x + iy)(x - iy) = Z2 . (II)

If rr is an irreducible in .l[i] that d ivides x + iy and x - iy then rrdivides 2x
and 2y. Since z is odd (rr) # (I + i) for otherwise rrn = 21 z2

• Thus ni x and
n Iy. Taking norms shows that N(n) = p Ix and pl y which contradicts the fact
that (x, y) = I. Thus x + iy and x - iy are relatively prime. Ifz = urr~1 ... n=',
u a unit, is a factorization of z in 1:[i] then, by un ique factorization,

x + iy = ufJ2 . (12)

Writ ing fJ = a + bi and taking u = I gives the solutions

x = a2
- b2

,

y = 2ab,

z = a 2 + b2
.

The other cho ices of the unit give essentially (i.e., up to sign) the same solution.
The iden tity (a2 - b2

) 2 + (2ab/ = (a2 + b2)2 shows that (10) has in
fini tely man y solutio ns. Th e above ar gument shows tha t there are no others.

We conclude this section by giving a simple example of a homogeneous
cubic equ ation with no nontrivial solution. For an y prime p consider

(13)

Assume that (13) has an integer solution (x, y, a), x, y, z not all d ivisible by p.
Then pi x 3 so pix. Putting x = px ' and cancell ing shows that pi y3 so that
pl y. Substituting y = py' and canc elling shows that pi Z3 or p iz which is a
contradiction. Th is elegant example is due to Euler (see Hurwitz '[154],
p.455).

§2 The Method of Descent

Thi s method, first enunciated by P. Fermat may be used to handle several
important Diophantine equ ations. The techn ique is best illustrated by
exa mples. Consider therefore the Diophant ine equ ation

( 14)



272 17 Diophantine Equations

We show that (14) has no integral solution with xyz i:- 0, z > O. Assuming
that (14) has such an integral solut ion we construct another solution with
smaller positive z. This is clearly impossible as it leads to an infinite sequence
of decreasing positive integers. The details are as follows .

We may assume that (x, y, z) = I, z > O. Next x and y cannot both be odd
since otherwise reduction modulo 4 would give Z2 == 2 (4) which is impossible.
Let then x be odd, y even so that z is odd. Write y4 = (z - x 2)(z + x 2) and
observe that, since any prime p dividing the two factors on the right must also
d ivide 2z and 2x 2

, one must have (z - x 2
, Z + x 2

) = 2. But the product of the
two factors is a fourth power. The possibilities are therefore

a> 0,

or

z + x 2 = 8b4
,

a odd, (a, b) = I ,

z - x 2 = 8b4
,

Z + x 2 = 2a4
, a>O

(15)

(16)

a odd, (a, b) = 1.

The first case implies x 2 = _a4 + 4b4 which is impossible since otherwise
1 == -1 (4). Thus (16) holds and z = a4 + 4b4

• Note that 0 < a < z. Also
eliminating z in (16) shows that 4b4 = (a 2

- x)(a 2 + x). Since (a, b) = 1 it
follows that (a, x) = 1 and argu ing as earlier one sees that (a 2

- x, a2 + x)
= 2. Wr iting a2

- x = 2c4 and a2 + x = 2d4 one obtains

a2 = c" + d".

Thus we have found a solution to (14) with smaller positive value for z and
the proof is complete. 0

In particular x" + y4 = Z4 has no solution, xyz i:- O. This is a special case
of Fermat's Last Theorem.

§3 Legendre's Theorem

In this section we consider the Diophantine equation

ax 2 + by' + cz2 = 0, (17)

where a, b, c are square free, pairwise relatively prime integers. We would like
to have necessary and sufficient conditions in order that (17) have a nontrivial
integral solution. In order that a solution exist it is of course necessary to
assume that a, band c are neither all positive nor all negative.
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If III and n are nonzero integers let m R n denote the fact that III is a square
modulo n. In other words there is an integer x with x 2 == m (n) . Legendre
discovered the following beautiful theorem.

Proposition 17.3.1. Let a, b, e be nonzero inteqers, square Fee, pairwise
relatively prime and not all positive nor all negative. Then (17) has a nontrivial
integral solution iff the following conditions are satisfied

(i) -ab R e.
(ii) -ae R b.

(iii) -be R a.

It is convenient to prove this result in the following equivalent form .

Proposition 17.3.2. Let a and b be positive square free integers. Then

ax? + by2 = ;;2 (18)

has a nontrivial solution iff the [ollowinq three conditions are satisfied

(i) aRb.
(ii) bRa.

(iii) -(ab/d 2
) R d, where d = (a, b).

In order to see that Proposition 17.3.2 implies Proposition 17.3.1 consider
ax 2 + by2 + cz2 = 0 as in Proposition 17.3.1 and assume that a and bare
positive while e is negative. Then -an·2 - bey" - Z2 = 0 is easily seen to
satisfy the conditions of Proposition 17.3.2. If(x, y, z) is a solution then since e
is square free c Iz. Putting z = cz' and cancelling we arrive at a solution to (17).
That Proposition 17.3.1 implies Proposition 17.3.2 is left as an exercise.

We now proceed to the proofof Proposition 17.3.2. If a = 1the proposition
is obvious. Furthermore we may assume a > b. For if b > ajust interchange
x and y. If a = b then by (iii) - 1 is a square modulo b. By Exercise 25 at the
end of this chapter one can find integers r and s such that b = ,.2 + S 2. A
solution is then given by x = 1', Y = s, z = 1'2 + S2 .

With these preliminaries we proceed to construct a new form Ax 2 + by"
= ;;2 satisfying the same hypotheses as (18),0 < A < a. and such that if it has
a nontrivial solution then so does (18) . After a finite number of steps, inter
changing A and b in case A is less than b we arrive at one of the cases A = 1
or A = b, each of which has been settled. Now for the details.

By (ii) there exist, T and c such that

e2
- b = aT = aAm 2

; A, III E .z (19)

where A is square-free, and Ic I :s; a/2. First of all we show that 0 < A < a.
Th is follows from (19) since first of all one has 0 :s; ('2 = ao4m 2 + b <
a(Am2 + 1). Thus A ~ O. But since b is square-free A > 0 by (19). Further
more by (19) aAII12 < c2 :s; a2/4 so that A :s; Am 2 < a/4 < a.
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(23)

(22)

Next we verify that ARb. Put b = bid, a = aid with (ai' b l ) = 1 and
note that (a I' d) = (bI' d) = 1 since a and b are square-free. Then (19)
becomes

e2
- bid = aldAm

2 (20)

and since d is square-free die . Put e = c.d and cancel to obtain

dei - b l = alAm
2. (21)

Thus Aa lm
2 == -b l (d) or Aaim2 == <a.b, (d). But (m, d) = 1since by (21)

a common factor would divide b l and d and thus b would not be square-free.
Using (iii) and the fact that m is a unit modulo d we conclude that A R d.
Furthermore e2 == aAm2 (bl ) . Since aRb one has a Rbi ' Also (a, bl ) = 1
since a common divisor would divide d and b1 contradicting the fact that
b = bid is square-free. Similarly (m, b l ) = I which shows that A Rbi ' By
Exercise 26, A R db, or ARb.

Next write A = rA1,b = rb2,(A 1,b2) = 1.We must verifythat -A lb2 R r.
From (19) we conclude that

e2
- rb2 = arA lm

2.

But r is square-free so ric . If e = rei then

aA 1m2 == -b2 (r).

Since aRb we have a R r. Finally writing

- aA l b2 m2 == b~ (r)

and observing that (a, r) = (m, r) = I we conclude - A I b2 R r.
Assume now that AX 2 + b y 2

,.;, Z2 has a nontrivial solution. Then

AX 2 = Z2 _ by 2•

Mult iplying (23) by (19) one has

a(AXm)2 = (Z2 - by2)(e2 - b)

= (Ze + by)2 - b(eY + Z)2.

(Note the use of the multiplicativity of the norm map on Q(Jb) !). Thus (18)
has a solution with

x = AXm,

y = eY + Z,

z = Ze + bY.

This completes the proof since X i= 0; and m i= 0 as followsfrom the fact that
b is square-free. 0

An important corollary of Proposition 17.3.1 is a special case of the so
called" Hasse Principle." This principle states roughly that local solvability
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implies global solvability. Here local solvability means that the equation
under consideration has a nontrivial solution modulo p" for all primes p and
all positive integers m, as weIl as a real solution while global solvability refers
to a solution in integers. For quadratic forms this principle is true but it fails
for equations of higher degree. For example, the equation x4

- 17y4 = 2z4

has a nontrivial solution modulo pm for all p and m,and a real solution, but it
has no nontrivial solution in integers [205].

Corollary. Let a, b, c be square-free, pairwise relatively prime integers
not all of the same sign. If for each prime power p'" the congruence

ax2 + by2 + cz2 == 0 (pm)

has a solution in integers (x, y, z) not all divisible by p then ax 2 + by2 + cz2

= 0 has a nontrivial integralsolution.

PROOF. Let m = 2 and suppose pia. Then if (x, y, z) is a solution as in the
corollary we show that p'" yz. For if ply, say, then pI cz2 which implies, since
(a, c) = 1, that piz. Thus p21ax2 and since p'\-x we obtain the contradiction
p2la. Similarly Pi- z.Thus by2 + czl == 0 (p) and division (mod p) shows that
- be R p. This being the case for every pIa it foIlows that - be R a (Exercise
26). Similarly -ab R c and -ac R b and the corollary now foIlows by
Proposition 17.3.1. 0

§4 Sophie Germain's Theorem

In Chapter 14 we proved that if Fermat's equation for an odd prime p

x" + yp + zp = 0 (24)

had a solution with p'j..xyz then a very strong congruence held, namely

2P- 1 == 1 (p2).

In 1823 Sophie Germain proved the following remarkable result by com
pletely elementary considerations.

Proposition 17.4.1. lfp is an odd primesuch that 2p + I = q is also primethen
(24) has no integral solution with p,\-xyz,

PROOF. Assume on the contrary that such a solution exists and suppose that
(x, y, z) = 1. Write

-xP= (y + Z)(Zp-l - zr 2y + ... + yP-l). (25)

The two factors on the right are relatively prime. For clearly p'j..y + z and if
r i= p is a prime dividing both factors then since y == - z (r) one has

0== Zp-l - zr 2y + .. . + yP-1 == pyp-l (r),
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which implies that rly. This in turn implies that r] z (by (24» contradicting the
assumption that (x, y. z) = l. By unique factorization in Z we conclude that

y + z = AP

zp -t _ Zp-2y + ... + yp-I = TP

for suitable integers A and T. Similarly

x+y=BP

x + z = CPo

(26)

(27)

(28)

(29)

Since p = (q - 1)/2 reducing (24) modulo q gives

x(q- 1)/2 + ylq- Il /2 + z(q - 0 /2 == 0 (q).

If qi-xyz then each of the terms on the left-hand side is ± 1 modulo q. This is
impossible since q > 5. Thus, by symmetry, we may assume that qlx. From
(26), (28) and (29) we conclude that

BP + CP - AP = 2x

so that

Blq-Il/2 + C(q-II/2 _ A(q- I l/2 == 0 (q). (30)

Once again it follows that qIABC. However, since qlx, (28) and (29) imply
that q IBC is impossible. Thus q IA. By (26) and (27) we see that

P == pyP-1 (q)

By (28). y == BP (q); and since (A. T) = I, q \ T. Thus, since p = (q - 1)/2
we have ± 1 == p (q) which is impossible . Thus the proof is complete. 0

Unfortunately it is not known whether there are infinitely many " Germain"
primes, i.e., primes p such that 2p + I is prime. The interested reader should
consult Lecture IV in the book by Ribenboim [206].

§5 Pell's Equation

Let d be a positive square-free integer. The Diophantine equation to be
considered is

(31)

That this equation has an infinite number of solutions was conjectured by
Fermat in 1657 and eventually solved by Lagrange. It seems that Pell had
nothing to do with it, the error in attaching his name to it being due to Euler.
For the whole story, and much more, the interested reader should consult the
book by Edwards [128]. See also Davenport [22], and A. Weil [240].
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The solution to (30) depends upon the following proposition of Dirichlet
and is an application of the pigeon hole principle.

Proposition 17.5.1. If ~ is irrational then there are infinitely many rational
numbers x fy, (x, y) = 1 such that IxlY - ~I < Ill.

PROOF. Partit ion the half-open interval [0, 1) by

[0,1) = [o,~) u [~,~) u .. . u [n : 1,1).

If [C(] denotes, as usual, the largest integer less than or equal to IX then the
fractional part of IX is defined by IX - [x], It lies in a un ique member of the
partition. Consider the fractional parts ofO,~, 2~, . . . , n~. At least two of these
must lie in the same subinterval. In other words there exist j , k with j > k,°s i, k s n such that

IR - U~] - (k~ - [k~])1 < ~. (32)
n

Put Y = j - k, x = [k~] - U~] so that (32) becomes [x - Y~I < lin. Here
we may assume that (x, y ) = 1 since division by (x, y) only strengthens the
inequality. But °< Y < n impl ies that IxlY - ~I < Ilny < lly2

• To obtain
infinitely many solutions note that IxlY - ~I # °and choose an integer
m » l/lxlY - ~I . The above procedure gives the existence of integers Xl' YI
such that Ixt/YI - ~ I < IlmYl < Ixly - ~I and°< YI < m. This procedure
leads to an infinite number of solutions. []

This proposition will be applied to show that Ix2
- dy2

1 assumes the same
value infinitely often.

Lemma 1. If d is a positive square-free integer then there is a constant M such
that Ix2

- dy 2
1 < M has infinitely many inteqral solutions.

PROOF. Write x 2
- dy2 = (x + jdy)(x - jdy). By Proposition 17.5.1

there exist infinitely many pairs of relat ively prime integers (x, .1'), y > °
satisfying [x - J dYI < 1/.1'. It follows that

1
[x + jdYI < [x - JdYI + 2jdlyl < - + 2Jdy.

j l

Hence Ix2
- dy2

1 < Il ly + 2JdyII1Y ~ 2Jd + I and the proof is com
plete. []

The main result of this section is as follows .

Proposition 17.5.2. Ifd is a positive square-free integer then x 2
- dy2 = I has

infinitely many inteqral solutions. Furthermore there is a solution (x I ' YI) such

that every solution has theform ±(xn,Yn)wherexn + JdYn = (XI + ,/dYI)n,
n E 7L.
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PROOF. By Lemma 1 there is an mE 7L such that x 2
- dy' = m for infinitely

many integral pairs (x, Y), x > 0, Y > 0. We may assume that the x com
ponents are distinct. Furthermore since there are only finitely many residue
classes modulo Iml one can find (x.; YI), (x2'12)' XI ::/= X2 such .!.hat XI ==
X2 (Iml), YI == Y2 (Iml). Put ex = X t - y,,jd, 13 = X2 - YlJd. If y =
X - yjd let y' = X + yjd denote the conjugate of y and N(y) = x 2

- dy2

denote the norm of y. Recall that N(af3) = N(a)N(f3). A short calculation

shows that af3' = A + Bjd where m IA, mIB. Thus af3' = m(u + vjd) for
integers u and v. Taking norms of both sides given m2 = m2(u2 - v2d ). Thus

(33)

It remains to see that v ::/= 0. However if v = °then u = ± 1 and af3' = ±m.
Multiplying by 13 gives am = ±mf3ora = ±f3. But this implies thatx , = X2'
Thus Pell's equation has a solution with xy ::/= O.

To prove the second assertion let us say that a solution (x, y) is greater than
a solution (u, v) if x + yJd > u + vJJ. Now consider the smallest solution
a with x > 0, Y > O. Such a solution clearly exists (why?) and is unique. It is
called the fundamental solution.

Consider any solution 13 = u + vjd, u > 0, v > O. We show that there is a
positive integer n such that 13 = a' . For otherwise chose n > 0 so that a' <
13 < a'+ I . Then since a' = a- t, 1 < (a')"f3 < a. But if (a')'f3 = A + Bjd,
(A, B) is a solution to Pelf's equation and 1 < A + Bjd < a. Now A +
BJd > 0 so A - Bjd = (A + Bjd)-' > O. Thus A > O. Also A - Bjd
= (A + Bjd) - I < I so Bjd > A-I ~ O. Thus B > 0. This contradicts

the choice of a. If 13 = a + bjd is a solution a > 0, b < °then p- I =
a - bjd = a' by the above so 13 = a-·. The cases a < 0, b > 0and a < 0,
b < 0 lead obviously to - a' for n E 7L. The proof is now complete. 0

For a solution to special cases of Pell's equation using cyclotomy see
Dirichlet [126] and Hartung [145].

§6 Sums of Two Squares

If p is prime, p == 1 (4) then by Proposition 8.3.1 the Diophantine equation
x 2 + y2 = P has an integral solution which is essentially unique. There are
many proofs of this result . It will be recalled that the proof in Chapter 8 made
use of the ring of Gaussian integers. By further exploiting the arithmetic of this
ring we will determine the number of representations of an arbitrary positive
integer as the sum of two squares. The result is conveniently stated and in fact
proved using the nontrivial Dirichlet character modulo 4 introduced in
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Section 2of Chapter 16.Recall that this character Xisdefined on 7l. by X(d) = 1
if d == 1 (4), X(d) = -1 if d == 3 (4) and X(2k) = O.

Proposition 17.6.1. The number ofintegral solutions (x, Y), x > 0, Y ;;:: 0 to the
equation x2 + y2 = n is Ltln X(d).

In other words the number of representations of n as the sum of two
nonnegative squares the first of which is positive is the excess of the number of
divisors of the form 4n + lover the number of divisors of the form 4n + 3.
Thetotal numberofsolutions(x, y),x,y E 7l. is then easily seen to be4 Ldln X(d).

Before proceeding to the proof we derive two corollaries.

Corollary I. The equation x 2+ y2 = II, n > 0 has an inteqralsolution ifford, n
is even/or every prime p == 3 (4). When that is the case the number ofsolutions
is TIp: 1 (4) (l + ord, n).

PROOF. Since ;(n) is multiplicative it follows by Exercise 10, Chapter 2 that
Ldln X(d) is multiplicative. If p == 1 (4) then Lt,P" X(d) = n + 1 while if
p == 3 (4) then Ldlp" X(d) is 0 or 1 according as n is odd or even. The result
follows. 0

Corollary 2. Let m be a positive odd integer. The number of integral solutions
(x, Y), x > 0, Y > 0 to x 2 + y2 = 2m is Ltlm x(d).

PROOF. Since 2m == 2 (4), Y is positive. On the other hand X(2d) = 0 for any
divisor 2d of 2m. 0

We now proceed to the proof of the proposition. Consider the ring 7l.[i] of
Gaussian integers. By Exercise 33, Chapter 1 the units are ±1, ±i. Thus each
nonzero :x E 7l.[i] has a unique associate x + iy, x > 0, Y ;;:: O. IfN(x + iy) =
x 2 + y2 is the norm mapping then clearly the number of solutions to x 2 + i
= n, x > 0, Y ;;:: 0 is the number of ideals («) with N(ex:) = n. Denote this
number by an ' Recall further that every ideal («) #= 0 may be uniquely written
(up to order) as (n:1)' t .. . (n:s)'s where n: j is irreducible. Finally according to
Section 7 of Chapter 9 the irreducibles are given, up to a unit, by 1 + i, n:
with n:7i = p == 1 (4), and q, a rational prime, q == 3 (4). Also n: and 7i are not
associates.

We now introduce the formal Dirichlet series L:'= 1 a.fn' . This series is
known as the zeta function of the ring 7l.[i]. We view this expression formally
and shall not need any analytic properties of the associated function of a
complex variable. Using the unique factorization of ideals in 7l.[i] proved in
Section 4 of Chapter lone sees, using the same argument as in Exercise 25,
Chapter 2, that

f~=TI( 1 )
n=1 nS

(n) 1 - 1/ N(n:)' ,
(34)



280 17 Diophantine Equations

(36)

(37)

the product being over the set of (unassociated) irred ucibles in Z[i]. The
right-hand side of (34) becomes, by the above classification of irreducibles

C_\/2') J;(41 C-\ /P'YqD(4) C-\/q2.} (35)

Next recall that

1 00 1
'(s) = n 1 _ 1/ • = L s '

p P n= I n

Noting that 1/(1 - «:": = (1/(1 - q-'»(I /(1 + q-'» we see by rearrange
ment of terms that (35) becomes

(s) n 1 \ /. Il 1 \ / .'p=I(4) - P q= 3(41 + q

This may be written as

1
'(s) Q1 _ X(p)/p'

Finally, using the fact that Xis multiplicative we see that (37) may be written as

(s) f X(7).
n = I n

(38)

Recall that the second factor in (38) is the Dirichlet L-series introduced in
Chapter 16, Section 2 in order to compute the density of primes p == 1 (4).
We have shown

f an = (f ~) (f x(n»)
n =1 n' n =1 n' n =1 n' .

(39)

Proposition 17.6.1 follows immed iately from (39) for the coefficient in the
right-hand side of (39) is, by the very definition of Dirichlet multiplication
Ldln Xed). This completes the proof. 0

It should be noted that the rearrangement step in the above proof is
purely formal and does not require any analytic properties of the infinite
products.

§7 Sums of Four Squares

In 1621 Bachet stated without proof that every positive integer is the sum of
four squares. This assertion was proved in 1770 by Lagrange. In 1834 Jacobi
was able to give a remarkably simple formula for the total number of repre-
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sentations of an integer as the sum of four squares from which the result of
Lagrange follows immediately.

We begin this section by giving the standard proof of Lagrange's theorem.
The technique is that of descent. Having established the result for primes the
general result follows from a formal identity due to Euler expressing the
fact that the norm of a quaternion is a multiplicative function. In the last, and
somewhat lengthier part of this section we prove Jacobi's theorem. The proof
is based upon a letter (1856) from Dirichlet to Liouville ([122], pp . 201-208)
simplifying Jacobi's proof. See also Weil [237].

We begin with a diophantine problem modulo p.

Lemma 1. If P is prime the congruence x 2 + y2 + 1 == 0 (p) has a solution in
integers x, y.

PROOF . Denote by S the set of squares modulo p. Then Sand {-1 - x] x E S}
= S' each have (p + 1)/2 elements. Thus Sand S' are not disjoint and the
result follows.

By the above lemma there is an integer m such that mp = 1 + x 2 + y2has
an integral solution and furthermore by adjusting the residues one may assume
[x] < p/2, IYI < p/2. Thus mp < 1 + p2/4 + p2/4 so that m < p.

Lemma 2. Supposefor a primep there is an integer m, 1 < m < p such that mp
is the sum offour squares. Then there is an n, 0 < n < m such that np is the sum
offour squares.

PROOF . Write

mp = xi + x~ + x~ + x~. (40)

Let Xi == Yi (m) with -m/2 < Yi ~ m/2. Then yi + y~ + y~ + y~ == 0 (m) so
that there is an integer r ~ 0 such that

rm = yi + y~ + y~ + y~ . (41)

Now rm ~ m2/4 + m2/4 + m2/4 + m2/4 = m2 so that r ~ m. First of all
r =1= °for otherwise Yi = 0, i = 1, . . . , 4 which would imply by (40) that mlp,
a contradiction. Also r =1= m, since otherwise Yi = mfl ; then xf == m2/4 (m2)

and (40) implies that mp == m2 (m2) or mlp. Multiplying (40) and (41) gives,
by Exercise 28, the identity

m'rp = (XIYI + X2Y2 + X3Y3 + X4Y4)2 + (XIY2 - X2YI + X3Y4 - X4Y3?

+ (XtY3 - X3Yl - X1Y4 + X4YZ)2 + (XtY4 - X4Yt + X2Y3 - X3Y2)2

(42)

Using x , == Yi (m) one sees that each term on the right-hand side of (42) is
divisible by m 1

• Cancelling m2 shows that rp is the sum offour squares and the
proof is complete. 0
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Proposition 17.7.1. Any positive integer is the sum offour squares.

PROOF. This follows immediately from Lemmas 1and 2 and Exercise 28. 0

Let us now turn to the statement and proof of Jacobi's theorem. The
result that we will establish is the following.

Proposition 17.7.2. Let n be a positive integer n =: 4 (8). The numberofintegral
solutions (x, y, z, w), x, y, Z, w positive and odd to the equation

x2 + y2 + Z2 + w2 = n (43)

is the sum of the positive odd divisors ofn.

We leave to the Exercises the following corollary.

Corollary. Let n be a positive integer. The number of integral solutions (x, y,
Z, w) to x 2 + y2 + Z2 + w2 = n is 8 Ldln d, ifn odd and 24 Ldln d, dodd , ifn is
even.

The proof of the proposition is divided into several lemmas. Let N denote
the number of integral solutions (x , y, Z, w) to (43) with x, y, Z, w positive and
odd. Since n =: 4 (8) we may write n = 2m, m =: 2 (4).

Lemma 3. N is the numberofsolutions (x, y, Z, u, v) to the system ofDiophantine
equations

x 2 + y2 = 2u,

Z2 + w2 = 2v,

u + v = m,

with x, y, Z, u, v odd and positive.

PROOF. This is left as a simple exercise.

(44)

o

As in Section 5 let Xdenote the nontrivial Dirichlet character modulo 4.

Lemma 4. N = Lx(de) = L (_I)(de-1l/2 = L(_l)ld-eI/2 the sum over all
solutions (d, e, t, s) in positive odd integers to ds + et = m.

PROOF. By Lemma 3 and Corollary 2 of Proposition 17.6.1 we see easily that

N = L (L x.(d)x.(e»).
u, v diu

w+v=m ~ltl

(45)

Writeu = ds,v = et so thatthe terms in (45)are inone-to-one correspondence
with solutions (d, e, t, s), d, e, t, s posit ive, odd and sat isfying ds + et = m
This proves the first equality in the lemma. The second follows from the
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n + 2)
n + I

definition of Xand the fact that (d - 1)/2 + (e - 1)/2 == (de - 1)12 (2) when
d and e are odd. 0

Consider now the terms in L x(de), the sum being as in Lemma 3, for which
d = e. for each odd dim, s + 1 = mid has mfld solutions in positive odd, s, t.
The total number of solutions is therefore Ldlm ml2d = Ldlm d. Each solution
of ds + et = m, d = e contributes X(d 2

) = 1 to N by Lemma 4. The proof of
Proposition 17.7.2 will follow if one shows Lx(de) =°the sum as in Lemma
4 and d #- e. Pairing (d, e, I, s) with (e, d, s, I) shows that is enough to prove
L l.(de) = 0, d > e.

Denote by S the set of all (d, e, I, s), d > e; ds + et = m, d, e, I, S positive
and odd. The idea behind the remainder of the proof is to construct a bi
jection of S that sends Ls x(de) to its negative. This, of course, will imply that
LS x(de) = 0.

for a positive integer II put

(

II + 1
A =

n II

and define (d', e', 1', s') by

Since

An (: ) = (~)

A;l(~) = (:')

(46)

one checks quickly that

A;I= (n + I
-n

- n - 2)
n + I

An(1 d) = (d: I:).
s -e e-s

Taking determinants one sees that

ds + et = d's' + e't', (47)

Thus for each n we have a mapping from 71.4 to 71.4, which we denote by I/Jn'

Lemma 5. Given(d, e, I, s) E S there is a lmiquen E 71. + suchthat I/Jn(d, e, t, s) E S.

PROOF. One sees immediately using (46) that d', e', t', s' are odd, d' > e',d' > 0,
e' > 0. furthermore the conditions s' > 0, I' > °are equivalent to, by (46),
el(d - e) - 1 < n < el(d - e). But d - e is positive and even and e is odd
from which it follows that this inequality is satisfied for a unique n ~ 0. This
concludes the proof. 0
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Denote the mapping from S to S defined by Lemma 5 by <1>.

Lemma 6. <I> is a bijection.

PROOF . We will show that <1>2 is the identity map . For if (d, e, t, s) ES then

<l>2(d, e, t, s) = <1>((AnG))*,{A; I(~))*)

= ((AkAn-I(~))*, (Ak-1AnG))*). (48)

where the asterisk denotes transpose. Here k and n are defined by Lemma 5.
But the integer k is uniquely defined by the condition that the right-hand side
of (48) is in S and that is true if k = n. Thus <l>2(d, e, t, s) = (d, e, t, s) and the
proof of the lemma is complete. 0

In order to complete the proof observe from (46) that d' - e' = s + t . But
l.(de) = (_1)(d-'·1 /2 . Since ds + et == 2 (4) one sees that (d - e)/2 is even
iff (s + t)/2 is odd . Thus x(de) = - x(d'e'). Finally M = LS x(de) =
- LS x(d'e') = - M from which it follows that M = 0 and the proof is
complete. 0

§8 The Fermat Equation: Exponent 3

The Fermat equation

(49)

has been discussed in special cases in Sections 2 and 4 and in Chapter 14
(Theorem 5). In this section using the arithmetic of Z[w] where w3 = 1,
w =1= 1 we give a complete solution to the equation

(50)

That this equation has no integral solution, xyz =1= 0, was first proved
essentially by Euler. See, however, G. Bergmann [91].

