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Introduction 

SPECIAL relativity is not, like other scientific theories, a statement 
about the matter that forms the physical world, but has the form 
of a condition that the explicit physical theories must satisfy. It is 
thus a form of description, playing to some extent the role of the 
grammar of physics, prescribing which combinations of theoreti
cal statements are admissible as descriptions of the physical world. 
So, to describe it, one needs also to describe those specific theories 
and to say how much they are limited by it. 

But not all physical theories are on the same footing in this re
spect; for special relativity fulfils the purpose just stated by de
manding that our measurements of space and time must be given 
an operational definition. As far as measuring points of space at 
one instant of time is concerned, this is no great difficulty; and the 
idea of time-ordering of events at one place (no matter how com
plicated this may turn out to be) is taken by special relativity as a 
given concept, not to be further analysed. But the relation of this 
time-ordering with that of events at different places is taken to be 
the central difficulty which has to be explained by operational 
means. It does this by defining the values of the time variable at 
distant events in terms of the times of emission and reception of 
light signals. As a consequence the theory of electromagnetism, 
which is known to describe the transmission of light very accur
ately, plays a special role in the theory. Accordingly only the brief
est introduction to this has been given and it is assumed that the 
reader has some familiarity with Maxwell's equations. 

The other physical theories which have been most relevant for 
special relativity have been mechanics, both classical and quan-
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Viii INTRODUCTION 

turn. Here a good deal has been provided in the way of an intro
duction, partly because the technique of applying special relati
vity to these subjects requires their development in directions 
strikingly different from their usual applications. To some extent 
this has resulted in an overlapping of this book with others in the 
series (ter Haar, 1967; Ludwig, 1968) but it is felt that such an 
overlap is preferable to leaving inexplicable gaps in the exposition 
of what is actually a tightly knit logical theory. 

It is natural that a theory that has as its object the limitation of 
other methods of description of the physical world will be ubiquit
ous. It has only been possible to include a few illustrative exam
ples of the applications of special relativity in various fields, and 
the most striking ones have been selected. The reader who is new 
to the subject may note that the concluding sections of each of the 
last three chapters are of considerably greater difficulty than the 
major part of these chapters, but they are not needed for a study 
of the major part of the later chapters, so that a preliminary study 
of the book can consist of Chapter 1, the first three-quarters of 
each of Chapters 2 and 3, and a brief reading of parts of Chapter 4. 
The reader may then, if he wishes, return to the omitted portions; 
those of Chapters 2 and 3 are needed for the mathematical part of 
Chapter 4. 
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C H A P T E R 1 

Introduction: 1632—1905 

THE special theory of relativity, which is the subject of this book, 
came into existence in 1905 as a result of the union of two pre
viously unrelated ideas, the notion that motion has a relative cha
racter (a phrase which will be explained below), and the notion 
that optics and mechanics are not two independent disciplines, but 
must be rendered consistent one with the other. 

The fact that motion is not an absolute property of a body but a 
relation between a body and an observer was known at least as 
early as Galileo. In his most important work, which he began 
writing in 1626 (Galileo, 1632) (though he had discussed the pos
sible contents of the book with members of the Church, including 
a future Pope, as early as 1624), he asks the reader to imagine the 
following thought experiment. The observers are shut up in the 
main cabin below decks on a large ship equipped with such things 
as flying insects, and a bowl of water with fish in. The behaviour 
of all these things is noted when the ship is at rest and again when 
the ship is proceeding in a uniform way. It is observed that in uni
form motion everything behaves just as at rest. The flying insects 
do not have to work harder when flying from the stern to the 
bows; the water does not spill from the bowl, and in general every 
feature of the phenomena at rest is reproduced in a state of uni
form motion. In this experiment Galileo contradicts, and intends 
to contradict, the views on mechanics of Aristotle, who considered 
that uniform motion was a quite different state from rest, needing 
some continual intervention to produce it. 

3 



4 SPECIAL RELATIVITY 

These considerations of Galileo were taken account of by 
Newton (1686) who in his Principia adheres to the idea of absolute 
space and absolute time but introduces also the concepts of rela
tive space and relative time. This is to say, he supposes that it is 
possible to describe motion in terms of a change of absolute space 
in an interval of absolute time, although what we measure are only 
the corresponding relative quantities. This section ofthe Principia 
ends: "But how we are to obtain the true motions from their 
causes, effects, and apparent differences, and the converse, shall 
be explained more at large in the following treatise. For to this 
end it was that I composed it."* 

We can make little progress further than this without consider
ing the interaction between mechanics and optics. The earliest 
detailed discussion of this relation was given by Euler (1750) in a 
paper which he wrote in 1739. At that time there was a contro
versy between the wave and particle theories of light. The question 
was whether light consisted of a beam of small particles or whether 
it consisted of wave motion in some medium which did not have 
other physical properties by which it could be detected. The par
ticular result in which Euler noticed a critical difference between 
the theories was the measurement of aberration by Bradley (1728). 

o 
FIG. 1 

* The italics are mine. I am indebted to Mr. A. Orr for drawing my atten
tion to this important sentence. C. W. K. 
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s 

FIG. 2 

Aberration is the name given to the change in the measured posi
tion of the stars because of the motion of the Earth. Euler first 
considers the problem of the reception of light from a moving 
source. If the source has a speed v9 and c is the speed of light, 
Fig. 1 shows that the beam of light emitted at time t = 0 from 
the source S is received at the observer O at a time at which the 
source will have moved to a new point »S". From the figure it is 
then clear that the angle of aberration a is given by 

S'N vsinci 
tan a = - — = — . (1) ON c — v cos q> 

This result, however, is the one for a moving source and an observer 
at rest, whereas Euler requires the one in which the source is at rest 
and the observer moves. He first derives this by making a trans
formation, i.e. applying to source and observer the same speed—v. 
The source is now reduced to rest and the observer moves; the 
same angle a arises as before. 

Euler then goes on to "investigate the effect which a light ray 
exercises on the eye in motion", in other words, to carry out a 
new and independent investigation of aberration by combining 
the speed of light as a wave motion in the medium with the speed 
of the observer. The corresponding figure here is Fig. 2, in which 
O' is the position to which the observer has moved in the time 
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which elapses between the transmission of the signal from S and 
its reception. The angle a is now given by 

_ O'N _ v sin cj) 

This result differs from the one found earlier by Euler. He there
fore goes on to consider why different results arise here, and he 
observes at once that in the first case the velocity of light has been 
assumed to be the same relative to the observer in each case, 
whereas, in the second, the velocity of light relative to the observer 
is changed by the motion of the observer in the medium. Accord
ingly the medium needs to be included and so if the motion of 
light is a wave motion in a medium the two answers (source moving 
or observer moving) are both right, but in the ballistic theory, in 
which the light is regarded as a stream of particles, no medium is 
needed, and so the first derivation is the only correct one. Euler 
therefore noticed the possibility of an experimental check on the 
question of whether a ballistic or a wave theory of light was cor
rect, and so of a question concerning the relationship between 
mechanics and optics. 

Euler was only the first (though by far the earliest) of a long 
series of investigators of the borderland between mechanics and 
optics. We shall consider here in detail an experiment first per
formed by Fizeau (1859) to test a theory of Fresnel. It is not easy to 
attain high accuracy with this experiment; a better accuracy comes 
with the experiment of Michelson and Morley, discussed below. 

In 1810 Arago studied the refraction of light through a prism 
when the light had come from different stars and was then received 
in a telescope. If the light consists of a wave motion in a medium 
through which the Earth is moving, the amount of refraction in 
the prism ought to depend on the direction in which the telescope 
is pointed, because the light from different directions will have 
different speeds relative to the telescope. In fact no such difference 
is found, and Arago wrote to Fresnel about this. Fresnel replied 
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by drawing heavily on the analogy of acoustics and deducing 
from this analogy the way in which a solid material could be ex
pected to drag along a sound wave. In Fizeau's experiment the 
speed of light is measured when it passes through a long pipe con
taining water. The value of the speed is compared in the two cases 
when the water is at rest, and when it is moving with speed v. If c 
is the speed of light in air as before, the speed when the water is at 
rest is given by c/n where n is the refractive index of water (about 
|-). The formula which Fresnel predicted by analogy with 
acoustics, and which is consistent with the results of Arago's ex
periment, is 

Velocity = | +v^l~y (3) 

showing that the light is dragged on by the water at a slower velo
city than the water has itself. 

The experiment which was the most subtle attempt to detect 
the motion of the Earth with respect to the medium of transmis
sion of light (and so with respect to the preferred inertial frame at 
rest) was that of Michelson (1881) (Extract 1 of the present book), 
which was repeated later with technical improvements by Michel-
son and Morley (1887). The experiment was repeated by a number 
of subsequent workers with complete agreement, until Miller 
(1925) found considerable variations. However, subsequent per
formances of the experiment lead to the fairly firm conclusion that 
Miller's results are due to some unknown experimental error. 
(See the discussion of Miller's results in R. S. Shankland et al. 
(1955).) 

Shorn of experimental difficulties, Michelson's experiment in
volves splitting a beam of light and transmitting the two halves 
along two directions at right angles. These beams are reflected at 
the end of two fixed arms of equal length and return to their start
ing-point. Any change in the difference of times (if any) along the 
two arms will then cause a shift in the interference fringes. That 
K-STR 2 
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the existence of a medium of transmission through which the ap
paratus moves does involve such a difference can be seen by con
sidering the special case in which the velocity of the apparatus is 
along one arm (Fig. 3). Here the dotted lines show the paths of the 
light, and three successive positions of the apparatus are shown. 
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FIG. 3 

For the arm OA, if t±912, ts are times of emission, reflection and 
reception, then 

c(t2-h)= /+</ 2 -* i ) 
c(t3-t2) = l-v(t3-t2) 

so that ts—tx = -—- + 
c — v c + v c K)-

On the other hand, for the arm OB, if t'2 is the instant of reflection, 
c2(tf

2-hf = P + v\t2-h)\ 
2/ 2/ / 1 v2\ 

so h-h = 2(t2-h) ( c 2 _ ^2)1/2 c H5)-
In Michelson's experiment the apparatus is set up and watch 

kept for fringe shifts when it is rotated through 90°. None were 
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observed; and since this might be due to the Earth being statio
nary at that time, the experiment was repeated after 6 months, 
again with a null result. 

Even before the astonishing and paradoxical result of Michel-
son, the wave theory of light (some form of which seemed abso
lutely essential to account for interference and diffraction, to say 
nothing of polarisation) had taken a definitive form, which served 
to pin-point the difficulties very clearly. Riemann had noticed that 
the expression 1/V(£^X which occurs in transforming from one 
system of electrical units to another (n = dielectric constant, 
[i = magnetic permeability), has for vacuum a value near to the 
velocity of light (and has the dimensions of velocity). That this 
was no coincidence was strongly emphasised by the measure
ments by Weber and Kohlrausch (1856) and Maxwell was greatly 
influenced by Riemann's coincidence. Unfortunately, Riemann 
had no theoretical means of establishing a wave theory, and could 
only suggest generalising Laplace's equation 

V2</> = 0 

to V 2 ^ - ^ ^ - = 0, 

a generalisation which satisfactorily gives a velocity to the waves 
and explains the existence of interference, but is quite inadequate 
to discuss polarisation. 

Maxwell's Treatise appeared in 1873, though he had been work
ing on the ideas for much longer (Maxwell, 1873). We sketch a 
modified form of his arguments briefly. We may begin by noting 
that the field is described by four vectors: the electric field E, the 
electric induction D, the magnetic field H and the magnetic induc
tion B. The e.m.f. in a closed circuit is proportional to the rate of 
change of the flux of induction through the circuit: 

E . A = - | - f B.dS, 

2* 
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the negative sign resulting from an application of Lenz's law (Lenz, 
1834). This equation is a sensible one, since the value of the right-
hand side is independent of the particular surface filling the cir
cuit, i.e. 

l B.dS = 0 

for a closed surface (a statement equivalent to saying that there are 
no free magnetic poles). The differential form of these equations is 
then easily seen to be 

curl E = - ~ p , div B = 0. (4) 

It is natural to try to have a corresponding expression for 

H. dr, or equivalently curl H. 

Unfortunately D, by Gauss' theorem in electrostatics, has the 
property 

D.rfS = 4TT Igdt, 

i.e. div D = 4TZQ. (5) 

However, this provides exactly the opportunity needed to include 
also the magnetic effect of currents, since, if we write 

curl H = — + 4?rJ, (6) 

we have 4n I div J + - ^ - | = 0, 

which is simply the conservation equation for currents. Equations 
(4), (5), (6) are Maxwell's equations in their differential form. 

In free space, where there are no currents, the so-called consti
tutive relations 

B = / J H , D = KE 
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give 
curl curl H = x -=- curl E dt 

t curl curl H = 

that 

62H 

= grad div H — v2//, 

6 2 H 2X1 A 

with a similar equation for E9 giving a vector form of the scalar 
wave equation guessed by Riemann. The fact that the equation 
arises automatically from the basic equations is a great triumph for 
Maxwell's theory; moreover, the occurrence of the vectors E, H 
rather than a scalar <j> turns out to be sufficient to account for the 
observed phenomena of polarisation. 

But the clarity of Maxwell's theory highlights two great difficul
ties. Let us first consider plane waves advancing along the x-axis, 
so that E, H are both functions of t—xjc where c = (^«)~1/2. It 
follows that 

1 9E 6E A 9E dE n 
c dt ox oy oz 

with similar equations for H. The equations (4), (6) give 

dt u ' dt u ' 

so that Eu H\ are only constant fields superimposed on the wave-
field, and so may be set equal to zero. The remaining, varying, 
field has therefore only y and z components, i.e. it is transverse to 
the direction of propagation. This was a severe obstacle to the 
builders of mechanical models of the electrical phenomena, for 
these models had been based on a supposed analogy with sound, 
in which the vibrations are longitudinal, not transverse. A medium 



12 SPECIAL RELATIVITY 

to support wholly transverse vibrations has to have elastic proper
ties of a very odd kind—indeed to have almost the opposite pro
perties to any known substance. None the less, more subtle mo
dels were made—Larmor (1900) succeeded in devising a model 
made by an immense number of small gyroscopes (see Extract 
2 of the present book). But Kelvin himself noticed that such 
model making led nowhere—it never gave rise to any physical 
hypothesis (see Hesse (1955)). And so the easiest way to avoid the 
difficulties in it is not to do it. 

The other difficulty is much more serious. It is merely the theo
retical aspect of the experimental result afterwards found by 
Michelson; the equations appear to predict a velocity l/\/(fx>c) for 
the waves independent of the velocity of the coordinate system. 
And this is paradoxical since one expects to have the Newtonian 
law of transformation 

r -+ r' = r—\t 
giving, for velocities, 

V - V = V - v . 

Without going into more details the great difficulty is at once 
apparent. The speed predicted for light according to this theory is 
determined only by the ratio of the units employed, and so is in
dependent both of the source and of the observer. It seems as if 
Maxwell's equations will only apply in a frame of reference which 
is at absolute rest in the sense in which the term is used by Newton. 
Absolute rest will now mean at rest relative to the medium at 
which light is transmitted. But this result, which would have been 
congenial to Newton as determining his absolute space, had ceased 
to be at all consistent with mechanics by the nineteenth century. 
To see why this is so we must return for a minute to the discussion 
given by Galileo above. The emphasis we want to put here is on 
the necessity for the motion of the ship to be uniform. Subject to 
this limitation, the thought experiment shows that no absolute 
space can ever be determined by Newtonian mechanics. All that 
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mechanics can determine would be a collection of reference 
frames moving uniformly relative to each other, and for all of 
which the laws of mechanics would be equally valid. Such reference 
frames are called inertial frames, and everything in mechanics 
serves to confirm the complete equivalence of all inertial frames. 

Although the idea of an inertial frame is not explicit in the usual 
derivation of Maxwell's equations it is implicit, and so the result 
of the electromagnetic theory of light seems to be that one parti
cular inertial frame is marked out as the one in which Maxwell's 
equations apply. Such a situation is an extremely puzzling one 
and the obvious conclusion is that some changes need to be made 
so that Maxwell's equations apply in all inertial frames in the same 
way as Newton's. 



C H A P T E R 2 

Einstein's Contribution 

THE unique contribution of Einstein (1905) (reprinted as Extract 
5 of the present book) in the discussion of the relationship be
tween mechanics and optics was in directing attention to the 
need for a proper operational definition of simultaneity for distant 
events. Instead of dealing with the details of Maxwell's equa
tions at the beginning, he starts from an entirely new physical 
principle, and reaches a position corresponding to the conven
tional standpoint later on. Let us consider, he says, the problem 
of assigning a time to an event distant from the observer. In 
order to determine the position of the event relative to the order 
of events happening at the observer it is necessary to relate the 
distant event in some way to these nearby events, and according 
to Einstein this can only be done by signalling. Different kinds of 
signals can be employed but we have reason to expect that the 
one particular kind of signal, which will be more appropriate 
than the others, is a light signal, since its transmission is governed 
by Maxwell's equations, which predict a velocity for it indepen
dent of the source and of the observer. Until we have given some 
rule for assigning time to distant events the concept has no mean
ing, and so it is necessary to formulate a rule for the time assigned 
to a distant event in terms of the time of transmission of a light 
signal which will just reach the distant event and the time when 
it returns. 

Einstein defines the time to be assigned to the distant event as 
the average of these two times. It is necessary to consider a little 

14 
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further the status of this assumption. Certainly, since the concept 
of time for the distant event has no meaning until we define it, 
Einstein is at liberty to make this definition if he wishes. On the 
other hand, we would expect the time allotted to distant events to 
fulfil certain general conditions, for example, that of being inde
pendent of the zero chosen for time reckoning and of the units, so 
that if the times of emission and reception of the signal are multi
plied by a constant, or if a constant is added, the same will be true 
of the time assigned to the distant event. 

In order to assign such a time we may suppose that an observer 
sends a signal at time f i which is reflected at the event and returns 
to him at time f 3. The convention adopted by Einstein is then that 
the time assigned to this distant event by the observer should be 
\(h+f 3). Now in the first place it is certainly not the case that any 
value could have been assumed for the time, since many of our 
physical theories would not work unless the time assigned was 
somewhere between t± and ^3. On the other hand, the value to be 
assigned is not determined by experiment, since we cannot carry 
out an experiment about the time of distant events until we have 
formulated a consistent way of assigning such a, time. The prob
lem of exactly how much freedom was open to Einstein on this 
point has been considered very fully by Whitrow (1961). Suppose 
that the time assigned by the observer to the distant event is t% — 
= f(h, ti). If the observer chooses to use a different unit for his 
time reckoning (say hours instead of seconds), or if he chooses a 
different zero for the time-reckoning, the same change must result 
with the assigned time, and we can formulate this condition gene
rally in the form 

f(ktz+l9 kh+l) = kf(h, *!)+/. 

In order to find what solutions of this equation are possible we 
may, without loss of generality, make the substitution 
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Then the condition becomes (f>{kx-\-l, ky) = k(j)(x,y) + l, so that, 
in particular, 

<Kx+l,y) = <l)(x,y)+l, 
i.e. 00 ,7 ) = x+y)(y)9 where \p{y) = <\){0,y\ 
and where y(ky) = kip(y), 
so that ip(y) = yip(l). 
Hence cj)(x, y) = x+ey9 where e is constant, 
giving h = f(h, h) = i(r3 + f 1) + ie(f3 - * 1). 

The previous limitation on the time would now require the 
constant e to lie between 1 and — 1. However, a further limitation 
arises if we consider also the assigning of distance to distant events. 
If the observer estimates the distance of the events to be g(ti, *3), 
and if he supposes that distances along a straight line add up in 
the usual way so that 

g(tu t2)+git29 h) = g(tu h\ 
it follows at once that the assigning of distances is done according 
to the function 

g(h, t2) = h(t2)-h(h\ 
where h(i) = -g{t, h). 
As a result we have the equation 

Kh) = UKhHKh)] 
and the important feature of this equation is that the time assigned 
to the distant event is determined symmetrically in terms of the 
times of transmission and reception of the signal. This therefore 
restricts the constant s to a unique value, viz. zero, and we have 
Einstein's convention. In this case h(t) = ct, where c is some 
constant, which can then be identified with the speed of light. 

We can now quickly work out the results of this convention 
(Milne, 1948). We may suppose that the measured time of the 
distant event according to an observer who was coincident with 
the original observer at time t = 0, and who is moving with a 
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uniform speed (see Fig. 4), is t'2. It is clear that the time at which 
the signal reaches the distant event is proportional to the time at 
which it was transmitted, so that we have t'2 = ktv Applying this 
same argument, however, to the returning signal gives ts = kt'v 

FIG. 4 FIG. 5 

As a consequence of these equations it follows that 
h = k2h, 

1 
so that 

1 ,IO _ v x k2—l 

Imagine now two observers moving with different speeds rela
tive to the initial observer (see Fig. 5). 
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From the equations 

it follows that 

tk = kih 

t'z — kiktfi, 

so that the multiplying constants for the two observers combine 
according to a simple law, although a different law from the 
Newtonian combination of velocities. However, using the expres
sion 

/£&) 
it follows at once that the resultant of two velocities will now be 
expressed by the formula 

l + *>Wc2" 

We may apply this to the experiment of Fizeau. According to an 
observer at rest with respect to the fluid, the speed of light is cjn. 
Accordingly for the observer at rest in the laboratory it is 

l + V/nc [n ) \ nc) H \ n*y 

in complete agreement with the observed values. 
From the point of view of later developments of the theory it is 

necessary to rewrite the formulae somewhat, deriving the form in 
agreement with Einstein's. The transformation between the mea
surements of one observer and those of another moving uniformly 
relative to him with speed V can be derived from Fig. 5, and we 
have 

*2 = kh 
h = hti, 
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so that the coordinates (/, x), (t\ x') assigned to the reflection event 
are related by 

/' — x'/c = k(t—x/c) 
, x' _ 1 / x\ 

c k\ c) 

These may be rewritten 

1 /» 1 \ Ti vx~\ n/ vx\ 

x' = - (k + j) [x-*] = P(x-vt), 

where p = ( l - ^ / c 2 ) - 1 ' 2 . 

In these equations the coordinate is drawn in the direction of 
relative motion. If the two observers are moving in some other 
direction the formulae will, of course, be somewhat more compli
cated, and the simplest way of deriving them is to notice that the 
results which we have obtained already leave unchanged the expres
sion t2—x2/c2. Since, however, with three rectangular axes the 
quantities y and z are also unchanged, we can see that the expres
sion c2t2 — x2 —y2 —z2 is left unchanged as well. 

It is useful to modify the notation to take account of this new 
point of view. If the space and time coordinates are considered 
together, by defining 

x° = ct, x1 = x, x2 = y, x3 = z, 
where it is convenient to write the suffixes at the top (and no con
fusion results since we only need to raise quantities to powers very 
occasionally), the quantity kept constant by the transformations 
may be written as 

y«pxaxP, 
where rj^ = 0, if a ^ ft 

tyoo = 1, 
and r)u = rj22 = rjsz = -1. 
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Here we have adopted the summation convention (originated by 
Einstein (1916) in the paper that forms the basis of his theory of 
gravitation and which is reproduced in the companion volume on 
general relativity), that a repeated literal suffix automatically car
ries with it an injunction to sum over appropriate values (here 
0, . . . , 3). This formulation is derived from an idea of Minkowski 
(1908), who, however, preferred a slightly different one in which 
ict, instead of ct, is used as a coordinate, so that the invariant quan
tity looks more like a sum of squares. It is now widely realised 
that Minkowski's formulation introduces more difficulties than it 
solves, and can, indeed, lead the reader into numerous wrong ideas 
about the structure of the transformation group. 

This group of transformations is known as the Lorentz group. 
We can see at once that the group splits up into several parts. 
Firstly there will be transformations of the form / -+■ — /, r -+ r which 
have the effect of reversing the direction of time measurement. 
Such transformations will only be important as special tricks for 
dealing with particular physical problems, not in the case which 
we have been considering of observers moving relative to each other. 
We shall restrict ourselves to the part of the group which does not 
involve these transformations, the so-called isochronous transfor
mations. Amongst these transformations there will then be a sub
set of the form t -*-1, r -+ — r corresponding to a transformation 
from right-handed to left-handed axes. These transformations we 
shall also disregard, so that, as far as the spatial part of the trans
formation is concerned, leaving aside time transformations, we 
shall confine ourselves to the proper orthogonal group. 

We now have to consider the problem of how to make sure that 
the quantities which we deal with as a result of experiment really 
are invariant under the group of transformations in which we are 
interested. The technique employed for this purpose is a some
what ingenious one. Suppose that we have two coordinate systems 
A and B, and that in these systems the results of a set of experi
ments are represented respectively by QA, QB, which are two sets 
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of numbers. Consider the transformation TAB : A-+B which car
ries one coordinate system into the other. This transformation 
produces a corresponding transformation amongst the sets of 
numbers which we may denote by TAB : QA -+■ QB. Suppose, now, 
that there is a third coordinate system C; then it is evidently a 
matter of indifference whether we transform directly from AtoC 
or whether we go intermediately through the system B, so that the 
transformations of the coordinates are related by TAC = TABTBC 

where the product represents the application of the transforma
tions in succession (the left-hand one first). 

In order that the number which we have been calculating shall be 
genuine properties of the physical system, and not merely of the 
coordinates in terms of which the system is described, it is then 
necessary that the corresponding transformations of the numbers 
should satisfy TAC = TABTBC. This is put technically in the form 
that the transformations of the numbers should be a representa
tion of the original transformation group. 

There is a technique for discovering representations of groups 
of coordinate transformations which can be described in general 
terms as follows. One looks for certain quantities which one knows 
on other grounds to be objects independent of the coordinate-
system or geometrical objects, and therefore transformable under 
a representation of the group. One investigates this representation 
and then generalises to any set of objects transforming under it. 
For example, with the coordinate transformation group xa -► xa = 
x\x?) we can consider the set of quantities </xa, which are such 
that 

dxa 

dx« = -^dxP. 
OXP 

Since these quantities represent a unique displacement of the 
point, they are obviously objects transforming under a represen
tation of the original group, so that the linear transformation 
which we have found must be this representation, and any other 
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quantity 

A " dxeA' 

transforming under the same representation, will be called a con-
travariant vector (the fact that this transformation is a represen
tation of the group can be verified independently by noting that 

dxa dx?_ _ 9 f \ 
~d¥' ~dx? ~~ ~dx?) ' 

The array of differential coefficients will in our case actually be an 
array of constants. Similarly the array of quantities arising in the 
expression for the gradient of an invariant, dcfr/dx* transform 
under 

d(t> _ dx? 90 

and are taken as the prototype of a covariant vector, 

By the same argument, they evidently transform under a represen
tation of the group, as do the array A*Bp = Cp known as a tensor 
of rank 2. In the same way it is obvious that higher-order tensor 
representations can be defined. It will be seen in Chapter 4, how
ever, that these are not all the representations. 

We defer until the next chapter the reformulation of mechanics 
to be consistent with transformations of the Lorentz group, which 
is dealt with in Einstein's paper (Extract 5 of the present book), as 
indeed it is in those of Lorentz and Poincare (Extracts 3 and 4). 
Indeed at this point the reader who wishes to make only a preli
minary study of the subject, as explained in the Introduction, may 
pass on to Chapter 3, taking for granted any results that depend 
on the theory in the ensuing paragraphs. In a complete treatment 
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there is, however, one technique which occurs in a major way in 
Poincare's paper, and also plays a part in Extract 2, and that is, 
the use of a variational principle. Both PoincarS and Lorentz based 
part of their arguments on a variational principle, and because 
of the importance of these arguments, and the use which is made 
of such principles later in the theory, it is necessary here to say 
something about them. 

Consider first the motion of a particle in one dimension in a 
potential field and let us limit ourselves, to begin with, to the non-
relativistic case, so that the equation of motion is 

dV mx =-■=— • ox 

As is well known, there is a first integral of this, the energy inte
gral, 

\mx*+V = E, 
or T+V = E. 

This result suffices to tell us everything about the motion. If, how
ever, the motion had been one with two or more degrees of freedom 
we would have had here only one first integral, and we would have 
had the problem of finding other results in order to determine the 
motion completely. Historically the approach to this problem has 
been strongly motivated by the experiments of physicists in a re
lated subject, optics. Consider for a moment the phenomena of re
flection and refraction of light. The law of reflection, that the angle 
of incidence equals the angle of reflection, could be described in 
slightly different terms as follows. The path of the actual ray of 
light from the object to the eye can be derived by joining the eye 
by a straight line to the mirror image of the object and then join
ing the intersection of this ray and the mirror to the actual object. 
Since a straight line is the shortest distance between two points this 
may also be expressed by saying that the light travels from the ob
ject to the eye by way of the mirror by the shortest path. 
K-STR 3 
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The problem of refraction is a little more complicated. Evidently 
here the path cannot be the shortest, since we have to derive not 
the equality between the angles, but SnelPs law (Descartes, 1637). 
However, human ingenuity is usually able to discover some quan
tity which is least and Fermat (1657) discovered the appropriate 
quantity which was a minimum in this case, that is, the time. If the 
medium into which refraction takes place has a refractive index 

FIG. 6 

n the speed of light in this medium is known to be cjn so that the 
expression for the time, which has to be a minimum value (Fig. 6), 

V(a2 + :c2) [ V[fc2 + (/-*)2] 
c cjn 

gives at once sin a — n sin /3 = 0. 
This observation is the basis of Fermat's principle of least time 

\ n ds — minimum 

and since the speed of light is unchanged by reflection at a mirror, 
it applies also in that case. 
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The optical problem suggested the corresponding dynamical 
problem, which can be put in the form: to find a function/ = 
f(x, x) which is such that the condition 

/ ( x , x) dt = minimum 

is equivalent to the equation of motion. Now although the func
tion/might be any function, it is natural to look first for functions 
which depend on invariants of the motion, and the only two in
variants known so far in this simple case are the kinetic and the 
potential energies. This suggests that it ought to be possible to 
find a principle of the form 

g(T, V) dt = minimum 

which will be equivalent to the equations of motion. In order to 
find minimum values of this sort in which the quantity to be mi
nimised depends on a curve, the path of the particle, the technique 
employed is very like that employed in finding the minimum value 
of an ordinary function; that is, one alters the argument a little 
and sets down the condition that the value of the function for the 
altered argument only differs from the original value by second-
order terms. In this case the argument of the function is not a 
number but the particular motion from a given starting-point to a 
given end point. The change in the value of the quantity when this 
motion is slightly changed will have the form 

We can, however, simplify this form by noticing that 

«. dx' dx d , d ox = —. — = —{x —x) = -i- ox, dt dt dty ' dt 
3* 
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so that an integration by parts becomes possible and leads to 

•-j****-j[l-i(Dh*+[H 
Let us then consider variations of the motion which leave the 

end points fixed. The second term on the right-hand side then 
vanishes at both limits, and the first term must therefore vanish. 
This must be true for arbitrary small values of the displacement, 
and this is only possible if the quantity in brackets vanishes at all 
points, that is 

Qfm d (df\ 
dx dt \dx) 

This condition for a minimum is to be equivalent to the original 
equation of motion. Using now the particular form of the function 
in terms of the kinetic and potential energies, the condition be
comes 

dg dV d t dg {4m*) dVdx dt1*™ ' °9 

and it is at once obvious that this agrees with the original equa
tion of motion so long as 

dg dg 
—- = ——- = constant. 
8T dV 

Without loss of generality we can take 

g = L = T-V. 
In exactly the same way when there is a number of degrees of 
freedom the two invariants will, in general, have the forms 

T=\a^cf, V=f(q*) 

with an appropriate summation over a and /? and an exactly sim
ilar argument will finish with the set of Euler-Lagrange equations 



EINSTEIN'S CONTRIBUTION 27 

(Lagrange, 1788) 

dq« dt \dqaJ 

A further generalisation of this theory is also of the greatest 
importance in what follows, that is the application to afield. By 
a field is meant an association of a set of quantities, the field 
components QA, say, with every point of space, that is 

QA = QA(x«y 

The generalisation here has the following form, that instead of 
the generalised coordinates of the mechanical system, we now 
have the field components, and what is much more important, 
instead of the single independent variable, the time in mechanics, 
we now have the four independent variables xa. The correspond
ing variational principle therefore takes the form 

d [hdxxdx*dy?dx* = 5 [hd*x = 0, 

and an argument exactly like the one in mechanics leads to the 
variational equations 

T - eL d I dL \ - o InA - dQA\ 
^ " 6QA 8x« \dQA

t J " ' \~ -"" dx" ) \ 

As an example we could consider the case of a single scalar field 
and a Lagrangian 

L = xQ*+PQ»Qtfl, Q1 = rTQr 

The variational condition then leads to the familiar equations 

*Q-($nQ = 0, 
where 

Probably the most important consequence for us of the exist
ence of variational principles of this kind is the theorem of 
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Noether (1918) about in variance under continuous groups of trans
formations. Consider first the mechanical system in which, by the 
same argument as before, we have the equation 

8 ( Ldt = [ dq^dt+lpvdq*] 

for an arbitrary variation in the generalised coordinates, not 
necessarily keeping the end points fixed. Here we employ the 
shorthand form 

^~ 8q« dt\dq«)-" 

for the equations of motion. We now wish to distinguish between 
displacements of the kind which we have been considering before, 
which leave the time unchanged, and general displacements where 
the time is changed at the same time as the other coordinates. We 
shall use the notation 8q* for a displacement in which the time 
is unchanged, so that the result of the variation should more pro
perly be written as d \ L dt. In a general displacement the change 
in the coordinates will be given by 

8q« = 8q« + q«8t, 
and we shall also have 

8 (Ldt = 8 f Ldt+[L8t] 

where the quantity in square brackets comes about like this: 

8 f Ldt = 8 f Ldt+A, 

where A is the result of varying t only. If t -* f+A, 

J ^h+h ftt 

L(t+ti)d(t+h)- L(t)dt 



EINSTEIN'S CONTRIBUTION 2 9 

can be reduced, by a change of variable in the first integral, 
r = t+h, to 

J »h+h fh 

L(x)dx- L(i)dt, 
and for small h this gives, to the first order, 

A = h(tdUti)-h{to)Ut0) = L(t) dtX 
h0 

Putting these results together, and expressing some of the time-
invariant variations in terms of general variations gives the result 

8 f Ldt = f Sq'L* dt+ [pa bq«-p4* bi\ + [L 8t] 

= I 8q*Ladt+[padq«-Hdt]9 

where 
H = p«q«-L. 

The quantity H, when expressed in terms of the position co
ordinates <f and the momenta /?a {defined as dL/dqa) only (an 
expression which is always possible in classical mechanics in 
which L has a part, T, which is a positive definite quadratic func
tion of the #a, allowing the qa to be eliminated), is called the 
Hamiltoman. It serves a useful purpose in a different formulation 
of the equations of motion, since for a small variation 

and using the definition of the momenta pa gives 

6H = qf18p*—p* &7a, 

by using the equations of motion in the form 
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Hence, since H is a function of /?a, q* only, 

dHL=dq^ dH __ dp 
dpa ~~ dt ' dq« - <ft 

the Hamiltonian form of the equations of motion. 
The consequences of this theory are most clearly seen when the 

function L has, as a symmetry (see below), some continuous group 
of transformations 

q*^q« = f«(q*9 a% 
where the d are the parameters of the group. Since the trans
formations form a group there is an identity transformation and 
there is no loss of generality in assuming it to correspond to 
a1 — 0. For small values of a\ then, since the group is a con
tinuous one, 

q* = ?*+ alf?i+ . . . 
or dq* = {" (say). 
Similarly it = rj (say), 
and so 8q* = ^—rjq*. 

To say that L has the group as a symmetry means, not that 

U&* q) = Uq, q) 
(which is evidently always true for any L which is an invariant, 
as it must be for the integral to have a meaning), but that 

L(q, q) = L(q, q). 
When a transformation is a symmetry, it is obvious that the in
finitesimal variations dq* generated by it must make 

d fLdt = 0 

identically, irrespective of the equations of motion. In that case 

f (l«-irf")L* dt+[pJP-vH] = 0. 
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Suppose now that the equations of motion La = 0 are satisfied, 
so that also 

[p£«-r)H] = 0. 

The quantity in brackets is then the same at the beginning and 
end of the motion, and these were at arbitrary times, so it is 
conserved. 

For example, consider the case where the Lagrangian does not 
contain the time explicitly so that it is invariant under the group 
of transformations t -*■ t+r] where r\ is constant. Inserting the 
values of the displacements we then have 

l-Hrj] = 0, 

that is to say H = constant, showing that the consequence of the 
time invariance is the conservation of the Hamiltonian, which is 
classically the energy. (The reader may verify that, if L = T—V 
as above, then H = T+V.) 

In the same way, if we have a Lagrange function expressed by 
cartesian coordinates in which one coordinate, say x, is not in
volved, the continuous group x -* x+X is a symmetry where X is 
constant, so that in the notation of the theorem 

!* = (1 ,0 ,0;0) , 77 = 0, 

Inserting these values gives us 

[Pi] = 0 

so that the absence of the jc-coordinate leads to conservation of 
linear momentum in the x-directioh. In the same way rotational 
invariance, for example invariance under the group whose infini
tesimal members are 

x' = x cos d+y sin 6 c* x+yd 
y' = —x sin d+y sin 0 ^ y—xd, 

leads to 
dx = yd by — —xd. 
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This then gives, on substitution, 

[6(yp1-xp2)] = 0, 

that is, conservation of the z-component of angular momentum. 
An exactly similar theory holds in the case of a field, where we 

have the corresponding variational formula 

d f Ld*x= [ lQALA rf4x+ f [PS dQA -HZdxv] d3S^ 

where 
dL 

P^A = A dQA
t/J 

and 
W = P»AQA,V-%L. 

The particular case of great interest for the field is that in which 
the whole theory is Lorentz invariant. The Lagrangian then will 
be invariant under the group of transformations 

x« -* x«' = /£'xa 

of which the infinitesimal transformations have the form 

x«' ^x« = (<3£' + eJ>a-

The Lorentz group is such that 

ri^x^'xP' = tnafixftxp
9 

so that 

i.e. 
e/9<x~f~ea/3 = 0 

where 
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Further progress in considering the theorem in this case can how
ever only be made when we have decided on the kind of field 
which we are considering because we need to know under what 
representation of this group the field quantities transform. We 
shall find it convenient to defer this until the more detailed con
sideration of representations in Chapter 4. The present discussion, 
however, will serve the reader in considering the second section of 
Poincares' paper in which he sets up a variational principle (follow
ing Lorentz) in order to use it to establish the Lorentz invariance 
of his theory in Section 3. 



CHAPTER 3 

Elementary Consequences of the Lorentz 
Transformation 

THE development of special relativity falls into three parts; the 
first two chapters of the present book have dealt with the first 
of these—the accumulation of problems, mostly about optics, by 
the end of the nineteenth century and their resolution by the joint 
labours of Lorentz, Poincare and, particularly, Einstein. The se
cond part consists of the further application of the theory in all 
the other fields in which its utility became apparent, and the con
sequent possibility of further and repeated experimental checks, 
all of which it has, so far, weathered successfully. The third part 
is formed by the considerable extension and further development 
of the theoretical foundation which was needed to apply it to 
quantum mechanics, and this will be dealt with in Chapter 4. 

One striking result is the removal of a paradox associated with 
Bradley's (1728) expression for aberration. This phenomenon, 
Euler's consideration of which is described in Chapter 1, is the 
apparent deviation of the angle at which the stars are seen, about 
a mean value, as a result of the orbital velocity of the earth round 
the sun. To describe this, consider a source of light S at rest in 
a coordinate-system O' (Fig. 7); if the light is monochromatic it 
may be written approximately as a plane wave proportional to 

*[>+*«**+****] 

Referred to a coordinate-system O, however, the wave is proportio-
. r *cos0+ysin01 

nal to e L c . The exponent must be unchanged under 
34 
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^L -A. 
0' 

FIG. 7 

the transformation, and so, using 

x' = P(x-vt), t' = p(t-vx/c2), 
we get 

fa' 2 (x-vt) cos 0'+y/(l sin 0' ] 
c J t-.vx/<*+vL-J?i~ 

= oo\t + 
xcos 6-\-y sin 0 

Equating coefficients of f, JC, >> gives 

V COS 0' 

so that 

and 

M l 1' = CO, 

/?co'[cos O' — v/c] = co cos 0, 
co' sin d' — co sin 0, 

cos 0 = 

sin 0 

cos d' — v/c 
l—v cos 0'/c 

s in0 ' 
fll-vcosfl'/c] ' 

The correctness of these formulae may be seen from the fact 
that for a source S receding directly from O, with 0' = 0, it follows 
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that 6 = 0 and then 

»=/to'(i-wc)-»'i/r(4^). 
Firstly, this result is approximately 

co = co'(l — i?/c), 

the classical expression for the Doppler shift. Secondly, it agrees 
exactly with that found in Chapter 2 by means of the ^-factor. 

The angle of aberration, e, is defined as 6 — 0\ so that the first 
formula gives, since e is small (about 41"), 

cosO' — v/c n, . n. cos (d +e) = T^T- = cos 0 -s sin 0 , 1—vcosd/c 
so that 

vsinO'/c . e = '-r-j- = ^ s i n 0 c. l — v cos 6 /c 

The classical expression of Bradley is v sin 6/c, as is to be ex
pected. However, this expression gave rise to a paradoxical situa
tion since an alternative derivation of it can be given in which 
attention is directed towards the passage of light through the 
telescope, which is in motion relative to the star. The motion of 
the telescope gives rise to the same formula, in an obvious man
ner; but this new derivation suggests that, if the telescope were 
filled with water, with velocity of light c/n9 the angle of aberration 
should be increased by a factor n. This is not observed; so that 
the calculation above must be the correct one. It is instructive 
for the reader to use the Lorentz transformation to reproduce 
this argument in the coordinate system O', so as to see why the 
alternative argument is incorrect. 

It is now time to return to the effect of Fresnel described in 
Chapter 1, of which a preliminary explanation was given in 
Chapter 2. The theory given there deals with light of one particu
lar frequency. It is very interesting to look into the question of 
dispersion, that is, the different behaviour of light of different 
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wavelengths. This was considered very carefully by Zeeman (1914) 
who repeated Fizeau's experiment with light of different colours 
(Extract 7 of the present book). His conclusion is that the for
mula given by Lorentz in 1895 (equation (3) of Zeeman's paper) 
is the correct one. This formula can be derived from the principles 
of special relativity in the following way: 

The starting-point is the realisation that the speed of light in 
a medium which is at rest in a frame of reference O' is 

c' = cjn((X)') 

where n(co') is the refractive index expressed as a function of the 
frequency, co\ in the rest-frame. 

FIG. 8 

In the experiment in which water flows through a pipe (Fig. 8) 
the light enters a medium which is at rest relative to 0, is then 
carried along, and leaves similarly. Accordingly the boundary 
condition is that co is unchanged. Considering, however, an inci
dent plane wave e

iwit~x,c) which becomes e
ia)V'-x',c) by transfor

mation, it follows that it becomes e
i0>(t~nxIc) after entry into the 

water, the edge of which is stationary. Transforming to the axes 
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moving with the water 

o>(t-^f\ = co'(t'-x'/c') (say) 

, / vx x-vt\ 

= ^ ( < - d T - — ) 

= {Sa>'(t-n^y+vlc') 

so long as we choose c' so that 
n IA v \ v 1 — ( 1 + — I = - 2 + — > C \ C ) C2 C 

1 n{ nv I 1 \~| 
i.e. -- ^ — 1 + — 1 o- • 

c c[ c \ n J \ 
Thus, to the first order in v/c9 

, co ncov 
1+nv/c c 

and so 
1 1 ncov d 1 1 cov dn 

ri n c dco n n nc dco 

However, the measured velocity will be, as before, 
c/n' + v c ( /1 1 \ 
l+v/ric ri \ ri2 J 
c / 1 cov dn\ 

Since col = 2nc, we can replace the last term by — (X/n) (dn/dk\ 
which gives the Lorentz formula quoted by Zeeman. 

Of course, if the moving medium is a solid (e.g. a block of 
glass) the formula is a different one since the boundary condition 
is now that co' is unchanged in entering and leaving, although co is 
the measured frequency. Using the formula 

co' c- co(l— v/c\ 
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so that 
1 1 cov d 1 _ 1 cov dn 

n(co') ~~ n c dco n n cri1 do ' 

it then follows that 
c / , 1 co dn\ 

u ^ — + v\\ «- + —«- "T-

TZ \ nz nz dco) 
_ c / 1 A din \ 

The difference between these formulae has been emphasised by 
Landsberg (1961). 

Coming now to investigations needing a detailed knowledge of 
the transformation of Maxwell's equations, we select for special 
consideration that of Wilson and Wilson (Extract 6 of the present 
book). Before 1905 electromagnetic theory had found great diffi
culty in dealing with moving materials, and this difficulty is par
ticularly apparent when a magnetic dielectric (in the Wilson-
Wilson experiment, sealing-wax with embedded steel balls) is un
der consideration. Consider, for simplicity, an infinite parallel-
plate condenser with a magnetic dielectric which is moving as 
indicated (Fig. 9) in a magnetic field, the plates being short-
circuited by brushes and a wire containing a ballistic galvano
meter which are at rest relative to the magnetic field. 

\z 

y ^ ^ ^ ^ 

F I G . 9 

K-STR4 
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Since curl E = — \i —— = 0, 

it follows that <b E.dr = 0 round any closed circuit. For the wire 

E = 0, so that, in the dielectric Es = 0. The constitutive relations 
are 

D' = K E \ B' = f*H'. 

Now use the formulae for transformation given in Einstein's paper 
(Extract 5): 

E[ = Ei, Bi = Bi, 

E^P{E3+^, Bi = fi{Bt-^-), 
together with the analogous results 

H[ = Hl9 D[ = Du 

vD3\ „ , n/^ vH, 

Here i / i = Hz = Es = 0, so that 

pD2 = -pxvBz/c, 
vH2\ a I vB2 t«+*H"(*)' 

vD3 (3B2 = pJH2+^\, 
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Our interest is in D3, since the field D terminates at the brushes, 
and the relevant equations, eliminating B2, give 

C \ C ) C 

V K{l—\ 
i.e. Z/3 = ; o—r~9~ " 2 • 

Reversal of the direction of H will therefore reverse Ds causing 
a flow of charge through the ballistic galvanometer. In the actual 
experiment, described in Extract 6, a rotating cylinder was used 
as the condenser, but the principle is the same. 

The problem of rendering mechanics consistent with the trans
formations which have been found above and so of settling the 
problem of inertial frames falls into two parts. The first part, 
with which alone we shall be concerned in the present book, con
sists of reformulating Newton's laws of motion to be consistent 
with these transformations. The second part then consists of in
corporating in these laws of motion the particular field of force 
observed in the gravitational field. This latter problem occupied 
Einstein for 10 years, and led him to the general theory of rela
tivity, which is described in the companion volume. 

The transformation which has been found between inertial 
frames has the form 

x' = ${x-vt\ y' = y, 
f = p(t-vx/c2), z' = z. 

As a result, the velocity of a particle in the x-direction transforms 
under 

dx' u — v 
df 1-uv/c2 

(although the components of velocity in the y and z directions 
will transform in a different way). This result is, of course, con
sistent with the formula above accounting for the Fresnel ex-
4* 
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periment. In mechanics, however, we are concerned not with velo
cities but with accelerations, and when we carry out another diffe
rentiation we find 

du' dt 
~dir ~~ ~dF 

dujdt 1 (u—v) v(du/dt) 
1 — uv/c2 c2 (1 — uv/c2)2 

a result which can be further simplified by noticing that 

dt 1 
dt' P(l-uv/c2) ' 

One consequence of these equations is at once apparent; that 
is, that the condition 

—y- = constant dt 

in one coordinate system does not lead to, and indeed is incon
sistent with, 

du' 
—rj — constant. 

It is clear then that the physical quantity acceleration, which in 
Newtonian mechanics is defined as 

d2x __ du 
~df ~~~dt9 

is more appropriately defined differently in special relativity, al
though the two definitions ought to agree when the velocities which 
enter are small. Since they are to agree approximately for small 
velocities, the appropriate definition is fairly obvious. We should 
make the agreement perfect when the velocity falls to zero. 

