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PREFACE



Before writing a treatise on electromagnetism, an author must come to a decision on three points:

(1) Historical or logical sequence?

(2) Macroscopic or microscopic formulation?

(3) Relativistic or nonrelativistic treatment?

Conventional textbooks usually follow the historical sequence: electrostatics, magnetostatics, direct currents, alternating currents, waves. The result is a stratified ensemble, with the superposed layers stubbornly maintaining their individuality and refusing to coalesce into a homogeneous whole. As a consequence, the average student is shocked to find that relations that he so laboriously learned for the static case (E = – grad ϕ, div A = 0, for instance) are no longer applicable in the time-variant case. Thus we have chosen the logical approach rather than the historical.

One can imagine the electrodynamic theory of the future, when modern physics will presumably have developed the whole subject from the properties of the electron. In such a utopian structure, there may remain but few traces of Maxwell’s field theory. At present, however, a completely microscopic theory is impossible. It seems best, therefore, to develop field theory on a distinctly macroscopic level.

In this respect, the usual textbook appears to be inconsistent. In it, a medium is characterized by the macroscopic parameters [image: ], μ, [image: images]; but at the same time, the microscopic ideas of dipole moment and magnetic whirl are introduced. And they are treated quantitatively and not as mere pictures. We believe that, for an engineering textbook, simplicity and clarity are achieved by handling field theory on a macroscopic basis, without the concepts of polarization and magnetization. A medium is characterized by its permittivity and its permeability, and we assume that values of these quantities are given. This procedure fails only for moving media (Chap. 12) where it is necessary, for the first time in the book, to introduce polarization and magnetization.

This treatment in terms of macroscopic parameters is analogous to the excellent procedure used in circuit theory, where the circuit parameters are taken for granted and where methods for their calculation and measurement are relegated to other courses. Similarly, our book presents a self-consistent discipline, dealing with electrodynamics but not attempting to cover the structure of matter or quantum mechanics.

Maxwell’s work was based on the common-sense idea that time and space are completely independent and that there can be no ambiguity about the velocity of light. Actually, such naïve assumptions are quite adequate for at least ninety per cent of the applications. For simplicity, therefore, we have used this nonrelativistic approach in the first ten chapters and have considered relativity only in Chaps. 11 and 12. Logically, there might have been advantages in introducing the Lorentz transformation in the first chapter; but pedagogically, such a procedure is difficult. And there is the disquieting thought that the Lorentz transformation applies strictly only to the special case of uniform motion in a straight line. How to handle Maxwell’s equations in the general accelerated case is a topic for further research.

Our treatise presupposes a knowledge of electricity and magnetism such as that ordinarily obtained in college physics. The mks system is employed throughout. Vector analysis is freely used, a brief treatment of this subject being given in Chap. 1. The book is an outgrowth of experience in teaching electromagnetic theory to undergraduate electrical-engineering students at Massachusetts Institute of Technology. Some of the material has been taught also at graduate level at the University of Connecticut. The principal innovation is a serious attempt to develop electrodynamics on a postulational basis and to define each concept in the most general way.

We wish to acknowledge that Figure 4.05 is reproduced by kind permission of Springer-Verlag, Berlin, from a paper by K. Kuhlmann, Archiv für Elektrotechnik, 3, 1914, p. 203.

PARRY MOON
DOMINA EBERLE SPENCER

Cambridge, Massachusetts
July, 1960
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Chapter 1

FIELDS



Traditional training in electrical engineering emphasizes circuit theory. Even where the phenomena have little or no similarity to circuit phenomena, the attempt is usually made to force the problem into the Pro crustean bed of circuit theory, as in the treatment of the magnetic “circuit” and the thermal “circuit.” Field theory, a powerful tool in the handling of problems in physics and engineering, has often been regarded as too abstruse for the engineer. But modern developments in science and industry have changed these ideas and have emphasized the desirability of training in field theory for both physicist and engineer, even at the undergraduate level.

As long as electrical applications dealt with direct currents or with alternating currents at power frequencies, the circuit approach was satisfactory for most purposes. But as frequencies were raised and as the importance of radio and radar increased, lumped-circuit theory became increasingly inadequate and the need arose for a more basic treatment of electrodynamics.

Such a basic treatment is given by Maxwell’s equations. These four equations may be considered as a condensed expression of the electromagnetic experience of the human race. A century and a half of electrical experiment is subsumed in Maxwell’s equations, the customary methods of calculation given in elementary textbooks being merely special cases of these general equations.

To make use of Maxwell’s equations, however, one should be familiar with vector analysis, particularly with the ideas of gradient, divergence, and curl. Such subjects are treated briefly in this introductory chapter. Basic concepts leading to Maxwell’s equations are considered in Chaps. 2 and 3. The remainder of the book is primarily a study of how to apply Maxwell’s equations to a wide variety of subjects, ranging from electrostatics to waveguides and antennas.

1-01. Fields and Coordinate Systems. Consider a specific region [image: images]: for instance, the interior of a sphere, or any other definite portion of space in which a physical phenomenon is to be studied. Next select a specific quantity, such as pressure, temperature, or electric field strength. Imagine that this quantity is measured at each point in region [image: images]. With each point of [image: images] is then associated a numerical measurement. The totality of these measurements constitutes a physical field.†

Note that two arbitrary choices have been made:

(1) The region of space has been chosen arbitrarily,

(2) The kind of measurement has been chosen arbitrarily.

For instance, one might be interested in the gravitational field within a room. The boundaries of the room define the region [image: images]; the force on a small mass defines the kind of measurement. With each point in the room is then associated a vector (force per unit mass) which defines the gravitational field. Or the same physical field might be defined equally well by a scalar point-function, the gravitational potential.



[image: image]

FIG. 1-01. Rectangular coordinates (x, y, z). Coordinate surfaces are the planes x = const, y = const, and z = const.

Electrodynamics is concerned principally with the electric field, characterized at each point by a vector E, and the magnetic field, characterized by the vector point-function H. But the general ideas of field theory apply to all sorts of fields,1‡ such as the thermal field, the light field, the hydrodynamic field, the acoustic field.

To handle problems with facility, one should be familiar with as many coordinate systems as possible. For simplicity, however, we shall confine our attention in this book to three systems:

(a) Rectangular coordinates (x, y, z),

(b) Circular-cylinder coordinates (r, ψ, z),

(c) Spherical coordinates (r, θ, ψ).

Sketches are shown in Figs. 1-01, 1-02, and 1-03. Note that the z-axis is taken as an axis of rotation, with ψ measured about this axis in both Figs. 1-02 and 1-03. Coordinate surfaces in cylindrical coordinates (Fig. 1-02) are circular cylinders (r = const), half-planes (ψ = const), and planes (z = const). In spherical coordinates (Fig. 1-03), coordinate surfaces are spheres (r = const), circular cones (θ = const), and half-planes (ψ = const).



[image: image]

FIG. 1-02. Circular cylinder coordinates (r, ψ, z). Coordinate surfaces are circular cylinders r = const, half-planes ψ = const, and parallel planes z = const. The coordinate system is symmetric about the z-axis.

One of the beauties of vector analysis is that the subject is basically independent of the coordinate system. A vector is characterized by magnitude and direction. These attributes are invariants with respect to coordinate transformations. It is often convenient, however, to express a vector in terms of its components in a specific coordinate system. These components, of course, are different in different coordinate systems. Any vector U may be written in rectangular coordinates as



[image: image]

FIG. 1-03. Spherical coordinates (r, θ, ψ). Coordinate surfaces are spheres r = const, right circular cones θ = const, and half-planes ψ = const. Note that in both Figs. 1-02 and 1-03, the angle ψ is measured about the z-axis.



[image: image]

where ax, ay, az are unit vectors along the three axes and Ux, Uy, and Uz are the magnitudes of the x, y, and z components. The magnitude of the vector U is



[image: image]

Similarly, in circular-cylinder coordinates,



[image: image]

where ar, aψ, az are unit vectors in the directions of increasing r, ψ, and z. Since the three components of U are again orthogonal,



[image: image]

In spherical coordinates,



[image: image]

and



[image: image]

1-02. Vector Algebra. The reader is familiar with the addition of vectors and the multiplication of a vector by a scalar.2 We also need the multiplication of two vectors. The scalar product (or dot product) of two vectors U and V is defined as



[image: image]

where θ is the angle between U and V. Evidently U . V is a scalar quantity. It is chiefly useful as a convenient shorthand in expressions involving a cosine.

For instance, the total magnetic flux ϕ through a surface [image: images] is



[image: image]

where B is the magnitude of the magnetic flux density vector B, and θ is the angle between B and the normal to the surface element [image: images]. If we now introduce the vector [image: images] which has the magnitude [image: images] and the direction of the outward-drawn normal to the surface, we obtain the simple expression



[image: image]

which employs the scalar product.

The scalar product is easily expressed in any orthogonal coordinate system. Let a1, a2, a3 be unit vectors in three mutually perpendicular directions. Then by Eq. (1-07), a1 · a1 = 1 but a1 · a2 = a1 · a3 = 0. Thus for any orthogonal coordinate system, we have the multiplication table



[image: image]

For any two vectors,



[image: image]

the scalar product may be written



[image: image]

Equation (1-08) applies to any system in which the coordinate surfaces are mutually orthogonal, and thus it applies to the systems shown in Figs. 1-01, 1-02, 1-03.

The vector product (cross product) of two vectors U and V is defined as



[image: image]

where θ is the angle between U and V, and a⊥ is a unit vector that is perpendicular to the plane of U, V and points in the direction of progress of a right-hand screw turned from U to V. Evidently the vector product is a vector quantity whose magnitude is equal to the area of a parallelogram with U and V as sides. Note that the vector product is not commutative:



[image: image]

Application of Eq. (1-09) to unit vectors in any right-hand orthogonal coordinate system gives the multiplication table:



[image: image]

In such a coordinate system,



[image: image]

These expressions apply to all right-hand, orthogonal coordinate systems in euclidean 3-space. Other useful relations are listed in Table 1-01 (at end of chapter).



[image: image]

FIG. 1-04. Gradient at point P of a scalar field is defined as [image: images]

1-03. Gradient. Consider a scalar point-function ϕ(x, y, z)which is single-valued and continuous in a region [image: images]. Physically, ϕ might be a temperature, a pressure, or an electric potential. At a fixed point P, we have a definite value ϕP. Now take a point Q which may be moved in the vicinity of P (Fig. 1-04). Generally if Q is moved about P on a sphere of radius Δs, the value of ϕQ will change and Δϕ = ϕP – ϕQ will depend on orientation. Usually a direction can be found where Δϕ is a maximum. This direction is taken as the direction of a new vector which is called the gradient. The magnitude of the gradient is defined as the value of Δϕ/Δs in this preferred direction. Thus the gradient of a scalar may be defined as



[image: image]

where amax is a unit vector pointing in the direction of maximum (Δϕ/Δs).

Many books on vector analysis define gradient in terms of rectangular coordinates. But such a definition violates the spirit of the subject, whose essence is its independence of coordinates. Thus Eq. (1-11) is a more basic definition than one in terms of any specific coordinate system.

In rectangular coordinates, Eq. (1-11) reduces to



[image: image]

One must remember that in circular-cylinder coordinates, Δs in the ψ-direction is not equal to Δψ, but Δs = r Δψ. Thus



[image: image]

and



[image: image]

Similarly, in spherical coordinates,



[image: image]

1-04. Divergence. Valuable information about a vector field can be obtained from two quantities, divergence and curl. Divergence is a scalar point-function; curl is a vector point-function. It might seem that the introduction of these two new functions is an unnecessary complication, but experience shows that divergence and curl are distinctly useful concepts.

Consider a field, at each point of which a vector E is specified. We now associate with each point P a scalar quantity, the divergence of E, defined as



[image: image]

Imagine the point P to be enclosed in a surface [image: images] of any shape, the volume within the surface being Δ[image: images]. Take the total outward flux of the vector E through the bounding surface; [image: images]. The limit of the total outward flux, per unit volume, as the surface shrinks about P, is defined as div E at the point P. In general, div E is different for each point in the field.



[image: image]

FIG. 1-05. Electric field in the vicinity of P, caused by a long charged wire on the z-axis.

For example, consider an E-field that is radial (Fig. 1-05), such as might be produced by a long charged wire on the z-axis. Take any point P and imagine it within a small closed surface of any shape. Or P may be placed on the surface if desired. Since [image: images] will be allowed to shrink to zero, Eq. (1-12), the final result will be the same in either case.

Because of axial symmetry (Fig. 1-05), it seems simplest to choose a region [image: images] bounded by cylindrical surfaces and planes, although this is by no means necessary.

Since E is radial,



[image: image]

and there is no flux of E through the plane surfaces. The flux into [image: images] through the surface of radius r is



[image: image]

where E is the magnitude of E at point P. But on the outer cylindrical surface (r + Δr), the magnitude of E is no longer E but has changed to



[image: image]

representing the first two terms of a Taylor expansion. Thus the outward flux through the outer surface of [image: images] is



[image: image]

The total outward flux from [image: images] is



[image: image]

neglecting higher-order terms. Thus, from Eq. (1-12), the divergence at any point is



[image: image]

The foregoing example illustrates the basic method of calculating divergence by use of Eq. (1-12). For rectangular coordinates with E in any direction, Eq. (1-12) gives



[image: image]

Equation (l-12a) is often used as the definition of divergence. But since this equation applies only in rectangular coordinates, it suffers from the same objection mentioned in Section 1-03. In circular-cylinder coordinates with E in any direction, Eq. (1-12) gives



[image: image]

For spherical coordinates,



[image: image]

In many physical applications, it may be possible to evaluate the divergence without calculation. Whenever physical intuition indicates that the flux entering Δ[image: images] is the same as the flux leaving it, the integral of Eq. (1-12) must be zero and consequently



[image: image]

In electrostatics, for instance, one visualizes electric flux lines between charges. At any point P in an uncharged region, the integral of Eq. (1-12) must be zero, and we can say immediately that div D = 0 at such a point. Only if there is a charge distribution of density ρ (coulomb m–3) at P will div D ≠ 0; in which case div D = ρ, a measure of the strength of the source at P.

Similarly, one may say immediately that for the magnetic field,



[image: image]

always, since the magnetic flux lines invariably form closed loops. Also, in the thermal field, the divergence of the S-vector (watt m–2) is zero throughout regions in which there is no heat generated or dissipated.

An important theorem, the divergence theorem,3 follows directly from Eq. (1-12). Integration over a finite volume [image: images] yields



[image: image]

where [image: images] is the surface that bounds [image: images]. The divergence theorem is often useful in changing from a volume integral to a surface integral or vice versa.

1-05. Curl. The curl of a vector is itself a vector. The magnitude of the component of curl E in the direction ai is defined as



[image: image]



[image: image]

FIG. 1-06. The component of curl E, at P in the direction ai, is obtained by integrating E about the contour Ci.

where Δ[image: images]i is an element of area that is perpendicular to the unit vector ai, and Ci is a curve that bounds Δ[image: images]i. The integral is taken around the contour Ci in such a direction that ai is in a right-hand screw direction with respect to the integration. The vector ds is tangent to the contour (Fig. 1-06).

The complete curl-vector at point P can be obtained by integrating in three mutually orthogonal planes at P and adding the three components based on Eq. (1-14):



[image: image]

Or if one knows the direction of curl E, he need merely integrate in one plane that is perpendicular to the known direction of curl E.

As an example, consider a long, copper conductor of circular cross section (Fig. 1-07) carrying a direct current in the z-direction. The current density is J = azJz = const. What is curl H at any point P within the conductor?

It is convenient to take the contour shown in Fig. 1-07 with P at one comer. Since the current is in the z-direction, the magnetic flux lines must be circles and H must be in the ψ-direction. At P, H = aψHψ; and at radius (r + Δr),



[image: image]

where H is the magnitude of H at P. Thus



[image: image]

neglecting higher-order terms. From Eq. (1-14),



[image: image]



[image: image]

FIG. 1-07. Wire carrying current in the z-direction. The resulting magnetic field is in the ψ-direction, and curl H is obtained by integrating H about the curvilinear rectangle having sides r Δψ and Δr.

Obviously, curlψ H = 0 and curlr H = 0.

But H represents the amp-tums m–1 at P, caused by the current within the circular area of radius r, so



[image: image]

Consequently,



[image: image]

Applying Eq. (1-15) to any E-vector in rectangular coordinates, we obtain



[image: image]

One way to remember this equation is to write it in the form of a determinant:



[image: image]

Similar equations for the other coordinate systems are tabulated in Appendix C.

The mathematical definition of curl is simple enough but its visualization may be troublesome. Perhaps Fig. 1-08 will be helpful. In Fig. 1-08a, water is flowing from left to right, its velocity being represented by the vector point-function v. A small paddle wheel is immersed in the water at point P. If v is the same on both sides of P, there will be no tendency for the wheel to turn. But if v is greater on one side than on the other so that [image: images]Ci v · ds= 0, where Ci encloses P and lies in a plane perpendicular to the axis, then the wheel will turn. The rps of the paddle wheel will be a measure of curli v at P, and the direction of the axis will indicate the direction of the curl vector.



[image: image]

FIG. 1-08. (a) Hypothetical device for measuring curl v in a liquid with velocity v. (b) Device for measuring curl E in an electric field. If the axis is so oriented that maximum rps is obtained, the direction of the curl vector is the direction of the axis and the magnitude of the curl vector is directly proportional to rps.

In more complicated cases, where the direction of v is unknown, the orientation of the wheel axis is altered until maximum rps is obtained This direction is the direction of curl v at P, while the maximum rps is a measure of the magnitude of the curl.

Figure 1-08b indicates a similar curl meter for electrostatic fields. A set of small charged spheres is attached to a shaft by insulating spokes. If the field is nonuniform so that [image: images]Ci E · ds ≠ 0, the wheel will turn and can be used to determine the direction and magnitude of curl E.

Closely associated with Eq. (1-14) is Stokes’ theorem.4 Integration of Eq. (1-14) over a finite area gives



[image: image]

where Ci is a closed curve bounding the surface [image: images]i.

1-06. Combinations of Operators. Three operators have been defined: grad, div, and curl. The first can be applied properly only to a scalar; the second and third operators can be applied only to a vector. Let us consider all possible combinations of these operators taken two at a time:



[image: image]

The items followed by crosses are obviously meaningless. There remain five possibilities:



[image: image]

The first two are easily proved to be identically zero. The fourth (div grad ϕ) is of such frequent occurence that it is usually written in the shortened form ∇2ϕ, where the operator ∇2 is called the scalar Laplacian. A somewhat analogous operator ([image: images]) is called the vector Laplacian.5 The last term of Eq. (1-17) is often written ∇2U; but this is reprehensible practice, since the two operators are not the same. By definition,



[image: image]

but



[image: image]

The only possible justification for using the same symbol for these two operators is that in rectangular coordinates (and in rectangular coordinates only) the components of the vector Laplacian resemble the form of the scalar Laplacian. For cylindrical and spherical coordinates, the expressions are given in Appendix C. See also Table 1-02.

1-07. Classification of Fields. A convenient method of specifying all possible fields is in terms of divergence and curl. Evidently an exhaustive classification is as follows:

Class I:	curl E = 0	and	div E = 0,

Class II:	curl E = 0	but	div E ≠ 0,

Class III: curl E ≠ 0	but	div E = 0,

Class IV:	curl E ≠ 0	and	div E ≠ 0.

Class I fields are simplest, and the fields become progressively more difficult to handle as we move down the list. Examples of Class I are the electrostatic field in a charge-free region, the steady magnetic field outside a current-carrying conductor, the gravitational field, the steady electric-current field, the thermal-conduction field in equilibrium. Some examples of Class II are the electrostatic field in a charged region, the thermal field in a region in which heat is generated. Class III includes the magnetic field inside current-carrying conductors.

The value of this classification resides in the help it gives in solving field problems. For each of the four classes, a definite method of attack can be developed. So the first step in handling a field problem is to determine the class of field, which suggests the method of solution.

1-08. Potentials. Given a region [image: images], at each point of which a vector U is specified. One may work directly with this vector; but it is much easier to manipulate scalars than to use vectors. Thus a question arises as to the possibility of introducing a new scalar quantity ϕ, related to the vector U. Let us define ϕ as the line integral of the known vector point-function U. For any two points (A and B, Fig. 1-09), let



[image: image]

If this new quantity ϕ (called the potential) is to be useful, it must be independent of the path of integration. Thus we stipulate that for any two paths (1 and 2 of Fig. 1-09),



[image: image]

FIG. 1-09. The scalar potential difference between A and B is defined as the line integral of a vector U. A potential is said to exist only if this integral is independent of the path AB.



[image: image]

or



[image: image]

But if, for every closed path in [image: images],



[image: image]

then according to Eq. (1-14),



[image: image]

Evidently, the necessary and sufficient condition for the existence of a scalar potential ϕ, consistent with Eq. (1-18), is that curl U = 0.

According to this important theorem, a scalar potential always exists for fields of Class I and Class II. Also, Eq. (1-18) may be written in differential form:



[image: image]

For a field of Class I,



[image: image]

Thus any field of Class I may be handled by first solving Laplace’s equation,



[image: image]

and then obtaining the vector U from Eq. (1-19).

Similarly, for any field of Class II,



[image: image]

where K is a constant or a known function of the coordinates. Here we obtain Poisson’s equation,



[image: image]

and U is again determined by use of Eq. (1-19).

For fields of Class III, no scalar potential exists and the solution is inherently more complicated. If one wishes, however, he may introduce a vector potential A, which is usually defined by the relations,



[image: image]

Note that we are inventing a new vector A; and to specify it completely, we must specify both its curl and its divergence. The divergence could be made anything, but usually div A = 0 gives greatest simplicity.

In a field of Class III, let



[image: image]

where the vector K is a constant or a known function of the coordinates. Substitution of Eq. (1-22) gives



[image: image]

Thus for any field of Class III,



[image: image]

a vector Poisson equation. The solution of this differential equation gives the vector potential A; and the vector U can then be obtained by use of Eq. (1-22).

It can be shown6 that the necessary and sufficient condition for the existence of a vector potential A is that div U = 0. Thus for a field of Class III, a vector potential can always be introduced. But for Class IV, even the direct application of a vector potential is not sufficient.

The foregoing system of classification is of value in a wide variety of physical fields. How does it apply to electromagnetism? Since the electrostatic field is of Class I or II, an electric potential ϕ may be introduced, and



[image: image]

for all electrostatic problems. For magnetic fields, even within current-carrying conductors, div H = 0; so the magnetic field is never beyond Class III. A magnetic vector potential A is always possible, and



[image: image]

For the general, time-variant, electric field, however, neither div E nor curl E is zero, and the field is of Class IV. Thus, scalar and vector potentials, as defined above, do not exist. We have a choice, then, of abandoning potentials entirely or of modifying our definitions of potentials. The latter choice is taken. As we shall see in subsequent chapters, Eq. (1-19) is abandoned in favor of



[image: image]

In this way, an electric potential ϕ is retained in the most general case and the electric and magnetic fields are tied together in an intimate manner.

1-09. Retarded Quantities. Classical vector analysis is concerned with functions of three space coordinates, such as (x, y, z). The subjects of electrostatics and magnetostatics employ vectors in this way. But in general, quantities that specify a field, such as ϕ and A, are time-variant ; so each field quantity is a function of four variables (x, y, z, t). Even in this case, however, vector analysis usually considers that all quantities are taken at the same instant. Thus we work with a threedimensional section (t = const) through the four-dimensional continuum (x, y, z, t).



[image: image]

FIG. 1-10. A field is produced at P by charges in a fixed volume Δ[image: images] at point Q.

Another way of taking a section of the 4-space is to fix the time t at the field point P and to consider all other points at retarded times7 τ = t – r/c. Here r is the distance between P and any other point Q, and c is the velocity of light in free space. Figure 1-10 indicates the arrangement.

Consider a scalar function ϕ defined as



[image: image]

where [u] ≡ u(Q, τ) and τ = t – r/c. As will be shown in Section 2-08,



[image: image]

A given elementary volume d[image: images] is fixed in position, so r is not a function of time. Thus the time derivatives of ϕ are obtained very simply:



[image: image]



[image: image]

Gradient and Laplacian of ϕ are also needed. According to the definition of gradient, we move P an infinitesimal distance, holding t constant, and find the corresponding change in ϕ at P. The specification that t = const requires that τ must change slightly for each point Q, so



[image: image]

From Eq. (1-25),



[image: image]

Analogous equations are obtained for differentiation with respect to y and z. Adding these terms, we obtain



[image: image]

The same procedure is used to obtain the Laplacian of ϕ:



[image: image]



[image: image]

Addition of components gives



[image: image]

For the special case of n = 1, we obtain the scalar wave equation. From Eqs. (1-30) and (1-25),



[image: image]

or



[image: image]

1-10. Retarded Vector Potential. A retarded vector point-function A may be defined as



[image: image]

Then



[image: image]



[image: image]

Also needed are div, curl, and Laplacian of A. Point P is imagined to be moved through a small distance, with t = const, giving



[image: image]

or



[image: image]

Similarly,



[image: image]

From Eq. (1-32),



[image: image]

and



[image: image]

where α, β, γ are the angles between ar and the x, y, and z axes. Thus,



[image: image]

The vector Laplacian of A may be written



[image: image]

Differentiating:



[image: image]

and



[image: image]

If n = 1, Eq. (1-37) reduces to



[image: image]

or



[image: image]

which is the vector wave equation.

1-11. Retarded Divergence Theorem. In Section 1-04, a useful relation between volume and surface integrals was introduced—the divergence theorem. Time was tacitly assumed to be fixed:



[image: image]

The purpose of this section is to obtain the corresponding divergence theorem for t = const instead of τ = const.



[image: image]

FIG. 1-11. Conditions within a volume, [image: images] produce a field at point P.

The usual definition of divergence, Eq. (1-12), applies at point Q if τ is held constant, or



[image: image]

Now evaluate the above integral for t = const. It is convenient to employ spherical coordinates with P at the origin, Fig. 1-11. Each spherical surface, r = const, represents a fixed value of τ such that τ + r/c = t = const. The integral represents the total flux of [V] through the surface enclosing the volume Δ[image: images], Fig. 1-11. Evidently the flux through the sides will be the same as in the unretarded case. But the flux through the faces at r and (r + Δr) will have an additional term caused by the fact that τ is not the same on these two faces. For the r-component,
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Addition of the other components gives
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where ar is directed from Q to P as in Fig. 1-11.

We now proceed as in the proof of the ordinary divergence theorem.3 The integral on the left side of Eq. (1-41) represents the outward flux of [V] through a surface ΔS about the point Q. If we sum these surface integrals over a finite region, all the interior surface integrals cancel, leaving only the integral over the surface S bounding the region. Thus
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or
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Equation (1-42) is the desired divergence theorem for retarded quantities.8 Here the surface integral is taken at t = const but div [V] is the ordinary divergence taken at τ.

1-12. Retarded Curl Theorem. Stokes’ theorem4, relating the surface integral of curl to the line integral of the vector, was treated in Section 1-05. This theorem applies at τ = const. We now obtain the corresponding theorem for a retarded vector [V], with t = const.

The ith component of curl [V] at point Q is defined as
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The line integral is taken around the faces of Δ[image: images] in Fig. 1-11. Evidently the r-component of curl is unaffected by retardation, since the integration is on a spherical surface τ = const. But the θ-component contains an extra term, [image: images] and the ψ-component has an extra term, [image: images]

Thus
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For a finite surface S, with boundary C,



[image: image]

where ar is directed from Q to P.

The above relation corresponds to Stokes’ theorem. Equation (1-44) applies to retarded quantities with t = const. As in the retarded divergence theorem, there is an additional term depending on the derivative with respect to τ. A summary8 of transformation theorems is given in Table 1-03.
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TABLE 1-01. PRODUCTS

Vector Product
 
For any orthogonal coordinate system in 3-space,
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Scalar Triple Product
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Vector Triple Product
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Quadruple Products
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TABLE 1-02. VECTOR CALCULUS
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TABLE 1-03. TRANSFORMATION THEOREMS

Unretarded

1. Divergence theorem
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2. Curl theorem
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3. Stokes’ theorem
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4. Green’s theorem
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Retarded

1. Divergence theorem
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2. Curl theorem
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3. Curl theorem
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4. Green’s theorem
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PROBLEMS

Problem 1-01. (a) Show that the scalar triple product A · (B × C) gives the volume of the parallelepiped whose sides are A, B, and C.

(b) Using this geometric picture, determine the values of
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in terms of A · B × C.

(c) If A · B × C = 0, what does this prove about A, B, and C (assuming that the three vectors point in different directions and none of them is zero)?

Problem 1-02. (a) Show that A × (B × C) is in the plane of B and C.

(b) Where is the vector (A × B) × C?

Problem 1-03. A point charge +Q at the origin of coordinates produces an electric field E. Express div E at any point (r ≠ 0) by using the basic definition of divergence, Eq. (1-12).

Problem 1-04. A long strip of metal carries a current in the x-direction. The width of the strip is b (in the y-direction) and its thickness is δ (in z-direction). The resistivity of the metal is not uniform but is
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where [image: images] and α are constants.

Determine curl J at any point in the sheet.

Problem 1-05. Derive Eq. (l-12a) from Eq. (1-12).

Problem 1-06. Derive Eq. (l-12b) from Eq. (1-12).

Problem 1-07. Derive Eq. (l-12c) from Eq. (1-12).

Problem 1-08. In the region outside a charged sphere of radius a,
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If the electric field strength E is defined as
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evaluate E. What is its maximum value?

Problem 1-09. Derive Eq. (1-13) from Eq. (1-12).

Problem 1-10. Derive Eq. (l-15b) from Eq. (1-15).

Problem 1-11. From Eq. (1-14), derive an expression for curl E in circular-cylinder coordinates.

Problem 1-12. Repeat Prob. 1-11 for spherical coordinates.

Problem 1-13. Obtain Eq. (1-16) from Eq. (1-14).

Problem 1-14. Prove any one of the identities of Eq. (1-17).

Problem 1-15. By use of Eq. (1-12), prove that div H = 0 for the magnetic field inside a long copper wire of circular cross section carrying a steady current.

Problem 1-16. An isolated, straight wire of circular cross section carries a direct current. Because of nonuniformity in the metal, the current density is not uniform but
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where A and B are experimentally determined constants and r is the distance from the axis of the wire.

(a) By use of Eq. (1-12), obtain an expression for div H at any point within the conductor.

(b) From Eq. (1-14), obtain an expression for curl H at any point within the conductor.

(c) Classify this magnetic field.

Problem 1-17. Consider the radiation field produced by a small disk of heated metal set into a plane wall. The radiant power per unit area, received at a point P, is expressed by the vector S:
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where the origin of coordinates is taken at the center of the disk and the z-axis is perpendicular to the wall.

(a) Obtain an expression for curl S at any point in the field (0 < θ < π/2). Use Eq. (1-14).

(b) Classify the field. Does a scalar potential exist?

Problem 1-18. Heat flows down a long, homogeneous metal bar of uniform cross section. One end of the bar is at 100°C, the other end at 0°C. The field is characterized by the vector S which represents power per unit area.

(a) Determine div S and curl S for any point within the bar. Classify the field.

(b) Can a scalar or a vector potential be introduced, and what is the physical nature of this potential?

(c) What partial differential equation applies?

Problem 1-19. Consider the radiation field produced by a searchlight. This vector field is characterized by the Poynting vector S, whose direction at any point P is the direction of maximum energy flow at that point and whose magnitude is in watt m–2.

A particular searchlight produces a pattern that is symmetric about the axis of the beam:
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where θ is the angle from the z-axis, and r is the distance from searchlight to point P.

(a) Obtain div S and curl S at any point in the field.

(b) Find the total power radiated from the searchlight for [image: images]

(c) Does a scalar potential exist? What partial differential equation applies?

Problem 1-20. An isolated metal sphere of radius a is at potential V with respect to ground. At any point outside the sphere, Laplace’s equation applies:
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The general solution of this equation is
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(a) Determine the constants A and B.

(b) Obtain an expression for E from the relation E = – grad ϕ.

(c) Determine the total charge Q on the sphere.

Problem 1-21. From your expressions for curl U, write equations for
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in (a) Rectangular coordinates,

(b) Circular-cylinder coordinates.



† The usual definition of a field is a region of space in which a specified effect can be detected. This is basically different from our definition: the usual definition says field = space; ours says field = ensemble of measurements. That the usual definition is inconsistent with the way the word “field” is actually used is shown by familiar statements such as “The field in the space enclosed by a charged metal sphere is zero”; i.e., “The region of space in the space enclosed by a charged metal sphere is zero.”

‡ See references at end of chapter.


Chapter 2

BASIC CONCEPTS



The traditional approach to electromagnetic theory is an historical one. Starting with Coulomb’s equation, most authors develop electrostatics at great length. The attempt is then made to apply the same mathematics to magnetostatics — an attempt that is highly questionable because the physics of electricity is quite different from that of magnetism. Finally, the electric and magnetic fields are combined in the general time-variant case. For an elementary treatise, this procedure may be pedagogieally advisable; but for more advanced work, it has serious disadvantages.

The outstanding fault of the historical approach is lack of precision. Basic quantities are defined for a special case; and one is often puzzled as to the applicability of these simplified ideas to more general problems. For instance, the electric field strength E is usually defined as force per unit charge. But in general, force is not F = QE; it is
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Similarly, the student is taught that



[image: image]

and it is only later — if at all — that he realizes that the truths which he learned so painstakingly in electrostatics and magnetostatics are not valid in general: that E cannot in general be defined in terms of ϕ, that the voltage between two points is not equal to the potential difference, that the magnetomotive force around a closed path is not equal to the conduction current linked by this path.

A more sophisticated treatment1 starts directly with Maxwell’s equations, which are accepted as a condensed summary of an immense number of experimental results. But in accepting Maxwell’s equations, we must assume that we know the exact meaning of E, D, H, B, and J. Maxwell’s equations state very important relations among these five vectors, but the equations do not completely define the quantities.2

Evidently, a logical treatment of electromagnetism requires that the statement of Maxwell’s equations be preceded by exact definitions — definitions that are not limited to a special case but that can be depended on to hold under all circumstances. In this chapter, we attempt to formulate such definitions.

2-01. Charge. As a foundation, on which to build classical electromagnetic theory, we have the definitions of mechanics:

POSTULATE I. The Newtonian concepts of length, mass, time, and force are valid.

Relativity is introduced in Chap. 11; but the present chapter is limited to the nonrelativistic approach.3 The rationalized mks system of units will be employed.

Electromagnetism requires an additional fundamental concept, beyond those needed in mechanics. For this additional concept, we choose electric charge Q. Experimentally, charge manifests itself as an additional force that cannot be attributed to mechanical contact, to gravitation, or to magnetism. Quantitatively, charge may be defined by means of Coulomb’s equation,
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where F represents the magnitude of the force (newtons), r is the separation (meters) between Q1 and Q2 and K is an arbitrary constant which determines the unit of charge.

Imagine a torsion balance such as that used by Coulomb in his experiments. Take three particles whose charges will be denoted by Q1, Q2, Q3, and perform the experiment in a vacuum with r fixed. For particles 1 and 3 alone, the force is
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and for 2 and 3 alone,
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Adjust the magnitude of Q2 by adding or subtracting charge until F′ = F″. Then Q1 = Q2 = Q. Now measure the force between particles 1 and 2. Since Q1 has been made equal to Q2, the force is
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and thus



[image: image]

Equation (2-02) defines the new concept of charge in terms of the known concepts of force and distance. The constant K can be chosen at will. In the cgs electrostatic system, it is unity; but in the mks system, it is arbitrarily taken as
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where
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Q is then said to be in coulombs. Thus, charge is defined by the equation,
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Also, Coulomb’s equation may be written in vector form as
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where

F2 = force (newtons) on Q2,

ar = vector pointing from Q1 to Q2.

This equation applies to two point charges in a vacuum when there is no relative motion between them.

The magnitude of a charge is universally assumed to be independent of its motion. So if the charge of a perfectly insulated particle is determined, as above, with no relative motion between the particles, then the charge remains the same no matter how fast the particle moves. For instance, the charge of an electron is
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which is invariant, independent of the motion of the electron. Thus we have

POSTULATE II. Charge is independent of motion.