Instead of (50) we shall study the more general equation

x 3 + y3 = uz3, (51)

where u is a fixed unit in Z[w] and prove the following result.

Proposition 17.8.1. The equation x 3 + y3 = uz3, where u afixed unit in Z[w]
has no integral solution (x, Y, z), xyz =1= 0 where x, y, Z E Z[w].

This implies, of course, that a nonzero cube in Z is not the sum of two
nonzero cubes in Z.
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Proposition 17.8.1 will be proved in a sequence of lemmas. First we recall
the basic facts concerning the arithmetic of d'[w], proved in Chapter 9. The
ring d'[w] is a principal ideal ring with units ± I, ±w, ±w2

• Write A= 1 - w
and recall that (A)2 = (3), and that Ais irreducible. Each element (J. E d'[w] is
congruent modulo Ato + I, -1 or O. This fact will be used repeatedly in the
following. If (J. = uAnp where u is a unit and AiP then we write n = ord, z.

First of all we establish the weaker result, the so-called first case, that (51)
has no solution with A1xyz.

Lemma I. The equation x J + yJ = IIZ J , U a unit in d'[w] has no solution with
x, y, Z E d'[w], A1xyz.

PROOF. Note that since Ais irreducible the condition A1xyz is equivalent to
A1 x, A1y, A1=. If x E d'[w], x = I (A) then xJ = 1 ( 4

) . For if x = I + ).t
then

x J - I = (x - I)(x - w)(x - ( 2
)

= At(l - w + At)(1 - (1)2 + At)

= At(A + At)«(l + w)A + At)
= AJt(1 + t)(t - ( 2

) .

Since w 2 = I (A) and t is congruent modulo Ato + I, -lor 0 the congruence
follows.

Now assume a solution to (51) exists with .1.1' xyz and reduce modulo A.
Then

(52)

But it is easy to check that (52) is impossible for any choice of signs and unit.
This completes the proof. 0

We pass now to the more difficult situation in which we assume a solution
exists with AIz and (x, y) = 1.Thus A'txy. Under these conditions the follow
ing lemma shows that in fact .1. 2 1z.

Lemma 2. If xJ + l = uzJ for x, y, Z E d'[w], A'txy, Alz then A2 1z.

PROOF. Reduction of (51)modulo A4 gives

± I ± I =uzJ (.1.4 ) .

If 0 = uzJ (.1.4 ) then 3 ord, z ~ 4 so that ord, Z ~ 2. If ±2 = uzJ (.1.4 ) then
A12 which is not true. 0

The following lemma constitutes the "descent " step.

Lemma 3. l] x J + yJ = uzJ
, (x, .1') = I, A1xy, ord, z ~ 2 then there exist

u.' x., YI ' Zl E d'[w], U t a unit, A't X.YI, ord, Zl = ord, Z - 1 and such that
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PROOF. Recall that if ord, IX # ord, p then ord).(iX ± p) = miruord, IX,

ord, P). Next

(x + y)(x + wy)(x + w2y) = uzl . (53)

Since ord;.(uz l
) ~ 6 at least one factor on the left-hand side of (53) is divisible

by ,l2. Replacing if necessary y by wy or w2y we may assume that ord;.(x + y)
~ 2. Since ord).(l - w)y = ord, ,ly = 1 we see that

ord).(x + wy) = ord).(x + y - (l - w)y)

=1.

Similarly ord ).(x + w 2y ) = 1. Thus

ord).(x + y) = 3 ord, Z - 2.

If rr is an irreducible (n) # (,l) then rr cannot divide x + y and x + wy. For
otherwise rrl(1 - w)y = ,ly, so that rrlY, rrlx. It follows that (x + y, x + wy)
= (,l). Similarly the other pairs of factors of (53) have greatest common
divisor L Since unique factorization in Z[w] holds one can write

x + y = UtIX3,lr, ' t = 3 ord, z - 2, ,li-IX,

x + wy = U2P3,l,

X + w 2y = ull,l,

(54)

In (54) UI ' U2, U3 are units and (IX, p) = (IX, "I) = (P, "I) = 1. Multiplying the
second equation in (54) by w, the third by w2 and adding one obtains

0= u 1iX 3,l1 + WU2P3,l + W2U3yl,l. (55)

Cancelling ,l(! !) gives

(56)

Finally putting IX,l°rd% -1 = Zl> P= Xl> Y = Y I, (56) becomes, with units

xt + I:lyt = 1:2 zi. (57)

Reducing (57) modulo ,l2 and noting that ord;.(zD > 2 we find

±1 ± 1:1 == 0 (A2
) . (58)

An examination of cases leads immediately to 1:1 = ± 1.Thus, replacing if
necessary YI by - YI we arrive at a new relation

xt + yt = I:d,

with Ai- X1YI, ord)'zi = ordj z - I, I: a unit. This completes the proof. 0

To prove Proposition 17.8.1 we proceed as follows. If Ai- xyz we invoke
Lemma 1. If Ai- xybut Alz then Lemmas 2 and 3 lead to a contradiction.
Finally, if Alx but ,l i- yz, then ±1 == U (AJ) which implies ±1 = u. But
then (± Z)l + (- y)3 = Xl and we are in a situation already disposed of.
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In the previous section it was shown th at the equation x 3 + y 3 = Z3 has no
solution in integers x , y, Z with xyz =1= O. Di vision by ::3shows that the cubic
curve x 3 + .1'3 = I has no rat ion al points (x , .1'), xy =1= O. Similarl y from the
fact est ablished in Section 2 th at x 4 + y4 = Zl has no integra l solution with
XY: =1= 0 one concludes th at the curve defined by yl = x" + I has (0, ± I) as
its only rational po ints (see Exerc ise 31).

In this section we give examples of cubic curves with an infinite number of
rational points. The proof is based upon the simple o bserva tion that the
tangent line to a cubic curve at a rational point intersects the curve in a unique,
not nece ssarily new , point which is again rational. We say that an int eger a
is cube-free if ord, a :'5; 2 for a ll primes p that is, no cube =1= 1, - I di vides a.

Proposition 17.9.1. Ifa > 2 is a cube-free integer such that the cubic curve with
equation

X3 + .1'3 = a

has a rational point then it has infinitely many rational points.

(59)

(60)

PROOF . Let (!X. , 13) be a rational point on (59). H ex = xl /::t , 13 = Yt/z'I' (xt,zd
= (Y I ' ;: ~) = 1 with XI ' YI' ZI' z ~ integers then it is eas y to see th at z , = z~ .

Since a > 2 is cube-free X I YI =1= 0 and XI =1= Y t . The tangent line to (59) at
(x, 13) is :x lx + {J2 y = a. Sol ving for .I' and substituting in (59) gives

X
3 + (a -p:2xr_a= O.

The left-hand side of (60) is a cubic pol ynomial with !X. as a double root (at
least). H the third root is }' then since the sum of the roots is the neg at ive of
the coefficient of x 2

, we obtain after a simple calculation,

3!X.
4

2ex + "l = 3 13 3 •ex -

Thus

ex(ex 3 + 2{33)
"l = 3 3ex - 13

X I (x~ + 2y~)

= : 1 (x] - y~ ) .

The corresponding value for .I' = (a - ex 2x )l fJ l is

- YI (2x~ + YI)
p = - ( 3 3)

Zt X t - Yt

(61)

(62)

(63)
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and by (60) (r . p) is a rational point on the cubic. The reader may verify
directly, of course, that (y. p) satisfies },3 + p3 = a. It rema ins to show that
(Y. p) is distinct from (:x, p) and moreover that one obtains by this process an
infinite number of points on the curve . Define the integer A by A > 0 and

AX2 = xt(xt + 2yt),

AY2 = - YI(2x t + yt), (64)

AZ2 = ZI(Xt - yt ),

with (X2, Y2, Z2) = 1.Thus A is the greatest common divisor of the integers on
the right-hand side of (64). Clearly one has

x~ + y~ = ad, (65)

Since a is cube-free and (X2, Y2. Z2) = 1 we see that (X2' Y2) = (X2, Z2) =

(Y2. Z2) = 1. We claim that A is equal to 1or 3. For if p is prime and p IA then
it follows without difficulty from (64) that p t XI YI ZI' Thus p divides each of
the second factors on the right-hand side of (64) and consequently p l3yt.
Thu s p is I or 3. Notice, a lso. that (A. ZI) = I implies A Ix t - yt .

The proof will be completed by showing that Iz21 > IZ II. To this end one
has

(66)

One sees, 4 1 x~ + XIYI + Y~I = 1(2xI + YI)2 + 3Y~ 1 > 4 and consequently
one has the inequality IZ21> Iztlix i - YI I/ A. If A = I then (66) shows
that IZ21 > 1ZtI. On the other hand. if A = 3, then since A Ix t - yt one has
x t == yt (3) which implies that XI == Y1 (3) and once again (66) implies
that 1;;2 1> I;;11 . Continuing in this manner one obtains a success ion of points
(x.!: •. .1'. / : .). x•.I'. =I O. (x•• :.) = Cr•• =.) = I and I=. I > 1=. _11. and the
proof is complete. 0

§lO The Equation y2

The Diophantine equation

(67)

has been studied exten sively since its consideration in the seventeenth century
by Fermat and Bachet in the special case k = - 2. The integral va lues of k for
which (67) has a rational solution have not been determined thus far. It was
asserted, though not demonstrated, by Bachet and others that given a rat ional
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solution (x, y), xy f:. 0 the tangent method, used in Section 9, produces an
infinite number of solutions. Thus, in modern language, the elliptic curve (67)
then has positive rank (see Chapter 18). This result was established with
several except ional cases by Fueter in 1930.

In 1966 Mordell gave a remarkably short proof of Fueter's result [191].
More precisely he proved

Proposition 17.10.1. Ifyl = x 3 + k, k a sixth power-free integer, has a rational
solution (x, y), xy f:. 0 then there are an infinite number of rational solutions
provided k f:. 1, -432.

It is shown in the Exercises that the case k = -432 is equivalent to
Fermat's equation x 3 + y3 = 1, which by the main result of Section 8 can
easily be shown to have only the rational solutions (1,0), (0. I). We will not
give the details to Proposition 17.10.1, but rather refer the interested reader
to Mordell's paper. The proof consists in showing that the tangent method
used in the preceding section leads to an infinite number of solutions.

Thus yl = x 3
- 2 has an infinite number of rational points since it has one,

namely (3, 5). However, we point out that there are only a finite number of
integral solutions. This is a difficult theorem for general k but in the case
k = - 2 a very short proof can be given using Exercise 36 of Chapter 1. For

(y + j="2)(y - j="2) = x 3. (68)

If n is an irreducible in Z[j="2] dividing both factors on the left-hand side of
(68) then nI2j="2. Thus (n) = (j="2), and j="2lx which implies, taking
norms , that 21x. But this implies that y2 == 2 (4) which is impossible. Since
Z[j="2] is a unique factorization ring with units ± 1, (68) shows that

y + j="2 = (a + bj="2)3.
Thus

y = a3
- Sab",

I = 3alb - 2bJ

= b(3al
- 2b2),

(69)

(70)

Hence b = I and one obtains as the only solutions (3, ±5).
Ifd is a positive square free integer then one can find the integer solutions

to yl = x 3 - d in certain cases using the arithmetic of the imaginary quad
rat ic fieldQ(j'=d). As in the case of Fermat's Last Theorem (see Section 11)
it is necessary in this approach to impose a divisibility condition on the class

number h of Q( j'=d), namely we require that 3th . If, furthermore, we restrict
d by assuming d f:. + 1, +3 and -d == 2 or 3 (4) then by Chapter 13 the ring

of integers of Q(j'=d) is Z[.j=d] and ± I are the only units . Under these
conditions assume that (x, y) is an integral solution to yl = x 3 - d. Then
(Exercise 32) x is odd and (x, d) = 1. Now

.'(3 = (y + .j=dHy - .j=d).
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If P c Z [j"=d] is a pr ime idea l containing y ± ,/~i then 2 ) -d E P
and x E P. Thus N (P)I 4d and N(P)l x 2 which is impossible. It follows that

(y + j"=d) and (y - j"=d) have no common ideal factors. Since Z[J=dJ
is a Dedekind ring we ha ve

(y + j"=d) = ~3

for some ideal ~. Since 3'\..h the ideal class group of Z[ j"=d] has no element
of order 3 and therefore ~ is principal. Thus, since ± 1are the only units one
has

This implies

1 = ±b(3a 2
- db2

) ,

y = ±a(a2
- 3db2

) ,

from which one derives easily b = ± 1 and

d = 3a 2 ± 1.

(71)

(72)

(73)

Thus y2 = x 3
- d has a solution precisely when d lies in one of the qu adratic

progressions 3a2 ± 1. When th is is so one finds easily the va lue of x to be
a 2 + d. Thus we ha ve the following proposition.

Proposition 17.10.2. Let d > 1, square-free and d == 2 or I (4). Assume that the
class number ofo. (j"=d) is not divisible by 3. Th en y2 = .'(3 - d has an integral
sotuuon iiid is ofthejorm st ? ± l. The solutions are thentt i + d, ±t(t2

- 3d» .

For a d iscussion of the real qu adratic case , see W. Adams and L. Goldste in
[84], Ch apter 10, and Mordell [1 89] , Chapter 26.

§ll The First Case of Fermat's Conjecture for
Regular Exponent

In thi s last section we use results from Chapters 12and 13 on the ar ithmetic of
cyclotomic number fields to prove a special case of Fermat's conjecture. If (
denotes an Ith root of unity d ifferent from 1,where I is an odd prime then 0.(0
is an algebraic number field of degree I - 1 whose ring of integers is, by Pro
position 13.2.10, Z[(]. Thus by Theorem 2, Chapter 12 every nonzero ideal in
Z[O can be factored un iquely as a product of powers of distinct prime ideals.
Recall that I is called regular if I'\..h where h denotes the class number of 0.(0.
Thus if~ is an ideal such that ~l is pr inc ipal the n ~ itself is principal, a fact of
cent ra l importance in the following.

We need one addit ion al result concerning the arithmetic of Z[e].

Lemma I. Jfu is a unit in Z[O then ('u is real f or some rational integer s.
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PROOF. Observe first of all that complex conjugation is an automorphism of
0(0 since ~ = ,'-1.Thus if u is a unit then ii is a unit and r = u/u E l [o.
Furthermore if p is an y automo rphism of 0(0 then p(r) = p(u)/p(u) =
p(u)/p(u) so that Ip(r)1 = 1. By Lemmas 1 and 2, Section 5, Chapter 14,
r = ± (' for some integer t. If A. = 1 - ( then ( i == 1 (A.) for all j, so that
writing u = ao + a l ( + ... + a,_ z( ' -Z and using the fact that p(O = ( k for
some k we see that u == p(u) (A.). In pa rticular u == u(..1.). If r = - Cthen u =
- ( ' u so that u == - u(..1. ). Thus 2u == 0 (A.) which is impossible. Therefore
u = Cit= C zSii where - 2s == t (I). Finally Cu = (Su showing that (Su is real.

o
The main result of this section is the following.

Proposition 17.11.1. If I is a regular prime then the diophantine equation

X' + y' = Zl

has no solution in rational integers X, y, z with I i xyz.

(74)

The proof of this proposition will be presented in severa l lemmas. We
begin by factoring the left-hand side of (74)

x' + y' = (x + y)(x + (y) ... (x + ( '- Iy). (75)

Recall that two ideals III and 123 a re relatively pr ime in l [(] if III + 123 = len
When th is is the case IIIand 123 ha ve no common pr ime ideal divisors. Assume
for the remainder of this section that (74) has a solut ion in integers x, y, z,
I t xyz and that I t h. Suppose, as we may , that x, y, z are pa irwise relatively
prime.

Lemma 2. The ideals (x + (i y) and (x + ~iy) are relatively prime if i t:- j (I):

Th is lemma has alr ead y been proven in Section 6, Chapter 14.

Lemma 3. There exis t u, fJ E l [O , u is a real unit such that x + (v = ( SuP,
where s Eland fJ == II (I) fo r some II E l .

PROO F. Using Lemma 2, Corollary in Section 6, Chapter 14, and the fact
that the right-hand side of (74) is a n lth power we see that (x + ~y ) = Wfor
some ideal ~. Since 1\ h it follows that ~ is principal. Thus x + ~y = ea'
where a E l[~ l and e is a unit. The re sult follows from Lemma I and the
ob servation that if a = ~::~ ai~i then a ' == ~::~ eli (/) . 0

Taking conjugates one has x + ely = C Su/3 so that CS(x + (y ) 
(S(x + e ly) = u(fJ - /3).However /3 == fJ == II (I) and so we ha ve shown that
C S(x + (y) - ('(x + ely) E Il[(]. We state this as

Lemma 4. x + (y - (ZSx - (ZS- ly E Il[o.
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(76)

By Proposition 6.4.1. 1, ( , (2 , .. . , ('-2 are linearly independent over 0 .
Furthermore we may assume I > 3 (by Section 8) and 0 ::; s ::; I - 1. The
proof of Proposition 17.11.1 will be completed by deriving a contradiction
from the relation of Lemma 4. By the above comment we need only to examine
the cases when two of the powers of (are the same. Thus we must examine the
cases

(a) (2. = 1.
(b) (2.- t = 1,
(c) (2. - t = (.

In case (a), Lemma 4 implies - y + (2y E lil[Q so that Ily. In case (c), we
find x - ,2X E lil[Q so that Ilx, a contradiction. Finally in case (b) we find
(x - y) + (y - xK E lil[']. Thus x == y (I). Write Fermat's equation as
x' + (-z)' = (-y)' , Then, arguing as earlier, we obtain Lemma 4 with a
possibly different s. However cases (a) and (c) lead to contradictions and case
(b) gives, as above, x == -z (I). But 0 = x' + y' - Zl == X + Y - z (I). Thus
3x == 0 (I) which implies IIx a contradiction! This completes the proof of the
first case of Fermat's Last Theorem for regular exponent. 0

The above proof is essentially that given in Borevich and Shafarevich [9].

§12 Diophantine Equations and Diophantine
Approximation

In this final section we give a brief discussion of the relationship between
diophantine equations and the approximation of algebraic numbers by
rational numbers. The technqiues required to prove the results mentioned
below are different from those developed in the preceding chapters. Here we
can only give an indication of the results and refer the interested reader to the
literature.

If a is an irrational number then by Proposition 17.5.1 there are infinitely
many rational numbers »t« such that

let - EI<~.q q2

It is natural to ask whether the exponent 2 in this inequality can be increased.
A deep result of Roth in 1955 [118J, for which he was awarded the Fields
Medal in 1958, asserts that if rx is algebraic of degree ~ 2 then for each fixed
e > 0 there are at most finitely many rat ional numbers plq, q > 0 with

I~-~I<q}+£'
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(77)

It follows that there is a constant c > 0 such that for all rationals plq one has

la - ~I > q2

C

+ t '

The theorem of Roth was preceded by deep results of A. Thue (1909) and
C. L. Siegel (1921) each of which improved an elementary estimate of
1. Liouville (1844). This simple result is the following.

Proposition 17.12.1. Ifa is a real algebraic numberofdegreen, n ~ 2 then there
is a constant c > 0 such that for any rational number plq, q > 0

Ia - !!.I > -=-.q qn

PROOF. It is clearly enough to assume la - plq I ~ 1. By the mean value
theorem If(p/q) I = If(ex) - f(p/q)! ~ lex - p/qlA wheref(x) E ;lex] is irre
ducible, f(a) = 0, and A = suplf'(x)l, [x - exl ~ 1. But since a is not
rational f(p/q) #- 0 and If(plq) I ~ l /qn. This completes the proof. 0

The Thue and Siegel results replaced n by nl2 + 1 and 2j';i respectively.
Roth's result is, in a certain sense, the best possible, by Dirichlet's theorem
(Proposition 17.5.1). However we shall see that any improvement in the
Liouville estimate, i.e., any lowering of the exponent n (but greater than 2!)
has profound consequences in the study of certain diophantine equations. In
fact, let anxn + an _txn-1 + ... + ao be a polynomial with integral coef
ficients, irreducible over Q and of degree at least 3. For a nonzero integer m
consider the diophantine equation

anxn + an_1xn -1 y + .. . + aoY" = m.

We will show that if one has an inequality of the form

I
ex - !!. I> _c_ n - s > 2, (78)

q « :"
valid for some 0 < i: < n,and all rational numbers plq then (77) has at most a
finite number of integral solutions. This remarkable result follows quite
easily from (78). For write (77) in the form

G-ex(l)) (~ - a(2)) ... G- a(n)) = a~Y"'

Put A = min Iex{i) - ex(j} I, i "# j . Then if (x, y) is an integral solution y#-O
clearly at most one ali)satisfies IxlY - ali)I < A12. For such an aliI apply (78)
and for the remaining terms use IxlY - ex(il l ~ A12. Then

m T
- >-Iyln Iyln -

t
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for a suitable T depending only on rit), .. . , (X(n) . Thus

17 Dioph antine Equat ions

m> TIYl t
, e > 0,

from which it follows that lyl is bounded. But for any y the number of x
satisfying (77) is bounded and we are through. Thus while x2

- 2y2 = 1 has
infinitely many integral solutions, xJ - 2yJ = 1 has only finitely many
integral solutions.

Among the texts treating in detail this vast area of number theory we
recommend K. B. Stolarsky [225J, A. Baker [89J, and W. M. Schmidt [217].

NOTES

The literature on diophantine equations is vast. We will cite only a few articles
and essays that have a relationship with the equations discussed in this
chapter. For a good general survey article we recommend W. J. LeVeque,
"A Brief Survey of Diophantine Equations" [180J, as well as the early essay
by G. H. Hardy [39]. The supplement of Heath's edition of Diophantus [146J,
provides a technical study of the equations considered by Fermat and Euler in
the seventeenth and eighteenth centuries. See also the scholarly work by J. E.
HotTman [152J, where a detailed analysis is made of the results of Fermat and
Euler and their relationship to the tangent method for finding rational points
on cubic curves described in Sections 9 and 10. Relationships between this
process and the corresponding diophantine equations modulo p will be
indica ted in the following chapter.

Excellent chapters on diophantine problems can be found in various
introductory texts on number theory. We mention in particular Adams and
Goldstein [84J, Hardy and Wright [40J, Uspensky and Heaslet [230J
Davenport [22J , and Niven and Zuckerman [61].

For a broad perspective on the formative period ofthis branch of mathe
matics and number theory in general, see the informal lecture by A. Weil
[235].

An extensive coverage of diophantine equations by a modern master is
given in the text by L. 1. Mordell, [189]. A much more sophisticated and
abstract approach is taken by S. Lang in his book Diophantine Geometry
[170]. For a spirited discussion of the relative merits of these books the
interested reader should consult the reviews of Lang's book by Mordell,
[190J and the subsequent review of Mordell's book by Lang [172]. See also
the advanced surveys by S. Lang [53J, [173J.

EXERCISES

I. Show that 165x2
- 21 y2 = 19 has no integral solution .

2. Find the integral solutions to y 2 + 31 = x 3•

3. Show that x 3 + )' 3 = 3::3 has no solution x, y, Z E Z[w] , :: of. O.
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4. (In memoriam Ramanujan) Show that 1729is the smallest positive integer expressible
as the sum of two different integral cubes in two ways.

5. Which of the following have nontrivial solutions?
(a) 3x 2

- sy2 + 7z2 = O.
(b) 7x 2 + II y2 - 19z2 = o.
(c) 8x2

- 5y 2 - 3z2 = O.
(d) IIx2

- 3y2 - 41z 2 = O.

6. Find the fundamental solutions to x 2 - 3y2 = I, x 2 - 6y2 = I, x 2 - 624y2 = I.

7. Reduce the problem of the integral solutions of 3x 2 + 1 = 4yJ to Proposition 17.8.1
as follows:
(a) Put 1 = (3x - 1)/2; 1 ¥ I, -2, so that 12 + 1 + I = 3yJ, y ¥ O.
(b) (1 + 2)J + (I - I)J = (3y)J.

8. Find the integral solut ions to y2 = x J - 4.

9. Find four rational points on x J + y3 = 9 using the method of Proposition 17.9.1.

10. Find the integral solutions to y2 = x J - I.

11. 'Show that if x 2 - dy? = - 1 has an integral solution then so does x 2 - dy2 = I.

12. List the integral solutions of x 2 + / + Z2 + w 2 = 15 and check with Proposition
17.7.2.

13. Let r be an integral cube . Show that y2 = x2 - 1 has an integral solution.

14. Show that if x 2
- dy2 = n, d > 0 square-free has an integral solution xy ¥ 0 it has

infinitely many.

15. Let a + bJP be the fund amental solution to x 2 - py2 = I, where p is prime p ;: I
(4). The following steps show that x 2

- pyl = - I has an integral solution x, y,
x ·y ¥ O.
(a) a is odd.
(b) a ± I = 2u2

, a 1= I = 2pv2
, 2uv = b.

(c) u2
- pv2 = ± I.

(d) In (c) the negative sign holds.

The following seven exercises establish the corollary to Proposition 17.7.2. Let A(n) de
note the number of integral solutions to xi + x~ + x1 + xi = n.See [52).

16. Show that A(4n) = A(2n).

17. If n is odd show that 16 Ldln d + A(n) = A(4n).

18. If nis odd let S be the number of solutions to xi + x~ + x1 + xi = 2n with X l ;:

X2 ;: I (2) and XJ ;: X 4 ;: 0 (2). Show that the number of elements of S is kA(2n).

19. If n ;: I (4) and S is as in Exercise 18 show that the number of elements in S is i-A(n).
Conclude that A(2n) = 3A(n).

20. If n ;: 3 (4) then A(2n) = 3A(n).

21. If n is odd show that A(n) = 8 Ldln d, A(2n) = 24 Ldln d.

22. If n is even n = 25m,
S ~ I, m odd show that A(n) = 24 Ldlm d.
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23. The d iscr iminant of cJ + pt + q is - (4pJ + 27ql ). Reduce the problem of determin
ing the cubics with discriminant I and p,q ration al to Fermat's equation x J + yJ = I
by putting x = (3q + 1)/(3q - I), y = 2p/(3q - I), q '# 1.Sho w that the result ing
cubics are cJ

- c ± 1.
24. Show tha t Proposition 17.3.1 implies Prop os ition 17.3.2.

25. Show that ifb is a positive integer and - I is a square modulo b then Xl + / = b has
an integra l solut ion.

26. If (n, m) = I show that a R m, a R n implies a R mn.

27. Justify the rearrangement steps in Proposition 17.6.1.

28. Let A be the set of complex matr ices of the form

Show that Euler's identity, which states that (x i + xi + x~ + x1)(yi + ..d +
y~ + Y~) equals the right-h and side of Equation (42), is equivalent to det (M N) =
(det M)(det N) for M, N E A.

29. The following argument shows that Proposition 17.8.1 impl ies that yl = x J - 432
has (12, ±36) as its only rati on al so lutio ns. Fill in the de tails. Assum e a solution
(x, y ) exists distinct from ( ± 36, 12), x > O.
(a) Write y/36 = ale, x/12 = blc, with a == e == 0 (2).
(b) Put, = (a + e)/2, S = (e - a)/2, c = b > O.
(c) Show that ,J + sJ = cJ, rst '# O.

30. The con verse to Exerc ise 29 is also true ; Show that if x J + yJ = zJ, xj'z '# 0,
x, y, Z E 7L then putting, = 36(x - y)/(x + y), s = 12:·(x + y) leads to ,l = sJ
- 432.

31. Using the fact that x" + y4 = =2 has no integral solution xy: '# 0 show tha t (0, ± I)
are the only rat ional so lutions to y 2 = x4 + I.

32. Let d be a square-free integer d == I or 2 modulo 4. Show that if x and y are integers .
such that yl = x J

- d then (x, 2d) = '1.



Chapter 18

Elliptic Curves

Many of the themes studied throughout this book come
together in the arithmetic theory ofelliptic curves. This is a
branch ofnumber theory whose roots go back a long way,
but which is, necertheless, the subject of intense investiga
tion at the present time .

In this chapter we will give a briefoverview ofsome of
the relevant definitions, problems, and conjectures about
elliptic curves . In particular, it is our purpose to describe a
subtle and influential conjecture due to B. J. Birch and
H. P. F. Swinnerton-Dyer. For the most part we will
omit proofs and be content to give a rough guide to the
ideas involved. For curves of the form y2 = x 3 + D and
y2 = x 3 - Dx we will give a more detailed analysis and
show how the global zeta functions of these curies are
related to Heeke L-functions. This will yield a special case
of an important theorem due to M . Deuring. Our expo
sition is based on the seminal papers of H . Dacenportand
H. Hasse [23J and A. Weil [81].

The techniques that are currently being used to study
elliptic curves are among the most sophisticated in all of
mathematics. We hope that the elementary approach of
this chapter will inspire the reader to further study in this
fascinating and lioely branch of number theory. There is
much to be learned and much work yet to be done .

