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PART I

ELEMENTS OF THE GENERAL THEORY
OF ANALYTIC FUNCTIONS


PREFACE

This little book follows rather closely the fifth edition of Dr. Knopp’s Funktionentheorie. Several changes have been made in order to conform to common English terminology and notation, and to render certain passages more precise or rigorous than they are in the German volume. The proofs of Lemmas 1 and 2 in § 4 were found to be incorrect, and proofs remedying this defect were substituted. Typographical errors have been corrected, the bibliography has undergone some minor changes, and a few helpful references have been added to the text.
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SECTION I

FUNDAMENTAL CONCEPTS


CHAPTER 1

NUMBERS AND POINTS

§1. Prerequisites

We presume that the reader is familiar with the theory of real numbers, with the foundations of real analysis (infinitesimal analysis, i.e., differential and integral calculus) which is built upon that theory, and with the elements of analytic geometry. The extent to which this is necessary in order to understand the subsequent presentation is amplified in the opening paragraphs of the Elem.1 We suppose further that the reader is also familiar with the remaining contents of the Elem. Thus, we take for granted that he is acquainted with the ordinary complex numbers and that he is able to operate with them. It is assumed that he knows how the totality of these numbers2 can be put into one-to-one correspondence with the points or vectors of a plane or with the points of a sphere, and how thereby every analytical consideration can be interpreted geometrically and every geometrical consideration followed analytically (Elem., sec. I). We likewise take for granted that he is already acquainted, in the main, with infinite sequences and infinite series with complex terms, and with the concept of a function of a complex argument. We presume that he is familiar with the application of the concept of limit to both, and consequently also with the concepts of continuity and differentiability of functions of a complex variable (Elem., secs. III and IV). Finally, we suppose that he knows the most important properties of the so-called elementary functions (Elem., secs. II and V).

Those topics of the Elem. which are most important for the present purposes will be reviewed and, in some cases, supplemented in this and the next chapter. The reader will thus be able to check for himself to what extent he possesses these prerequisites. At the same time, he will gain a firm basis for the subsequent development of the general theory of analytic functions.

§2. Plane and Sphere of Complex Numbers

The set of complex numbers can be put into one-to-one correspondence with the points of a plane oriented by a rectangular coordinate system. The plane is then called “the (Gaussian or complex) number plane” or, more briefly, “the z-plane.” Every complex number z = x + iy corresponds to that point whose abscissa is the real part x = [image: image](z) and whose ordinate is the imaginary part y = [image: image](z) = [image: image](− iz).3 As a consequence of this convention, precisely one point of the z-plane corresponds to every complex number z; and, conversely, precisely one complex number corresponds to every point of this plane. “Point” and “number” can therefore be used as equivalent expressions without fear of misinterpretations, so that we may use such expressions as “the point [image: image]” or “the distance between two numbers,” or “the triangle with the vertices z1, z2, z3,” etc.

If r and φ are the polar coordinates of the point z, then r is called the absolute value or modulus and φ the amplitude4 of z. In symbols: | z | = r, am z = φ.

It is useful to call special attention to the following simple facts which follow from this equivalence of point and number.

a) The distance of a point z from the origin is | z |. The distance between two points z1 and z2 is | z1 − z2| = | z2 − z1|. The number z2 − z1 is represented by the vector extending from the point z1 to the point z2. The relations

| z ± z2 | ≤ | z1 | + | z2 | and | z1 ± z2 | [image: image] [image: image] | z1 | − | z2 | [image: image] hold for arbitrary z1 and z2.

b) The circumference of the circle of unit radius about the origin as center (the so-called unit circle) is characterized by | z | = 1; i.e., all numbers z for which | z | = 1 are points of this circumference, and conversely.

c) The interior of the circle of radius r about z0 as center, exclusive of its circumference (its boundary), is characterized by | z − z0 | < r.

d) The interior of the circle of radius 3 about − 4i as center, inclusive of its boundary, is characterized by | z + 4i | [image: image] 3.

e) That part of the z-plane which lies outside the circle of radius R about z1 as center is given by | z − z1 | > R.

f) The “right” half-plane, i.e., that part of the z-plane which lies to the right of the imaginary axis in the usual orientation of the coordinate axes, exclusive of its boundary, is characterized by [image: image](z) > 0. Likewise, the “upper” half-plane, inclusive of its boundary, is given by [image: image](z) [image: image] 0.

g) The interior of the circular ring formed by the circles of radii r and R about z0 as center, exclusive of both boundaries, is represented by 0 < r < | z − z0 | < R.

h) A circle with radius ε about ζ as center, briefly called “a neighborhood” or more precisely “an ε-neighborhood” of the point ζ, consists of the points ζ + z′ with fixed ζ and arbitrary z′ subject only to the restriction | z′ | < ε (compare c)). For, setting ζ + z′ = z, this means precisely that

| z′ | = | z − ζ | < ε.

The plane of complex numbers is closed by introducing an improper point, the point5 z = ∞ (see Elem., §§14, 15, and 17). Therefore the exterior of a circle (cf. e)) is also called “a neighborhood of the point ∞.” For the present, however, a letter will never denote the point ∞ if the contrary is not expressly stated.

By means of the so-called “stereographic projection” (see Elem., ch. 3), the points of the complex plane are mapped one-to-one onto the points of a sphere called the Riemann sphere, the sphere of complex numbers, or briefly the z-sphere.

The customary way of doing this is as follows. A sphere of unit diameter is placed upon the z-plane in such a manner that the point of contact (south pole) lies at the origin. By means of rays emanating from the north pole, every point of the z-plane can be made to correspond, in a one-to-one fashion, to a point of the sphere. This point is again called briefly the point z of the sphere. The north pole of the sphere is then the representative (here entirely proper) of “the point ∞” of the z-plane. The complex plane which is closed by the point ∞ is said to have the same connectivity (the same topological structure) as the full sphere.

The equator of the sphere corresponds to the unit circle of the plane; the anterior (posterior) hemisphere, to the lower (upper) half-plane. The semi-meridians correspond to the half-rays emanating from O; the parallels of latitude, to the circles about O as center.

An (ordinary) reflection about the equatorial plane is the same as an inversion with respect to the unit circle. The southern (northern) hemisphere maps into the interior (exterior) of the unit circle; a spherical cap about the north pole, into a neighborhood of the point ∞; etc.

Exercises. 1. Which curves in the plane are characterized by the following relations:


α) [image: image]

β) [image: image]

γ) [image: image]

δ) [image: image](z2) = 4,

ε) [image: image](z2) = 4,

ζ) | z2 − 1 | = α (> 0)?



Which parts of the plane are characterized by the same relations if the equality sign in them is replaced by <, >, [image: image], [image: image]?

2. What relative positions in tne plane or on the sphere do the following points have:


a) z and − z;

b) z and z;6

c) z and − z;

d) z and [image: image];

e) z and [image: image];

f) z and − [image: image]?



§3. Point Sets and Sets of Numbers

If a finite or an infinite number of complex numbers are selected according to any rule, these constitute a set of numbers and the corresponding points constitute a point set. “Point set” and “set of numbers” are considered as fully equivalent expressions. Such a set of numbers, [image: image], is regarded as given or defined if its definition (the rule for selecting) enables one to decide whether a given number belongs to the set or not (and only the one or the other alternative is possible). Since the point set [image: image] representing this set of numbers lies in the complex plane, one also speaks of “plane sets.” The numbers (points) of the set are called its elements.

If all the points of such a set lie on one straight line, the set is called a linear set. In particular, if the straight line is the real axis, we have a set of real numbers. We presume that the reader is familiar, in general, with these as well as with plane point sets (Elem., sec. III, ch. 6). He must also know the main features of the theory of infinite series, especially power series, and sequences of numbers (Elem., sec. III, chs. 7 and 8). Many examples of these concepts are to be found in the chapters of the Elem. just mentioned. Every geometrical figure is a point set and every point set can be regarded as a geometrical figure.

The concepts of greatest lower bound and least upper bound in connection with sets of real numbers, and the theorem that every such set possesses a unique greatest lower bound as well as a unique least upper bound are particuarly important. Of course the theorem is valid in this generality only if the symbols − ∞ and + ∞ are also admitted as a greatest lower bound and a least upper bound, respectively. Otherwise it is only true if the set is “bounded on the left” or “bounded on the right.” Equally important are the concepts of the lower limit and the upper limit (lim, lim, least and greatest limit point, respectively) of an infinite set of real numbers, and the theorem that these values are also uniquely determined by the set. Further details about sets of real numbers will not be discussed in this work.

Plane point sets may also be bounded or unbounded. A set [image: image] is said to be bounded if all of its points can be enclosed in a figure of finite extent (e.g., in a circle). More precisely, the set is bounded if there exists a positive number K such that

| z | [image: image] K

for all points z of the set. On the other hand, if there are points of outside of a circle of arbitrarily large radius with the center O, [image: image] is said to be unbounded.

A point ζ of the plane is called a limit point of a set [image: image] if an infinite number of points z of the set lie in every neighborhood of ζ (see §2, h)); in other words, if, for given (arbitrarily small) ε > 0, there are always an infinite number of z for which

| z − ζ| < ε.

Numerous examples appear in Elem., sec. III, ch. 6. The fundamental Bolzano-Weierstrass theorem (Elem., §25) is concerned with such limit points:

Theorem 1. Every bounded infinite (i.e., consisting of an infinite number of points) point set has at least one limit point.

If the set is not bounded, this means, when referred to the sphere, that an infinite number of points of the set lie in every neighborhood (however small) of the north pole. In this case, we may call the point ∞ a limit point of the set. With this convention, the Bolzano-Weierstrass theorem holds for every infinite point set.

We recall, further, several simple concepts.

  1. If [image: image] is an arbitrary point set, then the points which do not belong to [image: image] constitute the complementary set or complement of [image: image]. If all points of [image: image] belong to another set [image: image], then [image: image] is called a subset of [image: image].

  2. If the defining property of a poiat set is such that no point having this property exists, the set is said to be “empty.”

  3. A point z1 belonging to a set [image: image] is called an “isolated point” of [image: image] if there exists a neighborhood of z1 containing no other point of the set.

  4. A point z1 belonging to a set [image: image] is called an “interior point” of the set if there exists a neighborhood of z1 belonging entirely to [image: image].

  5. A point ζ of the plane is called an “exterior point” with respect to a set [image: image] if ζ itself and a neighborhood of it does not belong to [image: image].

  6. A point ζ of the plane is called a “boundary point” of a set [image: image] if there is at least one point which belongs to [image: image] and at least one which does not belong to [image: image] in every neighborhood of ζ. ζ itself may or may not belong to the set. According to this, an isolated point of a set [image: image] or its complement is always a boundary point of [image: image]; it can never be an interior point.

  7. A set is said to be “closed” if it contains all its limit points. The point ∞ is generally disregarded in this definition. Then it is more precise to say “closed in the plane“; otherwise, “closed on the sphere.”

  8. A set is said to be “open” if each of its points is an interior point of the set.

  9. The least upper bound of the distances between two points of a set is called the “diameter” of the set. If the set is bounded and closed, then there are two points z1, z2 of the set such that its diameter is equal to | z2 − z1 |; in short, the diameter is actually “assumed.”

10. The greatest lower bound of the distances of a point ζ from the points of a set [image: image] is called the “distance” of the point ζ from the set. If [image: image] is closed, then there is a point z0 in [image: image] such that the distance of the point ζ from [image: image] is equal to | z0 − ζ | ; i.e., the distance is assumed.

11. The greatest lower bound of the distances | z1 − z2 | of a point z1 of a set [image: image]1 from a point z2 of a set [image: image]2 is called the “distance” between the two sets. If the sets are closed and if at least one of them is bounded, then the distance between them is assumed.

12. The “intersection” of two sets [image: image]1 and [image: image]2 is the set of all points which belong both to [image: image]1 and [image: image]2. Such an intersection may be empty (see 2). In that case [image: image]1 and [image: image]2 are called “disjunct” sets. A corresponding definition holds for any finite number or for an infinite number of sets.

13. The “logical sum” of two sets [image: image]1 and [image: image]2 is defined to be the set of all points which belong either to [image: image]1 or to [image: image]2. Again a corresponding definition holds for any finite number or for an infinite number of sets.

The principle of nested intervals (see Elem., §27) now admits of a far-reaching generalization and leads to the so-called theorem on nested sets:

Theorem 2. If [image: image]1, [image: image]2, . . ., [image: image]n, ... is a sequence of entirely arbitrary closed point sets such that each is a subset of the preceding one, that at least one of the sets is bounded, and that their diameters tend to zero with increasing n, then there exists one and only one point ζ which belongs to all [image: image]n.

Proof: First it is clear that two distinct points ζ′ and ζ″ cannot belong to all [image: image]n; otherwise the diameters of all the sets would not be less than the fixed positive number | ζ″ − ζ′ |, which is contrary to assumption. Then one notes that nearly all7 sets are bounded; for nearly all the sets must have a finite diameter, and a set with a finite diameter is certainly bounded. Now, if a point is chosen from each set, say zn from [image: image]n, then the set of these zn is bounded and therefore has a finite limit point ζ. This point belongs to all [image: image]n, for if p is an arbitrary natural number, the sequence zp, zp + 1, ... is such that every element belongs to [image: image]p. This sequence also has the limit point ζ. Since [image: image]p is closed, ζ also belongs to [image: image]p and hence to every one of the sets.

A theorem which is somewhat deeper and of great importance arises from the following circumstances. Every point z of a closed and bounded set [image: image] is “covered” by a circle Kz; i.e., z lies in its interior. Consequently, a certain set (possibly infinite again) of circles exists such that every point of [image: image] is covered by at least one of these circles. (One and the same circle, however, may cover several points.) The Heine-Borel theorem then asserts the following:

Theorem 3. If every point z of a closed and bounded set [image: image] is covered by at least one circle Kz, then a finite number of these circles are sufficient to cover the set.

Proof: We prove the theorem indirectly by showing that the assumption that an infinite number of circles are necessary to cover [image: image] contradicts the hypothesis that [image: image] is closed. To this end, we first enclose the set [image: image] in a square Q1 and then divide Q1 into four congruent subsquares. After annexing the sides, each of these four parts is closed. Then each of the four subsets of [image: image] lying in one of the four subsquares is a closed and bounded set. Now assume that an infinite number of circles are necessary to cover the entire set; this must also be true for at least one of the four subsets. Call the first of the four squares8 for which this is the case Q2. From this one we obtain, in a similar manner, a square Q3; and thus one finds a sequence of nested squares Q1, Q2, . . ., Qn, ... (whose diameters decrease to zero) each of which contains a subset of [image: image] requiring an infinite number of circles for its covering.

This cannot be the case, however, if [image: image] is closed. For if the nest of squares shrinks to the point ζ, ζ is a limit point of [image: image] and consequently belongs to [image: image]. Hence ζ is covered by one of the circles in question, say Kζ. If p is chosen so large that the diagonal of Qp is less than the distance of the point ζ from the circumference of the circle Kζ, then all points of [image: image] lying within Qp are already covered by this one circle Kζ; whereas an infinite number of circles were assumed to be necessary to cover these points. Since this is not the case, the theorem is true.

If a set is such that the numbers (points) which belong to it can be enumerated, i.e., designated in order as the first, second, . . ., nth, ... or as z1, z2, . . ., zn, . . ., so that every element receives a definite number, then the set is called “enumerable.” If this is not possible, the set is called “non-enumerable.” (Cf. Elem., ch. 7, where examples are also given.) If such an enumeration has been carried out, the set is said to be arranged in a sequence of numbers (points). In general, the same number is allowed to appear several times or even an infinite number of times in such a sequence. We then have the following general definition: If to every natural number 1, 2, . . ., n, ... there corresponds, in an arbitrary manner, a single definite (complex) number z1, z2, . . ., zn, . . ., respectively, then these numbers in the assigned order are said to form a sequence of numbers; and the points which correspond to them, a sequence of points. The sequence is designated briefly by {zn}, and the single numbers zn are called its “terms.” Thus, we are simply concerned here with enumerable sets which have been enumerated (numbered throughout) in a certain definite manner, under the special agreement, however, that terms with different numbers need not necessarily be distinct. In the latter case, one and the same point is to be considered several or perhaps an infinite number of times as a point of the sequence: “it is counted several times or infinitely often.” Hence, apart from this agreement, the effect of which is easily seen, the same considerations which have been carried through for arbitrary sets of numbers (points) hold for sequences of numbers (points). In particular, Theorems 1, 2, and 3 of this paragraph are valid; only it must be borne in mind that, on the basis of the agreement just made, a point ζ which appears infinitely often in a sequence of points is also a limit point of that sequence. ζ is said to be a limit point of the sequence {zn} if and only if, for a given (arbitrarily small) ε > 0, an infinite number of zn lie in the ε-neighborhood of ζ; i.e., if and only if

| zn − ζ | < ε

for an infinite number of n. The case in which ζ is the only limit point of a sequence {zn} is of particular interest. The last relation then holds for all sufficiently large n, and consequently, for nearly all n (or all n “after a certain one,” say for all n > n0 = n0(ε)). ζ is called the “limit” of the sequence. We write

[image: image]

and the sequence of numbers z1, z2, ... is said to converge to the limiting value ζ.

Cauchy’s general convergence principle furnishes a necessary and sufficient condition for this to occur (see Elem., §26):

Theorem 4. A necessary and sufficient condition for the sequence z1, z2, . . ., zn, ... to have a limit is that for a given arbitrary ε < 0 a number n0 = n0(ε) can be assigned such that

| zn + p − zn | < ε

for all n > n0(ε) and all p [image: image] 0.

If, from a given sequence of numbers {an}, a sequence of numbers {zn} is constructed by forming the sums


z1 = a1, z2 = a1 + a2, . . .,

zn = (a1 + a2 + · · · + an), ...



or the products

z1 = a1, z2 = a1 · a2, ... zn = (a1 · a2 ... an), .. . .,

such a sequence is designated briefly by

[image: image]

respectively. The first is called an “infinite series” with the terms an, the second, an “infinite product” with the factors an. The zn are called the “partial sums” or the “partial products,” in the respective cases. The reader is supposed to be familiar with the use of infinite series (see Elem., chs. 7, 8).

Exercises. 1. Is the set defined by the relation

| z | + [image: image](z) [image: image] 1

bounded? Which part of the plane do the points of this set occupy?

2. Prove that every set consisting of isolated points only is enumerable.

3. Prove the assertions made in 10 and 11 that the distances mentioned there are “assumed.”

4. Show that every limit point of a set [image: image] which does not belong to that set is a boundary point of [image: image], and every boundary point which does not belong to [image: image] is a limit point of [image: image].

5. Show that the totality of boundary points of a set is a closed set.

§4. Paths, Regions, Continua

In the following we frequently draw “paths” in the plane and consider “regions"; we must therefore give sharp definitions of these concepts.

1. If x(t) and y(t) are continuous (real) functions of t in the interval α [image: image] t [image: image] β, then

x = x(t), y = y(t)

is the parametric representation of a “continuous curve.” If a continuous curve has no “multiple points,” i.e., if two distinct points (x, y) correspond to two distinct values of t, it is called a Jordan arc. If one sets x + iy = z, so that x(t) + iy(t) = z(t), then its representation can be written more briefly as

z = z(t), α [image: image] t [image: image] β.

z(α) is its initial point, z(β) its terminal point. According to this, a Jordan arc is always “oriented"; i.e., it is always clear given two points on the arc, which precedes the other, and furthermore, which part of the arc is to be regarded as lying “between” them.

A closed Jordan curve is a continuous curve having x(α) = x(β), y(α) = y(β), but otherwise no multiple points.

A Jordan arc need not possess any assignable length. If it does have a definite length, the arc is said to be rectifiable and is then called a “path segment.”

We cannot enter into a closer investigation of the concept of rectifiability here, but merely recall its definition. If the parameter interval <α, β> is divided in any manner into n parts, determined, say, by α = t0 < t1 < t2 < ... < tn = β, and if the points z(tv), (v = 0, 1, 2, . . ., n), are marked on the arc and joined in order by straight line segments, then an “inscribed segmental arc” is obtained. If the set of the lengths of all such inscribed segmental arcs is bounded, the arc in question is said to be rectifiable, and its length is defined as the least upper bound of that set. The Jordan arc given by the above parametric representation is rectifiable if and only if both functions x(t) and y(t) are of bounded variation. In particular, this is always the case if the derivatives x′(t) and y′(t) exist and are continuous in <α, β>.

If a finite number of path segments are joined in order in such a manner that the initial point of each coincides with the terminal point of the preceding arc, a “path” is formed. A path, consequently, always possesses a definite length, is oriented, and admits of a representation of the form z = z(t) such that as t runs over a certain (real) interval, the point z describes the entire path precisely once in a definite sense. The length of a path composed of several path segments is equal to the sum of the lengths of the single constituent segments, and correspondingly if a path is decomposed into several path segments by means of points of division. Unlike a path segment, a path may intersect itself in any manner. Because of the continuity of x(t) and y(t), the totality of points of a path is a closed point set.

If the initial and terminal points of a path coincide, it is called a closed path. It is oriented as before in the sense that z(t) describes the entire closed path precisely once when t runs over its interval. If distinct points z always correspond in this manner to two distinct values of t, except the initial value and terminal value, the closed path is said to be simple. The following theorem concerns simple closed paths and, more generally, closed Jordan curves.

Jordan’s Theorem. A closed Jordan curve decomposes the plane into precisely two separated regions (see below), one lying inside and the other outside the curve.

The proof of this important theorem, in spite of its apparent intuitive evidence, lies very deep and cannot be given here.9 If the orientation of a simple closed path is such that the interior lies to the left, it is called positive orientation; otherwise, negative.10 If nothing is said to the contrary, simple closed paths will be assumed to be oriented positively.

Every (oriented) straight line segment is, naturally, a path segment. If a finite number of straight line segments are joined in order in such a manner that the initial point of each coincides with the terminal point of the preceding segment, the resulting path is called a segmental arc. If its initial point and terminal point coincide, it is said to be closed or, more precisely, a closed polygon. If a closed polygon is simple, then, according to the last theorem, one can speak of its interior and its exterior.

We prove the following two lemmas for later application.

Lemma 1. Every closed polygon p can he decomposed into a finite number of simple closed polygons and a finite number of segments described twice, once in each direction. Each of the former is described either entirely in the positive or entirely in the negative sense.

Proof: Let us denote the sides

A1A2, A2A3, . . ., An − 1An, AnAn + 1

of p by

S1, S2, . . ., Sn − 1, Sn,

respectively; here n [image: image] 2, A1 is the initial point and An + 1 is the terminal point of p, and A1 = An + 1. We may suppose, without loss of generality, that no two successive sides are such that they have only one point in common and lie on the same straight line. In the following discussion Sn is assumed to be a segment which is open at An + 1.

One and only one of the following is true.

1) Every

sv            (v = 2, 3, . . ., n)

has only one point in common with sv − 1 and no point in common with

sμ     (μ = 1, 2, . . ., v − 2).

In this case p is simple and there is nothing further to prove.

2) There exists an sv, with v [image: image] 2, such that

a) sv has more than one point in common with sv − 1,

or

b) sv has at least one point in common with one or more of the segments

sμ     (μ = 1, 2, . . ., v − 2).

In this case let sk be the first such sv (i.e., the sv, with smallest subscript).

If a) holds for sk, either there is a point Bk − 1 of sk − 1 such that

Bk − 1 = Ak + 1,

and then Bk − 1 AkAk + 1, described in that order, is a straight line segment q′ described twice, once in each direction, and A1 A2 A2 A3 · · · Ak − 1 Bk − 1 Ak + 1 Ak + 2 · · · An An + 1 is a closed polygon p′; or there is a point Bk of Sk such that

Ak − 1 = Bk,

and then Ak − 1 A kBk, described in that order, is a straight line segment q′ described twice, once in each direction, and A1 A2 A2 A3 · · · Ak − 1 Bk − 1 Ak + 1 Ak + 2 · · · An An + 1 is a closed polygon p′. (Bk Ak Ak + 1 and Ak − 1 Ak Bk are considered degenerate forms of a closed polygon.)

If a) does not hold for sk but b) does, let Bk on A k Ak + 1 be the nearest point to Ak that sk has in common with any of the segments

Sμ     (μ = 1, 2, . . ., k − 2),

and let

Br = Bk,

where Br is on sr for some r [image: image] k − 2. There can be only one such Br because of the way in which sk was chosen. Then

BrAr+1 Ar + 1Ar + 2 · · · AkBk

is a simple closed polygon q′. For, due to the manner in which sk was selected, if q′ were not simple, AkBk would have to have a point distinct from Bk in common with some preceding segment; but this is impossible by the definition of Bk. q′ is described in the sense of the orientation of p and hence, since q′ is simple, either entirely in the positive or entirely in the negative sense. A1A2A2A3 · · · ArBrBkAk+1 · · · AnAn+1 is a closed polygon p′.

In either case, 1) or 2), p is thus decomposed into a simple closed polygon q′ (or a segment described twice, once in each direction) and a closed polygon p′. If p′ is simple, our proof is complete; if not, then the above argument applied to p′ will lead to a decomposition of the latter into a simple closed polygon q″ (or segment described twice) and a closed polygon p″. It is clear that by continuing in this manner we obtain after a finite number of steps the decomposition stated in the lemma, because every side of p can have only a finite number of maximal subsegments in common with the other sides, and only a finite number of points not belonging to such subsegments in common with the other sides.

Lemma 2. Every simple closed polygon can be decomposed into triangles by means of diagonals lying in the interior of the polygon.

We prove this by induction on the number of vertices of the polygon. The lemma is obviously true for quadrilaterals (with or without re-entering angles; see Fig. 2, p. 52). Let p be a polygon with n (>4) vertices, and assume that the lemma has been proved for polygons with fewer than n vertices. Then it suffices to show the existence of an interior diagonal which decomposes p into two subpolygons; for, each of the latter then has fewer than n vertices. This can be done as follows, Let a straight line which does not intersect p be translated parallel to itself toward the polygon until they meet. Then the line necessarily contains a vertex A of p, and the interior angle of the polygon at A is less than two right angles. Let B and C denote the vertices adjacent to A. Then precisely one of the following is true:

1) BC is a diagonal lying in the interior of p;

2) there is at least one vertex of p on the (open) segment BC (let one of these vertices be denoted by V), but no vertex in the interior of triangle ABC;

3) there is at least one vertex of p in the interior of triangle ABC. If 1) is true, then there is nothing further to show. If 2) holds, then AV is an interior diagonal of p. If 3) is true, let a point X move from B to C along BC until AX encounters a vertex or vertices of p in the interior of the triangle ABC. If V denotes that one of these vertices which is nearest to A, then AV is a diagonal in the interior of p.11

2. Every point set which

a) contains only interior points, and is therefore open (see §3, 8), and which is

b) connected

is called a region.

An open point set is said to be connected if any two of its points can be joined by a segmental arc belonging entirely to this point set.

According to this definition, in speaking of a region we do not include its boundary points. A region together with its boundary points will always be referred to as a closed region.

Regions can assume very many different forms. For example, besides such simple regions as the circle, polygon, half-plane, the point set consisting of the upper half-plane, [image: image](z) > 0, with the omission of all points lying on the perpendiculars of unit length erected upon the real axis at the points 0 and ± [image: image] (n = 1, 2, ...), is a region. Observe that the boundary point 0 cannot be reached along any path lying wholly within this region.

Special attention is called to those regions which are simply connected. A region is said to be simply connected if every simple closed path lying entirely within the region encompasses only points of the region itself (and consequently, no boundary points).

The circle, triangle, interior of a closed Jordan curve are simply connected. On the other hand, the region between two concentric circles is not simply connected, nor is the region | z | > 0.

For later use we need also the following:

Lemma 3. If a path k (or more generally, a closed point set) lies within a region [image: image] then there is a positive number ρ such that the distance of every point of the path from the boundary of the region is greater than ρ; i.e., the path k does not come arbitrarily close to the boundary.

Proof: Since every point z of k lies in [image: image] a circular neighborhood about z as center with radius ρs, say, also belongs entirely to [image: image] Now, as in the Heine-Borel theorem, let there correspond to each of these points z the circle with center z and radius [image: image] Then according to this theorem, a finite number of these circles are sufficient to cover k. Let ρ be the radius of the smallest of these. Then ρ satisfies the conditions of the lemma, since a circle of radius ρ certainly lies entirely within [image: image] even if its center lies on the circumference of one of that finite number of covering circles.

3. Every bounded point set which is

a) closed and

b) connected

is called a continuum.

A closed and bounded point set is said to be connected if any two of its points A and B can be joined by means of an “ε-chain,” that is to say, if for given ε > 0 a finite number of points of the set, say A0 = A, A1, A2, . . ., An = B, can be assigned so that the distance between any two consecutive points is less than ε.

Since continua can have the most varied forms, it is often useful to be able to replace them by simpler configurations. In this connection we state the following lemma, whose proof is omitted because (like the proof of Jordan’s theorem) it raises difficulties in its complete generality. On the other hand, it is almost self-evident for simple sets.

Lemma 4. If K is a continuum, then the complement of K is composed of one or more regions. Precisely one of them, call it [image: image] contains arbitrarily distant points of the plane. [image: image] is called the exterior region determined by K. If ε > 0 is chosen arbitrarily, there always exists a simple closed polygon P belonging entirely to [image: image] (so that K therefore lies in the interior of P) such that the distance of every point of P from K is less than ε.

1 By “Elem” we refer to the little volume Elemente der Funktionentheorie, Sammlung Göschen No. 1109. Berlin and Leipzig, 1937. Much of the material in the Elem. is to be found in G. H. Hardy, A Course of Pure Mathematics, 7th ed., New York, 1941, or in R. Courant, Differential ana Integral Calculus, New York, 1938 (see especially Vol. I, Chapter I, and Appendix I, §§1 and 2; Chapter VIII; Vol. II, §1 of the Appendix to Chapter II, Chapter VIII, §§1 and 2).

2 When we speak of “numbers” in the following, we mean the ordinary complex numbers unless it is expressly stated to the contrary,

3 Small Roman or Greek (occasionally also German) characters always denote complex numbers if the contrary does not follow clearly from the context. Nevertheless, x, yt and later more frequently υ, ν, and ξ, η will be reserved for the real and imaginary part, respectively, and consequently, for real numbers. At times, iy (not y alone) is also used for the imaginary part of z. The context always excludes ambiguities.

4 The term “argument” (arg s = φ) is also in use;

5 Note the difference between this and the following: (1) the set of real numbers (the real axis) which leads to the introduction of two improper values, + ∞ and − ∞. and (2) the “projective plane” in which an infinite number of improper points are introduced. Structurally (topologically) the complex plane is intrinsically different from the projective plane.

6 The complex number which is the conjugate of z is denoted by z. (If z = x + iy, z = x − iy).

7 That is, all except possibly a finite number (see Elem., §26).

8 We take the sides of all squares parallel to the coordinate axes and number the subsquares in the ordes in which the quadrants of the plane are usually numbered.

9 See G. N. Watson. Complex Integration and Cauchy’s Theorem, Cambridge Tracts No 15, 1914. ch I for a proof

10 For a more precise definition of positive orientation see op. cit., pp. 15, 16.

11 For a more vigorous treatment of this lemina, see N. J. Lennes, Amer. J. Math., 33 (1911). pp. 45–47.


CHAPTER 2

FUNCTIONS OF A COMPLEX VARIABLE

§5. The Concept of a Most General (Single-valued) Function of a Complex Variable

If [image: image] is an arbitrary point set and if z is allowed to denote any point of [image: image], z is called a (complex) variable and [image: image] is called the domain of variation of z.

If there is a rule by means of which a definite new number w is made to correspond to every point z of [image: image], w is called a (single-valued) function of the (complex) variable z; in symbols

w = f(z),

where “f” stands for the prescribed rule. [image: image] is called the “domain of definition” and z the “argument” of the function. The totality of values w which correspond to the points z of [image: image] is called the “domain of values” of the function (over [image: image]). Any other symbols may be employed instead of f; F, g, h, φ, etc. will often be used.

If z and w are separated into their real and imaginary parts, z = x + iy, w = u + iv, then the relation

w = f(z)

can also be interpreted to mean that to the pair of real numbers x and y there correspond, by means of certain rules, two new real numbers u and v. Thus, u and v appear as a pair of real functions of two real variables, x and y. We set

u = u(x, y), v = v(x, y),

and consequently

f(z) = u(x, y) + iv(x, y).

u is called the real part, and v, the imaginary part of the function f(z). According to this, it is evident that f(z) is merely a combination of a pair of real functions of two real variables. It is sometimes useful to place this interpretation in the foreground; this will be done, e.g., in §§7 and 10. In general, however, the real core of the matter can be perceived only if this separation does not take place and f(z) is considered as a function of the single complex variable z.

We presume that the reader is already familiar, to some extent, with the so-called elementary functions, including the rational functions (particularly the linear functions), the exponential function ez, the trigonometric functions sin z, cos z, tan z, and their inverses (see Elem., secs. II and V). For these functions, [image: image] is either the entire plane, as for ez. sin z, cos z, or the plane with the exception of certain points; e.g., for the rational functions, the zeros of the denominator are excluded; for cot z, all real points of the form kπ, k = 0, ± 1, ... are excluded. Here the rule for defining the function consists in an explicit expression ; i.e., the value w of the function corresponding to a z of [image: image] can be calculated by means of a finite or an infinite1 number of applications of the four fundamental operations of arithmetic.

The prescribed rule, however, can be given in an entirely different manner. Only to mention an extreme example, let [image: image] be the set of all numbers z = x + iy for which x and y are rational numbers, and stipulate that f(z) is equal to 1, 2, . . ., or n according as the periodic decimal expansion of y has a period of 1, 2, . . ., or n digits, respectively.

It should be emphasized immediately that it is by no means necessary for a function to be given by an explicit expression. It can be given in very many other ways; all that is required is that the value w of the function be made to correspond, on the basis of the definition, to each z of [image: image] in a completely unambiguous manner. It is evident that the concept of function thus formulated is exceedingly broad, so broad that it can hardly be governed by general theorems and rules. It will be our task to restrict the hypotheses in a suitable manner in order to select from the totality of all functions a more special class of functions which are valuable with regard to their applicability in mathematics and the physical sciences.

It is surprising that this objective is attained with the single and quite natural requirement that our functions be differentiable. It is also surprising that the property of being differentiable has unexpected, far-reaching consequences for the nature of the function.

Differentiability, which is defined formally the same as in the real domain, likewise presupposes continuity. We also regard these two concepts and their simplest properties as being familiar to the reader (see Elem., sec. IV). The most important facts concerning them appear in the following paragraph.

§6. Continuity and Differentiability

I. We first require that the domain of variation [image: image] be a region [image: image] in the sense of §4, 2.2 z, then, is said to be a continuous variable; for if ζ is any point of [image: image] z may represent every point of a neighborhood of ζ, and hence, every point sufficiently close to ζ. A function w = f(z) defined in [image: image] is said to be continuous at a point ζ of [image: image] if it satisfies one of the following fully equivalent conditions, (formally the same as in the real domain).

FIRST FORM. [image: image] exists and is equal to f(ζ); that is, having chosen ε > 0, it is always possible to assign a number δ = δ(ε) > 0 such that, with ω = f(ζ),

| W − ω | = | f(z) − f(ζ) | < ε

for all z for which

| z − ζ | < δ.

This can also be said in the following, less precise manner.

SECOND FORM. The values f(z) of the function differ from f(ζ) by arbitrarily small amounts when z lies sufficiently close to ζ.

THIRD FORM. If an entirely arbitrary sequence of numbers, z1, z2, . . ., zn, . . ., of [image: image] is chosen such that zn → ζ, then for the corresponding values wn = f(zn) of the function

wn → ω = f(ζ).

If a function f(z) is continuous at every point of a region, then it is said to be continuous in the region.

Occasionally the functions which occur are also defined for some boundary point of [image: image]. Then the continuity of the function f(z) at a boundary point ζ of [image: image] is understood to mean that the conditions for continuity are fulfilled at least if the z which appear in them lie within [image: image] In this sense one speaks of “continuity from the interior.” Similarly, one also speaks of “continuity along a path,” which means that the conditions for continuity are fulfilled for all points lying on the path in question, irrespective of the values of the function for other points.

If it is possible to make a value ω = f(ζ) correspond to a boundary point ζ of the region of definition [image: image] in such a way that f(z) is now continuous at ζ from the interior, even if it is necessary to alter an already defined value of the function for ζ, the function f(z) is said to assume the boundary value ω at ζ. This is obviously the case if and only if lim f(z) exists for z approaching f from the interior of [image: image].

The continuity of f(z) evidently implies that the functions u(x, y) and v(x, y) introduced in the preceding paragraph must, for their part, be continuous, real functions of the pair of variables (x, y).

As for these functions, the following theorem on uniform continuity also holds for our continuous functions of a complex variable.

Theorem. If f(z) is continuous in a closed and bounded region [image: image] then, having chosen ε > 0, it is always possible to assign a number δ = δ(ε) in such a manner, that for any two points z′ and z″ of [image: image] for which | z″ − z′ | < δ, the modulus of the difference of the corresponding values of the function

| w″ − w′ | = | f(z″) − f(z′) | < ε.

Proof: A circle, whose radius we denote by ρz, can be drawn about every point z of [image: image] as center such that the oscillation3 of the function in that circle is less than [image: image]ε, because of the continuity of f(z) at z. Now, to every z of [image: image] we let correspond, as in the proof of Lemma 3, §4, the circle about z as center with radius [image: image] By the Heine-Borel theorem, a finite number of these circles are sufficient to cover [image: image] If the radius of the smallest of these circles is δ, this number satisfies the conditions of the theorem. For, if | z″ − z′ | < δ and if z′ is covered, say, by the circle about ζ as center with radius [image: image]ρζ, then δ [image: image] [image: image]ρζ; and consequently z′ and z″ lie within the circle about ζ as center with radius ρζ. Hence | f(z″) − f(z′) | < ε.

II. The definition of differentiability, which is also formally the same as in the real domain, will likewise be stated in three different forms. A function w = f(z) defined in [image: image] is said to be differentiable at a point ζ of [image: image] if one of the following three equivalent conditions is satisfied.

FIRST FORM.

[image: image]

exists. This limit is denoted by f′(ζ) or (dw/dz)z = ζ and is called the derivative or differential quotient of f(z) at the point ζ. In other words, it must be possible to associate a new number f′(ζ) with the point ζ in such a way that having chosen ε > 0 arbitrarily, a δ = δ(ε) can always be found such that

[image: image]

for all z of [image: image] with | z − ζ | < ε. This can be said (somewhat less precisely) as follows:

SECOND FORM. For all z of [image: image] lying sufficiently close to ζ, the difference quotient

[image: image]

lies arbitrarily close to a definite number, which number is then denoted by f′(ζ).

THIRD FORM. If an entirely arbitrary sequence of cumbers, z1, z2, . . ., zn, . . ., of [image: image] is chosen, whose terms all differ from ζ but approach ζ as a limit, then the sequence of numbers

[image: image]

always tends to a limit. The latter is independent of the choice of the sequence {zn} and is denoted by f′(ζ).

We assume that the rules of differentiation, formally the same as those in the real domain, and, in particular, the so-called “chain rule” are familiar to the reader (see Elem., sec. IV, ch. 9). Likewise, the meaning of continuity and differentiability in connection with the interpretation of a function w − f(z) as a mapping of the region of definition in the z-plane onto a region in the w-plane is assumed to be known. In a few words, continuity means that neighboring points in the z-plane correspond to neighboring points in the w-plane, and differentiability means that the mapping is conformal4 (see Elem., sec. IV, ch. 10).

A function which is differentiable at every point of a region is said to be differentiable in the region. The derivative then is also a function defined in this region. Those functions which are differentiable in regions are the ones which were alluded to in the preceding paragraph and which will prove to be very important. They are therefore given a special name.