2-02. Charge Density. The density of charge ρ (coulomb m–3) is simply the charge per unit volume. One might write
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were it not for the fact that ρ is generally a function of position. So [image: images] must be a small volume about the point P at which ρ is to be determined. The classical definition is
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But if this limiting process is accepted literally, it will take us into the microscopic realm and will result in either ρ = 0 or ρ → ∞, depending on whether one happens to place P exactly on an electron or in the space between electrons. Let us write, therefore,
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where the limiting volume [image: ] is now understood as small but macroscopic, containing perhaps 104 electrons.

This question of microscopic vs macroscopic is a troublesome one in electromagnetic theory. Field theory is inherently macroscopic. The flux lines and equipotentials, with which we choose to visualize the field, are fictions but they are large-scale fictions. To talk about flux lines within the atom is not helpful and is probably meaningless. On the other hand, modem developments in atomic physics make it highly desirable that the engineer be able to visualize the microscopic, so that he can think, qualitatively at least, in terms of atomic and molecular models.

A difficulty arises when the two approaches are mixed, so that the reader is not clear on which level he is operating. With the customary treatment of electromagnetism, media are characterized by the macroscopic parameters; but simultaneously there is talk about the microscopic phenomena of polarization and magnetization.4 The present book attempts to exhibit electrodynamics as a consistent discipline based on macroscopic field theory.

Since both positive and negative charges may be present, one may need to consider the two separately:
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Then the net charge density is
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The quantities ρ+ and ρ– are algebraic and carry their own signs. A neutral atom has equal amounts of positive and negative charge, so ρ = 0 for most materials. But one must realize that even if ρ = 0, the charges may have decided effects. These effects are particularly important in conduction, where either positive or negative charges (or both) may move.

Two other charge densities are sometimes convenient, though not necessary. In addition to volume charge density, one may introduce surface charge density σ (coulomb m–2) and linear charge density (coulomb m–1). Evidently, neither of these concepts introduces anything that is physically new. The charge is always a volume distribution and may be expressed in terms of ρ, even though it be confined to a very thin layer near the surface.

2-03. Current. Current density J at a point P may be defined in terms of the charge densities and velocities in the immediate neighborhood of P:
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where

J = current density (amp m–2),

v+ = velocity (m sec–1) of positive charges at P,

v– = velocity of negative charges at P.

In a vacuum tube, the current between filament and plate is carried by electrons, so in this space ρ+ = 0, ρ– ≠ 0, and
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The current in a metallic conductor, such as a copper wire, is carried by the electrons, the positive charges being fixed in the crystal lattice. Here ρ = 0; yet there is a current and
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In electrolytes, on the other hand, both positive and negative ions are usually mobile, and current density must be expressed in its general form, Eq. (2-05).

The total current I (amperes) through a given surface [image: images] is defined as
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Note that the current I is not a vector.

2-04. Conservation of Charge. We now introduce a postulate on the behavior of charge:

POSTULATE III. Electric charge is conserved: it cannot be created or destroyed.

This postulate can be expressed in simple mathematical form. Consider a closed surface [image: images] about a volume [image: images]. The total charge contained in [image: images] at any instant is
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If the volume is fixed but the charge varies with time, the rate of decrease of Q is
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On the other hand, the total charge flowing outward through the surface per unit time is
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If the charge is conserved, therefore,
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or, by the divergence theorem,
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Therefore, since the result must hold for any given [image: images],



[image: image]

This expression for conservation of charge is an important relation.1

2-05. Parameters of the Medium. In classical electromagnetism, a material is characterized by three parameters: permittivity [image: ], permeability μ, and resistivity [image: images]. We assume that values of the parameters have been measured for the media under consideration, and that these measured values can be substituted into the equations when needed. As might be expected, values of [image: ], μ, and [image: images] are not true constants for a given material but tend to vary with temperature, frequency, and field strength. Thus, experimental values should be selected for the particular conditions of the problem.

An interesting branch of modem physics attempts to evaluate the parameters of the medium from molecular and electronic considerations. Such a study, however, is beyond the scope of this book. No consideration is given here to microscopic structure, to quantum mechanics, or even to electric and magnetic polarization. The classical macroscopic theory of electromagnetism is itself almost too vast a subject for one volume; and to try to include the structure of matter would be unwise.

Consider two fixed metal plates connected to a battery. Measure the charge on one of the plates, first with a vacuum dielectric, secondly with a given dielectric. The ratio of the two values of Q may be taken as a definition of the relative permittivity ([image: ]/[image: ]0) of the given dielectric, or
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where [image: ]0 is an arbitrary constant. In the mks system, [image: ]0 is taken as 8.8552 × 10–12, which is approximately [image: images].

An operational definition of permeability is also possible. Consider a toroidal core of the material to be tested. A uniform winding on the core is connected to a sinusoidal source of constant frequency and constant voltage. The relative permeability (μ/μ0) of the core may be defined as the ratio of the magnetizing currents obtained with the given core and with a vacuum core, or
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The constant μ0 is arbitrary, and in the mks system is taken as
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The third parameter (resistivity) will be defined in Section 3-01. These preliminary definitions are summarized in Table 2-01. In the most general case, a parameter will vary with position in space, with the direction of the field, and with the field strength. If the medium is inhomogeneous, [image: ], μ, [image: images] will be functions of x, y, z. If the medium is anisotropic, as in a crystal, the parameters at a given point will depend on direction. If the medium is nonlinear (magnetic saturation in iron, for instance), values of the parameter will depend on field strength. For simplicity, this book will be limited to homogeneous, isotropic, linear media.

2-06. The Unretarded Potentials. The next step in the logical development of electromagnetism is the introduction of the potentials. Consider a point charge Q, which may be moving in an arbitrary manner with respect to a field point P. Experiment shows that Q is capable of affecting charged particles in its vicinity. As a measure of this effect, we define a new scalar point function ϕ, called the scalar potential:
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where ϕ is the potential at point P, and r is the distance between P and Q. Note that this definition is completely arbitrary. We divest ourselves of any preconceived ideas of what the word “potential” should mean, and we write Eq. (2-10) as our definition of a new entity ϕ. The justification for the introduction of this new quantity is a pragmatic one: the quantity has been found to be useful.

The potential caused at P by any set of charges is then obtained by superposition. For a continuous charge distribution, dQ = ρ d[image: images], and
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Theoretically, the integral of Eq. (2-11) should extend over all the charges in the universe. Ordinarily, hcwever, only nearby charges need be considered. Matter, though composed of positive and negative charges, usually has zero net charge. In this respect, the electrical effects of distant matter are less noticeable than gravitational effects, where no such cancelation of positive and negative quantities occurs.

A vector potential A is also required. The unretarded vector potential at P, caused by a single charge Q, is defined as
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Equation (2-12) shows that the vector potential is in the direction of v and becomes zero if the velocity is zero. For a moving volume distribution,
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where v+ and v– are velocities with respect to P.

2-07. Retarded Potentials. The foregoing discussion has neglected the fact that electromagnetic effects are not propagated instantaneously. Equation (2-11) is correct for the static case, and Eqs. (2-11) and (2-13) are good approximations for low velocities and small distances. But in general the finite velocity of propagation must be taken into account. A sudden change in the velocity of Q at instant τ will not be felt at P until a later instant t, where
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This subject of retardation is usually passed over rather lightly. Actually, it is highly important and its details are not too well established even today.5

Three suggestions have been made as to the velocity of light in free space: light travels at velocity c0 = 2.99792 × 108 m sec–1 with respect to

(a) The receiver (Maxwell),

(b) The source at the instant of emission (Ritz),5

(c) The source at any instant (Moon and Spencer).6

Obviously, if there is no relative motion between source and receiver, the three are identical. Even with motion, the difference between (a) and (b) or (c) is negligible at any ordinary velocity.

In matter, light travels at a velocity c, which is less than c0. Throughout the book, we shall distinguish between [image: images], which is a unique constant representing the velocity of light in a vacuum, with source and receiver not in relative motion; and [image: images], which is the velocity of light under given conditions. The value of c depends on the medium, on the frequency, and on the relative velocities of source, medium, and receiver.

For this chapter, we introduce tentatively,

POSTULATE IV. The potentials are propagated in any medium at velocity c with respect to the receiver.

As will be shown in Section 2-09, the development of the usual wave equations in accordance with Maxwell’s theory requires that the potentials be retarded by r/c, not r/c0. If we are to obtain the classical equations, therefore, we must retard in this way. Also, if the macroscopic density ρ is to be employed, with volume [image: images] fixed with respect to P, suggestion (a) must be used rather than (c), in accordance with Postulate IV. For discrete charges in a vacuum, however, (c) appears to be preferable. This illustrates one of the philosophical discrepancies still existing in electromagnetic theory.

In a vacuum, c = c0 is a definite quantity and the only difficulty is the choice between (a) and (c). In a material medium, however, questions of homogeneity and isotropy enter. And the word “velocity” itself becomes vague. Even the introduction of “phase velocity” and “group velocity,” each a function of frequency, does not adequately represent the phenomena. A detailed analysis by Brillouin and by Sommerfeld7 indicates the complexity of the subject. Apparently, all that we can do here is to retard according to Postulate IV, realizing the philosophical weakness of cur position, but realizing also that we have a good engineering approximation.

The retarded potentials, corresponding to the unretarded potentials of Eqs. (2-11) and (2-13), are
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where ϕ and A refer to the field point P at instant t. The brackets indicate quantities at retarded instants τ:
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and the relation between t and τ is given by Eq. (2-14).

Equations (2-15) and (2-16) define the Lorentz potentials, introduced in 1867 by Ludvig Lorenz.8 The formulation is in approximate agreement with all three suggestions (a), (b), (c), provided that [image: images], which is the case for ordinary engineering applications.9 Further consideration of this point will be given in Chaps. 11 and 12.

2-08. Differentiation. The retarded potentials have been defined by Eqs. (2-15) and (2-16). To obtain gradient, divergence, curl, and the Laplacians, we need merely differentiate the potentials. This constitutes the next step in the logical development of electrodynamics.10 But because of retardation, the differentiation must be handled with circumspection.
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FIG. 2-01. Scalar and vector potentials are produced at point P by charges in the volume Δ[image: images] at point Q. A disturbance arising at Q at instant τ arrives at P at instant t.

Figure 2-01 shows an element of volume Δ[image: images] and the field point P, which for simplicity we shall consider to be in the xy-plane. The volume Δ[image: images] is fixed in position with respect to P, though charges are moving through it. Suppose that a pulse of radiation is emitted from Δ[image: images] at instant τ. This pulse travels at velocity c with respect to P (Postulate IV) and arrives at P at instant t. Here c is the velocity of propagation in the medium. Only for a vacuum is c = c0 = 2.99792 × 108 m sec–1. The distance traveled by the pulse is
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In obtaining grad ϕ, we move P by an infinitesimal distance and find the corresponding change in ϕ, Move P by distance Δx to P1 (Fig. 2-01). A pulse, emitted from Δ[image: images] at τ1 arrives at P1 at instant t1 and
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Thus
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where Δt = t1 – t, Δτ = τ1 – τ. Also, from the geometry of the diagram,
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or
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From Eqs. (2-17) and (2-18),
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For the special case of pulses arriving at P and P1 at the same instant, Δt = 0 and Eq. (2-19) gives
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From Eq. (2-18),
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If Δx = 0, Eq. (2-19) reduces to Δτ = Δt or
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Also,
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These four relations, Eqs. (2-20) to (2-23), are helpful in the further development of the subject.

For convenience, Fig. 2-01 has been drawn as if the problem were a two-dimensional one. But the foregoing equations apply equally well in 3-space. Evidently
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where cos α, cos β, and cos γ are the direction cosines of the unit vector ar.

Now return to the scalar potential:
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and differentiate:
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But
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or
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2-09. The Wave Equations. Equation (2-24) may be written
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where (x – ξ)/r = cos α. Differentiation gives
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But cos2 α + cos2 β + cos2 γ = 1 and
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so
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Also,
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Thus is obtained the scalar wave equation,
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Equation (2-28) represents a wave which is propagated at velocity c with respect to P.

The vector wave equation is obtained from the vector potential. According to Eq. (2-16),
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so
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and
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Since
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Eq. (2-29) and its counterparts in the other two directions give
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But
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so we obtain the vector wave equation,
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2-10. Improper Integrals. We have expressed the potentials and other electromagnetic quantities as integrals. To be meaningful, such integrals must converge. For ordinary conditions obtained in nature, ρ and J are continuous—or at least piece-wise continuous—functions over a region [image: images]; and everything is satisfactory if P is outside [image: images]. This condition has been tacitly assumed throughout the previous sections of the chapter. But if P is within the charged region, the integrands become infinite at P because of r–n. The integrals are then said to be improper.11
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FIG. 2-02. A charged volume [image: images] is divided into two regions for convenience in determining the potential at P.

Even though the integral I is improper, it may still converge; but the question of convergence requires careful attention. The complete charged region [image: images], Fig. 2-02, is divided into two parts: a sphere of radius a with P as center (Region 1), and the remainder of [image: images] (Region 2). The integral I is then



[image: image]

where I1 is the integral over the sphere and I2 is the integral over the remainder of [image: images]. The integrand is finite except at P.

Since P is outside Region 2, I2 converges and no difficulties arise in the integration over Region 2. Convergence of I, then, depends entirely on I1. Evidently there are three possible cases for a → 0:



[image: image]

Either (a) or (b) is satisfactory. For case (a), the previous results of this chapter apply without change, even when P is within a charged and polarized region. For case (b), the previous integrals require the addition of terms obtained from I1. For case (c), the integral I does not converge and cannot be used if P is within the charged region [image: images].

Consider the integral I1,
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If u is a bounded function with maximum value um within the sphere,11
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Evidently I1 → 0 as a → 0, if n < 3.

THEOREM I. If u is a bounded function within [image: images], the integral
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converges for n < 3, and I1 = 0.

The corresponding result for a surface integral is easily proved :

THEOREM II. The integral



[image: image]

converges for n < 2; and I1 → 0 as a → 0, if u is a bounded function over the surface [image: images].

Here I1 is the integral over the portion of [image: images] enclosed in a circle of radius a.

Let us now apply Theorem I to the integrals of this chapter. The scalar potential is defined by Eq. (2-15). Evidently, Theorem I applies, I1 = 0, and the integral belongs to Case (a). The same conclusion applies to the vector potential defined by Eq. (2-16).

But Theorem I does not insure convergence for grad ϕ, div A, or curl A. These quantities are associated with differentiation with respect to distance, so they will generally change the r–1 (of ϕ and A) into r–2. Taking the further step to ∇2ϕ and [image: images]A, we may change r–1 to r–3, which makes convergence even more questionable. This does not mean that the integrals are necessarily infinite; but it does, at least, shift them from Class (a) to (b) with I1 ≠ 0.

2-11. The Laplacians. First consider the scalar potential,
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at point P within a charged region [image: images]. We are interested in the charge within a sphere of radius a about P (Fig. 2-03). Since a is very small, retardation is neglected. Take P′ just outside the sphere and let ρ = const for this small sphere. Then
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FIG. 2-03. Charged sphere of radius a.

and the charge acts as if it were concentrated at P. Thus, by Coulomb’s equation,
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for any point at the surface of the sphere.

The Laplacian of ϕ at P is defined as
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or



[image: image]

Thus the charges within the sphere, as a → 0, contribute – ρ/[image: ] to ∇2ϕ. This is the value of I1, to which must be added I2 to obtain the complete expression for ∇2ϕ. From Eq. (2-26), which gives I2, and the above expression for I1, we obtain
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or
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Now consider the contribution of I1 to the vector Laplacian of A. The result can be obtained most easily by comparison with the scalar Laplacian. For a scalar function,
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we have for I1,
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as found in the first part of this section. Taking the x-component of the vector potential as
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and



[image: image]

we obtain by comparison with Eq. (2-32),
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This is the contribution I1 to the vector Laplacian, caused by charges in the immediate neighbourhood of P. Since I2 is given by Eq. (2-29a), the complete expression for [image: images]A is
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or
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2-12. Summary. The purpose of this chapter has been to present a postulational formulation of electrodynamics. Instead of assuming that we have an intuitive knowledge of E, D, B, and J, we build up the whole subject from the fundamental concept of charge. The following quantities are defined:
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These concepts are listed in Table 2-01.

The following postulates are introduced:

POSTULATE I. The Newtonian concepts of length, mass, time, and force are valid.

POSTULATE II. Charge is independent of motion.

POSTULATE III. Electric charge is conserved: it cannot be created or destroyed.

POSTULATE IV. The potentials are propagated in any medium at velocity c with respect to the receiver.

On the basis of these definitions and postulates, we obtain grad ϕ, ∇2ϕ, and [image: images]A by differentiation of the potentials. The results are summarized in Table 2-02.

The reader may be skeptical about some of the postulates, particularly I and IV. Subsequent chapters, however, will show that the electrodynamics based on these postulates agrees with the great bulk of experimental results. In fact, only when one comes to moving media does he encounter difficulties. Possible modifications of the postulates for moving systems will be considered in Chap. 12.

The beauty of the postulational approach is that one knows exactly where he stands. If subsequent experiments indicate a discrepancy, one knows immediately that the postulates or the definitions need revision; and he sets about making such a revision.12

The average textbook gives a completely erroneous idea of the logical perfection of scientific theories.13 Physics is built up of pieces, each theory being laboriously developed to cover a restricted set of facts. Usually, these separate pieces do not fit together to form a logical whole. A consistent electrodynamics, for example, is yet to be developed. The system given in these pages has its weaknesses; but it does cover the usual engineering applications in a simple and effective way, while alternatives appear to be both more complicated and more inconsistent.
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TABLE 2-01. BASIC CONCEPTS OF ELECTRO DYNAMICS
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TABLE 2-02. RETARDED POTENTIALS
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PROBLEMS

Problem 2-01. A glass tube (I) (Fig. 2-04) is evacuated, and a current I0 is carried by electrons moving at velocity ve. An identical tube (II) is filled with electrolyte (ρ = 0) having ions moving at velocities v+ and v–. An observer P moves at velocity v0 with respect to the tubes.

(a) Are the currents the same in the two tubes, with respect to P?

(b) Obtain expressions for J in (I) and (II), as calculated for P in terms of
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2-04. Glass tubes carrying charged particles, Prob. 2-01.

Problem 2-02. A lamp is arranged to oscillate sinusoidally in the x-direction about the point O. Each time it passes through the origin, it flashes. The magnitude of its velocity is ±v0 at the instant of flash. The lamp is observed from a distant point P on the x-axis. If the period of oscillation is 2.0 sec, what are the intervals between flashes, as seen from P?

(a) Assuming a stationary aether, fixed with respect to P.

(b) For the ballistic hypothesis of Ritz.

Problem 2-03. Consider a binary star consisting of a massive, nonradiating star at O and a radiating star S which moves in a circular orbit about O with radius a and angular velocity w. P is in the plane of the orbit at distance l from O(l ≪ a).

With the Hitz hypothesis, de Sitter has shown that under certain circumstances it is possible to see S at two points, A and B, simultaneously. Take A and B on opposite sides of O with AOB perpendicular to OP.

Determine the conditions under which S would appear simultaneously at A and B when observed from P.

Problem 2-04. By differentiation of Eq. (2-16), obtain an expression for div A if P is outside the charged region.

Problem 2-05. Write the scalar and vector wave equations for

(a) Free space.

(b) A cloud of moving electrons in a vacuum.

(c) A piece of charged dielectric, stationary with respect to P.

Problem 2-06. A sphere of radius a has the charge distribution
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Let ξ be the distance from the center of the sphere to d[image: images] and let r be the distance from d[image: images] to the field point P, which is outside the sphere. The distance from the center of the sphere to P is l.

By volume integration, prove that the potential at P is as if the total charge were concentrated at the center of the sphere.

Problem 2-07. A straight wire, of small cross-sectional area [image: images], is charged with Q′ coulomb m–1 (Q′ = const). The wire extends along the z-axis from z = 0 to z = l.

(a) By means of Eq. (2-15), determine the scalar potential ϕ at point P whose coordinates are x = b, y = 0, z = 0.

(b) Obtain an expression for E at P.

(c) If the wire extends from – ∞ to + ∞, what is E?


Chapter 3

MAXWELL’S EQUATIONS



Scalar and vector potentials were considered in Chap. 2. We now define the field vectors E and B in terms of these potentials. Additional vectors D and H can then be introduced and relationships among these quantities can be established. This will complete the postulational development of electrodynamics. The remainder of the book will consist of the application of the general equations of Chap. 3 to various special cases of practical interest.

3-01. Field Vectors. The electric and magnetic fields at point P may be characterized by vectors E and B, which are defined in terms of ϕ and A.

Electric field strength E is defined as
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Magnetic flux density B is defined as
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These are the customary definitions, which long experience has shown to be useful.1

It is convenient to introduce two other field vectors, which are defined as follows:

Electric flux density D is
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Magnetic field strength H is
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Also, the third parameter of the medium (Section 2-05) is now defined in terms of J and E:

Resistivity [image: images] is
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Another vector point-function that is sometimes needed is force F. This concept has already been defined in mechanics, so it should not be redefined here. But it can be related to the vectors E and B. Instead of force, one may find that force per unit charge [image: images] is the more useful quantity:
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We now introduce

POSTULATE V. Force per unit charge is given by the relation
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Here v is the velocity of the test charge with respect to the coordinate system in which E and B are given. If v = 0, Eq. (3-06) expresses the familiar idea of electrostatics: that E represents force per unit charge. But if the charge is in motion, the second term may be the important one. An alternative way of including the (v × B) force will be considered in Chap. 12.

A few additional definitions can be introduced here:

Magnetic flux ϕ through a surface [image: images] is defined as
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Magnetomotive force is defined as
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Voltage Vab between points a and b is defined as
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In the static case, voltage is equal to potential difference, and Vab of Eq. (3-09) is independent of the path of integration. In general, however, voltage is not a potential difference, and Vab depends on the path between a and b.

3-02. Deductions. The results of the preceding sections can be used in deriving various relations needed in electrodynamics. From the definition of B, Eq. (3-02),



[image: image]

which is one of Maxwell’s equations:
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Also, from the definition of E, Eq. (3-01),
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or since curl grad ϕ ≡ 0,
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This is another Maxwell equation.

Also needed are expressions for div E and curl H. From Eq. (3-01),
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or
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From Eqs. (3-02) and (3-01),
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and
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Thus,
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Equations (3-12) and (3-13) are general relations which are quite independent of how the potentials are defined. Note that they contain three combinations of derivatives:
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The first and second are familiar from the scalar and vector wave equations of Chap. 2. The third combination will now be evaluated.

3-03. Divergence. In rectangular coordinates,
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From Section 2-09,
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or
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with analogous expressions for ∂Ay|∂y and ∂Az|∂z. Therefore,
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Also,
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Thus the third factor in (A) is



[image: image]

By conservation of charge, Eq. (2-07), applied at point Q,
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Consequently,
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Now introduce the retarded divergence theorem from Chap. 1 with [V] = [J]/r:
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Also,
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so
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Comparison with Eq. (3-16) shows that
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If the surface S can be taken completely outside all the moving charges, the integral vanishes and
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3-04. Maxwell’s Equations. Two of Maxwell’s equations, Eqs. (3-10) and (3-11), are the direct consequence of vector identities and are valid, irrespective of the definitions of the potentials.2 The other Maxwell equations are obtained from Eqs. (3-12) and (3-13) by introducing the values of the three combinations of derivatives, (A) of Section 3-02. According to Eqs. (2-31), (2-33), and (3-17), we have
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These values are substituted into Eqs. (3-12) and (3-13). Thus we have the four equations of Maxwell:
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A number of special cases are of particular interest. If there is no relative motion of charges, J = 0 and thus A = 0 and B = 0. For electrostatics, therefore, Maxwell’s equations reduce to
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which represents a field of Class II (Chap. 1). Since there is no motion, retardation does not enter, and
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Moreover, Eq. (3-01) reduces to
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and Poisson’s equation holds:
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For charges in uniform motion, Eq. (3-18) becomes
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The electric conduction field satisfies the same equations as those of electrostatics. The magnetic field is of Class III, with
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For the time-variant case in free space, ρ = 0 and J = 0 at the field point. Thus Maxwell’s equations are
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Both scalar and vector potentials are needed. They satisfy the wave equations,
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Also,
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FIG. 3-01. Boundary between two media. The normal component of magnetic flux density must be continuous across the boundary.

3-05. Boundary Conditions. Consider the magnetic flux density at the boundary between two media (1 and 2 of Fig. 3-01). It is convenient to take an imaginary box with height Δh and area Δ[image: images] parallel to the boundary. The flux density vector in 2 is B2, and the outward magnetic flux through the face in medium 2 is therefore
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where Bn2 is the component of B2 normal to the boundary. Similarly, the flux into the box through Δ[image: images]1 is
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If Δh → 0, there is negligible flux through the sides. Thus, the total outward flux from the box is
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But, according to Maxwell’s equations, the divergence of B is always zero, or



[image: image]

Thus, from Eq. (3-23),
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or the normal component of B is always continuous across a boundary.

A similar derivation can be made for the behavior of D at a boundary.
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FIG. 3-02. Normal component of electric flux density is continuous across an uncharged surface.

For the box of Fig. 3-02,
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According to Maxwell’s equations,
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where Q is the total charge within the box. If there is a surface charge of σ coulomb m–2 on the boundary between the two media,
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and
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In the particular case of no surface charge, Eq. (3-25) reduces to
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FIG. 3-03. Tangential components of E are equal at a boundary between two media.



[image: images]

FIG. 3-04. Tangential components of H at a boundary. Ht1 = Ht2 except when there is a surface current.

so the normal component of D is continuous across an uncharged boundary.

Now consider the tangential components of E at a boundary (Fig. 3-03). According to a Maxwell equation,
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In Fig. 3-03, let Δh → 0. Then Φ → 0 and
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or
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Thus, the tangential component of E is always continuous across a boundary. 

The H-vector is treated in a similar manner. Here, from Eq. (3-18),
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or
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The mmf around the path of Fig. 3-04 is equal to the conduction current through the loop (perpendicular to the plane of the diagram) plus the displacement current through this area.

But as Δh → 0, the displacement current approaches zero. Also any finite current density J in the media will give zero current as Δh → 0. The only case where the right side of Eq. (3-27) does not approach zero is where there is a surface current (J → ∞ in a surface layer of thickness δ, and δ → 0). For a surface current density of (I|w) amp m–1, Eq. (3-27) becomes
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or
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This is an important relation: it says that the difference in the tangential components of H is equal to the surface current per unit width.

If there is no surface current, Eq. (3-28) reduces to
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so the tangential component of H is continuous across a boundary that carries no surface current. The four boundary conditions, which will be used frequently in later chapters, are summarized in Table 3-01.

3-06. Perfect Conductors. By a perfect conductor is meant a conductor whose resistivity is zero. Such conductors (superconductors) are actually obtainable by cooling many metals below their critical temperatures. Even at ordinary temperatures, however, metals are often considered as perfect conductors, for a first approximation, to which a correction can be applied if necessary.

Consider the interior of a perfect conductor. At any point,
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But since [image: images] = 0 and J ≠ ∞, the electric field strength must be zero. Also, the electric flux density is
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From Maxwell’s equations,
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Thus, if any magnetic field exists inside a perfect conductor, this field must be time-invariant. As a matter of fact, experiments on superconductors show that even a steady magnetic field cannot exist in a perfect conductor. since, therefore, B = 0 and B = μH, one concludes also that H = 0. Furthermore,
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and thus J = 0 within a perfect conductor. We conclude, therefore, that no field can exist within a perfect conductor. (B = H = E = D = J = 0.)

Although no current can exist within the body of a perfect conductor, surface currents are possible. According to Eq. (3-25), with Ht1 = 0 for a perfect conductor, the surface current per unit width is equal in magnitude to the magnetic field strength just outside the conductor:
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Using the other conditions of Table 3-01, we obtain relations at the surface of a perfect conductor:
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Since Hn2 = 0, any magnetic field outside the surface of a perfect conductor must be tangential to the surface.

The current of Eq. (3-28b) is not in the direction of H, but the directions are related by the familiar right-hand rule. Sometimes it may be convenient to include the directions as well as the magnitudes in the equation. If H is directed as shown in Fig. 3-05, the right-hand rule requires that the surface current must be directed into the paper. The boundary condition, Eq. (3-28), may be stated in vector form:
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where

ac = unit vector in the direction of the current,

an = unit vector, the outward normal to the conducting surface,

H = magnetic field strength just outside the conducting surface.
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FIG. 3-05. Relation between magnetic field and surface current in a perfect conductor.

3-07. Postulational Development. We have now completed the formal development of electrodynamics, based on charge as the fundamental concept. An attempt has been made to unfold the subject in a logical manner, somewhat similar to the way in which Euclid developed geometry.3

POSTULATES 

Five postulates have been introduced:

POSTULATE I. The Newtonian concepts of length, mass, time, and force are valid.

POSTULATE II. Charge is independent of motion.

POSTULATE III. Electric charge is conserved: it cannot be created or destroyed.

POSTULATE IV. The potentials are propagated in any medium at velocity c with respect to the receiver.

POSTULATE V. Force per unit charge is given by the relation
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DEFINITIONS

The postulates are used in conjunction with a number of definitions:

(a) Definitions of Q, ρ, J, I (Chap. 2).

(b) Definitions of [image: ], μ, [image: images] (Chaps. 2, 3).

(c) Definitions of retarded potentials:
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(d) Definitions of the field vectors E, B, D, H (Section 3-01).

(e) Definitions of ϕ, V, and mmf.

Given the definitions and postulates, the further development of electrodynamics consists merely in the routine application of mathematics. A summary is given in Table 3-02.
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TABLE 3-01. BOUNDARY CONDITIONS
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TABLE 3-02. THE FIELD VECTORS
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PROBLEMS

Problem 3-01. Discuss and analyze the statement, “In a very real sense, therefore, these equations (Maxwell’s equations) may be said to constitute a definition of E and H.” Is it logically possible to start a treatment of electromagnetism by defining the field vectors in terms of Maxwell’s equations?

Problem 3-02. A definition of electric field strength E, as given in many textbooks, is
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Discuss the limitations of this equation.

Problem 3-03. In time-varying fields, curl E is not zero; for by Maxwell’s equation,
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But according to Eq. (2-15), a scalar potential ϕ always exists. How do you reconcile Eq. (2-15) with the statement in Chap. 1 that a scalar potential suffices only when curl E = 0?

Before answering this question,

(a) Define a scalar potential ϕ1, by the relationship,
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Substitute into Eq. (3-11) and show that an inconsistency results.

(b) Since ϕ1 is not feasible, try the modification of defining a potential ϕ2 by the equation,
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Will such a potential exist if f(A) = ∂A/∂t?

Problem 3-04. From Maxwell’s equations in differential form, prove that the induced emf in a stationary, closed loop is
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Problem 3-05. By use of Maxwell’s equations, prove the equation for conservation of charge,
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Problem 3-06. From the equations,



[image: image]

prove that for time-varying fields,
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Problem 3-07. (a) For a metal, at all ordinary frequencies, ∂D/∂t is found to be negligible in comparison with J. Also | ρ+ | is generally equal to | ρ– |. Write Maxwell’s equations in differential form for this special case.

(b) In the ionosphere, space contains positive and negative ions. Assuming that | ρ+ | = | ρ– |, write Maxwell’s equations for electromagnetic waves in the ionosphere.

Problem 3-08. Consider a coaxial line that is evacuated and contains no charged particles between the cylinders.

(a) Write Maxwell’s equations (in differential form) for the space between the cylinders. Waves are being sent down the line.

(b) A steady state has been reached with a battery connected between inner and outer cylinders. Write Maxwell’s equations in differential form. Classify the electric and magnetic fields. What partial differential equations apply?

Problem 3-09. Consider two points, a and b, and two arbitrary paths, 1 and 2, connecting the points. An electric field E(x, y, z) exists in the region.

(a) If the field is static, prove that
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(b) If the field is time-variant, show that (I) no longer holds.

(c) Obtain an expression for Vab1 and Vab2 in the time-variant case, and explain the physical significance of
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Problem 3-10. A high-voltage cable has a single conductor of radius a and a metal sheath of radius b. The insulation for a < r [image: ] r0 has permittivity [image: ]1; the insulation for r0 [image: ] r < b has permittivity [image: ]2. The potential at any point in the first dielectric is
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the potential at a point in the second dielectric is
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where A and B are constants.

By introducing boundary conditions at r = r0, evaluate A and B.

Problem 3-11. A long, straight wire of radius a carries a direct current of I amps. An iron pipe (inner radius b1, outer radius b2, μ/μ0 = 100) is coaxial with the wire.

(a) Express B and H:

In the air with r → a.

In the air with r → b1.

In the iron with r → b1.

What boundary condition is satisfied at r = b1?

(b) If the wire is a perfect conductor, give expressions for:

Current density J in the wire.

Surface current density at r = a.

B at any point within the wire.

B at any point within the pipe.


Chapter 4 

CHARGES WITH NO RELATIVE MOTION



The simplest application of Maxwell’s equations is to a configuration of charge that exhibits no relative motions. In a coordinate system that is stationary with respect to the charges, there is no current and therefore J = 0, A = 0, B = H = 0. Also, the derivatives with respect to time are zero. Thus Maxwell’s equations are greatly simplified, we have a field of Class II, and the entire subject can be handled by solution of Poisson’s equation,
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In many practical cases, the charges are confined to metal surfaces. Then ρ = 0 in the dielectric, and Eq. (4-01) reduces to Laplace’s equation
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Solution of Eq. (4-01) or (4-02) gives the scalar potential ϕ as a function of position in space. The electric field strength E is then obtained from the relation
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By definition of the electric flux density,
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The charge density σ on the metal plates is numerically equal to the flux density at the plates, or
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The capacitance C between two conducting surfaces may be defined as
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where Q is the magnitude of the total charge on one of the conductors and V is the voltage between conductors:
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The energy stored in a capacitor is
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Simplified methods are available for handling electrostatic problems in a few cases. Such solutions are given in the elementary textbooks. But the most general and the most powerful method is that outlined above. Examples will be given in this chapter.

4-01. Solutions of Laplace’s Equation. Laplace’s equation is one of the most important equations of mathematical physics, applying as it does to much of electrostatics, magnetostatics, electric currents, gravitation, and heat flow. It has also a myriad of engineering possibilities, many of which are still not exploited. Exact solutions of Laplace’s equation are obtainable mathematically in some cases, although many problems have not yet been solved analytically. Engineering approximations are often obtained by graphical means1 or experimentally.2

A mathematical solution gives the scalar potential as a function of the coordinates. A convenient aid in visualizing the field is obtained from a plot of equipotentials and flux lines. In such a field map, the equipotentials are ordinarily spaced for equal increments of ϕ. The number of flux lines is, of course, entirely arbitrary; but a good appearance is obtained when the spacing between flux lines is approximately that between equipotentials.
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FIG. 4-01. Electric field between two metal plates (σ-field).
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FIG. 4-02. Electric field near the edge of capacitor plates. The entire region is mapped in curvilinear squares (σ-field).

An example of such a map is shown in Fig. 4-01. Two metal plates, indicated by the heavy lines, extend to ±∞ in the direction perpendicular to the diagram. Figure 4-01 represents any section through the field. Such a map can be obtained by the experimental method, using a sheet of tin foil or a piece of Teledeltos paper. The equipotentials are measured, and the flux lines are then drawn freehand so that the entire area is divided into curvilinear squares.

Another map is shown in Fig. 4-02, which represents the electric field near the edge of the parallel plates of a capacitor. The plates extend to ±∞ in the direction perpendicular to the paper. The idea of curvilinear squares allows one to draw rough maps very easily. Even when an exact mathematical solution is desired, a rough preliminary sketch of the field may be helpful by indicating what space coordinates are involved.

An error that is often made in engineering applications of field theory is to assume that the map obtained in a cylindrical case (Fig. 4-02, for instance) holds also for the rotational case. Figure 4-02 applies to plates with long, straight edges; it does not apply to circular plates. In either case, we deal with a section through a three-dimensional field. But in the cylindrical case, we are really considering the space between two parallel planes; while in the rotational case, the space is wedge-shaped, between two planes through the axis of rotational symmetry. To distinguish between the two kinds of maps, one may designate the cylindrical as a σ-field, the rotational as a ρ-field.
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FIG. 4-03. (a) Electric field about a long, charged wire. Since this is a cylindrical case (σ-field), the region is mapped in curvilinear squares, (b) Electric field about a metal sphere. The cross-section of the conductor looks the same as (a), but the field is quite different because this is a ρ-field, not a σ-field. A ρ-field cannot be mapped in curvilinear squares.