§l Generalities

We begin with some general observations about curves in projective space.
For the terminology the reader may wish to review Chapter 10, Section 1.

Let K be a field and F(xo, Xl ' X2) E K[xo, XI> x 2] a homogeneous poly
nomial of degree d. A very general problem is to determine whether
F(xo, XI' X2) = 0 has a solution in P2(K).

It is useful to introduce geometric terminology. The equation

F(xO ,X 1,X2 ) = 0

is said to define a curve of degree dover K. The field K is called a field of
definition. If L is a field containing K one can consider the zeros of F in

297
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p2(L). In our previous terminology this is the hypersurface H£(L). A hyper
surface in projective 2-space is appropriately called a curve. Notice F sets
up a map from fields containing K to sets ; L ..... Hf(L).

A point a e Hf(L) is said to be a nonsingular point if it is not a simul
taneous solution to the equations

In this case, the line

aF aF aFo= -;;- (a)xo + -;;- (a)x \ + -a (a)x2
UX o uX\ X 2

is called the tangent line to Fat a.The curve F(xo , x \' x 2) = 0 is said to be non
singular if all the po ints in HfeLl are nonsingular for all extensions L of
K. It can be shown that it is enough to check this for algebraic extensions
of K . (In Chapter 11 we called this notion absolutely nonsingular).

If two curves intersect at a point, one can define an integer called the
intersection multiplicity of the two curves at the point. This is a somewhat
delicate notion and we will not go into detail about it (see W. Fulton [135],
Chapter 3). In general, if L is algebraically closed, a line in p2(L) intersects
a curve of degree d in d points if multiplicity is taken into account. To get an
idea of why this is true, write x = x\ /xo, y = X2/XO' andj'(x, y ) = F(l, x, y) .
We work for the moment in affine 2-space A 2(L). To find the intersection
points of/ex. y) = 0 with the line y = mx + b one simply substitutes for y
and finds the roots of/ex, mx + b) = O. If F has degree d this latter equation
will, in general, have degree d, and since L is algebraically closed there will
be d roots if multiplicity is taken into account. The only exceptions will be
intersections at infinity, in which case [t», mx + b) will have degree less
than d.

As an example, consider F(xo, X\' x 2) = -x~ - xf + xox~. Then
[t», y) = - 1 - x 3 + y2 so the affine part of the curve is given by y2 =
x 3 + 1.The intersection with the line y = x + 1 is determined by (x + 1)2 =
x 3 + 1 leading to the three po ints ( - 1,0), (0, I), and (2, 3). On the other hand
the line y = 1 leads to the equation x 3 = O. This is interpreted as saying
that y = 1 intersects y 2 = x 3 + 1 at the point (0, 1) with multiplicity 3.

The intersections with vertical lines x = c are determined by fCc, y) = O.
In our example, y 2 = c3 + 1 so there are two finite points of intersection

(c, p-+i) and (c, -p-+i) provided c3 + 1 # O. The third point of
intersection is at infinity. If c3 + I = 0, then (c, 0) is an intersection point
of mult iplicity 2.

Finally, the intersections with the line at infinity Xo = 0 can be obtained
from the equation F(O, X\, X2) = -xf, so the point (0,0, l)ep2(L) is an
intersection point of multiplicity 3.
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If a E HF(L) then the tangent line to F at a can be shown to be an inter
section point of multiplicity two or greater. If the multiplicity is greater
than 2 then a is said to be a flex point.

If F is defined over K then a zero of F in p 2(K ) is said to be a rational
point over K.

We will say tha t a nonsingular homogeneous cubic polynomial

F(xo, x., X2) E K[xo, Xl' x 2]

defines an elliptic curve over K provided there is at least one rational point.
The problem of determining all rational points on an elliptic curve has given
rise to a vast body of theory.

One of the things which make elliptic curves so interesting is the fact
that the set of rational points can be made into an abelian group in a natural
way.

Let F(xo, X I' x2) = 0define an elliptic curve over K . If L isa fieldextension
of K we will write E(L) instead of HF(L).

Let 0 be an element of E(K). If PI' P2 E E(L) then the line connecting
P I and P2 intersects the curve in a uniquely determined third point P3

which is easily seen to be in E(L). If PI = P2 then the tangent line at PI

gives rise to a third point P3 . It is tempting to take P3 as the" sum" of PI
and P2. However, this would not define a group structure since there would
be no identity . What we do instead is to find the third point of intersection
with E of the line connecting 0 with P3 and call this new point PI + P2 •

With this definition E(L) becomes an abelian group having 0 as the identity
element. The proof is not hard except for showing associativity, i.e.,

P, + (P 2 + P3 ) = (PI + P2 ) + P3 •

For a rigorous treatment of this construction see [135], Chapter 5, especially
pp. 124 and 125.

If the characteristic of K is not 2 or 3 it can be shown that every elliptic
curve over K can be transformed into one of the form

A,BEK.

This curve has exactly one point at infinity, namely (0, 0, 1)E 1P2(K). We
call this point 00 and take it as the zero element of 0l1rgroup.

The line at infinity Xo = 0 intersects the curve at the point 00 with multi
plicity 3. If X o i= 0 set X = xi /xo and y = X2 /XO. Then, in affine coordinates
the defining equation of the curve is

y2 = x 3 - Ax - B.

The point at infinity is thought of as lying infinitely far off in the direction
of the y axis.

A calculation shows that the nonsingularity of

F(xo, Xl' x 2) = xox~ - x~ + AX5XI + Bx~
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is equivalent to the nonvanishing of

IM Elliptic Curves

This number is - 16 times the discriminant of the polynomial

x 3
- Ax - B.

Conversely if L\ =1= 0 then F defines an elliptic curve.
The fact that 00 isa flex point can be used to show that P t + Pz + P3 = 00

iffPI ' Pz, and P3 lie on a straight line. In particular, ~ P is the third point
of intersection of the line connecting P and co. In affine coordinates this
shows -(a, b) = (a, -b) since the line connecting (a, b) and 00 is the vertical
line x = a.The points of order 2 are those for which b = O. Ifx 3

- Ax - B =

(x - a I )(x - az)(x - a3) E L[x] then the points of order dividing 2 on
E(L) are 00, (a1,0), (az, 0), (a3' 0).

As an example of how to add points consider PI = (2,3) and P2 = (- 1,0)
on yZ = x3 + 1. The line connecting PI and Pz is given by y = x + 1. The
equation (x + 1)z = x 3 + 1 has three roots 2, -I, and 0 corresponding
to PI ' Pz and (0, I). Thus PI + Pz = (0, -I).

Now suppose K = 0, the rational numbers. In 1922 L. 1. Mordell
proved the following remarkable theorem, conjectured by H. Poincare
in 1901 [203] .

Theorem I. Let E be an elliptic curve defined over O. Theil E(O) is a finitely
generated abelian group.

In 1928 A. Weil extended this result to the case where 0 is replaced by an
arbitrary algebraic number field. The resulting theorem is referred to as the
Mordell- Weil theorem.

The subgroup E(O), S; £(0), consisting of points of finite order, is finite.
It turns out that there is an effective method for computing £(0), in any
given case.

It was conjectured for some time that there is a uniform upper bound for
I£(0),1 as E varies over all elliptic curves defined over O. It was noticed
by G. Shimura and others that the theory of elliptic modular curves could
be used to attack this problem. This point of view was extensively developed
by A. Ogg who proved a number of partial results and made some rather
precise conjectures. Finally, in 1976 B. Mazur proved the following very
deep result which had been conjectured by Ogg.

Theorem 2. Let E be WI elliptic curve defined or:er O. Then £(0), is isomorphic
to aile of the followinq groups: 7l./m71. for m ~ 10 or m = 12, or 7l./271.(f)
7l./2m71. for m ~ 4.
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It is also believed that there is a uniform upper bound for IE(K)t Iwhere E
varies over elliptic curves defined over a fixed algebraic number field K.
This is not known to be true for a single such K i= 0, but partial results
have been obtained by V. A. Demjanenko, D. Kubert, and Y. Manin, among
others.

Another important integer associated to E(O) has proved to be even
more intractable, namely the rank. The rank of an abelian group is the
maximal number of independent elements. If A is an abelian group we say
a set of elements a\> a2' , atEA is independent if mtal + m2a2 + ...
+ mtat = 0 with m l , m2' , mtE7L. implies m l = m2 = ... = mt = O.
We denote the rank of E(O) by r«.

The rank rE has been computed for a large number of elliptic curves
over O. In most examples it is qu ite small ; 0,1, or 2. A. Neron has shown the
existence of an elliptic curve over 0 with rank 11. His method is not con
structive. In 1977 A. Brumer and K. Kramer produced an explicit example
with rE ~ 9. Here it is

y2 + 525xy = x 3 + 228x2 - 14972955x + (856475)2.

It is not known if there is an upper bound on the numbers re- where E
is defined over Q. Cassels considers this to be unlikely ([109], Section 20).

One of the most celebrated conjectures in modern number theory con
nects the number r Ewith the order at s = 1 of an analytic function associated
with E. This conjecture was formulated by the English mathematicians
B. J. Birch and H. P. F. Swinnerton-Dyer. The formulation of their conjecture
will be the task of the next section .

§2 Local and Global Zeta Functions of an Elliptic
Curve

Let E be the elliptic curve defined over Q by the equation

A,BeQ (i)

The affine equation is obtained by setting x = x 1/xo and y = x 2/xo .

y 2 = x 3 - Ax - B.

The transformation (x, y) -> (c2x, c3y ) transforms this equation into

y2 = x3 _ c4Ax _ c6B.

(ii)

(iii)

Thus, we may assume to begin with that A, Be 7L. and we make this
assumption from now on. The number .1 = 16(4A3

- 27B2
) is called the

discriminant of E. As we have seen .1 i= O.
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Let p E 7l. be a prime and consider the congruence

l == x 3
- Ax - B (p),

or equivalently the equation,

18 Elliptic Curves

A, BE 7l.jp71. = IF p • (iv)

This equation defines an elliptic curve Ep over IF p provided that p,j' !!..
In what follows only such primes will be considered unless explicitly stated
otherwise. The curve Ep is called the reduction of E modulo p.

Let Npm be the number of points in Ep(lFpm). Then, as in Chapter II ,
we may consider the zeta function

By use of the Riemann-Roch theorem it can be shown that

Z(E , u) = 1 - apu + pu
2

, 7l.
p (1 - u)( 1 _ pu) apE.

(v)

(vi)

In special cases this can be proved using the methods of Chapter 11.
H. Hasse was able to prove that a~ ~ 4p. It follows that

1 - apu + pu2 = (I - nu)(1 - itu), (vii)

where it is the ..£omplex conjugate of n. Clearly, nit = p, ap = tt + it . Also,
InI = Iit I = .jp. This is the "Riemann Hypothesis" for elliptic curves
over IFp'

By logarithmically differentiating (v), (vi), and (vii) and comparing
coefficients one finds

(viii)

In particular, N p = P + 1 - ap' Thus, if one calculates N p this deter
mines up' Since Tr and it are the roots of T 2

- Qp T + P = 0, Equation (viii)
yields N pm for all m ;;::;: I.

A very special case which will be useful later is the following. If N p =
P+ 1 then

Z(E u) = 1 + pu
2

p' (I - u)(1 - pu)

It isuseful to change the variable from u to p-'. We define

1 - a p" + »':"
t (E s) - -c-:---!:-P~-,--"':"""....--:::-
~ p' - (1 - P ' )(1 - pi')'

The function ( Ep , s) is called the local zeta function of Eat p.

(ix) .
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It is illuminating to see that (E p , s) can be obtained from another point
of view which makes the connection with the Riemann zeta function much
clearer.

The ring IFp[x] and its quotient field IFix) is analogous to 7L and its

quotient field Q. Let K = IFix)(Jx 3
- Ax - B) and let D be the integral

closure of IFp[x] in K, i.e., D consists of all the elements in K which satisfy
monic polynomials with coefficients in IFp[x]. D is a Dedekind domain and
every nonzero ideal is of finite index in D. If leD is a nonzero ideal let
NI = IDIII, and define (D(S) = I Nl :', where the sum is over all nonzero
ideals in D. It is not hard to show that (D(S) converges for Re s > I. More
over, one can prove that (D(S) = (I - p-')(Ep , s). See also Section 1 of
Chapter 11.

The point of view outlined here is that taken by E. Artin in his thesis [2].
We have defined (E p , s) for those primes p such that p..r!!... If pi!!.. we

define

Th is is not the best definition but it will suffice for our purposes.
Now that we have defined a local zeta function for all primes p, we define

a global zeta function by simply taking the product of the local zeta functions .

( E, s) = Il (Ep , s),
p

From the definitions we see that (E, s) = (s)(s - I)L(E, s)-t where

L(E,s) = n(1 - app-' + pt-2.)-I.
p .(<1

(x)

(xi)

The function L(E, s) is called the L-function of E. Recalling Hasse's
result that (1 - app-' + pl-2.) = (l - np-S)(I - iip -') with Inl = liil =
JP one can show fairly easily that the product for L(E, s) converges for
Res> l

It was conjectured by Hasse that (E, s) can be analytically continued
to all of C. This was first shown to be true in special cases by Weil [8Il
After that M. Deuring proved the result for an important class of elliptic
curves which are said to possess "complex multiplication."

Lang [169] , Chapter 10, has an exposition of Deuring's results. Y.
Taniyama, and later A. Weil, conjectured that every elliptic curve over Q
can be parameterized by elliptic modular forms.See the article by Swinnerton
Dyer in [226] for a precise statement of this conjecture. For such curves
Hasse's conjecture is true. Thus, the evidence for the truth of Hasse's con
jecture seems overwhelming.

Assuming L(E, s) can be continued to all of C it makes sense to speak of
the analytic behavior of L(E, s) about s = 1.
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On the basis of extensive empirical work on curves of the form y2 =
x 3

- Dx, Birch and Swinnerton-Dyer were led to the foIlowing remarkable
conjecture.

Conjecture. Suppose E is an elliptic curve defined over O. Then the rank of E,
rE , is equal to the order of the zero 0/ L(E, s) at 05 = 1.

This conjecture can be supplemented. Assuming the conjecture we can
define a nonzero constant BE = lims _ 1 (05 - 1)- 'EL(E, 05). Birch and Swinner
ton-Dyer give an expression for BE which depends on subtle arithmetic
invariants of E. It would take us too far afield to discuss these here. See
Cassels [109] or 1. Tate [227].

In an important paper [114] published in 1977,1. Coates and A. Wiles
made significant progress on the above conjecture. Their main result was
subsequently generalized by N. Arthaud [87]. We would need to enter
into the theory of complex multiplication to even state this result in fuIl
generality so we wilI be content with a special case.

Theorem 3. Let E be an elliptic curve defined over 0 and suppose that E has
complex multiplication. If L(E , 1) # 0, then E(O) is finite.

Most of the work we have been discussing is of a very advanced nature
and is beyond the scope of this book. In the foIlowing sections we will
discuss eIliptic curves of two types ; y 2 = x3 + D and y2 = x 3 - Dx.
For these curves we will analyze the local and global zeta functions and show
on the basis of a fundamental result of E. Heeke that the global zeta function
of these curves can be analyticaIly continued to all of C. This wilI give the
reader a sample, at least , of the extensive arithmetic theory of eIliptic curves.

§3 y2 = X 3 + D, the Local Case

Let D be a nonzero integer. We wilI consider the eIliptic curve E defined by
xox~ - xt - Dx~ = 0, or in affine coordinates y2 = x 3 + D. The dis
criminant Ll of E is - 243 3D2 so we will only consider primes p # 2 or 3
and p.r D.

The curve y2 = x 3 + D over IFp has one point at infinity. Thus, N p =
1 + N( y2 = x 3 + D) where we use the notation introduced in Chapter 8.
By means of Jacobi sums we will derive an explicit formula for N p : From
now on we will write D instead of Dso by" abuse of notation" D wiIl represent
the coset of D modulo p.

If p == 2 (3) then x -> x 3 is an automorphism of IF;. It foIlows eas ily (see
Exercise 1) that N p = p + 1 in this case.
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If p == 1 (3) let X be a character of order 3 and p a character of order 2
of IF;. Then

N(/ = x 3 + D) = L N(y2 = u)N(x3 = -v)
u +v=D

L (I + p(u»(1 + X( -v) + X2(- v»
u +v=D

= p + L p(u)X(v) + L p(u)X2(v).
u+v=D u+ t.' =D

We have used the fact that X( -I) = 1. Making the substitutions u = Du'
and v = Do' we find

N p = p + 1 + PX(D)J(p, X) + px.(D) J(p, X), (i)

where bar denotes complex conjugation.
In order to analyze Equation (i) still further the following lemma will

be useful.

Lemma. Let p be an odd prime, p a character of order 2 and ~ any nontrivial
character of IF;. Then J(p, ~) = ~(4)J(~, ~).

PROOf.

J(p, ~) = L p(u)~(v)
u+v =l

L (I + p(u»~(v) = L N(t 2 = u)~(v)
u+ v=l u+v=l

Using the lemma, Equation (i) can be transformed into

N p = p + I + PX'<4D)J(X, X) + PX(4D)J(x.,X)· (ii)

We want to specify p and X. Since p == 1(3), p = rrit in lew] (recall that
w = e2ni/3) where we can take rr and it to be primary, i.e., rr == it == 2 (3).
Let (a/rr)6 be the sixth power residue symbol and take pea) = (a/rr)~ and

x(a) = (a/rr)~ = (a/rrh · Then Px(a) = p(a)x(a) = (a/rr)~ = (a/rr)6' Finally,
ifwe set Xn(a) = (a/rrh then Lemma I ofSection4,Chapter9showsJ(Xn,Xn) =
tt. Substituting this information into Equation (ii) we find

Theorem 4. Suppose p =I 2 or 3 and p,r D. Consider the elliptic curve y2 =
x 3 + D over IF p : If p == 2 (3) then N p = p + 1. If p == 1 (3) let p = rrit with
rrE l ew] and rr == 2 (3). Then

n, = p + 1 + e~)61t + (4~)6it.

Theorem 4 completely determines the local zeta function of / = x 3 + D.
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As an example consider the curve y2 = x ' + lover IF 13 ' We find 13 =
(-I + 3w)( -I + 3(2

) and -I + 3w == 2 (3). To apply the formula in the
theorem we must know (4/-1 + 3W)6 = (2/-1 + 3wh. Since 2113-II/J =
24 == 3 == w 2 (-I + 3w) it follows that (2/ -I + 3wh = w 2

• The formula
in the theorem gives

N 13 = 13 + 1 + w(-I + 3w) + w2(_1 + 3(2
)

= 14 + 2(w 2 + w) = 14 - 2 = 12.

One checks that the points on y2 = x 3 + 1 with coefficients in IF 13 are
00, (4, 0), (10, 0), (12, 0), (0, ± I), (2, ±3), (5, ±3), and (6, ±3).

§4 y2 = X 3 - Dx, the Local Case

Let D be a nonzero integer and consider the elliptic curve E defined by
xox~ - xf + DXlx~ =° or, in affine coordinates, y2 = x3

- Dx. The
discriminant of E is 11 = 26D 3

• We will only consider primes p such that
p t= 2 and p -r D.

The curve y2 = x 3
- Dx over IF p (we continue to write D instead of D)

has one point at infinity so that N p = 1 + N( y2 = x 3
- Dx). The methods

of Chapter 8 are not immediately applicable in this case. We will first trans
form the curve y2 = x 3

- Dx into the curve u2 = v4 + 4D . The number of
solutions to u2 = v4 + 4D can then be handled by our previous methods.

For the moment let C denote the curve y2 = x J
- Dx and C denote the

curve u2 = v4 + 4D. Define a transformation T as follows

T(II , v) = (1(U + v2
) , tV(1I + v2».

A simple calculation shows that T maps C to C. The point (0, 0) on C
is not in the image since 4D = 11

2
- v4 = (II - V

2 )(1I + v2
) shows II + v2 t= 0.

Define a transformation S by

S(x, y) = (2X - y:, ~).
x x

It is easily shown that S maps C - {(O, O)} to C and moreover TS is the
identity on C - {(O, O)} and ST is the identity on C. Let N' = N(1I2 =
v4 + 4D) and N = N(y2 = x J

- Dx). We have shown that N - 1 = N'.
If p == 3(4) then -I is a quadratic nonresidue so every element of IF p

is of the form ± w 2
• Thus every square is automatically a fourth power.

Consequently,

N ' = N(u 2 = v4 + 4D) = N(1I2 = v2 + 4D) = P - I.

Thus we find that if p == 3 (4), N p = I + N = 2 + N' = 2 + P - 1 =
p+1.
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Suppose now that p == I (4). Let A be a character of order 4 of IF p and set
p = ,.1,2 . Then, by the now familiar process, we find

N(u 1 = v4 + 4D) = I N(u 1 = r)N(v 4 = -s)
r +s=4D

= p - I + ,.1,( -4D)J(p, A.) + A(-4D)J(p, A). (i)

We have used the fact that for p == 1(4), Jtp, p) = -I (see Chapter 8,
Section 3,Theorem I). By the lemma of the previous section we have J(p, A.) =
A.(4)J(A., A). Thus, ,.1,( -4D)J(p, A.) = A.(D)A.( -1)J(A., A).

We now specify A. Since p == 1(4), P = nii in .l[i] with n primary, i.e.,
n == 1 (2 + 2i). Identify IFp with .l[i]ln.l[i] and chose A. to be the biquadratic
residue symbol, ,.1,«(/) = (a/n)4' Then, by Proposition 9.9.4 we have

- ,.1,( - I )J(A, A.) = n.

Starting from Equation (i) and substituting all this information we arrive at

Theorem 5. Suppose p #- 2 and p,r D. Consider the elliptic curve yl = x 3
- Dx

over IF p : If P == 3 (4) then N p = p + I. If P == 1 (4) let p = nii with n E .l[i]
and tt == 1(2 + 2;). Then

As an example, consider y2 = x 3
- x over IF 13' One sees

13 = (3 + 2i)(3 - 2i)

and 3 + 2i == I (2 + 2i). The formula of the theorem tells us that N 13 =
13 + I - (3 + 2i) - (3 - 2i) = 14 - 6 = 8. In fact, a short calculation
shows the points on y2 = x 3

- x with coefficients in IF 13 are cc, (0, 0),
(1,0),(-1,0),(5, ±4),and(-5, ±6).

§5 Heeke L-funetions

In two important papers publ ished in 1918 and 1920 the German mathe
matician E. Heeke introduced a new class of characters and L-funct ions .
These can be defined over arbitrary algebraic number fields. We shall
confine our attention to algebraic Heeke characters over CM fields of a
certain type (the terminology will be explained below). For the applications
we have in mind this will suffice.

Let KIQ be an algebraic number field. An isomorphism a of K into C
is called real if a(K) c IR, otherwise it is called complex. K is said to be totally
real if every isomorphism of K into C is real. K is said to be totally complex
if every isomorphism of K into C is complex. K is called a CM field if it is
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a totally complex quadratic extension of a totally real subfield Ko. For

example , if d E Q with d > 0 then Q(j"=d) is a CM field. Other examples
are provided by cyclotomic fields Q(Cm)' The totally real subfield of Q«(m)
is Q«(m + (,;; I) .

Let K c C be a CM field such that KIQ is a Galois extension. Let j
be the restriction of complex conjugation to K. Then it is easily seen (Ex
ercise 2) that j is in the center of G, the Galois group of KIQ. Moreover,
K o is the fixed field ofj. From now on we assume K satisfies these conditions.

Let (!) c K be the ring of integers and M S t!J an ideal. An algebraic
Heeke character modulo M is a function X. from the ideals of t!J to C subject
to the following conditions.

(i) x(0 ) = 1.
(ii) X(A) i= 0 if and only if A is relatively prime to M.

(iii) I..(AB) = X(A)X(B).
(iv) There is an element 0 = L n(a)a E .:l[G] such that if ct. E t!J, ~ == 1(M),

then X«ct.» = ~II.

(v) There is an integer m > 0 such that n(a) + nUa) = m for alia E G.

The last condition is easily seen to be equivalent to (I + j)O = mN,
where N = La is the norm element in .:l[G].

The number m in condit ion (v) is called the weight of 1...
Another th ing to note is that by cond ition (iii) X. is completely determined

by its values on prime ideals not dividing M .

Proposition 18.5.1. Let I. be an algebraic Heeke character of weight m. Then
if(A , M) = (1), II.(A)I = NA m

i 2.

PROOF. Let 1M be the set of ideals in (I) which are relati vely prime to M.
We put an equivalence relation on 1M as follows; if A, BE /'\1 we say A - B
if there exist ct. , [JE (!) such that ct., {J == 1(M) and (~)A = ({J)B. It can be shown
that the equ ivalence classes are finite in number and form a group C.\f'
The product in this group takes the equivalence class of A and the equivalence
class of B to the equivalence class of AB . If M = t!J, this construction yields
the ideal class group of t!J (see Chapter 12,Section 1). Let II be the number of
elements in CM'

If A E 1M there exist z, {J E (9, ~, fJ == 1 (M), such that (~)Ah = ({J). Thus,

'X1I1..(A)h = fl".

Take complex conjugates of both sides and multiply. This yields

('X") I +ill.(AW" = ([JII) I +i,
or, by tv)

(N~)m Ix(A) 12/
1 = (N fJ)m.

Since (ex)A" = ({J) we also have

Nct.NAh = N{J.
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Comparing these last two equations we find IX(A)1
2h = NAmh and

IX(A)I = N Am
/
2

• 0

It should be noted that the proof shows that the values X(A) are algebraic
numbers (in fact, hth roots of elements of K). This is a partial explanation
of why Xis called an ..algebraic" Heeke character.

We now proceed to attach an L-function to an algebraic Heeke character
X. Namely, define

L(s, X) = n(1 - X(P)NP- S)- t

P

The product is over all prime ideals in (I), and the sum over all ideals in (I).

Simple estimates show that the product converges absolutely for Re s >
1 + m/2 and uniformly for Re s ~ 1 + m/2 + () for any () > O. Indeed, the
product converges absolutely if and only if Lp IX(P)NP-SI converges.
By Proposition 18.5.1, if s is real

IX(P)NP-SI = Nptm/2)-s:::;; p-ts - tm/ 211

where p is the rational prime below P. Since every rational prime has at
most [K : 10] primes above it in (I) we see

Llx(P)NP-sl:::;; [K:iQ] LP-(s-tm/211,
p

which converges for s > 1 + m/2.
Using the fact that the product for L(s, X) converges absolutely for

Re s > 1 + m/2 it can be shown the sum also converges in this region and
that the two are equal.

The crucial fact which we need about Heeke L-functions is given by the
following theorem. We will not give the proof which is long and difficult.

Theorem 6. Let Xbe analgebraic Heeke characterand L(s, X)the corresponding
Lfunction. If X(A) is not equal to 0 or 1for some A, then L(s, X)can be analyti
cally continuedto an entirefunction on all ofC.

It should be pointed out that this theorem is true for all number fields
and all Heeke L-functions, not only those which come from algebraic Heeke
characters. Moreover, Heeke established a very important functional
equation for his L-functions. When X is an algebraic Heeke character of
weight m the functional equation relates L(s, X) with L(m + 1 - s, i).

Some authors normalize by defining i(A) = X(A)INA m/2. Then L(s.:V =np (l - i(P)NP- S)-
1 converges for Re s > 1 using the same reasoning

as for Lis, X) together with the fact that for (A, M) = (1) one has li(A)1 = 1.
We will work directly with the Heeke character X.
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In the next two sections we will show the L-function, L(E, s), for elliptic
curves of the form y2 = x) + D and y2 = x 3 - Dx are Heeke L-functions.
In the first case we willconstruct an algebraic Heeke character on Q(w) and
in the second case on Q(i).

One final comment. In Chapter 14 we defined by means of Gauss sums a
function <1>(A) on the ideals of Q«(m) which are prime to m. It can be shown
that <1>(A) extends to an algebraic Heeke character for the modulus (m2

)

of weight m. This was first shown by A. Weil in [81]. In a later paper [236]
he points out that the case where m is an odd prime goes back to Eisenstein.

§6 y2 = X 3 - Dx, the Global Case

We will now analyze the global zeta function of the elliptic curve E defined
by y2 = x 3

- Dx , D E 7L. It is enough to consider the associated L-function
L(E, s). Since L1 = 26 D3 in this case we have (see Equation (xi) of Section 2)

L(E,s) = n (I - app- s + pl-2,)-I .
p.r2D

The numbers ap are determined by N p = P + I - ap and Np has been
determined in Theorem S, Section 4.

We are going to construct an algebraic Heeke character X on .I[i] with
respect to the modulus (8D) such that L(E, s) = L(s, z).

To construct Z it is enough to specify X(P) for prime ideals P in 7L[i].
If P divides 2D define l.(P) = O. Suppose P does not divide 2D. If N P = p,

then p == I (4) and P = (z) with n: == I (2 + 2i). Define Z(P) = (fj;n:~n:.

If N P = p2, then p == 3 (4) and P = (P). Define x(P) = - p.