The acceleration should, then, be derived from the Newtonian 
measure of the acceleration in that particular coordinate system 
in which the particle is instantaneously at rest (say, at the begin-
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ning of the moment in which the differentiation is carried out). 
In other words, we should define for the acceleration in any co
ordinate system the value given by the above formula when u = v. 
Making this substitution we get 

du' _ dt l — v2/c2 du _ 1 1 du 
W = W (l-uv/c2f ~di ~~W (l-uv/c2f ~di* 

so that when u = v, 
du' _ du 
W ~ P dt' 

At first sight such a definition seems quite in conflict with 
Newton's laws of motion, but this turns out not to be the case, 
for the following reason. Firstly, we have from the definition, 

1 w2 

and differentiating this gives us 

2 dp 2u du _ 
~~j3*~df + ~c2~ ~di~ 

As a result it follows that 

± m = B—+P—^. = S t ilt W } P dt + P c2 dt P dt' 

Since the final result here is exactly the quantity to be defined as 
the acceleration we can, by inserting the mass, rewrite Newton's 
second law in the form 

which certainly agrees with the Newtonian form when the velocities 
are small, and has the advantage of being true in any coordinate 
system. Moreover, this law is such that a constant force in one co
ordinate system corresponds to a constant force in another. In the 
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above derivation the term mass has not been clearly defined. 
When we included the mass in the equation in order to derive 
Newton's law, the number in question was intended to represent 
what is called in elementary work the "quantity of matter in the 
body," that is a constant number to be attached to the particle. If, 
however, we use Newton's law as modified here to define and 
measure masses, say by collision experiments (see the paper by 
Einstein, Extract 5, section 10), the measured mass will not be the 
quantity m but the coefficient of v in the expression for the mo
mentum; thus the measured mass will be 

P m 

m — pm = (l-v2/c2)112 

and so will be found to increase with the velocity. An increase of 
mass with velocity had already been found experimentally for 
electrons before the advent of relativity (Kaufmann, 1902). 

Let us now try to understand a little more fully what this in
crease in mass with velocity represents. Imagine first that the 
speeds are sufficiently small for powers of the velocity above the 
second to be neglected. The formula for the measured mass then 
takes the form 

m' ^ m-\-\mv2lc2 

so that to the rest mass is added the Newtonian kinetic energy. 
This suggests firstly that the correct formulation of kinetic energy 
in relativity is not the Newtonian form but the different formula: 

Kinetic energy T = (m' — m)c2 — mc1 1 1 
V(l-v2/c2) 

If this is so, it also suggests that the term which is subtracted here 
must represent some residual, present even when the velocity is 
zero, that is, when we study the particle from the point of view of 
its rest-frame. This has been called the rest energy of the particle E 
and we have the result E = mc2 relating energy and mass. 
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At this point the reader making a preliminary study of the sub
ject may pass to Chapter 4. The remainder of this chapter relies on 
the arguments used at the end of Chapter 2. The investigation 
which has just been given is suitable for the dynamics of a single 
particle. In classical mechanics, however, more general systems 
than a single particle are considered. Moreover, in quantum me
chanics (which will be dealt with more fully in Chapter 4) entities 
arise which exhibit particle-like qualities, but other qualities as well. 
The single method appropriate to both of these generalisations is 
to express the equations of mechanics in terms of a variational 
principle, as in Chapter 2. 

We hold fast, then, to the variational principle 

d f L dt = 0, 

although the function L may have to be defined in a much more 
complicated manner than hitherto, and various other alterations 
may have to be made. In the original form the variations are those 
keeping the end-points fixed and the time unvaried, as was found 
in Chapter 2, but this fails to meet one obvious desideratum— 
even if L is so chosen that the resulting equations are Lorentz-
invariant (which is possible), this invariance is concealed by the 
fact that t enters in a completely different manner from the space-
coordinates. 

Consider, for example, the Lagrangian 

L = [/wo+0(r)/ca](l-vV^)1/2. 

The Euler-Lagrangian equations are 

1 d |"(mo+0/c2)v] 

or -=- \fi(m0 + 0/c2)v] = - -^ v<£, 
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and this is the correct relativistic equation of motion for a particle 
under a potential field 0. The mass is now 

/?(mo+0/c2) ~ m 0 +( im 0 ^ 2 + (/>)/c2, 

giving, approximately, a contribution to the rest mass not only 
from the kinetic energy but from the potential energy as well. 

Even more is this the case in the Hamiltonian (or canonical) 
formulation now to be described. According to the fundamental 
variational formula of Chapter 2, when the time is varied as well 
as the other coordinates, 

d f Ldt = [pa bq«-H dt]+ f LjkpdU 

where H = paq* —L. The quantity H, called the Hamiltonian, is a 
useful quantity in terms of which to express the variational prin
ciple. It will turn out later, however, that in the generalisations we 
shall make the dual roles played by the Hamiltonian (the conserved 
quantity in Noether's theorem and the function from which, 
as we are about to show again, may be derived first-order equa
tions of motion) must be separated. Since 

L = P*q«~H 

the equations of motion are, in fact, given by 

S ( (paq«-H)dt = 0, 

or 5 \ (padq«-H dt) = 0. 

Performing the variation again using this form, and remembering 
that dbt = Sdt = 0, we have, after an integration by parts, 

I (8pa dq° - $q« dpa- Mdt) = 0, 



CONSEQUENCES OF THE LORENTZ TRANSFORMATION 47 

SO 

F dt * dt 

It follows that, if H is treated as a function of pa and #a, 

8H . 8H 

the Hamiltonian form of the equations of motion, as derived in 
Chapter 2 (Hamilton, 1835). 

It is useful to look at these equations as relating the coordinates 
of a point of a 2«-dimensional space, by defining 

so that 
^ 1 = fri*?* 

where 0aM+a = 1 0w+aa = - 1 
and 6AB = 0 otherwise. 

In considering the transformation of such equations to a new sys
tem of Jf-coordinates, the tensor rule gives 

dXA' QA,B, dH 
dt dXB' 

where 6A'B' is the transform of dAB, 

dXA' dXB' n QA>B> 

exA exB 

But this new equation will only again be the Hamiltonian equa
tions of motion if dAB is unchanged; if, then, dA'B' is understood to 
be defined as +1 or 0 like 6AB, the transformation equation for dAB 

becomes a differential equation for the transformation. Such dif-
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ferential equations are abbreviated in the usual treatment by de
fining the Poisson bracket of two function 0, y> by 

W>,W O dxA dxB-

The differential equation is then (XA\ XB') = 6A'B\ Moreover, the 
equation of motion of the system is able to be written 

dXA 

-3P = ( *■ , * ) . 
In fact Dirac was able to show that all the important formulae of 
the Hamiltonian theory could be expressed in terms of Poisson 
brackets. 

The moral of all this is clear, however; instead of t some other 
parameter should be used to fix the points of the curve, leaving t 
free to be treated like the other coordinates. (Such a technique is 
not specifically special relativistic; indeed, as we said, it is not 
essential, but only a great convenience here. On the other hand, 
for the Newtonian mechanics of a system in which the Lagrangian 
contains the time explicitly—as, for instance, a simple pendulum 
whose length is constrained to vary in some way—the technique is 
again of great convenience.) Denoting the parameter by w, we write 

Ldt =fdu 

where/is now a function of all the coordinates and velocities (so 
of t and dt/du in general). Now since, denoting differentiation with 
respect to u by an accent, it is obvious that, writing 

qa " du ' 
dqa 

du 

L = L(q\ q") = dqa
9 4J-j (a, b = 0, . . . , n, q° 

is a function of the ratios of the new velocities only, i.e. it is ho-
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mogeneous of degree zero in these new velocities, and s o / = Lq° 
is homogeneous of degree one in these velocities. A general varia
tion gives 

8\fdu=\{w8qa+wd"a)du 

J \dqa du dq°) q [dqa q \ 

But d \ fdu = 6 \ L dt, so equating terms gives us 

/>« 
S/ H = - V 

dq* ' dq° ' 

* ~dq* duXd^}' dq° du\dq°) 

The apparently new equation of motion is, in fact, 

0 dt du >■■> 

= t 

d ,r . J ,/8L dH\ 
dt dt 
SL d 

which is an identity that could have been deduced from the others. 
The corresponding canonical formalism is now a rather more 

complicated matter. Let us begin by carrying through a few stages 
in what one would imagine to be the obvious generalisation, so as 
to point out the difficulties into which it runs. We can then carry 
out the necessary modifications at the end of this chapter. Since/ 
is homogeneous of degree one in the qa, it is clear that the 
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are homogeneous of degree zero in the qa, i.e. depend only on 
their ratios, and these n ratios can therefore be eliminated, giving, 
say, 

Q(q»,pa) = 0. 

Further, by Euler's theorem in homogeneous functions, 

™a = qaw=f 

> fdu = b h 

so that the variational principle can be rewritten 

pa dqa = 0, 

which, after integration by parts, gives 

(bpadq°-dpabqa) = 0 / ■ 

for arbitrary variations, subject only to 

Q(qa,pa) = 0. 

[Note that this formula is like that derived above in the form 

/ 
(5/1. dq« - 5q« dpa - M di) = 0 

since H = —p0 and / = 0. Now, however, a general variation is 
permitted, and so the relation Q = 0 has to be added.] The equa
tions of motion are therefore given by 

bpadqa—dpabqa = 0 

for any variations dpa, bqa such that 

wdqa+wa
dPa = 0> 
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i.e. by 

Clearly 0 must have the form dw, where w is some new parameter, 
so the canonical equations now take the form 

dqa _ dQ^ dp^ _ dQ 
dw ~~ dpa ' dw ~ dqa ' 

A very singular complication now arises: the quantity which, in 
these relations, replaces Hm Hamilton's equations of motion, is, 
in fact, zero (for the way Q enters is by means of the equation 
Q{q, p) = 0). For example, one form for Q is 

Q =p0+H(q«,pa) = 0, 

but this form picks out the time-coordinate and deals with it diffe
rently from the others. When this form is chosen for Q the para
meter w is t. The reason for this complication, which precludes Q 
being identified with any kind of energy, is essentially the follow
ing: if the generalised momenta are defined by 

- J£_ Pa " dq* ' 
they are homogeneous of degree zero in the qa and therefore (by 
Euler's theorem) 

* dq" 
i.e. 

62/ 
dq" dq' <7° 55T555 = °-

It follows that the determinant 

' = 0, dq" dqb 
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and this equation implies that we cannot solve for the qa in terms 
of the/?6. (Of course, since only their ratios are involved!) The 
dynamical theory is therefore of the kind called singular. 

Two possibilities now arise: one is to learn to work with the 
above formalism, admitting that the corresponding classical case 
is only going to serve as a very rough guide indeed. The other, 
which has been preferred both in general relativity, which, as we 
shall see in the companion volume, is a field theory which is sin
gular in the same way, and in relativistic quantum mechanics, is 
to take the view that this singularity of the theory is an indication 
that pa, qa are not, after all, a suitable set of variables in terms of 
which to construct the canonical theory, and to replace the pa by 
some new variables, na say, which are more suitable (see Rund, 
1966). It is necessary to explain this at some length, so that the 
application to quantum mechanics can be made clear in the next 
chapter. The new approach starts from the remark that, for an or
dinary dynamical system in which 

the matrix 
82L 

dq« dqP 0 a j 9 , 

so that a singular theory cannot arise in Newtonian mechanics, 
and, when it does arise, it is associated with an unusual form of 
kinetic energy. Now, in general, when, for any function/of vari
ables the determinant 

a2/ 
dqa dqb = 0, 

it will not be the case that 

92/2 

dqa dqb 
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as well. (For example, in the simplest case, in which there is one 
variable only, so that 

d2f 
j ^ = 0, implying f=aq+b, 

where a, b are functions of q only, we have 

a2/2 e / df 
dq . - * ( * $ - • 

which cannot be zero if/involves q at all.) Let us make the assump
tion, then,that 

02/2 

dqa dqb 5*0. 

and let us proceed to set up a canonical theory in terms of the 
variable qa and 

d_ 
8qa -=4(» 

(where the factor y has been inserted for convenience). We may 
notice that, since na — fpa, the na are homogeneous of degree one 
in the qa. Moreover, s ince/ = paqa, it follows that 

7taq°=p. 

On the other hand, from our assumption, we can solve for the 
qa in terms of the na, and in fact the qa are also homogeneous of 
degree one in the:zta; for we have the obvious identity 

dqa dnb ^ 
dnb dqc c' 

so that 1 ^ ^ = ^ 
dnb dqcdqb c 
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and therefore 
dq° d\ip) 

q« = da
cqc = qc 

dnb dqcdqb 

_3g'i d /^g(-i-/2)\ *CW2)\\ 
e^je^ [q dq° ) b dq< ) ] 

_ 9^_^ /J_ \ dq^ 
~ dnb dqb \2J ) b dnb' 

which shows qa to be homogeneous, of degree one, in the nb. 
We now need a function 76 — 76(qa, na) which will serve as 

a generator of the canonical equations of motion. The unexpected 
result of this investigation is that the same quantity, -|-/2, that 
generates momentum variables also serves for this purpose. 

An analogy with the non-relativistic case is what suggests this; 
for there the Hamiltonian 

H = p<4f-L9 

and so here it is natural to try 

76=naq«-\p. 

Since, however, naqa = / 2 , this suggests trying 76 = y / 2 . 
More precisely, we let 

76{q^7ta) = \[f{q^q-)f 

when we have substituted for the qa. Let us first verify that this 
does indeed give the canonical equations. We have, firstly, that 

d76 
dlta ^ ( T * * ) = 7 (*+*!£)■ 

On the other hand, 
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Comparing these results allows us to deduce that 

d76 _ dqa 

dna du 
Consider next 

d*a d df n .fdpa 4f df 
-*r = ~du{fPa) = ^Pa+f^r = -^Pa+fw 

using the equations of motion. A little care is now needed; at first 
sight it appears that, since ^5 = y / 2 the second term in this equa
tion would be d76ldqa. But d/dqa(\f2) refers to a differentiation 
keeping qa constant, whilst d76jdqa refers to one keeping^ con
stant. We can establish the connection between these as follows: 

?*. = fJL+fyLWL 
dqa J dqa J dqb dqa ' 

Since, however 

we have 

qb = -=—, 
07tb 

8qb _ 82255 
dqa " dqa dnb 

Accordingly, the last term becomes 

* dqb dqa dnh ~~ Ub dqa dnb ~ dqa \ b dnb) dqa 

In all, then 

8qa 8qa \2J ) ' 

and so we have the two canonical equations 

du dna' du dqa f du 
K-STR 5 
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The second of these differs from the usual form; but since u is an 
arbitrary parameter along the path, we may replace it by a new 
parameter, w, say, and because 

35 = -%7iaqa 

we may choose w so that 

™ du - dqa 

76-r-=\, i.e. na-j— = 1-aw aw 

With the new parameter, then, 35 becomes 1, so the extra term 
vanishes (since 35 = - | / 2 ) . 

To summarise, then, we have shown that, even in the case of a 
relativistic system, there is an alternative canonical formulation, in 
which the Hamiltonian is of the form 35 = naqa. This alternative 
formulation is the one that corresponds to the quantum-mechanical 
treatment of Dirac in Extract 8, althoungh he does not say so 
there. 



CHAPTER 4 

Applications in Quantum Theory 

IN ORDER to describe the more recent developments in special 
relativity it is necessary to say a little about the branch of physics 
which sparked them off, that is quantum mechanics. The general 
atmosphere in physics at the end of the nineteenth century was one 
of considerable optimism. One of the few outstanding problems 
which remained was the question of the interaction between radia
tion and matter. The behaviour of radiation away from matter 
was well understood, being described by Maxwell's equations. 
What was difficult to understand was the way in which the radia
tion in equilibrium with matter at a given temperature has a defi
nite frequency distribution. Since the temperature does not enter 
into Maxwell's equations it is impossible to answer this problem 
on the basis of them alone. 

A certain amount was known already by 1900 about this prob
lem because by thermodynamical arguments Wien's displacement 
law (1893) showed that when the distribution of energy is known 
at any one temperature it can be calculated at any other tempera
ture. We know, of course, that the total energy over the whole 
spectrum for temperature T is proportional to the fourth power 
of T (Stefan's law). Wien's law is accordingly best stated in terms 
of the energy for a given temperature and frequency divided by 
the fourth power of the temperature. More precisely, let u(v, T) dv 
be the energy density of radiation with frequencies between v 
and v+dv. Let vjT = co; then by general thermodynamical consi
derations one can prove that 

u(v9T)dv = [f(co)dco]T*. 
57 
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What is left unspecified by Wien's law is how the square bracket 
depends on that ratio. Lord Rayleigh (1900), on the basis of rather 
tentative arguments, in which the radiation is treated as vibrations 
of an elastic aether derived one formula corresponding to f(co) = 
aco2, where a is a numerical factor. Although this formula is 
correct at low frequencies it cannot possibly be correct for all, 
since the total energy in the spectrum would be infinite. Earlier 
Wien (1896), by a rather complicated argument using the kinetic 
theory of gases, had derived another formula which is experimen
tally correct for high frequencies but wrong for the low ones, 
with f(co) = ba)3e~aa>, where a, b are constants. 

As is well known, the mystery here was dispelled by Max Planck 
(1900) at the turn of the century with the formula 

J(0)) — —— ^hojik__l > 

which evidently can agree with Rayleigh's formula for small co, 
and with Wien's for large a>, so long as h is not allowed to be 
arbitrarily small (as Planck expected) but given a definite experi
mental value (6-6XlO-27 cgs units). Planck's modified formula 
was interpreted as meaning that the energy of the system, which 
had previously been treated as a continuous variable, could not 
in fact be continuous but changed by steps, the size of each step 
being proportional to the frequency of the radiation emitted. The 
constant of proportionality, Planck's constant, was exceedingly 
small in terms of everyday measurements, thus accounting for the 
apparent continuity of the energy. Because of this apparent con
tinuity energy can be treated as a continuous variable in everyday 
experience, and it is only in certain rather subtle and rather com
plex situations that it will be necessary to use the fact that it is 
a discrete quantity, or as is usually said, quantized. 

By a fortunate chance, not unusual in the history of science, at 
this very time numerous situations of this subtle kind were arising 
in different experimental fields. J. J. Thompson (1897) had meas-
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ured in Cambridge in 1894 the speed of the rays emitted by an 
electrical discharge through a near-vacuum. Because the speed 
was about a thousand times slower than that of light he formed the 
opinion that these rays were really streams of particles, and ac
cordingly sought to measure whether they had a charge. Within 
3 years he had determined their charge-mass ratio, and in another 
12 months, with Townsend, he had proved that the charge was 
constant. These particles were, of course, electrons, and the dis
crete nature of electrical charge was thus discovered only 1 year 
before that of energy. The connection between these two quanti
zations is still a mystery, though a clue to it may perhaps lie in 
the fact that the ratio hc/lne2 is a pure number with a value close 
to 137. In the years at the beginning of the century, Rutherford 
(1911) gradually pieced together experimental conclusions about 
scattering, leading him to the discovery of the atomic nucleus and 
so to a definite atomic model. Two years later Bohr (1913) was 
able to apply Planck's idea to the explanation of the discrete lines 
in the hydrogen spectrum. This was the real beginning of the old 
quantum theory, though this name is slightly misleading since it 
is true to say that there never was any complete theory, worthy 
of the name. Rather there was a collection of rules which solve 
particular problems, but the use of these rules was a matter for 
artistry, so that only the initiated were able to tackle any new 
problem. Moreover, there were experimental results which it 
seemed that the theory was quite inadequate to deal with, such as 
the relative intensity of the various lines into which a given line 
was split by electric and magnetic fields. As the theory went on 
it became more and more difficult because of additional ad hoc 
assumptions, and it gradually became thought that some totally 
new direction had to be taken. (Although this undoubtedly was 
necessary at some stage, it is not certain that the old quantum 
theory need have been in quite such a bad way, and if the new 
theory had not arisen when it did, a reformulation of the old theory 
might have carried it along much longer.) 
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By one of the astonishing coincidences which do occur in sci
ence, two such new theories came within a few months of each 
other in 1925-6. One of these is a fairly straightforward generali
sation from what had gone before, although it was a stroke of 
genius to have hit upon it. Let us describe this first. Another field 
of physics in which integers tend to occur is that of waves on a 
stretched string or stretched membrane, and already by 1923 de 
Broglie (1924) had noticed that in the Bohr-Rutherford model of 
the hydrogen atom the orbits in which the electron was allowed 
to move without radiating were exactly those whose length was 
an integral multiple of the wave length, hjmv, where m is the 
electron mass and v its velocity. This fact by itself would have 
been of no significance, but in 1923 Davisson and Kunsman 
(1923) had reflected a beam of electrons from a platinum plate 
and showed that, instead of the reflection which one would have 
expected from a stream of classical particles, a pattern with curi
ous maxima resulted, which was later shown by Elsasser to be 
consistent with the electrons being scattered like waves of wave
length h/mv. 

Instead of considering the rather complicated problem of reflec
tion from a platinum sheet we will consider the simpler experi
ment in which a stream of electrons passes through two holes in 
a screen and falls upon another screen which is sensitive to elec
trons. If such an experiment were carried out it would be found 
that a series of lines occurred on the screen. The lines occur at 
the places at which electrons have passed along two paths that 
are in phase (in the sense of the wavelength just mentioned) and 
in between the lines are dark spaces corresponding to out-of-phase 
interference. How can we reconcile such a result with the dynami
cal description of the electron ? Clearly, since the problem here is 
to understand how a more general dynamical description than 
usual may be given, we must start with as general as possible a 
description of dynamics, and show how to alter this. Treating the 
whole matter non-relativistically, which was the way that it was 
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considered in 1925, we can say that each path through one hole 
or the other is determined by the equations of motion, which may 
be written in the form 

d f Ldt = 0. 

Here L is, as usual, the Lagrangian, which, for a free particle, is 
T = \mv2. (The holes are workless constraints, which have to be 
applied during the calculation of the variation, but which do not 
enter the Lagrangian.) 

The experimental results now show that when we calculate the 
quantity 

S = lp 

(where / is the length and p the momentum) along an actual path 
there will be bright patches on the screen when the two paths up 
to the point satisfy Si — S2 = nh, and dark patches intermediately. 
Because this is a rather complicated way of expressing it it is much 
more convenient to write instead of the quantity which we have 
just considered the expression 

y) = eiS,h, 

where h = h/2ji is a new constant, which is more convenient than 
Planck's original one. The condition for brightness is then xp^ = ip2 
and for darkness yi = — ̂ 2- This in turn may be expressed slightly 
differently by considering the quantity \p = yi+Y>2- This quantity 
has maximum amplitude, of unity, at a bright point and has its 
minimum amplitude, which is zero, at a dark point. 

Essentially the theory which de Broglie (1926), Schrodinger 
(1926), Klein (1927) and Gordon (1926) found independently was 
one which determined the equation satisfied by this function. The 
analogy here which they exploited is with optics where the first 
equation of motion is replaced by Fermat's principle of least 
time but where the correct wave theory is somewhat more com
plicated. It will be instructive for us to work out a little more of 
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Schrodinger's theory. The following mathematical development 
leans somewhat on the last sections of Chapters 2 and 3. The 
reader who has omitted them is advised to return to them and 
read them, at least briefly, to give him a resume of the ideas now 
presupposed. From the fundamental variational principle of the 
last chapter we have 

d j Ldt = [padq«-Hdt]+ I LaSq*dt. 

It will turn out that the integral which is varied on the left-hand 
side will be what is to be identified with the quantity S above. 
Writing it as S in anticipation, and considering it as a function 
of position in space and time only, by fixing the starting-point of 
the integration and then integrating from there to the given point 
in space and time along a path (so that La = 0 and the right-hand 
integral vanishes), it follows that 

~6f~P*' St " M' 
since we keep the lower limit fixed. These equations may be used 
to calculate S for the special case of the free particle for which 
p and H are constant, since it gives 

S = p . r - # f . 

At any fixed time, then, we have S = p .r so that the identification 
of this S with the one used above in describing the experimental 
results is fully justified. We now need to convert this in terms of 
the new function and we notice at once that 

dtp _ i dS dtp _ i dS 

Consider now the particular case of a particle moving in a poten
tial field in which the Lagrangian has the form 

L = T-V = j-mv2-V. 
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(Of course, up to now we have been considering the free particle, 
V = 0, but it involves no more trouble to include a potential 
field, and the general theory developed so far is independent of 
any particular form for the Lagrangian.) In such a case we have 

8L 
» = - * - = * * • 

P2 

2m 

Substituting from the expressions for momentum and energy in 
terms of S gives us a certain equation involving the function S, 
known as the Hamilton-Jacobi equation 

1 r)S! 

Of course, in proceeding from the description in terms of S to 
the new description it may well be necessary to generalise and 
alter the theory slightly just as one would have to do in the optical 
case in order to reach the correct wave description, which would 
in fact be that of Maxwell's equations. So here, when we substitute 
for S the function ip9 we must take account of the smallness of 
Planck's constant in cgs units (which is equivalent to its smallness 
in terms of ordinary everyday quantities). If we substitute directly, 
however, we shall be involved in a highly non-linear theory (since 
the squaring of dy/dq* will bring in a tp2), whereas the wave ana
logy leads us to expect linear equations, as Maxwell's are. This 
is evidently a point at which, if we were able to start with the 
unknown wave theory and proceed in the opposite direction an 
approximation would have entered. The probable nature of this 
approximation becomes clear if we calculate a second derivative: 

82w \ i d2S / / \ 2 dS dS , 
dq«dqP \h dqx dq? 

(i_yds_ dtn 
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In the square bracket the first term can be expected to be negli
gible compared with the second (inviewof thesmallness of Planck's 
constant) and so we make the substitutions 

in the Hamilton-Jacobi equation, giving 

2mi dw 2m rr 

generally known as Schrodinger's equation. (In the case where 
the energy is constant, say H = E, so that t is only involved in 
S in the term — Et, and so in ip in the factor e~lEt/h, the time-
derivative can be removed by defining 

ip = ue~iEtlh 

where u is independent of t, and satisfies 

V2u + -^-(E-V)u = 0, 

the time-independent Schrodinger equation.) 
In June and July of the same year Born (1926) completed the 

generalisation of the wave theory by giving an interpretation of 
the function \p introduced, which is now widely held as giving, 
by the square of its amplitude, the probability of finding the 
particle at a particular point. From the point of view of generalis
ing this to special relativity, however, the occurrence of the so-
called wave functions and their interpretation is a considerable 
hindrance, however useful it may be in visualising the physical 
interpretation. Accordingly we shall turn to the other formula
tion which was put forward. This alternative theory was suggested 
by Heisenberg (1925) 8 months earlier than that of wave mechan
ics (in July) and is much more straightforward to generalise to 
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special relativity. The easiest way of explaining Heisenberg's theo
ry will be to deal with one particular problem by both methods 
and for this purpose we shall choose the simplest nontrivial one, 
that is, a harmonic oscillator. The classical equation of motion, 

mx = — mco2x, 
can be derived from the Lagrangian 

L = \m(x2 —co2x2)9 

or, equivalently, from the Hamiltonian 

H = ^ + ±mco2x2. 

The method of dealing with this in the old quantum theory can 
be slightly generalised by going over to the homogeneous formu
lation, with t and x as coordinates, for which 

f du — \m(x2—(D2x2)dt, 

i.e. f=^m(i\-co2x2l 

Then the so-called stationary states are given by requiring that 

fdu round any closed path is an integral multiple of h. (This f 
replaces the condition Si—S2 = nh, where one path is to be tra
versed in the opposite direction, so that the former condition 
might be written Si + ( — S2) = nh.) 

Since, however, as we saw in the last chapter, 
f=Paqa 

this condition can be rewritten 

f > pa dqa = nh 

round any closed circuit, i.e. 

(p dx — Hdi) = nh f 
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since p0 = dfjdi = — H. Essentially the only closed circuit is 
that obtained by following the particle round one complete cycle 
of its motion, so that 

2 p ma)(a2-x2y'2 dx = nh. 
J—a 

Putting x = a sin 0, we have 

I mcoa2 cos2 Odd = nh, 
o 

so that the quantum condition given by the old quantum theory 
is 

^mcoa2 — nh. 

Since, however, the total energy E is given by 

E = \mco2a2, 

it follows that E = nhco = nhv, where v is the frequency in cyc
les per second—so that the rule given above agrees with the 
one introduced by Planck for the spectrum of radiation. 

In the Schrodinger treatment, however, one seeks solutions of 
the time-independent Schrodinger equation 

d2u 2m / 1 \ 
^ + l^{E~--2mCOX)U = 0' 

Such solutions do not exist, at least if we confine our attention to 
analytic functions which are such that 

f°° \u\2dx 
J OO 

is finite, except when E has certain special values. For if we begin 
by making the substitution u = vew where v9 w are new variables, 
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the equation becomes 

2m / _ 1 
v" + 2w'v' + w" + (wy + ^(E--!-mcDZx2\ v = 0, 

and this assumes a more reasonable form if we choose 

k 2 

(w'f m»-
mco „ , mco 

i.e. w = ± - ^ - x , w = ±-^-9 

so that w = ± -^- x2. 
In 

With the condition that u -+ 0 at infinity (keeping the convergence 
of the integral in mind) we take the lower sign, and v has then to 
satisfy 

,, 2mco 
h 

■xv' + -^ (E- — fico\v — 0. 

It is convenient to make a change of variables, putting x = 
(fi/mco)ll2y, and the equation becomes 

v"-2yv' + 2giv = 0 
where 

fi + Y — Elhco. 

If we seek a polynomial solution, 

v = Zaryr, 

of this equation, we find that the coefficients are related by 

2Qi -* ) 
* * + * - - ( * + l ) 0 f c + 2 ) f l * ' 

and this will indeed be a polynomial solution if the sequence of 
coefficients terminates, i.e. if ^ is an integer, n say. The equation 
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will then have a solution of degree «, and as n is given all integral 
values from zero upwards, a set of polynomials, say H0, Hl9 
H2..., is derived. Since, however, two polynomials, Hr, Hs say, 
with different values ^r, \ia of \i satisfy 

f ~ e-y*HrHs dy = A„ = 0 
J—oo 

(a fact which may easily be proved by integrating by parts, using 
the fact that the differential equation implies that 

2{j,ve~yi =-(vfe-yJ) 

it follows that the arbitrary constants can be determined so that 

A r s = ors. 

Accordingly any polynomial (j)(y) of degree k can be written in 
the form 

fty) = t *sHs(y). 
5 = 0 

where, in fact, 

A,= \~ e->*(Ky)H,(y)dy9 
J—oo 

and so the whole set of polynomials Hr form a complete basis to 
express any analytic function. It follows that there are no other 
values of ^ for which there is an analytic solution of the equation, 
that is, that the possible values of ^ are the integers 0, 1,2, 
The energy levels are therefore of the form (n+\)h(o, and so the 
new treatment gives the same answers as the old for the differences 
(fico) of energy levels, but predicts also a zero-point energy \fico. 
This new prediction was at first welcomed, as agreeing with some 
of the spectroscopic evidence, but it has since been a source of 
acute embarrassment in the development of quantum mechanics. 

However that may be, we can now use the wave-mechanical 
picture to illustrate Heisenberg's approach (though he reached 

file:///fico
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it quite independently, and, indeed, as we have said, earlier). 
Essentially the problem of solving Schrodinger's equation is not 
the determination of the function ip or u; this is merely a technique 
for determining the values of the constant E for which such a 
function exists. Abstractly the problem can be expressed thus; 
consider an operator H which is derived from the Hamiltonian 
by substituting(fi/i)(dldq*) for pa wherever it occurs. Form the 
equation 

where E is a number; the problem is then the determination of 
the so-called eigenvalues E. The operator pa is connected to the 
coordinate operator q'3 by the commutation rule (by substituting 

Px = wwbim 
h 

and Heisenberg's technique is simply to hold fast to the Hamilton
ian operator, and to the commutation rule 

paq^~q^Pa = y5f , 

without worrying about the function ip at all. This much is already 
clear in Heisenberg's first paper on the subject. However, the 
later development of the theory by Born, Heisenberg and Jordan 
required rather complicated manipulations in order to find a suit
able form of operator differentiation to put into the equations of 
motion. Dirac, in the same year (1925), provided a great simpli
fication by noting, firstly, that the only time derivatives entering 
in the Hamiltonian form of dynamics can be put in Poisson 
bracket form (as was mentioned in Chapter 3) (since if </> is any 
variable of the motion, then in the notation of Chapter 3, 

dt ~ ~dxA dt ~ exA dxB K9, } 



7 0 SPECIAL RELATIVITY 

and, secondly, that, for large quantum numbers, the operator 
(j)^—^<|> formed from the analogues of two classical quantities 
</>, ip connected with the motion, becomes 

cj>v|> —1}>(|) = /#(<£, ip). 

Accordingly Dirac defined 

and so in the case of the harmonic oscillator, where 

H = p2/2ra + Yma)2(l2> 
it follows that 

H q - q H = ^ ( p s q - q p * ) 

= 2m [ p ( p q " q p ) + ( p q " q p ) p ] 

h 

H p - p H = iwo>2[q(qp-pq) + (qp-pq)q] 
= ihmco2q 

in complete analogy with the classical equations of motion. 
Suppose now that the oscillator is in a stationary state; the 

Hamiltonian operator can be looked on as an infinite matrix 
operator acting on the components of a function referred to the 
basis vectors e~y2/2Hr(y) mentioned above. And if these are the 
states corresponding to the eigenvalues, the matrix will be dia
gonal. As a result the above equations become, in matrix notation, 

E(Hrsqst — qrsHst) = — -p r t , 
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or, if H is represented by the diagonal matrix 

H 

Ai 
0 
0 

0 
h 
0 

0 
0 
h 

then (K-h)qrt = —Prt, 

and {h~h)Prt = ihmco2qrt, 
which give [(Ar — A,)2 — (fico)2]qrt = 0. 

Thus any non-zero elements of q must correspond to eigen
values A differing by hto\ so that, if the eigenvalues are arranged 
in ascending order of magnitude, they are a, a + /fco, a + 2/fco, . . . 
and the only non-zero values of qrs, prs are where r, s differ by 
unity. It only remains to find the value of a, which is Hu, the 
lowest energy level. Now, substituting, 

#12 = 
moo 

p12 and q2i= P21 
com 

which give, in 

that 
p q - q p 
#12#21 = 

ih, 

2mco' 

and therefore also P12P21 = \hmco. Since, however, 

#11 = 2mP12P21 + ~2 ma>2tfi2#2i, 

we find that Hu = a = \hco. There is thus complete agreement 
between the two approaches. 

It is now time to consider how all this may be related to the 
Lorentz transformation. Neither the original formulation of 
K-STR 6 

file:///hmco
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Schrodinger nor that of Heisenberg had produced a relativistically 
invariant theory. Dirac, looking at the problem more from the 
Schrodinger angle, noticed that for a free particle Schrodinger's 
equation was of the first order in the time. Since the purpose of 
the equation was to show the time evolution of the system, this 
was a necessity. On the other hand, it was of the second order 
in the space variables, and this meant that it was hopeless to try 
to render it relativistically invariant. Dirac therefore set about 
formulating an equation whose solutions would be as much as 
possible like those of the Schrodinger equation but which would 
be of the first order in the space and time variables. His success 
in this respect can be seen from his paper, reproduced as Ex
tract 8. 

In our notation, what Dirac does there is to consider, instead 
of the Schrodinger equation which is the operator form of the 
non-relativistic energy equation 

V2/2m+V = E, 

the so-called Klein-Gordon equation which is the operator form 
of the relativistic expression for the totalenergy (including the rest-
energy) 

E = m'c2 

= mc2(vd-^2)) 
that is, 

£2_p2c2 = m2cA 

The Klein-Gordon equation is then 

[ ( ^ ) ' - ( T ' ) > - ^ 
/ , m2c2\ or [D2+-1p-)y> = 0, 
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writing □ 2 for the usual wave-equation operator: 

1 32 
n2 = — - v2. u c2 dt2 v 

This is now Lorentz invariant, but has the new disadvantage of 
being of the second order in the time. Dirac assumed, writing the 
equation in the form 

- 3 3 m2c2 

that there exist symbols y/l which will factorise the operator, i.e. 
such that 

If the y*1 are constants, they must then satisfy 
yftyV + yVyfj. — 2r}Vv. 

It is possible to satisfy such a set of conditions by means of 4X4 
matrices, as will be clear later in the chapter. Accordingly the wave 
function ip will now have to have four components tpr (say), so 
that 

3 

means the set 

{?*£} *,,-.....* 
Now not only did Dirac's reformulation achieve the desired 

Lorentz invariance. It led also to two important experimental pre
dictions. The first of these is fairly easy to explain. The equation 
derived by Dirac is, as we have seen, got from a quadratic expres
sion for the energy 

E2 = p2c
2 + m2c\ 

6* 
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by factorising it by means of the introduction of the new quanti
ties. When a square root is taken in this way there is an ambiguous 
sign to be determined. Dirac's original idea was that the solutions 
of positive energy were to be taken, and the ones of negative energy 
to be disregarded. However, Klein (1929) showed that in quite a 
simple experimental situation it was possible for particles to jump 
from negative to positive energy states or vice versa. Essentially 
this is because quantum mechanics predicts that a potential barrier, 
which would repel all particles of a particular energy in the classi
cal theory, no longer has this property in the quantum case ("tun
nel effect"). Instead there is a small but definite probability that 
the particle will penetrate the barrier. Such a barrier could be one 
keeping apart positive and negative energy states. In such a situa
tion it is impossible to disregard the negative energy states, and 
Dirac was forced to the "hole theory" in which the vacuum was 
regarded as the state of affairs in which every negative energy state 
contains one electron and all the positive energy states are empty 
(fortunately, since the particles concerned are electrons, the Pauli 
exclusion principle forbids there being more than one electron in 
any state, so this is a meaningful prescription). When an electron 
jumps from a negative energy state to a positive one a "hole" is left 
behind, that is to say, a state of affairs in which the vacuum has less 
negative charge than it should do. In other words, the hole theory 
predicts the existence of another particle with charge equal but op
posite to that of the electron and of the same mass. This is & posi
tron, which was discovered experimentally by Anderson (1932) 
(see Extract 9 of the present book), though it is noteworthy that 
Anderson was working in complete ignorance of Dirac's theore
tical prediction and was indeed trying to interpret the cloud cham
ber tracks as those of protons. 

The other experimental confirmation requires rather more ex
planation. Indeed the form in which this prediction was originally 
found in Dirac's 1928 paper (Extract 8 of the present volume) is 
somewhat unsatisfactory. The following method of derivation 
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(Rund, 1966) is intended to rectify and generalise Dirac's deduc
tion. Firstly, as can be seen above, Dirac begins by making the as
sumption that the Hamiltonian operator has a linear form in the 
generalised momenta. That is to say he makes the assumption: 

76 = r°na, 

where Fb commutes with Tca. 
It will clarify the treatment of the Dirac theory if we forget all 

about the differential operator form for the momenta, since it 
plays no important part in the calculations. Instead we simply con
sider any Hamiltonian which is linear in the momenta; this is 
evidently very different in one respect from a classical system 
since, reverting to the end of Chapter 3, where 

76 = \naqa 

it seems to follow here that P* = qa, and, since the Fa are con
stants, this corresponds to motion with constant velocity. How
ever, the ra no longer obey the commutative law of multiplica
tion, so that this inference is no longer valid, and indeed the whole 
connection of the Hamiltonian and Lagrangian formalisms is al
tered. For this reason we can no longer appeal to Noether's theorem 
in our search for conserved quantities; and the investigation that 
follows can be regarded as the nearest substitute for Noether's 
theorem, assuming only the operator form for the Hamiltonian. 

In this formulation, then, the Hamiltonian is an operator, and 
in order to discuss transformations under the Lorentz group it 
must operate on some function ip which transforms under a repre
sentation of the group. Further, 76ip must be well defined and must 
transform under the same representation as ip. These two restric
tions determine something about the algebra of the expressions P7, 
which are assumed in Dirac's theory to be invariant quantities. 
Just what is determined can be found as follows. 

Consider an infinitesimal coordinate transformation 
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the wave functions must then transform under some transforma
tion very near to the identity, say of the form \p' — Aip, where 
A = I + ±eablab. Of course, in conformity with the transformation 
of the coordinates, the generalised momenta will transform un
der: 

na> = (*£ + <&)*«■ 

Consider now the transformation of cj> = 76ip. On the one hand, 
we know that: 

<t>' = Acj) = (I+iec r fIc r f)0; 

on the other hand, 

Acj) = 3KV - raXda
a, + ea

a,)nJLy) = Aranay) 

and this gives as a result: 

ra\ba
a, + ea

af)A = A/X 
Substituting: 

P"(5%. + ea
a.)(l+hcalcd) = (I+hcdlcd)ra. 

That is to say, 

i.e. \ecd{Ydr«-r"Y*) = e^bW* 
= hMdarc-r)card). 

Thus the requirements of invariance under the Lorentz group 
lead to the relations: 

\cdpa_pa\cd — ^dapc _y,capd 

between the original quantities introduced by Dirac and the new 
quantities Yd. It remains to understand what these quantities Yd 

are. 
For this purpose consider the expression for the analogue of the 

angular momentum (analogue, because the expression concerned 
has six components, three of which correspond to the usual angu-

file:///cdpa_pa/cd
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lar momentum, and three which do not). When we calculate the 
rate of change of this quantity in accordance with the rules given 
for calculating derivatives by Dirac, we get 

^— = [M«*, 76] as 

= -^ {[x V - xV]TC^arcf l - rana(xar)P" - x VO**} 

= jr°{ri^[x«, w j i ^ - ^ x " , w j ^ } 

= jr«{ne[x\na]-n«[xe,na]}. 

At first sight this is surprising, since the rate of change of angu
lar momentum has ceased to be zero. The expression can, how
ever, be simplified by using the usual commutation rules 

[xa, na] = ihdi, 
so that in all: 

as 

Recalling now the quantities IcJ, introduced by the transforma
tion of the wave function, it follows from above that 

lcd76-76Icd = ndrc-ncrd, 
so that 

dMa(* dl*P 
as as 

The quantity lcd is known in quantum theory as the spin angular 
momentum, and is regarded as an intrinsic property of the particle. 
The equation derived then shows that the total angular momen-
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turn, that is the sum of the spin angular momentum and the ordi
nary angular momentum, produced by the momentum in virtue 
of the position of the particle relative to the origin, is the quantity 
which is conserved. 

It is important to notice that the spin angular momentum de
pends on the transformation properties of the wave function. For 
example, if the wave function is a scalar the infinitesimal trans
formations of it are all identity transformations. The quantities lcd 

are zero and the spin angular momentum accordingly vanishes. 
The particles defined by scalar wave functions therefore have no 
spin. Again, if the wave function is a vector, for example, the 
quantities lcd can be found as follows: the transformation 

is to be rewritten in the form 
ip' = (I + iersIr°)y>, 

so that 

Hence 

i.e. 

hrs^Ya = ¥rs(r)SCK"rir%\ 

(lrs)c
a= br

arisc-bs
arfc. 

For example, 712 has the matrix form 

/12 

The corresponding spin angular momentum I" is the one appro
priate to particles having vector wave functions. 
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As well as the tensor transformations, however, quantities 
transforming under representations of a different kind arise. These 
quantities already exist in a two-dimensional theory, and it will 
be instructive to consider them here. Since the rotation group in 
three dimensions is a subgroup of the Lorentz group, and the 
rotation group in two dimensions is a subgroup of the rotation 
group in three, the quantities introduced in this section will be 
equally important in a study of the Lorentz group. Consider then a 
rotation in two dimensions of the form 

JC1' = x1 cos 0 + x2 sin 0, 
x2' = —x1 sin 0 + x2 cos 0. 

The vector representation of this rotation has the form A*' = l*Aa, 
where the components can be read off from the fact that the com-
ponets of the vector transform in just the same way as the coordi
nates. Similarly the tensor of rank 2 has the transformation law 
A*>{}> = ftpjfi which, written out at length, is 

Avv = ^ n c o s2 0 + (^i2 + ^2i) c o s Q sfn e + A22 sin2 0, 

A1'*' = A12 cos2 d-A21 sin2 8 +(A22-A11) cos 0 sin 0, 
AVV = A21 C Q S2 0 _ ^ 1 2 s i n 2 0 + (^22_^ll) C Q S Q s i n 0? 

Aw = A 2 2 cos2 0 - ( ^ 1 2 + ^21) cos 0 sin d + A11 sin2 0. 

A glance at these equations shows at once the existence of an 
invariant quantity, A1'2' —A2'1' = A12—A21. Since any tensor can be 
written as the sum of a symmetric and an anti-symmetric part, by 
the formula 

A«P = l-(A^+A^) + i(A^-A^% 

we can use the invariance in two dimensions of the antis3'mmetric 
part to confine our attention to symmetric tensors only. Consider 
then a symmetric tensor and introduce the abbreviated notation 

A* = p A12 = A21 = \q A22 = r 
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so that the transformations become: 

p' = /?cos2 0 + r sin2 0 + ^ s i n 20, 
r' ~ r cos2 0+/;sin2 0 — i ^ sin 20. 

It now appears that there is another invariant 

p' + r' = p + r, 
and q' = q (cos2 0 — sin2 0) + (r— p) sin 20, 

so that apart from this invariant the remaining quantities trans
form under the equations 

q' — q cos 20 + (r— p) sin 20, 
r'—p' = (r—p) cos 26 —q sin 20. 

What is most remarkable about these equations is their strong 
similarity to the original equations of rotation for vectors, the 
difference being only that, where the original equations involved 
functions of a given angle, the new ones involve functions of 
double the angle. We can look at all this from a different, and 
highly instructive, point of view if we imagine the new equations 
to be the ones defining the rotation of a vector, and so replace 20 
by the angle of rotation, which may again be called 0. The argu
ment above then shows that such a vector is derived from other 
quantities, 01, 02 say, transforming under by the rule 

cf)1' = 01cos0/2+(/>2sin0/2, 
02' = _ 0 i sin 0/2 + <£2 cos 0/2. 

Clearly this rule, from the way in which it has been derived, 
must correspond to a representation of the rotation group. But it 
is a representation of a different form from the tensor transforma
tions, because the two rotations defined by 0 and 0 + 2 ^ are iden
tical, as members of the rotation group, but give rise to different 
objects in the representation, differing in fact by sign. It is there
fore an example of a two-valued representation. 
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When the corresponding theory is extended to the whole of the 
Lorentz group instead of the three-dimensional orthogonal group 
it is necessary either to have a pair of such objects or, alternatively, 
to have a single object with four components. These objects 
(whether of two or four components) are each called spinors. 
Dirac chose the spin representation for the wave function of the 
electron, although not because it was obligatory to do so in terms 
of his formalism, as seemed to be the case at the time. It is clear by 
looking at the infinitesimal operators: 

* ! ' = jci + fix2, 

X*' = -0x1 + X2, 

and comparing with the calculation for vector wave-functions, 
that the spin angular momentum operators for spinor wave-func
tions are half of those for vector wave functions. In quantum me
chanics the spin is measured, for historical reasons, in units deter
mined by the vector wave-functions, so that for spinor particles 
the spin is one-half. Thus the choice of a two-valued representa
tion by Dirac for the wave function was in fact an experimental 
result; the "observed" electron spin (in a classical analogue)—ob
served, that is, by its effect on spectral lines—was only one-half of 
what would be predicted for vector wave-functions. This discus
sion of conservation laws may be regarded as the appropriate ge
neralisation of Noether's theorem (see Chapter 2) to the case in 
which the Hamiltonian is generalised to contain matrices. 

It is clear that further progress in understanding this part of the 
theory requires a very careful consideration of the representations 
of the Lorentz group. So far we have been considering finite-di
mensional representations. It is also possible to look at the infinite 
dimensional representations. The whole work was carried out in a 
definitive fashion by Wigner (1939) and parts of his work form 
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Extract 10 of the present volume. It would take us too far to try in 
the space available to us to summarise all the corresponding con
sequences of special relativity for quantum mechanics, and instead 
we will content ourselves by showing how the study which we have 
made of two-valued representations leads us in a natural way to a 
matrix form of the quantities y^ introduced by Dirac. 

Let us return to the way in which a vector was used (rotating 
through an angle 26) to lead to the spinor quantities. The compo
nents of the vector are given in terms of a pair of quantities like 
this by the equations 

V2 = r—p = (j)2y)2 — (l)1y)1
y 

or in terms of new quantities defined below as 

The quantities a^y introduced in this equation are: 

°2i = ai2 = h 4 * = 1, °ii =-h 
and these can conveniently be written as two matrices: 

<?i = 
1 a* = ;]■ 

At the same time it may be noted that the second of the invariants 
found above has the form 

*ipp invariant, 

where £a/3 = 
1 

1 

The matrices now introduced have the properties that: 
(ofi)2 = (a2)2 = 1 

". - 1 " ffl*2 = [ - i \ 
(03)2 =-G^G2G2G1 = - 1 , 

= — G*GX = — 1 
<*l(i = £ a 
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There is a certain lack of symmetry in these definitions, and it is 
therefore appropriate to take instead the three quantities 

ei, e2, e3 = ia\ ia2, tf3. 

Since we have constructed this whole theory by considering 
those particular members of the rotation group which leave in
variant the z-axis, the quantities which arise have the z-axis as a 
preferred direction. However, Euler's theorem shows that any 
member of the rotation group does consist of a rotation about a 
certain axis so that this specialisation must be one only in appear
ance, and the theory which we have devised must be adequate for 
the whole rotation group. This is made clear when we use the 
quantities just defined to represent a vector in three dimensions in 
the form 

a = acec, where now eaeb = — dab+sabcec. 

The "product" of two vectors could then be written in terms of the 
usual scalar product a.b and the vector product a A b, as 

ab = —a.b+aAb. 