The simplest example of the difference occurs in the electric fields produced by a charged circular cylinder (σ-field) and a charged sphere (ρ-field). In both cases, the plane map consists of concentric circles (the equipotentials) and radial lines (the flux lines). But the spacing between the equipotentials is quite different in the two fields. For the cylinder, the potential is a logarithmic function of r (a solution of Laplace’s equation in cylindrical coordinates); while for the sphere, the potential varies as l/r (solution of Laplace’s equation in spherical coordinates).
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FIG. 4-04. Example of a ρ-field. A metal spheroid (symmetric about the vertical axis) is introduced into a uniform electric field.
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FIG. 4-05. Cross-section through a transformer bushing. The bushing is symmetric about the vertical conductor, and the field is a ρ-field. Note that the map is made of curvilinear rectangles, not curvilinear squares.

This difference is shown in the maps of Fig. 4-03. Note that the σ-field is mapped in curvilinear squares, but the shapes in the ρ-field map are continually changing as r varies. This is the fundamental difference between the two kinds of fields: any σ-field can be mapped in curvilinear squares; no ρ-field can be mapped in curvilinear squares. Two examples of ρ-fields are given in Figs. 4-04 and 4-05. The first indicates how a uniform electric field is distorted when a metal spheroid is introduced. The second shows the field about an insulating bushing mounted in the tank of a high-voltage transformer. In each case, the map consists of curvilinear rectangles whose dimension ratio varies with distance from the axis of symmetry.

4-02. Parallel-Plate Capacitor. The simplest example is indicated in Fig. 4-06. Two metal plates of infinite extent are fixed at x = 0 and x = l. A battery of V volts is connected as shown. The field, of course, can be determined by elementary methods; but we shall use the general method of solution of Laplace’s equation.



[image: image]

FIG. 4-06 Parallel-plate capacitor.

At any point within the region between the plates, Laplace’s equation holds:
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The boundary conditions are
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From physical considerations, it is evident that ϕ must be independent of y and z. Thus Eq. (4-10) reduces to the ordinary differential equation,
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The general solution of this differential equation is
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where A and B are arbitrary constants. The constants are evaluated by substitution of the boundary conditions. The unique solution of the problem, which satisfies Laplace’s equation and the boundary conditions, is
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Thus the equipotential surfaces are the parallel planes x = const.

According to Eq. (4-03), the electric field strength is
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Equation (4-13) states that the E-vector has the same magnitude (V/l) at every point in the region between the plates and is in the negative x-direction. This agrees with our previous knowledge that E points from positive to negative charge.

The D-vector is
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But, according to Eq. (4-05), the charge density on the plates is equal to the magnitude of D. Thus the charge is uniformly distributed over the plates and the number of coulombs per square meter is
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the charge being positive on the right plate and negative on the left plate. For a portion of capacitor consisting of an area [image: images] for each plate,



[image: image]

and the capacitance is
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4-03. Spherical Capacitor. Another simple example is the determination of the capacitance of a spherical capacitor.3 Two concentric metal spheres (Fig. 4-07) are maintained at different potentials by means of a battery of V volts. The geometry of the apparatus suggests the use of spherical coordinates. Thus we write Laplace’s equation in spherical coordinates (Appendix C), keeping in mind that [image: images] and [image: images]
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The general solution (Appendix C or D) of Eq. (4-17) is
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FIG. 4-07. Spherical capacitor consisting of concentric spheres of radii a and b.

Boundary conditions are
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These two conditions evaluate the constants A and B of Eq. (4-18), and the solution of the problem is
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From this expression for the potential, we obtain the E-vector at any point in the region between spherical plates:
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Also,
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For the inner sphere, r = a and
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Thus the total charge on the sphere is
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and the capacitance is
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For an isolated sphere of radius a, Eq. (4-22) reduces to the simple expression,
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4-04. Metal Sphere in a Uniform Field. In the simple examples of Sections 4-02 and 4-03, the potential obviously depends on only one variable, and the partial differential equations reduce to ordinary differential equations of the second order. Now consider a problem where the potential is a function of two independent variables. Laplace’s equation remains a partial differential equation; and as such, its solution is not generally expressible as the sum of two terms with two arbitrary constants. The best that we can do is to obtain particular solutions that satisfy Laplace’s equation, and then try to build up a final solution that will fit the boundary conditions. The building blocks for this solution are the particular solutions, each multiplied by an arbitrary constant; and one uses the sum of as many terms as needed to satisfy the boundary conditions. The requirements of the solution are

(1) It must satisfy Laplace’s equation,

(2) It must satisfy the boundary conditions.

The mathematician proves that a solution satisfying these two conditions is unique.

A uniform field E0 exists in an extended region of space. Into this uniform field is introduced a metal sphere of radius a, Fig. 4-08. For simplicity, we arrange a coordinate system with origin at the center of the sphere and with negative z-axis in the direction of E0. Consider the sphere at zero potential and the original uniform field with ϕ = 0 at z = 0. What field distortion is caused by the presence of the sphere?

Because of the axial symmetry, the field is independent of Ψ, and Laplace’s equation is
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According to Appendix C, some particular solutions are
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FIG. 4-08. Metal sphere introduced into a uniform field E0.

Any linear combination of these functions will satisfy Eq. (4-23). Assume a solution,
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If the coefficients can be evaluated to fit the boundary conditions, this is the unique solution of the problem. On the other hand, if Eq. (4-24) cannot be made to fit the boundary conditions, it will be necessary to find other particular solutions.

The boundary conditions are
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The second condition merely states that the distorting effect of the sphere extends over a finite region, beyond which the field remains essentially uniform. From the second conditions and Eq. (4-24),
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so
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For r = a,
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Therefore,
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and the solution of. the problem is
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A plot of this field is shown in Fig. 4-09. A more complicated case, where the potential of the sphere does not match the potential of the uniform field at the origin, is indicated in Fig. 4-10.
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FIG. 4-09. The electrostatic field for the metal sphere of Fig. 4-08. The map is symmetric about the z-axis (ρ-field).

An important result of field distortion is the increased potential gradients (volt m–1) that occur in some parts of the field. From Eq. (4-25),
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Equation (4-26) gives the direction and magnitude of the E-vector at any point in the field. For the particular case of r → a, the θ-component becomes zero and
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FIG. 4-10. Field map showing the distortion of a uniform electric field when a metal sphere is introduced. The sphere is at zero potential, but it is placed at a point where the potential was 100 volts in the undistorted field.

Thus at the surface of the sphere, the E-vector is normal to the surface and its magnitude varies as the cosine of the angle from the z-axis. Evidently the maximum potential gradient occurs at the top and bottom of the sphere, where we have the very simple relation,
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4-05. Dielectric Sphere in a Uniform Field. A similar problem deals with a dielectric sphere of permittivity [image: ]2 immersed in a medium of permittivity [image: ]1 (Fig. 4-11). Take the original uniform field as
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FIG. 4-11. Dielectric sphere placed in a uniform field E0.

Then the boundary conditions are
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Conditions are slightly more complicated than in Section 4-04, since we now have fields in two regions (1 and 2), which must be evaluated simultaneously and matched at the spherical boundary. Laplace’s equation (4-23) applies in each region, and for each field we assume a solution of the form of Eq. (4-24):
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To eliminate infinite potentials at the origin (r = 0), we see immediately that B2 = D2 = 0. Evaluation of the other constants by substitution of the boundary conditions gives the solution,
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Two extreme cases are rather interesting. If the sphere is very dense so [image: images], Eq. (4-27) reduces to
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which agrees with the results of Section 4-04. On the other hand, if [image: images],
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Since the permittivity of the sphere is very low, the flux lines are forced to go around the sphere rather than through it. A field plot is shown in Fig. 4-12a. Another case is shown in Fig. 4-12b.

4-06. Poisson’s Equation. The previous sections have dealt with charge-free regions where Laplace’s equation holds. A similar technique is applicable where ρ ≠ 0 and where Poisson’s equation is necessary.
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FIG. 4-12a. Extreme case of dielectric sphere introduced into a uniform electric field. The permittivity of the sphere is very low compared with the permittivity of the surrounding medium so that the electric flux avoids the sphere.



[image: image]

FIG. 4-12b. Field about a dielectric spheroid. Here the permittivity of the spheroid is ten times the permittivity of the surrounding medium, so there is a tendency for the flux lines to concentrate in the spheroid. The field is symmetric about the z-axis (ρ-field) so the map divisions are not curvilinear squares.

For example, take the arrangement of Fig. 4-06 but with a uniform charge distribution between plates. Boundary conditions are as in Section 4-02:
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Poisson’s equation, in rectangular coordinates with ϕ independent of y and z, is
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where ρ = const.

The solution of the homogeneous equation [image: images] is given by Eq. (4-11). The solution of the inhomogeneous equation (4-28) requires an additional term, which when differentiated twice yields –ρ/[image: ]. Evidently the solution of Eq. (4-28) is
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Substitution of the boundary conditions yields the unique solution,
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As another example, consider a cable (Fig. 4-13) with a charge distribution
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in the dielectric between cylindrical conductors. Using circular-cylinder coordinates, we write Poisson’s equation as
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A few trials show that the additional term, to be added to the solutions of the homogeneous equation, is [image: images]. Thus the solution must be
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FIG . 4-13. Two coaxial metal cylinders with charge distribution between them.
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Boundary conditions are
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Substitution of these conditions into Eq. (4-32) evaluates the constants and gives
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4-07. Summary. Chapters 2 and 3 were devoted to the postulational development of electrodynamics, culminating in the derivation of Maxwell’s equations. Chapter 4 has applied these general equations to the simplest possible case—electrostatics.4

Here A = 0 and thus B and H are zero. The scalar potential is obtained by solving Poisson’s equation,
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Once a solution is obtained that fits the boundary conditions, all other quantities are easily obtained. Thus
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PROBLEMS

Problem 4-01. A cylindrical capacitor consists of two coaxial metal cylinders of radii a and b, respectively (b > a), and length l. Neglect fringing at the ends. Potential of the inner cylinder is V, of the outer cylinder is 0.

(a) Solve Laplace’s equations for the region between the cylinders.

(b) Obtain an expression for E.

(c) From (b) determine the capacitance.

Problem 4-02. Two thin metal plates (Fig. 4-14) extend to ∞ in the y and z directions and are separated by a very narrow gap at the origin of coordinates.

(a) Obtain an expression for the potential ϕ at any point in the field.

(b) Derive an equation for E at any point.
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FIG. 4-14. Two metal plates, Prob. 4-02.

Problem 4-03. A set of conical metal rings is immersed in various insulating oils to determine their values of permittivity (Fig. 4-15). When S is closed, the reading of ballistic galvanometer G is directly proportional to permittivity.

(a) Write Laplace’s equation applicable to this case.

(b) From (a), obtain an expression for ϕ at any point between center ring and ground.

(c) From (b), calculate the capacitance between center ring and ground. Neglect any distortion of the field caused by the small gaps between the rings.

Problem 4-04. A single-conductor d-c power cable has a grounded sheath of inner radius b2 and a central conductor of radius a. The insulation between the conductors is of two kinds. For a < r < b1, [image: ] = [image: ]1; for b1 < r < b2, [image: ] = [image: ]2. Assume that the resistivities of the dielectrics are infinite.

(a) With the central conductor at potential V above ground, what is the potential at any point in the insulation?

(b) Obtain an expression for E at any point between conductor and sheath.

(c) Find an equation for the volts per meter in the insulation at the central conductor.

Problem 4-05. Long metal plates, x = 0 and y = 0, extend to ±∞ in the z-direction. An electric field exists in the space represented by the first quadrant of Fig. 4-16, and measurements show that the potentials on the contour bcd are as shown.
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FIG. 4-15. A conical capacitor, Prob. 4-03.

(a) Obtain an equation for ϕ for any point in the region Obcd.

(b) Sketch the equipotentials and flux lines for this region.

Problem 4-06. In Fig. 4-16, the plates are at zero potential as in Prob. 4-05; but for bc,
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and for cd,
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Obtain an expression for the potential at any point within the region Obcd.
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FIG. 4-16. Two long metal plates (x = 0 and y = 0) are grounded. An electrostatic field exists in the space because of a distant charge distribution, Prob. 4-05.

Problem 4-07. An air capacitor consists of two parallel brass plates. On one of these plates is a tiny hemispherical drop of solder (a ≪ spacing).

(a) Sketch the electric field in the vicinity of the solder.

(b) Derive an expression for ϕ.

(c) What is Emax/E0 in the air?

Problem 4-08. A long, horizontal telegraph wire of radius a is at distance h above the earth (h ≫ a). A uniform electric field is produced by a charged cloud above the earth:
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The origin of coordinates is taken at the axis of the wire, with the x-axis vertical. The wire is grounded.

(a) Obtain an expression for ϕ for the distorted field in the vicinity of the wire.

(b) Derive an equation for E at the surface of the wire.

(c) If h = 10.0 m, a = 1.0 mm, and E0 = 103 volt m–1, will the air break down near the wire (E [image: images] 3 × 106 volt m–1)?

Problem 4-09. A metal sphere of radius a is held at zero potential by connecting it to ground. The sphere is placed in an electric field E0 which was uniform before the sphere was introduced. The center of the sphere is placed at a point whose potential was originally ϕ = V0.

(a) Obtain an expression for the potential at any point in the air about the sphere.

(b) Find an equation for the maximum field strength Emax in the air.

(c) If this arrangement is used as a lightning arrester with a = 0.1 m, E0 = 1000 volt m–1, V0 = 105 volts, what is the value of Emax/E0?

Problem 4-10. A long rod of polystyrene ([image: ] = [image: ]2) is placed in a uniform electric field E0 in air ([image: ] = [image: ]0). The rod has a circular cross section with radius a.

(a) Obtain equations for the potential at any point inside and outside the rod.

(b) Find an equation for the field strength E2 inside the rod.

Problem 4-11. A dielectric sphere in an electric field is found to have a potential distribution on its surface, ϕ = 10 + 20 sin2 θ volts. We need the potential distribution inside the sphere.

(a) State Laplace’s equation for the interior of the sphere. Use the proper coordinate system and the proper number of independent variables.

(b) Find an expression for the potential distribution within the sphere.

(c) Obtain an equation for E.

Problem 4-12. A vacuum diode has metal cylinders as shown in Fig. 4-13. The inner cylinder is at zero potential, the outer at potential V. Neglect fringing at the ends. Electrons in the space between cylinders give a charge distribution



[image: image]

Obtain an expression for the potential distribution in the space between cylinders.


Chapter 5

CHARGES IN UNIFORM MOTION



Chapter 4 has treated the special case of charges that exhibit no relative motion (electrostatics). The next step in the logical development of electromagnetism is the consideration of charges moving at constant relative velocity. Take any convenient frame of reference. If the field point P and all the charges are stationary in this frame, the problem is an electrostatic one. But if the charges are moving at uniform velocity, new phenomena appear which may be classed as electric-conduction phenomena and magnetic phenomena.

Evidently there is a certain degree of arbitrariness here. A given physical setup, which is considered as purely electrostatic in one coordinate system, appears as electromagnetic in another coordinate system that is moving with respect to the first. Magnetic fields appear and disappear merely by change in the motion of the observer.1 This subject of relativity will be treated in Chaps. 11 and 12.

At present, however, we are interested in metallic conductors that are stationary in the laboratory. The only motion is that of the electrons, which are drifting through the conductor and which constitute the current. Thus the present chapter deals with direct currents in metallic conductors and with the steady magnetic fields produced by these currents.

5-01. The Conduction Field. Consider the electric field in a conductor carrying direct current. Since we are dealing in this chapter with steady currents only, the drift velocity of the charges is independent of time, although it may be a function of position. From Eq. (2-07),



[image: image]

and since there is no time-variation,
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According to Maxwell’s equations,
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and since B is not a function of time in the d-c case,
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Also, from Ohm’s equation,
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Thus, from Eqs. (5-01) and (5-03),
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Since both divergence and curl are zero, the d-c conduction field belongs to Class I. Thus a scalar potential exists,



[image: image]

and Laplace’s equation applies:
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Mathematically, then, the d-c conduction problem is identical with the electrostatic problem in a charge-free region.

The most general method of handling the d-c conduction problem is to solve Laplace’s equation and to then obtain E and J from Eqs. (5-05) and (5-03). The total current through a surface [image: images] is
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The voltage between two equipotential surfaces is equal to the line integral of E taken along any path between them:
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The resistance between the two equipotentials is
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FIG. 5-01. Current in a curved metal bar.

5-02. Curved Conductor. As anexample, what is the resistance of a metal bar between equipotentials S1 and S2, Fig. 5-01? The diagram represents a homogeneous bar of uniform thickness δ. The solution of this simple problem can be obtained from elementary considerations, but we shall employ the general method based on Laplace’s equation.2

Cylindrical coordinates are appropriate, and boundary conditions are
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Since there is no radial component of E at the circular boundaries, the J-vector must be in the Ψ-direetion and the equipotentials must be the planes Ψ = const. Thus the potential is a function of Ψ only, and Laplace’s equation reduces to
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The general solution of Eq. (5-10) is
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Substitution of the boundary conditions gives the potential at any point in the semicircular metal bar,
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The greatest difficulty that the beginner encounters in field theory is usually the decision as to which terms of Laplace’s equation can be omitted in a specific problem. Ordinarily, common-sense application of physical reasoning will indicate which derivatives are zero. Sometimes a rough sketch of equipotentials and flow lines will give the necessary information. At worst, if one makes the wrong assumption he will find that the boundary conditions cannot be satisfied. As in Chap. 4, only two requirements must be met: Laplace’s equation must be satisfied and the boundary conditions must be satisfied. If these two requirements are met, the solution is unique.3

The E-vector for Fig. 5-01 is
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Thus the E-vector points in the negative Ψ-direetion and its magnitude is inversely proportional to the radius. The current density therefore varies inversely as the radius:
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The total current in the bar is
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and the resistance between S1 and S2 is
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5-03. Conduction in a Rectangular Strip. A thin sheet of metal Fig. 5-02, is grounded on three sides, and the potential distribution across the top is found to be
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Find the potential at any point in the sheet.

Evidently the potential will be a function of x and y but not of z, so Laplace’s equation in rectangular coordinates is
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Particular solutions of this partial differential equation are of the form



[image: image],

where any product of the circular and hyperbolic functions, with any value of p, satisfies the differential equation. Note, however, that the same constant must appear in both factors: cos 0 cosh my, for instance, is not a solution of Eq. (5-17) unless m = 0.

Boundary conditions are
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FIG. 5-02. Conduction in a thin metal sheet. A heavy copper bar is soldered along three sides of the sheet and is assumed to be an equipotential, ϕ = 0.
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FIG. 5-03. Field map for the conduction problem of Fig. 5-02. The distribution applies to the special case where b → ∞.

The problem is now to find one of the particular solutions, or a linear combination of them, that will fit all four boundary conditions. Evidently the first boundary condition cannot be satisfied by the cosine and the third cannot be satisfied by the hyperbolic cosine. The simplest assumption is therefore
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To satisfy the second condition, we set
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There remains the fourth boundary condition, which evaluates A, giving
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Since Eq. (5-18) satisfies Laplace’s equation and fits all the boundary conditions, it is the unique solution of the problem. A map of equipotentials and flow lines is shown in Fig. 5-03.

5-04. Spherical Cavity. Another conduction problem is indicated in Fig. 5-04. A large metal casting contains a spherical cavity of radius a. Without the cavity, the electric field would be uniform with field strength E0. The distribution of current density in the metal is required.

Spherical coordinates are employed; and because of symmetry about the z-axis, [image: images]. Thus Laplace’s equation is
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Particular solutions are listed in Appendix C. Suppose we assume a linear combination, such as
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Boundary conditions are taken as
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FIG 5-04. Spherical cavity in a metal casting.

The second condition expresses the fact that there can be no normal component of J into the cavity, and thus there can be no normal component of E at r = a. Substitution of the first boundary condition gives a C = 0, B = E0. Thus Eq. (5-20) , becomes
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and
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Using the second boundary condition, we obtain
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which is an impossible condition since it requires that cos θ be a constant for all values of θ The assumed solution, Eq. (5-20), is therefore inadequate.

Try
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Substitution of the boundary conditions gives B = E0, A = 0, [image: images]. Therefore the unique solution of the problem is
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A plot of the field is shown in Fig. 4-12a.

The electric field strength at any point in the metal is
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or
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Near the cavity, Eq. (5-22) reduces to
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or
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where [image: images]. Thus the maximum current density occurs at the sides of the cavity and is exactly 50 per cent greater than the value in the uniform field.

5-05. The Magnetic Field. The magnetic field produced by a steady current is time-invariant, and Maxwell’s equations reduce to
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That a scalar potential applies in electrostatics is universally recognized; but that a scalar potential is applicable also in many magnetic problems is not so well known. When available, the magnetic scalar potential is easier to use than the magnetic vector potential.

Consider a region [image: images] that is simply connected and that does not contain currents. Then Eq. (5-23) gives
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at every point in [image: images], so the field is of Class I even in this magnetic case. Since the curl is zero, a magnetic scalar potential [image: images] exists in [image: images] and is defined by the relation,
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The magnetic potential ϕm is expressed in ampere-turns. Moreover, Laplace’s equation holds:
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FIG.5-05. Simply connected regions.

The restrictions on the use of a magnetic scalar potential are that J be zero throughout the region [image: images] and that the region be simply connected. A simply connected region is shown in Fig. 5-05a. If J = 0 at every point within [image: images],
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at every point, and
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for any closed path within [image: images]. In Fig. 5-05b, J = 0 throughout [image: images], and thus curl H = 0 at any point in [image: images]. But if there is a current in [image: images], an integral that links the current will not be zero:
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FIG. 5-06. Coaxial cable. The magnetic field is determined for the region between the two conductors.

Evidently the difficulty in Fig. 5-05b is that the region is not simply connected. This difficulty is easily eliminated by introducing a cut anywhere between [image: images] and the outer contour of [image: images]. Similarlyin Fig. 5-05c, the region must be made simply connected by introducing two cuts if both [image: images] and [image: images] carry currents that can be linked by paths in [image: images]. By this artifice of introducing cuts, the possibility of a multiple-valued function is eliminated and a magnetic scalar potential may always be introduced in a region where J = 0.

5-06. Magnetic Field about a Circular Conductor. Figure 5-06 indicates a long coaxial cable. The inner conductor carries a direct current of I amps, and the outer cylindrical conductor carries the return current of I amps. Obviously, the outer current produces no magnetic field in the space between conductors.

Consider the region [image: images] between the two conductors. This region is made simply connected by introducing a cut, such as the half-plane Ψ = 0. Then at every point P in this simply connected region, there is a single-valued magnetic potential [image: images] caused by the current in the center conductor. This potential may be obtained as a solution of Laplace’s equation. Since [image: images] is independent of r and z, Laplace’s equation is
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whose general solution is
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The potential may be taken as zero at Ψ = 2π. The boundary conditions are then
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The second condition is, of course, obtained from the relation,
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Substitution of the boundary conditions into Eq. (5-26) gives the solution,
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Thus equipotential surfaces are the half-planes Ψ = const, and magnetic flux lines are concentric circles.

The magnetic field strength is now obtained from the relation H = – grad [image: images], or
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which is in the direction of increasing Ψ, in accordance with the familiar right-hand rule. The total magnetic flux between the conductors, per unit length in the z-direction, is



[image: image]

5-07. Magnetic Shield. Another example of the magnetic scalar potential is indicated in Fig. 5-07. A uniform field (the earth’s magnetic field, for instance) is specified as H0. Delicate electrical apparatus at O is to be shielded from this steady magnetic field by means of a spherical steel shell of permeability μ. We wish to investigate the efficacy of the shielding.



[image: image]

FIG. 5-07. A spherical steel shell used as a magnetic shield for apparatus in Region 3. Without the shield, a uniform magnetic field H0 exists in Region 1.

Since no currents exist in any of the three regions (1, 2, 3) of Fig. 5-07, a magnetic scalar potential exists and Laplace’s equation holds in each region. By analogy with the example of Section 4-05, we write solutions of the form
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where A, C, D, G are constants.

Boundary conditions are
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These conditions are employed in evaluating the constants of Eq. (5-30). After considerable algebraic manipulation, one obtains the solution of the problem:
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where [image: images]

The magnetic field strength H3 within the shield is



[image: image]

According to Eq. (5-32), the field in region 3 is a uniform field. If [image: images], Eq. (5-32) shows that [image: images]. For example, with a thin shield (a/b = 0.99), the calculated ratios are
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5-08. The Magnetic Vector Potential. In the previous sections, the magnetic scalar potential has been possible because J = 0 in the regions considered and the field is consequently of Class I. In the general case, of course, J ≠ 0 so
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and the field is of Class III. Then the investigator has the choice of working directly with the H-vector or of introducing a vector potential.

For a time-invariant magnetic field, Maxwell’s equations give
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Thus
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and we obtain the vector Poisson equation,
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Knowing curl J, one can obtain H directly from Eq. (5-33) without introducing any potential.

As an example, take a long conductor of radius a (Fig. 5-08) with a uniform current density



[image: image]

By the methods of Chap. 1, it is easily shown that
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Also, H is in the Ψ-direction and the field is symmetric about the z-axis and is independent of z. According to Appendix C, Eq. (5-33) reduces to the ordinary differential equation,
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The general solution is
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FIG. 5-08. Long wire carrying current in the z-direetion.

Since the field cannot be infinite on the axis of the wire, C = 0. Also, the field at r → a must match the field outside the conductor, which we know is
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Therefore, the field at any point within the conductor is specified by the equation
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An alternate approach to problems dealing with the magnetic field is obtained by employing the vector potential. Let
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Since curl H = J,



[image: image],

and if we arbitrarily set div A = 0, we obtain the partial differential equation,



[image: image]

This equation, the alternative of Eq. (5-33), allows the determination of A from the known distribution of J. The magnetic flux density is then obtained from Eq. (5-36).

Returning to Fig. 5-08, we see that since J is in the z-direction, A must also be in the z-direction. Also, A is evidently independent of Ψ and z. Thus Eq. (5-37) becomes 
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The general solution of the homogeneous equation is A + C In r, and to this must be added a term [image: images] to compensate for the right side of Eq. (5-38). So



[image: image]

Since the potential A must be finite at r = 0 and the zero of the potential may be chosen arbitrarily, let A = C = 0. The solution of the problem is then
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Substitution of Eq. (5-40) into Eq. (5-36) gives
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But [image: images], so
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This section has treated a very simple magnetic problem by direct use of H and by introduction of the vector potential A. Note how much more complicated the treatment is, even in this elementary example, than the treatment in problems where the scalar potential can be employed.

5-09. Vector Potential as an Integral. Still another method of handling magnetic problems is to employ the integral definition of vector potential as given in Chap. 2. Since we are considering the time-invariant case, retardation does not enter and
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This equation is particularly useful in determining the magnetic field caused by current in a thin wire, Fig. 5-09. The vector potential at P, produced by the current I in an element of wire ds, is
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where [image: images] is the cross-sectional area of the wire. So the total vector potential at P, caused by a wire of any length, is
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The only restriction in the use of Eq. (5-42) is that r be large in comparison with the cross-sectional dimensions of the wire. If this restriction is not satisfied, it is usually simpler to abandon the integral approach and to fall back on one of the previous methods.

As an example, consider the magnetic field at any point in the xy-plane of Fig. 5-10. The field is produced by a rectangular loop of wire carrying a direct current I. For side No. 1,
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FIG. 5-09. Wire loop carrying a direct current I. The vector potential is to be determined at point P.
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FIG. 5-10. Rectangular loop carrying current I
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and the integral is
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Adding the integrals for the four sides of the loop, one obtains
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where the radii Ri are indicated in Fig. 5-10.

The magnetic flux density at P is
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Substitution from Eq. (5-43) gives
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Although the derivation of Eq. (5-44) has required a considerable amount of algebra, the use of the vector potential does allow a solution in a reasonably straightforward manner. Any other approach would probably have been much more troublesome.

A special case of Eq. (5-44) occurs when the loop is small compared with its distance from P. Then
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Substitution into Eq. (5-44) leads to the simple equation,
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which states that the flux density is directly proportional to the current, directly proportional to the area of the loop, and inversely proportional to the cube of the distance.

5-10. The Circular Loop. As another example, we obtain the magnetic field produced by a steady current I in a circular loop (Fig. 5-11). Since I = const, retardation does not enter; and each element I ds produces at P a vector potential that is parallel to ds. It is convenient to take the current elements in pairs at ±Ψ. The x-components cancel, leaving only a y-component for A.

According to Eq. (5-42),
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FIG. 5-11. A circular loop of wire.

The integral can be expressed in terms of complete elliptic integrals of the first and second kinds:4
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To obtain the correct upper limit in Eq. (5-45), make a change of variable:
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Substitution gives
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where
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Let the integrand be
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or
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from which
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Thus
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or
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In cireular-cylinder coordinates, the relation
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becomes
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The derivatives are obtained by use of the relations,5
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After considerable algebraic manipulation, one obtains
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where
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5-11. Inductance. Inductance may be defined very simply as flux linkages per ampere. In Fig. 5-12, a current I1 in circuit 1 produces a magnetic flux Φ12 that links circuit 2. The mutual inductance L12 is defined as
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FIG. 5-12. Mutual inductance between two loops.

The self inductance of circuit 1 is equal to the flux Φ11 linking circuit 1, per unit current, or
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Similarly for circuit 2,
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Franz Neumann6 showed that inductance can be expressed very simply in terms of the vector potential. The Neumann formula is widely used in deriving equations for inductance. For Fig. 5-12, the vector potential at point P, caused by current I1, is
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The corresponding magnetic flux density at P is
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and the total flux through loop 2 is
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But by Stokes’ theorem,
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Thus
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or
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Similarly, a current I2 m circuit 2 produces a flux Φ21 that links 1:
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[image: image]

FIG. 5-13. Parallel conductors of length l.

So	the mutual inductance is the same as obtained in Eq. (5-54), and
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5-12. Examples. Consider two parallel filaments of the same length, Fig. 5-13. Evidently,
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and the integral of Eq. (5-53) is
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Let y1 – y2 = ξ. Then
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Thus the mutual inductance of the two conductors of Fig. 5-13 is
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This equation may be used to obtain the mutual inductance of rectangular loops by superposition. For instance, in Fig. 5-14 the mutual inductance L12 is obtained from Eq. (5-56) by superposing the effects of all sides, remembering that orthogonal sides introduce nothing because of the dot product in Eq. (5-54).

As a second example, consider the mutual inductance of the two coaxial loops7 of Fig. 5-15. For P anywhere on the second loop, r = b, and as in Eq. (5-48),
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Then Eq. (5-49) becomes
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Thus the total magnetic flux through the second loop is
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or
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FIG. 5-14. Two rectangular loops.



[image: image]

FIG. 5-15. Two coaxial circular

5-13. Summary. This chapter deals with the uniform drift of electrons through metallic conductors, characterized by

(a) A d-c conduction field,

(b) A steady magnetic field.

For (a) our general equations of Chap. 3 reduce to curl E = 0, div E = 0, and
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For (b), several methods are possible:

(1) For a simply-connected region in which there is no current,



curl H = 0, div H = 0,

which gives a field of Class I and allows the introduction of a scalar magnetic potential ϕm.Then
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(2) If J ≠ 0 in [image: images], the field is of Class III with the vector Poisson equation,
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This equation can be solved directly, without introducing a potential.

(3) The vector potential A may be employed in any case. A solution of the equation
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is found; after which, B is obtained from the relation,
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Or the vector potential may be obtained from the definition:
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For a filament, Eq. (5-41) reduces to the convenient form,
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Numerous applications can be made of Eq. (5-42), including the Neumann formula for inductance:
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PROBLEMS

Problem 5-01. A hemispherical shell A of graphite (Fig. 5-16) has resistivity [image: images]. Copper electrodes B and C are connected as shown. Assume that these electrodes are equipotentials.

(a) Make a sketch of equipotentials and flow lines in the graphite.

(b) Obtain an equation for the potential at any point in A.

(c) From (b), find an expression for the resistance between B and C.



[image: image]

FIG. 5-16. Find th resistance of the hemispherical shell A, Prob. 5-01.

Problem 5-02. A single-conductor d-c power cable has a grounded sheath of inner radius 3.0 cm and a central conductor of radius 0.5 cm. The space between the two is filled with a homogeneous dielectric “A” having a relative permittivity of 2.8, a resistivity of 1.0 × 1010 ohm m, and a breakdown strength of 107 volts m–1.

(a) At what direct voltage will the cable fail, assuming that breakdown occurs when | E | at any point reaches 107 volts m–1?

(b) The inner conductor is now surrounded by a layer of dielectric “B” ([image: ]/[image: ]0 = 2.0, [image: images] = 0.5 × 1010 ohm m, breakdown strength 107 volts m–1). The outer radius of “B” is 1.5 cm, the remaining space being filled with “A.” Obtain expressions for the potential at any point in “A” and in “B.”

(c) At what steady-state direct voltage will the cable (b) break down?
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FIG.5-17. Conduction in a metal slab, Prob. 5-03.

Problem 5-03. A slab of metal (Fig. 5-17) is perfectly insulated at the ends (z = 0, z = b) and on the.bottom (y = 0). The top and left side are at the potentials shown.
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FIG. 5-18. A uniform conduction field above the metal plate is distorted by a long ridge of semicircular cross-section and radius a, Prob. 5-04.

(a) Find an expression for ϕ at any point within the slab.

(b) Obtain the total current through the slab.

Problem 5-04. A large copper plate (y = 0) is at zero potential, Fig. 5-18. Soldered to the plate is a long copper bar of semicircular cross section. The space above the plate is filled with water having resistivity [image: images]. The electric field in the water would be uniform (E0) if the bar were absent.

(a) Obtain an equation for ϕ at any point in the water.

(b) What is the maximum current density in the water?

Problem 5-05. A large sheet of brass of thickness δ has a direct current in the negative y-direction, which produces a potential [image: images]. A hole of radius a is now drilled through the sheet at the point x = 0, y = 0.

(a) Obtain an expression for the potential at any point in the brass.

(b) What is the maximum current density in the brass?

Problem 5-06. A large slab of copper (Fig. 5-19) is operated on d-c power with a uniform current density J in the z-direction.

(a) Obtain an equation for the magnetic vector potential A at any point in the copper. (Use the vector Laplacian).

(b) From (a), find an expression for B.

(c) Sketch | B | vs y.

Problem 5-07. A powerful d-c electromagnet has a winding built up of copper sheets cut as shown in Fig. 5-20. Because of heating, the resistivity is not exactly uniform; but the current density | J | in the copper is found to be independent of position.

(a) Obtain an expression for curl J at any point in the copper.
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FIG. 5-19. Copper slab carrying a direct current in the z-direction. Determine the magnetic field, Prob. 5-06.



(b) To which of the four classes does the J-field belong?

(c) Can a scalar potential ϕ or a vector potential A be introduced? If so, how would you define them?

(d) Write the partial differential equation that applies to this field.

Problem 5-08. The cross section of a turbo-alternator is shown in Fig. 5-21. Neglect fringing at the ends of the machine and assume that the stator (r = b) is at zero magnetic potential. The rotor contains a d-c winding that produces a potential distribution
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FIG. 5-20. One turn of the winding of an electromagnet, Prob. 5-07.
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FIG.. 5-21. Turbo-alternator magnetic circuit, Prob.5-08.

for the surface r = a.

(a) Obtain an equation for ϕm at any point in the air gap.

(b) Sketch equipotentials and flux lines in the air gap. Do the flux lines enter the iron normal to the surfaces? How many magnetic poles does the machine have?

(c) Find an expression for the total magnetic flux ϕ from one pole for an axial length l.

Problem 5-09. A long iron rod of radius a is coaxial with a long pipe of radius b (Fig. 5-21). The magnetic scalar potential of the rod is zero, while the potential at r = b is [image: images] = 200 sin 3Ψ.

(a) Obtain an expression for [image: images] at any point in the air between the two cylinders.

(b) Find the total magnetic flux across the gap.

Problem 5-10. A slot in the stator of an a-c generator is idealized as shown in Fig. 5-22. Obtain an expression for the magnetic scalar potential at any point in the slot. Consider that the slot extends to ± ∞ in the z-direction.
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FIG. 5-22. Idealized slot in an electrie machine, Prob. 5-10.
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FIG. 5-23. Find the magnetic field in the air, Prob. 5-11.

Problem 5-11. An iron structure extends for a long distance in the z-direction (Fig. 5-23). Windings are arranged so that the magnetic potential is zero on the sides (x = ± a) and varies as a cosine function along the top and bottom.