Lemma . Suppose p == 3 (4). Theil (D /P)4 = I.

PROOF . Let P be the prime ideal in .I[i] generated by p. Then (D/P)4 =
(D /P)4 == D(NP- 1li 4 (P) . Since NP = p2 we have (NP - 1)/4 = (p2 - 1)/4 =
(p - l)(p + 1)/4. By Fermat's Little Theorem Dr 1 == 1(p) which implies
(D /P)4 == I (P) and so (D /P)4 = I. 0

As a consequence of the lemma we can define Z(P) uniformly for prime
ideals P not dividing 2D . If P = (n:) where n: == 1(2 + 2i) then Z(P) =
(D/n:)4 n:.

Theorem 7. Let E be the elliptic curve defined by y2 = x 3
- Dx with DE 7L.

The character Z defined above is all algebraic Heeke character of weight 1
for the modulus (8D). Moreover, L(E, s) = L(s, X).

PROOF. Assume to begin with that p == 3 (4) and p,r 2D. By Theorem 5,
N p = p + I so that Q p = O. Let P = (p). Then NP = p2 and X(P) = -po
Thus
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Now suppose p == 1 (4) and p,r 2D. Write pl[i] = P?, P = (rr) and

rr == 1 (2 + 2i). Then, NP = p and, by Theorem 5, ap = (D/rr)4 tt + (D/rr)4 n.
Thus

We have used (D/n)4 = (D/rr)4 ' Putting these facts together yields

L(E, s) = n(1 - X(P)NP-S)-t = I X(A)NA -s = L(s, X).
P A

It remains to show that 1. is an algebraic Heeke character of weight
for the modulus (8D).

It is clear for A relatively prime to 2D that X(A) = (D/akx where a is
the unique generator of A such that a == 1 (2 + 2i). The theorem will be
proved if we can show a == 1 (8D) implies (D/rx)4 = 1. To do this we will
have to separate the cases D == 1 (4), D == 3 (4), and D even.

If D == 1 (4), then by Proposition 9.9.8 we have (D/a)4 = (a/D)4' Since
a == 1 (D), (a/D)4 = 1 and we are done in this case.

Before going further we need a remark about (i/rx)4 ' If rx == 1 (8) we
claim (i/a)4 = 1.To see this note first that (i/rx)4 = i(l'· - I )/4. If a == a + bi ==
1 (8), then a-I == 0 (8) and b == 0 (8). Thus, N'Y. - 1 = a2 + b2

- 1 =
(a2

- 1) + b2 == 0 (16). This proves the assertion.
Now suppose D == 3 (4). Assume a == 1 (8D). Using Proposition 9.9.8

and the above remark we have (D/a)4 = (i2 D/a)4 = (- D/rx)4 = (a/D)4 = 1.
It remains to treat the case where D is even. Write D = 21D

o where Do
is odd. Assume rx == 1 (8D). By what has been proved to this point (DO/a)4 = 1.
It thus suffices to show (2/a)4 = 1. For this we need a supplement to the
law of biquadratic reciprocity. Namely, assume a = a + bi is primary.
Then

(
I + i) _'(a-b -b2-1 l/4
-- -I .

rx 4

A proof of this in the case when rx is a prime element has been outlined in
the Exercises to Chapter 9. It is not difficult to go from the case of a a pr ime
to that of ex primary.

If ex == 1 (8D) and D is even then a == 1 (16). It follows that a -I == 0 (16)
and b == 0 (16) and so (1 + i/rx)4 = 1. Thus

The proof is now complete. o
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In order to analyze the L-function of the elliptic curve defined by l =
.'(3 + D, D E 71., we proceed as in the last section. Since the discriminant in
this case is ~ = - 243 30 2 we have

L(E, s) = n (I - app-s + pl -2S)-I.
p .j' 6 D

The numbers ap are determined by N p = p + 1 - ap and N p has been
determined by Theorem 4, Section 3.

We will construct an algebraic Heeke character X on 71.[w] of weight 1
with respect to the modulus (12D), and show that L(E, s) = L(s, X).

Let P c 71. [w] be a prime ideal. If P divides 6D define X(P) = O. Assume
now that p.r 6D. If NP = p, then p == 1 (3) and P = (n) with n primary,

i.e., n == 2 (3). Define X(P) = -(4D/n)6 n. If NP = p2, then p == 2 (3) and
P = (P). Define x(P) = - p.

Lemma 1. Suppose p is an odd prime and p == 2 (3). Then (4D/p)6 = I.

PROO F. It follows from the hypotheses that p + 1 is divisible by 6. We know
(4Dy-l == 1 (P). Raising both sides of this congruence to the «p + 1)/6)th
power gives the result. 0

Lemma 1 permits us to give a uniform definition of X(P). If P ,r6D write

P = (n) with n == 2 (3). Then X(P) = - (4D/n)6 n.

Lemma 2. Suppose a E 71. [w] and (IX, 2D) = (1). Define (D/lXh to be (D/IX)~ .

Then (D/ah = (D/Na), where this last symbol is the Jacobi symbol (see
Chapter 5, Section 2).

PROOF. Both (D/':J.h and (D/Na) are multiplicative in IX. Thus it is enough to
check that they are equal when IX = n, a prime element.

Suppose n = p i= 2. a rational prime with p == 2 (3). Then Np = p2 and
so (D/Np) = (D/p)2 = I. On the other hand

(~t = (;): == D(p2- 11/2 == (DP-l)(P+(1/2 == 1(p).

Thus, (D/Np) = 1 = (D/ph .
Assume now that n is a complex prime and so Ntt = p == 1 (3). Then

(~) 2 = (~): == D(P- ( 1/2 == (~) (rr).

Since p = Ntt, it follows that (D/nh = (D/ Nn) and the proof iscomplete. 0
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Theorem 8. Let E be the elliptic curve over iQ defined by y2 = x 3 + D. DE 7l..
The character X defined above is an algebraic Heeke character of weight 1
for the modulus (12D). Moreover, L(E, s) = L(s, X).

PROOF . Assume first that p == 2 (3) and p~ 6D. By Theorem 4, N p = p + 1
so that ap = O. Let P = (P). P is a prime ideal in 7l.[w] and X(P) = -po
Thus

1 - app-s + pt-2s = 1 + v":" = 1 - X(P)NP - s.

Now suppose p == 1 (3) and p,r6D. Write p7l.[w] = PP where P = (n)
with n== 2(3). Then NP = p and by Theorem 4, ap = - (4Djn)6n 
(4Djn)6ii. Thus

1- app-s + p'-2s = (1 + (4:tnp-S)(1 + (4:)/p_s)

= (l - l.(P)NP- S)(1 - X(P)NP-S).

We have used the fact that (4Djii)6 = (4Djn)6' Putting these facts together,

L(E, s) = n(l - X(P)Np- s)-l = L X(A)NA -s = L(s, X).
P A

It remains to show that X is an algebraic Heeke character of weight 1
for the modulus 12D.

It is clear that for A relatively prime to 12D we have X(A) = (4D/ex)6ex,
where IX is the unique generator of A such that IX == 1 (3). We will be done if
we can show IX == 1 (12D) implies (4Dj':1.)6 = 1.

Since 1 = (4D/IXM4D/IX)~(4D/IX)~ it is enough to show IX == I (12D)
implies (4D/rxh = 1 and , by Lemma 2, that (4DjNIX) = 1. We do both
implications in turn.

Assume 3~ D. Since ex == 1(3) and IX is relatively prime to 4D, we have
by cub ic reciprocity (Theorem 1, Chapter 9), (4D/lXh = (-ex/4Dh =
(ex/4Dh = 1.The last equality follows from IX == 1 (4D).

If 31D, write D = 3lD
o with 3 ~ Do. Then (4D/exh = (3/ex)~(4Dojexh =

(3/ex)~ . We must show ex == 1 (l2D) and 31 D implies (3j(xh = 1. The hypo
theses imply ex == 1 (9). We need the supplements to the law of cubic reci
procity. These can be stated as follows. If}' E 7l.[w] is primary, then)' =
a + bt» == 2 (3). Write a = 3m - 1 and b = 3n.Then

(~t = w
m

+
n

and C~ W)3 = w
2m.

A proof is outlined in the Exercises to Chapter 9. Now, 3 = -w2(l - W)2

so ex == I (9) implies (3/IXh = 1 as desired.
It remains to show IX == 1 (12D) implies (4D/N':1.) = 1. Now, IX == 1 (12D)

implies NIX == 1(4) and N« == 1 (D). If D is odd we have

(~) = (:':1.) = (~!X) = 1.
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(i)

We have used the law of quadratic reciprocity. If D is even, write D = 2'Do
with Do odd. Then

The final thing to prove is that D even and IX == I (12D) implies (2INIX) = 1.
The hypotheses imply IX == I (8) so that N(X == 1 (8) and so (2INt:/.) = 1. 0

We conclude by observing that Theorems 6, 7, and 8 show that for
elliptic curves E of the form y 2 = x 3

- Dx or y2 = x 3 + D, the L-function,
L(E, s), can be analytically continued to all of Co This proves Hasse's con
jecture for these curves!

§8 Final Remarks

In this chapter we have considered special types of elliptic curves defined
over Q and investigated their local and global zeta functions. It is possible
to generalize these considerations to algebraic varieties defined over algebraic
number fields. We will go a short way along th is path by considering curves
defined by a single polynomial with coefficients in an algebraic number
field. After giving the relevant defin itions we will investigate the Fermat
curves x~ + X'I + x~ = 0, I an odd prime. In this connection we will en
counter a class of algebraic Heeke characters defined by Jacobi sums.

Let K be an algebraic number field and (!) c K its ring of integers. Let
f(xo, x t , X2)E(!)[Xo , XI ' x 2] be a nonsingular homogeneous polynomial
of positive degree, and let C denote the algebraic curve defined by the
equation j (xj , XI ' X2) = O. If P is a prime ideal of (I) we may reduce the
coefficients off modulo P to obtain a polynomial J E 01P[xo , X l ' X 2]. It
may be shown that there is a finite set of primes Y' such that for P ¢ Y' the
red uced polynomial J is nonsingular. Let Cp be the curve defined over
01P by the equation j'(xj , Xl' X 2) = O. In Section 1, Chapter 11, we showed
how to attach a zeta function to Cr- Namely,

<X' Nm(p)um
Z(C p , u) = exp I '

m=1 In

where Nm(P) is the number of (projective) solutions to J(xo, x., X2) = 0
in the extension of (!)IP of degree In. Recall that this extension is unique up
to isomorphism so that N m(P) is well defined.

Using the Riemann-Roch theorem one may show there is a polynomial
H(Cr- u) E Z [u] with constant term equal to one such that

Z(C
p

, u) = H(C p , u)
(I - u)(1 - N Pu)
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(ii)

If P E.9" it is not easy to decide on the appropriate definition. For our
purposes we simply define H(C p , u) = I if P E.9".

The local zeta function of C at P is obtained by setting u = N P- S in
Equation (i) , Namely,

r(c ) H(Cp , NP-
S

)

.. p, s = (l _ NP S)(l _ Np l sf

This generalizes Equation (ix) of Section 2.
The global zeta function of C is defined by

( C, s) = Il ( C p , s)
p

(iii)

(iv)

The product is over all nonzero prime ideals in (!i.

The product np (I - N P-s) -I is called the zeta function of K and is
denoted by ( K(S). This function was first investigated by Dedekind. It con
verges for Re(s) > I and it was shown by Heeke that it can be continued to
a meromorphic function on all of C and satisfies a functional equation.
The only pole is a simple pole at s = I .

Define L(Cp. s) = H(Cp, N p -s)-I and L(C, s) = np L(Cp, s). Then
from Equations (ii) and (iii)

( C, s) = ( K(sK K(S - 1).
L(C, s)

It follows that if we wish to investigate whether ( C, s) can be analytically
continued to all of C it is enough to concentrate on the function L(C, s).

Fix an odd prime i. From now on we will consider the curve C defined by
x~ + x'. + x~ = O. It will be convenient to consider C as being defined
over K = 0«(,) rather than over O. We set (9 = £:[(,], the ring of integers
in K.

It is easy to see that the exceptional set .9" consists. in this case, of the single
prime ideal 5t' = (I - ( ,). If P #- !f we know I divides NP - 1. It is this
fact which makes K a more convenient field of definition.

Assume P #- 5t' and apply Theorem 2 of Section 3, Chapter II to the curve
Cpover (9/P. We find

H(C p , u) = n (l + NP - 1g(xo)g(Xl )g(X2)U), (v)

where the product is over 3-tuples of characters of «(9/P)* of order I such that
/'OX1X2 = s, the trivial character.

Since 9(xtl9(h) = J(xl' X2)g(/'IX}) and XOX1X2 = <: we find that
g(xO)g(xl)g(X2) = xlxi -I)NP J(Xl' X2)' Since -I = (-I)', X1X2( -I) = I.
Substituting this information into Equation (v) we find

(vi)

where the product is over pairs of characters of order I such that XIX2 #- s.
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Let xp(a) = (al P),- I for a E (f). This is the inverse of the lth power residue
symbol (see Chapter 14, Sect ion 2). If I ~ a, b ~ I - 1 and a + b -:f. I
define Aa.b(P) = -J(l.~ , l.~) . With this notation we have

and so

I -I

H(Cp , u) = n (I - Aa.b(P)U)
a.b=I
a+b'"

1-1

uc. .» = n (I - AU.b(P)Np-S)-I.
a.b =J
a+b"l

(vii)

(viii)

Let us define Aa.b(Y) = 0 and us, Aa,b) = np (I - Aa.b(P)N p-S)-I .
We have shown

I-I

L(C, s) = n us. Aa.b)·
a.b= J
a+b"l

At this point it is certainly reasonable to hope that Aa•b extends to an alge
braic Heeke character. Th is is indeed the case! Aa.b is an algebraic Heeke
character of weight I for the modulus (/2) , The corresponding group ring
element is

The proof of these facts will be outlined in the Exercises. Here we simply
remark that since L(C, s) is a product of Heeke L-functions, the fundamental
result of Heeke, Theorem 6, shows that L(C, s) can be analytically continued
to an entire function on all of C and, moreover, sa tisfies a functional equation
connecting L(e. s) with L(C, 2 - s).

NOTES

The notion of local and global zeta functions attached to an algebraic
curve defined over an algebraic number field goes back to Hasse, In the
late 1930's, Hasse proposed to one of his students the problem of showing
that the global zeta function can be analytically continued to all of C and
satisfies a funct ional equation. Weil was asked by G. DeRham for his opinion
of this problem. At the time Weil could see no reason why the global zeta
function should have the properties ascribed to it by Hasse. Moreover,
he thought the problem too difficult for a beginner (" . . . trop difficile pour un
debutant, . . "), For this and other enlightening comments see Weirs Complete
Works [241], Vol. II, pp . 529-530.

In spite of his init ial pessimi sm Weil later ga ined confidence in Hasse 's
conjecture through working out special cases, initially y2 = x" + I (this is
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equivalent to the curve y2 = x 3
- !x). His work along these lines cul

minated in his famous paper "Jacobi Sums as Grossencharaktere" [81l
In this paper Weil treats curves of the form y' = »x! + lJ where 2 ~ e ::; f
and ylJ i= O. At the end of the paper he notes the cases e = 2 andf = 3 or 4
correspond to elliptic curves with complex multiplication. These are, in
essence, the curves we have treated in this chapter. He goes on to say" . . . it
would be of considerable interest to investigate more general elliptic curves
with complex multiplication from the same point of view." Th is suggestion
was taken up by M. Deuring with complete success .

In passing it is worth noting that what we ha vecalled Heeke characters were
called by Heeke "Grossencharktere." In the older literature algebraic Heeke
characters are referred to as characters of type A o-

In his 1954 paper "Abstract versus Classical Algebraic Geometry"
[241] (Vol. II, pp. 550-558) Weil defines local and global zeta funct ions for
a nonsingular algebraic variety defined over an algebraic number field.
He raises the question of whether these functions can be analytically con
tinued to all of C and satisfy a functional equation of an appropriate type .
Having verified that these properties hold in many examples, he writes,
"It is tempting to surmise that this is always so, but I have little hope that a
general proof may soon be found." This conjecture is now known as the
Hasse-Weil conjecture. Although there has been much progress due to
Weil himself, Taniyama, Shimura, and others, the Hasse- Weil conjecture
remains very much an open problem.

For a comprehensive survey of the various zeta and L-functions that have
been defined and studied since the nineteenth century see the article on zeta
functions in the Encyclopedic DictionaryofMathematics, Vol. II, Section 436
(M.LT. Press, 1977).

EXERCISES

I. Let p be prime p == 2 (3) and consider the curve Ep defined over Fp by y2 = x 3 + a,
a E Fp ' Show that N(y2 = xJ + a) = p + I (project ive po ints).

2. Let K c C be a eM field which is G alois and letj be the rest riction to K of complex
conjugat ion . Show that the fixed field of j is the unique totally real subfield of K of
degree UK :0] and that ja = aj for all a in the Galois group of Kover 0 .

3. Let A. BEl.• .1 = 16 (4A J - 27B 2
) # 0, and E be the elliptic curve defined by

y2 = x J - Ax - B. If p is prime. pi- .1let N p denote the number of projective po ints
on the red uced curve Ep over Fp : The pr ime p is said to be anomolous for E if
B:~ «xJ

- Ax - B)lp) == -I (p). Put fp = - B:~ «xJ
- Ax - B)lp). Show

(a) pis anomolous for E iff piNs:
(b) Assume the Riemann hypothesis for Ep (see Chapter II, Section 3).lfp > 5 then

J~ = I -ee-P is anomolous for E.
(c) Let B = 0, p == I (4), Pi-.1. Then fp is even . If p > 5 p is not anomolous.
(d) If B = 0 then 5 is anomolous ¢> A == 2 (5).
Th is exerci se is taken from Olson [202].
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4. Consider the underlying abelian group of rational points on the elliptic curve E,
defined by y2 = x 3 + C. If pi-6c then it is known that the torsion subgroup (i.e., the
points of finite order) of E is isomorphic to a subgroup of the torsion subgroup ofthe
reduced curve modulo p. Use Exercise 1 and Dirichlet's theorem on the density of
primes in an arithmetic progression to show that the torsion subgroup of the above
curve can have only 1,2,3,4 or 6 elements. This exercise is taken from Olson [201] .

In the following exercises the notation is as in Chapter 14, Sect ion 3. Furthermore G =
7Llm7L EEl 7L/m7L, and T denotes the subset of G consisting of (a, b) with a ~ 0, b ~ 0,
a + b ~ O.

5. Generalize Exercise 13, Chapter 6, as follows . If x = (XI' X2)' Y = (YI' Y2) E G define
( x, y ) = XI YI + X2 )!Z ' For a C valued map 1 defined on G define !(x) = (11m2

)

L I(YK;;, (x.r), rEG. Show
(a) I (x ) = L !(YK~x . y ) .

(b) Lx 1!(x)1 2
= (11m2

) Lx I/(xW.
(c) Assume 1 maps G to the unit circle and;' is integer valued . Show that I(x, y) =

1(0, OK::'x + brfor a suitable (a, b).Conclude that if/(O, 0) = 1(1 ,0) = 1(0, 1) = 1
then 1 is ident ically 1.

6. For (a, b) E G define , for P c Dm , P a prime ideal , m ¢: P, Aa.b(P) as follows :
(i) If (a, b) E T, Aa.b(P) = -J(x'P, X~).

(ii) If (a, b) ~ (0,0), a + b = 0 put Aa.b(P) = +X'P( -I).
(iii) If a + b ~ 0 and a or b is 0 put Aa.b(P) = 1.
(iv) Ao.o(P) = - (N(P) - 2).
Show that if one modifies the convention in Chapter 8 concerning the tr ivial char
acter by putting £(0) = 0 then Aa.b(P) = -J(x'P, X~) for all (a, b) E G.

7. For (c, d) E G define N, .das the number of solution (x, y) , x, Y E IFq (q = N(P» to the
equations x + y = 1, b(Y) = (~ , and xp(x) = ~:;, . Show that J(X'P , X~) = L.d
N,.d(,::+bd. Conclude that -N,.d = ).,jP).

8. Extend Aa.b(P) to all ideals III c Dm , m ¢: '2l, by multiplicativity. Show
(a) Ao.o(Ill)N(Ill) == 1 (mz).

(b) If ex E Dm , ex ~ 0, (a, b) E T then Aa.b«IX» = u(a, b)ex;'(a .bl, where u(a, b) E Dm ,

lu(a, b)1 = 1 and

((at) (bt) (a + b)t ))y(a, b) = L - + - - - - - aI-I .

( I.m)~l m m m

(c) ).a.b(lll)E 7L.

9. Assume z == 1 (m 2). Define u(a, b), for fixed ex, by Exercise 8 if (a, b) E T. If (a, b) ¢: T,
(a, b) ~ (0,0) put u(a, b) = Aa.b«:X»' and u(O, 0) = 1.Show
(a) u(a. b) == Aa.b«:X» (m2

) for all (a, b) E G.
(b) u(a, b) E Dm , all (a, b) E G.
(c) u(a, b) E 7L, all (a, b) E G.
(d) Apply (c) of Exercise 5 to show that u(a, b) = 1 for all (a, b) E G, and conclude

that Aa.b is an algebraic Heeke character for Dmwith a defining modulus m 2
•

Exercises 5-9 are adapted from Lang [171], Chapter I, Section 4.

10. G ive an example of a nonabelian eM field.



Chapter 19

The Mordell-Wei! Theorem

In this chapter we prove the celebrated theorem of
Mordell- Weit for elliptic curves defined over the field
of rational numbers. Our treatment is elementary in
the sense that no sophisticated results from algebraic
geometry are assumed. It is our desire to present a
self-contained treatment of this important result. The
significance and implications of this theorem for con
temporary research in diophantine geometry are far
reaching. In the following chapter a summary without
proofs of these developments to the present time is
sketched. We hope that these two chapters lViII inspire
the interested student to continue this study by con
sulting the more comprehensive texts on the arith
metic ofelliptic curves listed in the bibliography to this
chapter.

Our proofof the Mordell-Wei! theorem is based on
Wei!'s /929 paper [W4j "Sur un theoreme de Mordell"
and an interesting simplification of the "weak Mor
dell- Weit" theorem appearing in J. W.S. Cassels 's pa
per entitled " The Mordell-Weil Group of Curves of
Genus 2" [Ca2j.

§1 The Addition Law and Several Identities

Let k be an arbitrary field of characteristic zero with a fixed algebraic
closure k. Consider an elliptic curve E defined over k with an affine
equation in Weierstrass form

yZ = x 3 + ax + b = f(x). (I)

Here a and b are constants in k subject only to the condition that the curve
E is nonsingular. It is a simple exercise to see that this is equivalent to the
condition thatf(x) have three distinct roots in k. Denote these roots by 0\,
Oz, 03 so that we have

(2)

319
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For completeness we include the proof of the following well-known result
from classical algebra.

Lemma 1. [WI - (h)(O~ - fh)(OI - o)F = - (4a·1 + 27h~) .

PROOF . By substituting .r = Oi in the formal derivative of [i x) one obtains
301 + a = (0; - 8;lWi - 8d. i.], k distinct. Multiplication now shows that
the negative of the left-hand side of the statement in the lemma is

27((J 18~(})~ + 911((JI(}~ + OI(} ~ + 8~Oj) + 3a~((Ji + O~ + O~) + a).

But 0 1 + O~ + 0) = 0, OIO~ + 8 10) + O~O ) = a, OIO~Ol = -h, and several
applications of the identity (x + )' + :f = x~ + y~ +z ~ + 2(xy + .rz + vz)
completes the proof. 0

Recall from Chapter 18 that the nonzero quantity - I6(4a) + 27b~) is
called the discriminant ~ of the curve E. We will see in Chapter 20 that the
prime divisors of ~ enter into the precise formulation of the conjectures of
Birch and Swinnerton-Dyer.

We view E as a projective curve whose points are the affine points
Lr, y) sati sfying (I) along with a single point on the line at infinity denoted
by x. As mentioned in Chapter 18 the "chord and tangent" process
defines a group structure on E. We now make this definition precise and
derive several identities that arc needed in what follows.

The identity clement is taken to be the point at infinity oc, The group
structure is defined by the requirement that three point s P, Q, R on E are
collinear if and only if P + Q + R = x. If P = (a. f3) is a point of E, then
Q = («, -f3) is also on E and P, Q, oc arc collinear. Thus P + Q = zc and
we see that -P = (a, -f3). The points of order 2 are therefore (0; , 0), i =

1,2.3 . It is important to realize that these points need not be rational over
k, Now let P = (XI, yd, Q = (x~, y~) be two affine points on E with Xl =1= x~ .

Intersecting E with the line through P and Q shows that the polynomial
in x

[ (
Y2 - VI) ]~x) + ax + b - )'1 + ~ (x - Xl)
X~ XI

has roots XI and X2. Hence , if X1 is the third root ,

so that

(3)
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If (X3, Y3) is the third point of intersection of the line between P and Q with
E then

and it follows that if P and Q are rational over k, then so is (.\). y:d . Now
by definition of the group law one has

P + Q + (X .1. Y.1) = :x;;

or

(4)

Finally. if P = (x" yd, )'1 f. 0, we must derive a formula for 2P. The
tangent line to E at (XI. YI) has equation

3.d + l/
Y = YI + 2 (x - XI)'

YI

In other words. one calculates easily that the polynomial

. [ 3xi + a l~j(x) - )'1 + ? (x - .r .)
. -YI

has XI as a double rool. Again. as the coefficient ofx 2 inf(.r) is O. one has

where X.1 is the third rool. Hence.

(
3xi + (/)' ~ .

x ) = -2xl + -~'---
~YI

If (X .h yd is the third point of intersection with E, one has

3.tT + a
Y) = YI + ? (X.1 - .rd .

-YI

Thus ,

2P + (X.1. Y.1) = :c.

and we see that

(5)

As mentioned in Chapter 18, the proof of the associative law is not
obvious. There we referred the reader to Fulton 11351 for a geometric
approach. Since the first edition of this text was published , several new
texts have appeared . We recommend . in particular. J .H. Silverman [Si]
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and D. Husernoller [Hus] for a thorough treatment of this matter. We do
mention, however, that if one uses the parameterization of E by the
Weierstrass p-function and its derivative (at least when k C C), then one
sees that the group law is precisely the "addition formula" and "dupli
cation formula" from the classical theory of elliptic functions. Thus , the
group law on E is the "transport" to E of the natural additive structure on
the complex torus whose lattice defines the Weierstrass functions. Thus,
associativity is "obvious." It is, of course, a nontrivial fact that every
elliptic curve arises in such a fashion. With our purely algebraic definition
of the group law, the proof of associativity becomes a straightforward, if
somewhat tedious, exercise in algebra.

We sec that the set of points on E that are rational over k form a group,
denoted by £(k). This group is clearly abelian , as follows from the geo
metric definition of addition law and is visible again in (3). We may now
sta te the main theorem of this chapter. Let k = Q, the field of rational
numbers.

Theorem. £(Q) is a fin itely generated group .

The addition formulas were obtained by using the fact that the sum of the
roots of a polynomial is the negative of the trace term . Beginning with (2)
and using the corresponding ob servation for the product of the roots we
obtain relations that will be needed later. Replace x by t + (J in (2), where
() is one of the roots () I , () 2 , () 3 . Let ()' , 0" be the other two roots.

If P = (x" yd, Q = (X2, Y2 ) are points on E, with XI of: X2 , then, as
before. the polynomial

[ YI + (Y2 - YI) (1 + () - XI)] 2 - t(l + () - 0')(1 + () - ()")
X2 - XI

has roots XI - (), X2 - (). X3 - (). Thus,

( X I - ()(X2 - ()(X3 - () = [ YI + «() - xd(Y2 - YI)]~
X2 - XI

= [ YI( X2 - 0) - Y2(XI - (J)l~. (6)
X2 - X, .

Similarly, if P = (x" y,), YI of: 0 is on E, then

[
!'(t) ] ~

YI + 2;,1 (x - xd - (x - ()I)(X - (J2)(X - ( 3)

has XI as a double root. Let, as usual, XJ be the third root. By putting
X - () = t one sees immediately that

( _ ()2 ( _ (J) = [ +!'(XI)«() - XI)]~
XI X .1 YI ')

-YI
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or

Now
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(7)

(8)

yi = xt + aXI + b - 83 - nO - b

= (XI - O)(xI + xlO + 02 + a) .

Substituting into (7) gives the relation

_ _ [-xi + 202+ 28xI + a]2
X3 0 - 2YI .

We require one final relation . From (3) one sees that

-(xi - X~)(XI - X2) + y~ - 2YIY2 + yi
x, = ,

(X2 - XI)-

Using YI = x1 + aXI + b and Y~ = x~ + aX2 + b we obtain, after a simple
calculation,

(9)

In formula (9) we are assuming, of course, that XI =F X2.

This completes the list of identities that will be needed in the proof of
the Mordell-Weil theorem .