The transforms of the rotation group leave the lengths of vectors 
and the angles between them unaltered, and therefore must pre
serve such products. In other words, the transformations of the 
form 

a -* a' = #a#_1, 
where q has the form, 

q = cos 99 + 83 sin <£, 

must be all members of the rotation group, and since the group of 
all transformations so defined is in fact a three parameter group, 
one may well expect it to be the whole of the rotation group. The 
fact that this is so can be seen as follows: the choice of e3 as the 
unit vector in q is evidently not of any great significance, since the 
z-axis can always be chosen in an appropriate direction. If, then, 

q = cos 0 + e3sin $, 
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it is clear by multiplying out that 

q-1 — cos (j> — e3 sin 0, 

so that the formula is 

a' = (cos </> + e3 sin 0) (tfiei-f-0262+03^3) (cos </> — e3 sin 0) 
= (cos (/>-f-e3 sin 0)2 (<ziei + tf2e2) + 03e3 

= (cos 20 + e8 sin 20) (tfiei+02e2) + <23e3 

= (ai cos 2cj) —a2 sin 2$)ei + (ai sin 2^ + a2 cos 2</>)e2 + #3e3 

which is a general rotation about the z-axis. 
The quantities d , e2, e3 (or equivalently au o2, cr3) behave to 

some extent like the yfi introduced by Dirac. For example, the 
commutation rule 

eaeb-~ebea =~2dab 

may be compared with 

The principal difference is the increase in numbers from 3 to 4. 
However, there is a well-known algebraic trick for increasing the 
number of elements in a linear algebra, i.e. taking the direct pro
duct. That is to say, if a, b, a', b' all belong to some set in which 
associative multiplication is defined, one can construct a new set 
by taking pairs of the old ones, as (a, a'), (fo, &'), and defining the 
new set to have the associative multiplication 

(a, a') (6, V) = (ab, a'V\ 

whilst multiplication by scalar quantities is defined by 

(Xa, lib) = ?Lfji(a, b) 

(the fact that these rules are again associative being obvious). With 
the help of this construction, if 

Kyi = (ei, ei), #21 = (e2, ei), K31 = (e3, d ) , 
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then clearly Ku, K2u ^31 anticommute and 
Kf, = Kt = Kl = 1 

(where 1 now denotes the ordered pair (1, 1)). A fourth member 
anticommuting with each of these three would then be, for in
stance, K02 = (1, e2), and K%2 = —1. It is therefore possible to 
represent the yM by 

y1 = iKll9 y2 = iK2u r3 = iKsl9 y* = iK02. 
It only remains to show how this leads to a matrix representa

tion of the yM. For this purpose let us define some new matrices, 
ers, where ers is the matrix whose element in the rth row and 5th 
column is 1 and all other of whose elements are zero. These mat
rices satisfy the obvious multiplication table 

Now each matrix form of the ea can be written 

©a = £>Crs€rs 

where only two of the crs are non-zero, and those are ± 1 or ± /. 
Similarly the matrix form of 1 in 2x2 matrices is (̂ 11+^22)- In 
order to apply this to the direct product, consider two sets ers,frs 
to serve as bases of the first and second members of the pairs. Then 

(ersftu) (eabfcd) = bsabucerbftd • 
But we could renumber the quantities ersftu by defining, first, 
Ertsu = ersftu (note the reversal of s and t on the left-hand side), 
and then renumbering the pairs (r, i) in an arbitrary way, e.g. by 

(1, 1) - 1, (1, 2) - 2, (2, 1) + 3, (2, 2) + 4, 
and (r, t) -» a, 
so that Ertsu -+■ Erf 
where E*pEYt = d^E^ 

according to the formula above. 
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It is now a simple matter to work out matrix forms for the ?A 
For example, since 

ei = i(e21+e12)9 
it follows that 

Ku =-(e2i + e12)(f2i+fi2) 
= -(^21/21 + ^12/21 + ^21/12 + ^12/12) 

= —(-£"2211+£1221+£2112+£1122) 

= — (£41+£23+£32+£14), 
and so 

r i = — 1 
— 1 

Similarly for the other yfl\ this process shows that a 4X4 matrix 
representation is possible and exhibits one such. But there is, of 
course, considerable arbitrariness in it, and many other such re
presentations can be found. For particular purposes some of these 
may be more convenient than others, although they are mathema
tically equivalent. 



NOTES ON EXTRACT 1 

MICHELSON, in his fundamental paper about the velocity of the earth relative 
to the assumed medium of transmission of light, starts from Clerk Maxwell's 
letter to Nature, in which he points out that a measurement of the speed of 
light by means of the eclipses of the satellites of Jupiter would, in principle, 
be suitable for determining the velocity of the Earth through the medium 
of the velocity of light. In fact any such measurement would have to be much 
more accurate than those which can actually be made of eclipses, and Mi
chelson therefore devises an apparatus, now known as the Michelson inter
ferometer, for making this difference readily observable. A beam of light is 
split up at a half-silvered mirror and traverses two paths at right angles to 
each other, returning to the centre where the two beams of light are allowed 
to interfere. The arms are now rotated through 90°, and a watch is kept for 
any movement in the interferences fringes. If, for example, one arm were 
pointing in the direction of motion of the Earth through the aether at the 
beginning of the experiment, then when the second arm is transferred to that 
direction, the situation will be reversed, and any difference in times will show 
up as a shift of interference fringes. 
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E X T R A C T H*3 

Art. XXI. The Relative Motion of the Earth 
and the Luminiferous Ether 
By ALBERT A. MICHELSON 

Master, U.S. Navy 

THE undulatory theory of light assumes the existence of a medium 
called the ether, whose vibrations produce the phenomena of heat 
and light, and which is supposed to fill all space. According to 
Fresnel, the ether, which is enclosed in optical media, partakes of 
the motion of these media, to an extent depending on their indices 
of refraction. For air, this motion would be but a small fraction of 
that of the air itself and will be neglected. 

Assuming then that the ether is at rest, the earth moving through 
it, the time required for light to pass from one point to another on 
the earth's surface, would depend on the direction in which it 
travels. 

Let V be the velocity of light. 
v = the speed of the earth with respect to the ether. 
D = the distance between the two points. 
d = the distance through which the earth moves, while 

light travels from one point to the other. 
dx — the distance earth moves, while light passes in the 

opposite direction. 

Suppose the direction of the line joining the two points to coin
cide with the direction of earth's motion, and let T = time re-

[* Amer. Jour. Sci. 22, 20 (1881).] 
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quired for light to pass from the one point to the other, and T± = 
time required for it to pass in the opposite direction. Further, let 
To = time required to perform the journey if the earth were at rest. 

_ _ D+d d D-d d± Then T = ——— = —; and Ti = —77— = — . V v V v 

From these relations we find d = Dv/(V—v) and d\ — Dv/(V+ 
v) whence T = D/(V-v) and T1 = D/(V+v); T-Tx = 2T0(v/V) 
nearly, and v = ViT-T^llTo. 

If now it were possible to measure T—7\ since V and T0 are 
known, we could find v the velocity of the earth's motion through 
the ether. 

In a letter, published in "Nature" shortly after his death, Clerk 
Maxwell pointed out that T—Tx could be calculated by measuring 
the velocity of light by means of the eclipses of Jupiter's satellites 
at periods when that planet lay in different directions from earth; 
but that for this purpose the observations of these eclipses must 
greatly exceed in accuracy those which have thus far been obtained. 
In the same letter it was also stated that the reason why such mea
surements could not be made at the earth's surface was that we 
have thus far no method for measuring the velocity of light which 
does not involve the necessity of returning the light over its path, 
whereby it would lose nearly as much as was gained in going. 

The difference depending on the square of the ratio of the two 
velocities, according to Maxwell, is far too small to measure. 

The following is intended to show that, with a wave-length of 
yellow light as a standard, the quantity—if it exists—is easily 
measurable. 

Using the same notation as before we have T = Dj(V—v) and 
Tx = D/(V+v). The whole time occupied therefore in going and 
returning T+Tx = 2DV/(V2-v2). If, however, the light had trav
eled in a direction at right angles to the earth's motion it would be 
entirely unaffected and the time of going and returning would be, 



MICHELSON: THE LUMINIFEROUS ETHER 93 

therefore, 2(D/V) = 27V The difference between the times T+Ti 
and 2T0 is 

/ 1 1 \ v2 

2DV[V2_V2 y2J = ^ X = 2DV
 F 2 ( F 2 _ V 2 ) 

or nearly 2T0(v2/V2). In the time r the light would travel a distance 
Vr = 2VT0(v2/V2) = 2D(v2/V2). 

That is, the actual distance the light travels in the first case is 
greater than in the second, by the quantity 2D(v2/V2). 

Considering only the velocity of the earth in its orbit, the ratio 
vjV = 1/10 000 approximately, and v2/V2 = 1/100 000 000. If 
D = 1200 millimeters, or in wave-lengths of yellow light, 2 000 000, 
then in terms of the same unit, 2D(v2/V2) = 4/100. 

If, therefore, an apparatus is so constructed as to permit two 
pencils of light, which have traveled over paths at right angles to 
each other, to interfere, the pencil which has traveled in the direc
tion of the earth's motion, will in reality travel ^ of a wave
length farther than it would have done, were the earth at rest. 
The other pencil being at right angles to the motion would not be 
affected. 

If, now, the apparatus be revolved through 90° so that the se
cond pencil is brought into the direction of the earth's motion, its 
path will have lengthened j ~ wave-lengths. The total change in 
the position of the interference bands would be ^ of the dis
tance between the bands, a quantity easily measurable. 

The conditions for producing interference of two pencils of light 
which had traversed paths at right angles to each other were real
ized in the following simple manner. 

Light from a lamp a, fig. 1, passed through the plane parallel 
glass plate fc, part going to the mirror c, and part being reflected to 
the mirror d. The mirrors c and d were of plane glass, and silvered 
on the front surface. From these the light was reflected to b, where 
the one was reflected and the other refracted, the two coinciding 
along be. 
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e 
FIG. 1 

The distance be being made equal to bd9 and a plate of glass g 
being interposed in the path of the ray be, to compensate for the 
thickness of the glass b, which is traversed by the ray bd9 the two 
rays will have traveled over equal paths and are in condition to in
terfere. 

The instrument is represented in plan by fig. 2, and in perspec
tive by fig. 3. The same letters refer to the same parts in the two 
figures. 

The source of light, a small lantern provided with a lens, the 
flame being in the focus, is represented at a. b and g are the two 
plane glasses, both being cut from the same piece; d and c are the 
silvered glass mirrors; m is a micrometer screw which moves the 
plate b in the direction be. The telescope e, for observing the inter
ference bands, is provided with a micrometer eyepiece, w is a 
counterpoise. 

In the experiments the arms, bd9 be, were covered by long paper 
boxes, not represented in the figures, to guard against changes in 
temperature. They were supported at the outer ends by the pins k, 
/, and at the other by the circular plate o. The adjustments were 
effected as follows: 

The mirrors c and d were moved up as close as possible to the 
plate by and by means of the screw m the distances between a point 
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FIG. 2 

^ l 

FIG. 3 
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on the surface of b and the two mirrors were made approximately 
equal by a pair of compasses. The lamp being lit, a small hole made 
in a screen placed before it served as a point of light; and the plate 
b, which was adjustable in two planes, was moved about till the 
two images of the point of light, which were reflected by the mir
rors, coincided. Then a sodium flame placed at a produced at once 
the interference bands. These could then be altered in width, posi
tion, or direction, by a slight movement of the plate b, and when 
they were of convenient width and of maximum sharpness, the 
sodium flame was removed and the lamp again substituted. The 
screw m was then slowly turned till the bands reappeared. They 
were then of course colored, except the central band, which was 
nearly black. The observing telescope had to be focussed on the 
surface of the mirror d, where the fringes were most distinct. The 
whole apparatus, including the lamp and the telescope, was mov
able about a vertical axis. 

It will be observed that this apparatus can very easily be made 
to serve as an "interferential refractor," and has the two impor
tant advantages of small cost, and wide separation of the two pen
cils. 

The apparatus as above described was constructed by Schmidt 
and Haensch of Berlin. It was placed on a stone pier in the Physi
cal Institute, Berlin. The first observation showed, however, that 
owing to the extreme sensitiveness of the instrument to vibrations, 
the work could not be carried on during the day. The experiment 
was next tried at night. When the mirrors were placed half-way on 
the arms the fringes were visible, but their position could not be 
measured till after twelve o'clock, and then only at intervals. When 
the mirrors were moved out to the ends of the arms, the fringes 
were only occasionally visible. 

It thus appeared that the experiments could not be performed in 
Berlin, and the apparatus was accordingly removed to the Astro-
physicalisches Observatorium in Potsdam. Even here the ordinary 
stone piers did not suffice, and the apparatus was again transferred, 
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this time to a cellar whose circular walls formed the foundation for 
the pier of the equatorial. 

Here, the fringes under ordinary circumstances were sufficiently 
quiet to measure, but so extraordinarily sensitive was the instru
ment that the stamping of the pavement, about 100 meters from 
the observatory, made the fringes disappear entirely! 

If this was the case with the instrument constructed with a view 
to avoid sensitiveness, what may we not expect from one made 
as sensitive as possible! 

At this time of the year, early in April, the earth's motion in its 
orbit coincides roughly in longitude with the estimated direction 
of the motion of the solar system—namely, toward the constella
tion Hercules. The direction of this motion is inclined at an angle 
of about +26° to the plane of the equator, and at this time of the 
year the tangent of the earth's motion in its orbit makes an angle 
of — 23y° with the plane of the equator; hence we may say the 
resultant would lie within 25° of the equator. 

The nearer the two components are in magnitude to each other, 
the more nearly would their resultant coincide with the plane of 
the equator. 

In this case, if the apparatus be so placed that the arms point 
north and east at noon, the arm pointing east would coincide with 
the resultant motion, and the other would be at right angles. There
fore, if at this time the apparatus be rotated 90°, the displacement 
of the fringes should be twice j^orO-16 of the distance between 
the fringes. 

If, on the other hand, the proper motion of the sun is small com
pared to the earth's motion, the displacement should be ̂  of -08 
or 0-048. Taking the mean of these two numbers as the most prob
able, we may say that the displacement to be looked for is not 
far from one-tenth the distance between the fringes. 

The principal difficulty which was to be feared in making these 
experiments, was that arising from changes of temperature of the 
two arms of the instrument. These being of brass whose coefficient 
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of expansion is 0-000019 and having a length of about 1000 mm. or 
1 700 000 wave-lengths, if one arm should have a temperature only 
one one-hundredth of a degree higher than the other, the fringes 
would thereby experience a displacement three times as great as 
that which would result from the rotation. On the other hand, 
since the changes of temperature are independent of the direction 
of the arms, if these changes were not too great their effect could 
be eliminated. 

It was found, however, that the displacement on account of 
bending of the arms during rotation was so considerable that the 
instrument had to be returned to the maker, with instructions to 
make it revolve as easily as possible. It will be seen from the tables, 
that notwithstanding this precaution a large displacement was ob
served in one particular direction. That this was due entirely to the 
support was proved by turning the latter through 90°, when the 
direction in which the displacement appeared was also changed 
90°. 

On account of the sensitiveness of the instrument to vibration, 
the micrometer screw of the observing telescope could not be em
ployed, and a scale ruled on glass was substituted. The distance 
between the fringes covered three scale divisions, and the position 
of the center of the dark fringe was estimated to fourths of a divi
sion, so that the separate estimates were correct to within -̂ . 

It frequently occurred that from some slight cause (among 
others the springing of the tin lantern by heating) the fringes 
would suddenly change their position, in which case the series of 
observations was rejected and a new series begun. 

In making the adjustment before the third series of observa
tions, the direction in which the fringes moved, on moving the 
glass plate b, was reversed, so that the displacement in the third 
and fourth series are to be taken with the opposite sign. 

At the end of each series the support was turned 90°, and the 
axis was carefully adjusted to the vertical by means of the foot-
screws and a spirit level. 



MICHELSON! THE LUMINIFEROUS ETHER 99 

The heading of the columns in the table gives the direction 
toward which the telescope pointed. 

The footing of the erroneous column is marked x9 and in the 
calculations the mean of the two adjacent footings is substituted. 

The numbers in the columns are the positions of the center of 
the dark fringe in twelfths of the distance between the fringes. 

In the first two series, when the footings of the columns N. and 
S. exceed those of columns E. and W., the excess is called positive. 
The excess of the footings of N.E., S.W., over those of N.W., S.E., 
are also called positive. In the third and fourth series this is re
versed. 

The numbers marked "excess" are the sums often observations. 
Dividing therefore by 10, to obtain the mean, and also by 12 
(since the numbers are twelfths of the distance between the frin
ges), we find for 

N.S. N.E., S.W. 
Series 1 +0017 +0050 
Series 2 - 0 0 2 5 -0-033 
Series 3 +0-030 +0030 
Series 4 .+0-067 +0087 

4 0-089 0-137 
Mean = +0022 +0034 

The displacement is, therefore, 
In favor of the columns N.S +0022 
In favor of the columns N.E., S.W +0034 

The former is too small to be considered as showing a displace
ment due to the simple change in direction, and the latter should 
have been zero. 

The numbers are simply outstanding errors of experiment. 
It is, in fact, to be seen from the footings of the columns, that the 
numbers increase (or decrease) with more or less regularity from 
left to right. 

This gradual change, which should not in the least affect the 
periodic variation for which we are searching, would of itself ne-
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cessitate an outstanding error, simply because the sum of the two 
columns farther to the left must be less (or greater) than the sum of 
those farther to the right. 

This view is amply confirmed by the fact that where the excess is 
positive for the column N.S., it is also positive for N.E., S.W., and 
where negative, negative. If, therefore, we can eliminate this gra
dual change, we may expect a much smaller error. This is most 
readily accomplished as follows: 

Adding together all the footings of the four series, the third and 
fourth with negative sign, we obtain 

N. N.E. E. S.E. S. S.W. W. N.W. 
31-5 31-5 260 24-5 23-0 20-8 18-0 11-0 

or dividing by 20 X12 to obtain the means in terms of the distance 
between the fringes, 

N. N.E. E. S.E. S. S.W. W. N.W. 
0-131 0131 0-108 0-102 0096 0-086 0-075 0-046 

If x is the number of the column counting from the right and 
y the corresponding footing, then the method of least squares 
gives as the equation of the straight line which passes nearest the 
points x, y— 

y = 9-25*+ 64-5 
If, now, we construct a curve with ordinates equal to the differ

ence of the values of y found from the equation, and the actual 
value of y9 it will represent the displacements observed, freed 
from the error in question. 

These ordinates are: 
N. N.E. E. S.E. 

-•002 - 0 1 1 +-003 - 0 0 1 
N. - 0 0 2 E. +003 
S. - 0 0 4 W. -.001 
Mean = - 0 0 3 +001 

+ 001 
Excess = - 0 0 4 

S. S.W. W. N.W. 
- 0 0 4 --003 - 0 0 1 +-018 
N.E. - 0 1 1 N.W. +018 
S.W. - 0 0 3 S.E. - 0 0 1 
Mean= - 0 0 7 +008 

+ 008 
Excess = —015 
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The small displacements -0-004 and -0-015 are simply errors 
of experiment. 

The results obtained are, however, more strikingly shown by 
constructing the actual curve together with the curve that should 
have been found if the theory had been correct. This is shown in 
fig. 4. 

FIG. 4 

The dotted curve is drawn on the supposition that the displace
ment to be expected is one-tenth of the distance between the frin
ges, but if this displacement were only ^9 the broken line would 
still coincide more nearly with the straight line than with the curve. 

The interpretation of these results is that there is no displace
ment of the interference bands. The result of the hypothesis of a 
stationary ether is thus shown to be incorrect, and the necessary 
conclusion follows that the hypothesis is erroneous. 

This conclusion directly contradicts the explanation of the phe
nomenon of aberration which has been hitherto generally accept
ed, and which presupposes that the earth moves through the 
ether, the latter remaining at rest. 

It may not be out of place to add an extract from an article 
published in the Philosophical Magazine by Stokes in 1846. 

"All these results would follow immediately from the theory 
of aberration which I proposed in the July number of this maga
zine; nor have I been able to obtain any result admitting of being 
compared with experiment, which would be different according 
to which theory we adopted. This affords a curious instance of 
two totally different theories running parallel to each other in the 
explanation of phenomena. I do not suppose that many would be 
K-STR 8 
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disposed to maintain Fresnel's theory, when it is shown that it 
may be dispensed with, inasmuch as we would not be disposed 
to believe, without good evidence, that the ether moved quite 
freely through the solid mass of the earth. Still it would have 
been satisfactory, if it had been possible to have put the two 
theories to the test of some decisive experiment." 

In conclusion, I take this opportunity to thank Mr. A. Graham 
Bell, who has provided the means for carrying out this work, and 
Professor Vogel, the Director of the Astrophysicalisches Observa-
torium, for his courtesy in placing the resources of his laboratory 
at my disposal. 

NOTES ON EXTRACT 2 

IN THE section of his book Aether and Matter reproduced here Larmor can 
be seen making great efforts to relate the field theory resulting from Maxwell's 
equations to the form of wave motion with which he is already familiar, that 
is, waves in elastic solids and fluids. From our point of view it no longer 
seems worth while constructing models of this kind, but the difficulty of doing 
so undoubtedly played a part in the disenchantment of physicists with the 
concept of the aether. With great ingenuity Larmor shows that the apparently 
paradoxical combinations of a perfect fluid (one having no viscosity) endowed 
with rotational elasticity can be realised by an immense aggregate of tiny 
gyroscopes. He then goes on to consider whether such a material could also 
provide a model for an electron in the sense of a point singularity. This part 
of the book is a quotation from an earlier paper in 1897, and is followed 
by a correction. This correction, to do with the constancy of the rotation, 
allows Larmor to carry the model a little further. It is, however, very striking 
that he comes to the conclusion that such a mechanical model is essentially 
only equivalent to constructing a variational principle for the field under 
consideration, a principle which, as he was well aware, can be constructed 
irrespective of the physical model. In the concluding pages of the extract he 
is anticipating to a considerable extent the later views of people about the 
utility of such models. (The extract consists of Appendix E, up to the middle 
of p. 334; the remainder of the appendix contains rather technical matter.) 
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APPENDIX E 

On Kinematic and Mechanical Modes of 
Representation of the Activity of the Aether 
By J. LARMOR 

Mechanical Models and Illustrations 

"Although the Gaussian aspect of the subject, which would 
simply assert that the primary atoms of matter exert actions on 
each other which are transmitted in time across space in accord
ance with Maxwell's equations, is a formally sufficient basis on 
which to construct physical theory, yet the question whether we 
can form a valid conception of a medium which is the seat of 
this transmission is of fundamental philosophical interest, quite 
independently of the fact that in default of the analogy at any 
rate of such a medium this theory would be too difficult for de
velopment. With a view to further assisting a judgment on this 
question, it is here proposed to describe a process by which a 
dynamical model of this medium can be theoretically built up out 
of ordinary matter,—not indeed a permanent model, but one 
which can be made to continue to represent the aether for any 
assignable finite time, though it must ultimately decay. The aether 
is a perfect fluid endowed with rotational elasticity; so in the first 
place we have—and this is the most difficult part of our under
taking—to construct a material model of a perfect fluid, which 
is a type of medium nowhere existing in the material world. Its 

[* Aether and Matter, pp. 323-34.] 
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characteristics are continuity of motion and absence of viscosity: 
on the other hand in an ordinary fluid, continuity of motion is 
secured by diffusion of momentum by the moving molecules, 
which is itself viscosity, so that it is only in motions such as vibra
tions and slight undulations where the other finite effects of vis
cosity are negligible, that we can treat an ordinary fluid as a per
fect one. If we imagine an aggregation of frictionless solid spheres, 
each studded over symmetrically with a small number of friction-
less spikes (say four) of length considerably less than the radius*, 
so that there are a very large number of spheres in the differential 
element of volume, we shall have a possible though very crude 
means of representation of an ideal perfect fluid. There is next to 

be imparted to each of these spheres the elastic property of resist
ing absolute rotation; and in this we follow the lines of Lord 
Kelvin's gyrostatic vibratory aether. Consider a gyrostat consist
ing of a flywheel spinning with angular momentum ^, with its 
axis AB pivoted as a diameter on a ring whose perpendicular dia
meter CD is itself pivoted on the sphere, which may for example 
be a hollow shell with the flywheel pivoted in its interior; and 

* The use of these studs is to'maintain continuity of motion of the medium 
without the aid of viscosity; and also (§ 4) to compel each sphere to participate 
in the rotation of the element of volume of the medium, so that the latter 
shall be controlled by the gyrostatic torques of the spheres. 
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examine the effect of imparting a small rotational displacement 
to the sphere. The direction of the axis of the gyrostat will be 
displaced only by that component of the rotation which is in the 
plane of the ring; an angular velocity dOjdt in this plane will pro
duce a torque measured by the rate of change of the angular 
momentum, and therefore by the parallelogram law equal to 
H dO/dt turning the ring round the perpendicular axis CD, thus 
involving a rotation of the ring round that axis with angular 
acceleration \x\i. dO/dt, that is with velocity ^/ i \0 , where i is the 
aggregate moment of inertia of the ring and the flywheel about 
a diameter of the wheel. Thus when the sphere has turned through 
a small angle 0, the axis of the gyrostat will be turning out of the 
plane of d with an angular velocity ////.#, which will persist uni
form so long as the displacement of the sphere is maintained. This 
angular velocity again involves, by the law of vector composition, 
a decrease of gyrostatic angular momentum round the axis of the 
ring at the rate (j?/i.O; accordingly the displacement 6 imparted 
to the sphere originates a gyrostatic opposing torque, equal to 
fjfi/i. 6 so long as p/i. f ddt remains small, and therefore of purely 
elastic type. If then there are mounted on the sphere three such 
rings in mutually perpendicular planes, having equal free angular 
momenta associated with them, the sphere will resist absolute ro
tation in all directions with isotropic elasticity. But this result 
holds only so long as the total displacement of the axes of the 
flywheels is small: it suffices however to confer rotatory elasticity, 
as far as is required for the purpose of the transmission of vibra
tions of small displacement through a medium constituted of a 
flexible framework with such gyrostatic spheres attached to its 
links, which is Lord Kelvin's gyrostatic model* of the lumini-
ferous working of the aether. For the present purpose we require 
this quality of perfect rotational elasticity to be permanently main-

* Lord Kelvin, Comptes Rendus, Sept. 1889: 'Math, and Phys. Papers,' 
III, p. 466. 
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tained, whether the disturbance is vibratory or continuous. Now 
observe that if the above associated free angular momentum \i 
is taken to be very great, it will require a proportionately long 
time for a given torque to produce an assigned small angular 
displacement, and this time we can thus suppose prolonged as 
much as we please: observe further that the motion of our rota
tional aether in the previous papers is irrotational except where 
electric force exists which produces rotation proportional to its 
intensity, and that we have been compelled to assume a high 
coefficient of inertia of the medium, and therefore an extremely 
high elasticity in order to conserve the ascertained velocity of 
radiation, so that the very strongest electric forces correspond to 
only very slight rotational displacements of the medium: and it 
follows that the arrangement here described, though it cannot 
serve as a model of a field of steady electric force lasting for ever, 
can yet theoretically represent such a field lasting without sensible 
decay for any length of time that may be assigned. 

"It remains to attempt a model (cf. Part I, § 116) of the consti
tution of an electron, that is of one of the point-singularities in 
the uniform aether which are taken to be the basis of matter, and 
at any rate are the basis of its electrical phenomena. Consider the 
medium composed of studded gyrostatic spheres as above: al
though the motions of the aether, as distinct from the matter which 
flits across it, are so excessively slow on account of its great inertia 
that viscosity might possibly in any case be neglected, yet it will 
not do to omit the studs and thus make the model like a model 
of a gas, for we require rotation of an individual sphere to be 
associated with rotation of the whole element of volume of the 
medium in which it occurs. Let then in the rotationally elastic 
medium a narrow tubular channel be formed, say for simplicity 
a straight channel AB of uniform section: suppose the walls of 
this channel to be grasped, and rotated round the axis of the tube, 
the rotation at each point being proportional for the straight tube 
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to AP~2+PB-2*: this rotation will be distributed through the 
medium, and as the result there will be lines of rotational displace
ment all starting from A and terminating at B: and so long as 
the walls of the channel are held in this position by extraneous 
force, A will be a positive electron in the medium, and B will 
be the complementary negative one. They will both disappear 
together when the walls of the channel are released. But now 
suppose that before this release the channel is filled up (except 
small vacuous nuclei at A and B which will assume the spherical 
form) with studded gyrostatic spheres so as to be continuous with 
the surrounding medium; the effort of release in this surrounding 
medium will rotate these spheres slightly until they attain the 
state of equilibrium in which the rotational elasticity of the new 
part of the medium formed by their aggregate provides a balanc
ing torque, and the conditions all round A or B will finally be 
symmetrical. We shall thus have created two permanent conjugate 
electrons A and B\ each of them can be moved about through 
the medium, but they will both persist until they are destroyed 
by an extraneous process the reverse of that by which they are 
formed. Such constraints as may be necessary to prevent division 
of their vacuous nuclei are outside our present scope; and mutual 
destruction of two complementary electrons by direct impact is 
an occurrence of infinitely small probability. The model of an 
electron thus formed will persist for any finite assignable time if 
the distribution of gyrostatic momentum in the medium is suffici
ently intense: but the constitution of our model of the medium 
itself of course prevents, in this respect also, absolute permanence. 
It is not by any means here suggested that this circumstance forms 
any basis for speculation as to whether matter is permanent, or 
will gradually fade away. The position that we are concerned in 
supporting is that the cosmical theory which is used in the pre
sent memoirs as a descriptive basis for ultimate physical discus-

[* This is corrected infra.] 
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sions is a consistent and thinkable scheme; one of the most con
vincing ways of testing the possibility of the existence of any hypo
thetical type of mechanism being the scrutiny of a specification 
for the actual construction of a model of it. 

"An idea of the nature and possibility of a self-locked intrinsic 
strain, such as that here described, may be facilitated by reference 
to the cognate example of a material wire welded into a ring after 
twist has been put into it. We can also have a closer parallel, as 
well as a contrast; if breach of continuity is produced across an 
element of interface in the midst of an incompressible medium 
endowed with ordinary material rigidity, for example by the crea
tion of a lens-shaped cavity, and the material on one side of the 
breach is twisted round in its plane, and continuity is then restored 
by cementing the two sides together, a model of an electric doublet 
or polar molecule will be produced, the twist in the medium re
presenting the electric displacement and being at a distance ex
pressible as due to two conjugate poles in the ordinary manner. 
Such a doublet is permanent, as above; it can be displaced into 
a different position, at any distance, as a strain-form, without the 
medium moving along with it; such displacement is accompanied 
by an additional strain at each point in the medium, namely, 
that due to the doublet in its new position together with a negative 
doublet in the old one. A series of such doublets arranged trans
versely round a linear circuit will represent the integrated effect 
of an electric polarization-current in that circuit; they will imply 
irrotational linear displacement of the medium round the circuit 
after the manner of vortex motion, but this will now involve 
elastic stress on account of the rigidity. Thus with an ordinary 
elastic solid medium, the phenomena of dielectrics, including 
wave-propagation, may be kinematically illustrated; but we can 
thereby obtain no representation of a single isolated electric 
charge or of a current of conduction, and the laws of optical 
reflexion would be different from the actual ones. This material 
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Illustration will clearly extend to the dynamical laws of induction 
and electromagnetic attraction between alternating currents, but 
only in so far as they are derived from the kinetic energy; the law 
of static attraction between doublets of this kind would be diffe
rent from the actual electric law." 

Phil Trans. 1897 A, pp. 209-212. 

1. This description of an ideal (supernatural) construction for 
electrons in a rotational aether requires correction as regards one 
point. The line integral of the rotation that has to be imparted 
to the walls of the canal AB is equal at each cross-section to the 
surface integral of the normal component of the rotational displa
cement of the aether over a surface abutting on it and enclosing 
either electron: it is therefore constant all along the canal, whether 
the latter is straight or curved, instead of proportional to 
AP~2+PB~2 as above stated. Thus if the canal is of uniform 
circular section, the rotational displacement of its walls is uni
form all along it. 

This circumstance allows a development of the analogy, which 
will further illustrate the origin of the mechanical attraction be
tween two electrons. It is a well-known device in mechanical 
construction, to use a flexible wire of great torsional rigidity to 
transmit rotation from one shaft to another not in line with it, 
by clamping the ends of the wire to the ends of the shafts so that 
it forms an elastic connexion between them. Now instead of 
filling up our ideal canal in the aether by a filament of aether, let 
us suppose it filled up by such a wire, of infinite torsional rigidity, 
and in continuous connexion with the surrounding aether. Each 
time any cross section C of this wire is rotated round its axis by 
an impressed torque, the rotation is transmitted all along the 
wire, and thence to the aether alongside it; and two complement
ary electrons are thus developed at its ends A and B. On releasing 
this section C the rotation undoes itself, and these terminal elec
trons disappear. This arrangement constitutes an elastic system 
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devoid of any intrinsic stress such as was previously implanted 
in the system by filling up the canal with aether itself; for it 
becomes free from stress on releasing the wire. We should there
fore be in a position to point directly to the proximate cause of 
the attraction of one electron on the other. It is to be found in 
the tangential tractions which the surrounding aether exerts on 
the surface of the wire, which form a system of forces statically 
equivalent, by virtue of the principle of virtual work, to an at
traction between its ends. 

We can in this way imagine the aether with its contained 
electrons as mathematically dissected into an elastic medium de
void of intrinsic strain, by connecting each positive electron with 
a complementary negative one by means of such an elastic mat
erial wire AB in continuous connexion with the aether, to which 
has been imparted at any cross section C the amount of rotation 
proper to maintain the intensities of the electrons. When the wire 
has disappeared and the electrons at A and B are permanently 
constituted by filling up its place with aether, the possibility of 
thus specifying a proximate cause of the mechanical attraction 
between the electrons has also in a sense disappeared. But just 
as the exploration of the relations of a cyclic analytical function 
requires the introduction of cross-cuts or barriers in its domain 
to render account of the cyclic character, so the complete elucida
tion of the dynamics of a medium involving cyclic intrinsic strain 
requires the introduction of ideal canals or tubes connecting the 
strain-centres, through operation on which this strain may be 
considered as implanted in the medium*. We can even consider 

* When the medium is thus completely specified, the line integration in 
Stokes' theorem of curl will contain integrals round the sections of these tubes 
where they cross the sheet. But it is only the ends of the tubes that are 
determinate; hence to obtain a definite result we must (as in i, p. 90, in which 
the fluxion dots should be deleted) apply the theorem only to the change, 
indicated there by the A9 that results from small displacements of the existing 
electrons; each displacement of an electron is formally equivalent to the es
tablishment of a tube of strain connecting its old with its new position, and 
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the tractions exerted on the surface of such a tube of strain as 
statically transmitted to the electrons at its ends just as if it in
cluded the wire of the illustration. Even when the wire is present 
the amount of the attraction is most easily determined by applica
tion of the principle of Energy: this method remains available 
when it is absent, so long as it is definitely recognized that the 
Energy principle, or more generally the Action principle, is a 
fundamental dynamical method whose application is not limited 
to the class of cases in which we are able to describe the activity 
of the medium in terms of familiar processes of direct elastic 
transmission. Although the simultaneous representation of the 
two kinds of existing forcive, aethereal stress and material attrac
tions, thus transcends the usual elementary notion of elastic pro
pagation, they yet appear alongside each other in the develop
ment of the dynamical formulation of the medium in terms of the 
principle of Action, which is prior to any model whatever, and 
is moreover logically required, unless we are content to view the 
medium as a system of relations in space and time represented 
by differential equations devoid of dynamical significance. We 
thus conclude, along with von Helmholtz, that there is no resting 
place in general dynamical theory or explanation, short of the 
Action foundation. The content of this principle, as applied to 
continuous media, is in various ways wider than the conception 
of simple elastic transmission, which is the case that is most 
familiar in the more easily analyzed classes of physical pheno
mena. We might for example have an energy function involving 

whenever this tube crosses the sheet a correcting term is required in the 
formula. 

A convenient mode of developing the electrodynamics of material media 
would be to replace the translational displacement of each electron by the 
local rotational displacement of the aether itself which is its constitutive 
equivalent as regards that medium; the problem can then be treated by 
methods of continuous analysis applied to free aether. Cf. Camb. Phil. Trans., 
Stokes' Jubilee volume, 1900. 
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second as well as first differential coefficients of the displacements, 
in which case disturbances would still be transmitted by the me
dium, but not by the agency of simple elastic stress definable in 
terms of surface tractions alone: it is only the extreme shortness 
of the range of molecular action compared with the size of the 
element of mass that is just sensible to our powers of observation, 
that debars this case from being a practical one. 

In point of history, the dynamics of elastic propagation was 
first developed in a somewhat inexact way by Navier and Poisson, 
and attempts were subsequently made to establish it on an in
complete molecular foundation by Cauchy and others. But there 
was no reliable foothold obtainable even for this simple case until 
Green, by one of his strokes of genius, summarily included the 
whole matter under the Action principle. Reference to a trans
mitting medium was previously instructive by way of general 
illustration, for example in physical optics, but before the use of 
this principle by Green and by MacCuilagh there was no suffi
ciently exact and general formulation of its possible modes of 
activity. It is in this way that the Action principle is prior even 
to the exact development of a theory of simple elastic transmis
sion : and it is thus not surprising that it forms the most suitable 
basis when the transmitting medium is constituted in a more com
plex manner. 

2. The subjects discussed in this book have in the main been 
treated without any hypothesis as to the structure of the nucleus 
of an electron. In a preliminary stage of the development of this 
theory, the analogy of an electron to a conductor carrying an 
electric charge suggested that the nucleus of an electron might be 
treated as a minute spherical region in which the aether is effect
ively devoid of elasticity: but this is not an essential or even prob
able feature. The illustration above given, of a nucleus of intrinsic 
strain in an elastic solid, indicates that what is essential is the 
concentration of 'beknottedness' in the small volume of the me-
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dium which constitutes the nucleus, which would thus correspond 
to a small volume-electrification. Such an intrinsic strain-form is 
mobile through the medium, without thereby originating any new 
distribution of stress around it, because it is only rotation and 
not deformation of the aether that calls out elastic reaction; and 
this free mobility is an essential element in the theory. But the 
analysis into independent strains and rotations, on which it rests, 
requires that both strain and rotation shall be very small; thus 
the inertia of the medium must be very great, and each nucleus 
must be so constituted that the intrinsic rotations involved in its 
structure are so small that they can everywhere be treated as 
differential rotations, which is demanded by the linearity of the 
scheme of equations as well as by the mobility of the nucleus. 

The dynamical scheme developed in Chapter VI is however 
based solely on the application of the method of Action to a me
dium uniform throughout all space, specified by the Lagrangian 
function T—JV, and involving in its constitution mobile poles 
or electrons which by their aggregation form a representation 
of matter, at any rate in those respects in which it interacts 
with the aether. In that scheme the effective aethereal displace
ment represented by (|, rj, £) need not be defined: it is not neces
sary (and it was not there intended) to assume it to be a transla-
tional displacement. The scheme thus stands on a formally defi
nite basis independently of any knowledge of the type of disturb
ance that (|, rj9 C) represents: and it has not as yet been shown 
to be too narrow to represent the field of general physical ac
tions. 

In the model or illustration of the working of the aether which 
has been here described, this disturbance (I, rj, £) is taken to 
represent translational displacement of the element of aether ori
ginally situated at the point (x, y, z). The medium is then one 
whose elasticity is purely and solely rotational. One object of the 
gyrostatic mode of representation above explained is to render 
the idea of rotational elasticity more familiar and more easily 
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grasped, by illustrating it from the properties of an actual me
dium which could theoretically be constructed from ordinary 
matter. It is also of use towards allaying scruples that naturally 
arise as to the legitimacy of assuming a set of abstract properties 
of a type not met with in matter under ordinary conditions, and 
therefore liable to the suspicion of being somehow self-contra
dictory or in opposition to formally necessary dynamical princip
les : but though an actual model of such a medium forms a valu
able and forcible illustration, the argument is logically complete 
without it. Such a gyrostatic model has no claim to be more 
than an illustration of the properties of the aether, for an aether 
of the present type can hardly on any scheme be other than a 
medium, or mental construction if that term is preferred, prior 
to matter and therefore not expressible in terms of matter. 

This more special hypothesis that takes the variable (1,77, C) in 
p. 84 to be proportional to actual translational displacement, in
volves on the other hand a question of direct fact, as to which 
there are physical means of inquiry: its further consideration is 
therefore called for. It has been explained that, whatever be the 
character of the vector (|, rj9 Q, the facts as regards the influence 
of the Earth's motion on optical phenomena, as well as the linear 
character (p. 96) of the electrodynamic equations, require that the 
aether shall be practically stagnant. On the present hypothesis this 
vector, whose time-gradient represents magnetic force, must there
fore be equal to the translational displacement of the medium 
multiplied by a very large numerical constant. There is in fact no 
phenomenon known which is inconsistent with the ultimate simpli
fication of passing analytically towards a limit, by taking the 
translational displacement to be indefinitely small and this mul
tiplier indefinitely great. 

The question suggests itself, as to what inducement there is to 
specify (/, g, h) as of the type of rotational displacement at all, 
seeing that the theory develops itself without any reference to the 
type of disturbance which this vector represents. The only motive 
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is that the number of unconnected hypotheses, which dynamically 
cannot be independent, is thereby reduced: the possibility of the 
intrinsic elastic structure of an electron, and that of its free mobi
lity, will be in the more indeterminate theory two new assump
tions, both of unaccustomed character: while on the more special 
view they are both merged as corollaries in the single interpreta
tion of the relations of the aethereal medium, so that the scheme 
proceeds on that basis alone. But in the case of a mind to which 
this simplification does not appeal, either as an elimination of a 
group of hypotheses that cannot from the nature of the case be 
independent and are so liable to the possibility of being inconsis
tent with each other, or else as an assistance to vivid apprehension 
of the relations*, the argument can proceed without any necessity 
for its adoption. 

* It is desirable to further emphasize that these representations are illustra
tive, not essential: it may be held that they are too imperfect to be useful, 
without giving up anything essential in the theoretical formulation of the 
phenomena. In ultimate logic any physical representation is in fact a mental 
construction or analogy, designed to relieve the mind from the intangible and 
elusive character of a complex of abstract relations. It thus involves a corre
lation of a range of phenomena with something else that can be constructed 
either actually or mentally. It is however unreasonable to suppose that two 
things not the same can have complete identity of relations: on the other hand 
the universal employment of such ideal pictures constitutes evidence that they 
are legitimate and powerful aids to knowledge. Our mental image, whether 
abstract or illuminated by a model, cannot ever be completely identical with 
the complex of phenomena which it represents, though it is capable of con
tinued approximation thereto. The essential problem is to determine in each 
case how deep the correspondence extends: if it is found to extend into un
foreseen properties and lead to the recognition or prediction of new relations 
in the field of the actual phenomena, its propriety within due restrictions is 
usually considered to be vindicated: it is in fact in this way that most advances 
of knowledge arise. Cf. Hertz's Mechanik, Introduction. 



NOTES ON EXTRACT 3 

LORENTZ begins by recalling Michelson's well-known experiment, which he 
and Fitzgerald had explained provisionally by supposing that solid objects 
were slightly altered by their motion through the aether. This explanation 
is very difficult to maintain in the face of later experiments. Lorentz is also 
strongly impressed by Poincare's objection that the explanation of Michel-
son's result by means of a new hypothesis is worthless if it is allowed to serve 
as a precedent, with a new hypothesis every time new experimental facts 
arise. Accordingly Lorentz carries out a new investigation ostensibly on the 
basis of his theory of electrons. In fact, however, the character of the electrons 
is unimportant. The investigation is essentially of how Maxwell's equations 
can be transformed by a transformation which agrees as far as possible with 
the one used in Newtonian mechanics, and yet retain their form. How far 
Lorentz was from a deeper understanding of the formula which he found 
can be seen by the equations (4) and (5) of his paper, where the relationship 
between the time and the old coordinates is slightly different from the one 
now considered. It was, however, an astonishing achievement to be able to 
carry out the whole investigation on the basis of the invariance of Maxwell's 
equations. (The tables referred to at the end of the extract (which is nearly 
but not completely the end of Lorentz' paper) have been omitted as now of 
little interest.) 
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Electromagnetic Phenomena in a System Moving with 
any Velocity less than that of Light 
By H. A. LORENTZ 

§ 1. THE problem of determining the influence exerted on electric 
and optical phenomena by a translation, such as all systems have in 
virtue of the Earth's annual motion, admits of a comparatively 
simple solution, so long as only those terms need be taken into 
account, which are proportional to the first power of the ratio be
tween the velocity of translation v and the velocity of light c. Cases 
in which quantities of the second order, i.e. of the order v2/c2, may 
be perceptible, present more difficulties. The first example of this 
kind is Michelson's well-known interference-experiment, the nega
tive result of which has led Fitzgerald and myself to the conclusion 
that the dimensions of solid bodies are slightly altered by their 
motion through the ether. 

Some new experiments, in which a second order effect was 
sought for, have recently been published. Rayleigh* and Brace1" 
have examined the question whether the Earth's motion may cause 
a body to become doubly refracting. At first sight this might be 
expected, if the just mentioned change of dimensions is admitted. 
Both physicists, however, have obtained a negative result. 

In the second place Trouton and Noblet have endeavoured to 
[* Proc. Acad. Sci. Amst. 6, 809 (1904).] 
* Rayleigh, Phil. Mag. (6), 4, 1902, p. 678. 
t Brace, Phil. Mag. (6), 7, 1904, p. 317. 
t Trouton and Noble, Phil. Trans. Roy. Soc. Lond., A 202. 1903, p. 165. 
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detect a turning couple acting on a charged condenser, the plates 
of which make a certain angle with the direction of translation. 
The theory of electrons, unless it be modified by some new hypo
thesis, would undoubtedly require the existence of such a couple. 
In order to see this, it will suffice to consider a condenser with 
ether as dielectric. It may be shown that in every electrostatic sys
tem, moving with a velocity v,* there is a certain amount of 
"electromagnetic momentum." If we represent this, in direction 
and magnitude, by a vector G, the couple in question will be deter
mined by the vector product1" 

[G.T]. (1) 

Now, if the axis of z is chosen perpendicular to the condenser 
plates, the velocity v having any direction we like; and if U is the 
energy of the condenser, calculated in the ordinary way, the com
ponents of G are givent by the following formulae, which are 
exact up to the first order, 

2U 2U 
G* = -^-vx, Gv=—vy, Gz = 0. 

Substituting these values in (1), we get for the components of the 
couple, up to terms of the second order, 

W 2U 
—£-vyvz, ~-^Vxvz, 0. 

These expressions show that the axis of the couple lies in the 
plane of the plates, perpendicular to the translation. If a is the 
angle between the velocity and the normal to the plates, the mo-

* A vector will be denoted by a Clarendon letter, its magnitude by the 
corresponding Latin letter. 

t See my article: "Weiterbildung der Maxwell'schen Theorie. Electron-
entheorie," Mathem. Encyclopadie, V, 14, § 21, a. (This article will be quoted 
as M.E.) 

t M.E.. § 56, c. 
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ment of the couple will be U(v/c)2 sin 2a; it tends to turn the con
denser into such a position that the plates are parallel to the Earth's 
motion. 

In the apparatus of Trouton and Noble the condenser was fixed 
to the beam of a torsion-balance, sufficiently delicate to be deflect
ed by a couple of the above order of magnitude. No effect could 
however be observed. 

§ 2. The experiments of which I have spoken are not the only 
reason for which a new examination of the problems connected 
with the motion of the Earth is desirable. Poincare* has objected 
to the existing theory of electric and optical phenomena in moving 
bodies that, in order to explain Michelson's negative result, the 
introduction of a new hypothesis has been required, and that the 
same necessity may occur each time new facts will be brought to 
light. Surely this course of inventing special hypotheses for each 
new experimental result is somewhat artificial. It would be more 
satisfactory if it were possible to show by means of certain funda
mental assumptions and without neglecting terms of one order of 
magnitude or another, that many electromagnetic actions are 
entirely independent of the motion of the system. Some years ago, 
I already sought to frame a theory of this kind.1" I believe it is now 
possible to treat the subject with a better result. The only restric
tion as regards the velocity will be that it be less than that of 
light. 

§3.1 shall start from the fundamental equations of the theory of 
electrons.t Let D be the dielectric displacement in the ether, H the 
magnetic force, g the volume-density of the charge of an electron, 
v the velocity of a point of such a particle, and F the ponderomo-
tive force, i.e. the force, reckoned per unit charge, which is exerted 
by the ether on a volume-element of an electron. Then, if we use a 

* Poincare, Rapports du Congrds de physique de 1900, Paris, 1, pp. 22, 23. 
t Lorentz, Zittingsverslag Akad. v. Wet., 7, 1899, p. 507; Amsterdam 

Proc, 1898-99, p. 427. 
X M.E. § 2. 