Definition. A function which is defined and differentiable throughout a region [image: image] is called a (single-valued) regular analytic function in [image: image] or briefly, an analytic or a regular function. The region [image: image] is called a region of regularity of the function.

According to this, the property of being regular belongs to a function only in regions; however, the function is also said to be regular at every single point of such a region. Note then that regularity at a point always automatically includes regularity in a certain neighborhood thereof, since this point eo ipso must be an interior point of a region of regularity. All the elementary functions mentioned above are regular in their regions of definition. The function f(z) = [image: image](z) is easily seen to be a function which is continuous in the entire plane but not a regular analytic function in any region.

The succeeding sections will bear out the fact that every member of the class of functions thus selected possesses a surprisingly strong inner structure. These functions, therefore, are especially important for all applications in the mathematical sciences.

Exercises. 1. Investigate the continuity of the following two functions:

α) f(z) = 0 for z = 0 and for all z whose absolute value |z| is an irrational number;

[image: image]

where p and q are positive and relatively prime integers.

β) f(z) = 0 for z = 0, f(z) = sin θ for z = r(cos θ + i sin θ) with r > 0.

For both functions, determine the points at which they are continuous and at which they are discontinuous.

2. Are the functions defined in the previous exercise differentiable at certain points? Are the functions f(z) = | z |, f(z) = [image: image](z), f(z) = am z differentiable at certain points?

3. Let the function f(z) be continuous in a circle K (more generally, in the interior of a simple closed path C) and assume a boundary value f(ζ) for every boundary point ζ. Show that these boundary values f(ζ) form a continuous function along K (or C).

§7. The Cauchy-Riemann Differential Equations

The significance, as far as the functions u(x, y) and v(x, y) are concerned, of the requirement that f(z) = u + iv be differentiable at the point ζ = ξ + iη can be realized as follows. The difference quotient

[image: image]

must always tend to a single definite number as a limit, howsoever z → ζ. In particular, the limit must exist if z is allowed to approach ζ once along a line parallel to the x-axis and another time along a line parallel to the y-axis; that is, if for fixed y = η, x is made to approach ξ, and if for fixed x = ξ, y is made to approach η. Thus, we have the following result.

Theorem 1. If the function f(z) = u(x, y) + iv(x, y) is differentiable at the point ζ = ξ + iη, then the four partial derivatives of u and v with respect to ξ and η exist there:

[image: image]

Then for the two methods in which z → ζ,

[image: image]

respectively. From this we obtain the following theorem which, as in the real domain, is of fundamental importance for the integral calculus.

Theorem 2. If a function f(z) is differentiable in a region [image: image] and if its derivative is zero everywhere in [image: image] then f(z) = c in [image: image]; or, two functions which are regular in the same region [image: image] and whose derivatives coincide there differ in [image: image] only by an additive constant.

For, both partial derivatives of u and likewise those of v are zero everywhere in [image: image]. Hence, u, v, and consequently also f(z) are identically constant in [image: image]

Since the two values in (1) must be equal, we also obtain the following theorem.

Theorem 3. If the function f(z) = u + iv is differentiable at the point ζ = ξ + iη, then the relations

[image: image]

involving the four partial derivatives of u and v, hold at the point (ξ, η). They hold then, in particular, at every point of a region of regularity of f(z).

These important equations, which must be satisfied by the real part and the imaginary part of f(z), are called the Cauchy-Riemann (partial) differential equations. The importance of these differential equations depends on the fact that they are characteristic for regular functions; for, the converse of Theorem 3 is also true.

Theorem 4. If the four partial derivatives of u and v with respect to x and y exist in a region of the z- or xy- plane, and if they are continuous and satisfy the Cauchy- Riemann differential equations, then

f(z) = u(x, y) + iv(x, y)

is a regular function of z in [image: image]

Proof: We have

f(z) − f(ζ) = [u(x, y) + iv(x, y)] − [u(ξ, η) + iv(ξ, η)].

By the theorem on the total differential for real functions of two real variables we may write

u(x, y) − u(ξ, η) =

[ux,(ξ, η) + α(x, y)](x − ξ) + [uy(ξ, η) + β(x, y)](y − η)

and

v(x, y) − v(ξ, η) =

[vx(ξ, η) + γ(x, y)](x − ξ) + [vy(ξ, η) + δ(x, y)](y − η),

where α, β, γ, δ denote functions of x and y which tend to zero as (x, y) → (ξ, η).

Since obviously [image: image] and [image: image] we immediately infer from the last two equations, bearing in mind the Cauchy-Riemann differential equations, that

[image: image]

as z → ζ. Therefore f(z) is differentiable at the point ζ, and hence, everywhere in [image: image]

Thus, the Cauchy-Riemann equations characterize in a unique manner those functions of the form u(x, y) and v(x, y) which can be the components of an analytic function.

If we assume further the existence and continuity in [image: image] of the second-order partial derivatives (it will be proved in §16 that this is always automatically the case), then it follows from the Cauchy-Riemann equations that

[image: image]

Hence

[image: image]

and likewise

[image: image]

Both functions u and v satisfy one and the same differential equation, Laplace’s differential equation, as it is called, of the form

[image: image]

It follows that neither the real nor the imaginary part of f(z) can be chosen arbitrarily; on the contrary, each alone must satisfy Laplace’s equation, and both together must satisfy the Cauchy-Riemann equations.

Exercises. 1. Show that the Cauchy-Riemann equations and Laplace’s equation are satisfied by the elementary functions, e.g., by

f(z) = z, z2, zn, es, sin z, cos z, tan z, etc.

2. Prove Theorem 2 of this paragraph without resolving f(z) into its real and imaginary parts.

1 In this case, the limit process in question, usually infinite power series, must, naturally, converge.

2 In what follows, it usually suffices to think of [image: image] as representing the interior of a circle.

3 That is, the least upper bound of the values | f(z″) − f(z′) | for any two points z′ and z″ of the circle in question which also lie in [image: image]

4 Angles are preserved in magnitude and sense, and magnification at a point is independent of direction.


SECTION II

INTEGRAL THEOREMS


CHAPTER 3

THE INTEGRAL OF A CONTINUOUS FUNCTION

§8. Definition of the Definite Integral

In the integral calculus, the definite integral of a real continuous function y = F(x) of the real variable x, taken between the limits x0 and X, is defined as follows:

Divide the interval < x0, X > (take x0 < X) in any manner into n parts. Let the points of division be

x0 < x1 < x2 < ... < xn − 1 < xn = X.

In each interval < xν − 1, xv > choose an arbitrary point ξν and form the sum

[image: image]

Let this be carried out for n = 1, 2, 3, . . ., each time in an entirely arbitrary manner, but so that the lengths of all intervals < xν − 1, xv > decrease to zero with increasing n. Then

[image: image]

always exists and is completely independent of the choice of the points of division and the intermediate points. In other words, a number J exists such that for given ε > 0 there exists a δ = δ(ε) > 0 such that

| Jn − J | < ε,

provided all intervals

| xν − xν − 1 | < δ.

This number J is called the definite integral and is denoted by

[image: image]

We presume that the reader is familiar with this definition of the real definite integral and its geometrical interpretation as the approximation of a plane area by means of a sum of rectangles.

Now let w = f(z) be a continuous function of z in a region [image: image] (differentiability is not necessary for the present). Let z0 and Z be two arbitrary points of [image: image] The following definition of the definite integral of a function of a complex variable is formally analogous to the one given above. Connect z0 and Z by means of a path k lying entirely within [image: image] Divide k into n parts in any manner. Call the points of division, in order, z0, z1, z2, . . ., zn − 1, zn = Z. On each of the paths zν − 1 ... zν choose an arbitrary point ζν and form the sum

[image: image]

We shall show that in this case too

[image: image]

always exists and is independent of the choice of the points of division and of the intermediate points, provided the lengths of all paths zν − 1 ... zν decrease to zero with increasing n. This limit is not independent of the connecting path k, however. Thus, we shall prove the existence of a number J with the following property. For given ε > 0, a δ = δ(ε) > 0 can be determined such that

| Jn − J | < ε,

provided the lengths of all paths zν − 1 ... zν are less than δ.

The limiting value

[image: image]

understood in this sense, is called the definite integral of f(z) taken along k and is denoted by

[image: image] or, brifely, by [image: image]

A simple geometrical interpretation as in the case of real integrals is impossible.

§9. Existence Theorem for the Definite Integral

For brevity we shall call the sums in question ∑-sums (of n parts); and when we speak of a segment (a, b) of the path, we shall always mention first that point which precedes on the oriented path. With these conventions we have

Lemma 1. Let (a, b) be a segment k′, of length l′, of the path k. Let the oscillation of the function f(z) on k′1 be less than σ. Then two ∑-sums which are formed for this segment for n = 1 and n = p ([image: image] 1) differ by an amount less than l′σ.

Proof: Let s = (b − a)f(α0) and s′ = (a1 − a)f(α1) + (a2 − a1)f(α2) + · · · + (b − ap − 1)f(αp) be the two ∑-sums. Here we have denoted the points of division by a1, a2, . . ., ap−1 and the intermediate points by α0, α1, α2, . . ., αp, respectively. By hypothesis,

| f(αν) − f(α0) | < σ, ν = 1, 2, . . ., p.

Since s can be written in the form

s = (a1 − a)f(α0) + (a2 − a1)f(α0)+ · · · +(b − ap − 1)f(α0),

we have

| s′ − s | < σ(∫| a1 − a | + | a2 − a1 | + · · · + | b − ap−1 |) [image: image] l′σ,

because the length of an inscribed segmental are (cf. §4.1) cannot be greater than the length of the path itself.

Lemma 2. Let S be a fixed ∑-sum, of n parts say, for the path k, and let the oscillations of f(z) on the n segments of the path all be less than σ0. Let S′ be a new ∑-sum, derived from S by adding new points of division to the old ones (briefly, by further subdivision). Then, if l denotes the length of the path k, we have

| S − S′ | < lσ0,

no matter how the intermediate points defining S′ are chosen.

Proof: Lemma 1 holds for each of the n segments of the path, so that we have

| S − S′ | < l1σ0 + l2σ0 + · · · + lnσ0 = lσ0,

if l1, l2, . . ., ln denote the lengths of the n segments of the path.

Lemma 3. Given ε > 0, there exists a δ = δ(ε) > 0 such that if S1 and S2 are any two ∑-sums defined by means of decompositions of the path into segments of lengths less than δ, then

[image: image]

Proof: Choose δ so that | f(z″) − f(z′) | < [image: image] for any two points z′ and z″ of the path for which | z″ − z′ | < δ. This is possible by virtue of the theorem on uniform continuity. If S1 and S2 are any two ∑-sums for whose decompositions all segments of the path have lengths less than δ, form a third (finer) decomposition by taking as points of division those of the first two decompositions. The third is evidently derived from them by means of further subdivision. Hence, if S3 is an arbitrary ∑-sum belonging to the third decomposition, we have by Lemma 2

[image: image]

and likewise

| S2 − S3 | < [image: image]ε.

Therefore,

[image: image]

Q. E. D.

Lemma 4. Let a ∑-sum be formed for n = 1, 2, .... If the lengths of all the path segments of the respective decomposition decrease to zero with increasing n2, then

[image: image]

exists.

Proof: Given ε > 0, determine δ according to Lemma 3. Then take n0 so large, that the lengths of all segments of all the Sn with n [image: image] n0 are less than δ. Lemma 3 is applicable to all these Sn; i.e.,

| Sn+p − Sn | < [image: image]ε < ε

for all n > n0 and all p [image: image] 1. Hence (cf. §3, Theorem 4) lim Sn exists.

Set this limiting value equal to J. We now obtain the theorem stated at the end of the preceding paragraph.

Theorem. If ε > 0 is given, and δ = δ(ε) is determined according to Lemma 3, then the relation

| Jn − J | < ε

holds for every ∑-sum Jn for which the lengths of all path segments are less than δ.

Proof: If, in the proof of Lemma 4, the number p in the inequality | Sn+p − Sn | < [image: image]ε is allowed to approach infinity, it follows first that

| Sn − J | [image: image] [image: image]ε for n [image: image] n0.

Furthermore, by Lemma 3,

| Sn − Jn | < [image: image]ε.

Hence

[image: image]

Thus the existence of the number J with the asserted properties, that is to say, the existence of the definite integral has been proved completely.

REMARKS. 1. Only the continuity of f(z) along k was used in our proof, and not continuity in [image: image] Hence, f(z) need not even be defined except for k.

2. Our concept of integral includes the real integral (cf. §8, beginning) as a special case. To realize this, take k to be a segment of the real axis and f(z) to be a function which is real-valued on k.

Exercise. Let F(z) be a continuous function of z along k. Show that the limiting value

[image: image]

understood in the same sense as before, always exists.

§10. Evaluation of Definite Integrals.

The problem of actually calculating the number J in given instances is of an entirely different nature. This is possible, in general, only under somewhat restrictive hypotheses.

Let us assume that the real functions

x = x(t), y = y(t),

representing the coordinates of the point which describes the path as t traverses the interval < α, β >, have continuous derivatives x′(t) and y′(t).

Then the path is certainly rectifiable. We decompose the path by dividing the parameter interval into n parts by means of the values

α = t0 < t1 < t2 < ... < tn = β,

choosing intermediate parameter values τ1, τ2, . . ., τn, and setting

zν = z(tν,) for ν = 0, 1, 2, . . ., n,

ζν = z(τν) for ν = 1, 2, . . ., n.

For brevity we set

u[x(t), y(t)] = ū(t), v[x(t), y(t) = v(t).

Now we may write

[image: image]

Multiplying out the brackets we obtain four real ∑-sums. As we refine the subdivision, these sums tend to easily recognizable limits.

For example,

[image: image] approaches [image: image]

For, by the mean value theorem of the differential calculus,

xv − xν−1 = x(tν) − x(tν−1) = (tν − tν−1)x′(τν′),

where τν′ denotes a value between tν−1 and tν. Because of the assumed continuity of x′(t) in < α, β > we may write

x′(τν′) = x′(τν) + εν,

where all εν tend uniformly to zero as we refine the subdivision.3

Hence, the real ∑-sum in question is equal to

[image: image]

The first term in this expression is precisely that ∑-sum which tends to the real integral [image: image] The second term, however, tends to zero, since, for given ε > 0, it can be made smaller in absolute value than

ε(β − α)·ū0

by refining the subdivision. Here ū0 denotes an upper bound of | ū(t) | along k.

The other three ∑-sums may be treated in an analogous fashion.

According to this, the limit J (i.e., our definite integral) which is approached by our complex ∑-sums has the value

[image: image]

We may write a condensed formula for J,

[image: image]

which by this time will not be misunderstood; or still more briefly,

[image: image]

or finally,

[image: image]

Here the limits with respect to t are to recall that z is a function of t, while the path alone is mentioned in the last form as the only essential. We see, in addition, that this investigation concerning the calculation of the value of the integral has given us a deeper insight into the meaning of the notation used for the definite integral.

Example 1.

f(z) = [image: image] k: z(t) = cos t + i sin t, 0 [image: image] t [image: image] 2π.

The path is the unit circle described from + 1 in the mathematically positive sense (counterclockwise) back to +1. Hence by (3),

[image: image]

This result is used continually in the following sections.

Example 2.

f(z)∫ = [image: image](z) = x; z0 = 0, Z = 1 + i.

[image: image] is to be evaluated along two distinct paths:

1. Path k1: The straight line segment

z = (1 + i) t, 0 [image: image] t [image: image] 1.

We have

[image: image]

2. Path k2: From 0 along a straight line to + 1, and from there along a straight line to 1 + i. By calculating both parts separately and adding the results we find that

J2 = [image: image] + i.

Different values are thus obtained by using different paths. (Cf. §6, ex. 2.)

The following examples show that it is sometimes simplest to go back directly to the definition of the integral as the limit of a sum (§§8 and 9).

Example 3. Let [image: image] be the entire plane; f(z) = 1; path: arbitrary.

We have

[image: image]

Hence

[image: image]

along any path. If, in particular, k is a closed path, which we shall then denote by C,

[image: image]

because Z = z0.

Example 4. Let [image: image] be the entire plane; f(z) = z; path: arbitrary.

We have

[image: image]

where ζν is an arbitrary point on that part of the path extending from zν−1 to zν.

a) Take

ζν = zν − 1.

Then if the sum is denoted by Jn′,

Jn′ = (z1 − z0)z0 + (z2 − z1)z1 + · · · + (Z − zn−1)zn−1.

b) Take

ζν = zν.

If the sum is now denoted by Jn″, then

Jn″ = (z1 − z0)z1 + (z2 − z1)z2 + · · · + (Z − zn−1)Z.

By addition it follows that

Jn′ + Jn″ = Z2 − z02;

Consequently,

lim (Jn′ + Jn″ = 2J = Z2 − z02;

that is,

[image: image]

for an entirely arbitrary path. If k is a closed path C,

[image: image]

Example 5. ∫ (z − z0)mdz; path k: a circle with radius r about z0 as center, described in the positive sense. k may be represented by

z = z0 + r (cos t + i sin t), 0 [image: image] t [image: image] 2π,

so that

[image: image]

Now, as is well known,

[image: image]

for every (positive or negative) integer μ distinct from zero, whereas for μ = 0 the integrals are equal to

2π, 0,

respectively. Hence, our integral

[image: image]

Exercises. 1. Evaluate the last integral also for the case that

a) k is a square whose center is z0 and whose sides are parallel to the coordinate axes;

b) k is an ellipse whose center is z0 and whose axes are parallel to the coordinate axes.

2. Evaluate [image: image] dz by taking the path

a) rectilinearly, b) along the left half of the unit circle, c) along the right half of the unit circle.

§11. Elementary Integral Theorems

The following elementary theorems, in which the missing integrand should always read f(z)dz, follow almost immediately from the definition of the integral as the limit of a sum.

Theorem 1.

[image: image]

i.e., the sum of integrals taken along successive path segments is equal to the integral over the entire path. The notation k + k′ for the path of the integral on the right means that one is to proceed from z0 to Z along k and then continue along k′ to Z′.

Likewise

[image: image]

if z′ is chosen on k between z0 and Z, thereby decomposing k into k1 and k2.

Theorem 2.

[image: image]

i.e., if one integrates along the same path k, once in one direction and once in the opposite direction, then the two values obtained are the same except for sign. If one direction is denoted by + k and the other by − k, one can also write more briefly

∫–k = − ∫+k or ∫+k + ∫–k = ∫(+k)+(–k) = 0.

This can be stated briefly as follows: If one integrates back and forth over the same path, the value of the integral is zero.

Theorem 3.

[image: image]

i.e., a constant factor may be put before the integral sign.

Theorem 4.

[image: image]

In words: the integral of a sum of two (or more, but still a finite number of) functions is equal to the sum of the integrals of the single terms. Briefly, a sum (of a finite number of functions) may be integrated term by term.

Theorem 5.

[image: image]

if M denotes a (positive) number which is not exceeded by | f(z) | for any z on the path k, and l is the length of k.

The proof of this important formula follows immediately from the definition of the integral. We have

[image: image]

and hence

[image: image]

The sum on the right, according to its meaning, represents the length of the segmental arc with the vertices z0, z1, z2, . . ., Z inscribed in k, and hence is less than or equal to l for every n.

Consequently,

| Jn | [image: image] Ml

for every n, and therefore also

| J | [image: image] Ml,

Q. E. D.

For instance, for the first example in §10, it follows without any computation that

[image: image]

since | z | = 1 for every point z of the unit circle k, and the length of the latter is 2π.

Exercise. In connection with the exercise in §9, show that

[image: image]

1 That is least upper bound of the values |f(z″) − f(z′)| for any two pointe z′ and z″ the segment k′.

2 This means: if λn denotes the length of the longest segment in the nth decomposition. then λn → 0.

3 This means that if ε > 0 is given, there is a fefinement of subdiviion such that all εν < ε.


CHAPTER 4

CAUCHY’S INTEGRAL THEOREM

§12. Formulation of the Theorem

According to the definition of the integral of a function of a complex variable, its value depends not only on the limits of integration z0 and Z, (as is the case for a real integral), but also quite essentially on the path k which connects them (cf. §10, ex. 2). Now there is a theorem which states that, under hypotheses to be given immediately, such a dependence on the path does not exist if the function is not only continuous, as hitherto assumed, but also differentiable. This theorem, called Cauchy’s integral theorem after its discoverer, is fundamental for the entire theory of functions.

The Fundamental Theorem of the Theory of Functions

First form. Let the function w = f(z) be regular in a simply connected region [image: image] and let z0 and Z be two (interior) points of [image: image] Then the integral

[image: image]

has the same value along every path of integration extending from z0 to Z and lying entirely within [image: image]

According to this, if k1 and k2 are two such paths which are distinct, we should have

[image: image]

By §11, 1 and 2 this could be interpreted as follows: the integral along a path beginning and terminating at z0, that is to say, along a closed (although not necessarily simple) path C lying entirely within [image: image] is zero. Thus, from the first form of the theorem follows the

Second form. If f(z) is regular in the simply connected region [image: image] then

[image: image]

if C denotes an arbitrary (not necessarily simple) closed path lying within [image: image]

Conversely, the first form follows immediately from the second. For, let k1 and k2 be two arbitrary paths extending from z0 to Z and lying within [image: image] Then if — k2 is joined to k1, these together form a closed (although not always simple) path, so that we have

[image: image]

It is therefore sufficient to prove the fundamental theorem in the second form; and this will be done in the following paragraph in three steps: first, for the case that C is a triangle; then, that C is an arbitrary polygon; finally, that C is an arbitrary closed path.

In Examples 3 and 4 of §10 we already proved Cauchy’s theorem for two special functions, namely, f(z) = 1 and f(z) = z; for it was shown that

[image: image]

for an arbitrary closed path C

§13. Proof of the Fundamental Theorem

PART I. C is a triangle T lying with [image: image]

Divide T into four congruent subtriangles1 TI, TII, TIII, TIV by means of segments parallel to the sides of T. Then

[image: image]

if the paths of integration are all described in the mathematically positive sense. For, as we integrate over the sides of the four subtriangles (cf. Fig. 1, in which the appropriate arrows are drawn inside each of the triangles) we integrate back and forth (cf. §11, 2) over the three auxiliary segments, so that their influence is automatically eliminated. Of the four integrals on the right-hand side, there must be one, the path of which we denote by T1, for which

[image: image]

[image: image]

Fig. 1.

since not every one of the four integrals can be less than one quarter of the whole. The subtriangle T1 can be treated in exactly the same way. T1 contains at least one subtriangle T2 for which

[image: image]

so that consequently

[image: image]

Continuing in this manner, we obtain a sequence of similar triangles T, T1, T2, . . ., Tn, ... such that each lies inside the preceding one, is one quarter of the latter, and

[image: image]

for n = 1, 2, ....

By the theorem on nested sets, there is one and only one point z0 common to all Tn; z0 then also lies in [image: image]

Let ε be an arbitrarily small positive number. Since f(z) must have a derivative at z0, δ > 0 can be determined (see §6, II, first form) so that, for all z with | z − z0 | < δ, we have

| f(z) − f(z0) − (z − z0)f′(z0) | < ε | z − z0 |,

or

  f(z) = f(z0) + (z − z0)f′(z0) + η · (z − z0)

with

| η | = | η(z) | < ε.

Now choose n so large that Tn lies entirely within the neighborhood of z0 characterized by | z − z0 | < δ, so that | z − z0| < δ for all z in the interior and on the boundary of Tn. Then

[image: image]

Hence, by §11, 3 and the remark at the end of the preceding paragraph,

[image: image]

and therefore by §11, 5,

[image: image]

if Sn denotes the perimeter of Tn. This is true because | z − z0 | is the distance between two points of one and the same triangle Tn and is therefore at most equal to [image: image] the length of the path is Sn, and | η | < ε.

Since

[image: image]

if s denotes the perimeter of the given triangle T, we have finally

[image: image]

The number on the right can be made arbitrarily small by the choice of ε, the value of the integral on the left is fixed. Therefore the latter must necessarily equal zero, Q. E. D.

PART II. The path C is an arbitrary closed polygon P which may intersect itself and which lies entirely within [image: image]

First, if C is a quadrilateral Q which does not intersect itself, it can always be decomposed by means of a diagonal lying in its interior into two triangles T and T′ which also lie within [image: image] and we have again (cf. Fig. 2)

[image: image]

Fig. 2.

[image: image]

By §4, Lemma 2, every arbitrary closed polygon P which does not intersect itself can likewise be decomposed into triangles by means of diagonals lying entirely in the interior of P. If one integrates over all these triangles separately, each of these integrals is equal to zero. If all of them are added together, the sum is equal to the integral taken along the boundary of the polygon P, since one integrates back and forth over every diagonal,2 so that also

[image: image]

Finally, by §4, Lemma 1, a closed polygon P which intersects itself can be decomposed into a finite number of closed polygons, each of which is simple and is described entirely in the positive or entirely in the negative sense; and possibly, in addition, a finite number of segments described twice, once in each direction. If one integrates over each part separately and adds, it is evident that again

[image: image]

PART III. C is an arbitrary closed path lying within [image: image]

Given ε > 0, however small, we shall be able to find a suitable polygon P such that

[image: image]

Then by II

[image: image]

We recall that by definition

[image: image]

After an arbitrary ε > 0 has been given, choose the points of division zv so close together, and hence, n so large, that

1) [image: image] remains less than [image: image] which is always possible by the fundamental theorem of §9;

2) the lengths of all path segments are less than [image: image]ρ, where ρ is the number determined, according to Lemma 3 of §4, by C within [image: image];

3) these lengths are also less than δ, if δ is a number such that

[image: image]

provided z′ and z″ are any two points on C, or at a distance from C of at most [image: image]ρ, for which | z″ − z′| < δ. Note that, in particular, if z denotes a point of the chord zv − 1 ... zv we can set

f(z) = f(ζv) + ηv, with |ηv| < [image: image]

The existence of δ follows from the theorem on uniform continuity.

If chords are now drawn from z0 to z1, from z1 to z2, . . ., from zn − 1 to zn = z0, a polygon P is formed which by 2) lies entirely with [image: image] If one integrates along each side of P separately (hence, along a rectilinear path):

[image: image]

and so

[image: image]

Consequently,

[image: image]

Thus the polygon mentioned in the beginning of the proof has been obtained, and therefore

[image: image]

The third part of the proof says briefly this: since the integral over any polygon is always zero, and since an arbitrary path C can be approximated arbitrarily closely by an inscribed polygon, the integral taken along C cannot be different from zero.

§14. Simple Consequences and Extensions

Cauchy’s integral theorem is the starting-point for almost all deeper investigations concerning analytic functions. All succeeding chapters will bear this out. Several simple consequences and extensions will be mentioned first.

1. If [image: image] is an arbitrary region and f(z) is regular in [image: image] then

[image: image]

for a closed path C if C can be imbedded in a simply connected subregion [image: image] of [image: image] i.e., if there exists a simply connected subregion [image: image] of [image: image] such that C lies within [image: image].

2. Since C is a continuum in the sense of §4, 3, the possibility stated in 1. always exists if the complementary set of [image: image] lies entirely in the outer region determined in the plane by the continuum C. For a proof one has only to refer to Lemma 4 of §4 and chose the ε in it smaller than the distance of the path C from the set which is complementary to [image: image] The interior of P then furnishes the simply connected subregion [image: image] of [image: image] required in 1. In particular, equation (1) always holds when C is a simple closed path within [image: image] whose interior belongs entirely to [image: image]

3. We also have the somewhat deeper result that equation (1) is true for a simple closed path C if we know only that f(z) is regular in the interior of C and at every point of the path itself.

A proof of this is given by E. Kamke, Math. Zeitschr., 35 (1932), pp. 539–543.

Even if f(z) is only known to be regular in the interior of C and to assume a boundary value f(z) at every point z of C (cf. §6), equation (1) holds again for these boundary values, which automatically form a continuous function along C (cf. §6, exercise 3). This extension of Cauchy’s integral theorem is by no means self-evident; it was first proved by S. Pollard.3

4. Let C1 and C2 be two simple closed paths, C2 lying entirely in the interior of C1. Those points of the plane which lie both in the interior of C1 and in the exterior of C2 form a region which is called briefly the annular region determined by C1 and C2. If both paths lie within an arbitrary region [image: image] in which f(z) is regular, we have

Theorem 1.

[image: image]

if the annular region determined by C1 and C2 belongs entirely to [image: image] and both paths are oriented in the same sense, whether the interior of C2 belongs entirely to [image: image] or not.

[image: image]

Fig. 3.

Proof: Connect (see Fig. 3) the paths C1 and C2 by means of two non-intersecting auxiliary paths k′ and k″ lying wholly within the annular region.4 The latter is thereby decomposed into two simply connected subregions within which and on whose boundaries f(z) is regular. By 2., the integrals over these boundaries equal zero, and hence their sum is also zero. However, by §11, 2, the integrals over the auxiliary paths are removed by adding, so that if C1 and C2 are both oriented in the mathematically positive sense, there remains

[image: image]

Example. By § 10,  Example 5

[image: image]

if C is a circle about Z0 as center. According to the theorem jjust proved, this integral has the same value if C is any closed, simple, and positively oriented path whose interior contains Z0. Every one of these paths, taken as C1, together with a sufficiently small circle with center z0, taken as C2, satisfies the hypothesis of Theorem 1. The analogue holds for every integral in §10,  Example 5.

5. The following theorem is proved in an entirely similar manner.

Theorem 2. Let C0 be a simple closed path. Let each of the simple closed paths C1, C2, . . ., Cm lie wholly within the interior of C0 but in the exterior of every other one of these paths (cf. Fig. 4, where m = 3). Then provided all the paths and the annular region between C0 and the Cμ (μ = 1, 2, ... m) lie entirely within a region [image: image] in which f(z) is regular, and provided all the paths are oriented in the same sense.

[image: image]

[image: image]

Fig. 4.

The method of proof is suggested by the arrows in Fig. 4.

Example. By decomposing the integrand it is found that

[image: image]

if C encloses the points 0 and 1 whereas C1, C2 only enclose 0, 1, respectively.

6. We now can prove the existence of primitive functions of given regular functions. First we prove

Theorem 3. If f(z) is a continuous function in the simply connected region if [image: image] if z0 is an arbitrary but fixed point of [image: image] and if the integral5

[image: image]

is independent of the path, provided the latter lies entirely within [image: image] then the value of this integral is, in [image: image] a regular function F(z) of the upper limit of integration z. For this function, F′(z) = f(z) for every z in [image: image]

Proof: By hypothesis F(z) is uniquely determined by the integral. As to the rest of the theorem, we must prove (see §6, II, first form) that

[image: image]

if z′ lies sufficiently close to z. Since z is an interior point of [image: image] a certain neighborhood of z lies entirely within [image: image] Let z′ be restricted to this neighborhood. By §11, 1

[image: image]

where by hypothesis the path may be chosen arbitrarily. We take it to be rectilinear. Since the function f(z) is continuous, we may set

f(ζ) = f(z) + η,

where

| η | < ε

for all ζ on the segment z ... z′ provided the neighborhood of the point z to which z′ has been restricted is taken small enough. Then

[image: image]

whence by §11, 5

| F(z′) − F(z) − (z′ − z)f(z) < ε | z′ − z |.

This implies the assertion stated in the beginning of the proof.

Example. According to this theorem, [image: image] is a regular function

in every simply connected region which contains the point + 1 but not the point 0; e.g., the “right” half-plane (cf. §2, f).

Corollary. The hypotheses of Theorem 3 are certainly satisfied if f(z) is regular in [image: image] Hence, every function which is regular in a simply connected region possesses a primitive function there. This primitive function can be represented by the integral (1) of Theorem 3. It will be shown in  §16, Theorem 4 that the independence of the integral (1) of the path, which is required in Theorem 3, only occurs when f(z) is regular in [image: image] Regular functions are thus the only ones to possess primitive functions.

7. We now have the following theorem which corresponds to the fundamental theorem of the differential and integral calculus.

Theorem 4. If f(z) is regular in the simply connected region [image: image] and if F(z) is a primitive function of f(z) in [image: image] then

[image: image]

if the points z0 and z1 and the path of integration lie within [image: image]

By Theorem 3, Corollary, and §7, Theorem 2, the integral (1) and the present primitive function F(z) can differ by at most an additive constant:

[image: image]

Letting z = z0 it follows that c = − F(z0), and equation (2) is then obtained by setting z = z1.

1 The term “triangle” is used in two senses in this proof: the path, and the closed region determined by that path. It will always be clear from the context, which of the two is meant at any particular time.

2 See Watson, op. cit., p. 16, Theorem II.

3 S. Pollard, Proc. London Math. Soc., 21 (1923), pp. 456–482. See also H. Heilbronn, Math. Zeitsehr., 37 (1933), pp. 37–38; T. Estermann, ibid.. pp. 566–560, J. L. Walsh, Proc. Nat. Acad. Sei., 19 (1933), pp. 540–541. The best result of this kind, involving Lebesgue integration, was obtained by V. v. Golubev, Zap. Univ., otd. fiz.-mat. 29 (1916) (in Russian).

4 It is easy to see that such auxiliary paths can always be drawn. For, consider two half-rays r1, r2 emanating from a point z0 in the interior of C2. If, beginning at z0, the first point of intersection of r1 with C1 is denoted by B and the last point of intersection of the segment z0 ... B with C2 is denoted by A, then A ... B is such an auxiliary path; and one on r2 is obtained by a similar argument.

5 The variable of integration in a definite integral may of course be designated quite arbitrarily. Here, as often in the following sections, it is called ζ, whereas s denotes an arbitrary point which is held fixed during the integration.


CHAPTER 5

CAUCHY’S INTEGRAL FORMULAS

§15. The Fundamental Formula

We shall now prove the most important consequence of Cauchy’s theorem, namely, Cauchy’s integral formula.

Theorem. If f(z) is regular in a region [image: image] then the formula

[image: image]

is valid for every simple, closed, positively oriented path C and every point z in its interior, provided C and its interior belong entirely to [image: image]

This theorem states that if a function is known to be regular in a region [image: image] and if its values are known along a closed simple path C in [image: image] which does not enclose any point not belonging to [image: image] then the values of the function in the interior of C are uniquely determined. It is evident from this interpretation that the theorem is quite remarkable. It shows that the values of a regular function are connected by a very strong bond so that the values along the boundary completely determine those in the interior of C. A similar situation is clearly impossible in the case of the most general and therefore the most arbitrary functions defined in §5. Later theorems will show that the bond mentioned is actually much stronger than that indicated by this theorem.

Proof: We have

[image: image]

By §11, Theorem 3 and §14, Theorem 1 (example), the first term J1 = f(z).1 In the second, J2, the path C may be replaced, according to §14, Theorem 1, by any other path (in the interior of C) enclosing the point z; e.g., by a small circle k with center z. Thus

[image: image]

Let the radius ρ of k be chosen so small that

|f(ζ) − f(z)| < ε

for every point ζ of k; this is certainly possible because of the continuity of f(ζ). Then by §11, 5,

[image: image]    that is, J2 = 0.

Hence, we have

[image: image]

as was asserted.

§16. Integral Formulas for the Derivatives

If k is an arbitrary path and φ(z) is a function defined and continuous along k, then the integral

[image: image]

has a definite value for every z which does not lie on k, and hence, defines a single-valued function f(z) for the points which do not belong to k. We have the following theorem concerning this function.

Theorem 1. The function f(z) defined by (1) is regular in every region [image: image] which contains no point of k, and its derivative there is given by the formula

[image: image]

Proof: For fixed z in [image: image] it must be shown (cf. §6, II, third form) that

[image: image]

provided the zn also lie in [image: image] and tend to z. Now by (1),

[image: image] and [image: image]

Hence,

[image: image]

According to this, if the expression in the braces in assertion (3) is denoted by An,

[image: image]

Let M be an upper bound of the values | φ(ζ) | along k. If the distance of the point z from k is denoted by d, and if n is chosen so large that | z − zn | < [image: image]d, then it is evident by §11, 5 that

[image: image]

for such n. Hence

An → 0,

Q. E. D.

formula (2) simply asserts that one may obtain the derivative of f(z) by differentiating with respect to z under the integral sign in formula (1). One proves in an entirely similar manner that it is possible to repeat this any number of times.

Theorem 2. The function f(z) defined by (1) possesses derivatives in [image: image] of every order, and these are given by the following formulas:

[image: image]

and in general,

[image: image]

for n = 1, 2, 3, . . . .2

We indicate the proof of (4). Using (2) we have

[image: image]

Then (4) is equivalent to the assertion: Bn → 0. The expression in brackets in the integrand is equal to

[image: image]

Hence, if M1 has a meaning similar to that of M above,

[image: image] and consequently Bn → 0,

Q. E. D.

With the aid of this result, we are now in a position to derive an important property of regular functions. A single-valued function was said to be regular merely if it possesses a derivative. As is well known, in the case of functions of a real variable this implies nothing concerning the nature of this derivative; it need not even be continuous. For regular functions of a complex variable, however, we have the following very remarkable and fundamental theorem.

Theorem 3. If a single-valued, function f(z) of a complex variable is defined in a region [image: image] and has a first derivative there, then all higher derivatives exist (and are therefore continuous) in [image: image]

Proof: Let z be an arbitrary point in [image: image] and let C be any simple closed path which contains z and only points of [image: image] in its interior. Then by Theorem 1, since f(z) is continuous along C,

[image: image]

is a function which is regular and differentiable any number of times everywhere within C. By Cauchy’s integral formula of §15, this function is the function f(z) itself. Consequently it possesses derivatives of every order at z. Since z was chosen completely arbitrarily, the same conclusion is true for every point of [image: image]

Corollary. In addition to the fundamental formula, the formulas

[image: image]

(n = 1, 2, 3, . . .)

are valid under the same hypotheses.

It follows from this fundamental result that the converse of Cauchy’s integral theorem is true.

Theorem 4. If f(z) is continuous in the simply connected region [image: image] and if

[image: image]

for every closed path C lying within [image: image] then f(z) is regular in [image: image] (Morera’s Theorem.)

Proof: Here, as in the deduction of the first form of the fundamental theorem from the second (§12), it follows that

[image: image]

is independent of the path and hence (cf. §14, Theorem 3) represents a function F(z), regular in [image: image] for which F(z) = f(z). By the preceding results, F(z), as a regular function, has a second derivative in [image: image] i.e. f(z) has a first derivative in [image: image] Hence, f(z) is regular in [image: image]

1 Note that ζ here is the variable of intergration and that z and f(z) are to be regarded as constant.

2 n = 0, (5) also contains formula (1) if, as is customary, O! is understand to have the value 1.

Exercise. Give a complete proof of formula (5) for n = 3, and in general, for arbitrary n.


SECTION III

SERIES AND THE EXPANSION OF ANALYTIC FUNCTIONS IN SERIES


CHAPTER 6

SERIES WITH VARIABLE TERMS

As already remarked in §3, we presume that the reader is familiar with the theory of infinite series with constant complex terms. We therefore turn immediately to a more general investigation concerning series with variable terms.

§17. Domain of Convergence

Let

f0(z), f1(z), . . ., fn(z), ...

be an infinite sequence of arbitrary functions (§5). Let there be certain points z which belong to the domains of definition of all of these functions. If z is such a point, then the series

[image: image]

may or may not converge. Denote by [image: image] the set of all those points z for which all the terms are defined and for which the series is convergent. [image: image] is called the domain of convergence of the given series.

The ordinary power series correspond to the special assumptions

fn(z) = anzn   or   fn(z) = an(z − z0)n.

The first important property of such power series is that their domain of convergence [image: image] is the interior of a certain circle about z0 as center, the so-called circle of convergence, possibly with the inclusion of certain points of its circumference. We shall prove this fact by a method which will at the same time yield the radius of the circle of convergence.

Consider the sequence of non-negative real numbers

[image: image]

This sequence is certainly bounded on the left. We now prove the following

Theorem. If the sequence (1) is also bounded on the right, and if μ is its upper limit (see §3), set

a)     r = [image: image] if μ = 0.

b)     r = ∞ if μ = 0.