§2 The Group £/2£

In this section k remains an arbitrary field of characteristic zero. Using
the notation of § I consider the residue class ring k[x ]/(f(x» = k[ (], (
being the class of x modf(x). This ring is a k-algebra of dimension 3 over
k , If!(x) = f,(x)f2(X) . . .fn(x) is the decomposition off(:e) as a product of
distinct irreducibles, then

n

k[x]/(f(x» == @ k[x]/(.fi(x»
i= I

(10)

by the polynomial version of the Chinese remainder theorem. Here n may
take the values l. 2, or 3 according asf(x) is, respectively, irreducible, the
product of a linear and an irreducible quadratic, or the product of three
distinct linear factors. If one of the factors is linear, say f,(x) = x - a,
then, of course, k[x ]/(fI(X» is naturally isomorphic to k by the map which
sends the class of g(x) to g(a). The linear factors x - a correspond to the
k-rational points (a, 0) of order 2 on the elliptic curve E defined by y2 =
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[t.x). Denote the group of units of the ring k[t") by V . These elements are
the residues modulo !(x) of polynomials h(x) that are coprime to ft x) .
Furthermore. this group of units is isomorphic to the direct product of the
unit groups of the factors in the preceding decomposition .

The purpose of this section is to construct a homomorphism cP from E
to the group VI[J2 with kernel precisely 2£. In the context of the Weier
strass parameterization of E by elliptic functions this map was defined by
Weil in his 1929 paper lW4) . We follow a n algebraic adaptation and sim
plification of Weirs construction due to Cassels lCa2) .

The mapping cP is defined as follows : Fi rst . cP(XJ) = I where I denotes
the identity of the group VI [J2. Next, if P = (a . f3) is a point on E distinct
from the points of order 2. i.e .. f3 4= O. then since a - x is prime to [t.x),
a - t" is in V and cP( P) is defined to be the image of a - t" in V I V! . It
remains to define cPt P) when P = (a . 0) is a point of order 2 on E, Write
I(x) = (x - a)g(.\") . Then

k[g) == k[x)/(x - a) (±) k[x) /(g(x» (II)

where g(x) is a polynomial. not necessarily irreducible, of degree 2. Iden
tifying the first factor in the preceding decomposition with k, as men
tioned earlier, we see that the element (f'(a), (a - x)mod g(x)) is a unit
corresponding in k[g) to a unique element , say h(g) mod V!, in VIV! . The
reason for the choice f'(a) in the component where a - t" ceases to be a
unit is made partially clear by the proof the map cP so defined is indeed a
homomorphism. For an explanation using a little more algebraic geometry
see Cassels's original paper ([Ca2], §1.3) . See also §2 of Brumer and
Kramer [Br-Kr).

Lemma 2. cP is a homomorphism.

PROOF . If P = (a . f3). since the definition of cP is independent of f3 and
-P = (a, -f3) . then cP(P) = cP(-P) . Now if p is in VI[J2 , then p! = I ,
so that cP(P + Q) = cP(P)cP(Q) is equivalent to cP(P + Q)cP(P)cP(Q) =
cP(P + Q)cP( -P)cP( - Q) = I . Thus. to establish that cP is a homomorphism
we must show that if A + B + C = oc on E, then

(12)

in VI V!. The condition A + B + C = oc is . by § I. simply the condition that
A . B. C. are colinear. Put A = (XI. Yd . B = (x! . Y:). C = (X) , .>'3), and
assume that A. B. C are d istinct points . 11'.\"1 = X! . then the points are A.
-A and infinity . The result follows noting that </>( -A) = </>(AJ, Let XI -=1= X!

and assume none of the points has order 2. The collincarity of A. B. C
simply amounts to the existence of a linear form ex + d such that

( 13)

and the result follows by reduction mod j(x). Next suppose that precisely
nne of the points. say. A = (a. 0) . has order 2. We check (12) in each of



§2 The Group £/2£ 325

the two summands of ( II) . The result holds in the second factor by reduc
ing (13) mod ~(x). Furthermore , differentiating (13) and putting .r = a

shows j'(o] = (a - xz)(a - xli so that. by definition, the first component
01'(12) is (f'(a»z . The final case to check is A = (0 1,0), B = (Hz. 0), C =

W1, 0), but again differentiating (13) and putting x = 0 ; one sees that the
three components 01'(12) in the decomposition ofkl~1 as the direct sum of
three copies of k corresponding to the roots of [i x) are the squares
/'(8I)Z,/,(8 2) Z, 1'(83 )2 . 0

We mention that one can also use the explicit formulas (6) and (7) of*I
applied to the various factors in the decomposition (10) . Once again we
refer to Cassels [Ca2) for a proof of this statement that avoids the exami
nation of special cases. The last result of this section is the proof that the
kernel of eJ> is 2E .

Lemma 3. ker eJ> = 2£.

PROOF. Since eJ> (2P) = eJ> (P)Z = I we see that 2£ k ker eJ>. Thus, consider
a point P, which we may assume different from x, such that eJ>(P) = I.
Write P = (a, (3), a, f3 E k . Then a - ~ is a square in k[H Note that this
holds even when 2P = x, for then a - g is 0 in one of the components of
(10). Thus , we may write

a - ~ = (al~Z + azg + a .\)Z , (14)

where ai, az, a.\ E k. It is easy to see , using e = - (/~ - b, that one can
write

('Ig + Ji = (ale + az~ + a.\)( -alg + az), (15)

where el ,Ji E k. Now al =I=- 0, for otherwise, by linear independence of I,
g, e, (14) would give a contradiction. Thus, squaring (15), substituting
(14), and dividing by ai gives the relation

(16)

for a, e, e', h E k. This implies that (ex + e')z - (a - x)(11 - x)z is a
multiple of/(x), and, since the latter polynomial is a monic cubic , we see
that

/(x) = (ex + e')Z - (a - x)(1z - .\-)2 . (17)

But geometrically this says that the line y = ex +e' intersects E at (a , (3)
or (a, -(3) and th , t) for suitable t with (II. t) counted twice . Thus, by
definition of the group structure on E we have

(a, :=(3) + 2(11, t) = 0

for a suitable choice of the sign of f3. This implies that

P = (a, (3) = 2Q
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for Q = (h. ±t). again adjusting the sign of t. We have thus shown ker ¢
C2£. 0

§3 The Weak Dirichlet Unit Theorem

If the ground field k is an algebraic number field. then the existence of an
injection of £ /2£ into VI V2 can be used to show that £ /2£ is a finite
group. This result is often referred to as the Weak Mordell-Weil Theo
rem. To derive this result one needs . in addition to the finiteness of the
class number of an algebraic number field. the Dirichlet unit theorem . The
fact that the group of ideal classes is finite is proved in Theorem 1 of
Chapter 12. The structure of the group of units in the ring of integers of an
algebraic number field is stated without proof on page 192. Chapter 13.
However. the full statement of the unit theorem is unnecessary if one is
interested only in the finite generation of £(iQ) . What is needed is only the
fact that the group of units of the ring of integers of an algebraic number
field is finitely generated. and this follows without difficulty. via the stan
dard "Iogarithmic embedding." from the fact that a discrete subgroup of
the additive group IR" is a lattice. In view of our desire to keep the proof of
our main result self-contained. we include a proof of this weaker form of
the Dirichlet unit theorem. Those who are willing to accept this fact can
proceed directly to the following section where the proof of Mordell-Weil
is concluded.

Let K be an algebraic number field of degree II. We consider as in
Chapter 12 the II distinct isomorphisms from K to C . but we order them in
the following way: Let CTI, • • • , CT., be the isomorphisms such that
CT;(K) C IR. The remaining isomorphisms occur in distinct conjugate pairs .
There are t such pairs. and we choose one from each pair. denoting these
elements by CTJt" • • • , CT.'+I' The set all n isomorphisms is then
{CTI. • • • • CT... CT, +I. iT., + I, . • • • II.,+, . CT' +I}. which we also list as
{TI. . . . ,T,.} when a uniform notation is convenient. Let V = IR' x C',
and define a mapping ¢ from K to V by ¢(a) = (CTI(a)• . . . • CT... ,(a».
Fix an integral basis al .. . an of KliQ. Then by Proposition 12.1.3,
(det(Tj(a;»)2 is not zero. being the discriminant of K . It is then a simple
exercise to show that the vectors ¢(ad • . . . ,¢(a,,) are IR-linearly inde
pendent in V. Now a lattice in V is. by definition, an additive subgroup of
V, which may be written in the form ZVI + . . . + ZVI. where VI • . . . • VI

are IR-linearly independent elements of V. If [j) is the ring of integers in K,
we have shown the following:

Lemma 1. ¢ (IT) is a lattice .

By a discrete subset of IR" is meant any subset A for which AnT is
finite whenever T is compact. It is. of course. sufficient to take T a closed
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ball of finite radius . It is a simple exercise to show that a lattice is discrete.
We need the following converse . Let W be a ny finite dimensional vector
space over IR .

Lemma 2. A discrete additive subg roup A of W is a lattice.

PROO F . Let VI. . . . • v'" be a maximal se t of IR-indepe ndent elements in
A . Then an y element a of A may be written in the form a = 'w, + . . . +
r",v", where r, E IR . Now A contains the lattice r = 7l.V I + . . . + 7l.v", . If
T = {c I VI + . , . + cmV'" I0 ~ c, ~ I}. then T is compact and clearly an y
element a E A can be wr itten as 'Y + / for 'Y E r and / E Tn A . But
T n A = {ll i• . . . • llr} is a finite set. It follows that r is a subgroup of
finite index in A and so dA C r for so me posit ive integer d . Then A C
Ud : r where lid , r is a free 7l.- module of finite rank m, By a standard
re sult in algebra A is then a free 7l.-mod ule of rank I ~ m, generated by .
say. 1\'), • . . • WI. Now V I . ' . . • v'" E A and the IR-module generated
by them has dimension m and is contained in the IR-module generated by
11'1 •• , , , W, . It follows that m = I and WI. • • , , Will are IR-linearly
independent. Thus. we have sho wn that A is a lattice . 0

In order to d iscuss the st ructure of the gro up of units of [) in the
contex t of latt ices . we de fine a map A from the open subset of IR' x C'
con sisting of a ll points no co ordinate of which is zero to IR'+I by
A(a l •. . , , a ,+,) = (Inla d. ' .. , ln jo.], 2 Inla ,+d, ...• 2 Inlas+,D·
Then u. = AcP map s K to IR' +' . It is simple to see that A- I( T) is compact
when Ti s a compact subset of iR .... ' , The map /-t is clearly a homomorphism
from the mult ipl icat ive group K* to the additive group IR'+'. which . by
lemma 2. §5. Chapter 14, ha s the group of root s of unity in K as kernel.
Denote by 'f; th e group of unit s of [) ,

Lemma 3. /-t('t, ) is a lattice.

PR OOF . If Ti s a compact se t in IR"', then S = A " I(Tn /-to ;» C cP([) . and
the co mme nt preceding thi s lemma together with lemma I shows that S is
finite . Hen ce. T n /-t('n is finite. and thu s./-tCt) is discrete. But cle arly /-t is
a hom omorphism from the multiplicative group K* to the add itive group
IR" '. and lemma 2 now sho ws that/-t('&) is a lattice. 0

Lemma 4. 'r, is finitely gen era te d .

PROOF . Choose a lattice basis for /-tcn. say, VI • . . . . VI. a nd let III •

. . . • III be unit s with /-t (lIi) = Vi . If II E 't . put /-t(II) = CIVI + . . . + CIVI .
c, E 7l. . If s = II 111';'II :!" . . II i' . then c lea rly /-t(s ) = O. Th is impli es. by the
co mme nt prec eding lemma 3, that , is a root of unit y . But the se t of root s
of unit y in K is finite and II = ~ - 11I't '1l 2 ' . . ' 11;'. 0
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§4 The Weak Mordell-Weil Theorem

Assume now that the ground field is the field 0 of rational numbers. In *2
we established the existence of a homomorphism <b from the group £(0),
of O-rational points on E to the multiplicative group VI V!, where V is the
group of units of the ring R == O[x]/(f(x». As in that section, R may be
identified with the direct sum of the fields 0(0;) == K ;, and the image
c/>(E(O» may be viewed as a subgroup of the direct product of the groups
Ktt(Kf}! == G j • With these identifications we will show that if P is a point
on £(0), then the ith component of <be P) lies in a finite subgroup of G;.
We may assume that P oF co and write P == (al{3, 11'), where a and {3 are
coprime rational integers. Let 0 == OJ be a fixed root of fix), and write
f(x) == (x - O)g(x). Then a - {30 and haJj == g(al{3){3! are algebraic integers
in K == K;, and we put I( P) == (a - {30, ha .(3) , the ideal generated by them.
In the remainder of this section, all algebraic integers, ideals , and units
are in the ring of integers of K.

Lemma 1, The set of ideals I(P) is finite.

PROOF. g(x) - g(O) == (x - O)t(x) , where t(x) is a linear polynomial
with coefficients in 1[0) . Substituting x == al{3 gives g(O){3! == ha .f3 

(a - (30)t(al{3){3. Hence, g(O){3! E l(P). Similarly, one calculates

g(O)x! - g(x)O! == g(O)(x! - O!) + O!(g(O) - g(x»

== (x - 0 )/(x),

which shows, putting x == a!{3, that

g(O )a! == (a - (30)/(a l {3){3 + O!g(al {3){3z .

Hence, g(O)aZ E I(P). It follows that l(P) divides the ideal
(g((J )a!, ,R((J )f3z). But a and {3 are relatively prime. and we conclude that
l(P) divides the principal ideal (g(O» . But ,R((J) oF O. and therefore , (g(8»

has only a finite number of ideal divisors. 0

The denominator {3 of the first coordinate of P is the square of an
integer. This elementary fact is shown . in a homogeneous context, at the
beginning of the next section, but it can be seen, without fear of redun
dancy. quickly as follows . If II' == cl d, (c, d) == I. then {3\'! == d!(a3 +
aa{3! + h(33). Then {33Id! and using (c, d) == I we conclude {33 == £I!. from
which it follows that {3 is a square .

Lemma 2. (0: - {3fJ) == I(P )e! for some ideal C.

PROOF. Since I( P) is the greatest common divisor of 0: - {3fJ and 11"./3' we
may write (0" - (3fJ) == \( P)A , (11" ./3) == I( P )B, where A and B are coprime
ideals. But P E £"(0). so there is a rational number rls so that (rls) ! ==
f(al{3) . Thus. {3'''! == .\'!(O" - {3(J)h" ./3' It follows that (s)!\( P)~AB is a square
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and . since A and B are coprime , we conclude tha t A is the square of an
ideal. 0

Recall from Chapter 12 that the group of ideal classes of the ring of
integers in K is finite. Let C 1• • • • , CII be represent ati ves for the ideal
classes. Then, by definition , if J is an ideal, there is an index i and alge
braic integers u , v such that j1..J = vC;.

Lemma 3. There is a finite set of algebraic int egers S such that for any
P = (a, 13) E E(O) one can write

a - f3{} = ItYT~

f or a suitable unit II, an algebraic number T , and yES.

PROOF . If C is as in the prec eding lemma, then C is equivalent to C for
some s. Therefore, I(P)C; is eqivalent to the principal ideall(P)C2 =
(ex - f3{}) and is thu s a princip al ideal, say, (y). By Lemm a I the se t {(y)} is
finite depending only on £(0) and not on the particular P. Now there exist
algebra ic integers p , T I such that pC = TIC. Hence, (p~(a - (3{}» =

I(P)T~C; = (YT~ ). It follow s that p~(a - (3{}) = UYT~ for some unit It . The
lemma follow s by putting T = T ilp. 0

We may now prove the finiteness of EI2£.

Theorem 19.4.1. £12£ is a fi nite g roup ,

PRO OF . It is enough to show that ¢(£) is finite. We may ass ume that P f. ex;

and that P does not have orde r 2. Then ¢( P ) is defined as the cos et
modul o iF- of a l{3 - x , where P = (al f3. 11') . in the group U . If we co nsider
the ith co mponent K = K; = oce;) of O [x ]lf(x ), the preceding lemma
shows thai in KiI(K'( ) ~ the image of al{3 - x is the co set of ( 1/(3) uy. As we
have seen. 13 is the square of a rational integer, and by the wea k Dirichlet
unit theorem. the group '& of unit s in the .ring of algebraic integers of K is
fi nite ly generated with basis , say, UI , It~ , . . . . u.. It follo ws that the
coset of( II f3)uy mod ( K* ) ~ has a representative of the form
1t'i'U2:' . . It;' y. where each e, is 0 or I. Since y varie s ove r a finite set, the
ith component of the image ¢(E) is finite and the result follow s. 0

§5 The Descent Argument

In this sec tion we take the ground fi eld k to be the fi eld of rational num
bers 0 . The algebraic closure k is then the field of algebraic numbers,
which we assume to be a subfield of the comple x numbers C. If ~ E C,
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denote by 10'1 its ordinary ab solute value . The coe ffic ie nts a and b of the
elliptic curve E are as sumed to be rational integers. We write the equation
defining E in homogeneous form

(I)

and use homogeneous coordinates (xo, Yo , .co ) for a po int P on E. Thus, XO,

)'Il. Zuarc determined up to a non zero proportionality fact or , and since P is
ass ume d to be rational o ver Q. we may assume th at Xu, Yu . Zu are integers
with greatest common divisor I . Suppose P ~ oc and put .Lo = gcd (xu, zu).
Xo = xo/Zo so that Xo = XuZu, Zolxo, Zolzo. Finally , for uni formity of
notation put Yo = Yo.

From (I ) one se es immediately that

(2)

Now gcd(Zo, Yu) = gcd«xo, .cu). Yo) = I and Zol ~u so that ~u is coprime to
th e seco nd factor on the right -hand side of (2). Hence . Z;;I:::o and we may
define t by Z~t = :::0. Substitut ing this value of .cu for th e first term on the
right side of (2) and canceling gives the relation

(3)

No w I = gcd(xo/Zo. ::'o/Zn) = gl.:d(Xo• z 1\t) . Since for an y prime P such that
pit on e ha s plXu it follows that. after a s ign adjustment . t = I . Thus, :::Il =

Z\; a nd gcd(Xo, Zo) = I. We ca n therefore write (.1'0. Yo . .cu) = (Xo.Lo. Yo, Li;)
wi th (Xu. Zn) = ( Yn. .Lo) = I . The corresponding affin e coord ina tes for P
now become (Xo/Zii , Yo/Z;;), where we observe that both terms are writte n
in low e st terms. In what follow s an affine po int on E is a lways written in
thi s form.

Substituting the va lues XIl Zu. Zj;, re spectively , for xu, :::u in (2) gives

Y1\ = X~ + (/XoZ~ + hZ~ . (4 )

We now introduce the important concept of the height /I( P ) of a point
P on E that is rational over Q. First, H( x) = I . For P = (XnZo• Yu, Z;;) we
define

H(P) = max( IXnj. ZI~)' (5)

Thus. it is the maximum. in absolute value. of the numerator and denom i
nator of the first coordi na te of P in affine form . It may be thought of as a
mea sure of the "size " of the point P. This function and its as sociated
logarithmic funct ion arc discussed further in Chapter 20. where it will
e nte r in an important wa y in the precise s ta te me nt of the Birch and Swin
norton-D yer conjectures .

The descent a rgument in th e proof of the Mordcll -Weil th eorem rc
quires a n estimate of the rate of growth of the hei ght of P whe n P is
doubled .

From relat ion (4) we see th at

(oj
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where C is a positive constant depending only on E and not on the particu
lar point P. The following basic lemma follows immediately from the
definition and (4) :

Lemma 1. If C is a fixed constant, then there are at most a finite number
of points P Oil E, rational over 11) with H( P) ~ C.

Now fix a point Q '" oc on E, and let P be any l1)-rational point on E such
that P - Q is not of order 2. i.e., 2P '" 2Q. Write. using homogeneous
coordinates as above.

P = (XIZI, y" zj)
Q = (ce, d, ej

)

2P - Q = (X2Z2, Y2, d). (7)

Write 2P = (2P - Q) + Q, where, by assumption, the two points on the
right side are distinct. Now apply (9) of § 1 to conclude that, writing 2P =

(Xl,Z3. Y3, d).
Xl, (X2/z~ ("le2 + a)(x2/d + d(2) + 2& - 2y2e/l zk "
zj (de2 - X2/z~)2

(X2(' + ade2)(x2e2 + cd) + 2bzie4
- 2Z2Y2de

(ezi - e2X2)2

Denote the numerator and denominator. respectively, of this last ex
pression by A and B. Since gcdtx, z.d = I we see that x11A. ~}IB. In
particular, Ix,l ~ IAi. d ~ \BI, and by definition of height. we see that
HOP) ~ max(IAI . IBI). From (6) we know that 1.\'21 ~ C,(H(2P - Q)1 J2

for a constant C, and trivially 1z21 ~ !I(2P - Q)' !2. We conclude, examin
ing the expressions for A and B. that

H(2P) ~ CH(2P - Ql2, (8)

(9)

where C is a constant depending only on Q.
Recall that fix) = (x - H,)(x - ( 2)(x - lh). where now 0" H2 • 0.1 are

distinct algebraic integers . The discriminant off(x). -(4a' + 27h 2 ). is a
nonzero rational integer which we denote by 8. From relation (H) of*I. we
conclude. after simplification. that for the point P and its double 2P one
has the relation

Since the left-hand side is an algebraic integer. it follows that the a, are
algebraic integers . Write, furthermore ,

[

2 2 2 4 ., 72 _4
a · = A + B8 - + co: = 7 1 XI + OiZ, + _OiX,~ , + a~'l

t I J c- . 2:::
1
.."1 '
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where A, B , C are rational numbers . Cramer's rule shows that 8A, DB, OC
are elements of Z[al , a~, a" 0 1, O~, (h] that are , in fact . linear in al> a~ .

a,. Thus . oA, 8B, 8C are algebraic integers that are rational, and we
conclude by Proposition 6.1 .lthat they are, in fact, integers. From (9) one
sees easily that

2A - «C = z, · .d
z,)',

C =~ . z1 .z,)', ( 10)

Therefore, 0(2A - C) = oZ.llz,)' , . .d and OC = OZ,/z.I YI . z1 are rational
integers . Ifwe write oz,lz')'1 = mill , gcd(m, II) = I, then m.d = nR , mz1 =

nS for integers Rand S. But gcdt .r, ZI) = I . Hence, II = I and we have
consequently established the fact that oz,lzIY' is an integer. It now fol
lows from (10) that

.d ~ 10(2A - Cli
z1 ~ loCI· (II)

Since a1 = X .l - o;zi we see thatla;1 ~ C 1 V H(2P) for a suitable constant
C, . Furthermore, as noted . 0(2A - C) and OC are linear combinations of
a " a~, a~ with coefficients in Q( 8" o~ . 0,). It follows now from (II) that,
for a suitable constant C~ . one has

(12)

Combining this relation with (8) , we arrive at the important result that
there exists a constant C, depending only on Q such that for any point P
we have

( 13)

Here C, has been adjusted to handle the finite number of exceptional P for
which 2P = 2Q . Now allowing Q to vary in a fixed finite set Q" . . . ,
Q"" we have shown the following lemma. All points are assumed rat ional
over Q.

Lemma 2. Let {Q" . . . , Q",,} he II fixed set ofpoilit.I' Oil E. Theil there is
II constant C depending only Oil E and this set such thut for any point P
one has

i = I , .. . , fll) .

We are now ready to use a descent argument to co mplete the proof of the
Mordell-Weil theorem.

Recall from *3 that E12£' is a finite group . Let QI, . . . , Q"" be a set of
representatives in E for this group. Thus . for any point P there is a l
I ~ .i ~ III), such that P + Q, = 2P' for so me point P ' E E,
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Theorem 19.5.1. The group £( 0) {~rO-rtltionlilpoints Oil E is (I finitel»
generated abelian group,

PROOF . Let P be an arbitrary point on E, rational over 0. Then P + Q", =

2PI for some (II and PI ' We have by the preceding lemma

H(Pd ~ C(H(2PI - Qu,» "2 = C(H(P»1 /2.

Similarly, write PI + Q", = 2P2so that P = 2P I - Q", = 4P2 - 2Q", - Q",.
and H(P2) ~ C(/{(2P2 - Q",» "2 = CH(Pd"2~ C' t ll2 H(P)"~. Continuing
in this manner we arrive at a sequence of points P, with

H(Pr ) ~ CI I I12 , oo ' +112' H(P) II12" " (14)

and

(15)

Now the right-hand side of (14) approaches C2as I" approaches infinity,
and therefore, there is an integer 1"0 satisfying the condition that if r ~ rn
then H( Pr ) ~ C2 + I. But by lemma I this last inequality is satisfied by
only a finite set of points, say, P;, . . . ,P:II . Finally (15) shows that P
may be written as a finite linear combination , with integer coefficients, of
the point s QJ. . . . , QIIII ' P;, .. . • P:II . 0

NOTES

The Mordell-Weil theorem and the arithmetic of elliptic curves in general
have a long and rich histor y. In these notes we mention only a few salient
point s and refer the intere sted reader to the references at the end of this
chapter. The literature in this subject is vast, and the references we have
listed represent only a starting point for further study.

Diophantus (circa 250) in Book 4 of his Arithmetica (I He I. problem 24,
p. 124) asks that a given integer be divided into two part s so that the
product is the volume of a cube less its side. In geometric language this
amounts to finding the rational point s on the cubic y' - y = x(n - .r ). He
illustrates the method by choo sing II = 6 and, after an informed guess,
puts y = 3x - I. Sub stitution leads to a cubic with zero as a double 1'001.

and he computes the third root to be 26/27 . In geometric language one
observes that the above line is tangent to the cubic at (0. -I). and (26/27,
136/27) is the third intersection point. Similarly . in problem 26 of Book 2
two numbers are sought such that their product added to either is a cube .
The propitious choice of 8x and x 2 - I leads to the problem of finding
rational point s on the cubic y 3 = (x 2 - I)(8x + I), and in modern terms,
Diophantus intersects the curve with the line y = 2x - I. Thi s line inter
sects the cubic at <0, -I) and infinity. He computes the third point to be
(112/ 13, 27/109). AIl this is accomplished without the aid of present alge
braic notation and, of cour se, there is no indication of a geometric inter
pretation of the proce ss , since he lived well over a thousand years before
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the advent of analytic geometry. The use of the chord method to locate a
third point given two point s is Jess easy to find in the ancient literature ,
and as Weil points out in his historical study of numbe r theory ([W 31 , p.
108), it is none other than Newton, who. in a paper written in the 1670s
([NJ, vol. 4, pp. 112-115), states that. beginning with three noncollinear
points , iteration of the chord process leads, in general , to infinitely many
rational points, However, no examples are given .

The method of descent is invariably associated with Fermat. who used
it to show, among other things. that a positive square is not the difference
of two fourth powers . This new point of view was to be contrasted with
the generation of new points through the process of doubling. that is . by
iterating the tangent process. The ac tua l iteration of the tangent method
seems to have been initiated by Fermat, who developed the techniques of
Diophantus, Viete , Bachet , and others. yet he docs not appear to have
used the chord process or to have interpreted these methods geometri
cally (see [W 3). p. 110).

The efforts of Fermat were continued a century later by Euler, who
gave rigorous proofs of many, but not all of Fermat's assertions . In this
connection the scholarly studies of Hoffman [HoI'] and Bashmakova [BI
as well as Weil (W3j are particularly useful. Lagrange, whose interest in
number theory was stimulated and encouraged by Euler. also utilized the
method of descent. In his memoir of 1777. concerning the equation 2x 4 

y4 = z ~ . Lagrange pra ises the method of Fermat. stating... Le principe de
la demonstration de Fermat est un des plus feconds dans route la Theorie
des nornbrcs, et surtout dans celie de s nombre cntiers ." (The principle of
Fermat 's proof is one the most fruitful in number theory, part icularly over
the integers.)

