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Preface 

This book is devoted to explaining a wide range of applications of con
tinuous symmetry groups to physically important systems of differential 
equations. Emphasis is placed on significant applications of group-theoretic 
methods, organized so that the applied reader can readily learn the basic 
computational techniques required for genuine physical problems. The first 
chapter collects together (but does not prove) those aspects of Lie group 
theory which are of importance to differential equations. Applications 
covered in the body of the book include calculation of symmetry groups 
of differential equations, integration of ordinary differential equations, 
including special techniques for Euler-Lagrange equations or Hamiltonian 
systems, differential invariants and construction of equations with pre
scribed symmetry groups, group-invariant solutions of partial differential 
equations, dimensional analysis, and the connections between conservation 
laws and symmetry groups. Generalizations of the basic symmetry group 
concept, and applications to conservation laws, integrability conditions, 
completely integrable systems and soliton equations, and bi-Hamiltonian 
systems are covered in detail. The exposition is reasonably self-contained, 
and supplemented by numerous examples of direct physical importance, 
chosen from classical mechanics, fluid mechanics, elasticity and other 
applied areas. Besides the basic theory of manifolds, Lie groups and alge
bras, transformation groups and differential forms, the book delves into the 
more theoretical subjects of prolongation theory and differential equations, 
the Cauchy-Kovalevskaya theorem, characteristics and integrability of 
differential equations, extended jet spaces over manifolds, quotient mani
folds, adjoint and co-adjoint representations of Lie groups, the calculus of 
variations and the inverse problem of characterizing those systems which 
are Euler-Lagrange equations of some variational problem, differential 
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operators, higher Euler operators and the variational complex, and the 
general theory of Poisson structures, both for finite-dimensional Hamil
tonian systems as well as systems of evolution equations, all of which have 
direct bearing on the symmetry analysis of differential equations. It is hoped 
that after reading this book, the reader will, with a minimum of difficulty, 
be able to readily apply these important group-theoretic methods to the 
systems of differential equations he or she is interested in, and make new 
and interesting deductions concerning them. If so, the book can be said to 
have served its purpose. 

A preliminary version of this book first appeared as a set of lecture notes, 
distributed by the Mathematical Institute of Oxford University, for a gradu
ate seminar held in Trinity term, 1979. It is my pleasure to thank the staff 
of Springer-Verlag for their encouragement for me to tum these notes into 
book form, and for their patience during the process of revision that turned 
out to be far more extensive than I originally anticipated. 
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Introduction 

When beginning students first encounter ordinary differential equations 
they are, more often than not, presented with a bewildering variety of special 
techniques designed to solve certain particular, seemingly unrelated types 
of equations, such as separable, homogeneous or exact equations. Indeed, 
this was the state of the art around the middle of the nineteenth century, 
when Sophus Lie made the profound and far-reaching discovery that these 
special methods were, in fact, all special cases of a general integration 
procedure based on the invariance of the differential equation under a 
continuous group of symmetries. This observation at once unified and 
significantly extended the available integration techniques, and inspired Lie 
to devote the remainder of his mathematical career to the development and 
application of his monumental theory of continuous groups. These groups, 
now universally known as Lie groups, have had a profound impact on all 
areas of mathematics, both pure and applied, as well as physics, engineering 
and other mathematically-based sciences. The applications of Lie's con
tinuous symmetry groups include such diverse fields as algebraic topology, 
differential geometry, invariant theory, bifurcation theory, special functions, 
numerical analysis, control theory, classical mechanics, quantum mechanics, 
relativity, continuum mechanics and so on. It is impossible to overestimate 
the importance of Lie's contribution to modern science and mathematics. 

Nevertheless, anyone who is already familiar with one of these modern 
manifestations of Lie group theory is perhaps surprised to learn that its 
original inspirational source was the field of differential equations. One 
possible cause for the general lack of familiarity with this important aspect 
of Lie group theory is the fact that, as with many applied fields, the Lie 
groups that do arise as symmetry groups of genuine physical systems of 
differential equations are often not particularly elegant groups from a purely 
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mathematical viewpoint, being neither semi-simple, nor solvable, nor any 
of the other special classes of Lie groups so popular in mathematics. 
Moreover, these groups often act nonlinearly on the underlying space (taking 
us outside the domain of representation theory) and can even be only locally 
defined, with the transformations making sense only for group elements 
sufficiently near the identity. The relevant group actions, then, are much 
closer in spirit to Lie's original formulation of the subject in terms of local 
Lie groups acting on open subsets of Euclidean space, and runs directly 
counter to the modern tendencies towards abstraction and globalization 
which have enveloped much of present-day Lie group theory. Historically, 
the applications of Lie groups to differential equations pioneered by Lie 
and Noether faded into obscurity just as the global, abstract reformulation 
of differential geometry and Lie group theory championed by E. Cartan 
gained its ascendency in the mathematical community. The entire subject 
lay dormant for nearly half a century until G. Birkhoff called attention to 
the unexploited applications of Lie groups to the differential equations of 
fluid mechanics. Subsequently, Ovsiannikov and his school began a system
atic program of successfully applying these methods to a wide range of 
physically important problems. The last two decades have witnessed a 
veritable explosion of research activity in this field, both in the applications 
to concrete physical systems, as well as extensions of the scope and depth 
of the theory itself. Nevertheless, many questions remain unresolved, and 
the full range of applicability of Lie group methods to differential equations 
is yet to be determined. 

Roughly speaking, a symmetry group of a system of differential equations 
is a group which transforms solutions of the system to other solutions. In 
the classical framework of Lie, these groups consist of geometric transforma
tions on the space of independent and dependent variables for the system, 
and act on solutions by transforming their graphs. Typical examples are 
groups of translations and rotations, as well as groups of scaling symmetries, 
but these certainly do not exhaust the range of possibilities. The great 
advantage oflooking at continuous symmetry groups, as opposed to discrete 
symmetries such as reflections, is that they can all be found using explicit 
computational methods. This is not to say that discrete groups are not 
important in the study of differential equations (see, for example, Hejhal, 
[1], and the references therein), but rather that one must employ quite 
different methods to find or utilize them. Lie's fundamental discovery was 
that the complicated nonlinear conditions of invariance of the system under 
the group transformations could, in the case of a continuous group, be 
replaced by equivalent, but far simpler, linear conditions reflecting a form 
of "infinitesimal" invariance of the system under the generators of the 
group. In almost every physically important system of differential equations, 
these infinitesimal symmetry conditions-the so-called defining equations 
of the symmetry group of the system-can be explicitly solved in closed 
form and thus the most general continuous symmetry group of the system 
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can be explicitly determined. The entire procedure consists of rather 
mechanical computations, and, indeed, several symbolic manipulation com
puter programs have been developed for this task. 

Once one has determined the symmetry group of a system of differential 
equations, a number of applications become available. To start with, one 
can directly use the defining property of such a group and construct new 
solutions to the system from known ones. The symmetry group thus provides 
a means of classifying different symmetry classes of solutions, where two 
solutions are deemed to be equivalent if one can be transformed into the 
other by some group element. Alternatively, one can use the symmetry 
groups to effect a classification of families of differential equations depend
ing on arbitrary parameters or functions; often there are good physical or 
mathematical reasons for preferring those equations with as high a degree 
of symmetry as possible. Another approach is to determine which types of 
differential equations admit a prescribed group of symmetries; this problem 
is also answered by infinitesimal methods using the theory of differential 
invariants. 

In the case of ordinary differential equations, invariance under a one
parameter symmetry group implies that we can reduce the order of the 
equation by one, recovering the solutions to the original equation from 
those of the reduced equation by a single quadrature. For a single first order 
equation, this method provides an explicit formula for the general solution. 
Multi-parameter symmetry groups engender further reductions in order, 
but, unless the group itself satisfies an additional "solvability" requirement, 
we may not be able to recover the solutions to the original equation from 
those of the reduced equation by quadratures alone. If the system of ordinary 
differential equations is derived from a variational principle, either as the 
Euler-Lagrange equations of some functional, or as a Hamiltonian system, 
then the power of the symmetry group reduction method is effectively 
doubled. A one-parameter group of "variational" symmetries allows one 
to reduce the order of the system by two; the case of multi-parameter 
symmetry groups is more delicate. 

Unfortunately, for systems of partial differential equations, the symmetry 
group is usually of no help in determining the general solution (although 
in special cases it may indicate when the system can be transformed into 
a more easily soluble system such as a linear system). However, one can 
use general symmetry groups to explicitly determine special types of sol
utions which are themselves invariant under some subgroup of the full 
symmetry group of the system. These "group-invariant" solutions are found 
by solving a reduced system of differential equations involving fewer 
independent variables than the original system (which presumably makes 
it easier to solve). For example, the solutions to a partial differential equation 
in two independent variables which are invariant under a given one-para
meter symmetry group are all found by solving a system of ordinary 
differential equations. Included among these general group-invariant sol-
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utions are the classical similarity solutions coming from groups of scaling 
symmetries, and travelling wave solutions reflecting some form of transla
tional invariance in the system, as well as many other explicit solutions of 
direct physical or mathematical importance. For many nonlinear systems, 
these are the only explicit, exact solutions which are available, and, as such, 
play an important role in both the mathematical analysis and physical 
applications of the system. 

In 1918, E. Noether proved two remarkable theorems relating symmetry 
groups of a variational integral to properties of its associated Euler
Lagrange equations. In the first of these theorems, Noether shows how each 
one-parameter variational symmetry group gives rise to a conservation law 
of the Euler-Lagrange equations. Thus, for example, conservation of energy 
comes from the invariance of the problem under a group of time translations, 
while conservation of linear and angular momenta reflect translational and 
rotational invariance of the system. Chapter 4 is devoted to the so-called 
classical form of this Noether theorem, in which only the geometrical types 
of symmetry groups are used. Noether herself proved a far more general 
result and gave a one-to-one correspondence between symmetry groups and 
conservation laws. The general result necessitates the introduction of "gen
eralized symmetries" which are groups whose infinitesimal generators 
depend not only on the independent and dependent variables of the system, 
but also the derivatives of the dependent variables. The corresponding group 
transformations will no longer act geometrically on the space of independent 
and dependent variables, transforming a function's graph point-wise, but 
are nonlocal transformations found by integrating an evolutionary system of 
partial differential equations. Each one-parameter group of symmetries of 
a variational problem, either geometrical or generalized, will give rise to a 
conservation law, and, conversely, every conservation law arises in this 
manner. The simplest example of a conserved quantity coming from a true 
generalized symmetry is the Runge-Lenz vector for the Kepler problem, 
but additional recent applications, including soliton equations and elasticity, 
has sparked a renewed interest in the general version of Noether's theorem. 
In Section 5.3 we prove a strengthened form of Noether's theorem, stating 
that for "normal" systems there is in fact a one-to-one correspondence 
between nontrivial variational symmetry groups and nontrivial conservation 
laws. The condition of normality is satisfied by most physically important 
systems of differential equations; abnormal systems are essentially those with 
nontrivial integrability conditions. An important class of abnormal systems, 
which do arise in general relativity, are those whose variational integral 
admits an infinite-dimensional symmetry group depending on an arbitrary 
function. Noether's second theorem shows that there is then a nontrivial 
relation among the ensuing Euler-Lagrange equations, and, consequently, 
nontrivial symmetries giving rise to only trivial conservation laws. Once 
found, conservation laws have many important applications, both physical 
and mathematical, including existence results, shock waves, scattering 
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theory, stability, relativity, fluid mechanics, elasticity and so on. See the 
notes on Chapter 4 for a more extensive list, including references. 

Neglected for many years following Noether's prescient work, general
ized symmetries have recently been found to be of importance in the study 
of nonlinear partial differential equations which, like the Korteweg-de Vries 
equation, can be viewed as "completely integrable systems". The existence 
of infinitely many generalized symmetries, usually found via the recursion 
operator methods of Section 5.2, appears to be intimately connected with 
the possibility of linearizing a system, either directly through some change 
of variables, or, more subtly, through some form of inverse scattering 
method. Thus, the generalized symmetry approach, which is amenable to 
direct calculation as with ordinary symmetries, provides a systematic means 
of recognizing these remarkable equations and thereby constructing an 
infinite collection of conservation laws for them. (The construction of the 
related scattering problem requires different techniques such as the prolong
ation methods of Wahlquist and Estabrook, [1].) 

A number of the applications of symmetry group methods to partial 
differential equations are most naturally done using some form of Hamil
tonian structure. The finite-dimensional formulation of Hamiltonian systems 
of ordinary differential equations is well known, but in preparation for the 
more recent theory of Hamiltonian systems of evolution equations, we are 
required to take a slightly novel approach to the whole subject of Hamil
tonian mechanics. Here we will de-emphasize the use of canonical coordin
ates (the p's and q's of classical mechanics) and concentrate instead on the 
Poisson bracket as the cornerstone of the subject. The result is the more 
general concept of a Poisson structure, which is easily extended to include 
the infinite-dimensional theory of Hamiltonian systems of evolution 
equations. An important special case of a Poisson structure is the Lie
Poisson structure on the dual to a Lie algebra, originally discovered by Lie 
and more recently used to great effect in geometric quantization, representa
tion theory, and fluid and plasma mechanics. In this general approach to 
Hamiltonian mechanics, conservation laws can arise not only from symmetry 
properties of the system, but also from degeneracies of the Poisson bracket 
itself. In the finite-dimensional set-up, each one-parameter Hamiltonian 
symmetry group allows us to reduce the order of a system by two. In its 
modern formulation, the degree of reduction available for multi-parameter 
symmetry groups is given by the general theory of Marsden and Weinstein, 
which is based on the concept of a momentum map to the dual of the 
symmetry Lie algebra. In more recent work, there has been a fair amount 
of interest in systems of differential equations which possess not just one, 
but two distinct (but compatible) Hamiltonian structures. For such a "bi
Hamiltonian system", there is a direct recursive means of constructing an 
infinite hierarchy of mutually commuting· flows (symmetries) and con
sequent conservation laws, indicating the system's complete integrability. 
Most of the soliton equations, as well as some of the finite-dimensional 
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completely integrable Hamiltonian systems, are in fact bi-Hamiltonian 
systems. 

Underlying much of the theory of generalized symmetries, conservation 
laws, and Hamiltonian structures for evolution equations is a subject known 
as the "formal calculus of variations", which constitutes a calculus 
specifically devised for answering a wide range of questions dealing with 
complicated algebraic identities among objects such as the Euler operator 
from the calculus of variations, generalized symmetries, total derivatives 
and more general differential operators, and several generalizations of the 
concept of a differential form. The principal result in the formal variational 
calculus is the local exactness of a certain complex-called the "variational 
complex"-which is in a sense the proper generalization to the variational 
or jet space context of the de Rham complex from algebraic topology. In 
recent years, this variational complex has been seen to play an increasingly 
important role in the deveiopment of the algebraic and geometric theory 
of the calculus of variations. Included as special cases of the variational 
complex are: 

(1) a solution to the "inverse problem of the calculus of variations", which 
is to characterize those systems of differential equations which are the 
Euler-Lagrange equations for some variational problem; 

(2) the characterization of "null Lagrangians", meaning those variational 
integrals whose Euler-Lagrange expressions vanish identically, as total 
divergences; and 

(3) the characterization of trivial conservation laws, also known as "null 
divergences", as "total curls". 

Each of these results is vital to the development of our applications of Lie 
groups to the study of conservation laws and Hamiltonian structures for 
evolution equations. Since it is not much more difficult to provide the proof 
of exactness of the full variational complex, Section 5.4 is devoted to a 
complete development of this proof and application to the three special 
cases of interest. 

Although the book covers a wide range of different applications of Lie 
groups to differential equations, a number of important topics have 
necessarily been omitted. Most notable among these omissions is the connec
tion between Lie groups and separation of variables. There are two reasons 
for this first, there is an excellent, comprehensive text-Miller, [3]-already 
available; second, except for special classes of partial differential equations, 
such as Hamilton-Jacobi and Helmholtz equations, the precise connections 
between symmetries and separation of variables is not well understood at 
present. This is especially true in the case of systems of linear equations, 
or for fully nonlinear separation of variables; in neither case is there even 
a good definition of what separation of variables really entails, let alone 
how one uses symmetry properties of the system to detect coordinate systems 
in which separation of variables is possible. I have also not attempted to 
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cover any of the vast area of representation theory, and the consequent 
applications to special function theory; see Miller, [1] or Vilenkin, [1]. 
Bifurcation theory is another fertile ground for group-theoretic applications; 
I refer the reader to the lecture notes of Sattinger, [1], and the references 
therein. Applications of symmetry groups to numerical analysis are given 
extensive treatment in Shokin, [1]. Extensions of the present methods to 
boundary value problems for partial differential equations can be found in 
the books of BIuman and Cole, [1], and Seshadri and Na, [1], and to free 
boundary problems in Benjamin and Olver, [1]. Although I have given an 
extensive treatment to generalized symmetries in Chapter 5, the related 
concept of contact transformations introduced by Lie has not been covered, 
as it seems much less relevant to the equations arising in applications, and, 
for the most part, is subsumed by the more general theory presented here; 
see Anderson and Ibragimov, [1], and the references therein for these types 
of transformation groups. Finally, we should mention the use of Lie group 
methods for differential equations arising in geometry, including, for 
example, motions in Riemannian manifolds, cf. Ibragimov, [1], or symmetric 
spaces and invariant differential operators associated with them, cf. 
Helgason, [1], [2]. 



Notes to the Reader 

The guiding principle in the organization of this book has been so as to 
enable the reader whose principal goal is to apply Lie group methods to 
concrete problems to learn the basic computational tools and techniques 
as quickly as possible and with a minimum of theoretical diversions. At the 
same time, the computational applications have been placed on a solid 
theoretical foundation, so that the more mathematically inclined reader can 
readily delve further into the subject. Each chapter following the first has 
been arranged so that the applications and examples appear as quickly as 
feasible, with the more theoretical proofs and explanations coming towards 
the end. Even should the reader have more theoretical goals in mind, though, 
I would still strongly recommend that they learn the computational tech
niques and examples first before proceeding to the more theoretical develop
ments. It has been said that it is far easier to abstract a general mathematical 
theory from a single well-chosen example than it is to apply an existing 
abstract theory to a specific example, and this, I believe, is certainly the 
case here. 

For the reader whose main interest is in applications, I would recommend 
the following strategy for reading the book. The principal question is how 
much of the introductory theory of manifolds, vector fields, Lie groups and 
Lie algebras (which has, for convenience, been collected together in Chapter 
1 and Section 2.1), really needs to be covered before one can proceed to 
the applications to differential equations starting in Section 2.2. The answer 
is, in fact, surprisingly little. Manifolds can for the most part be thought 
of locally as open subsets of a Euclidean space IR m in which one has the 
freedom to change coordinates as one desires. Geometrical symmetry groups 
will just be collections of transformations on such a subset which satisfy 
certain elementary group axioms allowing one to compose successive sym-
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metries, take inverses, etc. The key concept in the subject is the infinitesimal 
generator of a symmetry group. This is a vector field (of the type already 
familiar in vector calculus or fluid mechanics) on the underlying manifold 
or subset of IR m whose associated flow coincides with the one-parameter 
group it generates. One can regard the entire group of symmetries as being 
generated in this manner by composition of the basic flows of its infinitesimal 
generators. Thus a familiarity with the basic notation for and correspondence 
between a vector field and its flow is the primary concept required from 
Chapter 1. The other key result is the infinitesimal criterion for a system of 
algebraic equations to be invariant under such a group of transformations, 
which is embodied in Theorem 2.8. With these two tools, one can plunge 
ahead into the material on differential equations starting in Section 2.2, 
referring back to further results on Lie groups or manifolds as the need 
arises. 

The generalization of the infinitesimal invariance criterion to systems of 
differential equations rests on the important technique of "prolonging" the 
group transformations to include not only the independent variables and 
dependent variables appearing in the system, but also the derivatives of the 
dependent variables. This is most easily accomplished in a geometrical 
manner through the introduction of spaces whose coordinates represent 
these derivatives: the "jet spaces" of Section 2.3. The key formula for 
computing symmetry groups of differential equations is the prolongation 
formula for the infinitesimal generators in Theorem 2.36. Armed with this 
formula (or, at least the special cases appearing in the following example) 
and the corresponding infinitesimal invariance criterion, one is ready to 
compute the symmetry groups of well-nigh any system of ordinary or partial 
differential equations which may arise. Several illustrative examples of the 
basic computational techniques required are presented in Section 2.4; 
readers are also advised to try their hands at some additional examples, 
either those in the exercises at the end of Chapter 2, or some system of 
differential equations of their own devising. 

At this juncture, a number of options as to what to pursue next present 
themselves. For the devotee of ordinary differential equations, Section 2.5 
provides a detailed summary of the basic method .of Lie for integrating 
these equations using symmetry groups. See also Sections 4.2 and 6.3 for 
the case of ordinary differential equations with some form of variational 
structure, either in Lagrangian or Hamiltonian form. Those interested in 
determining explicit group-invariant solutions to partial differential 
equations can move directly on to Chapter 3. There the basic method for 
computing these solutions through reduction is outlined in Section 3.1 and 
illustrated by a number of examples in Section 3.2. The third section of this 
chapter addresses the problem of classification of these solutions, and does 
require some of the more sophisticated results on Lie algebras from Section 
1.4. The final two sections of Chapter 3 are devoted to the underlying theory 
for the reduction method, and are not required for applications, although 
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a discussion of the important Pi theorem from dimensional analysis does 
appear in Section 3.4. 

The reader whose principle interest is in the derivation of conservation 
laws using Noether's theorem can move directly from Section 2.4 to Chapter 
4, which is devoted to the "classical" form of this result. A brief review 
of the most basic concepts required from the calculus of variations is 
presented in Section 4.1. The introduction of symmetry groups and 
the basic infinitesimal invariance criterion for a variational integral is the 
subject of Section 4.2, along with the reduction procedures available for 
ordinary differential equations which are the Euler-Lagrange equations for 
some variational problem. The third section introduces the general notion 
of a conservation law. Here the treatment is more novel; the guiding concept 
is the correspondence between conservation laws and their "characteristics", 
although the technically complicated proof of Theorem 4.26 can be safely 
omitted on a first reading. Once one learns to deal with conservation laws 
in characteristic form, the statement and implementation of Noether's 
theorem is relatively straightforward. 

Beginning with Chapter 5, a slightly higher degree of mathematical 
sophistication is required, although one can still approach much of the 
material on generalized symmetries and conservation laws from a purely 
computational point of view with only a minimum of the Lie group 
machinery. The most difficult algebraic manipulations have been relegated 
to Section 5.4, where the variational complex is developed in its full glory 
for the true aficionado. Incidentally, Section 5.4, along with Chapter 7 on 
Hamiltonian structures for evolution equations are the only parts of the 
book where the material on differential forms in Section 1.5 is used to any 
great extent. Despite their seeming complexity, the proofs in Section 5.4 
are a substantial improvement over the current versions available in the 
literature. 

Chapter 6 on finite-dimensional Hamiltonian systems is by-and-Iarge 
independent of much of the earlier material in the book. Up through the 
reduction method for one-parameter symmetry groups, not very much of 
the material on Lie groups is required. However, the Marsden-Weinstein 
reduction theory for multi-parameter symmetry groups does require some 
of the more sophisticated results on Lie algebras from Sections 1.4 and 3.3. 
Chapter 7 depends very much on an understanding of the Poisson bracket 
approach to Hamiltonian mechanics adopted in Chapter 6, and, to a certain 
extent, the formal variational calculus methods of Section 5.4. Nevertheless, 
acquiring a basic agility in the relevant computational applications is not 
that difficult. 

The exercises which appear at the end of each chapter vary considerably 
in their range of difficulty. A few are fairly routine calculations based on 
the material in the text, but a substantial number provide significant 
extensions of the basic material. The more difficult exercises are indicated 
by an asterisk; one or two, signaled by a double asterisk, might be better 
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classed as miniature research projects. A number of the results presented 
in the exercises are new; otherwise, I have tried to give the most pertinent 
references where appropriate. Here references have been selected more on 
the basis of direct relevance for the problem as stated rather than on the 
basis of historical precedence. 

At the end of each chapter is a brief set of notes, mostly discussing the 
historical details and references for the results discussed there. While I 
cannot hope to claim full historical accuracy, these notes do represent a 
fair amount of research into the historical roots of the subject. I have tried 
to determine the origins and subsequent history of many of the important 
developments in the area. The resulting notes undoubtedly reflect a large 
number of personal biases, but, I hope, may provide the groundwork for 
a more serious look into the fascinating and, at times, bizarre history of 
this subject, a topic which is well worth the attention of a true historian of 
mathematics. Although I have, for the most part, listed what I determined 
to be significant papers in the historical development of the subject, owing 
to the great duplication of efforts over the decades, I have obviously been 
unable to provide an exhaustive listing of all the relevant references. I 
sincerely apologize to those authors whose work does playa significant role 
in the development, but was inadvertently missed from these notes. 



CHAPTER 1 

Introduction to Lie Groups 

Roughly speaking, a Lie group is a "group" which is also a "manifold". 
Of course, to make sense of this definition, we must explain these two basic 
concepts and how they can be related. Groups arise as an algebraic abstrac
tion of the notion of symmetry; an important example is the group of 
rotations in the plane or three-dimensional space. Manifolds, which form 
the fundamental objects in the field of differential geometry, generalize the 
familiar concepts of curves and surfaces in three-dimensional space. In 
general, a manifold is a space that locally looks like Euclidean space, but 
whose global character might be quite different. The conjunction of these 
two seemingly disparate mathematical ideas combines, and significantly 
extends, both the algebraic methods of group theory and the multi-variable 
calculus used in analytic geometry. This resulting theory, particularly the 
powerful infinitesimal techniques, can then be applied to a wide range of 
physical and mathematical problems. 

The goal of this chapter is to provide the reader with a relatively quick 
and painless introduction to the theory of manifolds and Lie groups in a 
form that will be conducive to applications to differential equations. No 
prior knowledge of either group theory or differential geometry is required, 
but a good background in basic analysis (i.e. "advanced calculus"), includ
ing the inverse and implicit function theorems, will be assumed. Of necessity, 
proofs of most of the "hard" theorems in Lie group theory will be omitted; 
references can be found in the notes at the end of the chapter. 

Throughout this chapter, I have tried to strike a balance between the 
local coordinate picture, in which a manifold just looks like an open subset 
of some Euclidean space, and the more modem global formulation of the 
theory. Each has its own particular uses and advantages, and it would be 
a mistake to emphasize one or the other unduly. The applications-oriented 
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reader might question the inclusion of the global framework here, since 
admittedly most of the applications of the theory presented in this book 
take place on open subsets of Euclidean space. Suffice it to say that the 
geometrical insight and understanding offered by the general notion of a 
manifold amply repays the relatively slight effort required to gain familiarity 
with the definition. However, if the reader still remains unconvinced, they 
can replace the word "manifold" wherever it occurs by "open subset of 
Euclidean space" without losing too much of the flavour or range of 
applicability of the theory. With this approach, they should concentrate on 
the sections on local Lie groups (which were, indeed, the way Lie himself 
thought of Lie groups) and use these as the principal objects of study. 

The first section gives a basic outline of the general concept of a manifold, 
the second doing the same for Lie groups, both local and global. In practice 
Lie groups arise as groups of symmetries of some object, or, more precisely, 
as local groups of transformations acting on some manifold; the second 
section gives a brief look at these. The most important concept in the entire 
theory is that of a vector field, which acts as the "infinitesimal generator" 
of some one-parameter Lie group of transformations. This concept is funda
mental for both the development of the theory of Lie groups and the 
applications to differential equations. It has the crucial effect of replacing 
complicated nonlinear conditions for the symmetry of some object under 
a group of transformations by easily verifiable linear conditions reflecting 
its infinitesimal symmetry under the corresponding vector fields. This 
technique will be explored in depth for systems of algebraic and differential 
equations in Chapter 2. The notion of vector field then leads to the concept 
of a Lie algebra, which can be thought of as the infinitesimal generator of 
the Lie group itself, the theory of which is developed in Section 1.4. The 
final section of this chapter gives a brief introduction to differential forms 
and integration on manifolds. 

1.1. Manifolds 

Throughout most of this book, we will be primarily interested in objects, 
such as differential equations, symmetry groups and so on, which are defined 
on open subsets of Euclidean space IRm. The underlying geometrical features 
of these objects will be independent of any particular coordinate system 
on the open subset which might be used to define them, and it becomes of 
great importance to free ourselves from the dependence on particular local 
coordinates, so that our objects will be essentially "coordinate-free". More 
specifically, if U c IR m is open and t/J: U ~ V, where V c IR m is open, is any 
diffeomorphism, meaning that t/J is an infinitely differentiable map with 
infinitely differentiable inverse, then objects defined on U will have 
equivalent counterparts on V. Although the precise formulae for the object 
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Figure 1. Coordinate charts on a manifold. 

on V and its counterpart on V will, in general, change, the essential 
underlying properties will remain the same. Once we have freed ourselves 
from this dependence on coordinates, it is a small step to the general 
definition of a smooth manifold. From this point of view, manifolds provide 
the natural setting for studying objects that do not depend on coordinates. 

Definition 1.1. An m-dimensional manifold is a set M, together with a 
countable collection of subsets Va C M, called coordinate charts, and one-to
one functions Xa: Va ~ Va onto connected open subsets Va of IR m , called 
local coordinate maps, which satisfy the following properties: 

(a) The coordinate charts cover M: 

a 

(b) On the overlap of any pair of coordinate charts Va n V/3 the composite 
map 

is a smooth (infinitely differentiable) function. 
(c) If x E Va, X E V/3 are distinct points of M, then there exist open subsets 

W of Xa(x) in Va and W of X/3(x) in V/3 such that 

X:\W) n X~l( W) = 0. 

The coordinate charts Xa: Va ~ Va endow the manifold M with the 
structure of a topological space. Namely, we require that for each open 
subset We Va C IR m, X:l( W) be an open subset of M. These sets form a 
basis for the topology on M, so that V c M is open if and only if for each 
x E V there is a neighbourhood of x of the above form contained in V; so 
X E X:l( W) c V where Xa: Va ~ Va is a coordinate chart containing x, and 
W is an open subset of Va. In terms of this topology, the third requirement 
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in the definition of a manifold is just a restatement of the Hausdorff 
separation axiom: If x,e x are points in M, then there exist open sets U 
containing x and if containing x such that Un if = 0. In Chapter 3, we 
will have occasion to drop this property and consider non-Hausdorff mani
folds. Many of the results of the other chapters remain true in this more 
general context, but as this introduces some technical complications we will 
work exclusively with Hausdorff manifolds except in the relevant sections 
of Chapter 3. 

The degree of differentiability of the overlap functions X/3 0 X~\ deter
mines the degree of smoothness of the manifold M. We will be primarily 
interested in smooth manifolds, in which the overlap functions are smooth, 
meaning Coo, diffeomorphisms on open subsets of IRm. If we require the 
overlap functions X/3 0 X~\ to be real analytic functions, then M is called 
an analytic manifold. Most classical examples of manifolds are in fact 
analytic. Alternatively, we can weaken the differentiability requirements 
and consider Ck-manifolds, in which the overlap functions are only required 
to have continuous derivatives up to order k. Many of our results hold 
under these weaker differentiability requirements, but to avoid keeping track 
of precisely how many continuous derivatives are needed at each stage, we 
simply stick to the case of smooth or, occasionally, analytic manifolds. The 
weakening of our differentiability hypotheses is left to the interested reader. 
We begin by illustrating the general definition of a manifold with a few 
elementary examples. 

Example 1.2. The simplest m-dimensional manifold is just Euclidean space 
IRm itself. There is a single coordinate chart U = IR m, with local coordinate 
map given by the identity: X =]: IR m ~ IRm. More generally, any open subset 
U c IR m is an m-dimensional manifold with a single coordinate chart given 
by U itself, with local coordinate map the identity again. Conversely, if M 
is any manifold with a single global coordinate chart X: M ~ V c IR m, we 
can identify M with its image V, an open subset of IRm. 

Example 1.3. The unit sphere 

is a good example of a nontrivial two-dimensional manifold realized as a 
surface in 1R3. Let 

U\ = S\{(O, 0, l)}, 

be the subsets obtained by deleting the north and south poles respectively. 
Let 

a = 1, 2, 
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be stereo graphic projections from the respective poles, so 

XI(X'Y'Z)=C~Z'l~J, X2(X'Y'Z)=C:Z'1~J· 
It can be easily checked that on the overlap U I n U2 , 

XI ° X21: 1R\{0}~1R2\{0} 

is a smooth diffeomorphism, given by the inversion 

XI ° X21(X, y) = C2: y2' X2~ y2)' 

5 

The Hausdorff separation property follows easily from that of 1R3, so S2 is 
a smooth, indeed analytic, two-dimensional manifold. The unit sphere is a 
particular case of the general concept of a surface in 1R3 , which historically 
provided the principal motivating example for the development of the 
general theory of manifolds. 

Example 1.4. An easier example is the unit circle 

Sl = {(x, y): x2+ y2 = I}, 

which is similarly seen to be a one-dimensional manifold with two coordinate 
charts. Alternatively, we can identify a point on Sl with its angular coordin
ate e, where (x, y) = (cos e, sin e), with two angles being identified if they 
differ by an integral multiple of 27T. 

The Cartesian product 

T2= Sl XSI 

of SI with itself is a two-dimensional manifold called a torus, and can be 
thought of as the surface of an inner tube. (See Example 1.6.) The points 
on T2 are given by pairs (e, p) of angular coordinates, with two pairs being 
identified if they differ by integral multiples of 27T. In other words, (e, p) 
and (8, ji) describe the same point on T2 if and only if 

e - 8 = 2k7T and p - ji = 2/7T, 

for integers k, I. Thus T2 can be covered by two coordinate charts 

UI = {(e, p): 0 < e < 27T, 0< P < 27T}, 

U2 = {( e, p): 7T < e < 37T, 7T < P < 3 7T}, 

with overlap function 

{ 

(e, p), 

-I (e -27T, p), 
XI O X2 (e,p)= (e,p-27T), 

(e - 27T, P - 27T), 

7T < e <27T, 

27T < e < 37T, 

7T < e < 27T, 

27T < e < 37T, 

7T<p <27T, 

7T<p<27T, 

27T < P < 37T, 

27T < P < 37T 
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on the intersection UI n U2 , which is the set of all «(J, p) with neither (J nor 
p being an integral multiple of 7T. More generally, an m-dimensional torus 
is given by the m-fold Cartesian product T m = 8 1 X· .• X 8 1 of 8 1 with itself. 

In general, if M and N are smooth manifolds of dimension m and n 
respectively, "then their Cartesian product M x N is easily seen to be a 
smooth (m + n)-dimensional manifold. If Xa: Ua -+ Va C IRm, and XfJ: VfJ-+ 
VfJ c IR n are coordinate charts on M and N respectively then their Cartesian 
products 

provide coordinate charts on M x N. The verification of the requirements 
of Definition 1.1 for M x N are left to the reader. 

Change of Coordinates 

Besides the basic coordinate charts Xa: Ua -+ Va given in the definition of 
M, one can always adjoin many additional coordinate charts x: U -+ V c IRm, 

subject to the requirement that they be compatible with the given charts. 
This means that for each a, X 0 X~I is smooth on the intersectionXa( U n Ua). 
Thus, restriction of a given set of local coordinates Xa to a smaller chart 
Va C Ua will also be a valid coordinate chart. An additional possibility is 
to compose a given local coordinate map Xa: Ua -+ Va with any diffeomorph
ism I/!: Va -+ Va of IRm. Such a diffeomorphism is referred to as a change of 
coordinates. Since both Xa and I/! 0 Xa are equally valid local coordinates 
on the chart Ua, any property of M, or object defined on M, must be 
independent of any particular choice of local coordinates. (Of course, the 
explicit formulae for the given object may change when going from one 
coordinate chart to another, but the intrinsic characterization of the object 
remains coordinate-free.) If we choose to define an object on a manifold 
using its formula in a given coordinate chart, we must then check that the 
definition is actually independent of the particular coordinates used. This 
will require an investigation into how the object behaves under changes of 
coordinates. Often, as computations are most easily done in local coordin
ates, the choice of a special coordinate chart in which the object of interest 
takes a particularly simple form will enable us to considerably simplify 
many of these computations. The use of this basic technique will become 
clearer as we continue. 

Often one expands the collection of coordinate charts to include all those 
compatible with the defining charts. The resulting collection, called a 
maximal collection of charts or atlas on M, still satisfies the basic properties 
(a), (b), (c) of Definition 1.1 (but, of course, is no longer countable!). The 
easy details of proving that two charts, compatible with the defining charts, 
are mutually compatible, are left to the reader. 
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Usually, in talking about local coordinates on a manifold, we will 
dispense with explicit reference to the map Xa defining the local coordinate 
chart, and speak as if the local coordinate expressions were identical with 
the corresponding points on the manifold itself. Thus, we will say "let 
x = (x\ ... , xm) be local coordinates on M", which, more precisely, means 
that there is a local coordinate chart Xa: Va -+ Ja, with Va C M open, 
Va C IR m open, and such that each p in Va has local coordinates x = Xa(P). 
Since Xa is one-to-one, we can clearly identify p with its local coordinate 
expression x. By the compatibility condition, we know that y = (y I, .•• , ym) 
are also local coordinates if and only if on the overlap of the two coordinate 
charts there is a diffeomorphism y = I/I(x) defined on an open subset of IR m 

relating the two coordinates. For example, in the case of the circle Sl, the 
angle -7T<8=arctan(y/x)<7T is a local coordinate on S\{(-l,O)}. The 
ratio p=y/x is a local coordinate on Sln{X>O}. On the overlap, the 
change of coordinates is given by p = tan 8, which is a diffeomorphism from 
the interval (-7T/2, 7T/2) to IR. 

Maps Between Manifolds 

If M and N are smooth manifolds, a map F: M -+ N is said to be smooth 
if its local coordinate expression is a smooth map in every coordinate chart. 
In other words, for every coordinate chart Xa: Va -+ Va C IR m on M and 
every chart X/3: U/3 -+ V/3 c IR" on N, the composite map 

X/3 0 F 0 X;I: IR m -+ IR" 

is a smooth map wherever it is defined (i.e. on the subset Xa[ Va n F- 1 ( U/3)]). 
In other words, a smooth map is of the form y = F(x), where F is a smooth 
function on the open subsets giving local coordinates x on M and y on N. 

Example 1.5. An easy example is given by the map f: IR-+ S\ f(t) = 
(cos t, sin t). In terms of the angular coordinate 8 on S\ f is a linear 
function: 8 = t mod 27T, and so is clearly smooth. 

Example 1.6. For a less trivial example we show how the torus T2 can be 
mapped smoothly into 1R3. Define F: T2 -+ 1R3 by 

F(8, p) = «Y'2+cos p) cos 8, (Y'2+cos p) sin 8, sin p). 

Then F is clearly smooth in 8 and p, and one-to-one. The image of F is 
the imbedded torus in 1R3 given by the single equation 

x 2+ y2+ Z2+ 1 = 2.J2(x2+ y2). 

Thus T2 can be realized as a surface in 1R3. The local coordinates (8, p) on 
T2 serve as a parametrization of the image in 1R3. 
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The Maximal Rank Condition 

Definition 1.7. Let F: M ~ N be a smooth mapping from an m-dimensional 
manifold M to an n-dimensional manifold N. The rank of F at a point 
XE M is the rank of the n x m Jacobian matrix (aFi/a~) at x, wherey = F(x) 
is expressed in any convenient local coordinates near x. The mapping F is 
of maximal rank on a subset ScM if for each XES the rank of F is as 
large as possible (i.e. the minimum of m and n). 

The reader can easily check that the definition of the rank of F at x does 
not depend on the particular local coordinates chosen on M or on N. For 
example, the rank of F(x, y) = xy on 1R2 is 1 at all points except the origin 
(0,0) since its Jacobian matrix (Fx, Fy) = (y, x) is nonzero except at x = y = O. 
(Here and elsewhere, subscripts denote derivatives, so Fx = aF / ax, etc.) 

Theorem 1.8. Let F: M ~ N be of maximal rank at Xo E M. Then there are 
local coordinates x = (x\ ... ,xm) near xo, and y = (/, ... ,yn) near Yo = 
F(xo) such that in these coordinates F has the simple form 

y = (x\ ... , x m, 0, ... ,0), if n> m, 

or 

y = (x\ ... , x n ), if n ~m. 

This theorem is an easy consequence of the implicit function theorem
see Boothby, [1; Theorem 11.7.1] for the proof. It is the first illustration of 
our contention that one can significantly simplify objects (in this case 
functions) on manifolds through a judicious choice of local coordinates. 