If the sequence (1) is not bounded on the right, set r = 0. Thus

c)     r = 0 if μ = + ∞.

Hence, if we use the proper interpretation, we have in all cases

[image: image]

The series Σαn(z − z0)n is absolutely convergent for | z − z0 | < r, divergent for | z − z0 | > r. (Cauchy-Hadamard theorem.)

Proof: If we write z instead of z − z0, it is evident that we may assume z0 = 0.

a) If 0 < μ < + ∞ > then

[image: image]

By the radical test (see Elem., §28), Σanzn is absolutely convergent for the first z, divergent for the second z.

b) If μ = 0, it must be shown that Σanzn converges for every z = z1(≠ 0). Since now for nearly all n

[image: image]

and hence

[image: image]

the asserted convergence again follows immediately from the radical criterion.

c) Conversely, if Σanzn is convergent for a z = z1 ≠ 0, then the sequence [image: image] is bounded. Therefore the sequence [image: image] is also bounded. Hence, if μ = ∞, our series can converge for no z ≠ 0.

The theorem states nothing about the convergence or divergence of the series for the boundary points of the circle of convergence. Indeed, the behavior of the series for such points varies from case to case: Σzn is convergent for no boundary points; [image: image] for all boundary points; [image: image] for certain (but not all) boundary points.1

If the fn(z) are of a complicated nature, the determination of the exact domain of convergence is usually difficult. In every case, however, the sum of a series Σfn(z) is a definite number for every point of the domain of convergence, and is therefore (cf. §5) a function f(z) defined for all points of [image: image]. The infinite series is the prescribed rule by means of which a function is to be defined according to §5. One says: the series represents the function f(z) in [image: image], or f(z) can be expanded in the series there; e.g., [image: image] represents the function [image: image] in the unit circle, or [image: image] can be expanded in that series there.

Since we have already recognized the regular functions as particularly valuable, the question arises: When does a series represent such a regular function? To be able to give a general answer to this question we need the concept of uniform convergence which will be developed in the following section.

Exercises. 1. Determine the radius of convergence of the power series [image: image] if

α) [image: image]

β) an = nlog n;

γ) [image: image]

2. Determine the domain of convergence of [image: image] if

α) [image: image]

β) [image: image]

That is to say, determine the domain of convergence of the series

[image: image] and the series [image: image]

§18. Uniform Convergence

Suppose the series Σfn(z) bas the domain of convergence [image: image]. This means that if z1 is an arbitrary point of [image: image] and ε > 0 is given, we can determine a number n1 = n1(ε) such that

| fn + 1(z1) + · · · + fn + p(z1) | < ε

for all n [image: image] n1 and all p [image: image] 1. If another point Z2 of [image: image] is chosen, then, likewise, n2 can be determined, etc. Thus, for a given ε, to every point z of [image: image] there corresponds an integer ns = nz(ε) such that the absolute value of the sum of any finite number of consecutive terms after the nzth term of the series for this value z is less than ε. Assume ns to be taken as small as possible for given ε and z. The magnitude of ns may be regarded as a measure of the rapidity of the convergence. If nz is very large, the series converges slowly at the point z; if nz is small, it converges rapidly.

Now suppose that there exists a number N which is greater than all the numbers nz which correspond to the points z of [image: image]. Then, if n [image: image] N and p [image: image] 1 are arbitrary,

| fn + 1(z) + fn + 2(z) + · · · + fn + p(z) | < ε

for every point z in [image: image]; for, n now is also greater than every single nz. Thus, the above-mentioned measure of the rapidity of convergence can be assigned for all points of in the same manner. We say briefly that the series converges uniformly in [image: image]. Hence, we have the following definition.

Definition. The series Σ fn(z) converges uniformly in the domain2 [image: image] if, given ε > 0, there exists a single positive integer N = N(ε) (depending only on e and not on z) such that

(1)    | fn + 1(z) + fn + 2(z) + · · · + fn + p(z) | < ε

for all n [image: image] N, all p [image: image] 1, and all z in [image: image].

Since the series is assumed to converge at z, so that we may let p tend to infinity, it follows that if the series converges uniformly in [image: image],

[image: image]

for all z in [image: image] and all n [image: image] N.

According to this, [image: image], for example, is not uniformly convergent in its domain of convergence (the unit circle); for, whatever n may be, [image: image] can actually be made arbitrarily large if z is only chosen on the segment 0 · · · + 1 near enough to + 1. This example, at the same time, proves that a power series need not converge uniformly in its entire circle of convergence. On the other hand, we have the following theorem.

Theorem 1. A power series converges uniformly in every circle which is smaller than and concentric to its circle of convergence. Thus, the uniformity of the convergence can ordy be disturbed near the circumference.

Proof: Let Σan(z − z0)n have the radius of convergence r > 0. Let 0 < ρ < r, and let z be an arbitrary point for which | z − z0 | [image: image] ρ. Then

[image: image]

for all these z. But Σ | an | ρn is convergent, since the point z = z0 + ρ lies in the interior of the circle of convergence. Hence, given ε > 0, we can assign a number N such that

| an + 1| ρn + 1 + · · · + |an + p | ρn+p < ε

for all n [image: image] N and all ρ [image: image] 1. Then likewise

| an + 1(z − z0)n + 1 + · · · + an + p(z − z0)n + p | < ε

for all |z − z0| [image: image] ρ, all n [image: image] N, and all p [image: image] 1,

Q. E. D.

There is the following general criterion for uniform convergence, which is called the Weierstrass M-test.

Theorem 2. If the positive numbers M0, M1, . . ., Mn, . . . are such that

| fn(z) | [image: image]Mn, (n = 0, 1, 2, ...),

for all z of a subdomain [image: image]′ of the domain of convergence of the series Σfn(z), and such that

[image: image]

converges, then Σfn(z) is uniformly convergent in [image: image]′.

The proof is entirely analogous to that of the special case just considered

Exercises. 1. Investigate the series given in §17, Exercise 2 as to uniformity of convergence.

2. Prove that the power series [image: image] converges uniformly in its entire circle of convergence.

§19. Uniformly Convergent Series of Analytic Functions

We now make the further assumption that all of the functions fn(z) are analytic. We shall then show that the function represented by the series is also analytic. More precisely, let f0(z), f1(z), ... be an infinite sequence of functions, all of which are regular in the same simply connected region [image: image] and let the series Σfn(z) be uniformly convergent in every closed subregion [image: image] of [image: image]3 Then the following three theorems hold.

Theorem 1. The series Σfn(z) represents a function F(z) which is continuous in [image: image]

Theorem 2. Every series obtained by integrating term by term along a path k in [image: image] converges and furnishes the integral of F(z); in symbols:

[image: image] converges and is equal to [image: image].

Theorem 3. F(z) is a regular function in [image: image] and every series obtained by differentiating p times term by term converges everywhere in [image: image] in fact, uniformly in every closed subregion [image: image] of [image: image] and furnishes the corresponding derivative of F (z) there. In symbols, for fixed p = 0, 1, 2, [image: image] converges in [image: image] and is equal to F(p)(z).

Proofs:

1. Given z0 in [image: image] and ε > 0, it suffices to show that

| F(z) − F(z0) | = | Σfn(z) − Σfn(z0)| < 3ε

for all z of [image: image] which lie sufficiently close to z0. To this end, we first choose a circle [image: image] which (inclusive of its boundary) lies within [image: image] and has z0 for its center. Set

[image: image]

Then, according to §18, there exists an N such that

| R(z) | [image: image] ε

for all z in [image: image]. Let z be restricted to such a small neighborhood of z0 within [image: image] that

| A(z) − A(z0) |I < ε

for all z there. Such a neighborhood can certainly be determined, since A(z) is the sum of a finite number of continuous functions, and therefore continuous. We have

| F(z − F(z0) [image: image] | A(z) − A(z0) | + | R(z) | + | R(z0) |
< ε + ε + ε = 3ε,           

Q. E. D.

2. Since F(z) has been shown to be a continuous function, the integral of F(z) appearing in the second theorem exists in any case. Indeed, by §11 Theorem 4

[image: image]

By the same theorem

[image: image]

Hence

[image: image]

if l denotes the length of the path k. Since ε·l can be made arbitrarily small by suitable choice of ε, this means that

[image: image] converges and is equal to [image: image]

It now becomes evident that uniform convergence of Σfn(z) along the path k is sufficient, and we can state the following theorem (an extension of §11, 4).

Theorem 4. An infinite series of continuous functions may be integrated term by term, provided that the series is uniformly convergent along the path of integration.

3. If C is an arbitrary closed path lying within [image: image] then Σfn(z) is uniformly convergent along C. Hence by 2,

[image: image]

which equals zero since each term is equal to zero by virtue of Cauchy’s integral theorem. Since C was chosen arbitrarily within  [image: image] F(z) is regular in [image: image] by Morera’s theorem (§16, Theorem 4).

Now let [image: image] be any closed subregion of [image: image] Then, according to §4, Lemma 3, C can be chosen so that it encloses [image: image] without having a point in common with it, so that consequently the distance ρ of C from [image: image] is still positive. For the pth derivative at the point z of [image: image] (this derivative certainly exists), we obtain, for the same reasons as above,

[image: image]

which proves the second part of the theorem. That this series actually converges uniformly in [image: image] for fixed p follows from the simple inequality

[image: image]

(Also see the following Exercise 2 in this respect.)

Application to power series.

1. Let fn(z) = an(z − z0)n, (n = 0, 1, 2, ...), so that Σfn(z) becomes the power series Σan(z − z0)n. Let the radius of convergence r (Theorem §17) be greater than zero and let ρ be chosen between 0 and r, (0 < ρ < r). Then the circle | z − z0 | < r can be taken as the region [image: image] and, according to §18, Theorem 1, the circle with radius ρ and center z0 can be taken as the subregion [image: image]. Hence, we have

Theorem 5. A power series Σan(z) − z0)n, within its circle of convergence, represents a regular function. f(z) whose derivatives are obtained by differentiating the power series term by term, and these derived power series have the same radius of convergence as the given series:

[image: image]

converges for | z − z0 | < r.

In particular,

[image: image]

if C denotes the circumference | z − z0 | = ρ. From the last formula we get, writing n instead of p, the following useful inequality known as Cauchy’s inequality:

[image: image]

if M is the maximum of | f(z) | on | z − z0 | = ρ.

Exercises. 1. Determine whether the series given in §17, Exercise 2 represent (within their regions of convergence) analytic functions.

2. In connection with the exercises of Theorem §§9 and 11, show that if, in addition to the series Σfn(z), the series Σ | fn(z) | also converges uniformly in every [image: image], then Theorem 3 can be sharpened to the effect that the series Σ | f(p)(z) |, for fixed p, also converge uniformly in [image: image].

1 For all three series, r = 1.

2 Thus one can only speak of uniform convergence in infinite point sets [image: image], never at single points: in particular, we consider uniform convergnce in regions.

3 I.e., in every closed region [image: image] which, inclusive of its boundary points be longs to the interior of the region [image: image]


CHAPTER 7

THE EXPANSION OF ANALYTIC FUNCTIONS IN POWER SERIES

The theorems of the preceding chapter show that the property of representing regular functions, possessed by power series in their regions of convergence, is shared by much more general series, namely, all uniformly convergent series whose terms are themselves regular functions. The great importance of power series for the study of analytic functions therefore cannot be based on this property. It rests, rather, on its converse: every regular function can be represented by a power series. Thus, the totality of all possible power series also furnishes the totality of all conceivable regular functions.

§ 20. Expansion and Identity Theorems for Power Series

Theorem 1. Let f(z) be a function regular in a certain region [image: image] and let z0 be an interior point of [image: image] Then there is always one and only one power series of the form

[image: image]

which converges for a certain neighborhood of z0 and represents the function f(z) in that neighborhood. Moreover,

[image: image]

The series converges at least in the largest circle about the center z0, which encloses only points of [image: image] and the exact radium of convergence of the series is the largest circle (let its radius be r) about z0 as center in which f(z) is every where defined or definable as a differentiable function. (Expansion theorem; Taylor expansion.)

Proof: Let z be an arbitrary interior point of the circle with radius r and center z0. Then we must first show that for the given values of an,

[image: image] converges and is equal to f(z).

Since | z − z0 | = ρ < r, we can choose pi so that ρ < ρ1 < r. Let ζ be an arbitrary point of the circumference k1 of the circle with radius ρ1 and center z0. Then

[image: image]

This particular geometric series is uniformly convergent with respect to ζ along k1 (by §18, Theorem 2), since

[image: image]

The same is true for the series

[image: image]

Hence, if we integrate both sides along the path k1, the integration on the right-hand side may be carried out term by term and we are certain, by §19, Theorem 2, that the resulting series is convergent. Dividing by 2πi we have therefore

[image: image]

and hence by §§15 and 16

[image: image]

Q. E. D.

That the expansion obtained is the only possible one follows immediately from the following identity theorem for power series.

Theorem 2. If both power series

[image: image] and [image: image]

have a positive radius of convergence, and if their sums coincide for all points of a neighborhood of z0, or only for an infinite number of such points (distinct from one another and from z0) with the limit point z0, then they are identical.

Proof: First, for z = z0 it follows that a0 = b0. Assume that the first m coefficients of both expansions have been proved to be the same, respectively. Then we have

am + 1 + am + 2(z − z0) + · · · = bm + 1 + bm + 2(z − z0) + · · ·

for all of those infinitely many points. If in this equality we let z approach the limit point z0 by means of those points, since the power series represent continuous functions it follows from §6, I, third form, that

bm + 1 = am + 1.

Hence, both expansions are identical.

Example. It is shown in §14, 6 that [image: image] is a regular

function of z, if z and the (otherwise arbitrary) path of integration are confined to the interior of the right half-plane. f(z) must therefore admit of a power series expansion, say for a neighborhood of z0 = + 1, for which r is at least unity. Since

[image: image]

we have, for z = z0 = 1:

[image: image]

so that

[image: image]

This is the only possible expansion. We see that r = 1.

An expansion of a function of a real variable in a power series does not always exist even if the function has derivatives of every order. Here, however, everything was deduced merely from the existence of the first derivative.

The expansion obtained converges, as already emphasized, in the largest circle K, with center z0, in whose interior f(z) is still everywhere defined or definable as a differentiable function. The latter means the following. Let f(z) be defined in [image: image] and let K be a circle, with center Zo, which may include points not contained in [image: image] It may be possible to define the function f(z) at the points of K which are not points of [image: image] in such a manner that the resulting function is differentiable in the whole circle K. Then our power series converges at least in K. Furthermore, let K0 be the largest circle, with center z0, possessing the above property. Then K0 is the exact circle of convergence of the power series. Note that two extreme cases are possible: K0 may lie within the region [image: image] where f(z) was originally defined, or K0 may be the entire plane. If it is impossible to include some point in a circle of convergence of a power series representing the function f(z), this point is called a singular point of the function.

These remarkable matters will be treated in detail in the next chapter and in Section IV. At this time, only two special results will be deduced from our theorems.

The following theorem, called Weierstrass’s doubleseries theorem, is often used to advantage in obtaining the power-series expansion of a given function.

Theorem 3. Let all of the functions

[image: image]

n = 0, 1, 2, . . ., be regular at least for | z − z0 | < r, and let

[image: image]

be uniformly convergent for | z − z0 | [image: image] ρ < r for every ρ < r. Then the coefficients in any column form a convergent series; and if we set

[image: image]

for k = 0, 1, 2, ... then

[image: image]

is the power series for F(z); it converges at least for | z − z0 | < r.1

Proof: According to §19, Theorem 3, F(z) is regular for | z − z0 | < r, and hence, by the expansion theorem, can be developed in a power series there. Its kth coefficient is equal to

[image: image]

which already completes the proof.

We prove finally the remarkable and important

Theorem 4. An analytic function f(z) cannot have a vnaxvmum modulus2 at a point z0 of a region of regularity, unless f(z) has the same value f(z0) everywhere in that region.

Proof: In a neighborhood of z0 we have

f(z) = a0 + a1(z − z0) + a2(z − z0)2 + · · ·, (with r > 0).

Let at least one of the coefficients following a0 = f(z0) be different from zero, and let am, (m [image: image] 1), be the first such coefficient. Set

[image: image]

so that

f(z) = Aeiα + A′eiα′ ρmeimφ + am + 1(z − z0)m + 1 + · · ·.

We now choose φ so that α′ + mφ = α.3 Then

[image: image]

Because of the continuity of the power series in the parentheses, we can take ρ here to be such a small number ρ0 that (| am + 1 | ρ0 + · · ·) < [image: image]. Then

| f(z)| > A + [image: image]A′ρm > | f(z0) |

for all ρ with 0 < ρ < ρ0. That is, for all points z lying sufficiently close to z0 on a certain radius emanating from z0 we have | f(z) | > | f(z0) |.

The following theorem, which is called the principle of the maximum modulus, is only a rewording of this result.

Theorem 5. The maximum modulus of a function which is regular in a closed region always lies on the boundary of that region.

Exercise. Expand the series given in §17, Exercise 2 in power series with the center z0 = + 2 (for the first) and z0 = 0 (for the second).

§21. The Identity Theorem for Analytic Functions

Cauchy’s theorem and Taylor’s expansion of a regular function (obtained by means of Cauchy’s theorem) lead to most important results. These results will divulge the true nature of regular analytic functions. We start with a few preliminary remarks in this direction.

In §5 the most general concept of a function was given. This concept includes such arbitrary functions that it is impossible to infer anything from the behavior of such a function in one part of its region of definition [image: image] as to its behavior in another part of this region. For instance, let [image: image] be the entire plane and let f(z) = 3i for | z [image: image] 1. Nothing can be said about the values of f(z) for | z | > 1. Indeed, values may be assigned there according to a completely new defining rule (cf. the example on p. 22). The situation is different if f(z) is required to be continuous. Then in the last example f(z) must be close to 3i for points z near the unit circle. Thus, the condition of continuity restricts the function. It introduces a certain connection between its values, some kind of an intrinsic order. This connection permits us to say something about the values of the function in one part of the z plane if we know its values in another adjacent part. It is clear that this inner bond becomes stronger as we restrict the function to more special classes. An example from the theory of functions of a real variable x will clarify this matter.

Suppose we restrict our investigation to the class of entire rational functions (polynomials) of the third degree (i.e. to curves of the third degree):

y = a0 + a1x + a2x2 + axx2, a3x3,   (av, x, y real).

Such a function is already completely determined by very few conditions (requirements). If we know, for example, that the curve passes through four specific distinct points (i.e., if we know the values of the function for four distinct values of x), the function is fully defined, no matter how close to one another the four points may lie. The behavior of the curve, with all its regular and singular properties, in the whole xy-plane can thus be inferred from the behavior of the function in an arbitrary small interval. The class of polynomials of the third degree exhibits a very strong inner bond by means of which the values of the function are linked together.

Since natural phenomena themselves possess an intrinsic regularity, it is clear that, above all, those functions which possess such an inner structure will appear in applications in the natural sciences.

Now, it is exceedingly remarkable that by means of the single requirement of differentiability, that is, the requirement of regularity, a class of functions having the following properties is selected from the totality of the most general functions of a complex variable. On the one hand, this class is still very general and includes almost all functions arising in applications. On the other hand, a function belonging to this class possesses such a strong inner bond, that from its behavior in a region, however small, of the z-plane one can deduce its behavior in the entire remaining part of the plane. To anticipate the most important result, we shall show that an analytic function, with all its regular and singular properties, is fully determined if the values of the function are known along any small arc. In other words, two analytic functions which coincide along such an arc are completely identical.

A first theorem in this direction is Cauchy’s formula (cf. the discussion on p. 61) which enables us to deduce the values of the function in the interior of a simple closed path C from the values along the boundary. A second result of this kind is the statement made in connection with the expansion theorem as to the magnitude of the true circle of convergence of a power series. Indeed, here we have already taken into consideration points of the plane which do not even belong to the original region of definition of the function.

On the basis of the expansion theorem we are now in a position to derive a result which leads to the theorem stated and even beyond. Because of its great importance for the development of the theory of functions, it is the most fundamental result after Cauchy’s integral theorem.

The identity theorem for analytic functions. If two functions are regular in a region [image: image] and if they coincide in a neighborhood, however small, of a point z0 of [image: image] or only along a path segment, however small, terminating in z0, or also only for an infinite number of distinct points with the limit point z0, then the two functions are equal everywhere in [image: image]

Proof: Denote the two functions by f1(z) and f2(z) and let K0 be the largest circle with center z0 which lies entirely within [image: image] By virtue of the expansion theorem, both functions may be developed in power series which converge at least in K0. On the basis of our hypotheses, the identity theorem for power series implies the identity of the two expansions. Therefore f1(z) = f2(z) everywhere in K0.

Now let ζ be an arbitrary point of [image: image]; we must show that we also have f1(ζ) = f2(ζ). To this end, connect (see Fig. 5) z0 and ζ by means of a path k lying entirely within [image: image] Let ρ be the positive number whose existence is proved in §4, Lemma 3. Divide the path k in any manner (by means of points of division z0, z1, z2, . . ., zm = ζ) into subpaths whose lengths are all less than ρ. Describe about each of the centers zv, the largest circle K, lying still entirely within [image: image] The radii of these circles are all greater than or equal to ρ. Therefore each of the circles contains the center of the next. We say briefly that the circles form a circle chain. We now expand the functions f1(z) and f3(z) in power series about each of the centers zv as we did above for v = 0. In every case, the expansions converge at least in K0. We have seen already that they are identical in K0. Hence, f1(z) and f2(z) also coincide at the point z1 flying in K0) and in a neighborhood thereof. Consequently (again by the identity theorem for power series) the two expansions coincide in K1, so that the functions must be equal at and in a neighborhood of z2. Therefore they have the same expansions in K2, etc. The mth step in this argument reads: the functions coincide at zm = ζ (and in a neighborhood of ζ). This completes the proof of the theorem.

[image: image]

Fig. 5.

The method used in this proof is called the circle-chain method. This name is suggested by the figure.

In the next chapter we shall concern ourselves in greater detail with the most important consequences of this theorem. Now we consider only a few very simple corollaries.

In order to formulate them conveniently we make use of the following definition.

Definition. A point z0 of a region of regularity of the function f(z) is called a zero of the function if f(z0) = 0. In general, if f(z0) = a, z0 is called an a-point of f(z).

We then have

Theorem 1. Let f(z) be a regular function in [image: image] and let a be any number. Then f(z) has at most a finite number of a-points in every closed subregion [image: image] of [image: image] unless f(z) is everywhere equal to a.4

Proof: Suppose f(z) had an infinite number of a-points in [image: image]. These would then have a limit point z0 situated in [image: image] and therefore also in [image: image] The function which is equal to a at every point of the plane is certainly regular everywhere, and in particular in [image: image] According to the identity theorem, f(z) would have to coincide with this function.

One can state this result in the following form which is often more convenient to apply.

Theorem 2. If f(z) is regular at z0, one can describe such a small circle about z0 as center, that in this circle f(z) never again assumes the value it has at the center unless f(z) has everywhere this same value.

Theorem 3. If f1(z) and f2(z) are regular in [image: image] and if both functions, together with all their respective derivatives, coincide for only a single point z0 of [image: image] then the functions are identical.

Proof: If both functions are expanded in power series about the center z0, identical series are obtained.

In fact, the coefficients, except for equal numerical factors, are the respective derivatives of the functions at z0, and hence are equal by hypothesis. Therefore, by the identity theorem, the functions are equal everywhere in [image: image]

Theorem 4. If the regular point z0 is an a-point of the non-constant function f(z), then there is always a definite positive integer a such that the function

[image: image]

can, for all points distinct from z0 of some neighborhood of z0, be expanded in a power series

f1(z) = b0 + b1(z − z0) + · · ·

whose first coefficient is not zero.

Proof: In the expansion [image: image] of f(z) about

the center z0, a0 = a, and at least one of the succeeding coefficients is not zero. If aα is the first of these, we have

f(z) − a = aα(z − z0)α + aα + 1 + (z − z0)α + 1 · · ·, (aα ≠ 0),

from which the assertion can be read off. Naturally b0 = aα and in general bv, = aα + v, (v = 0, 1, 2, . . .). α is called the order of the a-point z0. Thus every point has a definite (positive integral) order.5

Exercises. 1. If the simple closed path C and its interior lie within a region of regularity of f(z), then C encloses only a finite number of zeros (more generally: a-points) of f(z).

2. The function sin [image: image] is regular in the interior of the unit circle and has there the infinite number of zeros [image: image] (k = 1, 2, · · ·), arising from [image: image] Does this contradict Theorem 1 or Exercise 1? Explain.

3. In connection with §20, Theorem 5, show that at z0, | f(z) | can have no minimum different from zero, and [image: image](f(z)) as well as [image: image](f(z)) can have neither a maximum nor a minimum there.

1 I.e., under the above hypotheses, the infinitely many power series may be added term by term.

2 I.e. a value which in absolute value is greater than or equal to all values of | f(z) | in a neighborhood of z0.

3 I.e., we select a particular one of the radii emanating from z0.

4 Or, a limit point of a-points never lies in a region of regularity, but, on the contrary, is necessarily a singular point of f(z), unless f(z) is everywhere equal to a. Or, an infinite number of a-points cannot lie in every neighborhood of a regular point. unless f(z) is everywhere equal to a.

5 If f(z) is regular at z0 and f(z0) ≠ α, it is often convenient to call the point z0 an a-point of order zero. According to this, a zero of order zeo is a regular point at which the function is not zero.


CHAPTER 8

ANALYTIC CONTINUATION AND COMPLETE DEFINITION OF ANALYTIC FUNCTIONS

§22. The Principle of Analytic Continuation

The considerations of the last chapter culminated in the identity theorem for analytic functions: if two such functions coincide for a neighborhood of a point (or along a small path segment, or only for certain infinite point sets), then they are fully identical. As we have pointed out on ρ. 86, this implies the strongest constraint for the function: a function is completely determined (i.e., its entire domain of values with all its regular and singular properties) by its values for these point sets.

We shall now be concerned with working out still more clearly the property of analytic functions involved here. To this end we suppose that two functions f1(z) and f2(z) are given, of which the first is regular in a region [image: image]1 and the second is regular in a region [image: image]2. We further assume that [image: image]1 and [image: image]2 have a certain region [image: image] (however small), but only this region, in common (cf. Kg. e. Fig. 6, where [image: image] is hatched); and finally, that f1(z) = f2(z) everywhere in [image: image] Under these conditions the functions f1 and f2 determine each other uniquely. In fact, according to the identity theorem, no function other than f1(z) can be regular in [image: image]1 and have the same values in g Thus, f1(z) is completely determined by these values in [image: image] (or what is the same: by f2(z)); and likewise f2(z) is fully determined by f1(z).

[image: image]

Fig.6.

We can say, therefore, that if two regions [image: image]1 and [image: image]2 are in the position just described, and if a regular function is defined in [image: image]1, then either there is no function at all or precisely one function which is regular in [image: image]2 and coincides with f1(z) in g If such a function f1(z) exists, then the function f1(z) defined in [image: image]1 is said to be continuable beyond [image: image]1 into the region [image: image]2. When the function f1(z) has been obtained, f1(z) is said to have been continued analytically into the region [image: image]2. On the other hand, f1(z) is the analytic continuation of f2(z) into the region [image: image]1. In fact, one has no right to regard f1(z) and f2(z) as distinct functions any more. Because of the complete determination of the one by the other, one must regard both as partial representations or “elements” of one and the same function F(z) which is regular in the composite region formed by [image: image]1 and [image: image]2.

An example will make this clearer. Let [image: image]1 be the unit circle | z | < 1; [image: image]2 the circle with radius [image: image] and center i, i.e., the circle | z − i | < [image: image]. Both circles evidently have a region [image: image] in common (the reader should make a sketch for himself). In [image: image]1 let [image: image] be given. Is there a function which is regular in [image: image]2 and coincides with f1(z) in g? If such a function does exist, then there can be only one. Here [image: image] is the required function because this series cinverges for [image: image] < 1, i.e., for | z − i | < [image: image]. and the values of both power series are seen immediately to be equal in g. This follows from the fact that the sums of both geometric series in their respective circles of convergence can be obtained in closed form ana hence compared. (One obtains [image: image] in g both times.)

f1(z) and f2(z) are thus analytic continuations of each other, both are elements of one and the same function F(z) which is regular in (at least) the composite region [image: image] formed by [image: image]1 and [image: image]2.

In this simple example we are actually in a position to obtain the function F(z) in closed form, namely, [image: image]. This is quite impossible in general, however. In fact, F(z) generally can only be calculated by means of its partial representations or elements. Nevertheless, according to §5, F(z) is to be considered a single function, the various partial representations together furnishing the rule of definition by virtue of which the function F(z) is defined.

We sum up the result, which is called the principle of analytic continuation, in the following theorem.

Theorem 1. Let a regular function f1(z) be defined in a region [image: image]1 and let [image: image]2 be another region which has a certain subregion [image: image] but only this one, in common with [image: image]1. Then, if a function f1(z) exists which is regular in [image: image]2 and coincides with f1(z) in g, there can only be one such function. f1(z) and f2(z) are called analytic continuations of each other. They serve as partial representations or elements of one and the same function F(z) determined by them, and F(z) is regular in the composite region formed by [image: image]1 and [image: image]2.

The following questions now arise:

1) If a regular function f1(z) is defined in a first region [image: image]1 (e.g., a power series in its circle of convergence), bow does one determine whether f1(z) can be continued into a region [image: image]2 in the sense just explained, and how is the continuation f2(z) found?

2) Do other regions [image: image]3, [image: image]4, ... exist, each having a single subregion in common with one of the preceding regions, and are regular functions f3(z), f4(z), . . ., respectively, defined therein which constitute continuations, in the sense defined, of the preceding functions?

If so, then all of these functions are uniquely determined by f1(z) and are therefore to be regarded as elements of one and the same function.

3) If one element of a function is given, how does one find all possible further elements, all continuations into adjacent regions?

This comprehensive and apparently very difficult problem admits of a very simple solution, at least theoretically.

Before we present it in §24, let us consider analytic continuation from a somewhat different point of view. In the preceding we have made use of the fact, arising from the expansion theorem, that an analytic function is already determined by its values in a small subregion. Indeed, it is sufficient to know the values only along a small path segment. Accordingly, suppose a path segment k is given in the plane and to every point z of k corresponds a value φ(z) of a function. If we consider any region [image: image] containing k, we are faced with the following alternative: either there is no function f(z) at att which coincides with φ(z) along k and is regular in [image: image]; or there is precisely one such function, and this function is uniquely determined, by the values along k. In this case we also say that the function defined along k has been continued analytically into the region [image: image]

In particular, if k is a segment of the real axis, say the interval x0 [image: image] x [image: image] X, and if the functional values (which need Dot be real) corresponding to the points of that segment are denoted by φ(x), then we are dealing with the analytic continuation of a (real or complex) function of the real variable x. If we have succeeded in continuing the function, φ(x) is said to have been continued “into the complex domain.” In this connection we can state the following theorem.

Theorem 2. If it is at all possible to continue a function of the real variable x into the complex domain, then this can be accomplished in only one way.

The following remarks will place the strong inner constraint of an analytic function in a still clearer light.

Let k be the real segment 0 [image: image] x [image: image] [image: image] let the unit circle be the region [image: image] containing k. and let φ(x) be defined on k. If one now considers φ(x) on only half the segment, 0 [image: image] x [image: image] [image: image] then by the above theorem these functional values already determine whether φ(x) can or cannot be continued into the unit circle. In the first case, the values φ(x) on the other half of the segment, i.e., on [image: image] < x [image: image] [image: image] are already determined by those on the first half. Thus, one has no freedom whatsoever in the choice of the values φ(x) of the function on the second half if one would not make the continuability altogether impossible. One can now apply the same consideration to the first half 0 [image: image] x [image: image] [image: image] etc. In short, the freedom in the choice of the values of v(x), although not actually illusory, is certainly restricted to a finite number of points, since, according to the identity theorem, the possibility of continuation is already decided by the values of the function at an infinite number of points.

Exercise. Let the real function F(x) be defined by F(x) = + [image: image] (i.e., the positive value of [image: image]) for all real x.

Can this function be continued into the complex domain?

§23. The Elementary Functions

With regard to the last theorem, one can now investigate the more familiar functions of a real variable x to see whether they can or cannot be continued into the complex domain, and discover, in the former case, how the analytic function which furnishes the continuation is constituted.

1. The rational functions. Given

[image: image]

(the aν and bν are complex), i.e., a rational function, one sees immediately that φ(x) is continuable and that

[image: image]

is the function which continues φ(x) into the complex domain. f(z) is regular in the entire z-plane with the exception of those points at which the denominator is zero. (It will be proved in §28, Theorem 3 that there are at most k such points.)

2. ez, sin z, cos z. The exponential function ex and the trigonometric functions sin x and cos x can be defined by the series

[image: image]

If one formally replaces x by z, then each of the resulting series

[image: image]

being a power series with z0 = 0, r = ∞, represents a function which is regular in the entire z-plane. Since these functions coincide with ex, sin x, and cos x, respectively, for z = x, they are the continuations of these functions into the complex domain. f1(z) is therefore called the exponential function and is denoted by ez; likewise the notations sin z and cos z are employed for f1(z) and f3(z), respectively. In the following considerations, the properties of these analytic functions are presumed to be familiar to the reader (see Elem., ch. 12). It is now evident from the developments in this chapter that there is an absolute lack of freedom in the seemingly arbitrary definition of ez, sin z, and cos z for a complex argument as given in the Elemente. They can be defined as regular functions of z only in the manner just shown.

3. The continuations of the functions log x, ax, [image: image], and others will be investigated after we have formulated the concept of analytic function completely. This will be done in the next paragraph.

§24. Continuation by Means of Power Series and Complete Definition of Analytic Functions

We now proceed to answer questions 1) to 3) which were raised in §22, and shall be able to do so with a single method.

Let the function f1(z) be defined and regular in [image: image]1. If z1 is any point of [image: image]1, the function can be expanded in a power series about this point as center; thus,

[image: image]

Two distinct cases can now occur: the radius of convergence of this series is either + ∞ or it has a finite, positive value.

If its radius r1 = ∞, i.e., if the series converges for every z (or converges everywhere), then each of the questions can be answered immediately. There is a function which continues f1(z) beyond [image: image]1; it is regular in the entire plane. Consequently, no other function which is regular anywhere can be obtained from f1(z) by continuation except the one defined by that everywhere-convergent power series.

Example. Let

[image: image]

(this series converges everywhere),

[image: image]

(this series converges only for | z | < 1), and set

f1(z) = g(z) · h(z)

in the unit circle. No functional values are defined by this formula outside the unit circle. Expanding about the center z1 = 0, one finds upon multiplying out the power series1:

[image: image]

which is an expansion of the function valid for the whole plane.

If the radius of convergence r1 of the expansion (1) has a finite, positive value, choose a point z2 in the interior of the circle of convergence and distinct from the center. One can then determine the expansion valid for the center z2:

[image: image]

Thus the coefficients can be obtained directly from (1) according to §19, Theorem 5.

Obviously we have

[image: image]

for the radius of convergence r2 of this expansion; i.e., r2 is at least equal to the distance of the point z2 from the circumference of the first circle.

If the equality sign holds in (3) (see Fig. 7a), then (2) furnishes the value of the function only for such points at which it was already given by (1). Then the expansion (2) does not give us any new information directly. It does show, however, that the point of contact, ζ, of the two circles certainly cannot be annexed as a regular point to the first circle of convergence. In other words, it is not possible to cover this point ζ and a neighborhood thereof with functional values in such a manner that a function results which is regular in the enlarged region. Such a point ζ is called a singular point on the boundary of the circle of convergence; it is impossible to continue the function over this point. We see then that ζ is a singular point for the function f1(z). If, however, the inequality sign holds in (3) (see Fig. 7b), then the new circle of convergence extends beyond the old one. One has then continued the function over the boundary point ζ of the old circle of convergence in the direction of the radius z1 . . . z2. Hence, if a continuation in a radial direction over a boundary point ζ of the first circle of convergence is at all possible, then it is possible to effect it with the aid of these simple power-series expansions.

[image: image]

Fig.7.

Now imagine the first functional element to be continued in all possible directions, and likewise suppose the new elements to be continued in all possible directions beyond the newly won domains. Then there arises from the first element a function which is regular in an ever larger domain.

The two following situations are to be noted in this connection.

1. The continuation of the first power series may not be possible in any direction. Then there is no function which coincides with this power series in its circle of convergence and which is regular in a region which is an enlargement of that circle. One says that the function is not continuable; the circle of convergence is its natural boundary.

Example. [image: image] with r = 1. If this function f(z) were continuable beyond the unit circle, a certain arc of its circumference would contain only regular points. On every such arc, however, lie an infinite number of points of the form [image: image] with positive integral p and q. If one shows that no point of the form z0 can even be a point of continuity of f(z), the non-continuability of f(z) will follow. Now, given arbitrarily large (positive integral) g,

[image: image]

for z = ρz0 with 0 < ρ < 1, because zn! = ρn! for n [image: image] q. Hence,

for m = 2q + g,

[image: image]

As ρ → 1, the right-hand side approaches m − 2q + 2 = g + 2, so that for suitably chosen ρ0 we must have | f(z) | > g for all ρ0 < ρ < 1. Since g was arbitrary, | f(z) | tends to infinity as z approaches z0 radially; hence, z0 cannot be a point of continuity, Q. E. D.

2. The other extreme case, that the power series be continuable beyond the circle of convergence in all directions, cannot occur. For here we have the following important theorem.

Theorem 1. At least one singular point of the function defined by a power series exists on the boundary of its circle of convergence.

Proof: The theorem states that if r1 is the true radius of convergence of (1), then on the boundary of the circle of convergence there is at least one point ζ over which one cannot continue. We show this by proving that if one can continue over every boundary poiot ζ of the circle K: | z − z1 | = r1, then r1 is not the true radius of convergence of (1).

If one can continue over every boundary point ζ of K, then about each of these points as center there is a circle Kζ, with radius ρζ, into which f1(z) can be continued. There can be no conflict in the covering of these circles with functional values. If two of these circles have a region in common, then the values of the continuations of f1(z) into these circles must coincide in that common part, according to the identity theorem, since this common part contains a region lying in K where the coverings are certainly the same. By the Heine-Borel theorem, a finite number of the circles Kζ are sufficient to cover the entire boundary of K. But these finitely many circles Kζ, together with K, cover a circular region about the center z1 with a radius r > r1. Then by the expansion theorem, (1) must converge at least in this larger circle; i.e., r1 is not the true radius of convergence, Q. E. D.

One is said to continue a given element (in the form of a power series ∑an(z − z0)n, say) along a path k if the path begins at z0 and the new center is always chosen on this path.2 If one supposes such a given element to be continued along all possible paths, then all the points encountered are automatically distributed into two classes: regular points and singular points, i.e., those which can be included in the interior of a new circle of convergence and those which cannot. To every point z which proves to be regular corresponds a certain functional value w.

We can then make the following definition:

Definition. The complete analytic function defined by a given functional element is understood to be the totality of points which prove to be regular in the course of the continuation process described above, each covered with its corresponding functional value.

The totality of regular points z is called the region of existence or region of regularity of this analytic function; the totality of the corresponding values w is called its domain of values.

With regard to the gradual growth of the analytic function from one element, one also speaks of the analytic configuration, comprising all regular z, each covered with its corresponding functional value. The analytic function is really the inner bond which unites each z with its w.

There are still several omissions in this rather complete definition:

a) Agreements will still have to be reached in order to be able to specify the behavior of a function at infinity. This will take place in §32.

b) The following situation can occur:

Let us assume that after repeated continuation the new circle has a region in common with the first one (in Fig. 8, the fifth of the new circles has the hatched region in common with the original circle).3 By virtue of the new power series, the original functional values w or else new functional values may correspond to the points (comprising the hatched region in the figure) of the old circle of convergence contained in the new one.