9* 
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fixed system of co-ordinates, 

div D = Q, div H = 0, 

c u r l H = 7(-aT+ev)' 

curl D = - c dt ' 
(2) 

F = D + —[y.H]. 
c 

I shall now suppose that the system as a whole moves in the 
direction of x with a constant velocity v, and I shall denote by u 
any velocity which a point of an electron may have in addition to 
this, so that 

VX = V + UX, Vy = Uy, Vz = UZ. 

If the equations (2) are at the same time referred to axes moving 
with the system, they become 

div D = g, div H = 0, 

dHz 8H, 
dy 

SHX 

dz 

dHy 

dx 

dDz 

dy 

dDx 

dz 

dDy 

dz 

dH2 

dx 

dHx 

dy 

dDy 

dz 

dDz 

dx 

dD* 
dx 

lid d\ _ 1 
ss7\-ei-vte)D'+7eu" 

1 ld e\If = — ( a F — t o ) " " 
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Fx = Dx+ — (UyHz-uzHy)9 c 

Fy = Dy vHz + —(uzHx-uxHz)9 

Fz = Dz + — vHyl—(uxHy-uyHx). c c 

§ 4. We shall further transform these formulae by a change of 
variables. Putting 

£2, (3) c2 — v2 

and understanding by / another numerical quantity, to be deter
mined further on, I take as new independent variables 

x' = (Six, y' = ly9 z' = Iz, (4) 

t'=lt-pl^x, (5) 

and I define two new vectors D' and H' by the formulae 

D'X=±DX, iyy = JL{Dy-lH,y D'z = t{Dz+lHyy 

H'x = -pHx, H'y = ~p\Hy + —Dz\, H'z = -j^lHz——Dy\, 

for which, on account of (3), we may also write 

DX = PD'X, D, = pp(D',+jH'X Dz = pl*(D'z-^H'y\) 

HX = PH'X, Hy = piz(Hy-jD'z\, H, = pp(m+jD,\\ 
(6) 

As to the coefficient /, it is to be considered as a function of v9 

whose value is 1 for v = 0, and which, for small values of v9 

differs from unity no more than by a quantity of the second order. 
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The variable f may be called the "local time"; indeed, for 
/? = 1, / = 1 it becomes identical with what I formerly denoted by 
this name. 

If, finally, we put 

5» Q = Q' (7) /5/3 

P'2UX — u'x, filly = ll'y, $UZ = Uz, (8) 

these latter quantities being considered as the components of a 
new vector u', the equations take the following form: 

div' D - (l - VUA Q\ div' H' = 0, 

curl' D' 

1 / 8 D ' 

I 0H' 
c dt'~' 

FX = P\D'X + l
c (llyH'Z - U'ZH'y) + ~ (u'yD'y + ti'M)^, 

p f 1 
y - - J D ; + (U'ZH'X - UXH'Z) - 2 ^ z > ; [, 

F , = jlD'z+l
c(uxHy-UyHx)--~u'xD'z\. 

(9) 

(10) 

The meaning of the symbols div' and curl' in (9) is similar to that 
of div and curl in (2); only, the differentiations with respect to x, y9 

z are to be replaced by the corresponding ones with respect to 
x\ y\ z\ 

§ 5. The equations (9) lead to the conclusion that the vectors D' 
and H' may be represented by means of a scalar potential (j)' and a 
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vector potential A'. These potentials satisfy the equations* 

1 d2A' 1 

and in terms of them D' and H' are given by 

1 dA' v 
D' = *7 r -g rad ' 0 ' + - grad' ^ (13) 

c ot c 
H' = curl' A'. (14) 

The symbol v ' 2 is an abbreviation for 62/dx'2 + 82/dy'2 + 62/dz'2, 
and grad' <t>' denotes a vector whose components are 

8$' d(j)' d(f>' 
dx' ' 8yf ' 0z' ' 

The expression grad' ^ has a similar meaning. 
In order to obtain the solution of (11) and (12) in a simple form, 

we may take x\ y\ z' as the co-ordinates of a point P' in a space 
£", and ascribe to this point, for each value of t\ the values of Q\ 
u', $' , A', belonging to the corresponding point P(x, y, z) of the 
electromagnetic system. For a definite value t' of the fourth inde
pendent variable, the potentials </>' and A' at the point P of the sys
tem or at the corresponding point P of the space S', are given by1" 

A , = 1 f [£V] ^ , 
4TTC J r 

Here G£S" is an element of the space 5", r' its distance from P' , 
and the brackets serve to denote the quantity Q' and the vector Q'VL' 

* M.E., §§ 4 and 10. 
t Ibid., §§ 5 and 10. 
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such as they are in the element dS\ for the value t' —r'fc of the 
fourth independent variable. 

Instead of (15) and (16) we may also write, taking into account 
(4) and (7), 

♦-JJM.B (17) 

the integrations now extending over the electromagnetic system 
itself. It should be kept in mind that in these formulae r' does not 
denote the distance between the element dS and the point (x, y9 z) 
for which the calculation is to be performed. If the element lies at 
the point (xu y±, zi), we must take 

It is also to be remembered that, if we wish to determine $' and 
A' for the instant at which the local time in P is t\ we must take g 
and QVL\ such as they are in the element dS at the instant at which 
the local time of that element is t' —r'/c. 

§ 6. It will suffice for our purpose to consider two special cases. 
The first is that of an electrostatic system, i.e. a system having no 
other motion but the translation with the velocity v. In this case 
u' = 0, and therefore, by (12), A' = 0. Also, $' is independent of 
/', so that the equations (11), (13), and (14) reduce to 

D' = -grad'0', 1 (19) 
H' = 0. ) 

After having determined the vector D' by means of these equa
tions, we know also the ponderomotive force acting on electrons 
that belong to the system. For these the formulae (10) become, 
since u' = 0, 

Fx = l*D'X9 F=jD'y, Fz=jD'z. (20) 
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The result may be put in a simple form if we compare the mov
ing system 27, with which we are concerned, to another electrostatic 
system 27' which remains at rest, and into which 27 is changed if 
the dimensions parallel to the axis of x are multiplied by /?/, and 
the dimensions which have the direction of y or that of z, by 
/—a deformation for which (/?/, /, /) is an appropriate symbol. 
In this new system, which we may suppose to be placed in the 
above-mentioned space S\ we shall give to the density the value Q\ 
determined by (7), so that the charges of corresponding elements 
of volume and of corresponding electrons are the same in 27 and 
27'. Then we shall obtain the forces acting on the electrons of the 
moving system 27, if we first determine the corresponding forces 
in 27', and next multiply their components in the direction of the 
axis of x by /2, and their components perpendicular to that axis 
by I21 p. This is conveniently expressed by the formula 

HZ)=(l\j,j)V(Z'). (21) 

It is further to be remarked that, after having found D' by (19), 
we can easily calculate the electromagnetic momentum in the mov
ing system, or rather its component in the direction of the motion. 
Indeed, the formula 

- ( [D.H]dS 

shows that 

TJ' (DyHz-D2Hy)dS. 

Therefore, by (6), since H' = 0 

G* = ~ ? f W2+D'^ ds=^rj W2+D'^ ds'- (22> 
§ 7. Our second special case is that of a particle having an electric 

moment, i.e. a small space S, with a total charge QdS = 0, but 
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with such a distribution of density that the integrals QX dS, 

qy dS, QZ dS have values differing from 0. Let | , ^, C be the 

co-ordinates, taken relatively to a fixed point A of the particle, 
which may be called its centre, and let the electric moment be de
fined as a vector P whose components are 

Px = f e | dS9 Py= f Qfj dS9 P2 = f gdS. (23) 

Then 

^ = jQUxdS, ^f = jQUydS, ^ = jeuzdS. (24) 

Of course, if I, rj, C are treated as infinitely small, ux, uy, uz must 
be so likewise. We shall neglect squares and products of these six 
quantities. 

We shall now apply the equation (17) to the determination of 
the scalar potential $' for an exterior point P(x,y, z), at a finite 
distance from the polarized particle, and for the instant at which 
the local time of this point has some definite value t'. In doing so, 
we shall give the symbol [o], which, in (17), relates to the instant 
at which the local time in dS is t' —r'/c, a slightly different meaning. 
Distinguishing by r'0 the value of r' for the centre A, we shall un
derstand by [g] the value of the density existing in the element dS 
at the point (|, % C), at the instant t0 at which the local time of A is 
/' -r0/c. 

It may be seen from (5) that this instant precedes that for which 
we have to take the numerator in (17) by 

units of time. In this last expression we may put for the differen
tial coefficients their values at the point A. 
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In (17) we have now to replace \Q] by 

M+/>4 dt + £(' 
dr' dr' 8K 
dx dy dz m (25) 

where \dg/dt] relates again to the time t0. Now, the value of /' 
for which the calculations are to be performed having been chosen, 
this time to will be a function of the co-ordinates x, y9 z of the 
exterior point P. The value of [o] will therefore depend on these 
co-ordinates in such a way that 

9[g1 
dx 

P dr' [dg 
Ic dx m , etc. 

by which (25) becomes 

lel+i* «5 ae 
dt 

d[Q] , „ 9[e] , , d[e] m + r) dy +c- dz 

Again, if henceforth we understand by r' what has above been 
called r'0, the factor 1/r' must be replaced by 

7~^~dx~ {7}~v~dy~yjt'te ( F ) ' 

so that after all, in the integral (17), the element dS is multiplied by 

M + 
/ 3 2 « | 
cV 

[0el 
e* 

9 £[el 
6x /•' 

9 »y[e] 
9y r' 

s C[e] 
0z r' 

This is simpler than the primitive form, because neither r\ nor 
the time for which the quantities enclosed in brackets are to be 
taken, depend on x9 y9 z. Using (23) and remembering that 

/ 
Q dS = 0, we get 

V = 
p*v rdPxi l f 

4jtc2r' [ dt J 4TT i dx r' dy r' dz r n 
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a formula in which all the enclosed quantities are to be taken for 
the instant at which the local time of the centre of the particle is 
t'-r'lc. 

We shall conclude these calculations by introducing a new vec
tor P ' , whose components are 

P'X = PIPX, P;=lPy, P'Z = IPZ, (26) 

passing at the same time to x\ y\ z, t' as independent variables. 
The final result is 

9 4rccV dt' 4:zr[0x' r' dy' r' + dz' r' \ 

As to the formula (18) for the vector potential, its transforma
tion is less complicated, because it contains the infinitely small 
vector u'. Having regard to (8), (24), (26), and (5), I find 

A , _ 1 9[P'l 
Ancr' dt' 

The field produced by the polarized particle is now wholly de
termined. The formula (13) leads to 

D , = i 62 i n , i _A,[ e [Pi] , a [P'y] , e [p'z] 
4nc2 8t'2 r' 4n s |0JC' r' dy' r' dz' r' \ 

(27) 

and the vector H' is given by (14). We may further use the equa
tions (20), instead of the original formulae (10), if we wish to con
sider the forces exerted by the polarized particle on a similar one 
placed at some distance. Indeed, in the second particle, as well as 
in the first, the velocities u may be held to be infinitely small. 

It is to be remarked that the formulae for a system without trans
lation are implied in what precedes. For such a system the quanti
ties with accents become identical to the corresponding ones with
out accents; also ft = 1 and 1=1. The components of (27) are at 
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the same time those of the electric force which is exerted by one 
polarized particle on another. 

§ 8. Thus far we have used only the fundamental equations with
out any new assumptions. I shall now suppose that the electrons, 
which I take to be spheres of radius R in the state of rest, have 
their dimensions changed by the effect of a translation, the dimen
sions in the direction of motion becoming fit times and those in per-
pendicular directions I times smaller. 

In this deformation, which may be represented by 

(- ~ -\ 
[fir r ly 

each element of colume is understood to preserve its charge. 
Our assumption amounts to saying that in an electrostatic sys

tem E, moving with a velocity v, all electrons are flattened ellip
soids with their smaller axes in the direction of motion. If now, 
in order to apply the theorem of § 6, we subject the system to the 
deformation (fil, I, /), we shall have again spherical electrons of ra
dius R. Hence, if we alter the relative position of the centres of the 
electrons in E by applying the deformation (fil, I, /), and if, in the 
points thus obtained, we place the centres of electrons that remain 
at rest, we shall get a system, identical to the imaginary system 27', 
of which we have spoken in § 6. The forces in this system and 
those in E will bear to each other the relation expressed by (21). 

In the second place I shall suppose that the forces between un
charged particles, as well as those between such particles and elec
trons, are influenced by a translation in quite the same way as the 
electric forces in an electrostatic system. In other terms, whatever 
be the nature of the particles composing a ponderable body, so 
long as they do not move relatively to each other, we shall have 
between the forces acting in a system (27') without, and the same 
system (27) with a translation, the relation specified in (21), if, as 
regards? the relative position of the particles, E' is got from E by 
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the deformation (/?/, /, /), or 27 from E' by the deformation 

We see by this that, as soon as the resulting force is zero for a 
particle in 27', the same must be true for the corresponding par
ticle in 27. Consequently, if, neglecting the effects of molecular mo
tion, we suppose each particle of a solid body to be in equilibrium 
under the action of the attractions and repulsions exerted by its 
neighbours, and if we take for granted that there is but one con
figuration of equilibrium, we may draw the conclusion that the 
system 27', if the velocity v is imparted to it, will of itself change 
into the system E. In other terms, the translation will produce the 
deformation 

(W'T'T)-
The case of molecular motion will be considered in § 12. 
It will easily be seen that the hypothesis which was formerly ad

vanced in connexion with Michelson's experiment, is implied in 
what has now been said. However, the present hypothesis is more 
general, because the only limitation imposed on the motion is that 
its velocity be less than that of light. 

§ 9. We are now in a position to calculate the electromagnetic 
momentum of a single electron. For simplicity's sake I shall sup
pose the charge e to be uniformly distributed over the surface, so 
long as the electron remains at rest. Then a distribution of the 
same kind will exist in the system 27' with which we are concerned 
in the last integral of (22). Hence 

f 2 C e2 C°° dr e2 

and 
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It must be observed that the product /?/ is a function of v and that, 
for reasons of symmetry, the vector G has the direction of the 
translation. In general, representing by v the velocity of this mo
tion, we have the vector equation 

G=a5*^- (28) 

Now, every change in the motion of a system will entail a cor
responding change in the electromagnetic momentum and will 
therefore require a certain force, which is given in direction and 
magnitude by 

Strictly speaking, the formula (28) may only be applied in the 
case of a uniform rectilinear translation. On account of this cir
cumstance—though (29) is always true—the theory of rapidly 
varying motions of an electron becomes very complicated, the 
more so, because the hypothesis of § 8 would imply that the direc
tion and amount of the deformation are continually changing. It 
is, indeed, hardly probable that the form of the electron will be 
determined solely by the velocity existing at the moment consid
ered. 

Nevertheless, provided the changes in the state of motion be 
sufficiently slow, we shall get a satisfactory approximation by using 
(28) at every instant. The application of (29) to such a quasi-
stationary translation, as it has been called by Abraham,* is a very 
simple matter. Let, at a certain instant, ai be the acceleration in 
the direction of the path, and a2 the acceleration perpendicular to 
it. Then the force F will consist of two components, having the 
directions of these accelerations and which are given by 

Fi = miai and F2 = m2a2, 

* Abraham, Wied. Ann., 10, 1903, p. 105. 
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if 
e2 dffilv) , e2

 a, 
m ^ 6 ^ R - ^ T a n d m>=-6^R?L <3°> 

Hence, in phenomena in which there is an acceleration in the 
direction of motion, the electron behaves as if it had a mass m±; 
in those in which the acceleration is normal to the path, as if the 
mass were m2. These quantities m± and ra2 may therefore properly 
be called the "longitudinal" and "transverse" electromagnetic 
masses of the electron. I shall suppose that there is no other, no 
"true" or "material" mass. 

Since fi and / differ from unity by quantities of the order v2/c2, 
we find for very small velocities 

m± = m2 6TIC2R ' 

This is the mass with which we are concerned, if there are small 
vibratory motions of the electrons in a system without translation. 
If, on the contrary, motions of this kind are going on in a body 
moving with the velocity v in the direction of the axis of x, we shall 
have to reckon with the mass mi, as given by (30), if we consider 
the vibrations parallel to that axis, and with the mass m2, if we 
treat of those that are parallel to OF or OZ. Therefore, in short 
terms, referring by the index 27 to a moving system and by 27' to 
one that remains at rest, 

m\ i2) = (^jp-,pi,pi}ntr). (31) 
§ 10. We can now proceed to examine the influence of the Earth's 

motion on optical phenomena in a system of transparent bodies. 
In discussing this problem we shall fix our attention on the vari
able electric moments in the particles or "atoms" of the system. 
To these moments we may apply what has been said in § 7. For 
the sake of simplicity we shall suppose that, in each particle, the 
charge is concentrated in a certain number of separate electrons, 
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and that the "elastic" forces that act on one of these, and, con
jointly with the electric forces, determine its motion, have their 
origin within the bounds of the same atom. 

I shall show that, if we start from any given state of motion in a 
system without translation, we may deduce from it a correspond
ing state that can exist in the same system after a translation has 
been imparted to it, the kind of correspondence being as specified 
in what follows. 

(a) Let A'l9 A'2, A's, etc., be the centres of the particles in the sys
tem without translation (£"); neglecting molecular motions we 
shall assume these points to remain at rest. The system of points 
Al9 A2, Az, etc., formed by the centres of the particles in the mov
ing system 27, is obtained from A'l9 A'2, A'3, etc., by means of a de
formation 

According to what has been said in § 8, the centres will of them
selves take these positions A'v A'2, A'^ etc., if originally, before 
there was a translation, they occupied the positions Au A2, As, etc. 

We may conceive any point P in the space of the system 27' to 
be displaced by the above deformation, so that a definite point P 
of 27 corresponds to it. For two corresponding points P and P we 
shall define corresponding instants, the one belonging to P9 the 
other to P, by stating that the true time at the first instant is equal 
to the local time, as determined by (5) for the point P, at the second 
instant. By corresponding times for two corresponding particles 
we shall understand times that may be said to correspond, if we 
fix our attention on the centres A' and A of these particles. 

(b) As regards the interior state of the atoms, we shall assume 
that the configuration of a particle A in Hat a certain time may be 
derived by means of the deformation 

(W'T'TJ 
K-STR 10 
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from the configuration of the corresponding particle in 27', such 
as it is at the corresponding instant. In so far as this assumption 
relates to the form of the electrons themselves, it is implied in the 
first hypothesis of § 8. 

Obviously, if we start from a state really existing in the system 
27', we have now completely defined a state of the moving system 
27. The question remains, however, whether this state will likewise 
be a possible one. 

In order to judge of this, we may remark in the first place that 
the electric moments which we have supposed to exist in the mov
ing system and which we shall denote by P, will be certain definite 
functions of the co-ordinates x, y, z of the centres A of the par
ticles, or, as we shall say, of the co-ordinates of the particles them
selves, and of the time t. The equations which express the relations 
between P on one hand and x9 y9 z, t on the other, may be replaced 
by other equations containing the vectors P' defined by (26) and 
the quantities x\ y\ z', t' defined by (4) and (5). Now, by the above 
assumptions a and b, if in a particle A of the moving system, 
whose co-ordinates are x, y, z, we find an electric moment P at 
the time t, or at the local time /', the vector P' given by (26) will 
be the moment which exists in the other system at the true time t' 
in a particle whose co-ordinates are x\ y\ z'. It appears in this 
way that the equations between P', x', y\ z', t' are the same for 
both systems, the difference being only this, that for the system 27' 
without translation these symbols indicate the moment, the co-or
dinates, and the true time, whereas their meaning is different for 
the moving system, P', x\ y', z', f being here related to the moment 
P, the co-ordinates x, y, z and the general time t in the manner 
expressed by (26), (4), and (5). 

It has already been stated that the equation (27) applies to both 
systems. The vector D' will therefore be the same in E' and 27, pro
vided we always compare corresponding places and times. How
ever, this vector has not the same meaning in the two cases. In27' it 
represents the electric force, in E it is related to this force in the 
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way expressed by (20). We may therefore conclude that the pon-
deromotive forces acting, in 27and in 27', on corresponding particles 
at corresponding instants, bear to each other the relation deter
mined by (21). In virtue of our assumption (b), taken in connexion 
with the second hypothesis of § 8, the same relation will exist be
tween the "elastic" forces; consequently, the formula (21) may 
also be regarded as indicating the relation between the total 
forces, acting on 'corresponding electrons, at corresponding in
stants. 

It is clear that the state we have supposed to exist in the moving 
system will really be possible if, in £ and 27', the products of the 
mass m and the acceleration of an electron are to each other in 
the same relation as the forces, i.e. if 

1(2-) = ('2, j , j}m*{?\ (32) ma( 

Now, we have for the accelerations 

a ( Z ) = ( ^ ' ^ ' ^ ) a ( r , ) ( 3 3 ) 

as may be deduced from (4) and (5), and combining this with (32), 
we find for the masses 

m(2) = (IWJlJl)m(Z'). 
If this is compared with (31), it appears that, whatever be the 

value of /, the condition is always satisfied, as regards the masses 
with which we have to reckon when we consider vibrations per
pendicular to the translation. The only condition we have to im
pose on / is therefore 

dtflv) 
dv 

But, on account of (3), 

= P*l. 

dv P ' 

10* 
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so that we must put 

-=- = 0, / = const. dv 
The value of the constant must be unity, because we know 

already that, for v = 0, / = 1. 
We are therefore led to suppose that the influence of a translation 

on the dimensions (of the separate electrons and of a ponderable 
body as a whole) is confined to those that have the direction of the 
motion, these becoming /? times smaller than they are in the state of 
rest. If this hypothesis is added to those we have already made, we 
may be sure that two states, the one in the moving system, the 
other in the same system while at rest, corresponding as stated 
above, may both be possible. Moreover, this correspondence is 
not limited to the electric moments of the particles. In correspond
ing points that are situated either in the ether between the par
ticles, or in that surrounding the ponderable bodies, we shall find 
at corresponding times the same vector D' and, as is easily shown, 
the same vector H'. We may sum up by saying: If, in the system 
without translation, there is a state of motion in which, at a defi
nite place, the components of P, D, and H are certain functions of 
the time, then the same system after it has been put in motion 
(and thereby deformed) can be the seat of a state of motion in 
which, at the corresponding place, the components of P' , D', and 
H' are the same functions of the local time. 

There is one point which requires further consideration. The 
values of the masses mi and ra2 having been deduced from the 
theory of quasi-stationary motion, the question arises, whether 
we are justified in reckoning with them in the case of the rapid 
vibrations of light. Now it is found on closer examination that the 
motion of an electron may be treated as quasi-stationary if it 
changes very little during the time a light-wave takes to travel over 
a distance equal to the diameter. This condition is fulfilled in op
tical phenomena, because the diameter of an electron is extremely 
small in comparison with the wave-length. 
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§ 11. It is easily seen that the proposed theory can account for a 
large number of facts. 

Let us take in the first place the case of a system without trans
lation, in some parts of which we have continually P = 0, D = 0, 
H = 0. Then, in the corresponding state for the moving system, 
we shall have in corresponding parts (or, as we may say, in the 
same parts of the deformed system) P' = 0, D' = 0, H' = 0. These 
equations implying P = 0, D = 0, H = 0, as is seen by (26) and 
(6), it appears that those parts which are dark while the system is at 
rest, will remain so after it has been put in motion. It will therefore 
be impossible to detect an influence of the Earth's motion on any 
optical experiment, made with a terrestrial source of light, in 
which the geometrical distribution of light and darkness is ob
served. Many experiments on interference and diffraction belong 
to this class. 

In the second place, if, in two points of a system, rays of light 
of the same state of polarization are propagated in the same direc
tion, the ratio between the amplitudes in these points may be 
shown not to be altered by a translation. The latter remark applies 
to those experiments in which the intensities in adjacent parts of 
the field of view are compared. 

The above conclusions confirm the results which I formerly ob
tained by a similar train of reasoning, in which, however, the 
terms of the second order were neglected. They also contain an 
explanation of Michelson's negative result, more general than the 
one previously given, and of a somewhat different form; and they 
show why Rayleigh and Brace could find no signs of double refrac
tion produced by the motion of the Earth. 

As to the experiments of Trouton and Noble, their negative 
result becomes at once clear, if we admit the hypotheses of § 8. It 
may be inferred from these and from our last assumption (§ 10) that 
the only effect of the translation must have been a contraction 
of the whole system of electrons and other particles constituting 
the charged condenser and the beam and thread of the torsion-
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balance. Such a contraction does not give rise to a sensible change 
of direction. 

It need hardly be said that the present theory is put forward 
with all due reserve. Though it seems to me that it can account for 
all well-established facts, it leads to some consequences that can
not as yet be put to the test of experiment. One of these is that the 
result of Michelson's experiment must remain negative, if the in
terfering rays of light are made to travel through some ponderable 
transparent body. 

Our assumption about the contraction of the electrons cannot 
in itself be pronounced to be either plausible or inadmissible. 
What we know about the nature of electrons is very little, and the 
only means of pushing our way farther will be to test such hypo
theses as I have here made. Of course, there will be difficulties, e.g. 
as soon as we come to consider the rotation of electrons. Perhaps 
we shall have to suppose that in those phenomena in which, if 
there is no translation, spherical electrons rotate about a diameter, 
the points of the electrons in the moving system will describe ellip
tic paths, corresponding, in the manner specified in § 10, to the 
circular paths described in the other case. 

§ 12. There remain to be said a few words about molecular mo
tion. We may conceive that bodies in which this has a sensible 
influence or even predominates, undergo the same deformation as 
the systems of particles of constant relative position of which 
alone we have spoken till now. Indeed, in two systems of molecules 
27' and 27, the first without and the second with a translation, we 
may imagine molecular motions corresponding to each other in 
such a way that, if a particle in 27' has a certain position at a defi
nite instant, a particle in 27 occupies at the corresponding instant 
the corresponding position. This being assumed, we may use the 
relation (33) between the accelerations in all those cases in which 
the velocity of molecular motion is very small as compared with v. 
In these cases the molecular forces may be taken to be determined 
by the relative positions, independently of the velocities of mole-
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cular motion. If, finally, we suppose these forces to be limited to 
such small distances that, for particles acting on each other, the 
difference of local times may be neglected, one of the particles, 
together with those which lie in its sphere of attraction or repul
sion, will form a system which undergoes the often mentioned de
formation. In virtue of the second hypothesis of § 8 we may there
fore apply to the resulting molecular force acting on a particle, 
the equation (21). Consequently, the proper relation between the 
forces and the accelerations will exist in the two cases, if we sup
pose that the masses of all particles are influenced by a translation 
to the same degree as the electromagnetic masses of the elec
trons. 

§ 13. The values (30), which I have found for the longitudinal 
and transverse masses of an electron, expressed in terms of its 
velocity, are not the same as those that had been previously ob
tained by Abraham. The ground for this difference is to be sought 
solely in the circumstance that, in his theory, the electrons are 
treated as spheres of invariable dimensions. Now, as regards the 
transverse mass, the results of Abraham have been confirmed in a 
most remarkable way by Kaufmann's measurements of the deflex
ion of radium-rays in electric and magnetic fields. Therefore, if 
there is not to be a most serious objection to the theory I have 
now proposed, it must be possible to show that those measure
ments agree with my values nearly as well as with those of Abra
ham. 

I shall begin by discussing two of the series of measurements 
published by Kaufmann* in 1902. From each series he has deduced 
two quantities r\ and C, the "reduced" electric and magnetic 
deflexions, which are related as follows to the ratio y = v/c: 

' = * { • «V) = 1 ^ . 04) 

* Kaufmann, Physik. Zeitschr., 4, 1902, p. 55. 
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Here ip(y) is such a function, that the transverse mass is given by 

m2 = T--d^f^' (35) 

whereas k\ and k2 are constant in each series. 
It appears from the second of the formulae (30) that my theory 

leads likewise to an equation of the form (35); only Abraham's 
function tp(y) must be replaced by 

££ = 1(1-^-1 /2 . 

Hence, my theory requires that, if we substitute this value for 
ip(y) in (34), these equations shall still hold. Of course, in seeking 
to obtain a good agreement, we shall be justified in giving to k± 
and &2 other values than those of Kaufmann, and in taking for 
every measurement a proper value of the velocity v9 or of the ratio 
y. Writing ski, \k'2 and / for the new values, we may put (34) 
in the form 

y' = skx—: (36) 
rj 

and 
(1^/2)^1/2 = _ | _ . ( 3 7 ) 

Kaufmann has tested his equations by choosing for k\ such 
a value that, calculating y and k2 by means of (34), he obtained 
values for this latter number which, as well as might be, re
mained constant in each series. This constancy was the proof of a 
sufficient agreement. 

I have followed a similar method, using, however, some of 
the numbers calculated by Kaufmann. I have computed for each 
measurement the value of the expression 

k'2 = (l-y'2)1/2V>(y)k2, (38) 

that may be got from (37) combined with the second of the equa
tions (34). The values of \p{y) and k% have been taken from Kauf-
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mann's tables, and for y' I have substituted the value he has found 
for y, multiplied by s, the latter coefficient being chosen with a 
view to obtaining a good constancy of (38). The results are con
tained in the tables below, corresponding to the Tables III and IV 
in Kaufmann's paper. 

The constancy of k'2 is seen to come out no less satisfactorily 
than that of &2, the more so as in each case the value of s has been 
determined by means of only two measurements. The coefficient 
has been so chosen that for these two observations, which were in 
Table III the first and the last but one, and in Table IV the first 
and the last, the values of k2 should be proportional to those of k2. 

III. s = 0-933. 

y. 

0-851 
0-766 
0-727 
0-6615 
0-6075 

y)(y). 

2-147 
1-86 
1-78 
1-66 
1-595 

/c2. 

1-721 
1-736 
1-725 
1-727 
1-655 

/ . 

0-794 
0-715 
0-678 
0-617 
0-567 

*;. 

2-246 
2-258 
2-256 
2-256 
2-175 

IV. s = 0-954. 

y-

0-963 
0-949 
0-933 
0-883 
0-860 
0-830 
0-801 
0-777 
0-752 
0-732 

v(y). 

3-28 
2-86 
2-73 
2-31 
2195 
206 
1-96 
1-89 
1-83 
1-785 

k2. 

8-12 
7-99 
7-46 
8-32 
809 
8-13 
8-13 
8-04 
802 
7-97 

/ . 

0-919 
0-905 
0-890 
0-842 
0-820 
0-792 
0-764 
0-741 
0-717 
0-698 

k'r 

10-36 
9-70 
9-28 

10-36 
1015 
10-23 
10-28 
10-20 
10-22 
1018 



NOTES ON EXTRACT 4 

POINCARE starts by considering the experiments of Michelson and the expla
nation of Lorentz and Fitzgerald, and he has already in mind the later article 
of Lorentz (Extract 3). His own approach has been quite independent of 
Lorentz, and he remarks that the results which he has obtained agree in all 
important respects with those of Lorentz. The first section recapitulates the 
results already given by Lorentz, and he next proceeds, with typically French 
elegance, to deduce all of these results from a variational principle. This 
deduction is carried out in order that in the third section Poincare can relate 
the invariance under the Lorentz transformation to the invariance of the 
variational principle. In the fourth section he goes on to show that the trans
formations do indeed form a group. Subsequent sections (which are omitted) 
are then concerned with rather technical matters of less interest now, but at 
the end of the paper there is a section in which Poincar6 attempts to relate 
what he has found to the problem of gravitation. This problem is one which 
will occupy us exclusively in the succeeding book, since it found its complete 
solution not by means of field theories of the kind envisaged by Poincare' 
but by an entirely reformulated theory (general relativity) some years later 
It is, however, of the greatest interest to observe what an extremely sophistic
ated gravitational theory can be produced by Poincare in a Lorentz invariant 
fashion. 

One mathematical point needs to be noted. Poincare adheres to the old 
usage of d for both partial and ordinary differentiation. He then introduces 
what would usually be a symbol of partial differentiation, with a specialised 
meaning, in Section 2. 
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E X T R A C T 4t*] 

The dynamics of the Electron 
By H. POINCARE 

Introduction 

It would seem at first sight that the aberration of light and the 
optical and electrical effects related thereto should afford a means 
of determining the absolute motion of the Earth, or rather its mo
tion relative to the ether instead of relative to the other celestial 
bodies. An attempt at this was made, indeed, by Fresnel, but he 
soon perceived that the Earth's motion does not affect the laws of 
refraction and reflection. Similar experiments, such as that using a 
waterfilled telescope, or any in which only the first-order terms rela
tive to the aberration were considered, likewise yielded only nega
tive results. The explanation of this was soon found; but Michel-
son, who devised an experiment wherein the terms involving the 
square of the aberration should be detectable, was equally unsuc
cessful. 

This impossibility of experimentally demonstrating the absolute 
motion of the Earth appears to be a general law of Nature; it is 
reasonable to assume the existence of this law, which we shall call 
the relativity postulate, and to assume that it is universally valid. 
Whether this postulate, which so far is in agreement with experi
ment, be later confirmed or disproved by more accurate tests, it is, 
in any case, of interest to see what consequences follow from it. 

[* Rend, del Circ. Mat. di Palermo 21, 129-46 and 166-75 (1906).] 
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One explanation, suggested by Lorentz and Fitzgerald, in
volves the hypothesis that all bodies undergo a contraction in the 
direction of the Earth's motion, of an amount proportional to 
the square of the aberration; such a contraction, which we shall 
call the Lorentz contraction, would explain the result of Michel-
son's experiment and of all others conducted heretofore. The hy
pothesis would nevertheless be inadequate if the relativity postu
late were valid in its most general form. 

Lorentz has sought to extend and modify the hypothesis so as 
to make it fully compatible with the relativity postulate. This he 
has succeeded in doing, in his paper "Electromagnetic pheno
mena in a system moving with any velocity smaller than that of 
light" {Proceedings of the Section of Sciences, Koninklijke Akade-
mie van Wetenschappen te Amsterdam 6, 809-831, 1904). 

In view of the importance of this problem, I resolved to examine 
it further. The results which I have obtained agree with those 
of Lorentz in all the principal points, and I have needed only to 
modify and augment them in certain details. These differences, 
which are of but minor importance, will be shown in later sections. 

Lorentz's concept may be summarised thus: if a common trans -
latory motion may be imparted to the entire system without any 
alteration of the observable phenomena, then the equations of an 
electromagnetic medium are unaltered by certain transformations, 
which we shall call Lorentz transformations. In this way two sys
tems, of which one is fixed and the other is in translatory motion, 
become exact images of each other. 

Langevin1* sought to derive a modification of Lorentz's con
cept. Both authors consider that an electron in motion assumes 
the form of an oblate spheroid; but Lorentz considers that two 
of the axes of this spheroid remain constant, whereas Langevin 
supposes that its volume remains constant. These two authors 

t Langevin had been anticipated by Bucherer of Bonn, who earlier put 
forward the same idea. See A. H. Bucherer, Mathematische Einfuhrung in die 
Elektronentheorie, Teubner, Leipzig, 1904. 
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have shown that the two hypotheses are in agreement with the 
experiments of Kaufmann, as is Abraham's original hypothesis 
of a rigid spherical electron. 

The advantage of Langevin's theory is that it involves only the 
electromagnetic forces and the constraints; but it is not compat
ible with the relativity postulate. This was shown by Lorentz, and 
I have likewise proved it by a different method, based upon the 
use of group theory. 

We must return therefore to Lorentz's theory, but, in order to 
maintain this free from unacceptable contradictions, a special 
force must be invoked to account both for the contraction and 
for the constancy of two of the axes. I have attempted to deter
mine this force, and have found that it can be regarded as a con
stant external pressure acting upon an electron capable of deforma
tion and compression, the work done being proportional to the 
change in the volume of the electron. 

Then, if the inertia of matter is exclusively of electromagnetic 
origin, as has been customarily supposed since Kaufmann's ex
periment, and if all forces (other than the constant pressure to 
which I have just alluded) are of electromagnetic origin, the re
lativity postulate can be accepted as strictly valid. I show this by 
means of a very simple calculation based upon the principle of 
least action. 

But this is not all. Lorentz, in his paper already mentioned, 
has deemed it necessary to extend his hypothesis in such a manner 
that the postulate remains valid when there exist forces other 
than the electromagnetic forces. In Lorentz's view, all forces, no 
matter how originating, are affected by the Lorentz transforma
tion (and therefore by a translatory motion) in the same manner 
as the electromagnetic forces. 

It was necessary to consider this hypothesis more closely, and 
in particular to ascertain the changes which it would compel us 
to apply to the laws of gravitation. 

First of all, we find that gravitational action would be propa-
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gated with the velocity of light, and not instantaneously. This 
might in itself appear to be sufficient reason to reject the hypo
thesis, for Laplace has shown that such propagation cannot oc
cur. But, in fact, the effects of this are largely counterbalanced 
by another phenomenon, and there is, therefore, no contradiction 
between the proposed law and astronomical observations. 

The question arises whether it is possible to discover a law 
which satisfies Lorentz's condition and which yet reduces to 
Newton's law whenever the velocities of the bodies are so small 
that the squares of these velocities (and the products of the acce
lerations and the distances) may be neglected in comparison with 
the square of the velocity of light. 

It will be seen later than the answer must be affirmative. 
Is the law, thus modified, compatible with astronomical obser

vations ? 
At first sight it appears to be so, but a more detailed discussion 

is necessary to settle the question. 
Even assuming, however, that the new hypothesis survives this 

test, what conclusion is to be drawn ? If the gravitational attrac
tion is propagated with the velocity of light, this cannot occur by 
mere chance, but must be dependent on the ether; we should then 
have to investigate the nature of this dependence, and attempt to 
relate it to other such dependences. 

We cannot be satisfied with formulae that are merely placed 
side by side and agree only by a lucky chance; these formulae 
must, as it were, interlock. The mind will consent only when it 
sees the reason for the agreement, and when this agreement even 
seems to have been predictable. 

But the matter may be viewed in a different light, as an analogy 
will show. Let us imagine some astronomer before Copernicus, 
pondering upon the Ptolemaic system. He would notice that, for 
every planet, either the epicycle or the deferent is traversed in 
the same time. This cannot be due to chance, and there must be 
some mysterious bond between all the planets of the system. 
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Then Copernicus, by a simple change of the co-ordinate axes 
which were supposed fixed, did away with this seeming relation
ship : every planet described one circular orbit only, and the pe
riods of revolution became independent of one another—until 
Kepler once more established the relationship that had apparently 
been destroyed. 

Now, there may be an analogy with our problem. If we assume 
the relativity postulate, we find a quantity common to the law 
of gravitation and the laws of electromagnetism, and this quan
tity is the velocity of light; and this same quantity appears in 
every other force, of whatever origin. There can be only two ex
planations. 

Either, everything in the universe is of electromagnetic origin; 
or, this constituent which appears common to all the phenomena 
of physics has no real existence, but arises from our methods of 
measurement. What are these methods? One might first reply, 
the bringing into juxtaposition of objects regarded as invariable 
solid things; but this is no longer so in our present theory, if the 
Lorentz contraction is assumed. In this theory, two lengths are 
by definition equal if they are traversed by light in the same 
time. 

Perhaps the abandonment of this definition would suffice to 
overthrow Lorentz's theory as decisively as the system of Ptolemy 
was by the work of Copernicus. Should this ever happen, it would 
by no means argue the futility of Lorentz's analysis: whatever the 
faults of the Ptolemaic theory, it was the necessary foundation 
for Copernicus to build upon. 

I have therefore not hesitated to publish these incomplete re
sults, even though at the present time the entire theory may seem 
to be threatened by the discovery of cathode rays. 
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§ 1. The Lorentz Transformation 

Lorentz has adopted a particular system of units, such that the 
factors of 4TT no longer appear in the formulae. I shall do likewise, 
and moreover I shall choose the units of length and of time in 
such a way that the velocity of light is equal to unity. Then, if 
/ , g, h denote the electrical displacement; a, /?, y the magnetic 
force; F, G, H the vector potential; ip the scalar potential; Q the 
electrical charge density; | , rj9 C the velocity of the electron; u, v9 

w the current, the fundamental equations become 
df , dy dB 

a = 

ck _ 
dt ~ 

4L = 
dx 

a = 

D ^ = 

dH dG dF dy) 
dy dz ' J dt ~dx 

dg dh dq d(q£) __ 
dz dy ' dt dx 

dip ^dF 

cP d* tP 
dt2 dx2 dfi ' 

- e . OF = -QS. 

o, 

£-¥- = 

(1) 

An elementary particle of matter, having a volume dx dy dz, is 
acted upon by a mechanical force, whose components X dx dy dz, 
Y dx dy dz, Z dx dy dz are given by the formula 

x=Qf+etoy-&). (2) 
These equations can be subjected to a remarkable transformation 
discovered by Lorentz, the significance of which is that it explains 
why no experimental demonstration of the absolute motion of the 
universe is possible. If we put 

x' = kl(x+ef)9 f = kl(t+ex), y' = ly9 z' = Iz, (3) 
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where / and e are any constants, and 

k - l 

V(i-*V 
and if we also put 

/ = _rf2 d*_ 

then 
□ ' = a./"2. 

Let a sphere be carried along with the electron in a uniform trans-
latory motion, and let the equation of this moving sphere be 

(x-£t?+(y-<nt? + (z-£ty = r2; 

the volume of the sphere is then |-7rr3. 
The foregoing transformation will change the sphere into an 

ellipsoid, whose equation is easily found. From the equations (3), 
it immediately follows that 

x = j(x'-ef)9 t=j(f-ex')9 J > = y , * = y . (3') 

The equation of the ellipsoid is then 

k\x' -Et'-lt' + EIX'J + O ' - r)kt' + r]kex'f 
-{-(z'-Ckt' + tkex'f = l2r*. 

The ellipsoid moves uniformly; when t' = 0, it is 

k2x'\\ +1£)2 + (y' + rikex'f + (z' + Zkex'f = Pr\ 

and its volume is 
1 a /3 

3nr k(l + £sy 

If the charge on an electron is to be unaltered by the transfor
mation, and if the new electrical charge density be denoted by 
K-STR n 
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Q\ it follows that 
k 

e' = _ (e+egl). (4) 

The new velocities | ' , rj\ C will be given by 

dx' d{x + et) | + e 
S' = 

i? 

dt' d(t+ex) l + e | ' 

# ' kd{t+ex) fc(l + e|)* 

e- ' 
whence 

A: 1 1 
e'£' = 73" (e£+ce)» e V = 73- OT» e'C = ^3- ef■ (4') 

Here I must for the first time indicate a disagreement with 
Lorentz's analysis. Lorentz {op. cit., page 813, formulae (7) and 
(8)) writes, in our notation, 

These lead to the same relationships 

k 1 1 
e ' 5 ' = 73- (e*+£e)> e V = 73- OT> e'C = 73" eC 

but with a different value of Q'. 
It should be noticed that formulae (4) and (4') satisfy the con

tinuity condition 

^ l+r^P- = o. 
dt dx 

For, let A be an undetermined coefficient, and D the Jacobian of 

f+Ag, X + XQ!;, y + Xqrj, Z+XQ£ (5) 
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with respect to t, x, y, z. Then 

D = D0+D1X + D2X2 + D3Xs + DiX\ 

with D0=l, ^ = - § . + 2 ^ = 0 . 
at dx 

Let X' = /2A; then the four functions 

f+A'e', *'+A'eT, /+A'eV, z ' + W (5') 
are related to the functions (5) by the same linear relationships 
as those which exist between the old and new variables. If, there
fore, D' denotes the Jacobian of the functions (5') with respect to 
the new variables, then 

D' = A D' = D'0 + D[k' + . . . +Z>;A'4, 
whence 

D'0 = D0= 1, D[ = l-*Dx = 0 

~ df + dx* ' q e d * 
With Lorentz's hypothesis, this condition would not be ful

filled, since the value of Q' is not the same. 
The new vector and scalar potentials will be defined so as to 

satisfy the conditions 
n y = - 6 ; , n ' F = - e T . (6) 

Hence we find 

ip' = j(V+*n F' = j(F+etp), G' = jG, H' = jH. 

(7) 
These formulae are noticeably different from those of Lorentz, 

but the difference rests, ultimately, only on the definitions used. 
The new electric and magnetic fields will be defined so as to 

satisfy the equations 

J df dx' ' a dy' dz' ' w 

n* 
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kid d \ d _ k I d d \ 
l\di~S~dJ)' ~d7~J\fa~e~dty 

It is easily seen that 
J_ k 
W 
jL-1 A_ d _\ d 
!ty ~ I dy ' dz' ~ 1 dz ' 

and therefore 

I k k (9) 

These formulae are identical with those of Lorentz. 
Our transformation does not affect equations (1): the conti

nuity condition and equations (6) and (8) are identical with some 
of the equations (1) if the primes are omitted. 

The equations (6), together with the continuity condition, give 

We have only to prove that 

df_ ,*,_*l_W d<*-' _ dg' dh' 
"df + Q ~ dy' dzr' df ~ dz' dy' ' 

and it is easily seen that these relationships necessarily follow 
from equations (6), (8) and (10). 

Let us now make a comparison of the forces before and after 
the transformation. 

Let X, Y, Z be the force before the transformation, and X\ Y'9 
Z' the force after it, both per unit volume. If X' is to satisfy the 
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same equations as before the transformation, we must have 

r = etf+e'CCv-iy), 
Z ' = Q'h' + Q'W-ri'a'), 

or, substituting the expressions (4), (4') and (9) and using equa 
tions (2), 

^{X+eZXl), 

I5 

X' 

Y' 

Z' 

Y, 

Z. 

(11) 

If Xu Fi , Zi denote the components of the force per unit 
electric charge on the electron, and X[, Y[, Z[ the same quan
tities after the transformation, then 

X = QXU X' — q'X[ , 
and we should obtain 

(11') 

Lorentz's result was, in our notation {pp. cit., page 813, for
mula (10)), 

X1 = PX'1-PeWgf + ?h'\ 

X{ = 

Y[ = 

Z[ = 

k 
/5 

1 

1 
I5 

Q 

Q' 

Q 

Y 

Q' 

(Xt + eSXA), ] 

Ylt 

z x . 

I2 l2e 

P l2e 
Z^TZ^JT^ 

(11") 



156 SPECIAL RELATIVITY 

Before proceeding, it is necessary to ascertain the reason for 
this considerable difference. It occurs, evidently, because the for
mulae for r , r\\ t ' are not the same, whereas those for the electric 
and magnetic fields are the same. 

If the inertia of the electrons is of purely electromagnetic origin, 
and if moreover they are subject only to forces of electromagnetic 
origin, the condition of equilibrium requires that, within the elec
trons, 

X = Y = Z = 0. 

From the relations (11), these are clearly equivalent to 

x' = r = z' = o. 
Thus the equilibrium conditions are unaffected by the transforma

tion. 
Unfortunately, such a simple hypothesis is inadmissible. For, 

if we assume that I = r\ = C = 0, the conditions X = Y = Z = 0 
will imply t h a t / = g = h = 0, and therefore 

z^L = o, i.e. e = o. 
dx 

Similar results would be obtained in the general case. Hence we 
must assume that there are not only electromagnetic forces but 
also either other forces or constraints. We then have to determine 
the conditions governing these forces or constraints such that the 
equilibrium of the electrons is unaffected by the transformation. 
This will be done in a subsequent section. 

§ 2. The Principle of Least Action 

Lorentz's derivation of his equations from the principle of least 
action is well known. I shall, however, discuss this point further 
(although I have nothing essential to add to Lorentz's analysis), 
since I prefer to present it in a slightly different form, which will 
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be of use later. I write 

/ = f dtdx\\Ep^\E^-ZFu\ (1) 

with/ , a, F, w, etc., assumed subject to the following conditions 
and those obtained from them by symmetry: 

ydf dH dG df 
Sd^ = ^ a = ^T-rfT' u = ~di+^' (2) 

The integral / is taken over the following ranges: 

(a) the whole of space, for the volume element dx = dx dy dz; 
(b) the interval between t0 and f i, for the time element dt. 

According to the principle of least action, the integral / must 
have a minimum value when the quantities in it satisfy: 

(a) the conditions (2); 
(b) the condition that the system is in specified states at the 

limiting times t0 and t±. 

The latter condition enables us to transform the integrals, using 
an integration by parts with respect to the time. For, given an 
integral of the form 

dBbC I dtdxA dt 

where C is one of the quantities defining the state of the system, 
and SC the variation of C, integration by parts with respect to 
the time shows that this integral is equal to 

f A L u j a c l ' " ' 1 - [dtdx^-dBbC. 

Since the state of the system at the limiting times is specified, 
bC = 0 for t = to and for t = t\\ the first integral is therefore 
zero, and only the second integral remains. 
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We can effect a similar integration by parts with respect to x, y 
or z, since 

/ 

jn /» f si A 

A-j- dx dy dzdt — AB dy dz dt— \ B-j^ dx dy dz dt. i dx 

The integrations extend to infinity, and in the first integral on 
the right-hand side we must therefore put x = ± oo; this integral 
is then zero, because all the functions are assumed to tend to zero 
at infinity, and we have 

dA 
/ 

,dBJJ A -1— dtdt = ■ dx 
■ /• 

dx dtdt. 