Submanifolds 

The previous examples of surfaces in 1R3 -the sphere and the torus-are 
special cases of the general notion of a submanifold. NaIvely, given a 
smooth manifold M, a submanifold N c M should be a subset which is 
also a smooth manifold in its own right. However, this preliminary definition 
can be interpreted in several fundamentally different ways, so we need to 
be more careful. There are also several methods of describing submanifolds, 
either implicitly by the vanishing of some smooth functions, as was the case 
with the sphere, or parametrically by some local parametrization, as we did 
initially with the torus. Both methods are very useful; we begin though with 
the latter, which leads to a more general notion of submanifolds. 

Definition 1.9. Let M be a smooth manifold. A submanifold of M is a subset 
N c M, together with a smooth, one-to-one map <p: N ~ N c M satisfying 
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the maximal rank condition everywhere, where the parameter space N is 
some other manifold and N = cp(N) is the image of cpo In particular, the 
dimension of N is the same as that of N, and does not exceed the dimension 
of M. 

The map cp is often called an immersion, and serves to define a parametriz
ation of the submanifold N. Often such a submanifold is referred to as an 
immersed submanifold, to emphasize the difference of this definition with 
other notions of submanifold. In this book, the term "submanifold" without 
qualifications always refers to "immersed submanifold" as in the above 
definition. The maximal rank condition is needed to ensure that N does 
not have singularities. For instance, the function cp (t) = (t 2 , t3 ) is a smooth 
map from IR to 1R2, but the image of cp is the curve i = x 3 , which has a 
cusp at (0, 0). The Jacobian matrix is 4>( t) = (2t, 3 t2 ), which is not of maximal 
rank at t = 0, indicating the appearance of a singularity in the image of cpo 

The following series of examples will indicate some of the possibilities 
for submanifolds which are allowed by this definition. As the reader will 
see, although the maximal rank condition does have the effect of eliminating 
singularities like cusps, general submanifolds can still exhibit rather bizarre 
properties. 

Example 1.10. In all of these examples of submanifolds, the parameter space 
N = IR is the real line, with cp: IR ~ M parametrizing a one-dimensional 
submanifold N = cp(lR) of some manifold M. 

(a) Let M = 1R3. Then 

cp ( t) = (cos t, sin t, t) 

defines a circular helix spiralling up the z-axis. Here cp is clearly one-to-one, 
and 4> = ( -sin t, cos t, 1) never vanishes, so the maximal rank condition 
holds. 

(b) Let M = 1R2, and 

cp(t) = ((1 + e- t ) cos t, (1 + e- t ) sin t). 

Then as t~OO, N spirals into the unit circle X2+y2=1. Similarly, ¢(t)= 
(e- t cos t, e- t sin t) defines a logarithmic spiral at the origin. 

( c) Let M = 1R2 again, and consider the map 

J(t) = (sin t, 2 sin(2t)). 

Then J parametrizes a figure eight, which is a curve with self-intersections; 
namely J(t) = (0, 0) whenever t is an integral mUltiple of 7T. By slightly 
modifying this example, for instance 

cp(t) = (sin(2 arctan t), 2 sin(4 arctan t)), 

we can arrange that the parametrization is one-to-one, with the curve passing 
through the origin just once. The maximal rank condition holds everywhere. 
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y 

x 

Figure 2. Examples of submanifolds. 

The image of 4> is again the figure eight, so we have a parametrization of 
a submanifold with "apparent" self-intersections, even though the immer
sion 4> is one-to-one. Note that the same figure eight can be parametrized 
in a different, inequivalent way: 

J;(t) = (-sin(2 arctan t), 2 sin(4 arctan t)). 

The image of J; is the same, but the composition 4> 0 J;-I: IR~IR is not a 
continuous map! 

This example shows that in general we must specify not only the subset 
N eM, but also the immersion 4>: IV ~ M in order to define a submanifold 
unambiguously. 

(d) Let M = T2 be the two-dimensional torus with angular coordinates 
(8, p). Let 4>: IR ~ T2 be the curve 4>( t) = (t, wt), where w is some fixed real 
number and the coordinates are taken modulo integral multiples of 21T' as 
before. Note that ~ = (1, w), so the maximal rank condition is satisfied. If 
w = p / q is a rational number, then 4> is not one-to-one; indeed 4> (t + 21T'q ) = 
4>(t), so the image of 4> is a closed curve on T2. It can be realized as a 
one-dimensional manifold by using IV = Sl as the parametrizing manifold, 
with J;( 8) = (q8, wq8), 8 E Sl (provided p and q have no common factors). 
If w is irrational, 4> itself is one-to-one and the image curve N = 4>(IR) can, 
without too much difficulty, be shown to a dense submanifold of T2 whose 
closure is the entire torus. (See Boothby, [1; p. 86] for the details.) An 
analogous example can be constructed in 1R3 by following 4> with the map 
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F: T2 ~ 1R3 given in Example 1.6. Thus for w irrational, 

cf>(t) = «J2+cos wt) cos t, (J2+cos wt) sin t, sin wt) 

parametrizes a one-dimensional submanifold of 1R3 whose closure is the 
entire two-dimensional toroidal surface x2+ y2+ Z2+ 1 = 2.h(x2+ y2). 

Regular Submanifolds 

The latter two examples in 1.10 are perhaps more pathological than what 
one might wish to consider as submanifolds. Although, as we will see, there 
are good reasons for retaining Definition 1.9 as the general definition of a 
submanifold, it is also helpful to distinguish a class of examples, the regular 
submanifolds, which corresponds perhaps more accurately to one's intuitive 
notion of submanifold. 

Definition 1.11. A regular submanifold N of a manifold M is a submanifold 
parametrized by cf>: N ~ M with the property that for each x in N there 
exist arbitrarily small open neighbourhoods U of x in M such that 
cf>-I[ U n N] is a connected open subset of N. 

In Example 1.10, (a) and (b) are both regular submanifolds, whereas 
(c) and (d) ( for irrational w) are not. In case (c), any neighbourhood U 
of (0,0) will contain both the piece of the curve passing through (0,0) 
together with the two "ends" of the curve coming back to the origin. In 
other words, cf> -1[ U] consists of at least three disjoint open intervals 
(-00, a), (b, c), (d, +(0) with a < b <0< c< d. Similarly in case (d), if w is 
irrational and U is any open subset of T2, then cf> -1[ U] consists of an 
infinite collection of disjoint open intervals. 

As a consequence of the Implicit Function Theorem 1.8 we obtain a 
local-coordinate characterization of regularity. 

Lemma 1.12. An n-dimensional submanifold N eM is regular if and only if 
for each XoE N there exist local coordinates x = (xt, ... , xm) defined on a 
neighbourhood U of Xo such that 

N n U={x: x n+ 1 = ... =xm =O}. 

Such a coordinate chart is called a flat coordinate chart on M. Note that, 
in view of this lemma, for regular sub manifolds N c M we can dispense 
with the parametrizing manifold N and just treat N as a manifold in its 
own right. Namely the flat local coordinates x = (xt, ... , xm) on U eM 
induce local coordinates, namely :i = (xt, ... ,xn ), on Un N. The para
metrization thereby is replaced by the natural inclusion N c M. 
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Implicit Submanifolds 

Instead of defining a surface Sin 1R3 parametrically, an alternative method 
is to define it implicitly by the vanishing of a smooth function: 

S = {F(x, y, z) = O}. 

If we assume that the gradient V F = (Fx , Fy , Fz ) never vanishes on S, then 
by the implicit function theorem, at each point (xo, Yo, zo) in S we can solve 
for one of the variables x, y or z in terms of the other two. Thus if 
Fz(xo, Yo, zo) ¥- 0, there is a neighbourhood Va of (xo, Yo, zo) such that in 
Va, S is given as the graph z = f(x, y) of some smooth function f defined 
on an open subset Va C 1R2. This permits us to define a local coordinate 
chart on S by projecting along the z-axis; in other words, set {ja = S n Va, 
with Xa: (ja ~ Va, Xa(x, y, z) = (x, y). Similar constructions apply if Fy or 
Fx is nonzero. On the overlap {ja n {jf3' if (ja is given by z = f(x, y), so 
Xa(x, y, z) = (x, y), and (jf3 by y = h(x, z), say, so Xf3(x, y, z) = (x, z), then 

Xf3 0 X :I(X, y) = Xf3 (x, y,f(x, y)) = (x,f(x, y)), 

which is clearly smooth with smooth inverse Xa 0 X~I(X, z) = (x, h(x, z)). 
Thus S is a two-dimensional submanifold of 1R3. This motivates the general 
concept of an implicitly defined submanifold. 

Theorem 1.13. Let M be a smooth m-dimensional manifold, and F: M ~ IR n, 
n ~ m, be a smooth map. If F is of maximal rank on the subset N = 
{x: F(x) = O}, then N is a regular, (m - n)-dimensional submanifold of M. 

The proof of this theorem follows easily from the implicit function 
theorem using arguments similar to the above case of surfaces in 1R3. Indeed, 
Theorem 1.8 says that we can choose local coordinates x = (Xl, ... , xm) on 
M near each XoE N such that F(x) = (x\ ... , xn). Thus, in terms of these 
coordinates, N = {Xl = ... = xn = O}, and so the x's provide the flat local 
coordinates for N near Xo. Moreover, the latter m - n components 
(x n+\ ... ,xm) then provide local coordinates on N itself. In particular, 
this proves that N is a regular submanifold. Note especially that we do not 
require that the rank of F be maximal everywhere on M -this condition 
is only needed on the subset N where F vanishes. If, however, F is of 
maximal rank everywhere, then every level set of F, {x: F(x) = c}, is a regular 
(m - n)-dimensional submanifold of M. 

For example, F(x, y, z) = x 2 + y2 + Z2 - 2J2(x2 + y2) is of maximal rank 
everywhere on 1R3 except on the z-axis (where it is not even smooth) and 
the circle {x2+ y2 = 2, z = O}. The levels sets {(x, y, z): F(x, y, z) = c} are tori 
for -2< c <..fi - 2, and like spheres with indented corners on the z-axis 
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for c~v'2-2. For c=-2, the level set is the circle {X2+y2=2,z=0}, on 
which the gradient of F vanishes. This example shows the importance of 
both the differentiability and the maximal rank conditions for the validity 
of the theorem. 

Curves and Connectedness 

A curve C on a smooth manifold M is parametrized by a smooth map 
~: I ~ M where I is a subinterval of R In local coordinates, C is defined 
by m functions x = ~(t) = (~I{t), ... , ~m{t)). Note that we are not requiring 
that ~ be one-to-one-so a curve can have self-intersections, or be of 
maximal rank-so a curve can have singularities like cusps. In consequence, 
curves are more general than one-dimensional submanifolds. A particularly 
degenerate curve occurs when ~(t) == Xo for all t, for some fixed xo, so C 
consists of just one point. A closed curve is one whose endpoints coincide: 
~(a) = ~(b), with I = [a, b], a closed interval. 

A topological space is connected if it cannot be written as the disjoint 
union of two open sets. Since any manifold looks locally like Euclidean 
space, it is not difficult to prove that any connected manifold is pathwise 
connected, meaning that there is a smooth curve joining any pair of points. 
For our purposes, it will be very useful to impose, from the outset, the 
requirement that all manifolds under consideration are connected. 

Blanket Hypothesis. Unless explicitly stated otherwise, all manifolds (submani
folds, etc.) are assumed to be connected. 

This will avoid constantly restating the connectedness condition in the 
statement of our results. 

A manifold M is simply-connected if every closed curve C c: M can be 
continuously deformed to a point. This is equivalent to the existence of a 
continuous map 

H:[O,I]x[O,l]~M 

such that H{t,O)=xo for all 0,;;; t,;;; 1, while H{t, 1), 0,;;; t,;;;1 parametrizes 
C. For example, ~m is simply-connected, while ~\{O} is not, as there is no 
way to continuously contract the unit circle to a point without passing 
through the origin. {On the other hand, ~m\{O} is simply connected for 
m ~ 3.) If M is any manifold, there exists a simply-connected covering 
manifold 7T:!VI ~ M, where the covering map 7T is onto and a local 
diffeomorphism. For example, the simply-connected cover of the unit circle 
SI is the real line ~ with covering map 7T{t) = {cos t,sin t), tER 
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1.2. Lie Groups 

At first sight, a Lie group appears to be a somewhat unnatural marriage 
between on the one hand the algebraic concept of a group, and on the other 
hand the differential-geometric notion of a manifold. However, as we shall 
soon see, this combination of algebra and calculus leads to powerful 
techniques for the study of symmetry which are not available for, say, finite 
groups.t We begin by recalling the definition of an abstract group. 

Definition 1.14. A group is a set G together with a group operation, usually 
called multiplication, such that for any two elements g and h of G, the 
product g' h is again an element of G. The group operation is required to 
satisfy the following axioms: 

(1) Associativity. If g, hand k are elements of G, then 

g' (h· k)=(g· h)· k. 

(2) Identity Element. There is a distinguished element e of G, called the 
identity element, which has the property that 

e'g=g=g'e 

for all g in G. 
(3) Inverses. For each g in G there is an inverse, denoted g-t, with the 

property 

g' g-I = e = g-I . g. 

Before proceeding to Lie groups, we discuss a couple of elementary 
examples of groups which give some idea of the features which distinguish 
Lie groups from more general types of groups. 

Example 1.15. (a) Let G = 7L., the set of integers, with addition being the 
group operation. Clearly associativity is satisfied, the identity element is 0 
and the "inverse" of an integer x is -x. 

(b) Similarly G = IR, the set of real numbers, is also a group with addition 
serving as the group operation. Again 0 is the identity, and -x the inverse 
of the real number x. In both of these cases the group operation is commuta
tive: g' h = h· g for g, hE G. Such groups are called abelian; they form 
only a small subclass of the full range of possibilities for groups. 

(c) Let G = GL(n, Q), the set of invertible n x n matrices with rational 
numbers for entries. The group operation is given by matrix multiplication. 
The identity element is, of course, the identity matrix I, the inverse of a 
matrix A is the ordinary matrix inverse, which again has rational entries. 

t Witness, for instance, the recent complete classification of finite simple groups (Gorenstein, 
[1]); the corresponding problem for Lie groups was solved before the tum of the century. 
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(d) Similarly, GL(n, IR), the set of all invertible n x n matrices with real 
entries is a group under matrix multiplication, the identity and inverse being 
the same as in the previous example. For brevity, we will usually denote 
the general linear group GL(n, IR) by just GL(n). 

The distinguishing feature of a Lie group is that it also carries the structure 
of a smooth manifold, so the group elements can be continuously varied. 
Thus, in each of the above pairs of examples of groups, the second case is 
a Lie group since it is also a smooth manifold. For IR, the manifold structure 
is clear. As for the general linear group, it can be identified with the open 
subset 

GL(n) = {X: det X,e O} 

of the space Mnxn of all n x n matrices. But Mnxn is isomorphic to IR n2 , 

the coordinates being the matrix entries xij of X. Thus GL(n) is also an 
n2 -dimensional manifold. In both cases the group operation is smooth 
(indeed analytic). This leads to the general definition of a Lie group. 

Definition 1.16. An r-parameter Lie group is a group G which also carries 
the structure of an r-dimensional smooth manifold in such a way that both 
the group operation 

m: GxG-? G, m(g, h)=g· h, g, hE G, 

and the inversion 

gE G, 

are smooth maps between manifolds. 

Example 1.17. Here we discuss a couple of examples of Lie groups besides 
the two already presented. 

(a) Let G = IR r , with the obvious manifold structure, and let the group 
operation be vector addition (x, y) ~ x + y. The "inverse" of a vector x is 
the vector -x. Both operations are clearly smooth, so IR r is an example of 
an r-parameter abelian Lie group. 

(b) Let G = SO(2), the group of rotations in the plane. In other words 

G {(cos (J -sin (J) } = :O';;;O<2'1T , 
sin (J cos (J 

where 0 denotes the angle of rotation. Note that we can identify G with 
the unit circle 
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in 1R2, which serves to define the manifold structure on SO(2). Ifwe include 
reflections we obtain the orthogonal group 

0(2) = {X E GL(2): XTX = I}. 

It has the manifold structure of two disconnected copies of 51. 
(c) More generally, we can consider the group of orthogonal n x n 

matrices 
O(n) = {X E GL(n): XTX = I}. 

Thus O(n) is the subset of IRn2 defined by the n2 equations 

XTX-I=O, 

involving the matrix entries xij of X. It can be showh that precisely! n (n + 1) 
of these equations, corresponding to the matrix entries on or above the 
diagonal, are independent and satisfy the maximal rank condition 
everywhere on O(n). Thus, by Theorem 1.13, O(n) is a regular submanifold 
of GL(n) of dimension !n(n-I). Moreover, matrix mUltiplication and 
inversion remain smooth maps when restricted to O(n), hence O(n) is a 
Lie group in its own right. The special orthogonal group 

SO(n) = {X E O(n): det X = +1}, 

being the connected component of the identity of the orthogonal group, is 
also an ! n(n -I)-parameter Lie group for the same reasons. (A simpler 
proof of these facts will appear shortly.) 

(d) The group T( n) of upper triangular matrices with all 1 's on the main 
diagonal is an !n(n -I)-parameter Lie group. As a manifold T(n) can be 
identified with the Euclidean space IR n (n-1)/2 since each matrix is uniquely 
determined by its entries above the diagonal. For instance, in the case of 
T(3), we identify the matrix 

(
1 x Z) 
o 1 Y E T(3) 

° 0 1 

with the vector (x, y, z) in 1R3. However, except in the special case of T(2), 
T(n) is not isomorphic to the abelian Lie group IR n(n-i)/2. In the case of 
T(3), the group operation is given by 

(x, y, z) . (x', y', z') = (x+x', y+ y', z+ z'+xy'), 

using the above identification. This is not the same as vector addition-in 
particular, it is not commutative. Thus a fixed manifold may be given the 
structure of a Lie group in more than one way. 

A Lie group homomorphism is a smooth map cfJ: G ~ H between two Lie 
groups which respects the group operations: 

cfJ(g· g) = cfJ(g) . cfJ(g), 
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If 4> has a smooth inverse, it determines an isomorphism between G and 
H. In practice, we will not distinguish between isomorphic Lie groups. For 
example, the Lie group IR+ consisting of all positive real numbers, with 
ordinary multiplication being the group operation, is isomorphic to the 
additive Lie group IR. The exponential function 4>: IR-'»IR+, 4>(t) = e', pro
vides the isomorphism. For all practical purposes, IR and IR+ are the same 
Lie group. (In fact, up to isomorphism there are only two connected 
one-parameter Lie groups: IR and SO(2).) 

If G and Hare r- and s-parameter Lie groups, then their Cartesian 
product G x H is an (r + s )-parameter Lie group with group opera
tion 

(g, h) . (g, h) = (g. g, h· h), 

which is easily seen to be a smooth map in the product manifold structure. 
Thus, for example, the tori T' are all Lie groups, being r-fold Cartesian 
products of the Lie group SI = SO(2). The group law on T2, for instance, 
is given in terms of the angular coordinates (0, p) by addition modulo 
integer mUltiples of 27T: 

(0, p) . (0', p') = (0+ 0', p+ p') mod 27T. 

Note that each torus T' is a connected, compact, abelian r-parameter Lie 
group, and, in fact, is the only such Lie group up to isomorphism. 

Our blanket assumption on manifolds that they be connected also carries 
over to the Lie groups we consider in this book. Thus unless explicitly stated 
otherwise, all Lie groups are assumed to be connected. For instance, the 
orthogonal groups O(n) are not connected, while the special orthogonal 
groups SO(n) are connected Lie groups. By restricting our attention to 
connected Lie groups, we are consciously excluding discrete symmetries, 
such as reflections, from consideration and concentrating on symmetries, 
like rotations, which can be continuously connected to the identity element 
in the group. There are, of course, important applications of discrete groups 
to differential equations, but these lie outside the scope of this book. 
(Technically speaking, without the assumption of connectivity, both 
Examples 1.15(a) and 1.16(a) are Lie groups, being totally disconnected 
zero-dimensional manifolds. However, none of the infinitesimal techniques 
vital to Lie group theory have any relevance there, and so we are justified 
in excluding them.) The general linear group GL(n) can be shown to consist 
of two connected components: GL +(n) = {X: det X> O}, which is itself a 
Lie group, and GL -(n) = {X: det X <O}. More generally, if G is any (not 
necessarily connected) Lie group, the connected component of the identity 
G+ will always be a Lie group of the same dimension, and we will always 
concentrate on this part of G, the other components of G being obtained 
from G+ via a discrete subgroup of elements. 
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Lie Subgroups 

Often Lie groups arise as subgroups of certain larger Lie groups; for example, 
the orthogonal groups are subgroups of the general linear groups of all 
invertible matrices. In general we will be interested only in subgroups of 
Lie groups which can be considered as Lie groups in their own right. The 
proper definition of a Lie subgroup is modelled on that of an (immersed) 
submanifold. 

Definition 1.18. A Lie subgroup H of a Lie group G is given by a submanifold 
c/J: H ~ G, where H itself is a Lie group, H = c/J(H) is the image of c/J, and 
c/J is a Lie group homomorphism. 

For example, if w is any real number, the submanifold 

Hw = {(t, wt) mod 27T: t E IR} C T2 

is easily seen to be a one-parameter Lie subgroup of the toroidal group T2. 
If w is rational, then Hw is isomorphic to the circle group SO(2), and forms 
a closed, regular subgroup of T2, while if w is irrational, then Hw is 
isomorphic to the Lie group IR, and is dense in T2. Thus Lie subgroups of 
Lie groups do not have to be regular submanifolds. However, for many 
applications there is one very simple method of testing whether a subgroup 
is a regular Lie subgroup. 

Theorem 1.19. Suppose G is a Lie group. If H is a closed subgroup of G, then 
H is a regular submanifold of G and hence a Lie group in its own right. 
Conversely, any regular Lie subgroup of G is a closed subgroup. 

Note that we need only check that H is a subgroup of G and is closed 
as a subset of G in order to conclude that H is a regular Lie subgroup. 
This circumvents the problem of actually proving that H is a submanifold. 
In particular, if H is a subgroup defined by the vanishing of a number of 
(continuous) real-valued functions 

H = {g: Fi(g) = 0, i = 1, ... , n}, 

then H is automatically a Lie subgroup of G; we do not need to check the 
maximal rank conditions on the Fi! (Of course, to find the dimension of 
H we need to determine how many of the Fi are independent.) Thus, for 
example, the orthogonal group O(n) is a Lie group, being given by the n2 

equations 
AE GL(n). 

Another important example is the special linear group 

SL(n) == SL(n, IR) == {A E GL(n): det A = I}, 
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which is an (n 2 -I) -dimensional subgroup, given by the vanishing of a 
single function det A - I. 

Local Lie Groups 

Often we are not interested in the full Lie group, but only in group elements 
close to the identity element. In this case we can dispense with the abstract 
manifold theory and define a local Lie group solely in terms of local 
coordinate expressions for the group operations. 

Definition 1.20. An r-parameter local Lie group consists of connected open 
subsets Vo eVe ~r containing the origin 0, and smooth maps 

m: VX V~~r, 

defining the group operation, and 

i: Vo~ V, 

defining the group inversion, with the following properties. 

(a) Associativity. If x, y, Z E V, and also m (x, y) and m (y, z) are in V, then 

m(x, m(y, z)) = m(m(x, y), z). 

(b) Identity Element. For all x in V, m(O, x) = x = m(x, 0). 
(c) Inverses. For each x in Yo, m(x, i(x)) = 0 = m(i(x), x). 

If we write X· Y for m(x, y), and X-I for i(x), then the above axioms 
translate into the usual group axioms, except that they are not necessarily 
defined everywhere. Thus X· Y makes sense only for x and y sufficiently 
near O. Associativity says that X· (y. z) = (x· y) . z wherever both sides of 
this equation are defined. The identity element of the group is the origin O. 
Finally, X-I again is defined only for x sufficiently near 0, and X· X-I = 0 = 
X-I. x for such x's. 

Example 1.21. Here we present a nontrivial example of a local (but not 
global) one-parameter Lie group. Let V = {x: Ixl < I} c ~ with group multi
plication 

. 2xy-x-y 
m(x,y)= , 

xy-I 
x, Y E V. 

A straightforward computation verifies the associativity and identity laws 
for m. The inverse map is i(x) =x/(2x-l), defined for XE Vo={x: Ixl <H. 
Thus m defines a local one-parameter Lie group. 

One easy method of constructing local Lie groups is to take a global Lie 
group G and use a coordinate chart containing the identity element. Less 
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trivial is the fact that (locally) every local Lie group arises in this fashion. 
In other words, every local Lie group is locally isomorphic to a neighbour
hood of the identity of some global Lie group G. 

Theorem 1.22. Let Voc Vc IR r be a local Lie group with multiplication m(x, y) 
and inversion i(x). Then there exists a global Lie group G and a coordinate 
chart x: U* ~ V*, where U* contains the identity element, such that V* c Vo, 
x(e) =0, and 

x(g· h) = m(x(g), X(h)) 

whenever g, h E U*, and 

whenever g E U*. Moreover, there is a unique connected, simply-connected Lie 
group G* having the above properties. If G is any other such Lie group, there 
exists a covering map 1T: G* ~ G which is a group homomorphism, whereby 
G* and G are locally isomorphic Lie groups. (G* is called the simply
connected covering group of G.) 

Example 1.23. The only connected, simply-connected one-parameter Lie 
group is IR, so the local Lie group of Example 1.21 must coincide with some 
coordinate chart containing 0 in IR. Indeed, if we let X: U* ~ V* c IR, where 

x(t) = t/(t-1), t E U* = {t < 1}, 

then we easily see that 
2X(t)X(s) - X(t) - X(s) 

X(t+s)=m(x(t),X(s))= X(t)X(s)-1 ' 

. X(t) 
X( -t) = I(X(t)) = 2X(t) -1' 

where defined, so X satisfies the requirements of the theorem. 
Once we know that such a global Lie group exists, we can essentially 

reconstruct it from knowledge of just the neighbourhood of the identity 
determining the local Lie group. 

Proposition 1.24. Let G be a connected Lie group and U c G a neighbourhood 
of the identity. Also, let Uk == {g\ . g2· .... gk: gi E U} be the set of k-fold 
products of elements of u. Then 

In other words, every group element g E G can be written as a finite product 
of elements of u. 

As shown in Exercise 1.26 this follows directly from the connectedness 
of 0. A similar result holds for local Lie groups as well. 
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Local Transformation Groups 

In practice, Lie groups arise most naturally not as abstract, self-contained 
entities, but ratherconcretely as groups of transformations on some manifold 
M. For instance, the group SO(2) arises as the group of rotations in the 
plane M = 1R2, while GL(n) appears as the group of invertible lineartransfor
mations on IRn. In general a Lie group G will be realized as a group of 
transformations of some manifold M if to each group element g E G there 
is associated a map from M to itself. It is important not to restrict our 
attention solely t() linear transformations. Moreover, the group may act only 
locally, meaning that the group transformations may not be defined for all 
elements of the group or all points on the manifold. 

Definition 1.25. Let M be a smooth manifold. A local group of transformations 
acting on M is given by a (local) Lie group G, an open subset au, with 

{e} xMc auc G xM, 

which is the domain of definition of the group action, and a smooth map 
'1': au ~ M with the following properties: 

(a) If (h, x) E au, (g, qr(h, x)) E au, and also (g. h, x) E au, then 

'I'(g, W(h,x))='I'(g' h,x). 

(b) For all x EM, 

qr(e, x) = x. 

(c) If (g, x) E au, then (g-t, W(g, x)) E au and 

'I'(g -1, qr(g, x)) = x. 

(Note that except for the assumption of the form of the domain au, part 
(c) follows directly from parts (a) and (b).) 

For brevity, we will denote W(g, x) by g' x, and the conditions of this 
definition take the simpler form: 

g' (h· x)=(g· h)· x, g, hE G, xEM, (1.1) 

G 

M 

Figure 3. Domain for a local transformation group. 



22 1. Introduction to Lie Groups 

whenever both sides of this equation make sense, 

e· x = x for all x E M, (1.2) 

and 
g-I·(g·X)=X, gE G, xEM, (1.3) 

provided g. x is defined. As a consequence of (1.3), we see that each group 
transformation is a diffeomorphism where it is defined. 

Note that for each x in M, the group elements g such that g. x is defined 
form a local Lie group 

Gx == {g E G: (g, x) E au}. 
Conversely, for any g E G, there is an open sub manifold 

Mg =={x EM: (g, x) E au} 

of M where the transformation given by g is defined. In certain cases, the 
only group element which acts on all of M might be the identity element. 
At the other extreme, a global group of transformations is one in which we 
can take au = G x M. In this case, g. x is defined for every g E G and every 
x EM. Thus (1.1), (1.2), (1.3) hold for all g, hE G, and all x E M, and there 
is no need to worry about precise domains of definition. 

A group of transformations G acting on M is called connected if the 
following requirements hold: 

(a) G is a connected Lie group and M is a connected manifold; 
(b) au c G x M is a connected open set; and 
(c) for each x E M, the local group Gx is connected. 

As with manifolds and Lie groups, we make the blanket restriction that 
unless explicitly stated otherwise, all local groups of transformations are 
assumed to be connected, in the above restricted sense. These connectivity 
requirements help us avoid several technical complications when we come 
to discuss infinitesimal methods and invariants. They can always be realized 
by suitably shrinking the domain of definition au of the group action. 

Orbits 

An orbit of a local transformation group is a minimal nonempty group
invariant subset of the manifold M. In other words, (Y c M is an orbit 
provided it satisfies the conditions 

(a) If x E (Y, g E G and g. x is defined, then g. x E (Y. 

(b) If {j c (Y, and a satisfies part (a) then either a = (Y, or a is empty. 

In the case of a global transformation group, for each x E M the orbit 
through x has the explicit definition (Yx = {g . x: g E G}. For local transforma-
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tion groups, we must look at products of group elements acting on x: 

Ox = {gl . g2· ... · gk· x: k;,;.l, gjE G and gl . g2· ... · gk· x is defined}. 

As we will see, the orbits of a Lie group of transformations are in fact 
sub manifolds of M, but they may be of varying dimensions, or may not be 
regular. We distinguish two important subclasses of group actions. 

Definition 1.26. Let G be a local group of transformations acting on M. 

(a) The group G acts semi-regularly if all the orbits (J are of the same 
dimension as submanifolds of M. 

(b) The group G acts regularly if the action is semi-regular, and, in addition, 
for each point x E M there exist arbitrarily small neighbourhoods U of 
x with the property that each orbit of G intersects U in a pathwise 
connected subset. 

Note that in particular, if G acts regularly on M then each orbit of G 
is a regular submanifold of M. However, the regularity condition on the 
group action is much stronger than this last statement, as Exercise 1.8 will 
bear out. A group action is called transitive if there is only one orbit, namely 
the manifold M itself. Clearly any transitive group of transformations acts 
regularly. In most of our applications, the most interesting group actions 
will not be transitive. 

Example 1.27. Examples of Transformation Groups. 
(a) The group of translations in IRm: Let a,.t:. 0 be a fixed vector in IRm, 

and let G = IR. Define 

'I'(e, x) = x+ ea, 

This is readily seen to give a global group action. The orbits are straight 
lines parallel to a, so the action is regular with one-dimensional orbits. 

(b) Groups of scale transformations: Let G = IR+ be the mUltiplication 
group. Fix real numbers aI, a2, ... , am, not all zero. Then IR+ acts on IRm 

by the scaling transformations 

The orbits of this action are all one-dimensional regular sub manifolds of 
IR m, except for the singular orbit consisting of just the origin {O}. Forinstance, 
in the special case of 1R2 with 'I'(A, (x, y» = (Ax, A 2y) the orbits are halves 
of the parabolas y = kx2 (corresponding to either x> 0 or x < 0), the positive 
and negative y-axes, and the origin. In general, this scaling group action 
is regular on the open subset IRm\{O}. These group actions arise in the 
dimensional analysis of partial differential equations and historically pro
vided the main impetus behind the development of the general theory of 
group-invariant solutions of differential equations. 
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(c) An action similar to the following comes up in the study of the heat 
equation. Let M = 1R2, G = IR and consider the map 

which is defined on 

'I'(e, (x, y)) = (_x_, _y_), 
1-ex 1-ex 

au = {(e, (x, y)): e <~for x>O, or e >~, for x<o} C IR x1R2. 

To show that this is indeed a group action, we must check condition (a) 
of Definition 1.25: 

'1'(8, 'I'(e, (x, y))) = 'I' (5, (_x_, -y-)) 
1- ex 1- ex 

( x/(l- ex) y/(l- ex) ) 
= 1-5x/(l- ex)' 1-5x/(l- ex) 

= C _(5
x+ e)x' 1-(:+ e)J 

='I'(5+e, (x,y)) 

wherever defined. Note that this local group action has no global counterpart 
on 1R2; indeed I'I'( e, (x, y))1 ~ <Xl as e ~ 1/ x for x ¥ O. The orbits of the action 
cortsist of the straight rays emanating from the origin, and the origin itself. 
The action is regular on the punctured plane IR\{O}. 

(d) The "irrational flow" on the torus: Let G = IR and M be the two
dimensional torus T2. Let w be a fixed real number. Using the angular 
coordinates (6, p) on T2 we define a global group action 

'1'( e, (6, p)) = (6 + e, p + we) mod 27T. 

The orbits of G are easily seen to be all one-dimensional submanifolds of 
T2, so G acts semi-regularly in all cases. If w is a rational number, the 
orbits are closed curves, and the action is regular. On the other hand, if w 
is irrational, each orbit is a dense submanifold of T2. This is the simplest 
example of a semi-regular group action which is not regular. 

1.3. Vector Fields 

The main tool in the theory of Lie groups and transformation groups is the 
"infinitesimal transformation". In order to present this, we need first to 
develop the concept of a vector field on a manifold. We begin with a 
discussion of tangent vectors. Suppose C is a smooth curve on a manifold 
M, parametrized by 4>: I ~ M, where I is a subinterval of IR. In local 
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coordinates x=(x\ ... ,xm), C is given by m smooth functions 4>(e)= 
(4) 1( e), ... , 4>m( e» of the real variable e. At each point x = 4>( e) of C the 
curve has a tangent vector, namely the derivative <b (e) = d4> / de = 
(<b 1 (e), ... , <b m (e ». In order to distinguish between tangent vectors and 
local coordinate expressions for points on the manifold, we adopt the 
notation 

for the tangent vector to C at x = 4>(e). On first encounter, this notation 
may look rather strange, but its usefulness and naturalness will be amply 
demonstrated throughout this book. For the moment, the reader can view 
the symbols a/ax i just as "place holders" for the components <b\e) of the 
tangent vector vl x , or, equivalently, as a special "basis" of tangent vectors 
corresponding to the coordinate curves whose local coordinate expressions 
are x+ ee;, e; being the i-th basis vector of IRm. Later we will see how each 
a/ ax; does indeed correspond to a partial differential operator. 

For example, the helix 

4> (e) = (cos e, sin e, e) 

in 1R3 , with coordinates (x, y, z), has tangent vector 

.. a aa a aa 
4>(e) = -Sin e-+cos e-+-= -y-+x-+-

ax ay az ax ay az 

at the point (x, y, z) = 4>(e) = (cos e, sin e, e). 
Two curves C = {4> (e)} and C = { J" ( O)} passing through the same point 

x=4>(e*)=J"(O*) 

for some e*, 0*, have the same tangent vector if and only if their derivatives 
agree at the point: 

d4> dJ" 
- (e*) =- (0*). 
de dO 

(1.5) 

It is not difficult to see that this concept is independent of the local coordinate 
system used near x. Indeed,if x=4>(e)=(4>I(e), ... ,4>m(e» is the local 
coordinate expression in terms of x = (x\ ... , xm) and y = I/I(x) is any 
diffeomorphism, then y = I/I(4)(e)) is the local coordinate formula for the 
curve in terms of the y- coordinates. The tangent vector vi x = <b (e), which 
has the formula (1.4) in the x-coordinates, takes the form 

m d. a m m al/l j d4>k a 
viy=ofJ(x) = I -d I/IJ(4)(e))-a j= I I -a k(4)(e))-d -a j (1.6) 

j=1 e Y j=1 k=1 X e y 
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in the y-coordinates. Since the Jacobian matrix atfJ / axk is invertible at each 
point, (1.5) holds if and only if 

d d-
de I/I(cp(e*)) = dO 1/1(4)(0*)), 

which proves the claim. Note that (1.6) tells how a tangent vector (1.4) 
behaves under the given change of coordinates y = I/I(x). 

The collection of all tangent vectors to all possible curves passing through 
a given point x in M is called the tangent space to M at x, and is denoted 
by TMlx. If M is an m-dimensional manifold, then TMlx is an m
dimensional vector space, with {a/ axl, ... ,a/ axm} providing a basis for 
TMlx in the given local coordinates. The collection of all tangent spaces 
corresponding to all points x in M is called the tangent bundle of M, 
denoted by 

TM= U TMlx. 
XEM 

These tangent spaces are "glued" together in an obvious smooth fashion, 
so that if 4> (e) is any smooth curve then the tangent vectors ci> (e) E TMI<I>(E) 
will vary smoothly from point to point. This makes the tangent bundle TM 
into a smooth manifold of dimension 2m. 

For example, if M = IR m, then we can identify the tangent space TlRml x 
at any x E IR m with IR m itself. This stems from the fact that the tangent vector 
ci> (e) to a smooth curve 4> (e) can be realized as an actual vector in IR m, 
namely (ci>I(e), ... , ci>m(e)). Another way of looking at this identification 
is that we are identifying the basis vector a/ axi of TlRml x with the standard 
basis vector ei of IRm. The tangent bundle of IR m is thus a Cartesian product 
TlR m = IRm x IRm. If S is a surface in 1R3 , then the tangent space TSlx can be 
identified with the usual geometric tangent plane to S at each point xES. 
This again uses the identification TIR31x = 1R3, so TSlx C TIR3 1x is a plane in 
1R3. 

A vector field v on M assigns a tangent vector vl x E TMlx to each point 
x EM, with vl x varying smoothly from point to point. In local coordinates 
(xI, ... , x m ), a vector field has the form 

where each gi(X) is a smooth function of x. (Technically, we should put 
the symbol Ix on each a/ axi to indicate in which tangent space TMlx it lies, 
but this should be clear from the context.) A good physical example of a 
vector field is the velocity field of a steady fluid flow in some open subset 
Me 1R3. At each point (x, y, z) E. M, the vector vi<x,y,z) would be the velocity 
of the fluid particles passing through the point (x, y, z). 

An integral curve of a vector field v is a smooth parametrized curve 
x = 4>( e) whose tangent vector at any point coincides with the value of v 
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Figure 4. V~ctor field and integral curve on a manifold. 

at the same point: 

1>( e) = vlcl>(e) 

for all e. In local coordinates, x=cP(e)=(cPi(e)"",cPm(e» must be a 
solution to the autonomous system of ordinary differential equations 

dx i . 

de = g'(x), i = 1, ... , m, (1.7) 

where the gi(X) are the coefficients ofv at x. For gi(X) smooth, the standard 
existence and uniqueness theorems for systems of ordinary differential 
equations guarantee that there is a unique solution to (1.7) for each set of 
initial data 

cP(O) = Xo· (1.8) 

This in turn implies the existence of a unique maximal integral curve 
cP: I ~ M passing through a given point Xo = cP(O) EM, where "maximal" 
means that it is not contained in any longer integral curve; i.e. if J: j ~ M 
is any other integral curve with the same initial value J(O) = xo, then j c I 
and J(e) = cP(e) for e E i Note that ifvlXo = 0, then the integral curve through 
Xo is just the point cP (e) == Xo itself, defined for all e. 

We note that if v is any smooth vector field on a manifold M, and f(x) 
is any smooth, real-valued function defined for x E M, then f- v is again a 
smooth vector field, with (f. v)lx = f(x)vl x . In local coordinates, if v= 
I gi(X) a/ ax i, then f· v = If(x)gi(X) a/ axi. If f never vanishes, the integral 
curves off· v coincide with the integral curves of v, but the parametrizations 
will differ. For instance, the integral curves for 2v will be traversed twice 
as fast as those of v, but otherwise will be the same subsets of M. 

Flows 

If v is a vector field, we denote the parametrized maximal integral curve 
passing through x in M by 'l'(e, x) and call 'l' the flow generated by v. 
Thus for each x E M, and e in some interval Ix containing 0, 'l'( e, x) will 
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be a point on the integral curve passing through x in M. The flow of a 
vector field has the basic properties: 

'1'(15, qr(e, x» = '1'(15 + e, x), xEM, ·(1.9) 

for all 15, e E IR such that both sides of the equation are defined, 

'1'(0, x) = x, (1.10) 

and 

d 
-d qr(e, x) =vl",(.x) e . 

(1.11) 

for all e where defined. Here (1.11) simply states that v is tangent to the 
curve qr(e, x) for fixed x, and (1.10) gives the initial conditions for this 
integral curve. The proof of (1.9) follows easily from the uniqueness of 
solutions to systems of ordinary differential equations; namely as functions 
of 15 both sides of (1.9) satisfy (1.7) and have the same initial conditions 
at 15 = O. If v is the velocity vector field of some steady state fluid flow, the 
integral curves of v are the stream lines followed by the fluid particles, and 
the flow '1'( e, x) tells the position of a particle at time e which started out 
at position x at time e = O. 