In the first case the function is called single-valued (in the region throughout which it has been continued), otherwise, multiple-valued.

c) It is conceivable that an interior (and hence regular) point of the first circle of convergence prove to be singular on returning to it in the manner just described. This can actually happen. Thus, the property of a point of the plane of being regular or singular may depend upon the choice of the path or chain of circles used in approaching it.

We must refer the reader to Part II of this Theory of Functions for a more accurate examination of the consequences arising from b) and c). In the next paragraph, however, a theorem will be proved which states that the situation under b) surely cannot happen under certain conditions of particularly frequent appearance. The two simplest examples of multiple-valued functions are treated briefly in the paragraph after that.

[image: image]

Fig. 8.

Exercise. The unit circle is the circle of convergence of the power series [image: image] Show that the point + 1 is a singular point of the function represented by the series in the unit circle, by expanding in a new power series with center z1 = [image: image]. (Never-theless, tne given series is convergent for z = +1!!)

§25. The Monodromy Theorem

Theorem. Let [image: image] be a simply connected region and f0(z) = ∑an(z − z0)n a regular functional element at the point z0 of [image: image] Then if f0(z) can be continued from z0 along every path within [image: image] the continuation gives rise to a function which is single-valued and regular in the entire region [image: image]

We observe beforehand that every element obtained by continuation, in which only power series are used, converges at least in the largest circle (about the center of the element) which does not project beyond [image: image] For, on the boundary of its true circle of convergence there is at least one singular point, which obstructs the continuation. By hypothesis, such an obstruction does not occur anywhere in the interior of [image: image]

We have to show, evidently, that if one continues f0(z) from z0 to z1 along two different paths k1 and k2 lying within [image: image] then one obtains the same element f1(z) = ∑bn(z − z1)n at z1 both times. Since, in short, the continuation process proceeds quite uniquely back and forth,4 we can also say that if one continues f0(z) from z0 to z0 along k2 and continues the element f1(z) obtained at z1 back to z0 along k2, then one obtains once more the initial element f0(z) at z0. It suffices then to show that the continuation of an element along a closed path within [image: image] leads back to this same element. We prove this indirectly by showing that if the continuation of an element along a closed path C lying within [image: image] does not lead back to this element, then this contradicts the hypothesis that our continuations are possible along every path within [image: image] A finite number of centers ζ1, . . ., ζm on the path are required for the continuation along C, beginning at ζ0, say. Each lies in the circle of convergence about its predecessor and its successor if the distance between any two successive ones is chosen to be smaller than the distance of the path C from the boundary of the region. Hence, if one replaces C by the polygon p with the vertices ζ0, ζ1, . . ., ζm, the continuations along C and p are exactly the same. Our continuations along p, then, also do not lead back to the initial element. Now, either p is simple, or, by Lemma 1, can be decomposed into a finite number of simple closed polygons and a finite number of segments described twice, once in each direction. In any case, there is at least one simple closed subpolygon of p; for if p only contained segments described twice, our continuations along p would necessarily have to return to the initial element. There must be, then, a simple closed subpolygon p′ of p along which the continuations, proceeding in the positive sense, do not lead back to the initial element.

Let us decompose p′ into two subpolygons by means of a diagonal lying within p′ (and hence within [image: image]). The continuations along one of the subpolygons (in the positive sense) do not lead back to the initial element, since one continues back and forth along the diagonal. By further subdividing this polygon, one must eventually arrive at a triangle along which the continuations do not return to the initial element. If one decomposes this triangle as in the proof of Cauchy’s integral theorem (see Fig. 1), one obtains a sequence of nested triangles, which close down on a point ζ, along each of which the continuations do not lead back to the initial element. This is impossible, however. For, the element with center ζ has a positive radius ρ. As soon as the diameter of one of the triangles containing the point ζ is less than ρ, the continuation around this triangle must surely return to the initial element, since in this process one does not have to go beyond the circle with radius ρ and center ζ, every point of which is covered with one regular functional value. This proves the monodromy theorem.

§26. Examples of Multiple-valued Functions

The effective calculation of the entire analytic configuration, that is, the separation of all z into regular and singular points and the association of the functional values with the regular z, cannot, in general, be accomplished by the given method. Its value consists chiefly in giving an insight into the nature of the matter; it has merely the character of an existence theorem.

The following two examples show how entirely different means lead to the objective in particular cases.

1.         w = f(z) = log z.

We have already discovered in §14, 6 that

[image: image]

is a regular analytic function in the right half-plane, provided the path of integration is also confined to this half-plane. Since the natural logarithm can be defined for x > 0 by

[image: image]

it is immediately evident that f(z) is the analytic continuation of log x into the complex domain, because f(z) = log x for z = x > 0.

What is the domain of existence of f(z) and what is its domain of values?

The integral for f(z) always has a meaning if the path of integration avoids the origin. Hence (see §14, Theorem 3), the function f(z) is regular everywhere except at the origin.5

It is not single-valued, however. In order to find, for example, f(−1) = log (−1), one can first choose the upper half and then the lower half of the unit circle as the path of integration. One obtains (cf. §10,  Example 1)

+ πi, − πi, respectively,

which is in agreement with the fact that the integral taken over the whole unit circle in the positive sense is equal to 2πi.

According to Cauchy’s theorem, the integral has the same values if any other path lying entirely within the upper half-plane (lower half-plane) is chosen.

If, however, one chooses a path which begins at + 1 and encircles the origin m times in the positive sense before terminating in − 1, one obtains (see §10.1)

log (−1) = πi + 2mπi,

since the integral taken along a path which encloses the origin once is equal to 2πi. Likewise, by encircling the origin m times in the negative sense, one obtains

log (−1) = − πi − 2mπi.

Thus, depending on the choice of the path, we obtain an infinite number of values for log (−1), all having the form

log (−1) = πi + 2kπi; (k = 0, ±1, ± 2, . . .).

It is easy to see that, according to Cauchy’s theorem, one obtains one of these values using any path extending from + 1 to − 1. What holds for the point − 1 naturally holds for every other point.

We can say, then, that the function log z is regular in the entire finite plane with the exception of the origin. It is infinitely multiple-valued, but in such a manner, that all values of log z for a particular z can be obtained from one of them by the addition of an arbitrary integral multiple of 2πi. Each of these infinitely many values of log z is called a determination of the logarithm at the point z. Each of these determinations constitutes a single-valued, regular function in a neighborhood of every point different from zero, or, more generally, in every simply connected region [image: image] which does not contain the origin. The single-valued functional element which is thereby selected from the whole domain of values of log z is also called a branch of the multiple-valued function. In §20 we developed such a branch (actually the so-called principal value) of log z in a power series for a neighborhood of + 1.

One can also develop the same properties of log z, though not as conveniently, by applying the general methods of the preceding paragraph to this power series as the initially given functional element. In particular, one can show directly that if one continues the power series just mentioned once around the origin in the positive sense in a manner similar to that sketched in Fig. 8 (always choosing the new centers on the unit circle, let us say), one does not return with the principal value to the initial circle. On the contrary, the functional values have increased by 2πi. The origin, in the neighborhood of which log z is not single-valued (and which is the only finite singular point of log z), is consequently called a branch-point or winding-point of log z. In this case the branch-point is of infinite order.

We presume the elementary properties of the function log z to be familiar to the reader (see Elem., ch. 13), and only emphasize once more that the ambiguity of log z, which appears to be rather arbitrary in some presentations, is actually an essential property of this function. It arises with absolute necessity from each of its elements, no matter how they be given, on the basis of the continuation principle.

For each of the infinitely many determinations of log z we have elog z = z.

[image: image]

The real function [image: image], defined and positive for x > 0, can also be continued into the complex domain. For,

[image: image]

is, with log z, a function which is regular in the entire (finite) z-plane with the exception of the origin, though not single-valued in a neighborhood of the origin. However, if we choose a simply connected region [image: image] which does not contain the origin, e.g., the entire plane exclusive of the real numbers less than or equal to zero,6 then every branch of log z is a single-valued, regular function there.

In particular, let us select that branch which has the value zero for z = + 1, and hence is equal to the real value log x for all x > 0, and denote this so-called principal value by Log z. Then the function

[image: image]

which is regular in [image: image] is the required continuation of the positive real function [image: image] for, [image: image] [image: image] We therefore denote the function f(z) by [image: image] f0(z) is called the principal value of [image: image]

According to this definition, the function [image: image] at first appears to be infinitely multiple-valued; it is, however, only m-valued. For, all values of log z are contained in

log z = Log z + 2kπi, (k = 0, ± 1, ± 2, . . .),

so that

[image: image]

The factor before f0(z) can only take on m distinct values,7 because two values of k which differ only by a multiple of m give it the same value. The m branches of [image: image] consequently differ from the principal branch only by constant factors. We allow k to assume the values 0, 1, 2, . . ., m − 1 and accordingly obtain as representations of the m branches:

[image: image]

We have derived these results:

1) [image: image] can be continued into the complex domain.

2) The analytic function [image: image], which is thereby uniquely determined, is regular in the entire finite plane except at the origin.

3) It is m-valued. The origin is the only finite branch-point, and it is of order m − 1.8 By continuing analytically around this point, the function is multiplied by an mth root of unity. We have always [image: image]

We presume, again, that the elementary properties of the function [image: image] are familiar to the reader, so that we may be content with this brief exposition of its analytic structure.

Exercises. 1. Expand the principal value of [image: image] in a power series for a neighborhood of the point +1;in particular, for m = 2.

2. The function az, where a is an arbitrary complex constant (different from zero and unity) is defined by the relation

az = ezloga.

Where is this function regular? Is it single-valued or multiple-valued? Accordingly, can az be single-valued? What is the meaning of it?

1 [image: image]

2 More precisely: on that segment of the path which lies between the center and the first point of intersection of the path with the boundary of the circle of convergence.

3 The figure rests on the assumption that the original circle of convergence is the unit circle, that z = + 1 is tne only singular point inside and in a further neighborhood of that circle, and that the continuation takes place along the dotted circle | z − 1 | = 1 in the positive sense.

4 One has only to imagine the successive centers to be chosen so that each lies in the circle of convergence about the preceding center and the succeeding center.

5 This is true in the finite part of the plane. After reading §32, however, which treats of the behavior of an analytic function at infinity, the reader will be able to verify that the point ∞ is a branch-point (defined below) of infinite order of the function log z, and a branch-point of order m − 1 of the function appearing in the next example.

6 This region is said to be the plane “cut” along the negative real oris.

7 These are the m distinct mth roots of unity, since [image: image].

8 It is said to be of order m − 1 because obviously the first stage of ambiguity occurs for m = 2.


CHAPTER 9

ENTIRE TRANSCENDENTAL FUNCTIONS

§27. Definitions

According to the developments of the preceding chapter, the simplest functions appear to be those whose power-series expansions converge in the entire plane; for, such a function is regular in the whole plane, and its power-series expansion, which we may now assume to be in the form

[image: image]

furnishes for every z the corresponding value of the function. These functions therefore are necessarily single-valued. They are called, briefly, entire functions1 and are classified as entire transcendental functions and entire rational functions (or polynomials) according as an infinite number or only a finite number, respectively, of the coefficients an of the expansion are different from zero. In the latter case, if am, is the last non-zero coefficient, m is called the degree of the polynomial. ez, sin z, and cos z, for example, are entire transcendental functions.

The theorems of the following paragraph deal with the characteristic behavior of these functions. If f(z) has one and the same value c for all z, then, to be sure, f(z) is also an entire function: a polynomial of degree zero. It represents a degenerate form, however, to which the following theorems do not apply.

§28. Behavior for Large | z |

1. We begin with the so-called first Liouville theorem.

Theorem 1. A non-constant entire function assumes arbitrarily large values outside every circle; i.e., if R and G are arbitrary (large) positive numbers, then points z exist for which

| z | > R and | f(z) | > G.

Proof: We prove the theorem in the equivalent form: A bounded2 entire function necessarily reduces to a constant. In fact, if a constant M exists such that | f(z) | [image: image] M for all z, then it follows immediately from Cauchy’s inequality | an | [image: image] [image: image] that an = 0, for n = 1, 2, . . ., because any arbitrarily large number may be substituted for ρ. Hence f(z) ≡ a0.

2. If, in particular, the function in question is an entire rational function, i.e., a polynomial, Theorem 1 can be sharpened to the following result.

Theorem 2. If f(z) is a polynomial of degree m, (m [image: image] 1), and G is an arbitrary positive number, then R can be assigned so that | f(z) | > G for all | z | > R.

Proof: We have

[image: image]

Hence, if we set | z | = r,

[image: image]

which, since am ≠ 0, is larger than [image: image] | am | rm, hence, larger than G, and in fact, greater than Grm−1, for all sufficiently large r.

3. A very simple proof of the fundamental theorem of algebra (cf. Elem., §39) results from these theorems.

Theorem 3. If f(z) is a polynomial of degree m, (m [image: image] 1), then the equation f(z) = 0 has at least one solution. Briefly: f(z) has zeros.

Proof: If we had f(z) ≠ 0 for all z, then [image: image] would also be an entire (non-constant) function. Hence, by Liouville’s theorem there would be points z outside of every circle, for which

| g(z) | > 1, that is, | f(z) | < 1,

contradicting Theorem 2 just proved.

An entire transcendental function need not have any zeros; ez, for example, is an entire function with no zeros.

4. If, on the other hand, we are concerned with an entire transcendental function in connection with Liouville’s theorem, then the latter can be sharpened to the following result.

Theorem 4. If f(z) is an entire transcendental function, and if the numbers G > 0, R > 0, and m > 0 are given arbitrarily, there always exist points z for which

| z | > R and | f(z) | > G · | z | m.

Proof: We prove this theorem, as we did Theorem 1, in an equivalent form: If f(z) is an entire function, and if two positive constants M and m exist such that

| f(z) | [image: image] M | z | m

for all z, then f(z) is a polynomial of degree less than or equal to m. In fact, the inequality | an | [image: image] Mρ−n+m now holds for all ρ. Hence, we must have an = 0 for n > m.

5. The remarkable Casorati-Weierstrass theorem follows from all these theorems.

Theorem 5. Outside every circle, an entire transcendental function comes arbitrarily dose to every value. Or in symbols: if the complex number c and the positive numbers ε and R are given arbitrarily, then the inequality

| f(z) − c | < ε

is satisfied by suitable | z | > R.3

Proof: a) If f(z) has an infinite number of c-points, then according to  §21, Theorem 1 they cannot all lie in the circle | z | [image: image] R; so that in the exterior of this circle the equation f(z) − c = 0 actually has solutions.

b) If f(z) has no c-points, then [image: image] also is a non-constant entire function, so that according to Theorem 1, points z, with | z | > R, can be determined such that | f1(z) | > [image: image] i.e., | f(z) − c | < ε.

c) If f(z) has a finite number of c-points, let these be z1, z2, . . ., zk of orders α1, α2, . . ., αk, respectively. Then (see §21, Theorem 4)

[image: image]

is also an entire function, but one with no zeros, so that [image: image] is an entire and, indeed, a transcendental function. Hence, by Theorem 4, the inequality

| f2(z) | > [image: image] | z | m

is satisfied outside every circle for certain z. Let m here be equal to α1 + α2 + · · ·, + αk. Then

[image: image]

Since

[image: image]

for all sufficiently large z, say for all | z | > R1 > R, it follows, if we also suppose that | z | > R1 in (1), that the relations (1) and (2) hold for these certain z, so that

| f(z) − c | < ε

is also satisfied.

Exercise. Prove the last theorem more simply and quickly with the aid of the Laurent expansion of

[image: image]

for large | z |, treated in §§29 and 30.

1 Or, by some authors, “integral functions”

2 A function is said to be bounded in a region if the domain of values of the function for that region is a bounded set of numbers.

3 In other words: no matter how large R is prescribed, the set of values to assumed by f(z) in the exterior of the circle | z | = R is everywhere dense in the w-plane.


SECTION IV

SINGULARITIES


CHAPTER 10

THE LAURENT EXPANSION

§29. The Expansion

Up to now we have examined functions exclusively in domains in which they are regular. We shall now consider the case that there are singular points in the interior of the domain; the function is assumed to be single-valued there. In order to have something definite before us, let us assume that f(z) is single-valued and regular in a concentric annular ring with center z0, whereas nothing is known about the behavior of the function outside the larger circle K1 with radius r1 and inside the smaller circle K2 with radius r2

(0 < r2 < r1).

We shall then obtain an expansion which converges and represents f(z) for every z in the ring, i.e., for every z such that r2 < |z − z0| = ρ < r1. To this end, choose two radii ρ1 and ρ2 for which

r1 < ρ2 < ρ < ρ1 < r1.

Let the circles having these radii and the center z0 be C1 and C2, respectively, f(z) then is regular within and on the boundary of the ring between these circles, since this ring lies entirely within the first ring. Connect C1 and C2 by means of two radial auxiliary paths k′ and k″ which do not pass through z. Proceeding exactly as in §14, 4 we obtain

[image: image]

if C1 and C2 are both oriented positively. Now (in this connection see the proof of Theorem 1 in §20)

a) for the first integral, since ζ here is a point of the circle C1,

[image: image]

a series which converges uniformly for all ζ on C1 because [image: image]

b) for the second integral, since ζ here lies on C2, [image: image] a series which converges uniformly for all ζ on C2 because [image: image] If these special expansions of [image: image] are substituted in the respective integrals, the integrations may be carried out term by term because of the uniform convergence with respect to ζ, and we obtain

[image: image]

If, for abbreviation, we set

[image: image]

and

[image: image]

we have

[image: image]

which is usually written more briefly as

[image: image]

We have thus obtained a representation of f(z) as the sum of a power series ∑1 of ascending powers of z − z0 and a power series ∑2 of descending powers of z − z0. Both series converge if z lies in the interior of the annular region between K1 and K2. For, it is clear that the values of an and a−n are independent of the form of the paths of integration of the integrals defining those coefficients, and hence, of ρ1, ρ2, respectively. According to §14, 4, any other closed path lying entirely within the annular region between K1 and K2 and encircling K2 once may be chosen instead of C1, C2, respectively. The series obtained is called the Laurent expansion of f(z) for the annular region.

§30. Remarks and Examples

In order to understand thoroughly the formula of the preceding paragraph, we consider separately the functions represented by the two sums ∑1 and ∑2.

[image: image]

is an ordinary power series in z − z0. Consequently, it converges for all z within K1 and represents a regular function there.

[image: image]

likewise proves to be an ordinary power series; one has only to set

a−n = bn and (z − z0)−1 = z′,

whereupon

[image: image]

Since ∑2 certainly converges for r2 < |z − z0| < r1, this new series certainly converges for

[image: image]

Hence, since it is an ordinary power series in z′, it converges for all |z′| < [image: image] and represents a regular function of z′ there. Returning to z, this means that ∑2 converges for all z for which

|z − z0| > r2,

i. e., everywhere outside of K2, and represents a regular function of z there. f(z) is thus decomposed into two functions, one regular within K1 and the other regular without K2. Both are regular in the annular region.

From this and the uniqueness of the Laurent expansion, which will be proved immediately, it follows at once that the exact region of convergence of the same is the broadest ring which can be formed from the hitherto existing ring by concentric contraction of the inner circle K2 and expansion of the outer circle K1 and which is still devoid of singular points. There is, therefore, at least one singular point on each of the two circles bounding the ring. (If there is no singular point at all in the interior of K2 then the inner region, and with it, f2, Σ2 would be entirely eliminated by this process.)

The Laurent expansion just found is the only one possible, just like the Taylor expansion. For, assume that

[image: image]

are simultaneously valid for a common annular region. Multiply both expansions by (z − Z0)−k−l and integrate along a circle with center z0 lying entirely within the annular region, so that the resulting series converges uniformly on that circle with respect to z. It follows that

2πiak = 2πick, that is, ak = ck,
(k = 0, ±1, ±2, . . .).

Examples. The following expansions are found without difficulty:

[image: image]

or

[image: image]

Here we have two different expansions for the same function. However, this does not contradict the theorem just proved, since the expansions are valid for different annular regions.

[image: image]

Exercise. Expand the functions

[image: image] for | z | > 1

and

[image: image] for | z | > 2

in Laurent series.


CHAPTER 11

THE VARIOUS TYPES OF SINGULARITIES

§31. Essential and Non-essential Singularities or Poles

The case that the only singular point of f(z) in the interior of K2 is the center zo deserves special consideration. The Laurent expansion

[image: image]

converges then for all z for which 0 < | z − z0 | < r1, where r1 (> 0) is the distance from z0 to the nearest singular point. In this case, z0 is called an isolated singularity, and an expansion of the form (1) always exists in a neighborhood of such an isolated point if f(z) is single-valued there. If that part of the expansion (1) containing the descending powers of z − z0 is again (see above) written in the form Σbnz′n, it is evident that in this case it represents an entire function of z′. According as this entire function is an entire transcendental or an entire rational function, i.e., according as that part of the expansion involving the descending powers of z − z0 contains an infinite number or only a finite number of terms (but then at least one), z0 is called an essential or a non-essential singularity. In the latter case, z0 is also called briefly a pole. If a−m (m [image: image] 1) is the last coefficient which is not zero, z0 is called a pole of order m; multiplication by (z − z0)m (but by no smaller power) transforms f(z) into a function which is regular at z0 and in a neighborhood thereof, and which is different from zero at z0.

The terms “pole” and “essential singularity” apply only to isolated singular points in whose neighborhood the function is single-valued (see p. 103). That part of the expansion containing the descending powers of z − z0 is called the principal part of the function at z0. The following theorems bear out the great difference in the character of the two kinds of singularities.

Theorem 1. If f(z) has a pole at z0 (that is, if Σ2 = Σbnz′n is an entire rational function of z′) and if G > 0 is given arbitrarily, then it is possible to assign a δ > 0 such that

| f(z) | > G

for all | z − z0 | < δ; i.e., f(z) is very large in absolute value for all z lying close to z0; or, as a pole is approached the function becomes definitely infinite. (In this connection cf. §28, 2.)

Proof: Let z0 be a pole of order α, so that

[image: image]

Choose δ so small that δα < | a−α | /2G and that the absolute value of the expression in the braces is greater than [image: image] for all | z − z0 | < δ. This is certainly possible since we are dealing with a power series with the constant term + 1. Then for all | z − z0 | < δ we have

[image: image]

2. The following analogue of Theorem 5 in §28 is also called the Casorati-Weierstrass theorem.

Theorem 2. If f(z) has an essential singularity at z0 (that is, if Σ2 = Σbnz′n is an entire transcendental function of z′), then f(z) in every neighborhood of z0 comes arbitrarily close to every number. More precisely: if c is an arbitrary complex number and δ and ε are two arbitrary (small) positive numbers, then points z always exist for which

| z − z0 | < δ   and   | f(z) − c | < ε.1

Proof: Admitting the constant term to the second sum we set

[image: image]

φ1(z) is continuous at z0 and φ1(z0) = 0. Hence, δ1 [image: image] δ can be assigned so that | φ1(z) | < [image: image]ε for all | z − z0 | < δ1. [image: image] on the other hand, is an entire transcendental function of z′, so that by the Casorati-Weierstrass theorem in §28 the condition | φ2(z) − c | < [image: image]ε is satisfied for certain very large z′, e.g., such for which | z′ | > l/δ1. This means that | φ2(z) − c | < [image: image]ε for certain z with | z − z0 | < δ1.

For these z, then,

| f(z) − c | [image: image] | φ1(z) | + | φ2(z) − C | < ε,       Q. E. D.

Examples.

1. [image: image] has an essential singularity at z = 0 (cf. §30, Example 2).

2. A rational function

[image: image]

can be singular only at those points at which the denominator is zero. Let z1 be a zero of order α of the denominator and at the same time a zero of order β of the numerator (α [image: image] 0, β [image: image] 0: cf. p. 90, footnote). Then it is easv to see that f(z) has a pole of order a − β at z1 if α > β, a zero of order β − α if β [image: image] α.2 (This example shows already that it will be advantageous to regard poles as zeros of negative order.) Thus, at any assignable distance from the origin a rational function has no other singularities than poles (cf. §32, Examples 2 and 3 and 1 in this connection).

3. The functions tan z and cot z are discontinuous, and therefore singular, at the zeros of cos z, sin z, respectively. It is easily seen that the singularities there are poles of the first order.

Let us investigate cot z at the point z = 0. This point, in any case, is an isolated singularity, since the nearest new zeros of sin z are z = ± π. Consequently, cot z admits of a Laurent expansion which one knows m advance must necessarily be valid for all z for which

0 < | z | < π

and only these z. If one proceeds to carry out the division of the power series for cos z ana sin z (cf. Elem., §43), the beginning of the expansion is found to be

[image: image]

Because of the uniqueness of such an expansion (see §30), this is the Laurent expansion of cot z for the neighborhood of the point z = 0. From it we read off immediately that z = 0 is a pole of the first order.

We shall not enter into an investigation of non-isolated singularities and singular points in whose neighborhood the function is not single-valued (such as z = 0 for log z and for [image: image]). Concerning the latter cf. ch. 4 of Theory of Functions II.

Exercise. Verify the validity of the Casorati-Weierstrass theorem for the function e1/z by investigating the values which it assumes in the neighborhood of the origin on the radii emanating from that point. Determine the points z at which e1/z = i. What sort of point set do these constitute?

§32. Behavior of Analytic Functions at Infinity

There is an omission in our definition of the complete analytic function (§24); we still have to reach agreements as to how to describe the behavior of a function at infinity. As before, we confine ourselves to the case that f(z) is single-valued and regular in a neighborhood of the point ∞ (see §2). Let f(z) be single-valued and regular for | z | > R. If one sets [image: image] then the function φ(z′) defined for [image: image] by [image: image] is single-valued and regular there with the possible exception (with respect to regularity) of the point z′ = 0 itself. We now lay down the following definition.

Definition. That behavior is assigned to the function f(z) at infinity, which φ(z′) exhibits at z′ = 0.

By our hypotheses, φ(z′) in [image: image] admits of a Laurent expansion

[image: image]

from which, according to the last paragraph, the behavior of φ(z′) at z′ = 0 can be read off. This expansion differs only in notation from the Laurent expansion of f(z) for | z | > R:

[image: image]

which by hypothesis certainly exists; for, an = − bn and [image: image] Hence, if we carry over to f(z) the behavior of φ(z′) read off from (1), we see that “the point ∞” is now the isolated point in question, that the ascending part of (2) is to be considered as the principal part of f(z), and that consequently

a) f(z) has an essential singularity at ∞ if an infinite number of positive powers appear in (2);

b) f(z) has a pole of order β at ∞ if only a finite number of positive powers appear in (2), of which αβ is the last coefficient different from zero, (β [image: image] 1);

c) f(z) is regular at ∞ if no positive powers appear in (2). In the last case, a0 is taken to be the value of the function at ∞; i.e., f(∞) = a0. If a−1 = · · · = a−(p − 1) = 0, a−p ≠ 0, then ∞ is an “a0-point of order p.”

Examples.

1. [image: image] is regular at z = ∞ (because it is equal to [image: image] for | z | > 1), and has there a zero of the first order.

2. Every rational function for which the degree k of the denominator is greater than or equal to the degree m of the numerator is regular at z = ∞; f(∞) is zero or not zero according as k > m or k = m, respectively.

3. Every rational function for which k < m has a pole of order m − k at z = ∞. In particular, a polynomial of degree m has a pole of order m at z = ∞.

4. ez, sin z, cos z, and all other entire transcendental functions have an essential singularity at z = ∞.

Since we are only dealing with a transference of designation in these new definitions, the two theorems of the preceding paragraph are also valid for the point ∞ with suitable changes in wording.

Theorem 1. If f(z) has a pole at infinity, then, having chosen G > 0, one can always assign such a small neighborhood of ∞3 that | f(z) | > G for all points of that neighborhood (i.e., for all | z | > R, with R sufficiently large).

And corresponding to the Casorati-Weierstrass Theorem:

Theorem 2. If f(z) has an essential singularity at ∞, then, having chosen the complex number c and the positive numbers ε and R, there always exist points z for which

|z | > R  and  | f(z) − c | < ε.

As an application of these considerations we prove the important theorem of Riemann.

Theorem 3. If, in a certain neighborhood of a point z0 (which may also be the point ∞), f(z) is a single-valued and, apart from at z0 itself, a regular function, then z0 is

a regular point, if and only if f(z) is bounded in a neighborhood of z0;

a pole, if and only if, having chosen G > 0, the neighborhood of z0 can be contracted so that | f(z) | > G everywhere in the resulting neighborhood;

an essential singularity, if and only if neither the first nor the second of the conditions just stated is satisfied.

Proof: By the hypotheses, f(z) can be expanded in a Laurent series for the neighborhood of z0. This series is of the form

[image: image]

according as z0 lies in the finite part of the plane or is the point ∞, respectively.

The two theorems of this and the preceding paragraph, together with the fact that a function is bounded in a neighborhood of a regular point, show that the conditions stated are necessary. That they are sufficient follows immediately from the observation that the three possibilities for the behavior of f(z) at z0 are mutually exclusive and the only conceivable ones.

Exercise. What kind of singularity does each of the functions

[image: image]

have at the point z = ∞?

§33. The Residue Theorem

It f(z) is regular in a neighborhood of z0, then by Cauchy’s theorem

∫ f(z)dz = 0

if a small path C encircling the point z0 in the positive sense is chosen as the path of integration. If, on the other hand, f(z) has z0 for an isolated singular point in whose neighborhood f(z) is otherwise single-valued and regular, then the same integral will, in general, be different from zero. Its value can be found immediately. Since f(z) can be expanded in a Laurent series for a neighborhood of z0, (0 < | z − z0 | < r), we have by §29 the relation

[image: image]

The value of this integral, or what is the same, the coefficient of that term of the Laurent expansion whose exponent is − 1 is called the residue of f(z) at z0,4, and the above formula represents in a certain sense an extension of Cauchy’s theorem.

More generally, one can prove the following so-called residue theorem.

Theorem 1. Let the function f(z) be single-valued and regular in an arbitrary region [image: image] If C is a simple closed path lying within [image: image] and having only a finite number of singular points in its interior, then

[image: image]

Proof: If z1, z2, . . ., zm, are the finitely many singular points in question and if C1, C2, . . ., Cm are sufficiently small, positively oriented circles about the respective centers z1, z2, . . ., zm, then by §14, Theorem 2

[image: image]

[image: image]

This proves the theorem, since the residues in question are the terms of the right member of this equation.

In applications the residue will, in general, be known from the Laurent expansion, so that it will be possible to determine the value of the integral. This residue theorem has numerous important applications, of which only a few chosen at random can be given here.

1. Under the hypotheses of the residue theorem, assume, for example, that m = 0, i.e., that f(z) is regular in the whole interior of C, and, moreover, that f(z) ≠ 0 along C. Then according to §21, Theorem 1, C can only enclose a finite number of zeros. Let these be the points z1, z2, . . ., zm with the respective orders α1, α1, . . ., αm. It is customary to consider a zero (or pole) of order α as an α-fold zero (or pole) and consequently count it α times in an enumeration. According to this, the number, N, of zeros of f(z) in the interior of C is

N = α1 + α2 + · · · + αm.

Theorem 2. For this N we have

[image: image]

Proof: The integrand is regular on the path C; z1, z2, . . . zm are singular points in the interior of C. It is readily seen that zv. is a simple pole5 with the residue αv. For, in general, if f(z) has a zero of order α at ζ, then

f(z)  = aα(z − ζ)α + aα + 1(z − ζ)α + 1 + · · ·,

f′(z) = αaα(z − ζ)α − 1 + (α + 1)aα + 1(z − ζ)α + · · ·.

Hence, since aα ≠ 0,

[image: image]

is the Laurent expansion of [image: image] valid for a certain neighborhood of ζ; the coefficients cμ can easily be calculated from the coefficients av. Therefore ζ is a simple pole with the residue α, as was asserted. It then follows immediately from the residue theorem that

[image: image]

Q. E. D.

2. If f(z) has a pole of order β at ζ, one finds in exactly the same manner that [image: image] has a simple pole at ζ with the residue − β. Hence, if, in addition, the finitely many poles z1′, z2′, . . ., zk′ with the respective orders β1, β2, . . ., βk within C, then

[image: image]

Here β1 + β2 + · · · + βk = P is the number of poles of f(z) in the interior of C, in the same sense that N is the number of zeros there. We have proved

Theorem 3. Let f(z) be single-valued and regular in &G;, and let C be a simple closed path lying within [image: image]. If f(z) ≠ 0 along C, and if ai most a finite number of singular points, all poles, lie in the interior of C, then

[image: image]

which is the number of zeros diminished by the number of poles of f(z) in the interior of C, each point counted as often as its order requires.

3. The residue theorem furnishes a particularly important means for evaluating real definite integrals. We must be content with illustrating these applications by a very simple and transparent example.

As is readily found by indefinite integration,

[image: image]

With the aid of the residue theorem the integral can be evaluated as follows. Let C denote the path which extends from z = − R rectilinearly to + R and thence along the upper semicircle | z | = R back to − R. Since

[image: image]

this path encloses precisely one pole of [image: image] as soon as R > 1; at this pole the residue is [image: image] Consequently

[image: image]

Hence, also

[image: image]

if S denotes the aforementioned semicircle. By §11, Theorem 5 we have

[image: image]

and the right member tends to zero as R → + ∞. If we let R → + ∞ in (2) we obtain equation (1) immediately.

In like manner one can evaluate the integral [image: image] of every rational function f(x) which is continuous for all real x and is such that the degree of its denominator exceeds that of the numerator by at least 2. It turns out that the integral is equal to 2πi times the sum of the residues at the poles of f(z) which lie in the upper half-plane.

Exercises. 1. Let f(z) have a zero of order α at z1. What is the residue of

[image: image]

at the point z1 if φ(z) denotes an arbitrary function which is regular at z1? What is the answer if f(z) has a pole of order β at z1?

2. In connection with Exercise 1, evaluate and determine the meaning of

[image: image]

if the hypotheses of Theorem 2 or of Theorem 3 of this paragraph are made with regard to f(z) and C.

§34. Inverses of Analytic Functions

If a function f(z) is regular at z0 and if f(z0) = w0, then, because of the continuity of the function, the images of all points of a (sufficiently small) neighborhood of z0 lie in a prescribed ε-neighborhood of w0. Nothing follows from this as to whether a full neighborhood of w0 is covered by these images or not, and whether, on the other hand, the image region can be covered more than once or not. In this respect we have the following theorem.

Theorem 1. If f(z) is regular in the circle K: Iz − z0 | < ρ and assumes the value w0 = f(z0) to the first order at z0, that is to say, f′(z0) ≠ 0, then a certain complete neighborhood of w0 in the w-plane is covered precisely once by the image of a neighborhood of z0.

Proof: The function f(z) − w0 is also regular in K. It has a simple zero6 at z0. Then according to §21, Theorem 2 it is possible to describe such a small circle K1 with radius ρ < ρ about z0 as center, that, except for z0, there is no zero of f(z) − w0 in its interior or on its boundary. | f(z) − w0 | has a still positive minimum μ on the boundary of K1. It can now be shown that every value w1 which lies in the circle K′1 with radius m and center w0 in the w-plane is obtained for one and only one value z = z1 in the interior of the circle K1. That is to say, briefly, that f(z) − w1 has precisely one zero, z1, in the interior of K1; or what is the same (by §33, Theorem 2), that the integral (containing the parameter w)7

[image: image]

has the value unity if any particular point w1 of K′ is substituted for w. (For, f(z) − w1 along K1 is different from zero because of the meaning of μ.) On the basis of our hypotheses and §33, Theorem 2, the integral (1) certainly has the value unity for w = w0 and must always be equal to a real integer, because of its meaning. Obviously it must always have the same value unity if we can show that its value represents a continuous function of w in K′. This follows, however, from the simple inequality

[image: image]

in which M′ denotes the maximum of | f′(z) | along K1, l the length of this path, and d the smaller of the distances of the points w′, w″ from the boundary of the circle K′.

Thus, according to Theorem 1, for a given w in K′, the point z in K1 for which f(z) = w is uniquely determined. By the requirements of the theorem, then, a single-valued function of w, z = φ(w), is so defined in K′ that always f(φ(w)) = w or φ(f(z)) = z. The function z = φ(w) is called the inverse8 of the function w = f(z), and we can express the content of Theorem 1 as follows:

For every function f(z) which is regular at z0 and for which f′(z0) ≠ 0 there exists a well-defined inverse function z = φ(w) in a neighborhood of the point w0 = f(z0).

With regard to this function we prove

Theorem 2. The inverse function z = φ(w) is a regular function of win a neighborhood of w0. For its derivative there we have (as in the real domain) the equation

[image: image]

The proof, which is almost self-evident, proceeds exactly as in the real domain. For fixed w1 and neighboring w in K′ we have

[image: image]

Since distinct points z1, z also correspond to distinct points w1, w, respectively, and conversely, and since z → z1 as w → w1, one can read off the assertion from this equality; f′(z) ≠ 0 in a neighborhood of z0 because f′(z0) ≠ 0.

Exercise. Show that a certain complete neighborhood of the point w0 is covered precisely α times by the image of a neighborhood of z0 if the value w0 of the function f(z) which is regular there is assumed to the order α([image: image] 1).

§35. Rational Functions

An analytic function, as we have already emphasized on p. 94, is but rarely obtainable in closed form. We have thus far met with this favorable case only in connection with the entire functions and the rational functions. If one wishes to undertake a classification of functions “purely function-theoretically,” one must ignore entirely the representation of a function and only characterize it intrinsically (by its domain, of values, the nature of its singular points, and the like). Thus, the entire functions, without any regard to the closed representation which is possible in this case, are characterized alone by the property of being regular in the entire plane. Theorems 2 and 5, §28 separate them “purely function-theoretically” into entire rational and entire transcendental functions.

The following two theorems characterize in a similar manner the class of rational functions.

Theorem 1. A rational function has no singularities other than poles in the finite and infinite parts of the plane.

The proof is contained in §31, Example 2 and §32, Examples 2 and 3; and we have already attained our goal when we prove the converse of this theorem.

Theorem 2. If a single-valued function has no singur larities other than poles in the finite part of the plane and at z = ∞, then it is a rational function.

Proof: Since f(z) is assumed to have at most a pole at z = ∞, it is regular everywhere outside a sufficiently large circle, i.e., in a certain “neighborhood of the point z = ∞,” except possibly at z = ∞ itself. Hence, all singular points which may lie in the finite part of the plane lie within an assignable circle. Here there can only be a finite number of such points, because otherwise there would be a limit point of these singular points in this closed circle according to §3. Theorem 1. This point certainly would not be a pole, since a pole is necessarily isolated.

If there is no singular point in the finite part of the plane, then f(z) is an entire function and in fact, according to §32, Example 4, an entire rational function (i.e., a polynomial). If, however, z1, z2, . . ., zk are the finitely many singular points lying in the finite part of the plane, then f(z) can be expanded in a neighborhood of each of them in a Laurent series which can contain only a finite number of negative powers:

[image: image]

here αv denotes the order of the pole zv, (v = 1, 2, . . ., k). If one denotes the principal part following the power series by K(z), then hv(z) is a rational function which has the only singular point zv (pole of order av) and is regular, and in fact equal to zero, at z = ∞.

The function

f(z) − h1(z) − h2(z) − · · · − hk(z)

is evidently an entire function, and indeed, since it too can only have at most a pole at infinity, a polynomial g(z), which reduces to a constant (a polynomial of degree zero) if the point ∞ is a regular point.

Hence,

f(z) = g(z) + h1(z) + h2(z) + · · · + hk(z),9

which exhibits the rational character of f(z).

Owing to the special form of the principal parts hv(z) we can also state the following theorem.

Theorem 3. A rational function can be decomposed into partial fractions. (Cf. Elem., §40.)

We conclude with a second proof of the fundamental theorem of algebra, based on the residue theorem (cf. §28, 3 and Elem., §39).