(a) Obtain an expression for the magnetic potential at any point in the air.

(b) Find an equation for B at any point in the air.

Problem 5-12. A long steel rod of radius a and permeability μ is placed in the earth’s magnetic field. Assume that the field was originally uniform,



[image: image],

and that the axis of the rod is perpendicular to H0.

(a) Find expressions for [image: images] at any point in the field.

(b) Obtain the maximum value of magnetic flux density.

Problem 5-13. A long copper conductor of radius a contains an eccentric hole of radius b (Fig. 5-24). The d-c density in the copper is J = const. Express the vector potential at any point in the copper.

Problem 5-14. Two infinitely long, parallel wires (in the z-direction) are separated by a constant distance a. They carry a current of I amps in opposite directions.

(a)Obtain an expression for the vector potential at a point P whose coordinates are (x, 0, 0), where x is very large in comparison with the radius of the wires.

(b)Find the magnetic flux density at P.
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FIG. 5-24. Conductor with eccentric hole, Prob. 5-13.

Problem 5-15. A thin-wire loop of radius a carries a direct current of I amps. Obtain an equation for the vector potential at a point P whose coordinates are (r, θ, Ψ) where r [image: images] a. Hint: In the integration, consider elements ds in pairs at ± Ψ, where Ψ is the angle from the plane containing P.

Problem 5-16. Two open-wire telephone lines are carried on the same horizontal cross-arms. Each circuit has two parallel wires of small diameter, separated by the distance a. Corresponding wires in the two circuits are separated by distance b (b > a). Obtain an expression for mutual inductance between the two circuits, per unit length.

Problem 5-17. Obtain an expression for L12 between the two rectangular loops of Fig. 5-14.


Chapter 6

ACCELERATED CHARGES



Previous chapters have treated stationary charges and charges in uniform motion. Now consider the more general condition of moving charges having arbitrary accelerations. Evidently this includes the electromagnetic fields produced by transient currents and by alternating currents. The chapter deals with these two cases: transients and the a-c steady state.

In including the effect of time-variation, we shall need the full resources of classical theory. Maxwell’s equations are
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Here B and E are defined by the relations 
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with the potentials given by Eqs. (2-15) and (2-16).

In Chaps. 4 and 5, we considered electrostatics, magnetostatics, and d-c conduction. A characteristic of these time-invariant fields is that the electric and magnetic parts can be treated separately. The general equations differ from the time-invariant ones in the inclusion of the time derivatives [image: images]. These derivatives have the property of coupling the electric and magnetic systems so that the two are very intimately bound together. In working with radio waves in space, for instance, one can hardly help wondering why the two distinct concepts of  electric and magnetic fields are still used, since the two are not independent but have merged into one electromagnetic field.

6-01. Transients. For the usual case of an uncharged medium with ∊, μ, and [image: images] constant, the Maxwell equations reduce to
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The H-vector can be eliminated by taking the curl of both sides of the second equation and substituting the first:
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Since div E = 0, the left side of this equation is equal to the negative vector Laplacian of E, so
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Similarly, elimination of E in Eq. (6-0la) gives
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These are damped wave equations that allow the determination of E and H in an uncharged, linear, homogeneous, isotropic medium. If the medium is also nonconducting, Eqs. (6-04) and (6-05) reduce to the ordinary wave equations,
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These differential equations may be used, for instance, in the investigation of radio waves in free space.

As might be expected from the generality of these equations, they are rather complicated when expressed in any coordinate system. In rectangular coordinates, Eq. (6-04a) is
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[image: image]

FIG. 6-01. Uniform plane wave moving in the z-direction.

But for most practical problems, many of the terms are zero. Take the simple case of a plane wave (Fig. 6-01) in which [image: images] and [image: images] [image: images]. At any instant, the E-vector is the same over a plane z = const, though |E| varies with time and with distance in the z-direction.

In this special case, Eq. (6-04b) reduces to the scalar wave equation
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The solution is
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where f and g are arbitrary functions of time and distance. That Eq. (6-06) is a solution of Eq. (6-04c) is easily seen by substitution.

The physical significance of the two terms of Eq. (6-06) is obvious.1 Consider the function [image: images], and select any fixed value of the argument [image: images]. Evidently as t increases, z must increase. In other words, the first term of Eq. (6-06) represents a wave traveling in the positive z-direction at velocity
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The function g represents a wave traveling in the negative z-direction, such as might be caused by reflection of the f-wave.

With either wave, the shape remains undistorted as the wave travels through space. For example, consider the electromagnetic waves sent out by a supernova. A star blows up, sending out an intense pulse of radiation. Of course the pulse is not strictly instantaneous and the wave is spherical rather than plane. But if observations are made at great distances, the wave will be essentially plane; and if the z-axis is taken in the direction of energy flow, we obtain the conditions of Fig. 6-01. Let the observed E-vector at z = 0 be
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where u0(t) is the unit impulse.2 Then, since there is no reflected wave, Eq. (6-06) is
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at z =0. At any other point,
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The unit impulse travels undistorted, as shown in Fig. 6-02.

As another example, a radio transmitting station is located far to the left so that its wave is essentially uniform and plane when it reaches O (Fig. 6-01). The station has been inoperative but suddenly starts sending a continuous carrier wave of angular velocity ω
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FIG. 6-02. An impulse traveling in the positive z-direction.

This wave reaches O at t = 0, giving
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at z = 0. Here u–1(t) is the unit step function2. At any point,
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The wave is shown in Fig. 6-03.
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FIG. 6-03. Sinusoidal electromagnetic wave started suddenly at t = 0, z = 0.

Constant velocity of propagation and undistorted wave shape3 are characteristics of the solutions of the undamped wave equation (6-04a). But if the medium exhibits loss, the damped wave equation (6-04) must be employed. The behavior is then much more complicated, the wave shape is distorted, and even the concept of velocity becomes questionable.

6-02. Complex Vectors. For practical purposes, the transient solution (Section 6-01) of the wave equation is less important than the a-c steady-state solution. If we confine ourselves to sinusoidal time-variation, Maxwell’s equations and the wave equation reduce to simpler forms that will be employed extensively in the remainder of the book.

In ordinary a-c circuit theory, a sinusoidal current may be written4
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Here, for convenience, the exponential function is used in place of the cosine. The real part of the exponential is, of course, equal to the cosine, because of the relation
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The amplitude of the current is [image: images], where I is the effective (rms) value. It is customary to include the phase angle in I* and to write
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as in Eq. (6-10).

In circuit theory, there seems to be no established notation to distinguish the complex quantity I* from the magnitude I. Some way of specifying whether a quantity is complex or not is highly desirable in circuit theory and is even more important in field theory. We shall use an asterisk to indicate a complex quantity, quantities not so designated being mere magnitudes. Furthermore, it is customary to simplify the notation by omitting the symbol [image: images]e and writing
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The circuit notation can be extended to alternating fields. Thus in the a-c steady state, the electric field strength may be written
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The value of this scheme resides in the fact that time-variation has been removed from E*. This leaves E* as a function of the space variables only. As in Eq. (6-10), the phase angles have been included in E*. The only difficulty here is in visualizing E* as a vector in 3-dimensional space, with each component a complex number.

Evidently a complex vector E* at a given point P requires six numbers for its specification. By breaking a vector E* into its three components, however, one may deal with the three complex magnitudes Ex*, Ey*, Ez*, each of which behaves like the complex I* of circuit theory. In rectangular coordinates, for instance,
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We may deal with the components, and write
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Each of these equations is analogous to the circuit equations (6-10).

6-03. Maxwell’s Equations. If electric and magnetic fields are excited by sinusoidal alternating currents, all the quantities become sinusoidal and have the same frequency. Thus
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Substitution of these relations into Eq. (6-01) gives a simplified form of Maxwell’s equations, applicable to a-c fields. Substitution of Eq. (6-13) into the first equation of Maxwell,
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gives
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or
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In this way Eq. (6-01) becomes
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If ρ* = 0, elimination between the above equations gives the analog of the wave equations:
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These are vector Helmholtz equations. Since they do not contain time as a variable, they are simpler to wort: with than the corresponding Eqs. (6-04) and (6-05).

As an example of the use of Eq. (6-14), suppose an electric field is giv.



[image: image]

or
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where β is a constant. What is the magnetic field strength associated with E?

From Eq. (6-14),
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or
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Thus
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Equation (6-18) shows that H* is in the positive y-direction when E* is in the positive x-direction. The equation also shows that the two quantities are in time phase. If Ex* is taken as reference quantity in the complex plane,



[image: image],

then Hy* is also a pure real quantity:
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6-04. Conductors and Dielectrics. One of the most important equations for a-c fields is
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If the medium is a perfect dielectric, [image: images] → ∞ and only the first term in the parentheses is used. If the medium is a metal, [image: images] is so low that the second term is the important one even at radio frequencies.

To consider this matter more exactly, take a critical frequency fc at which the two terms are numerically equal:
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Some computed values are listed in Table 6-01. Because resistivity covers the tremendous range of 1022 : 1, the critical frequency also covers a wide range. As illustrated in the table, most materials fall into one of two categories:

(a) Dielectrics. Here [image: images] is very large so that, for any ordinary frequency, Eq. (6-15) reduces to



[image: image]

(b) Metals. Here [image: images] is so low that, for frequencies below the optical range, Eq. (6-15) becomes



[image: image]

There are, of course, some media in the intermediate range for which the bracketed quantity of Eq. (6-15) must be used in its complex form.

6-05. A Coaxial Cable. A coaxial line, Fig. 5-06, is excited by an a-c generator connected at one end (z = 0). With the far end (z = l) short-circuited and with the frequency adjusted so that l is a quarter wavelength, E* is found to be
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where [image: images] What is H* at any point between the two conductors?

According to Eq. (6-14)
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or (Appendix C),
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Since all the partial derivatives are zero except [image: images], there can be only a Ψ-component of H*:
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or



[image: image]

At any point in the space between the two conductors, E* and H* are at right angles, and the ratio of their magnitudes is



[image: image]

This fixes the geometric relations between the two vectors in space. There remains the question of the meaning of (–i) in Eq. (6-21). Evidently this factor indicates a 90° difference in time phase between Er* and HΨ*. As shown in Fig. 6-04, HΨ* lags Er* by 90° in the complex plane. Since the E of field theory may be considered as the analog of voltage in circuit theory and H may be considered as the analog of current, this particular cable acts like a pure inductance.
 
[image: image]

FIG. 6-04. Vector diagram for Er* and HΨ* in a quarter-wavelength coaxial line shorted at the far end.

6-06. Orthogonality. Intheprevious examples, the E and B vectors, at a given point in the time-variant case, are orthogonal in space. It may be interesting to inquire as to the generality of this relationship.

At an arbitrary point P and at	a given instant, the E-vector has a definite direction. Orient the co-ordinate system so that E = axEx. This introduces no restriction on generality. The question is, what is the direction of B at point P and at the given instant?

From Eq. (6-01),
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or
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Since Ey = Ez = 0, the above equation reduces to
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The first of these equations shows that Bx = 0; since in the time-variant case, B = const is not valid unless B = 0. Thus B can have no component in the direction of E. In other words, the E and B associated with an electromagnetic wave are always orthogonal in space.

6-07. The Poynting Vector. In circuit theory, the instantaneous power is defined as
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The instantaneous power, averaged over a cycle, gives the average power Pav, which is the quantity read by a wattmeter.4 For sinusoidal quantities,
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where |V| and |I| are the magnitudes of the rms quantities V* and I*. It is convenient also to introduce an analogous quantity Q (“reactive power”), defined by the relation
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Also employed to some extent is “complex power,”
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where [image: images] is the complex conjugate of I*.

These circuit ideas can be extended to field theory. As the analog of instantaneous power, we introduce the instantaneous Poynting vector, defined by the relation,5
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At any point in space and at any instant of time, the instantaneous Poynting vector specifies the direction of energy flow and its magnitude per unit area (watt m–2). Because of the vector product of Eq. (6-26), S is always perpendicular to the plane defined by E and H, and the S-vector points in the right-hand screw direction determined by E and H. For the plane wave of Eqs. (6-17) and (6-18), for example, E is in the x-direction and H is in the y-direction, so energy flows in the positive z-direction.

With alternating fields, we are usually interested in average power per unit area rather than instantaneous power per unit area. In analogy with Eq. (6-25), we may define the complex Poynting vector as



[image: image]

where [image: images] is the complex conjugate of H*. As in circuit theory, the complex quantity may be broken into its real and imaginary parts:
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In the example of Section 6-03, Eqs. (6-17) and (6-18) give
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Since E* and H* are orthogonal in space, their vector product is a vector S* in the positive z-direction, and its magnitude is
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But in this example, Ex* and Hy* are in time phase, so 
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Through each square meter of the xy-plane, the power is [image: images] watts.

The vectors E* and H* are always orthogonal in an isotropic medium (Section 6-06). This fact allows the Poynting-veetor formulation to be brought in even closer touch with the circuit formulation. From Eq. (6-27),
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where [image: images] is a unit vector that is normal to the plane of E* and H*. The quantity in parentheses is no longer a space vector but is merely the product of two complex numbers:
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Thus the complex Poynting vector may be written
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where θ is the plane angle between E* and H*:
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The real and imaginary parts of the Poynting vector are therefore exact analogs of the circuit definitions of Pav and Q, and
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These equations apply to sinusoidally varying fields in isotropic media. The parallelism between circuits and fields is indicated in Table 6-02.

6-08. Voltage. In static fields, we have employed a definition of the voltage from a to b :
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Equation (6-31) is taken as a universal definition of voltage (Chap. 3), applicable with time-variant fields as well as static fields. One must remember, however, that in the general case [image: images], and E is no longer the negative gradient of the potential but is
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This fact introduces pitfalls for the unwary.

Introducing Eq. (6-03) into Eq. (6-31), for v = 0, one obtains
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By definition of gradient, Chap. 1,
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Thus Eq. (6-31) becomes
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In the static case, the third term is zero and the voltage is simply a potential difference. But in most time-variant fields (as indicated in Chap. 3) voltage is no longer a potential difference and Vab depends on the path of integration.
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FIG. 6-05. In the time-variant field,the voltage between a and b is generally not equal to the potential difference.

This becomes physically obvious if one considers a closed loop, Fig. 6-05. The total voltage around the loop is
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But according to Stokes’ theorem,
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Thus Eq. (6-32) reduces to the familiar Faraday equation for induced emf:
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In other words, the voltage Vab of Eq. (6-31b) is not uniquely determined by the positions of a and b but depends also on the path. But this is only reasonable: if the voltmeter that is measuring Vab has leads that are linking a varying magnetic flux, the voltmeter reading will depend on the placement of the leads.

For example, consider the coaxial line of Section 6-05 with
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The metal is assumed to be a perfect conductor ([image: images] = 0). If a and b are on a radius, as in Fig. 6-06a, and a voltmeter is connected directly between a and b in the xy-plane, the voltmeter will read
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FIG. 6-06. A coaxial line. The voltage between conductors generally depends on the path (on where the voltmeter leads are placed).

Now consider another path in the xy-plane, such as a′b′. The voltage is evidently the same as for ab. For aa′ and bb′, [image: images], and
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Thus the voltage between the inner and outer conductors is A* In (b/a) for any path in the xy-plane. This is in accordance with Eq. (6-31b) since no magnetic flux can be linked by any circuit as long as it stays in the xy-plane. But if we take another path, such as ab in Fig. 6-06b, there will be a varying flux through the loop and Vab will be altered.

6-09. Summary. The chapter has outlined the general problem of accelerated charges. Electric and magnetic fields are present, and they are coupled by the [image: images] and [image: images] terms in Maxwell’s equations. The practical applications are

(a) The transient case,

(b) The a-c steady-state case.

In the latter, the field vectors become complex, and Maxwell’s equations are
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where the starred symbols are complex and represent both rms magnitude and phase angle of sinusoidally varying quantities.

Of particular value are the vector Helmholtz equations:
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Also needed is the Poynting vector. The instantaneous Poynting vector is defined as



[image: image]

For the a-c case in isotropic media, we may write



[image: image]

as shown in Table 6-02.
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TABLE 6-01. CRITICAL FREQUENCIES AT WHICH [image: images]
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TABLE 6-02. POWER
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PROBLEMS

Problem 6-01. Prove that Eq. (6-06) satisfies the scalar wave equation (6-04c).

Problem 6-02.  A rectangular pulse, [image: images], of radiation isemitted by an antenna. At a distant point (z = 0), the width of the pulse is Δt and the height is Ex = A. Assume that the wave is plane.

(a) Express the wave at z = 0 in terms of unit functions.

(b) Express the wave at any point z > 0.

(c) Sketch the wave (Ex vs z) for several values of t.

Problem 6-03. A coaxial line of length I is short-circuited at the far end (z = l). At the generator end (z = 0), a battery of V volts is suddenly switched onto the line at t =0. The resulting field at z = 0 is



[image: image]

(a) Express the electric field at any point on the line for t < l/c.

(b) At z = l, the short circuit requires that E = 0. Write an expression for E for [image: images].

(c) Sketch |E| vs z for several values of time in the range [image: images].

Problem 6-04. Repeat Prob. 6-03 for an impressed voltage that rises linearly from zero to V in the time interval δ and then drops to zero and remains there.

Problem 6-05. A plane electromagnetic wave in uncharged free space is designated by
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(a) Express H(t) in terms of H*.

(b) Find the E-vector associated with H.

(c) In what direction is the wave moving? What is the geometric relation between E and H? What is the phase angle between these vectors?

Problem 6-06. Repeat Prob. 6-05 for
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Problem 6-07. Repeat Prob. 6-05 for
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Problem 6-08, Repeat (b) and (c) of Prob. 6-05 for a circularly polarized wave,
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Problem 6-09. For a semiconductor with [image: images] = 1000 ohm-m, μ = μ0 and ∊ = 2.5∊0, how high a frequency is permissible if Eq. (6-15b) is to be employed with an error in the last term of not more than 1 per cent?

Problem 6-10. For waves in a perfect dielectric, it is often convenient to introduce the idea of intrinsic impedance η:
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Prove that if E and H are orthogonal,
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Problem 6-11. For the plane electromagnetic wave of Prob. 6-05,

(a) What is S(x, y, z, t)?

(b) What is S*?

(c) Determine Sav and SQ.

Problem 6-12. For the wave of Problem 6-06, determine the direction and magnitude of Sav* and SQ*.

Problem 6-13. Express the Poynting vector Sav for Prob. 6-08.

Problem 6-14. A radio wave traveling along the surface of the earth is found to be tilted forward slightly so that E* is not exactly vertical. In a specific case,
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and the angle of tilt of the E-vector is α = 0.01 radian. The H-vector remains horizontal.

(a) What is the direction of S*?

(b) How many watts are being dissipated in the earth per square meter of surface?

Problem 6-15. A plane wave is traveling in the z-direction guided by the yz-plane of metal.

(a) If [image: images] = 0 for the metal, the wave is exactly plane, with E* in the indirection and H* in the y-direction. Express the current per unit width of metal surface in terms of H* of the wave near the surface.

(b) If an actual metal is employed, the wave front tilts through an angle α. Express δ in terms of the surface resistance R′ (ohms per square) of the metal. Assume that I remains as in (a).

Problem 6-16. A circular ring (radius A) of thin wire is cooled below its critical temperature so that its resistivity is zero. At a small gap (a–b) in the ring, an alternating voltage is applied, producing a current I*. Assume that the frequency is low enough so that I* is essentially uniform throughout the loop.

(a) A voltmeter is connected between the ends a and b of the wire, the voltmeter leads being insulated from the ring but very close to it throughout its length. What is the voltmeter reading?

(b) The voltmeter is now connected directly across the gap a–b. What is the reading?

Problem 6-17. A parallel-plate capacitor consists of two perfectly conducting circular plates of radius a and separation l. Use circular-cylinder coordinates with the origin at the center of the lower plate. At low frequencies, and neglecting fringing at the edges of the plates, the E-vector is the same everywhere in the space between plates.

(a) What is the voltage between plates, as measured along the z-axis?

(b) What is the voltage between plates, as measured in the z-direction at r = const?

Problem 6-18. At very high frequencies, the capacitor of Prob. 6-17 may have a field
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where [image: images] is a Bessel function of the first kind and zero order.

(a) What is the voltage between plates, as measured along the z-axis?

(b) What is the voltage between plates, as measured in the z-direction at r = 2.40 c/ω?

(c) Determine the reading of a voltmeter connected to the plates at (r = 0, z = l) and (r = 0, z = 0) with its insulated leads along the plates to
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and then straight across at r = 2.40 c/ω.


Chapter 7

SKIN EFFECT



As shown in Chap. 6, Maxwell’s equations for the a-c steady state lead to the differential equation



[image: image]

for dielectrics, and
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for metals.

We now consider the latter case in greater detail. Since in a metal
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Eq. (7-02) may be written in terms of current density:
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Solutions of this equation show that in general the a-c density is not uniform but that J* tends to concentrate near the surface of the conductor. This phenomenon is called skin effect.1

7-01. The Semi-Infinite Conductor. A large block of metal is carrying an alternating current in the z-direction (Fig. 7-01). The metal is homogeneous, so an imaginary filament of given cross section has the same resistance in any part of the block. But the reactance of the filament depends on the magnetic flux around it, which depends on position. Thus from circuit theory, one would expect the nonuniform impedance of these filaments to result in a nonuniform current distribution. We now determine the exact current distribution by means of field theory.
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FIG. 7-01. Skin effect in semi-infinite metal block.

Since the current (Fig. 7-01) is in the z-direction,
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Also, from physical considerations,
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Thus the Helmholtz equation (7-02a) may be written
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The general solution of the differential equation is



[image: 7.3.jpg]

where [image: images]

Boundary conditions are
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where Js is the current density at the surface. Substitution into Eq. (7-03) gives



[image: 7.4.jpg]
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FIG. 7-02. Complex-plane diagram for [image: images].

The peculiarity of this solution is that τ is complex. But, as indicated in Fig. 7-02, [image: images] may be represented by a line segment of unit length, making an angle of 45° with the real axis in the complex plane. Thus,
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[image: 7.3.jpg]

FIG. 7-03. Complex-plane diagram for the current density J* at various distances x from the surface. As x increases, the magnitude of the current density decreases and the angle of lag increases.

and
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where
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The other root of i, [image: images] [image: images], corresponds to a positive exponential in x, which does not satisfy the boundary conditions.

Equation (7-05) shows that the a-c density in a semi-infinite block of metal has a maximum value at the surface (x = 0), and that the magnitude (Jse–x/δ) of the current density drops off exponentially with distance. Also, as x increases, the current lags in time-phase further and further behind the current at the surface. A diagram in the complex plane is shown in Fig. 7-03. The rms magnitude of the current density is represented by the length of the radial line segments, which become progressively shorter as x increases. Also, as x increases, θ increases. The locus of the ends of the segments is a logarithmic spiral. Figure 7-04 shows the magnitude and phase angle of Jz*.



[image: 7.4.jpg]

FIG. 7-04. Skin effect in a semiinfinite metal block. At a depth equal to the skin thickness (x = δ), the magnitude of the current density is 1/e of its maximum value and lags the surface current by 1.0 radian.

7-02. Skin Thickness. The quantity δ is called the skin thickness. Some values are listed in Table 7-01. The name should not be taken too literally; for, theoretically, some current exists at all finite values of x, and the total current in width w is not Jsδw. Evidently the skin thickness is the distance in which the current density drops to 1/e of its value at the surface. Can further physical significance be found for δ?

Consider a region of the conductor (Fig. 7-01) extending to infinity in the x-direction. The power loss in this parallelepiped is
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or
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The total current in the parallelepiped is
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Thus, irrespective of the frequency or of the material, the total current always lags the surface current by 45°.

We now obtain the equivalent resistance of the conductor: the value which, when multiplied by the square of the total current, gives the actual power loss. From Eqs. (7-06) and (7-07),



[image: 7.8.jpg]

But this resistance is exactly the d-c resistance of the skin of thickness δ.

This fact is the basis for a very convenient method of calculating the resistance of conductors at radio frequencies. The conductor, irrespective of its shape, is considered to have an a-c resistance equal to the d-c resistance of its skin, calculated by the familiar equation,



[image: 7.9.jpg]

where l is the length of	conductor and p is the	perimeter of its cross section.

For any shape of cross section, the ratio of a-c to d-c resistance is therefore equal to the inverse ratio of the areas, or
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For a wire of circular cross section and radius a (Fig. 7-05), therefore,



[image: images].

For a rectangular bar a × b,



[image: images].
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FIG. 7-05. Approximate determination o f a-c resistance by considering the skin depth [image: images]

As an example, determine the resistance ratio for a copper rod 1.0 cm in diameter at ω = 108 radian sec–1. The equivalent skin thickness is
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or 0.0165 mm.

The cross-sectional area of this skin is 2παδ, and therefore
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So at this frequency, the resistance of the conductor is 152 times its d-c value.

This method is, of course, only an approximation, though a useful one in engineering practice. If δ is small in comparison with the dimensions of the cross section, and if the cross-sectional contour has no sharp corners, the approximation will be good; otherwise it may not be satisfactory. The effect of corners (as in a rectangular bar, for instance) is to increase the loss beyond what would be calculated by the approximate method.2

7-03. Plated Conductors.1 Resonant cavities and waveguides are often silver-plated to utilize the low resistivity of silver and thus reduce the I2R-loss. It is interesting to determine how the loss varies with the thickness of the plated coating. Another practical application of this analysis occurs when the coating has a higher resistivity than the original metal. Examples are tinned copper wires, also conductors that are coated with oxide. Will such coatings have an appreciable effect on the measured resistance ?

Consider a heavy slab of metal with resistivity [image: images]2 (Fig. 7-06), coated with a metal layer of resistivity [image: images]1 and thickness a. Let
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We know also that the tangential components of E and H are continuous across the boundary, or



Ez1 = Ez2 and Hy1 = Hy2

at x = 0. These boundary conditions may be written in terms of J. From Maxwell’s equations,
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FIG. 7-06. Semi-infinite metal block with surface coating of thickness a.
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or
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Thus the boundary conditions at x = 0 are



[image: 7.10.jpg]

The Helmholtz equation applies to each of the regions (1 and 2, Fig. 7-06), and solutions are expressible in terms of exponential functions:
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where
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Substitution of the boundary conditions gives
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These equations may be expressed in terms of the skin thicknesses δ1 and δ2 for the two metals. Since τ = (1 + i)/δ,
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and Eq. (7-12) becomes



[image: image]

where α2 = x/δ2.

A numerical example of the use of this equation is shown in Fig. 7-07. A large brass bar is silver plated, the thickness of the plating being 1.6 times the skin thickness in the silver. Note the discontinuity in current density at the boundary between the two metals.

The total current in Conductor 2, for width w, is
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FIG. 7-07. Skin effect in silver-plated brass
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Similarly, for Conductor 1,
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where



[image: image]

The total current is therefore
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or
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where α = tan–1(T/S),
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The power loss in Conductor 2, for a parallelepiped w × l, is
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For Conductor 1,
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Thus the total power is
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where
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The equivalent resistance is obtained by dividing power loss by |I|2, or
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It is interesting to express this result in terms of a homogeneous bar. If the bar were all of the plating metal (No. 1), its resistance would be
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according to Eq. (7-08). The ratio of resistances is
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Compared with the unplated metal,
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Two typical cases are indicated in Figs. 7-08 and 7-09. In Fig. 7-08, the ordinates represent the resistance of a silver-plated brass bar, compared with a solid-silver bar. Evidently, if the silver plate exceeds 1.2 times the skin thickness δ1, the resistance of the composite conductor will be approximately that of pure silver. But if the plating is reduced in thickness below δ1, the effect of the brass will be evident. The unexpected feature of Fig. 7-08 is the dip in the curve from a/δ1 = 1.2 to 2.6. Theory shows that for these thicknesses of silver plate, the total resistance and therefore the total I2R-loss is less than for a pure silver conductor.
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FIG. 7-08. Resistance ratio for a silver-plated brass block.
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FIG. 7-09. Resistance ratio for leadcoated copper.
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Figure 7-09 indicates what happens when a massive copper conductor is coated with lead. When the lead coating is less than about 0.1δ, it has almost no effect on the resistance. But for coatings from 0.1δ to δ1, the lead causes a rapid rise in resistance. As in the previous curve, Fig. 7-09 shows a peculiar region 1.2 < a/δ1 < 2.6 where the coating causes an unexpected phenomena. In this case, the resistance of the composite conductor becomes greater than if it were made of solid lead. Figure 7-09 indicates that it is poor practice to use tinned copper conductors at radio frequency.

7-04. The Circular Conductor. Exact solutions for skin effect have been obtained for only a few simple shapes of conductor. With a long isolated wire of circular cross section, the axial symmetry of the problem allows a comparatively simple treatment. Use circular-cylinder coordinates with the z-axis along the axis of the conductor. Here
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and
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The Helmholtz equation becomes
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The general solution of this differential equation is
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where [image: images] as in Section 7-01, and [image: images]0 and [image: images]0 are Bessel functions of the first and second kinds (Figs. 7-10 and 7-11). The latter become infinite as r → 0; so to prevent infinite current density on the axis of the conductor, B* = 0. We also have the boundary condition that when r = a, Jz* = Js. Thus the solution of the skin-effect problem for the circular cylinder is
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The Bessel function of a complex argument is itself complex. Numerical values can be obtained from the series expansion,3 which in this case has alternate real and imaginary terms. But a simpler way is to use tables4 of magnitude M and phase angle Θ:
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FIG. 7-10. Bessel functions of a real argument.
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FIG. 7-11. Bessel functions of the second kind. All Bessel functions [image: images]i(x)→∞ for x→0.
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Substitution into Eq. (7-18) gives
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FIG. 7-12. Magnitude of the Bessel functions that occur in skin-effect problems with conductors of circular cross-section :
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The tabulated values of M0 have been used in obtaining Figs. 7-12 and 7-13.

Now consider the a-c resistance of the conductor. The total current is
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But5 [image: images], so
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where [image: images]

At the surface of the conductor, the voltage drop is
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This same voltage appears at all values of r, so the internal impedance is
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FIG. 7-13. Skin effect in a conductor of circular cross-section.

Thus the equivalent resistance of the conductor is
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and the internal reactance, caused by magnetic flux within the conductor, is
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At radio frequencies, there is practically no magnetic field inside the conductor, so the internal reactance is negligible. Even at power frequencies, this quantity is small. But the equivalent resistance may be of considerable practical importance. The resistance ratio for the circular conductor is
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Values of this ratio are plotted in Fig. 7-14. Note that the exact ratio (heavy curve) is approximated by the skin-thickness formula (dotted curve) for a/δ > 10, but this simple method (Section 7-02) is of little value at low frequencies or for small conductors (a/δ < 10). On the other hand, for a/δ ≤ 1, the a-c resistance is very nearly the same as the d-c resistance. Thus only in the range 1 < a/δ < 10 is the exact Eq. (7-22) really necessary.

It will now be proved that Eq. (7-18) reduces to Eq. (7-04) at very high frequencies. Under these circumstances, the current density will be appreciable only near the surface, where both τa and τr are very large. Let
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FIG. 7-14. Resistance ratio for a conductor of circular cross-section.
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appreciable only near the surface, where both τa and τr are very large. Let



r = a – ξ,

where ξ is the distance from the surface of the conductor. Then Eq. (7-18) becomes
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and the Bessel functions can be represented by their asymptotic series. Since6
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we have
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Thus
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For (τa) [image: images] 1, the ratio of the series becomes essentially unity, and
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But the approximate equation of Section 7-02 was
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Thus the exact formulation in terms of Bessel functions reduces to the simple skin-depth result of Section 7-02, provided the frequency is sufficiently high. For example, if Eqs. (7-23) and (7-04) are to differ by 1 per cent



ξ/a = 0.02;

and if, at this depth, the current density is to be not more than 1 per cent of its value at the surface,



ξ/δ = 4.6.

But
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so



|τa| = 325 and a = 230 δ.

The skin depth in this case must not exceed 1/230 of the radius and the frequency must be at least



[image: images]

7-05. Tubular Conductors. Since the interior of a conductor is not very effective in carrying alternating current, tubular conductors are often used in high-frequency work.1 In the conductor of Fig. 7-15, the axis of the tube is in the z-direction, and
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The solution of the Helmholtz equation is
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[image: 7.15.jpg]

FIG. 7-15. Tubular conductor.

and boundary conditions are
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The second boundary condition is now expressed in terms of Jz*. From a Maxwell equation,
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or
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Thus,
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Substitution of the boundary conditions gives the solution,
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If a → 0, [image: images]1(iτa) → ∞ and the second terms in numerator and denominator are negligible. Then Eq. (7-26) reduces to Eq. (7-18) for a solid conductor. Also, at very high frequencies, the current is very close to the outer surface and the tube acts like a solid conductor.

With the coaxial line, however, the current in the outer tube tends to be on the inside (Fig. 7-16). The boundary conditions may be written
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The third condition results from the fact that equal currents in opposite directions in the two conductors produce no magnetic field outside.
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FIG. 7-16. Coaxial line.

Take solutions of the form (for two conductors of the same material),
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Substituting the boundary conditions and introducing the relation,
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we obtain
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The equation can be expressed equally well in terms of total current I* instead of in terms of Js, making use of Eq. (7-27). The outer conductor can produce no magnetic field at the inner conductor, and therefore has no effect on the current distribution, Eq. (7-18). The inner conductor, however, has a marked effect on the current distribution in the outer conductor; so Eq. (7-28) is quite different from Eq. (7-26). At radio frequencies, the methods of Section 7-02 are applied, the resistances being
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7-06. Principle of Similitude2. As mentioned previously, exact equations for skin effect have been worked out for only a few simple shapes. More complicated cases, such as large, closely spaced rectangular bus bars, occur in engineering practice. In such cases, exact calculations are impossible and full-scale experimental measurements would be expensive and difficult. But measurements can be made on a small-scale model, which will give the same resistance ratio as its prototype provided the proper frequency is used. This is called the principle of similitude.

The basic equation for metallic conductors is
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In rectangular coordinates with J* in the z-direction,
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Suppose that we now make a model, using the same materials and the same shapes but a different scale so that x′ = kx. For instance, 1 cm on the model could correspond to 1 meter on the prototype. Then
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and Eq. (7-02c) becomes



[image: 7.29.jpg]

where [image: images]′ represents the vector Laplacian in the new coordinates. Since the same materials are employed, μ and [image: images] are unaltered. If now the frequency is changed so that the new angular velocity is
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then Eq. (7-29) becomes
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Thus with the frequency changed as the inverse square of the dimensions, Eq. (7-30), the current-distribution pattern will be the same in the model as in the original, and the resistance ratio will likewise be the same in the two cases.

7-07. Eddy Currents. Eddy currents are employed extensively in engineering practice: in the induction furnace, in inductive heating for tempering and annealing of metal parts,7 and in eddy-current brakes. As a simple example, consider a long metal rod of circular cross section (Fig. 7-17). An exciting coil is wound uniformly on the rod and is supplied with alternating current. Currents are induced in the metal and tend to concentrate near the surface. Indeed, the problem is similar to the skin-effect of Section 7-04 except that here the currents are in the Ψ-direction instead of in the z-direction. This change of direction, however, is sufficient to change the form of the vector Laplacian, so that the result is in terms of the first-order Bessel function instead of the previous zero-order function.

In Fig. 7-17,
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so the Helmholtz equation becomes
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The general solution is
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FIG. 7-17. A metal cylinder is heated by eddy currents induced in it by alternating current in a coil that is wrapped about the cylinder.
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FIG. 7-18. Distribution of induced current density in the cylindrical core of Fig. 7-17.

Since [image: images]1 is inapplicable, the solution is
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where Js is the current density at r = a. The equation may be written
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where M1 and Θ1 are obtained from published tables.4 The magnitude of the current density is zero at the center and increases toward the outside as indicated by Fig. 7-18.

7-08. Summary. The Helmholtz equation,
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is applied to the determination of the distribution of alternating current in metallic conductors. At radio frequencies, the concept of skin thickness,
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is of practical importance. The a-c resistance of a cylindrical conductor of any cross section is given approximately by the simple expression,
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where p is the perimeter of the cross section. This equation is valid, however, only if δ is very small compared with the dimensions of the cross section.