Comparing the first two properties (1.9), (1.10) with (1.1), (1.2), we see 
that the flow generated by a vector field is the same as a local group action 
of the Lie group IR on the manifold M, often called a one-parameter group 
of transformations. The vector field v is called the infinitesimal generator of 
the action since by Taylor's theorem, in local coordinates 

where g = (g\ ... ,gm) are the coefficients of v. The orbits of the one
parameter group action are the maximal integral curves of the vector field 
v. Conversely, if qr(e, x) is anyone-parameter group of transformations 
acting on M, then its infinitesimal generator is obtained by specializing 
(1.11) at e = 0: 

vl x = dd I qr(e, x). 
e .=0 

(1.12) 

Uniqueness of solutions to (1.7), (1.8) guarantees that the flow generated 
by v coincides with the given local action of IR on M on the common 
domain of definition. Thus there is a one-to-one correspondence between 
local one-parameter groups of transformations and their infinitesimal gen
erators. 

The computation of the flow or one-parameter group generated by a 
given vector field v (in other words, solving the system of ordinary differential 
equations) is often referred to as exponentiation of the vector field. The 
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suggestive notation 

exp(ev)x=='I'(e, x) 

for this flow will be adopted in this book. In terms of this exponential 
notation, the above three properties can be restated as 

exp[(5 + e )v]x = exp(5v) exp(ev)x (1.13) 

whenever defined, 

exp(Ov)x = x, (1.14) 

and 

d 
de [exp( ev)x] = vlexp(e.)x. (1.15) 

for all x EM. (In particular, vlx is obtained by evaluating (1.15) at e = 0.) 
These properties mirror the properties of the usual exponential function, 
justifying the notation. 

Example 1.28. Examples of Vector Fields and Flows. 
(a) Let M = III with coordinate x, and consider the vector field v = a/ ax == 

ax. (In the sequel, we will often use the notation ax for a/ ax to save space.) 
Then 

exp(ev)x = exp(eax)x = x+ e, 

which is globally defined. For the vector field xax we recover the usual 
exponential 

exp(exax)x = eex, 

since it must be the solution to the ordinary differential equation x = x with 
initial value x at e = O. 

(b) In the case of Ill m , a constant vector field va=Iaia/axi, a= 
(a\ ... , am) exponentiates to the group of translations 

exp(eva)x = x+ ea, 

in the direction a. Similarly, a linear vector field 

where A = (aij) is an m x m matrix of constants, has flow 

exp( ev A)X = e£Ax, 

where eeA = 1+ eA +!e2 A 2 + ... is the usual matrix exponential. 
(c) Consider the group of rotations in the plane 

'I'(e, (x, y» = (x cos e - y sin e, x sin e+y cos e). 
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Its infinitesimal generator is a vector field v = {(x, y) ax + 17 (x, y)ay , where, 
according to (1.12), 

{(X'Y)=ddl (xcose-ysine)=-y, 
e .=0 

d I . 17 (x, y) =-d (x sm e+ y cos e) = x. 
e .=0 

Thus v = - y ax + x ay is the infinitesimal generator, and indeed, the above 
group transformations agree with the solutions to the system of ordinary 
differential equations 

dx/de =-y, dy/de =x. 

(d) Finally, consider the local group action 

'I'(e, (x, y» = (_x_,_y_) 
1- ex 1- ex 

introduced in Example 1.27(c). Differentiating, as before, we find the 
infinitesimal generator to be v = x 2ax + xyayo This demonstrates that a smooth 
vector field may still generate only a local group action. 

The effect of a change of coordinates y = t/I(x) on a vector field v is 
determined by its effect on each individual tangent vector vl x , x E M, as 
given by (1.6). Thus ifv is a vector field whose expression in the x-coordinates 
is 

m. a 
v= L f(X)-i' 

i=1 ax 

and y = t/I(x) is a change of coordinates, then v has the formula 

v= JI I {i(t/I-I(y» :~ (t/I-I(y» a~ (1.16) 

in the y-coordinates. 

The next result illustrates our earlier remarks that by suitably choosing 
local coordinates, we can often simplify the expressions for objects on 
manifolds, in this case vector fields. 

Proposition 1.29. Suppose v is a vector field not vanishing at a point Xo EM: 
vi"" #- O. Then there is a local coordinate chart y = (yl, ... , ym) at Xo such 
that in terms of these coordinates, v = a/a y I. 

PROOF. First linearly change coordinates so that Xo = 0 and vi"" = a/ axl. By 
continuity the coefficient {I (x) of a/axl is positive in a neighbourhood of 
Xo. Since {I(X) > 0, the integral curves of v cross the hyperplane 
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{(O, X 2, ••• ,xm)} transversally, and hence in a neighbourhood of Xo = 0, 
each point x = (x I , ••. , xm) can be defined uniquely as the flow of some 
point (0, y2, ... ,ym) on this hyperplane. Consequently 

x = exp(iv)(O, y2, ... , ym), 

for i near 0, gives a diffeomorphism from (xI, ... , xm) to (yI, ... , ym) 
which defines the y-coordinates. (Geometrically, we have "straightened 
out" the integral curves passing through the hyperplane perpendicular to 
the xl-axis.) In terms of the y-coordinates, we have by (1.13), for small e, 

exp(ev)(i, ... ,ym) = (yl + e, y2, ... ,ym), 

so the flow is just translation in the i -direction. Thus every nonvanishing 
vector field is locally equivalent to the infinitesimal generator of a group 
of translations. (Of course, the global picture can be very complicated, as 
the irrational flow on the torus makes clear.) 0 

Action on Functions 

Let v be a vector field on M and f: M ~ ~ a smooth function. We are 
interested in seeing how f changes under the flow generated by v, meaning 
we look at f( exp( ev)x) as e varies. In local coordinates, ifv = L e(x) afax i, 

then using the chain rule and (1.15) we find 

d m . ~ 
- f(exp(ev)x) = L f(exp(ev)x) -i (exp(ev)x) 
de i=1 ax 

== v(f)[exp(ev)x]. (1.17) 

In particular, at e = 0, 

dim. af - f(exp(ev)x) =.L f(x) -i (x) =v(f)(x). 
de £=0 1=1 ax 

Now the reason underlying our notation for vector fields becomes apparent: 
the vector field v acts as a first order partial differential operator on real
valued functions f(x) on M. Furthermore, by Taylor's theorem, 

f(exp(ev)x) = f(x) + ev(f)(x) + O(e2), 

so v(f) gives the infinitesimal change in the function f under the flow 
generated by v. We can continue the process of differentiation and substitu
tion into the Taylor series, obtaining 
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where v2(f) = v( v(f», v3 (f) = v( v2(f», etc. If we assume convergence of the 
entire Taylor series in e, then we obtain the Lie series 

00 e k 

f(exp(ev)x) = k~O k! v\f)(x) (1.18) 

for the action of the flow on f. The same result holds for vector-valued 
functions F: M ~ IIln, F(x) = (FJ(x), ... , Fn(x», where we let v act com
ponent-wise on F: v(F) = (v(FJ ), ••• , v(Fn». In particular, if we let F be 
the coordinate functions x, we obtain (again under assumptions of conver
gence) a Lie series for the flow itself, given by 

e2 00 e k 

exp(ev)x=x+eg(x)+-v(~")(x)+"'= L -k vk(x), (1.19) 
2 k=O ! 

where g = (e, ... , gm), v(g) = (v(e), ... , v(gm», etc., providing even further 
justification for our exponential notation. 

According to our new interpretation of the symbols a/ ax i, each tangent 
vector v\x at a point x defines a derivation on the space of smooth real-valued 
functions f defined near x in M. This means that v\x, when applied to a 
smooth function f, gives a real number v(f) = v(f)(x), and, moreover, this 
operation determined by v has the basic derivational properties of 

(a) Linearity 

v(f + g) =v(f)+v(g), (1.20) 

(b) Leibniz' Rule 

v(f· g) =v(f) . g+ f· v(g). (1.21) 

(Here both sides of (1.20), (1.21) are evaluated at the point x.) Conversely, 
it is not hard to show that every derivation on the space of smooth functions 
at x is a tangent vector, and in particular is given in local coordinates by 
L gi a/ax i• (See Exercise 1.12.) This approach is often used to define tangent 
vectors and the tangent bundle in an abstract, coordinate-free manner. 
Further, if v is a vector field on M, then v(f) is a smooth function for any 
f: M ~ Ill. Thus we can also define vector fields as derivations, i.e. maps 
satisfying (1.20), (1.21), on the space of smooth functions on M. This point 
of view is especially useful for defining various operations on vector fields 
in a coordinate-free manner. (See Warner, [1; Chap. 1] for more details of 
this construction and the correspondence between tangent vectors and 
derivations.) 

Differentials 

Let M and N be smooth manifolds and F: M ~ N a smooth map between 
them. Each parametrized curve C = { c/> (e): eEl} on M is mapped by F to 
a parametrized curve C=F(C)={c$(e)=F(c/>(e»: eEl} on N. Thus F 
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induces a map from the tangent vector dcf>/de to C at x=cf>(e) to the 
corresponding tangent vector d¢/ de to C at the image point F(x) = 
F( cf> (e)) = ¢ (e). This induced map is called the differential of F, and denoted 
by 

. d 
dF(¢(e)) = de {F(¢(e))}. (1.22) 

As every tangent vector vl x E TMlx is tangent to some curve passing through 
x, the differential maps the tangent space to M at x to the tangent space 
to N at F(x): 

dF: TMlx~ TNIF(X)' 

The local coordinate formula for the differential is found using the chain 
rule in the same manner as the change of variables formula (1.6). If 

m . a 
vl x = I ~/-i 

i=1 ax 

is a tangent vector at x E M, then 

n (m . a Fi ) an. a 
dF(vl x) = I I ~/-i (x) -.= I v(P(x))-.. 

j=1 i=1 ax ay' j=1 ay' 
(1.23) 

Note that the differential dFlx is a linear map from TMlx to TNIF(X)' whose 
matrix expression in local coordinates is just the Jacobian matrix of Fat x. 

If we prefer to think of tangent vectors as derivations on the space of 
smooth functions defined near a point x, then the differential dF has the 
alternative definition 

dF(vlx)f(y) =v(fo F)(x), y= F(x), (1.24) 

for all vl x E TMlx and all smooth f: N ~ II\t The equivalence of (1.22) and 
(1.24) is easily verified using local coordinates. 

Example 1.30. Let M = ~2, with coordinates (x, y), and N = ~ with coordin
ate 5, and let F: ~2 ~ ~ be any map 5 = F(x, y). Given 

a a 
vl(Xy)=a-+b-, 

, ax ay 

then, by (1.23), 

dF(vi<x,y») = {a aF (x, y) + b aF (x, y)} dd I . 
ax ay 5 F(x.y) 

For example, if F(x, y) = ax + f3y is a linear projection, then 

dF(vl(x,y») = (aa + bf3) dd I . 
5 s=ax+f3y 
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Lemma 1.31. IfF: M ~ Nand H: N ~ P are smooth maps between manifolds, 
then 

d(H 0 F) = dH 0 dF, (1.25) 

where dF: TMlx ~ TNIY=F(X» dH: TNly ~ TPlz=H(y» and d(H 0 F): 
TMlx~ TPlz=H(F(x))' 

The proof is immediate from either of the two definitions. In local 
coordinates, (1.25) just says that the Jacobian matrix of the composition of 
two functions is the product of their respective Jacobian matrices. 

It is important to note that if v is a vector field on M, then in general 
dF(v) will not be a well-defined vector field on N. For one thing, dF(v) 
may not be defined on all of N; for another, if two points x and x in M 
are mapped to the same point y = F(x) = F(x) in N, there is no guarantee 
that dF(vl x) and dF(vl x) (both of which are in TNly) are the same. For 
instance, if v = yax + ay and s = F(x, y) = ax + f3y is the projection of 
Example 1.30, then 

dF(vl(x.y»)=(ay+f3) dd I ' 
S s=ax+!3y 

which is not a well-defined vector field on IR unless a = 0. However, if F is 
a diffeomorphism onto N, then dF(v) is always a vector field on N. More 
generally, two vector fields v on M and w on N are said to be F-related if 
dF(vl x) = WIF(X) for all x EM. Ifv and w= dF(v) are F-related, then F maps 
integral curves of v to integral curves of w, with 

F(exp(ev)x) = exp(e dF(v))F(x). ( 1.26) 

Lie Brackets 

The most important operation on vector fields is their Lie bracket or 
commutator. This is most easily defined in terms of their actions as deriva
tions on functions. Specifically, if v and w are vector fields on M, then their 
Lie bracket [v, w] is the unique vector field satisfying 

[v, w](f) = v(w(f)) -w(v(f)) (1.27) 

for all smooth functions f: M ~R It is easy to verify that [v, w] is indeed 
a vector field. In local coordinates, if 

m. a 
v= L f(x)-;, 

;=1 ax 

m. a 
w= L 7]'(X)-;, 

;=1 ax 

then 

m . . a m m { . a7]; . ag;} a 
[v,w]= L {v(7]')-w(f)}-;= L L g'-.-7]'-. -i' 

;=1 ax ;=1 j=1 ax' ax' ax 
(1.28) 
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(Note that in (1.27) the terms involving second order derivatives off cancel.) 
For example, if 

then 

a 
v= y ax' 

2 a a 
w=x -+xy-, 

ax ay 

2a a a a 2a 
[v, w] =v(x )-+v(xy) --w(y) -=xy-+y -. 

ax ay ax ax ay 

Proposition 1.32. The Lie bracket has the following properties: 

(a) Bilinearity 

[cv+ c'v', w] = c[ v, w] + c'[ v', w], 

[v, cw+ c'w'] = c[ v, w] + c'[ v, w'], 

where c, c' are constants. 
(b) Skew-Symmetry 

(c) Jacobi Identity 

[v,w]=-[w,v]. 

[u, [v, w]]+[w, [u, v]]+[v, [w, u]] = o. 

(1.29) 

(1.30) 

(1.31) 

The proofis left to the reader. (Hint: Use (1.27) as your definition-trying 
to verify the Jacobi identity using the local coordinate formula (1.28) is 
horrible.) 

The first definition (1.27) of the Lie bracket ensures that it is coordinate
free. (This can also be checked from the local coordinate formula (1.28), 
but is a fairly tedious computation.) More generally, if F: M ~ N is any 
smooth map, and v and ware vector fields on M such that dF(v), dF(w) 
are F-related to well-defined vector fields on N, then their Lie brackets are 
also F-related: 

dF([v, w]) = [dF(v), dF(w)]. (1.32) 

To prove this, given f: N ~ IR, if y = F(x) EN, then by (1.24), 

dF([v, w])f(y) = [v, wHf(F(x))} =v(w{f(F(x))}) -w(v{f(F(x))}) 

= v{ dF(w)f(F(x))} - w{ dF(v)f(F(x))} 

= dF(v)dF(w)f(y) - dF(w)dF(v)f(y) 

= [dF(v), dF(w)]f(y), 

as required. 
There is a more geometric characterization of the Lie bracket of two 

vector fields as the "infinitesimal commutator" of the two one-parameter 
groups exp(ev) and exp(ew). 
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, 
yr(E,X) " 

u 

" [V,W] 

" " " ~ 

~_-=--.Z 

y 

x 

Figure 5. Commutator construction of the Lie bracket. 

Theorem 1.33. Let v and w be smooth vector fields on a manifold M. For each 
x E M, the commutator 

1/1 ( e, x) = exp( --rew) exp( --rev) exp( -rew) exp( -rev) x 

defines a smooth curve for sufficiently small e ;;:.: 0. The Lie bracket [v, w]lx is 
the tangent vector to this curve at the end-point 1/1(0, x) = x: 

[v,w]lx= ~1.=o+I/I(e,x). (1.33) 

PROOF. Let x = (Xl, ... , xm) be local coordinates, so that 

m. a 
v= I g'(x)-jr 

i=1 ax 
m . a 

w= I 17'(X)-i· 
i=1 ax 

Set y=exp(-rev)x, z=exp(-rew)y, u=exp(--rev)z, so that I/I(e,x)= 
exp( --rew)u. Then we use the Taylor series expansions (1.18), (1.19) for 
the action of the flow generated by a vector field repeatedly: 

I/I(e, x) = u --re17(u)+!ew( 17)(u)+0(e3/ 2 ) 

= z - -re{ 17 (z) + g(z)} + eHw( 17)(Z) +v( 17)(Z) +!v( g)(z)} + O( e3/ 2 ) 

= y - -re g(y) + e{ v( 17)(y) - w( g)(y) + !v( g)(y)} + O( e3/ 2 ) 

= x + e{v( 17 )(x)-w(g)(x)}+ 0(e 3/ 2 ). 

Therefore 

and (1.33) is proven. o 
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As another illustration of the connection of the Lie bracket with the 
commutator, we show that the flows generated by two vector fields commute 
if and only if their Lie bracket vanishes everywhere. 

Theorem 1.34. Let v, w be vector fields on M. Then 

exp(ev) exp( 8w)x = exp(8w) exp(ev)x 

for all e, 8 E IR, x E M, such that both sides are defined, if and only if 

[v,w]=O 

everywhere. 

(1.34) 

PROOF. Theorem 1.33 immediately shows that if the flows commute, i.e. if 
(1.34) holds, then the Lie bracket vanishes. Conversely, suppose [v, w] = 0, 
and let x E M. If both v and w vanish at x, then flows of both vector fields 
leave x fixed, and hence they obviously commute at x. Otherwise, at least 
one vector field is not zero at x, say vl x ¥- O. Using Proposition 1.29, we can 
choose local coordinates y = (y\ ... ,ym) near x so that v = al ayl everywhere 
in these coordinates. Then if w= L 7]i(y) alai, 

m a7]i a 
O=[V,w]= L -I -i' 

i=1 ay ay 

Therefore each 7] i is independent of i. The flow generated by v in these 
coordinates is just 

exp(ev)(y\ ... , ym) = (i + e, y2, ... , ym). 

The flow generated by w is a solution of the system of ordinary differential 
equations 

dyi i( 2 m) 
d8 = 7] y, ... , y , i= 1, ... , m. 

Consider the functions 

y( 8, e) = exp( 8w) exp(ev)y = exp( 8W)(yl + e, y2, ... ,ym) 

and 

ji(8, e) = exp(ev) exp(8w)y = exp(ev)y(8, 0) 

= (i( 8,0) + e, y2( 8,0), ... ,ym( 8,0». 

Since i does not appear on the right-hand side of the differential equations 
for the flow of w, as functions of 8 both y and ji are solutions, and both 
have the same initial conditions 

y(O, e) = (i + e, y2, ... ,ym) = ji(O, e). 

By uniqueness, y( 8, e) = ji( 8, e), which proves (1.34) for 8, e sufficiently 
small. 
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To prove (1.34) in general, consider the following two subsets of the 
(8, e) plane: 

V = {( 8, e): both sides of (1.34) are defined at (8, e)} 

and 

U = {( 8, e): both sides of (1.34) are defined and equal at (8, e)}. 

Note that U c V, and that V is a connected subset of the (8, e)-plane. By 
what we have just shown, U is open. On the other hand, by continuity, if 
(1.34) holds at (8j,e;)E U, and (8j,ej)~(8*,e*)E V, then (1.34) holds at 
(8*, e*). Thus U is both open and closed as a subset of V, so by connectivity 
U= V. 0 

Tangent Spaces and Vector Fields on Submanifolds 

Suppose N c M is a submanifold of M parametrized by the immersion 
4>: IV ~ M. The tangent space to N at YEN is, by definition, the image of 
the tangent space to N at the corresponding point y: 

y = 4>(Y) EN. 

Note that TNly is a subspace of TMly of the same dimension as N. There 
is an analogous characterization of the tangent space to an implicitly defined 
submanifold: 

Proposition 1.35. Let F: M ~ IR", n:s; m, be of maximal rank on N = 
{x: F(x) = O}, so N eM is an implicitly defined, regular (m - n)-dimensional 
submanifold. Given YEN, the tangent space to N at y is precisely the kernel 
of the differential of F at y: 

TNly={VE TMly: dF(v)=O}. 

PROOF. If 4>( e) parametrizes a smooth curve C c N passing through y = 

4> (eo), then F( 4> (e» = 0 for all e. Differentiating with respect to e, we see that 

d . 
0= de F(4)(e)) = dF(4)(e)), 

hence the tangent vector J> to C is in the kernel of dF. The converse follows 
by a dimension count, using the fact that dF has rank n at y. 0 

Example 1.36. Consider the sphere S2 = {x2+ y2 + Z2 = I} in 1R3. At each point 
p = (x, y, z) on the sphere, the tangent space TS2 1p is given as the kernel of 
the differential of the defining function F(x, y, z) = x 2+ y2+ Z2 -1 at p. Thus 

21 {a a a } TS (x.yz)= a-+b-+c-: 2ax+2by+2cz=0 . 
, ax ay az 
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Identifying TIR31p with 1R3, so that vip = aax + bay + ca z becomes the vector 
(a, b, c), we see that TS21p consists of all vectors vip in 1R3 which are 
orthogonal to the radial vector p = (x, y, z). Thus the tangent space TS21p 

agrees with the usual geometric tangent plane to S2 at the point p. (The 
same argument generalizes to any implicitly defined surface S = 
{F(x, y, z) = O} in 1R3 , where dF corresponds to the normal vector V F.) 

Let N be a submanifold of M. If v is a vector field on M, then v restricts 
to a vector field on N if and only if v is everywhere tangent to N, meaning 
that vl y E TNly for each YEN. In this case, using the definition of TNl y, 
we immediately deduce the existence of a corresponding vector field v on 
the parametrization space N satisfying dq, (v) = v on N. 

Lemma 1.37. If v and ware tangent to a submanifold N, then so is [v, w]. 

PROOF. Let v and w be the corresponding vector fields on N. Then by (1.32), 

dq,[v, w] = [dq,(v), dq,(w)] = [v, w]. 

at each point of N. But this says that [v, w]ly E TNfy = dq,(TNl j ;) for each 
YEN. 0 

For example, in the case of the sphere S2, since zax - xa z and zay - ya z 

are both tangent to S2, so is [zax - xa., zay - ya z ] = yax - xayo 

Frobenius' Theorem 

We have already seen how each vector field v on a manifold M 
determines an integral curve through each point of M, such that v is tangent 
to the curve everywhere. Frobenius' theorem deals with the more general 
case of determining "integral submanifolds" of systems of vector fields, 
with the property that each vector field is tangent to the submanifold at 
each point. 

Definition 1.38. Let Vi> ••• , Vr be vector fields on a smooth manifold M. An 
integral submanifold of {Vi>"" vr } is a submanifold N eM whose tangent 
space TNly is spanned by the vectors {v1Iy, ... , vrly} for each YEN. The 
system of vector fields {Vi>' •. , V r} is integrable if through every point Xo E M 
there passes an integral submanifold. 

Note that if N is an integral submanifold of {Vi>"" vr }, then the 
dimension of the subspace of TMly spanned by {v1Iy, ... , vrly}, which by 
definition is TNly, is equal to the dimension of N at each point YEN. This 
does not exclude the possibility that the dimension of the subspace of TMlx 
spanned by {vll x ,"" vrl x } varies as x ranges over the entire manifold M; 
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this just means that the given set of vector fields can have integral submani
folds of different dimensions. 

Lemma 1.37 immediately gives necessary conditions that a system of 
vector fields be integrable. Namely, if N is an integral submanifold, then 
each vector field in the collection must be tangent to N at each point. Thus 
the Lie bracket of any pair of vector fields in the collection must again be 
tangent to N, and hence in the span of the set of vector fields at each point. 

Definition 1.39. A system of vector fields {Vlo ... , vr } on M is in involution 
if there exist smooth real-valued functions ct(x), x EM, i,j, k = 1, ... , r, 
such that for each i,j = 1, ... , r, 

r 

[Vj,Vj ]= I ct·Vk. 
k=! 

Frobenius' theorem, as generalized by Hermann to the case of different 
dimensional integral submanifolds, states that this necessary condition is 
also sufficient: 

Theorem 1.40. Let VI>"" Vr be smooth vector fields on M. Then the system 
{VI> ••• ,vr } is integrable if and only if it is in involution. 

This theorem is not true as stated if the system is generated by infinitely 
many vector fields; see Exercise 1.13. There is, however, a useful generaliz
ation provided we make an additiomil restriction on the system. Let 7Je 
be a collection of vector fields which forms a vector space. We say 7Je is 
in involution if [v, w] E 7Je whenever V and ware in 7Je. In the above finite
dimensional case, 7Je can be taken to be the set of linear combinations 
I};(x)vj of the "basis" vector fields Vj, with the}; being arbitrary smooth 
real-valued functions on M (in which case 7Je is called finitely generated). 
Let 7Jelx be the subspace of TMlx spanned by vlx for all v E Je. An integral 
submanifold of 7Je is a submanifold N c M such that TNly = 7Jely for all 
YEN. We say that 7Je is rank-invariant if for any vector field VE 7Je, the 
dimension of the subspace 7Jel exp(EV)X along the flow generated by v is a 
constant, independent of B. (It can, of course, depend on the initial point 
x.) Note that since the integral curve exp(ev)x ofv emanating from a point 
x should be contained in an integral submanifold N, rank-invariance is 
certainly a necessary condition for complete integrability. Rank-invariance 
follows automatically if 7Je is finitely generated, or consists of analytic vector 
fields on an analytic manifold. 

Theorem 1.41. Let 7Je be a system of vector fields on a manifold M. Then 7Je 
is integrable if and only if it is in involution and rank-invariant. 

In essence, the proof proceeds by direct construction of the integral 
submanifolds. If x E N, then we can realize the integral submanifold through 
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x by examining successive integral curves starting at x: 

N = {exp(v l ) exp(v2) ... exp(vdx: k ~ 1, Vi EYe}. 

The rank invariance will imply that Yel y for any YEN has the correct 
dimension. The details of the proof that N is a submanifold can be found 
in Hermann, [2]. Borrowing terminology from the more usual constant-rank 
case, we call the collection of all maximal integral submanifolds of an 
integrable system of vector fields a foliation of the manifold M; the integral 
submanifolds themselves are also referred to as leaves of the foliation. 

Example 1.42. Consider the vector fields 

a a 
v=-y-+x-, 

ax ay 
a a 2 2 2 a w=2xz-+2yz-+(z +1-x -y)-

ax ay az 

on 1R3. An easy computation proves that [v, w] = 0, so by Frobenius' theorem 
{v, w} is integrable. Given (x, y, z), the subspace of TIR3 1(x.y.z) spanned by 
vl(x.y.z) and wl(x.y.z) is two-dimensional, except on the z-axis {x = y = O} and 
the circle {x2+ y2 = 1, z = OJ, where it is one-dimensional. It is not difficult 
to check that both the circle and the z-axis are one-dimensional integral 
submanifolds of {v, w}. All other integral submanifolds are two-dimensional 
tori 

{(x, y, z) = (x2+ y2)-1/2(X2+ y2+ Z2+ 1) = c, 

defined for c> 2. Indeed, 

d{(v) = v({) = 0; d{(w) = w({) = 0 

everywhere, so by Proposition 1.35, both v and ware tangent to each level 
set of { where V {,e O. (See Section 2.1 for some general techniques for 
constructing integral submanifolds.) 

An integrable system of vector fields {Vb"" vr} is called semi-regular if 
the dimension of the subspace of TMlx spanned by {v1Ix, ... , vrlx} does not 
vary from point to point. In this case all the integral submanifolds have the 
same dimension. In analogy with the concept of a regular group action, we 
say that an integrable system of vector fields is regular if it is semi-regular, 
and, in addition, each point x in M has arbitrarily small neighbourhoods 
U with the property that each maximal integral submanifold intersects U 
in a pathwise connected subset. Although semi-regularity is a local property, 
which can be deduced using coordinates, regularity depends on the global 
structure of the system and is extremely difficult to check without explicitly 
finding the integral submanifolds. Any semi-regular system can be made 
regular, however, by restriction to a suitably small open subset of M. 
For example, the system in Example 1.42 is regular on the open subset 
IR\( {x = y = O} U {x2+ y2 = 1, z = O}) obtained by deleting the z-axis and the 
unit circle from 1R3. 
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For semi-regular systems of vector fields, Frobenius' theorem actually 
gives a means of "flattening out" the integral submanifolds by appropriate 
choice of local coordinates, just as we did for the integral curves of a single 
vector field in Proposition 1.29. 

Theorem 1.43. Let {vt. ... ,vr } be an integrable system of vector fields such 
that the dimension of the span of {v1Ix, ... , v.lx} in TMlx is a constant s, 
independent of x E M. Then for each Xo E M there exist flat local coordinates 
y = (i, ... , ym) near Xo such that the integral submanifolds intersect the given 
coordinate chart in the "slices" {y: i = ct. ... , ym-s = cm- s}, where 
Ct. ... , cm- s are arbitrary constants. If, in addition, the system is regular, then 
the coordinate chart can be chosen so that each integral submanifold intersects 
it in at most one such slice. 

For the system in Example 1.42, near any point (xo, Yo, zo) with zo;6 0 
and not on the z-axis, flat local coordinates are given by x = x, y = y, z = 
l'(x,y, z). The tangent space to the plate {z=constant} is spanned by the 
vector fields 

X(X2+y2-z2-I) 0 o 0 

oX oX 2Z(X2+y2) oz' 

o 0 Y(X2+y2- z2-I) 0 
-=--
oy oy 2z(x2+ y2) oZ 

Note that {olox, oloy} and {v, w} both span the same subspace of TIR3 at 
each point (x, y, z) with z(x2+ y2);6 0, so we have indeed locally "flattened 
out" the tori of Example 1.42. A more physically interesting set of flat local 
coordinates for {v, w} are provided by the toroidal coordinates «(J, 1/1, 1/), 
defined by 

x= 
sinh 1/ cos 1/1 

cosh 1/ - cos (J' 

sinh 1/ sin 1/1 
y= 

cosh 1/ - cos (J' 

sin (J 
z=------

cosh 1/ - cos (J' 

which arise in the theory of separation of variables for Laplace's equation, 
cf. Moon and Spencer, [1]. The reader can check that the level surfaces 
{1/ = c} are precisely the integral tori for the system {v, w}; in fact v = 0"" w = 
-209 under the change of coordinates! 

1.4. Lie Algebras 

If G is a Lie group, then there are certain distinguished vector fields on G 
characterized by their invariance (in a sense to be defined shortly) under 
the group mUltiplication. As we shall see, these invariant vector fields form 
a finite-dimensional vector space, called the Lie algebra of G, which is in a 
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precise sense the "infinitesimal generator" of G. In fact almost all the 
information in the group a is contained in its Lie algebra. This fundamental 
observation is the cornerstone of Lie group theory; for example, it enables 
us to replace complicated nonlinear conditions of invariance under a group 
action by relatively simple linear infinitesimal conditions. The power of this 
method cannot be overestimated-indeed almost the entire range of applica
tions of Lie groups to differential equations ultimately rests on this one 
construction! 

We begin with the global Lie group picture, addressing the analogous 
construction for local Lie groups subsequently. Let a be a Lie group. For 
any group element g E a, the right multiplication 

Rg : a~a 

defined by 

is a diffeomoTJlhism, with inverse 

Rg-l = (Rg)-l. 

A vector field v on a is called right-invariant if 

dRg(vlh) =VIRg(h) =Vlhg 

for all g and h in G. Note that if v and ware right-invariant, so is any linear 
combination av+ bw, a, bE IR; hence the set of all right-invariant vector 
fields forms a vector space. 

Definition 1.44. The Lie algebra of a Lie group a, traditionally denoted by 
the corresponding lowercase German letter g, is the vector space of all 
right-invariant vector fields on G. 

Note that any right-invariant vector field is uniquely determined by its 
value at the identity because 

(1.35) 

since Rg(e) = g. Conversely, any tangent vector to a at e uniquely deter
mines a right-invariant vector field on a by formula (1.35). Indeed, 

dRg(vlh) = dRg(dRh(vle» = d(Rg 0 Rh)(vle) = dRhg(vle) =Vlhg, 

proving the right-invariance of v. Therefore we can identify the Lie algebra 
9 of a with the tangent space;: to a at the identity element 

g= Tale. (1.36) 

In particular, 9 is a finite-dimensional vector space of the same dimension 
as the underlying Lie group. 

In addition to its vector space structure, such a Lie algebra is further 
equipped with a skew-symmetric bilinear operation, namely the Lie bracket. 
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Indeed, if v and ware right-invariant vector fields on G, so is their Lie 
bracket [v, w], since by (1.32) 

dRg[v, w] = [dRg(v), dRg(w)] = [v, w]. 

This motivates the general definition of a Lie algebra. 

Definition l.4S. A Lie algebra is a vector space 9 together with a bilinear 
operation 

[ . , . ]: 9 x 9 ~ g, 

called the Lie bracket for g, satisfying the axioms 

(a) Bilinearity 

[cv+ c'v', w] = c[ v, w] + c'[ v', w], [v, cw+c'w'] = c[v, w]+c'[v, w'], 

for constants c, c' E IR, 
(b) Skew-Symmetry 

(c) Jacobi Identity 

[v,w]=-[w,v], 

[u, [v, wJ]+[w, [u, vJ]+[v, [w, uJ] =0, 

for all u, v, v', w, w' in g. 

In this book most Lie algebras will be finite-dimensional vector spaces. 
(An interesting infinite-dimensional Lie algebra is given by the space of all 
smooth vector fields on a manifold M. However, infinite-dimensional alge
bras are considerably more difficult to work with.) We begin with some 
easy examples of Lie algebras. 

Example 1.46. If G = IR, then there is, up to constant multiple, a single 
right-invariant vector field, namely ax = al ax. In fact, given x, y E IR, 

hence 

dRy(aJ = ax. 

Similarly, if G = IR+, then the single independent right-invariant vector field 
is xax. Finally, for SO(2) the vector field a(J is again the unique independent 
right-invariant one. Note that the Lie algebras of IR, IR+ and SO(2) are all 
the same, being one-dimensional vector spaces with trivial Lie brackets 
([v, w] = 0 for all v, w). This shouldn't be surprising, as the reader can easily 
check from the general definition that there is only one one-dimensional 
Lie algebra, namely 9 = IR, with necessarily trivial Lie bracket. 
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Example 1.47. Here we compute the Lie algebra of the general linear group 
GL(n). Note that since GL(n) is n2-dimensional, we can identify the Lie 
algebra gl( n) = IR n' with the space of all n x n matrices. Indeed, coordinates 
on G L( n) are provided by the matrix entries xij, i, j = 1, ... ,n, so the 
tangent space to GL(n) at the identity is the set of all vector fields 

vAil =I aij~1 ' 
i.j aXij I 

where A = (aij) is an arbitrary n x n matrix. Now given Y = (Yij) E GL(n), 
the matrix Ry(X) = XY has entries 

Therefore, according to (1.35), we find 

vAly=dRy(VAII) 

a ( ) a = I I aij- I XIIJ'km -
I,m i,j aXij k aXlm 

or, in terms of X E GL(n), 

vAlx = I (I aikXkj)~' 
i,j k aXij 

To compute the Lie bracket: 

(1.37) 

where [A, B] == BA - AB is the matrix commutator. Therefore, the Lie 
algebra gl(n) of the general linear group GL(n) is the space of all n x n 
matrices with the Lie bracket being the matrix commutator. 

One-Parameter Subgroups 

Suppose 9 is the Lie algebra of a Lie group G. The next result shows that 
there is a one-to-one correspondence between one-dimensional subspaces 
of 9 and (connected) one-parameter subgroups of O. 
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Proposition 1.48. Let v;6 0 be a right-invariant vector field on a Lie group G. 
Then the flow generated by v through the identity, namely 

g. =exp(ev)e (1.38) 

is defined for all e E IR and forms a one-parameter subgroup of G, with 

(1.39) 

isomorphic to either IR itself or the circle group SO(2). Conversely, any 
connected one-dimensional subgroup of G is generated by such a right-invariant 
vector field in the above manner. 

PROOF. For e, 8 sufficiently small, (1.39) follows from the right-invariance 
of v and (1.26): 

g6· g. = Rg.(g6) = RgJexp(8v)e] 

= exp[8· dRg,(v)]Rg.(e) 

= exp(8v)g. 

= exp(8v) exp(ev)e 

= exp[(8 + e)v]e = g6+ •. 

Thus g. is at least a local one-parameter subgroup. In particular, go = e, 
and g_. = g~1 for e small. Furthermore, g. is defined at least for -!eo:S; e:S; 
!eo, for some eo> 0, so we can inductively define 

for m an integer. The above calculation shows that g. is a smooth curve in 
G satisfying (1.39) for all e, 8, proving that the flow is globally defined 
and forms a subgroup. If g. = g6 for some e ;6 8, then it is not hard to show 
that g.o = e for some least positive eo> 0, and that g. is periodic with period 
eo, i.e. g.+.o = g •. In this case {gel is isomorphic to SO(2) (take fJ = 21Tej eo). 
Otherwise g. ;6 g6 for all e;6 8, and {g.} is isomorphic to R 

Conversely, if He G is a one-dimensional subgroup, we let vie be any 
nonzero tangent vector to H at the identity. Using the isomorphism (1.36) 
we extend v to a right-invariant vector field on all of G. Since H is a sub
group it follows that vlh is tangent to H at any hE H, and therefore H is 
the integral curve of v passing through e. This proves the converse. 0 

Example 1.49. Suppose G = G L( n) with Lie algebra gl( n), the space of all 
n x n matrices with commutator as the Lie bracket. If A E gl( n), then the 
corresponding right-invariant vector field VA on GL(n) has the expression 
(1.37). The one-parameter subgroup exp(evA)e is found by integrating the 
system of n 2 ordinary differential equations 

Xij(O) = 8;, i,j = 1, ... , n, 
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involving the matrix entries of A. The solution is just the matrix exponential 
X(e) = eeA, which is the one-parameter subgroup of GL(n) generated by 
a matrix A in gl(n). 

Example 1.50. Consider the torus T2 with group multiplication 

(O,p)' (O',p')=(O+O',p+p')mod27T. 

Clearly the Lie algebra of T2 is spanned by the right-invariant fields aj a(}, 
aj ap with trivial Lie bracket: [a e, ap ] = O. Let 

v., =ae+wap 

for some w E R Then the corresponding one-parameter subgroup is 

exp(ev.,)(O, 0) = (e, ew) mod 27T, e E IR, 

which is precisely the subgroup H., discussed on page 18. In particular, if 
w is rational, H., is a closed, one-parameter subgroup isomorphic to SO(2), 
while if w is irrational, H., is a dense subgroup isomorphic to R This shows 
that it is rather difficult in general to tell the precise character of a one
parameter subgroup just from knowledge of its infinitesimal generator. 

Subalgebras 

In general a subalgebra ~ of a Lie algebra 9 is a vector subspace which is 
closed under the Lie bracket, so [v, w] E ~ whenever v, W E~. If H is a Lie 
subgroup of a Lie group G, any right-invariant vector field v on H can be 
extended to a right-invariant vector field on G. (Just set vJg = dRg(vJe), g E G.) 
In this way the Lie algebra ~ of H is realized as a sub algebra of the Lie 
algebra 9 of G. The correspondence between one-parameter subgroups of 
a Lie group G and one-dimensional subspaces ~ (subalgebras) of its Lie 
algebra 9 generalizes to provide a complete one-to-one correspondence 
between Lie subgroups of G and sub algebras of g. 

Theorem 1.51. Let G be a Lie group with Lie algebra g. If H eGis a Lie 
subgroup, its Lie algebra is a subalgebra of g. Conversely, if ~ is any 
s-dimensional subalgebra of g, there is a unique connected s-parameter Lie 
subgroup H of G with Lie algebra ~. 

The main idea in the proof pf this theorem can be outlined as follows. 
Let VI> ... , Vs be a basis of~, which defines a system of vector fields on G. 
Since ~ is a subalgebra, each Lie bracket [Vi> vj ] is again an element of~, 
and hence in the span of {VI> ... , vs}. Thus ~ defines an involutive system 
of vector fields on G. Furthermore, it is easily seen that at each point 
g E G, {VIJg, ... , vsJg} are linearly independent tangent vectors, so the system 
is semi-regular. By Frobenius' theorem, there is a maximal s-dimensional 
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submanifold of this system passing through e, and this submanifold is the 
Lie subgroup H corresponding to h. It is not too hard to check that H is 
indeed a subgroup, and we know it is a submanifold. The main technical 
complication in the proof comes from showing the group operations of 
multiplication and inversion induced from those of G are smooth in the 
manifold structure of H. The interested reader can look at Warner, [1; 
Theorem 3.19] for the complete proof. 