If f(z) is a polynomial a0 + a1z + · · · + amzm, (m [image: image] 1, am ≠ 0), then according to §28, Theorem 2 it is possible to describe a circle K with radius R about the origin as center such that | f(z) | > 1, and hence, that f(z) has no zeros anywhere in its exterior or on its boundary. All existing zeros of f(z) lie, then, in the interior of K.

Their number N, according to §33, Theorem 2, is:

[image: image]

The Laurent expansion of the integrand, valid for | z | > R, begins with

[image: image]

where the coefficients cv need not be known. From this we can immediately read off the value of the integral as m, and hence

N = m

i. e., a polynomial of degree m has precisely m zeros (roots) if each is counted as often as its order requires.

1 In other words: no matter how small δ > 0 is prescribed, the set of values w assumed by f(z) in the interior of the circle | S − z0 | < δ is everywhere dense in the w-plane.

2 In this case f(z1) is to be defined as the value [image: image]

3 A small “neighborhood of ∞” is understood to mean (see §2) the exterior of a large circle about the origin.

4 z0 is to be considered, once more, as lying in the finite part of the plane

5 A pole of order unity.

6 A zero of order unity.

7 f′(z) in the numerator of the integrand is to be regarded as the derivative of the denominator with respect to z, with w constant.

8 For this function, w is the independent and z the dependent variable.

9 The terms hv(z) here are simply missing in the case that f(z) is regular in the finite part of the plane; this case has already been treated.
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INTRODUCTION

The foundations of the general theory of analytic functions were laid in Part I of this Theory of Functions.1 Special functions (such as e2, sin z, log z, [image: image] and others) or classes of functions (such as the rational or the entire functions) were dealt with there only occasionally. Now such more detailed investigations will come in greater measure to the foreground. Only once again, later on, will more general considerations be carried out, in order to clarify the situation left undiscussed in I, §24, pp. 103–104. In doing so, it will become apparent that the distinction between single-valued and multiple-valued functions which was indicated there is quite fundamental. This distinction will therefore serve from the outset as a standard for all of the following presentation.

From these two main classes we shall select several especially characteristic and important types of functions. A certain arbitrariness is unavoidable in this connection, since completeness within the close compass of this little book is naturally denied us. We shall get away from this danger most easily if we start with the elementary functions (the entire and fractional rational functions, ez, sin z, log z, [image: image] · · ·) as the most important ones, and try to understand that which is essential and of a universal character in their principal properties.2

The entire rational functions (polynomials)—evidently the simplest and most transparent functions—are characterized (cf. I, p. 137) “purely function-theoretically” by the fact that they are regular in the entire plane and have a pole at the point ∞. If one ignores the last property, one arrives at the more general class of entire functions, which are characterized solely by the property of being regular in the entire plane (excluding ∞), and to which the entire rational and the entire transcendental functions belong as special cases. They also appeared to us in I, §27 to be the simplest, because their power-series expansion for an arbitrary center converges, and therefore represents the function, in the entire plane. Since analytic continuation, then, is out of the question, the entire functions are naturally singlevalued. In their totality they are identical with the totality of everywhere-convergent power series of the form

[image: image]

and, as such, appear to be an immediate generalization of the entire rational functions.

In the first chapter we shall approach these functions with the question: Which of the fundamental properties of the entire rational functions does the class of entire functions still possess, and which not?—and shall give several answers to this question.

According to I, §35, Theorems 1 and 2, the fractional rational functions are completely characterized from the purely function-theoretical point of view by the fact that they have no singularities other than poles in the entire plane and at the point ∞. If, here too, one ignores the last property concerning the point ∞, one arrives again at a more general class of functions, the so-called meromorphic functions, which are characterized solely by the property of having no singularities other than poles in the entire plane (excluding ∞).

In the second chapter we shall approach these functions, which will also prove to be single-valued, with the question to be formulated analogous to the one above.

The property of the functions ez sin z, and others, which is the most interesting from the function-theoretical standpoint, is their periodicity. In the third chapter we shall detach this property from the special nature of these functions, and investigate it more closely and purely function-theoretically. We thus arrive at the classes of simply periodic and doubly periodic functions. In the latter class we then meet, in particular, the elliptic functions.

These types chosen from the realm of single-valued functions will have to suffice.

In connection with multiple-valued functions, we shall first be concerned with sifting out the concept of the same more clearly than was possible in I, §24, and with giving a clearer notion of the essence of multiple-valuedness. This is accomplished in the fourth chapter by means of a very simple and, just for this reason, remarkably ingenious idea, that of the so-called Riemann surface. The construction of these surfaces is illustrated using the simplest multiple-valued functions,

[image: image]

In the fifth chapter, a particularly important and therefore also especially well-investigated class of multiple-valued functions, the class of algebraic functions, is treated in somewhat greater detail.

With the aid of the concept of the algebraic singularity acquired hereby, all gaps still contained in our definition of the complete analytic function or of the analytic configuration, given in I, pp. 102–103, are finally filled in chapter 6. Thus is obtained in its complete generality the notion of the analytic configuration. This admirable concept, occupying the center of our considerations from the very beginning, though by no means to be mastered in the first attack, is undisputedly one of the most profound and beautiful in all of mathematical science.

1 Theory of Functions, Part I: Elements of the General Theory of Analytic Functions, translated from the 5th German edition, New York, 1945,—referred to in the following, briefly, as “I”, together with paragraph or page number.

2 Thus, we can be concerned in the following with a selection only—with samples, so to speak. The theory of functions is a large realm, which cannot be explored on a journey of one or even several days. If, in spite of this, we undertake on the following pages to sketch briefly a few of the principal places in this realm, we must emphatically caution the reader not to identify the extent of this little volume with that of the theory of functions.


SECTION I

SINGLE-VALUED FUNCTIONS


CHAPTER 1

ENTIRE FUNCTIONS

§1. Weierstrass’s Factor-Theorem

The most important property of the entire rational functions is expressed in the fundamental theorem of algebra (see I, pp. 113 and 139): Every non-constant entire rational function has zeros. Since ez, for example, has no zeros (because ez · − e−z = 1), the question formulated above seems immediately doomed to Unfruitfulness. Upon further investigation of the core of the matter, however, we shall see that this is not so. Indeed, if

g0(z) = a0 + a1z + · · · + amzm,

(m ≥ 1, am ≠ 0)

is an arbitrary, non-constant entire rational function, then it follows from the fundamental theorem of algebra that g0(z) can be written in the form

(1) g0(z) = am(z − z1)α1 (z − z2)α2 · · · (z − zk)αk,

where z1 z2, · · ·, zk denote all the distinct zeros of g0(z), and α1 α2, · · ·, αk denote their respective orders. We express this as follows:

(A) For every entire rational function there is a so-called factor representation, which displays its zeros as to position and order.1

We infer immediately from this representation, that every other entire rational function g(z) which has the same zeros to the same respective orders can differ from g0(z) only in the factor am. Furthermore, one can give these zeros any position and any order. In other words:

(B) It is always possible to construct an entire rational function whose zeros (finite in number, of course) are prescribed as to position and order. This function can be represented as a product which displays these zeros. The most general function of this kind is obtained from a particular one by multiplying it by an arbitrary non-zero factor (“a multiplicative entire rational function with no zeros”).

If we take these two statements (A) and (B) to express the content of the fundamental theorem of algebra, then we shall see that all this can be carried over word for word to arbitrary entire functions.

To this end, we begin by setting ourselves the following problem, which corresponds to (B) and is fundamental for all that follows. We propose to investigate whether, and how, one can construct entire functions with prescribed zeros,2 and to what extent an entire function is determined by these conditions.

Entire functions with no zeros. Suppose the entire function to be constructed is to have no zeros at all. Then the constant 1, or the function ez, or ez2, or, more generally, eh(s) is a solution of the problem, if h(z) is a completely arbitrary entire function. The last answer is also the most general solution of the problem. That is, eh(s) (with h(z) an arbitrary entire function) is not only always an entire function with no zeros, but conversely, every such function can be written in the form eh(s). We state this more briefly:

Theorem 1. If h(z) denotes an arbitrary entire function, then eh(s) is the most general entire function with no zeros.3

Proof: We have only to show that if H(z) = a0 + a1z + a2z2 + a3z3 + · · · is a given entire function with no zeros, another entire function h(z) = b0 + b1z + · · · can be determined such that eh(s) = H(z). Now, since H(z) ≠ 0, we have in particular a0 = H(0) ≠ 0. Hence, b0 can be chosen such that ebo = a0; for, ez takes on every value except zero. Likewise, [image: image] is everywhere single-valued and regular, and is therefore an entire function. The same is true of H′(z), so that

[image: image]

is also an entire function, and this series is everywhere convergent. The latter also holds for the series

[image: image]

which accordingly represents an entire function, h(z). If we set eh(s) = H1(z), then

[image: image]

and hence H1 · H′ − H · H1′ = 0. Consequently

[image: image]

and the quotient of the two functions H1(z) and H(z) is constant. For z = 0 we find the value 1 for this constant. Therefore

H(z) = H1(z) = eh(s),           Q. E. D.4

Having thus completely solved our problem for the case that no zeros are prescribed, it is easy to see the extent to which an entire function in general is determined by its zeros. If G0(z) and G(z) are two entire functions which coincide in the positions and orders of their zeros, then (cf. I, §21, Theorem 4) their quotient is also an entire function, but one with no zeros. G(z) and G0(z) thus differ (cf. statement (B)) by at most a multiplicative entire function with no zeros. Conversely, the presence of such a factor of G0(z) does not alter the positions or orders of its zeros. In connection with Theorem 1, we express this as follows:

Theorem 2. Let G0(z) be a particular entire function. Then, if h(z) denotes an arbitrary entire function,

G(z) = eh(z) · G0(z)

is the most general entire function whose zeros coincide with those of G0(z) in position and order.

The question of the possibility and method of constructing a particular entire function with arbitrarily prescribed zeros now remains to be settled.

We must begin by restricting our requirements. An entire function has no singularity in the finite part of the plane; therefore, according to I, §21, Theorem 1, it can have only a finite number of zeros in every finite region. The prescribed points consequently must not have a finite limit point. If we make this single restriction, which is in the nature of things, we shall see that an entire function of the kind in question can always be constructed. It will be possible to set it up in the form of a product (analogous to the case of the entire rational functions; cf. (1)) which exhibits the positions and orders of its zeros. We have indeed the following theorem, which is named after its discoverer:

Weierstrass’s factor-theorem. Let any finite or infinite set of points having no finite limit point be prescribed, and associate with each of its points a definite positive integer as order. Then there exists an entire function which has zeros to the prescribed orders at precisely the prescribed points, and is otherwise different from zero. It can be represented as a product (see p. 18 for the final form) from which one can read off again the positions and orders of the zeros. Further, by Theorem 2, if G0(z) is one such function,

G(z) = eh(z) · G0(z)

is the most general function satisfying the conditions of the problem, if h(z) denotes an arbitrary entire function.5

If we regard this fundamental theorem for the moment as having been proved, it follows immediately therefrom, that the first of our two statements concerning the entire rational functions can also be carried over to arbitrary entire functions. For, let G(z) be an arbitrarily given entire function. Then the set of its zeros has no finite limit point. Hence, according to Weierstrass’s theorem, another entire function G0(z), having precisely the same zeros in position and order, can be constructed in the form of a product displaying these. Then, by Theorem 2,

G(z) = eh0(z) · G0(z),

where h0(z) denotes a suitable entire function. We have thus actually obtained a factor representation of the given entire function G(z), from which the positions and orders of its zeros can be read off.

The two statements (A) and (B) concerning entire rational functions have herewith been carried over verbatim to arbitrary entire functions.

The next paragraph is devoted to a proof of Weierstrass’s factor-theorem.

Exercises. 1 [image: image] is an entire function with no zeros. (Proof?) Hence, according to Theorem 1, it can be expressed in the form eh(z). How should h(z) be chosen?

2. cos iz and e2z + 1 have the same zeros in position and order. (Proof?) By Theorem 2, the second function can be obtained from the first by multiplying it by a suitable factor of the form eh(z). How should h(z) be chosen?

§2. Proof of Weierstrass’s Factor-theorem

As we have already pointed out, the entire function satisfying the conditions of Weierstrass’s factor-theorem will be set up in the form of a product; in general, in the form of an infinite product. As with infinite series, we shall assume that the simplest facts in the theory of infinite products with constant factors are familiar to the reader.

Since, however, these are not so universally well-known, and in order to provide a firm foundation for what follows, we present very briefly, without proofs, the most important definitions and theorems for our purposes.6

Definition. The infinite product

[image: image]

in which the factors are arbitrary complex numbers, is said to be convergent (in the stricter sense) if, and only if, from a certain index on, say for all v > m, no factor vanishes, and

[image: image]

exists and has a finite value distinct from zero. If we call this limit Um, then the number

U = u1 · u2 · · · um · Um,

which is obviously independent of m, is regarded as the value of the infinite product (1).7

The following theorems are easily proved for such convergent infinite products:

Theorem 1. A convergent product has the value zero if, and only if, one of its factors vanishes.

Theorem 2. The infinite product (1) is convergent if, and only if, having chosen an arbitrary ε > 0, an index n0 can be determined such that

| un + 1 · un + 2 · · · un + r − 1 | < ε

for all n > n0 and all r > 1 (cf. I, §3, Theorem 4).

Since on the basis of this theorem (let r = 1 and n + 1 = v) it is necessary that [image: image] one usually sets the factors of the product equal to 1 + cv, so that instead of dealing with (1) one is concerned with products of the form

[image: image]

For these, then, cv → 0 is a necessary (but by no means sufficient) condition for convergence.

We make use of the following

Definition. The product (2) is said to be absolutely convergent if

[image: image]

converges.8

We then have

Theorem 3. Absolute convergence is a sufficient condition for ordinary convergence; in other words, (he convergence of Π(1 + | cv |) implies that of Π(1 + cv).

On the basis of this theorem it will be sufficient for our purposes to have convergence criteria for absolutely convergent products. The following two theorems settle completely the question of convergence for these products:

Theorem 4. The product Π(1v + γv,), with γv ≥ 0, is convergent if, and only if, the series Σγv, converges.

Theorem 5. For Π(1 + cv) to converge absolutely, it is necessary and sufficient that Σcv converge absolutely.9

The following theorem is analogous to one on absolutely convergent series:

Theorem 6. If the order in which the factors of an absolutely convergent product occur is changed in a completely arbitrary manner, the product remains convergent and has the same value.10

In addition to products with constant factors, we need products whose factors are functions of a complex variable z. We shall write these products in the form

[image: image]

Analogous to the considerations in Theorem I, ch. 6, we designate as the region of convergence of such a product the set [image: image] of all those points z which (a) belong to the domain of definition of every fv(z), and for which (b) the product (3) is convergent.11 According to this, the product furnishes a certain value for every z of [image: image]; we say, therefore, that the product represents in [image: image] a certain (single-valued) function. For our function-theoretical purposes, it is again (cf. I, §19, Theorem 3) particularly important to possess useful conditions under which such a product, in its region of convergence, represents an analytic function. The following theorem is adequate:

Theorem 7. Let f1(z), f2(z), · · ·, fv(z), · · · be an infinite sequence of functions, and suppose a region [image: image] exists in which all these functions are regular. Let [image: image] be uniformly convergent in every closed subregion [image: image] of [image: image] (cf. I, p. 74). Then the product (3) is convergent in the entire region [image: image] and represents a regular function f(z) in [image: image] Moreover, this function, by Theorem 1, has a zero at those, and only those, points of [image: image] at which at least one of the factors is equal to zero. The order of such a zero is equal to the sum of the orders to which these factors12 vanish there.

Proof: Let [image: image] be an arbitrary closed subregion of [image: image] For every m > 0,

[image: image]

converges uniformly in [image: image] By Theorem 5, the product

[image: image]

is absolutely convergent in [image: image] and represents a certain function there. Let us call this function Fm(z). Now, choose the number m such that

[image: image]

for all n ≥ m, all r ≥ 1, and all z in [image: image] (this is possible by I, §18). Then Fm(z) is actually regular and distinct from zero in [image: image] Indeed, if, for n > m, we set

[image: image]

for abbreviation, we have

[image: image]

or

[image: image]

and Fm(z) is thus represented by an infinite series. Now the theorems of I, §19 bring us rapidly to our goal. Since, for n > m,

| pn | ≤ (1 + | fm + 1(z) |) · · · (1 + | fn(z) |)

   ≤ e| fm + 1 | + · · · + | fn(z) | < [image: image] < 2,13

the inequality

| pv − pv − 1 | = | pv − 1 | · | fv(z) | < 2 | fv(z) |

is valid for the terms (from the second onward) of the series just obtained. Consequently, the new series (6), along with ∑ | fv(z) |, is uniformly convergent in [image: image] and the function Fm(z) defined by that series is a regular function in [image: image] It is also distinct from zero there. For, by (5), we have in [image: image] for n ≥ m,

[image: image]

and hence, for v ≥ m + 1,

[image: image]

so that no factor of Fm can be equal to zero. Since

f(z) = (1 + f1(z)) · · · (1 + fm(z)) · Fm(z),

f(z), together with Fm(z), is regular at every point z of [image: image] and can vanish at such a point only if one of the factors appearing before Fm(z) vanishes. The order of such a zero is then indeed equal to the sum of the orders to which these factors vanish there.

Now let z be an arbitrary point of [image: image] Since z is eo ipso an interior point of [image: image] it is always possible to choose [image: image] such that z also belongs to [image: image] Hence, the above considerations are valid for the entire region [image: image] and the proof of the theorem is complete.

Corresponding to the further content of Theorem 3 in I, §19, it is also possible to make an assertion concerning the derivative of f(z). Since the ordinary derivative of a product of many factors is difficult to survey, however, it is more advantageous to choose the so-called logarithmic derivative14 for this purpose.

We then have the following theorem concerning this derivative:

Theorem 8. Under the hypotheses of Theorem 7,

[image: image]

for every point z of [image: image] at which f(z) ≠ 0; i.e., the series on the right is convergent for every such z and furnishes the logarithmic derivative of f(z).

Proof: If z is a particular point of the type mentioned, and if the subregion [image: image] is chosen so as to contain z, then

[image: image]

Since the series (6) converges uniformly in [image: image]

[image: image]

according to I, §19, Theorem 3. Here p′n denotes the derivative of Pn. Since Fm(z) and all Pn for n > m are not zero,

[image: image]

which, with (8), proves the assertion.

Theorem 9. The series (7) converges absolutely and uniformly in every closed subregion [image: image] of [image: image] containing no zero of f(z), and hence may be repeatedly differentiated there any number of times term by term.

Proof: Since none of the factors (1 + fv(z)) can vanish in [image: image] the absolute value of each remains greater than a positive bound15, γv say. Since this is certainly greater than 1/2 for all v > m (see above), a positive number γ exists, such that γv ≥ γ 0 for all v. Then, for all v and all z in [image: image]

[image: image]

From the proof of Theorem 3 in I, §19 (cf. also Exercise 2 there) it follows that Σ| f′v(z) | converges uniformly in [image: image] By the last inequality, this is also true then of the series (7).

Having now familiarized ourselves to some extent with infinite products, it is an easy matter to prove Weierstrass’s factor-theorem.

If only a finite number of points z1, z2, · · ·, zk with the respective orders α1, α2, · · ·, αk are prescribed, then the product

(1)           (z − z1)α1 (z − z2)α2 · · · (z − zk)αk

is already a solution of the problem, so that this case is settled immediately. If, however, an infinite number of points are prescribed as zeros, we cannot proceed quite so simply, because the analogous product would be meaningless in general. This would still be the case if, with regard to the infinite products dealt with, we were to replace (1) by the product

[image: image]

which serves the same purpose. We therefore proceed somewhat differently—and in this modification lies the originality of Weierstrass’s method.

The set of prescribed points is enumerable (see I, p. 10), since every finite region can contain only a finite number of them. They can therefore be arranged in a sequence.16 The way in which the points are numbered is unimportant. However, if the origin, with the order α0, is contained among them, we shall call this point z0 and, leaving it aside for the present, arrange the remaining points in an arbitrary, but then fixed, sequence: z1, z2, · · ·, zv · · ·. Let the corresponding orders be α1, α2, · · ·, αv · · ·. The zv are all different from zero; and since they have no finite limit point,

zv → ∞, | zv | → + ∞.

Consequently, it is possible (indeed, in many ways) to assign a sequence of positive integers k1 k2, · · ·, kv, · · · such that

[image: image]

is absolutely convergent for every z. In fact, it suffices, e.g.17, to take kv = v + αv. For, no matter what fixed value z may have, since zv → ∞, we have for all sufficiently large v

[image: image]

and hence

[image: image]

and the absolute convergence of the series is thus assured.

Let the numbers kv be chosen subject to this condition, but otherwise arbitrarily, and keep them fixed. Then we shall prove that the product19

[image: image]

(Weierstrass’s factor-theorem)

represents an entire function with the required properties20. (Here the factor zα0 appearing before the product symbol is to be suppressed in case the origin is not one of the prescribed zeros (see above). Likewise, if one of the numbers kv is equal to unity, the corresponding exponential factor simply does not appear.)

The proof of this assertion is now very simple. To be able to apply our theorems on products, we set the factors of our infinite product equal to 1 + fv(z). According to Theorem 7, we must then merely prove that

[image: image]

converges uniformly in every bounded region. For then the entire plane can be taken as the region [image: image] of Theorem 7, according to which the infinite product, and consequently also G0(z), is an entire function. On account of the form of the factors of G0(z), the second part of Theorem 7 at once yields that G0(z) also possesses the required properties. The uniform convergence of the series (4) in the circle about the origin with radius R (R > 0 arbitrary, but fixed) is established as follows:

Since the series (3) also converges for z = R, and since zv → ∞, m can be chosen so large that

[image: image]

for all v > m. Let us for the moment replace z/zv by u, kv by k, and αv by α. Then, for v > m, the vth term of the series (4) has the form

[image: image]

Now for | u | < 1 we can set21

[image: image]

so that this vth term is further equal to

[image: image]

and hence22

[image: image]

because [image: image] Further, since ex − 1 ≤ xex for x ≥ 0,23 the vth term is less than or equal to

2α | u | k e2α| u |k < 6α | u |k,

the exponent of e being smaller than one, according to (5). Hence, for all sufficiently large v and all | z | ≤ R we have

[image: image]

But these are positive numbers whose sum converges (because of the manner in which the kv were chosen). Therefore, by Weierstrass’s M-test, I, §18, ∑ | fv(z) | is uniformly convergent in the circle with radius R about the origin as center, and so the proof of the Weierstrass factor-theorem is complete.

Exercises. 1. Prove Theorems 1-6.

2. Establish the convergence of, and evaluate, each of the following products with constant factors:

a) [image: image]

b) [image: image]

c) [image: image]

3. Determine the region of convergence of each of the following products:

a) [image: image]

b) [image: image]

c) [image: image]

d) [image: image] if p runs over all the prime numbers;

e) [image: image] if Σcn is an absolutely convergent series.

4. Prove the following formulas:

[image: image]

5. What values have the coefficients μn on the right-hand side in the equation

[image: image]

in which p again is to run over all the prime numbers.

6. If z1, z2, · · ·, zn, · · · is any sequence of numbers which tends to ∞, then, if all zn ≠ 0,

[image: image]

is convergent for every z. Hence, what smaller numbers kv can one always choose in the proof of Weierstrass’s factor-theorem instead of the ones used in the text?

7. Prove the following transfer of Weierstrass’s factor-theorem to the region of the unit circle:

Let z1, z2, · · ·, zn, · · · be an arbitrary sequence of distinct points inside the unit circle, which have no limit point in the interior of this circle (but only on its circumference). Let α1, α2, · · ·, αn · · · be a sequence of arbitrary positive integers. Then it is always possible to construct a function f(z) (and indeed, in a form closely analogous to the Weierstrass product) which is regular in the unit circle, and there has zeros of the orders a, at precisely the points zn, respectively, (and no others).

8. With the aid of the preceding theorem, construct functions which have the unit circle for a natural boundary.

§3. Examples of Weierstrass’s Factor-theorem

Since the formation of entire functions with prescribed zeros is extremely simple—it was only somewhat more laborious to carry out carefully all the proofs,—one can easily construct any number of examples.

The product is simplest if the prescribed zeros and orders are such, that the series [image: image] and consequently, for every z, the series [image: image] converges absolutely for our sequence z1 z2, · · · . For then it is possible to take all kv = 1, and the desired function is obtained simply in the form

[image: image]

If, e.g., the points 0, 1, 4, 9, · · ·, v2, · · · are to be zeros of order unity, then

[image: image]

with h(z) an arbitrary entire function, is the most general solution of the problem. If the points 1, 8, · · ·, v3, · · · are to be zeros of respective orders 1, 2, · · ·, v, · · ·, then

[image: image]

is the most general solution.

In addition to these simple examples, whose number is easily enlarged, we shall now present several applications of the factor theorem which are of particular function-theoretical importance.

1st Example: sin πz. Consider the problem of constructing an entire function which has zeros, of order unity, at precisely all the real lattice points (i.e., at 0, ±1, ±2, · · ·). We number these points so that z0 = 0, Z1 = +1, z2 = −1, · · ·, z2v − 1 = v, z2v, = −v, · · ·, (v = 1, 2, · · ·). The series

[image: image]

is absolutely convergent for every z, and we can therefore take all kv = 2. Then

[image: image]

is the most general solution of the problem.

Since the function sin πz is evidently also a solution of the problem, it must be contained in the expression just found. That is, there exists a certain entire function, which we shall call h0(z), such that

[image: image]

If we succeed in obtaining this function h0(z), we shall have the factor representation of sin πz in the sense of §1 (see p. 6).

The function h0(z) certainly can not be ascertained from a knowledge of the zeros alone. On the contrary, for its determination we must make use of further properties of the particular function sin πz; e.g., its power-series expansion, its periodicity properties, the conformal map effected by it, its behavior at infinity, etc. We sketch briefly a method for determining h0(z).25

First, we show that ho″(z) is a constant. According to §2, Theorem 8, it follows from (1) that

[image: image]

According to Theorem 9, this expression may be differentiated repeatedly term by term. Thus,

[image: image]

or, written more briefly,

[image: image]

This relation holds in every closed region which contains no real lattice points. If we replace z by z + 1 in the right-hand member, it is not altered; because sin2πz has the period + 1, and

[image: image]

Hence, h0″(z) is an entire function with the period + 1. In order to show that h0″(z) is a constant, it is sufficient, by 1, §28, 1, to show that | h0″(z) | cannot become arbitrarily large. On account of the periodicity of h0″(z) swhich we just established, it is sufficient, for this purpose, to show that a constant K exists such that | h0″(z) | < K for all z = x + iy for which 0 ≤ x ≤ 1 and | y | ≥ 1.

Now for these z,

[image: image]

and, since sin πz = (1/2i)(eiπz − e−iπz),

[image: image]

for those z. Consequently,

[image: image]

there, and this expression certainly remains less than a fixed bound for all | y | ≥ 1. Hence,

h0″(z) = constant = c″

According to the inequality just obtained, | h0″(z) | is arbitrarily small if | y | is sufficiently large; hence c″ must be equal to zero. Therefore

h0″(z) = 0,     h0′(z) = constant = c′,

and hence by (2)

[image: image]

If we substitute −z for z in this equality, we see that c′ = − c′, and hence c′ = 0. Then h0(z) and eh0(z) are also constant. Therefore

[image: image]

If we divide through by z and allow z to approach zero, we obtain π = c. Thus,

[image: image]

valid for all z, is the product representation of the sine-function which we set out to find.

2d Example: Weierstrass’s σ-function. Let ω and ω′ be two non-zero numbers whose ratio is not real (or: which do not lie in a straight line with the origin). Then an entire function is to be constructed having zeros, of order unity, at all points of the form

[image: image]

and at no other points.

Draw the straight lines L, L′ joining the origin to the points ω, ω′, respectively (see Fig. 1). Mark the points kω on L and k′ω′ on L′ and through each of these points draw a line parallel to L′, L, respectively. The points of intersection of these two families of parallel lines are precisely the given points kω + k′ω′. They are the “lattice points of a network of parallelograms” determined by ω and ω′.

We can enumerate these lattice points in the following manner. Consider the parallelograms whose centers lie at the origin, and whose sides are parallel to L, L′ and have in turn the lengths 2ω, 4ω, 6ω, 8ω, · · ·, 2ω′, 4ω′, 6ω′, 8ω′, · · ·, respectively. These sides are indicated by interrupted lines in Fig. 1. Now, start with the point O, and number the points lying on the sides of the successive parallelograms; beginning on each parallelogram with the point kω, and traversing the parallelogram in the mathematically positive sense. We thus obtain a sequence of lattice points, which begins with

[image: image]

Fig.1.

0, ω, ω + ω′, ω′, − ω + ω′, − ω, − ω, − ω′,

ω − ω′, 2ω, 2ω + ω′, 2ω + 2ω′, · · ·.

Keeping the points in this order, we denote them by z0, z1, z2, · · ·. First we shall show that the series

[image: image]

is absolutely convergent for every z. Let us number the parallelograms, along which we just counted the lattice points, the 1st, 2d, 3d, · · · according to size. On the pth one of these lie precisely 8p of our lattice points, whose absolute values, moreover, are greater than or equal to ph, if h denotes the smaller of the two altitudes of the “fundamental parallelogram” with vertices 0, ω, ω + ω′, ω′. Hence, the points of the pth parallelogram contribute to the series [image: image] an absolute value which is less than or equal to

[image: image]

Since Σ(1/p2) converges, the series above also converges absolutely for every z. It is therefore sufficient to take all kv, = 3 in the Weierstrass product, and

[image: image]

is, with the meaning given to the zv, an entire function with the required properties. In the Weierstrassian theory of elliptic functions, this function is called the Sigma-function belonging to the pair of periods (ω, ω′), and is denoted by

[image: image]

Because of the absolute convergence of the product, the order in which the factors appear does not matter any more (see §2, Theorem 6). Hence, without further establishing the sequence of the lattice points, we can write

[image: image]

Here k and k′ take on independently of each other all positive and negative integral values and zero, without, however, being zero simultaneously. This last restriction is indicated by the accent after the product symbol.

3d Example. Finally, we shall construct an entire function which has zeros, of order unity, at z0 = 0, z1 = −1, z2 = −2, · · ·, zv, = − v, · · ·, and at no other point. Here it is obviously sufficient again to take all kv = 2, so that

[image: image]

is the most general function with the required properties. It is closely related to the so-called (Eulerian) Gamma-function, which, for real values of the argument, is familiar to the reader from the integral calculus, and which was defined by Gauss for arbitrary complex z ≠ 0, − 1, − 2, ... by means of the limit

[image: image]

(nz = ez log n, with log n real and positive).26

It is easy to see that this limit exists for all z in question. For if we write the reciprocal of the expression under consideration in the form

[image: image]

it is further equal to

[image: image]

Now, as is well known,

[image: image]

exists.27 Therefore, as n → ∞, our last expression tends (actually for every z) to the value of the entire function

[image: image]

which results from the solution of our last example by setting h(z) = Cz. Since K(z) is certainly different from zero for z ≠ 0, − 1, − 2, · · ·, the Gaussian limit as formulated above exists and is equal to [image: image] It thus defines a single-valued analytic function, namely, the reciprocal of the entire function K(z). (For further details, see §6. 3d Example).

Exercises. 1. Derive the values of the following three products from the sine-product:

[image: image]

2. Obtain the product expansions of the following entire functions:

a) ez − 1;

b) ez − ezv;

c) sin z − sin z0; cos z − cos z0.

3. Demonstrate the existence of entire functions which assume arbitrarily prescribed values w1 w2, · · ·, wn, · · · at arbitrarily assigned points z1 z2, · · ·, zn, · · ·, respectively, having no finite limit point.

1 This also holds for entire rational functions “with no zeros”, i.e., of degree zero (namely, the non-zero constants), for which the factor representation consists of the factor am ( = a0 ≠ 0) alone. On the other hand, our considerations, of course, no longer apply to the constant 0.

2 This means that the function is to have zeros of certain prescribed orders at certain prescribed points, and be distinct from zero at all other points.

3 This theorem seems almost trivial if we make use of the multiple-valued function log. For, let H(z) be an entire function which is nowhere equal to zero. Then h(t) = log H(z), with the condition that, e.g., h(0) be the principal value of log H(0), is also a regular function of z in a certain neighborhood of the origin. Its expansion there, h(z) = b0 + b1z + b2z2 + · · ·, consequently has a positive radius of convergence. This must (by I, §24, Theorem 1) be + ∞; because log H(z) can be singular only where H(z) is singular or equal to zero, and hence, nowhere in the finite part of the plane.

4 The proof actually demonstrates the following: If two functions f(z) and f1(z) are single-valued regular, and distinct from zero in a region [image: image] and if their logarithmic derivatives f′/f and f′1/f1 coincide there, then they differ in [image: image] by at most a constant factor (which must, of course, be equal to unity if f and f1 have the same value at some point of [image: image]).

5 If the entire function to be constructed is to have no zeros, then the factor G0(z) is to be suppressed, i.e., replaced by unity, which is nevertheless an entire function with the prescribed zeroe.

6 Detailed proofs are given in K. Knopp, Theory and Application of Infinite Series, translated by R. C. Young, London and Glasgow, 1928.

7 With reference to the corresponding definition for infinite series, one might already be inclined to call the product (1) convergent with the value U if

[image: image]

But then every product in which only a single factor vanishes would evidently be convergent, and always with the same value zero. Likewise, every product such that | uv | ≤ θ < 1 for all v > m would be convergent, and always with the same value zero. To exclude these cases we employ the more useful definition above, and, if necessary, draw attention to the restriction it contains by adding: “in the stricter sense”.

8 The definition which first suggests itself: “Πuv, shall be called absolutely convergent if Π | uv | converges,” is not to the purpose, since then every convergent product would at the same time converge absolutely.

9 Accordiflg to this, [image: image] for example, is absolutely convergent for every value of z, because the series ∑ | z2/v2 | = | z |2 ∑(1/v2) converges.

10 In other words, the commutative law holds for absolutely convergent infinite products as well as for products having only a finite number of factors. This is not true for non-absolutely convergent products. On the other hand, the associative law holds for all convergent products, i.e., one may, in an arbitrary manner, group consecutive factors into one by means of parentheses.

11 For instance, the region of convergence of [image: image] is the entire z-plane, according to the last footnote but one.

12 The proof will show that there are only a finite number of factors in question.

13 For x ≥ 0, 1 + x ≤ 1 + x + x2/2! + · · · = ex.

14 This is defined as the ordinary derivative divided by the original function. If F(z) = g1(z) · g2(z) · · · gk(z), and if all the factors are differentiable and distinct from zero at z0, then

[image: image]

15 For, | 1 + fv(z) |, as a continuous function, attains its greatest lower bound, and this cannot be zero in [image: image]

16 This can be done, e.g.; by describing circles about the origin with radii 1, 2, 3, · · ·, arranging the points as they appear in the consecutive circular rings, and ordering those (only finite in number) which lie in the same ring, according to any rule.

17 Much smaller numbers will often do.

18 α/2α < 1 for every natural number α.

19 We shall find it convenient sometimes to write exp z instead of ez.

20 The exponentials in the brackets ensure the convergence of the product, which would, in general, diverge without these. They are therefore called the convergence-producing factors.

Weierstrass called the expressions in the brackets primary factors.

21 For, the series in the exponent on the right has for its sum the principal value of log (1 − u).

According to the theorem formulated on p. 4, footnote, this simple fact also follows from the coincidence of both sides for u = 0 and the equality of their logarithmic derivatives for all | u | < 1.

22 | ew − 1 | < | w | + | w2/2! | + · · · = e| w | − 1 for every complex number w.

23 ex − 1 = x + x2/2! + · · · = x(1 + x/2! + x2/3! + · · ·) ≤ xex.

24 The transformations are justified according to p. 10, footnote 2.

25 Here we are concerned with a typical question: One has two analytical expressions: A1(z) and A2(z), say, as in the present case the already familiar power-series representation of sin πz on the one hand, and the infinite product z · Π(1 − (z2/v2)) on the other. In the course of an investigation, one is led to the conjecture that both expressions represent the same function, or stand in some simple relationship to one another. How can this be proved? The determination of h0(z) carried out in the text shows that even in the present apparently very simple instance such an identification is not very easily made.

26 After the elementary functions, the Gamma-function is one of the most important functions of analysis. It is met with in the most varied investigations of pure and applied mathematics, from the theory of numbers to theoretical physics, so that an intimate knowledge of its analytical properties is absolutely indispensable.

The first study of this function is to be traced back to the problem of interpolating the sequence of factorials 0!( = 1), 1 !, 2!, · · · ; i.e., joining the points (v, v!) or (as one usually writes, following Euler) the points with coordinates x = v + 1, y = v; (v = 0, 1, 2, · · ·) by as simple a curve as possible. This is the problem of finding the simplest real function y = F(x) of the real variable x such that y = v! for x = v + 1. Euler gave as a solution the integral [image: image] which converges for all [image: image](z) > 0; Gauss, the limit mentioned in the text. Both solutions yield the same function for [image: image](z) > 0. For lack of space we must suppress the proof of this last assertion. An especially elementary proof has been given by A. Pringsheim, Math. Ann. 31 (1888), pp. 455-481.

27 It is immediately evident from the geometrical interpretation of the integral as a plane area, that

[image: image]

for every n = 1, 2, · · ·. If we set [image: image] then 0 ≤ γn > (1/n) − (1/(n+1)). Therefore Σγn, = C is convergent, with 0 > C > 1. Consequently

[image: image]

and, since 1/n → 0 and [image: image]

[(1 + (1/2) + · · · + (1/n)) − log n] → C.

C is called Euler’s or Mascheroni’s constant. Its value lies between zero and one; more precisely: C = 0.5772156649 · · ·.


CHAPTER 2

MEROMORPHIC FUNCTIONS

§4. Mittag-Leffler’s Partial-fractions-theorem

The fractional rational functions are completely characterized in a purely function-theoretical manner by Theorems 1-3 in I, §35. Analogous to our procedure in the preceding chapter, we express the fundamental properties of these functions in the following two statements:

(A) For every (fractional) rational function there is a so-called decomposition into partied fractions, which displays its poles and the corresponding principal parts.

Thus, let f0(z) be the given rational function, and let z1, z2, · · ·, zk be its poles with the corresponding principal parts

[image: image]

Then we can set

(2)    f0(z) = g0(z) + h1(z) + · · · + hk(z),

where g0(z) is a suitable entire rational function. We infer at once from this decomposition into partial fractions, that every other rational function f(z) having the same poles with the same respective principal parts can differ from f0(z) in the term g0(z) alone. Furthermore, one can arbitrarily assign these poles and their principal parts. In other words:

(B) It is always possible to construct a rational function whose poles and their principal parts are prescribed. This function can be represented as a partial-fractions decomposition which displays these poles and their principal parts. The most general function of this kind is obtained from a particular one by adding to it an arbitrary entire rational function.

These fundamental facts concerning rational functions can again be carried over in all particulars to the more general class of meromorphic functions, whose definition we have already indicated in the Introduction, and which we shall now state more precisely.

Definition. A single-valued function shall—without regard to its behavior at infinity—be called meromorphic, if it has no singidarities other than (at most) poles in the entire plane.

On the basis of this definition we have the following theorem:

Theorem 1. A meromorphic function has in every finite region at most a finite number of poles.

For otherwise there would exist a finite limit point of poles, and this point would be singular, but certainly not a pole.

According to this, the rational functions are special cases of meromorphic functions, and the entire functions must also be regarded as such.