In a long memoir, "Sur les proprietes arithmetiques des courbes alge
briques." published in 1901 [PJ. Poincare initiated a program ("... plu
tot un programme detude qu 'une veritable theorie") to study the arith
metic of algebraic curves over the rationals of any genus , emphasizing the
birational point of view. The major portion of the paper deals with elliptic
curves. Using a Weierstrass parameterization ("argument e llip tique" ), he
shows how to generate subgroups of rational points on the curve ("for
mule I." p. 492) and states . "On peut se proposer de choisir les argu
ments . . . de tel facon que la formule (I) cornprcnne tous les points
rationels de la cubiquc." (One may propose to choose the arguments in
such a way that all the rational points on the cubic are contained in the
equation I.) He defines the rank as the minimum number of "fundamental
points " necessary to generate the group and asks. "Quclles valeurs peut 
on attribuer au nombre entier que nous avons appele Ie rang d'une
cubique rationelle?" (Which values are assumed by the integer we have
called the rank of the cubic")

This is . of course. still an open question . Only curves of relatively low
rank have been found. In 19H2 Mestre [Mcs] showed that there exists a
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curve of rank at least 12 and that. assuming a variety of unsolved conjec
tures, it has exact rank 12. In an important survey of Zagier IZ], it is
stated that Mestre also found examples of curves of rank as large as 14.
Whether or not the rank is bounded for curves defined over the rational
numbers is unsolved. although A. Neron in his annotations to Poincare's
paper states. "L'existence de ceue borne est cependent consideree
comme probable ." (The existence of such a bound seems, however,
likely .) However, Zagier mentions in the survey that it is conjectured that
all values can occur. Indeed Cassels ([Ca 3], p. 257), in his now classical
survey of the arithmetic of elliptic curves, argues that the rank may well
be unbounded but that examples of curves with large rank may be difficult
to find since "an abelian variety can only have high rank if it is defined by
equations with very large coefficients ." For example , in 1986 Kretschmer
[Kr] proved that the the curve y~ = X' + (/X~ + bx where (/ = 12273038545
and b = 2111.:V'.17.19.23.29 .31.37.41.43.53 has rank 10. We mention that A.
Neron, in 1954, was able to prove that infinitely many elliptic curves of
rank at least II exist. Kretschmer [Kr] gives a summary of the various
results 'bo und ing the rank from below. The plausibility of the hypothesis
that the rankis unbounded is also strengthened by the fact that in 1967
Tate and Shafarevich [Sh-T] proved that the analogous conjecture for
curves defined over a field of rational functions of one variable with
coefficients in a finite field is true.

Now the finiteness of the rank must be considered as part of Poincare's
program. Indeed 16 years later Hurwitz IHurl. in a paper in which certain
elliptic curves are constructed with rank 0 or I, emphasized the conjec
tural status of Poincare's statement by stating. at the conclusion of his
paper, "Wenn aber die Anzahl der rationale Punkte auf der Kurve un
cndlich ist , so spricht a priori nichts datur. duss auch dann immer endlich
viele fundamentale Punkte vorhanden sind . Bis also dieses nicht bewiesen
ist, sind die auf diese Annahme gegrundeten Bemerkungen von Poincare
in seiner mehrfach zitierten Arbcit entsprcchend zu modifiziercn." (If.
however, the number of rational points is infinite, then it isn't clear, a
priori, that a finite basis exists. Until this is shown the remarks of Poin
care in his often cited article that are based on this assumption should be
modificd.) Five years later Poincare's intuition (or oversight) was vindi
cated with the 1922 publication Mordell [M IJ of the first proof that the
rank is finite. Cassels has written an interesting analysis of Mordell's
paper ([Ca 21J which should be studied by anyone interested in the history
of this fundamental result.

This proof and the subsequent proofs of this and its various generaliza
tions follow the same general strategy . First one shows that El nl: is finite
and then a descent argument using properties of an appropriately defined
height function completes the proof. The weak theorem can be proved by
constructing a nondegenerate pairing between El nl: and the galois group
of the extension obtained by adjoining to II. the coordinates of all points P,
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algebraic over k, such that mP is rational. This can be shown to be a finite
extension and the result follows. (See [UI and [Sij .) It should be men
tioned that the weak (or as Weil calls it. the "petit") Mordell-Weil theo
rem, namely, the finiteness of E/nE, is discussed (for II = 3) in section 8 of
Poincare's memoir, using his "cubiqucs derivees." As A. Chatelet men
tions in his annotations to Poincare's memoir ([P], p. 546), this section is
the basis of the proofs of Mordell and Weil.

The chronology of Weirs research into these matters is engagingly
recorded by Weil himself in the annotations to his collected papers ([W2],
vol. I, pp. 524-526). After Mordell's proof was brought to his attention by
chance, he saw the possibility of using his own work to generalize the
descent argument in Mordell to curves of arbitrary genus defined over an
algebraic number field, the elliptic curve being replaced by the group of
rational points on the Jacobian of the curve. This is accomplished in
Weirs thesis of 1928 ([WI], pp . 11-45). With the development of the
general theory of abelian varieties, due also to Weil, it became possible to
extend the theorem to abelian varieties defined over a number field. (See
Lang IL2], chapter 5. and the historical notes on pages 88-90.)

In 1929 Weil published the short note that is presented, without the use
of elliptic functions and with an interesting simplification due to Cassels
([Ca2], pp . 31-34), in this chapter. Weil mentions that since his thesis
would be difficult for some to read, it would perhaps be useful to publish a
simplified proof for the case of genus I. This proof avoids the use of his
decomposition theorem. At the conclusion of the introduction to this
paper Weil states "Je ne pretends pas que la demonstration qu'on va lire
soit essentiallement differente de celie de Mordell: et je serai satisfait si
j'ai contribue a mieux mcttre en valeur les idees du mathematicien
anglais ." (I am not suggesting that the proof below differs essentially from
Mordell's and I would be satisfied if I have contributed to a better under
stand ing of the ideas of this English rnuthernatician.) This proof also ap
pears in Lang (lUI . pp . 101-105) and Mordell <1M2). chapter 16).

In 1961 and 1970 J. Tate lectured on the arithmetic of elliptic curves at
Haverford College. These excellent lectures, available for years in barely
visible mimeograph form, became the basis for Husernollers book on
elliptic curves [Hus]. In a forthcoming book, Silverman and Tate ([Si-T»)
have revised and expanded the Haverford Lectures, maintaining the ele
mentary nature of the original presentation . We also mention the delight
ful little book of Chowla [Cho], as well as one by Chalal [Cha], for ele
mentary treatments of the Mordell-Weil theorem. In Chowla, by
assuming that the curve has three rational points of order 2 the proof
simplifies and becomes, according to him, "nothing beyond the capacity
of a ten year old ." In a more sophisticated direction we strongly recom
mend the excellent text of Silverman lSil. especially Chapter 8. With this
well-written text the interested reader can continue the study of arith
metic geometry at a more advanced level. Finally, we recommend the text
on elliptic curves and modular forms by Koblitz [Ko] . In this approach to
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the arithmetic of elliptic curves Koblitz focuses on the essential solution
of a classical problem in number theory: the determination of those posi
tive square free integers that can be the area of a right triangle with
rational sides. The solution depends on the arithmetic of the elliptic curve
y2 = x 3 - n2x. Further applications of elliptic curves are discussed in the
survey of current results in Chapter 20, which also presents additional
references.
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Chapter 20

New Progress in Arithmetic Geometry

The decade of the eighties saw dramatic progress in
the field of arithmetic geometry . Problems that were
previously thought to be inaccessible by contemporary
methods were in fact resolved. It is the purpose of this
chapter to survey a portion of these dramatic develop
ments.

The material covered falls into two parts. The first
part discusses the resolution of the Mordell conjecture
by Gerd Faltings in 1983. The second part summarizes
new results by B. Gross. V. Kolyuagin, K. Rubin. and
D. Zagier, which deal with the conjecture ofBirch and
Swinnerton-Dyer that was discussed in Chapter 18.

The resolution of the Mordell conjecture has an im
mediate application to Fermat's last theorem. In a
less transparent manner. the progress on elliptic
curves also has a surprising application to Fermat' .I'

last theorem . Work of G. Frey. J.P. Serre. and K.
Ribet can be combined to show that Fermat's last
theorem follows from a standard conjecture. the Ta
niyama- Wei! conjecture. about elliptic curves .

Another surprising application of the progress in
the theory of elliptic curves is the resolution of an old
conjecture of C.F. Gauss on the class numbers of
imaginary quadratic number fields. This comes about
by combining work of D. Goldfeld with a theorem of
Gross-Zagier, as we shall see .

The material discussed in this chapter is mathemat
ically sophisticated. We give few proofs , and some of
the definitions are not precise . Our goals are to sketch
these nell' results and to inspire the reader to learn
more by pursuing some of the references listed at the
end of the chapter.

339
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§ I The Mordell Conjecture

In 1922 L.J. Mordell published a paper entitled "On the Rational Solu
tions of the Indeterminate Equation of Third and Fourth Degrees." In the
first part of the paper, he states and proves what is now referred to as the
Mordell-Weil theorem for elliptic curves over 0 . At the end of the paper,
he discusses the situation for curves other than elliptic curves and conjec
tures that curves defined over 0 that have genus greater than I can have
only finitely many rational po ints . He further states that this is only a
guess and that he has no real evidence or argument for its truth. This
conjecture became known as the Mordell conjecture. Many papers were
written proving that this or that curve had only finitely many rational
points, but no very general result was forthcoming except for a famous
theorem of c.L. Siegel (1929) on integral points on affine curves. This
states that a curve of positive genus defined by Ftx, y) = 0, where Fix, y)

E Z[x, y], has only finitely many solutions in Z x Z.
The Mordell conjecture was generalized a bit as the years went by to

state that a curve C defined over a number field K and having genus
greater than I has only finitely many points rational over K, i.e., that
C( K) must be finite. Note that if this were true , then C(L) would be finite
for every number field L containing K. It is remarkable that until 1983
there was not a single example of a curve known to have this property . In
that year G . Faltings created a sensation in the mathematical world by
writing a relatively short paper that proved the generalized Mordell con
jecture and several other important number-theoretical conjectures all at
once. His accomplishment was built on the work of many others. We do
not intend to give a history here, but merely mention some of the names of
people who did important work that was used by Faltings in his proof: S.
Arekelov, H . Grauert, Yu .l. Manin, A.N. Parshin, l.N. Shafarevich, L.
Szpiro, J. Tate, and J .G . Zarhin .

In our preceding discussion, the notion of the genus of a curve oc
curred several times. This is an impo rtant concept that arose originally in
topology . It is now possible to give several definitions of the genus of a
curve , all of which are equivalent. Let C/ K be a curve defined over a
field K.

(a) Suppose K ~ C and that Cis nonsingular . Then C(C) can be given the
structure of a compact Riemann surface . Topologically, this is a torus
with g holes. The number of holes is the genus of C.

(b) Let H1(C(C), Z) be the first homology group of C(C) with coeffi
cients in Z . This is a free abelian group with 2g generators. The num
ber g is the genus of C. (This definition is just a precise version of
part a.)

(c) The holomorphic differentials on C. OI(C(C», form a vector space
over C of dimension x. The number X is the genus.
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Although (a) and (b) are hard to adapt to a curve defined over an
arbitrary field. (c) can be modified to apply in the general case. One
defines algebraic differentials on a curve. and a holomorphic differential is
one that has no pole in a purely algebraic sense.

One more definition will enable us to compute the genus of a few
concretely given curves. Let C be given by a homogeneous equation
Ftx, y. z) = O. where Fix, y, z) E K[x , y, zl. We need the notion of an
ordinary double point. This is a singularity of a mild type . Recall that P =

(a , b. c) is a singular point of C if it is a zero of all three partial derivatives
aFlax, iJ Flay, and () FIaz. P is said to be an ordinary double point if it is a
singular point and the matrix

a2FlaxiJy

iJ2F/i)y2

iJ 2FliJz.iJy

has rank 2. A standard example is the point P = (0, O. 1) on the curve
y2z = Xl + zx2.

(d) Let CI K be defined by Ft x, y, z) = 0 as above . Suppose that F has
degree n and that the only singularities in C(K) are ordinary double
points (here K is the algebraic closure of K). Then the genus of C is
given by (n - 1)(/1 - 2)/2 - r . where r is the number of double points .

A nonsingular conic has genus zero. Here /I = 2 and r = O. Recall that
the problem of Pythagorean triples was equivalent to finding all rational
solutions of x 2 + y2 = Z2. a nonsingular conic. Another example. perhaps
less obvious. is the lemniscate which was studied by a succession of
mathematicians-Fagnano. Bernoulli. Abel. and Gauss. among others .
This curve , whose graph resembles a figure eight. is defined by (x 2 +
y2)2 = (x 2 - ),2) Z2. It has degree 4 but there are three ordinary double
points, (0. 0, I). (I. v'=I. 0). and (I , -v'=!. 0). By (d) above we calculate
the genus to be zero.

A nonsingular cubic must have genus 1. again by using (d) . If a non
singular cubic has a rational point over the field of definition . it is an
elliptic curve . A singular cubic must have genus O.

Consider the Fermat curve defined by x" + v" = z". It is easily seen to
be nonsingular. Thus. its genus is equal to (n - 1)(/1 -2)/2. If /I = 2. the
genus is 0; if II = 3, the genus is I; and if /I> 3. the genus is greater than 2.
When n = 2 there are infinitely many solutions. as we have seen (Chapter
17, § 1). When n = 3 Euler showed there were no solutions in positive
rational numbers (Chapter 17. §8). Fermat's last theorem asserts there are
no solutions in positive rational numbers for any n > 2. The Mordell
conjecture implies that for all n > 3 there are at most finitely many
solutions in rational numbers . This is , of course. much weaker than Fer-
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mat's assertion, but it is remarkable nevertheless. (As of 1980 Fermat's
last theorem had been proved for all prime exponents less than 125,000.
That bound has undoubtedly been pushed much further by now.)

As a final example of an interesting family of curves, let us define a
curve to be hyperelliptic if it is defined by an equation of the form y~z" -~ =

aux" + alx,, -I z + . .. + a"z", where lin 4= 0, and the polynomial on the
right-hand side of the equation is assumed not to have repeated roots . If
n = 3, we are again in the situation of a nonsingular cubic, so the genus is
I. If n > 3, the only singular point is the point at infinity (0, I, 0). The
singularity is worse than a double point , so that (d) no longer tells us the
genus . We simply record the answer. If n is odd, the genus is (II - I)/2; if
n is even, the genus is tn - 2)/2 . If the reader is familiar with Riemann
surface theory, the easiest way to see this is to use the Riemann-Hurwitz
formula as it applies to a branched covering of the Riemann sphere .

The interesting feature of all this is that the genus, which is essentially
a topological invariant. controls the diophantine properties of a curve. We
have a threefold division . Let C be a curve defined over a number field K .

If the genus is zero, then either C( K) is empty or C( K) is infinite. This
result isdue to Hurwitz and Hilbert. We have already seen that there are
infinitely many Pythagorean triples. As for the lemniscate, it is possible to
give a rational parameterization

y = 2m - Tm>,

Every m E K gives rise to a rational point (x, v, :.) on the lemniscate .
If the genus is I. then either C( K) is empty or C is an elliptic curve and

consequently by the Mordell-Weil theorem C(K) is a finitely generated
abelian group (which may be finite or infinite depending on C and K).

If the genus is greater than I, then we have Theorem 20.1.1.

Theorem 20.1.1 (Faltings). Let CIK he II curve ofgenus greater than I ,
defined over a numhcrfield K . Then C(K) isfinite , (See ICo-SiII.IBl,IFa
wu; and [Mazl .)

We end our short survey of this topic by mentioning that Paul Vojta
found a new proof of the Mordell conjecture in 1989. He was led to his
proof by means of a beautiful analogy, which he uncovered between the
theory of meromorphic functions in complex analysis (Nevanlinna the
ory) and the theory of heights in number theory, The proof is in the
tradition of diophantine approximation, a topic we touched on briefly in
*12 of Chapter 17. These new ideas arc very powerful ami point the way
to generalizations of the Mordcll conjecture to higher dimensional alge
braic varieties (see Vojtas article in [Co-Sill and [La Ill. Failings IFa) has
built on Vojtus ideas to prove a conjecture of Serge Lang that deals with
subvarieties of abelian varieties . This is a significant advance since the
Mordell conjecture is a corollary of Lang 's conjecture .
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In this section we review so me facts about elliptic curves, which we have
already discussed, and add some new material as well.

An elliptic curve E, over any field K, may be defined by a Weierstrass
equation of the form

where the coefficients are in K. There is one point at infinity, i.e., when
z = 0, namely (0, I, 0). There is also a polynomial condition on the
coefficients that ensures that E is nonsingular. When K is of characteristic
different from 2 and 3, things are easier. In affine form E can be given by
y2 = x] + ax + b, where we require that tiE = -16(40] + 27h2) :f:: O. tiE is
called the discriminant of E.

As we saw in Chapter 19, the rational points on E, namely, E(K), can
be made into an abelian group for which the point at infinity is the zero
element. We denote this point as O. For any field L containing K, E(L) is
also a group and one can inquire about its structure . We will review some
of what is known about this.

To begin, suppose K = IF is a finite field with q elements . Then E(IF) is
contained in 1P 2(1F), which is a set with q2 + q + I elements. Thus, E(IF) is a
finite group . Let N be the number of elements in E(IF). The congruence
Riemann hypothesis implies that IN - q - 11:5 2 vq. See-Chapter 18, §2,
for a discussion in the case IF is a prime field .

If K is a number field, the Mordell-Weiltheorem tells us that E(K) is a
finitely generated group. There is another class of fields that behaves a lot
like number fields. LetlF( n be a rational function field with coefficients in
a finite field , and suppose K is a finite extension of IF(n. K is called an
algebraic function field in one variable over a finite field . For such a field,
one can show that once again E( K) is finitely generated. Later we will
discuss a very recent application of this result to a problem in the geome
try of numbers .

If K = IR, the real numbers, then E(IR) is topologically either a circle or
a disjoint union of two circles , the second ca se occurring when x] + ax + b
has three real roots and the first when it doesn't. Algebraically , either
E(IR) == 1'1 or 1" x "£/22, where 1'1 = {z E C] 1<:1 = I} is the unit circle in the
complex plane . This fact has an immediate application to the structure of
the torsion subgroup of E(O) . Since E(O) C E(IR), it follows that E(O),ors is
either cyclic or the direct sum of a cyclic group and "£/2"£ .

If K = C. the complex numbers, then E(C) is topologically a torus, i.e .,
a compact surface with genus I. Algebraically , E(C) is isomorphic to
1'J x 1". There is a better way to state this. On E there is a distinguished
holornorphic differential dxl y. Remember that the space of such differen
tials is one dimensional over C. so there is not much choice . If one
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integrates dsl» over all closed paths on t :(C). the resulting set of complex
numbers .\ form s a latti ce in C. called the period lattice of E. (A lattice in a
real vector space V is a subgro up consisting of all £:-linear co mbina tio ns
of a vector space basis of V.) On e ha s t :(C) = CI A. One ca n make this
map more e xplic it. Let P be a ny point on E(C) and ya path from 0 to P.
Map P to the integral along 'Y of dxly . The result ing map is not well
defined . but it is we ll defined modulo A. Thi s yields the preceding isomor
phism.

These co ns ide ratio ns lead to a painless definition of the notion of com
ple x multiplicat ion in the case of a n ellipt ic curve defined over a subfie ld
of the complex numbers. To an y such c urve on e assoc ia tes a lattice /\ by
the process we have just described . One then considers the set () =
{z E e1z /\ ~ A}. 0 is a ring. as is easily seen. It al wa ys contains the
integers 7L . and it usually consist s precisely of 7L. When 0 is bigger than 7L.
we sa y that E has comple x multiplication, This makes so me se nse since
anything in (I) that is not in 7L mu st be complex. To see thi s , let >'1 and A2 be
a 7L basi s of A, i.e., /\ = 7L A, + 7L A2. If wE C. then wA; = LaijAJor i = 1,2,
and the aij E 7L . Let T = A2/A, . Since >'1 and A2 generate C ove r IR, we must
have th at T is not real. Sin ce w = al l + (/ 12T and WT = a21 + anT, we see
that T sa t isfies a qu adratic equation with coefficients in 7L . Thus, 4) (T) is an
imaginary qu adratic numbe r field. Moreover , w 2 - ( a l l + (22)w +
(al la22 - al2a2il = O. so W is a n algebra ic integer in 4) (T) . We have shown
that either C = 7L or (j is an ord er in a n imaginary qu ad ratic number field ,
i.e . , a subring of the ring of alge bra ic integers in 4)( T) tha t generates 4)(T)

o ver Q.
The curves we de alt with in Ch apter III have co mple x multiplication.

If \' 2 = x 3 - Dx . it can be sho wn that the re is a real number A such that A
an'd iA generate the period lattice (here i = v=t). Thus , A = 7Ll ilA and
(1 = 7L l i J, the ring of Gaussian integers. In the case of an ell iptic curve
defined by .'1 2 = X l + D. it can be sho wn that there is a real number A
such that A and wA gen erat e th e period lattice (here w is a primitive
cube root of I) . Thus. A = 7Llw)A and (] = 7L lwJ, the ring of Eisenstein
integers .

The not ion of complex mult ipl ication ca n be given a co mplete ly alge
braic definition . One ha s to define the notion of an algebra ic endomor
phi sm of an algebraic group . Th en. if E is a n elliptic curve . one can define
the ring End(E) of all algeb raic e ndo mo rphisms of E. For example , if
(x , y) is a point on y2 = X l - Dx . we can define it x, .'I) to be (-x. iy) and
verify that this action gives an endomorphism on E(K). Similarly,
w(x. y) = (wx • .'I) yields an a lgebraic endomorphism of y2 = Xl + D. In
general there are three pos sibilities for the structure of End(E): it is iso
morphic to 7L. or to an orde r in a n imaginary quadratic number field , or to
an order in a quaternion algebra (the last can occur only in ch aracterist ic
p :/: 0). If End(E) :/: 7L , we say E has complex multiplication . We will not
pu rsue these ideas further here.
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It is impossible to fully appreciate some of the new developments in the
theory of elliptic curves without so me background in th e theory of modu
lar curves. We will give a very brief introduction to these curves and their
properties .

One caveat before we begin . Up to now we have not been dealing with
the mo st general notion of an algebraic c ur ve. We have defined a curve as
the solutio n set of a homogeneous polynomial in the projective plane .
Curves also occur as one-dimensional subvarieties of higher dimensional
projective spaces, and not every suc h curve "fits" into the plane.
In ~ I we wrote down a formula for the genus of a plane curve which
showed that a nonsingular plane curve must have a genus of the form
(n - I)(n - 2)/2 . It follows that, for example, a plane curve of genus 2
must have singularities . But there are nonsingular genus 2 curves in IP~ . In
what follows we use the word curue somewhat loosely but hope neverthe
less to convey a good idea of what is going on.

Modular curves parameterize families of elliptic curves with certain ,
extra structure . We begin by considering pairs (E , P) , where E is an
elliptic curve and P is a point on E of order N. We say two pairs (E, P) and
(E ', P') , are isomorphic if there is an algebraic isomorphism 1> from E to
E' such that 1>( P) = P'. There is a curve Y1(N) defined over a who se
points are in l-to-I correspondence with isomorphism classes of pairs
(E, P) of the type just described. Moreover, if (E, P) corresponds to a
point in Y1(N)(K), where K is an extension of 0, then (E. P) is equivalent
to a pair (E', P ') . where E' is defined over K a nd P' E E(K) . (See [La5)
and [Shim] .)

The curve Y,(N) is not complete in a sense we will not make precise . .
To make it complete it is necessary to add a finite number of points
called cu sps . The resulting complete curve is called Xd N) . It is possible
to compute the genus of X1(N) . and it turns out that the genus is 0 if and
only if 1~ N ~ 10 or N = 12. This fact is essent ial in the proof of Mazur's
theorem on the structure of E'<I"(O), where E is any elliptic curve defined '
over 0 (see Theorem 18.1.2) . One big step in the proof is to show
Y1(N)(0) is empty if N is outside of the above range . For suc h N it
follow s that an elliptic curve over 0 cannot have a rational point of order
N.

A second family of modular curves parameterize isomorphism classes
of pairs of the form (E, C), where E is an elliptic curve and C is a cyclic
subgroup of E of order N. As before, (E. C) and (E ' , C) are said to be
isomorphic if there is an algebraic isomorphism eb from E to E' such that
eb(C) = C. There is an algebraic curve Yo(N) who se po ints are in I-to-I
correspondence with isomorphism classes of the pairs (E, C) . If (E, C)
corresponds to a point on Yo(N)(K). then (E, C) is equivalent to a pair
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(E' , C' J, where E' is defined over K and C' is also defined over K (we say
a subset of E(K) is defined over K is (T(S) = S for all automorphisms (T of
KfK: see [Shim]).

Yn( N) is not complete and requires the addition of finitely many points
(cusps) to make it into a complete curve Xo(N) . The genus can be com
puted, and one finds that the genus is 0 for I ~ N ~ 10 and N = 12, 13,16,
18,25 . The genus is I for N = II, 14. 15. 17. 19,20,21,24,27,32,36.49.
Curves in this latter set are themselves elliptic curves. As we will see, the
curves X n(N) form the key ingredient in the very important conjecture of
Taniyama-Weil.

It is interesting to see what these curves look like over the complex
numbers . Let ilt = {~ E C [z = x + iy, y > O}, the classical upper half
plane . The group 5L(2, IR) of 2 x 2 matrices with coefficients in IR and
with determinant I acts on ilt by fractional linear transformations. If A =

C~ ~). we define A(~) to be (liZ + h )f(cz + d) . The discrete subgroup I' =

5L(2, Z) acts on 'Jt in a properly discontinuous manner (definition omit
ted) and the quotient space 'Jeff has the structure of a one-dimensional
complex manifold . In fact. 'Jeff = C and so 'Jeff can be compactified by
adding one point to yield the Riemann sphere, which is isomorphic to
IPI(C). If I' is any subgroup of I' of finite index, we can also form 'Jeff'
and by adding finitely many points in an appropriate manner compactify it
to a compact Riemann surface C(f'). The natural map 'Jeff' - iltff ex
tends to an analytic map from CO") to IPI(C). which realizes Ctf") as a
branched covering of the Riemann sphere .

Define two families of subgroups of finite index in I':

fo(N) = {(~~ ~)Ic == O(mod N)}

fl(N) = {(~ ~)I(~ ~) == (~ ~) (mod N)} .
It is now not too hard to prove the following result.

Proposition. Yo(N)(C) = 'Jtf['n(N) and YI(N)(C) = 'Jf, f['I(N). Moreover.
Xn(N)(C) = C(l'n(N» and X,(N)(C) = C(rl(N».

In this proposition "=" means "is analytically isomorphic to ." The
group I' is sometimes called the modular group . The proposition shows
the connection between certain subgroups of the modular group and the
modular curves we discussed earlier.

A very readable introduction to the modular group and its properties is
given by Serre [Se] . Subgroups of the modular group are discussed in
[Ko]. [LaS]. [Ogg]. and [Shim].

We are now in a position to state one of the most important conjectures
in the whole subject.
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The Taniyama-Weil Conjecture. Let E be an elliptic curue defined
ouer Q. Then there is an integer N and a nonconstant rational map
c/J: Xo(N) ~ E with c/J defined over Q.

If E/Q is the algebraic image of some Xo(N), we say that E is modular.
The conjecture may be paraphrased as saying that every elliptic curve
over Q is modular.

This conjecture was first put forward by Taniyama at a conference on
algebraic number theory held in Japan in 1955. In 1967 Weil [We] refined
the conjecture by specifying that the integer N can be taken to be the
conductor of E, a notion to be discussed later. and also proved an impor
tant theorem that made the conjecture very plausible. In 1971 G. Shimura
proved, using Weirs theorem, that every elliptic curve over Q that has
complex multiplication is modular. There is a finite algorithm that allows
one to check in any given case if an elliptic curve over Q is modular. This
has been done in hundreds, perhaps by now thousands, of cases. The
evidence in its favor seems overwhelming.

This conjecture seems to have nothing at all to do with Fermat's fa
mous conjecture. his so-called last theorem. Nevertheless, the mathema
tician G. Frey discovered a connection. If a!' + bt = c P is a solution in
positive integers a, b, and c, where p is a prime different from 2. Frey
associates to such a solution the elliptic curve E: y2 = x(x - aP)(x + b/').
He then shows this curve has such remarkable properties that it shouldn't
exist. J.-P. Serre had previously formulated a conjecture about modular
functions that would prove this nonexistence if E were modular. K. Ribet
in 1986 proved a special case of Serre's conjecture that was powerful
enough to yield the following theorem.

Theorem (Frey, Serre, Ribet). The Taniyama- Wei! conjecture implies
Fermat's Last Theorem.

This, together with the results of Faltings discussed in § I, represents
truly amazing and unexpected progress toward a resolution of Fermat's
last theorem. Oesterle discusses this theorem and gives a sketch of the
proof in [Oesl]. (For new developments the reader is referred to Notes for a
New Printing on page vi.)

§4 Heights and the Height Regulator

The theory of heights plays a very important role in the subject of
diophantine equations. As we saw in Chapter 19, it is a key ingredient in
the proof of the Mordell-Weil theorem. In this section we briefly intro
duce the more general theory. One of our principal motivations is to give a
definition and discussion of the height regulator, which is an important
quantity associated with an elliptic curve defined over a number field. The
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height regulator also plays a role in the more refined version of the conjec
ture of Birch and Swinnerton-Dyer.

Let us recall the definition of the height of a rational number. If r E Q.
writc r = a/h. where a and h arc relatively prime integers. Define H(r) =

max (Ia l, Ihl). This has the following two properties ; H(r) 2: 1 for all
r E Q. and for every C the set {r E Q IH(r) .s C} is finite . We would like to
extend H to a function on all of 0. the algebraic clo sure of Q . in such a
way that both these properties continue to hold . This turns out to be
almost possible . The construction of such an extension is not too hard.
but it would take us too far afield to give all the details here . We will show
how to extend H to a function on all algebraic integers and refer the
interested reader to some of the references given at the end of this chapter
for the method in the general case of algebraic numbers (see [Sil], [Hu],
[La3]. or [La4]) .