Example 1.52. The preceding theorem greatly simplifies the computation of 
Lie algebras of Lie groups which can be realized as Lie subgroups of the 
general linear group GL(n). Namely, if He GL(n) is a subgroup, then its 
Lie algebra I) will be a sub algebra of the Lie algebra gl( n) of all n x n 
matrices, with Lie bracket being the matrix commutator. Moreover, we can 
find 1)= THle just by looking at all one-parameter subgroups of GL(n) 
which are contained in H: 

1)={AEgl(n): eeAEH for eEIR}. 

For example, to find the Lie algebra of the orthogonal group O(n), we need 
to find all n x n matrices A such that 

(eeA)(eeA)T = 1. 

Differentiating with respect to e and setting e = 0 we find 

A+AT =0. 

Therefore so(n) = {A: A is skew-symmetric} is the Lie algebra of both O(n) 
and SO(n). Lie algebras of other matrix Lie groups are found similarly. 

We have seen that there is a general one-to-one correspondence between 
sub algebras of the Lie algebra of a given Lie group and connected Lie 
subgroups of the same group. In particular, every sub algebra of gl( n) gives 
rise to a matrix Lie group, i.e. a Lie subgroup of GL(n). More generally, 
if 9 is any finite-dimensional (abstract) Lie algebra, the question arises as 
to whether there is a corresponding Lie group G with the given space 9 as 
its Lie algebra. The answer to this question is affirmative, and, in fact, 
reduces to the matrix case by the following important theorem of Ado. 

Theorem 1.53. Let 9 be a finite-dimensional Lie algebra. Then 9 is isomorphic 
to a subalgebra of gl( n) for some n. 

As a direct consequence of Ado's theoreth and the latter half of Theorem 
1.22 we deduce the fundamental correspondence between Lie groups and 
Lie algebras. 

Theorem 1.54. Let 9 be a finite-dimensional Lie algebra. Then there exists a 
unique connected, simply-connected Lie group G* having 9 as its Lie algebra. 
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Moreover, if G is any other connected Lie group with Lie algebra g, then 
7T: G* ~ G is the simply-connected covering group of G. 

Indeed, we need only realize 9 as a sub algebra of gl(n) for some n, and 
take G to be the corresponding Lie subgroup of GL(n). Then G* will be 
the simply-connected covering group of G, guaranteed by Theorem 1.22. 

It is important to emphasize that it is not true that every Lie group G is 
isomorphic to a subgroup of GL(n) for some n. In particular, the simply
connected covering group of SL(2, IR) is not realizable as a matrix Lie group! 

The Exponential Map 

The exponential map exp: 9 ~ G is obtained by setting e = 1 in the one
parameter subgroup generated by v: 

exp(v) == exp(v)e. 

One readily proves that the differential 

d exp: Tglo=g~ TGle =g 

of exp at 0 is the identity map. (See Exercise 1.27.) Thus, by the inverse 
function theorem, exp determines a local diffeomorphism from 9 onto a 
neighbourhood of the identity element in G. Consequently, every group 
element g sufficiently close to the identity can be written as an exponential: 
g = exp( v) for some v E g. In general, exp: 9 ~ G is globally neither one-to-one 
nor onto. (See Exercise 1.28.) However, using Proposition 1.24, we can 
always write any group element g as a finite product of exponentials 

g = exp(v l ) exp(v2) ... exp(vk) 

for some Vb ... , Vk in g. The net effect of this observation is that the proof 
of the invariance of some object under the entire Lie group reduces to a 
proof of its invariance just under one-parameter subgroups of G, which in 
turn will be implied by a form of "infinitesimal invariance" under the 
corresponding infinitesimal generators in g. With a little more work, we can 
actually reduce to just proving "invariance" under a basis {Vb ... , vr } of g, 
with any group element being expressible in the form 

g = exp(e1vi) exp(e2vi2) ... exp(ekvi.) (l.40) 

for suitable e j E IR, 1.;;; ij ';;; r,j = 1, ... , k. (See Exercise 1.27.) 

Lie Algebras of Local Lie Groups 

Turning to the local version we consider a local Lie group V c IR r with 
multiplication m(x, y). The corresponding right translation Ry: V ~ IR r is 
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Ry(x) = m(x, y). A vector field v on V is right-invariant if and oqIy if 

dRy(vl x) = vi Ry(x) = vi m(x,y) 

whenever x, y and m(x, y) are in V. As in the case of global Lie groups, it 
is easy to check that any right-invariant vector field is determined uniquely 
by its value at the origin (identity element), vlx = dRx(vlo), and hence the Lie 
algebra 9 for the local Lie group V, determined as the space of right-invariant 
vector fields on V, is an r-dimensional vector space. In fact, we can determine 
9 directly from the formula for the group multiplication. 

Proposition 1.55. Let V c IR r be a local Lie group with multiplication m (x, y), 
x, y E V. Then the Lie algebra 9 of right-invariant vector fields on V is spanned 
by the vector fields 

k=I, ... ,r, 

where 

(1.41) 

Here the mi.s are the components ofm, and the a/axk denote derivatives with 
respect to the first set of r variables in m (x, y), after which the values x = 0, 
y = x are to be substituted. 

PROOF. Since Ry(x) = m(x, y), we have 

( 
r. a ) . am j a 

dRy L gk(O)-i = L gk(O)-i (0, Y)-j" 
i=1 ax i,j ax ax 

Thus it suffices to prove that 

i.e. 

ami(O 0)={1, 
axk' 0, 

i = k, 
i;6 k. 

But this follows trivially from the fact that m(x, 0) = x is the identity m. 0 

Example 1.56. Consider the local Lie group of Example 1.21. The Lie algebra 
9 is one-dimensional, spanned by the vector field g(x)ax, where, by (1.41), 

am 
g(x) =-(0, x) = (x _1)2. 

ax 

Thus v = (x -l?ax is the unique independent right-invariant vector field on 
V. Note that the local group homomorphism x: IR ~ V of Example 1.23 
maps the invariant vector field at on IR to -v= dx(at). 
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Structure Constants 

Suppose 9 is any finite-dimensional Lie algebra, so by Theorem 1.54 9 is 
the Lie algebra of some Lie group G. If we introduce a basis {Vh ••• , vr} 

of g, then the Lie bracket of any two basis vectors must again lie in g. Thus 
there are certain constants ct, i,j, k = 1, ... , r, called the strncture constants 
of 9 such that 

r 

[Vi, Vj] = L ctVko i,j=I, ... ,r. (1.42) 
k=1 

Note that since the v;'s form a basis, if we know the structure constants, 
then we can recover the Lie algebra 9 just by using (1.42) and the bilinearity 
of the Lie bracket. The conditions of skew-symmetry and the Jacobi identity 
place further constraints on the structure constants: 

(i) Skew-symmetry 

(1.43) 

(ii) Jacobi identity 

(1.44) 

Conversely, it is not difficult to show that any set of constants ct which 
satisfy (1.43), (1.44) are the structure constants for some Lie algebra g. 

Of course, if we choose a new basis of g, then in general the structure 
constants will change. If Vi = Lj aijvj, then 

(1.45) 

where (bij ) is the inverse matrix to (aij). Thus two sets of structure constants 
determine the same Lie algebra if and only if they are related by (1.45). 
Consequently, from Theorem 1.54 we see that there is a one-to-one corre
spondence between equivalence classes of structure constants ct satisfying 
(1.43), (1.44) and connected, simply-connected Lie groups G whose Lie 
algebras have the given structure constants relative to some basis. Thus in 
principle, the entire theory of Lie groups reduces to a study of the algebraic 
equations (1.43), (1.44); however, this is perhaps an excessively simplistic 
point of view! 

Commutator Tables 

The most convenient way to display the structure of a given Lie algebra is 
to write it in tabular form. If 9 is an r-dimensional Lie algebra, and Vh •.• , Vr 

form a basis for g, then the commutator table for 9 will be the r x r table 
whose (i,j)-th entry expresses the Lie bracket [Vi, vJ. Note that the table is 
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always skew-symmetric since [Vi, VJ = -[ Vj ' V;]; in particular, the diagonal 
entries are all zero. The structure constants can be easily read off the 
commutator table; namely c~ is the coefficient of Vk in the (i,j)-th entry of 
the table. 

For example, if 9 = 51(2), the Lie algebra of the special linear group 
SL(2), which consists of all 2 x 2 matrices with trace 0, and we use the basis 

A _(0 1) 
1- 0 0 ' 

then we obtain the commutator table 

Al A2 A3 

Al 0 Al -2A2 
A2 -AI 0 
A3 2A2 -A3 

Thus, for example, 

[Ai> A 3 ] = A3AI - AIA3 = -2A2 , 

and so on. The structure constants are 

with all other CJk'S being zero. 

Infinitesimal Group Actions 

A3 
0 

Suppose G is a local group of transformations acting on a manifold M via 
g. x = 'I'(g, x) for (g, x) E au c G x M. There is then a corresponding 
"infinitesimal action" of the Lie algebra 9 of G on M. Namely, if V E 9 we 
define "'(v) to be the vector field on M whose flow coincides with the action 
of the one-parameter subgroup exp(ev) of G on M. This means that for 
xEM, 

",(v)lx = ~ 1.=0 'I'(exp(ev), x) = d'l' Avl e ), 

where 'I' Ag) == 'I'(g, x). Note further that since 

'I' x 0 Rg(h) = 'I'(h· g, x) = 'I'(h, g. x) = 'I' goAh) 

wherever defined, we have 

d'l' Avlg) = d'l' gox(vl e ) = ",(v)lgox 

(1.46) 
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for any g E aX" It follows from property (1.32) of the Lie bracket that 1/1 
is a Lie algebra homomorphism from 9 to the Lie algebra of vector fields 
on M: 

[I/I(v), I/I(w)] = I/I([v, w]), V, wEg. (1.47) 

Therefore the set of all vector fields I/I(v) corresportding to v E 9 forms a Lie 
algebra of vector fields on M which is isomorphic to g; in particular, it has 
the same structure constants. Conversely, given a finite-dimensional Lie 
algebra of vector fields on M, there is always a local group of transformations 
whose infinitesimal action is generated by the given Lie algebra. 

Theorem 1.57. Let WI> •.• , w, be vector fields on a manifold M satisfying 

[Wj, Wj] = I C~Wk> 
k=l 

i,j = 1, ... , r, 

for certain constants c~. Then there is a Lie group a whose Lie algebra has 
the given c~ as structure constants relative to some basis VI> ••• ,v" and a 
local group action of a on M such that 1/1 ( v j) = W j for i = 1, ... , r, where 1/1 is 
defined by (1.46). 

Usually we will omit explicit reference to the map 1/1 and identify the 
Lie algebra 9 with its image I/I(g), which forms a Lie algebra of vector fields 
on M. In this language, we recover 9 from the group transformations by 
the basic formula 

vEg. (1.48) 

A vector field v in 9 is called an infinitesimal generator of the group action 
a. Theorem 1.57 says that if we know infinitesimal generators WI> ••• ,W" 

which form a basis for a Lie algebra, then we can always exponentiate to 
find a local group of transformations whose Lie algebra coincides with the 
given one. 

Example 1.58. Lie proved that up to diffeomorphism there are precisely 
three finite-dimensional Lie algebras of vector fields on the real line M = IR. 
These are 

(a) The algebra spanned by ax: This generates an action of IR on M as 
a one-parameter group of translations: x ~ x + e. 

(b) The two-dimensional Lie algebra spanned by ax and xax, the second 
vector field generating the group of dilatations x~Ax: Note that 
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so this Lie algebra is isomorphic to the 2 x 2 matrix Lie algebra spanned by 

and 

This generates the Lie group of all upper triangular matrices of the form 

A=(a /3) 
01' 

a>O. 

The corresponding action on IR is x ~ ax + /3, and we leave it to. the reader 
to check that this indeed defines an action of this Lie group, whose 
infinitesimal generators agree with the given ones. 

(c) The three-dimensional algebra spanned by 

the third vector field generating the local group of "inversions" 

x 
x~-

I-ex' 

I lel<-· x 

The commutator table for this Lie algebra is as follows: 

VI V2 V3 

VI 0 VI 2V2 

V2 -VI 0 V3 

V3 -2V2 -V3 0 

If we replace Y3 by -Y3 = -x2ax , then we get the same commutator table as 
51(2) with basis 

There is thus a local action of the special linear group SL(2) on the real 
line with ax, xax and -x2ax serving as the infinitesimal generators. It is not 
difficult to see that this group action is just the projective group 

ax+/3 
x~--

yx+8 ' 

being the real analogue of the complex group of linear fractional transforma
tions. 
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1.5. Differential Forms 

Originally developed as a tool for the multi-dimensional generalization of 
Stokes' theorem, differential forms playa fundamental role in the topological 
aspects of differential geometry. Although in this book I have tended to 
de-emphasize the use of differential forms, there are several occasions, most 
notably the variational complex of Section 5.4, in which the language of 
differential forms is especially effective. This section provides a rapid intro
duction to the theory of differential forms for the reader who is interested 
in pursuing these more theoretical aspects of the subject. We begin with 
the basic definition. 

Definition 1.59. Let M be a smooth manifold and TMlx its tangent space 
at x. The space AkT* Mix of differential k-forms at x is the set of all k-linear 
alternating functions 

w: TMlx x··· x TMlx~1R. 

Specifically, if we denote the evaluation of w on the tangent vectors 
Vh' •• , Vk E TMlx by (w; Vh ••• , Vk), then the basic requirements are that for 
all tangent vectors at x, 

for c, C' E IR, 1 ~ i ~ k, and 

for every permutation 'TT' of the integers {I, ... , k}, with (-1) 7T denoting the 
sign of 'TT'. The space Ak T* Mix is, in fact, a vector space under the obvious 
operations of addition and scalar multiplication. A O-form at x is, by 
convention, just a real number, while the space T* Mix = Al T* Mix of 
one-forms, called the cotangent space to M at x, is the space of linear 
functions on TMlx, i.e. the dual vector space to the tangent space at x. A 
smooth differential k-form w on M (or k-form for short) is a collection of 
smoothly varying alternating k-linear maps wlx E Ak T* Mix for each x EM, 
where we require that for all smooth vector fields Vh ••• , Vk. 

(w; Vh "', Vk)(X) == (wlx; vllx,"" vklx) 

is a smooth, real-valued function of x. In particular, a O-form is just a 
smooth real-valued function f: M ~ IR. 

If (xl, ... , xm) are local coordinates, then TMlx has basis 
{a/ax l , ••• , a/axm}. The dual cotangent space has a dual basis, which is 
traditionally denoted {dxl, ... , dxm}; thus (dxi; a/ax j ) = 8; for all i,j, where 
8; is 1 for i = j and 0 otherwise. A differential one-form w thereby has the 
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local coordinate expression 

W = hl(x) dx l + ... + hm(x) dx m, 

where each coefficient function hix) is smooth. Note that for any vector 
field v = L ~i(X) a/ax i, 

m 

(w;v)= L hi(X)~i(X) 
i=1 

is a smooth function. Of particular importance are the one-forms given by 
the differentials of real-valued functions: 

To proceed to higher order differential forms, we note that given a 
collection of differential one-forms WI> ••• , Wk, we can form a differential 
k-form WI/I· •• /I Wk, called the wedge product, using the determinantal 
formula 

(1.49) 

the right-hand side being the determinant of a k x k matrix with indicated 
(i,j) entry. Note that the wedge product itself is both multi-linear and 
alternating 

WI /I ••• /I (CWi + C' W D /I ••• /I Wk = c( WI /I ••• /I Wi /I ••• /I wd 

+ c'(w l /I ••• /I w;,,· .. " Wk), 

W1T 1 " ••• " W 1Tk = (_1)1T WI" ••• " Wk. 

It is not hard to see that in local coordinates, /\ k T* Mix is spanned by the 
basis k-forms 

where I ranges over all strictly increasing multi-indices 1,,;;; i l < i2 < ... < 
ik ,,;;; m. Thus /\k T* Mix has dimension (k'); in particular, /\k T* Mix = {OJ 
if k> m. Any smooth differential k-form on M has the local coordinate 
expression 

where, for each strictly increasing multi-index I, the coefficient al is a 
smooth, real-valued function. For example, a two-form in IR J takes the form 

W = a(x, y, z) dy" dz + f3(x, y, z) dz" dx+ y(x, y, z) dx" dy, (1.50) 

using the basis dy" dz, dz" dx = -dx "dz, and dx" dy, attuned to the 
notation for surface integrals. We have 

(w; ~ax + ",ay + {az, iax + ~ay + eaz) = a(",e - ~n + f3({i - e~) + y(N - i",). 



1.5. Differential Forms 

If 

are "decomposible" forms, their wedge product is the form 

W II (J = W) II •.• II Wk II (J) II .•. II (J/, 

57 

with the definition extending bilinearly to more general types of forms: 

(CW + c' w') II (J = c( W II (J) + c'{w' II (J), 

W II (c(J + c'(J') = c{w II (J) + c'{w II (J'), 

for c, C' E IR. This wedge product is associative: 

and anti-commutative, 

W II (J = {_l)k/(J II W 

for W a k-form and (J an I-form. For example, the wedge product of (1.50) 
with a one-form (J = A dx + J.L dy + v dz is the three-form 

W II (J = {aA + (3J.L + yv) dx II dy II dz. 

Pull-Back and Change of Coordinates 

If F: M -+ N is a smooth map between manifolds, its differential dF maps 
tangent vectors on M to tangent vectors on N. There is thus an induced 
linear map F*, called the pull-back or codifferential of F, which takes 
differential k-forms on N back to differential k-forms on M, 

F*: I\k T* NIF(X) -+ I\k T* Mix. 

It is defined so that if W E I\k T* NIF(X)' 

(F*{w); Vh ... , Vk)=(W; dF{v)), ... , dF(Vk) 

for any set of tangent vectors Vh ••• , Vk E TMlx. In contrast to the differential, 
the pull-back does take smooth differential forms on N back to smooth 
differential forms on M. If x = (x), ... , xm) are local coordinates on M and 
y = (y\ ... ,y") coordinates on N, then 

. m a/ . 
F*{dy') = L -j' dx 1, where y = F{x), 

j~) ax 

gives the action of F* on the basis one-forms. We conclude that in general 

(1.51) 
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where ayl / ax' stands for the Jacobian determinant det(ayi. / axjp) corre
sponding to the increasing multi-indices I = (it. ... , ik ), J = (jt. ... ,A). In 
particular, if y = F(x) determines a change of coordinates on M, then (1.51) 
provides the corresponding change of coordinates for differential k-forms 
on M. Note also that the pull-back preserves the algebraic operation of 
wedge product: 

F*(w" 8) = F*(w)" F*( 8). 

Interior Products 

If w is a differential k-form and v a smooth vector field, then we can form 
a (k -1) -form v J w, called the interior product of v with w, defined so that 

for every set of vector fields Vt. ••• , Vk-I. 'The interior product is clearly 
bilinear in both its arguments, so it suffices to determine it for basis elements: 

a, ' 
-, J (dx lt " . .. " dxh ) 
ax' 

= {( -1)"-1 dx j, ,, ... " dxj.-,,, dxj'+1 " ... " dxh, 

0, 

For example, 

i= j", 
i ~ j" for all K. 

ax J dx" dy = dx, ax J dz" dx = -dz, ax J dy" dz = 0, 

so that if w is as in (1.50), 

Note that the interior product acts as an anti-derivation on forms, meaning 
that 

v J (w" 8)=(v J w)" 8+(_1)kw " (v J 8) (1.52) 

whenever w is a k-form, 8 an I-form. 

The Differential 

Besides the purely algebraic operations of wedge and interior products, 
there are two important differential operations. The first of these generalizes 
the concept of the differential of a smooth function (or O-form) to an 
arbitrary differential k-form. In local coordinates, if w = I alex) dx l is a 
smooth differential k-form on a manifold M its differential or exterior 
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derivative is the (k+ l}-form 

[ aa[ . [ 
dw = r. dar /\ dx = r. -j dXi /\ dx . 

[ [,j ax 
(1.53) 

Proposition 1.60. The differential d, taking k-forms to (k + 1) -forms, has the 
following properties: 

(a) Linearity 

d (cw + c' w') = c dw + c' dw' for c, c' constant, 

(b) Anti-derivation 

d(w /\ 8) = (dw) II 8 + (-l)kw II (dO), for w a k-form, 8 an I-form. 

(1.54) 

(c) Closure 

d(dw)=O. (1.55) 

(d) Commutation with Pull-Back 

F*(dw) = d(F*w), (1.56) 

for F: M ~ N smooth, w a k-form on N. 

The proofs of these properties are reasonably straightforward. Linearity 
is obvious and the anti-derivational property is an easy consequence of 
Leibniz' rule. To check closure, we need only prove d (df) = 0 for f a smooth 
function since we can then use properties (a) and (b) to extend this to the 
general case (1.53). However, 

m a2f . . (a2f a2f ). . 
d(df)= r. -j-jdX'lIdx1 = r. -j-j--j-j dX'lIdx 1 

j,j=l ax ax j<j ax ax ax ax 

by the alternating property of the wedge product, so closure just reduces 
to the equality of mixed partial derivatives. In fact, properties (a), (b), and 
(c) together with the action of d on functions serve to uniquely characterize 
the differential and so d is in fact independent of the choice of local 
coordinates. Finally, the proof of (1.56) need only be done in the case of 
functions: F*(df) = dF*(f), where F*(f) = foF, and then it reduces to the 
ordinary chain rule. 0 

If M = 1R3 , then the differential of a one-form, 

d(A dx+ f.t dy+ vdz) = (vy - f.tz) dy II dz+(Az - vx) dz II dx 

+ (f.tx - Ay) dx II dy, 
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can be identified with curl of its coefficients: V x A. == V x (A, IL, .,,). Similarly, 
the differential of a two-form 

d (a dy 1\ dz + (3 dz 1\ dx + 'Y dx 1\ dy) = (ax + (3y + 'Yz) dx 1\ dy 1\ dz 

can be identified with the divergence V· a == V . (a, (3, 'Y). The closure 
property (1.55) of d therefore translates into the familiar vector calculus 
identities 

Vx (Vf) =0, V· (VxA.)=O. 

The reader may find it instructive to see which vector calculus identities 
are contained in the anti-derivational property (1.54) in this case. 

The de Rham Complex 

Given a manifold M, we let /\k = /\k (M) denote the space of all smooth 
differential k-forms on M. The differential d, mapping k-forms to 
(k + I)-forms, serves to define a "complex" 

called the de Rham complex of M. In general, a complex is defined as a 
sequence of vector spaces, and linear maps between successive spaces, with 
the property that the composition of any pair of successive maps is identi
cally O. In the present case, this last requirement is a restatement of the 
closure property dod = 0, (1.55), of the differential. The initial map IR -+ /\0 
takes a constant c E IR to the constant function (O-form) f(x) == c on M. Note 
that dc = 0 for any constant c. 

The definition of a complex requires that the kernel of one of the linear 
maps contains the image of the preceding map. The complex is exact if this 
containment is, in fact, equality. In the case of the de Rham complex, 
exactness means that a closed differential k-form w, meaning that dw == 0, 
is necessarily an exact differential k-form, meaning that there exists a 
(k -1 )-form (J with w = d(J. (For k = 0, it says that a smooth function f is 
closed, df = 0, if and only if it is constant.) Clearly, any exact form is closed, 
but the converse need not hold. A simple example is when M = IR\{O}, on 
which w = (x2 + y2) -\y dx - x dy) is easily seen to be closed, but is not the 
differential of any smooth, single-valued function defined on all of M. Thus 
the de Rham complex is not in general exact. Remarkably, the extent to 
which it fails to be exact measures purely topological information about 
the manifold M. This result, the celebrated de Rham theorem, lies beyond 
the scope of this book and we refer the interested reader to the books of 
Warner, [1], and Bott and Tu, [1], for a development of this beautiful theory. 

On the local side, for special types of domains in Euclidean space IR m, 

there is only trivial topology and we do have exactness of the de Rham 
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complex. This result, known as the Poincare lemma, will hold for star-shaped 
domains Me IR m, where "star-shaped" means that whenever x E M, so is 
the entire line segment joining x to the origin: {Ax: o:s;; A :s;; I} c M. 

Theorem 1.61. Let Me IR m be a star-shaped domain. Then the de Rham 
complex over M is exact. 

Example 1.62. For Me IR m, any m-form w is uniquely determined by a 
single smooth function f, with w = f(x) dx l " ••• " dx m relative to the stan
dard volume form. (This does depend on our choice of coordinates.) 
Similarly, an (m -l)-form ~ is determined by an m-tuple of smooth func
tions p = (Ph' .. ,Pm), SO that 

where 

m • 
~= L (-.l)j-Ipj(X) dxj , 

j=1 

The differential w = d~ is then determined as the usual divergence of p: 

m 

f(x) = div p(x) = L apj/ ax j. 
j=1 

Note that any m-form on IR m is always closed, dw = 0, as there are no 
nonzero (m + I)-forms. Exactness of the de Rham complex at the Am-stage, 
then, says that any function f defined on a star-shaped subdomain of IR m 

can always be written as a divergence: f = div P for some p. Similarly, an 
(m-l)-form 'T/ is determined by m(m-l)/2 functions fJ.jk(X), j,k= 
1, ... , m, with qjk = -qkj, so that 

'T/= I (-ly+k-Iqjk(x)dx~ 

where 

j,k=1 
j<k 

1; 1 "-I "+1 k-I k+1 m 
dx 1 == dx " ... " dx 1 " dx1 " ••• " dx A dx " ... A dx . 

Note that d'T/ = ~ is equivalent to the condition that p be a "generalized 
curl" of q: 

m 

Pj(x) = L aqjk/ axk, 
k=1 

j = 1, ... , m. 

Exactness of the de Rham complex at this stage then says that any vector 
field p(x), defined over a star-shaped domain in IR m, which is divergence
free: div p == 0, is necessarily the generalized curl of some such q. 
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Lie Derivatives 

Let v be a vector field on a manifold M. We are often interested in how 
certain geometric objects on M, such as functions, differential forms and 
other vector fields, vary under the flow exp{ev) induced by v. The Lie 
derivative of such an object will in effect tell us its infinitesimal change 
when acted on by the flow. (Our standard integration procedures will tell 
us how to reconstruct the variation under the flow from this infinitesimal 
version.) For instance, the behaviour of a function under the flow induced 
by a vector field v has already been established so v{f), cf. (1.17), will be 
the "Lie derivative" of the function f with respect to v. 

More generally, let u be a differential form or vector field defined over 
M. Given a point x EM, after "time" e it has moved to exp{ev)x and the 
goal is to compare the value of u at exp{ev)x with its original value at x. 
However, ulexp(ev)x and ulx, as they stand are, strictly speaking, incomparable 
as they belong to different vector spaces, e.g. TMlexp(EV)X and TMlx in the 
case of a vector field. To effect any comparison, we need to "transport" 
Ulexp(EV)X back to x in some natural way, and then make our comparison. 
For vector fields, this natural transport is the inverse differential 

4>: == d exp{ -ev): TMlexp(EV)x ~ TMlx, 

whereas for differential forms we use the pull-back map 

4>: == exp{ ev)*: I\k T* Mlexp(.v)X ~ I\k T* Mix' 

This allows us to make the general definition of a Lie derivative. 

Definition 1.63. Let v be a vector field on M and u a vector field or differential 
form defined on M. The Lie derivative of u with respect to v is the object 
whose value at x EM is: 

( )1 =1' 4>:{ulexp(ev)x)-ulx=~1 A.*{ I ) v u x 1m d '1'. U exp(EV)X . 
• -0 e e .=0 

(1.57) 

(Note that v{u) is an object of the same type as u.) 

In the case that u is a vector field, its Lie derivative is a by now familiar 
object-the Lie bracket! 

Proposition 1.64. Let v and w be smooth vector fields on M. The Lie derivative 
of w with respect to v coincides with the Lie bracket of v and w: 

v{ w) = [ v, w]. (1.58) 

PROOF. Let (x\ ... ,xm ) be local coordinates, with v=Ig\x)ajaxi, w= 
I 'l'/i{X) ajax i. Expanding in powers of e, we see that 
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hence, using (1.23) and (1.19), 

d exp(-ev)[WleXP(EV)X]= I {'1/i(x)+e[v('1/i)_w(~i)]+O(e2)}-;. 
i=1 ax 

Substituting into the definition (1.57), we deduce (1.58) from (1.28). 0 

Turning to differential forms, we find that the Lie derivative can be most 
easily reconstructed from its basic properties: 

(a) Linearity 

v(cw + c'w') = cv(w) + c'v(w'), 

(b) Derivation 

c, c' constant, 

v( w /\ 0) = v( w) /\ 0 + w /\ v( 0), 

(c) Commutation with the Differential 

v(dw) = dv(w). 

(1.59) 

(1.60) 

(1.61) 

The commutation property is proved using the analogous property of 
puII-backs (1.56). The derivational property is proved just like Leibniz' rule. 
In fact, a Leibniz-type argument extends to Lie derivatives of more general 
bilinear combinations of geometric objects. Thus we have the useful formula 

v(wJw)=[v,W]Jw+wJv(w), (1.62) 

for vector fields v and wand w a differential form. (See Exercise 1.35.) 
In local coordinates, the Lie derivative of a differential form is determined 

as foIIows. If 

then 

m. a 
v= L f(x)-p 

i=1 ax 

. . . m a~i . 
v(dx') = dv(x') = dg' = L -j dx J• 

j=lax 

Therefore, we have the general formula 

V(L CXI(X) dx I ) = L {V(CXI ) dx I + I CXrdxi, /\ ... /\ d~i. /\ ... /\ dXik}. (1.63) 
I I K=I 

Note that the three properties (1.59-1.61) along with its action on smooth 
functions serve to define the Lie derivative operation uniquely. For example, 
if M =1R2 and 

v= ~(x, y)ax+ '1/(x, y)ay, 

then the Lie derivative of a two-form is 

v( y(x, y) dx /\ dy) = v( y) dx /\ dy + y d~ /\ dy + Y dx /\ d'1/ 

= Uyx + '1/yy + y~x + y'1/y} dx /\ dy. 
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For instance, the Lie derivative of dx" dy with respect to v = -yax + xay , 

the generator of the rotation group, is identically 0 and reflects the fact that 
rotations in 1R2 preserve area. (See Exercise 1.36.) 

Proposition 1.65. A differential k-form on M is invariant under the flow of a 
vector field v: 

wlexp(ev)x = exp( -ev)*(wlx), 

if and only if v(w) = 0 everywhere. (A similar result holds for vector fields.) 

PROOF. Applying 4>:= exp(ev)* to (1.57) and using the basic group property 
of the flow, we find 

d 
exp(ev)*(v(w )Iexp(ev)x) = de {exp( ev)*(wlexp(e.)x)} (1.64) 

for all e where defined. From this the proposition is easily deduced. 0 

The most important formula for our purposes is one that relates the Lie 
derivative and the differential. 

Proposition 1.66. Let w be a differentialform and v be a vector field on M. Then 

v( w ) = d (v J w) + v J (dw ). (1.65) 

PROOF. Define the operator 2.(w) by the right-hand side of (1.65). Since 
the Lie derivative is uniquely determined by its action on functions and the 
properties (1.59-1.61), it suffices to check that 2. enjoys the same properties. 
First 

2.(f) = v J df = (df; v) = v (f) , 

so the action on functions is the same. Linearity of 2. is clear, while the 
closure property of d immediately proves the commutation property: 

2.(dw) = d(v J dw) = d2.(w). 

Finally, if w is a k-form and 8 an I-form, we use (1.52), (1.54) to prove that 

2.( w 1\ 8) = d[(v J w) 1\ 8 + (-l) kw 1\ (v J 8)] + v J [( dw) 1\ 8 + (-l) kw 1\ (d8)] 

= d (v J w) 1\ (J + (_l)k-l(V J w) 1\ d8 + (_l)k( dw) 1\ (v J 8) 

+ (_1)2kw 1\ d (v J 8) + (v J dw) 1\ 8 + (_l)k+l( dw) 1\ (v J 8) 

+ (_l)k(V J w) 1\ (d8) + (_1)2kw 1\ (v J d8) 

= 2.(w) 1\ 8 + w 1\ 2.( 8), 

the remaining terms cancelling. o 
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Homotopy Operators 

The key to the proof of the exactness of the de Rham complex (or any 
other complex for that matter) lies in the construction of suitable homotopy 
operators. By definition, these are linear operators h: !\k-+ !\k-h taking 
differential k-forms to (k-l)-forms, and satisfying the basic identity 

w = dh(w)+ h(dw) (1.66) 

for all k-forms w. (The case k = 0 is slightly different, as explained below.) 
The discovery of such a set of operators immediately implies exactness of 
the complex. For if w is closed, dw = 0, then (1.65) reduces to w = d8 where 
8 = h(w), so w is exact. Thus we need only concentrate on finding these 
homotopy operators. 

Let us look back at the Lie derivative formula (1.65). If we could treat 
the Lie derivative as an ordinary derivative, then we could integrate both 
sides of (1.65) and deduce the homotopy formula (1.66). More rigorously, 
we can integrate the Lie derivative formula (1.64) with respect to e; using 
(1.65) and (1.56), we find 

exp(ev)*[wlexp(ev)x] -wlx = r exp(iv)*[v(w)lexp(iv)x] di 

= r {d[exp(iv)*(v J Wlexp(iv)x)] 

+exp(iv)*[v J dwlexp(iv)x]}di. 

If we define the operator 

h:(w)lx= r exp(iv)*[vJwlexp(iv)x]di, 

then we have the homotopy-like formula 

(1.67) 

which is valid for any manifold M, any differential form w, any vector field 
v and all e E IR such that exp(ev)x is defined. 

We are now in a position to prove the Poincare lemma (Theorem 1.61) 
by constructing a homotopy operator over the star-shaped domain Me IRm. 
Note that the scaling vector field Vo=LXia/axi has flow exp(ev)x=eex, 
which, for x EM, remains in M for all e'" O. If w = L (l1(X) dx l is a k-form 
defined on all of M, then for e ... 0, 
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since exp(evo)*(dxi) = d(e'x i) = e' dXi. We can write this formula in a 
simpler manner if we denote w by w[x], whereby 

exp(evo)*w[x] = w[eEx] = L ar(e·x)d(e·xi,)" . .. " d(eExik). 

(In other words, we substitute e'xi for each Xi wherever it occurs in w, 
including the differentials dXi.) In this special case, (1.67) with v = Vo reads 

w[e'x] - w[x] = dh~(w) + h~(dw), (1.68) 

where, for e ~ 0, 

fE - fl dA 
h~(w) == (vo J w)[e'x] de = - (vo J w )[Ax]-, 

o ~g. A 

(using the change of variables A = log e). Now let e ~ -00. If w is a k-form 
and k> 0, then w[ eEx] ~ ° as e ~ -00. Thus (1.68) reduces to the homotopy 
formula (1.66) with homotopy operator 

fl dA 
h(w) = (vo J w)[Ax]-. 

o A 
(1.69) 

(Note that in this formula, we first compute the interior product Vo J wand 
then evaluate at Ax.) If, however, k = 0, so w is a smooth function f(x), 
(1.68) reduces to the alternative formula 

f(x) - f(O) = dh(f) + h(df) = h(df) 

in the limit as e ~ -00, leading to the initial injection IR ~ /\0 in the de Rham 
complex. We have thus completed the proof of the Poincare lemma. 

Example 1.67. Consider a planar star-shaped domain M c 1R2. If 

w =a(x,y) dx+{3(x,y) dy 

is anyone-form, then 

Vo J w = (xax + yay) J w = xa(x, y) + y{3(x, y). 

Therefore, the function h (w) obtained by applying our homotopy operator 
(1.69) to w is 

fl dA 
h(w) = {Axa(Ax, Ay) + Ay{3(Ax, Ay)}-

o A 

=L {xa(Ax, Ay)+ y{3(Ax, Ay)} dA. 

Similarly, applying h to a two-form leads to the one-form 

fl ~ 
h[')l(x, y) dx" dy] = {A 2xy(Ax, Ay) dy - A 2yy(Ax, Ay) dx}-

o A 

= -{ L Ayy(Ax, Ay) dA} dx + {J: Axy(Ax, Ay) dA } dy, 
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the differentials dx and dy not being affected by the A-integration. In 
particular, for the above one-form, 

dw = ({Jx - ay) dx A dy, 

so the homotopy formula (1.66) reduces to two formulae, for a and 13, the 
first of which is 

a fl a(x, y) = - {xa(Ax, AY) + y{J(AX, AY)} dA 
ax 0 

-J: Ay[{Jx(Ax, AY) - ay(Ax, AY)] dA. 

The reader may enjoy directly verifying this latter statement. In particular, 
if dw = 0, then w = df where f = h(w) is as above. (A similar kind of result 
holds for two-forms.) 

Integration and Stokes' Theorem 

Although it is not a subject central to the theme of this book, it would 
be unfair to omit a brief discussion of integration and Stokes' theorem from 
our introduction to differential forms. Indeed, differential forms arise as 
"the objects one integrates on manifolds". To define integration, we need. 
to first orient the m-dimensional manifold M with a nonvanishing m-form 
w defined over all of M. A second nonvanishing m-form cd defines the same 
orientation if it is a positive scalar multiple of w at each point. There are 
precisely two orientations on such a manifold M. (Not every manifold is 
orientable, for instance, a Mobius band is not.) In particular, we can orient 
IRm (and any open subset thereof) by choosing the volume form dxl A· •• A 

dxm• A map F: M -+ M between two oriented m-dimensional manifolds is 
orientation-preserving if the pull-back of the orientation form on M deter
mines the same orientation on M as the given one. If M is oriented, then 
we can cover M by orientation-preserving coordinate charts Xa: Va -+ Va 
whose overlap functions Xp 0 X;I are orientation-preserving diffeomorph
isms on IRm. 

If M is an oriented m-dimensional manifold, we can define the integral 
IM w of any m-form w on M. In essence, we chop up M into component 
oriented coordinate charts and add up the individual integrals 

the latter integral being an ordinary multiple integral over Va C IRm. The 
change of variables formula for mUltiple integrals assures us that this 
definition is coordinate-free. More generally, f M W = f M F*w whenever 
F: M -+ M is orientation-preserving. 
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Stokes' theorem relates integrals of m-forms over a compact m
dimensional manifold M to integrals of (m -I)-forms over the boundary 
aM. The simplest manifold with boundary is the upper half space IHI m == 
{(x\ ... ,xm):xm.,.O} of IRm, with alHlm={(x\ ... ,xm-\O)}=lRm- 1• Any 
other manifold with boundary is defined using coordinate charts Xa: Va""'" Va 
where Va C IHI m is open, meaning Va = IHI m n Va where Va C IRm is open. The 
boundary of the chart is aVa = X~I[aVa]. aVa = Va nalHlm, and aM is the 
union of all such boundaries of coordinate charts. Thus aM is a smooth 
(m -I)-dimensional manifold, without boundary. 

The boundary of IHI m is given an "induced" orientation (_I)m dx 1 /\ ••• /\ 

dx m - 1 from the volume form dx 1 /\ • •• /\ dxm determining the orientation 
of IHI m itself. If M is an oriented manifold with boundary, then aM inherits 
an induced orientation so that any oriented coordinate chart Xa: Va""'" Va 
on M restricts to an oriented coordinate chart aXa: aVa ....".aVa on aM. With 
these definitions, we can state the general form of Stokes' theorem. 

Theorem 1.68. Let M be a compact, oriented, m-dimensional manifold with 
boundary a M. Let w be a smooth (m - 1) -form defined on M. Then SaM w = 

JM dw. 

Using the identification of the differential d with the usual vector differen
tial operations in 1R3 , the reader can check that Theorem 1.68 reduces to 
the usual forms of Stokes' theorem and the Divergence theorem of vector 
calculus. More generally, there is an intimate connection between the de 
Rham complex, Stokes' theorem and the underlying topology of M, but 
this would lead us too far afield to discuss any further, and so we conclude 
our brief introduction to this subject. 

NOTES 

In this chapter we have only been able to give the briefest of introductions 
to the vast and important subjects of Lie groups and differentiable manifolds. 
There are a number of excellent books which can be profitably studied by 
the reader interested in delving further into these areas, including those by 
Warner, [1], Boothby, [1], Thirring, [1; Chap. 2] and Miller, [2]. Pontryagin, 
[1], is useful as a reference for the local Lie group approach to the subject 
and includes many otherwise hard-to-find proofs of important theorems. 
Many other works could be mentioned as well. 

Historically, the two subjects of differentiable manifolds and Lie groups 
have been closely intertwined throughout their development, each inspiring 
further work in the other. Lie himself, though, drew his original motivation 
from the spectacular success of Galois' group theory applied to the solution 
of polynomial equations and sought to erect a similar theory for the solution 
of differential equations using his theory of continuous groups. Although 
Lie fell short of this goal (the more refined Picard-Vessiot theory being the 
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correct "Galois theory of differential equations"-see Pommaret, [2J), his 
seminal influence in all aspects of the subject continues to this day. 