The function [image: image] is meromorphic: because in the finite part of the plane it has a singularity, namely a pole of order unity, only wherever sin z has a zero. We see, likewise, that [image: image] and tan z are meromorphic functions. More generally, if G(z) denotes any entire function, its reciprocal, 1/G(z), is a meromorphic function (and hence, e.g., the function Γ(z) = 1/K(z), considered at the end of the preceding paragraph, is meromorphic). For, 1/G(z) has poles (but otherwise no singularities) at those, and only those, points at which G(z) has zeros; and the orders of both are the same. If G1(z) is an entire function which has no zeros in common with G(z), we see that G1(z)/G(z) is a meromorphic function whose poles coincide in position and order (although, in general, not in their principal parts) with those of 1/G(z).1

We now again set ourselves the problem which corresponds to the second statement (B). We propose to investigate whether, and how, one can construct a meromorphic function if its poles and the corresponding principal parts are prescribed, and to what extent a meromorphic function is determined by these conditions.

This last question can be answered immediately. If M0(z) and M(z) are two meromorphic functions which coincide in their poles and the corresponding principal parts, then their difference, M(z) — M0(z), is evidently an entire function. Consequently, they differ by at most an (additive) entire function (“a meromorphic function with no poles”). Conversely, since the addition of such a function to M0(z) does not alter its poles or the corresponding principal parts, we are able to say the following:

Theorem 2. Let M0(z) be a particular meromorphic function. Then, if G(z) denotes an arbitrary entire function,

M(z) = M0(z) + G(z)

is the most general meromorphic function which coincides with M0(z) in its poles and the corresponding principal parts.

There remains only the investigation of the possibility and method of constructing a particular meromorphic function with arbitrarily prescribed poles.

According to Theorem 1, the set of assigned poles cannot have a finite limit point. If this is excluded, however, then the problem posed can be solved without any further restriction. The following theorem is named after its discoverer:

Mittag-Leffler’s partial-fractions-theorem. Let any finite or infinite set of points having no finite limit point be prescribed, and associate with each of its points a principal part, i.e., a rational function of the special form (1). Then there exists a meromorphic function which has poles with the prescribed principal parts at precisely the prescribed points, and is otherwise regular. It can be represented in the form of a partial-fractions decomposition (see p. 40 for the final form) from which one can read off again the poles along with their principal parts. Further, by Theorem 2, if M0(z) is one such function,

M(z) = M0(z) + G(z)

is the most general function satisfying the conditions of the problem, if G(z) denotes an arbitrary entire function.

This theorem solves the problem which corresponds to statement (B) concerning rational functions. Let us regard it for the moment as having been proved. Then the solution of the problem corresponding to statement (A) also follows immediately therefrom. For, let M(z) be an arbitrarily given meromorphic function. The set of its poles has no finite limit point. Hence, according to Mittag-Leffler’s theorem, another meromorphic function, M0(z), having the same poles and principal parts as M(z), can be constructed in the form of a partial-fractions decomposition displaying these. Then, by Theorem 2,

M(z) = M0(z) + G0(z),

where G0(z) denotes a suitable entire function. We have thus actually obtained a decomposition of the given meromorphic function M(z) into partial fractions, from which its poles and the corresponding principal parts can be read off.

Exercises. 1. cot z and [image: image] are two meromorphic functions which coincide in their poles and the corresponding principal parts. (Proof?) According to Theorem 2, the first differs from the second only by an (additive) entire function. Find this function.

2. The same for the functions

[image: image]

§5. Proof of Mittag-Leffler’s Theorem

If the function to be constructed is to have no poles at all, then every entire function is a solution of the problem. If it is to have the finitely many poles z1, z2, · · ·, zk with the respective principal parts h1(z), h2(z), · · ·, hk(z), then evidently

M0(z) = h1(z) + h2(z) + · · · + hk(z)

is a solution. If, however, an infinite number of poles are prescribed, we cannot attain our goal so simply; because the analogous series, now infinite, would diverge in general. Nevertheless, we can produce the convergence, as in §2, by means of a suitable modification of the terms of the series.

To this end, we make exactly the same agreements regarding the enumeration of the poles as we did in §2, p. 17 in connection with the zeros. If the origin is a prescribed pole, we denote it by z0 and leave it aside for the time being. Let h0(z), h1(z), · · ·, hv(z), ... be the principal parts corresponding to the points z0, z1, · · ·, zv, ...; hv(z) is understood to be an expression of the type appearing in formula (1), p. 34. Each of these functions hv(z), v = 1, 2, 3, · · ·, is regular in a neighborhood of the origin. Its power-series expansion

hv(z) = a0(v) + a1(v)(z) + a2(v)(z2)+ · · · (v = 1,2, ...) for this neighborhood converges for all | z | < | zv |; hence, it is uniformly convergent for all | z | < [image: image] | zv |. Consequently (for every v = 1, 2, 3, ...) an integer nv can be determined such that the remainder of the power series after the nvth term remains, in absolute value, less than any preassigned positive number, e.g., [image: image] We denote the sum of the first nv terms of the series by gv(z). Thus, gv(z) is an entire rational function of degree nv:

gv(z) = a0(v) + a1(v) (z) + · · · + anv(v)(znv) (v = 1,2,3, ...), and for all | z | < [image: image] | zv | we have

[image: image]

Then

[image: image]

(Mittag-Leffler’s partial-fractions-theorem)

is a meromorphic function satisfying the conditions of the theorem. (If the origin is not assigned as a pole, the term h0(z) must, of course, be omitted.)

To prove this, we must merely show that the right-hand side defines an analytic function having in every finite domain, e.g., a circle with radius R about the origin as center, exactly the prescribed singularities and no others.

Now, | zv | → + ∞. Therefore it is possible to choose m so large, that | zv | > 2R, and hence R < [image: Image] | zv |, for all v > m. Then, for all | z | ≤ R and all v > m,

| z | < [image: Image] | zv | and consequently | hv(z) − gv(z) | < [image: Image]

Hence, for all | z | ≤ R, the series

[image: image]

is (absolutely and) uniformly convergent. Since its terms are regular for | z | ≤ R (because the poles of the hv (z) with v > m lie outside the circle | z | = R), it defines there a regular function which we shall denote by Fm(z). Then evidently

[image: image]

is also an analytic function which is regular in the circle with radius R about the origin as center, with the exception of those points zv in this circle which are poles with principal parts hv(z). The same is valid for every finite region, because R was completely arbitrary; and hence, M0(z) is a meromorphic function with the required properties.

From the proof it follows that it is sufficient to take the degree nv of the polynomial gv(z) (the sum of the first nv terms of the power series for hv(z)) so large, that, having chosen an arbitrary R > 0, the terms | hv(z) − gv(z) | for all | z | ≤ R finally (i.e., for all sufficiently large v) remain less than the terms of a convergent series of positive terms.

Exercises. 1. Does the Mittag-Leffler theorem still hold if the prescribed principal parts contain an infinite number of negative powers? How do the theorem and its proof read then?

2. In connection with Mittag-Leffler’s theorem, can one assign the ascending part of the Laurent expansion—or at least a finite number of its terms—at all points zv (or at several, or one)?

3. The Mittag-Leffler theorem, like the Weierstrass theorem (see §2, Ex. 7), can be carried over to the unit circle. Formulate and prove the theorem indicated.

4. Solve Exercise 3, §3 once again, with the means that have now been developed.

§6. Examples of Mittag-Leffler’s Theorem

At times, the “convergence-producing terms” gv(z) are not at all necessary; cf. the analogous case in connection with Weierstrass’s theorem. Then, of course, the function to be constructed is especially simple. If, e.g., the points 0, 1, 4, · · ·, v2, ... are to be poles of order unity with respective principal parts [image: image] then

[image: image]

is a solution. For, let R > 0 be chosen arbitrarily, and m > [image: Image] Then the series from v = m + 1 on is evidently uniformly convergent in | z | ≤ R,2 which proves our assertion.

We proceed to construct meromorphic functions corresponding to the examples in §3.

1st Example: cot πz. The real lattice points are to be poles of order unity with the residue +1, and hence, with the principal parts

[image: image]

For v = 1, 2, 3, · · ·,

[image: image]

and it suffices to take all nv = 0, and hence,

[image: image]

because then for all sufficiently large v (namely, for all v > 4R) and all | z | ≤ R,

[image: image]

so that the | hv(z) − gv(z) | finally remain less than the terms of an obviously convergent series of positive terms. Consequently, according to the concluding remark of the preceding paragraph, if G(z) is an arbitrary entire function,

[image: image]

is the most general function of the kind required.

The function cot πz also has poles of order unity at the points 0, ±1, ±2, ... (cf. I, p. 126, 3). If n is one of them, the residue at this point is

[image: image]

which can be read off immediately from the indicated series-expansion for a neighborhood of the point z = n. Hence, the function π cot πz is contained among the function’s M(z) which we just constructed.

We have thus arrived at formula (2) of §3 from an entirely different direction. The still undetermined entire function G(z), which there was called [image: image] cannot be ascertained solely from the nature and position of the poles. We should, as before, have to make use of special properties of the function in question. However, in determining the product for sin πz, we have already discovered that we have to set [image: image] that is, G(z), equal to zero. Therefore

[image: image]

is the partial-fractions decomposition of the cotangent-function.

2d Example: Weierstrass’s [image: image]-function. We shall construct a meromorphic function which has a pole of order two with the principal part

[image: image]

at each of the lattice points zv = kω + k′ω′, (v = 1, 2, 3, · · ·), described and enumerated in §3, Example 2. For v = 1, 2, 3, · · ·,

[image: image]

and it is again sufficient to take all nv = 0, and hence, to take as gv(z) the first term of this expansion. For then we have

[image: image]

and consequently, for all | z | ≤ R, with arbitrary R > 0, and all sufficiently large v (namely, as soon as | zv | > 2R),

| hv(z) − gv(z) |

[image: image]

This is (according to §3, p. 29) the general term of a convergent series of positive terms. Hence,

[image: image]

is a meromorphic function of the type required, and the most general function of this type results immediately therefrom.

In the Weierstrassian theory of elliptic functions, this function M0(z) is called the Pe-function belonging to the pair of periods (ω, ω′), and is denoted by

[image: image]

Because of the absolute convergence of the series, the order in which the terms appear does not matter. Hence (cf. p. 30), without further establishing the sequence of the lattice points, we can write

[image: image]

Here k and k′ take on, independently of each other, all positive and negative integral values and zero, without, however, being zero simultaneously. This last restriction is indicated by the accent after the summation symbol.

This function [image: image](z) bears a close relation to the σ-function of §3, similar to that of cotangent to sine. In fact, according to §2, Theorem 8,

[image: image]

and further, by §2, Theorem 9,

[image: image]

Hence,

[image: image]

The close connection between Examples 1 and 2 of this paragraph and of §3 suggests the possibility of the existence of a direct relationship between the fundamental theorems themselves—the Weierstrass and the Mittag-Leffler. This is indeed the case: one can derive the first from the second (but not conversely). The method is briefly the following:

Let it be required to construct an entire function G0(z) with zeros zv of respective orders αv. First, according to Mittag-Leffler’s theorem, construct a meromorphic function M0(z) having simple poles with residues αv, and, hence, with principal parts [image: image] at the points zv. One finds, then, almost immediately, that M0 (z) is the logarithmic derivative of an entire function, G0(z), which can be written in the form of an infinite product, and which satisfies the conditions of Weierstrass’s theorem.

3d Example: The Gamma-function. The function Γ(z), mentioned already in connection with Example 3 of Weierstrass’s theorem, proved to be the reciprocal of the entire function K(z) which was constructed there. From this we see immediately that

(1) Γ(z) is a meromorphic function having a simple pole (for the residue see (7) below) only at each of the points 0, − 1, − 2, · · ·. Moreover, it is the reciprocal of an entire function, and therefore has no zeros.

We develop several further properties of this important function:

(2) For every z ≠ 0, − 1, − 2, · · ·,

Γ(z + 1) = zΓ(z):

    (Functional equation of the Gamma-function)

Proof:

[image: image]

(3) For every integer v ≥ 0,

Γ(v + 1) = v!;

i. e., Γ(z) solves the interpolation problem mentioned on p. 31, footnote.

Proof: For v > 0, according to (2),

Γ(v + 1) = vΓ(v) = v(v − 1)Γ(v − 1) = · · · = v!Γ(1);

and that Γ(1) = 1 is seen immediately from the Gaussian definition.

(4) For every z we have4

[image: Image]

Proof: The Gaussian definition says that, as n → ∞,

[image: Image]

The denominator here is equal to Γ(z + n + 1), as one finds by applying the functional equation n + 1 times; and this proves the assertion.

(5) For every non-integral z,

[image: Image]

Proof: According to the Gaussian definition, the reciprocal of the left-hand side is equal to

[image: Image]

[image: Image]

Proof: For z = 1/2, (5) yields [Γ(1/2)]2 = π, from which the assertion follows immediately (because from the Gaussian definition Γ(1/2) is read off as positive).

(7) The respective residues at the poles −v, (v = 0, 1, 2, · · ·), established in (1), are

[image: Image]

Proof: According to its meaning, the residue of a simple pole at z = − v is obtained by evaluating

[image: Image]

By (2), however,

[image: Image]

so that as z → − v,

[image: Image]

4th Example: The Riemann ζ-function. The Zeta-function, whose most important function-theoretical properties were established by Riemann, plays a fundamental role in the analytic theory of numbers.

In all that follows, tz, for positive t, is understood to be the (single-valued) entire function ez log t, where log t has its real value. Then the terms of the series (cf. I, §17, Ex. 2α)

[image: Image]

are entire functions. For the absolute values of these terms in the closed half-plane [image: image](z) ≥ 1 + δ (δ > 0 arbitrary) we have

[image: Image]

Therefore, by Weierstrass’s M-test, the series is uniformly convergent there. According to I, §19, Theorem 3, since δ > 0 was arbitrary, this means that the series represents a regular function in the half-plane [image: image](z) > 1. It is this function which is called the Riemann Zeta-function and denoted by ζ(z).

Theorem. ζ(z) can be. continued across the boundary [image: image](z) = 1 of the half-plane [image: image](z) > 1, and proves to be a meromorphic function having the single pole z = 1 with the principal part 1/(z − 1); i.e., z − 1 is a simple pole with the residue +15.

1st Step: Continuation up to the line [image: image](z) = 0· With n−z, the functions [image: Image] for n = 1, 2, · · · are álso entire functions. Since each of these has a zero at z = 1,

[image: Image]

are also entire functions. For [image: image](z) ≥ 1 + δ, the absolute value of the last integral (by I, §11, 5) is less than or equal to n−1−δ. [image: Image]ence, for the same reason as before,

[image: Image]

is convergent for [image: image](z) > 1. If we subtract this from

[image: Image]

and note that

[image: Image]

—which can be verified at once by means of an integration by parts on the right-hand side,—we have

[image: Image]

Herewith the continuation in question is accomplished. In order to realize this, one need only show, bearing in mind the form of the first two terms on the right, that the third term, or even only that the new series on the right-hand side, represents a regular function for [image: image](z) > 0. This follows, however, from considerations quite similar to those encountered before: the terms of the series are again entire functions (indeed, they arose from the subtraction of such functions!) and in absolute value are less than or equal to n−1−δ for [image: image](z) ≥ δ, from which everything follows as above. Consequently, by means of (a), the asserted character of the point +1 is made evident; and, moreover, the region of existence of f (z) is extended to the left by a strip of unit width.

In a similar manner, one can repeatedly extend the region of existence to the left by such a strip, and so finally prove the theorem completely. We shall carry out the next two steps.

2d Step: Continuation up to the line [image: image](z) = − 1. Integrating by parts again, one verifies immediately that

[image: Image]

and hence

[image: Image]

According to the result of the first step, the function inside the brackets of the third term is regular for [image: image](z) > − 1, except at z = 0 where there is a simple pole. Because of the factor z before the bracket, the third term itself is a regular function for [image: image](z) > − 1, with no exceptions. This also holds for the last term, because the terms of the new series are entire functions which, in absolute value, are less than or equal to n− 1−δ for [image: image](z) > − 1 + δ,—from which everything follows once more.

3d Step: Continuation up to the line [image: image](z) = − 2. Another integration by parts gives and hence

[image: Image]

and hence

[image: Image]

Considerations closely corresponding to those just dealt with show that the only singularity of ζ(z) in the halfplane [image: image](z) > −2 is the simple pole at +1 with the principal part [image: Image].

It is now sufficiently clear how one proves that ζ(z) − [image: Image] is regular in the half-plane [image: image](z) > −(k + 1) if it has already been shown that it is regular in the half-plane [image: image](z) > − k, (k = 2, 3, · · ·). The truth of all our assertions concerning ζ(z) is thereby established.6

Exercises. 1. Find the Mittag-Leffler partial-fractions-expansion for each of the following meromorphic functions:

a) tan z;

b) [image: image]

c) [image: image]

d) [image: image]

e) [image: image]

f) [image: image]

2. The sequence of functions

[image: Image]

is uniformly convergent in every bounded, closed region containing none of the points 0, − 1, − 2, · · ·.

3. Let z1 and z2 be two points distinct from 0, − 1, − 2, · · ·. Determine

[image: Image]

4. The entire function K(z) defined in the text has the following representation as an integral:

[image: Image]

where k denotes a path which begins on the left at infinity, proceeds close below the negative real axis to a neighborhood of the origin, turns about this point in the positive direction, and then returns to infinity close above the negative real axis. (Pay attention to the multiple-valuedness of t−s—as a function of t, for fixed z; details concerning this in sec. II.)

5. Carry out in detail the derivation, sketched in the text, of Weierstrass’s theorem from Mittag-Leffler’s.

6. Prove the fact-mentioned on p. 49, footnote, that the Γ-function is characterized uniquely by the two properties 2 and 4 (pp. 48-9).

7. In connection with §2, Ex.4a, show that the Riemann ζ-function has no zeros in the half-plane [image: image](z) > 1.

1 This last example represents the most general case; for there is the following Theorem: Every meromorphic function f(z) can be expressed as the quotient of two entire functions having no zeros in common. Proof: The poles of f(z) have no finite limit point. According to Weierstrass’s factor-theorem, we can construct an entire function G(z) whose zeros coincide in position and order with the poles of f(z). Then f(z)·G(z) is evidently an entire function, G1(z). Hence, f(z) = G1(z)/G(z); and G1(z) has no zero in common with G(z).

2 Because for v > m and | z | ≤ R we have

[image: image]

3 [image: image] is an abbreviated notation for [image: image] This function is frequently called the Weierstrass ζ-function, and denoted by ζ(z). It has, of course, nothing to do with the Riemann ζ-function which is treated in Example 4. At the same time, [image: image], furnishes us with an example of a meromorphic function which has a simple pole with the residue +1 at each of the lattice points of our network of parallelograms.

4 The functional equation (2) together with this limit relation (4) are characteristic for the Γ-function, i.e., there is no analytic function besides Γ(z) which satisfies (2) and (4). We must leave the proof of this proposition to the reader.

5 This singular result can also be written as follows:

[image: Image]

or, after a very simple transformation:

[image: Image]

The symbol “∼” indicates that the limit of the quotient of both sides as n → ∞ is unity; in other words, that both sides are “asymptotically equivalent”, as it is customary to say. The left-hand side is none other than the coefficient of zn in the binomial series

[image: Image]

consequently, (6) is synonymous with the statement that

[image: Image]

Finally, instead of (6) we can write:

[image: Image]

in which form our result proves to be identical with Wallis’s product, which is also obtained at once from the sine-product for z = 1/2. (Cf. §3, Ex. 1a).)

5 Stated somewhat differently: the difference ζ(z) − (z − 1)−1 is an entire (transcendental) function.

6 That ζ(z) − (z − 1)−1 is a transcendental entire function follows, e.g., thus: From the series for ζ(z), we see immediately that [image: Image] If the difference in question were a rational entire function, it would be identically equal to one, so that ζ(z) = 1 + (z − 1)−1. That this is false, however, is seen for z = 2.

A full treatment of the Riemann ζ-function, including all number-theoretical applications, is to be found in E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, 2 vols., Leipzig, 1909, and E. Landau, Vorlesungen über Zahlentheorie, 3 vols., Leipzig, 1927. See also A. E. Ingham, The Distribution of Prime Numbers, Cambridge Tracts, No. 30, 1932; E. C. Titch-marsh, The Zeta-function of Riemann, Cambridge Tracts, No. 26, 1930.


CHAPTER 3

PERIODIC FUNCTIONS

§7. The Periods of Analytic Functions

Definition. An analytic function f (z) is said to be periodic if there exists a non-zero number Ω such that for every z of the domain of regularity of f(z), z + Ω also belongs to this domain, and

(1)                                    f(z + Ω) = f(z).

Every such number Ω is called a period of f(z).

Among the elementary functions, ez and the trigonometric functions are periodic, tan z has, e.g., the period −7π; 13π and 2π are also periods of tan z.

In order to confine our attention to what is most important, we shall assume in the following that f(z), except for possible isolated singularities, is single-valued and regular in the entire plane (so that, in particular, entire and meromorphic functions come under consideration). On the other hand, f(z) is not to reduce to a constant, since otherwise equation (1) would be trivial.

If in (1) we replace z by z + Ω, we see that, along with Ω 2Ω is also a period of the function. The following more general theorem is just as easy to prove:

Theorem 1. The sum and difference of two periods of a function are also periods of the same;1 if n, n′ [image: image] 0 denote any integers, then, along with Ω, all numbers nΩ are periods, and, along with Ω and Ω′, all numbers nΩ + n′Ω′ are periods.

We now suppose the points corresponding to all the periods of a function, the so-called “period-points”, to be marked in the plane. Then we have the important

Theorem 2. The set of period-points of a single-valued function has no finite limit point.

Proof: Otherwise every neighborhood of this limit point would contain an infinite number of period-points, and hence, also such period-points having an arbitrarily small distance ( = absolute value of the difference) from each other. Then, according to Theorem 1, there would exist periods with arbitrarily small absolute values, and one could determine a sequence of periods Ω1, Ω2, · · · such that Ωn, → 0. If, now, z0 is an arbitrary regular point of f(z), and f(z0) = a, then for every n = 1, 2, 3, · · · we should have

f(z0 + Ωn) = f(z0) = a,

implying the existence of a-points in every neighborhood of z0. But this is impossible, according to I, §21, Theorem 1, since we have assumed that f(z) is not constant. The theorem thus proved can be formulated as follows:

Theorem 3. A single-valued function cannot have arbitrarily small periods.

From these theorems, which provide us with a first orientation, we can immediately derive some important consequences.

Let f(z) have the period Ω. The numbers nΩ, which, according to Theorem 1, are also periods, all lie on the line L passing through 0 and Ω, and there constitute a set of equidistant points (see Fig. 2). Suppose there exists a further period-point on ·L(e.g., tan z with the period −7π has, in addition to the periods −7πn, the period 3π). It must be of the form

nΩ + ΘΩ,                              (n integral, 0 < θ < 1).

Then, by Theorem 1, θΩ itself is a period. Thus, if there exist any periods at all on L besides the periods nΩ, then there are some between 0 and Ω. But there can be only a finite number of these (because of Theorem 2), so that one of them lies nearest to 0. We shall call this one ω,2 and we now have

Theorem 4. Every period, on L is of the form

[image: image]

Fig. 2.

nω,                                           (n = 0, ±1, ±2, · · ·).

Proof: By Theorem 1, all the numbers nω are periods. If there were one on L besides these, it would be of the form nω + θω, (0 < θ < 1). But then θω, i.e., a point on L between 0 and ω, would also be a period, contrary to the assumption that ω is the period-point on L nearest to 0.

By this procedure, ω on L is fully determined except for (the unessential) sign, and is called a primitive period of f(z).

The function tan z has, e.g., the period Ω = −7π; L here is the axis of reals. There are six additional periods of tan z between 0 and −7π, namely, −π, −2π, · · ·, −6π, of which −π is the one nearest to 0. Hence, −π is a primitive period of tan z, so that all periods lying on L(i.e. in this case, all real periods) have the form −nπ.

If the function has no periods besides the periods nω found in this manner, the function is said to be simply periodic. In the other case, the periods do not all lie on one straight line, but form, rather, a plane point set. We acquire an insight into the nature of this set in the following manner.

Since, according to Theorem 2, there are only a finite number of period-points in any circle, there must exist a smallest circle, with center 0, on which there are one or more periods (distinct from 0) (see Fig. 3). We call one of these ω; it is necessarily a primitive period of the function, and on the line L. through 0 and ω there are precisely the periods nω and no others. We suppose them to be erased for the moment. Then again there exists a smallest circle, with center 0, on which there are one or more of the remaining periods. Let us call that one of them (there are certainly only a finite number) ω′ which we first meet in describing this circle in the positive direction if we begin at that half of the line L which extends from 0 to ω. Then the following theorem completely settles the question as to the distribution of the period-points:

Theorem 5. All period-points of the function are given by

[image: image]

fig. 3

Proof: These numbers, according to Theorem 1, are certainly periods. If one existed besides these, it would have to have the form

(n + θ)ω + (n′ + θ′)ω′,   0 ≤ θ ≤ 1, 0 ≤ θ′ ≤ 1, with θ and θ′ not simultaneously integral (i.e., 0 or 1). But then

Ω = θω + θ′ω′

would also be a period. This point would lie in the parallelogram with the vertices 0, ω, ω + ω′, ω′, without coinciding with any of the vertices. According to the method used to determine 0, ω, ω′ and it certainly could not lie in the triangle 0, ω, ω′, and would therefore have to lie in the other half of the parallelogram in question. But, with Ω,

Ω′ = −Ω + ω + ω′

would also be a period; and it would be in the triangle 0, ω, ω′, where, however, as just shown, there can be no period. Hence, the assumption that there exist periods other than the points nω + n′ω′ is inadmissible.

Thus, if a single-valued periodic function is not simply periodic, its periods have the position described by Theorem 5. It will be shown presently (p. 78) that such functions exist. A function of this kind is called doubly periodic, and we have

Theorem 6. The periodicity of a single-valued analytic function can be only simple or double; there is no third.3

The numbers ω and ω′ are called a pair of primitive periods of the function. Since they are not collinear with 0, their ratio is necessarily non-real:4

[image: image]

Whereas in the case of a simply periodic function a primitive period, apart from the (quite unessential) sign, is uniquely determined, one can determine a pair of primitive periods of a doubly periodic function in various (infinitely many) ways (cf. Figs. 1 and 3, where the same set of points of the form nω + n′ω′ is obtained with different meanings of ω and ω′).

Exercises. 1. A (non-constant) rational function cannot be periodic.

2. A (non-constant) single-valued analytic function cannot have 1 and [image: image] as periods.

3. As a supplement to the consideration of p. 61 for determining ω and ω′, show that there can be at most two, four, or six periods on the circle (with center 0) on which ω lies. These are then at the ends of a diameter, the vertices of a rectangle, the vertices of a regular hexagon, respectively.

4. If precisely two periods (hence, ω and −ω) lie on the circle referred to in Exercise 3, the selection of w and ω′ described in the text leads to values for which the period-ratio τ = ω′/ω satisfies the conditions:

| τ | ≥ 1,       − [image: image] < [image: image](τ) ≤) [image: image].

These relations are still valid if four or six periods lie on that circle, provided that a suitable one of these periods is denoted by ω. Proof?

§8. Simply Periodic Functions

One can visualize the periodicity of a simply periodic function in the following manner: Through an arbitrary point c of L, e.g., the origin, draw any line L′ which does

[image: image]

Fig. 4.

not coincide with L(see Fig. 4), and draw parallels to L′ through all the points c + nω. The z-plane is thus divided into strips, which are called period-strips. The equation

f(z + nω) = f(z)

now means simply that the function f(z) has the same values at “congruent” points, i.e., points that have congruent positions in pairs of strips5 (cf. Fig. 4, where several points congruent to z0 have been marked). Consequently, a periodic function exhausts its entire domain of values in one of the strips, even if one regards—as we shall always do in the sequel—only one of the two boundaries as belonging to the strip. In every other strip, all the values, and hence all regular and singular properties, occur once more: what holds for a point z0 also holds for every other congruent point.

ez has the primitive period 2πi. L here is the axis of imaginaries, and for L′ we can take the axis of reals. Then the region 0 ≤ [image: image](z) < 2π, for example, is a period-strip. sin z has ω = 2π for a primitive period. Hence, if γ denotes any real number, the region γ ≤ [image: image](z) < γ + 2π can be taken as a period-strip.

It is therefore sufficient to examine a simply periodic function in only one of the strips in order to get to know it completely. At the same time, it is useful to observe that it is no restriction to assume that ω has the particular value +1. For, if we set z = ωz′, then f(z) = f(ωz′) goes over into a function which, as a function of z′, evidently has the primitive period +1.6 Then precisely the real integers are the periods of the function, L is the axis of reals, and for L′ we can now take the axis of imaginaries, so that the figure of the plane divided into period-strips becomes especially clear.

The nature of the function f(z) is perceived more distinctly if we make use of the following artifice: We introduce a new variable ζ instead of z by setting

[image: image]

and consider the function φ(ζ) defined by

[image: image]

Since

f(z) = φ(ζ) = φ(ezπis),

this can also be interpreted thus: The given periodic function will not be regarded or represented as a function of z itself, but as a function of e2πis.

Since log ζ (cf. I, §26, 1) is an infinitely multiplevalued function, it would seem that φ(ζ) is also a multiple-valued function, and hence, that our investigation is rendered more difficult. However, due to the fact that all values of [image: image] log ζ result from a particular one by the addition of all integral multiples of 2πi, all values of log ζ differ from one another by integral (real) numbers, and hence, only by periods of f(z). The various determinations of log ζ thus furnish congruent values of z, and φ(ζ) therefore proves to be a single-valued function. The multiple-valuedness of the logarithm is just compensated for by the periodicity of the function f(z).

What is the region of existence of φ(ζ), and what is the nature of its singularities? Since log ζ is singular at 0 and ∞ (but at no other point), these two points may be singular for φ(ζ). Other singularities, however, are not introduced by the function log. Apart from these two points, φ(ζ) can be singular in those, and only those, points ζ which, by virtue of (a), correspond to singular points z of f(z). But now a considerable simplification takes place. For, if z0 is singular for f(z), so are all points of the form z0 + k with arbitrary integral k [image: image] 0. Only one singular point

ζ0 = ezπise = ezπi(s0 + k)

of the function φ(ζ) corresponds to this entire set of singular points of f(z). φ(ζ) thus takes over, so to speak, the singularities of only one strip of f(z).

We summarize this result in

Theorem 1. Every one of the considered simply periodic functions f(z) having the primitive period 1 can be regarded or represented as a single-valued function φ(ζ) of ζ = ezπis. This new function is, in general, of a simpler nature than f(z); for, by virtue of(a), only one singularity of φ(ζ) corresponds to every set of congruent singularities of f(z). φ(ζ) is regular except for these and the possibly newly appearing singular points 0 and ∞.7

Examples 1. For the sine-function we have, as is well known,

[image: image]

φ(ζ) in this case is a very simple rational function.

2. Likewise, the rational function [image: image] corresponds to the function cos 2πz.

3. Similarly, we have

[image: image]

(As it should, the single pole ζ = e° = +1, for example, corresponds to the simple poles of the function cot πz at 0, ±1, ±2, · · ·.)

With these agreements, it is now easy to derive a form of expansion which is valid for all our functions f(z). Since f(z) is regular everywhere except for isolated singularities, one can in various ways, by means of parallels to the axis of reals, cut a rectangle out of the period-strip such that f(z) is regular in its interior and on its vertical boundaries. If y1 and y2 (> y1) are the ordinates of the aforementioned parallels, f(z) is regular in the entire strip (P) which runs parallel to the axis of reals and is characterized by

y1 < [image: image](z) < y2.

Consequently, φ(ζ) is regular provided that z in ζ = ezπis satisfies the condition just stated, i.e., provided that

e−2πy2 = r2 < | ζ | < r1 = e−2πy1.8

Thus, φ(ζ) is single-valued and regular in an annulus determined by the rectangle which was cut out, and can therefore be expanded in one, and only one, Laurent series

[image: image]

in that ring. This series converges (see I, §30, p. 120) in the broadest ring that can be formed from the hitherto existing one by concentric contraction of the inner circle and expansion of the outer circle, and which is still devoid of singular points. If for ζ we substitute its value in terms of z, we obtain

Theorem 2. Let f(z) be a single-valued function with the primitive period 1. Then, to every strip (P) which is parallel to the axis of reals and is devoid of singular points, there corresponds one, and only one, expansion of the form

[image: image]

This series converges in the broadest strip that can be formed from (P) by a translation of Us boundaries upward and downward, and which is stiU devoid of singular points. Outside this strip the series is divergent.

If this strip contains the axis of reals in its interior— which can always be brought about if the axis has no singular point on it,—we are led from this to the Fourier expansion of real analytic functions by substituting ezπis = cos 2πz + i sin 2πz. However, at this point we cannot enter further into this matter.

We must also be content to remark that from every other type of expansion of the single-valued function φ(ζ)—ordinary power series, product expansion, partial-fractions expansion—we can, of course, derive a corresponding representation of f(z) as a function of ezπis

Of the periodic functions, we have up to now met with only the elementary functions; we shall first get to know others in the next paragraph. For several we have obtained above (p. 68) the corresponding functions φ(ζ) which turned out to be particularly simple, namely: rational.9 We conclude from this, that those simply periodic functions f(z) for which the corresponding function φ(ζ) is rational are especially simple, but also especially important. Moreover, the class of these functions—the class of rational functions of e2πis—is governed by particularly beautiful and typical laws. We shall derive a few of these.

Theorem 3. Every function f(z) of this class possesses an algebraic addition-theorem’, i.e., for variable z1 and z2, f(z1 + z2) can be expressed algebraically in terms of f(,z1) and f(z2).

(For example, for the sine-function, if we make +1 the primitive period, we have the addition-theorem written in algebraic form:

[image: image]

Proof: By hypothesis, f(z) = R(ζ), where R denotes a rational function of its argument. Consequently, if we set ezπis1 = ζ1, ezπis2 = ζ2, and hence e2πi(s1 + s2) = ζ1ζ2, we have

f(z1) = R(ζ1), f(z2) = R(ζ2), f(z1 + z2) = R(ζ1ζ2).

It is possible to eliminate ζ1 and ζ2 algebraically from these three rational equations in ζ1 and ζ2, so that the algebraic addition-theorem follows immediately.

Theorem 4. Between any pair of functions f1(z) and f2(z) of our class, there exists an algebraic relation.

Proof: From the hypothesis that

f1(z) = R1(ζ) and f2(z) = R2(ζ),

the assertion results immediately from the elimination of ζ.

With f(z) = φ(ζ), the function f′(z), since it is equal to 2πiζφ′(ζ), also belongs to our class. If we apply the preceding theorem to this function, we obtain

Theorem 5. Every function ω = f(z) of our class satisfies an algebraic differential equation of the simple form10

[image: image]

where A(ω) denotes an algebraic function.

Since it follows from this—under suitable restriction of the variability of w—that

[image: image]

we can state finally:

Theorem 6. Every such function w = f(z) is the inverse of the integral z = F(w) of an algebraic function.11

Exercises. 1. Do there exist (single-valued) simply periodic functions having prescribed zeros (with prescribed orders) in the period-strip? If so, how are they to be set up explicitly?

2. Do there exist (single-valued) simply periodic functions having prescribed isolated singular points in the period-strip? For given principal parts, how can they be set up explicitly?

3. On what region in the w-plane does the function w = e(2πi/ω)z map the fundamental parallelogram of a network of parallelograms in the z-plane determined by (ω, ω′)?

§9. Doubly Periodic Functions; in Particular, Elliptic Functions

The periodicity of a doubly periodic function f(z) can be visualized in a manner analogous to the case of simply periodic functions. If ω and ω′ are a pair of primitive periods of f(z), we draw (cf. Fig. 1 or 3) parallels to L through all points n′ω′, and parallels to L′ through all points nω. The entire plane is hereby divided into a network of parallelograms whose lattice points are precisely the period-points nω + n′ω′. Let us imagine this network to be drawn, or any other resulting from an arbitrary translation of this one. Then the double periodicity of the function evidently means that f(z) assumes the same value, or exhibits the same singularity, at congruent points, i.e., now, at points having congruent positions (whose difference is therefore a period) in different parallelograms of the same network. Every one of these parallelograms (that is, every parallelogram with the vertices a, a + ω, a + ω + ω′, a + ω′; a arbitrary) is called a (indeed, also the) period-parallelogram of the function f(z), and we say that f(z) is a doubly periodic function belonging to this period-parallelo-gram.

In order to get to know such a doubly periodic function completely, it is therefore sufficient to study it “in the period-parallelogram”; e.g., in the so-called “fundamental parallelogram” with the vertices 0, ω, ω + ω′, ω′. Every regular or singular property which the function possesses at a point z0 is also found at every one of a set of points z0 + nω + n′ω′, which form the lattice points of one of our parallelogram networks.

The following theorem immediately follows from this remark:

Theorem 1. There exists no (non-constant) doubly periodic entire function. (First Liouville theorem.)

Proof: As an entire function, f(z) is bounded in every finite region. Consequently, a relation of the form | f(z) | < K, where K denotes a suitable constant, is valid for all the points of a period-parallelogram. But then | f(z) | < K for all other points, and hence, in the entire plane. From this it follows, according to I, §28.1, that f(z) is a constant. We had excluded this trivial case, however.

Thus, a (non-constant) doubly periodic function has at least one singular point in the period-parallelogram. The doubly periodic functions are classified according to the nature of these singular points, which, of course, are the same for every parallelogram.

Definition. A doubly periodic function which has no singularities other than poles12 in the period-parallelogram, or in other words: a meromorphic doubly periodic function, is called an elliptic function belonging to this period-parallelogram.

We shall further concern ourselves with only these functions in the following. First, we should be entitled to inquire whether such functions exist at all,13 for we have not encountered any up to now. Since we shall see presently, however, that the function [image: image](z), constructed in §6, Example 2, is an example of a doubly periodic function, we shall not consider the existence question at this moment.

According to the definition, an elliptic function has but a finite number of poles in the period-parallelogram. If we wish to enumerate these, we must make suitable agreements regarding the attachment of the boundaries to the parallelogram. We stipulate that only the vertex a and the two sides emanating from it, exclusive of their other terminal points, shall be considered as belonging to the period-parallelogram with the vertices a, a + ω, a + ω + ω′, a + ω′. With this agreement, it is obvious that for every point of the plane there is always one, and only one, congruent point in an arbitrary one of the period-parallelograms.

It now has a unique meaning to speak of the poles of an elliptic function “in the period-parallelogram.” On this we base the

Definition. The sum of the orders of the poles of an elliptic function in the period-parallelogram is called the order of the elliptic function.

The first Liouville theorem can then be stated also as follows:

Theorem 1a. There exists no(non-constant) elliptic function of order zero.

Immediately obvious is the following theorem for arbitrary doubly periodic functions:

Theorem 2. The sum, difference, product, and quotient of two doubly periodic functions f1(z) and f2(z) with the pair of primitive periods (ω, ω′), as well as the derivative of such a function, are also periodic with the periods ω and ω′. (However, these do not necessarily constitute a pair of primitive periods for the new function; also, this function may be a constant.) If f1 and f2 are elliptic, so is the new function.

In connection with Theorem 1, this immediately leads further to

Theorem 3. If two elliptic functions belonging to the same period-parallelogram have there the same poles with the same respective principal parts, then the functions differ by only an additive constant.

For, their difference is an elliptic function of order zero.

There is the following important theorem concerning the residues at the poles:

Theorem 4. The sum of the residues at the poles of an elliptic function in the period-parallelogram14 is equal to zero. (Second Liouville theorem.)

Proof: According to I, §33, the sum in question—apart from the factor 2πi—is given by the integral ∫f(z) dz taken along the boundary of the parallelogram in the positive sense, provided that no pole lies on the boundary. If this should not be the case for a first choice of the period-parallelogram, it can always be realized at once by means of a sufficiently small translation (e.g., in the direction of a diagonal), which obviously does not have any influence on the present assertion. We may therefore assume that that condition is already satisfied to begin with. If, then, a is the vertex associated with this parallelogram,

[image: image]

Now, we see immediately that the first and third integrals, as well as the second and fourth, differ only in sign; and hence, that their sum is zero. For if we replace z by z + ω′ in the third integral, it becomes

[image: image]

which is minus the first. The proof for the second and fourth integrals is similar. Hence, the sum of the residues is zero, Q. E. D.