Suppose a E K is an algebraic integer in some algebraic number field
K C 0. Let 0"1. 0"2 • • . • 'O"n be the imbeddings of K into the complex
numbers, arranged in such a way that the first s of them are real imbed
dings, the next I of them are distinct nonconjugate complex imbeddings,
and 0" , + ; is the complex conjugate of 0".,+, +; for I :s i :s t. We then define
the normalized absolute values as follows:

Iiall; = 100;al if I :s i :s s

Iiall; = 10";a12 if s + I :s t s: s + I .

Definition. Let a be an algebraic integer in an algebraic number field K of
degree n over Q. The height of a is defined by

H (a)n = n; max (I. lIall;).
It is not hard to check that H(a) is well defined and that if a E 71. , H(a)

reduces to max (I, lal) as it should.

Proposition 20.4.1. For all a E Q, H(a) 2: I. Moreover, if C and n are
given, the s£'l{a E Q IH(a) :s C and degto) :s n} is finite .

PROO~. We cannot give the proof of the full result since we have defined
Hta) only in the case a is an algebraic integer. We give the proof in this
special case and remark that the proof of the general result is quite sim
ilar .

The first assertion is clear from the definition. Now assume a is an
algebraic integer and that d = degto) = [Q(a):Qj :s n. Then a satisfies a
monic polynomial equation of degree d with coefficients in 71. : x el + alx d- I

+ . .. + ad = (x - ail(x - (2) ... (x - ad). From the definition of

height, we find that la;1 -s C for all i, and it follows that la;1-s (1) C! for

I -s i :s d. Since d is bounded and the coefficients of the polynomial are
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bounded . there are only finitely many possible polynomials involved. and
thus a must be one of only finitely many algebraic integers . 0

Let E/ K be an elliptic curve defined over an algebraic number field,
and suppose it is given in affine form by a Weierstrass equation y~ =
Xl + ax + b, with a, b E K . If P E E(K). write P = (x(P), yep»~. As usual,
denote by 0 the point at infinity on E.

Definition. The height on E( K)is a function h: E( K) ~ IR given by II(0) =

O. and hlP) = log lI(x(P» for P i= O.

The "log" on the definition denotes the natural logarithm. As will be
seen. passing to the logarithm of II has a number of advantages. Note that
for all P. hlP) 2= O. Also, since -(x. y) = Lr, -y), it follows that hlP) =

h( - P) . The following simple consequence of Proposition 20.4.1 will be
important.

Proposition 20.4.2. Let E/ K he (1/1 elliptic curue defined over {lfl algebraic
number field K. Forall C. the set {P E E(K) 1 hlP) S; C} is finite ,

PROOF. By Proposition 20.4.1, the set (0: E KIHto) S; eC} is finite. Since
for each 0: E K there are at most two values of {3 such that (a, (3) E E(K).
the result follows. 0

Before going further , we introduce some useful notation . If/and g are
functions from some set X to IR. we definc jLr) = g(x) + O( I) to mean that
I/(x) - J.:(x)1 is bounded above by a constant that may depend on/and g.

Similarly, [i x) s; J.:(x) + O( I) means that there is a constant C such that
fIx) -s g(x) + C for all x E X.

In Chapter 19, §4, two important properties of height on elliptic curves
defined over iQ were proved . In the present context, the se may be reform
ulated as follows: For P E E(iQ), 4h( P) -s h(2P) + 0(1), and if Q E E(iQ)
is fixed, then h( P + Q) -s 2h( P) + 0(1). The first follows from equation
(12), and the second is derived from equation (8) (it is not hard to see that
2P can be replaced with P in equation (8). and one can then replace P with
P + Q) . We now present an important generalization .

Proposition 20.4.3. Let E/ K be an elliptic curve defined over a number
jield K . For all P, Q E E(K) we have

hi P + Q) + ht P - Q) = 2h(P) + 2h(Q) + 0(1).

PROOF. We sketch the proof, referring to Silverman [Si I] for details.
Assuming that K = iQ, one can use the methods of Chapter 19 to establish
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that h(P + Q) + h(P - Q) :$ 2h(P) + 2h(Q) + 0(1). The problem is to
show the reverse inequality. Set P = R + Sand Q = R - S. One finds
h(2R) + h(2S):$ 2h(R + S) + 2h(R - S) + 0(1) . By previous results, we
know that 4h(R) + 4h(S) :$ h(2R) + h(2S) + 0(1) . Combining these
inequalities and dividing by 2 yields the result. 0

Ifwe set P = Q, the relation h(2P) = 4h(P) + 0(1) falls right out. It is
in fact not hard to show that hemP) = m2h( P) + 0(1 )for all integers m , In
Proposition 20.4.3 substitute mP for P and P for Q. Assuming the result
for integers k such that I :$ k -s m, we find that

h«m + I)P) + (m - 1)2h(P ) = 2m2h(P) + 2h(P) + 0(1) .

Thus, h«m + I)P) = (m + 1)2h(P ) + 0(1), and so we are done by
induction .

All of this makes it plain that the height function on an elliptic curve
behaves very much like a quadratic form, aside from the 0(1) terms . Both
A. Neron and J . Tate found ways to modify the definition so as to get a
quadratic form on E(K) , which behaves like the height function. Both
methods have advantages, but we will presentTate's because it is more
elementary.

Definition. Let ElK be an elliptic curve defined over an algebraic number
field K . For P E E(K) define h(P), the canonical height of P. by the
formula li(p) = lim 4-"h(2"P).

n-ox

To show the limit in this definition exi sts. it is sufficient to show that
the terms define a Cauchy sequence . Suppose // > m 2: O. Then

14 -/l/h(2"'P) - 4-"h(2"P)I:$ L 14 -", -ih(2/1/+iP) - 4-/l/-i- 1h(2 f1lf i+IP)I, (I)

where the sum is from i = 0 to n - m - I . There is a constant C such that
14 -l h(2Q ) - h(Q)1 :$ C for a ll Q E E(K) . The ith term in the sum is
:$4--/l/ - iC. Thus . the sum is dominated by (4 /1/ + 4 -/11 I + . . . +
4 " >I )C < 4 -/1/ t i C. Thi s shows the terms form a Cauchy sequence .

The important properties of the canonical height are summarized in the
following theorem.

Theorem 20.4.4 . The canonical height l i( P) satisfies

(i) li(p) = ht P) + 0(1).
(ii) (P. Q) = 1/2 (li(p + Q) - li(p) - li(Q» is hi-additive.

(iii) li( 11/P) = 1I/ 21i( P Yjor 0/1 11/ E 7L
(iv) li( P) 2: O. with equality holding if and only i P is a torsion point ,
(v) ~rg(p) is anyfunction satisfying (i) and (iii), then R = Ii.
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PROOF. We sketch the proof. referring the reader to the references for the
details (we note parenthetically that the canonical height in [Sill is half the
one defined here).

In equation (I) set m = 0 and take the limit of both sides as n tends to
infinity. Since we have shown that the right-hand side is dominated by 4C,
it follows that IMP) - h(P)1 :5 4C, which proves (i).

In Proposition 20.4 .3 , replace P and Q by 2np and 2"Q, respectively,
div ide through by 4", and pass to the limit as n tends to infinity. The result
is that the canonical height satisfies the parallelogram law : h(P + Q) +
li(p - Q) = 2h(P) + 2h(Q) . Property (ii) follows from this identity by an
exercise in pure algebra . We omit the details .

Property (iii) can be derived in two ways. One can start with the fact
that the height function h satisfies the property up to 0(1) terms and then
get the result by replacing P by 2" P, dividing by 4", and passing to the
limit. Alternat ively. it follows by a formal induction using property (ii).

Since h( P) :2: 0 for all points P, it follows that the same is true of li( P).
rtf> is a torsion point , there is an mE 7l, m of. 0, such that mP = O. Thus,
o = li(O) = li(mP) = m2h-(P) , and so li(f» = O. Conversely, suppose
/;( P) = O. Then , by property (iii). 1;(111 P) = 0 for all integers m , However,
us ing property (i) and Proposit ion 20.4.1, we see that {mP Im E 7l} is a
finite set. This can happen only if P is a torsion point.

Finally, assume that g(P) satisfies (i) and (iii). From (i) we see that
there is a constant C such that I/i( P) - g( 1')1 :5 C for all points P. Choose
any //I :2: I, and repl ace P by m k P. Then, using property (iii), we find
I/;(P) - g(P)1 :5 CIII - 2k • Now let k tend to infinity . The result is
/;( P) = g( 1') . (Note that one only has to assume that (iii) holds for one
integer III :2: 2) . 0

Definition. Let ElK be an ellipt ic curve defined over a number field K .
Let PI , 1'2 , ... , P, be a basis for the free part of E(K), i.e ., every point
of E( K) can be uniquely written as the sum of a torsion point and a 71.
linear combination of the Pi . Let 'dI. be the matrix whose ijth entry is
(Pi, Pj ) . Then R(E/K), the height regulator of ElK, is defined to be the
determinant 01' '111..

Just as is the case with the regulator of a number field, the height
regulator of an elliptic curve has a geometric interpretation. To get an idea
of how this works , we have to introduce the real vector space V(K) =

III @ E( K) , which has dirncnsion r over Ill. For those readers who are
unfamiliar with ten sor products, it is possible to give a more concrete
construction of V( K) . Its points consist of formal Ill-linear combinations
of the Pi. i.c . , expressions of the form LX;Pi with the Xi E IR. Addition and
subtraction are performed coordinate wise, scalar multiplication by the
rule 1LXi Pi = L1X,Pi. The he ight pairing (P , Q) can be extended to V(K)
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in the obvious manner; if X = LX;P; and Y = Ly,p;, then (X, Y) =
L;.j x;Yj(P;, Pj) . What is not as obvious as it seems is that this extended
inner product is positive definite on V( K). It is true. The proof involves
the almost all of Theorem 20.4.4. Assuming this result . choose an
orthonormal basis e., e2, ' . ., e, for V( K). Now put the usual measure on
the Euclidean space V(K) so that the unit cube {Lt;e; 10:5 t;:5 I for i = I ,
2, . . . ,I'} has volume equal to I.

We define a map cf> from E(K) to V(K) as follows : Every P E E(K) can
be uniquely written as T + L n,P;, where T is a torsion point , and the n, E
7L (the sum here is not formal ; it is addition on the elliptic curve E) . Define
cf>(P) = Ln;P; E V(K). It is easy to see that cf> is a homomorphism with
kernel equal to Etors(K) and with image a lattice in V(K). A fundamental
domain for this lattice is given by {L t.P, I 0 :5 t, :5 I for i = I, 2,
. . . • r}. To compute the volume of this fundamental domain is a stan
dard exercise in linear algebra. One wr ite s P; = Laije; with the a;; E IR and
the volume in question is equal to Idet[aij]l. Let S'1 = [aij] . Since the e; are
orthonormal . one sees that 'Jt = S'1 t S'1 eS'1 is the transpose of S'1) and it
follows that R(EIK) =:= (det S'1)~. We have proved Proposition 20.4 .5.

Proposition 20.4.5. The height regulator, R(EI K) , is the square of the
volume of a fundamental domain for the lattice cf>(E(K» in the vector
space V(K).

Using this geometric interpretation and some standard arguments from
the geometry of numbers , we can deduce a very interesting result about
the distribution of rational points on an elliptic curve .

Theorem 20.4.6. Let EIK be all elliptic curve defined over a number field
K. Suppose that E(K) has rank r. Let N(R) be the number of elements
P E E(K) such that h( P) :5 R . Then there is a constant C such that
N(R) - CW12 (here the "-" means that the ratio of the two sides tends
to I as R tends to infinity) . More precisely, the constant C is equal to
YrIE(K)tI/VR(EIK), where Yr is the volume of the unit sphere in Euclid
ean r-space (Yr = 1TrI~/n I + r/2».

PROOF. Let L be a lattice in Euclidean n-space . IR" . Then the number of
elements in the set {A E LIIIAII :5 R} is asymptotic to the volume of the
sphere of radius R divided by the volume of a fundamental domain for the
lattice L. This is a standard result that is intuitively clear and not too hard
to establish. We now apply it to the lattice cb(E(K» in V(K) .

First, notice that Ilcb(P)II! = (cb(P), cb(P» = 1/2 (h(2P) - 2h(P» =
h(P). and by Theorem 20.4.4 , part (i), Ji(p) differs from h(P) by a
bounded amount. Thus, N(R) differs from the product of IE(K),orsl and
the number of points in the set {P E E( K) III cb (P)II :5 R I /~} by a bounded
amount (IE(K )'orsl enters into this because it is equal to the order of the
kernel of cf» . The number of elements in the latter set is asymptotic to
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'YrW!2 divided by the volume of the lattice c/J(£(K»), which is, by Proposi
tion 20.4.5, the square root of R(E/K) . The proposition follows . 0

There are many interesting open problems concerning the canonical
height. For example, here is a conjecture due to Serge Lang (see [La3) ,
p. 92). Let E be an elliptic curve defined by y2 = x 3 + ax + b with a and b
in 7L. Assume £(0) has positive rank . Since c/J(£(O» is a lattice in V(O),
there is a nontorsion point PI E E (0) such that h(P1) is least. Lang
conjectures that there is a constant C independent of E such that h(P Jl >
Clog IIiEI, where liEis the minimal discriminant of E. This number divides
the discriminant of E. (For a precise definition, see page 224 of [Sil).) This
conjecture has been proved by J. Silverman [SiI2] in special cases. For
example, let jE be defined by 1728(4a)J/dE. Silverman has shown that
Lang's conjecture is true if one considers only elliptic curves E such that
l e is an integer (this holds automatically if £ /0 is an elliptic curve with
complex multiplication). As a result , he is able to prove [Sil3] that there is
a constant C such that for all curves E withj£ E 7L , 1£(7L)1 < C'«- where re
is the rank of £(0). Notice that this shows that if you could find elliptic
curves withjE E Z and many integral points , you would force the rank to
be large. It is conjectured (also by Lang; [La3], page 140) that inequalities
of this type hold without restriction onjE, and also appropriately formu
lated, over any number field . (For more conjectures about the canonical
heights of elements of a basis for E(K), see [La6] .)

We end this section by noting that Noam Elkies used some of the ideas
discussed in th is section to provide examples of lattices in Euclidean
space with extraordinarily good sphere-packing properties. Instead of
number fields, he works over rational function fields IF tT), where IF is a
finite field . By choosing the elliptic curve E and the finite field IF very
carefully, he is able to produce lattices that equal or better the best known
examples, at least in all dimensions less than or equal to 1024. Once again,
this illustrates the fact that the arithmetic theory of elliptic curves has
deep and surprising appl ications in other areas of mathematics.

§5 New Results on the Birch-Swinnerton-Dyer
Conjecture

In this section we begin by reviewing the definitions that go into the
Birch-Swinnerton-Dyer conjecture. The discussion is similar to that of ~2
of Chapter 18. Here we work over a general number field K and also make
the conjecture more precise.

Let E be defined by an equation y2 = x 3 + ax + b with coefficients in
OK, the ring of integers in K . Let ?/' be a prime ideal in 01.' and let N,~ - I
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be the number of solutions to the congruence y ~ == .r' + ax + h (mod '!P ).
Let M!P = IO...·NPI and define C.. = N~P + I - N p •

Definition. L*( EI K• .1') = f/( I - C..N~JP -' + N~JP I . ~ , ) . I , where the product
is over all non zero prime ide als of Of( not dividing Dot:. By multiplying by
suita ble factors at the primes di viding ~I:" on e arrives at L (EI K . .1') . the
L-function of E over K .

Th e idea of consid ering L(EI K . .1') is that. since it contains information
abo ut all of the foregoing congruences . it should co nta in a lot of informa
tion about the arithmetic of E.

Fir st a word about the con vergence of L( EI K ,.I") . If ~jP does not divide
D.t.• then it can be proved that Ic..p! s: 2(N~JP)I /~. This wa s proved by Hasse
in the 1930s . Examples of this phenomenon go back to Gau ss . Here we
ar e co ncerned with elliptic curves ov er finite fields . As we noted earlier in
this book, Weil conjectured s imila r results for nonsingular algebraic vari
e ties over finite fields and proved his conjectures in seve ral important
ca ses. The general Weil conjecture, the congruence Riemann hypothesis,
wa s proved by Deligne in 1973.

To get back to our sto ry. the inequalit y /Cpl .s 2(N:'J» li1 eas ily implies
that L( EI K ,.I') converges for Re(s) > 3/2. Another conjecture of Weil ,
close ly related to the Tani yam a- Weil conjecture , is the following:

Conjecture (We il), L (EI K. s) can be ana lyti cally continued to the entire
complex plane and sa tisfies a funct ion al equa tio n.

For simplic ity we sta te the conjectured fun ctional equati on in the spe
cial ca se when E is defined over 11) . There is an integer Ne. called the
conductor of E. Ne di vidc s a., a nd is di visible onl y by primes where E has
"bad" reduction. We omit the preci se definit ion. Let

At.(s) = Nt~( 27r ) -' l'( s )L( l:."III) ,.I" ) .

Th en (conjecturally) At.(s) can be anal yticall y continued to an enti re func
tion on all of C. and At.(s) = t:!\ t:(2 - .1' ). where I:: = 1 or - I is called the
sign of the funct ional equation .

Weil proved this in spec ia l cases. In 1954 Dcuring proved it wh en E has
comple x multiplication. Eichler (1954) and Sh imura (195H) proved it when
EIII) is a modular elliptic curve . Thus . if the Tun iyarnu- Weil conjecture is
correct , the preceding conjecture would follow over 11) . In any ca se, if E
ha s complex multiplication . or more generally if E is modular , one can
consider L(EI Kis) as an a na lytic function around the point s = I .

The Conjecture of Birch and Swinnerton-Dyer. As suming the a na lytic
cont inuation. LlEI K ..I" ) has a zero of order r, the I -ra nk of E(K). at .I' =: I .
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Moreover. (.I' - 1)-rUEIK ..I')~ Me ass~ I. where ME is a constant with
the structure

ME = 2tIDKI -1/2Iill(EI K)!R(EIK)!E(K)torsl -2nd".

Here t is half the number of complex embeddings of Kover O. DK is the
discriminant of K, llHEIK) is the Tate-Shaferevich group of E over K,
R(EI K) is the canonical height regulator of Ei K) (described in the last
section). and the d, are numbers that arc I unless 'l1' is a prime of bad
reduction or an archimedean prime. If C1' is nonarchimedean. d.~ is a
positive integer; if(!/' is archirnedean, then d, is given by a period integral.

ill(EIK) is a very important group associated to E. It arises in connec
tion with the problem of computing the rank of a given elliptic curve. The
definition is somewhat technical. and we shall not give it here (see. e.g. .
Chapter 10. *4 of [Sill). ill(EIK) is conjectured to be finite, but until
recently this was not known to be true for any single case . If one could
find an effective upper bound for Iill I a consequence would be the exis
tence of a finite algorithm for determining the rank of E(K) in any given
case. Around 1972 Tate made the following comment on the Birch-Swin
nerton-Dyer conjecture : "This remarkable conjecture relates the behav
ior of a function L where it is not known to be defined. to the order of a
group ill not known to be finite."

There has been dramatic progress on this conjecture in recent years .
Until further notice we will assume that E is defined over O. If E has
complex multiplication, we will say that E has CM.

Coates-Wiles (/977) . If E has CM, then L(EIO,I) =1= 0 implies E(O) is
finite [114].

Gross-Zagier (1986) . If E is modular and L(E/O.s) has a simple zero at
s = I. then E(O) is infinite [Gr-Za] .

Rubin (/987) .

(a) If E has CM and L(EIO , I) =1= O. then ill(E/O) is finite .
(b) If E has CM and ri. 2:: 2. then L(E/O.s) has a zero at s = I of order 2 or

greater. [Ru I].

Rubin's result (a) gave the first known examples of ill being finite. For
example. for y! = x 3 - X. ill is trivial; for the curve y! = x-' + 17x. ill =
1l.121l. EB 1l./21l. .

Combining the preceding results leads to Theorem 20.5.1.

Theorem 20.5.1. IfE has eMand ord. , ,L(EIO.s) = PI-:::S I. then PI-: = re -

This rather spectacular result was pushed much further by V.A .
Kolyvagin in 19XR. It turns out that the theorem remains true when the
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hypothesis that E has CM is replaced by the much we aker hypothesis that
I:: is modular. According to the Taniyama-Weil conjecture. this co vers all
ellipt ic curves defined over 0 . To explain this work . it is necessary to
devel op in more detail wha t it is that Gross and Zagier we re abl e to prove.
and to do thi s on e must define the notion of a Heegner point o n the
modular curve X u(N ).

Recall that the po ints on th e modular curve Xu(N ) correspond to iso
morphism classes of pairs (E . C). where C is a cyclic subgro up of I:: of
order N . Let K be a n imaginary quadratic number field with d iscriminant
D < O. and assume (N.D) = I. We further assume that e ve ry rational
pr ime p dividing N splits in 0/\. i.e ., pO/\ = '!J'('!'~. From thi s ass umptio n it
is not too hard to sho w th at th ere exist ideals X C OK suc h that OKIX ==
lLl NlL. Consider the pair (C/O". X - I/O,,), wh ere X -I is the fract ional
ide al inverse to J{ in K. CIOK defines an elliptic curve over C, and
X - I/OK == OKIX == lLlNlL is a cyclic subgroup of order N. Thus , we have
defined a point XK on X o(N)(C). It is a fact that thi s point ha s coordinates
in H , the Hilbert cla ss field of K. Recall that H is the maximal unramified
extension of K whose Galoi s group. Gal(HIK), is abeli an . The point XK is
called a Heegner point in honor of Kurt Heegner, who first defined such
points and inve stigated their properties .

Now suppose that ip : Xn(N )~ I:: is a modular param et eri zation of an
elliptic curve I:: defin ed ov e r 0 . If X K is a Heegner point. define YK =

L <p(x,.}". where the sum is ov er all a uto mo rphis ms in Gal( HIK ). the sum
denot es gro up addition o n E. Cle arly. YK e 1::( K) . The first part of the
following result was co njec tured earlier. around 19lB. by Birch and
Stephen s.

KoIyvagin (/988). Assume y« has infinite order in I::( K ). Then

(a) The gro up E (K) has rank I.
(b ) The group ill(EI K ) is finit e.

Of co urse. we are ult imat ely inte rested in 1::(0) and ill( EI O) . By co mbin
ing Kolyvagin' s theorem with the work of Gross-Zagier a nd so me ana
lyti c re sults (to be d iscu ssed later) we can deduce the following theorem.

Theorem 20.5.2. Suppose 1::10 is a modular elliptic curve . Then

(a) I]' L(E10.s) has a simple zero 1I1 s = I. th en E(O ) has rank I. ant!
ill(F./O) is finite .

(h) l] L(EIO, I) =F O. then E(O) is finite . ant! 111(1::10) is finit e.

The deduction of thi s theorem from the theorem of Kol yvagin is qu ite
difficult. We will j ust ske tc h some of the ideas involved.

The first ste p is to co nnec t Heegncr points with the theory of L-fun c
tion s . That such a co nnec tio n should exist was a lso conjectured by B.J .
Birch and N.M . Stephen s .
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Theorem 20.5.3 (Gross and Zagier). Let EIO be a modular elliptic curve,
and !p : Xo(N) -> E be a modular parameterization. Let D < 0 be the
dis criminant ofan imaginary quadratic number field K . Assume (N,D) =
I and that every rational prime p dividing N splits in K. Then L '(EI K,I) =

c Ii(YK), where C is a non zero con stant (which can be explici tly given)
and Ii is th e canonica l height on E(K).

It follows from thi s theorem and the properties of the canonical height
discussed in §4 that YK has infinite order if and only if L'(EIK , I) =1= 0,
which brings in the L-function. Now we want to relate L(EIK ,s) to
L(EIO ,s ). To do thi s it is necessary to define the quadratic twist of an
elliptic curve (see [Sil] , Chap. 10, §5).

Suppose E is defined by y2 = x J + ax + b. Fo r DE 7l., D # 0, we define
ED, the quadratic twi st of E by D, by the equation Dy 2 = x ~ + ax + b. Eo
is again an elliptic curve ov er 0 , and it is not too hard to prove the
following proposition .

Proposition 20.5.4. Let K be a quadratic number fi eld with discriminant
D. and E WI elliptic curve over O. Then

(a ) rank E( K) = rank E(O ) + rank E1i O) and
(h) L(EIK ..I') = L(EIO ,s) L(E D/O,s ).

We a re no w in a po sition to sketch the proof of Theorem 20.5 .2. Let' s
co ns ider part (a). The assumption is that [(E/O, s) has a simple zero at
s = I , i.e . , L(E /O, I) = 0 and [, (E /O, I) =1= O. From Proposition 20.5.4 ,
part (b), we find that [, (E /K , I) = L '(E /O , I) [( ED/O, I). By a theorem of
J .L. Wald spurger, there exis t infinitely man y fund amental discriminants
D < 0 that satisfy the hypothese s of Theorem 20.5.3 and such that
L(ED/O , I) =1= O. For such a D we must have L' (EIK, I) =1= 0, and so by
Theorems 20.5.3 and 20.4.4, the point YK s E(K ) has infinite order. By
Kolyvagiri' s th eorem thi s impl ies rank E(K ) = I , and lll(E/K) is finite . By
Proposition 20.5.4, part (a), either E(O) has rank I, or ED(O) has rank I.
Let bar denote complex conjugat ion . With the as sumptions we have made
it can be shown th at h = YK. Thus , 2YK = YK + h e E(O) , and we
conclude that E(O) ha s rank I, as claimed. The fact that lll(E/O) is finite
follows easily from the fact th at lll(EIK) is finite (provided that one knows
the definition of either, of course).

To prove Theorem 20.5.2. part (b) , we can use similar reasoning. The
main difficulty remaining is to sho w the existence of disc riminants D of
the type we need which satisfy L'(ED , I) =1= O. The exi stence of infinitel y
many suc h discriminants was sho wn by D. Bump. S . Friedberg, and J .
Hoffstein in 1989 [Bu -Fr-Hof]. Independently. a nd at about the sa me
time . this result was also obta ined by M.R . Murty and V.K. Murty
[Mu r-Mur] .
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Surprisingly, these beautiful new results in the arithmetic theory of
elliptic curves have led to the resolution of an old problem of Gauss on the
class numbers of imaginary quadratic number fields . This is the topic of
the next. and final. section of this chapter.

§6 Applications to Gauss's Class
N umber Conjecture

A large percentage of Gauss's number theoretic masterpiece , Disquisi
tioues Arithmetical' 1136], is taken up with the theory of binary quadratic
forms. In Article 303 uf that work he describes the results of extensive
calculations of class numbers of definite quadratic forms. These calcula
tions can be reinterpreted as calculations of class numbers of imaginary
quadratic number fields. If D < 0 is the discriminant of such a field, let
h(D) denote its class number. Gauss observed that apparently h(D) - oc

as IDI- oc, In fact, the last Dfor which h(D) = I seemed to be -163, the
last for which h(D) = 2 seemed to be -427, and the last for which h(D) = 3
seemed to be -907 (Gauss uses a somewhat different normalization for
class numbers and so his values are different from these). These observa
tions led to two problems . First, prove the assertion that h(D) - cc as
IDI- x . Second, prove an effective version of the same result, namely,
for every integer n, produce an integer C(n) such that if IDI 2: C(n),
h(D) 2: n . One would hope that the constants C(n) would be small enough
to show that Gauss succeeded in finding all imaginary quadratic number
fields of class number I, 2, and 3.

The first problem was solved affirmatively in the 1930s by the com
bined efforts of several mathematicians . The story is amusing and is con
nected with the Riemann hypothesis , so we pause to recall what that is
about.

Let S(.\') = L n :» denote the zeta function of Riemann, s(s), as was
proved in Chapter 16, can be analytically continued to the whole complex
plane and is holomorphic everywhere except for a simple pole at s = I ,
Riemann conjectured that the only zeros of s(s) in the strip 0 :5 Rets) :5 I
are on the line Retv) = 1/2. This assertion is known as the Riemann
hypothesis and is one of the most famous unsolved conjectures in all of
mathematics. There is a generalization of this assertion known as the
generalized Riemann hypothesis. Dedekind associated a zeta function to
an arbitrary number field K by setting SK(S) = L NA -, where the sum is
over all integral ideals A ~ OK and NA = lOK : A]. E. Heeke showed that
this function could be analytically continued to all of C with only one
pole, a simple pole at s = I, that it satisfied a functional equation, etc. The
generalized Riemann hypothesis asserts that the only zeros of SK(S) in the
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strip 0 < Re(s) :5 I are on the line Re(s) = 1/2. In what follows, we use this
assertion only as it applies to imaginary quadratic number fields.