In Lie's time, all Lie groups were local groups and arose concretely as 
groups of transformations on some Euclidean space. The global, abstract 
approach was quite slow in maturing, and the first modern definition of a 
manifold with coordinate charts appears in Cartan, [2]. (Cartan himself 
played a fundamental role in the history of Lie groups; his definition of 
manifold was inspired by Weyl's book, [1], on Riemann surfaces as well 
as closely related ideas of Schreier, [1].) The passage from the local Lie 
group to the present-day definition using manifold theory was also accom
plished by Cartan, [2]. Cartan also introduced the concept of the simply
connected covering group of a Lie group and noted, in [3], that the 
simply-connected covering group of SL(2, IR) is not a subgroup of any 
matrix group GL(n). (Interestingly, there is a realization of this global 
group as an open subset of 1R3 due to Bargmann, [1].) A more accessible 
example of a Lie group which cannot be realized as a group of matrices 
can be found in Birkhoff, [1]. 

Lie's fundamental tool in his theory was the infinitesimal form of a Lie 
group, now called the Lie algebra. In its local version, the correspondence 
between a Lie group and the right- (or left-)invariant vector fields forming 
its Lie algebra is known as the first fundamental theorem of Lie. The 
reconstruction of a local Lie group from its Lie algebra is known as Lie's 
second fundamental theorem; a proof not relying on Ado's theorem can 
be found in Pontryagin, [1; Theorem 89]. The construction of a global Lie 
group from its Lie algebra, though, is due to Cartan, [3]; see also Pontryagin, 
[1; Theorem 96]. The proof based on the contemporaneous theorem of Ado 
[1] (see also Jacobson, [1; Chap. 6]), outlined here is more recent. Lie's 
third fundamental theorem states that the structure constants determine the 
Lie algebra, and hence the Lie group. The complete 'proof of the general 
correspondence between subgroups of a Lie group and subalgebras of its 
Lie algebra can be found in Warner, [1; Theorems 3.19 and 3.28]. Theorem 
1.19 on closed subgroups of Lie groups is due to Cartan, [2]; see Warner, 
[1; Theorem 3.42] for the proof. Theorem 1.57 on the reconstruction of a 
transformation group from its infinitesimal generators dates back to Lie; see 
Pontryagin, [1; Theorem 98] for a proof. The definition used here of a 
regular group of transformations is based on the monograph of Palais, [1], 
and is further developed in Chapter 3. 

While vector fields have their origins in the study of mathematical physics, 
the modern geometrical formulation owes much to the work of Poincare, 
[1], whose influence, like Lie's, pervades the entire subject. The notation 
for a vector field employed here and throughout modern differential 
geometry, however, comes from Lie's notation for the infinitesimal gen
erators of a group of transformations. Flows of vector fields arise naturally 
enough in fluid mechanics; see Wilczynski, [1], for an early connection 
between their physical and group-theoretic interpretations. 
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Frobenius' theorem 1.43 originally appears as a theorem on the nature 
of the solutions to certain systems of homogeneous, first order, linear partial 
differential equations; see Frobenius, [1], and the discussion of invariants 
in Section 2.1. Its translation into a theorem in differential geometry first 
appears in Chevalley's influential book, [1], on Lie groups. (In this book, 
most of the modem definitions and theorems in this subject are assembled 
together for the first time.) A proof of the semi-regular version of Frobenius' 
theorem can be found in Warner, [1; Theorem 1.64], and, using a modem 
method due to Weinstein, in Abraham and Marsden, [1; p. 93]. The 
extension of this result to systems of vector fields of varying rank is due to 
Hermann, [1], [2]. This result has subsequently been generalized much 
further-see Sussmann, [1]-but much work, especially on the structure of 
the singular sets, remains to be done. In these and other references, the 
terms "distribution" or "differential system" have been applied to what we 
have simply called a system of vector fields. (The former is especially 
confusing as it appears in a completely unrelated context in functional 
analysis.) Furthermore, our term "integrable" is more commonly referred 
to as "completely integrable", but this latter term has very different connota
tions in the study of Hamiltonian systems, which motivates our choice of 
the former. 

Differential forms have their origins in the work of Grassmann and the 
attempts to find a multi-dimensional generalization of Stokes' theorem. In 
the hands of Poincare and Cartan they became a powerful tool for the study 
of differential geometry, topology and differential equations. Already in 
Poincare, [1], we find the basic concepts of wedge product (p. 25), interior 
product (p. 33), the differential and the multi-dimensional form of Stokes' 
theorem (p. 10) as well as the lemma bearing his name. See also Cartan, 
[1], for further developments and applications to differential equations. The 
concept of the Lie derivative, though, while in essence due to Poincare (see 
also Cartan, [1; p. 82]), was first formally defined by Schouten and his 
coworkers; see Schouten and Struik, [1; p. 142]. This last reference also 
contains the basic homotopy formula proof of the Poincare lemma for the 
first time. Finally, the connections with topology stemming from de Rham's 
theorem can be found in Warner, [1; Chap. 5] and Bott and Tu, [1]. 

EXERCISES 

1.1. Real projective m-space is defined to be the set of all lines through the origin 
in !R m+1. SpecificaiIy, -we define an equivalence relation on !Rm+\ {O} by setting 
x - y if and only if x = Ay for some nonzero scalar A. Then !Rpm is the set of 
equivalence classes in !Rm+1\{O}. 
(a) Prove that !Rpm is a manifold of dimension m by exhibiting coordinate 

charts. 
(b) Prove that !Rpl = Sl are the same smooth manifolds, and exhibit a 

diffeomorphism. 
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(c) Let sm be the unit sphere in IRm+l. Prove thatthe map F: sm -+lRpm which 
associates to x E sm its equivalence class in IRpm is a smooth covering 
map. What is the inverse image F- 1{z} of a point zEIRpm1 

*1.2. Grassmann Manifolds: Let 0 < m < n. 
(a) Prove that the space GL(m, n) of all m x n matrices of maximal rank is 

an analytic manifold of dimension m· n. 
(b) Let Grass(m, n) denote the set of all m-dimensional subspaces of IR". 

Show that Grass(m, n) can be given the structure of an analytic manifold 
of dimension men - m). (Hint: To any basis of such an m-dimensional 
subspace, associate the matrix in GL(m, n) whose rows are the basis. 
Show that the basis can be chosen so that this matrix has the same m 
columns as the identity matrix; the remaining entries will give local 
coordinates for Grass(m, n).) 

(c) Let F: GL(m, n) -+ Grass(m, n) be the map which assigns to a matrix A 
the subspace of IR" spanned by its rows. Prove that F is an analytic map 
between manifolds. 

(d) Prove that Grass(m, n) and Grass(n - m, n) are diffeomorphic manifolds. 
In particular, Grass(I, n)=Grass(n-l, n)=lRp"-I. 

1.3. Let 4>(t) = «v'2+cos 2t) cos 3t, (v'2+cos2t) sin 3t, sin 2t) for 0.;;;t.;;;217". 
Prove that the image of 4> is a regular closed curve in 1R3 -a "trefoil knot". 

1.4. Let 

( ) ( 
• U • U • u) 

4> u,v = 2cosu+vsIn2"cosu,2sinu+vsIn2"SInU,Vcos2" 

for 0.;;; U < 217", 0.;;; V.;;; 217". Prove that 4> is a regular immersion, whose image 
is a Mobius band in 1R3. 

1.5. Prove that if N c M is a compact submanifold, then N is a regular submani
fold. (Boothby, [1; page 79]) 

1.6. Prove that the m-dimensional sphere sm is simply connected if m ;;;. 2. What 
about real projective space IRpm? (See Exercise 1.1.) 

1.7. Let M = 1R2\ {O}. Prove that (x, y) t-+ (eX cos y, eX sin y) defines a covering map 
from 1R2 onto M, hence 1R2 is the simply-connected cover of 1R2\{0}. 

1.8. Let M = 1R2\{0}. Prove that 'I'(E, (r, 8» = (r e-s + (1- e-S ), 8 + E), EE IR, writ
ten in polar coordinates, determines a one-parameter group oftransformations. 
What is its infinitesimal generator? Prove that every orbit is a regular submani
fold of M, but the group action is not regular. 

1.9. Consider the system of vector fields 

on the unit sphere S3 c 1R4. 
(a) Prove that {VI> V2} form an integrable system. What are the integral sub

manifolds in S3? 
(b) Let 17": S3\{(0, 0,0, 1)}-+1R3 be stereographic projection (as in Example 

1.3). What are the vector fields d17"(v1) and d17"(v2) on 1R3? What are their 
integral submanifolds? 
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1.10. Is it possible to construct a system of three vector fields D, v and w on 1R3 such 
that [ D, v] = 0 = [D, w], but [v, w] ;o!o o? Is it possible to construct an integrable 
system with the above commutation relations? If so, what would the integral 
submanifolds of such a system look like? 

1.11. Prove that the vector field 

v = (-y -2z(x2+ y2))ax + xay + x(x2+ y2_ z2_1)a z 

does not form a regular system on 1R3. Prove that any integral curve of v lies 
in one of the tori looked at in Example 1.42. Prove that the flow generated 
by v, when restricted to one of the above tori, is isomorphic to either the 
rational or irrational flow on the torus, depending on the size of the torus. 

1.12. Suppose v is a smooth linear map on the space of smooth functions defined 
near a point x EM which satisfies (1.20-1.21). Prove that v is a tangent vector 
to M at x. (Warner, [1; p. 12]) 

*1.13. Let M = 1R2 and consider the system of vector fields 'Je spanned by Vo = ax and 
all vector fields of the form f(x )ay where f: IR ~ IR is any smooth function such 
that all derivatives 1'n)(O) = 0 vanish for all n = 0, 1,2, .... 
(a) Prove that 'Je is involutive. 
(b) Prove that 'Je has no integral submanifold passing through any point (0, y) 

on the y-axis. 
(c) How do you reconcile this with Frobenius' Theorem 1.40 or 1.41? 

(Nagano, [1]) 

*1.14. Let {Vh"" vr } be a finite, involutive system of vector fields on a manifold M. 
Prove that the system is always rank-invariant. (Thus Theorem 1.40 is a special 
case of Theorem 1.41). (Hermann, [1]) 

1.15. Prove that the set of all nonsingular upper triangular matrices forms a Lie 
group T(n). What is its Lie algebra? 

1.16. Consider the 2n x2n matrix 

where each I is an n x n identity matrix. The symplectic group Sp( n) is defined 
to be the set of all 2n x 2n matrices A such that AT JA = J. Prove that Sp( n) 
is a Lie group and compute its dimension. What is its Lie algebra? 

1.17. Prove that if He G is a connected one-parameter subgroup of a Lie group 
G then H is isomorphic to either SO(2) or IR. 

1.18. Prove that if G and H are Lie groups, then their Cartesian product G x H is 
also a Lie group. 

1.19. Let G and H be Lie groups and suppose G acts (globally) on H as a group 
of transformations, via h >-+ g' h, g E G, hE H, with g' (hi' h2) = 
(g. hi) . (g. h2)' Define the semi-direct product of G and H, denoted Gt><H, 
to be the Lie group whose manifold structure is just the Cartesian product 
G x H, but whose group multiplication is given by 

(g, h) . (g, h) = (g . g, h . (g. h)). 
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(a) Prove that Gp<H is a Lie group. 
(b) How is the Lie algebra of Gp<H related to those of G and H? 
(c) Prove that the Euclidean group E(m), consisting of all the translations 

and rotations of IR m, is a semi-direct product of the rotation group SO( m) 
with the vector group IR m , SO(m) acting on IR m as a group of rotations. 
(See also Exercise 1.29.) 

1.20. Let V = {(x, y): Ixl < I} c 1R2 and define the map m: V x V ~ 1R2 by 

m(x,Y; Z, w) = (xz+x+z, XW+ W+ y(z+ I)-I), (x, y), (z, W)E V. 

Prove that m determines a multiplication map making V into a local Lie group 
by constructing an inverse map i: Vo~ V on a suitable subdomain Yo. What 
is the Lie algebra of V? 

1.21. Prove that every two-dimensional Lie algebra is either (a) abelian (all brackets 
are 0) or (b) isomorphic to the Lie algebra with basis {v, w} satisfying [v, w] = w. 
Find a 2 x 2 matrix representation of the Lie algebra in part (b). Find the 
corresponding simply-connected Lie group. Construct a local group isomorph
ism from the local Lie group of Exercise 1.20 to this global Lie group. 
(Jacobson, [I; p. 11]) 

1.22. Prove that 1R3 forms a Lie algebra with Lie bracket determined by the vector 
cross product: [v, w] = v Xw, v, WE 1R3. What are the structure constants for this 
Lie algebra with respect to the standard basis oflR3? Prove that this Lie algebra 
is isomorphic to 50(3), the Lie algebra of the three-dimensional rotation group. 
Show that the isomorphism can be constructed so that a given vector v E 1R3 

corresponds to the infinitesimal generator of the one-parameter group of 
right-handed rotations about the axis in the direction of v. 

"'1.23. Prove that every complex Lie group contains a two-dimensional subgroup. Is 
the same true for real Lie groups? (Cohen, [1; p.50]) 

*1.24. A subgroup H of a group G is called normal if for every hE H and every 
g E G, g-Ihg E H. Let Gj H denote the set of equivalence classes of G, where 
g and g are equivalent if and only if g = gh for some hE H. 
(a) Prove that if He G is normal, then Gj H can be given the structure of 

a group in a natural way. 
(b) Prove that a Lie subgroup H of a Lie group G is normal if and only if 

its Lie algebra ~ c g has the property that [v, w] E ~ whenever v E g and W E ~. 

(c) Prove that if He G is a normal Lie subgroup, the quotient group Gj H 
is a Lie group with Lie algebra gj~. Explain. 

(d) Find all normal subgroups of the two-dimensional Lie groups of Exercise 
1.21. 

(e) Does SO(3) have any normal subgroups? 

*1.25. Let G be a Lie group. The commutator subgroup H is defined to be the subgroup 
generated by the elements ghg-Ih- I for g, hE G. 
(a) Prove that H is a Lie subgroup of G, and that the Lie algebra of H is 

the derived subalgebra of g, given by ~ = {[v, w]: v, WE g}. 
(b) Prove that the commutator subgroup of SO(3) is SO(3) itself. What about 

SO(m)? 
(c) What are the commutator subgroups of the two-dimensional Lie groups 

discussed in Exercise 1.21? 
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1.26. Prove Proposition 1.24. (Hint: Show that U Uk is both open and closed in 
G.) (Warner, [1; p.93]) 

1.27. Let G be a Lie group with Lie algebra g. 
(a) Prove that the exponential map exp: g~ G is a local diffeomorphism from 

a neighbourhood of 0 E g to a neighbourhood of the identity in G. 
(b) Prove the "normal coordinate" formula (l.40). (Warner, [1; pp. 103, 109]) 

*1.28. Let SL(2) denote the Lie group of 2 x 2 real matrices of determinant + 1, and 
51(2) its Lie algebra. 
(a) Let A E 51(2). Prove that 

()_{(COShS)I+(S-ISinhS)A, S=J-detA, detA<O, 
exp A - (cos S)I+(S-l sin S)A, S=JdetA, detA>O. 

What about the case det A = O? 
(b) Consider the matrix M = (~ A <2,) E SL(2), where A ~ O. Prove that M lies 

on exactly one one-parameter subgroup of SL(2) if A> 0, on infinitely 
many one-parameter subgroups if A = -1, and on no one-parameter sub
groups if -1 ~ A < O. (This shows that the exponential map exp: g ~ Gis, 
in general, neither one-to-one nor onto!) (Helgason, [1; p. 126]) 

*1.29. A diffeomorphism 1/1: IR m ~ IR m is called an isometry if it preserves distance, 
i.e.ldl/l(v)1 = Ivl for all v E TlRmlx, x E IR m, where 1·1 is the usual Euclidean metric 
L (dXi)2, i.e. 

(a) Prove that a vector field v = L fi a/ axi on IR m generates a one-parameter 
group of isometries if and only if its coefficient functions satisfy the system 
of partial differential equations 

i~ j, 
afi . 
-.=0, 1=1, ... ,m. 
ax' 

(b) Prove that the (connected) group of isometries of IR m, called the Euclidean 
group E(m), is generated by translations and rotations, and hence is an 
m(m + l)j2-dimensional Lie group. 

(c) What if 1·1 is replaced by some non-Euclidean metric? For example, 
consider the Lorentz metric (dx 1 )2+ (dx2)2+ (dX3 )2 - (dX4)2 on 1R4. 
(Eisenhart, [1; Chap. 6]) 

*1.30. A diffeomorphism 1/1: IR m ~ IR m is called a conformal transformation if Idl/l(v)1 = 
A (x )Ivl for all v E· TlR m lx, x E IR m, where A is some scalar-valued function of x, 
and Ivl is as in Exercise 1.29. 
(a) Prove that a vector field v = L fi (x) a/ axi on IR m generates a one-parameter 

group of conformal transformations if and only if it satisfies 

afi afi .. 
-.+-.=0, I~}, 
ax' ax' 

afi 
axi=,u(x), i=I, ... ,m, 

for some undetermined function ,u(x). 
(b) Prove that if m ~ 3 then the conformal group of IR m is an (m + 1) x 

(m + 2)/2-dimensional Lie group. Find its infinitesimal generators. (Hint: 
Prove that (*) implies that all third order derivatives of the coefficient 
functions are identically zero.) What about m = 2? 
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(c) Prove that the inversion I(x) = xllxl2, 0 -,Ie- X E ~m is a conformal transfor
mation on IRm\{O}. 

(d) Prove that for m ~ 3, the group of conformal transformations is generated 
by the groups of translations and rotations, the scaling group x~ Ax, A > 0, 
and the inversion of part (c). 

(e) Discuss the case of the conformal group for the Lorentz metric in ~4. 
(See Exercise 1.29(c).) (Eisenhart, [1; Chap. 6]) 

*1.31. Let 1T: sm\ {(O, ... ,0, 1)} ~ ~m be stereographic projection from the unit sphere 
in ~m+l. Prove that if A E SO( m + 1) is any rotation of sm, then A induces a 
conformal transformation 1[ 0 A 01[-1 of ~m. How do the conformal transfor

mations constructed in Exercise 1.30 correspond to rotations of sm? Prove 
that for m ~ 3, the conformal group of ~m is isomorphic to SO(m + 1), and 
discuss how the Lie algebras correspond. 

1.32. Let 0 be a local group of transformations acting on a smooth manifold M. 
For each x EM, the isotropy group is defined to be Ox = {g EO: g' x = x}. 
Prove that Ox is a (local) subgroup of 0 with Lie algebra gX = {v E g: vl x = O}. 
Find the isotropy subgroups and subalgebras of the rotation group SO(3) 
acting on 1R3. Suppose y = g . x. How is the isotropy subgroup OY related to OX? 

1.33. In most treatments of Lie groups, the Lie algebra is defined as the space of 
left-invariant vector fields on the Lie group rather than the right-invariant 
vector fields employed here. In this problem we compare these two approaches. 
(a) Define what is meant by a left-invariant vector field on a Lie group G. 

Prove that the space of all left-invariant vector fields on 0 forms a Lie 
algebra, denoted gL, which we can identify with Tole' 

(b) Using subscripts Land R to denote the two Lie algebras, prove that 
[v, W]L = -[v, W]R where v, ware identified with their values at e. 

(c) Let 0 act on a manifold M as in Definition 1.25. IfvEgL orgR , we can 
define the corresponding infinitesimal generator I/J(v) on M. Show that 
while (1.47) holds for right-invariant vector fields it is false for left
invariant vector fields. What happens to the Lie bracket formula (1.47) 
in this case? On the other hand, prove that if v is a left-invariant vector 
field and 'l' g(x) = 'l'(g, x), then 

d'l' g( I/J(v)lx) = I/J(v) Ig." 

i.e. the infinitesimal generators of the action of 0 on M behave naturally 
with respect to the group transformations. Show that this is false for 
right-invariant vector fields. 

(d) How does this all change if we let 0 act on M on the right, i.e. set 
X· g ='l'(x, g) with X· (g. h) = (x' g). h? 
(Marsden, Ratiu and Weinstein, [1]) 

1.34. Let ot = (a, (3, 1') be a vector field on 1R3 with V . ot = O. Use the homotopy 
operator (1.69) to construct a vector field A with V x A = ot. Similarly, if 
V x A = 0, find a function f with A = V f 

1.35. (a) Let v and W be vector fields, w a one-form. Prove that 

v(w; w) = (v(w); w) +(w; [v, w]). 
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(b) More generally, if w is a k-form prove that 

k 

v(w; WI> ... , Wk)=(V(W); WI> ... , Wk)+ L (w;WI> ... , [v, wJ, ... , Wk). 
i=1 

(c) Deduce that 

V(W J w) =w J v(w)+[v, w] J w. 

1.36. Let w = dx 1 " ••• " dxm be the volume m-form on IR m and let v = L ~i (x) a/ axi 
be a vector field. 
(a) Prove that the Lie derivative of w is v( w) = div ~. w, where div ~ = L a~i / axi 

is the ordinary divergence. 
(b) Prove that the flow C/>. = exp( EV) generated by v preserves volume, meaning 

Vol(c/>.[S])=Vol(S) for any SclRm such that c/>.(x) is defined for all 
XES, if and only if div ~ = 0 everywhere. 

1.37. Let ai = a/ ax i, dx i, i = 1, ... , m, be the standard bases for TlR m and T*lRm 
respectively. Let w be an r-form on IRm. Prove the following formulae: 

ak J (dx1 "w) = -dx1 ,,(ak J w), whenever k;>f I, 

ak J (dx k "w) = w - dxk ,,(ak J w), 

m 

L akJ(dxk"w)=(m-r)w. 
k~l 



CHAPTER 2 

Symmetry Groups of 
Differential Equations 

The symmetry group of a system of differential equations is the largest local 
group of transformations acting on the independent and dependent variables 
of the system with the property that it transform solutions of the system to 
other solutions. The main goal of this chapter is to determine a useful, 
systematic, computational method that will explicitly determine the sym
metry group of any given system of differential equations. We restrict our 
attention to connected local Lie groups of symmetries, leaving aside prob
lems involving discrete symmetries such as reflections, in order to take full 
advantage of the infinitesimal techniques developed in the preceding 
chapter. Before pressing on to the case of differential equations, it is vital 
that we deal adequately with the simpler situation presented by symmetry 
groups of systems of algebraic equations, and this is done in the first section. 
Section 2.2 investigates the precise definition of a symmetry group of a 
system of differential equations, which requires knowledge of how the group 
elements actually transform the solutions. The corresponding infinitesimal 
method rests on the important concept of "prolonging" a group action to 
the spaces of derivatives of the dependent variables represented in the 
system. The key "prolongation formula" for an infinitesimal generator of 
a group of transformations, given in Theorem 2~'36, then provides the basis 
for the systematic determination of symmetry groups of differential 
equations. Applications to physically important partial differential 
equations, including the heat equation, Burgers' equation, the Korteweg-de 
Vries equation and Euler's equations for ideal fluid flow are presented in 
Section 2.4. 

In the case of ordinary differential equations, Lie showed how knowledge 
of a one-parameter symmetry group allows us to reduce the order of the 
equation by one. In particular, a first order equation with a known one-
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parameter symmetry group can be integrated by a single quadrature. The 
situation is more delicate in the case of higher dimensional symmetry groups; 
it is not in general possible to reduce the order of an equation invariant 
under an r-parameter symmetry group by r using only quadratures. We will 
discuss in detail how the theory proceeds for multi-parameter symmetry 
groups of higher order equations and systems of ordinary differential 
equations. 

The last section of this chapter deals with some more technical mathemati
cal issues, and may safely be omitted by an application-oriented reader at 
first. The basic converse to the theorem on existence of symmetry groups 
says when one can conclude that every (continuous) symmetry group has 
been obtained by the above methods. Besides the algebraic maximal rank 
condition, an additional existence result known as "local solvability" is 
required. In the case of analytic systems, these questions are related to the 
problem of existence of noncharacteristic directions for the system, relative 
to which the Cauchy-Kovalevskaya existence theorem is applicable. Such 
systems are designated as "normal systems", but there do exist "abnormal 
systems", of which several examples are presented. The correct understand
ing of these matters will be crucial to the formulation and proof of Noether's 
theorems relating symmetry groups and conservation laws to be presented 
in Chapter 5. 

2.1. Symmetries of Algebraic Equations 

Before considering symmetry groups of differential equations, it is essential 
that we deal properly with the conceptually simpler case of symmetry groups 
of systems of algebraic equations. By a "system of algebraic equations" we 
mean a system of equations 

v = 1, ... , I, 

in which FI(x), ... , F,(x) are smooth real-valued functions defined for x 
in some manifold M. (Note that the adjective "algebraic" is only used to 
distinguish this case from the case of systems of differential equations; it 
does not mean that the Fv must be polynomials-just any differentiable 
functions.) A solution is a point x EM such that Fv(x) = 0 for v = 1, ... , I. 
A symmetry group of the system will be a local group of transformations 
G acting on M with the property that G transforms solutions of the system 
to other solutions. In other words, if x is a solution, g a group element and 
g. x is defined, then we require that g. x also be a solution. In this section 
we will be primarily concerned with finding easily verifiable conditions 
that a given group of transformations be a symmetry group of such a 
system. 
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Invariant Subsets 

More generally, we can look at symmetry groups of arbitrary subsets ofthe 
given manifold. 

Definition 2.1. Let G be a local group of transformations acting on a manifold 
M. A subset ::Ie M is called G-invariant, and G is called a symmetry group 
of ::I, if whenever x E::I, and g EGis such that g' x is defined, then 
g·XE::I. 

Example 2.2. Let M = 1R2. 
(a) If Gc is the one-parameter group of translations 

(x, y)~ (x + ce, y+ e), e E IR, 

where c is some fixed constant, then the lines x = cy + d are easily seen to 
be Gc-invariant, being precisely the orbits of Gc. It can also be readily seen 
that any invariant subset of 1R2 is just the union of some collection of such 
lines. For example, the strip {(x, y): kl < x - cy < k2 } is Gc-invariant. 

(b) As a second elementary example, let G a be the one-parameter group 
of scale transformations 

A >0, 

where 0: is a constant. The origin (0,0) is a G a -invariant subset, as are 
the positive and negative x- and y-axes, e.g. {(x, 0): x> O}. Also, the axes 
themselves, being unions of invariant subsets are also invariant. Thus the 
subvariety {(x, y): xy = O} consisting of both coordinate axes is invariant. 
Other invariant sets are of the form y = klxla for x> ° or x < 0, and unions 
of these orbits of Ga. 

In most of our applications, the set ::I will be the set of solutions or 
subvariety determined by the common zeros of a collection of smooth 
functions F = (FI , ••• , FI ), 

::I=::IF={x: Fv(x) =0, 11= 1, ... , I}. 

If ::II and ::12 are G-invariant sets, so are ::II U ::12 and ::Iln::l2• 

Invariant Functions 

Besides looking at the symmetries of the solution set of a system of algebraic 
equations, we can look at the symmetries of the function F(x) which defines 
them. 

Definition 2.3. Let G be a local group of transformations acting on a manifold 
M. A function F: M ~ N, where N is another manifold, is called a G-
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invariant function if for all x E M and all g E G such that g . x is defined, 

F(g· x) = F(x). 

A real-valued G-invariant function ,: M ~ (R is simply called an invariant 
of G. Note that F: M ~ (RI is G-invariant if and only if each component Fv 
of F = (FI , ••• , FI ) is an invariant of G. 

Example 2.4. (a) Let Gc be the group of translations in the plane presented 
in Example 2.2(a). Then the function 

,(x, y) = x- cy 

is an invariant of Gc since 

,(x+ Ce, y+ e) = '(x, y) 

for all e. In fact, it is not difficult to see that every invariant of this translation 
group is of the form f(x, y) = f(x - cy), where f is a smooth function of the 
single variable x - cy. 

(b) For the scaling group 

A>O, 

the function 
,(x,y)=x/y 

is an invariant defined on the upper and lower half planes {y ~ O}. Other 
invariants include the angular coordinate 8 =tan-I(y/x) which is smooth 
on (R\{(x, y): x ~ O}, say, but not globally single-valued, and the function 

f(x, y) = xy/(x2+ y2), 

which is smooth everywhere except at the origin. There is, in this case, no 
smooth, nonconstant, globally defined invariant of G 1• Similar remarks 
apply to the more general scaling groups GCt of Example 2.2(b) when a > O. 

If F: M ~ (RI is a G-invariant function, then clearly every level set of F 
isa G-invariant subset of M. However, it is not true that if the set of zeros 
of a smooth function, {x: F(x) = O}, is an invariant subset of M, then the 
function itself is invariant. For instance, as we saw in the previous example 
{(x,y): xy=O} is an invariant subset of the scaling group G 1• However, 
F(x, y) = xy is not an invariant function for this group since 

F(Ax, Ay) = A 2xy ~ F(x, y) 

for A ~ 1. However, if every level set of F is invariant, then F is an invariant 
function. 

Proposition 2.S. If G acts on M, and F: M ~ (RI is a smooth function, then F 
is a G-invariant function if and only if every level set {F(x) = c}, c E (RI, is a 
G-invariant subset of M. 
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The proof of this result is left to the reader. Thus in Example 2.4(a), the 
lines x = cy + d are just the level sets of the Gc-invariant function {(x, y) = 
x - cy and hence are automatically Gc-invariant subsets. Alternatively, the 
Gc-invariance of { follows from the fact that each level set is Gc-invariant, 
indeed an orbit of Gc • 

Another way of looking at the preceding observations is that the "sym
metry group" of the solution set g F = {F(x) = O} of some system of algebraic 
equations is, in general, larger than the "symmetry group" of the function 
F determining it. Here "symmetry group" means, somewhat imprecisely, 
the largest group of transformations leaving the subvariety or function 
invariant. For algebraic equations, such a group will not usually be finite 
dimensional, but the idea underlying these remarks should be clear. The 
importance of widening our concept of symmetry to those of the solution 
set, rather than the defining functions, will become evident when we treat 
symmetry groups of differential equations, and will lead to a much wider 
variety of symmetry groups. 

Infinitesimal Invariance 

The great power of Lie group theory lies in the crucial observation that one 
can replace the complicated, nonlinear conditions for the invariance of a 
subset or function under the group transformations themselves by an 
equivalent linear condition of infinitesimal invariance under the correspond
ing infinitesimal generators of the group action. This infinitesimal criterion 
will be readily verifiable in practice, and will thereby provide the key to 
the explicit determination of the symmetry groups of systems of differential 
equations. Its importance cannot be overemphasized. We begin with the 
simpler case of an invariant function. Here the infinitesimal criterion for 
invariance follows directly from the basic formula describing how functions 
change under the flow generated by a vector field. 

Proposition 2.6. Let G be a connected group of transformations acting on the 
manifold M. A smooth real-valued function {: M ~ IR is an invariant function 
for G if and only if 

v( {) = 0 for all x E M, (2.1) 

and every infinitesimal generator v of G. 

PROOF. According to (1.17), if x EM, 

d 
de {(exp(ev)x) =v(n[exp(ev)x] 
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whenever exp( ev)x is defined. Setting e = 0 proves the necessity of (2.1). 
Conversely, if (2.1) holds everywhere, then 

d 
de (exp(ev)x)=0 

where defined, hence (exp(ev)x) is a constant for the connected, local 
one-parameter subgroup exp(ev) of Gx = {g E G: g. x is defined}. But by 
(l.40), every element of Ox can be written as a finite product of exponentials 
of infinitesimal generators Vi of G, hence (g. x) = (x) for all g E Gx • 0 

Ifv1 , ••• , Vr form a basis for g, the Lie algebra of infinitesimal generators 
of G, then Proposition 2.6 says that (x) is an invariant if and only if 
Vk«() = 0 for k = 1, ... , r. In local coordinates, 

so ( must be a solution to the homogeneous system of linear, first order 
partial differential equations 

m i a( 
Vk«() = L gk(X) -i = 0, 

i=1 dX 
k= 1, ... , r. (2.2) 

Example 2.7. For the translation group Oc of Example 2.4(a) the infinitesimal 
generator is v= Cdx+ay. Then 

v(x - cy) = (Cd x +dy)(X- cy) = C - C = 0, 

so the infinitesimal criterion is satisfied. A similar computation verifies the 
infinitesimal criterion (2.1) for the invariants of the scale group G a , whose 
infinitesimal generator is Xd x + ayay. 

For the case of the solution set ofa system of algebraic equations F(x) = 0, 
the infinitesimal criterion of invariance requires additional conditions to be 
placed on the defining functions F, namely the maximal rank condition of 
Definition 1.7. (If F happens to be a G-invariant function, then by Proposi
tion 2.5 this maximal rank condition can be dropped, but in general it is 
essential. ) 

Theorem 2.8. Let G be a connected local Lie group of transformations acting 
on the m-dimensional manifold M. Let F: M -i> IRI, I,,;; m, define a system of 
algebraic equations 

v=1, ... ,I, 

and assume that the system is of maximal rank, meaning that the Jacobian 
matrix (dFJ dX k ) is of rank I at every solution x of the system. Then 0 is a 
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symmetry group of the system if and only if 

11 = 1, ... , I, whenever F(x) = 0, (2.3) 

for every infinitesimal generator v of G. (Note especially that (2.3) is required 
to hold only for solutions x of the system.) 

PROOF. The necessity of (2.3) follows from differentiating the identity 

F(exp(ev)x) = 0, 

in which x is a solution, and v is an infinitesimal generator of G, with 
respect to e and setting e = O. 

To prove sufficiency, let Xo be a solution to the system. Using the maximal 
rank condition, we can choose local coordinates y = (i, ... ,ym) such that 
Xo = 0 and F has the simple form F(y) = (y\ ... , y'), cf. Theorem 1.8. Let 

v= e(y)..i...+ . .. + gm(y) _B_ 
Bi Bym 

be any infinitesimal generator of G, expressed in the new coordinates. 
Condition (2.3) means that 

11=1, ..• ,1, (2.4) 

whenever yl=y2= .. ·=/=0. Now the flow <fJ(e)=exp(ev)·xo of v 
through Xo = 0 satisfies the system of ordinary differential equations 

<fJi(O) = 0, i = 1, ... , m. 

By (2.4) and the uniqueness of solutions to this initial-value problem, we 
conclude that <fJV(e)=O for 11=1, ... , I and e sufficiently small. We have 
thus shown that if Xo is a solution to F(x) = 0, v is an infinitesimal generator 
of G, and e is sufficiently small, then exp(ev)xo is again a solution to the 
system. Since the solution set 9'F = {x: F(x) = O} is closed, the group 
property (1.13) and continuity of exp(ev) allows us to draw the same con
clusion for all g = exp(ev) in the connected one-parameter subgroup of G"o 
generated by v. Another application of (1.40), similar to that in the proof 
of Proposition 2.6, completes the proof of the theorem in general. 0 

Example 2.9. Let G = SO(2) be the rotation group in the plane, with 
infinitesimal generator v = -yBx + xBy • The unit circle Sl = {x2+ y2 = I} is an 
invariant subset of SO(2) as it is the solution set of the invariant function 
,(x, y) = x 2+ y2-1; indeed 

v(n = -2xy+2xy = 0 

everywhere, so (2.3) is verified on the unit circle itself. The maximal rank 
condition does hold for' since its gradient V, = (2x, 2y) does not vanish 
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on 51, but, as remarked before the theorem, since, is already an invariant 
function, we don't really need to check this. 

As a less trivial example, consider the function 

F(x, y) = X4+ x2y2+ y2_1. 

We have 

v(F) = -4x3Y-2xy3+2x3y+2xy = -2xy(x2+ 1)-1 F(x, y), 

hence v(F) = 0 whenever F = O. Moreover, 

V F= (4x3+ 2xy2, 2x2y+2y) 

vanishes only when x = y = 0, which is not a solution to F(x, y) = 0, hence 
the maximal rank condition is verified. We conclude that the solution set 
{(x, y): X4+ x 2y2+ y2 = I} is a rotationally-invariant subset of 1R2. Indeed, 
we can factor F as 

hence the solution set is just the unit circle. Note that F(x, y) is not an 
SO(2)-invariant function in this case; in fact, most other level sets of Fare 
not rotationally invariant. 

Finally, to appreciate the importance of the maximal rank condition, 
consider the function 

H(X,y)=y2_2y+1. 

The solution set {H(x, y) = O} is just the horizontal line {y = I} which is 
certainly not rotationally invariant. However, 

v(H) = 2xy-2x = 2x(y-1) =0 

whenever H(x, y) = 0, so the infinitesimal condition (2.3) does hold in this 
case. The problem is that V H = (0, 2y - 2) vanishes everywhere on the 
solution set, so that the maximal rank condition fails to hold. 

The maximal rank condition needed to apply our infinitesimal symmetry 
criterion will playa key role in the development of the theory, both for 
algebraic and differential equations. We will subsequently need several 
elementary consequences of this condition, which we state here for ease of 
reference. The proofs are outlined in Exercise 2.5. 

Proposition 2.10. Let F: M ~ IR/ be of maximal rank on the subvariety Y F = 

{x: F(x) = O}. Then a real-valued function f: M ~ IR vanishes on YF if and 
only if there exist smooth functions QI(X), ... , Q/(x) such that 

(2.5) 

for all XE M. 
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Again, the maximal rank condition is essential. For example, suppose 
F(x, y) = y2 - 2y + 1. Then the function f(x, y) = Y -1 vanishes for all solu
tions of F( x, y) = 0, namely 9' F = {y = I}, but there is no smooth function 
Q(x, y) such that f(x, y) = Q(x, y)F(x, y). 

Proposition 2.10 says that we can replace the infinitesimal criterion (2.3) 
for invariance by the equivalent condition 

, 
v(Fv) = L QVJ.L (x)FJ.L (x), v=I, ... ,I, xEM, (2.6) 

1'=1 

for functions QVJ.L: M ~ IR, p." v = 1, ... , I, to be determined. This was indeed 
how we proved invariance in the second case in Example 2.9, with Q(x, y) = 

-2xy/(x2+ O. Both (2.3) and (2.6) are useful conditions for checking 
invariance, and will both be employed in various examples. 

The functions Qv(x) in (2.5) are not in general uniquely determined. For 
example, let 

FI(x, y, z) = x, 

so the solution set 9' = {FI = F2 = O} is the z-axis in 1R3. The function 

f(x, y, z) = xz+ y2 

vanishes on 9', and indeed can be written both as 

In general, if 

then the differences Rv(x) = Qv(x) - Qv(x) satisfy the homogeneous system 
, 
L Rv(x)Fv(x) =0 (2.7) 

v=l 

for all x E M. The following provides a useful necessary condition for such 
functions. 

Proposition 2.11. Let F: M ~ IR' be of maximal rank on 9'F = {F(x) = O}. 
Suppose RI(X), ... , R,(x) are real-valued functions satisfying (2.7) for all 
x EM. Then Rv(x) = 0 for all x E 9'F' Equivalently, there exist functions 
S~(x), v, p., = 1, ... , I such that 

, 
Rv(x) = L S~(x)FJ.L(x), xEM. (2.8) 

1'=1 

Moreover, the S~ can be chosen to be skew-symmetric in their indices: 

S~(x) = -S:(x), 

in which case (2.8) is necessary and sufficient for (2.7) to hold everywhere. 
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Local Invariance 

It is also useful to introduce the concept of a locally-invariant function or 
subset for a group of transformations. In this case we only require invariance 
for group transformations sufficiently near the identity. 

Definition 2.12. Let G be a local group of transformations, acting on the 
manifold M. A subset [f c M is called locally G-invariant if for every x E [f 

there is a neighbourhood Ox c Gx of the identity in G such that g' x E [f 

for all g E Ox' A smooth function F: U ~ N, where U is some open subset 
of M, is called locally G-invariant if for each x E U there is a neighbourhood 
Ox c Gx of e in G such that F(g· x) = F(x) for all g E Ox' F is called 
globally G-invariant (even though it is only defined on an open subset of 
M) if F(g· x) = F(x) for all XE U, gE G such that g' XE U also. 

Example 2.13. Let G be the group of horizontal translations 

(x, y)~(x+ e, y) 

in 1R2. Then the line segment 

{(x,y):y=O,-l<x<l} 

is locally G-invariant, but not G-invariant. 
Similarly, the function 

{ O, 
'(x, y) = -l/y 

e , 
y ~ ° or y > ° and x > 0, 
y>O and x<O, 

is smooth and locally G-invariant on U=1R 2\{(0,y): y;;.O}, since 

for lei < Ixl; , is clearly not globally G-invariant. 

Proposition 2.14. Let N c M be a submanifold of M. Then N is locally 
G-invariant if and only if for each x E N, glx c TNlx. In other words, N is 
locally G-invariant if and only if the infinitesimal generators v of G are 
everywhere tangent to N. 

The proof is left to the reader; see Exercise 2.1. 