From this theorem follows

Theorem 5. There exists no elliptic function of the first order.

Proof: It could have only one pole of the first order in the period-parallelogram. If its residue were c, the sum of the residues there would also equal c. By the preceding theorem, we should have c = 0; i.e., such a pole cannot exist at all.

According to Theorem 2, with f(z), the function f′(z)/f(z) is also an elliptic function with the periods ω and ω′. If we apply Theorem 4 to this function, bearing in mind the proofs of I, §33, Theorems 2 and 3, we obtain

Theorem 6. The number of zeros of an elliptic function in the period-parallelogram is equal to the number of its poles there—hence, equal to its order (Third Liouville theorem.)

If we apply this theorem to f(z) − a, we obtain, finally, the following theorem, which completely settles the question as to the domain of values of an elliptic function:

Theorem 7. In the period-parallelogram, an elliptic function of order m takes on every value, each precisely m times.

After these general considerations, we now turn to the actual setting up of several elliptic functions, and the investigation of their most important properties. As we have already stated, the function [image: image](z), constructed in §6, Example 2, is an elliptic function. We first prove that this is true of its derivative. Since this derivative can be obtained by differentiating the series for [image: image](z) term by term, we have immediately

[image: image]

for which we can write, since z0 was used to denote the origin,

[image: image]

where, in the last series, k and k′ take on all integral values [image: image] 0 independently of each other and in any order. But if k runs over all the integers [image: image] 0, so does (k − 1). Hence, if we substitute z + ω for z,

[image: image]

is actually the same series. Consequently,

[image: image] ′ (z + ω) = [image: image] ′ (z),

and in precisely the same manner we can show that

[image: image] ′ (z + ω′) = [image: image] ′ (z).

Herewith is proved the double periodicity of [image: image]′(z), and hence, the existence of doubly periodic functions in general.

We can show still more precisely, that ω and ω′ constitute a pair of primitive periods for [image: image]′(z), and hence, that the numbers zv = kω + k′ω′ represent all of its periods. For, if Ω is any period of [image: image]′(z), then [image: image]′(z + Ω) = [image: image]′(z) for every point of the domain of regularity of [image: image]′(z). If we allow z to approach one of the lattice points, zv(i.e., one of the poles of [image: image]′(z)), [image: image]′(z) and therefore also [image: image]′(z + Ω) become infinitely large. Hence, zv + Ω, too, must be a pole of [image: image]′(z), and consequently itself a lattice point, zμ. According to this, Ω = zμ − zv, and so Ω is also of the form kω + k′ω′, Q. E. D.

Now that we have this result, it is very easy to prove that [image: image](z) itself is a doubly periodic function with the same pair of primitive periods. By what we just proved, we have

[image: image]′(z + ω) − [image: image]′(z) = 0,

and hence

[image: image](z + ω) − [image: image](z) = c,

where c denotes a certain constant. We show that this constant must equal zero. The representation of [image: image](z) obtained in §6 implies, first of all, that [image: image](−z) = [image: image](z) For, k and k′ take on, independently of each other, all integral values in any order, without being zero simultaneously. We may therefore replace the letters k and k′ by −k and −k′, respectively. From this remark it follows (because of the exponent 2) that the series is not affected by changing z to −z. Hence, [image: image](z) is indeed an even function. If in [image: image](z + ω) − [image: image](z) = c we now substitute the value z = –[image: image]ω, we obtain, as asserted, [image: image]([image: image]ω) − [image: image]−(–[image: image]ω) = 0 = c. Hence,

[image: image](z + ω) = [image: image](z).

Since it is found, in an entirely similar manner, that

[image: image](z + ω′) = [image: image](z),

we have established the double periodicity of [image: image](z). That ω and ω′ constitute a pair of primitive periods for this function too follows from the corresponding result for [image: image]′(z) and from the fact that, in general,

[image: image](z + Ω) = [image: image](z) implies [image: image]′(z + Ω) = [image: image]′(z);

i. e., from the fact that [image: image]′(z) can have no other periods than those of [image: image]′(z). Since, finally, [image: image](z) and [image: image]′(z) are meromorphic functions, we have, to sum up:

Theorem 8. There exist doubly periodic functions; in particular, elliptic functions; and in fact, such functions possessing prescribed pairs of primitive periods. A first example thereof is furnished by Weierstrass’s [image: image]-,function.

This [image: image]-function must, for diverse reasons, be regarded as the simplest elliptic function. For, since there exist no elliptic functions of order zero or one, only those of the second order come under consideration as the simplest. That one of these will be regarded as the simplest, which has precisely one pole—call it ζ—of the second order, with the simplest possible principal part, 1/(z − ζ)2, in the period-parallelogram. If, in addition, this pole in the fundamental parallelogram lies at “the” vertex ζ = 0, we are led directly to the function [image: image](z), —apart from only an additive constant which comes into question because of Theorem 3.

Even this constant—in itself unimportant—is most easy to determine: About every one of its poles, [image: image](z) can be expanded in a Laurent series. For a neighborhood of the origin, this series is of the form

[image: image]

In this expression, the constant c0 has the value zero, as we immediately infer from

[image: image]

for z = 0.

This “simplest” elliptic function plays a predominant role in the Weierstrassian theory of elliptic functions,16 analogous to that of the exponential function in the theory of simply periodic functions. We can only illustrate this importance of the function [image: image](z) by means of several samples of the theory. We first prove (cf. §8, Theorem 5) the fundamental

Theorem 9. The function w = [image: image](z) satisfies the algebraic differential equation of the first order:

[image: image]

where g2 and g3 denote certain constants, the so-called “invariants of the [image: image]-function”, which are determined by ω and ω′ alone. The independent variable does not appear in the differential equation, and w′ is an algebraic function of w.

Proof: From the series for [image: image](z) − z−2 which we just used, and setting17

[image: image]

(n ≥ 3) for brevity, it follows, due to Weierstrass’s double-series theorem (I, p. 83) and the fact that

[image: image]

that

[image: image]

If, now, we follow Weierstrass and set

[image: image]

noting that the sn with odd subscripts must equal zero,18 then the initial terms of the desired expansion are

[image: image]

From this it follows, further, that

[image: image]

With these expansions, form the function

([image: image]′(z))2 – (4[image: image]3(z) – g2 [image: image](z) – gs).

According to Theorem 2, this function is, first of all, an elliptic function with the same periods and no other poles. It can be verified immediately, that no negative powers appear in its expansion for a neighborhood of the origin. Therefore, by Theorem 1a, the function reduces to a constant,—and in fact, to zero, since calculation shows further, that the constant term is also missing in the expansion. Hence, as asserted,

[image: image]′2 = 4[image: image]3 − g2 [image: image] − g3,

where g2, g3 have the above-mentioned values.19 It is well-known that, conversely, the function which satisfies such a differential equation is also uniquely determined as soon as two corresponding values of the variables are known. For the [image: image]-function, z = 0 and w = ∞, e.g., constitute such a pair of values. Consequently, we infer from

[image: image]

that

[image: image]

and hence, that w = [image: image](z) is the inverse function, or the inverse, of the function z = z(w) defined by this integral.20 Such an integral—more generally, every integral whose integrand is a rational function of the variable itself and of the square root of a polynomial in that variable of the third or fourth degree whose roots are all distinct—is called an elliptic integral (for the rather superficial reason that it first appeared in connection with the rectification of an arc of an ellipse). It was in the inverses of such functions defined by means of elliptic integrals, that Abel and Jacobi first discovered doubly periodic functions, which they therefore gave the name “elliptic functions”. We now set as our last aim, to prove a theorem which gives us, in a certain sense, a survey of the totality of elliptic functions:

Theorem 10. Every elliptic function with the periods ω and ω′ can be represented rationally in terms of the function p(z | [image: image]ω, [image: image]ω′) and its derivatives, provided that ω/ω′ is not real.21

The proof gives us at the same time an opportunity to become acquainted with several further important properties of our functions.

From [image: image](z + ω) = [image: image](z + ω′) = [image: image](z) it follows (cf. p. 47) that

[image: image]

if η and η′ denote suitable constants.22 And from this we find, further, that

σ(z + ω) = c·eη2 σ(z), σ(z + ω′) = c′·eη′z σ(z).

Since σ(z) is also an odd function, the new constants are again obtained by letting z = [image: image], and we have more precisely:

[image: image]

By means of the same two integration steps, we get the initial terms of the Laurent expansions for a neighborhood of the origin from those for [image: image](z):

[image: image]

(4)                            σ(z) = z + d5z5 + · · ·,

where we need not know the easily calculated coefficients b3, d5 and all the following ones.

Now we see on the basis of (2), that the function

[image: image]

in which a is an arbitrary point distinct from the lattice points, admits the periods ω and ω′; and hence, since it has only the single pole z = 0 in the fundamental parallelogram, that it represents an elliptic function, φ(z), belonging to this parallelogram. Since, now,

σ(z ± a) = ± σ(a) + σ′(a)·z ± [image: image]σ″(a)·z2 + · · ·,

the beginning of the expansion of φ(z) for a neighborhood of the origin reads

[image: image]

where again we need not know the coefficients e2, · · ·.

These first few terms show, however, that φ(z) − [image: image](z) + [image: image](a) is the constant 0; for, it is an elliptic function of order zero, which vanishes for z = 0. If, in order to emphasize the freedom in the choice of a, we write z′ instead of a, we have the fundamental formula

[image: image]

If we differentiate this formula logarithmically, first with respect to z, then with respect to z′, and add, we find the so-called addition-theorem for the function [image: image](z)

[image: image]

From this we obtain the addition-theorem for the function [image: image](z) by differentiating once more with respect to z:

[image: image]

With these preliminaries, we are now in a position to prove Theorem 10 as follows:

Let the given elliptic function f(z) have the k poles ζ1, ζ2, · · ·, ζk with the respective principal parts

[image: image]

in the period-parallelogram with the vertices 0, ω, ω + ω′, ω′. Now, since each of the functions

[image: image]

has at the origin a pole with the simple principal part

[image: image]

respectively, we see at a glance, that the function

[image: image]

is a meromorphic function which has a pole with the principal part hv(z) at ζv.

According to the addition-theorem for the [image: image]-fiunction, [image: image](z − ζv), and hence also its derivatives, can be expressed rationally in terms of [image: image](z) and its derivatives. Consequently, bearing in mind the formulation of our theorem, and replacing [image: image](z), [image: image]′(z), · · · for brevity by [image: image], [image: image]′, · · ·, we can write more simply

[image: image]

where by Rv we mean a rational function of its arguments. If we now add together the Hv(v = 1, 2, · · ·, k), the sum

[image: image]

appears. By virtue of the addition-theorem for [image: image](z), this sum can be replaced by

[image: image]

+ {a rational function of [image: image](z) and [image: image]′(z)).23

By Theorem 4, the parenthesis is equal to zero; and since the bracket is constant, the sum in question is a rational function of [image: image] and [image: image]′. We set it equal to R0([image: image], [image: image]′), and now we have

[image: image]

The sum of all the Hv(z) is thus a rational function of [image: image](z) and its derivatives, and hence, in particular, an elliptic function (despite the individually nonelliptic terms [image: image](z − ζv)!). If we subtract it from f(z), this function obviously loses all its poles, and therefore reduces to a constant, C0, so that we obtain the representation

[image: image]

which is our theorem.25

We shall have to be satisfied, within the limits of our little book, with these samples taken from the very extensive theory of elliptic functions.

Exercises. 1. If ω is positive and ω′ is a positive pure imaginary, then the [image: image]-function [image: image](z | [image: image], [image: image]′) is real on the boundary of the fundamental parallelogram (which in this case is a rectangle). Proof?

2. Under the conditions of the preceding exercise, on what region of the w-plane does w = [image: image](z) map the fundamental rectangle?

3. In connection with the preceding exercise, effect the conformai representation of a given rectangle on the unit circle.

4. Is ev(s) an elliptic function?

5. Carry out in detail the proof of the algebraic addition-theorem for the [image: image]-function as indicated in the footnote on p. 88.

6. Show that, in the fundamental parallelogram, [image: image]′(z) has the simple zeros [image: image]ω, [image: image](ω + ω′), [image: image]ω′,—and no others.

1 If f(z) is periodic, the number 0 is also classed with its periods; this is to be noted here and in the following.

2 If no further period lies between 0 and Ω, we set ω = Ω.

3 We call k complex numbers ω1, ω2, · · ·, ωk linearly independent, if no system of k real, integral numbers n1, n2, · · ·, nk, not all zero, exists, such that n1ω1 + n2ω2 + · · · + nkωk = 0. Then this theorem can be stated as follows: “A single-valued analytic function cannot possess more than two linearly independent periods.”

4 The imaginary part of the “period-ratio” ω′/ω is actually positive for our determination of the pair of primitive periods, because the positive rotation which carries the direction (0 · · · ω) into the direction (0 · · · ω′) is less than π.

5 Two points z0 and z1 are called congruent, if their difference z1 − z0 is a period nω.

6 In the foregoing, we have already written very often ezπis, sin 2πz, cot πz, etc. in order to make +1 a period of the function in question and thereby give the expansions a simpler form.

7 This result holds for every periodic function, and hence, also for the doubly-periodic functions treated in the next paragraph.

8 [image: image]

9 The function ζ naturally corresponds to the exponential function itself.

10 It is of the first order and does not contain the independent variable.

11 The reader should verify all of these theorems, and carry out their proofs, with ezπis and the trigonometric functions.

12 The number of poles in the period-parallelogram then is necessarily finite.

13 Their discovery, which goes back to Abel and Jacobi, was a very important scientific event.

14 As the proof will show, for this theorem to be valid it is not necessary that ω and ω′ be a pair of primitive periods of f(z).

15 Because the principal part is equal to 1/(z − ζ)2 = 1/z2, and, since [image: image](z) has already been shown to be an even function, no odd powers can appear.

16 In the (older) Jacobian theory, a function plays the role of the simplest, which, in the period-parallelogram, has two separate poles with residues (then necessarily) differing only in sign. These poles lie at the midpoints of the sides belonging to the fundamental parallelogram.

17 According to p. 29, the series are absolutely convergent for n ≥ 3.

18 Since the lattice points of the network, taken in suitable pun, differ only in sign, the corresponding pairs of terms of the series for sn, with n odd, are annulled.

19 This result has implications in many directions. We call attention at this point to the following:

By virtue of the equation

y2 − (4x3 − g2x − g3 = 0,

y is defined as a multiple-valued function of x, and x is defined as a multiple-valued function of y. (Here x and y, and after	wards t, denote complex numbers.) Each is an algebraic function of the other (further details of this are given in ch. 5); or, carrying over some notions from the “real” domain, we say that the equation defines an algebraic curve. Our foregoing result now shows that this “curve” has a parametric representation in

x = [image: image](t), y = [image: image]′(t).

This fact, namely, that we have found two single-valued, functions of a parameter t which yield precisely the same curve as the given implicit equation by means of which each of the variables x and y is defined as a multiple-valued function of the other, is expressed by saying that we have uniformized the curve. Thus, here we have uniformized a particular algebraic curve of the third degree with the aid of the [image: image]-function. We are dealing with a simpler case of uniformization when we represent the “circle” x2 + y2 − 1 = 0, with the aid of the trigonometric functions, in the form x = cos t, y = sin t. The problem of uniformization here indicated plays an important role in the modern theory of functions.

20 We started from the periods ω and ω′, constructed the [image: image]-function belonging to these, and found the above-mentioned differential equation for this function, in which the invariants g2 and g3 were determined by ω and ω′ alone. Now, the so-called problem of inversion is to determine whether, conversely, if g2 and g3 are assigned arbitrarily, the inverse of the function z = z(w), given as the integral above, is a [image: image]-function whose invariants are the numbers g2 and g3.

21 That, conversely, every function which is a rational combination of [image: image](z) and its derivatives is an elliptic function with the periods ω and ω′, is self-evident according to Theorem 2.

22 Since [image: image](z) is an odd function, we find, on setting z = −[image: image]w, that [image: image]η = [image: image] ([image: image]ω). Hence, according to p. 46, η can be calculated by means of a series, and η′, of course, likewise.

23 If we perform the differentiation and make use of the differential equation for [image: image](z)—from which we get [image: image]″(z) = 6[image: image]2(z) − (g2/2),—we can also write the addition-theorem in the form:

[image: image]

in which it is seen to be an algebraic addition-heorem (cf. §8, Theorem 3), because [image: image]′(z) and [image: image]′(z′) are expressible algebraically in terms of [image: image](z) and [image: image](z′).

24 If one ζv = 0, the corresponding term in the bracket is missing.

25 From [image: image]′2 = 4[image: image]3 − g2[image: image] − g3 we get, by differentiating:

          [image: image]″  = 6[image: image]2 − (g2/2), and further:

          [image: image]′′′ = 12[image: image][image: image]′,

          [image: image]′′′ = 12[image: image]′2 + 12[image: image][image: image]″ = 120[image: image]3 − 18g2[image: image] − 12g3,

etc. We see, in general, that all higher derivatives of [image: image](z) can be expressed as polynomials in [image: image](z) and [image: image]′(z). If we make use of this result, we can sharpen Theorem 10 to the effect that all elliptic fundions can be expressed rationally in temu of [image: image](z) and p′(z).


SECTION II

MULTIPLE-VALUED FUNCTIONS


CHAPTER 4

ROOT AND LOGARITHM

§10. Prefatory Remarks Concerning Multiple-valued Functions and Riemann Surfaces

We return now to the developments in I, ch. 8, particularly those of §24. There we saw how one can, in general, derive more and more new functional elements from a first such element, given, say, in the form of a power series, by means of analytic continuations—of which every single one is always absolutely unique and necessary,—and thereby enlarge the domain of existence of the function. We imagined this to proceed as far as possible. The complete analytic function resulting in this manner from one element was defined to be single-valued, when its behavior at every single particular point, z0, is always the same, independent of the path along which one may reach it by analytic continuations; in other words, when every point, z0, which has once belonged to the interior of a circle of convergence can never constitute an obstacle for any continuation, and when it is always made to correspond to the same functional value in the process of any continuation. Then all points of the z-plane are separated unambiguously into the regular and the nonregular, and to every regular point there is made to correspond one, and only-one, functional value. The totality of regular points forms a region in the sense of I, §4, the region of existence of the function, whose points are the “bearers” of the functional values of the single-valued function w = f(z).1

These functions are naturally easier to handle2 than others, and we have therefore dealt with them up to now almost exclusively.

All this is altered when we have a multiple-valued function before us, in which case the above-mentioned condition is not fulfilled in the continuation process. Then it is possible for several distinct functional values to correspond, as a result of different continuations, to one and the same point, and one and the same point may actually prove to be regular in one continuation and singular in another. Provisionally, we imagine that with every z are associated all those functional values which it acquires in the course of all possible continuations; in addition, if occasion arises, the designation “singular” is applied to it if it proves to be singular in any continuation.

Let w = F(z) be the functional configuration obtained in this way. Then the symbol w = F(z), for a given z, no longer has a uniquely determined sense, but rather can have several (a finite or an infinite number of) meanings. Examples are [image: image] and log z, which we have already treated somewhat more closely.

The main question, then, is, in general, the following—at first formulated quite loosely: How does one keep the various determinations of a multiple-valued function apart, how does one bring order and insight into its domain of values?

In definite individual cases this question will usually assume the following form: If a problem which by its nature must have a fully unique solution is solved with the aid of a multiple-valued function, which of its determinations is the one to use?

A few examples, in which we make use of the already somewhat familiar function log, will throw light on this formulation of the question and its difficulty.

1. Let (cf. p. 3, footnote) H(z) = a0 + a1z + · · · be an entire function with no zeros; let b0 be the principal value of the logarithm of a0(≠0). Then, as we have seen, in virtue of the condition that h(0) shall equal b0, h(z) = log H(z) becomes a well-defined entire function. For every z, h(z) is one logarithm of H(z); e.g., h(1) is

one value of log [image: image] Which one is it?

2. Let the non-zero complex numbers a and b be distinct, and let k be a path connecting them but not

passing through the origin. Then [image: image] is a definite complex number. Since [image: image] it is contained among the infinitely many values of log b − log a. Which one of these values is it?

3. Let the single-valued function f(z) be regular on, and in the interior of, the simple closed path C (cf. I, §33, Theorem 2), and let f(z) ≠ 0 along C. Let a denote any point of C. Then, since [image: image],

[image: image]

is certainly an integer [image: image] 0. What is its value?

4. Finally, we wish to show that a point may be regular for some continuations, singular for others:

[image: image] has two values; we select a definite one of these and denote it by c0. Then we see immediately, that there exists one, and only one, power series, ∑ cn(z − 1)n, which begins with c0, converges in a neighborhood of +1, and for which

[image: image]

which, consequently, in a few words, represents a Value of [image: image] where Log z denotes the principal value of log z. z = +1 is, of course, a regular point for this functional element. If we now imagine this element to be continued along, say, the unit circle in the positive sense—which is obviously possible,—then, on returning, the point +1 turns out to be singular, for, Log z has been increased by 2πi, and [image: image] is evidently not regular at z = +1 any more.3

We can now formulate the question somewhat more sharply in the following manner: Let w = f0(z) be a regular element, at z = z0, of the multiple-valued function w = F(z), and let it be continuable along the path k extending from z0 to ζ. Then we land at ζ with a definite one of the functional values F(ζ). Which one of these values is it?

For the present we shall give merely a cursory presentation of the method for overcoming these difficulties. Only after we have examined several examples more closely in this and the next chapter shall we seek a general answer in the last chapter.

The functional element from which we proceed may be assumed to be a power series. We imagine its circle of convergence to be cut out of paper, and its points to be made bearers of the (unique) functional values of the element. If, now, we continue the initial element by means of a second power series, we also think of its circle of convergence as being cut out and pasted in the proper position on the first disk. (We hereby obtain a figure like that in I, p. 100, Fig. 7b.) The parts pasted together are bearers of the same functional values, and are accordingly counted henceforth as a single sheet covered once with values. If we succeed in carrying out another continuation, we paste the new disk on in an entirely similar manner, etc. Each new disk is pasted on the preceding one, from which it was obtained by means of(eo ipso single-valued) continuation, in the manner described.

Suppose that, after repeated continuation, we arrive with one of the new circles over old territory—i.e., over a circular disk not immediately preceding (cf. I, p. 103 and Fig. 8). Then, the new disk shall be pasted together with the old one when, and only when, both are bearers of the same functional values, or, only so far as both bear the same functional values.4 If, however, they bear different functional values, let them overlap and remain disconnected. Then two sheets, which are bearers of different—but on each sheet fully unique—functional values, are superimposed on this part of the plane.

We always obey this rule in the future, and we imagine our procedure to be continued as long as possible. Then there results a surface-like configuration which covers the plane with several, in general actually infinitely many, “sheets” which can have the most varied forms, and can be joined together in the most varied manners.5 It is called the Riemann surface of the multiple-valued function w = F(z) defined by the initial element. The entire domain of values of F(z) is spread out on it in a completely single-valued manner, to the extent that, on every sheet, every point is the bearer of one, and only one, value. (All possible free boundaries or boundary points of a sheet of this surface are singular for the continuations giving rise to the sheet in question; for details, see below.)

Only after we have illustrated these very general ideas by several transparent examples shall we be able to fully appreciate the advantage of this method of representation.

Note, finally, that it is of course immaterial whether we continue by means of circular disks or by means of any other regions—say in the manner described in I, p. 92—provided only that we adhere to the agreements we have made.

Exercises. 1. Is it possible for a multiple-valued function to have the same value at two superposed points of its Riemann surface? Can it have the same value at all points of a neighborhood of two such points?

2. What kind of function (single-valued or multiple-valued) is defined by each of the following formulas:


a) [image: image]

b) [image: image]

c) [image: image]

d) [image: image]

e) [image: image]

f) log(es)?



§11. The Riemann Siufaces for [image: image] and log z

1. w = [image: image] can be regarded as the simplest multiple-valued function. We saw in I, §26, 2, that it is possible to continue the real function [image: image] defined and positive for x > 0, into the complex domain. For a neighborhood of +1, e.g., the continuation is effected by the binomial series

[image: image]

Proceeding from this element, we can carry out the continuation absolutely unhindered and in a fully unique manner so long as we avoid the negative axis of reals. With reference to the procedure, described in the preceding paragraph, for constructing the Riemann surface, this has the following significance: By joining domains, we can first of all fill out the entire plane which is cut only along the negative axis of reals, and make every one of its points the bearer of a single value of [image: image] which is uniquely determined by the initial element that was chosen. We say that, from the entire domain of values of w = [image: image] (where every z ≠ 0 bears two values), we have extracted a branch which is regular in the region just mentioned.

Now, since the. origin is the only finite singularity (concerning the point ∞, see p. 105), a further, analogous continuation across the edges of this domain is possible. However, if, e.g., we continue downward across the upper bank of the cut, we are no longer permitted to paste together. For, the parts of the region which project from the upper bank into the lower half-plane are now bearers of different functional values. These values, as we know, are the values already affixed there multiplied by the factor e2πi/2 = −1; i.e., the first values with opposite sign. The plane is thus covered a second time by these regional segments;6 and since the origin is the only obstacle to continuation, this second covering will eventually spread over the whole plane (excluding 0) until it returns to the negative axis of reals, receiving in the process the same values as before with sign changed.

[image: image]

Fig. 5.

Then the entire plane is overlaid with two sheets which wind around the origin, like a helicoid, in two turns, and on which the entire domain of values of [image: image] is spread out precisely once (cf. Fig. 5). The surface has two free boundaries, one above and one below, extending along the negative axis of reals, across which we can continue the function still further. Assume this to take place once more across the upper bank into the lower half-plane. Then, the attached regional parts, which at first cover the plane a third time, are bearers of values which again are equal to those below them multiplied by the factor (−1); they are thus bearers of the same functional values as those in the lower halfplane of the lowermost sheet. We therefore do not have a third sheet, but rather, in a few words, we must join the two free edges by penetrating the intermediate sheet. But then everything is accomplished at a blow. For now there is no free boundary and no possibility for an analytic continuation any more: we have obtained the Riemann surface for the function w = [image: image], on which the entire domain of values of this function is unfolded in a fully unique manner, [image: image] is a single-valued function of position on this surface. If we proceed from point to point along any path on the surface, we move in just as single-valued a domain of values as in the case of a single-valued function.7

A (non-zero) point of the surface now is no longer determined by z alone; it is also necessary to specify the sheet on which it lies. Since numbering the two sheets is, naturally, of no consequence, it is usually arranged so that the surface is thought of as being built up in some arbitrary, but henceforth fixed, manner. Then a point of the same is determined uniquely bynaming z and the value of [image: image] affixed there. Finally, the point 0, round which the two sheets hang together, is also added to the surface, but is only counted once. We let it bear the value 0, and call it a simple branchpoint of the surface (or a branch-point of order one). It is easy to verify that every complex number w is affixed once, and only once, to our Riemann surface.

In a neighborhood of every non-zero point of the Riemann surface, the attached domain of values constitutes a single-valued regular analytic function. Moreover, this neighborhood may be expanded so far as it remains single-sheeted and, consequently, does not contain the origin. If [image: image] is such a region (e.g., the circle, in one sheet, with center z0 and radius | z0 |; or the right half-plane of one sheet; or the plane cut along the negative axis of reals), we say that it, together with its covering of values, represents a branch of the function.

(If, e.g., we denote by C the unit circle described in the positive sense, and if we begin at +1 with the meaning of [image: image] developed on p.100, then accordingly

[image: image]

2. Matters are analogous for the function w = [image: image] (p > 2). The results of I, §26, 2 show, on the basis of similar considerations, that in this case the continuation process, as it was envisaged with the aid of Fig. 5, is not yet complete after two encirclements of the origin. If we continue across the free edges of the surface obtained thus far (say, once more, across the upper bank into the lower half-plane), we see that a third covering of the plane is necessary in order to accommodate the domain of values; etc. Only after p coverings is it apparent8 that another continuation across the upper bank into the lower half-plane does not lead to a new covering of the latter, but, rather, to the one which is already attached to the lowermost sheet in the lower half-plane. Therefore we penetrate the intermediate (p − 1) sheets and fuse the upper bank of the pth sheet with the lower bank of the first sheet. Therewith every boundary disappears, and the continuation process is now complete. On this p-sheeted Riemann surface for the function w = [image: image] its entire domain of values is uniquely unfolded, and, in addition, all the remarks we just made in the special case p = 2 are valid here. The origin is called a branch-point of order (p − 1). We now add it to the surface, counting it once, and let it bear the value 0.

We indicate briefly, that it is possible to carry out exactly the same considerations using the sphere of complex numbers (cf. I, p. 4) instead of the z-plane. We arrive at an analogous two-, p-sheeted covering of the sphere with a Riemann spherical surface. The reader will be able to assure himself of this without any difficulty. The branch-point 0 of order (p − 1) is now at the south pole, and we find—and herein lies the advantage of using the sphere—that the north pole, i.e., the point ∞, is a point of an entirely analogous nature, namely, a branch-point of order(p − 1). We have before us a p-sheeted Riemann sphere with two branch-points; neither is favored above the other on the sphere. Corresponding to the agreements made in the case of 0, we also add the point ∞ to the surface, count it only once, however, and let it bear the value ∞.

It can be verified immediately, that every complex number w (including 0 and ∞) is affixed to the surface once, and only once.

One’s insight into such a fact can be made more vivid in the following way: In studying a function w = f(z), instead of letting the points z bear the values w, as we have done up to now, place near the z-plane (or z-sphere) a w-plane (w-sphere), and mark the point w = f(z) on it. We call this point, briefly, the image of z in virtue of the mapping function f(z). If we displace z continuously on its sphere (naturally within the domain of existence off(z)), w will also move continuously on its own sphere. Consequently, the mapping itself is said to be continuous. To every point, line, figure on the z-plane or z-sphere there corresponds, on the basis of this continuous representation, an “image” on the w-surface. The nature of this mapping must be regarded as characteristic for the function.9

If we make use of this notion, we can also state our last results as follows: By means of w = [image: image] the corresponding p-sheeted Riemann sphere is mapped one-to-one on the simple10 (i.e., one-sheeted) w-sphere. To every point of the one configuration corresponds one, and only one, point of the other.11

3. The construction of the Riemann surface for w = log z is analogous to that for w = [image: image] since here, too, only 0 and ∞ are singular. We begin, say, with the principal value, regular at +1: the functional element

[image: image]

It can (cf. I, §26, 1) be continued uniquely and unhindered over the z-plane cut along the negative axis of reals. We thus obtain a single-valued and regular function in this region; it is the principal value or principal branch of log z.

We can further continue across the edges of the cut. If this is done, as in the case of [image: image] we get a second sheet (to be thought of as lying above the first), whose points bear values equal to the subjacent ones increased by 2πi. The same occurs when we come to a third sheet, etc. The construction of the surface proceeds in exactly the same manner as for [image: image] except that here we never come to an end, because every sheet bears values equal to those immediately below increased by 2πi. We therefore suppose that above every sheet there lies another one; whereby, in imagination, the continuation process in the upward direction is completed, i.e., a further extension in this direction is impossible.

Now, the lower bank of the first sheet is still free, and we can continue across it (into the upper halfplane). We think of the resulting new sheet as lying below the first; it bears values equal to the superjacent (principal) values diminished by 2πi,—new values in any case. This ever-possible continuation process also produces new sheets with new coverings endlessly in the downward direction. For, every sheet bears values equal to those immediately above diminished by 2πi. If we accordingly suppose that below every sheet there lies another, we finally, in imagination, complete the process of constructing the surface, which now is not open to extension in any direction.

The entire domain of values of w = log z is unfolded on this infinite-sheeted Riemann surface in a fully unique manner; log z is a single-valued function of position on the surface.

If we carry out the same procedure on the sphere instead of the plane—picture an infinite number of spherical shells wound around one another,—we see immediately that the point ∞ (the north pole) is exactly the same sort of point as the point 0. We have before us an infinite-sheeted Riemann sphere with two branch-points of infinite order. Such branch-points are never added to the surface, and are never made to bear functional values.

It remains for us to say a few words about the distribution of the domain of values of log z on our surface. On the first sheet are attached the principal

values of log z = [image: image] i.e., those for which the path of integration runs wholly—but arbitrarily—in the plane cut along the negative axis of reals. If, in order to get from +1 to z, we proceed, say, first along the positive axis of reals to the point | z |, and thence along the circle with center 0 and radius | z | along the shortest path to z, we have

[image: image]

where Log | z | denotes the real logarithm of the positive number | z |, and we take

− π < am z ≤ + π.12

(The multiple-valuedness of log z accordingly appears as an immediate consequence of the ambiguity of the amplitude of a complex number.) The principal value of w = log z thus satisfies the condition

− π < [image: image] (w) ≤ + π.

The point w therefore lies in the strip of the w-plane characterized by precisely this inequality; its width is 2π, and it lies symmetric with respect to the axis of reals. We read off from z = ew, that every point w of this strip is the image of a z ≠ 0. Consequently, by means of the principal value of log z, the cut plane, 0 excluded, is mapped one-to-one on the indicated strip of the ie-plane. The remaining values of log z, which are to befound onthe other sheets, differ from the principal value by only a term of the form 2kπi with integral k [image: image] 0. The corresponding points w consequently lie in the strips characterized by

[image: image]

These are joined to the first strip in an unbroken sequence, and fill out the entire w-plane precisely once.13 We may therefore say that by means of w = log z, the infinite-sheeted Riemann z-plane with the two branch-points 0 and ∞ (not belonging to it) is mapped one-to-one (and continuously) on the simple w-plane; or, that every complex number (≠ ∞) is attached to one, and only one, point on the Riemann surface for log z.

The questions raised as examples on pp. 95–96 are now easily answered:

1. log H(z) is uniquely defined as follows: The choice of log H(0) means that we begin at the point H(0) of an arbitrarily chosen, but now fixed, sheet of the log-surface. Let us proceed from 0 along two paths, k1 and k2, to a point z0. Then the value of the function H varies from H(0) to H(z0) along two paths which, since H(z) ≠ 0, can neither pass through, nor .enclose, the point 0. Both, therefore, lead us on the log-surface to one and the same perfectly well-determined point of a perfectly well-determined sheet. There the functional value log H(z0) stands uniquely affixed.

2. [image: image] is now to be understood

as follows: Beginning at the point a on any sheet (i.e., choosing log a arbitrarily), we describe the path k on the log-surface. Since k must not pass through 0, it leads us to the point b of a perfectly well-determined sheet, and here the value of log b, which alone comes into question, is uniquely attached.

3. Here, too, everything is determined uniquely if we follow the path described on the log-surface by f(z) as z traverses the path C.

As a further application, we prove the following

Theorem. Let the two functions f(z) and φ(z) be regular in the simply connected region [image: image] Let the simple closed path C lie within [image: image] and let

f(z) ≠ 0, | f(z) | > | φ(z) |

along C. Then the two functions f(z) and f(z) + φ(z) have the same number of zeros in the subregion of [image: image] enclosed by C. (Rouché’s Theorem.)

Proof: According to I, §33, Theorem 2, it is sufficient to show that

[image: image]

The last integral is equal to [log (1 + (φ/f))](c), i.e., the difference between the initial value and the terminal value of log (1 +(φ/f)) when C is traversed in the positive sense. But, when z describes the path C, the value of 1 + (φ/f) remains in the right half-plane (actually, inside the circle with center +1 and radius 1), because | φ/f | < 1. Since the (more precisely: every) logarithm is fully unique there, the above-mentioned difference must equal zero, Q. E. D.

Exercises. 1. Evaluate the integrals

[image: image] and [image: image]

where k denotes the first quadrant of the unit circle that lies on the first-covered sheet of the proper Riemann surface.

2. What values can the integral [image: image] have for an arbitrary path extending from a definite one of the (p distinct) points +1 to a definite one of the (p distinct) points z0 ≠ 0?

What values can the integral [image: image] have for a

corresponding interpretation?

3. Prove the fundamental theorem of algebra, with the aid of Rouché’s theorem, by setting

[image: image]

and choosing for C a circle with a sufficiently large radius.

§12. The Riemann Surfaces for the Functions

[image: image]

The situation as regards the function w = [image: image] (a arbitrary) is quite analogous to the case w = [image: image] only, instead of the origin, the point a is the simple branch-point. For the sphere, the difference appears even more unessential, since now, as before, we obtain a two-sheeted Riemann sphere with two branch-points. The branch-point which previously lay at the south pole now lies at a—in all other respects the considerations of the preceding paragraph remain unaltered.

It is but a short step from this surface to the surface for the function w = [image: image] where a1 and a2 denote arbitrary, but distinct, complex numbers. We again obtain a two-sheeted Riemann sphere having simple branch-points at a1 and a2. The point ∞ is now like any other point distinct from a1 and a2; i.e., the two sheets pass by each other smoothly at ∞.

We shall derive all this once more, directly, according to the general considerations of §10:

[image: image]

is regular at all points distinct from a1 and a2. If z0 is such a point, let [image: image] and [image: image] be arbitrary, but henceforth fixed, values of these double-valued square roots. Then, with the aid of the binomial series employed on p. 100, we obtain from the regular elements

[image: image]

at z0 an expansion of w:

f = f1 · f2 = c0 + c1(z − z0) + c2(z − z0)2 + · · ·,

which converges for a neighborhood of z0. f constitutes an element of our function. Starting with this element, we shall construct the Riemann surface. We can continue unhindered over the entire plane so long as we avoid the points a1 and a2. Since [image: image] · · [image: image] a multiple covering of a point z could only take place if it were reached along two paths beginning at z0 and surrounding one of the two points aν. Let us cut the plane from a1 to a2 to ∞, and never pass over this cut during the continuation.14 Then, by means of our continuation process, one, and only one, functional value is associated with every point of this cut plane; the latter becomes a bearer of a branch of our function.15 Now we can further continue across the banks of the cut, and the only question is, whether in so doing we obtain new coverings or not. If we had only the element f1(z) of the function [image: image] before us, we should only have to make one cut from a1 to ∞ (corresponding to the cut along the negative axis of reals in §11), and, in crossing it, [image: image] would be multiplied by (−1). The same holds for the element f2(z) of the function [image: image] if we make a cut from a2 to ∞. Accordingly, the cut from a1 to a2 to ∞ which we just drew can assume this role for both square roots. Let us continue across that part of the cut which extends from a1 to a2 (and which is oriented thus). Then, since f1 goes over into −f1 and f2 remains unaltered, the regions already covered are overlaid with new values, namely, the old ones with sign changed. There results a second sheet— which we imagine to lie, say, above the first—with a second covering (differing from the first only in sign). It hangs together crosswise, to put it briefly, with the first sheet along the cut-segment in question, a crossing of this segment always leading us from one sheet to the other. The second sheet also must be thought of as being cut from a2 to ∞.

Then both sheets at present are cut along a2 · · · ∞. If we cross this cut in the process of continuation still possible, both of the above-mentioned square roots are multiplied by (−1), so that w remains unaltered; i.e., such a crossing does not lead to a new covering, but we must rather join each sheet to itself along this part of the original cut. Therewith all boundaries disappear, and hence no further continuation is possible. Thus, we have obtained once more the above-described two-sheeted Riemann surface with two branch-points.

[image: image] is a single-valued function of position on this surface. We again add the points a1 and a2 (each counted only once) to the surface and let them bear the value 0, and we likewise add the points ∞ of the two sheets (which are simple there) and let them bear the value ∞. Then every complex number ω (including ∞) is to be found at precisely two points of our Riemann surface.