An exact equation is obtained for a wire of circular cross section:
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where
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The a-c resistance is
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which reduces to Eq. (7-09) at high frequencies. The chapter includes also tubular conductors and composite conductors consisting of two metals.
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TABLE 7-01. SKIN THICKNESS
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PROBLEMS

Problem 7-01. A flat plate of metal extends to ± ∞ in the y and z directions and from –a to +a in the x-direction. It carries a current in the z-direction, the current density at either surface being Js.

(a) Obtain an exact expression for Jz*(x).

(b) Prove that, for very high frequencies, your equation reduces to an exponential function of the distance from the surface.

(c) Obtain an exact equation for Rac/Rde

Problem 7-02. In rectangular waveguides operating at radio frequencies, the current is concentrated near the inside surface. It is proposed to obtain the lowest possible resistance by employing pure silver foil cemented to an insulating board. Conditions are idealized by considering Fig. 7-01 with a finite metal thickness [image: images]. At x = 0, J* = az Js; and assume that H = 0 at x = h.

Derive an exact equation for Jz*(x)

Problem 7-03. A long copper strap has over-all dimensions a × b with b > a. The edges are rounded, with radius a/2.

(a) Obtain an expression for Rac/Rde, applicable at very high frequencies.

(b) Plot the resistance ratio (Rac/Rde) against frequency for a = 1.0 cm, b = 4.0 cm, f = 105 to 108 hertz.

(c) Will the resistance ratio increase or decrease if the copper is replaced by brass?

Problem 7-04. A coaxial line consists of copper tubes of inner radii a and b and outer radii a′ and b′ The frequency is so high that the current may be considered as concentrated in surface layers.

(a) Is the current at the outer or inner surfaces of the tubes? Why?

(b) Obtain an expression for the total resistance per unit length of line.

(c) Find an equation for the inductance of the fine per unit length.

Problem 7-05. According to Eq. (7-06), the I2R-loss is
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If we take the total current in width w as concentrated in thickness δ:
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the equivalent resistance should be
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Why does this fail to check Eq. (7-08)? Which is correct?

Problem 7-06. In the semi-infinite conductor of Section 7-01, the voltage at the surface, per unit length, is
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and the internal impedance of the conductor, per unit length and per unit width (in the y-direction), is
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Obtain expressions for resistance per unit length and internal reactance per unit length.

Problem 7-07. An isolated metal tube has radii a and b and a surface current density Js. It carries alternating current I in the z-direction.

Obtain an equation for current density. State boundary conditions and evaluate constants.

Problem 7-08. Express Eq. (7-12) in terms of the total current instead of Js.

Problem 7-09. A scale model of a complicated bus structure for a 60-cycle power station is tested at 6 × 105 hertz. With a total current of 1.0 amp, the loss is found to be 0.50 watt m–1. Each bar of the model is 0.063 × 3.05 mm.

(a) What size bars will be used in the power station?

(b) With a total current of 3000 amps, what will be the power loss per meter of actual bus?

Problem 7-10. Resonant cavities and waveguides are often silver plated to reduce loss.

(a) For silver-plated hard-drawn copper, what thickness of plating will give minimum loss? Express in terms of δ1.

(b) With a silver coating of 10–3 mm on copper and a wavelength of 10 cm, what is the resistance of the plated conductor in terms of the resistance of a thick silver guide?

Problem 7-11. A copper waveguide has an oxidized surface with resistivity 50 times that of copper and an oxide thickness of δ2/2.

(a) Does the oxidation increase or decrease the resistance of the guide?

(b) What is the resistance of the oxidized guide in comparison with its resistance when new and clean?


Chapter 8

WAVES



As shown in Chap. 6, one of the most convenient ways of handling sinusoidal electromagnetic waves is to employ the Helmholtz equation,
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Chapter 7 has dealt with the special case of metals, where Eq. (6-15) reduces to
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We now take the other extreme of a lossless dielectric, where
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8-01. Uniform Plane Waves. First consider the simplest wave: the uniform, linearly polarized, plane wave.By linearly polarized, we mean that, at any given point P, the direction of the vector E(t) is independent of time. With a linearly polarized wave, E(t) at point P may differ, both in direction and magnitude, from E(t) at point Q. And of course the magnitude of E(t) at a given point is a function of time. But if we concentrate on any point in the field and find that the vector points in the same direction at all times, then the wave is linearly polarized. In contradistinction to linearly polarized radiation is elliptically polarized radiation, where E(t) at a given point changes its direction periodically with time. By a uniform plane wave, we mean a wave whose E*-vector has the same magnitude and direction everywhere in a plane z = const, as in Fig. 8-01.
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FIG. 8-01. Uniform plane wave moving in the z-direction.

For instance, suppose that the antenna A of Fig. 8-02 consists of a vertical wire fed from the center through a transmission line T. An alternating current of I* amps enters the antenna. It is found that the E*-vector, produced at a distant point P on the z-axis, is parallel to the antenna and that the H*-vector is the in y-direction. At sufficient distance from the antenna, we obtain at P a wave that is essentially uniform, plane, and linearly polarized.
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FIG. 8-02. An antenna A produces at P an E* and H* as shown.

On the other hand, a wave may be nonuniform, even though both E* and H* are in the xy-plane. An example is a wave propagated along a coaxial line with an a-c generator connected between the two metal cylinders. The E*-vector is always perpendicular to the axis of the cylinders, but the direction of E* is radial and the magnitude of E* is a function of r. A plane wave is obtained, but it is not a uniform plane wave.

For any uniform, linearly polarized, plane wave, we can orient the coordinate axes so that E* is in the x-direction. Then
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and since the wave is uniform,
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Thus Eq. (8-01) reduces to the scalar equation
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The general solution of Eq. (8-02) may be written
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where A* and B* are arbitrary complex constants, and [image: image]. There is a practical advantage in employing exponentials instead of circular functions,1 so we may well express the solution of Eq. (8-02) as
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where E+* and E–* are constants.

The corresponding H*-vector is obtained from Maxwell’s equation,
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Thus,
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Since Ey* = Ez* = 0 and the derivatives with respect to x and y are zero, this equation proves that there can be only a y-component of H*, and
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or
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where [image: image] .

We have shown that for a uniform plane wave (Fig. 8-01) with E* in the x-direction, H* must be in the y-direction. The two quantities are expressed by Eqs. (8-04) and (8-05). Now consider the physical significance of the two terms in each of these equations. Since
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Eq. (8-04) may be written



[image: image]

Equation (8-06) shows that there is a sinusoidal variation of E in both space and time. Selecting any particular value of the exponent of the first term, say [image: image] = 0, we follow this particular point on the wave as it travels in the z-direction. Evidently, as t increases, z must also increase; so the first term of Eq. (8-06) represents a wave traveling in the positive z-direction at velocity [image: image]. Similarly, the second term of Eq. (8-06) represents a wave traveling in the negative z-direction at the same velocity. For a vacuum,
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For dielectrics with μ = μ0, [image: ] is always greater than [image: ]0 and therefore the velocity c is always less than the velocity c0 in a vacuum.

It is, of course, convenient to omit the time specification and to employ rms magnitudes in the usual way. Then Eq. (8-04) represents a wave traveling in the positive z-direction with complex (rms) magnitude E+* and a wave traveling in the negative z-direction with complex magnitude E–*. In the special case of no reflection,
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The ratio is
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Since Ex* is expressed in volt m–1 and Hy* is in amp m–1, η must be in ohms. It is called the intrinsic impedance of the medium. For a vacuum,
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Note that, despite the fact that the medium has no conductivity, the intrinsic impedance of a lossless medium is a pure resistance.

The complex Poynting vector (Section 6-07) is
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and since E* and H* are orthogonal,
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where θ is the phase angle between Ex* and Hy*. For the wave in the positive z-direction, Ex* and Hy* are in time phase, so



[image: image]

For the wave in the negative z-direction,
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8-02. Reflection from a Perfect Conductor. Now take a perfectly conducting sheet (the xy-plane, Fig. 8-03) and allow an incident wave,
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to enter from the left. The general solution of the Helmholtz equation (8-01) is



[image: image]

where E+* specifies the known incident wave and E–* specifies any reflected wave that may occur.

The boundary condition is
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because the perfect conductor acts as a complete short-circuit at z = 0. Substitution into Eq. (8-04) gives
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FIG. 8-03. Reflection of a plane wave from a perfectly conducting plane at z = 0.
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so the solution of the problem is
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Unlike the equations for the traveling waves of Section 8-01, these equations represent standing waves. The E*-wave has nodes ai βz = 0, –π, –2π, … or at z = –nπ/β = –nλ/2, n = 0, 1, 2, …. The H*-wave has nodes at z = – (2n + l)λ/4. Note also that E* and H* are in time quadrature, so
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which would be expected from the fact; that no energy can be dissipated in the system.

The wave produces a current in the conductor. According to the boundary condition for a perfect conductor, Section 3-06,
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Thus, (Fig. 8-04) the current is in the positive x-direction in the conducting surface and has the magnitude (amps per meter width in the y-direction),



[image: image]

The current is in time phase with the incident wave E+* at z = 0.

8-03. Reflection from a Dielectric. A uniform plane wave,
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is incident normally on a boundary between two dielectrics (Fig. 8-05). The media extend to z = ± ∞. Medium No. 1 has parameters [image: ]1, μ1, η1, whereas Medium No. 2 has parameters [image: ]2, μ2, η2. In the treatment of the perfect conductor, Section 8-02, there was no field for z > 0; but with dielectrics, one expects waves in both media. In the first dielectric, allowing for the possibility of a reflected wave,
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FIG. 8-04. The incident wave produces currents in the conducting plane of Fig. 8-03. These currents are at right angles to the H*-vector and are thus in the x-direction.
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FIG. 8-05. Reflection of a plane wave from a dielectric. Media (1) and (2) are lossless dielectrics having intrinsic impedances η1 and η2. The wave is incident normally on the plane z = 0 that separates the two media.
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in accordance with Eqs. (8-04) and (8-05). The constants E1+ and E1– may be complex as usual, but the stars have been omitted here for simplicity. For the second dielectric, there is nothing that could produce a reflected wave, so
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Evidently there are two undetermined constants: E1+ is known, but E1– and E2+ are to be evaluated from the boundary conditions: When z = 0,
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Substitution into Eqs. (8-12) and (8-13) gives
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or
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Thus the solution of the problem is
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In general, any discontinuity at the boundary will cause a reflected wave. The fraction of the incident wave that is reflected at the boundary is
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Equation (8-15) indicates that, at the boundary between two infinite dielectrics, reflections can be eliminated only if η2 = η1. The fraction of the incident wave that is transmitted into the second medium is
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The Poynting vector associated with the incident radiation is, from Eq. (8-08),
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For the reflected radiation, Eq. (8-15) gives
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The sum of the two expresses the resulting Sav in Medium 1:
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Similarly, for the second medium,
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showing that there is no dissipation of energy in the dielectrics or at the boundary.

8-04. Three Dielectrics. The same procedure can be employed with any number of dielectric layers. Consider three media characterized by the intrinsic impedances η1, η2, η3 (Fig. 8-06). A uniform plane wave,
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is incident from z = – ∞. The equations must have the form of Eqs. (8-04) and (8-05), so
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FIG. 8-06, Plane wave in three dielectries.
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At the boundaries, the tangential components of E* and H* are continuous.Thus, when z = 0, Ex1* = Ex2* and Hy1* = Hy2*, or
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when z = l, Ex2* = Ex3* and Hy2* = Hy3*, or
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Simultaneous solution of these four equations evaluates the four unknowns E1–, E2+, E2–, E3+ :
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where
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Take the special case of a slab of dielectric immersed in a homogeneous medium of infinite extent: a sheet of glass in air, for example. Then η3 = η1; and from Eq. (8-19),
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As in Section 8-03, all reflections are eliminated if η2 = η1. But here we have an additional possibility of eliminating reflections by making
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Since β2 = ϖ/C2 = 2πf/(λ2f), the thickness of the slab must be
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where λ2 is the wavelength in the second medium and n is an integer. Equation (8-19a) proves that all reflections are eliminated when the thickness of the dielectric plate is one-half wavelength or a multiple of that thickness. This conclusion holds for a plane-parallel plate of dielectric immersed in an infinite dielectric medium and with radiation incident normally.

Returning now to the general case of three dielectrics, we see from Eq. (8-19) that ordinarily the phenomena are complicated by the presence of phase angles introduced by the exponentials. The only case where these phase angles do not introduce complications are where 2β2l = 2nπ or where 2β2l = (2n + l)π. In the latter case,
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so the thickness of dielectric No. 2 is A quarter wavelength (or [image: image]). Can reflections be eliminated with such thickness?	According to Eq. (8-19) with the exponential equal to – 1,
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If there is to be no reflection, the numerator must be zero, or
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Thus for three dielectrics with radiation at normal incidence (Fig. 8-06), reflections are eliminated if two requirements are satisfied:

(a)Thickness l must be a quarter wavelength (or [image: image], etc.) as measured in the second medium,

(b)The intrinsic impedance of the second medium must be the geometric meàn of the intrinsic impedances of the other two media, Eq. (8-23).

A practical application of this principle occurs in optics, where lenses and other optical parts are coated with an evaporated layer a quarter-wavelength thick, having an index of refraction intermediate between those of glass and air.2 Usually the coating thickness is adjusted for the middle of the visible spectrum ([image: image]). The coating then exhibits reflection at all other wavelengths. This is the reason that coated camera lenses appear purple: they reflect both red and blue light but they reflect practically no green light. The principle can be applied also at radio frequencies; for instance, in reducing radar reflections. The limitation is again that reflections can be eliminated completely for only one frequency.

Such problems are handled with great facility by employing transmission-line theory and particularly by use of the Smith chart.3 Since the purpose of this book, however, is to stress basic principles rather than practical applications, we shall not pursue this subject further.

8-05. Thin Conducting Layer. Another way to eliminate reflection is to absorb the energy instead of transmitting it. A thin conducting sheet is placed at z = 0 (Fig. 8-07). This conductor is assumed to be so thin that it can be considered to be a plane. Its surface resistivity is [image: image] ohms per square. A perfectly conducting plane is at z = l. A wave,
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FIG. 8-07. A thin, conducting sheet is placed at distance l from a perfectly conducting plane. A plane wave is incident on this combination.
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FIG. 8-08. Top view of Fig. 8-07, showing the conducting sheet at z = 0. Induced currents in the sheet are in the x-direction (into the paper).
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is incident normally. How can reflections be eliminated?

Two regions (1 and 2 of Fig. 8-07) must be considered, but η1 = η2 = η. Thus, according to Eqs. (8-04) and (8-05),
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Evidently there are three unknowns, so three boundary conditions are necessary. These conditions are
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The third condition may be visualized from Fig. 8-08, where the conducting sheet (z = 0) is viewed from above. Take a circuit enclosing a width ∆w of conducting sheet. According to a Maxwell equation,
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where (I*/w) is the current in the conductor (perpendicular to the plane of Fig. 8-08), per unit width. But
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so
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Substitution of the boundary conditions into Eq. (8-24) gives the three relations,
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Elimination of E2+ and E2– yields
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If reflections are to be eliminated, the numerator of Eq. (8-26) must be zero. But obviously, a zero value is obtainable only if the exponential is real, which occurs only for [image: image]. A trial of these two values shows that A zero is obtained only with the negative sign and with [image: image]. Therefore, reflections are eliminated if
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Thus all incident power is absorbed by the conducting sheet if this sheet has a surface resistivity equal to η and is placed one-quarter wavelength from a perfectly conducting plane.

8-06. Metal Shield. In Section 8-02 we found that an electromagnetic wave is completely reflected by A perfect conductor, no matter how thin the conductor is. Thin shields of copper and other metals are widely used in radio, and the question arises as to the effectiveness of these shields at various frequencies.

Consider a plane wave at normal incidence on a large plate of metal (No. 2 in Fig. 8-06). Region 2 is characterized by thickness l and resistivity [image: images]. Regions 1 and 3 are characterized by an intrinsic impedance η. The incident wave is
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How much of this wave is transmitted through the shield ?

The procedure is exactly as in Section 8-04, except that in Region 2 we must use the Helmholtz equation for a metal:
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The solutions can be written immediately:
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where
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Boundary conditions are
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These four boundary conditions allow the evaluation of the unknown E1–, E3+, A2*, and B2* of Eq. (8-28):
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where
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The transmitted radiation is evaluated by obtaining Ex3* at z = l :
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or
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The ratio of power, for transmitted and incident waves, varies as the square of the absolute magnitude of the E-ratio, or
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where
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and [image: image].

One might expect that the thickness of the metal shield would have to be a few times the skin thickness δ (Chap. 7) to reduce the transmitted power to a negligible value. Substitution in Eq. (8-30), however, shows that a much smaller thickness suffices. The efficacy of the shield does not depend primarily on the exponential of Eq. (8-30) but on [image: image]. That is, all metals are such good conductors that they act essentially as short circuits. Thus the wave cannot maintain an appreciable E*, even in the dielectric at the entrance side of the metal. This constitutes a justification for the common engineering assumption that, at least for a first approximation, all metals act like perfect conductors at radio frequencies.

8-07. Elliptic Polarization. Previous sections have dealt with linearly polarized waves. In optics, such waves are unusual:4 ordinary light is unpolarized since it is produced by great numbers of atoms oriented at random. In radio, on the other hand, linear polarization is the rule rather than the exception. One method of producing a linearly polarized wave is indicated in Fig. 8-02. An extension of this picture (Fig. 8-09) gives elliptically polarized radiation. 

Consider two straight antennas at right angles, carrying currents I1* and I2*. These currents produce the vectors E1* and E2* at a distant point P. Evidently the total electric field at P is the vector sum of E1* and E2*, or
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FIG. 8-09. Two linear antennas arranged to produce a circularly polarized wave at P.
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If the two antennas are identical (except for orientation) and carry the same currents which are in time phase, then E1* and E2* will be equal in magnitude and will be in time phase. The resultant vector Ep* will be in the plane z = l at 45° from the x-direction:



[image: image]

The wave is still linearly polarized. Similar results are obtained with I1* ≠ I2*: as long as the two currents are in time phase, the wave remains linearly polarized.

But suppose that I1* and I2* are not in phase. Remembering that the starred quantities in Eq. (8-31) are complex, we may write
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where α1 and α2 are phase angles. Suppose that |E1| = |E2| and α1 = 0, α2 = –π/2, Then Eq. (8-32) becomes



[image: image]

Evidently the magnitude of EP(t) is [image: image] = const, but the wave is no longer linearly polarized: EP(t) rotates about the z-axis at angular velocity ω. The wave is said to be circularly polarized.

Similarly, if the two antenna currents have different magnitudes but remain in time quadrature, Eq. (8-32) becomes
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The trace of the E(t)-vector in the xy-plane is now an ellipse, and we have elliptically polarized radiation. For simplicity, we have oriented the surfaces in this chapter for normal incidence. In the more general case of oblique incidence, some particularly interesting polarization phenomena occur; but lack of space prohibits their treatment in this book.5
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FIG 8-10. Uniform cylindrical wave with E* parallel to the axis.

8-08. Cylindrical Waves. Analogous to the uniform plane wave is the uniform cylindrical wave. The E*-vector is everywhere in the z-direction and has the same magnitude at every point on a given circular cylinder (r = const, Fig. 8-10). Then
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Just as in rectangular coordinates, the wave must satisfy the vector Helmholtz equation,
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Thus
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whose general solution is
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Equation (8-34) represents cylindrical waves propagated in the ± r direction. It corresponds to Eq. (8-03) for plane waves propagated in the ± z-direction. Instead of the sines and cosines of the plane case, we now have Bessel functions.

With plane waves, it was found that the solution was more easily identified with physical waves if the circular functions were replaced by exponentials. Similarly, with cylindrical waves, it is convenient to use linear combinations of [image: image]
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These functions are called Hankel functions or Bessel functions of the third kind.6 The solution of Eq. (8-33) is then written as
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where E+* and E–* are complex constants.

The analogy between the uniform cylindrical wave and the uniform plane wave is summarized in Table 8-01. The first term of Eq. (8-35) represents A wave traveling in the positive r-direction, while the second term represents A wave in the negative r-direction.

An expression for H* is obtained from Maxwell’s equation,
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All the terms in the curl are zero with one exception, and
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where
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Thus H* has only a Ψ-component, which is
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FIG. 8-11. A cylindrical wave between two perfectly conducting planes.

The E* and H* vectors are indicated in Fig. 8-10. Such a cylindrical wave would be obtained by arranging a series of short antennas (of finite diameter) along the z-axis and exciting them all in phase. Another possibility is to employ two infinite, parallel, perfectly conducting plates (Fig. 8-11) with a ≪ λ. If an a-c generator is connected between the plates at r = a, it will produce a uniform cylindrical wave in the space between the plates.

8-09. Spherical Waves. It is also possible to generate symmetrical spherical waves. In the spherical coordinate system of Fig. 8-12, E* is always in the θ-direction and its magnitude is independent of the angle ψ. Such a wave might be produced between two perfectly conducting cones by connecting an a-c generator between their apices (at O, Fig. 8-12).

Then



[image: image]

and the Helmholtz equation becomes (Appendix C)
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The solution is
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as may be proved by substitution into Eq. (8-37). Also, from
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we obtain
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As with the uniform plane wave, E* and H*, for a given spherical wave at a given point, are in time phase. The ratio of E* and H* for a wave traveling in the positive r-direction is a real number:



[image: image]

Thus this spherical wave acts locally like a uniform plane wave; though in the large, it is not a uniform wave since it depends on θ. The metal cones of Fig. 8-12 constitute a conical waveguide. Cones are also sometimes used to form the bi-conical antenna.7

8-10. Summary. The chapter has covered some of the salient features of electromagnetic waves in space and their reflection at plane boundaries. The basic equation is
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which is applied to plane, cylindrical, and spherical waves and various boundary conditions.
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FIG. 8-12. Spherical wave between two perfectly conducting cones.
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TABLE 8-01. COMPARISON OF PLANE AND CYLINDRICAL WAVES
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PROBLEMS

Problem 8-01. A uniform plane electromagnetic wave with f = 108 cps and E* = ax 100 volt m–1 is incident normally on a perfectly conducting plane (z = 0).

(a) What is the distance from the plate to the first node for E* in air?

(b) Obtain an expression for H* at any point in the air.

(c) What is the magnitude and direction of the current in the conductor?

(d) What is the surface charge density on the conductor?

Problem 8-02. A uniform plane electromagnetic wave is specified by



[image: image]

in air. This wave strikes a dielectric plate of thickness l at normal incidence.

(a) Write the boundary conditions at the two surfaces (z = 0, z = l). At z = l, the wave emerges again into air.

(b) Obtain expressions for E1– and E2+.

(c) For a dielectric plate of thickness equal to a half wavelength (measured in the dielectric), show that E1– = 0 and | E3+ | = | E1+ |.

(d) For A 4-cm radar wave (in air), what is the smallest thickness of plate ([image: ]2 = 4[image: ]0) that will eliminate reflections?

Problem 8-03. A uniform plane wave, f = 1010 hertz (cps), is normally incident on a plate of lossless plastic having	μ = μ0, [image: ] = 2.56 [image: ]0. The plate is in a vacuum.

(a) Determine the smallest thickness of plate that will give no reflections.

(b) If the frequency is 5 × 109 hertz and the thickness remains as in (a), what percentage of the incident power is reflected?

Problem 8-04. In an attempt to make a ship invisible to enemy radar, it is proposed to coat the hull with a sheet of dielectric having a relative permittivity of 9.0 and a thickness of 1.0 cm. The outer surface of the dielectric will have a conducting surface coating with surface resistivity of 377 ohms per square; and the inner surface will have a perfectly conducting coating.

For what frequency of normally incident radiation will the ship be invisible (nonreflecting) ?

Problem 8-05. A plane wave is normally incident on the three-layer lossless dielectric shown in Fig. 8.13. At what frequency (or frequencies) will the incident wave be completely transmitted with no reflections?

Problem 8-06. By use of Eq. (8-19), find an expression for Sav transmitted into Medium No. 3 (Fig. 8-06) when l = λ2/4 and η22 = η1η3. Prove that under these conditions, all the incident energy is transmitted into the third medium.

Problem 8-07. A radio transmitter operating at f = 3 × 109 hertz is to be protected from the weather by enclosing it in a plastic radome with μ = μ0, [image: ] = 2.56[image: ]0. What is the smallest thickness of plastic that will completely eliminate reflections at normal incidence?
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FIG. 8-13. Three dielectric plates, Prob. 8-05.

Problem 8-08. A lens of optical glass ([image: ] = 2.56[image: ]0) is to be used in infrared photography and is to be coated with a dielectric layer to eliminate reflections at a wavelength of 0.80μ (measured in air).

(a) What must be the permittivity of the coating?

(b) What is the smallest allowable thickness of the coating?

(c) If the permittivities are independent of frequency, what other wavelengths (in air) will be transmitted without reflections?

Problem 8-09. In Fig. 8-07, l = λ/4, [image: image] and the incident wave is
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Prove that all the power associated with the incident wave is dissipated in the I2R-loss in the conducting sheet.

Problem 8-10. Investigate the possibility of a cylindrical wave with E* in the ψ-direction and with E* and H* functions of r only:

(a) Does such a wave satisfy the vector Helmholtz equation?

(b) Obtain expressions for E* and H*.

Problem 8-11. A complete enclosure is formed of perfectly conducting circular cylinders r = a and r = b and perfectly conducting plates z =0 and z = l.

(a) State the boundary conditions.

(b) Can A cylindrical wave exist inside the enclosure, with E* in the z-direction? That is, what wave (if any) satisfies the Helmholtz equation and the boundary conditions?

Problem 8-12. A resonant cavity consists of two spherical surfaces, r = a and r = b, and two conical surfaces, α = λ and θ = π – α. These surfaces are perfectly conducting.

(a) If E* = aθEθ*, obtain the simplest expressions for E* and H* within the cavity (α < θ < (π – α)).

(b) What are the natural frequencies of oscillation?

Problem 8-13. Prove that there is no spherical analog of the uniform plane wave: Assume that H* is in the ψ-direction with [image: image] and show that these assumptions lead to an inconsistency.


Chapter 9

WAVEGUIDES



According to circuit theory, the simplest transmission line consists of two parallel conductors characterized by inductance and capacitance per unit length. An emf is impressed at one end of the line, causing currents in the conductors.

Another approach is by way of field theory. Electromagnetic waves in space are considered as the basic phenomena. Conductors are introduced into this space, and their effect on the waves is studied. According to this picture, waves are fundamental ; voltages and currents are mere incidental concomitants. Perhaps the wave picture is no “truer” than the circuit picture, although the Wave approach has introduced a host of possible modes of propagation that might never have been discovered from circuit theory. These more esoteric modes have become of great practical value.1



[image: images]

FIG. 9-01. Uniform plane wave traveling in the z-direction beneath a perfectly conducting plane.

Indeed, the subject of waveguides has developed within the last few decades into a highly ramified engineering discipline. All that can be done here is to point out the basic phenomena and to show that transmission-line theory and waveguide theory follow as logical consequences of the same basic methods that were used in previous chapters.

9-01. Introduction of a Conducting Plane. A uniform, linearly polarized plane wave,
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is traveling in the positive z-direction (Fig. 9-01). Suppose that the yz-plane is perfectly conducting. How will this conductor affect the wave?

The only boundary condition imposed by the perfect conductor is
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But the wave has no components in the y or z directions, so the conductor has no effect on the wave. If the entire yz-plane is conducting and the wave is generated below this plane, the wave cannot penetrate the perfect conductor and consequently there can be no wave above the plate. Thus a discontinuity exists at x = 0. The electric flux lines end on the perfect conductor, producing a surface charge density
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The magnetic field also exhibits a discontinuity at x = 0, which is possible only if there is a current sheet at x = 0. The current per unit width is
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Thus the wave produces a current in the z-direction in the conducting plane, the current per unit width (in the y-direction) being
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Now add another perfectly conducting plane (at x = a, Fig. 9-02). Boundary conditions are



[image: images]

FIG. 9-02. Two perfectly conducting planes. An electromagnetic wave between the two planes produces currents as shown.
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These conditions impose no restrictions on a wave whose E*-vectorisin the x-direction, so the wave is still unattenuated and is still propagated at velocity c in the positive z-direction.

The charge on the upper plate remains as in Eq. (9-02). A charge of equal magnitude but opposite sign is produced on the lower plate. According to Eq. (9-03), the currents in the two plates are in opposite directions and have the magnitude given by Eq. (9-04). Another way of representing these conditions is shown in Fig. 9-03. The direction of the E*-vectors is indicated in the end view by vertical lines, which are equally spaced to indicate uniform E*. The direction of the H*-vectors is given by horizontal lines, which are equally spaced to indicate uniform H*.
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FIG. 9-03. TEM wave between the Conductors of Fig. 9-02.

In the z-direction, all these magnitudes vary in accordance with
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So if E* is in the positive x-direction at z = 0, it will be in the negative x-direction at βz = π. The currents and charges will likewise vary in magnitude and alternate in sign as we move along the line (side view, Fig. 9-03).

Evidently the uniform plane wave could be excited by connecting a set of a-c generators between the two plates at z = 0. Suppose that the plates extend from z = 0 to z = + ∞ and that all the generators are in phase and each generates the emf
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The current at the generator, per width b of line, is from Eq. (9-04)
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which is in time-phase with the voltage. Thus the impedance of the line, as seen from the generator, is
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which appears as a pure resistance.

This impedance Z0*, called the characteristic impedance of the line, is the input impedance of an infinite line. For a finite line, the input impedance is generally complex and depends on what is connected at the far end of the line. Even in this case, however, the characteristic impedance is a useful concept. It may seem strange that Z0* for a lossless line is a pure resistance; and that only if the line has losses does Z0* have an imaginary part. In an infinite, lossless line, however, the energy supplied by the generator is propagated in the positive z-direction. Since none of this energy can be reflected, the generator continues to supply energy at a constant rate; and at the generator terminals, the line appears as a pure resistance.
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FIG. 9-04. Transmission line of length l.

9-02. Transmission Lines. Section 9-01 has treated two perfectly conducting plates (Fig. 9-02) as a transmission line of infinite length. Now take the more general case of finite length l in the z-direction (Fig. 9-04). With E* = axEx* and with no variation of E* in the x and y directions, the solution of the Helmholtz equation (8-01) is again an exponential function of z. But to fit general boundary conditions, both positive and negative exponentials are necessary, or
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The voltage between conductors, at constant z, is
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and the current for width b is
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Thus Eq. (9-08) may be written
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where the characteristic impedance is
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as in Section 9-01. Equations (9-09) are the general equations of transmission-line theory (a-c steady state). The constants V+* and V–* are evaluated from the boundary conditions.2

For the special case of a line that is open at the load end (Fig. 9-04), boundary conditions are
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Substitution into Eq. (9-09) gives
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These equations represent standing waves, Fig. 9-05, with zeros of current (and voltage maxima) at z = 0, – λ/2, – λ, ….
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FIG. 9-05. Voltage and current distributions in a lossless transmission line that is open at z = 0. V* and I* differ by 90° in both space-phase and time-phase.

At the generator,
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so the impedance of the line, as seen from the input end, is
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FIG. 9-06. less transmission line that is open at z = 0. The line appears as a capacitance for l = 0 to l = λ/4 (βl = 0 to βl = π/2 ), as seen from the input terminals. Between a quarter wavelength and a half wavelength, the line appears as an inductance. At βl = π, the input impedance becomes infinite

The input impedance is a pure imaginary, as might be expected for a lossless line. The periodic nature of ZG* is shown in Fig. 9-06. For a quarter-wavelength line (βl = π/2), the input impedance is zero.

The line, though open-circuited at the far end, acts like a short circuit at the generator. On the other hand, if l = λ/2 (or βl = π), the input impedance is infinite. Evidently these two cases represent series resonance and parallel resonance, respectively. For a transmission line, there are iiifinitely many resonances, a phenomenon that is quite incomprehensible from lumped-circuit theory.

9-03. Short Lines. The series expansions for sine and cosine may be employed in Eq. (9-09a), giving
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These expressions may be useful if the line is short.

If βz << 1, second and higher powers may be neglected and
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At the generator,
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The input impedance of the line is therefore
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so a very short, lossless line, open at the far end, acts like a pure capacitance Ceq. Conditions are shown in Fig. 9-07a.
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FIG . 9-07. Equivalent circuits for the line of Figs. 9-05 and 9-06, as seen from the input terminals.

For a slightly longer line, two terms may be used in each series, giving
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At the generator,
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with an input impedance
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The first term represents a capacitance; the second, an inductance. Thus the equivalent circuit is represented by L and C in series, Fig. 9-07b.

By using more terms in the series of Eq. (9-09b), one obtains more complicated equivalent circuits, as shown in Fig. 9-07c. Evidently the parallel plates of Fig. 9-02 can be regarded as a capacitor only if the second term in the series is negligible in comparison with the first. For example, if the second term is 1 per cent of the first,
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or
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The results of this section apply to the special case of a lossless line, open at the load end. Similar results, however, are obtainable for other conditions. The general conclusions are that whenever the dimensions of the apparatus exceed a small fraction of a wavelength, the representation of the apparatus as a lumped circuit becomes of questionable value.

9-04. Fields and Circuits. According to field theory, the fundamental approach to all electromagnetic problems is through E and H. The circuit concepts, I and V, are then defined in terms of the field concepts by the universal relations,
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FIG. 9-08. The voltage drop Vab depends on the position of the voltmeter leads. Vm is the voltmeter. For path (2), voltmeter reads IR-drop; for path (3), voltmeter reads IZ-drop; for path (4), voltmeter reads [image: images]E·ds.

where the path ab must be specified. We also have the relation,
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For the a-c steady state, with no relative motion, these equations become
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Looking at these equations, one becomes aware of an alarming difference between the field formulation and the usual a-c circuit formulation. Take a long, straight conductor (Fig. 9-08) carrying an alternating current I*. The voltage drop from a to b along path (1) is
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But [image: images], where [image: images] is the effective cross-sectional area of the conductor. Thus, by field theory,
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But by circuit theory, the voltage is an IZ-drop, not an IR-drop:
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How can we reconcile Eqs. (9-15) and (9-16)?

As shown in Section 6-08, Vab is not uniquely determined by the points a and b but requires a consideration of a complete circuit, including the voltmeter leads. The second Maxwell equation, expressed in integral form for the a-c case, is
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If a voltmeter V is connected with insulated leads (2) very close to conductor (1) of Fig. 9-08, the second integral of Eq. (9-17) approaches zero and the voltmeter reads the IR-drop between a and b in accordance with Eq. (9-15). But if the leads are extended (3) until they include essentially all the magnetic flux in the length ab, then



[image: images]

This integral, taken in the direction of the arrow, is
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Thus the voltage read by the voltmeter is
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where L = Φ*/I* the usual definition of inductance. Thus the field and circuit formulations are consistent.

The basic principles of circuit theory were stated by KirchhofF: the sum of the currents entering any junction is zero, the sum of the voltage drops around any closed loop is zero, or
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The current relation is merely a special case of Postulate III (Section 2-04) on conservation of charge.
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FIG. 9-09. An a–c circuit. The arbitrary positive direction is indicated by the arrow and by the + and – signs.

The Kirchhoff voltage relation may repay a little more consideration. Circuit theory deals with idealized circuit elements, each of which may be visualized as a two-terminal device enclosed in a box, Fig. 9-09. Take the simplest case where there is no coupling between boxes. In Fig. 9-09, each box contains a shielded resistor or capacitor or a toroidal coil, and each is assumed to have a definite impedance Zi* which can be measured at its terminals. The total voltage around the circuit is
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and the total impedance is
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Note that even in this simple example, the circuit formulation is an approximation. The mere act of connecting the boxes together forms a gestalt whose properties are not the sum of the properties of its elements. The loop itself has inductance, so even at the lowest frequencies Eq. (9-19) is not strictly true, but
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Also, at high frequencies, capacitance between leads becomes important, the current is not uniform around the loop, and radiation may be appreciable. And, as we have seen in previous sections, the Z’s of the boxes not only change their magnitudes but alter their very natures when frequency is varied. Thus circuit theory is only an approximation, although it is a very useful approximation. Even at the highest frequencies, equivalent circuits are often of great service if one realizes that each circuit approximation is applicable only over a limited frequency range.
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FIG. 9-10. A long coaxial line. Find the voltage Vcd*.