Invariants and Functional Dependence 

Often we are interested in determining precisely "how many" invariants a 
given group of transformations has. To make this problem precise, we first 
note that if ,1(X), ... , ,k(X) are invariants (either local or global) of a group 
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of transformations, and F(z\ ... , Zk) is any smooth function, then nx) = 
F(,I(X), ... , ,k(X» will also be an invariant (of the same sort). Such an 
invariant adds no new knowledge to the given problem, and is termed 
"functionally dependent" on the preceding invariants ,I, ... , ,k. In practice, 
we need only classify functionally independent invariants of a group action, 
the other invariants all being obtained by relations of the above form. 

Definition 2.1S. Let ,I(X), ... , ,k(X) be smooth, real-valued functions 
defined on a manifold M. Then 

(a) ,\ ... , ,k are called functionally dependent if for each x EM there is 
a neighbourhood U of x and a smooth real-valued function 
F(ZI, ... , Zk), not identically zero on any open subset of IRk, such that 

(2.9) 

for all XE U. 
(b) ,\ ... , ,k are called functionally independent if they are not functionally 

dependent when restricted to any open subset U eM; in other words, 
if F(z\ ... , Zk) is such that (2.9) holds for all x in some open U eM, 
then F(z\ ... , Zk) == 0 for all z in some open subset of IRk (which is 
contained in the image of U). 

For example, the functions xly and xYI(x2+ y2) are functionally depen
dent on {(x,y): y¥O} since 

there. On the other hand, xl y and x + yare functionally independent where 
defined, since if F(x + y, xl y) == 0 for (x, y) in any open subset of 1R2, then, 
by the inverse function theorem, the image set contains an open subset of 
1R2, on which F = O. 

Note that functional dependence and functional independence do not 
exhaust the range of possibilities except in the case of analytic functions, 
where the vanishing of (2.9) in some open set implies its vanishing 
everywhere. For example, the smooth functions 

7J(x, y) = x, '(X,y)={x'+ -I/y x e , 
y~O, 

y>O, 

are dependent on the lower half plane {y < O}, independent on the upper 
half plane {y>O}; but neither on the entire (x,y)-plane. Finally, we note 
that ,I, ... , ,k may be locally functionally dependent, but there may be no 
nonzero function F(ZI, ... , Zk) such that (2.9) holds for all x in M. For 
instance, the image {(,I(X), ... , ,k(X»: x EM} may be dense in some open 
subset of IRk, so (2.9) would only hold with F == 0 there. 
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The classical necessary and sufficient condition that (1(X), ... , (k(X) be 
functionally dependent is that their k x m Jacobian matrix (a{i / axj ) be of 
rank ... k - 1 everywhere. (See the notes at the end of this chapter regarding 
the proof of this result.) 

Theorem 2.16. Let {= ({\ ... , (k) be a smooth function from M to IRk. Then 
{I (x), ... , (k(X) are functionally dependent if and only if d{ix has rank strictly 
less than k for all x E M. 

The basic theorem regarding number of independent invariants of a 
group of transformations is the following. 

Theorem 2.17. Let G act semi-regularly on the m-dimensional manifold M 
with s-dimensional orbits. If Xo E M, then there exist precisely m - s functionally 
independent local invariants {I (x), ... , (m-s(x) defined in a neighbourhood 
of Xo. Moreover, any other invariant of the group action defined near Xo is of 
the form 

(2.10) 

for some smooth function F. If the action of G is regular, then the invariants 
can be taken to be globally invariant in a neighbourhood of xo. 

PROOF. Using Frobenius' theorem 1.43, we can find flat local coordinates 
y = I/I(x) near Xo for the system of vector fields 9 spanned by the infinitesimal 
generators of G, such that the orbits of G are the slices {yl = c1 , ••• , ym-s = 
cm- s}. Then the new coordinates i = {I (x), ... , ym-s = (m-s(x) themselves 
are local invariants for G, being constant on each slice. Moreover, any other 
invariant of G must also be constant on these slices, and hence a function 
of y\ ... ,ym-s only. Finally, if G acts regularly, we can choose our flat 
coordinate chart such that each orbit intersects it in at most one slice. In 
this case, y 1, ••• ,ym-s actually form global invariants. 0 

In classical terminology, the invariants constructed in this theorem are 
called a complete set of functionally independent invariants. We have shown 
that once we have found such a complete set, any other invariant of G can 
be expressed as a function of these invariants. There is an analogous result 
for invariant subvarieties. 

Proposition 2.1S. Let G act semi-regularly on M and let {1(X), ... , (m-s(x) 
be a complete set of functionally independent invariants defined on an open 
subset We M. If a subvariety 9' F = {x: F( x) = o} is G-invariant, then 
for each solution XoE 9'F there is a neighbourhood We W of Xo, and an 
"equivalent" G-invariant function F(x) = F({I(X), ... , (m-s(x)) whose 
solution set coincides with that of Fin W: 

9'Fn W=9'fon W={XE W: F({I(X), ... , {m-s(x))=O}. 
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PROOF. Note first that we can complete the set of invariants i = 
l"1(X), ... , ym-s = l"m-s(x) to be flat local coordinates y = (y\ ... , ym) for 
G near Xo. In fact, the remaining coordinates y = (ym-s+l, ... ,ym) can be 
chosen from among the given coordinates (Xl, ... , xm) so y = x = 
(x\ ... , Xis). For example, if a(l"I, ... , l"m-s)/ a(x l, ... , x m- s) ,e 0 at xo, then 
we can set x = (xm- s+l , ••• ,xm). Thus the change of coordinates is of the 
form y = "'(x) = (l"(x), x), in which l"(x) denotes the invariants and x are 
called parametric variables. We write F(x) = F*(y) = F*(l"(x), x) in terms 
of these coordinates, so F* = F 0 ",-I. Set 

F(l"(x)) = F*(l"(x), xo), 

where Xo is the value of the parametric variables x at Xo. Since [fF is 
G-invariant, and the orbits of G in these coordinates are the common level 
sets (or slices) {l"(x) = c} of the invariants, we find F*(l"(x), x) = 0 if and 
only if F*(l"(x), xo) = 0 since both points lie in the same slice. 0 

Note that unless F itself is G-invariant, the corresponding F will not 
be the same function; only their solution sets coincide. For instance, in the 
case presented in Example 2.9, F(x,y)=x4+x2y2+y2-1 has the same 
solution set as the SO(2)-invariant function F(x, y) = x2+ y2 -1 even though 
they clearly disagree elsewhere. 

Methods for Constructing Invariants 

It remains to show how one finds the invariants of a given group action. 
First suppose G is a one-parameter group of transformations acting on M, 
with infinitesimal generator 

expressed in some given local coordinates. A local invariant l"(x) of G is 
a solution of the linear, homogeneous first order partial differential equation 

I al" m al" 
v(l")=g (x) ax l +" .+g (x) axm =0. (2.11) 

Theorem 2.17 says that if vl x ,e 0, then there exist m - 1 functionally indepen
dent invariants, hence m -1 functionally independent solutions of the 
partial differential equation (2.11) in a neighbourhood of Xo. 

The classical theory of such equations shows that the general solution 
of (2.11) can be found by integrating the corresponding characteristic system 
of ordinary differential equations, which is 

dx l dx2 dxm 
e(x) = e(x) = ... = gm(x}" (2.12) 
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Solutions of (2.12) take the form 

in which C}, ... , Cm-I are the constants of integration, and the ei(x) are 
functions independent of the cj's. It is then easily seen that the functions 
e\ ... , em - I are the required functionally independent solutions to (2.11). 
Any other invariant, i.e. any other solution of (2.11), will necessarily be a 
function of e\ ... , em-I. We illustrate this technique with a couple of 
examples. 

Example 2.19. (a) Consider the rotation group SO(2), which has infinitesimal 
generator v = -yax + xay- The corresponding characteristic system is 

dx dy 
-=-
-y x 

This first order ordinary differential equation is easily solved; the solutions 
are x 2+ y2 = C for C an arbitrary constant. Thus, e(x, y) = x 2+ y2, or any 
function thereof, is the single independent invariant of the rotation group. 

(b) Consider the vector field 

a a 2 a 
v=-y-+x-+(1+z )-

ax ay az 

defined on 1R3. Note that v never vanishes, so we can find two independent 
invariants of the one-parameter group generated by v, in a neighbourhood 
of any point in 1R3. The characteristic system in this case is 

dx=dy=~ 
-y x 1+z2 ' 

The first of these two equations was solved in part (a), so one of the 
invariants is the radius , =.J x 2 + y2. To find the other invariant, note that 
, is a constant for all solutions of the characteristic system, so we can 
replace x by .J ,2 - y2 before integrating. This leads to the equation 

which has solution 

dz dy 
--=====--.J ,2 _ y2 1 + Z2' 

arcsin ~ = arctan z + k , 
for k an arbitrary constant. Thus 

. y y 
arctan z - arcsm - = arctan z - arctan -, x 
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is a second independent invariant for v. A slightly simpler expression comes 
by taking the tangent of this invariant, which is (xz - y)/ (yz + x), so 

r=Jx2+y2 and 
xz-y 

C=-
yz+x 

provide a complete set of functionally independent invariants (provided 
yz ¥- -x). As usual, any function of rand C is also an invariant, so, for 
instance 

- r x+ yz 
C=--=--

Jl +C2 Jl +Z2 

is also an invariant, which in conjunction with r forms yet another pair of 
independent invariants. (This iterative technique of using knowledge of 
some invariants to simplify the computation of the remaining invariants is 
extremely useful for solving characteristic systems in general.) 

The computation of independent invariants for r-parameter groups of 
transformations when r> 1 can get very complicated. If Vk = L g~(x) a/ ax i, 

k = 1, ... , r, form a basis for the infinitesimal generators, then the invariants 
are found by solving the system of homogeneous, linear, first order partial 
differential equations 

k = 1, ... , r. 

In other words, each invariant C must be a joint invariant of all the vector 
fields VI, ••• ,Vk. One way to proceed is to first compute the invariants of 
one of the vector fields, say VI' Since any joint invariant C must in particular 
be an invariant of Vi> we can write C as some function of the computed 
invariants of VI' Thus, we should re-express the remaining vector fields 
V2 , ••• , Vr using the invariants of VI as coordinates, and then find joint 
invariants of these "new" r - 1 vector fields. The procedure then works 
inductively, leading eventually to the joint invariants of all the vector fields 
expressed in terms of the joint invariants of the first r -1 of them. The 
process will become clearer in an example. 

Example 2.20. Consider the vector fields 

a a 
v=-y-+x-, 

ax ay 
a a a 

w= 2xz-+2yz-+(Z2+ l-x2- y2)_ 
ax ay az 

on JR3. These were considered in Example 1.42, where it was shown that 
they generate a two-parameter abelian group of transformations on JR3, 
which is regular on M = JR\( {x = y = O} U {x2+ y2 = 1, z = O}). An invariant 
C(x, y, z) is a solution to the pair of equations v(C) = 0 = w(C). First 

note that independent invariants of V are just r = J x2 + y2 and z. We now 
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re-express w in terms of rand z, 

a a 
w=2rz-+(z2+ 1- r2)-. 

ar az 

Since ~ must be a function of the invariants r, z of v, it must be a solution 
to the differential equation 

w({) = 2rz a~+(z2+ 1- r2) a~ =0. 
ar az 

The characteristic system here is 

dr dz 
2rz = Z2+ 1- r2' 

Solving this ordinary differential equation, we find that 

r 

x2+ y2+ Z2+ 1 

.Jx2+ y2 

is the single independent invariant of this group. (This result was given in 
Example 1.42, but without the details of the intervening calculation.) 

2.2. Groups and Differential Equations 

Suppose we are considering a system g of differential equations involving 
p independent variables x = (Xl, ... ,xP ), and q dependent variables u = 
(u I, ••• , u q ). The solutions of the system will be of the form u = f(x), or, 
in components, u" = f"(x\ ... , x P ), a = 1, ... , q.t Let X = IR P, with coor
dinates x = (Xl, ... ,xP ), be the space representing the independent vari
ables, and let U = IRq, with coordinates u = (u\ ... , uq), represent the 
dependent variables. A symmetry group of the system g will be a local 
group of transformations, G, acting on some open subset Me X x U in 
such a way that "G transforms solutions of g to other solutions of g". 
Note that we are allowing arbitrary nonlinear transformations of both the 
independent and dependent variables in our definition of symmetry. 

To proceed rigorously, we must explain exactly how a given transforma
tion g in the Lie group G transforms a function u = f(x). We begin by 
identifying the function u = f(x) with its graph 

rf = {(x,j(x)): xE!l}c X xU, 

where n c X is the domain of definition of f Note that rf is a certain 
p-dimensional submanifold of X x U. If rf c M g , the domain of definition 

t We will consistently employ Latin subscripts or superscripts to refer to the independent 
variables and Greek subscripts or superscripts to refer to the dependent variables. 
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u 

u =f( x) 

----------~-----------x 

Figure 6. Action of a group transformation on a function. 

of the group transformation g, then the transform of f f by g is just 

g' f f = {( X, Ii) = g . (x, u): (x, u) E f f }. 

93 

The set g' ff is not necessarily the graph of another single-valued function 
Ii = j(x). However, since G acts smoothly and the identity element of G 
leaves f f unchanged, by suitably shrinking the domain of definition n of 
f we ensure that for elements g near the identity, the transform g' ff = f1 
is the graph of some single-valued smooth function Ii = j(x). We write 
j = g . f and call the function j the transform of f by g. 

Example 2.21. Let p = 1, q = 1, so X = IR, with a single independent variable 
x, and U = ~ with a single dependent variable u. (We are thus in the situation 
of a single ordinary differential equation involving a single function u = 
f(x ).) Let G = SO(2) be the rotation group acting on X x U = 1R2. The 
transformations in G are given by 

(x, Ii) = 6 . (x, u) = (x cos 6 - u sin 6, x sin 6 + u cos 6). (2.13) 

Suppose u = f(x) is a function, whose graph is a subset ffc X x U. The 
group SO(2) acts on f by rotating its graph. Clearly, if the angle 6 is 
sufficiently large, the rotated graph 6· f f will no longer be the graph of a 
single-valued function. However, if f(x) is defined on a finite interval 
a ~ x ~ b, and 161 is not too large, then 6· f f will be the graph of a 
well-defined function Ii = j(x), with f1 = 6· f f. 

As a specific example, consider the linear function 

u=f(x)=ax+b. 

The graph of f is a straight line, so its rotation through angle 6 will be 
another straight line, which, as long as it is not vertical, will be the graph 
of another linear function 6· f = j, the transform off by the rotation through 
angle 6. To find the precise formula for 6· f, note that by (2.13) a point 
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(x, u) = (x, ax + b) on the graph of I is rotated to the point 

(x, Ii) = (x cos 8 - (ax + b) sin 8, x sin 8 + (ax + b) cos 8). 

In order to find Ii = j(x), we must eliminate x from this pair of equations; 
this is possible provided cot 8 ;c a (in particular, for 8 sufficiently near 0), 
so that the graph is not vertical. We find 

x+b sin 8 
x= ., 

cos 8-a sm 8 

hence 8· 1= j is given by 

_ 1-( -) sin 8 + a cos 8 _ _ __ b __ _ 
u= x = x+ 

cos 8 - a sin 8 cos 8 - a sin 8' 

which, as we noticed earlier, is again a linear function. 

In general, the procedure for finding the transformed function j = g . I 
is much the same as in this elementary example. Suppose the transformation 
g is given in coordinates by 

(x, Ii) = g' (x, u) = (Eg(x, u), <Pg(x, u)), 

for smooth functions E g, <Pg. Then the graph fj= g' ff of g' I is given 
parametrically by the equations 

x = Eg(x,/(x)) = Eg 0 (] x/)(x), 

Ii = <Pg(x,/(x)) = <Pg 0 (ll x/)(x), 
XEO. 

Here II denotes the identity function of X, so ll(x) = x, and x is the Cartesian 
product of functions. To find j = g' I explicitly, we must eliminate x from 
these two systems of equations. Since for g = e, Ee 0 (ll xl) = ll, we know 
that, provided g is sufficiently near the identity, the Jacobian matrix of 
Eg 0 (ll xf) is nonsingular and hence by the inverse function theorem we 
can locally solve for x: 

Substitution into the second system yields the required equation for the 
transform g' I: 

g' 1= [<Pg 0 (ll xf)] 0 [Eg 0 (ll X/)]-l, (2.14) 

which holds whenever the second factor is invertible. This general formula 
is slightly complicated, but this was to be expected from our experience 
with just linear functions and the rotation group. 

Example 2.22. Consider the special case in which the group G transforms 
just the independent variables x. Thus the transformations in G take the 
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special form 

(x, ii) = g' (x, u) = (Eg(x), u), 

in which Eg is, in fact, a diffeomorphism of X with E;1 = Eg-t where 
defined. If r f = {( x,f( x))} is the graph of a smooth function, then its 
transform g' rf={g· (x,f(x))} is always the graph of a smooth function. 
Indeed 

(x, ii) = g' (x,f(x» = (Eg(x),f(x». 

Thus we can easily eliminate x by inverting E g , with 

ii = j(x) = f(E;I(X» = f(Eg-t(x». 

For example, if G is a group of translations 

(x, u)o-+(x+ ea, u), e E IR, 

for a E X fixed, then the transform of the function u = f(x) is the translate 

ii = j(x) = f(x- ea) 

of f. 
The same sort of result holds in the more general case of a projectable 

group of transformations, in which the action on the independent variables 
does not depend on the dependent variables: 

g' (x, u) = (Eg(x), cl>g(x, u». 

For example, the one-parameter group 

( ) ( +2 -ex-e2t ) ge: x,t,u 0-+ x et,t,e u, e E IR, 

arises as a symmetry group of the heat equation. (See Example 2.41.) If 
u = f(x, t) is any function, then its transform by ge is 

which must now be written in terms of (x, i) = ge . (x, t) = (x + 2et, t). 
Therefore 

ii = e -e(x-2e;)-e2; • f(x - 2e i i) , 
= e-d +e 2 ; • f(x - 2ei i) , 

is the transformed function in this particular case. (Note the disparity with 
the expressions for the group transformations themselves. The reader is 
advised to do several examples to gain familiarity with how this works in 
practice.) 

We can now give a rigorous definition of the concept of a symmetry 
group of a system of differential equations. 
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Definition 2.23. Let Y be a system of differential equations. A symmetry 
group of the system Y is a local group of transformations G acting on an 
open subset M of the space of independent and dependent variables for 
the system with the property that whenever u = f(x) is a solution of Y, and 
whenever g. f is defined for g E G, then u = g. f(x) is also a solution of 
the system. (By solution we mean any smooth solution u = f(x) defined on 
any subdomain fie x.) 

For example, in the case of the ordinary differential equation Uxx = 0, 
the rotation group SO(2) considered in Example 2.21 is obviously a sym
metry group, since the solutions are all linear functions and SO(2) takes 
any linear function to another linear function. Another easy example is 
given by the heat equation u, = Uxx • Here the group of translations 

(x, t, u)~(x+ea, t+eb, u), e E IR, 

is a symmetry group since u = f(x - ea, t - eb) is a solution to the heat 
equation whenever u = f(x, t) is. The reader might enjoy checking that the 
group presented at the end of Example 2.22 is also a symmetry group of 
the heat equation, meaning that 

u = e-ex+e 2'f(x - 2et, t) 

is a solution of the heat equation whenever u = f(x, t) is. 
One of the obvious advantages of knowing a symmetry group ofa system 

of differential equations is that we can construct new solutions of the system 
from known ones. Namely, if we know u = f(x) is a solution, then according 
to the definition, U = g. f(x) is also a solution for any group element g, so 
we have the possibility of constructing whole families of solutions just by 
transforming a known solution by all possible group elements. For example, 
in the case of the above symmetry group of the heat equation, starting with 
the trivial constant solution u = c, we deduce the existence of a two-para
meter family of exponential solutions 

u(x, t) = c e-ex+e 2 ,. 

We could further subject these to the translation group, but in this case no 
new solutions are obtained. The reader might try seeing what happens to 
other known solutions of the heat equation, e.g. the fundamental solution, 
under the above group actions. 

The primary goal of this chapter is to establish a workable criterion that 
can be readily checked to determine whether a given group of transforma
tions is or is not a symmetry group of a given system of differential equations. 
This criterion will be infinitesimal, in direct analogy with the criterion of 
Theorem 2.8 for systems of algebraic equations. In fact, once we have 
developed the appropriate geometrical setting for studying systems of 
differential equations, we will be able to directly invoke Theorem 2.8 to 
establish an infinitesimal criterion of invariance. Once we have this criterion 
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in hand, not only will we be able to simply check whether a given group 
is a symmetry group of our system of differential equations, we will actually 
be able to compute the most general symmetry group of the system through 
a series of fairly routine calculations. 

2.3. Prolongation 

Before implementing our program of finding symmetries of differential 
equations by employing analogues of the infinitesimal methods for algebraic 
equations discussed in Section 2.1, we need to replace the somewhat 
nebulous notion of a "system of differential equations" by a concrete 
geometric object determined by the vanishing of certain functions. To do 
this we need to "prolong" the basic space X x V representing the indepen
dent and dependent variables under consideration to a space which also 
represents the various partial derivatives occurring in the system. This 
construction is a greatly simplified version of the theory of jet bundles 
occurring in the differential-geometric theory of partial differential 
equations. So as to avoid the introduction of too much extraneous 
machinery, we work exclusively in Euclidean space here. (See Section 3.5 
for a generalization.) 

Given a smooth real-valued function f(x) = f(xt, ... , x P ) of p indepen
dent variables, there are 

_(P+k-1) 
Pk= 

k 

different possible k-th order partial derivatives of f We employ the multi
index notation 

for these derivatives. In this notation, J = (jl, ... ,jd is an unordered k-tuple 
of integers, with entries 1",;; jK ",;; P indicating which derivatives are being 
taken. The order of such a multi-index, which we denote by #J == k, indicates 
how many derivatives are being taken. More generally, if f: X ~ V is a 
smooth function from X=IRP to V=lRq, so u=f(x)=(/(x), ... ,r(x)), 
there are q. Pk numbers u ~ = a ffe>. (x) needed to represent all the different 
k-th order derivatives of the components off at a point x. We let Vk == IRq·Pk 
be the Euclidean space of this dimension, endowed with coordinates u~ 
corresponding to a = 1, ... , q, and all multi-indices J = (jl, ... ,jd of order 
k, designed so as to represent the above derivatives. Furthermore, set 
V(n) = V X VI x· .. X Vn to be the Cartesian product space, whose coordi
nates represent all the derivatives of functions u = f(x) of all orders from 
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o to n. Note that V(n) is a Euclidean space of dimension 

q+qpl + ... qpn = q( p:n) == qp(n). 

A typical point in V(n) will be denoted by u(n), so u(n) has q' p(n) different 
components u~ where a = 1, ... , q and J runs over all unordered multi
indices J = (j}, ... ,jd with 1 ~jK ~ P and 0 ~ k ~ n. (By convention, for 
k = 0 there is just one such multi-index, denoted by 0, and u~ just refers to 
the component u a of u itself.) 

Example 2.24. Consider the case p = 2, q = 1. Then X = 1R2 has coordinates 
(x\ x 2) = (x, y), and V = IR has the single coordinate u. The space VI is 
isomorphic to 1R2 with coordinates (ux , uy) since these represent all the first 
order partial derivatives of u with respect to x and y. Similarly, V2 = 1R3 
has coordinates (uxx , uxy , Uyy ) representing the second order partial deriva
tives of u, and, in general, V k = IR k+ l , since there are k + 1 k-th order partial 
derivatives of u, namely aku/ axi ayk-i, i = 0, ... , Ie. Finally, the space V(2) = 

V X VI X V 2 = 1R6 , with coordinates U(2) = (u; ux , uy ; uxx , uxy , Uyy ), represents 
all derivatives of u with respect to x and y of order at most 2. 

Given a smooth function u = f(x), so f: X -+ V, there is an induced 
function u(n) = pr(n) f(x), called the n-th prolongation off, which is defined 
by the equations 

Thus pr(n) f is a function from X to the space v(n), and for each x in X, 
pr(n) f(x) is a vector whose q' p(n) entries represent the values of f and all 
its derivatives up to order n at the point x. For example, in the case p = 2, 
q = 1 discussed above, given u = f(x, y), the second prolongation U(2) = 
pr(2) f(x, y) is given by 

(2.15) 

all evaluated at (x, y). (Another way of looking at the n-th prolongation 
pr(n) f(x) is that it represents the Taylor polynomial of degree n for fat 
the point x, since the derivatives of order ~ n determine the Taylor poly
nomial and vice versa.) 

The total space X x u(n>, whose coordinates represent the independent 
variables, the dependent variables and the derivatives of the dependent 
variables up to ordern is called the n-th order jet space of the underlying 
space X x U. (The n-th prolongation pr(n) f(x) is also known as the n-jet 
of f, but we will stick to the more suggestive term "prolongation".) Often 
we are not interested in differential equations defined over all of X x V, 
but only in some open subset Me X x V. In this case, we define the n-jet 
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space 

M(n) == M X U I X· •• X Un 

of M. If u = f(x) is a function whose graph lies in M, the n-th prolongation 
pr(n) f(x) is a function whose graph lies in the n-jet space M(n). 

Systems of Differential Equations 

A system g of n-th order differential equations in p independent and q 
dependent variables is given as a system of equations 

1/=1, ... ,1, 

involving x = (x\ ... , xP), U = (u\ ... , u q ) and the derivatives of u with 
respect to x up to order n. The functions a(x, u(n») = (a l (x, u(n»), ... , 
a,(x, u(n»)) will be assumed to be smooth in their arguments, so a can be 
viewed as a smooth map from the jet space X X u(n) to some I-dimensional 
Euclidean space, 

a: X X U(n) ~ !R'. 

The differential equations themselves tell where the given map a vanishes 
on X X u(n), and thus determine a subvariety 

gA = {(x, u(n»): a(x, u(n») = O} c X X U(n) 

of the total jet space. We can identify the system of differential equations 
with its corresponding subvariety, thereby realizing the "abstract" relations 
among the various derivatives of u determined by the system as some 
concrete, geometrical subset gA of the jet space X X U(n). We will use the 
same symbol "a" as shorthand for both the system of differential equations 
a(x, u(n») = 0 and the map a: X X U(n) ~!R' which determines it. This should 
not be the cause of any confusion. 

From this point of view, a smooth solution of the given system of 
differential equations is a smooth function u = f(x) such that 

av(x, pr(n) f(x)) = 0, 1/=1, ... ,1, 

whenever x lies in the domain of f This is just a restatement of the fact 
that the derivatives aJfa(x) of f must satisfy the algebraic constraints 
imposed by the system of differential equations. This condition is equivalent 
to the statement that the graph of the prolongation pr(n) f(x) must lie entirely 
within the subvariety 51 A determined by the system: 

fin) == {(x, pr(n) f(x))} egA = {a(x, U(n») = O}. 

We can thus take an n-th order system of differential equations to be a 
subvariety gA in the n-jet space X X U(n) and a solution to be a function 
u = f(x) such that the graph of the n-th prolongation pr(n) f is contained 
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in the subvariety Yt:.. So far we have not done anything but reformulate 
the basic problem of finding solutions of systems of differential equations 
in a more geometrical form, ideally suited to our investigation into symmetry 
groups thereof. It is perhaps worthwhile pausing at this point to consider 
a simple example. 

Example 2.25. Consider the case of Laplace's equation in the plane 

Uu + Uyy = O. (2.16) 

Here p = 2 since there are two independent variables x and y, and q = 1 
since there is one dependent variable u. Also n = 2 since the equation is 
second order, so we are in the situation described in Example 2.24. In terms 
of the coordinates (x, y; u; ux, uy; UXX , uxy , Uyy ) of X x U(2), (2.16) defines 
a linear subvariety (a "hyperplane") there, and this is the set Yt:. for Laplace's 
equation. A solution u = f(x, y) must satisfy 

for all (x, y). This is clearly the same as requiring that the graph of the 
second prolongation pr(2) f lie in Yt:.. For instance, if 

then (using (2.15» 

which lies in Y t:. since the fourth and sixth entries add up to 0: 6x + ( -6x) = o. 

Prolongation of Group Actions 

Now suppose G is a local group of transformations acting on an open 
subset Me X x U of the space of independent and dependent variables. 
There is an induced local action of G on the n-jet space M(n), called the 
n-th prolongation of G (or, more correctly, the n-th prolongation of the 
action of G on M) and denoted pr(n) G. This prolongation is defined so 
that it transforms the derivatives offunctions u = f(x) into the corresponding 
derivatives of the transformed function Ii = j(x). More rigorously, suppose 
(xo, u&n» is a given point in M(n). Choose any smooth function u = f(x) 
defined in a neighbourhood of xc, whose graph lies in M, aqd has the given 
derivatives at Xo: 
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For example, f might be the n-th order Taylor polynomial at Xo correspond
ing to the given values u~n}: 

uJO J 
r(x) = L. J~' (x -xo) , 

J • 
a = 1, ... , q. (2.17) 

(Here the sum is over all multi-indices J = (jlo ... ,A) with 0 ... k ... n; also 

(x - xo)J = (x j, - x6')(x j2 - x62) ... (x jk - Xbk). 

Further, given J, set j = (jlo ... ,j:), where j; equals the number of j~ 's 
which equal i. For instance, if J = (1,1,1,2,4,4), P = 4, k = 6, then J = 
(3,1,0,2). With this notation j!=II!I2!'" j:!.) 

If g is an element of G sufficiently near the identity, the transformed 
function g' f as given by (2.14) is defined in a neighbourhood of the 
corresponding point (xo, uo) = g' (xo, uo), with Uo = f(xo) being the zeroth 
order components of u~n). We then determine the action of the prolonged 
group transformation pr(n) g on the point (xo, u~n» by evaluating the deriva
tives of the transformed function g' f at xo; explicitly 

where 

(2.18) 

It is a relatively straight-forward exercise to check, using the chain rule, 
that this definition of pr(n) g' (xo, u~n» depends only on the derivatives of 
fat Xo up to order n, i.e. on (xo, u~n» itself, and hence is independent of 
the choice of representative function f for (xo, u~n». Thus the prolonged 
group action is well defined. Again, put more succinctly, to define the action 
of pr(n) g on a point in M(n), choose a function whose derivatives agree 
with the given values; transform the function according to (2.14), and 
re-evaluate the derivatives. 

Example 2.26. Let p = q = 1, so X x U = 1R2, and consider the action of the 
rotation group SO(2) as discussed in Example 2.21. We calculate here the 
first prolongation pr(J) SO(2). Note first that X x U(J) = 1R3, with coordinates 
(x, u, ux ). Given a function u = f(x), the first prolongation is 

pr(J) f(x) = (f(x ),f'(x». 

Now given a point (XO, uO, u~) E X X U(J), and a rotation in SO(2) charac
terized by the angle e, we wish to find the corresponding transformed point 

pr(J) (J. (xo, uO, u~) = (XO, uO, u~) 

(provided it exists). Choose the linear Taylor polynomial 

f(x) = uo+ u~(x-XO) = u~· x+(uo- u~XO) 
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as a representative function, noting that 

as required. According to the calculations of Example 2.21, the transform 
of f by a rotation through angle 8 is the linear function 

. 8 0 8 0 00 
f-( -) f( -) sm + u x cos - u - u xX x =8' x = x+-----:::----

cos 8 - u~ sin 8 cos 8 - u~ sin 8' 

which is well defined provided u~ -,= cot 8. Then 

hence 

,:;:0 = j(XO) = X O sin 8 + UO cos 8, 

as we already knew. As for the first order derivative, we find 

-0 =f-'( -0) = sin 8 + u~ cos 8 
U x x 0.' 

cos 8 - U x sm 8 

Therefore, dropping the O-superscripts, we find that the prolonged action 
pr(I) SO(2) on X x U(I) is given by 

pr(1) 8· (x, u, ux ) 

( .. sin 8 + Ux cos 8) = x cos 8 - u sm 8, x sm 8 + u cos 8, ., 
cos 8- Ux sm 8 

(2.19) 

which is defined for 181 < larccot uxl. Note that even though SO(2) is a 
linear, globally defined group of transformations, its first prolongation is 
both nonlinear and only locally defined. From this relatively simple example 
the reader can appreciate the complexity of the operation of prolonging a 
group of transformations! 

The reader will note that in the above example, the first prolongation 
pr(I) G acts on the original variables (x, u) exactly the same way that G 
itself does; only the action on the derivative Ux provides new information. 
This remark holds in general. Namely, given the n-th prolongation pr(n) G 
acting on the variables (x, u(n», if we restrict our attention to just the 
derivatives up to order k,;;; n, so just look at the variables (x, U(k», then the 
action of pr(n) G there agrees with the earlier prolongation pr(k) G. In 
particular, for k = 0, pr(O) G agrees with G itself, acting on M(O) = M. This 
result can be stated more precisely by defining a natural projection 
7T~: M(n) --+ M(k), where 7T~(X, u(n» = (x, U(k», U(k) just consisting of the 
components u~, #J,;;; k of u(n) itself. For example, if p = 2, q = 1, 
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while 

We then have 

1T~ 0 pr(n) g = pr(k) g, n -;;:. k, (2.20) 

for any group element g E G. Another way of looking at this remark is that 
if we already know the k-th order prolonged group action pr(k) G, then to 
compute the n-th order prolongation pr(n) G we need only find how the 
derivatives u~ of orders k < #J ~ n transform, since the action on k-th and 
lower order derivatives is already determined. 

Invariance of Differential Equations 

Suppose we are given an n-t]1 order system of differential equations, or, 
equivalently, a subvariety [Ill. of the jet space M(n)c X X U(n). A symmetry 
group of this system was defined to be a local group of transformations G 
acting on Me X x U which transforms solutions of the system to other 
solutions. We will establish the connection between this symmetry condition 
and the geometric condition that the corresponding subvariety [Ill. be 
invariant under the prolonged group action pr(n) G. This observation will 
effectively reduce the problem of determining symmetry groups of differen
tial equations to the more tractable problem of determining when some 
subvariety (in this case [Ill.) is invariant under some local group oftransfor
mations (in this case the prolonged group pr(n) G). In this way all the tools 
developed in Section 2.1 for symmetries of algebraic equations are at our 
disposal for the study of symmetries of differential equations. This alone 
should demonstrate the effectiveness of our geometric reformulation of the 
notion of differential equation which has been developed in this section. 

Theorem 2.27. Let M be an open subset of X x U and suppose d(x, u(n» = 0 
is an n-th order system of differential equations defined over M, with correspond
ing subvariety [Ill. c M(n). Suppose G is a local group of transformations acting 
on M whose prolongation leaves [Ill. invariant, meaning that whenever 
(x, u(n» E [Ill., we have pr(n) g' (x, u(n» E [Ill. for all g E G such that this is 
defined. Then G is a symmetry group of the system of differential equations 
in the sense of Definition 2.23. 

PROOF. The proof just consists of untangling the various definitions. Suppose 
u = f(x) is a local solution to d(x, u(n» = O. This means that the graph 

r}n) = {(x, pr(n) f(x))} 

of the prolongation pr(n) f lies entirely within [Ill.' If g EGis such that the 
transformed function g' f is well defined, the graph of its prolongation, 
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namely n~}, is the same as the transform of the graph of pr(n) f by the 
prolonged group transformation pr(n) g: 

r~~} = pr(n) g(r}n». 

(This is just a restatement of the basic formula (2.18) defining the prolonged 
group action.) Now, since [Ill. is invariant under pr(n) g, the graph of 
pr(n) (g. f) again lies entirely in [Ill.' But this is just another way of saying 
that the transformed function g' f is a solution to the system A. 0 

Later (Theorem 2.71) we will present a converse to this result, subject 
to some additional hypotheses on the system itself. 

Prolongation of Vector Fields 

As with the group transformations themselves, we can also define the 
prolongation of the corresponding infinitesimal generators. Indeed, these 
will just be the infinitesimal generators of the prolonged group action. 

Definition 2.28. Let M c X x U be open and suppose v is a vector field on 
M, with corresponding (local) one-parameter group exp(ev). The n-th 
prolongation of v, denoted pr(n) v, will be a vector field on the n-jet space 
M(n), and is defined to be the infinitesimal generator of the corresponding 
prolonged one-parameter group pr(n)[exp(ev)]. In other words, 

pr(n) vl(x,u(n»= ~ 1£=0 pr(n)[exp(ev)](x, u(n» (2.21) 

for any (x, u(n» E M(n). 

Note that since the coordinates (x, u(n» on M(n) consist of the indepen
dent variables (Xl, ... ,xP ) and all derivatives u~ of the dependent variables 
up to order n, a vector field on M(n) will in general take the form 

P . a q a 
v*= L f-;+ L LcP~-a' 

;=1 ax a=1 J aUJ 

the latter sum ranging over all multi-indices J of orders 0:0;;; #J:o;;; n; the 
coefficient functions ~;, cP~ could depend on all the variables (x, u(n». In 
the case v* is the prolongation pr(n) v of a vector field 

p. a q a 
v= L f(x,u)-;+ L cPa(x,u)-a' 

;=1 ax a=1 au 

the coefficients ~;, cP~ of v* = pr(n) v will be determined by the coefficients 
~;, cPa of v itself. According to (2.20), the prolonged group action 
pr(n)[exp(ev)], when restricted to just the zeroth order variables x, u of 
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M(O) = M, agrees with the ordinary group action exp(ev) on M. Therefore 
the coefficients ~i and f/>~ = f/>a ofv* = pr(n) v must agree with the correspond
ing coefficients ~i, f/>a of v itself. Thus 

(2.22) 

where ~i, f/>a = f/>~ come directly from v. Moreover, if #J = Ie, the coefficient 
f/>~ of a/ au~ will only depend on k-th and lower order derivatives of u, 
f/>~ = f/>~(x, U(k», since, again by (2.20), the corresponding group transfor
mations of k-th order derivatives only involve k-th and lower order deriva
tives. This can be stated formally, using the projection maps in (2.20), as 

n;3 Ie, (2.23) 

where pr(O) v = v for k = o. This indicates the possibility of recursively con
structing the various prolongations of a given vector field. Our principal 
remaining task, then, is to find a general formula for the coefficients f/>~ of 
the prolongation of a vector field. Before tackling this question, however, 
we look at a simple example and then draw some general conclusions on 
the computation of symmetry groups of differential equations. 

Example 2.29. Consider the rotation group SO(2) acting on X x U = 1R2 as 
discussed in Examples 2.21 and 2.26. The corresponding infinitesimal 
generator is 

with 

a a 
v=-u-+x

ax au' 

exp(ev)(x, u) = (x cos e - u sin e, x sin e + u cos e) 

being the rotation through angle e. The first prolongation takes the form 

pr(l)[exp(ev)](x, u, ux ) 

( .. sin e + Ux cos e) = x cos e - u sm e, x sm e + u cos e, .. 
cos e - Ux sm e 

According to (2.21), the first prolongation ofv is obtained by differentiating 
these expressions with respect to e and setting e = o. An easy computation 
shows that 

( I) a a 2 a pr v=-u-+x-+(1+ux )-. 
ax au aux 

(2.24) 

Note that in accordance with (2.23) the first two terms in pr(l) v agree with 
those in v itself. 
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Infinitesimal Invariance 

Combining Theorems 2.27 and 2.8, we immediately deduce the important 
infinitesimal condition for a group G to be a symmetry group of a given 
system of differential equations. Of course, to apply the latter theorem, we 
need a corresponding maximal rank condition for the system of differential 
equations. 

Definition 2.30. Let 

v=I, ... ,I, 

be a system of differential equations. The system is said to be of maximal 
rank if the I x (p + qp(n» Jacobian matrix 

J ( (n» = (aAv. aAv) 
I:>. x, u I' ex 

ax au] 

of A with respect to all the variables (x, u(n» is of rank I whenever 
A(x, u(n» = O. 

Thus, for instance, Laplace's equation 

A = Uxx + Uyy = 0 

is of maximal rank, since the Jacobian matrix with respect to all the variables 
(x,y; u; ux , uy ; Uxx , uxy , Uyy ) in X x U(2) (cf. Example 2.25) is 

JI:>. = (0, 0; 0; 0, 0; 1,0,1), 

which is clearly of rank 1 everywhere. However, the rather silly equivalent 
equation 

- 2 A = (uxx + Uyy ) = 0 

is not of maximal rank, since 

Jx = (0, 0; 0; 0, 0; 2(uxx + Uyy ), 0, 2(uxx + Uyy» 
vanishes whenever (uxx + Uyy? = O. 

The maximal rank condition is not much of a restriction, since according 
to Lemma 1.12 if the subvariety 9'1:>. = {A(x, u(n» = O}is a regular submanifold 
of M(n), then there is an (algebraically) equivalent system of differential 
equations .ii(x, u(n» = 0 such that 

9'1:>. = 9'x = {.ii(x, u(n» = OJ, 

and .ii is of maximal rank. 