It is not at all difficult to apply these considerations to the functions

[image: image]

where k > 2, and a1, a2, · · ·, ak are distinct, but otherwise arbitrary, complex numbers. One has only to draw a cut, not intersecting itself, from a1 to a2 to a3 to ... to ∞,16 and carry out exactly the same considerations with the k factors [image: image] into which our function can be factored, as we just did for k = 1, 2. We find, then, that the two sheets must be joined crosswise between a1 and a2, and likewise between a3 and a4, etc., whereas each sheet must be rejoined to itself between a2 and a3, a4 and a5, .... We thus obtain in both cases, whether k be odd or even (2r − 1 or 2r, say), a two-sheeted Riemann surface with the even number, 2r, of simple branch-points lying at the points av, and—for odd k—also at ∞.17

We call attention to the particularly important cases k = 3 and k = 4, each of which leads to a two-sheeted surface with four branch-points.

Although these surfaces may seem to be quite analogous to those with two branch-points that were obtained for k = 1 and k = 2, a fundamental difference between the two deserves to be stressed. The two-sheeted sphere with two branch-points can be mapped one-to-one and continuously on the simple sphere. It follows from this,—also from direct consideration,—that every simple closed curve on the surface18 divides it into two pieces which are completely separated by this curve—as is also the case for the simple sphere. It is customary to express this by assigning the two surfaces the same genus; in the present instance, the genus zero.

The two-sheeted sphere with four branch-points (which is obtained for k = 3 and k = 4) is essentially different in this respect. Let us draw the curve C (see Fig. 6), enclosing a1 and a2 (but only these two branch-points), entirely in the upper sheet. Then we can still connect the two points z0 and z1 on the upper sheet, where z0 and z1 lie on opposite sides of C, by means of a path lying on the surface but not intersecting C. In Fig. 6 we attempt to make this clear by representing the path in the lower sheet by an interrupted line, in the upper sheet by a continuous line; the cuts along which the sheets have been joined crosswise are dotted.19 We therefore assign a different genus to this surface, namely, the genus one. In general, the surfaces with 2r branch-points, corresponding to k = 2r − 1 and k = 2r, are given the genus (r − 1).

[image: image]

Fig. 6.

We can only remark very briefly, that these essentially different connectivities of, e.g., the surfaces for [image: image] and [image: image]20 constitute the basic reason that the integrals.

[image: image]

or, more clearly, their inverses

w = sin z and w = [image: image](z)

are of such fundamentally different types, namely, simply-, doubly-periodic, respectively.

Exercises. 1. Prove the theorem formulated in the footnote on p. 114.

2. What values can the integral [image: image] have if

the path extends from a definite one of the two points 0, in an arbitrary manner, but avoiding the points ±1, to a definite one of the points z0(≠ ±1)?

Do these integrals still have any meaning for z0 = ± 1 and z0 = ∞? If so, what do they mean?

1 Imagine the functional values w to be written on, pinned to, or in some other way affixed to the proper point z of the region of existence.

It is often advantageous to add the poles to the region of existence and to make them bearers of the value ∞.

2 Nevertheless, it need not (cf. the remark in I, pp. 93-94) be possible to obtain a single-valued function completely with the aid of a single expression, as was indeed the case with the entire and the meromorphic functions.

The region of existence may also have the most varied and complicated forms; for there is actually the following Theorem: For every region [image: image] (see I, p. 18), there are analytic fundions having precisdy the region [image: image] for their region of existence, and hence are not continuable beyond [image: image] (see, e.g., L. Bieberbach, Lehrbuch der Funktionentheorie, vol. I, New York, 1945, pp. 295-296).

3 Something similar actually occurs already in the domain of real numbers, x3 + y3 − 3axy = 0 represents the so-called folium of Descartes, y is triple-valued for all 0 < x < a [image: image]. The upper two of the three arcs are singular at x = a [image: image] (the differential quotient is ∞) and “are joined there”; the other arc remains regular.

4 If the function is single-valued, then the united circles gradually fill out the entire region of existence of the function precisely once; and the resulting sheet, together with its affixed functional values, represents the function completely.

5 In the course of pasting sheets together, it is sometimes necessary to join two sheets which are separated by others lying between them. We must imagine this to take place without cutting the intermediate sheets, without touching them, so to speak, in the process. This, of course, is impossible for concrete execution, but causes no difficulty for the purely mental construction which we are solely concerned with here.

6 We imagine this second sheet to lie above the first.

7 Since, after the first sheet was finished, we could have continued the function upward instead of downward, or in both directions at the same time, we see that the form and position of the line of penetration of the two sheets is quite unimportant. The penetration is, so to speak, not there at all, or, in any case, is only involved in the imperfection of our empirical space-perception. Note, merely, that the winding-surface just has the characteristics that two sheets lie one above the other at every point distinct from zero, and that it is capable of returning us to any one of its points (different from zero), taken as starting-point, after a double circuit of the origin. The penetration of the intermediate sheet, which is necessary for our material spatial perception, need not be thought of at all; disregard it completely.

8 The values associated with the points of the second sheet differ from those of the first by the factor e2πi/p, with those of the third, by the factor e2πi/p, . . ., with those of the pth, by the factor e(p−1)(2πi/p) and, at the next step, differ by the factor ep(2πi/p) = 1, i.e., not. at all.

9 We cannot discuss here in greater detail the properties of this mapping—its continuity was of course evident,—important as they are for the whole development of the theory of functions. Their investigation forms the content of the little volume of L. Bieberbach, Einführung in die konforme Abbildung, 3d ed., Sammlung Göschen No. 768, Berlin and Leipzig, 1937. See also C. Carathéodory, Conformai Representation, Cambridge Tracts No. 28, 1932.

10 The German word is schlicht. The term “smooth” is sometimes used in this connection.

11 If one imagines every point, z, of the z-plane to be connected with its image, w, of the w-plane by means of an invisible thread, then these, in their totality, constitute that “inner bond” of which we spoke in I, p. 103.

12 We add the upper bank (am z = + π) of the cut to the cut plane in order that every z ≠ 0 shall lie in it precisely once.

13 Evidently they are simply the period-strips of the function ew. Indeed, according to this, the multiple-valuedness of w = log z, which consists solely in an arbitrary term of the form 2kπi, is precisely the “inverse” phenomenon to the simple periodicity of the inverse function z = ew, which has the primitive period 2πi.

14 The cut can be drawn arbitrarily; but it must not intersect itself, and must avoid the point z0.

15 We are making use here of the following obvious Theorem: If f(z) = f1(z) (identically) for the functional elements f, f1, f2, and if it is possible to continue f1 and f1, then the product of their continuations is a continuation of f(z) itself.

16 If it is advantageous, the numbering of the av may be changed for this purpose.

17 For even k, on the other hand, ∞ is an ordinary point, i.e., both sheets are simple there, so that ∞ appears on the surface twice—as was described in detail for k = 2.

18 That is, the curve extends from a point z0 of some sheet back to the same point on the same sheet.

19 The cut beginning at a3 leads to ∞ or a4, according as k is equal to 3 or 4.

20 Here we must interchange the letters z and w in order to remain in accord with §§8 and 9.

The above roots are, except for a constant factor, obviously of the type dealt with, with k = 2 and k = 3.


CHAPTER 5

ALGEBRAIC FUNCTIONS

§13. Statement of the Problem

All the examples of multiple-valued functions handled thus far, with the exception of log z, have been algebraic functions. They are named thus because they result from the solution of an algebraic equation, i.e., an equation of the form G(z, w) = 0, where G denotes an entire rational function of z and w. If we imagine G to be arranged in ascending powers of w, it can be written in the form

g0(z) + g1(z) · w + g2(z) · w2 + · · · + gm(z) · wm = 0,

where the coefficients gv(z) represent polynomials in z alone.

Now, if a functional element w = f(z) is such, that when substituted for w in such an equation it satisfies the equation identically, i.e., that G(z, f(z)) = 0 for all z of a certain region, we say that f(z) is an element of an algebraic function defined by G(z, w) = 0. If m ≤ 4, one can solve the equation, and thereby obtain the function in question explicitly, and examine it. For m > 4 this is no longer possible, as is well known. There arises, then, just the problem of whether a function is at all defined in a similar manner by such an equation, whether only one1 function is yielded, what the nature of this function is.

First we state the hypotheses precisely. We may assume G(z, w) = 0 to be irreducible, i.e., not expressible as the product of two polynomials of the same type as G2. For obviously the treatment of an equation of the form

G1(z, w) · G2(z, w) = 0

can be replaced by the separate consideration of the equations G1 = 0 and G2 = 0.

If, now, we imagine a particular value z0 to be substituted for z, we have before us an equation in to, with numerical coefficients, which, in general, will have m distinct roots [image: image] An exception takes place only if

a) gm(z0) = 0, because then the degree of the equation is lowered, or if

b) G(z0, w) = 0 has multiple roots.

This last case can occur if, and only if, a certain expression, the so-called discriminant of the equation, which is an entire rational function of the coefficients, vanishes. Furthermore, if G(z, w) is assumed to be irreducible, the discriminant, which we shall denote by D(z), does not vanish identically, but, on the contrary, is a polynomial of a definite degree. (We must assume that these algebraic facts are familiar to the reader.) Consequently, the exceptions mentioned under a) and b) can, in any case, occur only for a finite number of special values of z, which we denote by a1, a2, · · ·, ar. We shall exclude these “critical points” from consideration for the present. Then we can say that the equation G(z0, w) = 0 has precisely m distinct roots, [image: image] for every z = z0 distinct from the critical points; z0 is made the bearer of these roots. Our goal is the following

Theorem. The m-fold domain of values, which is made to correspond to the points of the plane (“punctured” by the exclusion of the av) in virtue of the equation G(z, w) = 0, is that of a single m-valued analytic function, w = F(z). Or, more briefly: the equation G(z, w) = 0 defines precisely one m-valued regular function, w = F(z), in the punctured plane.

Functions that can be defined in such a manner are called algebraic functions.

We shall prove this theorem, which forms the basis of the theory of algebraic functions, in the next two paragraphs; and beyond that, we shall consider the behavior of F(z) at the critical points, with which we also class the point ∞.

§14. The Analytic Character of the Roots in the Small

Let z0 be a point which, for the present, is subject solely to the condition that gm(z0) ≠ 0. Then G(z0, w) = 0 has, in any case, m roots, some of which may be multiple roots, however. Let w0 be such an α-fold root, 1 ≤ α ≤ m. Then there is the following

Theorem on the continuity of the roots. If a circle Kε with a sufficiently small radius ε > 0 is described about w0 as center, then it is possible to draw such a small circle Kδ with radius δ = δ(ε) > 0 about z0 as center, that, for every z1 ≠ z0 in Kδ, the equation G(z1, w) = 0 has precisely a distinct roots in Kε.3

Proof: If we set w = (w − wo) + wo and arrange in ascending powers of (w − wo), we may write

G(z, w) = go(z) + g1(z)·(w − wo) + · · ·

+ gm(z)·(w − wo)m,

and for the new coefficients we have

go(zo) = g1(zo) = · · · = gα − 1 (zo) = 0, gα(zo) ≠ 0.

Consequently, it is possible, first of all, to describe such a small circle Kδ with radius δ′ > 0 about the point z0 as center, that D(z) and gα(z) differ from zero within and on the boundary of Kδ′ (except, possibly, D(z) at the center z0, in case α > 1). We then set

G(z, w) = gα(z)·(w − w0)α · [1 + A + B],

where

A = A(z, w)

[image: image]

B = B(z, w)

[image: image]

Now, let c > 0 be the greatest lower bound of | gα(z) | for all z in Kδ′ (c is greater than zero because gα(z) vanishes neither inside Kδ′ nor on its boundary), and let M be an upper bound for all | g,(z) | in Kδ′: | g,(z) | < M. Then, with 0 < ε < [image: image] arbitrary to begin with, and for all z in Kδ′ and all w within and on the boundary of the circle Kε, with center w0 and radius ε, we have

[image: image]

Now let ε be taken definitely less than [image: image] but otherwise arbitrarily, and let it remain fixed from now on. Then, for all z in Kδ′ and all w in and on Kε,

| A | = | A(z, w) < [image: image].

We now choose 0 < δ < δ′ so small, that, in the interior of the circle Kδ with center z0 and radius δ, the absolute values | go(z) |, | g1(z |, · · ·, gα − 1(z) all remain less than the fixed number

[image: image]

(This is possible because all these coefficients vanish at the point z0.) Then, for all z in Kδ and all w on the boundary of Kε, i.e., for all z and w for which

| z − z0 | < δ and [image: image]

we have

[image: image]

We shall prove that our assertion is valid for these circles Kδ and Kε. Let z1 be an arbitrary point in Kδ. For all w on the boundary of Kε,

| gα(z1)·(w − w0)α |

> | gα(z1)·(w − w0)α(A(z1, w)) |,

because there both A and B in absolute value remain less than [image: image]. If we apply Rouché’s theorem (cf. p. 111) to the functions of w(!) inside these absolute-value signs, and to the circumference of Kε we see immediately that G(z1, w) has precisely the same number of zeros in the interior of the circle Kε as the function gα(z1)··(w − w0)α on the left does, i.e., precisely α zeros. And these must be distinct, because at z1, which also lies in Kδ′, D(z1) ≠ 0.

Now we make the further assumption that D(z0) ≠ 0, i. e., that α = 1 at z0. Then, for every z = z1 in Kδ, there is one, and only one, root of G(z1, w) = 0 in Kε. Consequently, this root is a single-valued and continuous function, f1(z), of z, concerning which we have the

Theorem on the differentiability of the roots. w = f1(z) is a regular function of z in Kδ.

Proof: Let z1 be an arbitrary point, and z1 + ζ a neighboring point, both in the interior of Kδ. Let f1(z1) = w1 and f1(z1 + ζ) = w1 + ω, so that G(z1, w1) = 0, G(z1 + ζ, w1 + ω) = 0, and—because of the continuity of the function f1 (z)—as ζ → 0, ω → 0. Our new assertion then is simply that

[image: image]

exists. Now, if we arrange in ascending powers of ζ and ω, G(z1 + ζ, w1 + ω) = G(z1, w1) + ζ · Gs(z1, w1) + ω · Gw(z1, w1) + {terms which contain at least the factors ζ2, ζω, or ω2}. Here Gs(z1, w1) and Gw(z1, w1) denote, as usual, the respective (partial) derivatives of G(z, w) with respect to z, w alone, at (z1, wt). Since the left-hand side and the first term on the right are equal to zero, we can write

0 = ζ[Gz(z1, w) + P · ζ + Q · ω]

+ w [Gw(z1, w1) + R · ω],

where, for brevity, P, Q, R denote certain entire rational functions of ζ and ω. Here Gw(z1, w1) ≠ 0, since w1 was assumed to be a simple root of G(z1, w) = 0; and we can therefore suppose ζ, and with it, ω, already so small, that

| R · ω | < | Gw(z1, w1) | .

But then the second bracket in the last equation is not zero; and it follows immediately that

[image: image]

§15. The Algebraic Function

The theorems of the preceding paragraph have brought about the following situation: To every non-critical point z0 of the plane, there correspond m distinct values, which can be combined in every sufficiently small circle about such a point—briefly: “in the small”—so as to form m separate single-valued and regular functional elements, which we shall denote by

f1(z; z0), f2(z; z0), · · ·, fm(z, z0).

These may be thought of as power series with center z0.

We have now to show that all these elements belong to one and the same m-valued analytic function.

1. We see, first of all, that each one of the elements can be continued unhindered over the punctured plane. For, let K0 be any circle in which one of our elements, say f1(z, z0), is regular, and let z1 be a non-critical boundary-point of K0. Then,—because of the uniqueness of the combination in the small,—precisely one of the elements fv(z; z1), (v = 1, 2, · · ·, m), must coincide with f1(z, z0) in that part of the neighborhood of z1 which lies interior to K0, wherewith the possibility of continuing f1 is already demonstrated.

2. We now imagine the critical points a1, a2, · · ·, ar to be joined in any order, and then joined to the point ∞, by a simple line, L, composed of rectilinear segments and a half-line; and the plane to be cut along L (as in Fig. 7). Then each of the elements fv(z; z0) can be continued unhindered over the cut plane—we shall denote this simply connected region by ([image: image]—so that, according to the monodromy theorem (cf. I, p. 105), each thus gives rise to a single-valued and regular function in [image: image]. We shall denote the resulting functions by F1(z), F2(z), · · ·, Fm(z), respectively. These functions, which are obviously independent of the choice of the starting-point z0, combine “in the large” the entire m-fold domain of values borne by the points of [image: image] to form m separate single-valued and regular functions in [image: image]; and, when substituted for w, satisfy the algebraic equation G(z, w) = 0 for every z in [image: image]. All that remains to be shown, now, is that all these m functions can be continued into one another across the boundary, L, of [image: image]—in a few words, that they are the m branches of one and the same analytic function. To this end we investigate

[image: image]

Fig. 7.

3. the behavior of the functions at the critical points and at ∞. Let a be one of the critical points; K, the circumference of a circle about a, which neither encloses nor contains any further critical points; z0, a point of K. Then every one of the m elements fv(z; z0) can be continued along K (say in the positive sense). On returning to the point z0, each of these elements must—again because of the uniqueness of the combination of the domain of values in the small—be continued into a definite (but, in general, different) one of these,—and, of course, never two distinct elements into one and the same, since otherwise the inverse continuation would transform this last element into two distinct ones. To put it briefly, the m elements thus undergo a permutation. We suppose the elements to be numbered in such a manner, that the permutation carries f1 into f2, f2 into f3, · · ·, fp − 1 into fp − 1, and fp, back again into f1, (1 ≤ p ≤ m), so that the first p elements form a cycle.5

Then, in particular, f1(z; z0), and with it, F1(z), goes over into itself after a p-fold continuation around a. If we accordingly set

(z − a) = (z′)p and F1(z) = F1(z′p + a) = φ1(z′),

φ1(z′) is not only regular, but also single-valued, in a neighborhood of z′ = 0, apart from this point itself. For, as the variable z′ encircles the origin once (i.e., as its amplitude is increased continuously by 2π), z′p encircles the origin, and hence z the point a, precisely p times, since the amplitude of z − a is increased by 2pπ. Consequently, φ1(z′) can be developed in a Laurent series,

[image: image]

for a neighborhood of the origin, so that F1(z) admits of an expansion of the form

[image: image]

for a neighborhood of the critical point a.6 We now make the further assertion:

Only a finite number of negative powers appear in this expansion.

Proof: If gm(a) ≠ 0, so that G(a, w) = 0 has precisely m roots, some of which, however, are multiple roots, the theorem on the continuity of the roots states that these are continuous at the point a. Hence, in this case, no negative powers can appear in the above expansion.

But if gm = 0, to the gth order, say, we must proceed otherwise. We can set gm(z) = (z − a)p · hm(z), where hm(a) ≠ 0. Then, if we form

(z − a)q(m − 1) · G(z, w),

one can verify immediately that, on setting (z − a)q · w = v, this can be written in the form

Ψ (z, v) = h0(z) + h1(z) · v + · · · + hm(z) · vm,

where h0, h1, · · ·, hm − 1 denote suitable entire rational functions of z. Obviously the equation Ψ(z, v) = 0 is also irreducible, and, moreover, for its highest coefficient we have hm(a) ≠ 0. Hence, the roots of this new equation are continuous at z = a, and consequently, as in the case gm(a) 0 just treated, admit of an expansion of the form in question, in which, however, no negative powers appear. Since w = (z − a)−q · v, it follows immediately that the roots of the given equation, and hence our functions Fv(z)r also admit of an expansion of the same form in a neighborhood of the critical point z = a, and that at most a finite number of negative powers (namely, at most p · q) can appear in this expansion, Q. E. D.

For the point z = ∞ the considerations proceed quite similarly; one has only to replace z − a everywhere by 1/z, and regard a sufficiently large circle as the circumference, K, surrounding the point ∞. These considerations, whose details everyone will be able to carry out for himself, show that each of the functions Fv(z) admits of an expansion, for a neighborhood of the point ∞, of the form

[image: image]

in which at most a finite number of negative powers of the pth root appear.

The critical points, with which we shall also class the point ∞, have thus been shown to be singularities of a particularly simple kind. We make the following

Definition. If an analytic function is regular, though not necessarily single-valued, in a neighborhood of a point a or ∞,—apart from this point itself,—and if it admits of an expansion there of the form

[image: image]

respectively, in which only a finite number of negative powers of the pth root appear, then this point shall be called an algebraic point.7 We also say that the function has there the character of an algebraic function.

4. We can now finally lay the keystone, and prove that every one of the m functions Fv(z) can be continued into any other one by means of a suitable continuation across the cut, L.

For this purpose it is sufficient to show that F1 can be continued into any other Fv. For, if we can carry F1 into Fv, and also into Fμ, then first, by the inverse continuation, Fv, is carried into Fμ and then further, in this indirect way, it passes from F1 into Fμ; so that, in any case, Fv, can be continued into Fμ. Assume, now, that it is impossible to continue F1 into some Fv: suppose that these functions have been numbered so that F1 can be carried into F2, F3, · · ·, Fk, (k < m), but not into Fk + 1, · · ·, Fm. This means, then, that by arbitrary continuation in the punctured plane, the first k functions are always permuted among themselves and are never carried into any of the remaining ones. If we form any symmetric function of them, S(F1, F2, · · ·, Fk) = Φ(z), it does not change at all, and is therefore single-valued and regular in the punctured plane. For a neighborhood of any critical point (including ∞), Φ(z) can be developed in an ordinary Laurent series having, according to 3., only a finite number of negative powers.

This means that Φ(z) has no singularities other than poles in the entire plane (including ∞), and hence, according to I, §35, Theorem 2, it is a rational function of z. In particular,

(w − F1)(w − F2) · · · (w − Fk)

= φ(z) + φ(z)·w + · · · + φk(z)·wk = 0

is an equation whose coefficients φλ(z) are all rational functions of z. If we multiply this equation by a common denominator of the coefficients, there results an equation of the form

g(z, w) = γ0(z) + γ1(z) ·w + · · · + γk(z)·wk = 0

with entire rational coefficients: an algebraic equation which is satisfied by the functions F1, F2, · · ·, Fk. But that is impossible for k < m because of the assumed irreducibility of G(z, w)8. Our assumption is therefore untenable; and we have thus proved the theorem stated in the end of §13, and beyond that, the following

Theorem. An algebraic function has no singularities other than algebraic singularities in the entire plane (including ∞).

5. It is now an easy matter to cohstruct the Riemann surface for the algebraic function defined by G(z, w) = 0. Corresponding to the m functions Fν,(z), we take m sheets, all cut along L, whose points bear the values of the functions F1, F2, · · ·, Fm, respectively. If we continue these functions one at a time across one of the segments of the cut, L, connecting two successive critical points, each of the Fν, goes over again into a definite one of these. We join the m sheets to one another in the manner hereby fully uniquely required,9 whereupon this cut-segment disappears.

If we imagine the corresponding process to be carried out for all segments of the cut (including that which extends to ∞), all boundaries disappear, and the Riemann surface for the algebraic function defined by G(z, w) = 0 is complete. We see it more compactly, and the exceptional role of the point ∞ vanishes, if we start with the sphere instead of the plane. Then we have a closed m-sheeted Riemann sphere before us, every non-critical point of which is the bearer of one, and only one, functional value.

Finally, we shall make the critical points bearers of functional values, for which the following method suggests itself: By continuing around a critical point a (which may also be ∞), the m functions F, undergo, as we saw, a definite permutation, which can be decomposed into a certain number, say l(1 ≤ l ≤ m) of disjunct cycles. Then, the point a shall be added to the surface, but counted only I (not m) times, once for all the sheets together that are connected in one and the same cycle. Every single one of these I superposed points a shall now be made bearer of the value c0, ∞, according as the expansion, obtained in 3., which corresponds to it begins with the constant term c0 or actually contains negative powers.10

Now that we have enlarged the domain of values in this manner, we call the totality of pairs of values (z, w), consisting of all points z of our Riemann sphere as first component, and the functional values w uniquely corresponding to these points as second component, the algebraic configuration defined by G(z, w) = 0. Its further, exhaustive investigation forms the subject of the theory of algebraic functions.

Exercise. Discuss in detail the structure of the Riemann surfaces (critical points; method of joining the sheets, and behavior of the function, at those points; distribution of the domain of values; etc.) for the algebraic functions, w, of z, defined by


a) w3 − 1 − z = 0,

b) w3 − 3w − z = 0,

c) w + [image: image] − z = 0.



1 That more than one function may be defined by such an equation is already demonstrated by so simple an example as w3 − z2 = 0, which obviously yields two functions.

2 This concept is an absolute one in the case of two variables, whereas in the case of one variable it has a definite meaning only after the nature of the numerical coefficients has been established.

3 This theorem, at the same time, gives a deeper interpretation of the multiplicity of a root; for it says that an α-fold root of an equation branches off into α simple roots if the coefficients of the equation are varied a little.

4 It is clear what is meant in the cases α = 1 and α = m.

5 If, in a permutation of m objects, a subset of these undergoes a “cyclic” permutation, we say that the elements of this subset form a cycle. There is then the simple Theorem: Every permutation can be expressed as the product of disjunct cycles.

  For example, let m = 9, and suppose that the figures 1, 2, 3, 4, 5, 6, 7, 8, 9 are transformed into 3, 7, 5, 4, 1, 8, 9, 6, 2, respectively. Then the figures 1, 3, 5, as well as 2, 7, 9, form a cycle of degree three; the figures 6, 8, a cycle of degree two; the figure 4 by itself, a cycle of degree one.

6 It is easy to verify that this one expansion represents all the p functions F1, F2 · · ·, FP of our cycle of degree p if we substitute for [image: image] its p meanings. We shall not have to make use of this remark, however.

7 If p = 1, we are dealing with an ordinary pale; if, in addition to this, no negative powers appear, the point is actually regular. Naturally, we speak of an algebraic singularity only when thin last is not the case.

8 For, there is the purely algebraic Theorem: If the equation g(z, w) = 0 has a root in common with the irreducible equation G(z, w) = 0 for all z of a region, then G(z, w) is a factor of g(z, w); and hence, the degree in w of g is at least as high as that of G.

9 Some sheets, in particular, may pass “smoothly” over the cut-eegment,—if, namely, the function in question, Fν is carried into itself in crossing the cut.

10 If the l cycles, in turn, are of degree P1, P2, · · ·, pl, then exactly l branch-points, of order p1 − 1, P − 1, · · ·, Pl − 1, respectively, are superposed at a, (among which, in particular, branch-points of order zero, i.e., ordinary points, may also appear); and these, counted as l distinct points of the surface, may of course bear entirely different functional values.


CHAPTER 6

THE ANALYTIC CONFIGURATION

§16. The Monogenic Analytic Function

We are now in a position to supplement the definition of the complete analytic function which was given in I, pp. 102-103 but which still contains several omissions, and thereby give a certain completeness to our investigations, at least with respect to the fundamental idea—that of the analytic function. To this end we resume the considerations of §10.

We started there with a given functional element—say a power series—and continued it as long as possible. We must now indicate somewhat more precisely how this is to be carried out, be it only purely theoretically. For we shall require, in general, an infinite number of power series before a further continuation leads to nothing new. If, however, one is to give a constructive procedure according to which the continuation can be carried out in its entirety, it must consist of only an enumerable number of steps. This appears impossible at first, because it would seem that to exhaust the continuation possibilities of even only the first power series, one would have to form a new expansion about every point of its circle of convergence as center. But then there would be a non-enumerable infinity of new power series.

It is easy to see, however, that in a continuation process—let us say the continuation of a power series [image: image]0 with center z0, along the path k to ζ—we need only use such new power series as have centers with rational coordinates.1 For, if the continuation along k is at all possible, the requisite circles of convergence with centers z0, z1, · · ·, zm − 1, zm = ζ (cf. I, p. 88 and Fig. 5) cover a region whose boundary is a positive distance, ρ, from k. If, now, we employ, instead of z1 z2, .· · ·, any rational centers z1′, z2′, · · ·, each having a distance of at most [image: image]ρ from k, we also arrive at ζ, and with the same functional element.

The rational points form an enumerable set, and from this we are able to infer that the entire continuation process for a functional element can be completed in an enumerable number of steps. For, only an enumerable number of new power series, say

[image: image]01, [image: image]02, · · ·, [image: image]0n, · · ·,

result from the given power series [image: image]0 if we make merely the rational points of its circle of convergence centers of the new expansions. At most an enumerable infinity arise again from each of these, so that we obtain, on the whole, only an enumerable number of new power series,2 say

[image: image]11, [image: image]11, · · ·, [image: image]1n, · · ·,

For these the argument repeats itself, etc.; so that we get all in all an enumerable number of sequences of enumerably many power series, and hence all together an enumerable number of such series, which we shall denote finally by

[image: image]0, [image: image]1, [image: image]2, · · ·, [image: image]r, · · ·.

This proves

Theorem 1. If it is at all possible to include an arbitrary point z, by means of (power-series) continuation of the initial element [image: image]0 along some path, in the interior of the circle of convergence of a new power series, it can be effected with the exclusive use of (in each case a finite number of) power series of a suitably fixed sequence [image: image]1, [image: image]2, · · ·, [image: image]r, · · · of such.

Suppose that we have exhausted in this manner all possibilities of continuing a given functional element w = f(z). The result of this is that a neighborhood of every point z0 of the plane which appears at all in the interior of one of the circles of convergence of the receives a finite or an enumerably infinite number of different coverings with functional values in such a manner, that every single covering forms a single-valued and regular function in a neighborhood of z0. Let these be the functions

f1(z; z0), f2(z; z0), · · ·.

We then let the point z0 bear the values of these functions for z = z0 denote these values by W0(1)), W0(2)), · · ·. If the same value should appear more than once in this process, it shall be borne by z0 correspondingly often. Finally, if we imagine the pairs of numbers

(z0, W0(1)), (z0, W0(2)), · · ·

to be formed for every z0 belonging to the interior of at least one of the circles of convergence of the [image: image]r, these pairs in their totality constitute the monogenic analytic function generated by the initial element. The function is thus determined by the following properties:

1. To every point z of the plane, or of a part of it, there correspond a finite or an enumerably infinite number of functional values w(1), w(2), · · · (among which the same ones may appear in an arbitrary manner).

2. If (z0, w0) is a particular one of these pairs of values, the totality of pairs (z, w), whose first component belongs to a neighborhood of z0, can be combined so as to form a finite or an enumerably infinite number of regular functions fv,(z, z0) at z0.

3. If fv(z; z0) and fμ(z; z0) are an arbitrary pair of the functions thus formed, each is an (of course not immediate) continuation of the other.

4. If any one of these functional elements fv(z; z0) is developed in a power series with a rational center, we obtain one of the power series [image: image]r.

Accordingly, we can state, in particular, the following two theorems:

Theorem 2. Every domain of values which is given in any manner “in the small”3 generates, if at all, precisely one well-determined monogenic analytic function.

Theorem 3. The set of functional values which a multiple-valued function can assume at a point z0 is either finite or enumerably infinite.

§17. The Riemann Surface

There is nothing now to prevent the construction of the Riemann surface belonging to a monogenic analytic function, according to the procedure indicated in §10: corresponding to the sequence of the [image: image]r, we paste the disks of their circles of convergence together in the manner there described—penetrating (in imagination) intermediate sheets if necessary—and thus obtain the required surface.4

Naturally, the way in which the sheets are joined together may become very complicated. It may also, however, be very clear and transparent, as the examples treated in chapters 4 and 5 show. The Riemann surface lays no claim to being an end in itself, but is only intended as an aid to the imagination. One will therefore leave it aside in all those cases in which the joining of the sheets becomes so involved, that it would be more difficult to follow the functional values on the surface than with the function itself. Thus, the advantage of constructing, e.g., the surface for w = arc sin z in order to visualize the course of this function is no longer worth mentioning, although it would be very simple to set it up5 on the basis of, say, the formula w = arc sin z = −i log (iz + [image: image] which is obtained from z = sin w = −[image: image]i) (eiw − e−iw) by solving for w. But, e.g., in the case of the inverse of Weierstrass’s σ- or [image: image]-function, the construction of the corresponding surface will offer hardly any advantage any more.

It is therefore not advisable to continue the formation of the Riemann surface in the most general instance. One should rather see from case to case whether its construction helps perception or not. We have become acquainted with the most important examples of useful surfaces in the preceding two chapters. As far as the general case is concerned, it is sufficient to know that, for a given function, a Riemann surface can be constructed at all events, on which its values form a single-valued function of position. Every point z is covered by as many (a finite or an infinite number of) sheets (see below) as there are different elements for a neighborhood of this point, and these sheets hang together in a perfectly definite manner. This last means that if we begin at a certain point z0 of a particular sheet and describe any definite path (more precisely: a path whose projection on the ordinary z-plane is given), its course on the surface is fully unique, and consequently, leads us to a perfectly definite point of a perfectly definite sheet,—provided only that the path does not leave the surface, i.e., provided that it avoids the singular boundary points of those sheets (see below) on which it lies.

We are now finally in a position to formulate more precisely several concepts which we have already made much use of:

1. A sheet of the Riemann surface is obtained if, starting with any one of our circular disks, we paste on new disks (or parts thereof), according to the abovedescribed procedure, so long, but only so long, as we do not get a multiple covering of the plane. The concept of the sheet is thus, as we particularly emphasize, not an absolute one, but depends on the execution of the construction procedure just described. Nevertheless, it has a well-determined sense to speak of the different sheets on which a particular point z0 lies: z0 lies on as many different sheets as the number of times it is an interior point of distinct circular disks (i.e., disks not pasted together at z0 and a neighborhood thereof). The totality of points z which belong to one and the same sheet form a region in the sense of I, §4.

2. By a branch of a given (multiple-valued) analytic function F(z) we mean any function which is represented by the covering of one sheet of the proper Riemann surface, and which is single-valued and analytic in the region corresponding to it by 1.

3. By a functional element of an analytic function F(z) we mean the representation of any branch or of only a part of it; in particular, each of the power series [image: image]r, and each of the functions fv(z; z0) used in §16, —for which, moreover, one can imagine the boundary of the neighborhood of z0 which comes into question to be fixed in various ways,—is a functional element.

4. The concept of the singular point is, like that of the branch or the sheet, not an absolute one either: a particular point can be called singular or regular only for a certain branch or a certain sheet (cf. the example on p. 96). For this, however, the concept is fully determined. For, the region which, according to 1., is filled by the totality of points 2 belonging to a sheet is covered with a domain of values which, by 2., forms there a single-valued analytic function—the branch belonging to this sheet. For this function the boundary points of the region in question are divided (cf. I, §24) unambiguously into regular and singular points, i.e., those at which the continuation across the boundary is possible, and those at which it is impossible, respectively.

Exercises. 1. Discuss in detail the structure of the Riemann surfaces for the functions

a) w = z0 (a complex, arbitrary),

b) w = arc sin z.

(Cf. §15, ex. 2c.)

2. Construct a function for which the unit circle is the natural boundary, but which is

a) exactly two-valued, b) infinitely multiple-valued in the interior of the unit circle.

§18. The Analytic Configuration

We have yet to take up a last small supplement (similar to that which we made in the conclusion of §15 in the case of the algebraic functions), by means of which, then, the notion of a complete analytic function becomes settled in every respect.

The state of affairs thus far is the following: the domain of values which finds itself affixed to a neighborhood of an (eo ipso: interior) point of a sheet of the Riemann surface forms there a regular functional element, whereas all singular points of the separate branches (sheets) are, at first, not added to the surface at all. Among these singular points there are some of such a simple nature, that it is—also for various other reasons—advantageous to class them, so to speak, with the regular points, or, in any case, to add them to the surface. These are, in a few words, the algebraic singularities,—namely, the following points:

1. The poles on a sheet; i.e., every isolated boundary point z0 of a sheet, such that the domain of values attached to a neighborhood of z0 can be developed in an (ordinary) Laurent series with only a finite number of negative powers.6 We let such a point bear the value ∞, and we add the pair (z0, ∞) to the number pairs of the monogenic analytic function.

2. The algebraic branch-points; i.e., every singular boundary point of one of the sheets, about which a finite number, say ρ(> 1), distinct sheets hang together like the surface for [image: image] at the origin, and for which the following oondition is fulfilled: the domain of values affixed to these ρ sheets in a neighborhood of z0, which (cf. p. 129) at all events can be developed in a series of the form

[image: image]

shall be such, that no negative powers of [image: image] or only a finite number of these, appear in this expansion.

We shall add such a point to the surface, and count it once for these ρ sheets together. We let it bear the value ∞ or c0, according as negative powers do or do not appear in the expansion, and we add the pair (z0, ∞), (z0, c0), respectively, once to our pairs of numbers (z, w).

3. Finally, we shall add the point ∞ to the surface under corresponding conditions, namely, in a few words, if the behavior at the point ∞, when regarded on the sphere, is the same as that at the point z0 in the cases just considered; in detail, if either

a) a certain sheet is simple in a neighborhood of the point ∞7, and the domain of values attached to it there forms a single-valued regular funotion whose Laurent expansion about ∞ contains at most a finite number of

negative powers of [image: image]

or

b) a finite number, say ρ(> 1), of distinct sheets hang together about the point ∞ like the surface for [image: image] about this point, and the (at all events possible) development of the affixed domain of values in the series

[image: image]

contains at most a finite number of negative powers of8 [image: image]

In case a) we say that there is an ordinary point, in case b), that there is a branch-point of order ρ − 1, at the point ∞. It shall be added to the surface in both cases, and counted precisely once for the ρ sheets together that were taken into consideration. We let it bear the value ∞ or c0, according as negative powers do or do not appear in the expansion in question. We accordingly add the pair (∞, ∞), (∞, c0), respectively, once to our pairs of numbers.

We say, now, that the set of pairs (z, w), which has been supplemented in this way, represents the (monogenic) analytic configuration defined by the initial element.9

It is useful to add to the set of our functional elements fv (z; z0) the finite or enumerably infinite number of expansions which we spoke of in 1. − 3. Then we have before us in the set of all these functional elements or in the set of all our pairs of numbers (z, w), completely and in clear arrangement, the configuration which arises, in the continuation process, from an arbitrarily given power series or other representation of a regular function in the small.

In conclusion let us add that the theory of uniformization mentioned on p. 84, footnote, is, in a way, the connecting link between the two main subjects of our investigation, the single-valued and the multiplevalued functions. For in it is proved the theorem that any (multiple-valued) analytic function w = F(z) can be completely represented (uniformized) with the aid of single-valued functions; and this more precisely in the sense that there always exist two single-valued functions of the complex variable t, z = z(t) and w = w(t), with the property that the pair (z, w) = (z(t), w(t)) yields the complete analytic function w = F(z) when the variable t runs over a certain domain of its plane. (General uniformization theorem of Poincaré and Koebe.)

1 For brevity we shall call such points rational points.

2 That an enumerable set of enumerable sets of objects is itself an enumerable set of these objects was proved when we arranged the lattice points of the plane in a sequence; see p. 28.

3 I.e., every covering of a region, however small, (or of a path segment, or of only a bounded infinite set of points) of the z-plane with w-values (cf. in this connection the considerations in I, p. 95).

4 Instead of circular disks, we may, of course, take any other regions; in particular, such maximal regions in which a branch of the function remains regular. Thus, e.g., for the algebraic functions we could take the entire cut plane at once.

5 It is nevertheless quite useful to construct these surfaces in imagination in order to get practice in using the ideas involved.

6 On some other sheet, z0 may very well be a regular point, or a different kind of singular point.

7 I.e., the sheet in question contains all points z which lie in the exterior of a certain circle.

8 The cases 1 and 3a can, of course, be interpreted as the special cases of 2 and 3b obtained when ρ = 1.

9 Without proof we add the remark that, by interchanging the two components of every number pair of an analytic configuration (z, w) which arises from a functional element w = f(z), there results another monogenic analytic configuration (w, z) which is designated as the inverse configuration. This transparent transition from an analytic function to its inverse could not be formulated so simply and clearly without the supplements met with in this paragraph. Their usefulness is already sufficiently assured by this fact alone.
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