The first major step forward toward a resolution of Gau ss's conjecture
was made by Heeke .

Heeke (/9/8) . Let D < 0 be the discriminant of an imaginary quadratic
number field K. Assume the generalized Riem ann hypothesis. Then, there
is an absolute constant C such that

h(D) > C VjDj/log IDI·
This certainly shows that h(D) -+ ~ as IDI-+ ~, but it assumes a result

that is far from proven even today. The next developments were really
unexpected.

Deuring (/933). If the Riemann hypothesis is false . then h(D) > I if IDI is
sufficiently large.

Shortly thereafter, Mordell strengthened this result as follows :

Mordell (/934). If the Riemann hypothesis is false, then h(D) -+ oo as
IDI-+ 00 . .

Finally . H. Heilbronn completed this circle of ideas:

Heilbronn (/934). If the generalized Riemann hypothesis is false . then
hW) -+ 00 as IDI -+ co,

Putting it all together gives a proof of the qualitative version of Gauss's
conjecture.

Theorem 20.6.1 (Heeke. Deuring, Mordell , Heilbronn).

heD) -+ 7:J as IDI-+ 'X .

The method of proof here is truly amazing. If the generalized Riemann
hypothesis is true , then the theorem is true . If the generalized Riemann
hypothesis is false . then the theorem is true . Thus , the theorem is true! !

c.L. Siegel took this approach one step further and proved the defini 
tive theorem along these lines. His proof makes no use of the Riemann
hypothesis one way or another.

Siegel (/935). Given e > 0, there is a constant C(e) > 0 such that

h(D) > C( e) IDI I'~ -r. .

This is certainly a wonderful result, but it does not solve the problem of
finding an effective version of Gauss's conjecture, because there is no
way to compute the constant C( e) whose existence is asserted .

The next important step was taken almost 20 years later by Kurt
Heegner, who. in 1952, published a paper entitled " Diophantische Analy-
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sis und Modulfunktionen" <Diophantine Analysis and Modular Func
tions). In this paper Heegner claims to have solved Gauss' s class number
I conjecture by introduc ing new methods from the theory of modular
fun ctions . That is , he claims to have shown that the only negative d iscrim
inants D with hW) = I arc -3 , -4, -7, - 8, -II. -19, -43, -67 , and
-163 . Although his paper was published in a reputable journal , the
Muth enuuische Zeitschrift, his cla im wa s generall y d iscounted. The pa
per was quite ob scure in places, and it did conta in so me mistakes. As it
turned out, thi s neglect was completely unwarranted. His claim was late r
vindi cated. Unfortunately , he died before his accomplishment wa s gener
ally recogn ized.

T he first accepted proof of the class number I conjecture was given by
H , Stark in 1967. Soon thereafter A . Baker found another proof based on
the theory of transcendental numbers . The matter now being firmly estab
lished , people went back to look at Heegners work and di scovered that
the "gap" in his proof was not too hard to fill. Pap ers by Deuring, Siegel.
and Stark, among others, a ppea red showing how this co uld be done .

In 1971, Baker and St ark independently resolved the cla ss number 2
problem. The largest (in abs o lute value) negative discriminant with class
number 2 was -427, as predicted by Gau ss , Ho wever , the re seemed to be
little hope th at their methods could be extended to cover the case h = 3,
not to spea k of larger cla ss numbers.

T his subject is full of surprises , and in 1976 D. Goldfeld proved a result
whic h connected the conjecture of Birch and Swinne rton-Dyer with the
co nj ecture of Gauss, a lthough on the face of it, these conjectures are
co mpletely unrelated.

Theorem (G oldfeld [1976]). Suppose there exists an elliptic curve E /Q whose
Lsfunction , L (E/Q , s ), can be analytically continued io all of C and which
sat isfies a functional equation of the predicted typ e (see §5 of this chapter) and
has a zero of order 3 or great er at s = I. Then , given e > 0, there is an effec
tively computable constant C(e) such that h(D ) > C(e) (log IDI) I-£ [Go2],
[Go3] .

If the sign of the functional equation for L(E/Q ,s) is -I, it follows that
UE/Q,s) ha s a zero of odd order at v = I. Thus to en sure a zero of order 3
or greater in such a case , it is only neces sary to prove that L'(E/Q,I) = O.
If E is a modular elliptic cu rve, then its L-function has the required ana
lytic co ntinua tio n a nd functional equation. Moreover, the work of Gross
a nd Zagier discussed in *5 related the derivative at s = I to the height of a
Heegner point. Exploiting these connections , Gross and Zagier were able
to prove the follo wing theorem.

Theorem (Gross-Zagier 119X6]). Tire curve - LWy~ = Xl + IOx ~ - 20x + 8
satisfies all the hyp otheses o f Goldfeld'» theorem . III purticular, it lias II

:1' /'0 (II' order exa ctl» ) lit s = I IGr-L lI I.
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Taken together, these results of Goldfcld and Gross-Zagier finally give
a positive resolution of the effective version of Gauss's class number
conjecture some two hundred years after it was made.

The curve in the preceding theorem has conductor 714.X77. The con
stant C(f:) in Goldfclds theorem is dependent on the size of the conduc
tor . and this conductor is too large to resolve the case of class number 3.
Brumer and Kramer had shown that the curve y~ + y = Xl - Tx + 6 of
conductor 5077 has rank 3. If one could prove that it was modular, its
L-function would have the required analytic properties and Birch-Swin
nerton-Dyer would predict a zero of order 3 at s = I. Assuming it to be
modular, Buhler, Gross. and Zagier IBu-Gr-Zag] proved its L-function
had a zero of order 3 at s = I. Then, Mestre and Serre verified that it was a
modular elliptic curve . Working with this curve J . Oesterle [Oes2) was
able to prove that h(D) > 1/55 10g(IDi) if D is prime. Together with earlier
work of Montgomery and Weinberger, this was enough to show that -907
was the largest (in absolute value) negative discriminant of class number
3. Once again, Gauss was right!

It is perhaps fitting to end with an open problem . Throughout this
section we have been discussing imaginary quadratic number fields. If one
considers real quadratic number fields, the situation is much more myste
rious . Gauss had already noticed that many real quadratic number fields
have class number I. Considering such fields which have prime discrimi
nant, computations show that about 80% of them have class number I. It
is an open problem to prove that infinitely many real quadratic number
fields have class number I. In fact. it is not even known if there are
infinitely many number fields with class number I. In spite of all the
successes recorded in this chapter. much remains to be done .

NOTES

In this section, numbered references refer to items in the general bibliog
raphy at the end of the book . New references relevant to the subject
matter of this chapter are cited here by acronyms .

A major portion of this chapter consists of an expanded version of the
expository article by M. Rosen [Ro). For an elementary introduction to
the algebraic theory of curves, the book by W. Fulton [135) is recom
mended . At present. the standard introduction to algebraic geometry is R.
Hartshorne's book [144]. A somewhat less demanding, and very readable
text, is the book by I. R. Shafarevich [Shaf].

B. Mazur has provided an excellent introduction to the ideas surround
ing Faltingss resolution of the Mordell conjecture [Maz] . A very good
expository article on the proof itself appears in S. Bloch [B]. Two recent
volumes are devoted to providing the (extensive) mathematical back
ground necessary to understanding the proof: [Co-Sil] and [Fa-Wn] . The
first. [Co-Sil], contains an English translation of Faltings's original paper
as well as a short historical article by Faltings on how he was led to the
proof.
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For conjectures of Mordell type in higher dimensions. the reader
should consult the article by P. Vojta. " A Higher Dimensional Mordell
Conjecture." in [Co-Sill , In a somewhat different direction. an approach
requiring an extensive amount of differential geometry can be found in an
a rticle by S . Lang [La l ].

For an influential survey article on the arithmetic of elliptic curves.
discussed in *2. see J. Tate [Ta] , There are now several texts devoted to
this topic. Probably the best general introduction is by J. Silverman [Sil].
Other books. which overlap with the material in [Sill but contain valuable
discussions of other topics. are by D. Husernoller IHu], N. Koblitz IKo].
and S. Lang ILa2]. [La3] .

For an elegant introduction to the subject of modular forms, the reader
should consult the last chapter of J .-P. Serre ISe]. More extensive intro
ductions are given by T. Apostol [Ap I. S . Lang ILa51, and G. Shimura
[Shim]. These are listed in increasing order of sophistication. Shirnura's
book contains a careful construction of the curves Xo(N) and X1(N). The
book by Lang has an introduction to the connection between modular
forms and Galois representations. a theory used by Serre and Ribet in the
proof of the theorem connecting the Taniyama-Weil conjecture and Fer
mat's last theorem. The book by Koblitz [Ko] is also recommended . In
addition to containing an introduction to modular forms, this book
pre sents the proof of a beautiful theorem of J . Tunnell, which virtually
solves an old problem about congruent numbers (integers equal to the
area of a right triangle with rational sides) by relating the problem to the
conjecture of Birch and Swinnerton-Dyer,

A. Ogg [Ogg] provides an introduction to the theory of modular forms
which includes an exposition of the famous 1967 paper of WeiIIWe]. J .
Oesterle discusses the theorem linking the Taniyama-Weil conjecture
with Fermat 's last theorem, and much else besides [Oes l ].

For introductions to the theory of heights on elliptic curves , the reader
can consult the books by Silverman ISil1 and Husernoller [Hu] , For an
introduction to the theory in a more general context, sec Silverman 's
article " T he Theory of Height Functions." which appears as Chapter VI
in [Co-Sil]. For the theory of heights, as well as many other things of
interest in arithmetic geometry. the reader should consult S. Lang [La4] .
This book appeared just before Faltingss proof of the Mordell conjecture
and represented the state of the art in the subject "before the revolution ."

For the theorem on lower bounds for the canonical height, and the
subsequent application to bounding the number of integral points, see J .
Silverman ISi121. [Sif3].

For a more detailed series of conjectures about the canonical heights of
the clements of a basis for E(K) . see Lang [La61.

The writing of *5 and the next section was heavily influenced by the
survey article by D. Zagier [Zag] . It is amazing how much information this
article condenses into just four pages .
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The Coates-Wiles theorem appears in [114J. The basic new results
which we discuss in this section appear in [Gr-Za], IKol], and [Ru I j .

A survey of the work of Gross-Zagier is given by J . Coates [CoJ.
For a somewhat simplified exposition of a portion of the theorem of

Kolyvagin we have discussed, sec K. Rubin [Ru21.
It is difficult to locate a reference to the analytic result of Waldspurger

mentioned in the text. D. Bump, S. Friedberg, and J. Hoffstcin, [Bru -Fr
Hof ] discuss both his work and their new results on derivatives of
L-functions. The paper containing the proof of their main theorem has not
yet appeared . The same is true of the proof of M.R . Murty and V.K .
Murty [Mur-Mur] .

Section 6 follows rather closely the exposition given by D. GoJdfeld
[Go I I. We refer the reader there for an extensive bibliography of articles
on this subject. The theorem of Goldfcld which we discussed is contained
in two papers [G021, [G03] .

A simplification of Goldfelds proof. an exposition of the class number
problem, and a detailed discussion of the application of the theorem of
Gross-Zagier to the problem are provided by J. Oesterle [Oes2] . The
reader should also consult the introduction to [Gr-Za] as well as the
expository paper of Zagier [Zag] mentioned previously. The proof that the
L-function of y2 + Y = x 3 - Tx + 6 has a zero of order 3 at s = I, subject to
the assumption that it is modular, is given by J. Buhler, B. Gross, and D.
Zagier [Bu-Gr-Zag] .

The paper of Montgomery and Weinberger which was mentioned in
connection with the class number 3 problem is "Notes on Small Class
Numbers" [Me-We] . A very interesting paper by Buell resulted from the
calculation of all class numbers of imaginary quadratic number fields with
discriminant of absolute value less than 4 million [Bue] . Up to 4 million
h(D) = I for 9 values of IDI, the smallest being 3 and the largest 163. In the
same range there are 18 values of IDI such that h(D) = 2, the smallest
being 15 and the largest being 427. There are 16 values of IDI such that
h(D) = 3, the smallest being 23 and the largest 907. We now know that
these lists contain all discriminants with class numbers I, 2, or 3. Buell
presents similar statistics for many other values of 11(D) . As this book
goes to press, there is a rumor that the class number 4 problem has been
solved.
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Selected Hints for the Exercises

Chapter 1
6. Use Exercise 4.
8. D o it for the cas e d = I and then use Exercise 7 to do it in genera l.
9. Use Exercise 4.

IS. Here is a genera liza tion ; a is an nth power iff n Iord, a for a ll primes p.
16. Use Exercise 15.
17. Use Exercise 15 to show that a 2 = 2b2 implies that 2 is the square of

a n integer.
23. Begin by wr iting 4(aI2) 2 = (c - b)(c + b).
28. Show that n5

- n is divisible by 2, 3, and 5. Then use Exercise 9.
30. Let s be the largest int eger such that 2s =:;; n, and consider I~= 1 2s

-
1Ik.

Sh ow th at this sum can be wr itten in the form alb + 1- with b odd. Then
use Exercise 29.

31. 2 = ( I + i)(l - i) = - i(l + i) 2.
34. Since w 2 = -I - w we have (I - W)2 = I - 2w + w2 = -3w, so

3 = _ w 2(1 _ W)2.

Chapter 2
I. Im itate the cla ssical proof of Euclid .
2. Use ordp(a + b) ~ minford, a, ord, b).

3. If PI' Pl ' ·· ·' PI were all the primes, then 1>(PIPl · · · PI) = I. Now use the
formula for 1> and derive a contradiction.

5. Conside r 22 + I, 24 + I, 28 + I, . . . . No prime that divides one of
these numbers can div ide any o ther. by the pr eviou s exerc ise.

6. Count ! Consider the set of pai rs (s, r) with pSt =:;; n.
12. In ea ch case the summa nd is m ultipl icat ive. Hence evalu ate first at

prime powers and then use mult iplic avity.

367
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17. Use the formula for <1(n).
20. If din, then nld also divides n.
22. If (r, n) = I, then (n - t , n) = I, so you can pair those numbers relatively

prime to n in such a way that the sum of each pair is n.

Chapter 3
1. Suppose that PI' P2,"" PI are all congruent to -I modulo 6. Consider

N = 6PIP2 . . . PI - 1.
3. 10k is congruent to 1 modulo 3 and 9 and congruent to (_I)k modulo 11.
5. If a solution exists, then x 3 == 2 (7) has a solution. Show that it does not.

10. If n is not a prime power, write n = ab with (a, b) = 1. If n = p' with
s> 1, then (n - I) ! is divisible by p- r:' = p' = n. If n = p2 and
p # 2; then (n - I) ! is divisible by p -2p = 2n.

13. Show that nP == n (p) for all n by induction. If (n, p) = 1, then one can
cancel n and get Fermat's formula.

17. Let Xi be a solution to lex) == 0 (pf') and solve the system X == Xi (pf').
23. Since i == -I (l + i), we have a + bi == a - b (I + i). Write a - b =

2c + d, where d = 0 or I. Then a + ib == d (l + i).
25. Write IX = 1 + f3J.. , cube both sides and take congruence modulo J..4 to

get z ' == 1 + (f33 - w 2f3)J.. 3 (J..4). Then show that the term in parentheses
is divisible by J...

Chapter 4
4. If (_a)n == I, and n is even, then p - lin. If n is odd, then p - 112n,

which implies that 21 n is a contradiction.
6. This is a bit tricky. If 3 is not a primitive element, show that 3 is con

gruent to a square. Use Exercise 4 to show there is an integer a such that
- 3 == a2 (p). Now solve 2u == -1 + a(p) and show that u has order 3.
Th is would imply that p = I (3), which cannot be true.

7. Use the fact that 2 is not a square modulo p.
9. See Exercise 22 of Chapter 2 and use the fact that g(P- I l/2 == -I (p)

for a primitive root g.
II. Express the numbers between 1 and P - 1 as the powers of a primitive

root and use the formula for the sum of a geometric progression.
14. If (ab)' = e, then an, = 1, implying that millS. Thus mls. Similarly,

n Is. Thus mnIs.
18. Choose a primitive element (e.g., 2) and construct the elements of order 7.
22. Show first that 1 + a + a2 == 0 (P).
23. Use Proposition 4.2.1.

Chapter 5
3. Use the identity 4(ax 2 + bx + c) = (2ax + b)2 - (b2 - 4ac).
9. Using k == -(p - k) (P), show first that 2· 4 . . . . . (p - I) ==

( - 1r:1)/21 . 3 . 5 . .... p - 2 (p).
10. Use Exercise 9.
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13. If X
4

- X 2 + 1 ;: 0 (p), then (2x 2 - 1)2 ;: -3 (p) and (x 2 - 1)2 ;:
_x2 (p). Conclude that P = 1 (3) and P = 1 (4) by using quadratic
reciprocity.

18. Let D = PtP2 . .. Pm and suppose that n is a nonresidue modulo PI '
Find a number b such that b ;: 1 (Pi) and b ;: n (Pt) for 1 < i ~ m.
Then use the definition of the Jacobi symbol to show that (biD) = -1.

23. Since S2 + 1 = (s + i)(s - i), if P is prime in lEi] , then either pis + i
pis - i, but neither alternative is true.

26. To prove (b) notice that a + b is odd, so from 2p = (a + b)2 + (a - b)2
we see that (2pla + b) = 1. Now use the properties of the Jacobi symbol.

29. It is useful to consider the cases P ;: 1 (4) and P ;: 3 (4) separately.
30. To evaluate the sum notice that (n(n + 1)/p) = ((2n + 1)2 - l ip).

Chapter 6
1. Find an equation of degree 4.
2. If aocxs + a1cxs-

t + ... + as = 0, with a, E l, multiply both sides with
ao- 1 and conclude that aoo: is an algebraic integer.

3. Suppose that 0: and fl satisfy monic equations with integer coefficients of
degree m and n, respectively. Let y be a root of x 2 + ax + fl and show
that the l module generated by ex.ifliyk, where 0 ::; i < m, 0 ~ j < n, and
k = 0 or 1, is mapped into itself by y.

10. Use gu = (a lp)g and the fact that La (a lp) = O.
11. Remember that 1 + (t ip) is the number of solutions to x 2 ;: t (p) and

that LI C = O.
13. Use Exercise 12.
16. Show that otherwisef'(a) = 0 and apply Proposition 6.1.7.
23. Use Exercise 4 to show that it is enough to show that/ex) is irreducible

in lEx]' Then write lex) = g(x)h(x), reduce modulo p, and use the fact
that F p[x] is a unique factorization domain.

Chapter 7
3. Since q ;: 1 (n), there are n solutions to X" = 1. If fl" = a, then the other

solutions to X" = 0: are given by yfl, where y runs through the solutions
of X" = 1.

5. q" - 1 = (q - 1)(q"-1 + ... + q + 1). Since q ;: I (n) , we have q"-l +
.. . + q + 1 ;: II ;: 0 (n) . Thus n(q - 1) divides q" - 1.

7. Letm = [K :F].o:isasquareinKiffa(qm- 11/2 = 1. If 0: is not a square in
F, then ex.(q-ll/2 = -1. Show that o:(qm- Il /2 = (_l)m. This formula yields

the result .
9. Use the method of Exercise 7.

14. One can prove this by exactly the same method as for F p • Alternatively,
suppose that q = p". Let Iex) E Fp[x] be an irreducible of degree mn
and let g(x) be an irreducible factor oflex) in Fq[x]. Let a be a root of
g(x) and show that Fq C Fp('J.). Conclude that Fq(ex.) = Fp(cx) and that
[Fq(ex.) : Fq] = n. It follows that g(x) has degree n.
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IS. If x" - 1 splits into linear factors in E, where [E: F] = f, then E has qf
elements and IIIqf - I since the roots of x" - 1 form a subgroup of E*
of order 11.

23. If Pis a root of x" - x - a, then so are p + 1, P+ 2, ... , P+ (p - 1).
Using this, one can show the statement about irreducibility. To prove
the final assertion, notice that W= P+ a implies that W' = W+ aP =
P+ a + aP, etc. Thus W" = P+ tr(a) and so pE F iff tr(lX) = O.

Chapter 8
l. Use the Corollary to Proposition 8.1.3 and Proposition 8.1.4.
4. Make the substitution t = (k/2)(u + 1)and use Exercise 3.
6. It follows from Exercise 5 together with part (d) of Theorem 1, or

directly from Exercise 4 by substituting k = l.
8. Use Proposition 8.1.5 and imitate the proof of Exercise 3.

14. Use Proposition 8.3.3.
19. First show that the number of solutions is given by pr- t + J o(X, X, · .. ,X),

where X is a character of order 2 and there are r components in J o
Then use Proposition 8.5.1 and Theorem 3. Notice in particular that if
r is odd, the answer is simply pr- I

28. For (a) : Write
p-l (p-I) :2 (p- ll/2

LXX(x) = L XX(x) + L (p - x)X(p - x) .
x:t x=l x = !

For (b) : Write
p-t (p-!)/2 (p-l)/2

L xX(x) = L 2xX(2x) + L (p - 2x)X(p - 2x).
x : ! x=! x=l

For (c) and (d) : Equate (a) and (b).

Chapter 9
3. Use the fact that Nt = (/2 - ab + b2 == 3(m + II) + 1 (9).
4. Rewrite y as 3(m + n) - I - 3nA. Thus y == 3(m + n) - 1(3.1.).
5. Remember that 3 = _w 2A2

•

7. 2 + 3w, - 7 - 3w, and - 4 - 3w.
10. D/5D has 25 elements. Thus X

24
- 1 factors completely into linear

factors in D.
13. Use Exercise 9 to show that the elements listed represent all the cubes

in D/5D.
IS. Remember that every element in D/nD is represented by a rational

integer.
19. Use Exercise 18, the law of cubic reciprocity, and induction on the

number of primary primes dividing t.
23. Let p = nIT, where n is primary. By Exercise 15 x 3 == 3 (p) is solvable

iff Xn(3) = 1. By Exercise 5 Xi3) = w 2n
, where n = a + bw and b = 3n.

It follows that x3 == 3 (p) is solvable iff 91 b.



Selected Hints for the Exercises 371

24. (c) Use cubic reciprocity with n == bw (0).
(d) Write (0 + b) = (0 + b)w . w- I and note that 0 + btu ==

a(1 - w) (rr),
25. (a) Use Exercise 18 and the corollary to Proposition 9.3.4 to show that

Xa+b(b) = I. Note that n == -b(l - w) (0 + b).
(b) Xa +b(1 - w) = (Xa+b(l - W)2)2

= (Xa +b(- 3W»2 etc.
39. Combine Exercises 6 and 27 of Chapter 8 with Proposit ion 9.6.1.
40. See the hint to the previous exercise.
43. Use Exercise 23, Chapter 6.

Chapter 10

2. Map [x o, XI"'" X n - I] to [0, Xo, XI" ' " X n - I].

3. Since the number of points in An(F) is q", the decomposition of pn(F)
shows that the number of points in pn(F) is qn plus the number of points
in P"' I(F). One now proceeds by induction.

4. It is no loss of generality to assume that ao * O. If [xo, XI' .• • , xn] is a
solution, map it to the point [XI' X 2, • .. , xn] of pn-I(F). Show this map
is well defined, one to one, and onto.

5. Substitute, "dehornogenize," and use the fact that a polynomial of
degree n has at most n roots.

9. The kth partial derivative is mOk xi:' - I. Since each Ok * 0 and m is prime
to the characteristic, the only common zero of all the partial derivatives
has all its components zero. This, however, does not correspond to a
point of projective space.

12. The" homogenized" equation is (2x 2 + (2),2 + x 2
y2 = O. Setting ( = 0

we see that the points at infinity are (0, 0, I) and (0, I, 0). Calculating
partial derivatives and substituting shows that both these points are
singular.

14. Consider the assoc iated homogeneous equation and calculate the three
part ial derivatives. Assuming that a common solution exists, show that
4a3 + 27b2 = O.

19. The trace is identically zero on F p iff pin.
20. Consider the mapping hex) = x" - X from Fq to Fq • Prove that it is a

homomorphism and that its image has q/p elements. Prove also that the
image of h is contained in the kernel of the trace mapping. Show that the
latter map has less than or equal to q/p elements in its kernel. The result
follows.

21. Count the number of such maps.
23. Substitute and calculate.

Chapter II
4. In Fq there are 2q + I points at infinity and q2 finite points. Thus N, =

p2S + 2ps + I.
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7. The number of lines in pn(F) is equal to the number of planes An+ I(F)
which pass through the origin. The answer is (qn+ 1 _ 1)(qn+1 _ q)(q2 _
1)-I(q2 _ q)-I.

9. There is one point at infinity. For x = 0 there is only one point (0, 0)
on the curve. If x i' 0, let t = ylx and consider t 2 = X + 1. This has
p - 2 solutions with x i' O. Altogether there are p solutions in Fp
Similarly, there are q solutions in Fq • Thus the answer is (I - pU)-I.

12. To begin with, calculate the number of solutions to u2
- v4 = 4D.

16. The important facts are that N F. /F is a homomorphism which is onto,
and that the group of multiplicative characters of a finite field is cyclic.

18. Use the relation between Gauss sums and Jacobi sums and the Hasse
Davenport relation.

19. After expanding the terms of the product into geometric series , the result
reduces to the fact that every monic polynomial is the product of monic
irreducible polynomials in a unique way.

20. Use the identity 1 - T' = Dr:b (1 - (kT), where ( = e2ni/' .

Chapter 12

7. 21 = (I + 2.}=5)( I + 2.}=5).
8. Write det(w~j) as P - N, where P is the sum of terms corresponding to

the even permutations and N is the corresponding sum for odd permuta
tions. Then notice that (P - N? = (P + N)2 - 4PN. A standard
argument shows that P + Nand PN are integers.

9. Use Proposition 12.1.4 and elementary symmetric functions.
14. Consider ( +C 1 where ( is a primitive seventh root of unity.
21-23. Let {M be a basis for F over O(':J.). Use the basis {aipJ for F over O.
26. Choose a primitive g for the residue field. Lift it to D and consider the

corresponding minimal polynomial over the fixed field of the decom
position group (see [207], p. 223).

Chapter 13
I. Show that ¢(n) is even if /I > 2.
2. Use Proposition 13.1.3.

3. Q(JP) c O«(p)'
24. The discriminant of a quadratic field is 0 or 1 modulo 4.
27. The order of (Jp cannot be 4. See Theorem 2.

Chapter 14
I. (a) Use the definition of Jv.., 1/1), the binomial theorem and Exercise II,

Chapter 4. See also Lemma I, Chapter 9, p. 115.
12. See Exercise 17(e).
14. Let P be a prime ideal dividing p. Show (a/P)(:J./P) = I. See [166],

Satz 1034.
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17. (b) Examine the ramification of I in the diagram

1Q«(p/)

-: <,
1Q«(p) 0«(,)

~/
(c) Note that ( ,'" = ,: = (1 - (l - ',»'.
(e) Use Theorem 1, Chapter 8 and the fact that g(X~) = g(xp)"'.
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Chapter 15
2. Use Theorem 3.
3. Use Theorem 3 and Proposition 15.2.4.
9. As a function of a complex variable (e' - I) - I is analytic for It I < 2n.

13. Use Exercise 12.
2!. Set F = 2 in Exercise 19.

Chapter 16
4. ForanotherevaluationnotethatJ~t3k(1 - t)dt = 1/[(3k + 1)(3k + 2)].
7. Show that if p ] m and p l<I>m(N) for an integer N then p == 1 (m).

11. For an integer m choose a prime p == 1 (m) and consider subfields of
O«(p).

12. If p == t (m) then pI IW) = f(C) where ( is a primitive mth root of unity
and f(x) E Z [x ],f(o = O.

14. Use Theorem 1, Chapter 6.

Chapter 17
2. y 2 + 4 = x 3

- 27.
3. Imitate the proof of Proposition 17.8.1 ([60], Theorem 121).
8. (y + 2i)(y - 2i) = x 3

•

12. Consider (XI + YI,Jd)2 for a solution (XI' Yl) of x 2
- dy! = -1.

13. 13 + 23 + ... + n3 = (n(n + 1)/2)2.
16. Consider the map

( )
(

X I + X2 XI - X 2 X3 + X4 X3 - X4)
Xl' X 2' X 3' X 4..... 2' 2 ' 2 ' 2 .

18. (~) = 6.
19. Consider the hint for Problem 16.

Chapter 18
4. If t is the order of the torsion subgroup of E then for p == 2 (3), p ==

-1 (r). The density of the set of primes == -1 (t) is 11¢(t) while the density
of primes p == 2 (3) is 1.
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8. (a) Prove first for 2I = P,using (N(P) - 2)(N(P» = (N(P) - I? - 1.
(b) See Exercise 4, Chapter 14. Forlu(a,b)1 = l,appIYO"_dcf.Lemma4,

Section 5, Chapter 14).
(c) Show that uis invariant under the action of the appropriate Galois

group.
12. (a) See Chapter II.

(b) See Exercise 4.
(c) See Exercise 17.
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