Theorem 2.31. Suppose 

Av(x, u(n» = 0, v = 1, ... , I, 
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is a system of differential equations of maximal rank defined over M c: X x U. 
If G is a local group of transformations acting on M, and 

pr(n)v[Av(x, u(n»)] = 0, 1I = 1, ... ,I, whenever A(x, u(n») = 0, (2.25) 

for every infinitesimal generator v of G, then G is a symmetry group of the 
system. 

The proof, as remarked above, is immediate from Theorems 2.8 and 2.27. 
Again, as for Theorem 2.27, it will be shown in Section 2.6 that, provided 
the system A satisfy certain additional "local solvability" conditions, (2.25) 
is in fact both necessary and sufficient for G to be a symmetry group. In 
this case, all (connected) symmetry groups can be systematically determined 
through an analysis of the infinitesimal criterion (2.25), as will be seen in 
numerous examples in Section 2.4. As a consequence of the maximal rank 
condition and Proposition 2.10, we see that we can replace (2.25) by the 
equivalent condition that there exist functions QV/L(x, u(n») such that 

I 

pr(n) v[Av(x, u(n»)] = L QV/L(x, u(n»)A/L(x, u(n») (2.26) 
1'= 1 

holds identically in (x, u(n») E M(n). Both (2.25) and (2.26) are useful when 
analyzing the infinitesimal criterion of invariance. 

Example 2.32. Let G = SO(2) acting on X x U = 1R2 as in Examples 2.29, 
2.26 and 2.21. Consider the first order ordinary differential equation 

A(x, u, ux)=(u-x)ux+u+x=O. (2.27) 

Note that the Jacobian matrix referred to in Definition 2.30 is 

J.1=(aA, aA,~) =(1-ux, 1+ux, u-x), 
ax au aux 

which is of rank 1 everywhere. Applying the infinitesimal generator of 
pr(l) SO(2), as calculated in (2.24), to (2.27), we find 

aA aA aA 
prO) v(A) = -u-+ x-+ (1 + u~)-

ax au aux 

= -u(1- ux) + x(1 + ux) + (1 + u~)(u - x) 

= uA(u -x)ux+ u+x] 

Therefore pr(l) v(A) = 0 whenever A = 0, and the infinitesimal criterion of 
invariance (2.25) is verified. We conclude that the rotation group SO(2) 
transforms solutions of (2.27) to other solutions. More geometrically, if 
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U = f(x) is a solution, and we rotate the graph of f by any angle 8, the 
resulting function is again a solution. Indeed, changing to polar coordinates 

x = r cos 8, U = r sin 8, 

(2.27) becomes 

dr 
-=r d8 . 

The solutions are thus (pieces of) logarithmic spirals r = ce 9 for c constant. 
Obviously, rotating anyone of these spirals produces another spiral of the 
same form, so SO(2) is indeed a symmetry group. (The choice of polar 
coordinates, and the fact that the equation could be readily solved in these 
coordinates, is, as we shall see, no accident.) 

The Prolongation Formula 

In light of Theorem 2.31, which connects symmetry groups of a system of 
differential equations with the infinitesimal criterion of invariance of the 
system under the prolonged infinitesimal generators of the group, the 
principal task remaining for us is to find an explicit formula for the 
prolongation of a vector field. Despite the daunting complexity of the 
prolonged group action, as determined by (2.18), the prolonged vector fields 
have a relatively simple, easily computable expression. 

Before tackling the general case, it is helpful to illustrate the basic method 
in a couple of simpler situations. We first investigate the prolongation of a 
one-parameter group of transformations which acts solely on the indepen
dent variables in our system of differential equations. In other words, 
consider the vector field 

p. a 
v= L f(X)-i 

i=1 ax 

on the space Me X x U. The group transformations g£ = exp(ev) are there
fore of the form 

(x, 17) = g£' (x, u) = (E£(x), u) 

discussed in Example 2.22, in which the components Xi = E~(x) satisfy 

dE~(x) I = ~i(X), (2.28) 
de £=0 

cf. (1.48). For simplicity, we consider the case of a single dependent variable 
U E IR, although the discussion readily generalizes to several dependent 
variables. 

The first jet space M O) has coordinates (x, u(l) = (Xi, U, uj ), where Uj == 
auf ax j • The prolonged group action is found as follows: if (x, u(1» is any 
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point in M(1), and U = f(x) is any function with Uj = aflax!, j = 1, ... , p, 
then pr(l) g.' (x, u(l)) = (x, u(l)), where x = S.(x), u = u, and uj are the 
derivatives of the transformed functioni. = g •. f, which, according to (2.14), 
is given by 

(Here we have used the fact that g;l = g_. wherever defined.) Thus 

~ ai. ( ~) ~ af (~ (~)) as~. ( ~) 
uj =--::; x = t.. -k ~-. X . ax~l x. 

ax k=laX 
(2.29) 

But s_.(x) = x, hence 

gives the explicit formula for the prolonged group action on the first order 
derivatives. 

To find the infinitesimal generator of pr(1) go we must differentiate the 
formulas for the prolonged transformations with respect to e and set e = O. 
Thus 

pap a 
pr(I)v= I gi(X)-i+ I cf/(x, u(l))-, 

i=l ax j=l aUj 
(2.30) 

where gi(X) is as before (since pr(I) g. transforms x and U just as g. does) 
and, by (2.21), 

d I P a-;;k 
j (1) __ ~ -;; 

cfJ (x, U ) - d I ~j (_.(X))Uk. 
e .=0 k=l ax 

Since all the functions are smooth, we can interchange the order of differenti
ation, and so obtain two types of terms multiplying Uk: first, those of the form 

~j [dS~'J (SAx)) I =-; [dS~'1 ] (x) = -a~: (x), 
ax de .=0 ax de .=0 ax 

where we have used (2.28) and the fact that at e = 0 So(x) = x is the 
identity; second, those involving two x-derivatives of S_.: 

a2-;;k d-;;f I I ~-;-:f (S_.(x)) d-' (x) = 0, 
faX ax e .=0 

which vanish since So(x) is the identity, hence at e = 0 all second order 
x-derivatives of S. vanish. Therefore, 

. P agk 

cfJl(X, U, ux ) = - I j' Uk 
k=1 ax 

provides the basic prolongation formula for pr(I) v in (2.30). 

(2.31) 
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Example 2.33. Let p = 2, q = 1, and consider the vector field 

a a 
v= ~(x, y) -+ 71 (x, y)-

ax ay 

on X = 1R2 with coordinates (x, y). According to (2.31), the first prolongation 
of v is the vector field 

where 

a~ a71 
l/>Y = -- Ux -- U . 

ay ay Y 

For example, in the case of the rotation group 

(x, y, u) ~ (x cos e - y sin e, x sin e + y cos e, u) 

on X, the infinitesimal generator is 

a a 
v=-y-+x-. 

ax ay 

Here ~ = - y, 71 = x, and hence v has first prolongation 

pr(1) v= -y.i.+x.i.- u ~+ ux~. 
ax ay Y aux auy 

(The first prolongation of the rotation group, 

(x, y, u, ux, Uy)~(x cos e - y sin e, x sin e + y cos e, u, 

Ux cos e - uY sin e, Ux sin e + uy cos e), 

(2.32) 

can be reconstructed either by integrating pr(1) v, as in (1.7), or directly 
from the definition.) 

It is useful to consider one other special case before proceeding to the 
general prolongation formula. Again we stick to one dependent variable u, 
but now look at groups that transform only the dependent variable: 

(x, Ii) = g •. (x, u) = (x, 4>.(x, u)). 

This has infinitesimal generator v= l/>(x, u)au , where 

l/>(x, u) = ~ 1.=o4>.(X, u). 

If u = f(x) is a function, the transformed function j£ = g •. f is, according 
to (2.14), just 

Ii = j.(x) = 4>.(x,f(x)). (2.33) 
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To find the prolonged group action, we differentiate: 

uj = aj~ (x) =-; {<I> £ (xJ(x))} = a<l>; (xJ(x)) + a~ (x) a<l>£ (xJ(x)), 
ax ax ax ax au 

hence pr(1) g£ . (x, u(l)) = (x, u(I)), where 

The infinitesimal generator 

_ a<l> £ a<l> £ 
u·=-.+u·-

1 ax' 1 au 
(2.34) 

of pr(1) g£ is obtained from (2.34) by differentiating with respect to E and 
setting E = 0, just as in our previous computations. Thus, 

. (1) d I - alP alP lP'(x,u )=- u·=-.+u·-. 
dE £=0 1 ax' 1 au 

(2.35) 

This gives the prolongation formula in this special case. For example, if 
p = 2, with independent variables x, y, 

pr(1) [XU2~J = XU2~+(U2+2xuux) ~+2xuu ~. 
au au aux Yauy 

Higher order prolongations of either (2.31) or (2.35) are found by further 
differentiating the relevant group prolongation formula. To give a general 
version of this, and in preparation for the general form of the prolongation 
theorem, we need to introduce the concept of a total derivative. 

Total Derivatives 

The preceding formulae (2.35) for the prolongation of a vector field of the 
form lP(x, u)a" can be "simplified" by making the following observation. 
If u = f(x) is any function, then lPj(x, u(I)), when evaluated on f and its 
first order derivatives, is just the derivative of lP(xJ(x)) with respect to x: 

lPj(x, pr(1) f(x)) = -; [lP(xJ(x))]. 
ax 

(Indeed, this is essentially how the lPj were ·found.) In other words, 
lPj(x, u(l)) is obtained from lP(x, u) by differentiating it with respect to xj, 
while treating u as a function of x. The resulting derivative is called the 
total derivative of lP with respect to xj, and denoted 

. alP alP 
,k'(x u(l)) = D·A.(x u) =-.+ u·-. '¥, ,'¥, ax' 1 au 
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(The term "total" derivative is to distinguish Dj,p from the "partial" deriva
tive a,p/ ax j.) The definition of total derivative extends naturally to functions 
depending on x = (x\ ... , x P ), u = (u\ ... , u q ) and derivatives u'j of u. 

Definition 2.34. Let P(x, u(n» be a smooth function of x, u and derivatives 
of u up to order n, defined on an open subset M(n) c X X U(n). The total 
derivative of P with respect to Xi is the unique smooth function 
DiP(x, u(n+1» defined on M(n+l) and depending on derivatives of u up to 
order n + 1, with the property that if u = f( x) is any smooth function 

a 
DiP(x, pr(n+l) f(x» = axi {P(x, pr(n) f(x))}. 

In other words, Di P is obtained from P by differentiating P with respect 
to Xi while treating all the ua,s and their derivatives as functions of x. 

Proposition 2.3S. Given P(x, u(n», the i-th total derivative of P has the general 
form 

(2.36) 

where, for J = (ji> ... ,A), 

a au~ ak+1u a 

UJi=-· = .. .. 
, ax' ax' ax" ... axh 

(2.37) 

In (2.36) the sum is over all J's of order 0.;;; #J.;;; n, where n is the highest 
order derivative appearing in P. 

The proof is a straightforward application of the chain rule. For example, 
in the case X = 1R2, with coordinates (x, y), and U = IR, there are two total 
derivatives D x , D y , with 

aP aP aP aP aP 
DxP=-+ux-+uxx-+uxy-+uxxx--+'" , 

ax au aux auy auxx 

ap ap ap aP aP 
DyP=-+u -+ux -+u -+uxx --+ .... 

ay y au Yaux yYauy Yauxx 

Thus, if P = xuuxy , then 

Higher order total derivatives are defined in analogy with our notation 
for higher order partial derivatives. Explicitly, if J = (jl, ... ,A) is a k-th 
order multi-index, with l.;;;jK';;; p for each K, then the J-th total derivative 
is denoted 
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(The explicit expressions for DJP in terms of the partial derivatives of P 
with respect to u~ rapidly become unmanageable.) Note that as with partial 
derivatives, the order of differentiation for total derivatives of smooth 
functions is immaterial. Thus, for the above example, 

DxDyP = DyDxP = uyuxy+ UUxyy + x(u~+ UxUxyy + uyuxxy + UUxxyy )' 

The General Prolongation Formula 

Theorem 2.36. Let 

p. a q a 
v= L f(X,U)-i+ L lPa(x,u)-a 

i=1 ax a=1 au 

be a vector field defined on an open subset M c X x U. The n-th prolongation 
of v is the vector field 

(2.38) 

defined on the corresponding jet space M(n) c X X u(n), the second summation 
being over all multi-indices J=(ji> ... ,A), with l~jK~p, l~k~n. The 
coefficient functions lP~ of pr(n) v are given by the following formula: 

lP~(x, u(n») = DJ ( lPa - t giU f ) + t giu~;, (2.39) 

where uf=auajaxi, and u~i=au~jaxi, cf. (2.37). 

PROOF. We first prove the formula for first order derivatives, so n = 1 to 
begin with. Let g. = exp(ev) be the corresponding one-parameter group, 
with transformations having the formula 

(i, Ii) = g.' (x, u) = (E. (x, u), 4>. (x, u)), 

wherever defined. Note that 

i( ) d I ~i( ) g x, u =-d .::.. x, u , 
e .=0 

i = 1, ... ,p, 

lPa(x, u) = dd I 4>:(x, u), 
e .=0 

a = 1, ... , q, 

(2.40) 

where E~, 4>: are the components of E., 4> •. Given (x, u(l)) E M(l>, let 
u = f(x) be any representative function, so that u(1) = pr(1) f(x), or, 
explicitly, 

According to (2.14), for e sufficiently small, the transform of fby the group 
element g. is well defined (at least if the domain of definition of f is a 
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suitably small neighbourhood of x), and is given by 

Ii = iE(X) = (gE" f)(x) = [<I>E 0 (] xf)] 0 [EE 0 (] xf)r1(x). 

Using the chain rule, the Jacobian matrix JiE(x)=(ai~jaxi) is then 

JiE(X) =J[<I>E 0 (] xf)](x) " {J[EE 0 (] xf)](X)}-1 (2.41) 

(provided the inverse is defined), since 

x = [EE 0 (] Xf)]-I(X). 

Writing out the matrix entries of JiE(X) thus provides explicit formulae for 
the first prolongation pr(l) gE" 

To find the infinitesimal generator pr(l) v, we must differentiate (2.41) 
with respect to e and set e = O. Recall first that if M( e) is any invertible 
square matrix of functions of e, then 

Also note that since e = 0 corresponds to the identity transformation, 

Eo(xJ(x» = x, <l>o(xJ(x» = f(x), (2.42) 

so if I denotes the p x p identity matrix, 

J[Eo 0 (] xf)](x) = I, J( <1>0 0 (] xf)](x) = Jf(x). 

Now, differentiating (2.41) and setting e = 0, we find, using Leibniz' rule, 

~ I E=oJiAx) = ~ I E=OJ[<I>E 0 (] xf)](x) -Jf(x) . ~ I E=oJ[EE 0 (] xf)](x) 

= J[q, 0 (] xf)](x) -Jf(x) . J[g 0 (] xf)](x). 

In the second equality, g = (e, " .. , e) T, and q, = (q,1> ... , q,q) T are column 
vectors and we have used (2.40). The matrix entries of this last formula will 
give the coefficient functions q,~ of aj au~ in pr(1) v. Namely, the (a, k)-th 
entry is 

k (I) a p af'" a i( » 
q,,,,(x,pr f(X»=axk[q,,,,(XJ(x»]-i~laxi·axk[g xJ(x ]. 

Thus, by the definition of total derivative, 

;=1 

(2.43) 

where U~i = a2u'" j axk axi. This proves (2.39) in the case n = 1. 
To prove the theorem in general, we proceed by induction. The key 

remark is that the (n + 1)-st jet space M(n+l) can be viewed as a subspace 
of the first jet space (M(n»(1) of the n-th jet space. This is because each 
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(n + 1)-st order derivative u~ can be viewed as a first order derivative of 
an n-th order derivative. (This can be done in general in several ways.) It 
is instructive to look at an illustrative example. For p = 2, q = 1, the first jet 
space M(l) has coordinates (x, y; u; ux, uy). If we view (ux , uy) as new 
dependent variables, say Ux = v, uy = w, then M(1) looks just like an open 
subset of X x V, where X still is two-dimensional, but now V has three 
dependent variables u, v and w. Thus the first jet space of M(1), i.e. (M(1»)(1), 
will be an open subset of X x V(1), with coordinates (x, y; u; v, w; 
Ux. uy. Vx. vy, wx, wy). Now remembering that v = Ux and w = uy. we see that 
M(2) c (M(I))(1) is the subspace defined by the relations 

in X x V(1), determined by the superfluous variables ux , uy in (M(I))(1) and 
the equality of mixed second order partial derivatives of u. 

With this point of view, the inductive procedure for determining pr(n) v 
from pr(n-l) v is as follows; we regard pr(n-I) v as a vector field on M(n-I) 

(of a certain special type) and so by our first order prolongation formula 
can prolong it to (M(n-I))(1). We then restrict the resulting vector field to 
the subspace M(n), and this will determine the n-th prolongation pr(n) v. 
(Of course, we must check that the restriction is possible, but this will follow 
from the explicit formula.) Now the new "n-th order" coordinates in 
(M(n-I))(1) . b a a a/ k h J (. .) 1 k are gIven y UJ,k = uJ ax , were = JI>'" ,In-I, :0;;; :0;;; p, 
and 1:0;;; a:O;;; q. According to (2.43), the coefficient of a/aU~k in the first 
prolongation of pr(n-l) v is therefore 

p 
,/,.Ja,k = Dk,/,.Ja _ ~ D l:i a 
'f' 'f' I... k~' U J,i' (2.44) 

i=1 

(As we will see, (2.44) provides a useful recursion relation for the coefficient 
functions of pr(n) v,) It now suffices to check that the formula (2.39) solves 
the recursion relation (2.44) in closed form, By induction, we find 

cf>~k = Dk {DJ(cf>a -.f ~iUf) +.f giU~i} -.f Dkgi , U~i 
,=1 1=1 1=1 

= DkDJ ( cf>a - it giUf) + JI giu~ik' 
where U~ik = a2u~ / axi axk. Thus cf>~k is of the form (2.39), and the induction 
step is completed, 0 

Example 2.37. Let's repeat the case of the rotation group SO(2) acting on 
X x U = IR x IR with infinitesimal generator 

a a 
v=-u-+x-' 

ax au' 
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see Examples 2.26 and 2.29. In this case c{J = x, g = u, so the first prolongation 

a 
pr(!)v=v+c{Jx-

aux 

is given by 

c{Jx = DxC c{J - ~uJ + guxx = DxCx + uux) - uUxx = 1 + u;. 

Thus we recover the result of (2.24). The coefficient function c{Jxx of af auxx 

in pr(2) v is found using either (2.39) 

c{Jxx = D;( c{J - ~ux) + guxxx = D;(x+ uux) - uUxxx = 3uxuxx> 

or the recursion formula (2.44) 

c{Jxx = Dxc{Jx - uxxDx~ = DxCl + u~) + UxUxx = 3uxuxx• 

Thus the infinitesimal generator of the second prolongation pr(2) SO(2) 
acting on X X U(2) is 

( 2) a a 2 a a 
pr v= -u-+x-+(1 +ux)-+3uxuxx--. 

ax au aux auxx 

(The derivation of this formula directly from the action pr(2) SO(2) is, 
needless to say, considerably more complicated.) 

Using the infinitesimal criterion of invariance of Theorem 2.31, we 
immediately deduce that the ordinary differential equation Uxx = 0 has SO(2) 
as a symmetry group, since 

pr(2) v( uxx ) = 3 UxUxx = 0 

whenever Uxx = o. This is just a restatement of the geometric fact that 
rotations take straight lines to straight lines. For another geometric illustra
tion, consider the function 

K(X, U(2» = uxx(1 + U~)-3/2. 

An easy computation shows that 

pr(2) V(K) = 0 

for all ux , uxx, hence by Proposition 2.6, K is an invariant of pr(2) SO(2): 

K(pr(2) (J. (x, U(2») = K(X, U(2» 

for any rotation (J. But K is just the curvature of the curve determined by 
the graph of u = I(x), so we've just reproved the fact that the curvature of 
a curve is invariant under rotations. (This is a special case of the theory of 
differential invariants-see Section 2.5 for further results of this type.) 

Example 2.38. Consider the special case p = 2, q = 1 in the prolongation 
formula, so we are looking at a partial differential equation involving a 
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function u = f(x, t). A general vector field on X x U = 1R2 X IR takes the form 

a a a 
v= ~(x, t, u)-+ T(X, t, u)-+ cf>(x, t, u)-. 

ax at au 

The first prolongation of v is the vector field 

a a 
pr(l) v = v+ cf>x-+ cf>'-, 

aux au, 

where, using (2.39), 

cf> x = DA cf> - ~ux - TU,) + ~uxx + TUx, 

= Dxcf> - uxDx~ - U,DxT 

= cf>x + (cf>u - ~x)ux - TxU, - ~uu~ - TuUxU" 

cf>' = D,( cf> - ~ux - TU,)+ ~ux, + TU" 

= D,cf> - uxDl- U,D,T 

= cf>, - ~,ux + (cf>u - T,)U, - ~uuxu, - TuU;, 

the subscripts on cf>, ~, T denoting partial derivatives. Similarly, 

a a a pr(2) v = pr(l) v+ cf>xx--+ cf>x,--+ cf>"-, 
auxx aux, au" 

where, for instance, 

cf> xx = D~ ( cf> - ~ux - TU, ) + ~uxxx + TUxx, 

= D~cf> - uxD~~ - U,D;T - 2uxxDx~ - 2ux,DxT 

= cf>xx + (2cf>xu - ~xx)ux - TxxU, + (cf>uu - 2~xu)u~ 

(2.45) 

(2.46) 

These formulae will be used in the following section to compute symmetry 
groups of some well-known evolution equations. 

Properties of Prolonged Vector Fields 

Theorem 2.39. Suppose v and ware smooth vector fields on M c X x U. Then 
their prolongations have the properties 

pr(n)(cv+ c'w) = c· pr(n) v+ c' . pr(n) w, 

for c, c' constant, and 

pr(n)[ v, w] = [pr(n) v, pr(n) w]. (2.47) 
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PROOF. The linearity is left to the reader. The Lie bracket property can be 
proved by direct computation using (2.38), (2.39). However, it is easier to 
proceed as follows. Note first that if g, h are group elements of some 
transformation group, then 

pr(n)(g' h) = pr(n) g' pr(n) h, 

and, if we use the fact that M is a subset of some Euclidean space, 

pr(n)(g + h) = pr(n) g + pr(n) h, 

where (g + h) . x = g . x + h . x by definition. Let] denote the identity map 
of M, so ](n) = pr(n)] is the identity map of M(n). Using the characterization 
of the Lie bracket in Theorem 1.33, 

~pr(n) v, pr(n) w] 

. pr(n)[exp(-J-;w) exp(-J-;v) exp(J-;w) exp(J-;v)]-](n) = hm ~~~~----~~~--~~~--~~~~~---
E~O+ e 

o 

Corollary 2.40. Let .:l be a system of differential equations of maximal rank 
defined over M c X x U. The set of all infinitesimal symmetries of this system 
forms a Lie algebra of vector fields on M. Moreover, if this Lie algebra is 
finite-dimensional, the symmetry group of the system is a local Lie group of 
transformations acting on M. 

Characteristics of Symmetries 

Finally, we note an equivalent, computationally useful way of writing down 
the general prolongation formula (2.39). Given v as above, set 

p 

Qa(x, u(l)) = 4>a(x, u) - L gi(X, u)uf, a = 1, ... , q; (2.48) 
i=l 

the q-tuple Q(x, u(l)) = (QIo ... , Qq) is referred to as the characteristic of 
the vector field v. With this definition, (2.39) takes the form 

p 

4>~ = D,Qa + L giU~i' (2.49) 
;=1 

Substituting into (2.38) and rearranging terms, we find 

( ) q a P "{ a q a } pr n V = L L D,Qa-a + L g' -i + L L U~i-a . 
a~l , au, i~l ax a~l' au, 
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of t. Then (e) shows that ~ doesn't depend on u, and (f) requires T, = 2~x, 
so ~(x, t)=~T,X+(T(t), where (T is some function of t only. Next, by (h), cjJ 
is linear in u, so 

cjJ (x, t, u) = {3 (x, t) u + a (x, t) 

for certain functions a and {3. According to 0), ~,= - 2{3x, so f3 is at most 
quadratic in x, with 

Finally, the last equation (k) requires that both a and {3 be solutions of 
the heat equation, 

{3, = {3xx' 

Using the previous form of {3, we find 

TII/ = 0, (TI/ =0, 

Thus T is quadratic in t, (T is linear in t, and we can read off the formulae 
for g and cjJ directly from those of p, (T and T. Since we have now satisfied 
all the defining equations, we conclude that the most general infinitesimal 
symmetry of the heat equation has coefficient functions of the form 

g = C1 + C4X + 2cst +4c6xt, 

T= c2+2c4t+4c6t2, 

cjJ = (C3 - CsX - 2C6t - C6X2)U + a(x, t), 

where ch ••. , C6 are arbitrary constants and a(x, t) an arbitrary solution of 
the heat equation. Thus the Lie algebra of infinitesimal symmetries of the 
heat equation is spanned by the six vector fields 

(2.55) 

Vs = 2tax - xua u, 

V6 = 4txax +4t2a,- (x2+ 2t)ua u, 

and the infinite-dimensional sub algebra 

where a is an arbitrary solution of the heat equation. The commutation 
relations between these vector fields is given by the following table, the 
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entry in row i and column j representing [Vi, Vj]: 

VI V2 V3 V4 Vs V6 Va 

VI 0 0 0 VI -V3 2vS Va,,\: 

V2 0 0 0 2V2 2vI 4V4 -2V3 Va, 

V3 0 0 0 0 0 0 -Va 

V4 -VI -2V2 0 0 Vs 2V6 Va· 

Vs V3 -2vI 0 -VS 0 0 Va" 

V6 - 2vS 2V3 -4v4 0 - 2V6 0 0 Va'" 

Va -V ax -V a, Va -Va' -Va" -Va'" 0 

where 
01' = XOlx + 2tOl" 01" = 2tOlx + XOl, 

01'" = 4tXOlx + 4t201, + (X2 + 2t)0I. 

Note that since Corollary 2.40 assures us that the totality of infinitesimal 
symmetries must be a Lie algebra, we can conclude that if OI(X, t) is any 
solution of the heat equation, so are OIx , 01" and 01', 01" and 01'" as given above. 

The one-parameter groups Gi generated by the Vi are given in the 
following table. The entries give the transformed point exp(cvi)(X, t, u) = 
(x, i', u): 

GI : (x+ e, t, u), 

G2: (x,t+e,u), 

G3 : (x, t, eEu), 

G4: (eEx, e2Et, u), (2.56) 

Gs: (x+2et, t, U· exp(-ex-e2t», 

G6 : (x t fi=4et { -ex2 }) --- --- u 1-4et exp --
1-4et'I-4et' 1-4et ' 

Ga: (x, t, u + ea (x, t». 

Since each group Gi is a symmetry group, (2.14) implies that if u = f(x, t) 
is a solution of the heat equation, so are the functions 

u(l) = f(x - e, t), 

U(2) = f(x, t - e), 

U(3) = eEf(x, t), 

u(4)=f(e-Ex, e-2Et), 

u(s) = e- EX+ E2'f(x - 2et, t), 

u()- ex -- ----6 1 { - ex2} (x t) 
- "'1 +4et p 1 +4et f 1 +4et' 1 +4et ' 

u(a)=f(x, t)+ea(x, t), 
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The terms in brackets we recognize to be just the total derivatives, as given 
by (2.36), hence 

p 

pr(n) v= pr(n) VQ+ I giD;, (2.50) 
i=1 

where, by definition, 

_ q (I) _a_ 
VQ- I Qa(X, U ) a' 

0=1 aU 
(2.51) 

In all the above formulae, the summations extend over all multi-indices J 
of order 0 ~ # J ~ n. Of course, the two terms on the right-hand side of 
(2.50) are just formal algebraic expressions since they each involve (n + 1 )-st 
order derivatives of the u's. Only when they are combined together do the 
terms involving the (n + 1)-st order derivatives cancel and we have a genuine 
vector field on the jet space M(n). The importance of (2.50) will become 
manifest once we discuss generalized symmetries in Chapter 5. 

2.4. Calculation of Symmetry Groups 

Theorem 2.31, when coupled with the prolongation formulae (2.38), (2.39) 
provides an effective computational procedure for finding the most general 
(connected) symmetry group of almost any system of partial differential 
equations of interest. In this procedure, one lets the coefficients gi (x, u), 
cPa (x, u) of the infinitesimal generator v of a hypothetical one-parameter 
symmetry group of the system be unknown functions of x and u. The 
coefficients cP~ of the prolonged infinitesimal generator pr(n) v will be certain 
explicit expressions involving the partial derivatives of the coefficients gi and 
cPa with respect to both x and u. The infinitesimal criterion of invariance 
(2.25) will thus involve x, u and the derivatives of u with respect to x, as 
well as gi (x, u), cPa (x, u) and their partial derivatives with respect to x and 
u. After eliminating any dependencies among the derivatives of the u's 
caused by the system itself (since (2.25) need only hold on solutions of the 
system), we can then equate the coefficients of the remaining unconstrained 
partial derivatives of u to zero. This will result in a large number of 
elementary partial differential equations for the coefficient functions gi, cPa 
of the infinitesimal generator, called the defining equations for the symmetry 
group of the given system. In most instances, these defining equations can 
be solved by elementary methods, and the general solution will determine 
the most general infinitesimal symmetry of the system. Corollary 2.40 
assures us that the resulting system of infinitesimal generators forms a Lie 
algebra of symmetries; the general symmetry group itself can then be found 
by exponentiating the given vector fields. The process will become clearer 
in the following examples. 
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Example 2.41. The Heat Equation. Consider the equation for the conduction 
of heat in a one-dimensional rod 

(2.52) 

the thermal diffusivity having been normalized to unity. Here there are two 
independent variables x and t, and one dependent variable u, so p = 2 and 
q = 1 in our notation. The heat equation is of second order, n = 2, and can 
be identified with the linear subvariety in X x U(2) determined by the 
vanishing of a(x, t, U(2» = U1 - UXX• 

Let 

a a a 
v=g(x, t, U)-+T(X, t, u}-+4>(x, t, u}-

ax at au 
(2.53) 

be a vector field on X x U. We wish to determine all possible coefficient 
functions g, T and 4> so that the corresponding one-parameter group exp(ev} 
is a symmetry group of the heat equation. According to Theorem 2.31, we 
need to know the second prolongation 

a a a a a pr(2) v= v+ 4>x-+ 4>1_+ 4>xx--+ 4>XI __ + 4>"_ 
aux au, auxx aux, aUII 

of v, whose coefficients were calculated in Example 2.38. Applying pr(2) v 
to (2.52), we find the infinitesimal criterion (2.25) to be 

(2.54) 

which must be satisfied whenever u, = UXX. Substituting the general formulae 
(2.45), (2.46) into (2.54), replacing u, by Uxx whenever it occurs, and equating 
the coefficients of the various monomials in the first and second order partial 
derivatives of u, we find the defining equations for the symmetry group of 
the heat equation to be the following: 

Monomial Coefficient 

UxUxr 0= -2Tu (a) 
ux , 0=-2Tx (b) 

u~x -Ttl. = -Ttl. (c) 
u!Uxx 0= -Tuu (d) 
UxUxx -tu = - 2Txu -3tu (e) 
Uxx cPu - T, = -Txx + cPu - 2tx (f) 
u3 

x 0= -tuu (g) 
u2 

x 0= cPuu - 2txu (h) 
Ux -t, = 2cPxu - txx (j) 

cP, = cPxx (k) 

(As usual, subscripts indicate derivatives.) The solution of the defining 
equations is elementary. First, (a) and (b) require that T be just a function 
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where £ is any real number and a(x, t} any other solution to the heat 
equation. (See Example 2.22 for a detailed discussion of how these 
expressions are derived from the group transformations.) 

The symmetry groups 0 3 and Oa thus reflect the linearity of the heat 
equation; we can add solutions and multiply them by constants. The groups 
O. and O2 demonstrate the time- and space-invariance of the equation, 
reflecting the fact that the heat equation has constant coefficients. The 
well-known scaling symmetry turns up in 0 4 , while Os represents a kind 
of Galilean boost to a moving coordinate frame. The last group 0 6 is a 
genuinely local group of transformations. Its appearance is far from obvious 
from basic physical principles, but it has the following nice consequence. 
If we let u = c be just a constant solution, then we immediately conclude 
that the function 

u= ~expL~£:;J 
is a solution. In particular, if we set c = vi £ / 7T we obtain the fundamental 
solution to the heat equation at the point (xo, to) = (0, -1/4£). To obtain 
the fundamental solution 

we need to translate this solution in t using the group O2 (with £ replaced 
by -1/4e). 

The most general one-parameter group of symmetries is obtained by 
considering a general linear combination c.v. + ... + C6V6 +va of the given 
vector fields; the explicit formulae for the group transformations are very 
complicated. Alternatively, we can use (l.40), and represent an arbitrary 
group transformation g as the composition of transformations in the various 
one-parameter subgroups 0., ... , 0 6 , Oa. In particular, if g is near the 
identity, it can be represented uniquely in the form 

g=exp(va}' exp(£6v6}' .... exp(£.v.}. 

Thus the most general solution obtainable from a given solution u = f(x, t} 
by group transformations is of the form 

where £., ... , £6 are real constants and a an arbitrary solution to the heat 
equation. 

Example 2.42. Burgers' Equation. A nonlinear equation closely allied with 
the heat equation is Burgers' equation, which, for symmetry group purposes, 



124 2. Symmetry Groups of Differential Equations 

is convenient to take in "potential form" 

(2.57) 

Note that if we differentiate this with respect to x and substitute v = ux , we 
derive the more usual form 

(2.58) 

of Burgers' equation; it represents the simplest waye equation combining 
both dissipative and nonlinear effects, and therefore appears in a wide 
variety of physical applications. 

The symmetry group of (2.57) will again be generated by vector fields 
of the form (2.53). Applying the second prolongation pr(2) v to (2.57), we 
find that ~, T, 4> must satisfy the symmetry conditions 

4>'= 4> xx + 2 ux4> x, (2.59) 

where the coefficients 4>', 4>\ 4>xx of pr(2) v were determined in Example 
2.38, and we are allowed to substitute Uxx + u~ for u, wherever it occurs in 
(2.59). We could, at this juncture, write out (2.59) in full detail and equate 
coefficients of the various first and second order derivatives of U to get the 
full defining equations, as was done in the previous example. In practice, 
however, it is far more expedient to tackle the solution of the symmetry 
equations in stages, first extracting information from the higher order 
derivatives appearing in them, and then using this information to simplify 
the prolongation formulae at the lower order stages. Working this way, 
"from the top down", is extremely efficient, and, even more to the point, 
well-nigh the only course available for higher order systems of equations, 
for which the full system of defining equations would take many pages to 
write down in full detail. 

In the present case, using (2.45), (2.46) and keeping in mind that u, has 
been replaced by Uxx + u~, we find that the coefficients of UxUx, and ux, 
require that Tu = Tx = 0, so T is a function of t only. (Note that this already 
simplifies the formulae for 4>x and 4>xx quite a bit.) The coefficient of UxUxx 
implies that ~ doesn't depend on u, while from that of Uxx we find that 
T,=2~x, so ~(x, t)=!T,X+U(t). The coefficient of u~ is 

hence 
4> = a(x, t)e- U + {3(x, t). 

The coefficient of Ux requires 

~, = - 24>xu - 24>x = - 2{3x, 

hence {3 = -kTttX2 -!u,x + p( t). The remaining terms not involving any 
derivatives of u are just 
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This implies that 

g= C1 + c4x+2c5t+4c6Xt, 

r= c2+2c4t+4c6e, 

¢J = a(x, t)e- U + C3 - c5x - 2C6t - C6 X2 , 
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where Ch ••• , C6 are arbitrary constants and a(x, t) is an arbitrary solution 
to the heat equation: at = a xx • The symmetry algebra is thus generated by 

V2 = a" 

(2.60) 

V5 = 2tax - xau, 

V6 = 4txax +4t2a, - (x2+ 2t)au, 

and 

where a is any solution to the heat equation. 
Note the remarkable similarity between the symmetry algebra for Burgers' 

equation and that derived previously for the heat equation! Indeed, if we 
replace u by w = e U

, then Vh .•• , Va are changed over to the corresponding 
vector fields (2.55) with w replacing u. Indeed, if we set w = eU in Burgers' 
equation, we find 

hence w satisfies the heat equation 

We have rediscovered the famous Hopf-Cole transformation reducing solu
tions of Burgers' equation to positive solutions of the heat equation. (For 
the usual form (2.58) of Burgers' equation, this takes the form 

v = (log w)x = wx/w. 

It is much more difficult to deduce this transformation from the symmetry 
properties of (2.58), which, as the reader may check, has only a five
parameter symmetry group.) Since we've reduced (2.57) to the heat equation, 
there is no further need to discuss symmetry properties here. 

Example 2.43. The Wave Equation. Consider the wave equation 

(2.61) 
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in two spatial dimensions. A typical vector field on the space of independent 
and dependent variables takes the form 

a a a a 
v= g-+ 1/-+ 'T-+ ~-, 

ax ay a'T au 

where g, 1/, 'T, ~ depend on x, y, t, u. In this example, it is easier to work 
with the infinitesimal criterion of invariance in the form (2.26), which, in 
the present case, takes the form 

~tr _ ~xx _ ~yy = Q. (u tr - Uxx - Uyy ) (2.62) 

in which Q(x, y, t, U(2) can depend on up to second order derivatives of u. 
The coefficient functions ~ tr, ~ xx, ~yy of pr(2) v are determined by expressions 
similar to those in (2.46) but with extra terms involving the y-derivatives 
thrown in; for example, 

~ tr = D;( ~ - gux - 1/uy - 'TU,) + gUxtr + 1/uytr + 'TUttt 

= D;~ - uxD;g - uyD;1/- u,D;'T-2ux,D,g -2uy,D,1/-2utrD,'T, 

etc. 
To solve (2.62), we look first at the terms involving the mixed second 

order partial derivatives of u, namely uxy> ux, and uyh each of which occurs 
linearly on the left-hand side. This requires that g, 1/ and 'T do not depend 
on u, and, moreover 

g, - 'Tx =0, 1/, - 'Ty = 0. (2.63) 

The coefficients of the remaining second order derivatives of U yield the 
relations 

hence 

(2.64) 

The equations (2.63), (2.64) are the equations for an infinitesimal conformal 
transformation on 1R3 with Lorentz metric dt2 - dx2 - dy2, cf. Exercise 1.30. 
It is not difficult to show that g, 1/, 'T are quadratic polynomials of x, y, t of 
the form 

g = C1 + C4X - CSY + C6t+ Cg(x2 - y2+ t2) + 2C9XY + 2clOxt, 

1/ = C2 + CsX + C4Y + C7t + 2cgxy + C9( - x 2 + y2 + t2 ) + 2clOyt, 

'T = C3 + C6x + C7Y + c4t + 2cgxt + 2C9yt + CIO(X2 + y2 + t2), 

where Ch ••• , CIO are constants. For instance, we find 

gxxx = 1/xxy = -gxyy = -'Tyy, = -1/ytr = -gxtr = -'Txx, = -gxxx, 

hence all these third order derivatives vanish; similar arguments prove that 
all third order derivatives of g, 1/ and 'T are zero, and the structure of the 
resulting quadratic polynomials follows easily from (2.63), (2.64). 



2.4. Calculation of Symmetry Groups 

Next the coefficient of u! (or u; or u;) in (2.62) says 4Juu = 0, so 

4J(x, y, t, u) = (3(x, y, t)u + a(x, y, t). 
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Finally, the coefficients of the linear terms in the first order derivatives of 
u, and the terms without u in them at all yield the relations 

2{3x = txx + tyy - til' 
2{3y = TJxx + TJyy - TJ,,, 

all - axx - ayy = O. 

Thus a is any solution of the wave equation, and 

{3 = CII - CgX - c9y - clOt. 

This gives the most general solution of the defining equations of the sym
metry group of the wave equation. We have thus reproved the well-known 
result that the infinitesimal symmetry group of the wave equation is spanned 
by the ten vector fields 

fy, = tay + ya" 

d = xax + yay + ta" 

ix = (x2 - y2+ t2)ax + 2xyay + 2xta, - xuau,} 

iy = 2xyax + (y2 - x 2 + t2)ay + 2yta, - yua u, 

i, = 2xtax + 2ytay + (x2 + y2 + t2)a, - tuau, 

translations, 

hyperbolic 
rotations, 

dilatation, 

(2.65) 

inversions, 

which generate the conformal algebra for 1R3 with the given Lorentz metric, 
and the additional vector fields 

for a an arbitrary solution of the wave equation, reflecting the linearity of 
the equation. 