If the system were assumed subject to constraints, the con
straint conditions would have to be included among the condi
tions to be satisfied by the various quantities appearing in the 
integral / . 

First, let F, G, H receive increments <3F, <5G, bH; then 
ddH dbG 

doc dy dz 

We must have 

b J = I dt dt f , , r ^ /ddH ddG\ = dtdt\l(x[—= =—|— A J [ \ dy dz J 0, 

or, on integrating by parts, 

bJ = f dtdt\zUG^-bH^\-ZubF 

- / 
dy dp dtdtZbF(u-^~+ , \ dy dz 

whence, equating to zero the coefficient of the arbitrary quantity 
bF, 

dy dz ' (3) 
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From this we obtain (using an integration by parts) 

J«**-M£-f)* 

or 

whence finally 

[zFudx= [ Zv?d%, 

J= [ dtdx(\Zp-\Z«?). (4) 

Henceforward, having regard to the relation (3), bJ is indepen
dent of <5F, and therefore of <5a. Let us now vary the other quan
tities. 

The expression (1) for J gives 

bJ = [dtdx{Zfbf-ZF bu). 

But/, g, h must satisfy the first condition (2), so that 

and we may write 

bJ = f dt dt\lfbf-IF du-Jz^-dg} (6) 

From the calculus of variations, it is known that the calculation 
should be made as if ip were an arbitrary function, bJ were repre
sented by the expression (6)> and the variations were not subject to 
the condition (5). 
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We also have 
bu = ^f+b(g£)9 

and therefore, on integration by parts, 

bJ = [dtdxZbfU+~ + ̂ +[dtdx(ydq-ZFb(qt;)). (7) 

If now it be assumed that the electrons undergo no variation, 
then bg = b(g£) = 0, and the second integral vanishes. For 6J 
to be zero, we must have 

< + % = « ■ <*> 

In the general case, therefore, 

bJ = ( dtdx(y)bg-ZFb(g£)). (9) 

It remains to determine the forces acting upon the electrons. 
To do so, we must assume that a complementary force —Xdx, 
—Ydx, —Zdx is applied to each electron volume element, and 
write down the condition for this force to balance the forces of 
electromagnetic origin. Let U, V, W be the components of the 
displacement of the electron volume element dx, measured from 
any given initial position. Let bU, bV, bW be the variations of this 
displacement. The virtual work corresponding to the complemen
tary force will be 

■ / ■ ZXbUdx, 

and the equilibrium condition just mentioned will therefore be 

bJ = - [zXbUdxdt. (10) 
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In order to transform bJ9 we first seek the equation of continuity 
stating that the electron charge remains constant under the varia
tion. 

Let xo, >>o, ZQ be the initial position of the electron. Its position 
at the time considered will be 

x = x0+ U, y = y0+ V9 z = z 0 + W. 

We shall define also an auxiliary variable a to generate the varia
tion of each function: for any function A9 

bA — de —z—. de 

This is done because it will be convenient to be able to change 
between the notation of the calculus of variations and that of the 
ordinary differential calculus whenever desired. 

The functions under consideration may be regarded in two 
ways: (a) as functions of the five variables x9 y9 z, t, e9 so that the 
position remains unaltered when only t and e vary, in which case 
derivatives with be denoted by d as usual; (b) as functions of the 
five variables x0, Jo, z0, t9 e9 so that a particular electron is followed 
when only t and e vary, in which case derivatives will be denoted 
by the symbol d. Then we have 

. 917 eu ydU dU ^dU 8x 

t = -w = -w+^+^^w = ar (11) 
Now, let A denote the Jacobian of x9 y9 z with respect to x0, y0, 

z0: 
A = d(x9 y9 z) 

d(x0, yo, z0) * 

If t receives an increment dt while e9 JC0, yo, z0 remain constant, 
there will be consequent increments dx9 dy, dz of x9 y9 z, and dA 
of A9 with 

dx = I dt9 dy = rj dt9 dz = £ dt9 

d(x+dx9 y+ dy9 z+dz) 
A + 8A d(x09 y0, z0) 
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whence 
dA _ d(x-\-dx, y + dy9 z+dz) 
A ~ d(x,y,z) 

_ 9 ( x + l dt,y+rj dt, z+C dt) 
~ d(x, y9 z) 

From this we obtain 
1 dA dt dq dC 

= ——-]—~-\ — (12) 
A dt dx dy dz ' 

Since the mass of an electron is constant, 

and therefore 
dQ 
dt +EQ dx 

dq 

dt 

dt 

ax 

? 

dg 
' lit 

= 0. 

+22 dg 
dx 

(13) 

These are the various forms of the equation of continuity with 
respect to the variable t. Similar forms can be deduced with respect 
to the variable e. Let 

then 

ou — -7*— os, oV — —̂ oe, oW — —=— os\ 
OS OS OS 

c r r dU . QrT dU «Tr dU „„rdU ^..^ dU = - j — de + dU -j~- + dV -•-=-- + 5W —-•, (11') as ax ay dz 

dc 8 g E ddU = 0 dQ = dg dU dg 
ds dx ' ds ds ds dx (13') 
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It will be seen that there is a difference between the definition of 
bU = (dU/de)de and that of bg = (dg/ds)de, and that this defini
tion of bU is the one which is appropriate to the formula (10). 

The first term in equation (9) can be transformed by means of 
the last equation (13'): 

dt dry) bq = — \ dt dt\pE-~z—, 

or, after integration by parts, 

[dtdtxpbq= [dtdxZq^bU. (14) 

Let us now seek to determine 

We may notice that QA can depend only on x0, yo, z0; for, if an 
electron volume element be considered whose initial position is a 
rectangular parallelepiped with edges dx0, dy0, dz0, the charge on 
this element is 

QA dxo dy0 dz0. 

Since the charge must remain constant, 

d(QA) _ d(QA) 
dt de 

Hence we have 

= 0. (15) 

-87w- = 67 (^ -w) = w \QA -dry (16) 

For any function A we have, by the equation of continuity, 

1 d{AA) ^dA d(AQ 
A dt dt dx 
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and similarly 
1 8(AA) _ dA d(A dU/de) 
A 8e de dx 

Hence 

A de \Q 8t ) ~ de + die 

, d(e(du/8t)(dv/de)) , d(e(du/dt)(dw/de)) 
+ dy + d~z ' ( } 

A 8t \e de) ~ dt + dx 

d(Q(dV/dt)(8U/de)) d(Q(8W/8t)(6U/de)) 
dy dz 

The right-hand sides of (17) and (17') must be equal, and, since 

8U 8U d(el) 

we obtain 
</(eg bU) d{& bv) d(Q5dw) 

dx dy dz 
d(e bu) , rf(ei bu), d(CT a<7), d(Qc bu) 

= ^F~+—dx— + —dy— + —dz—- ( 1 8 ) 

Now transforming the second term in (9), we have 

dtdxZFb(Q%) / ■ 

J rf/rfr r i?rf(g acp ^ ^ C T at/) rFrf(gC w ) 
A dy rfz 

d^ ~* dz j 
IFd(q£bV) IFd{gbW) 
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Integration by parts on the right-hand side yields 

f r dF dF 
dtdrl-ZqbU^—XqrjbU^-EqCbU 

dF dF 
+ZqtbV^+Zq$bW j ^ 

dF^ 
dz 

Next we note that 

ZqtbV^^Z&bU^-, dy dx 

ZqtbW^r- = ZqrjbV^- . dz c ' dx 

For, if the sums on either side are expanded, they become iden
tities. Since also 

^ _ _ d F _ dG dF _ 
dx dz " P' dx dy ~7' 

the right-hand side becomes 

[ dt dx\-Zq bU^ + Zqyr] bU-Sq^ bu\ 

and thus finally 

dJ= jdtdx^dU^ + ^+^-y^ 

= jdtdxEq dU(-f+pZ-yrj). 

Equating the coefficients of d U on either side of (10), we have 

This is equation (2) of Section 1. 
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§ 3. The Lorentz Transformation and the Principle 
of Least Action 

Let us consider whether the principle of least action can ex
plain the success of the Lorentz transformation. First of all, we 
must examine the result of applying this transformation to the in
tegral 

/ = [dtdx(\Zp-±Z«?) 

(formula (4) of section 2). 
We have firstly 

dt' dx' = /4 dt dx, 

since x\ y\ z', t' are related to x, y, z, t by linear expressions whose 
determinant is /4. Next, 

/42a'2 = a2 + k\(5* + y2) + k?e\g* + A2) + 2k2e(gy - lift J 

(formulae (9) of section 1), whence 

/4(i7/'2-2a'2) = i7 / 2 - ra 2 . 

Thus, if we put 

/ '= idt' dx\\Zf'*-\Z*'% 

the result is 
r = J. 

However, for this equation to be valid, the limits of integration 
must be the same. Hitherto we have assumed that t ranged from 
to to ti, and x9 y, z from - oo to + °°. The limits of integration 
would then be altered by the Lorentz transformation; but there is 
no bar to assuming that t0 = — °°, t\ = + ~, and the limits for / 
and for / ' are then the same. 
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We have thus to compare the two following equations, which are 
analogues of equation (10) in section 2: 

bJ = - [zXbUdtdU 1 

f ( 2 ) 

SJ' = - EX' bU' dx' df. 

To do so, we must first compare bU' with dU. 
Let us consider an electron having initial co-ordinates xo, j>o, z0. 

Its co-ordinates at the instant t will be 

x = xo+U, y = yo+V, z = z0+JV. 

If the corresponding electron after the Lorentz transformation 
is considered, its co-ordinates will be 

x' = kl(x+et), y' = ly, z' = Iz, 
where 

x' = x0+U'9 yf = yo+V\ z' = zo+W; 

but these values will be reached at the instant 

f = kl(t+ex). 

If the variables are subjected to variations bU, bV, bW, while 
at the same time t receives an increment bt, then the total incre
ments of the co-ordinates x, y, z will be 

dx = <3£/+J bt, by = bV+rj bt, bz = bW+t bt. 

Similarly, 

bx' = W' + e bt', by' = bV' + r)' bt', bz' = dW' + C «*', 
and, by the Lorentz transformation, 

dx' = kl(bx + e bt), by' = I by, bz' = I bz, 
bt' = kl(bt+ebx); 

K-STR 12 
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hence, assuming bt = 0, we find 

bx' = dU' + i'df = klbU, 
by' = bV'+ri' bt' = 16V, 
bt' = kle bU. 

Since 

l' = rj = l + | e ' '' £(l + fe) ' 

we have, on replacing dt' by its value, 

W(l + |e) bU = bU'(\+£e)+(£ + e)kle bU, 
/(1 + fe) bV = bV'(l + £e) + r)le bU. 

Using the definition of k, we obtain from these equations 

bU=^bU' + -^£bU', 

and similarly 

hence 

bV = 

bW = 

bV' + ^rjbU', 

Ire 
bW' + -^CbU'; 

ZXbU = j(kXbU'+Y bV' + Z bW') + ~ bU'EXt (3) 

Now, according to the equations (2), we must have 

f ZX' bU' dt' dx' = f HX bU dt dt = -i- f IX bU dt' dx'. 

Replacing EX bU by its value (3) and equating coefficients, we 
find 
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These are the equations (11) of Section 1. Thus the principle of 
least action leads to the same results as does the analysis given in 
Section 1. 

Returning to formulae (1), we see that Sf2 —2a2 is unaltered by 
the Lorentz transformation, apart from a constant factor. The 
same is not true of the expression Ep+Zv? which appears in the 
energy. If we consider only the case where s is so small that its 
square may be neglected, so that k = 1, and if we also assume 
that / = 1, then 

Ef'2 = Zf* + 2e(gy-hP)9 

27a'2 = ZoL2 + 2e(gy-hpl 
and, by addition, 

X p + X a ' 2 = 2/2+i7a2 + 4e(gr-Ai3). 

§ 4. The Lorentz Group 

It is noteworthy that the Lorentz transformations form a group. 
For, if we put 

x' = kl(x+et)9 y1 — ly, z' = Iz, t' = kl(t+ex)9 

and 

x" = hT(x' + e'f)9 y" = Vy\ z" = Vz\ t" = kT(t' + e'x')9 

with 

we find that 
x" = k"l"(x+e"t\ y" - l"y, 
z" = /"z, /" = lc"l"(t+e"x)9 

with 

e" = -^-r 9 I" = //', k" = kk'{\ + BE') = /n
 1 „2. . 

Taking 1=1 and assuming e infinitesimal, with 

x' = x+dx9 y = y+dy9 z' = z+dz9 t' = t+bt9 

12* 
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we have 
bx = et, by = bz — 0, bt — ex. 

This is the infinitesimal generating transformation of the group, 
which I shall denote by Tu and which in Lie's notation may be 
written 

dx dt 

If we take e = 0 and / = 1 -1- bl, on the other hand, we obtain 

bx = x bl, by = y bl, bz = z bl, bt = t bl, 

which yields another infinitesimal transformation T0 of the group 
(assuming that / and e are regarded as independent variables); in 
Lie's notation, 

T _ d(f> dcj) d4> dcj) 
dx dy dz dt 

It is also possible to assign to the j-axis or to the z-axis the par
ticular significance which has been given to the x-axis, thus obtain
ing two further infinitesimal transformations 

^3 = t-h + Z # ( z d<t> 
dz dt 

which likewise would leave Lorentz's equations unchanged. 
The combinations defined by Lie, such as 

{TuT2]-X~dty-y-dx-> 

can also be constructed; but it is easily seen that this transforma
tion is equivalent to a rotation of the co-ordinate axes through a 
very small angle about the z-axis. It is therefore not surprising that 
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this does not affect the form of Lorentz's equations, which are ob
viously independent of the axes chosen. 

We are thus led to consider a continuous group, to be called the 
Lorentz group, possessing the following infinitesimal transforma
tions : 

(1) the transformation T0, which commutes with every other; 
(2) the three transformations T±9 T2, JT3; 
(3) the three rotations [Tu T2]9 [r2, T3], [r3, r j . 

Any transformation belonging to this group can be resolved 
into a transformation having the form 

x' = Ix, y' = ly9 z' = Iz, t' = It 

and a linear transformation which leaves unaltered the quadratic 
form 

x2+y2 + z2-t2. 
The group can also be generated in another way. Any trans

formation of the group may be regarded as comprising a trans
formation having the form 

x' = kl(x+et), y' = ly, z' = Iz, t' = kl(t+ex), (1) 

preceded and followed by an appropriate rotation. 
For our purposes, however, we have to consider only certain 

of the transformations in this group. We must regard / as being 
a function of e, the function being chosen so that this partial 
group, which will be denoted by P9 is itself a group. 

Let the system be rotated through 180° about the y-axis; then 
the resulting transformation must also belong to P. This opera
tion is equivalent to changing the signs of x9 x'9 z and z'\ hence 
we have 

x'= kl(x-et)9 y' = ly, z' = Iz, t' = kl(t-ex). (2) 

Thus / is unchanged when e is replaced by — e. 
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Next, if P is a group, the substitution inverse to (1), which is 

x' = j(x-et% y' = J> z' =J> t'=j(t-ex), (3) 

must likewise belong to P; it must therefore be identical with (2), 
so that 

/ = 1//. 

Consequently, we must have 1=1. 

[Note: there follow here four sections of a technical character, dealing 
with details of the electron theory not now of importance. Then Poincar6 
continues:] 

§ 9. Hypotheses Concerning Gravitation 

Thus Lorentz' theory would entirely account for the impossibility 
of demonstrating absolute motion, provided that all forces were 
of electromagnetic origin. 

But there exist forces, such as gravitation, which cannot be 
regarded as being of electromagnetic origin. It may happen that 
two systems of bodies create equivalent electromagnetic fields, in 
the sense of exerting the same action upon electrified bodies and 
currents, while at the same time these two systems do not exert 
the same gravitational action upon Newtonian masses. The gra
vitational field is therefore not identical with the electromagnetic 
field. Lorentz was thus compelled to augment his hypothesis by 
assuming that forces, of whatever origin, and in particular gravi
tation, are affected by translation (or, if one prefers, by the Lorentz 
transformation) in the same way as the electromagnetic forces, 

We must now examine this hypothesis in detail. If the New
tonian force is to behave in such a way under the Lorentz trans
formation, we can no longer suppose that this force depends only 
on the relative position of the attracting and the attracted body 
at the instant concerned; it must depend also on the velocities of 
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the two bodies. Moreover, we may reasonably assume that the 
force acting upon the attracted body, at an instant t, depends on 
the position and velocity of the body at that instant; but it will 
also depend on the position and velocity of the attracting body, 
not at the instant t but at some previous instant, as if gravitation 
required a certain time for its propagation. 

Let us consider therefore the position of the attracted body at 
the instant to, and let its co-ordinates at that instant be x0, yo, z0, 
and the components of its velocity be I, rj, £; and let us consider 
the attracting body at the corresponding instant to+t, its co
ordinates at that instant being x0+x9 yo+y, zo+z, and its velocity 
components l i , rji, Ci-

First of all, we must have a relationship 

4>{t, x, y9 z, | , rj, C, f i, *7i, Ci) = 0 (1) 

to determine the time t. This relationship expresses the law of 
propagation of gravitational action; I shall by no means impose 
the condition that propagation occurs with the same velocity in 
every direction. 

Next, let X±9 Y±, Z\ be the three components of the action ex
erted upon the attracted body at the instant t. We have to express 
Xu Yi, Zi as functions of 

t, x, y9 z, | , rj, C, l i , Vu Ci • (2) 

The conditions to be satisfied are as follows. 

1. The relationship (1) must not be affected by the transforma
tions of the Lorentz group. 

2. The components X±9 Yl9 Z\ must behave, under the Lorentz 
transformations, in the same manner as the electromagnetic for
ces denoted by the same letters, that is, as shown by equations 
(11') of Section 1. 

3. When both bodies are at rest, the usual law of attraction 
must apply. 
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In the latter case, however, it should be noted that the relation
ship (1) plays no part, since the time t is of no significance if both 
bodies are at rest. 

The problem thus stated is clearly indeterminate. We shall 
therefore seek to satisfy as many further conditions as possible. 

4. Astronomical observations do not appear to reveal any per
ceptible deviation from Newton's law, and we shall therefore 
choose the solution which differs least from this law when the 
velocities of the two bodies are small. 

5. We shall attempt to ensure that t is always negative; for, 
whereas it is reasonable that the effect of gravitation should re
quire a certain time for its propagation, we should find it more 
difficult to understand how this effect could depend on a position 
of the attracting body which the latter has not yet reached. 

There is one case where the problem is no longer indeterminate, 
namely if the two bodies are at relative rest, i.e. if 

l = l i , y = vi, C = Ci; 
we shall therefore first investigate this case, assuming that these 
velocities are constant, and therefore that the two bodies are 
executing a common uniform motion of translation in a straight 
line. 

We may assume that the x-axis has been taken to be parallel 
to this motion of translation, so that r\ = £ = 0, and we shall take 

If, under these conditions, we apply the Lorentz transforma
tion, the two bodies will be at rest after the transformation, with 

p = fl> = Z> = 0 

The components X[9 Y'l9 Z[ must then be in accordance with 
Newton's law and we have, apart from a constant factor, 

v — x v — __Z_ v — z 1 
-*1 ~ r '3 ' l l — r '3 ' ZJ1 - r's ' I ^ x 

f'2 = xV+yl + f*, J 
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But, from Section 1, 

x' = k(x+et), y' = y, z' = z, t' = ^(/+ex), 

X[ = A:-^(Jiri + eZ3ril) = * a * i ( l - e * ) = 2Ti, 
e 

n = i F i = *7i , 
e 

Z{ = A:Zi. 

Moreover, 

x+er = x - | f , r'2 = fc2(jt-!02+J>2 + *2» and 
_ - fc(x-gQ __->> -z 

Al ~ r'3 ' * " AT'3 * * ~ I P 3 " ' W 

which may also be written 

dV dV _dV. 1 
Z l ~ ^ ' F l - ^ T ' Zl~W V~W ( 4 ) 

It seems at first sight that the indeterminacy remains, since no 
hypotheses have been made concerning the value of /, that is, 
concerning the velocity of propagation. Moreover, x is a function 
of t. But it is easily seen that the quantities x—|f, y and z which 
appear in the formulae do not depend on t. 

Thus, if the two bodies have a common translatory motion, 
the force acting upon the attracted body is normal to an ellipsoid 
having the attracting body at its centre. 

In order to proceed further, it is necessary to ascertain the 
invariants of the Lorentz group. 

It is known that the substitutions forming this group (if / = 1) 
are linear and such that the quadratic form 

x2+y2+z2-t2 
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is invariant. Putting 
_ bx _ by r _ bz % 

*~~~bt' V~~¥' Q~JF; 

_ bxx _ biy^ _ biz^ 
^ ~ bit ' Vl ~ bit ' 4 l ~ bit ' 

we see that the Lorentz transformation causes bx, by, bz, bt and 
bix, biy, b±z, bit to undergo the same linear substitutions as x, 
y, z, t. 

If 
x y z t\/—l 

bx by bz bt\/— 1 
bix b\y b\z bit\/—l 

are regarded as the co-ordinates of three points P, P, P" in four-
dimensional space, we see that the Lorentz transformation is 
simply a rotation of this space about a fixed origin. The only dis
tinct invariants are therefore the six distances of the points P, P' , 
P" from one another and from the origin, or alternatively the two 
expressions 

x2+y2 + z2-t2, x bx-\-y by+z bz-tbt 

and the four expressions of the same form obtained by permuting 
the three points P, P' , P" in any manner. 

What we are seeking, however, is invariant functions of the ten 
variables (2); we must therefore find, among combinations of the 
six invariants, those which depend only on these ten variables, i.e. 
those which are homogeneous and of degree zero with respect to 
bx, by, bz, bt and with respect to b±x, b\y, biz, bit. This leaves 
four distinct invariants, namely 

■TV*-,* '-*** <-Zx^ l - ^ i ,r, 
f ' V ( l - ^ 2 ) ' V(l-££?)' V [ ( i - ^ 2 ) d - I D ] ' w 

Let us now consider how the components of the force are trans
formed. We return to equations (11) of Section 1, which refer 
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not to the force X±9 Y±9 Z\ discussed here but to the force X, Y, Z 
per unit volume. Putting 

T = EX%, 

we see that these equations (11) may be written (with / = 1) 

X' = k(X+eT\ T = k(T+eX), 
Y' = 7 , Z ' = Z ; 

thus, X, Y, Z, T are transformed in the same manner as x9 y, z, t. 
The invariants of the group will therefore be 

EX*-T*9 EXx-Tt, EXbx-Tbt9 EX b±x-T bxt. 

The quantities in which we are interested are not X, Y9 Z, but 
Xl9 Yl9 Zi , with 

T± = EX£. 
Evidently 

X Y Z T Q' 

Thus the Lorentz transformation will act upon X\9 Yl9 Z i , Tx 
in the same way as upon X, Y9 Z, T9 except that these expressions 
will in addition be multiplied by 

g _ 1 _bt_ 
Q' ~ k{\ + &) ~ bt' ' 

Likewise, the transformation will act upon I, rj9 C, 1 in the same 
way as upon bx9 by, bz, bt, except that these expressions will in 
addition be multiplied by the same factor, 

bt 1 
bt' ~ k(l+ge)m 

Let us now regard X, Y9 Z, Ty/ — 1 as being the co-ordinates 
of a fourth point Q; the invariants will then be functions of the 
distances between the five points 

(6) 

0,P,P',P",Q; 
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and these functions must be homogeneous of degree zero, firstly 
with respect to 

Z ,7 ,Z ,T , <3x, dy, dz, bt 

(which variables can subsequently be replaced by X±, Yl9 Z±9 Tl9 
I, 7), C, 1), and secondly with respect to 

di*, d±y, d±z9 1 

(which variables can subsequently be replaced by fi, rjl9 Ci, 1). 
In this way we find, in addition to the four invariants (5), four 

further and distinct invariants, namely 

ZXl-Tl ZXjX-Tj 2 3 ^ - I * ! EX£-TX 

l - Z P ' V(l -^!2 ) ' V[ ( l -^ 2 ) ( l -^ l f ) ] ' l - ^ l 2 ' 
(7) 

The last of these is always zero, according to the definition of TV 
Which are the conditions that must now be satisfied? 
1. The left-hand side of equation (1), which defines the velocity 

of propagation, must be a function of the four invariants (5). 
It is obvious that a large number of hypotheses could be con

structed. We shall consider only two of these. 
(A) It may be that 

Sx2-t2 = r2-t2 = 0, 
whence t = ±r\ and, since t must be negative, t = —r. This 
means that the velocity of propagation is equal to that of light. 
At first sight, it seems that this hypothesis should be rejected im
mediately; for Laplace has shown that the propagation is either 
instantaneous or much more rapid than that of light. But Laplace 
was discussing the hypothesis of a finite velocity of propagation 
alone, whereas here it is compounded with many others, and there 
may happen to be some more or less complete mutual compensa
tion between them, a situation of which many examples have 
already appeared in the applications of the Lorentz transforma
tion. 
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(B) It may be that 

The velocity of propagation is then much more rapid than that 
of light, but in certain cases / might be negative, which, as we 
have said, seems hardly acceptable. We shall therefore abide by 
hypothesis (A). 

2. The four invariants (7) must be functions of the invari
ants (5). 

3. When both bodies are at absolute rest, Xi, Y±, Z\ must have 
the values given by Newton's law; when the bodies are at relative 
rest, the values must be those given by equations (4). 

In the case of absolute rest, the first two invariants (7) must 
reduce to 

or, by Newton's law, to 
\\r\ -1/r. 

According to hypothesis (A), the second and third of the invariants 
(5) become 

— r—Exh, —r—Hx^x 
V(i-^2) ' V(i-^f)' 

that is, for absolute rest, 
-r, -r. 

We may therefore assume, for example, that the first two in
variants (5) reduce to 

(1 -ZIP2 V(l -Eg) 
(r+Zxhy r+£xh ' 

but other combinations are possible. 
It is necessary to choose some combination, and a third equa

tion is also needed in order to determine Xi9 Yl9 Zi . In making 
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the choice, we shall attempt to remain as close as possible to 
Newton's law. Let us then examine the result when the squares 
of the velocities I, % etc., are neglected (and t = —r). The four 
invariants (5) then become 

0, — r—Zx|, — r—2x!i , 1, 

and the four invariants (7) become 

zxh zxfc+if), zarifo-s), o. 
In order to compare this with Newton's law, however, a fur

ther transformation is necessary. In these equations, xo+x, 
yo+y, zo+z represent the co-ordinates of the attracting body at 
the instant to+t9 and r = y/Sx2\ in Newton's law, we have to 
consider the co-ordinates xo+*i , yo+yu z0+Z! of the attracting 
body at the instant to, and the distance r± = \/Zx\. 

We may neglect the square of the time t occupied by the pro
pagation, and therefore regard the motion as uniform; then 

x = xi + !if, y = j>i+f?if, z = zi + Ci/, 
r{r-r{) = ZxSif; 

or, since t — —r, 

x = x1-£1r, y = y1~rj1r9 z = zx-Cir , r = r i - Z i S i , 

and the four invariants (5) become 

0, - n + Z x d x - O , - n , 1 

and the four invariants (7) 

£x*9 -ariixi+d-iiyd, 2Xi(ii-i), o. 
In the second of these expressions I have written ri in place of 
r, since r is multiplied by |—l i and the square of I is neglected. 

Newton's law gives, for these four invariants (7), 

L 1 2*ci(g-§i) 2Sci(g-gi) 0 
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If therefore we denote the second and third invariants (5) by 
A and B9 and the first three invariants (7) by M9 N and P9 New
ton's law will be obeyed, to within terms of the order of the 
squares of the velocities, by putting 

M = 1F> N = ^T' P = ~^- (8) 

This solution is not unique: if the fourth invariant (5) is de
noted by C, then C— 1 is of the order of | 2 , as is (A — B)2. We may 
therefore add to the right-hand side of each of the equations (8) 
a term consisting of C — 1 multiplied by any function of A, B and 
C, and a term consisting of (A — B)2 also multiplied by any func
tion of A, B and C 

The solution (8) appears the simplest at first sight, but it cannot 
be accepted. Since M9 N and P are functions of Xl9 Yl9 Z\ and 
Ti = 2Xi l , these equations yield values of Xi9 Y± and Z\9 but 
the resulting values may in some cases be imaginary. 

In order to avoid this difficulty, we proceed differently, putting 

k * t 1 
0 V(i-^2)' V(i-^f)' 

by analogy with 

k
 l 

as in the Lorentz substitution. 
Then, with the condition —r — t9 the invariants (5) become 

0, A = - * 0 ( / - + 2 J C ! ) , B = -fciCr+iTxIi), 

C = *ofci( l - i2l i ) . 
Moreover, the following systems of quantities: 

x9 y9 z, -r = t 
koXi, koYi, koZi, koTi 
ko£9 k0r]9 k0C, k0 

&1I1, kxrjl9 k^l9 k± 
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are seen to undergo the same linear substitutions when the trans
formations of the Lorentz group are applied to them. We there
fore put 

X1 = x £-+#+& £y, 1 
/to /Co j 

/Co /to I 

It is evident that, if a, /?, y are invariants, X±9 Y\9 Zi, 7i will sa
tisfy the fundamental condition, i.e. will undergo an appropriate 
linear substitution when the Lorentz transformations are applied 
to them. 

If the equations (9) are compatible, we must have 
ZXi l -Ti = 0. 

When Xi, Yu Zl9 T± are replaced by their values (9), the result is, 
after multiplication by k*Q9 

-A<x-(5-Cy = 0. (10) 

The desired conclusion is that the values of X\9 Y±9 Z± should 
remain in accordance with Newton's law when the squares of the 
velocities I, etc., and the products of the accelerations and the dis
tances are neglected in comparison with the square of the velocity 
of light. 

We can take 
j8 = 0, y=-AoLJC. 

To the approximation used, 
*o = *i = 1, C = 1, A= - r i+27x( l i - | ) , 

B = — n, x = xi + £it = *i —fir. 
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Then the first equation (9) becomes 

Xi — <x(x — ^4|i). 

But, if | 2 is neglected, A£\ may be replaced by — ri l i , or by 
—r|i, whence 

Xi = a(x + lir) = axi. 

Newton's law would give 

We must therefore take as the invariant a one which reduces to 
— l/#i within the approximation adopted, that is, 1/Z?3. The 
equations (9) then become 

x k\ A 
koB*' 

y 
k0B* 

z 
kW 

r 

?1k0 £3C" 
kx A 

~nik<> JPC' 
f. ki A 
Llk0 5 3 C 

ki A 
k0B* k0 B*C 

It is seen, first of all, that the corrected attraction consists of 
two components, one parallel to the vector joining the positions 
of the two bodies, and the other parallel to the velocity of the 
attracting body. 

When we speak of the position or the velocity of the attracting 
body, we mean its position or velocity at the instant when the gra
vitational wave leaves it; but the position or the velocity of the 
attracted body means its position or velocity at the instant when 
the gravitational wave reaches it, this wave being assumed to be 
propagated with the velocity of light. 

I believe that it would be premature to attempt to continue the 
K-STR 13 

ATi = 

Yi = 

Zi = 

r i = 
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discussion of these formulae, and I shall therefore confine myself 
to making a few comments. 

1. The solutions (11) are not unique; for the common factor 
1 /B3 may be replaced by 

l + ( C - l ) / i ( ^ , B, C) + (A-BfMA, B, C), 

where/i and/2 are any functions of A, B and C. Moreover, /? need 
not be taken as zero; any additional terms may be added to a, /? 
and y which satisfy the condition (10) and are of the second order 
n I for a, and of the first order in I for /? and y. 

2. The first equation (11) may be written 

X1 = - ^ W l - 2 ' « i ) + i i ( r+2 ,x | ) ] , (11') 

and the quantity in the brackets may in turn be written 

(x + r | i ) + ^ ( | i j ; - ^ i ) + C(liZ-xCi), (12) 

so that the total force is divisible into three components corre
sponding to the three parentheses in equation (12). The first com
ponent is somewhat similar to the mechanical force due to the 
electric field, the other two to the mechanical force due to the 
magnetic field. By virtue of comment 1, I may replace l/Bz in 
equations (11) by C/Bz, so that Xl9 Fi , Z± are linear functions of 
the velocity | , r], £ of the attracted body, C having been eliminated 
from the denominator of (IT). This completes the analogy. 

Putting then 

kiix+r^) = A, k^y+nj!) = ^, ^i(z+^Ci) = v, 1 
kiirjiZ-Ciy) = A', fci(CiX-liz) = / / , kxthy-xrji) = v'9 J 

(13) 



POINCARE: THE DYNAMICS OF THE ELECTRON 185 

with C eliminated from the denominator of (11') we obtain 

Y =■ ** . a ' - l V ' 1 B3 B3 

v v ■ ^ ' - ^ 
^ ~~ B3 + B3 

(14) 

and also 
B2 = ZK-ZK*. (15) 

Thus A, //, v or A/i?3, ,a/2?3, v/B3 is a kind of electric field, while 
l\ /JL\ V' or ?i'/B\ [i'/B\ v'/B3 is a kind of magnetic field. 

3. The relativity postulate would compel us to use either the 
solution (11) or the solution (14) or any one of the solutions ob
tained therefrom by using comment 1. But the prime question is 
whether these are compatible with astronomical observations. The 
deviation from Newton's law is of the order of | 2 , that is, 10,000 
times less than if it had been of the order of I, as it would have been 
with the velocity of propagation equal to that of light and the other 
conditions unchanged. We may therefore hope that the deviation 
will not be very great; but only a more extended investigation will 
furnish the answer to this question. 

Paris 

July 1905 

13* 



NOTES ON EXTRACT 5 

IN THIS absolutely astonishing paper of Einstein's we find no mention of the 
simultaneous work of Lorentz and Poincare, and it is clear that Einstein 
has worked entirely independently. He goes right to the root of matters in 
the conception of the invariance of Maxwell's theory, by starting with the 
electrodynamic interaction between a magnet and a current. Contrasting the 
effect when the current moves and the magnet is at rest with that when the 
magnet moves and the current is at rest, then going on to consider the ques
tion of the transmission of light, he relates at once two apparently different 
problems: (i) the difficulty of a one-way determination of the speed of light, 
(ii) the question of a rest system for Maxwell's equations. All the elementary 
consequences of the Lorentz transformation are worked out as soon as it has 
been found, and Einstein then goes on to show that the Maxwell equations 
are indeed invariant under these transformations, which have been found in 
a way which is more or less independent of Maxwell's equations. He realises 
that mechanics will need some modification in the light of his results, and so 
he reformulates mechanics in the later part of the paper. 
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E X T R A C T 5 

On the Electrodynamics of Moving Bodies 
By A. EINSTEIN 

Translated from "Zur Electrodynamik bewegter Korper," Annalen 
derPhysik, 17, 891(1905). 

IT IS known that Maxwell's electrodynamics—as usually under
stood at the present time—when applied to moving bodies, leads to 
asymmetries which do not appear to be inherent in the pheno
mena. Take, for example, the reciprocal electrodynamic action of 
a magnet and a conductor. The observable phenomenon here de
pends only on the relative motion of the conductor and the magnet, 
whereas the customary view draws a sharp distinction between the 
two cases in which either the one or the other of these bodies is in 
motion. For if the magnet is in motion and the conductor at rest, 
there arises in the neighbourhood of the magnet an electric field 
with a certain definite energy, producing a current at the places 
where parts of the conductor are situated. But if the magnet is sta
tionary and the conductor in motion, no electric field arises in the 
neighbourhood of the magnet. In the conductor, however, we find 
an electromotive force, to which in itself there is no corresponding 
energy, but which gives rise—assuming equality of relative motion 
in the two cases discussed—to electric currents of the same path 
and intensity as those produced by the electric forces in the former 
case. 

Examples of this sort, together with the unsuccessful attempts 
to discover any motion of the earth relatively to the "light me
dium," suggest that the phenomena of electrodynamics as well 

187 
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as of mechanics possess no properties corresponding to the idea of 
absolute rest. They suggest rather that, as has already been shown 
to the first order of small quantities, the same laws of electrodyna
mics and optics will be valid for all frames of reference for which the 
equations of mechanics hold good. We will raise this conjcture 
(the purport of which will hereafter be called the "Principle of 
Relativity") to the status of a postulate, and also introduce another 
postulate, which is only apparently irreconcilable with the former, 
namely, that light is always propagated in empty space with a defi
nite velocity c which is independent of the state of motion of the 
emitting body. These two postulates suffice for the attainment of a 
simple and consistent theory of the electrodynamics of moving 
bodies based on Maxwell's theory for stationary bodies. The intro
duction of a "luminiferous ether" will prove to be superfluous in
asmuch as the view here to be developed will not require an "ab
solutely stationary space" provided with special properties, nor 
assign a velocity-vector to a point of the empty space in which elec
tromagnetic processes take place. 

The theory to be developed is based—like all electrodynamics— 
on the kinematics of the rigid body, since the assertions of any 
such theory have to do with the relationships between rigid bo
dies (systems of co-ordinates), clocks, and electromagnetic proces
ses. Insufficient consideration of this circumstance lies at the root 
of the difficulties which the electrodynamics of moving bodies at 
present encounters. 

I. Kinematical Part 

§ 1. Definition of Simultaneity 

Let us take a system of co-ordinates in which the equations of 
Newtonian mechanics hold good. In order to render our presen
tation more precise and to distinguish this system of co-ordinates 
verbally from others which will be introduced hereafter, we call it 
the "stationary system." 
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If a material point is at rest relatively to this system of co-ordi
nates, its position can be defined relatively thereto by the employ
ment of rigid standards of measurement and the methods of 
Euclidean geometry, and can be expressed in Cartesian co-ordin
ates. 

If we wish to describe the motion of a material point, we give the 
values of its co-ordinates as functions of the time. Now we must 
bear carefully in mind that a mathematical description of this 
kind has no physical meaning unless we are quite clear as to what 
we understand by "time." We have to take into account that all our 
judgments in which time plays a part are always judgments of 
simultaneous events. If, for instance, I say, "That train arrives here 
at 7 o'clock," I mean something like this: "The pointing of the 
small hand of my watch to 7 and the arrival of the train are simul
taneous events."* 

It might appear possible to overcome all the difficulties attend
ing the definition of "time" by substituting "the position of the 
small hand of my watch" for "time." And in fact such a definition 
is satisfactory when we are concerned with defining a time exclusi
vely for the place where the watch is located; but it is no longer 
satisfactory when we have to connect in time series of events occur
ring at different places, or—what comes to the same thing—to 
evaluate the times of events occurring at places remote from the 
watch. 

We might, of course, content ourselves with time values deter
mined by an observer stationed together with the watch at the 
origin of the co-ordinates, and co-ordinating the corresponding 
positions of the hands with light signals, given out by every event 
to be timed, and reaching him through empty space. But this co
ordination has the disadvantage that it is not independent of the 
standpoint of the observer with the watch or clock, as we know 

* We shall not here discuss the inexactitude which lurks in the concept 
of simultaneity of two events at approximately the same place, which can 
only be removed by an abstraction. 
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from experience. We arrive at a much more practical determina
tion along the following line of thought. 

If at the point A of space there is a clock, an observer at A can 
determine the time values of events in the immediate proximity of 
A by finding the positions of the hands which are simultaneous 
with these events. If there is at the point B of space another clock 
in all respects resembling the one at A9 it is possible for an observer 
at B to determine the time values of events in the immediate neigh
bourhood of B. But it is not possible without further assumption 
to compare, in respect of time, an event at A with an event at B. 
We have so far defined only an "A time" and a "B time." We 
have not defined a common "time" for A and B. The latter 
time can now be defined in establishing by definition that the 
"time" required by light to travel from A to B equals the "time" 
it requires to travel from B to A. Let a ray of light start at the 
"A time" tA from A towards B, let it at the "B time" tB be reflected 
at B in the direction of A9 and arrive again at A at the "A time" t'A. 

In accordance with definition the two clocks synchronize if 

tB—tA = tA — tB-

We assume that this definition of synchronism is free from con
tradictions, and possible for any number of points; and that the 
following relations are universally valid: 

1. If the clock at B synchronizes with the clock at A, the clock at 
A synchronizes with the clock at B. 

2. If the clock at A synchronizes with the clock at B and also 
with the clock at C, the clocks at B and C also synchronize with 
each other. 

Thus with the help of certain imaginary physical experiments 
we have settled what is to be understood by synchronous stationary 
clocks located at different places, and have evidently obtained a 
definition of "simultaneous," or "synchronous," and of "time." 
The "time" of an event is that which is given simultaneously with 
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the event by a stationary clock located at the place of the event, 
this clock being synchronous, and indeed synchronous for all time 
determinations, with a specified stationary clock. 

In agreement with experience we further assume the quantity 

2AB 
tA — tA 

to be a universal constant—the velocity of light in empty space. 
An essential point is that we have defined time by means of sta

tionary clocks in the stationary system, and the time now defined 
being appropriate to the stationary system we call it "the time of 
the stationary system." 

§ 2. On the Relativity of Lengths and Times 

The following reflexions are based on the principle of relativity 
and on the principle of the constancy of the velocity of light. These 
two principles we define as follows: 

1. The laws by which the states of physical systems undergo 
change are not affected, whether these changes of state be referred 
to the one or the other of two systems of co-ordinates in uniform 
translatory motion relative to each other. 

2. Any ray of light moves in the "stationary" system of co
ordinates with the determined velocity c, whether the ray be emit
ted by a stationary or by a moving body. Here 

, . light path 
velocity = -: r1- r time interval 

where time interval is to be taken in the sense of the definition in 

Let there be given a stationary rigid rod; and let its length be / 
as measured by a measuring-rod which is also stationary. We now 
imagine the axis of the rod lying along the axis of x of the statio-
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nary system of co-ordinates, and that a uniform motion of parallel 
translation with velocity v along the axis of x in the direction of 
increasing x is then imparted to the rod. We now inquire as to the 
length of the moving rod, and imagine its length to be ascertained 
by the following two operations: 

(a) The observer moves together with the given measuring-rod 
and the rod to be measured, and measures the length of the rod 
directly by superposing the measuring-rod, in just the same way 
as if all three were at rest. 

(b) By means of stationary clocks set up in the stationary system 
and synchronizing in accordance with § 1, the observer ascertains 
at what points of the stationary system the two ends of the rod to 
be measured are located at a definite time. The distance between 
these two points, measured by the measuring-rod already em
ployed, which in this case is at rest, is also a length which may 
be designated "the length of the rod." 

In accordance with the principle of relativity the length to be dis
covered by the operation (a)—we will call it "the length of the rod 
in the moving system"—must be equal to the length / of the sta
tionary rod. 

The length to be discovered by the operation (b) we will call 
"the length of the (moving) rod in the stationary system." This we 
shall determine on the basis of our two principles, and we shall 
find that it differs from /. 

Current kinematics tacitly assumes that the lengths determined 
by these two operations are precisely equal, or in other words, that 
a moving rigid body at the epoch t may in geometrical respects be 
perfectly represented by thesamebody at rest in a definite position. 

We imagine further that at the two ends A and B of the rod, 
clocks are placed which synchronize with the clocks of the statio
nary system, that is to say that their indications correspond at any 
instant to the "time of the stationary system" at the places where 
they happen to be. These clocks are therefore "synchronous in 
the stationary system." 
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We imagine further that with each clock there is a moving ob
server, and that these observers apply to both clocks the criterion 
established in § 1 for the synchronization of two clocks. Let a ray 
of light depart from A at the time* tA, let it be reflected at B at the 
time tB, and reach A again at the time tA. Taking into considera
tion the principle of the constancy of the velocity of light we find 
that 

?AB i s . ?AB 
ts — tA — and tA — tB— —;— 

c— v c-\-v 
where rAB denotes the length of the moving rod—measured in the 
stationary system. Observers moving with the moving rod would 
thus find that the two clocks were not synchronous, while obser
vers in the stationary system would declare the clocks to be syn
chronous. 

So we see that we cannot attach any absolute signification to the 
concept of simultaneity, but that two events which, viewed from a 
system of co-ordinates, are simultaneous, can no longer be looked 
upon as simultaneous events when envisaged from a system which 
is in motion relatively to that system. 

§ 3. Theory of the Transformation of Co-ordinates and Times 
from a Stationary System to another System in Uniform Mo
tion of Translation Relatively to the Former 

Let us in "stationary" space take two systems of co-ordinates, 
i.e. two systems, each of three rigid material lines, perpendicular 
to one another, and issuing from a point. Let the axes of X of the 
two systems coincide, and their axes of Y and Z respectively be 
parallel. Let each system be provided with a rigid measuring-rod 
and a number of clocks, and let the two measuring-rods, and like
wise all the clocks of the two systems, be in all respects alike. 

* "Time" here denotes "time of the stationary system" and also "position 
of hands of the moving clock situated at the place under discussion." 
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Now to the origin of one of the two systems (k) let a constant 
velocity v be imparted in the direction of increasing x of the 
other stationary system (K\ and let this velocity be communicated 
to the axes of the co-ordinates, the relevant measuring-rod, and the 
clocks. To any time t of the stationary system K there then will 
correspond a definite position of the axes of the moving system, 
and from reasons of symmetry we are entitled to assume that the 
motion of fc may be such that the axes of the moving system are at 
the time t (this "f" always denotes a time of the stationary system) 
parallel to the axes of the stationary system. 

We now imagine space to be measured from the stationary sys
tem K by means of the stationary measuring-rod, and also from 
the moving system k by means of the measuring-rod moving with 
it; and that we thus obtain the co-ordinates x, y, z, and I, rj9 £ re
spectively. Further, let the time / of the stationary system be deter
mined by means of the clocks at rest in the stationary system, for 
all points thereof at which there are clocks, by means of light sig
nals in the manner indicated in § 1; similarly let the time r of the 
moving system be determined for all points of the moving system 
at which there are clocks at rest relatively to that system by apply
ing the method, given in § 1, of light signals between the points at 
which the latter clocks are located. 

To any system of values x, y, z, t ,which completely defines the 
place and time of an event in the stationary system, there belongs 
a system of values I, % C, T, determining that event relatively to the 
system k, and our task is now to find the system of equations con
necting these quantities. 

In the first place it is clear that the equations must be linear on 
account of the properties of homogeneity which we attribute to 
space and time. 

If we place x' = x—vt, it is clear that a point at rest in the sys
tem k must have a system of values x\ y, z, independent of time. 
We first determine r as a function of x\ y, z, and t. To do this we 
have to express in equations that r is nothing else than the sum-
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mary of the data of clocks at rest in system k, which have been 
synchronized according to the rule given in § 1. 

From the origin of system k let a ray be emitted at the time r0 

along the Z-axis to x\ and at the time t\ be reflected thence to the 
origin of the co-ordinates, arriving there at the time r2; we then 
must have Y ( T O + T 2 ) = *u or, by inserting the arguments of the 
function x and applying the principle of the constancy of the velo
city of light in the stationary system: 

^ O , O , O , O + T ( O , O , O , / + ^ + ^ ) ] = T ( ^ O , O , * + ^ ) . 

Hence, if x' be chosen infinitesimally small, 

1 / 1 1 \ 
2 \c — v c+v) 

dx _ dx 1 dx 
dt dx' c—v dt 

or 
dx v dx _ 
dx' c2 — v2 dt 

It is to be noted that instead of the origin of the co-ordinates we 
might have chosen any other point for the point of origin of the ray, 
and the equation just obtained is therefore valid for all values of 
x\ y, z. 

An analogous consideration—applied to the axes of H and Z— 
it being borne in mind that light is always propagated along these 
axes, when viewed from the stationary system, with the velocity 
V(c2— v2)9 gives us 

dy ' dz 

Since r is a linear function, it follows from these equations that 

* = *('-?=?*') 
where a is a function (j)(v) at present unknown, and where for brev
ity it is assumed that at the origin of k, t = 0, when r = 0. 
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With the help of this result we easily determine the quantities 
I, rj, C by expressing in equations that light (as required by the 
principle of the constancy of the velocity of light, in combination 
with the principle of relativity) is also propagated with velocity c 
when measured in the moving system. For a ray of light emitted at 
the time r = 0 in the direction of the increasing | 

I = ex or * = aC(t-*!=?X')' 
But the ray moves relatively to the origin of k, when measured in 
the stationary system, with the velocity c—v9 so that 

= t. 
c—v 

If we insert this value of t in the equation for I, we obtain 
c2 

I = a -= x'. 
cl — vz 

In an analogous manner we find, by considering rays moving along 
the two other axes, that 

n = ct = ac{t--£-^ 

where 

Thus 
c c 

Substituting for x' its value, we obtain 
r = <j)(v)P(t-vx/c2), 
I = 4>(v)P(x-vt), 
V = 0(^)7, 



EINSTEIN: ELECTRODYNAMICS OF MOVING BODIES 197 

where 

p V(i-v2/c2) ' 

and (f> is an as yet unknown function of v. If no assumption 
whatever be made as to the initial position of the moving system 
and as to the zero point of t , an additive constant is to be placed 
on the right side of each of these equations. 