As a final example of Kirchhoff’s relations, consider a coaxial line (Fig. 9-10) with perfectly conducting cylinders of great length. An a-c generator maintains a voltage
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at z = 0. Using the methods of this chapter, one obtains the field vectors
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What is the voltage Vcd*? By Eq. (9-13),



[image: images]

This voltage is shown in the complex plane, Fig. 9-11. The magnitude of the voltage at ba is the same as at cd, but Vcd* lags Vba* by the angle βl1. The toted voltage around the loop
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FIG. 9-11. Voltages of Fig. 9-10 represented in the complex plane.

abcd is, by Kirchhoff’s relation,
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But Vbc* = Vda* = 0 because [image: images] = 0. Thus



[image: images]

This voltage is indicated in Fig. 9-11 as the sum of the complex quantities Vab* and Vcd*.

But the voltage of Eq. (9-21) should be obtainable from the Faraday equation,
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The total magnetic flux through the loop abcd is
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Therefore,



[image: images]

which agrees with Eq. (9-21).
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FIG. 9-12. Transmission line with load impedance ZL*.

We conclude, therefore, that circuit theory is applicable at all frequencies, and Kirchhoff’s equations are universally valid. But we must remember that any one equivalent circuit is useful over only a limited frequency range and that voltmeter readings depend on the arrangement of the leads as well as on the points to which they are connected.

9-05. Other Terminations. Section 9-02 is limited to the special case of a line that is open at the load end. Now consider the general a-c case,3 where the line is terminated in an arbitrary impedance ZL* (Fig. 9-12).
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Substitution of these values into Eq. (9-09) gives
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so the general equations are
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These equations give the current and voltage at any point on the line, in terms of ZL*, Z0, and the current I0 at the load.

It is convenient to write these equations in a somewhat different form. We introduce the reflectance Γ*(z), defined as the ratio of the reflected to the incident voltage at a given z:
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At the load, Eq. (9-23) becomes



[image: images]

At the generator,
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From Eq. (9-22), conditions a t the generator are
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Therefore the input impedance of the line is
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or
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The three equations, Eqs. (9-24) to (9-26), summarize the a-c behavior of any lossless line with any load. The Smith chart3 provides a convenient way of making these calculations.

As a special case, suppose the line is open, ZL* → ∞. Then the reflectance at the load is + 1 and
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which is the result obtained in Section 9-02.

For a short-circuited line, ZL* = 0 and
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Another interesting case occurs with a pure resistance load that is adjusted to be equal to the characteristic impedance: ZL* = Z0. Then Eq. (9-24) shows that there is no reflection, and
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Thus a finite line of length l acts, at any point along its length, as if the line extended to infinity.

Particularly simple results are obtained with two specific lengths of line. For l = λ/2,
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and the input impedance of the line is
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Thus a half-wavelength line, or any multiple of it (l = nλ/2), has the property of transferring the load impedance to the generator terminals.

If the length of the line is a quarter wavelength,
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and
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Thus a quarter-wavelength line has the property of inverting the load impedance. The normalized input impedance ZG*/Z0 is the reciprocal of the normalized load impedance ZL*/Z0. An open circuit at the load becomes a short circuit at the generator; a short circuit at the load becomes an open circuit at the generator. The same conclusions apply to an odd multiple of a quarter wavelength:
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9-06. The Coaxial Line. The development of transmission-line equations, as given in the preceding part of this chapter, was based on a line consisting of two parallel, perfectly conducting plates (Fig. 9-02). But the equations of Section 9-05 are valid for a lossless line of any crosssectional shape.4 A change in shape merely alters Z0.
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FIG. 9-13. Coaxial line of length l.

We now consider a practicable line consisting of two coaxial circular cylinders, Fig. 9-13. The basic equation,
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is expressed in circular-cylinder coordinates with
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Thus,
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A solution of Eq. (9-29) is
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as can be seen by substitution into Eq. (9-29). The corresponding H* is obtained from the relation,
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which gives



[image: images]

Now obtain an equation for the characteristic impedance. For an infinite line (0 [image: ] z [image: ] ∞), there is no reflected wave, so Eqs. (9-30) and (9-31) become
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The voltage between cylinders, for z = const, is
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Since the cylinders are perfect conductors,
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and the total current is
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The input impedance of the infinite line is equal to the characteristic impedance,
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Characteristic impedances for several lines are compared in Table 9-01.

We now return to Eqs. (9-30) and (9-31), and express these relations in terms of voltage and current:
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Thus the equations for the coaxial line are exactly those obtained for the parallel-plate line, Eq. (9-09). For a coaxial line of length l, terminated in an impedance ZL*,
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as in Section 9-05.

As noted previously,4 these equations apply to cylindrical systems of any cross section. The limitation still remains that the line be lossless.
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FIG. 9-14. TEM waves in various cylindrical structures.
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FIG. 9-15. TEM waves in a line having wires of unusual cross-section.

This is not a serious limitation for good transmission lines, particularly at high frequencies. It is considered good engineering practice to treat most systems as lossless and to introduce losses, if necessary, as a subsequent correction.5

9-07. TEM Waves. The wave of Section 9-01 is a special case of a TEM wave (transverse electromagnetic). It is TEM because both electric and magnetic vectors are transverse to the axis of the guide; it is a special case because it is uniform, which is not a necessary requirement for a TEM wave.

Another TEM wave is obtained with the coaxial line (Fig. 9-13). As shown in Section
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so both E* and H* are transverse to the axis of the line. Unlike the wave of Section 9-01, however, the TEM wave for the coaxial line is not a uniform wave. That is, E* and H* are no longer constants in the transverse plane: they change both direction and magnitude as r and ψ are varied.

It can be shown4 that the two guiding cylinders do not have to be of circular cross section. In fact, the sole requirement for a TEM wave is that there be two perfectly conducting cylinders connected to an a-c generator. A few examples are shown in Figs. 9-14 and 9-15. In all such cases, the wave is propagated at velocity [image: images] and the intrinsic impedance is [image: images].

9-08. TE Waves. Returning now to the parallel plates of Section 9-01, suppose we rotate them 90° (Fig. 9-16), keeping E* in the x-direction as before. We wish to investigate the possibility of a wave under these circumstances. Boundary conditions are:

When
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Obviously, a uniform wave cannot exist because of the short-circuiting effect of the conductors. But there is a possibility of a nonuniform wave, which may exist in the region between plates but which is zero at both plates.

Let
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FIG. 9-16. Perfectly conducting planes, y = 0 and y = b. The conductors short-circuit the E*-field at the plates but not everywhere.



[image: images]

Then the Helmholtz equation becomes
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Particular solutions of this partial differential equation are
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where A*, B*, q, and Γ are constants. Substitution into Eq. (9-35) shows that Γ must be
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and the boundary conditions can be satisfied only for the sine term and for q = nπ/b (n = 1, 2, …). Thus the guide will transmit a wave,
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where



[image: images]

Various modes are possible, depending on the value of the integer n. In all cases, E* is zero at the metal plates and varies sinusoidally between them, as indicated in Fig. 9-17. Evidently these waves cannot be excited by connecting a generator between the plates as in Section 9-01. One method of excitation is to use a straight antenna oriented in the x-direction and placed where a maximum E* is desired. Another method is to use a loop of wire, properly placed and oriented.6
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FIG. 9-17. Some allowable distributions of E* for the field between perfectly conducting plates.

A further peculiarity of these modes is indicated by Eq. (9-37). Waves are obtained only if Γ is real. Thus as the frequency is reduced, a critical value is reached where
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below which the guide fails to transmit. This critical frequency is
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FIG. 9-18. Attenuation in a waveguide. The guide acts like a high-pass filter with a sharp cutoff at fc.

and the critical separation is
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In other words, the guide acts like a high-pass filter. With the lowest mode (n = 1), all frequencies above fc are transmitted without attenuation (Fig. 9-18); and at fc, the separation between plates is a half wavelength. At frequencies below cutoff, the exponent becomes real:
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corresponding to rapid attenuation. Also, the velocity of the wave above cutoff is no longer [image: images] but depends on frequency.

We now find H* :



[image: images]

or
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Thus Hx* = 0, but



[image: images]

Substitution of Eq. (9-36) for a wave in the positive z-direction gives
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Equation (9-40) proves that, for the condition of Fig. 9-16, no TEM wave is possible. The H*-vector is, in general, not in the xy-plane but has the directions indicated in Fig. 9-19. The waves are said to be TE (transverse electric). There are no stationary charges on the plates (at y = 0 and y = b), but there are surface currents in the x-direction:
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FIG. 9-19. TE wave between the perfectly conducting plates of Fig. 9-16.
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With some waveguides, it is possible also to have TM (transverse magnetic) waves, where the H*-vector is in the xy-plane but the E*-vector is not.
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FIG. 9-20. TE wave considered as the sum of two uniform plane waves. The two waves are of equal amplitudes and travel in the directions z′ and z′′. The resultant TE wave is in the z-direction.

9-09. Composition of a TE Wave. The TE waves of Section 9-08 are somewhat difficult to visualize because they vary in both y and z directions. It is sometimes advantageous to think of the actual wave as composed of two uniform, plane waves traveling at angles ± α from the z-axis. The top view of the parallel-plate guide (Fig. 9-16) is shown in Fig. 9-20. For convenience, the origin of coordinates has been shifted along the y-axis by b/2. This change is not necessary but it makes conditions symmetric with respect to y′ and changes the sine of Eq. (9-36) to a cosine. Thus
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We shall now prove that this wave can be represented at any point by the sum of two uniform plane waves, one traveling along the z′-axis, the other along the z′′-axis (Fig. 9-20). From symmetry, the amplitudes of the two waves must be the same; and since they are uniform plane waves, [image: images] Assume, therefore, that
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But for any point (z, y′),



[image: images]

Thus
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Equating (9-36a) and (9-42a), we obtain
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The conditions that must be satisfied so that this equation can hold for all values of y′ and z are
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These equations are consistent with our previous definition of Γ. At cutoff, Γ = 0; and, from Eq. (9-43), cos α = 0 or α = π/2. At very high frequencies, far above cutoff, Γ → β and α → 0. Thus at cutoff, the uniform plane waves are not propagated down the line but merely bounce back and forth between the walls. As the frequency is raised, however, a decreases and the waves are propagated down the guide. At very high frequencies, the waves almost achieve the direction and velocity of TEM waves (Fig. 9-21).
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FIG. 9-21. Effect of frequency on the waves of Fig. 9-20.
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FIG. 9-22. Rectangular waveguide.

9-10. The Rectangular Waveguide.7 The TE waves of Section 9-08 can be obtained equally well by adding a perfectly conducting top and bottom to form a rectangular guide (Fig. 9-22). Since E* is in the x-direction, the addition of these plates has no effect on the wave.

But the rectangular guide can transmit other modes which were not possible with the parallel plates. Let us investigate the general case. Boundary conditions are
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The Helmholtz equation in rectangular coordinates is
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For the z-component, solutions of the partial differential equation are of the form
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where p and q are constants and Γ = [β2 – (p2 + q2)]1/2.

Evidently, the boundary conditions are satisfied only if sines are used and if p = mπ/a, q = nπ/b (m, n = 1, 2, …). So a solution is
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with
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as in Section 9-08, the guide acts as a high-pass filter. In this more general case, cutoff occurs when
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Thus the critical frequency is
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and
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Solutions of the differential equations for Ex* and Ey* are also of the form of Eq. (9-44). But in these cases, the boundary conditions do not require that sines be used exclusively. In fact, it is found that solutions can be written
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The corresponding expressions for H* are obtained from the Maxwell equation,
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or
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Equations (9-48) and (9-49) represent a wave traveling in the positive z-direction. The solution for the wave in the negative z-direction is, of course, obtained in the same way.

Let us obtain some special cases from the general equations. If E* is in the x-direction and is independent of x, evidently m = 0 and Eq. (9-48) reduces to
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which was obtained in Section 9-08. Also, Eq. (9-49) reduces to
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This is called a TE0n wave, where the subscripts refer to the values of m and n.

The most general TE wave is obtained by making Ez* = 0 in Eq. (9-48). Then C* = 0 and
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Simplest examples of these TEmn waves are TE01 where the E*-vector is in the x-direction and TE10 where E* is in the y-direction.

The guide will also transmit TM waves, the H*-vector being in the xy-plane. For a TM wave, H* must have no z-component, so from Eq. (9-49),
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Thus for the general TMmn wave,
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9-11. The Qualitative Approach. Though the properties of waveguides ore best evaluated by employing the Helmholtz equation, considerable information can be obtained by nonmathematical, common-sense methods. For example, suppose one asks what happens in a rectangular guide with charges of opposite sign on top and bottom plates and no charges on the sides (Fig. 9-23). Evidently, the E-vector must point from positive to negative charge, so it must be in the x-direction. Associated with this E is an H, the two being orthogonal. There is also a surface current in the conductor. One identifies this picture with the TE01 wave of Fig. 9-19.
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FIG. 9-23. Rectangular waveguide with charges on top and bottom. Theresulting fields (TE01) are indicated in 9-19.

Another example is shown in Fig. 9-24a, where we have charges on all four sides. The electric flux lines must follow a pattern like that of Fig. 9-24b, and the magnetic flux lines must be orthogonal to the electric.

What happens in Fig. 9-25a, where all charges have the same sign ? Obviously the electric flux lines must end on negative charges, which can occur only at a distance down the guide (in the z-direction). The fields are sketched in Fig. 9-25b. Other shapes of guides have been studied also. Figures 9-26 and 9-27 show two modes for a circular-cylinder guide.
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FIG. 9-24. Rectangular waveguide with charges on all sides. The wave is TE11.
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FIG. 9-25. Another possible mode (TM11) for the rectangular guide.
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FIG. 9-26. TE11 mode for a circular waveguide.
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FIG. 9-27. TE01 mode for a circular waveguide.

9-12. Summary. Chapter 9 presents the basic theory of transmission lines and waveguides.1 The subject is developed as an application of the vector Helmholtz equation of Chap. 8 and is limited to the lossless case and the a-c steady state.

Transmission-line behavior3 may be summarized by the basic equations,
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and the relations
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These equations apply to cylindrical lines having any cross-sectional shapes.4 Shape affects only the characteristic impedance Z0, as indicated in Table 9-01.

With a cylindrical line of any cross section, having two separate conductors and zero loss, TEM waves are always possible, both E* and H* being perpendicular to the generatrices of the cylinders. Propagation is always at velocity c = ([image: ]μ)–1/2, and all frequencies are transmitted.

Other modes are possible in many cases,6 giving TE and TM waves. These modes differ from TEM waves in allowing transmission only for frequencies above a definite cutoff7 and in having a velocity of propagation that differs from c.

REFERENCES

1. G. L. Ragan, Microwave transmission circuits (McGraw-Hill Book Co., New York, 1948); R. L. Sarbacher and W. A. Edson, Hyper and ultrdhigh frequency engineering (John Wiley and Sons, New York, 1943); W. H. Watson, The physical principles of waveguide transmission and antenna systems (Oxford University Press, 1947); N. Marcuvitz, Waveguide handbook (McGraw-Hill Book Co., New York, 1951); J. C. Slater, Microwave transmission (McGraw-Hill Book Co., New York, 1942).

2. S. Ramo and J. R. Whinnery, Fields and waves in modem radio (John Wiley and Sons, New York, 1953, Chap. 1); H. H. Skilling, Fundamentals of electric waves (John Wiley and Sons, New York, 1948, Chap. 13).

3. J. F. Reintjes and G. T. Coate, Principles of radar (McGraw-Hill Book Co., New York, 1952, Chap. 7).

4. Moon and Spencer, “TEM waves in cylindrical systems,” J. Franklin Inst., 256, 1953, p. 325.

5. Ramo and Whinnery, p. 423.

6. Reintjes and Coate, Chap. 8.

7. Ramo and Whinnery, Chaps. 8 and 9.

TABLE 9-01. CHARACTERISTIC IMPEDANCE
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	where L1  
	=
	inductance per unit length (henry m–1),



	C1  
	=
	capacitance per unit length (farad m–1),



	a  
	=
	separation between plates in (1),



	
	=
	radius of inner conductor in (2),



	
	=
	radius of conductor in (3),



	b  
	=
	width of plate in (1),



	
	=
	radius of outer conductor in (2),



	l  
	=
	separation between centers of wires in (3).




† Approximate values for l ≫ a.

PROBLEMS

Problem 9-01. (a) For the coaxial line with TEM wave, prove that H* is given by a special case of Eq. (9-31).

(b) Obtain expressions for the charge on the cylinders per unit length and the total current I* in each cylinder.

(c) Make a sketch similar to Fig. 9-03 but for the coaxial line with TEM wave.

(d) Derive an equation for the input impedance of an infinite coaxial line.

(e) What is the value of input impedance of a coaxial line with a = 1.0 cm, b = 2.5 cm in air? How is this value changed if the air is replaced by a lossless solid dielectric with μ = μ0, [image: ] = 2.56[image: ]0?

Problem 9-02. A coaxial line extends from z = – ∞ to z = + ∞ in air. A TEM wave,



[image: images]

is present within the guide. A plug of lossless dielectric is now inserted between the metal cylinders from z = 0 to z = + ∞.

Obtain expressions for E* and H* in the two media.

Problem 9-03. Investigate the possibility of TM waves for the guide of Fig. 9-16. Assume that the E*-vector is no longer in the xy-plane and that the H*-vector has no y and z components. Obtain expressions for E* and H*, or prove that they cannot be obtained.

Problem 9-04. The guide of Fig. 9-16 is operating in the TE02 mode. Sketch lines of electric and magnetic flux; indicate charges and currents.

Problem 9-05. The guide of Fig. 9-16 is operating with TE01 mode in a vacuum with b = 10 cm.

(a) Plot the angle α and the group velocity vg as functions of frequency. Use a logarithmic frequency scale running from 109 to 1012 hertz (cps). The group velocity may be taken as the velocity of propagation (in the z-direction) of a signal, realizing that the velocity of the uniform plane waves is Co in the z′-and z′′-directions.

(b) Obtain an expression for Sav, for the TE01 wave, by adding the Poynting vectors for the two plane-wave components.

(c) Repeat (b) by using Eqs. (9-36) and (9-40) for a TE01 wave in the positive z-direction.

(d) Explain the discrepancy between (b) and (c). Which expression for Sav is correct?

Problem 9-06. By use of Eqs. (9-48) and (9-49), determine the behavior of the TM12 wave in a rectangular guide. Make sketches showing flux lines, E and H vectors, charges, and currents.

Problem 9-07. Two infinite, perfectly conducting plates (z = 0, z = a) are excited by connecting an a-c generator between them at (x = 0, y = 0).

(a) Using circular-cylinder coordinates, obtain a solution of the Helmholtz equation for E*.

(b) Sketch electric and magnetic flux lines and indicate charges and currents.

Problem 9-08. Two infinite, perfectly conducting, circular cones (θ = α, θ = π – α) are excited by connecting an a-c generator with voltage V*eiωt at r = a between the apices, close to the origin of a spherical coordinate system.

(a) Obtain a solution of the Helmholtz equation for E* at any point in the region (α < θ <(π – α)).

(b) Obtain an expression for H*.

(c) Sketch electric and magnetic flux lines, indicate charges and currents.

Problem 9-09. A lossless, circular waveguide has a = 10 cm and is operated in the TE01 mode with | E* |max = 100 volt m–1 (Fig. 9-26).

(a) What are cutoff frequency and wavelength?

(b) Express the surface current density (amp m–1) in the metal cylinder.

(c) Assuming that these currents are the same when the perfect conductors are replaced by copper, obtain the total loss per meter length in the waveguide.

Problem 9-10. Consider the circular waveguide of Fig. 9-26 but with a uniform charge all around the circular cross section (z = const).

(a) Does this distribution indicate a TE wave or a TM wave?

(b) Make a sketch, similar to Fig. 9-26, for this mode.

Problem 9-11. A coaxial cable is so excited that E* is in the ψ-direction:
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where F(r) is a scalar function of r only, and k is a constant.

(a) Is a TEM wave possible with this E*? Give mathematical proof.

(b) Is a TE wave possible with this E*? If so, give equations for E* and H*.

(c) Assuming that the above equation holds, specify directions of currents in inner and outer conductors.


Chapter 10

ANTENNAS



Another interesting application of Maxwell’s equations is to the theory of antennas. The subject is of great practical importance, and various methods have been developed for handling the calculation and design.1 We shall start with the radiation from a short, straight antenna, basing the derivation on the definition of vector potential, Chap. 2. These equations for the short antenna can then be used to build up solutions for long antennas and for arrays of antennas.
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FIG.10-01. Short linear antenna carrying current I*. The field is to be determined at an arbitrary point P.

10-01. Short Linear Antenna. Consider the field at P (Fig. 10-01), caused by the alternating current I* in a length Δl of conductor. Here Δl [image: images] λ, and I* is assumed to be uniform over the length Δl. Spherical coordinates are used, with the z-axis in the direction of the current.

According to the definition of the retarded vector potential (Chap. 2), the value of A* at P is
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For the antenna of Fig. 10-01, this definition reduces to
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Or, expressed in spherical coordinates,
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The vector potential is in the direction of the current, but it can be expressed in terms of components in the r and θ directions.

From the vector potential, we now obtain the magnetic field at P by using the relation,
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Obviously, the field is symmetric about the z-axis, so
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or from Eq. (10-02),
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The electronic field strength is now obtained from relation,
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Thus,
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Substitution of Eq. (10-03) gives
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The H*-vector is always in the ψ-direction, but E* has components in both r and θ directions. Equations (10-03) and (10-04) give the exact expressions for the radiation at any point P, caused by the small antenna of Fig. 10-01.

At long distances, however, much of the complexity of Eqs. (10-03) and (10-04) disappears and the wave approximates a TEM wave. If r is large, which is the usual case of interest in radio, terms containing the negative second and third powers of r are negligible in comparison with those containing the first power. The Er disappears and the distant field is expressed by the simple relations,
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FIG.10-02. Distribution pattern for the short linear antenna of Fig. 10-01. The three-dimensional pattern is a toroid, symmetric about the z-axis; and any section in a plane ψ = const is a circle.

Therefore, E* and H* are directly proportional to the current in the antenna, directly proportional to the antenna length, and inversely proportional to the first power of the distance. Note that E* and H* are in time phase. The ratio of the two magnitudes is



[image: image]

the intrinsic impedance. The two vectors are related exactly as in the plane wave of Chap. 8.

If the receiver is moved about at constant distance from the transmitting antenna, the received E* (or H*) varies as sin θ. This result may be visualized geometrically as shown in Fig. 10-02. The distribution, in any half-plane that includes the z-axis, is a circle. But one should remember that the complete distribution pattern for an antenna is a three-dimensional pattern—in this case, a torus. The Poynting vector is, from Eq. (10-05),
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FIG. 10-03. Comparison of distribution for |E*| and |S*| from a short linear antenna.
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and
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The distribution pattern is similar to that for E* or H* but is somewhat flatter, as indicated by Fig. 10-03.
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FIG. 10-04. The antenna at O is enclosed in an imaginary sphere of large radius a. Integration of the Poynting vector over this sphere gives the total power (watts) radiated by the antenna.

The total radiated power from the antenna is obtained by integrating over the surface of an imaginary sphere whose center is a t the antenna. Because of axial symmetry, the element of area (Fig. 10-04) can be taken as
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where a is the radius of the sphere. The total radiated power is therefore
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But [image: image] So
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Sometimes it is convenient to consider the equivalent circuit of a transmitting antenna. Since E* and H* are in time phase for the antenna of Fig. 10-01, the complex power P* is a real quantity. Thus this antenna may be represented by a pure resistance—the radiation resistance RR. The power dissipated in the equivalent circuit is
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or from Eq. (10-07),
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10-02. Half-Wave Antenna. The short antenna of Section 10-01 would be a very poor radiator because of the (Δl/λ)2 in Eq. (10-07). Longer antennas are needed if a reasonable amount of power is to be radiated. One of the most common lengths for antennas is a half wavelength (l = λ/2, Fig. 10-05). The behavior of this antenna can be found from Eq. (10-05) by integration over the length of the antenna.
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FIG. 10-05. A half-wave antenna (l = λ/2). The radiation at a distant point P is obtained by summing the effects of the current elements I*(z) dz.

The E*-vector at a distant point P, caused by an infinitesimal element dz of antenna is, according to Eq. (10-05),
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But [image: images] The difference between r′ and r may be neglected when it occurs in the denominator; but this difference is of great importance in the exponent, where it determines the interference phenomena of waves originating in different parts of the antenna.

We need also an expression for the variation of current I*(z) along the antenna. Evidently the current must be zero at the ends of the antenna; and for a half-wave antenna, the magnitude of the current I* will have its maximum at z = 0. It is customary to assume a sinusoidal distribution:
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Experiment shows this to be a very good approximation to actual current distributions in such antennas.

Making these substitutions in Eq. (10-09), we obtain
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The total E*-vector at P is, therefore,



[image: image]

Since the integral is of the form,
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the electric field strength at P is
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Also,
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FIG. 10-06. Comparison of the |E*|-patterns for a short antenna and for an antenna of half wavelength (l = λ/2).

and the Poynting vector is
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The distribution pattern is similar to that for a very short antenna but is slightly more directive, as indicated in Fig. 10-06. The total radiated power is obtained by integration over a sphere as in Section 10-01:
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Numerical integration shows that for radiation into free space, the halfwave antenna has a radiation resistance2 of
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For other antenna lengths, the same process of integration may be employed, starting with Eq. (10-09). The current distribution I*(z) is assumed to be made up of two sinusoidal pieces, zero at each end and with the same magnitude and sign at z = 0 (Fig. 10-07).

For a straight antenna of any length l, the E*-vector is obtained as in Eq. (10-11), and2
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FIG. 10-07. Current distributions for linear antennas of various lengths.

The Poynting vector is
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10-03. Arrays. Section 10-02 has shown that the half-wave antenna is not markedly more directional than the very short antenna. One of the most practicable ways of obtaining greater directivity is to use an array of identical, straight antennas. As the number of antennas in the array is increased, the radiation pattern can be sharpened. Physically, this is an interference phenomenon; and the radiation patterns from antenna arrays are similar to optical-interference patterns obtained when light goes through parallel slits as in a diffraction grating. In some directions, the waves add, giving maxima; in other directions, the waves interfere to produce zero radiation.
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FIG. 10-08. An array of two identical linear antennas (Nos. 1 and 2). The radiation is to be evaluated at a distant point P.

For example, take two antennas (Nos. 1 and 2, Fig. 10-08). The antennas are identical, are in the z-direction, and are separated by distance a in the x-direction. A distant receiver P is at angle ψ with the x-axis. The radiation from Antenna 1 travels a distance r1 while the radiation from Antenna 2 travels a distance r2 to reach P. If the waves from the two sources arrive in phase at P, their amplitudes will add directly; but if the waves arrive at P with opposite phase, they will cancel.

Let us now formulate this interference principle more exactly. For the two identical antennas of Fig. 10-08,
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where E1* and E2* refer to the individual field strengths at P, Im1* and Im2* are the rms currents in the antennas at z = 0, and K*(θ) is a quantity that depends on the antenna length. The equations are applicable to antennas of any length. For very short antennas, Eq. (10-05) gives
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For half-wave antennas, according to Eq. (10-11),
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For linear antennas of any length l, it is easily shown2 that
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Since the two antennas forming the array are identical, K*(θ) will be the same in each expression of Eq. (10-14). But the two currents need not be the same. Usually the antennas are fed with currents of the same magnitude, but the phase angles may be adjusted to any desirable value:
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Also,
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Thus the total field strength at P is
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Without loss of generality, we can take Im1* as reference in the complex plane. Then α1 = 0, and the field from the two antennas is
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while the field in the xy-plane, from the first antenna alone, is
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Thus
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or
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FIG. 10-09. Radiation pattern in the zy-plane for two antennas with a = λ/4, α2 = –π/2.

Equation (10-18a) allows the calculation of the radiation pattern in 3-space. But if we are interested only in the radiation pattern in the xy-plane, θ = π/2 and
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As an example, find the radiation pattern in the xy-plane for two identical antennas spaced a quarter wavelength apart and excited 90° out of phase. Here
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Substitution into Eq. (10-18c) gives
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The angle ψ can now be taken at various values and the corresponding E*-ratio can be evaluated.

When ψ = 0 ,
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For ψ = π/2,
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For ψ = π,
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The pattern is plotted in Fig. 10-09.

The same process is obviously applicable to any number of antennas.3 The equation is obtained by adding an extra term for each antenna. Thus for N identical antennas, with uniform spacing a and excited by currents of the same magnitude, Eq. (10-18) becomes
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Also, it is customary to employ equal phase-angle increments between adjacent antennas. Then



[image: image]

and



[image: image]

The radiation pattern for field strength is given by
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and the corresponding power ratio is
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where
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Two popular forms of array are the end-fire array and the broadside array. In the end-fire array, the antennas are usually spaced evenly along a straight line (the x-axis) and are excited out of phase. In the special case of [image: image], Eqs. (10-19a) and (10-19b) apply with
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FIG. 10-10. Typical radiation pattern in the xy-plane for an end-fire array. N = 4, α = – π/2, a = λ/4.

A characteristic of this type of array is that a radiation maximum is obtained on the x-axis. An example is shown in Fig. 10-10.

In the broadside array, all antennas are excited in phase so that the radiation has a maximum in the y-direction. Since α = 0, Eqs. (10-19a) and (10-19b) still apply but
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An example is indicated in Fig. 10-11.

10-04. Position of Nodes. Often the radiation pattern contains several loops. A more extended analysis is desirable to eliminate the detailed We restrict ourselves to arrays of identical linear antennas, evenly spaced along a straight line, with equal increments in phase angle between the exciting currents of adjacent antennas. For simplicity, we shall consider only the pattern in the xy-plane. Then Eq. (10-19) gives



[image: image]

where [image: image] The significance of ζ is indicated in Fig. 10-12. Each antenna contributes in the complex plane an E*/E1* of unit length but at an angle nζ from the real axis. As more antennas are added to the array, the line segment representing their sum at first increases in length but later decreases.



[image: image]

FIG. 10-11. Typical radiation pattern for a broadside array. N = 4, α = 0, α = λ/4.

To obtain a simpler expression, multiply Eq. (10-21) by [image: image]:



[image: image]

Subtraction from Eq. (10-21) gives



[image: image]



[image: image]

FIG. 10-12 . Complex-plane diagram, showing how E*/E1* varies in magnitude and phase as the number N of elements in the array is varied.

Thus



[image: image]

or



   [image: image]

By expressing everything in terms of the variable ζ, we are able to obtain a general expression, Eq. (10-22), applying to all antenna lengths, spacings, and phase angles. A single curve4 pan be plotted for each N. Several examples are shown in Fig. 10-13. From these curves, one sees immediately that if N = 2, a node occurs oilly for ζ = π. If N = 3, nodes are obtained for ζ = ± 2π/3; and for N = 4, there are three nodes.

For instance, take an end-fire array with N = 4, α = –π/2, and α = λ/4. Fig. 10-13 shows that nodes occur at



[image: image]

But we know that



[image: image]

Thus for ζ = –π/2,
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or   [image: image]

So the radiation pattern has two nodes on the y-axis.

If [image: image]

or cos ψ = 2, which has no significance. The remaining values of ζ are ±π, which give cos ψ = + 3 and cos ψ = – 1. Thus we obtain a node at ψ = π. This exhausts the four possibilities of ζ = ± π/2, ζ = ± π and gives us three nodes—at ψ = π, π/2, –π/2 . With even this meager information, one can make a rough sketch of the radiation pattern. And if a more detailed plot is desired, the values can be read from Fig. 10-13 or calculated from Eq. (10-22) or Eq. (10-19a). The pattern for this array is shown in Fig. 10-10.
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FIG. 10-13. Radiation patterns for arrays of linear antennas, plotted as functions of ζ.
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FIG. 10-14. Radiation pattern for an end-fire array with N = 4, α = –5π/4, α = λ/2.

Figure 10-14 indicates an attempt to sharpen the pattern near ψ = 0 by a slight increase in the phase angle α. Here N = 4, α = λ/2, and α = –5π/4. Thus
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Since N = 4, nodes occur again at



[image: image]

The corresponding values of ψ are



[image: image]

The radiation pattern (Fig. 10-14) is plotted by use of Fig. 10-13.

10-05. Traveling-Wave Antennas. The antennas treated in the previous sections have been characterized by standing waves. The open ends of the antenna require that the current shall be zero at these points; and the current oscillations are analogous to the vibrations of a string that is fixed at both ends. Another type of antenna5 employs traveling waves. Means are provided for eliminating the reflected wave at the far end of the antenna, so no standing-wave pattern is set up. The resulting radiation pattern is quite different from that obtained with standing waves. A high degree of directivity can be obtained by making the wire several wavelengths long.



[image: image]

FIG. 10-15. Antenna employing traveling waves instead of standing waves. The generator is at z = 0, and reflections are eliminated at z = l.

Consider the long-wire antenna of Fig. 10-15. The antenna is of length l. It is fed at z = 0, and the end z = l is connected to ground through a resistance equal to the characteristic impedance Z0 of the line. This, or other means, are provided to eliminate reflections at z = l so that there is only a, traveling wave in the positive z-direction:
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We now consider the field at a distant point P, where [image: image] As in Section 10-02, the differential length dz of antenna produces at P
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But [image: image]. Substitution of this relation and Eq. (10-23) into Eq. (10-09) gives
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For the whole antenna, the field at P is
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Thus the rms magnitude of the electric field strength at P is
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But
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so



[image: image]

A typical radiation pattern, compued from Eq. (10-25), is shown in Fig. 10-16. Radiation is always zero along the z-axis, as with the ordinary linear antennas of Section 10-02. The pattern consists in a number of lobes, but maximum radiation always occurs in the one nearest the z-axis. As in previous cases, the radiation pattern is three-dimensional, the main lobe being conical, with symmetry about the z-axis.
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FIG. 10-16. Typical radiation pattern for the antenna of Fig. 10-15. Here l = 5λ
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FIG. 10-17. A V-antenna consisting of two long-wire antennas.



To obtain the value of θ for maximum radiation, we differentiate Eq. (10-25) with respect to θ and equate to zero. Then
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FIG. 10-18. Rhombic antenna consisting of four long-wire antennas.

or



[image: image]

This equation is solved by substituting various values of θ and using trial-and-error. For instance, if l = 5λ, the maximum radiation occurs at θ = 22.1°; if l = 20λ, maximum is at θ == 11.0°. As l/λ increases, the principal lobe becomes sharper and moves closer to the z-axis.

The foregoing theory can be applied also to the V-antenna (Fig. 10-17) and to the rhombic antenna (Fig. 10-18). In either case, the angle between wires is made such that one side of the radiation pattern is emphasized and the other tends to cancel. In this way, a highly directive effect is obtained.

10-06. The Loop Antenna. A rectangular loop of wire (Fig. 10-19) carries an alternating current I*. The dimensions of the loop are very small compared with a wavelength [image: image], so the magnitude and phase of the current is practically independent of position around the loop.

Consider the loop to be composed of four short antennas of Section 10-01. For r [image: image] λ, Eq. (10-05) gives
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FIG. 10-19. A rectangular loop, carrying an alternating current I*, produces an electromagnetic field at P.





[image: image]

With P in the yz-plane, as in Fig. 10-19, the effects of sides 3 and 4 cancel at P. Thus the total effect of the loop is that produced by two antennas (1 and 2) with currents 180° out of phase. The field strengths at P are
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or
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Since
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Eq. (10-27) becomes
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or
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But
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so the argument of the sine in Eq. (10-28) is very small; and therefore
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where [image: image] = ab, the area of the loop. It can be shown that the result is independent of the angle ψ about the z-axis. Other shapes of plane loops also give the same distant field. Thus we can say that the loop antenna produces the field
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Equation (10-29) shows that there is no field on the axis of the loop (θ = 0). The radiation pattern, therefore, is identical with that for the short antenna, Fig. 10-02. Loops have been employed principally as receiving antennas. The sharp minimum at θ = 0 can be used to determine the direction of an incoming signal. If two coastal stations employ loop antennas to take bearings on a ship, the position of the ship can be obtained by triangulation.
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FIG. 10-20. Slot antenna.

Another type of antenna is the slot antenna, which has found considerable application in microwave apparatus.6 A metal plate, Fig. 10-20, has a rectangular opening and may be excited as shown. Currents flow in the plate, somewhat as indicated. Evidently the slot antenna should behave, qualitatively at least, like two loop antennas. For a point that is on a normal to the plate, the fields are zero; but for all other angles there is radiation.

10-07. Large Loops. Now consider the circular loop antenna in a more general case.7 The restriction that a [image: image] λ is now removed, although we still limit the problem to a current that is independent of ψ. With large antennas, this requirement may necessitate the introduction of phase shifters at intervals around the loop. P is still a distant point, so r [image: image] a.

The arrangement is shown in Fig. 5-11 where, without loss of generality, P can be placed in the xz-plane. The retarded potential at P, caused by current element I* ds, is



[image: image]

For convenience, take two elements, at  ± ψ. Evidently the x-components of A* cancel, leaving only the y-component:
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For the complete loop,
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But
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Since a [image: image] R,
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Substitution into Eq. (10-30) gives
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This is an integral representation of a Bessel function,8 so
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and
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where the retarded current is [I*] = I*e–iβR.

Since there is no net charge on the antenna, ϕ = 0 and
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so
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The series expansion for the Bessel function is 



[image: image]

But in Eq. (10-32),
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If a [image: image] λ, z is very small and the first term of the series is sufficient. Then Eq. (10-32) reduces to
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which agrees with the results obtained for the rectangular loop in Section 10-06.
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FIG. 10-21. Transmitting and receiving antennas.
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FIG. 10-22. The system of Fig. 10-21 is considered as a four-terminal network.

10-08. Circuit Representation. In Section 10-01, a transmitting antenna was replaced by its equivalent impedance. This circuit representation can be extended to include also the receiving antenna. Given any two antennas, 1 and 2 of Fig. 10-21. The antennas may be of different types with quite different characteristics. The transmitting antenna has an input current I1 at its terminals AB, while the receiving antenna has current I2 at terminals CD. From a circuit standpoint, the system between AB and CD is evidently represented by a four-terminal network, Fig. 10-22. Moreover, if the medium is linear, the network of Fig. 10-22 is a linear, passive network and the usual circuit theory is applicable.

Thus,



[image: image]

and



[image: image]

The system in the box is characterized by three parameters, which are here written Z11*, Z22*, and Z12*. For an open circuit at CD, I2* = 0 and
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For an open circuit at AB, I1* = 0 and
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FIG. 10-23. Four-terminal network representing the antenna system of Fig. 10-21.

For all ordinary separations, the antennas are very weakly coupled and I2* [image: image] I1*. Thus Z11* is the input impedance of the first antenna, which is essentially independent of the second antenna. The transfer impedance is very small compared with Z11* or Z22*: Z12* [image: image] Z11*.

The entire system is represented by Fig. 10-23, where the generator is specified by its voltage VG* and its internal impedance ZG* According to the reciprocity theorem for linear circuits, the ammeter A and the generator may be interchanged without altering the ammeter reading. Thus the principle of reciprocity is applicable to the antenna problem.9 In particular, suppose that antenna No. 1 is mounted on gimbals so that it can be oriented in any direction. The orientation may be specified by the angles θ and ψ of a spherical coordinate system. For each orientation, a current I2*(θ, ψ) is read at the receiver, which is fixed in position. This current is directly proportional to H* (and therefore to E*) at the receiving antenna. Thus a distribution curve of E*(θ, ψ) is obtained for antenna No. 1 used as a transmitting antenna.

Now interchange ammeter and voltage source. Antenna No. 1 is now acting as the receiving antenna; and by changing its θ and ψ, we obtain its directional characteristics as a receiving antenna. According to the reciprocity theorem, for any given θ and ψ, the ammeter reads exactly what it read in the first experiment. Thus the radiation pattern for a given antenna is exactly the same for transmission and for reception.

An expression for I2* (Fig. 10-23) is easily obtained by use for Thévenin’s theorem. The Thévenin equivalent is shown in Fig. 10-24. The equivalent voltage and impedance are found in the usual way:
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FIG. 10-24. Thévenin equivalent of Fig. 10-23.
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Thus,
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Since the transfer impedance Z12* is very small in comparison with the other impedances,
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For purposes of visualization, one may now represent the four-terminal network by its T-equivalent, Fig. 10-25. Here Z12* is very low, so that it acts almost like a short circuit, with the other two arms of the T having impedances of approximately Z11* and Z22*, respectively. The circuit representation given in this section is typical of the modern engineering treatment of lines, waveguides, and other apparatus. Maxwell’s equations or the Helmholtz equation are first employed in a study of the phenomena ; after which it is usually convenient to set up some kind of equivalent circuit, subsequent calculations being done by ordinary circuit theory.

10-09. Summary. The treatment of antennas, given in this chapter, begins with the short, straight antenna. The antenna is excited by a sinusoidal alternating current whose magnitude does not vary appreciably along the antenna. The consideration of this fictitious antenna is justified because
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FIG. 10-25. Equivalent T representation of Fig. 10-23.

(a) The resulting radiation pattern has marked similarities to that obtained with real antennas,

(b) The short antenna may be regarded as an element Δs of a long antenna, radiation from the latter being obtained by integration.

The behavior of the short antenna is obtained by direct application of the retarded vector potential (Chap. 2). The further development of the subject is made by superposition. In this way, we obtain equations for the radiation from

(1) Long, standing-wave antennas,

(2) Long, traveling-wave antennas,

(3) Antenna arrays,

(4) Loop antennas.

This chapter completes our macroscopic treatment of electrodynamics in stationary media. Of course, the elementary electric charges move in the media and constitute currents; but bulk matter is considered to be stationary with respect to the field point P. Before going to moving media and relativity (Chaps. 11 and 12), let us briefly review the logical development of the subject contained in the preceding chapters.

The five postulates employed in the development are summarized in Section 2-12. The basic concepts of charge, charge density, etc., are listed in Table 10-01. Potentials are defined, and from them are obtained the field vectors E, B, D, and H. The circuit concepts V and I, and the circuit parameters R, L, G, and Z* are then defined.

On the basis of these postulates and definitions, we derived Maxwell’s equations in Chap. 3. Subsequent chapters were devoted to the application of Maxwell’s equations (and the derived Helmholtz equations) to various engineering problems.
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TABLE 10-01. DEVELOPMENT OF ELECTRODYNAMICS FOR STATIONARY MEDIA






	Section
	Concept
	Postulate



	
	FIELD CONCEPTS
	



	2-01	
	Charge Q	
	I, II



	2-02	
	Charge density ρ
	



	2-03	
	Current density J
	



	2-04	
	
	III



	2-06	
	Potentials ϕ, A	
	IV



	3-01	
	Electric field strength E
	V



	
	Magnetic flux density B
	



	
	Electric flux density D
Magnetic field strength H 
	



	
	Force per unit charge [image: image]
	



	
	Magnetic flux Φ
Magnetomotive force
	



	6-07
	Poynting vector S
	



	
	PARAMETERS OF THE MEDIUM 
	



	2-05
	Permittivity [image: ]
	



	
	Permeability μ 
	



	
	Resistivity [image: image]
	



	8-01
	Intrinsic impedance	η
	



	
	CIRCUIT CONCEPTS
	



	2-03
	Current I
	



	3-01
	Voltage V
	



	
	CIRCUIT PARAMETERS
	



	4-02
	Capacitance C
	



	5-01
	Resistance R
	



	5-11	
	Inductance L
	



	
	Impedance Z*
	



	
	TRANSMISSION-LINE PARAMETERS
	



	9-05	
	Phase constant β
	



	9-01	
	Characteristic impedance Z0
	




PROBLEMS

Problem 10-01. A “black box” emits electromagnetic radiation. A survey of the field at some distance from the box shows that the Poynting vector is expressed by the equation



[image: image]

where θ is measured from the axis of field symmetry.

Is it possible that the box contains a short linear antenna? Give reasons for your answer.
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FIG. 10-26. Arrangement of two an-tennas, Prob. 10-02.



[image: image]

FIG. 10-27. Three antennas, Prob. 10-03.

Problem 10-02. Two small linear antennas are arranged as shown in Fig. 10-26 and are excited with currents of the same magnitude and phase.

(a) Sketch the radiation pattern for each antenna. Consider only | E* |, with P in the xz-plane at large distance.

(b) A distant receiving antenna is located on the z-axis. If this is a short linear antenna, how should it be oriented to obtain maximum signal?

Problem 10-03. Three short linear antennas are arranged as shown in Fig.10-27. Phase angles of the currents are α1 = 0, α2 = α3 = – π/2.

(a) Derive an equation for | E*/E1* | received at a distant point P in the xy-plane.

(b) What are the direction and magnitude of maximum | E*/E1* | received from this antenna array?

Problem 10-04. A high-voltage power transmission line consists of two parallel wires separated by a distance 0.01λ. The engineer is worrying about possible radiation from the line. Assume that the arrangement can be approximated by two parallel, half-wave, center-fed antennas with currents 180° out of phase. Neglect effect of the ground.

(a) Determine approximately the maximum radiated | S* | from the line, in terms of the | S1* | for one wire alone.

(b) What is | S* | at a distant point on the z-axis (in the direction of the line wires)?

Problem 10-05. A straight antenna 2.0 wavelengths long is center-fed.

(a) Sketch the current distribution along the antenna.

(b) Write an expression for the vector potential at a distant point P.

Problem 10-06. A metal sphere has a total charge



[image: image]

Consider the sphere as a point charge.

(a) Find the equation for the electric field strength, at a distant point, produced by this varying charge.

(b) Is an electromagnetic wave propagated from this spherical antenna?

Problem 10-07. Derive an equation for E* at a long distance from a full-wave antenna. The antenna consists of a straight, slender wire fed from the center. Neglect possible effects of the earth or other obstructions. Is the antenna more or less directive than the half-wave antenna? (Plot | E* | vs θ for the two cases.)

Problem 10-08. Derive an expression for E* at long distance from a straight antenna of total length 3λ/4.

Problem 10-09. A high-frequency line, consisting of two parallel wires with spacing a, has a length of one wavelength. It is fed from the center and is open at both ends. Currents in the two wires are 180° out of phase.

(a) Obtain an expression for E* at θ = π/2

(b) If a = λ/1000, what is the maximum | S* |, expressed in terms of the maximum | S1* | obtained from a single wire?

Problem 10-10. An array consists of three half-wave linear antennas spaced λ/2 apart in a straight line and fed with equal currents in phase.

(a) Obtain an expression for E* in the plane θ = π/2.

(b) Sketch | E* | vs ψ and | S* | vs ψ.

Problem 10-11. Four identical linear antennas are spaced along a straight line with separation λ/2 and are excited by equal currents in phase.

(a) Sketch the radiation pattern in a plane that is perpendicular to the antenna lengths.

(b) What is the maximum value of | S*/S1* | ?

Problem 10-12. Two identical linear antennas are excited by currents of the same magnitude but 90° out of phase. The separation of the antennas is one wavelength.

Sketch the radiation pattern in the plane θ = π/2 the number of loops in the pattern equal to the number of antennas?


Chapter 11

MOVING SYSTEMS



Many of the applications of electromagnetic theory involve no relative motion and are handled by the methods of the preceding chapters. In other problems, however, motion is important. The electrodynamics of moving systems was never completely formulated by Maxwell, and it still remains one of the most troublesome aspects of electrical theory.1 In this chapter, we consider the technique of transferring data from one moving system to another; whereas in Chap. 12, we apply these methods to electrodynamics.



[image: images]

FIG. 11-01. Two coordinate systems in relative motion. System O′ is moving to the right at uniform velocity v with respect to System O.

The problem may be stated as follows: given two observers, A and B (Fig. 11-01), in relative motion at known velocity v. Observer A makes measurements on external phenomena, such as the accelerated motion of a distant spaceship. He wishes to predict B’s measurements of the same phenomena. Such a prediction is based on A’s measurements and on the known distance-time relationship between A and B.

Consider two coordinate systems, one attached to A and one attached to B. Evidently, the problem reduces to a coordinate transformation between two systems in relative motion. A correspondence is established between A and B, for the space coordinates and times of the external events that are observed by both. On the basis of such transformations it is easy to include the transformation of velocities, accelerations, potentials, and other quantities. The theory will be developed with sufficient generality2 so that it includes both the Galilei transformation and the Lorentz transformation.

11-01. Postulates. It is convenient to formulate postulates dealing with the transformation of events from one coordinate system to another. These are not axioms—“self-evident truths”—they are arbitrary requirements which we choose to introduce. A different choice of postulates would lead to other theories of relativity.

Postulate [image: images]. An event is specified by four numbers. Therefore, an event may be represented geometrically by a point in a 4-space, and a rectangular cartesian coordinate system can be established in this space.

Postulate [image: images]. The transformation between any two of these coordinate systems is linear.

Postulate [image: images]. Such a transformation may effect a change in time and in distance parallel to v, but it does not alter distances that are orthogonal to v.

Postulate [image: images]. Transformations possess the group property.

Postulate [image: images]. Two observers in uniform motion can agree on their relative velocity v. If B moves at velocity v with respect to A, then A moves at velocity –v with respect to B.

Postulate [image: images]. The concept of velocity (distance/time) is valid also for electromagnetic radiation.

Postulates [image: images], [image: images], and [image: images] seem almost trivial, although they are needed in what is to follow. Postulate [image: images] states that if there are three observers, a transformation from [image: images] to [image: images], followed by a transformation from [image: images] to [image: images], leads to the same result as a direct transformation from [image: images] to [image: images]. Postulate [image: images] introduces a definite restriction, since it limits us to unaccelerated coordinate systems. Postulate [image: images] also restricts the transformations to some extent, although the added generality obtained by omitting [image: images] does not seem to be of any value. The subject is discussed by Ives.3

11-02. Transformations. There is no loss of generality in taking the z and z′ axes in the direction of v. Also take t = t′ = 0 at the instant when the origins O and O′ pass each other.

The Galilei transformation is



[image: images]

This is the ordinary, common-sense transformation, which is so familiar that we use it without thinking.

But a more general transformation is desired. What is the most general transformation that will satisfy the postulates of Section 11-01? Since the location of an event requires four numbers—three to designate location in space, one to fix the time—we are dealing (whether we like it or not) with a transformation in 4-space. For the coordinates (x1, x2, x3, x4) of a point in 4-space (Postulate [image: images]), let us take



[image: images]

The superscripts do not denote powers, of course, but are merely the conventional labels or indices of tensor notation.4

The most general transformation, linear in distance and time (Postulate [image: images]), is



[image: images]

Equation (11-01) shows that the transformation will contain v as a parameter, so we have allowed the coefficients aij to be functions of velocity. For any given transformation, of course, aij will be constants, since the motion is unaccelerated and therefore v is not a function of time. For the special case of the Galilei transformation, the coefficients of Eq. (11-02) reduce to a11 = a22 = a33 = 1, a34 = iv/c0, and all the others are zero.

According to Postulate [image: images],



[image: images]

and a31 = a32 = a41 = a42 = 0. Thus all but four of the coefficients aij are determined and only two equations need be considered:



[image: images]

The problem now is to evaluate the four coefficients aij(v).

11-03. Evaluation of Coefficients. As a first step,2 reverse the direction of the z-axis. Then x3, x3′, and v are changed in sign but x4 is unchanged. So



[image: images]

Comparison of Eqs. (11-03) and (11-04) shows that



a33(v) and a44(v) are even functions,



a34(v) and a43(v) are odd functions of v.

Now return to the original coordinate systems. As a special case, take the point O′, for which
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Substitution into Eq. (11-03) gives
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or



[image: images]
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FIG. 11-02. Three observers moving along the z-axis.

To introduce Postulate [image: images] (the group property), we take three observers A, B, and C in unaccelerated motion along the z-axis (Fig. 11-02). For A and B, according to Eqs. (11-03) and (11-05),
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Similarly, for A and C,
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For B and C, taking v′ as the velocity of C with respect to B,
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Elimination of xj′′ and xj′ from these equations gives



[image: images]

These equations must hold for all values of v, v′, and v′′. In particular, if v′′ = 0, then A and C (Fig. 11-02) exhibit no relative motion, and v′ = –v (Postulate [image: images]). So, from Eq. (11-07),
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or



[image: images]

Introduction of this relation into Eqs. (11-06) and (11-09), for arbitrary velocities, gives a combination that is independent of velocity:



[image: images]

Here it is convenient to write the constant as –ic0k2, the new quantity k2 being defined by the above equation. Thus
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There remains the determination of a33(v). For the special case of v″ = 0 and v′ = – v, Eq. (11-06) gives
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If there is no relative motion, v = 0 and



[image: images]

Thus either a33(0) = 0 or a33(0) = 1. The meaningful root is the latter; so Eq. (11-12) results in
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The coefficients of Eq. (11-03) have now been evaluated. They are
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Therefore, Eq. (11-03) becomes



[image: images]

In terms of z and t, the transformation is



[image: images]

This transformation satisfies the five postulates ([image: images] to [image: images]). Since no restriction has been placed on the constant k2, an infinite number of transformations is allowable for a given pair of coordinate systems and a given relative velocity v.

11-04. Properties of the Transformation. The general transformation is given by Eq. (11-14), where γ is defined by Eq. (11-13). The inverse transformation is
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Consider a fixed increment in distance, Δz′ measured in System O′. What is this distance, as measured by an observer in System O? From Eq. (11-14),
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But the distance Δz is measured instantaneously in System O (though not in System O′). Thus Δt = 0, and
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Since γ [image: images] 1 for k2 [image: images] 0, the distance Δz measured by observer O is less than (or equal to) the distance Δz′ measured by observer O′. In other words, a moving meter stick appears to be less than a meter long when measured by O, although it appears to be exactly one meter when measured by an observer moving with the stick. For the special case of k2 = 1/c02, this effect is called the Lorentz contraction.

Now consider a clock fixed in position with respect to O′ but moving at velocity v with respect to O. If the clock is beating seconds, Δt′ = 1.0. We wish to find the corresponding time interval Δt in System O. From Eq. (11-15),
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FIG. 11-03. Points P and Q are stationary in System O, and their separation is Δl, as measured in that system. What separation is measured by an observer in System O′ ?

But Δz′ = 0, since the clock is fixed in System O′. Thus
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For k2 [image: images] 0, Δt is greater than (or equal to) Δt′: the moving clock appears to be slowed down.

A transformation of velocity is also desirable. In Fig. 11-03, point P moves to Q through a distance Δl in time Δt. How is this change expressed in the primed system? Differentiation of Eq. (11-14) gives
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Let dz/dt = uz, dz′/dt′ = uz′. Then the z-component of velocity transforms as follows:
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Similarly,
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or
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where u|| refers to the component of velocity parallel to the direction of v, and u⊥ is the component perpendicular to v. The inverse transformation is
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Notice that if k2 = 0, these equations express the familiar composition of velocities. But, in general, the addition of velocities is more complicated, as indicated by the above equations.

Increments of time are also related in the two systems. From Eq. (11-15),
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and
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Similarly, from Eq. (11-14),
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Equations (11-20) and (11-21) show how increments in time are transformed.

Now consider the transformation of acceleration. Suppose that P of Fig. 11-03 is accelerated, but that the two coordinate systems continue to move at uniform relative velocity v. Differentiation of Eq. (11-18) gives
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Making use of Eqs. (11-21) and (11-13), we obtain the accelerations,
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The inverse transformation is
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11-05. Invariants. With the familiar Galilei transformation, increments in distance and time are invariant. It is likewise desirable to find what quantities are invariant with respect to our broader form of transformation.

Equating Eq. (11-21) to the reciprocal of Eq. (11-20), we obtain
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or



[image: images]

But by Eq. (11-19),
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and Eq. (11-24) becomes
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From Eqs. (11-21), (11-25), and (11-24a),
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Thus the quantity
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is an invariant with respect to our general transformation, though dt is not an invariant.

In general, neither time nor distance is invariant with respect to the transformation expressed by Eq. (11-14). Is it possible that a linear combination of (dt)2 and (dz)2 is an invariant? Define a new quantity (ds)2 as
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where b2 is a constant. If this interval is to be invariant,
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or
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From Eq. (11-26),
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Also, dt′ = dz′/u′ or
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Substitution of Eqs. (11-29) and (11-30) into Eq. (11-28) gives



b2 = k2.

Thus the condition for invariance of Eq. (11-27) is that the constant b2 be equal to the k2 introduced in Eq. (11-11). Thus an invariant with respect to our transformation is
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Another invariant is associated with acceleration.5 From Eqs. (11-22) and (11-24),
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Therefore, although the accleration itself is not an invariant, the quantity
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is invariant with respect to the transformation (11-14).

11 06. An Invariant Velocity. The foregoing derivation shows that an infinite number of linear transformations is possible, corresponding to an infinite number of values of k2. We shall now prove that each of these values of k2 corresponds to a definite invariant velocity.

According to Eq. (11-18),



[image: images]

If we now take a specific velocity ζ and introduce the condition that this particular velocity shall have the same value in all unaccelerated coordinate systems,
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Substitution gives
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or
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Thus, for each value of k2 there corresponds a specific value of velocity, which is invariant; while all other velocities have different values when measured in different coordinate systems.

Evidently, Eq. (11-32) does not introduce any restriction on the infinite number of possible transformations. Only two of these transformations, however, have been considered seriously:

(a) ζ → ∞ or k2 = 0, the Galilei transformation. Then γ = 1, and Eq. (11-14) becomes
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With the Galilei transformation, there is no privileged finite velocity.

(b) ζ = c0 or k2 = 1/c02, the Lorentz transformation,6 for which
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and
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There is one privileged velocity: c0 is invariant, while all other velocities transform. A comparison of the two transformations is given in Table 11-01.

There is considerable confusion in relativistic literature regarding this point. The statement is often made that Galilei relativity requires that the velocity of light be infinite, and that since the actual velocity of light is known to be finite, Galilei relativity is nonsense. As shown above, however, ζ is a completely arbitrary constant which certainly need not be chosen as the velocity of light. It might be taken as the velocity of sound in air, for instance, or the velocity of light in a specified medium. Simplest results are obtained if ζ is so chosen that k2 = 0, which gives the Galilei transformation. The velocity of light is then in general, different in each moving coordinate system, as shown by Eq. (11-25).

In (b), on the other hand, we have arbitrarily given ζ the specific value 2.99792 × 108. This choice is completely legitimate—and completely arbitrary. It means merely that we have chosen to deify a particular velocity and make it unique among all velocities. It does not mean that light travels at the same velocity in all coordinate systems, as is so often stated in books on relativity. By merely choosing a particular numerical value for ζ, we do not impose our will on nature. There is still no direct experimemtal evidence to show how light behaves when the source is in rapid motion (Section 11-11).
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FIG. 11-04. Synchronization of clocks by means of radio signals.

11-07. Synchronization of Clocks. Newton assumed without question that a universal time exists throughout the cosmos, so that it is meaningful to speak of distant events occurring simultaneously. To make such statements, however, we must define a method of synchronizing clocks at distant points.7

Consider two stations, A and B, in relative motion. First take A stationary, with B moving at uniform velocity v (Fig. 11-04a). Each station is provided with a clock and a radio transmitter and receiver. At instant tA1, as read on A’s clock, a pulse of radiation is sent from A. The velocity of the pulse (Postulate [image: images]) is called c1. This signal arrives at B at time tB2, as read on B’s clock. The signal triggers B’s transmitter, so that a return signal is initiated at instant tB2. This signal travels at velocity c2 and arrives at A at tA3.

Assuming euclidean space, the distance traveled by the radiation is
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From these two equations,
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Now consider Fig. 11-04b, which represents the same experiment but with B assumed to be stationary. The distance traveled by the first signal is now
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or
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Similarly, for the return signal,
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From these two expressions,
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It is well-established that for unaecelerated bodies, there is no test that will determine absolute velocity. Thus Figs. 11-04a and 11-04b must be equivalent, and Eqs. (11-35) and (11-36) can be equated, giving
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or
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Equation (11-37) specifies the two conditions that must be satisfied to obtain synchronization of the clocks.7

11-08. Examples. Let us now apply our requirement for synchronization, Eq. (11-37), to a few special cases.7

(a) For no relative motion between A and B, v = 0 and Eq. (11-37) gives
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Thus Eqs. (11-35) and (11-36) become
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This is a familiar result, with tA2 midway between tA1 and tA3 and with distance equal to c0Δt.

(b) As a second example, suppose that the relative velocity is v and that the original signal triggers the transmitter at B. Then
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and Eqs. (11-35) and (11-36) give
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Here tA2 is no longer midway between tA1 and tA3.

Synchronization procedure is as follows: A sends out a signal and notes the times of emission (tA1) and reception (tA3). B reads his clock at the instant of reception (tB2). Knowing the relative velocity v of the two stations, A computes tA2 from Eq. (11-39). This information is transmitted to B, who adjusts his clock so that tB2 = tA2. The procedure can be repeated as often as necessary.

Thus we have an operational method of establishing a universal time, subject of course to the assumptions that space is euclidean and that “velocity of light” is a meaningful expression. In the advent of spaceships and the establishment of colonies on other planets, such synchronization of clocks would be highly desirable. Beyond the solar system, practical difficulties would of course be tremendous. But this does not invalidate the basic idea of a universal Newtonian time.

As a numerical example, suppose that the data are tA1 = 0, tA3 = 500 sec, tB2 = 251.0 sec, v = 300 km sec–1. Then from Eq. (11-38),
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Thus clock B is 7/8 sec fast and should be set back by that amount to effect synchronization.

(c) Suppose that conditions are as in the previous example except that the signal is reflected at B instead of being re-emitted. The velocity of the reflected radiation is equal to the velocity of the incident radiation (assuming that photons behave in this case like billiard balls), both velocities being measured by B. But with respect to A, c2 = c0 + 2v. Thus
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which again satisfies Eq. (11-37). Also,
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Again, the clocks can be synchronized and tA2 is beyond the midpoint of the interval (tA3, tA1).

(d) Einstein employed the hypothesis8 that the velocity of light is always c0 with respect to the observer. Then
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and our synchronization requirements cannot be satisfied unless v = 0. This means that Einstein’s hypothesis does not allow synchronization of moving clocks, which of course agrees with Einstein’s conclusions.

If there are more than two stations, the same analysis applies. It is easily shown that if A is synchronized with B, and B is synchronized with C, then A’s clock agrees with C’s. Thus we have established the theoretical possibility of universal time if Eq. (11-37) is satisfied.

11-09. Accelerated Motion. The previous sections have dealt with the synchronization of clocks that are moving at constant relative velocity. We now apply a similar analysis to nonuniform motion in a straight line.7 Stations A and B (Fig. 11-04) have velocities vA(t) and vB(t) with respect to an arbitrary point C. According to Fig. 11-04a, where A is imagined to be stationary,
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Here the velocity of the original signal is c1 = c0, just as in Section 11-07. The velocity of the return signal, however, may partake of the velocity of B and is thus written c(t).

If the same experiment is regarded from B’s standpoint (Fig. 11-04b), the original signal travels at velocity c(t), while the return signal is from a stationary source and thus travels at velocity c0. Therefore,
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or
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where v(t) = vA(t) – vB(t). Addition of Eqs. (11-41) and (11-42) gives
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which is valid if and only if
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By replacing the scalars of the above derivation by vectors, one can readily extend these conclusions to the general case of accelerated motion with arbitrary direction. Thus, synchronization of accelerated clocks is possible if and only if the velocity of light from a moving source is, at each instant, equal to c0 plus the instantaneous veloocity of the source.

If Eq. (11-43) is satisfied, a universal time can be established, even for accelerated observers, and t′ = t. What transformation equations apply in this case? Consider the general arrangement indicated in Fig. 11-05. The primed coordinate system is moving in an arbitrary direction at arbitrary velocity v(t) with respect to the unprimed system. The vectors r(t) and r′(t) locate the point P with respect to the two coordinate systems.
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FIG. 11-05. A vectorial representation of distance
 
At any instant,
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where a0 is a vector from O to O′ at t = 0. Evidently,
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Thus
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which is the Galilei transformation for accelerated coordinate systems.

Differentiation of Eq. (11-44) gives
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or
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The acceleration is
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For the particular case of light, whose velocity in the unprimed system is c(t), Eq. (11-45) gives
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Thus a different value (and direction) will be obtained for the velocity of light in the two coordinate systems, the relation being found by the ordinary composition of velocities. Comparison with the results of Section 11-07 is given in Table 11-02.

11-10. The Radiation Sphere. According to Table 11-02, the Galilei transformation of the velocity of light, for two systems moving at uniform relative velocity, is



c′ = c – v.

This equation can be pictured very simply. Suppose that a pulse of radiation is emitted, in a vacuum, from a source attached to O (Fig. 11-03). The velocity of the pulse, as measured by any observer in the unprimed system, is c0 = 2.99792 × 108 m sec–1. But in the primed system, the measured velocity is not c0, but
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FIG. 11-06. A source moves along the path SR at velocity v(t). A signal from S is received at P.



c′ = c0 – v.

The source emits a spherical shell of radiation, whose center remains at O and whose radius expands at velocity c0.

Similarly, for the source S moving along an arbitrary path (Fig. 11-06) at arbitrary v(t), Table 11-02 gives
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A signal is emitted from S at instant t0 when the source has velocity v(t0). The radiation expands in a spherical shell, whose center moves with S and whose radius expands at velocity c0. At a definite instant t, the sphere reaches point P (Fig. 11-06). At this instant, S has reached R, with distance



r = c0(t – t0),

since the velocity of light is always c0 when measured in a coordinate system attached to the source. As measured in the coordinate system attached to P, however, the velocity of light is



c(t) = arc0 + v(t).

Three suggestions on the behavior of light were mentioned in Section 2-07: the velocity is c0 with respect to

(a) The receiver,

(b) The source at the instant of emission,

(c) The source at any instant.

If there is no motion between source and receiver, the three are identical. If source and receiver are in uniform relative motion, (b) and (c) are identical, with the center of the radiation sphere always at the source. But if the source is accelerated, (b) and (c) give different results. A hypothetical example is shown in Fig. 11-07. For (b), the center of the radiation sphere moves along the straight line (dashed) on the left. The sphere expands linearly with time, and the dotted sphere reaches P at t = 3. For (c), the center of the sphere is always at the source, which moves along the heavy curve of Fig. 11-07. In the example, this sphere reaches P at t = 4.

The Einstein hypothesis (a) is consistent with the Lorentz transformation, but it does not allow easy visualization and it does not permit synchronization of clocks to give a universal time.8 The Ritz hypothesis (b) is the most reasonable one9 but it is inconsistent with the behavior of binary stars, as shown by de Sitter.10. The third suggestion7 is the only one that allows the synchronization of accelerated clocks and that gives a transformation for accelerated systems.
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FIG. 11-07. Hypothetical source S with accelerated motion. Signal is received by P at t = 3 for Ritz hypothesis (b), but at t = 4 for hypothesis (c).

The peculiarity of (c) is that the radiation sphere remains coupled to the source at all times. The Ritz sphere, on the contrary, is completely free from the source (except at the instant of emission) and continues to move at constant velocity, irrespective of the subsequent motion of the source. But in (c), the radiation sphere is always tied to the source. Physically, this seems very peculiar. But one can hardly expect intuitive ideas to hold for light. Light is not a wave in a medium and it is not a particle: it is a unique phenomenon, unlike anything else in nature. To expect to visualize this unique phenomenon in terms of the mechanistic pictures of water waves or bullets is to be indeed naïve.

11-11. Summary. The chapter investigates the possibility of transforming data from one coordinate system to another system that is moving with respect to the first. On the basis of five postulates of Section 11-01, we prove that if v = const there are infinitely many possible transformations. Two that have received considerable attention are

(1) The Galilei transformation, with



t′ = t and c′ = c ′ v;

and

(2) The Lorentz transformation, with a complicated time-distance relation but with c0′ = c0.

The Lorentz transformation is limited to unaccelerated systems and does not allow the synchronization of clocks or the establishment of a universal time. The Galilei transformation is easily extended to the general accelerated case. It also provides a universal Newtonian time if light behaves as in (c), Section 11-10. The basic question is whether the velocity of light is constant with respect to the source (Galilei transformation) or with respect to the receiver (Lorentz transformation). But the peculiar—not to say unbelievable—fact is that at present we have no direct experimental data on the velocity of light from moving sources.

Plenty of direct measurements have been made on the velocity of light,11 but they are all obtained with no relative motion between source and receiver. Fizeau obtained data in 1849, using a rotating toothed wheel as light-chopper. Recently, a great amount of valuable work has been done,11 using Kerr cells, Shoran, resonant cavities, microwave interferometers, and other modern developments. Results obtained by the most diverse methods exhibit a gratifying agreement, so that one can probably say that the value of c0 is known to within one kilometer per second.

Unfortunately, this mass of experimental data tells absolutely nothing about what would happen if the source were moving with respect to the receiver. The same may be said of the Michelson-Morley experiment,12 the interferometer measurements of Tomaschek13 and Majorana,14 and the Ives-Stilwell experiment.15 Lack of space prohibits a detailed discussion.

Another set of experiments deals with rotation. The Sagnac experiment16 indicates that the velocity of light on a moving turntable depends on the angular velocity. Michelson’s experiment at Clearing, III.,17 gives a similar result for the rotation of the earth, while astronomical aberration depends on movement about the sun.18 Since the Lorentz transformation is not applicable to rotational systems, it cannot be used to explain such experiments.

In the absence of conclusive evidence that disqualifies any of the transformations of this chapter, it is interesting to accept all of them tentatively and to study their similarities and differences.
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TABLE 11-01. TRANSFORMATIONS (UN ACCELERATED)
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INVARIANTS
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TABLE 11-02. GALILEI TRANSFORMATIONS
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† With coincidence of O and O′ at t = 0, Section 11-07.

PROBLEMS

Problem 11-01. Obtain Δz and Δt from Eq. (11-15). Neglection of Δt′ in the first equation and Δz′ in the second gives
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showing that fixed increments in z' and t', as seen from System O, are both increased. This does not agree with Eq. (11-16). Explain the discrepancy.

Problem 11-02. Given three observers (A, B, and C) in unaccelerated motion along the z-axis. B moves at velocity v with respect to A, while C moves at velocity w with respect to A. A particle P is traveling in the z-direction with velocity u, as measured by A.
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FIG. 11-08. Determine the apparent change of angle θ, as seen from System O′.

(a) Obtain an expression for the velocity of P, as seen by C, and show that the same result is obtained by direct transformation from System A and by successive transformations from A to B and B to C. Use the general transformation of Eq. (11-18).

(b) If u = c0, obtain the velocity of light as measured by B with k2 arbitrary.

(c) Obtain the special cases of (b) for the Galilei transformation and the Lorentz transformation.

Problem 11-03. In Fig. 11-08, a particle P is moving at constant velocity u in System O.

(a) Obtain an expression for tan θ′ as viewed from System O′. Express in terms of θ, γ, v, and u.

(b) If P is a photon, which travels at velocity c0 in System O, what is the tangent of the aberration angle α = θ – θ′?

(c) Obtain the special cases of (b) for the Galilei transformation and for the Lorentz transformation.

Problem 11-04. A flat mirror is placed in the xy plane of Fig. 11-08. A beam of light is incident on the mirror at angle θ1 = θ in System O, and by elementary optics, the angle of reflection is θ2 = 0.

Now consider the reflection of light, as viewed from System O′. Obtain an expression for tan θ2′/tan θ1′. Compare results for the Lorentz and Galilei transformations.

Problem 11-05. An antenna is attached to O′ and is transmitting waves of frequency f0 and velocity c0 (with respect to O′). By using the general transformation of Section 11-04, find the frequency and velocity of waves measured by an observer at O. Give results for arbitrary k2 as well as for Galilei and Lorentz transformations.

Problem 11-06. A lamp, fixed at the origin O′, has an intensity I0 = dP′/dΩ′ in the direction OO′, as measured by an observer in System O′. Here dP′ is the radiant power in a divergent lightcone whose apex is at the lamp and whose solid angle is dΩ′. As measured at O, each photon will have an energy W = hv, which will be different from W′ measured in System O′. Also, the number of photons received at O per unit time will be different from the number received at O′.

Obtain an expression for the intensity I, as measured by an observer at O.

Problem 11-07. Repeat Prob. 2-02 for suggestion (c) of Section 11-10.

Problem 11-08. Repeat Prob. 2-03 for suggestion (c) of Section 11-10.


Chapter 12
 
RELATIYISTIC ELECTRODYNAMICS



Chapter 11 dealt with the transformation of data from one coordinate system to a second system that is moving with respect to the first. The transformation was applied to distance, time, velocity, and acceleration. We now extend these results to electrodynamics.

Several methods may be employed in developing a relativistic electrodynamics ; but the most elegant way uses a transformation in 4-space, as presented in Chap. 11. Two coordinate systems in uniform relative motion are associated by a linear transformation. It is convenient also to introduce the new four-dimensional concepts Ji, Φj, Gjk and Fjk. A generalized current density Jj includes both ordinary current density and charge density. A generalized potential Φj includes both scalar and vector potentials. The quantities Gjk and Fjk are combinations of E, B, D, and H.