We now have to prove that any ray of light, measured in the mov
ing system, is propagated with the velocity c, if, as we have as
sumed, this is the case in the stationary system; for we have not 
as yet furnished the proof that the principle of the constancy of 
the velocity of light is compatible with the principle of relativity. 

At the time t = % = 0, when the origin of the co-ordinates is 
common to the two systems, let a spherical wave be emitted there
from, and be propagated with the velocity c in system K. If (x, y, z) 
be a point just attained by this wave, then 

x2+y2+z2 = c2t2. 

Transforming this equation with the aid of our equations of 
transformation we obtain after a simple calculation 

l 2 +^ 2 + C2 = cH2. 

The wave under consideration is therefore no less a spherical 
wave with velocity of propagation c when viewed in the moving 
system. This shows that our two fundamental principles are com
patible. 

In the equations of transformation which have been developed 
there enters an unknown function 0 of v, which we will now deter
mine. 

For this purpose we introduce a third system of co-ordinates K\ 
which relatively to the system k is in a state of parallel translatory 
motion parallel to the axis of S9 such that the origin of co-ordin-
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ates of system k moves with velocity — v on the axis of E. At the 
time t = 0 let all three origins coincide, and when t = x = y = 
z = 0 let the time f of the system^' be zero. We call the co-or
dinates, measured in the system K\ x\ y\ z', and by a twofold ap
plication of our equations of transformation we obtain 

f = (j>(-v)P(-v)(t + v£/c*) = (t>{v)<j>(-v)U 
x' = (j)( - v) /S( - v) ( | -f- vx) = (j)(y) cj)( - v)x, 
y = <j>(-v}ri = <Kv)<K-v)y9 

z' = (j)( — vX = (t)(v)(j)( — v)z. 

Since the relations between x\ y\ z' and x, y, z do not contain 
the time /, the systems K and K' are at rest with respect to one 
another, and it is clear that the transformation from K to K' 
must be the identical transformation. Thus 

We now inquire into the signification of <t>(v). We give our atten
tion to that part of the axis of Y of system k which lies between 
| = o, 7] = 0, C = 0 and | = 0, rj = /, C = 0. This part of the 
axis of H is a rod moving perpendicularly to its axis with velocity 
v relatively to system K. Its ends possess in K the co-ordinates 

and x2 = vt9 yi = 0, z2 = 0. 

The length of the rod measured in K is therefore ll4>(v)\ and this 
gives us the meaning of the function $(v). From reasons of sym
metry it is now evident that the length of a given rod moving per
pendicularly to its axis, measured in the stationary system, must 
depend only on the velocity and not on the direction and the sense 
of the motion. The length of the moving rod measured in the sta
tionary system does not change, therefore, if v and — v are inter
changed. Hence follows that //$(¥) = 1/<I>(—V\ or 

(j)(v) = <t>(~V). 
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It follows from this relation and the one previously found that 
<j)(v) = 1, so that the transformation equations which have been 
found become 

r = p(t-vx/c2% 

v = y> 

where 
/3=1/V(1-«*/<?) . 

§ 4. Physical Meaning of the Equations Obtained in Respect to 
Moving Rigid Bodies and Moving Clocks 

We envisage a rigid sphere* of radius R, at rest relatively to the 
moving system k, and with its centre at the origin of co-ordinates 
of k. The equation of the surface of this sphere moving relatively 
to the system K with velocity v is 

| 2 + ^ 2 + C 2 = R2. 

The equation of this surface expressed in x, y, z at the time t = 0 is 

+j>2 + z2 = R2. 
(V( i -^ 2 /c 2 ) ) 2 

A rigid body which, measured in a state of rest, has the form of a 
sphere, therefore has in a state of motion—viewed from the sta
tionary system—the form of an ellipsoid of revolution with the 
axes 

Ry/{l-&l<?),R,R. 

Thus, whereas the Y and Z dimensions of the sphere (and there
fore of every rigid body of no matter what form) do not appear 
modified by the motion, the X dimension appears shortened in the 

* That is, a body possessing spherical form when examined at rest. 
K-STR 14 
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ratio 1 : \ / ( l —v2/c2), i.e. the greater the value of v9 the greater the 
shortening. For v — c all moving objects—viewed from the "sta
tionary" system—shrivel up into plane figures. For velocities 
greater than that of light our deliberations become meaningless; 
we shall, however, find in what follows, that the velocity of light 
in our theory plays the part, physically, of an infinitely great velo
city. 

It is clear that the same results hold good of bodies at rest in the 
"stationary" system, viewed from a system in uniform motion. 

Further, we imagine one of the clocks which are qualified to 
mark the time t when at rest relatively to the stationary system, 
and the time r when at rest relatively to the moving system, to 
be located at the origin of the co-ordinates of &, and so adjusted 
that it marks the time r. What is the rate of this clock, when 
viewed from the stationary system? 

Between the quantities x, /, and r, which refer to the position of 
the clock, we have, evidently, x = vt and 

Therefore, 
r = tV(l~v2/c2) = t-(l-V(l-v2/c*))t 

whence it follows that the time marked by the clock (viewed in the 
stationary system) is slow by 1 — V 0 —v2jc2) seconds per second, 
or—neglecting magnitudes of fourth and higher order—by \v2jc2. 

From this there ensues the following peculiar consequence. If at 
the points A and B of K there are stationary clocks which, viewed 
in the stationary system, are synchronous; and if the clock at A is 
moved with the velocity v along the line AB to B, then on its arri
val at B the two clocks no longer synchronize, but the clock moved 
from A to B lags behind the other which has remained at B by 
\tv2\c2 (up to magnitudes of fourth and higher order), t being the 
time occupied in the journey from A to B. 
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It is at once apparent that this result still holds good if the clock 
moves from A to B in any polygonal line, and also when the points 
A and B coincide. 

If we assume that the result proved for a polygonal line is also 
valid for a continuously curved line, we arrive at this result: If one 
of two synchronous clocks at A is moved in a closed curve with 
constant velocity until it returns to A, the journey lasting t seconds, 
then by the clock which has remained at rest the travelled clock on 
its arrival at A will be \tv2\c2 second slow. Thence we conclude 
that a balance-clock* at the equator must go more slowly, by a 
very small amount, than a precisely similar clock situated at one of 
the poles under otherwise identical conditions. 

§ 5. The Composition of Velocities 

In the system k moving along the axis of X of the system K with 
velocity v, let a point move in accordance with the equations 

I = v^r, r\ = Writ, C = 0, 

where w$ and wv denote constants. 
Required: the motion of the point relatively to the system K. 

If with the help of the equations of transformation developed in 
§ 3 we introduce the quantities x, y, z, / into the equations of mo
tion of the point, we obtain 

w$+v 
1 + vwz/c2 

= V(l-v2/c2) 
1 + VWf/c2 

z = 0. 

r, 

wy, 

Thus the law of the parallelogram of velocities is valid accord-

* Not a pendulum-clock, which is physically a system to which the Earth 
belongs. This case had to be excluded. 
14* 
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ing to our theory only to a first approximation. We set 

w2 = w| + w?, 
a — t a n - 1 wy/wx, 

a is then to be looked upon as the angle between the velocities v 
and w. After a simple calculation we obtain 

v _ VKv2 + w2 + 2vw cos a) — (vw sin a/c2)2] 
1+vw cos a/c2 

It is worthy of remark that v and w enter into the expression for 
the resultant velocity in a symmetrical manner. If w also has the 
direction of the axis of X (axis of 3\ we get 

1 + vw/c2 

It follows from this equation that from a composition of two velo
cities which are less than c, there always results a velocity less than 
c. For if we set v = c —«, w = c—A, n and A being positive and less 
than c, then 

2c—x — X 
V = C^ =- r— < C. 

2c — X — A + XA/C 

It follows, further, that the velocity of light c cannot be altered 
by composition with a velocity less than that of light. For this case 
we obtain 

c+w _ 
1 + w/c C' 

We might also have obtained the formula for V, for the case 
when v and w have the same direction, by compounding two trans
formations in accordance with § 3. If in addition to the systems K 
and k figuring in § 3 we introduce still another system of co-ordi
nates k' moving parallel to k, its origin moving on the axis of X 
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with the velocity w, we obtain equations between the quantities 
x, y, z, t and the corresponding quantities of k\ which differ from 
the equations found in § 3 only in that the place of "v" is taken 
by the quantity 

v + w 
1 4- vw/c2 

from which we see that such parallel transformations form a 
group, as they must do. 

We have now deduced the requisite laws of the theory of kinema
tics corresponding to our two principles, and we proceed to show 
their application to electrodynamics. 

II. Electrodynamical Part 

§ 6. Transformation of the Maxwell-Hertz Equations for 
Empty Space. On the Nature of the Electromotive Forces 
Occurring in a Magnetic Field During Motion 

Let the Maxwell-Hertz equations for empty space hold good 
for the stationary system K, so that we have 

1 
c 

1 
c 

1 
c 

dX 
dt ~ 

dY 
dt ~ 

dZ 
dt ~ 

dN 
dy 

dL 
dz 

dM 
dx 

dM 
dz ' 

dN 
~dx~' 
dL 
dy ' 

1 
c 

1 
c 

1 
c 

dL 
dt ~ 

dM 
dt ~ 

dN 
dt ~ 

dY 
dz 

dZ 
dx 

dX 
dy 

dZ 
dy' 

dX 
' dz ' 

dY 
' dx ' 

where (X, Y, Z) denotes the vector of the electric force, and (L, M, 
N) that of the magnetic force. 

If we apply to these equations the transformation developed in 
§ 3, by referring the electromagnetic processes to the system of co
ordinates there introduced, moving with the velocity v, we obtain 
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the equations 

7s{"K-)}-l{'Kz)}-f-
7 W - R { ' H » K H ^ H 

where 

Now the principle of relativity requires that if the Maxwell-
Hertz equations for empty space hold good in system K, they 
also hold good in system k\ that is to say that the vectors of the 
electric and the magnetic force—{X\ Y\ Z') and (Z/, M\ N')—of 
the moving system k, which are defined by their ponderomotive 
effects on electric or magnetic charges respectively, satisfy the 
following equations: 

er ez' 
ac 

dZ' 
as 
dX' 

drj 

dX' 
dt 
dY' 

drj 0 | -

Evidently the two systems of equations found for system k must 
express exactly the same thing, since both systems of equations 

1 
c 

1 
c 

1 
c 

dX' 
ex 
dY' 
dt 

dZ' 
dt 

dN' 
drj 

dU 
~ dt 

dM' 
~ dl 

dM' 
dt ' 

dN' 
dt ' 
dU 
dt} ' 

1 dL' 
c dt 

1 dM' 
c dt 

1 dN' 
c dt 
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are equivalent to the Maxwell-Hertz equations for system K. 
Since, further, the equations of the two systems agree, with the 
exception of the symbols for the vectors, it follows that the func
tions occurring in the systems of equations at corresponding 
places must agree, with the exception of a factor xp{v\ which is 
common for all functions of the one system of equations, and is 
independent of I, rj, £ and x but may depend upon v. Thus we have 
the relations 

X' = xp(v)X, L' = y(v)L, 

r = V)(V)P(Y-—N\ M' = y>(v)p(M+—z\9 

Z' = y(v)p(z+ — M\9 N' = y(v)p(N- — Y\. 

If we now form the reciprocal of this system of equations, firstly 
by solving the equations just obtained, and secondly by applying 
the equations to the inverse transformation (from k to K), which 
is characterized by the velocity —v, it follows, when we consider 
that the two systems of equations thus obtained must be identical, 
that ip(v)y)(— v) = 1. Further, from reasons of symmetry* ip(y) = 
y)(—v)9 and therefore 

y)(v) = 1, 
and our equations assume the form 

X' = X, L' = L, 

r = PIY-^NY M' = $(M+~Z\ 

z' = PIZ+^M\ N' = P(N~Y\. 
As to the interpretation of these equations we make the follow-

* If, for example, X=Y=Z = L = M = 0, andA^^O, then from 
reasons of symmetry it is clear that when v changes sign without changing 
its numerical value, Y' must also change sign without changing its numerical 
value. 
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ing remarks: Let a point charge of electricity have the magnitude 
"one" when measured in the stationary system K, i.e. let it when 
at rest in the stationary system exert a force of one dyne upon an 
equal quantity of electricity at a distance of one cm. By the prin
ciple of relativity this electric charge is also of the magnitude "one" 
when measured in the moving system. If this quantity of electricity 
is at rest relatively to the stationary system, then by definition the 
vector (X, Y, Z) is equal to the force acting upon it. If the quantity 
of electricity is at rest relatively to the moving sysem (at least at the 
relevant instant), then the force acting upon it, measured in the 
moving system, is equal to the vector (X\ Y\ Z'). Consequently the 
first three equations above allow themselves to be clothed in words 
in the two following ways: 

1. If a unit electric point charge is in motion in an electromagne
tic field, there acts upon it, in addition to the electric force, an 
"electromotive force" which, if we neglect the terms multiplied by 
the second and higher powers ofv/c, is equal to the vector-product 
of the velocity of the charge and the magnetic force, divided by 
the velocity of light. (Old manner of expression.) 

2. If a unit electric point charge is in motion in an electromagne
tic field, the force acting upon it is equal to the electric force 
which is present at the locality of the charge, and which we ascer
tain by transformation of the field to a system of co-ordinates at 
rest relatively to the electrical charge. (New manner of expression.) 

An analogous situation holds with "magnetomotive forces." 
We see that electromotive force plays in the developed theory mere
ly the part of an auxiliary concept, which owes its introduction 
to the circumstance that electric and magnetic forces do not exist 
independently of the state of motion of the system of co-ordinates. 

Furthermore it is clear that the asymmetry mentioned in the 
introduction as arising when we consider the currents produced 
by the relative motion of a magnet and a conductor, now disap
pears. Moreover, questions as to the "seat" of electrodynamic 
electromotive forces (unipolar machines) now have no point. 
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§ 7. Theory ofDoppler's Principle and of Aberration 

In the system K, very far from the origin of co-ordinates, let 
there be a source of electrodynamic waves, which in a part of 
space containing the origin of co-ordinates may be represented to a 
sufficient degree of approximation by the equations 

X = X0 sin 0, L = L0 sin 0, 
Y = Y0 sin 0, M = Mo sin 0, 
Z = Z 0 sin 0, N = No sin 0, 

where 

0 = colt (lx+my + nz)\. 

Here (X0, F0 , Z0) and (L0, M0, JVo) are the vectors defining the 
amplitude of the wave-train, and /, m, n the direction-cosines of 
the wave-normals. We wish to know the constitution of these 
waves, when they are examined by an observer at rest in the mov
ing system k. 

Applying the equations of transformation found in § 6 for elec
tric and magnetic forces, and those found in § 3 for the co-ordina
tes and the time, we obtain directly 

X' = X0 sin 0\ U = U sin 0\ 
y = p(Yo-vN0/c) sin 0\ M' = P(Mo+vZ0/c) sin 0\ 
Z ' = P(Zo+vMo/c) sin 0\ N' = P(N0-vY0/c) sin 0'. 

0' = a>'lt- — (l'£ + m'ri + n'Q\ 

where 
co' = coP(l-lv/c), 

l-v/c 
~ 1-lv/c' 

, _ m 
m ~ P(l-!v/c)9 

, _ n 
U (Kl-lv/c)' 
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From the equation for co' it follows that if an observer is moving 
with velocity v relatively to an infinitely distant source of light of 
frequency v, in such a way that the connecting line "source—ob
server" makes the angle cj) with the velocity of the observer referred 
to a system of co-ordinates which is at rest relatively to the source 
of light, the frequency v' of the light perceived by the observer is 
given by the equation 

1— cos 6.vie 
v = v —-— 

V(l-v2/c2) 
This is Doppler's principle for any velocities whatever. When 
cj) = 0 the equation assumes the perspicuous form 

v/c 
]/ 1 + vl v/c 

We see that, in contrast with the customary view, when v = — c, 
V = o o . 

If we call the angle between the wave-normal (direction of the 
ray) in the moving system and the connecting line "source—ob
server" (j)\ the equation for /' assumes the form 

cos 6 — v/c 
COS (j) = 1—cos (f).v/c ' 

This equation expresses the law of aberration in its most general 
form. If cf) = \n, the equation becomes simply 

cos (/>' = —v/c. 

We still have to find the amplitude of the waves, as it appears in 
the moving system. If we call the amplitude of the electric or mag
netic force A or A' respectively, accordingly as it is measured in 
the stationary system or in the moving system, we obtain 

_ (1-COS (/).V/C)2 

A ~A \Ztff# 
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which equation, if 0 = 0, simplifies into 

1 + v/c 

It follows from these results that to an observer approaching a 
source of light with the velocity c, this source of light must appear 
of infinite intensity. 

§ 8. Transformation of the Energy of Light Rays. Theory of the 
Pressure of Radiation Exerted on Perfect Reflectors 

Since A2j%n equals the energy of light per unit of volume, we 
have to regard A'2/8TI, by the principle of relativity, as the energy 
of light in the moving system. Thus A'2/A2 would be the ratio of 
the "measured in motion" to the "measured at rest" energy of a 
given light complex, if the volume of a light complex were the 
same, whether measured in K or in k. But this is not the case. If 
/, ra, n are the direction-cosines of the wave-normal of the light in 
the stationary system, no energy passes through the surface ele
ments of a spherical surface moving with the velocity of light: 

(x-lct)2 + (y-mct)2 + (z-nct)2 = R2. 

We may therefore say that this surface permanently encloses the 
same light complex. We inquire as to the quantity of energy en
closed by this surface, viewed in system &, that is, as to the energy 
of the light complex relatively to the system k. 

The spherical surface—viewed in the moving system—is an 
ellipsoidal surface, the equation for which, at the time x = 0, is 

(P£-lp£v/c)2+(r)-mP£v/c)2+g-np£v/c)2 = R2. 

If S is the volume of the sphere, and 5" that of this ellipsoid, then 
by a simple calculation 

S' = V(l-v2/c2) 
S ~~ 1 —cos (j).v/c ' 
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Thus, if we call the light energy enclosed by this surface E when 
it is measured in the stationary system, and E' when measured in 
the moving system, we obtain 

E _ A'2S' _ 1-cos <t).v/c 
E " A2S V(l-^2/c2) ' 

and this formula, when $ = 0, simplifies into 

E " ]/ l+v/c* 

It is remarkable that the energy and the frequency of a light 
complex vary with the state of motion of the observer in accor
dance with the same law. 

Now let the co-ordinate plane I = 0 be a perfectly reflecting 
surface, at which the plane waves considered in § 7 are reflected. 
We seek for the pressure of light exerted on the reflecting surface, 
and for the direction, frequency, and intensity of the light after 
reflexion. 

Let the incidental light be defined by the quantities A, cos <£, v 
(referred to system K). Viewed from k the corresponding quanti
ties are 

1—cos cf).v/c 
A' = A 

cos <f>' 

V(i-*2/c2) ' 
cos (j) — v/c 

1—cos cf).v/c ' 
, _ 1 —cos (f).v/c 

For the reflected light, referring the process to system k, we obtain 

A" = A'. 
cos </>" = —cos $' 

v" = v'. 
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Finally, by transforming back to the stationary system K, we ob
tain for the reflected light 

_ Att 1+cos <f>" .vjc __ 1 — 2'cos (j).v/c+v2/c2 

V O - W ) " l-^2/c2 ' 
cos 6" + v/c (l + v2lc2)cos 6 — 2v/c 

C O S ffi> = = - -- - = —— - -— ^̂ r 1+cos fr'.v/c l - 2 c o s 0 . v / c + v2/c2 ' 

„ 1 + cos ^"v/c 1 — 2 cos d>.v/c+v2/c2 

v"r — y" :— = v - : 
^(l-v2/c2) l-v2/c2 

The energy (measured in the stationary system) which is in
cident upon unit area of the mirror in unit time is evidently 
A2{c cos (j) —v)/8n. The energy leaving the unit of surface of the 
mirror in the unit of time is A'"2{ — c cos <f)'" + v)/87i. The differ
ence of these two expressions is, by the principle of energy, the 
work done by the pressure of light in the unit of time. If we set 
down this work as equal to the product Pv, where Pis the pressure 
of light, we obtain 

_ A2 (cos 0 — vie)2 

" "8JF \-V2\C2~~ ' 

In agreement with experiment and with other theories, we obtain 
to a first approximation 

A2 

P= 2.-—cos2(/>. 

All problems in the optics of moving bodies can be solved by 
the method here employed. What is essential is, that the electric 
and magnetic force of the light which is influenced by a moving 
body, be transformed into a system of co-ordinates at rest relati
vely to the body. By this means all problems in the optics of mov
ing bodies will be reduced to a series of problems in the optics of 
stationary bodies. 
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§ 9. Transformation of the Maxwell-Hertz Equations when 
Convection-Currents are Taken into Account 

We start from the equations 

LIU* \-^L^^i 1 dL _ dY dZ 
~c[~dt~ + UxQ\ " ~ty~~~dz~ ' 7 ~W ~ ~dz~ dy ' 

1 f dY 1 dL dN 1 dM dZ dX 1 dL 
c \dt'+UyQ\ dz dx ' c dt dx dz ' 

1 idZ 1 

7pr+w^j 
cM_dL^ 1 dN _ dX dY 
dx dy ' c dt dy dx 

where 

_ dX dY dZ 
dx dy dz 

denotes An times the density of electricity, and (ux, uy, uz) the velo
city-vector of the charge. If we imagine the electric charges to be 
invariably coupled to small rigid bodies (ions, electrons), these 
equations are the electromagnetic basis of the Lorentzian electro
dynamics and optics of moving bodies. 

Let these equations be valid in the system K, and transform 
them, with the assistance of the equations of transformation 
given in §§ 3 and 6, to the system k. We then obtain the equations 

1 [ dX' ,1 
j{~dr +U*\ 
1 i dY' 
7 { " 0 7 ^ 

dN' dM 
drj d£ 

dL' dN' 

1 f 6 Z \ '1 

1 
c 

1 
c 

1 

dL' 
dr 

dM' 
dr 

dN' 

dY' 
9C 

dZ' 
9f 

dX' 

dZ' 
dr] 

dX' 
dC 

dY' 

dt sa 
dM' _ dL' 
9 | dr] ' c 0r drj 0 | 
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where 

= Ux~v 
M| l-uxv/c*' 

Uf> (3(l-uxv/c*)9 

Uc~ P(l-uxv/c*)9 

and 

dX' dY' dZ' 

Since—as follows from the theorem of addition of velocities (§ 5)— 
the vector {u^ u^ wc) is nothing else than the velocity of the electric 
charge, measured in the system k, we have the proof that, on the 
basis of our kinematical principles, the electrodynamic foundation 
of Lorentz's theory of the electrodynamics of moving bodies is in 
agreement with the principle of relativity. 

In addition I may briefly remark that the following important 
law may easily be deduced from the developed equations: If an 
electrically charged body is in motion anywhere in space without 
altering its charge when regarded from a system of co-ordinates 
moving with the body, its charge also remains—when regarded 
from the "stationary" system K—constant. 

§ 10. Dynamics of the Slowly Accelerated Electron 

Let there be in motion in an electromagnetic field an electrically 
charged particle of charge e (in the sequel called an "electron"), 
for the law of motion of which we assume as follows: 

If the electron is at rest at a given epoch, the motion of the 
electron ensues in the next instant of time according to the equa-
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tions 
<Px m-w=EX> 

d*z 

where x, y, z denote the co-ordinates of the electron, and m the 
mass of the electron, as long as its motion is slow. 

Now, secondly, let the velocity of the electron at a given epoch 
be v. We seek the law of motion of the electron in the immediately 
ensuing instants of time. 

Without affecting the general character of our considerations, 
we may and will assume that the electron, at the moment when we 
give it our attention, is at the origin of the co-ordinates, and moves 
with the velocity v along the axis of X of the system K. It is then 
clear that at the given moment (t = 0) the electron is at rest rela
tively to a system of co-ordinates k which is in parallel motion with 
constant velocity v along the axis of X. 

From the above assumption, in combination with the principle 
of relativity, it is clear that in the immediately ensuing time (for 
small values of i) the electron, viewed from the system k, moves in 
accordance with the equations 

(PI 

mS*=eY> 
m-w = eZ> 

in which the symbols | , % C, T, X\ Y\ Z ' refer to the system k. If, 
further, we decide that when t = x = y = z = 0 then x = | = 
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r\ = £ = 0, the transformation equations of §§ 3 and 6 hold 
good, so that we have 

| = p(x-vt% rj = y, C = z9 t = p(t-vx/c2) 
X' = Z, r = PQr-vN/c), Z ' = (S(Z+vM/c). 

With the help of these equations we transform the above equa
tions of motion from system k to system K, and obtain 

d2x 
dfi 
d*y 
~dT~ 
cPz 
dfi ~ 

m/53 

s 
Tnp 

s 
~m8 

(A) 

X 

Taking the ordinary point of view we now inquire as to the 
"longitudinal" and the "transverse" mass of the moving electron. 
We write the equations (A) in the form 

d?x 
m^-^ = eX=eX', 

<Py 
^ 2 - ^ = ^(y-7A r) = £ r ' 

mj3! d2z 
dfi #(Z+±M) = eZ\ 

and remark firstly that eX\ eY\ eZ' are the components of the 
ponderomotive force acting upon the electron, and are so indeed 
as viewed in a system moving at the moment with the electron, 
with the same velocity as the electron. (This force might be mea
sured, for example, by a spring balance at rest in the last-mentioned 
system.) Now if we call this force simply "the force acting upon 
the electron,"* and maintain the equation—mass X accelera-

* The definition of force here given is not advantageous, as was first shown 
by M. Planck. It is more to the point to define force in such a way that the 
laws of momentum and energy assume the simplest form. 

K - S T R 15 
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tion = force—and if we also decide that the accelerations are to 
be measured in the stationary system K, we derive from the above 
equations 

m Longitudinal mass = 

Transverse mass = 

(Vl-v2/c2f 
m 

l—v2/c2 

With a different definition of force and acceleration we should 
naturally obtain other values for the masses. This shows us that in 
comparing different theories of the motion of the electron we must 
proceed very cautiously. 

We remark that these results as to the mass are also valid for 
ponderable material points, because a ponderable material point 
can be made into an electron (in our sense of the word) by the ad
dition of an electric charge, no matter how small. 

We will now determine the kinetic energy of the electron. If an 
electron moves from rest at the origin of co-ordinates of the sys
tem K along the axis of X under the action of an electrostatic force 
X, it is clear that the energy withdrawn from the electrostatic field 

has the value eXdx. As the electron is to be slowly accelerated, 

and consequently may not give off any energy in the form of radia
tion, the energy withdrawn from the electrostatic field must be put 
down as equal to the energy of motion W of the electron. Bearing 
in mind that during the whole process of motion which we are con
sidering, the first of the equations (A) applies, we therefore obtain 

Thus, when v = c, W becomes infinite. Velocities greater than 
that of light have—as in our previous results—no possibility of 
existence. 

This expression for the kinetic energy must also, by virtue of the 
argument stated above, apply to ponderable masses as well. 
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We will now enumerate the properties of the motion of the 
electron which result from the system of equations (A), and are 
accessible to experiment. 

1. From the second equation of the system (A) it follows that an 
electric force Y and a magnetic force N have an equally strong 
deflective action on an electron moving with the velocity v9 when 
Y = Nvjc. Thus we see that it is possible by our theory to deter
mine the velocity of the electron from the ratio of the magnetic 
power of deflexion Am to the electric power of deflexion Ae, for any 
velocity, by applying the law 

Ae ~ c ' 

This relationship may be tested experimentally, since the velo
city of the electron can be directly measured, e.g. by means of 
rapidly oscillating electric and magnetic fields. 

2. From the deduction for the kinetic energy of the electron it 
follows that between the potential difference, P, traversed and the 
acquired velocity v of the electron there must be the relationship 

'■/"-""{vjnW-1} 
3. We calculate the radius of curvature R of the path of the 

electron when a magnetic force N is present (as the only deflective 
force), acting perpendicularly to the velocity of the electron. From 
the second of the equations (A) we obtain 

dfi R m c ]f \ c2) 
or 

_ mc2 v/c 1 

These three relationships are a complete expression for the laws 
according to which, by the theory here advanced, the electron 
must move. 
15* 



218 SPECIAL RELATIVITY 

In conclusion I wish to say that in working at the problem here 
dealt with I have had the loyal assistance of my friend and col
league M.Besso, and that I am indebted to him for several valuable 
suggestions. 

NOTES ON EXTRACT 6 

THE greater part of this paper is taken up with a description of the difficulties 
in reducing the experimental errors sufficiently. The effect to be measured 
corresponds to 1 — (11 fix), and the authors compare this prediction of special 
relativity with a figure quoted from Lorentz and Larmor of 1 — (1 /«). It is 
to be noted, however, that before the advent of special relativity, classical 
electrodynamics was actually unable to calculate the results of such an ex
periment without ad hoc assumptions. Be that as it may, the two quantities 
quoted were, for the sample, 0*94 and 0*83, the observed effect being 0*96, in 
an experiment very difficult to perform to high accuracy. 
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On the Electric Effect of Rotating a Magnetic Insulator 
in a Magnetic Field 
MARJORIE WILSON, B.A., M.SC, and 
H. A. WILSON, D.SC, F.R.S., 
Professor of Physics, Rice Institute, Houston, Texas, U.S.A. 
(Received May 26—Read June 19, 1913.) 

IN a previous paper* by one of us it was shown that when an insu
lator of specific inductive capacity K rotates in a magnetic field 
there is an electromotive force induced in it equal to that in a con
ductor multiplied by 1 — K"1. The object of the experiments de
scribed below was to measure the induced electromotive force in a 
magnetic insulator rotating in a magnetic field parallel to the axis 
of rotation. 

According to the theory based on the "principle of relativity" 
this induced electromotive force should be equal to that in a con
ductor multiplied by 1 — (fxK)'1, where // is the magnetic permea
bility of the insulator, whereas on the theory of H. A. Lorentz and 
Larmor the appropriate multiplier appears to be 1 — K"1, as for 
a non-magnetic insulator.1" 

No insulator is known for which ^ differs appreciably from 
unity, so that it was necessary to construct a sort of model of a 
magnetic insulator. The insulator adopted consisted of wax, in 
which a large number of small steel spheres was embedded. The 

[* Proc. Roy. Soc. (A), 89, 99 (1913).] 
* "On the Electric Effect of Rotating a Dielectric in a Magnetic Field," by 

H. A. Wilson, Phil. Trans., 1904. A, vol. 204. 
t M. Abraham, Theorie der Elektrizitat, vol. 11, p. 322. 
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spheres were |- inch in diameter, and each one was coated thinly 
with sealing wax. The coated spheres were packed tightly and 
melted paraffin wax poured into the empty spaces between them 
so as to form a solid mass. 

The insulator was in the form of a hollow cylinder with inside 
and outside metal coatings, and was rotated in a magnetic field 
parallel to the axis of the cylinder. The outside coating was con
nected to one pair of quadrants of a quadrant electrometer, the 
other quadrants of which were earthed. If an electromotive force 
E is induced in the cylinder and this raises the potential of the 
outer coating by V volts, then 

E = V(C+C)IC, 

where C is the capacity between the inner and outer coatings, and 
C" the capacity of the electrometer connecting wire and outside sur
face of the outer coating. The inner coating is supposed earthed. 

If the potential of the inner coating is raised by an amount E\ 
and this raises the potential of the outer coating by V\ then 

E = V'(C+C')IC. 

Let the electrometer deflection due to V bed and that due to V 
be d'. Then we have 

E ~ V " d' ' 
Thus E can be found in terms of d, d\ and E'. Another way is to 

earth the outer coating and charge the inner one to a potential E, 
then insulate the outer coating and afterwards earth the inner one. 
In this way a charge - CE' is given to the outer coating which 
raises its potential to V and 

-CE = V'(C+C). 

This second method has the disadvantage that it requires the 
outer coating to be earthed, so that errors may arise due to electric 
effects produced by opening the key connecting the outer coating 
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to the earth. Also in the first method the potential E' acts in exactly 
the same way as the induced electromotive force, so that errors due 
to bad insulation affect both V and V equally, and so are elimin
ated. The first method was therefore adopted. In the earlier experi
ments referred to above a small standard condenser was used to 
give a known charge to the outer coating, and the capacity of the 
cylinder was found in terms of that of the condenser. This method 
was less direct than that now employed. 

The inner coating was connected to earth through a 10-ohm 
resistance which could be connected through a 90-ohm resistance 
to a dry cell. The potential difference between the ends of the 100 
ohms was measured with a Weston voltmeter. When the cell was 
not connected the inner coating was earthed, and when it was con
nected the inner coating was raised to a potential one-tenth of that 
indicated by the voltmeter, which was usually 1-450 volts. 

The apparatus was that used in the earlier investigation, with 
some improvements in detail. The cylinder was 3-73 cm. external 
diameter, 2 cm. internal diameter, and 9-5 cm. long. The outside 
surface of the cylinder was covered with a brass tube 0-6 mm. 
thick, and another brass tube fitted the inside surface. The inner 
tube was mounted on a shaft, from which it was insulated, and the 
shaft was mounted between fixed conical bearings and could be 
rotated by means of a belt driven by a y-H.P. motor. The cylinder 
was surrounded by a large solenoid which produced a magnetic 
field parallel to the axis of rotation. 

Two small brass wire brushes made contact, one on the middle 
of the outer coating and the other on the inner tube close to one 
end of the cylinder. The arrangement of the brushes is shown in 
fig. 1. Each brush was kept pressed down lightly but steadily by 
the weight of a brass bar fastened at right angles to the end of the 
rod supporting the brush as shown. The inertia of these bars pre
vented the brushes from jumping when the cylinder was rotating 
quickly and they could be adjusted so that the pressure on the 
brushes was very small. This new arrangement of the brushes 
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AA. 
BB. 
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SS. 

c. 

D. 
QQ. 
xxxx. 
EEEE. 

Outer coating of cylinder. 
Inner coating of cylinder. 
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Brush on outer coating. 
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Conical bearings. 
Water jacket. 
Ebonite bushings support

ing brush rods. 
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K. 

TTTT. 
H. 

R, R\ 

M. 
S. 
V. 
YY. 

Bars on brush rods. 
Key for earthing 

outer coating. 
Metallic screen. 
Wire leading to 

electrometer. 
Resistances of 90 to 

10 ohms. 
Key. 
Dry cell. 
Voltmeter. 
Fibre tube insulat

ing BB from shaft 

caused a great improvement in the working of the apparatus. The 
electrometer and the wire leading to it were completely enclosed 
in a metal case which, with the solenoid, formed a complete elec
trostatic screen around the insulated system. The inside of the 
solenoid was kept cool by means of a water-jacket. The speed of 
the cylinder was found with a revolution counter driven by a 
worm gearing. 

To make a determination of the induced electromotive force in 
the cylinder the electrometer deflection due to changing the poten
tial of the inner coating by about 0*145 volt was first observed and 
then the cylinder started and its speed found. The effect of revers
ing a known current in the solenoid was next observed. The speed 
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and sensibility were then again measured. The speed of the cylin
der always remained constant within the limits of error. The sensi
bility also remained constant over long periods. The electrometer 
scale reading was very steady while the cylinder was rotating and 
the effect of reversing the curent could be easily and exactly ob
served. In fact with the new arrangement of the brushes no diffi
culty in making the observations was experienced and the accuracy 
seemed to be limited only by the smallness of the deflections ob
tained. The cylinder insulated well. 

There was no effect due to running the cylinder in the absence of 
a magnetic field and no effect due to reversing the current when 
the cylinder was at rest. The speed and sensibility were not changed 
by the current in the solenoid. The sensibility was the same when 
the cylinder was running as when it was at rest. 

The following table contains a set of results obtained: 

Revolu
tions per 
second 

00 

990 
98-5 
98-5 

1980 

Electro
meter sen

sibility 
(scale divi
sions per 

volt) 

184 
184 
184-5 
185 

Current 
reversed 
in amp
eres (c) 

7-5 
15-0 
100 
1413 

Deflection 

5-63 
11-4 
7-6 

21-5 

Effect in 
volts (E) 

00306 
00620 
00412 
01160 

Mean. . . 

El(nc) 

416X10-5 

4-20 
4-18 
4-14 

4-17X10-5 

It will be seen that the induced electromotive force is very nearly 
proportional to the current reversed and to the number of revolu
tions per second. After these observations were made it was found 
that running the cylinder had produced a narrow air gap between 
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the inner tube and the wax. This was filled up by slightly warming 
the cylinder and forcing down the mixture of wax and balls at the 
ends of the cylinder so that the mixture was very tightly pressed 
against the inner and outer tubes. 

The best results could be obtained at about 100 revolutions per 
second. At greater speeds the electrometer reading was not always 
quite steady and at smaller speeds the deflections were too small. 
A set of six concordant measurements of the effect due to reversing 
about 14 amperes at 100 revolutions per second was therefore ob
tained and the mean of these was adopted as representing the re
sult of the experiments. The mean results were as follows: 

Revolu
tions per 

second 
(n) 

1040 

Electro
meter sen

sibility 

250 

Current 
reversed 

(c) 

14-34 

Deflection 

15-4 

Induced 
E.M.F. 

(E) 

00616 

El(nc) 

413X10- 6 

It will be seen that this result agrees closely with the others. 
In order to compare the observed effect with that in a coductor, 

it is necessary to know the magnetic induction through the cylin
der. Corrections for the induced electromotive forces in the metal 
coatings have also to be applied. 

The change of average induction through the cylinder and its 
outer coating, due to reversing a current in the solenoid, was found 
by means of a spiral of fine wire wrapped round it uniformly from 
end to end. This spiral was connected to a ballistic galvanometer, 
and the secondary coil of an accurately known mutual induction 
was included in the circuit. The current in the primary of the mu
tual induction was measured with the same ammeter that was used 
to measure the current in the solenoid. The induction was found 
to be proportional to the current from 5 to 15 amperes, and to be 
equal to 4210 per ampere reversed. A second determination of this 



WILSON AND WILSON: A MAGNETIC INSULATOR 225 

quantity was done, using a coil of two turns round the cylinder. 
The induction through this coil was found for a series of equidis
tant positions along the cylinder and the mean induction through 
the cylinder calculated. The result was 4200. The mean of the 
two results, 4205, was adopted. The difference between the mean 
area of the windings and the area of cross-section of the cylinder 
was, of course, allowed for. The field at the windings was taken 
equal to that due to the solenoid in the absence of the cylinder. 

The mean induction in the hole through the cylinder was found 
with a coil which could be slid along inside when the cylinder was 
supported in its usual position with the inner tube and shaft re
moved. This was found to be equal to 569 per ampere reversed. 
The field at the centre of the solenoid in the absence of the cylinder 
was found to be equal to 205 for a current of 2 amperes, which is 
the same as the value found in the earlier investigation done in the 
Cavendish Laboratory. 

It was found that near the ends of the cylinder there was a stron
ger field than inside the hole through it. This, of course, was due 
to the magnetisation of the cylinder. In consequence of this there 
was an induced electromotive force in the inner tube which dimi
nished the effect observed. The induction through the cross-sec
tion of the inner tube at the brush on it was found to be 740 per 
ampere reversed, so that the average potential of the inner tube 
was lowered by the electromotive force due to 740 — 569 =171 
units of induction. 

The induction through the outer cover was taken to be equal per 
unit cross-section to the field in the absence of the cylinder, which 
made it 143 per ampere reversed. An error in this quantity would 
have practically no effect on the final result for the ratio of the 
effect to that in a conductor, because it is to be subtracted from 
both quantities. 

The induction through the cylinder at the brush on the outer 
cover was found to be 5010 per ampere reversed. This is greater 
than the average induction through the cylinder by 5010—4205 = 
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= 805. In consequence of this the potential at the brush was raised 
above the average potential of the outside of the cylinder by the 
potential due to 805 units of induction per ampere reversed. 

The observed effect, therefore, includes an induced electromo
tive force due to 805+143 — 171 = 777 units of induction per 
ampere reversed, acting in the metal coatings of the cylinder. This 
gives 7-77X 10~6 volt per ampere reversed per revolution per se
cond. Subtracting this from the observed effect (4-13 X 10~5) we 
get 3-35 X 10~5 volt per ampere reversed per revolution per second 
as the observed effect in the insulator itself. 

The average induction through the insulator is 4205 —(143 + 
569) = 3493 per ampere reversed. This would give an induced 
electromotive force in a conductor equal to 3-493 X 10~5 volt per 
ampere reversed per revolution per second. The ratio of the ob
served effect to that in a conductor is therefore 

3 - 3 5 X l ° - 5 =0-96. 
3-493 XlO"5 

The value of K for the insulator was found* to be 6-0 and that of 
\i to be 3-0, so that 

1-OAK)" 1 = 0-944, 1-K-1 = 0-83. 

The accuracy of the value found for the ratio of the induced 
electromotive force in the insulator to that in a conductor depends 
on readings of the voltmeter and ammeter employed. The electro
motive force was found in terms of the voltmeter reading, and the 
induction depends on the product of the mutual induction of the 
standard and the current determined by the ammeter. The primary 
of the mutual induction consisted of a single layer of wire wound 
in a screw thread of 1 mm. pitch cut on a brass tube 5 cm. in dia
meter and 90 cm. long. The screw was cut on an accurate lathe and 
the number of threads was found to be 10 per cm. to within 1 part 
in 5000. The secondary coil consisted of a single layer of 132 turns 

* For method see earlier paper referred to above. 
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wound on an accurately turned brass cylinder, which fitted into 
the primary coil. The area of the secondary coil was known to 
within 1 part in 500. The mutual induction was therefore known 
to a higher order of accuracy than the other quantities involved. 
The voltmeter and ammeter readings only enter into the final 
result as the value of the ratio of the potential indicated by the 
voltmeter to the current indicated by the ammeter, because the 
same ammeter was used to measure the currents in the solenoid 
and in the primary of the mutual induction. The value of this ratio 
was found by means of a standard one-tenth ohm resistance. The 
following table gives the results obtained: 

Current through 
resistance by 
ammeter (C) 

5 

9-95 

15 

P.D. between 
ends of resis
tance by volt

meter (E) 

0-500 

0-995 

1-500 

EIC 

01 

01 

01 

The ratio E/C is constant and equal to the resistance of the 
standard, so that it seems certain that no appreciable error could 
have been introduced by the ammeter and voltmeter, which were 
new Weston standard instruments. It appears, therefore, that the 
induced electromotive force in the insulator agrees approximately 
with that to be expected on the theory of relativity. This theory 
involves no assumptions as to the constitution of the insulator, 
so that it is applicable to any medium having in bulk an average 
permeability \x and an average specific inductive capacity K. 

The effect to be expected on the theory of H. A. Lorentz and 
Larmor depends on assumptions as to the constitution of the ma
terial medium so that it is doubtful whether their theory ought 
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to be regarded as necessarily leading to 1 —AT-1 as the value of the 
ratio of the induced electromotive force in the composite medium 
employed to that in a conductor. 

These experiments therefore confirm the theory of relativity but 
do not necessarily conflict with the fundamental assumptions of 
H. A. Lorentz and Larmor's theory. They do, however, make it 
probable that the application of this theory to magnetic bodies 
has not yet been worked out in a satisfactory manner. 

[Note added July 16,1913.—The specific inductive capacity and 
permeability of any material medium are average values over volu
mes large compared with the structural units (molecules or larger 
bodies) making up the medium. The medium employed has defi
nite values of these quantities for volumes large compared with 
the volume of one of the spheres used in building it up. It appears, 
therefore, to be allowable to apply any theoretical results ex
pressed in terms of (i and K to the medium used.] 

Our thanks are due to the Government Grant Committee of the 
Royal Society for a grant with which a large part of the apparatus 
used in this investigation was originally purchased, and also to the 
Trustees of the Rice Institute for the facilities for experimental 
work which they have placed at our disposal. 

NOTES ON EXTRACT 7 

As WILL be observed in the text, the effect of dispersion on FresneFs coeffici
ent is different in value for water flowing through a tube from its value for 
moving glass. It is therefore interesting to note that in this mainly experimental 
paper, Zeeman is careful to emphasise that his results are for water. The 
later part of the paper which is omitted deals with further experimental 
details. 
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Fresnel's Coefficient for Light of Different Colours 
(First Part) 

By PROF. P. ZEEMAN 

ONE of the empirical foundations of the electrodynamics of 
moving bodies in the domain of optics is FIZEAU'S celebrated expe
riment on the carrying along of the light waves by the motion of 
water. Let w be the velocity of water relative to an observer, then 
for him the velocity of light propagated in the water would be 

Ca = —±w 

if the dynamical laws for the addition of velocities were perfectly 
general. 

In this equation (JL designs the index of refraction of water, c the 
velocity of light in vacuo, and we must take the upper or the lower 
sign, according as the light goes with or against the stream. FIZEAU 
demonstrated that not the entire velocity w but only a fraction of 
it comes into action. This particular fraction appeared to be ap
proximately equal to 1—l//^2, FRESNEL'S coefficient. Hence we 
must write in place of the above given formula: 

Q 

Ca = — ± e w 

where 

[* Proc. Acad. Sci. Amst. 17, 445 (1914).] 
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(i) 

(2) 
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For water s is equal to seven-sixteenths. 
The extremely important role which the formulae (1) and (2) 

have had in the theory of aberration, in the development of Lo-
RENTZ'S electronic theory needs not to be exposed here, and it is 
hardly necessary to state that equation (1) is now regarded as a 
simple confirmation of EINSTEIN'S theorem concerning the addi
tion of velocities. 

I may be permitted however to point out the smallness of the 
second term of formula (1). The velocity which we are able to ob
tain in a column of water transmitting light is of the order of mag
nitude of 5 metres per second. We have thus to find a difference of 
velocity of 5 metres in 3 X 108/(4/3) m., i.e. of one part in fifty mil
lions. 

This was done by FIZEAU1 in one of the most ingenious exper
iments of the whole domain of physics. FIZEAU divided a beam 
of light issuing from a line of light in the focus of an object-glass 
into two parallel beams. After traversing two parallel tubes these 
beams pass through a second lens, in the focus of which a silvered 
mirror is placed. After reflection the rays are returned to the ob
ject glass, interchanging their paths. Each ray thus passes through 
the two tubes. A system of interference fringes is formed in the 
focus of the first lens. If water is flowing in opposite directions 
in the two tubes, one of the interfering beams is always travelling 
with the current and the other against it. When the water is put 
in motion a shift of the central white band is observed: by revers
ing the direction of the current the shift is doubled. 

The ingenuity of the arrangement lies in the possibility of secur
ing that the two beams traverse identical ways in opposite direc
tions. Every change due for example to a variation of density or of 
temperature of the moving medium equally influences the two 
beams and is therefore automatically compensated. 

1 H. FIZEAU, Sur les hypotheses relatives a Tether lumineux et sur une 
experience qui parait demontrer que le mouvement des corps change la vitesse 
avec laquelle la lumiere se propage dans leur interieur. Ann. de Chim. et de 
Phys. (3) 57, 385. 1859. 
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One can be sure that a shift of the system of interference fringes, 
observed when reversing the direction of the current must be due 
to a change of the velocity of propagation of the light. 

The tubes used by FIZEAU had a length of about 1*5 metres and 
an internal diameter of 5-3 m.m., whereas the velocity of the water 
was estimated at 7 metres. With white light the shift of the central 
band of the system of interference fringes observed by reversing 
the direction of flow was found from 19 rather concordant obser
vations equal to 0-46 of the distance of two fringes; the value cal
culated with FRESNEL'S coefficient is 0-404. 

The result is favourable to the theory of FRESNEL. The amount 
of the shift is less than would correspond to the full velocity of 
the water and also agrees numerically with a coefficient 1—1 //x2, if 
the uncertainty of the observations is taken into account. 

FIZEAU'S experiments, though made by a method which is theore
tically as simple as it is perfect, left some doubts as to their accu
racy, partly by reason of the remarkable conclusions as to re
lative motion of ether and matter to which they gave rise, and 
these doubts could only be removed by new experiments. 

35 years after FIZEAU'S first communication1 to the Academie 
des Sciences, MICHELSON and MORLEY2 repeated the experiment. 
They intended to remove some difficulties inherent to FIZEAU'S 

method of observation and also, if possible, to measure accurately 
the fraction to be applied to the velocity of the water. MICHELSON 

uses the principle of his interferometer and produces interference 
fringes of considerable width without reducing at the same time 
the intensity of the light. The arrangement is further the same as 
that used by FIZEAU but performed with the considerable means, 
which American scientists have at their disposal for important 
scientific questions. The internal diameter of the tubes in the ex
periment of MICHELSON and MORLEY was 28 m.m. and in a first 

1 Comptes rendus 33, 349, 1851. 
2 A. A. MICHELSON and E. W. MORLEY, Influence of motion of the me

dium on the velocity of light. Am. Journ. of Science (3) 31, 377, 1886. 
K-STR 16 
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series the total1 length of the tubes was 3 metres, in a second series 
a little more than 6 metres. 

From three series of experiments mthf white light MICHELSON 
found results which if reduced to what they would be if the tube 
were 2X5 metres long and the velocity 1 metre per second, would 
be as follows: 

"Series A = double displacement 
1 01858 
2 0-1838 
3 0-1800" 

"The final weighted value of A for all the observations is A = 
0-1840. From this by substitution in the formula, we get e = 
0-434 with a possible error of +0002". 

For light of the wavelength of the Z>-lines we calculate 1 — 
l//x2 = 0-437. This agreement between theory and observation 
is extremely satisfactory. 

A new formula for e was given by LORENTZ2 in 1895 viz.: 

£ = 1 _ - L _ _ L A ^ (3) 
\ll fJL CIA 

For the wavelength of the sodium lines this becomes: 
0-451. 

We see, therefore, that the value deduced by formula (3) deviates 
more from the result of the observations than the value given by 
the simple formula (2). 

"Sollte es gelingen, was zwar schwierig, aber nicht unmoglich 
scheint, experimentell zwischen den Gleichungen (3) und (2) zu 
entscheiden, und sollte sich dabei die erstere bewahren, so hatte 

1 Viz. the sum of the lengths of the ways in the moving medium, traversed 
by each of the interfering beams, or approximately twice the length of one 
of the tubes. 

2 H. A. LORENTZ, Versuch einer Theorie der electrischen und optischen 
Erscheinungen in bewegten Korpern, p. 101,1895. See also Theory of Electrons, 
p. 290. 
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man gleichsam die DoppLER'sche Veranderung der Schwingungs-
dauer fur eine kiinstlich erzeugte Geschwindigkeit beobachtet. Es 
istjanurunter Beriicksichtigung dieser Veranderung, dass wirdie 
Gleichung (3) abgeleitet haben".1 

It seemed of some importance to repeat with light of different 
colours FIZEAU'S experiment, now that the correspondence bet
ween theory and observation had become less brilliant, and in 
view of the fundamental importance of the experiment for the 
optics of moving bodies. 

From the point of view of the theory of relativity the formula 
(3) is easily proved, as has been pointed out by LAUE2, neglecting 
terms of the order w2/c2. Recently, however, again some doubt as 
to the exactness of LORENTZ'S term has been expressed. I may refer 
here to a remark by MAX B. WEINSTEIN3 in a recent publication 
and to a paper by G. JAUMANN.4 The last mentioned physicist 
gives an expression for the coefficient £, which for water does not 
differ much, but in other cases deviates very considerably from 
FRESNEL'S coefficient. 

The interference fringes were produced by the method of Mi-
CHELSON. The method of observation introduced will be described 
later on. The incident ray si a meets a slightly silvered plate at a. 
Here it divides into a reflected and a transmitted part. The reflect
ed ray follows the path ab cde af, the transmitted one the path 
e a deb af. These rays meeting in the focal plane o f / have pur
sued identical, not only equivalent, paths, at least this is the case for 
that part of the system of interference fringes which in white light 
forms the centre of the central band. 

In order to verify the formula (3) it is necessary that the light 

1 LORENTZ, Versuch u.s.w., p. 102. 
2 M. LAUE, Die Mitfuhrung des Lichtes durch bewegte Korper nach dem 

Relativitatsprinzip. Ann. d. Phys. 23, 989. 1907. 
3 MAX B. WEINSTEIN, Die Physik der bewegten Materie und die Relativitdts 

theorie. Leipzig, 1913, see note on p. 227 of his publication. 
4 G. JAUMANN, Elektromagnetische Theorie. Sitzungsber. d. Kaiserl. Ak. 

der Wiss. Wien, mathem. naturw. Kl. 117, 379, 1908, especially p. 459. 
16* 



2 3 4 SPECIAL RELATIVITY 

be monochromatic. Further it seems of immense advantage to 
have a water current which remains constant during a conside
rable time. 

For observations with violet light this even becomes strictly 
necessary, because visual observations are impossible with the 
violet mercury line (4358) used. Michelson obtained a flow of 
water by filling a tank, connected with the apparatus; by means 
of large valves the current was made to flow in either direction 
through the tubes. "The flow lasted about three minutes, which 
gave time for a number of observations with the flow in alternat
ing directions". In view of my experiments the municipal authori
ties of Amsterdam permitted the connection of a pipe of 7-5 cm. 
internal diameter to the main water conduit. There was no diffi
culty now photographing the violet system of interference fringes, 
though the time of exposition with one direction of flow was be
tween 5 and 7 minutes. The pressure of the water proved to be very 
constant during a series of observations; the maximum velocity 
in the axis of the tubes, of 40 mm. internal diameter and of a total 
length of 6 metres, was about 5-5 metres. 

Before recording some details of my experiments, I may be per
mitted to communicate the general result that for water there exists 
a dispersion A/FRESNEL'S coefficient and that formula (3) and there
fore the third term O/LORENTZ is essentially correct. 

I wish to record here my thanks to Mr. W. DE GROOT phil. nat. 
cand. and assistant in the physical laboratory for his assistance 
during my experiments with the final apparatus. 

The difficulties encountered in these experiments were only sur
mounted after two reconstructions of the apparatus. Great annoy
ance gave the inconstancy of the interference fringes, when the 
pressure of the water or the direction of flow were changed. Then 
not only the width of the interference bands, but the inclination of 
the fringes were undergoing uncontrollable variations. All these 
defects were perfectly eliminated by the use of wide tubes and by 
arranging the end plates in the manner indicated in Fig. 3. 
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I am indebted to Mr. J. VAN DER ZWAAL, instrumentmaker in the 
laboratory for his carefully carrying out my instructions and designs 
in the mechanical construction of the apparatus. 

In Fig. 2A a side aspect, and in Fig. 2B a horizontal projection 
of the arrangement on a scale of about ^ th is given. 

The interferometer is at the right side, at the left the rectangular 
prism is placed. 

The mounting of this prism is only sketched and was in reality 
more stable than might be inferred from the drawing. 

Prism and interferometer were mounted on the piers cemented 
to the large brick pier of the laboratory. The tubes are entirely 
disconnected from the interferometer and mounted on a large iron 
I girder; this girder is placed upon piers of freestone cemented to 
large plates of freestone fixed to the wooden laboratory floors. In 
this manner the adjustment of the interferometer cannot be dis
turbed by vibrations proceeding from the tubes. At the right of 
the horizontal projection the four large valves may be seen, by 
turning which the current was made to flow in either direction 
through the tube systems. 

The mountings containing the glass plates by which the tubes 
are closed are not given in the Plate. One of these mountings con
taining the plane parallel plates of glass is drawn to scale in Fig. 
3 at one half of the natural size. The four plates of glass are by 
Hilger, they are circular of 24 mm. diameter and 10 mm. thick; 
in a second series of observations plates 7 mm. thick have been 
used. The accuracy of parallelism of the plates is excellent; they 
are indeed cut from echelon plates. The general plan adopted for 
the construction of the plate mountings is this: one can only be 
sure that no change will occur in the position of the plates during 
the course of an experiment, if this position is entirely definite. In 
order to attain this the glass plate rests upon the inner, accurately 
grinded, surface of the brass piece d. This piece d fits accurately 
into the conical inner part of a piece fo, itself rigidly screwed to 
the tube a. Part d and b are connected by means of the counter nut 
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c. The glassplate is held against d by the nut e. There is no objec
tion to the presence at the inside between e and d of rings of hard 
india-rubber and of brass. 

NOTES ON EXTRACT 8 

DIRAC'S approach in this paper is admirably summarised in the first para
graph; to find why nature had chosen, not a point charge, but a spinning 
electron, as a building brick. He then proceeds to relate this with the necessity 
of making the theory Lorentz invariant. It is clear now (what was perhaps 
less clear in 1928) that neither requirement involved the other uniquely; it 
is not necessary for Lorentz invariance actually to have half-integral spin— 
other spins are possible and the choice is experimental. Similarly Pauli and 
Darwin had already fitted a spinning electron, at least in a formal manner 
into a pre-relativistic theory. Dirac's achievement is to have shown how the 
two requirements can be combined. 



EXTRACT QW 

The Quantum Theory of the Electron 
By P. A. M. DIRAC 

St. John's College, Cambridge 
(Communicated by R. H. Fowler, F.R.S.—Received January 2, 1928) 

THE new quantum mechanics, when applied to the problem of the 
structure of the atom with point-charge electrons, does not give 
results in agreement with experiment. The discrepancies consist of 
"duplexity" phenomena, the observed number of stationary states 
for an electron in an atom being twice the number given by the 
theory. To meet the difficulty, Goudsmit und Uhlenbeck have 
introduced the idea of an electron with a spin angular momentum 
of half a quantum and a magnetic moment of one Bohr magneton. 
This model for the electron has been fitted into the new mechanics 
by Pauli*, and Darwin1", working with an equivalent theory, has 
shown that it gives results in agreement with experiment for hyd
rogen-like spectra to the first order of accuracy. 

The question remains as to why Nature should have chosen 
this particular model for the electron instead of being satisfied 
with the point-charge. One would like to find some incompleteness 
in the previous methods of applying quantum mechanics to the 
point-charge electron such that, when removed, the whole of the 
duplexity phenomena follow without arbitrary assumptions. In 
the present paper it is shown that this is the case, the incomplete-

[* Proc. Roy. Soc. (A), 117, 610 (1928).] 
* Pauli, Z. / . Physik, vol. 43, p. 601 (1927). 
t Darwin, Roy. Soc. Proc, A, vol. 116, p. 227 (1927). 

237 
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ness of the previous theories lying in their disagreement with rela
tivity, or, alternatively, with the general transformation theory of 
quantum mechanics. It appears that the simplest Hamiltonian for 
a point-charge electron satisfying the requirements of both relati
vity and the general transformation theory leads to an explana
tion of all duplexity phenomena without further assumption. All 
the same there is a great deal of truth in the spinning electron mo
del, at least as a first approximation. The most important failure 
of the model seems to be that the magnitude of the resultant orbi
tal angular momentum of an electron moving in an orbit in a 
central field of force is not a constant, as the model leads one to 
expect. 

§ 1. Previous Relativity Treatments 

The relativity Hamiltonian according to the classical theory for 
a point electron moving in an arbitrary electro-magnetic field with 
scalar potential A0 and vector potential A is 

F = - ( ^ + 7 ^ ) 2 + ( p + 7 A ) 2 + ' M 2 c 2 ' 

where p is the momentum vector. It has been suggested by Gor
don* that the operator of the wave equation of the quantum 
theory should be obtained from this F by the same procedure as in 
non-relativity theory, namely, by putting 

pr =-ih-=—, r = 1,2, 3, 

* Gordon, Z. / . Physik, vol. 40, p. 117 (1926). 
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in it. This gives the wave equation 

9 e A \ 2 „ / . , 9 e A \ 2 

Fy (/A"^7+7^°) +*r(~ih~5T+7Ar) + m V y = o, 

(i) 

the wave function y being a function of x±, x2, x3, t. This gives rise 
to two difficulties. 

The first is in connection with the physical interpretation of ip. 
Gordon, and also independently Klein,1* from considerations of 
the conservation theorems, make the assumption that ify)m,ipn are 
two solutions 

e- = —£* {ih {Vm^f-^" %) + 2 e A ^} 
and 

e 
2m 

| - ih(Vm grad \pn - tpn grad i/;m) 4- 2 —kmym\pn 1 

are to be interpreted as the charge and current associated with 
the transition m^n. This appears to be satisfactory so far as emis
sion and absorption of radiation are concerned, but is not so ge
neral as the interpretation of the nonrelativity quantum mecha
nics, which has been developedX sufficiently to enable one to ans
wer the question: What is the probability of any dynamical vari
able at any specified time having a value lying between any speci
fied limits, when the system is represented by a given wave func
tion ipnl The Gordon-Klein interpretation can answer such ques
tions if they refer to the position of the electron (by the use of Qnn)9 

but not if they refer to its momentum, or angular momentum or 
any other dynamical variable. We should expect the interpretation 

t Klein, Z.f. Physik, vol. 41, p. 407 (1927). 
% Jordan, Z. / . Physik, vol. 40, p. 809 (1927); Dirac, Roy. Soc. Proc, A, 

vol. 113, p. 621 (1927). 
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of the relativity theory to be just as general as that of the non-rela
tivity theory. 

The general interpretation of non-relativity quantum mechanics 
is based on the transformation theory, and is made possible by 
the wave equation being of the form 

(H- W)xp = 0, (2) 

i.e., being linear in W or d/dt, so that the wave function at any 
time determines the wave function at any later time. The wave 
equation of the relativity theory must also be linear in W if the 
general interpretation is to be possible. 

The second difficulty in Gordon's interpretation arises from the 
fact that if one takes the conjugate imaginary of equation (1), one 
gets 

- ( - V + >)2+(-p + 7 A ) 2 + - V v = o, 

which is the same as one would get if one put — e for e. The wave 
equation (1) thus refers equally well to an electron with charge e as 
to one with charge —e. If one considers for definiteness the limit
ing case of large quantum numbers one would find that some of 
the solutions of the wave equation are wave packets moving in the 
way a particle of charge — e would move on the classical theory, 
while others are wave packets moving in the way a particle of 
charge e would move classically. For this second class of solutions 
Whas a negative value. One gets over the difficulty on the classical 
theory by arbitrarily excluding those solutions that have a negative 
W. One cannot do this on the quantum theory, since in general a 
perturbation will cause transitions from states with W positive to 
states with ^negative. Such a transition would appear experimen
tally as the electron suddenly changing its charge from — e to e, a 
phenomenon which has not been observed. The true relativity 
wave equation should thus be such that its solutions split up into 
two non-combining sets, referring respectively to the charge — e 
and the charge e. 
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In the present paper we shall be concerned only with the remo
val of the first of these two difficulties. The resulting theory is there
fore still only an approximation, but it appears to be good enough 
to account for all the duplexity phenomena without arbitrary 
assumptions. 

§ 2. The Hamiltonian for No Field 

Our problem is to obtain a wave equation of the form (2) which 
shall be invariant under a Lorentz transformation and shall be 
equivalent to (1) in the limit of large quantum numbers. We shall 
consider first the case of no field, when equation (1) reduces to 

(-p2o + V2+m2c2)y = 0 (3) 
if one puts 

W ., d 

The symmetry between p0 and pu />2, Pz required by relativity 
shows that, since the Hamiltonian we want is linear in po, it must 
also be linear in pu Pi and /?3. Our wave equation is therefore of 
the form 

(/>o + ai/?i + a2/?2 + a3/?3+/% = 0, (4) 

where for the present all that is known about the dynamical vari
ables or operators ai, a2, a3, ft is that they are independent of /?o, 
PuP2,P39 *•€•> that they commute with t, xi9 x2, x3. Since we are 
considering the case of a particle moving in empty space, so that 
all points in space are equivalent, we should expect the Hamilto
nian not to involve t, x±, x2, x3. This means that <xi, a2, a3, /? are 
independent of t, x±9 x2, x3, i.e., that they commute with/?0,/?i,/?25 

ps. We are therefore obliged to have other dynamical variables 
besides the co-ordinates and momenta of the electron, in order 
that ai, a2, a3, /? may be functions of them. The wave function yi 
must then involve more variables than merely xu x2, x3, t. 
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Equation (4) leads to 

0 = (-po+ai/?i + a2/?2 + a3/?3+i3)(/?o + ai/;i + a2/?24-a3/?3+^. 

= [ -pi+27a?/?f+^(a^ + K2<ZI)PIP2+^+^Ki8+#*i)/>ify> (5) 

where the 27 refers to cyclic permutation of the suffixes 1,2, 3. This 
agrees with (3) if 

ar
2 = 1, ara, + a,ar = 0 (r * s)\r s = x 2 3 

P* = rn*c2, arj8+j8ar = 0 J ' ' ' 

If we put/? = 0L±mc, these conditions become 

a£ = 1 (XjuOtv+KvKju = 0 (fi ^ v) fx, v = 1, 2, 3, 4. (6) 

We can suppose the a^'s to be expressed as matrices in some 
matrix scheme, the matrix elements of a^ being, say, a^(£'C"). The 
wave function \p must now be a function of £ as well as x3, JC2, x3, J. 
The result of a^ multiplied into y> will be a function ( a f ) of xi, x2, 
x3, /, C defined by 

(<Mp) O, f, C) = 27c-a/XCt') ?/>(>, *> £')• 

We must now find four matrices a^ to satisfy the conditions (6). 
We make use of the matrices 

ai = (? i) ff2=C ~o) as = (i -1) 
which Pauli introduced* to describe the three components of spin 
angular momentum. These matrices have just the properties 

a2
r = 1 oras + asar = 0, (r ^ s), (7) 

that we require for our a's. We cannot, however, just take the o*'s 
to be three of our a's, because then it would not be possible to 
find the fourth. We must extend the c's in a diagonal manner to 

* Pauli, loc. cit. 
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bring in two more rows and columns, so that we can introduce 
three more matrices gl9 Q2, QZ of the same form as oi, 0*2,^3, but 
referring to different rows and columns, thus: 

01 = 

03 

0 
1 
0 
0 

1 
0 
0 
0 

0 
0 
0 
1 

0 ' 
0 
1 
0 

a2 = < 

0 -i 0 0 
1 0 0 0 
0 0 0 - 1 
0 0 / 0 

l 

0 
-1 
0 
0 

0 
0 
1 
0 

ei 

Q3 = 

0 0 1 0 
0 0 0 1 
1 0 0 0 
0 1 0 0 

1 0 0 0 
0 1 0 0 
0 0 - 1 0 
0 0 0 - 1 

62 

0 
0 
0 
i 

— I 

0 
0 
0 

0 
— i 

0 
0 

The g's are obtained from the CT'S by interchanging the second and 
third rows, and the second and third columns. We now have, in 
addition to equations (7) 

and also 

If we now take 

Qr = 1 QrQs + QsQr = 0 ( f 7* S_ 

qrat = a,Qr. 
*}■ (7') 

a i = g i t f i , a 2 = Q102, a 3 = Q1O3, 

all the conditions (6) are satisfied, e.g., 

0C4 £ 3 , 

y2 = 

a i a 2 = Q1O1Q1O2 

Qi°iQi°i = Qiai = 1 

QlaLa2 = - QI<T&I = - a 2 a i . 
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The following equations are to be noted for later reference 

QlQ2 = ^ 3 = — 9261 1 ,gx 
o,io'2 = /o"3 = — a2cfi J 

together with the equations obtained by cyclic permutation of the 
suffixes. 

The wave equation (4) now takes the form 

[po + Qi(o, p) + Qtmcty = 0, (9) 

where a denotes the vector (au cr2, cr3). ((tf,/?) = Earpr,orpr being 
a matrix product). 

§ 3. Proof of In variance under a Lorentz Transformation 

Multiply equation (9) by £3 on the left-hand side. It becomes, 
with the help of (8), 

[ ^ 0 + ^ 2 ( ^ 1 + ^ 2 + ^ 3 ) + ^ = 0. 
Putting 

Po = *>4, 

Qz = 74, Q&r = yr, r = 1, 2, 3, (10) 
we have [iHy^p^+mc]^ = 0, p = 1, 2, 3, 4. (11) 

The pM transform under a Lorentz transformation according to 
the law 

Pfi — ^vflfxvPvy 

where the coefficients a are c-numbers satisfying 

The wave equation therefore transforms into 

[iZy^+mcty = 0, (12) 
where 

y^ = Zva^yv. 
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Now the y^, like the a ,̂ satisfy 
yl = 1, yvYv+yvyju = 0, (^ ^ v). 

These relations can be summed up in the single equation 
y ^ + y ^ = 2dftv. 

We have 
y'ny'v+y'vy'n = ^ ^ ^ ( 7 ^ + 7 ^ 7 0 

= 2ZTaMtaVT = 2(5^. 
Thus the y^ satisfy the same relations as the yfi. Thus we can put, 
analogously to (10) 

yi = es, y'r = qWr 
where the Q"S and c/'s are easily verified to satisfy the relations 
corresponding to (7), (7') and (8), if £2 a n ( i £1 a r e defined by 
e2= -iv'iYtfv ei = —'eiei-

We shall now show that, by a canonical transformation, the Q"S 
and cr"s may be brought into the form of the p's and cr's. From the 
equation Q'32 = 1, it follows that the only possible characteristic 
values for £3 are ± 1. If one applies to £3 a canonical transforma
tion with the transformation function Q'19 the result is 

QiQziQi)-1 = ~ QsQiiQi)-1 = ~ Qz • 

Since characteristic values are not changed by a canonical trans
formation, £3 must have the same characteristic values as — Q'Z. 
Hence the characteristic values of £3 are +1 twice and — 1 twice. 
The same argument applies to each of the other £"s, and to each 
of them's. 

Since £3 and a's commute, they can be brought simultaneously 
to the diagonal form by a canonical transformation. They will 
then have for their diagonal elements each +1 twice and — 1 
twice. Thus, by suitably rearranging the rows and columns, they 
can be brought into the form £3 and £3 respectively. (The possibi
lity £3 = ±a'3 is excluded by the existence of matrices that com
mute with one but not with the other.) 
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Any matrix containing four rows and columns can be expressed 
as 

C + £rCrGr+ZrCrQr+£rsCrsQr<ys (13) 

where the sixteen coefficients c, cr, c'r, crs are c-numbers. By ex
pressing a[ in this way, we see, from the fact that it commutes with 
Qs — £3 a n d anticommutes* with a'3 = a3, that it must be of the 
form 

o[ = Ci0i +C2P2 +C3iQz0i +C32Q3029 

i.e., of the form 
f o a12 0 0 1 
L21 0 0 0 

0*1 — i r 
0 0 0 034 I 

The condition d* — 1 shows that a12a21 = 1, a34ais = 1. If we now 
apply the canonical transformation: first row to be multiplied 
by (02i/#i2)1/2 and third row to be multiplied by (ais/au)1,2

9 and 
first and third columns to be divided by the same expressions, a[ 
will be brought into the form of ol9 and the diagonal matrices o's 

and £3 will not be changed. 
If we now express Q[ in the form (13) and use the conditions that 

it commutes with ô  = ax and a'3 = a3 and anticommutes with 
£3 — £3* w e s e e ̂ a t ̂  must be of the form 

Ql = CiQx + cfa. 

The condition Q[2 = 1 shows that q 2 +c 2
2 = 1, or c{ = cos 0, 

c2 = sin 6. Hence Q[ is of the form 

f 0 0 e~w 0 1 
0 0 0 e~w 

Pi — \ r 
* \eie 0 0 0 [ 

[0 ew 0 0 J 
* We say that a anticommutes with b when ab = — ba. 
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If we now apply the canonical transformation: first and second 
rows to be multiplied by eld and first and second columns to be 
divided by the same expression, Q[ will be brought into the form 
Q19 and al9 o*3, Q3 will not be altered. Q29 and a2 must now be of 
the form Q2 and o*2, on account of the relations iq2 = Q^QV ia2 = 
azav 

Thus by a succession of canonical transformations, which can 
be combined to form a single canonical transformation, the c/'s 
and a "s can be brought into the form of the Q'S and c's. The new 
wave equation (12) can in this way be brought back into the form 
of the original wave equation (11) or (9); so that the results that 
follow from this original wave equation must be independent of 
the frame of reference used. 

§ 4. The Hamiltonian for an Arbitrary Field 

To obtain the Hamiltonian for an electron in an electromagnetic 
field with scalar potential A0 and vector potential A, we adopt the 
usual procedure of substituting p0+e/c-Ao for p0 and p+e/c-Ao 
for p in the Hamiltonian for no field. From equation (9) we 
thus obtain 

\po-\—A0 + Qila, pH—Aj+e 3 mc y) = 0. (14) 

This wave equation appears to be sufficient to account for all the 
duplexity phenomena. On account of the matrices g and or contain
ing four rows and columns, it will have four times as many solu
tions as the non-relativity wave equation, and twice as many as 
the previous relativity wave equation (1). Since half the solutions 
must be rejected as referring to the charge + e on the electron, the 
correct number will be left to account for duplexity phenomena. 
The proof given in the preceding section of invariance under a 
Lorentz transformation applies equally well to the more general 
wave equation (14). 
K-STR 17 
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We can obtain a rough idea of how (14) differs from the previous 
relativity wave equation (1) by multiplying it up analogously to (5). 
This gives, if we write e' for e/c9 

0 = [-(po+e'A0)-\-Q1(a9^-\-e,A)+QSmc] 
X[(po+e,A0)+Q1(a, Q + e'A) + Q3mc]ip 

= [ - ( / > o + ^ o ) 2 + (a ,p + e'A)2 + m2c2 

+ Qi{(?> 9 + e'A) (po + e'A0)-(po+e'Ao) (a, p + e'A)}fy. 
(15) 

We now use the general formula, that if B and C are any two vec
tors that commute with o 

(a, B) (a, C) = 2VrfJ?iCi+2'((Tio>25aC2+a2cyi52Ci) 
= (B, C) + iZo3(B1C2-B2C1) 
= (B,C) + / (o ,BxC) . (16) 

Taking B = C = p+e'A, we find 

(o,p + 6>A')2 = (p+6>'A)2 + /2Vx3 

[(pi + e'A1)(p2 + e'A2)-(p2+e'A2)(p1 + e'A1)] 
= ($ + e'A)2 + he'(a, curl A). 

Thus (15) becomes 

0 = -(/?o+^^o)2+(p + ^A)2 + m2c2 + ^A(o, curl A) 

1 dA' 
-ie'hqAo, grad A0-i =—J V 

= [-(/?o+^^o)2 + (p + ^A)2 + m2c2 + ^ ( o , H) + fe'Aei(o, E)fy, 

where E and H are the electric and magnetic vectors of the field. 
This differs from (1) by the two extra terms 

eh , TT. ieh , _. 
— (o, H) + — e i ( a , E ) 
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in F. These two terms, when divided by the factor 2m, can be re
garded as the additional potential energy of the electron due to its 
new degree of freedom. The electron will therefore behave as 
though it has a magnetic moment eh/2mc. a and an electric mo
ment ieh/lmc.QiG. This magnetic moment is just that assumed in 
the spinning electron model. The electric moment, being a pure 
imaginary, we should not expect to appear in the model. It is doubt
ful whether the electric moment has any physical meaning, since 
the Hamiltonian in (14) that we started from is real, and the imagi
nary part only appeared when we multiplied it up in an artificial way 
in order to make it resemble the Hamiltonian of previous theories. 

§ 5. The Angular Momentum Integrals for Motion 
In a Central Field 

We shall consider in greater detail the motion of an electron in a 
central field of force. We put A = 0 and e'A0 = V{r), an arbitrary 
function of the radius r, so that the Hamiltonian in (14) becomes 

We shall determine the periodic solutions of the wave equation 
Ftp = 0, which means that p0 is to be counted as a parameter in
stead of an operator; it is, in fact, just 1/c times the energy level. 

We shall first find the angular momentum integrals of the motion. 
The orbital angular momentum m is defined by 

m = x x p , 

and satisfies the following "Vertauschungs" relations 

m^xx — x\m\ = 0, mix2 — x2m\ = ihxs 
tniPi—pimi = 0, m1p2—p2mi = ihp$ 

mXm = ihm, m2m1 — m1m2 = 0, 
(17) 

together with similar relations obtained by permuting the suffixes. 
17* 
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Also m commutes with r, and with/?,, the momentum canonically 
conjugate to r. 

We have 
miF~Fmi = ei{rai(o, p ) - ( o , p)mi) 

= 91(0, mip-pmi) 
= ihQ1(o2p3-o3p2\ 

and so 

m F - F m = ihqx oXp. (18) 

Thus m is not a constant of the motion. We have further 

OxF-Fox = ^i{cri(a, p ) - ( o , p)cri} 
= e i ( ° , i o - C 0 ' i>p ) 
= 2iQi(G3p2-02p3% 

with the help of (8), and so 

aF—Fa = —2/gi oXp. 
Hence 

( m + i A o ) F - F ( m + i A o ) = 0. 

Thus m+-|/za (= M say) is a constant of the motion. We can in
terpret this result by saying that the electron has a spin angular 
momentum of-|^a, which added to the orbital angular momentum 
m, gives the total angular momentum M, which is a constant of 
the motion. 

The Vertauschungs relations (17) all hold when M's are written 
for the m's. In particular 

M X M = /AM and M2M3 = M3M2. 

M3 will be an action variable of the system. Since the characteristic 
values of m3 must be integral multiples of h in order that the wave 
function may be single-valued, the characteristic values of M3 must 
be half odd integral multiples of A. If we put 

M? = {p-\)h\ (19) 
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j will be another quantum number, and the characteristic values of 
Ms will extend from (j-\)h to (—j+\)h*. Thusy takes integral 
values . 

One easily verifies from (18) that m2 does not commute with F, 
and is thus not a constant of the motion. This makes a difference 
between the present theory and the previous spinning electron 
theory, in which m2 is constant, and defines the azimuthal quan
tum number k by a relation similar to (19). We shall find that our 
j plays the same part as the k of the previous theory. 

§ 6. The Energy Levels for Motion in a Central Field 

We shall now obtain the wave equation as a differential equa
tion in r, with the variables that specify the orientation of the 
whole system removed. We can do this by the use only of elemen
tary non-commutative algebra in the following way. 

In formula (16) take B = C = m. This gives 

(o, m)2 = m2+*(o, m X m) (20) 
= (m+|Ao)2-A(o,m)-iA2o2-A(o,m) 
= M2-2A(o,m)-fA2. 

Hence 
{(a, m) + A}2 = M2+iA2 =fh2. 

Up to the present we have defined j only through y2, so that we 
could now, if we liked, take jh equal to (a, m)+A. This would not 
be convenient since we want7 to be a constant of the motion while 
(o, m)+A is not, although its square is. We have, in fact, by 
another application of (16), 

(o, m)(o,p) = 1(0, mXp), 

hence (m, p) = 0, and similarly 

(o, p)(o, m) = i(o,pXm), 
* See Roy. Soc. Proc, A, vol. I l l , p. 281 (1926). 
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so that 

(a, m)(o, p) + (o, p) (a, m) = illaxim^pz-m^p^p^m^-p^m^) 
= iSa1'2ihp1 = -2/*(a, p), 

or 
{(a, m)+/*} (a, p) + (a, p) {(o, m)+A} = 0. 

Thus (o, m)-\-h anticommutes with one of the terms in F, namely, 
Qi (°> P)> a n d commutes with the other three. Hence £3{(<*? m)+h) 
commutes with all four, and is therefore a constant of the motion. 
But the square of £3{(o, m)+/z} must also equaly2/*2. We therefore 
talce 

jh = Q3{(a,m)+h}. (21) 

We have, by a further application of (16), 

(a, x) (a, p) = (x, p) + i(o, m). 

Now a permissible definition of pr is 

(x, p) = rpr + ih9 

and from (21) 
(a, m) = Qzjh-h. 

Hence 
(a, x) (o, p) = rpr+iQ3Jh. (22) 

Introduce the quantity e defined by 

re = gi(a, x). (23) 

Since r commutes with Q± and with (a, x), it must commute with e. 
We thus have 

r2e2 = [gi(a, x)]2 = (a, x)2 = x2 = r2 

or 
e2 = 1. 

Since there is symmetry between x and p so far as angular mo
mentum is concerned, QI (a, x), like gx (o, p), must commute with 
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M andy. Hence e commutes with M and 7. Further, e must com
mute with /?,, since we have 

(o, x) (x, p ) - ( x , p) (a, x) = /A(o, x), 

which gives 
re(rpr + ih) — (rpr + ih)re = ihre, 

which reduces to 
epr-pre = 0. 

From (22) and (23) we now have 

reeiO'P) = rpr + iQ3jh 
or 

£i(a> P) = epr + iepsjh/r. 
Thus 

F = po+V+epr + ieQsjh/r+Qzmc. (24) 

Equation (23) shows that e anticommutes with £3. We can there
fore by a canonical transformation (involving perhaps the x's and 
p's as well as the c's and g's) bring e into the form of the Q2 of § 2 
without changing ^3, and without changing any of the other vari
ables occurring on the right-hand side of (24), since these other 
variables all commute with e. iegs will now be of the form IQ2Q& = 
= — £1, so that the wave equation takes the form 

Ftp = [po+V + Q2pr- Qijh/r+ QZmc]y = 0. 

If we write this equation out in full, calling the components of ip 
referring to the first and third rows (or columns) of the matrices ya 

and rpp respectively, we get 

(Ftp)* = (po+V)y)a-h-^y)ii—-ipp+mcy>a = 0, 

(Fip)fi = (po+V)y)p+h-^ya-ljy)(t-mcy)p = 0. 
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The second and fourth components give just a repetition of these 
two equations. We shall now eliminate \pa. If we write hB for 
Po+ V+mc, the first equation becomes 

( * + T ) ffi = Bfx, 

which gives on differentiating 

62 j d j nd dB 

B T / T, N jh 1 1 dV = j \ -(Po + V-m^f^—fJ+j-^^ 

{po+V?-mW tj 1 dV\/di\ 

This reduces to 

32 [(Po+ Vf-mW 7(7+1)1 1 dV/d j \ 

(25) 

The values of the parameter p0 for which this equation has a so
lution finite at r = 0 and r = °o are 1/c times the energy levels of 
the system. To compare this equation with those of previous theo
ries, we put rpp = r%, so that 

a2 2 a r(/>o+F)2-mV ./C/+i)ir 2 _e_ r(po+Vf-n^_A/+l)l 
r 9r*+[ A2 r 2 J 

( £ + * t l ) , - a (26) _l_dV_ (d j+V 
Bh dr 

If one neglects the last term, which is small on account of B being 
large, this equation becomes the same as the ordinary Schroedinger 
equation for the system, with relativity correction included. Since 
j has, from its definition, both positive and negative integral cha-
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racteristic values, our equation will give twice as many energy 
levels when the last term is not neglected. 

We shall now compare the last term of (26), which is of the same 
order of magnitude as the relativity correction, with the spin cor
rection given by Darwin and Pauli. To do this we must eliminate 
the d%/dr term by a further transformation of the wave function. 
We put 

% = B-u*Xu 

which gives 

62 v u . 2 8 7 , r ( P o + n 2 - m V 7(7+1)1 f 

+ [Bh r dr 2 Bh dr* 4 BW \ dr j \ Xl ~ ( ' 

The correction is now, to the first order of accuracy, 

Bh\r\dr 2 dr2)' 

where Bh = 2mc (provided po is positive). For the hydrogen atom 

we must put V = e2/cr. The first order correction now becomes 

If we write —jforj+1 in (27), we do not alter the terms represent
ing the unperturbed system, so 

will give a second possible correction for the same unperturbed 
term. 
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In the theory of Pauli and Darwin, the corresponding correcting 
term is 

e2 

when the Thomas factor \ is included. We must remember that in 
the Pauli-Darwin theory, the resultant orbital angular momentum 
k plays the part of our j . We must define k by 

m2 - k{k+\)h2 

instead of by the exact analogue of (19), in order that it may have 
integral characteristic values, like j . We have from (20) 

(o,m)2 = k(k+l)h2-h(a,m) 
or 

{(a,m)+ihy = (k+iTh\ 
hence 

(a, m) = kh or — (k+1) h. 

The correction thus becomes 

e2 e2 

2mc2r3 2mc2r3 

which agrees with (28) and (28'). The present theory will thus, in 
the first approximation, lead to the same energy levels as those 
obtained by Darwin, which are in agreement with experiment. 

NOTES ON EXTRACT 9 

THIS paper gives a good idea of the difficulties of observation in the border
land of quantum mechanics and relativity, especially in the thirties. Anderson 
was working in ignorance of Dirac's theoretical prediction of the positron 
and a good deal of his paper is taken up with assessment of positron tracks 
on the false assumption that they are protons. The difficulties into which 
this runs become clear in the section headed "Associated tracks"; especially 
the large mass of the proton is mentioned. 



EXTRACT 91*1 

Energies of Cosmic-ray Particles 
By CARL D. ANDERSON 

California Institute of Technology 
(Received June 28, 1932) 

Cloud chamber photographs of cosmic-ray tracks in a magnetic field 
up to 17,000 gauss are shown. On the assumption that the particles 
producing the tracks are traveling downward through the chamber 
rather than upward, particles of positive charge appear as well as 
electrons. From the specific ionization along the track it is concluded 
that the positives are protons, and are not nuclei of charge greater 
than unity. No evidence is uncovered demanding the introduction of 
a neutron for cosmic-ray phenomena. Eight examples of associated 
tracks are shown. Energies range from below 106 electron-volts to 
values in a few cases of the order of 109 electron-volts. Energy values 
for 70 tracks are listed. The scattering of cosmic particles in traversing 
a 6.0 mm lead plate is measured. 

AN AUTOMATIC, vertical Wilson expansion chamber operating in 
a strong magnetic field up to 21,000 gauss was designed for a study 
of the high-energy corpuscles associated with cosmic rays. The 
expansion chamber itself is 15 cm in diameter and has a depth of 
2 cm. The axis of the piston lies in a horizontal plane in order to 
effect the most favorable position for photographing the cosmic-
ray tracks. The magnetic field was found by direct measurement to 
be homogeneous to within 10 percent throughout the volume of 
the chamber. Photographs are taken through a hole in the pole 
piece of the magnet along the lines of force, thus revealing a par
ticle deflected by the magnetic field as an arc of a circle on the pho-

[* Phys. Rev. 41 (2), 405 (1932).] 
257 
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tographic film. A description of the apparatus will follow in a 
later publication. 

A brief discussion of the results has been published jointly with 
Professor R. A. Millikan,1 to whom the writer is indebted for 
suggesting the investigation and cooperating in planning it, and 
whose keen interest throughout the course of the work has been of 
the greatest value. 

Of the 3000 photographs taken to date, 62 show cosmic-ray 
tracks of length sufficient for energy measurements, 19 of which 
are here reproduced. None of the photographs are reproduced in 
this extract with addition of 3 photographs taken for test purposes. 
The photographs are 7/10 full size. The dark back ground 
in several of the photographs is due to light scattered by the back 
wall of the expansion chamber. 

In the test photograph of Fig. 2 appear tracks in air of the sec
ondary electrons ejected by gamma-rays from Ra. Figs. 3 and 4 
show alpha-particle trajectories. 

The remainder of the tracks shown, Figs. 5-23, are ascribed to 
cosmic rays because of their high energy. Cosmic-ray tracks are in 
all cases readily distinguishable from alpha-particle tracks due to 
the very much greater specific ionization of the latter. 

Positively Charged Particles 
A charged particle will be deviated by the magnetic field into an 

arc of a circle. The sense of rotation in the chamber as viewed in 
the photographs will be clockwise for a particle of negative 
charge, and counter-clockwise for one of positive charge. The sign 
of the charge can be ascertained only if the direction of motion of 
the particle is known. It is assumed here that the particles are tra
veling downward through the chamber. The small degree of scat
tering to be expected for high-energy particles, combined with the 
known fact that the rays come in from above, appears to justify 

1 Millikan and Anderson, Phys. Rev. 40, 325 (1932). 
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this assumption. In Fig. 1 it is seen that the cosmic-ray tracks pre
fer the vertical direction over the horizontal indicating that back
ward or large angle scattering is infrequent. 

40 h 

t 24 

Angle with the vertical 

FIG. 1. The number of tracks per unit solid angle as a function 
of the angle with the vertical. Only those tracks are included whose 
curvature in the magnetic field is sufficiently small to allow deter
mination of the direction to be made. Therefore no electrons 
of energy less than 100X106 volts are included. This space-distribu
tion in showing a large percentage of nearly vertical tracks differs 

from that reported by Skolbeltzyn.2 

In many instances on the above assumption as to the direction 
of motion, the tracks are deviated in a sense to indicate the pre
sence of positively charged particles as well as electrons. 

Specific Ionization 

A few tracks photographed in an atmosphere of helium with 5 
percent air show about 14 ion pairs per cm at standard pressure, a 
value close to that found for electrons of about 106 volts energy 

2 Skobeltzyn, C.R. 194, 118 (1932). 
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from Ra gamma-rays, which show about 13 ion pairs per cm in 
the same gas. The specific ionization for an electron remains prac
tically independent of its energy for energies ranging from about 
300,000 volts to several hundred million volts. For a given velocity, 
protons and electrons ionize the same, and for high energies where 
the velocities of both the electrons and the protons are of the order 
of the velocity of light it becomes impossible to distinguish elec
trons from protons by their ionization. Only at lower energies 
where the proton velocities are appreciably less than the velocity 
of light will protons show an appreciably greater specific ioniza
tion than electrons of the same energy. Nuclei of higher atomic 
charge would, for a given velocity, produce many more ions per 
cm, the specific ionization being to a first approximation propor
tional to the square of the charge on the nucleus. 

The specific ionization along the tracks showing positives is in 
most instances not much greater than that for the electrons. It is 
concluded, therefor; that the positives can only be protons, and 
cannot themselves represent nuclei of higher atomic number than 
unity. 

The projection of whole nuclei by the penetrating radiation pro
duced in the bombardment of beryllium with alpha-particles has 
been reported in recent experiments. For the explanation of this 
fact, on the basis of the conservation laws, Chadwick3 postulates a 
neutron. For the interpretation of the cosmic-ray effects so far 
observed such a neutron is not demanded on the basis of the 
energy-momentum arguments which apply in the experiments of 
Chadwick. Further work will show if the associated tracks of cos
mic rays represent an effect similar, but on a higher energy scale to 
the disintegration tracks photographed by Feather4 in the neutron 
experiments, though the frequent occurrence of electron tracks in 
the cosmic-ray experiments seems to indicate a different type of 
phenomenon. 

3 Chadwick, Nature 129, 312 (1932). 
4 Feather, Proc. Roy. Soc. A 136, 709 (1932). 
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A possibility to be borne in mind is that, in rare cases, the tracks 
of curvature that indicate positives might be in reality electrons 
scattered backwards by the material underneath the chamber and 
are traversing it from bottom to top. Precise data on the specific 
ionization of the low-energy positives will distinguish, however, 
between downward positives and upward negatives. 

Associated Tracks 

A well-known characteristic of the cosmic tracks is their ten
dency to occur in groups.5'6 '7 Of the 55 photographs showing 
cosmic tracks, 7 show double tracks and 1 shows three tracks. 

In general, for paired tracks, the energy of one of the associat
ed pair is considerably less than that of the other, in some instances 
106 volts and less. One of the associated pair is also in all cases de
finitely an electron. 

The associated tracks have been assumed to be due to the simul
taneous ejection by a photon of two particles from an atomic 
nucleus.1 

Another effect which may give rise to associated tracks is a close 
encounter between a cosmic particle and an electron. Fig. 20 is an 
example of an encounter of this type, the encounter taking place in 
the wall. For such an encounter where an electron of high energy 
(energy » mc2) produces a secondary track, giving to the secon
dary electron an energy E, the angle d between the primary and sec
ondary electron is given by tan 6 = (2mc2/E)112. The two tracks 
of Fig. 10 might represent an effect of this type, the relation above 
being satisfied within experimental uncertainty. The possibility 
also exists that a proton may by direct impact give to an electron 
energy sufficient to produce a secondary track. It is pointed out, 
however, that on the basis of the conservation laws, due to the 

5 Skobelzyn, Zeits. f. Physik 54, 686 (1929). 
6 Auger and Skobelzyn, C.R. 189, 55 (1929). 
7 Locher, Phys. Rev. 39, 883 (1932). 
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relatively large proper mass of a proton, it is difficult to explain 
the associated tracks as a binary collision between a proton and an 
electron because of the prohibitively high energy which would 
have to be assigned to the proton in this case to account for the 
electron energies observed. To produce an electron of 100X106 

volts would require a proton energy of 1010 volts. In both Figs. 8 
and 11 one of the associated pair has a curvature to indicate a posi
tive, and therefore, if these curvatures are correctly measured these 
cases cannot represent such encounters. Even if these are incor
rectly measured and are in reality electrons then for Fig. 11 the 
value of 0 calculated for an energy of 27 X 106 volts is 11°, which 
would agree with the angle indicated by the photograph within 
experimental uncertainty. But for the case of Fig. 8, the calculated 
value of 17° and the measured value of 25° are in conflict. Again 
the associated pair of Fig. 5 can not possibly be interpreted as due 
to a binary collision. The hypothesis of simple binary collisions is 
inadequate to account for all the associated tracks. Furthermore, 
encounters of this type in which a large amount of energy is trans
ferred to an electron are not to be expected frequently, and the 
abundance of associated tracks coupled with the fact that positives 
as well as electrons appear, is strong evidence that the associated 
tracks represent a quite different phenomenon, i.e., the ejection of 
two particles from a nucleus. 

Scattering of the Cosmic Particles 

Certain of the tracks, Figs. 11 and 17, show sudden though very 
small deflections identical in appearance with the deflections ob
served in alpha-particle tracks due to nuclear encounters, but which 
are to be expected in the gas only rarely on the basis of the present 
scattering laws for high-energy electrons or protons. The deflec
tions in some instances represent scattering from the walls of the 
chamber. An example of large angle scattering from a lead surface 
is shown in Fig. 8. In Fig. 10 another instance of large angle scat-
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tering is shown, the electron being scattered by the glass wall of the 
chamber. 

Experiments are now in progress to study the scattering of cos
mic particles in lead. Figs. 22 and 23 show particles traversing 6-0 
mm of lead, the angle of scattering being in each case readily mea
surable. 

Energies 

The energies of the cosmic particles as determined from the 
radii of curvature of the tracks range from values below 106 elec
tron-volts to, in a few cases, values of the order of 109 electron-
volts. The greater part of them, however, have energies below 
500X106 volts. 

Precautions were taken to reduce to a minimum the effects of 
air movements in the expansion chamber which tend to distort 
the tracks. The energies of the higher energy tracks, i.e., protons 
of energies of the order of 500 XlO6 volts and electrons of the 
order of 109 volts, can be determined only roughly due to the small 
curvature in the magnetic field. 

Table I gives the distribution in energy of the electrons and pro
tons. The number of protons and the number of electrons in 
various energy ranges are listed. It is to be noted that there may be 
many more electrons in the energy range below 106 volts than 
those listed. Since this includes the energy region of radio-activity, 
it is impossible to distinguish between electrons from radio-active 
sources and low-energy electrons due to cosmic rays. Therefore 
only those very low-energy electrons which are associated with 
other cosmic-ray tracks, and are definitely to be attributed to cos
mic rays are listed in Table I. 

There are in addition 5 tracks whose sign of charge is doubtful 
due to the lack of an appreciable curvature in the magnetic field. 
For these it is possible only to assign a lower limit to the energy, 
i.e., 450X 106 volts on the supposition that they are electrons and 
K-STR 18 
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TABLE I. Energy distribution 

Number of 
electrons 

2 
4 
6 
4 
3 
1 
5 
4 
5 
1 
3 
2 

Number of 
protons 

0 
0 
1 
1 
3 
3 
5 
2 
2 
4 

3{ 

Energy range in 
electron-volts 

Below 106 

From 106 to 
From 10Xl06to 
From 20Xl06to 
From 30xl0 6 to 
From 50Xl06to 
From 100X106 to 
From 200 XlO6 to 
From 300XlO6 to 
From 400XlO6 to 
From 500XlO6 to 

10X106 

20 XlO6 

30 XlO6 

50 XlO6 

100 XlO6 

200 XlO6 

300 XlO6 

400 XlO6 

500 XlO6 

700 XlO6 

From 700X106 to lOOOXlO6 

TABLE II. Energies of the associated tracks in electron-volts 

Group 1 

Group 2 

Group 3 

Group 4 

Group 5 

Group 6 

Group 7 

Proton 
Electron 

Electron 
Probably proton 
Probably proton 

Probably proton 
Electron 

Proton 
Electron 

Probably proton 
Electron 

Electron 
Electron 

Electron 
Electron 

130 XlO6 

120X106 

30X106 

150 XlO6 

400 XlO6 

450 XlO5 

27 XlO6 

20 XlO6 

4 XlO5 

-100 XlO6 

11X106 

170 XlO6 

11 XlO6 

180X106 

2 XlO6 

See Fig. 5 

See Fig. 6 

See Fig. 11 

See Fig. 7 

See Fig. 8 

See Fig. 10 

See Fig. 9 

Group 8 Electron 4XlO5 See Fig. 20 
Electron or proton —400XlO6 
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100X106 volts on the supposition that they are protons. There is 
one track, Fig. 21 to which an energy in excess of 109 volts must 
be assigned whether it is assumed a proton or electron. 

In Table II are given the energies of the 8 groups of associated 
tracks. 

I wish to thank Mr. Seth H. Neddermeyer for assistance in the 
measurement of the photographs. 

18* 
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ABOUT the first one-third of this exceptionally important paper is printed 
here. The later parts deal respectively with the reduction of representations 
(up to a factor) to two-valued representations, and the reduction of the 
representations to those of a "little group". These are of a rather more 
technical nature. 
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On Unitary Representations of the Inhomogeneous 
Lorentz Group* 
By E. W I G N E R 

(Received December 22, 1937) 

1. Origin and Characterization of the Problem 
It is perhaps the most fundamental principle of Quantum Mecha

nics that the system of states forms a linear manifold,1 in which a 
unitary scalar product is defined.2 The states are generally repre
sented by wave functions3 in such a way that </> and constant mul-

[* Ann. of Math. 40, 149 (1939).] 
* Parts of the present paper were presented at the Pittsburgh Symposium 

on Group Theory and Quantum Mechanics. Cf. Bull. Amer. Math. Soc, 41, 
p. 306, 1935. 