Transformations of these new quantities may then be expressed in terms of the usual J, ρ,ϕ, A, E, B, D, and H. The advantage of this procedure is that four-dimensional quantities can be found that are tensors and that transform in a simple and definite way, while the three-dimensional quantities are generally not tensors.

12-01. Four-Dimensional Formulation. In static fields, the concepts E, H, J, and ρ have clear-cut, distinct significance. In time-variant fields, we have found that E and H are no longer independent but are tied together in the complicated relationship formulated by the Maxwell curl-equations. With moving systems, the distinction between concepts becomes even more blurred. An E in one system may not correspond to an E′ in the other system but may transform into a combination of E′ and B′.

Similarly, an H may transform into a combination of H′ and D′; and a J may transform into a combination of J′ and ρ′. Minkowski1 showed that all this complexity can be expressed rather simply if time is regarded as a fourth dimension. The use of 4-space is not necessary, although it does allow a very compact formulation. As in Chap. 11, we specify an event hy the four coordinates x1, x2, x3, x4:
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A point in 4-space is specified by xi, which is a shorthand expression for (x1, x2, x3, x4).

Let us write the equation for conservation of charge in four-dimensional nomenclature. From Chap. 2,
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or in rectangular coordinates,
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The fourth term may be written
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Thus,
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where J1 = Jx, J2 = Jy, J3 = Jz. Evidently if we now define J4 as ic0ρ, Eq. (12-02) becomes the four-dimensional analog of divergence. In tensor notation, Eq. (12-02) is written
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using Einstein's summation convention. That is, instead of writing



[image: image]

we write Eq. (12-03). The summation sign is understood in all cases where the same literal index occurs above and below.

Thus conservation of charge is formulated by the simple expression,2 Eq. (12-03). In this way, the principle is expressed in terms of a single quantity Jj, whereas the ordinary formulation requires two quantities J and ρ.

12-02. Potentials. Similarly, a 4-potential may be defined in terms of the familiar scalar and vector potentials. Let
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where
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Then the familiar relation,
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may be expressed in terms of the new 4-potential. Equation (3-17) is, in rectangular coordinates,
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Thus
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or
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Equation (12-04) is a compact way3 of expressing Eq. (3-17).

12-03. Maxwell’s Equations. The next step is to write Maxwell’s equations in 4-space. The first equation is
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or in rectangular coordinates,
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Thus,
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Since, in general, H and D are intimately related, it seems reasonable to combine them into a single quantity. Such a quantity may be written
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Notice that the matrix is skew-symmetric. By use of Eq. (12-06), one may write Eq. (12-05) in the simple form,
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For instance, if j = 1, Eq. (12-07) becomes



[image: image]

But, from the matrix, G11 = 0, G12 = Hz, G13 = – Hy, G14 = – iC0Dx, so
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Also,
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so Eq. (12-07) for j = 1 is
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which is the first expression of Eq. (12-05). The second and third expressions are similarly verified.

Equation (12-07) gives, as a bonus, the relation
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or
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Thus Eq. (12-07) represents two Maxwell equations:
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The other two Maxwell equations are expressed in terms of another new quantity:
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We then write
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which in expanded form is
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Therefore, Eq. (12-10) is equivalent to the two Maxwell equations,
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In place of the four Maxwell equations and the equation for conservation of charge, we have



[image: image]

This presents a condensed formulation of the essentials of electrodynamics. A summary is given in Tables 12-01 and 12-02.

12-04. Tensors. In tensor analysis, emphasis is placed on behavior under coordinate transformations. Thus tensors are particularly helpful when transformation of coordinates is important.4 Given two coordinate systems O and O′, and a point P in 4-space. This point is specified in the O-system by a set of numbers
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and in the O′-system by a different set of numbers, say
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If xi = xi(xi′) and xi′ = xi′(xi) are single-valued functions with continuous first derivatives and a unique inverse, then
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exist and are continuous and [image: image]. The transformation of a tensor from system O to O′ is expressed in terms of these partial derivatives.

For instance, consider an infinitesimal separation dxi between two neighboring points. How is this separation expressed in the primed system? Evidently,
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or, employing the summation convention,
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Any quantity that transforms according to Eq. (12-12) is called a contravariant tensor of valence one, or a contravariant vector.

If the current density Jj is a contravariant tensor, it transforms according to Eq. (12-12), or
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Similarly, if the 4-potential is a contravariant tensor, it transforms as
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Tensors may also be covariant, and such tensors are distinguished by subscripts instead of superscripts. A covariant tensor ξj transforms as
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Any quantity that transforms in accordance with Eq. (12-15) is said to be a covariant tensor of valence one, or a covariant vector. Note that Eqs. (12-12) and (12-15) represent different laws of transformation, as may be seen by expanding them in accordance with the summation convention. An example of a covariant tensor is the ordinary potential gradient ∂ϕ/∂xj, which transforms as
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Tensors may also be of higher valence. Thus in writing Gjk in Section 12-03, we are assuming that this quantity is a contravariant tensor of valence two. Such a tensor transforms according to the equation
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Note how index balance makes the equation easy to remember.

The transformation of a covariant tensor of valence two is also easily written. For instance, a quantity gjk transforms as
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Evidently, tensor analysis covers a much broader range than vector analysis. While vector analysis is limited to 3-space (the vector product, for instance, is meaningless in 2-space or 4-space), tensors may be used in spaces of any number of dimensions. They may also have any valence, the valence being specified by the number of indices.

For example,

Vi = contravariant tensor of valence one,

= contravariant vector,

Vi covariant tensor of valence one,

= covariant vector,

Vjk = contravariant tensor of valence two,

Vjk = covariant tensor of valence two.

Transformations are given in Eqs. (12-12) to (12-18). Index balance is a helpful mnemonic aid to writing transformation equations for more complicated tensors. For example, a mixed tensor of valence 6 transforms as
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From what has been said, it should be realized that a tensor is much more than a set of numbers: the definition of a tensor includes also a law of transformation. To define a quantity by a matrix, as in Eq. (12-06), does not make this quantity a tensor. To be a tensor, it must transform in a definite way; for instance, as in Eq. (12-17). To specify a tensor, therefore, one must designate

(1) The type of tensor,

(2) The particular coordinate transformations under which the quantity behaves as a tensor.

Most physical quantities are tensors only under a very restricted set of coordinate transformations.

12-05. Moving Systems. As in Chap. 11, we consider two coordinate systems in uniform relative motion at velocity v. Without loss of generality, the z-axis is oriented in the direction of v. Then, according to Eq. (11-14), the transformation is
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In tensor form, Eq. (12-20) may be written
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where
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It is easily verified that Eqs. (12-21) and (12-22) are identical with Eq. (12-20). The inverse transformation is
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with
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These matrices may apply to the transformation of any tensor between two coordinate systems in uniform relative motion. For example, take the generalized current density Jj According to Eq. (12-13),
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which in expanded form is
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Using the elements of the matrix, Eq. (12-22), we obtain
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Thus the x-component of current density is the same in the O and O′ systems. Similarly, J2′ = J2; but J3 and J4 are altered by the transformation. Making use of the relations,
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we can translate the 4-dimensional results into the usual notation to obtain
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Here the subscript ⊥ signifies “perpendicular to the direction of motion” and || signifies “parallel to the direction of motion.”5

For the Galilei transformation, k2 = 0 and γ = 1. Then Eq. (12-26) reduces to
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For the Lorentz transformation, k2 = l/c02, γ = [1 – (v/c0)2]–1/2, and
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Note that the Galilei results are expressible in simple vector form, but the Lorentz results must remain as components, since γ enters in J||′ but not in J⊥′.

The potentials transform in a similar way. From Eq. (12-14),
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and by definition,
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Thus,
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or
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For the Galilei transformation, Eq. (12-27) becomes
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For the Lorentz transformation,
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12-06. Field Vectors. Now consider the behavior of E and B under the coordinate transformation, Eq. (12-20). We take the bivalent tensor Gjk which transforms as
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From Eqs. (12-17) and (12-22),
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Substitution of the elements of the matrix, Eq. (12-06), gives
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Thus,
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A similar transformation of Fjk gives
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A summary is given in Table 12-03. The first column fists transformations for the general unaccelerated case. The infinitely many possibilities (obtained by arbitrary choice of k2) are all logically tenable, although experiment may favor one in preference to another. Lorentz transformations (k2 = 1/c02) are listed in the second column. It should be realized that, even with a given privileged velocity (Section 11-06), the results of Table 12-03 are not unique. The quantities chosen as tensors (particularly Gjk and Fjk) are arbitrary; and a different choice would give still other possibilities. The tensors employed here were chosen to give the usual Lorentz results.6 But there are other possibilities not subsumed by Table 12-03. An example of such a relativity is discussed in Section 12-11.

12-07. The Lorentz Transformation. All the transformations of Table 12-03 give invariance of Maxwell’s equations. Invariance follows from the assumption that Gjk and Fjk are tensors. For if |∂xi′/∂xi| = 1, as for Eq. (12-22), then
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are also contravariant vectors.7 Thus the four-dimensional relations, Eqs. (12-07) and (12-10), are tensor equations and their forms are invariant under transformations between unaccelerated systems. The Maxwell equations are merely components of the tensor expressions and thus share in the invariance of the four-dimensional expressions.

Any value of k2 will give invariance of Maxwell’s equations and will lead to a logically consistent a priori system. The choice of a k2, therefore, must rest on experimental evidence. For instance, consider the arrangement shown in Fig. 12-01. A slab of dielectric is stationary in System 0. The material has permittivity e and is in a uniform electric field E. A magnetometer is moved at uniform velocity v in the z-direction and measures H′ in the air near the dielectric.

In System O, there is no magnetic field, so



[image: image]

But the magnetometer detects a magnetic field in System O′ because of its motion with respect to the electic field of System O. Turning to Table 12-03, one might erroneously conclude that the measured field strength is
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[image: image]

FIG. 12-01. A uniform electric field in System 0 produces a magnetic field in System O′, which is moving in the z-direction with respect to O. This magnetic field is detected by a magnetized needle in System O′.

which is directly proportional to the permittivity [image: ] of the dielectric. This would contradict experiment (for all values of k2), since Eichenwald8 showed definitely that the measured field strength is independent of the dielectric.

The explanation is that the above H⊥′ is inside the dielectric, while the measured value was obtained in air. Flux lines form closed loops (div B′ = 0), so B′ is the same on both sides of the boundary. Thus
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and the measured field strength is
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From Eq. (12-30),
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so
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Equation (12-32) definitely rules out the case k2 = 0 obtained from the four-dimensional formulation, although it does not necessarily eliminate other Galilean possibilities (Section 12-11). For the Lorentz transformation, k2 = 1/c02 = [image: ]0μ0, and
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which agrees with Eichenwald’s results.9 From this and other experimental evidence, one concludes that the Lorentz transformation is the only one of the formulations of Table 12-03 that is consistent with experiment.

12-08. Other Quantities. One might guess that the parameters [image: ] and μ, which characterize a given material, would be unaffected by coordinate transformation, as are [image: ]0 and μ0. But a glance at Table 12-03 shows that this idea is incorrect. Not only is the ratio of D′ and E′ affected by the transformation, but the ratio depends on direction. The same is true of the ratio	of	B′ and H′ Thus an isotropic material, stationary in System O, will appear to be	anisotropic in System O′.

Although the transformation equations for [image: ] and μ may be written, it is probably better to reserve these concepts for stationary systems (as in the previous chapters) and to employ P and M here.9 Polarization P, may be defined by the equation
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Since D|| and E|| are invariants (Table 12-03),
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But the components of P that are perpendicular to v are altered. We write
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or
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Similarly, magnetization M is defined by the equation
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From Table 12-03, we find that
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Also,
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or
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For the Lorentz transformation, k2 = 1/c02 and the above equations become
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12-09. Common-Sense Transformations. Considerable attention has been paid to the four-dimensional transformation. One should realize, however, that the generality of this analysis is not needed in most practical cases. For all ordinary velocities, γ ≅ 1 and the distinction between Galilei and Lorentz transformations tends to disappear. Even if v reaches one-tenth of the velocity of light, γ differs from unity by only one-half of 1 per cent. And such high velocities are never attained with bulk matter on the earth.
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FIG. 12-02. Parallel-plate capacitor.

As an example of what can be done by using common sense instead of transformation theory, consider a parallel-plate capacitor (Fig. 12-02). A constant voltage V produces a uniform electric field between the plates, with
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An observer who is stationary with respect to the plates measures the above electric field and finds also that H = 0.

In the primed coordinate system, which is moving at uniform velocity v in the z-direction, the charge on the upper plate constitutes a current in the negative z′-direction. The current per unit width is
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But the surface charge density σ is
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Thus, making use of familiar boundary conditions, we find



[image: image]

or



[image: image]

Because of motion, a magnetic field appears in the primed system, though none is present in the unprimed system.

Equation (12-41), however, does not give the observed magnetic field. Because of polarization of the dielectric, a surface charge density,8
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is present on the top of the dielectric. In the primed system, σP has the effect of a current in the positive z-direction, which tends to annul the previous current I′. The net effect is obtained by superposition:
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or
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This result agrees with experiment9 and with the Lorentz transformation, Eq. (12-32a) if v [image: images] c0

12-10. Generated Emf. The common-sense approach can be applied also to the determination of E produced by movement through a magnetic field. The subject is of great practical importance, since it is basic for dynamo-electric machines; yet electrical engineers have succeeded here in introducing an astonishing amount of confusion.10 The important point is that voltage† is not, in general, the line integral of E but the line integral of [image: image], as stated in Chap. 3. Thus
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where the force per unit charge is (Postulate V)
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Consequently,
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In the absence of an electrostatic field,
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and
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This result applies to any portion of a circuit. For a complete circuit, Stokes’ theorem gives
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Thus the emf generated in a loop is
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The first term is the transformer emf, while the second is the flux-cutting or motional emf.

Note that the signs of the two terms are completely determined by the vector symbolism, without recourse to Lenz’s law or to the right-hand rule. As in any circuit problem, a positive direction is chosen arbitrarily for each loop. The direction of the vector [image: image] is determined by this positive direction. Then Eq. (12-47) gives the voltage rise in the chosen direction. If V is negative, the actual voltage rise is opposite to the positive direction around the loop.

In a transformer, v = 0 and the second term of Eq. (12-47) vanishes. Also, the surface integral is fixed with respect to time. So ∂/∂t may be taken outside the integral, and we obtain the familiar expression,
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Evidently this equation is valid only if the contour is not a function of time and if there is no motional emf.

The other simple case occurs when B is independent of time. Then the first term of Eq. (12-47) disappears. If v, B, and l are mutually orthogonal, Eq. (12-47) then gives the Faraday flux-cutting relation,
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Much of the confusion in electrical engineering has been caused by attempts to use one of the terms in Eq. (12-47), to the exclusion of the other. In general, both terms must be employed: motional emf and transformer emf are distinct phenomena, and neither of them can be deduced from the other.11 This is shown most clearly, perhaps, by the pre-Maxwellian approach,12 where one emf is obtained from a term that depends on velocity of charges, while the other is obtained from a separate acceleration term. These conclusions are correlated in Fig. 12-03.

As an example, take the unipolar generator13 of Fig. 12-04. A copper plate moves at constant velocity v through a uniform magnetic field B.
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FIG. 12-03. Equations for generated emf.

An electrostatic voltmeter (Vm) is connected to the plate through sliding contacts. According to Eq. (12-44), a force per unit charge [image: image] is experienced by each charged particle in the plate:
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This force causes electrons to drift downward within the plate, leaving a positively charged region near the top and a negatively charged region near the bottom. Equilibrium is reached when the electrostatic forces balance the motional force. The voltmeter then reads



[image: image]

FIG. 12-04. A plate of copper, moving through a uniform magnetic field B, acts as a unipolar generator.
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in accordance with Eqs. (12-43) and (12-49). There is no transformer emf.

Another illustration8 is shown in Fig. 12-05. A wire of length l oscillates in the z-direction with velocity
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The magnetic field also varies with time:
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FIG. 12-05. A conductor of length l oscillates sinusoidally in the z-direction. An alternating emf is generated.

Such arrangements have been proposed as d-c generators without moving contacts; for, says the inventor,
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Thus the generator produces a steady voltage, plus a double-frequency part which can be filtered out.

But this result ignores the first term of Eq. (12-47). Besides the above motional emf, there is a transformer emf,
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Substitution of
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gives
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or
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According to Eq. (12-47), the measured voltage is the sum of the motional emf and the transformer emf, or
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There is no d-c component, which agrees with experiment.

The foregoing treatment of generated emf has been on an elementary level, without use of transformation theory. Evidently, we have two alternatives:

(1) Common-sense procedure, requiring Postulate V,
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and
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(2) Lorentz transformation with
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[image: images]

With ordinary velocities, γ ≅ 1 and the two give the same results.

For pedagogical reasons, the body of this book was written on a non-relativistic basis; and transformations were introduced only in Chaps. 11 and 12. The present section shows that the common-sense, nonrelativistic procedure may be extended even to systems moving at ordinary velocities. But one must remember to use the relations of (1), not those of (2).

12-11. Accelerated Systems. The previous transformations of this chapter have been restricted to coordinate systems in uniform relative motion. This is an unfortunate restriction since, strictly speaking, unaccelerated motion does not occur in nature. Heavenly bodies move in curved paths, and terrestrial bodies are always accelerated because of gravitational, frictional, and other forces. In Section 11-09, on the other hand, we introduced a general Galilean transformation for accelerated systems. This transformation will now be applied to electrodynamics.

For simplicity, consider a charge distribution ρ in a vacuum. A universal time has been established by the procedure of Section 11-07, and electromagnetic effects are propagated at velocity C0 in accordance with Postulate V.

Since this is a Galilei transformation, increments of time and distance are invariant, so
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By definition,
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so
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or
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Now consider the transformation of the potentials. According to Eq. (2-15),
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where l is the distance from [image: image] to the field point P. A given volume element [image: image] is fixed in position with respect to P, so l is not a function of time. The charges are flowing through [image: image] so that ρ is generally a function of time and its retarded value must be used. Since [image: image], l′ = l, ρ′(t′) = ρ(t), and [ρ′] = [ρ], Eq. (12-53) reduces to
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Thus the scalar potential is invariant with respect to the accelerated Galilei transformation.

Throughout this section, we apply a definite technique to find how various quantities transform. The fundamental requirement is that an equation that defines a new quantity shall keep the same vector form in Systems O and O′. The definition of the vector potential, for example, is
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Substitutions of Eqs. (12-51) and (12-52) into the primed equation gives



[image: image]

or
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where
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For the familiar case where v = const,
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and the transformation becomes



[image: image]

Note the similarity to the Lorentz transformation. But in the general case, where the coordinate systems are accelerated, neither Eq. (12-56a) nor the Lorentz transformation applies, and Eq. (12-56) is needed. Thus the vector potential is not an invariant under the accelerated Galilei transformation.

We are now in a position to investigate the transformation of E and B. The electric field strength is defined as
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Making use of Eqs. (12-51) and (12-56), one obtains the transformation equation,
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If v = const, Eq. (12-59) reduces to
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The magnetic flux density is defined as
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Therefore, from Eq. (12-56),
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For the particular case of v = const,
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and if ∂A/∂t = 0 also, we obtain the familiar expression,
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The other two field vectors are obtained—for a vacuum—from the usual relations,
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Equations are listed in Table 12-04. A comparison with the Lorentz transformation is given in Table 12-05. The Galilei transformation equations for material media can also be developed, but this step will not be taken here.

A question remains as to the behavior of Maxwell’s equations under the accelerated Galilei transformation. It is easily shown that the equations,
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are valid for all accelerated coordinate systems. But the other two equations may contain additional terms when transformed to moving coordinate systems. Further study is needed of the possibility of securing invariance by slight modifications in the forms of these two equations.

12-12. Summary. Chapter 12 has applied transformation theory to electrodynamics. By introducing the new quantities Jj, Φj, Gjk, and Fjk, which are assumed to be tensors in 4-space, we are able to obtain transformation equations for the various electromagnetic quantities. This procedure yields an infinite number of possible transformations, corresponding to arbitrary values of k2; and all these transformations give invariance of Maxwell’s equations.14 But only one—the Lorentz transformation—seems to satisfy experiment.

It should be realized, however, that the use of tensor equations in 4-space is only one possible procedure. If a universal time is established, the transformation equations involve only the space variables. The transformations are then in 3-space instead of 4-space. This gives a different transformation of the electromagnetic quantities than would be obtained with k2 = 0 in the four-dimensional formulation. A comparison is given in Table 12-05.

One may wonder why the tensor approach is felt to be so important. If the electromagnetic quantities transform as tensors, this fact guarantees a transformation of the simplest type, linear in the partial derivatives ∂xi/∂xi′ and ∂xi′/∂xi and containing no additional terms. But the quantities of physics need not. transform as tensors. More complicated laws of transformation may be required to agree with experiment.

The concepts of Section 12-11 transform as scalars or as vectors under changes from one stationary coordinate system to another. But with moving systems, more general transformations are ordinarily required. For example, the current density transforms with additive term ρv:
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This is not a tensor transformation. Even in classical tensor calculus, the important quantity [image: image] is not a tensor but transforms with additional terms. The tensor approach to relativity is a beautiful mathematical dream which may or may not correspond to physical reality. The question is whether nature behaves in this simple linear manner.

A basic weakness of the Lorentz transformation is that it applies only to unaccelerated systems. An attempt to eliminate this restriction is made in Section 12-11 by use of an accelerated Galilean transformation in 3-space. A third procedure is employed in Sections 12-09 and 12-10, where low-veloeity results are obtained by common-sense methods, without use of transformation theory.

The Lorentz transformation and Einstein’s special relativity were introduced to obtain invariance of Maxwell’s equations. In glancing through the immense literature that has grown up on this subject since 1905, one cannot help but wonder if the invariance of Maxwell’s equations has not been overemphasized. After all, these equations do not constitute all of physics. Newton’s equations are also of some practical importance, and they are invariant under Galilei transformation but not under Lorentz transformation. Even in electrodynamics, most of the equations change their form when the Lorentz transformation is used (Table 12-03). Why are Maxwell’s equations given this exalted position at the expense of all other equations of physics?

Any equation of physics, which is not a definition, approximates the behavior of nature over only a restricted range of variables and to a restricted accuracy. It is not a “law of nature”—immutable, divinely accurate. Thus both Newton’s equations and Maxwell’s are mere approximations, based on a very limited range of low-veloeity, terrestrial experiments. In both cases, one may expect that correction terms, such as those in (v/c)2, will be necessary if the range of variables is extended. Slight changes in the Maxwell equations might make them invariant under the Galilei transformation, just as slight changes in the equations of Newtonian mechanics bring them into conformity with the Lorentz transformation.

Philosophically, the treatment of Maxwell’s equations in Einstein’s special relativity is a surprising one. These equations are given a privileged position as the unique laws of nature; and the invariance of these particular equations is allowed to warp all the rest of physics. Such a deification of Maxwell’s equations is hardly in accord with modern epistemology.

From a practical standpoint, the common-sense approach of Section 12-09 gives all that is needed in most engineering applications, even though it does ignore corrections of the order of (v/c)2.

We have seen that the four-dimensional formulation leads to results that are not in agreement with the postulates of the first ten chapters. Postulates I and V (Chap. 3) are violated by the Lorentz transformation:

(I) Newtonian mechanics is no longer valid, primarily because [image: image] and [image: image] are not invariants.

(V) The previous equation,
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Thus the Minkowski formulation modifies Postulates I and V and introduces the assumption of tensor invariance in 4-space.

On the other hand, the accelerated Galilei formulation requires modification of Postulates I and IV. Newtonian mechanics is still valid except at very high velocities or astronomical distances.15 But the establishment of a universal time requires a modified Postulate IV, as noted in Section 11-07. Actually, all these modifications are of rather academic interest, since the differences disappear at ordinary velocities.

Now for a few concluding remarks on the entire book! As stated in the Preface, a treatise on electrodynamics may be written in many different ways. We have deliberately chosen a postulational treatment, with media characterized by the parameters ∊, μ, and [image: images]. This gives a logical, closely knit development that covers most engineering applications with maximum simplicity and minimum ambiguity. Only when we come to moving matter (Chap. 12) does this simple procedure run into difficulties.

In the present state of science, therefore, we consider that the foregoing treatment is a desirable one for an engineering textbook. But the subject needs further development. The exact relationship between the macroscopic and the microscopic has never been formulated in a satisfactory manner. The whole question of retardation is still ambiguous. Presumably, the ultimate goal of electromagnetic theory is to express everything in terms of the behavior of elementary charges. But the achievement of this goal will require further research.
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TABLE 12-01. ELECTROMAGNETIC TENSORS IN 4-SPACE
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TABLE 12-02. SUMMARY OF FOUR-DIMENSIONAL RELATIONS
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TABLE 12-03. TRANSFORMATIONS (UNACCELERATED)
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TABLE 12-04. GALILEI TRANSFORMATIONS For Charge Distribution in a Vacuum
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TABLE 12-05. COMPARISON OF LORENTZ AND GALILEI TRANSFORMATIONS Unaccelerated Motion, Static Fields in a Vacuum, v ≪ C0
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PROBLEMS

Problem 12-01. Write out the details of the expansion of Eq. (12-17), and show that Eqs. (12-28) and (12-29) are obtained.

Problem 12-02. Repeat Prob. 12-01 for Fjk to obtain Eqs. (12-30) and (12-31).

Problem 12-03. Give a tensor Vijk with Vijk = 1 for i = j = k, and vijk = 0 for all other cases. Find Vi′j′k′, using Eq. (12-24).

Problem 12-04. Repeat Prob. 12-03 but for tensor Vijk and Eq. (12-22).

Problem 12-05. In System O, there is a stationary medium with



[image: image]

Using the general transformation of Table 12-03, obtain expressions for [image: ]||′, μ||′, [image: ]⊥′ μ⊥′ for System O′.

Problem 12-06. A homogeneous and isotropic conducting medium, stationary in System O, has resistivity [image: image]. Obtain expressions for [image: image] and [image: image] in System O′, using the general transformation of Table 12-03.

Problem 12-07. Fizeau found that if the velocity of light is c in a stationary liquid with parameters [image: ] and μ, the velocity of light is



[image: image]

for an observer moving at velocity v with respect to the liquid (v [image: images] c). Here n is the index of refraction of the liquid.

(a) Using the Lorentz transformation of velocity, Chap. 11, obtain an exact expression for c||′.

(b) Show that Fizeau’s expression is a good approximation for v [image: images] c.

(c) Is the Fizeau equation obtainable for other relativities where k2 ≠ 1/c02?

Problem 12-08. Consider the parallel-plate capacitor of Fig. 12-02. Using the common-sense method of Section 12-09, obtain an expression for H′ with

(a) Plates stationary in System O, dielectric stationary in System O′.

(b) Plates stationary in System O′, dielectric stationary in System O.

(c) Do these results depend on the [image: ] of the dielectric?

Problem 12-09. One form of unipolar generator consists of a circular, copper disk of radius a rotating on a shaft of radius b in a uniform magnetic field B0. Sliding contacts are applied to the shaft and to the periphery of the disk.

(a) By the method of Section 12-09, obtain an expression for the generated emf.

(b) If the flux density is



[image: image]

find an equation for the generated emf.

Problem 12-10. In Fig. 12-05, v(t) = azvm cos ωt as in Section 12-10, but



[image: image]

(a) Obtain an expression for V(t).

(b) What voltage is obtained by using the relation,



[image: image]

Problem 12-11. A piece of steel tubing R, Fig. 12-06, is coaxial with a long wire C carrying a direct current I1, The tubing moves upward at uniform velocity v.

(a) Obtain an expression for the generated emf.

(b) Does the emf change if the steel tubing is replaced by brass?



[image: image]

FIG. 12-06. The Cullwick experiment, Prob. 12-11.



† In a nonrelativistic treatment.


Appendix A

NOTATION






	Symbol
	Meaning
	Unit



	a, b
	= fixed distances.
	m



	a1, a2, a3
	= unit vectors in three mutually orthogonal directions.

	



	ax, ay, az
	= unit vectors in rectangular coordinates.

	



	ar, aψ, az
	= unit vectors in circular-eylinder coordinates.

	



	ar, aψ, az
	= unit vectors in spherical coordinates.
	



	ar, aθ, aψ
	= unit vectors in spherical coordinates.
	



	A, B, C, D
	= constants.
	



	A*, B*, C*, D*
	= complex constants.
	



	A
	= vector potential.
	weber m–1



	A*
	= complex vector potential.
	



	[image: images]
	= area.
	m2



	B
	= magnetic flux density.
	weber m–2



	B*
	= complex rms magnetic flux density.
	



	c
	= velocity of fight in a specified medium.
	m sec–1


	c0
	= velocity of light in a vacuum
	



	
	= 2.99792 × 108 m sec–1.
	


	C
	= capacitance.
	farad

	D
	= electric flux density.
	coul m–2

	D*
	= complex rms electric flux density.
	

	e
	= 2.71828 ... , the Naperian base.
	numeric

	E
	= electric field strength.
	volt m–1

	E*
	= complex rms electric field strength.
	

	f
	= frequency.
	hertz = sec-1

	fc
	= critical frequency.
	

	F
	= force.
	newton

	Fjk, Gjk
	= field tensors in 4-space (Chap. 12).
	

	[image: images]
	= force per unit charge.
	newton/coul

	H
	= magnetic field strength.
	amp-turn m–1

	H*
	= complex rms magnetic field strength
	

	[image: images]
	= Hankel functions of zero order (Chap. 8).

	

	[image: images]
	= Hankel functions of first order.
	

	i
	= (–l)½.
	

	I
	= current.
	amp

	I*
	= complex rms current.
	

	I/w
	= surface current density.
	amp m–1

	J
	= current density.
	amp m–2

	J*
	= complex rms current density.
	

	Js
	= current density at the surface.
	

	Jj
	= generalized current density in,4-space (Chap. 12).

	

	[image: images]
	 = Bessel functions of the first kind.
	

	k, K
	= constants.
	

	K*(θ)
	= distribution function for an antenna (Chap. 10).

	

	l
	= distance.
	m

	L
	= inductance.
	henry

	m
	= mass.
	kg

	m, n
	= integers.
	

	M
	= B/μ0 – H, magnetization vector (Chap. 12).

	amp-turn m–1

	M0, M1
	= magnitudes of Bessel functions (Chap. 7).

	

	N
	= number of free electrons per unit volume.

	m–3

	p,q
	= constants, not necessarily integers.
	

	P
	= power.
	watt

	Pav
	= time-average power.
	

	P*
	= V*Î*, “ complex power ”
	

	P
	= D – [image: ]0E, polarization vector.
	coul m–2

	Q
	= electric charge.
	coulomb

	|Qe|
	= magnitude of electronic charge
	

	
	= 1.6008 × 10–19 coulomb.
	

	r
	= radial distance.
	m

	r, ψ, z
	= circular-cylinder coordinates.
	

	r,θ,ψ
	= spherical coordinates.
	

	R
	= resistance.
	ohm

	[image: images]
	= resistivity.
	ohm-m

	s
	= distance.
	m

	S(t)
	= E × H = instantaneous Poynting vector.

	watt m–2

	S*
	= E* × Ĥ* = complex Poynting vector
	

	
	= Sav + iSQ.
	

	Sav
	= real part of the complex Poynting vector.

	watt m–2

	SQ
	= imaginary part of the complex Poynting vector.

	var m–2

	t
	= time in coordinate system O.
	sec

	t′
	= time in coordinate system O′.
	

	u
	= velocity in coordinate system O.
	m sec–1

	u′
	= velocity in coordinate system O′.
	

	v
	= velocity; velocity of coordinate system O′ with respect to O.

	

	V
	= voltage.
	volt

	V*
	= complex rms voltage.
	

	[image: images]
	= volume.
	m3

	W
	= energy.
	watt-sec

	x, y, z
	= rectangular coordinates at instant t.
	

	x′, y′ z′
	= rectangular coordinates at instant t′.
	

	x1, x2, x3, x4
	= coordinates in 4-space (Chap. 12).
	

	x4
	= ict, a coordinate in 4-space.
	

	[image: images]
	= Bessel functions of the second kind (Chap. 7).

	

	Z*
	= impedance.
	ohm

	Z0
	= characteristic impedance of a transmission line.

	

	[image: images]
	= complex impedance of a line, as seen from the generator.

	

	[image: images]
	= complex impedance of the load.
	

	α, β, γ
	= angles.
	radian

	β
	= [image: images]= phase constant.
	m–1

	γ
	= [image: images] (Chap. 12).
	

	Γ
	= phase constant for a waveguide (Chap. 9).
	

	Γ*(z)
	= [image: images] = reflectance.
	

	δ
	= [image: images] = equivalent skin thickness.
	m

	[image: ]
	= permittivity.
	farad m–1

	[image: ]0
	= permittivity of free space
	

	
	= 8.8552 × 10–12 farad m–1.
	

	ζ
	= α + 2π(a/λ) sin θ cos ψ (Chap. 10).
	

	η
	= (μ/[image: ])ν = intrinsic impedance.
	ohm

	η0
	= (μ0/[image: ]0)ν =377 ohms = intrinsic impedance of free space.

	

	θ
	= angle from z-axis.
	

	θ
	= phase angle between voltage and current.

	

	Θ
	= phase angle for skin effect, Section 7-04.

	

	λ
	= c/f = wavelength.
	m

	λc
	= critical wavelength.
	

	μ
	= permeability.
	henry m–1

	μ0
	= permeability of free space
	

	
	= 4π × 10‒7 henry m–1.
	

	ξ
	= a variable.
	

	ξ, η, ζ
	= space coordinates.
	

	ρ
	= charge density.
	coul m–3

	ρ*
	= complex rms charge density.
	

	σ
	= surface charge density.
	coul m–2

	τ
	= t – r/c = time.
	sec

	τ
	= [image: images], a parameter used in skin effect (Chap. 7).

	

	ϕ
	= electric scalar potential.
	volt

	ϕm
	= magnetic scalar potential.
	amp-turn

	Φ
	= magnetic flux.
	weber

	Φj
	= generalized potential in 4-space (Chap. 12).

	

	ψ
	= angle measured about the z-axis.
	

	ω
	= angular velocity.
	rad sec–1

	∇2
	= scalar Laplacian.
	

	[image: images]
	= vector Laplacian.
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Appendix C

THREE COORDINATE SYSTEMS

(A) RECTANGULAR COORDINATES (Fig. 1-01)
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Rectangular Coordinates. Solutions of Laplace’s Equation, ϕ independent of z:
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ϕ independent of y and z :



[image: images].

Here A, B, p are arbitrary constants which may be evaluated from the boundary conditions.

Rectangular Coordinates. Solutions of the Vector Helmholtz Equation,
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General Case



[image: images],

where j = x, y, or z, and
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For E independent of z,



[image: images],

or
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For E independent of y and z,



[image: images].

(B) CIRCULAR-CYLINDER COORDINATES (Fig. 1-02)
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Circular-Cylinder Coordinates. Solutions of Laplace’s Equation,

ϕ independent of z :



[image: images].

ϕ independent of ψ :



[image: images].

ϕ independent of r and z :



[image: images].

ϕ independent of ψ and z :



[image: images].

Here A, B, p, q are arbitrary constants which may be evaluated from the boundary conditions. [image: images] and [image: images] are Bessel functions of the first and second kinds, respectively.

Circular-Cylinder Coordinates. Solutions of the Vector Helmholtz Equation,



[image: images],

or
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For E independent of ψ,
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where i = r or ψ.



[image: images],



[image: images]

For E independent of ψ and z,



[image: images]

(C) SPHERICAL COORDINATES (Fig. 1-03)
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Spherical Coordinates. Solutions of Laplace’s Equation
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For ψ independent of ψ,
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where P and Qp are Lqgendre functions (see, for instance, Jahnke and Emde Tables of Functions). The most elementary of these solutions are
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For ϕ independent of θ and ψ,
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For ϕ independent of r and ψ,
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Spherical Coordinates. Solutions of the Vector Helmholtz Equation
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For E independent of ψ,



[image: images],

whose solutions are
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For E = aθEθ(r, θ)
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whose solutions are
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Appendix D

SOME DIFFERENTIAL EQUATIONS

(A) ORDINARY DIFFERENTIAL EQUATIONS
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where
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(B) PARTIAL DIFFERENTIAL EQUATIONS
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