1 The possibility of a future non linear character of the quantum mechanics 
must be admitted, of course. An indication in this direction is given by the 
theory of the positron, as developed by P. A. M. Dirac (Proc. Camb. Phil. 
Soc. 30, 150, 1934, cf. also W. Heisenberg, Zeits.f. Phys. 90, 209, 1934; 92, 
623, 1934; W. Heisenberg and H. Euler, ibid. 98, 714, 1936, and R. Serber, 
Phys. Rev. 48, 49, 1935; 49, 545, 1936) which does not use wave functions 
and is a non linear theory. 

2 Cf. P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford, 1935, 
Chapters I and II; J. v. Neumann, Mathematische Grundlagen der Quanten-
mechanik, Berlin, 1932, pages 19-24. 

3 The wave functions represent throughout this paper states in the sense 
of the "Heisenberg picture," i. e. a single wave function represents the state 
for all past and future. On the other hand, the operator which refers to a 
measurement at a certain time t contains this t as a parameter. (Cf., e.g., 
Dirac, loc. cit. ref. 2, pages 115-123). One obtains the wave function (f)8(t) of 
the Schrodinger picture from the wave function cjys of the Heisenberg picture 
by 4>8(t) = exp( — iHt/h)4>H' The operator of the Heisenberg picture is Q(t) = 
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tiples of 0 represent the same physical state. It is possible, therefore 
to normalize the wave function, i.e., to multiply it by a con
stant factor such that its scalar product with itself becomes 1. 
Then, only a constant factor of modulus 1, the so-called phase, will 
be left undetermined in the wave function. The linear character 
of the wave function is called the superposition principle. The 
square of the modulus of the unitary scalar product (ip, 0) of two 
normalized wave functions ip and 0 is called the transition probabi
lity from the state xp into 0, or conversely. This is supposed to give 
the probability that an experiment performed on a system in the 
state 0, to see whether or not the state is xp9 gives the result that it is 
tp. If there are two or more different experiments to decide this (e.g., 
essentially the same experiment, performed at different times) 
they are all supposed to give the same result, i.e., the transition 
probability has an invariant physical sense. 

The wave functions form a description of the physical state, not 
an invariant however, since the same state will be described in 
different coordinate systems by different wave functions. In order 
to put this into evidence, we shall affix an index to our wave func
tions, denoting the Lorentz frame of reference for which the wave 
function is given. Thus 0/ and (/>r, represent the same state, but 
they are different functions. The first is the wave function of the 
state in the coordinate system /, the second in the coordinate sys
tem /'. If <f>l = \pv the state <f> behaves in the coordinate system / 
exactly as ip behaves in the coordinate system /'. If 07 is given, all 
(j)r are determined up to a constant factor. Because of the invari-
ance of the transition probability we have 

l(0/ ,Vf)I2- l(0/',V/')l2 (1) 
exp (iHt/h) Qexp ( — iHt/h), where Q is the operator in the Schrodinger 
picture which does not depend on time. Cf. also E. Schrodinger, Sitz. d. 
Kon. Preuss. Akad., p. 418, 1930. 

The wave functions are complex quantities and the undetermined factors 
in them are complex also. Recently attempts have been made toward a 
theory with real wave functions. Cf. E. Majorana, Nuovo Cim. 14, 171, 1937 
and P. A. M. Dirac, Proc. Camb. Phil. Soc. 35, 416, 1939. 
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and it can be shown4 that the aforementioned constants in the cj)r 

can be chosen in such a way that the cj)r are obtained from the 4>i 
by a linear unitary operation, depending, of course, on / and /' 

V r = />(/',/)07. (2) 

The unitary operators D are determined by the physical content 
of the theory up to a constant factor again, which can depend on 
/ and /'. Apart from this constant however, the operations Z>(/', /) 
and £)(/{, /x) must be identical if /' arises from / by the same Lo-
rentz transformation, by which l[ arises from lv If this were not 
true, there would be a real difference between the frames of refe
rence / and l\. Thus the unitary operator Z>(/', /) = D(L) is in 
every Lorentz invariant quantum mechanical theory (apart from 
the constant factor which has no physical significance) completely 
determined by the Lorentz transformation L which carries / into 
/' = LI. One can write, instead of (2) 

4>Ll = Dmfa. (2a) 
By going over from a first system of reference / to a second /' = 
Lil and then to a third /" = L2Lil or directly to the third /" = 
(L2Li)/, one must obtain—apart from the above mentioned 
constant—the same set of wave functions. Hence from 

0 r = />(/",/')/>(/', /)<£/ 
$v. = />(/", /)(/>/ 

it follows 
D(1"J')D(1'J) = CDD(1"J) (3) 

or 
DiLJDiLJ = CDD{L2LX), (3a) 

where co is a number of modulus 1 and can depend on L2 and L\. 
Thus the D(L) form, up to a factor, a representation of the inho-
mogeneous Lorentz group by linear, unitary operators. 

4 E. Wigner, Gruppentheorie und ihre Anwendungen auf die Quanten-
mechanik der Atomspektren, Braunschweig, 1931, pages 251-254. 
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We see thus5 that there corresponds to every invariant qu; ntum 
mechanical system of equations such a representation of the nho-
mogeneous Lorentz group. This representation, on the other hand, 
though not sufficient to replace the quantum mechanical equations 
entirely, can replace them to a large extent. If we knew, e.g., the 
operator K corresponding to the measurement of a physical quan
tity at the time t = 0, we could follow up the change of this quan
tity throughout time. In order to obtain its value for the time 
t = *i, we could transform the original wave function <j>2 by 
/)(/', /) to a coordinate system /' the time scale of which begins a 
time fi later. The measurement of the quantity in question in this 
coordinate system for the time 0 is given—as in the original one— 
by the operator K. This measurement is indentical, however, with 
the measurement of the quantity at time ti in the original system. 
One can say that the representation can replace the equation of 
motion, it cannot replace, however, connections holding between 
operators at one instant of time. 

It may be mentioned, finally, that these developments apply not 
only in quantum mechanics, but also to all linear theories, e.g., 
the Maxwell equations in empty space. The only difference is that 
there is no arbitrary factor in the description and the co can be 
omitted in (3a) and one is led to real representations instead of 
representations up to a factor. On the other hand, the unitary char
acter of the representation is not a consequence of the basic as
sumptions. 

The increase in generality, obtained by the present calculus, as 
compared with the usual tensor theory, consists in that no assump
tions regarding the field nature of the underlying equations are 
necessary. Thus more general equations, as far as they exist (e.g., 
in which the coordinate is quantized, etc.) are also included in the 
present treatment. It must be realized, however, that some as
sumptions concerning the continuity of space have been made by 
assuming Lorentz frames of reference in the classical sense. We 

5 E. Wigner, loc. cit., Chapter XX. 
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should like to mention, on the other hand, that the previous re
marks concerning the time-parameter in the observables, have 
only an explanatory character, and we do not make assumptions 
of the kind that measurements can be performed instantaneously. 

We shall endeavor, in the ensuing sections, to determine all the 
continuous6 unitary representations up to a factor of the inhomo
geneous Lorentz group, i.e., all continuous systems of linear, uni
tary operators satisfying (3a). 

2. Comparison With Previous Treatments 
and Some Immediate Simplifications 

A. Previous Treatments 

The representations of the Lorentz group have been investi
gated repeatedly. The first investigation is due to Majorana,7 who 
in fact found all representations of the class to be dealt with in the 
present work excepting two sets of representations. Dirac8 and 
Proca8 gave more elegant derivations of Majorana's results and 
brought them into a form which can be handled more easily. 
Klein's work9 does not endeavor to derive irreducible representa
tions and seems to be in a less close connection with the present 
work. 

The difference between the present paper and that of Majorana 
and Dirac lies—apart from the finding of new representations— 
mainly in its greater mathematical rigor. Majorana and Dirac 
freely use the notion of infinitesimal operators and a set of func-

6 The exact definition of the continuous character of a representation up 
to a factor will be given in Section 5A. The definition of the inhomogeneous 
Lorentz group is contained in Section 4A. 

7 E. Majorana, Nuovo Cim. 9, 335, 1932. 
8 P. A. M. Dirac, Proc. Roy. Soc. A, 155, 447, 1936; Al. Proca, / . de 

Phys. Rad. 7, 347, 1936. 
9 Klein, Arkivf. Matem. Astr. och Fysik, 25A, No. 15, 1936.1 am indebted 

to Mr. Darling for an interesting conversation on this paper. 
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tions to all members of which every infinitesimal operator can be 
applied. This procedure cannot be mathematically justified at pre
sent, and no such assumption will be used in the present paper. 
Also the conditions of reducibility and irreducibility could be, in 
general, somewhat more complicated than assumed by Majorana 
and Dirac. Finally, the previous treatments assume from the out
set that the space and time coordinates will be continuous variables 
of the wave function in the usual way. This will not be done, of 
course, in the present work. 

B. Some Immediate Simplifications 

Two representations are physically equivalent if there is a one 
to one correspondence between the states of both which is 1. in
variant under Lorentz transformations and 2. of such a character 
that the transition probabilities between corresponding states are 
the same. 

It follows from the second condition5 that there either exists a 
unitary operator S by which the wave functions 0(2) of the second 
representation can be obtained from the corresponding wave 
functions $(1) of the first representation 

0(2) = £0(1) (4) 

or that this is true for the conjugate imaginary of <Z>(2). Although, 
in the latter case, the two representations are still equivalent phy
sically, we shall, in keeping with the mathematical convention, not 
call them equivalent. 

The first condition now means that if the states $(1) ,$(2) = S0(1) 

correspond to each other in one coordinate system, the states 
£>(1)(L)0(1) and Z)(2)(L)#(2) correspond to each other also. We have 
then 

D&\L)&w = SDW(L)&w = S&vms-Wn. (4a) 

As this shall hold for every 0(2), the existence of a unitary S which 
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transforms Z)(1) into Z>(2) is the condition for the equivalence of 
these two representations. Equivalent representations are not 
considered to be really different and it will be sufficient to find one 
sample from every infinite class of equivalent representations. 

If there is a closed linear manifold of states which is invariant 
under all Lorentz transformations, i.e. which contains D{L)ip if it 
contains ip, the linear manifold perpendicular to this one will be 
invariant also. In fact, if 0 belongs to the second manifold, D(L)(j) 
will be, on account of the unitary character of Z>(L), perpendicular 
to D(L)\p' if t// belongs to the first manifold. However, DiL^ip 
belongs to the first manifold if y) does and thus D(L)(j) will be ortho
gonal to D(L) DiL'1)^) = coip i.e. to all members of the first mani
fold and belong itself to the second manifold also. The original 
representation then "decomposes" into two representations, cor
responding to the two linear manifolds. It is clear that, conversely, 
one can form a representation, by simply "adding" several other 
representations together, i.e. by considering as states linear com
binations of the states of several representations and assume that 
the states which originate from different representations are per
pendicular to each other. 

Representations which are equivalent to sums of already known 
representations are not really new and, in order to master all re
presentations, it will be sufficient to determine those, out of which 
all others can be obtained by "adding" a finite or infinite number 
of them together. 

Two simple theorems shall be mentioned here which will be 
proved later (Sections 7A and 8C respectively). The first one refers 
to unitary representations of any closed group, the second to ir
reducible unitary representations of any (closed or open) group. 

The representations of a closed group by unitary operators can 
be transformed into the sum of unitary representations with mat
rices of finite dimensions. 

Given two non equivalent irreducible unitary representations of 
an arbitrary group. If the scalar product between the wave func-
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tions is invariant under the operations of the group, the wave 
functions belonging to the first respresentation are orthogonal to 
all wave functions belonging to the second representation. 

C. Classification of unitary representations according to 
von Neumann and Murray10 

Given the operators D(L) of a unitary representation, or a re
presentation up to a factor, one can consider the algebra of these 
operators, i.e. all linear combinations 

a1D(L1) + aiD(L2) + a3D{L3)+ . . . 
of the D(L) and all limits of such linear combinations which are 
bounded operators. According to the properties of this represen
tation algebra, three classes of unitary representations can be dis
tinguished. 

The first class of irreducible representations has a representation 
algebra which contains all bounded operators, i.e. if ip and $ are 
two arbitrary states, there is an operator A of the representation 
algebra for which Aip = 0 and Ay/ = 0 if ip' is orthogonal to ip. 
It is clear that the center of the algebra contains only the unit ope
rator and multiples thereof. In fact, if C is in the center one can de
compose Cip = oup+ip' so that ip' shall be orthogonal to ip. How
ever, ip' must vanish since otherwise C would not commute with 
the operator which leaves ip invariant and transforms every func
tion orthogonal to it into 0. For similar reasons, a must be the 
same for all ip. For irreducible representations there is no closed 
linear manifold of states, (excepting the manifold of all states) 
which is invariant under all Lorentz transformations. In fact, ac
cording to the above definition, a 0 ' arbitrarily close to any <f> can 
be represented by a finite linear combination 

a1D(L1)ip + a2D(L2)ip+ . . . + anD(Ln)ip. 
10 F. J. Murray and J. v. Neumann, Ann. of Math. 37, 116, 1936; J. v. 

Neumann, to be published soon. 
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Hence, a closed linear invariant manifold contains every state if it 
contains one. This is, in fact, the more customary definition for 
irreducible representations and the one which will be used sub
sequently. It is well known that all finite dimensional representa
tions are sums of irreducible representations. This is not true,10 

in general, in an infinite number of dimensions. 
The second class of representations will be called factorial. For 

these, the center of the representation algebra still contains only 
multiples of the unit operator. Clearly, the irreducible representa
tions are all factorial, but not conversely. For finite dimensions, the 
factorial representations may contain one irreducible representa
tion several times. This is also possible in an infinite number of 
dimensions, but in addition to this, there are the "continuous" 
representations of Murray and von Neumann.10 These are not 
irreducible as there are invariant linear manifolds of states. On 
the other hand, it is impossible to carry the decomposition so far 
as to obtain as parts only irreducible representations. In all the 
examples known so far, the representations into which these con
tinuous representations can be decomposed, are equivalent to the 
original representation. 

The third class contains all possible unitary representations. In 
a finite number of dimensions, these can be decomposed first into 
factorial representations, and these, in turn, in irreducible ones. 
Von Neumann10 has shown that the first step still is possible in 
infinite dimensions. We can assume, therefore, from the outset that 
we are dealing with factorial representations. 

In the theory of representations of finite dimensions, it is suf
ficient to determine only the irreducible ones, all others are equi
valent to sums of these. Here, it will be necessary to determine all 
factorial representations. Having done that, we shall know from 
the above theorem of von Neumann, that all representations are 
equivalent to finite or infinite sums of factorial representations. 

It will be one of the results of the detailed investigation that the 
inhomogeneous Lorentz group has no "continuous" representa-
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tions, all representations can be decomposed into irreducible ones. 
Thus the work of Majorana and Dirac appears to be justified 
from this point of view a posteriori. 

D. Classification of unitary representations from the point of 
view of infinitesimal operators 

The existence of an infinitesimal operator of a continuous one 
parametric (cyclic, abelian) unitary group has been shown b> 
Stone.11 He proved that the operators of such a group can be writ
ten as exp(iHt) where H is a (bounded or unbounded) hermitean 
operator and t is the group parameter. However, the Lorent2 
group has many one parametric subgroups, and the correspond
ing infinitesimal operators H±9 H2, . . . are all unbounded. Foi 
every H{ an everywhere dense set of functions <p can be found such 
that ~H.$ can be defined. It is not clear, however, that an every
where dense set can be found, to all members of which every Hc&n 
be applied. In fact, it is not clear that one such 0 can be found. 

Indeed, it may be interesting to remark that for an irreducible 
representation the existence of one function <\) to which all infini
tesimal operators can be applied, entails the existence of an every
where dense set of such functions. This again has the consequence 
that one can operate with infinitesimal operators to a large extent 
in the usual way. 

PROOF: Let Q(t) be a one parametric subgroup such that 
6 ( 0 2 ( 0 = Q(t+t'). If the infinitesimal operator of all subgroups 
can be applied to </>, the 

\imt-i{Q(t)-l)cl> (5) 

exists. It follows, then, that the infinitesimal operators can be 
applied to Rcj> also where R is an arbitrary operator of the repre-

11 M. H. Stone, Proc. Nat. Acad. 16, 173, 1930, Ann. of Math. 33, 643, 
1932, also J. v. Neumann, ibid. 33, 567, 1932. 
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sentation: Since R xQ(t)R is also a one parametric subgroup 

limt-(R-1Q(t)R-l)(l) = l i m H - 1 . / - ^ / ) - ! ) * * 

t=0 f = 0 

also exists and hence also (R is unitary) 

limr^gW-lJJfy. 
f = 0 

Every infinitesimal operator can be applied to Rcj) if they all can 
be applied to 0, and the same holds for sums of the kind 

tfil*i</> 4-02^20+ • • • +ctnRn(j). (6) 

These form, however, an everywhere dense set of functions if the 
representation is irreducible. 

If the representation is not irreducible, one can consider the set 
No of such wave functions to which every infinitesimal operator 
can be applied. This set is clearly linear and, according to the pre
vious paragraph, invariant under the operations of the group (i.e. 
contains every R<j> if it contains 0). The same holds for the closed 
set N generated by No and also of the set P of functions which are 
perpendicular to all functions of N. In fact, if (j)p is perpendicular 
to all (j>n of N, it is perpendicular also to all J R ~ V „ and, for the 
unitary character of R, the R(f>p is perpendicular to all <j)n9 i.e. is also 
contained in the set P. 

We can decompose thus, by a unitary transformation, every 
unitary representation into a "normal" and a "pathological" part. 
For the former, there is an everywhere dense set of functions, to 
which all infinitesimal operators can be applied. There is no single 
wave functions to which all infinitesimal operators of a "patholo
gical" representation could be applied. 

According to Murray and von Neumann, if the original repre
sentation was factorial, all representations into which it can be 
decomposed will be factorial also. Thus every representation is 
equivalent to a sum of factorial representations, part of which is 
"normal," the other part "pathological." 
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It will turn out again that the inhomogeneous Lorentz group 
has no pathological representations. Thus this assumption of Ma-
jorana and Dirac also will be justified a posteriori. Every unitary 
representation of the inhomogeneous Lorentz group can be de
composed into normal irreducible representations. It should be 
stated, however, that the representations in which the unit opera
tor corresponds to every translation have not been determined to 
date (cf. also Section 3, end). Hence, the above statements are not 
proved for these representations, which are, however, more truly 
representations of the homogeneous Lorentz group, than of the 
inhomogeneous group. 

While all these points may be of interest to the mathematician 
only, the new representation of the Lorentz group which will be 
described in Section 7 may interest the physicist also. It describes a 
particle with a continuous spin. 

Acknowledgement. The subject of this paper was suggested to 
me as early as 1928 by P. A. M. Dirac who realized even at that 
date the connection of representations with quantum mechanical 
equations. I am greatly indebted to him also for many fruitful con
versations about this subject, especially during the years 1934/35, 
the outgrowth of which the present paper is. 

I am indebted also to J. v. Neumann for his help and friendly 
advice. 

3. Summary of Ensuing Sections 

Section 4 will be devoted to the definition of the inhomogeneous 
Lorentz group and the theory of characteristic values and charac
teristic vectors of a homogeneous (ordinary) Lorentz transforma
tion. The discussion will follow very closely the corresponding, 
well-known theory of the group of motions in ordinary space and 
the theory of characteristic values of orthogonal transformations.12 

12 Cf., e.g., E. Wigner, loc. cit., Chapter III. O. Veblen and J. W. Young, 
Projective Geometry, Boston, 1917. Vol. 2, especially Chapter VII. 
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It will contain only a straightforward generalization of the method 
usually applied in those discussions. 

In Section 5,* it will be proved that one can determine the phy
sically meaningless constants in the D(L) in such a way that in
stead of (3a) the more special equation 

D(Ll)D(L2) = ±D(LlL2) (7) 
will be valid. This means that instead of a representation up to a 
factor, we can consider representations up to the sign. For the 
case that either L\ or L2 is a pure translation, Dirac13 has given a 
proof of (7) using infinitesimal operators. A consideration very 
similar to his can be carried out, however, also using only finite 
transformations. 

For representations with a finite number of dimensions (corre
sponding to an only finite number of linearly independent states), 
(7) could be proved also if both L\ and L2 are homogeneous Lo-
rentz transformations, by a straightforward application of the 
method of Weyl and Schreier.14 However, the Lorentz group has no 
finite dimensional representation (apart from the trivial one in 
which the unit operation corresponds to every L). Thus the method 
of Weyl and Schreier cannot be applied. Its first step is to normal
ize the indeterminate constants in every matrix D(L) in such a 
way that the determinant of D(L) becomes 1. No determinant can 
be defined for general unitary operators. 

The method to be employed here will be to decompose every 
L into a product of two involutions L = MN with M2 = N2 — 1. 
Then D{M) and D{N) will be normalized so that their squares be
come unity and D(L) = D(M)D(N) set. It will be possible, then, 
to prove (7) without going back to the topology of the group. 

Sections 6, 7, and 8 will contain the determination of the repre
sentations. The pure translations form an invariant subgroup of 

* Section 5 and beyond are omitted from the present abstract. 
13 P. A. M. Dirac, mimeographed notes of lectures delivered at Princeton 

University, 1934/35, page 5a. 
14 H. Weyl, Mathem. Zeits. 23, 271; 24, 328, 377, 789, 1925; O. Schreier, 

Abhandl. Mathem. Seminar Hamburg, 4, 15, 1926; 5, 233, 1927. 

K-STR 19 
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the whole inhomogeneous Lorentz group and Frobenius' method15 

will be applied in Section 6 to build up the representations of the 
whole group out of representations of the subgroup, by means of 
a "little group." In Section 6, it will be shown on the basis of an as 
yet unpublished work of J. v. Neumann that there is a character
istic (invariant) set of "momentum vectors" for every irreducible 
representation. The irreducible representations of the Lorentz 
group will be divided into four classes. 

The momentum vectors of the 

1st class are time-like, 
2nd class are null-vectors, but not all their components will 

be zero, 
3rd class vanish (i.e., all their components will be zero), 
4th class are space-like. 

Only the first two cases will be considered in Section 7, although 
the last case may be the most interesting from the mathematical 
point of view. I hope to return to it in another paper. I did not 
succeed so far in giving a complete discussion of the 3rd class. (All 
these restrictions appear in the previous treatments also.) 

In Section 7, we shall find again all known representations of the 
inhomogeneous Lorentz group (i.e., all known Lorentz invariant 
equations) and two new sets. 

Sections 5, 6, 7 will deal with the "restricted Lorentz group" 
only, i.e. Lorentz transformations with determinant 1 which do 
not reverse the direction of the time axis. In section 8, the repre
sentations of the extended Lorentz group will be considered, the 
transformations of which are not subject to these conditions. 

15 G. Frobenius, Sitz. d. Kon. Preuss. Akad. p. 501, 1898; I. Schur, ibid. 
p. 164, 1906; F. Seitz, Ann. of Math. 37, 17, 1936. 



WIGNER: THE INHOMOGENEOUS LORENTZ GROUP 281 

4. Description of the Inhomogeneous Lorentz Group 

A.A 

An inhomogeneous Lorentz transformation L = (#, A) is the 
product of a translation by a real vector a 

xi = xt + a, ( / = 1,2,3,4) (8) 

and a homogeneous Lorentz transformation ^ with real coeffi
cients 

xl - £ Aikxk. (9) 
fc=i 

The translation shall be performed after the homogeneous trans
formation. The coefficients of the homogeneous transformation 
satisfy three conditions: (1) They are real and/1 leaves the inde
finite quadratic form —x\—x\—x\ + x\ invariant: 

AFA' = F (10) 

where the prime denotes the interchange of rows and columns 
and F is the diagonal matrix with the diagonal elements — 1, — 1, 
- 1 , + 1. (2) The determinant \Aik | = 1 and (3) Au > 0. 

We shall denote the Lorentz-hermitean product of two vectors 
x and y by 

{x9 y) = - x*y± - x&2 - x3*y3 4- x*iyi. (11) 

(The star denotes the conjugate imaginary.) If {x, x) < 0 the 
vector x is called space-like, if {x, x} = 0, it is a null vector, if 
{x, x} > 0, it is called time-like. A real time-like vector lies in the 
positive light cone if X4 > 0; it lies in the negative light cone if 
Xi < 0. Two vectors x and y are called orthogonal if {x* y) = 0. 

On account of its linear character a homogeneous Lorentz trans
formation is completely defined if Av is given for four linearly in
dependent vectors v(1\ v{2\ v(3), v{i\ 

From (11) and (10) it follows that {v9 w} = {Av, Aw} for every 
19* 
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pair of vectors v, w .This will be satisfied for every pair if it is satis
fied for all pairs ?;(/), i,(A:) of four linearly independent vectors. The 
reality condition is satisfied if (Avi0)* = A(v0)*) holds for four 
such vectors. 

The scalar product of two vectors x and y is positive if both lie 
in the positive light cone or both in the negative light cone. It is 
negative if one lies in the positive, the other in the negative light 
cone. Since both x and y are time-like |A4I2 > |AM|2+|.v2|2H-
4-1*312; \yi12 > \y\ | 2+ \yi | 2+ | V312- Hence, by Schwarz's inequal
ity \x\y±\ > |x\yx -f x*2y2 + x*j31 and the sign of the scalar prod
uct of two real time-like vectors is determined by the product 
of their time components. 

A time-like vector is transformed by a Lorentz transformation 
into a time-like vector. Furthermore, on account of the condition 
An > 0, the vector ?/0) with the components 0, 0, 0, 1 remains in 
the positive light cone, since the fourth component of Av(0) is Au. 
If i,(1) is another vector16 in the positive light cone {v(i\ ?;(0)} > 0 
and hence also {Av°\ /i?;(0)} > 0 and .4?;(1) is in the positive light 
cone also. The third condition for a Lorentz transformation can be 
formulated also as the requirement that every vector in (or on) the 
positive light cone shall remain in (or, respectively, on) the posi
tive light cone. 

This formulation of the third conditions hows that the third con
dition holds for the product of two homogeneous Lorentz trans
formations if it holds for both factors. The same is evident for the 
first two conditions. 

From AFA' = F one obtains by multiplying with A'1 from the 
left and A-1 - (A'1)' from the right F - A~l FiA"1)' so that the 
reciprocal of a homogeneous Lorentz transformation is again such 
a transformation. The homogeneous Lorentz transformations 
form a group, therefore. 

16 Wherever a confusion between vectors and vector components appears 
to be possible, upper indices will be used for distinguishing different vectors 
and lower indices for denoting the components of a vector. 
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One easily calculates that the product of two inhomogeneous 
Lorentz transformations (fc, M) and (c, N) is again an inhomoge
neous Lorentz transformation (a, A) 

(b, MHc, N) = (a9 A) (12) 
where 

Aik = £ MijNjk; a, = &,• + £ MucJ> (1 2 a) 
/ ./ 

or, somewhat shorter 
A = MN; a = b + Mc. (12b) 

B. Theory of Characteristic Values and Characteristic 
Vectors of a Homogeneous Lorentz Transformation 

Linear homogeneous transformations are most simply described 
by their characteristic values and vectors. Before doing this for 
the homogeneous Lorentz group, however, we shall need two rules 
about orthogonal vectors. 

[1] If{v, w} = 0 and {i\ v) > 0, then {w, w} < 0; if{v, w] = 0, 
[i\ v) — 0, then w is either space-like, or parallel to v (either 
{w, w} < 0, or w ~ cv). 

PROOF: 
t'jV4 = vlw1-\-VoW2-{-v^w3. (13) 

By Schwarz's inequality, then 

| 1 > 4 | 2 | W 4 | 2 ^ C l ^ l | 2 + ! ^ 2 | 2 + | - l ' 3 | 2 ) ( i » V 1 | 2 + | w 2 | 2 + | W 3 | 2 ) . ( H ) 

For |i'4|2 > \v\ |2-f1^?212■+-1^3 |2 it follows that | W412 ^ |H>I|2 + 
|w2!2+ | w'312. If |^4|2=:z l^i |2 4-1^212+ |^312 the second inequality 
still follows if the inequality sign holds in (14). The equality sign 
can hold only, however, if the first three components of the vec
tors v and w are proportional. Then, on account of (13) and both 
being null vectors the fourth components are in the same ratio also. 

[2] If four vectors v{1\ v(2), v(3\ v{i) are mutually orthogonal and 
linearly independent, one of them is time-like; three are space-like. 
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PROOF : It follows from the previous paragraph that only one of 
four mutually orthogonal, linearly independent vectors can be 
time-like or a null vector. It remains to be shown therefore only 
that one of them is time-like. Since they are linearly independent, 
it is possible to express by them any time-like vector 

The scalar product of the left side of this equation with itself is posi
tive and therefore 

fXV^>, £a*t><*>|^0 
or 

£ |a f e |2 {?/*>, v^} > 0 (15) 
k 

and one \v{k\ v(k)} must be positive. Four mutually orthogonal vec
tors are not necessarily linearly independent, because a null vector 
is perpendicular to itself. The linear independence follows, how
ever, if none of the four is a null vector. 

We go over now to the characteristic values X of A These make 
the determinant \A — XI | of the matrix A — XI vanish. 

[3] If X is a characteristicRvalue, X*,'X'1 and X*"1 are characteristic 
values also. 

PROOF: For X* this follows the fact that A is real. Furthermore, 
from |/1—Al | = 0 also |/l'—Al1 = 0 follows, and this multiplied 
by the determinants of AF and F " 1 gives 

l / l F M / t ' - A l M F I - 1 = \AFA'F~1-XA\ = \\-XA\ = 0, 

so that X - 1 is a characteristic value also. 
[4] The characteristic vectors V\ and v2 belonging to two charac

teristic values Xx and X2 are orthogonal ifX\X2 ^ 1. 
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PROOF : 

{^1, ^2} = {Avu Av2) = {A1V1, X2v2] = X*X2{vu v2). 

Thus if [vl9 v2) ^ 0, X\X2 = 1. 

[5] If the modulus of a characteristic value X is \X \ y£ 1, the corre
sponding characteristic vector v is a null vector and X itself real and 
positive. 

From [v, v) — {Av, Av} = |A|2{i\ v) the {v, v) = 0 follows 
immediately for |A| ^ 1. If X were complex, A* would be a 
characteristic value also. The characteristic vectors of X and A* 
would be two different null vectors and, because of [4], orthogonal 
to each other. This is impossible on account of [1]. Thus X is real 
and v a real null vector. Then, on account of the third condition 
for a homogeneous Lorentz transformation, X must be positive. 

[6] The characteristic value X of a characteristic vector v of length 
null is real and positive. 

If X were not real, X* would be a characteristic value also. The 
corresponding characteristic vector v* would be different from i\ 
a null vector also, and perpendicular to v on account of [4]. This 
is impossible because of [1]. 

[7] The characteristic v of a complex characteristic value X {the 
modulus of which is 1 on account of [5]) is space-like: {i\ v) < 0. 

PROOF : X* is a characteristic value also, thecorrespondingcharac-
teristic vector is v*. Since (2*)* X = X2 ^ l,{v*,v) = 0. Since they 
are different, at least one is space-like. On account of {v, v) = 
{v*, v*} both are space-like. If all four characteristic values were 
complex and the corresponding characteristic vectors linearly in
dependent (which is true except if A has elementary divisors) we 
should have four space-like, mutually orthogonal vectors. This is 
impossible, on account of [2]. Hence 

[8] There is not more than one pair of conjugate complex charac
teristic values, if A has no elementary divisors. Similarly, under the 
same condition, there is not more than one pair X, A- 1 of characteris-
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tic values whose modulus is different from 1. Otherwise their cha
racteristic vectors would be orthogonal, which they cannot be, 
being null vectors. 

For homogeneous Lorentz transformations which do not have 
elementary divisors, the following possibilities remain: 

(a) There is a pair of complex characteristic values, their modu
lus is 1, on account of [5] 

Ax - A2* = V ; |Ax| = |A2| = 1, (16) 

and also a pair of characteristic values A3, A4, the modulus of 
which is not 1. These must be real and positive: 

A4 = V ; *s = ^ = - 0 . (16a) 

The characteristic vectors of the conjugate complex characteristic 
values are conjugate complex, perpendicular to each other and 
space-like so that they can be normalized to — 1 

{^1, Vl} = {*'2, ^2} = - 1 

those of the real characteristic values are real null vectors, their 
scalar product can be normalized to 1 

v3 = v* «?4 = v* K v4) = 1 ( 1 ? a ) 

{̂ 3, ^3} = {̂ 4, ^4 = 0. 

Finally, the former pair of characteristic vectors is perpendicular 
to the latter kind 

{vu ^3} = {vl9 v4) = {v2, v3} = {v2, vA} = 0. (17b) 

It will turn out that all the other cases in which A has no elemen
tary divisor are special cases of (a). 

(b) There is a pair of complex characteristic values Al5 A2 = 
Af1 = A*, Aj ^ A*, |AJ = |A2| = 1. No pair with |A3| ^ 1, 
however. Then on account of [8], still A3 = A3 which gives with 
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FIG. 1. Position of the characteristic values for the general 
case (a) in the complex plane. In case (b) A2 and A4 coincide and are 
equal 1; in case (c) Kx and A2 coincide and are either +1 or — 1. 

In case (d) both pairs A3 = A4 = I and Xx = k2 = ± 1 coincide. 

| A31 = 1, A3 = ± 1. Since the product AiA2A3̂ 4 = 1, on account of 
the second condition for homogeneous Lorentz transformations, 
also A4 = A3 = ± 1. The double characteristic value ± 1 has two 
linearly independent characteristic vectors v$ and V4 which can be 
assumed to be perpendicular to each other, {#3, #4} = 0. Accord
ing to [2], one of the four characteristic vectors must be time-like 
and since those of Ai and A2 are space-like, the time-like one must 
belong to ± 1. This must be positive, therefore X$ = X± = 1. Out 
of the time-like and space-like vectors {v3, v3} = — 1 and {v4, 
V4] = 1, one can build two null vectors v±-\-v3 and v^—v^. Doing 
this, case (b) becomes the special case of (a) in which the real posi
tive characteristic values become equal: A3 = A^1 = 1. 

(c) All characteristic values are real; there is however one pair 
A3 = A3, A4 = A3"1, the modulus of which is not unity. Then 
{̂ 3, 3̂} = {̂ 4, 4̂} = 0 and A3 > 0 and one can conclude for Ax 
and A2, as before for A3 and A4 that Ai = A2 = ± 1. This again is a 
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special case of (a); here the two characteristic values of modulus 1 
become equal. 

(d) All characteristic values are real and of modulus 1. If all of 
them are + 1 , we have the unit matrix which clearly can be con
sidered as a special case of (a). The other case is Ai = A2 = — 1, 
A3 = A4 = + 1 . The characteristic vectors of Ai and A2 must be 
space-like, on account of the third condition for a homogeneous 
Lorentz transformation; they can be assumed to be orthogonal 
and normalized to — 1. This is then a special case of (b) and hence 
of (a) also. The cases (a), (b), (c), (d) are illustrated in Fig. 1. 

The cases remain to be considered in which A has an elementary 
divisor. We set therefore 

Aeve = Xeve\ Aewe = Aewe + ve. (18) 

It follows from [5] that either |AJ = 1, or {ve, ve) — 0. We have 
R> w>J = {Aeve9 Aewe) = |AJ 2 {^ , we} + {ve9 ve). From this equa
tion 

K vL) = 0 (19) 

follows for | Xe | = 1, so that (19) holds in any case. It follows then 
from [6] that le is real, positive and ve, we can be assumed to 
be real also. The last equation now becomes {ve, we} = 7?e {ve, we} 
so that either le = 1 or {ve, we} = 0. Finally, we have 

{We, We} = {AeWe, AeWe} = )?e{we, We} + 2Xe{we, Ve} + {ve, Ve}. 

This equation now shows that 

{we, ve) = 0 (19a) 

even if Ae = 1. From (19), (19a) it follows that we is space-like and 
can be normalized to 

{we,we}=-l. (19b) 

Inserting (19a) into the preceding equation we finally obtain 

K = I- (19c) 
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[9] IfAe has an elementary divisor, all its characteristic roots are 1. 
From (19c) we see that the root of the elementary divisor is 1 

and this is at least a double root. If A had a pair of characteristic 
values X1 ̂  1, A2

 = ^I1* ^he corresponding characteristic vectors 
v1 and v2 would be orthogonal to ve and therefore space-like. On 
account of [5], then | Ai | = | A21 = 1 and {vi9 v2} = 0. Furthermore, 
from {we, Vj) = {Aewe, Aev±} = X±{we, v^ + X^v^ vj and from 
{ve-> vi) = 0 also {we9 v^} = 0 follows. Thus all the four vectors 
vi> v& ve> we would be mutually orthogonal. This is excluded by 
[2] and (19). 

Two cases are conceivable now. Either the fourfold characteris
tic root has only one characteristic vector, or there is in addition 
to ve (at least) another characteristic vector vv In the former case 
four linearly independent vectors ve, we, ze, xe could be found 
such that 

Aeve = ve Aewe = we + ve 

xigZg — Z g ~\~ Vv g X\.Q\Q — Xg~\~Zg» 

However {ve, xe) = {Aeve, Aexe) = {ve, xe} + {ve9 ze} from which 
{ve, ze) = 0 follows. On the other hand 

{We, Ze) = {AeWe, AeZe) = {\Ve, Ze} + {we, We} + {ve, Ze} + {ve, We}. 

This gives with (19a) and (19b) {ve, ze} = 1 so that this case must 
be excluded. 

(e) There is thus a vector v± so that in addition to (18) 

Aevx = v1 (18a) 

holds. From {we9vx} = {Aewe,Aev^ = {we, v1)+{v<?, v j follows 

{ve, V!} = 0. (19d) 

The equations (18), (18a) will remain unchanged if we add to we 
and vx a multiple of ve. We can achieve in this way that the fourth 
components of both we and v± vanish. Furthermore, vx can be nor-
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malized to — 1 and added to we also with an arbitrary coefficient, 
to make it orthogonal to v±. Hence, we can assume that 

vu = we4 = 0; { î, vx) = - 1 ; {we, V!} = 0. (19e) 

We can finally define the null vector ze to be orthogonal to we 

and vx and have a scalar product 1 with ve 

{ze, ze] = {ze, we} = {ze, ?;i} = 0; {ze, ve} = 1. (19f) 

Then the null vectors ve and ze represent the momenta of two light 
beams in opposite directions. If we set Aeze = ave + bwe + cze + dv1 

the conditions {ze, v) = {Aeze, Aev) give, if we set for v the vec
tors ve9 we, ze, v± the conditions c = 1; b = c; 2ac—b2—d2 = 0; 
d = 0. Hence 

/ l ^ = ?;,, /lew^ = we + ve 

AeVi = vi /lezg = Zj + We + iv* . (20) 

A Lorentz transformation with an elementary divisor can be best 
characterized by the null vector ve which is invariant under it and 
the space part of which forms with the two other vectors we and v± 

three mutually orthogonal vectors in ordinary space. The two 
vectors we and v1 are normalized, v± is invariant under Ae while the 
vector ve is added to we upon application of Ae. The results of the 
application of Ae to a vector which is linearly independent of ve9 

we and v1 is, as we saw, already determined by the expressions for 
Aeve> AeWe

 a n d Aevv 
The Ae(y) which have the invariant null vector ve and also we 

(and hence also v±) in common and differ only by adding to we 

different multiples yve of ve, form a cyclic group with y — 0, the 
unit transformation as unity: 

Ae(y)Ae{y') = Ae(y+y'). 

The Lorentz transformation M(a) which leaves v± and we in
variant but replaces ve by OLV6 (and ze by a_1ze) has the property 
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of transforming Ae(y) into 

M(a) MY) ^ ( a ) " 1 = M«y)- ( + ) 
An example of Ae(y) and M(a) is 

1 
0 
0 
0 

1 
0 
0 
0 

0 
1 

-y 
y 

0 
l 
0 
0 

0 
V 

i-lr2 

l r 2 

0 
0 

iCa + a-1) 
i ( a - a ~ i ) 

0 
V 

-iy2 

i+iy2l 

9 

0 
0 

•̂ ■(a — a 
-§-(a + a 

-1) 
-1) 

These Lorentz transformations play an important role in the rep
resentations with space like momentum vectors. 

A behavior like ( + ) is impossible for finite unitary matrices 
because the characteristic values of M^)"1 Ae(y) M(OL) and Ae(y) 
are the same—those of Ae(y<x) = Ae{yf the ath powers of those 
of Ae(y). This shows very simply that the Lorentz group has no 
true unitary representation in a finite number of dimensions. 

C Decomposition of a Homogeneous Lorentz Transformation 
into Rotations and an Acceleration in a Given Direction 

The homogeneous Lorentz transformation is, from the point of 
view of the physicist, a transformation to a uniformly moving co
ordinate system, the origin of which coincided at t = 0 with the 
origin of the first coordinate system. One can, therefore, first per
form a rotation which brings the direction of motion of the second 
system into a given direction—say the direction of the third 
axis—and impart it a velocity in this direction, which will bring it 
to rest. After this, the two coordinate systems can differ only in a 
rotation. This means that every homogeneous Lorentz transforma-
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tion can be decomposed in the following way17 

A = RZS (21) 
where R and S are pure rotations, (i.e. Ra = R^ = S^ = S^ = 0 
for i ^ 4 and Ru = Su = 1, also R' = R~\ S' = S'1) and Zis 
an acceleration in the direction of the third axis, i.e. 

1 
0 
0 
0 

0 
1 
0 
0 

0 
0 
a 
b 

0 
0 
b\ 
a\ 

with a2 — b2 = 1, a > b > 0. The decomposition (21) is clearly 
not unique. It will be shown, however, that Z is uniquely deter
mined, i.e. the same in every decomposition of the form (21). 

In order to prove this mathematically, we choose R so that in 
R~XA = I the first two components in the fourth column Tu = 
hi = 0 become zero: i?"1 shall bring the vector with the com
ponents Au, A24, AM into the third axis. Then we take h± = 
( ^ H - ^ + ^ l J ^ a n d / ^ = ^l44for b and a to form Z; they sat
isfy the equation /|4—7|4 = 1. Hence, the first three components 
of the fourth column of / = Z~H = Z~XR~XA will become zero 
and /44 = 1, because of Ju-Ju—Jl^—J^ = 1- Furthermore, 
the first three components of the fourth row of J will vanish also, 
on account of J2

U-J2^-J\2-J\2 = 1, i.e. J = S = Z~XR~XA 
is a pure rotation. This proves the possibility of the decomposi
tion (21). 

The trace of AA! = RZ2R_1 is equal to the trace of Z2, i.e. equal 
to 2a2 + 2b2+ 2 = Aa2 = 462 + 4 which shows that the a and b of 
Z are uniquely determined. In particular a = 1, b = 0 and Z the 
unit matrix if AA = 1, i.e. A a pure rotation. 

It is easy to show now that the group space of the homogeneous 
Lorentz transformations is only doubly connected. If a continuous 
series A(t) of homogeneous Lorentz transformations is given, 
which is unity both for t — 0 and for t = 1, we can decompose it 

17 Cf., e.g., L. Silberstein, The Theory of Relativity, London, 1924, p. 142. 
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according to (21) 
A{t) = R(t)Z(t)S{t). (21a) 

It is also clear from the foregoing, that R(t) can be assumed to 
be continuous in t, except for values of t, for which Au = ^24 = 
/I34 = 0, i.e. for which A is a pure rotation. Similarly, Z(f) will 
be continuous in t and this will hold even where A(t) is a pure rota
tion. Finally, S = Z~1R~1A will be continuous also, except 
where A(t) is a pure rotation. 

Let us consider now the series of Lorentz transformations 
As(i) = R(t)Z(t)sS(t) (21b) 

where the b ofZ(t)s is s times the bof Z(t). By decreasing s from 1 
to 0 we continuously deform the set A±(i) = A(t) of Lorentz trans
formations into a set of rotations A0(t) = R(t)S(t). Both the begin
ning ^o(O) = 1 and the end As(l) = 1 of the set remain the unit 
matrix and the sets As(i) remain continuous in t for all values of s. 
This last fact is evident for such t for which A(t) is not a rotation: 
for such t all factors of (21b) are continuous. But it is true also 
for to for which A(to) is a rotation, and for which, hence Z(t0) = 1 
and As(t0) = A^) = A(t0). As Z(t) is everywhere continuous, 
there will be a neighborhood of t0 in which Z(t) and hence Z(t)s is 
arbitrarily close to the unit matrix. In this neighborhood As(t) = 
A(t). Sit)'1 Zity1 Z(t)sS(t) is arbitrarily close to A(t); and, if 
the neighborhod is small enough, this is arbitrarily close to A(t0) = 
A(t0). 

Thus (21b) replaces the continuous set A(t) of Lorentz transfor
mations by a continuous set of rotations. Since these form an only 
doubly connected manifold, the manifold of Lorentz transforma
tions can not be more than doubly connected. The existence of a 
two valued representation18 shows that it is actually doubly and 
not simply connected. 

18 Cf. H. Weyl, Gruppentheorie und Quantenmechanik, 1st ed. Leipzig, 
1928, pages 110-114, 2nd ed. Leipzig, 1931, pages 130-133. It may be in
teresting to remark that essentially the same isomorphism has been recognized 
already by L. Silberstein, he. cit., pages 148-157, 
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We can form a new group14 from the Lorentz group, the ele
ments of which are the elements of the Lorentz group, together 
with a way A(t), connecting A(l) = A with the unity A(0) = E. 
However, two ways which can be continuously deformed into 
each other are not considered different. The product of the ele
ment "A with the way A{t)" with the element "J with the way 
I(t)n is the element AI with the way which goes from E along A(f) 
to A and hence along AI{i) to AI. Clearly, the Lorentz group is 
isomorphic with this group and two elements (corresponding to 
the two essentially different ways to A) of this group correspond 
to one element of the Lorentz group. It is well known18 that this 
group is holomorphic with the group of unimodular complex two 
dimensional transformations. 

Every continuous representation of the Lorentz group "up to the 
sign" is a singlevalued, continuous representation of this group. 
The transformation which corresponds to "A with the way A(t)n 

is that d(A) which is obtained by going over from d(E) = d(A(0)) 
= 1 continuously along d(A{t)) to d(A(l)) = d(A). 

D. The Homogeneous Lorentz Group is Simple 

It will be shown, first, that an invariant subgroup of the homo
geneous Lorentz group contains a rotation (i.e. a transformation 
which leaves x* invariant). We can write an arbitrary alement of 
the invariant subgroup in the form RZS of (21). From its presence 
in the invariant subgroup follows that of S.RZS.S*1 = SRZ — 
TZ. If Xnis the rotation by n about the first axis, X^Xn = Z _ 1 

and XJZX-1 = XJXnXnZXn = XJX^Z'1 is contained in the 
invariant subgroup also and thus the transform of this with Z, i.e. 
Z~1XnTXn also. The product of this with TZ is TXJXn which 
leaves JC4 invariant. If TXJXn = 1 we can take TYJYn. If this is 
the unity also TXJXn = TYJYn and T commutes with XJn, i.e 
is a rotation about the third axis. In this case the space-like (com
plex) characteristic vectors of TZ in the plane of the first two 
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coordinate axes. Transforming TZ by an acceleration in the direc
tion of the first coordinate axis we obtain a new element of the in
variant subgroup for which the space-like characteristic vector will 
have a not vanishing fourth component. Taking this for RZS we 
can transform it with S again to obtain a new SRZ = TZ. How
ever, since S leaves x± invariant, the fourth component of the space 
like characteristic vectors of this TZ will not vanish and we can 
obtain from it by the procedure just described a rotation which 
must be contained in the invariant subgroup. 

It remains to be shown that an invariant subgroup which con
tains a rotation, contains the whole homogeneous Lorentz group. 
Since the three-dimensional rotation group is simple, all rotations 
must be contained in the invariant subgroup. Thus the rotation by 
n around the first axis Xn and also its transform with Z and also 

is contained in the invariant subgroup. However, the general 
acceleration in the direction of the third axis can be written in this 
form. As all rotations are contained in the invariant subgroup also, 
(21) shows that this holds for all elements of the homogeneous 
Lorentz group. 

If follows from this that the homogeneous Lorentz group has 
apart from the representation with unit matrices only true repre
sentations. If follows then from the remark at the end of part B, 
that these have all infinite dimensions. This holds even for the two-
valued representations to which we shall be led in Section 5 equ. 
(52D), as the group elements to which the positive or negative unit 
matrix corresponds must form an invariant subgroup also, and 
because the argument at the end of part B holds for two-valued 
representations also. One easily sees furthermore from the equa
tions (52B), (52C) that it holds for the inhomogeneous Lorentz 
group equally well. 

K-STR 20 
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