The corresponding group transformations for the translations and dilata
tion are easily found. Of the rotations, owing to the indefinite character of 
the underlying metric dt2 - dx2 - dy2, only the rotations in the (x, y) -plane 
are true rotations; the other two are "hyperbolic rotations". For example 
fx' generates the group 

(x, y, t) ~ (x cosh E + t sinh E, y, x sinh E + t cosh d. 
The inversional groups can be constructed, as in Exercise 1.30, from the 
primary inversion 

I(X,y,t)=(t2 ~ 2't2 ~ 2't2 ~ 2)' -x -y -x -y -x-y 
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which is defined provided (x, y, t) does not lie in the light cone t2 = x 2+ y2. 
We find that the group generated by ix say, is given by first inverting, then 
translating the x-direction, and then re-inverting: 

exp(eix} = I 0 exp(eax) 0 1. 

The general formula is 

( 
x + e( t2 - x 2 _ y2) Y 

(x, y, t)~ 1-2ex- e2(t2_x2_ y2)' 1-2ex- e2(t2_x2_ y2)' 

1-2ex- e2;t2_x2_ y2»)' 

which is well defined even for (x, y, t) in the light cone (which is an invariant 
subvariety). The corresponding transformation of u under exp(eix) is then 

u~Jl-2ex- e2(t2_x2_ y2)U. 

We conclude that if u = f(x, y, t) is a solution to the wave equation, so is 

~ 1 ( x - e (t 2 - x 2 - /) 

u = / f 2 2( 2 2 2) , '" 1 +2ex- e2(t2_x2_ y2) 1 + ex- e t -x - Y 

1 + 2ex - e2~t2 - x 2 - y2) , 1 + 2ex - e<t2- x 2 _ y2»). 

Example 2.44. The Korteweg-de Vries Equation. As a higher order example, 
we consider the Korteweg-de Vries equation 

ut + Uxxx + uUx = 0, (2.66) 

which arises in the theory of long waves in shallow water and other physical 
systems in which both nonlinear and dispersive effects are relevant. A vector 
field v = gax + Ta, + cPau generates a one-parameter symmetry group if and 
only if 

(2.67) 

whenever u satisfies (2.66). Here cP' and cP x, the coefficients of the first 
prolongation of v, are determined by the general prolongation formulae 
(2.45); the coeffiCient of a/ auxxx in pr(3) v is 

cP xxx = D!cP - uxD!g - U,D!T - 3uxxD~g - 3ux,D~T - 3uxxxDxg - 3uxx,DxT. 

Substituting into (2.67) and replacing u, by -Uxxx - uUx wherever it occurs, 
we obtain the defining equations for the symmetry group. To analyze these, 
we work our way down the order of the derivatives which appear. The 
coefficient of Uxxt is DxT = 0, hence T depends only on t. The coefficient of 
u~ shows that gu = O. From the coefficient of Uxxx, we find T, = 3gx (the 
cPu-terms cancelling), hence g = 1T,x + u(t). Now the coefficient of Uxx reveals 
that cPuu = 0 = cPxu, so cP is linear in u, the coefficient of u being a function 
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of t alone. The remaining terms in (2.67) are those involving ux , which give 

-tt - u(rPu - Tt)+ u(rPu - tx) + rP = 0, 

and those without any derivatives of u, 

rPt + rPxxx + urPx = O. 

These all have the general solution 

t = c) + C3t+ C4X, 

T=C2+ 3c4 t, 

where Ch C2, C3, C4 are arbitrary constants. Therefore the symmetry algebra 
of the Korteweg-de Vries equation is spanned by the four vector fields 

space translation, 

time translation, 

V3 = tax +au, Galilean boost, 

V4 = xax + 3 ta, - 2uau, scaling. 

Their commutator table is 

V\ V2 V3 V4 

v\ 0 0 0 v\ 

V2 0 0 V\ 3v2 

V3 0 -VI 0 - 2V3 

V4 -VI - 3V2 2V3 0 

(2.68) 

Exponentiation shows that if u = f(x, t) is a solution of the Korteweg-de 
Vries equation, so are 

u(1) = f(x - e, t), 

U(2) = f(x, t - e), 

U(3) = f(x - et, t) + e, 

U(4) = e-2E f(e- Ex, e-3E t). 

eER 

These can easily be checked by inspection. (For the reader familiar with 
the many remarkable "soliton" properties of the Korteweg-de Vries 
equation, this list of symmetries may seem disappointingly small. Further 
symmetry properties, reflecting the existence of infinitely many conservation 
laws and, presumably, the linearization of the inverse scattering method 
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will require our development of the theory of generalized symmetries in 
Chapters 5 and 7.) 

Example 2.45. The Euler Equations. As a last illustration of the basic method 
of computing symmetry groups, we consider the system of Euler equations 
for the motion of an inviscid, incompressible ideal fluid in a three
dimensional domain. Here there are four independent variables, x = (x, y, z) 
being spatial coordinates and t the time, together with four dependent 
variables, the velocity field u = (u, v, w) and the pressure p. (The density p 
is normalized to be 1.) In vector notation, the system has the form 

au 
-+u'Vu=-Vp at ' 

v . u= 0, 

in which the components of the nonlinear terms u . Vu are 

(2.69) 

An infinitesimal symmetry of the Euler equations will be vector field of the 
form 

v = gax + Tfa y + ,az + Tal + 4>a u + I/Ia v + Xa w + 7Tap, 

where g, Tf, ... , 7T are functions of x, t, u and p. Applying the first prolonga
tion pr(l) v to the Euler equations (2.69), we find the following system of 
symmetry equations 

4> 1+ u4> x + v4>Y + w4> z + ux4> + uyl/l + UzX = _7Tx, 

1/1 1 + ul/lx + vl/lY + wl/lz + vx4> + vyl/l + VzX = -7TY, 

Xl + uxx + VX y + WXz + wx4> + wyl/l+ WzX = -7Tz, 

4>x + I/IY + XZ = 0, 

(2.70a) 

(2.70b) 

(2.70c) 

(2.70d) 

which must be satisfied whenever u and p satisfy (2.69). Here 4>1, I/Ix, etc. 
are the coefficients of the first order derivatives aj au" aj avx , etc. appearing 
in pr(l) v; typical expressions for these functions follow from the prolonga
tion formula (2.43), so 

and so on. 

4>1 = DI4> - uxDlg - uyDITf - uzDl- UIDIT, 

I/Ix = Dxl/l - vxDxg - vyDxTf - vzDx' - vIDxT, 

Since (2.70) need only hold on solutions of (2.69), we can substitute for 
Px, PY' pz and Wz wherever they occur in (2.70) using their expressions from 
the four equations in (2.69). We may then equate all the coefficients of the 
remaining first order derivatives of u, p in (2.70) and solve the resulting 
system of defining equations for g, Tf, ... , 7T. 
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As a first step, let us show that the symmetry is necessarily projectable, 
meaning that g, TI, { and T only depend on x and t. The coefficient of p, in 
(2.70a) is 

Therefore Tv = T w = 0, and, by consideration of the same coefficient in 
(2.70b), Tu = 0 also. Furthermore, if we substitute for Px according to (2.69), 
we find 

cPP = Tx , t/lp = Ty> Xp = Tz> 

gp = UTp, TIp = VTp, {p = WTp, 

(2.71) 

(2.72) 

where the equations for t/lp and xp come from similar considerations in 
(2.70b, c). Next consider the quadratic monomial V,Vx in (2.70a). This can 
also arise from the monomials PyVx, PyV, and p;, all of which only appear 
in 7rx. The resulting coefficient is 0 = -TIt>" Similarly, the coefficient of V,Wx 

in (2.70a) proves that Tlw = O. Further analysis of quadratic terms in 
(2.70a, b, c) proves that g, TI, { are independent of u, v, w. Then differentiat
ing (2.72) with respect to u, v and W we find Tp = 0, hence gp = TIp = {p = 0 
and the symmetry is projectable. 

The next step is to look at the coefficients of u" v, and w, in (2.70d), 
keeping in mind that these can also arise from V p upon substitution. This 
implies that 

cPP + Tx = t/lp + Ty = Xp + Tz = O. 

Comparison with (2.71) proves that T depends on t alone, and cP, t/I, X are 
independent of the pressure. Consider next the coefficients of v, and Vx in 
(2.70a), which are 

Thus trv = 0, and, by similar considerations, 7r does not depend on U or W 

either. From the coefficients of u, and w, we also find that 

and so on. These all imply that cP, t/I, X have the general form 

cP = (T, - gx + 7rp )u - TlxV - {xw + <$, 

t/I = -gyU + (T, - Tly + 7rp )v - {yW +~, 

X = -gzu - TlzV + (T, - {z + 7rp )w + X, 
where <$, ~ and X depend only on x and t. The coefficients of the spatial 
derivatives of u in (2.70a, b, c) then require 
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In particular, the spatial component tax + 'T/ay + ~az of v generates a (time
dependent) conformal symmetry group of 1R3 with the Euclidean metric. 
The remaining terms in (2.70) involve no derivatives ofu or p. These require 
t, 'T/, ~ to be linear in x, y, z and, furthermore, 

tx, = 'T/y, = ~z, = 7//, 

~tt = -7rx, 

Therefore 

t= 5,x+ c)y- C2z+a, 

'T/ = -c)x+ 5,y+ c3z+ {3, 

~ = c2 x - c3y + 5,z + 'Y, 

7 = 25 + c4 t + cs, 

4> = -(5, + c4)u + c)v - C2W+ a" 

1/1 = -c)u -(5, + c4)v+ C3 W+ {3" 

X = C2 U - C3 V - (5, + c4 ) w + 'Y" 

7T = -2(5, + C4)P -!5//(x2+ y2+ Z2) - a//x - {3//y - 'Y//Z + (), 

in which a, (3, 'Y, 5 and () are functions of t, and c), C2, C3, C4, Cs constants. 
Finally, the divergence-free condition (2.70d) imposes the further restriction 
that 5// = 0, so 5 = c6 t+ c7. 

We have thus shown that the symmetry group of the Euler equations in 
three dimensions is generated by the vector fields 

Va : aax + a,au = a//xap, } 

v{3 - {3ay + {3,a v {3//yap, 

VI' = 'Ya z + 'Y,a w - 'Y//zaP' 

(moving coordinates) 

Vo=a" (time translation) 

d) = xax + yay + zaz + ta" } 

d2 = ta, - uau - vav - waw - 2pap , 

(scaling) (2.73) 

rxy=yax-Xay+vau-ua", } 

rzx: xaz = zax + uaw = wau, 
ryz - zay yaz+ wa v vaw, 

(rotations) 

V8 = (}ap , (pressure changes) 

in which a, {3, 'Y and () are arbitrary functions of t. The corresponding 
one-parameter groups of symmetries of the Euler equations are then: 
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(a) Transformation to an arbitrarily moving coordinate system: 

Go.: (x, t, u, p)>-4(x+ ea(t), t, U+ ea"p- ex· all-~e2a· all), 

where a = (a, (3, 'Y) and Go. is generated by the linear combination v'" = 
v'" +vJ3 +v y of the first three vector fields. 

(b) Time translations: 

Go: (x, t, u, P )>-4 (x, t + e, u, p). 

(c) Scale transformations: 

G I : (x, t, u,p)>-4(Ax, At, u,p), 

G 2 : (x, t, u, p) >-4 (x, At, A -IU, A -2p ), 

where A = e E is a multiplicative group parameter. 
(d) The group 

SO(3): (x, t, u, p)>-4(Rx, t, Ru, p) 

of simultaneous rotations in both space and the velocity vector field u. Here 
R is an arbitrary 3 x 3 orthogonal matrix. 

(e) Pressure changes 

Gp : (x, t,u,p)>-4(x, t,u,p+e(J(t)). 

The corresponding action on solutions of the Euler equations says that if 
U = f(x, t), p = g(x, t) are solutions, so are 

Ga : u = f(x - ea(t), t) + ea" 

Go: u=f(x, t-e), 

G I : U = f(Ax, At), 

G2 : u = Aj(x, At), 

SO(3): U = Rf(R-Ix, t), 

Gp : u = f(x, t), 

p = g(x - ea(t), t) - ex· all +~e2a . all, 

p=g(x, t-e), 

p = g(Ax, At), 

P = A 2g(X, At), 

p=g(R-Ix, t), 

p=g(x, t)+e(J(t). 

(In Go and G I we have replaced A by A -I.) Note that in our change to amoving 
coordinate system Ga , we must adjust the pressure according to the inherently 
assumed acceleration eall. The final group Gp results from the fact that the 
pressure p is only defined up to the addition of an arbitrary function of t. This 
completes the list of symmetries of the Euler equations. 

2.5. Integration of Ordinary Differential Equations 

One of the most appealing applications of Lie group theory is to the problem 
of integrating ordinary differential equations. Lie's fundamental observation 
was that knowledge of a sufficiently large group of symmetries of a system 
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of ordinary differential equations allows one to integrate the system by 
quadratures and thereby deduce the general solution. This approach unifies 
and significantly extends the various special methods introduced for the 
integration of certain types of first order equations such as homogeneous, 
separable, exact and so on. Similar results hold for system of ordinary 
differential equations. In this section, a comprehensive survey of these 
methods is presented. 

First Order Equations 

We begin by considering a single first order ordinary differential equation 

du 
dx = F(x, u). (2.74) 

It will be shown that if this equation is invariant under a one-parameter 
group of transformations, then it can be integrated by quadrature. If G is 
a one-parameter group of transformations on an open subset Me X x U = 
1R2, let 

a a 
v = g(x, u)-+ <f>(x, u)-

ax au 

be its infinitesimal generator. The first prolongation of v is the vector field 

(2.75) 

where 

<f>x = Dx<f> - uxDxg = <f>x + (<f>u - gx)ux - guu~. 

Thus the infinitesimal condition that G be a symmetry group of (2.74) is 

a<f> + (a<f> _ ag) F _ ag F2 = gaF + <f> aF, 
ax au ax au ax au 

(2.76) 

and any solution g(x, u), <f>(x, u) of the partial differential equation (2.76) 
generates a one-parameter symmetry group of our ordinary differential 
equation. Of course, in practice finding solutions of (2.76) is usually a much 
more difficult problem than solving the original ordinary differential 
equation. However, led on by inspired guess-work, or geometric motiva
tion, we may be able to find a solution of (2.76) which will allow us to 
integrate (2.74). Herein lies the art of Lie's method. 

Once we have found a symmetry group G, there are several different 
methods we can employ to integrate (2.74). Suppose v is the infinitesimal 
generator of the symmetry group, and assume that vl(xo.uo) ¥ O. (If the vector 
field v vanishes at a point (xo, uo), then we will expect some kind of 
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singularity for solutions near this point. The behaviour of solutions u = f(x) 
near such a singularity can be deduced by extrapolation once the equation 
has been integrated at nearby values of x.) According to Proposition 1.29, 
we can introduce new coordinates . 

y = 17 (x, u), w = (x, u), (2.77) 

near (xo, uo) such that in the (y, w)-coordinates the vector field has the 
simple translational form v = a/ aw, with first prolongation 

pr(l)v=v=a/aw 

also. Thus in the new coordinate system, in order to be invariant, the 
differential equation must be independent of w, so (2.74) is equivalent to 
the elementary equation 

dw 
dy = H(y), 

for some function H. This equation is trivially integrated by quadrature, with 

w= f H(y) dy+c 

for some constant c. Re-substituting the expressions (2.77) for wand y, we 
obtain a solution u = f(x) of our original system in implicit form. 

The change of variables (2.77) is constructed using the methods for 
finding group invariants presented in Section 2.1. Indeed, (1.16) implies 
that v is transformed into the form a/ aw provided 17 and ( satisfy the linear 
partial differential equations 

(2.78a) 

v(n = ga(+c/J a( = 1. 
ax au 

(2.78b) 

The first of these equations just says that 17 (x, u) is an invariant of the group 
generated by v. We can thus find 17 by solving the associated characteristic 
ordinary differential equation 

dx du 
-------
g(x, u) c/J(x, u)· 

(2.79) 

Often the corresponding solution ( of (2.78b) can be found by inspection. 
More systematically, we can introduce an auxiliary variable v and note that 
(x, u) satisfies (2.78b) if and only if the function X(x, u, v) = v - (x, u) is 
an invariant of the vector field w = v+a v = gax + c/Jau +av• Thus we require 

ax ax ax w(x) = g-+c/J-+-=O. 
ax au av 
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This we can again solve by the method of characteristics, 

dx du ----
g(x, u) </>(x, u) 

dv 

1 ' 
(2.80) 

where we seek a solution of the form v - ((x, u) = k, for k an arbitrary 
constant of integration. 

In general, it may be just as difficult to solve (2.79) and (2.80), being 
again ordinary differential equations, as it was to integrate the original 
differential equation. In particular, if 

</>(x, u)/ g(x, u) = F(x, u), (2.81 ) 

then we automatically have a solution of the symmetry equation (2.76), so 
such a vector field v = gax + </>a u is always a symmetry of the equation. In 
this case, finding the invariant TJ(x, u) of the group, i.e. solving (2.79), is 
exactly the same problem as integrating the original equation, so the method 
is of no help. Only when the group of symmetries is of a reasonably simple 
form, so that we can explicitly solve (2.79), (2.80), do we stand any chance 
of making progress towards the solution of our problem. 

Example 2.46. A homogeneous equation is one of the form 

du = F(~), 
dx x 

where F only depends on the ratio of u to x. Such an equation has the 
group of scaling transformations 

G: (x, u) I--'» (Ax, Au), A >0, 

as a symmetry group. This can be seen directly from the form of the first 
prolongation of G, 

pr(t) G: (x, u, ux ) I--'» (Ax, Au, ux ), 

which obviously leaves the equation invariant. Alternatively, we can look 
at the infinitesimal generator 

a a 
v=x-+u-

ax au' 

which, according to (2.75), has first prolongation pr(t)v = v, and use the 
infinitesimal criterion of invariance. 

New coordinates y, W satisfying (2.78) are given by 
u 

y=-, 
x 

Employing the chain rule, we find 

W = log x. 

du = du/ dy = x(1 + YWy) 1 + yWy 

dx dx/ dy XWy Wy 
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so the equation takes the form 

dw 1 

dy F(y) - y' 

This has the solution 

f dy 
w= () +c, F y -y 

which in turn defines u implicitly as a function of x once we set w = log x, y = 
u/ x. For example, if the equation is 

du = u2+2xu (~)2 +2~, 
dx x 2 X X 

so F(y) = y2 + 2y, then in the coordinates y = u/ x, w = log x we have 

dw 
----
dy y2+ y' 

The solution is 

w = -log(1 + y-l) + c, 

or, in terms of the original variables, 

log x = -IOg( 1 +~) + c. 

This can be solved explicitly for u as a function of x: 

x 2 

u=-.-, 
c-x 

where c = e C• 

Although the answer is of course the same, the above procedure is not 
quite the usual one learned in a first course in ordinary differential equations. 
Here the roles of wand yare reversed, with w being the new independent 
variable. For many first order equations, it is often expedient to adopt this 
latter strategy. In the present case, we can drop the logarithm and treat x 
and y = u/ x as the new variables. Then 

du d dy 
-=-(xy)=x-+y, 
dx dx dx 

and we obtain the solution in the form 

f F(:~ _ y = f ~x = log x + c. 

The equivalence of the methods is clear. Finally, note that in general the 
origin u = x = 0 is a singular point, corresponding to the point where v 
vanishes. 
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Example 2.47. Let G be the rotation group SO(2), whose infinitesimal 
generator 

( 1) a a 2 a 
pr v=-u-+x-+(1+ux )-

ax au aux 

was computed in Example 2.29. It is a straightforward computation to check 
that any equation of the form 

du u+xH(r) 
dx - x - uH(r)' 

(2.82) 

where H(r) = H(Jx2 + u2 ) is any function of the radius, admits SO(2) as 
a symmetry group. Polar coordinates r, (J, with x = r cos (J, u = r sin (J, are 
the new coordinates satisfying (2.78) since v = al a(J in these coordinates. 
Furthermore, 

du = dul dr = sin (J + r(Jr cos (J 

dx dxl dr cos (J - rOr sin 0 

Substituting into (2.82) and solving for dOl dr, we find 

hence 

dO 1 
-=-H(r), 
dr r 

f H(r) 
0= -r-dr+c 

is the general solution. For example, if H(r) = 1, we have the equation of 
Example 2.32. 

An alternative method for solving first order equations invariant under 
a one-parameter group is based on the construction of an integrating factor. 
We rewrite (2.74) as a total differential equation 

P(x, u) dx+Q(x, u) du =0, (2.83) 

so F = - PI Q. The equation is exact provided aP I au = aQI ax, and in this 
case we can find the solution in implicit form T(x, u) = c by requiring 

aT 
-=p 
ax ' 

aT 
-=Q. 
au 

(This assumes that the domain M is simply-connected.) If (2.83) is not 
exact, we must search for an integrating factor R(x, u) such that when we 
multiply it by R we do obtain an exact equation. 
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Theorem 2.48. Suppose the equation P dx + Q du = 0 has a one-parameter 
symmetry group with infinitesimal generator v = tax + e!>a u' Then the function 

1 
R(~u)=--------------------

t(x, u)P(x, u)+e!>(x, u)Q(x, u) 

is an integrating factor. 

(2.84) 

PROOF. Using the infinitesimal criterion of invariance (2.76), we find that 
v is a symmetry of (2.83) if and only if 

( ap ap) (a Q aQ) ae!> 2 (ae!> at) at 2 t-+e!>- Q- t--+e!>-- P+-Q - --- PQ--P =0. 
ax au ax au ax au ax au 

(2.85) 

The condition that R be an integrating factor is 

a a 
-(RP) =-(RQ). 
au ax 

Substituting the formula for R, this becomes 

2{ (ap aQ) at 2 ae!> } R e!> Q--P- --P --PQ 
au au au au 

= R2{t(paQ _ Qap)_ at PQ_ ae!> Q2}. 
ax ax ax ax 

Comparison with the symmetry condition (2.85) proves the theorem. 

For example, in the case of the rotation group, the equation takes the 
general form 

(u+xH(r» dx+(uH(r)-x) du =0. 

The integrating factor is then 

1 -1 

-u(u+xH)+x(uH -x) x2+ u2' 

For example, let H(r) = 1, so we have 

(u+x) dx+(u -x) du =0. 

Multiplying by (X 2+U2)-1 we get an exact equation 

u + x u - x [1 2 2 u] O=---dx+---du=d 210g(x +u )-arctan- , 
x 2+ u2 x 2+ u2 X 

hence we re-derive the logarithmic spiral solutions r = ke 9 found in Example 
2.32. 

Note that if 
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for all (x, u), then the integrating factor does not exist. This happens 
precisely in the case (2.81) when the computation of the symmetry group 
invariants is the same problem as solving the ordinary differential equation 
itself. In this case, both the invariant method and the integrating factor 
method fail to provide solutions. 

In practice, the integrating factor method is perhaps easier to implement 
in that we do not need to find the solutions T7,? to the auxiliary pair of 
partial differential equations (2.78). However, if one must consider a large 
number of equations all with the same symmetry group, this slight advantage 
is nullified by the relative difficulty of finding potentials T for each of the 
requisite exact differentials. 

Higher Order Equations 

Although the integrating factor method is no longer applicable, the method 
using invariants extends straightforwardly to the integration of higher order 
differential equations. Let 

(2.86) 

where Un == dnu/ dx n, be a single n-th order differential equation involving 
the single dependent variable u. The basic result in this case is that if we 
know a one-parameter symmetry group of this equation, then we can reduce 
the order of the equation by one. 

To see this, we first choose coordinates y = T7(X, u), W = ?(x, u) as in 
(2.78) such that the group transforms into a group of translations with 
infinitesimal generator v = a/ aw. Employing the chain rule, we can express 
the derivatives of u with respect to x in terms of y, wand the derivatives 
of w with respect to y, 

for certain functions 8k . Substituting these expressions into our equation, 
we find an equivalent n-th order equation 

- (n) _ - _ 
a(y, w ) - a(y, w, wy," ., wn) - 0 (2.87) 

in terms of the new coordinates y and w. Moreover, since the original system 
(2.86) has the invariance group G, so does the transformed system. In terms 
of the (y, w) -coordinates, the infinitesimal generator has trivial prolongation 

pr(n)v=v=a/aw. 

The infinitesimal criterion of invariance implies 

() - aa -pr n v(a) = - = 0 whenever My, w(n») = o. 
aw 
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This means, as in Proposition 2.18, that there is an equivalent equation 

A(y, ~;, ... , ~;:) =0 

which is independent of w, i.e. X(y, w(n» = 0 if and only if A(y, w(n» = o. 
Now we have accomplished our goal; setting z = Wy we have an (n -1)-st 
order equation for z, 

A( n-I n-I _ A (n-I)_ a y, z, ... , d Z/ dy ) - £l(y, z ) - 0, (2.88) 

whose solutions provide the general solution to our original equation. 
Namely, if z = h(y) is a solution of (2.88), then w = J h(y) dy + c is a solution 
of (2.87), and hence, by replacing wand y by their expressions in terms of 
x and u, implicitly defines a solution of the original equation. 

Example 2.49. As an elementary example, consider the case of a second 
order equation in which x does not occur explicitly, 

This equation is clearly invariant under the group of translations in the 
x-direction, with infinitesimal generator a/ax. In order to change this into 
the vector field a/ aw, corresponding to translations of the dependent vari
able, it suffices to reverse the roles of dependent and independent variable, 
so we set y = U, W = x. Then 

du 1 

dx wy ' 

so our equation becomes 

a (y, ~ ,- wy;) = 0, 
Wy Wy 

which is a first order equation for z = Wy: 

A(y, z, Zy) == £l(y, z-\ -Z-3Zy ) = 0. 

For example, to solve 

we have the corresponding first order equation 

-z-3zy -2yz-1 =0 

for z = dw / dy = (du/ dx) -I. This can easily be solved by separation, with 
solution 
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Thus, if e = e,2> 0, we find 

f d 1 y-
w= z y=-arctan-+e 

e' e" 

or, in terms of x and u, 

u = e' tan(e'x+ d), d =-ce'. 

(For e < 0, we have a hyperbolic tangent, for e = 0, we get the limiting 
solution u = -(x+ d)-I.) 

Example 2.50. Consider a homogeneous second order linear equation 

Uxx + p(x)ux + q(x)u = o. (2.89) 

This is clearly invariant under the group of scale transformations 

(x, u)~(x, AU), 

with infinitesimal generator v = ua u• Coordinates (y, w) which straighten out 
v are given by y = x, w = log u (provided u ;t. 0), with v = aw in these coordin
ates. We have 

u = e\ 

so the equation becomes 

Wxx + w;+ p(x)wx + q(x) = 0, 

which is independent of w. We have thus reconstructed the well-known 
transformation between a linear second order equation and a first order 
Riccati equation; namely z = Wx = ux / u changes (2.89) into the Riccati 
equation 

Zx = _Z2- p(x)z - q(x). 

Differential Invariants 

Besides trying to determine the most general symmetry group of a given 
differential equation, we can turn the whole procedure around and ask the 
complementary question: What is the most general type of differential 
equation which admits a given group as a group of symmetries? An answer 
to this question will not only provide us with a catalogue of large classes 
of ordinary differential equations which can be integrated by a common 
method, but also familiarity with the various types of equations which arise 
from known groups will aid in the recognition of symmetry groups for other 
equations. 

According to Section 2.2, an n-th order ordinary differential equation 
a(x, u(n») = 0 admits a group G as a symmetry group if and only if the 
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corresponding subvariety !fA c M(n) is invariant under the n-th prolongation 
pr(n) G. Furthermore, according to Proposition 2.18, there is an equivalent 
equation X = 0 describing the subvariety !fA, where X depends only on the 
invariants of the group action, which in this case is pr(n) G. The invariants 
of a prolonged group action play an important role in this procedure, and 
are known as "differential invariants". 

Definition 2.S1. Let G be a local group of transformations acting on Me 
X x U. An n-th order differential invariant of G is a smooth function 
TJ: M(n) ~ IR, depending on x, u and derivatives of u, such that TJ is an 
invariant of the prolonged group action pr(n) G: 

for all g E G such that pr(n) g. (x, u(n» is defined. 

Although the definition makes sense when there are several independent 
and several dependent variables, we will primarily be interested in the 
ordinary differential equation case p = q = 1. 

Example 2.52. Suppose G = SO(2) is the rotation group acting on X x U = 1R2 
with generator v = -uax + xau• The first order differential invariants are the 
ordinary invariants of the first prolongation pr(l) SO(2), which has 
infinitesimal generator 

(I) a a 2 a 
pr v = -u-+ x-+ (1 + u x )-. 

ax au aux 

Ifwe relabel the variables (x, u, ux ) by (x, y, z), then we are precisely in the 
situation covered by Example 2.19(b). Translating the result obtained there 
into the present context, we find that the functions 

y=Jx2 +U2 and 
xUx-u 

w= 
x+uux 

(2.90) 

provide a complete set of first order differential invariants for SO(2). For 
second order invariants, we would also include the curvature invariant K 

found in Example 2.37. Any other second order differential invariant must 
be a function of these three independent invariants. 

For higher order differential invariants there is an easy short cut which 
allows us to construct all differential invariants from knowledge of the 
lowest order ones. 

Proposition 2.S3. Let G be a group of transformations acting on M c X x U = 
1R2. Suppose y = TJ(x, u(n» and w = {(x, u(n» are n-th order differential 
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invariants of G. Then the derivative 

dw dw/dx Dx{ 
-=--=--
dy dy/ dx Dx'T/ 

(2.91) 

is an (n + 1) -st order differential invariant for G. 

PROOF. The proof requires the following formula. Let {(x, u(n») be any 
smooth function and v = gax + cpau any vector field. Then 

(2.92) 

Using the alternative formulation (2.50) of the prolongation formula, we 
see that 

while 

Dx[pr(n) v({}] = Dx[pr(n) vQ({)] + DAgDxn. 

Therefore (2.92) reduces to the simpler formula 

pr(n+l) vQ(Dx{) = Dx[pr(n) vQ({}]. 

This latter formula is a special case of a general commutation rule for vector 
fields and total derivatives-which will be proved in Lemma 5.12. (It is, 
however, not difficult for the reader to prove directly here.) 

Proceeding to the proof of (2.91), let v be any infinitesimal generator of 
G. Using (2.92), 

pr(n+l) v [~;] = (D~'T/ )2{pr(n+1) v(Dx{} . Dx'T/ - Dx{· pr(n+l) v(Dx'T/)} 

=-( 1 )2{DApr(n)v({)]. Dx'T/-Dxg. Dx{. Dx'T/ 
Dx'T/ 

=0 

since pr(n) v({) = 0 = pr(n) v( 'T/) by assumption. Thus dw/ dy is infinitesimally 
invariant under the action of pr(n+l) G, and hence by Proposition 2.6 is an 
invariant. 0 

Corollary 2.54. Suppose G is a one-parameter group of transformations acting 
on Me X x U =I"e. Let y = 'T/(x, u) and w = {(x, u, ux) be a complete set of 
functionally independent invariants of the first prolongation pr(l) G. Then the 
derivatives 

y, w, dw/ dy, ... , dn-1w/ dyn-l 

provide a complete set of functionally independent invariants for the n-th 
prolongation pr(n) G for n ~ 1. 
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To check the independence, it suffices to note that the k-th derivative 
dkw/ dyk depends explicitly on Uk+l = dk+lu/ dx k+\ and hence is indepen
dent of the previous invariants y, w, ... , d k- 1 W / dyk-l, which are only func
tions of x, u, ... , Uk' 

Example 2.55. Return to the second order invariants of the rotation group 
SO(2) discussed in the previous Example 2.52. It follows from the corollary 
that y, wand the derivative 

dw dw / dx .J x 2 + u2 2 2 2 
-=--= [(x +u )uxx -(1+ux )(xux -u)] 
dy dy/dx (X+uux )3 

form a complete set of functionally independent invariants for the second 
prolongation pr(2) SO(2). Note that this means any other second order 
differential invariant of the rotation group can be written in terms of y, w 
and dw/ dy; for instance, the curvature invariant found previously has 
expression 

as the reader can check. 

Once we know the differential invariants for a group of transformations 
acting on Me X x U, we can determine the structure of all differential 
equations which admit the given group as a symmetry group. In the case 
G is a one-parameter group, we thus know all equations which can be 
integrated using G. 

Proposition 2.56. Let G be a local group of transformations acting on M c 
X x U. Let 111(X, u(n»), ... , 1/(X, u(n») be a complete set of functionally 
independent n-th order differential invariants of pr(n) G. An n-th order differen
tial equation a(x, u(n») = 0 admits G as a symmetry group if and only if there 
is an equivalent equation 

A( l( (n» k( (n»)) - 0 '-'11 x,u , ... ,11 x,u -

involving only the differential invariants of G. In particular, if G is a one
parameter group of transformations, any n-th order differential equation having 
G as a symmetry group is equivalent to an (n -1)-st order equation 

X(y, w, dw/ dy, ... , dn-1w/ dyn-l) = 0 (2.93) 

involving the invariants y = 11(X, u), w = '(x, u, ux ) of pr(l) G and their deriva
tives. 

The proof is immediate from Proposition 2.18 and Corollary 2.54. 0 
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Example 2.S7. For example, we can completely classify all first and second 
order differential equations admitting the rotation group SO(2) as a sym
metry group. Any first order equation invariant under SO(2) is equivalent 
to an equation involving only the invariants (2.90). Solving for w, we find 
every such equation takes the form 

XUX-U 

x+uux 

for some function H. But this is precisely the form (2.82) discussed in 
Example 2.47 once we solve for UX • Thus (2.82) is the most general first 
order ordinary differential equation invariant under the rotation group 
SO(2). 

Similarly, any second order equation invariant under SO(2) is equivalent 
to one involving y, wand the curvature K = uxx (1 + U~)-3/2, i.e. 

where H(y, w) is any function of the first order invariants. This can be 
integrated once, as in Example 2.47, by setting r =.J x 2 + u 2, 0 = arctan(u/ x). 
We find 

the latter being the expression for the curvature of a curve 0 = O(r) expressed 
in polar coordinates. Thus the equation becomes a first order equation 

involving only z = dO/ dr, from which we can determine O(r) = J z(r) dr+ c. 

The preceding proposition also indicates an alternative method for reduc
ing the order of a differential equation invariant under a one-parameter 
group by using the differential invariants of the group. Namely, the differen
tial equation ~(x, u(n» = 0 must be equivalent to an equation (2.93) involving 
only the invariants y, w, ... , dn-1w/dyn-l of the n-th prolongation of G. 
But (2.93) is automatically an (n -l)-st order equation for w as a function 
of y, so that merely by re-expressing the original equation in terms of the 
given list of differential invariants, we have automatically reduced its order 
by one. Moreover, once we know the solution w = h(y) of the reduced 
equation (2.93), the solution of the original equation is found by integrating 
the auxiliary first order equation 

(2.94) 
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obtained by substituting for y and w their expressions in terms of the 
original variables x and u. Since (2.94) depends only on the invariants y 
arid w of pr(I) G, it clearly has G as a one-parameter symmetry group and 
hence can be integrated by the methods for first order equations discussed 
previously. We have thus, by a completely different method, re-established 
the basic fact that an ordinary differential equation invariant under a 
one-parameter group can be reduced in order by one. 

Example 2.58. Consider the second order equation 

x 2uxx + xu~ = uux. 

This is invariant under the scaling group (x, u)~(Ax, Au). 

(2.95) 

Let us first try to integrate (2.95) using the method of differential 
invariants. We find that the invariants of the second prolonged group action 
are 

u 
y=-, 

x 

The new equation involving wand y is therefore 

dw 2 
( W - y) dy + w = yw. 

This has two families of solutions; either w = y or dw/ dy = -w, the latter 
integrating to w = ce-Y for some constant c. Reverting back to the original 
variables, we obtain two homogeneous first order equations, as guaranteed 
by the form of (2.94): 

du u du -ulx 
dx x' or dx = ce . 

The first has solutions u = kx; the second has implicit solutions 

f dy log x+ k, 
ce-Y - y 

(2.96) 

where y = u/ x. Here (2.96) is the "general" solution to (2.95), the linear 
functiohs being a one-parameter family of singular solutions. 

The integration of (2.95) by our earlier method is quite a bit more tricky. 
As in Example 2.46, we set y = u/ x, w = log x, so that in terms of y and w 
the infinitesimal generator is a/ aw. We further have 

so the equation takes the form of a first order Riccati equation 

dz 
dy = (y+ I) z2+ z (2.97) 
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for z = dw / dy. The solution proceeds either by using general methods for 
integrating Riccati equations, or, more expediently, by noticing that it admits 
a one-parameter symmetry group with generator w= (z+ yz2)oz. Therefore, 
by Theorem 2.48, R = (z + yz2)-1 is an integrating factor for (2.97). We find 

T(y, z) = y+ log(y+ Z-I) = c 

to be the integral, hence the solutions of (2.97) are given by z = (ce-Y _ y)-I. 
Recalling the definition of z = W>" we see that we can integrate this latter 
expression to recover the general solution (2.96) to (2.95). The singular 
solutions u = kx do not appear in this case since they do not correspond 
to functions of the form w = hey). They can be found by choosing alternative 
coordinates, e.g. w = log u instead of W. 

One interesting point is that the symmetry group of the Riccati equation 
(2.97) generated by w does not appear to have a counterpart for the original 
equation. Thus, reducing the order of an ordinary differential equation may 
result in an equation with new symmetries, whereby the order can be yet 
further reduced! 

Multi-parameter Symmetry Groups 

If an ordinary differential equation .:l(x, u(n)} = 0 is invariant under an 
r-parameter group, then intuition tells us that we should be able to reduce 
the order of the equation by r. In one sense, this somewhat naIve presumption 
is correct, but the problem may be that we cannot reconstruct the solution 
of the original n-th order system from that of the reduced (n - r}-th order 
system by quadratures alone. More specifically, suppose G is an r-parameter 
group of transformations acting on Me X x U. Assume, for simplicity, that 
the r-th prolongation pr(r) G acting on M(r) has r-dimensional orbits. (More 
degenerate cases can be treated analogously, although technical complica
tions may arise.) Since M(r) is (r+ 2}-dimensional, this means that locally 
there exist exactly two independent r-th order differential invariants of G, 
say 

(2.98) 

Note that every further prolongation pr(n) G also has r-dimensional orbits. 
(This is because they project down to the orbits of pr(r) G in M(r), so are 
at least r-dimensional, but G itself is r-dimensional, so the orbits can never 
have more than r dimensions; see Exercise 3.17.} Therefore, pr(n) G has 
n - r + 2 independent differential invariants, which by Proposition 2.53 we 
can take to be 

y, w, dw/ dy, ... , dn-rw/ dyn-r. 
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If .:l(x, u(n» = 0 is invariant under the entire symmetry group G, then by 
Proposition 2.18 there is an equivalent equation 

X(y, w, dwl dy, ... , dn-rwl dyn-r) = 0 (2.99) 

involving only the invariants of pr(n) G. In this sense, we have reduced the 
n-th order system for u as a function of x to an (n - r)-th order system for 
w as a function of y. 

The principal problem at this juncture is that it is unclear how we 
determine the solution u = f(x) of the original system from the general 
solution w = h(y) of the reduced system (2.99). Using the expressions (2.98) 
for the invariants y, w, we find that we must solve an auxiliary r-th order 
equation 

(2.100) 

to determine u. This auxiliary equation, being expressed in terms of differen
tial invariants, retains G as an r-parameter symmetry group. However, in 
contrast to the one-parameter situation, there is no assurance that we will 
be able to integrate (2.100) completely by quadratures, thereby explicitly 
determining the solution of our original equation. The difficulty in this 
regard is apparent in the following example. 

Example 2.59. Recalling Example 1.58(c), consider the action of SL(2) as 
the projective group 

(x, u)~ «ax+ ,8)/( yx + 8), u) 

on the line. The infinitesimal generators are 

from which we see that 

y= u, 

a 
v =x-

2 ax' 
2 a 

v =x-
3 ax' 

form a complete set of functionally independent invariants for the prolonga
tion pr(3) SL(2). 

We . conclude that any differential equation .:l(x, u(n» = 0 which is 
invariant under the full projective group is equivalent to an (n - 3)-rd order 
equation 

involving only the invariants of pr(n) SL(2). For instance, since 

dw dw I dx 2u;uxxxx -12uxuxxuxxx + 12u!x 
-=---= 
dy Ux u~ 

(2.101) 
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any fourth order equation admitting SL(2) as a symmetry group is equivalent 
to one of the form 

2u;uxxxx -12uxuxxuxxx + 12u!x = u~H( u, u;4(2uxuxxx - 3u!x». 

The reduced system (2.101) in this case is the first order equation dw/ dy = 

H(y, w). 
However, once we have solved the reduced equations (2.101) for w = 

hey), we are left with the task of determining the corresponding solutions 
u = f(x) by solving the auxiliary equation 

(2.102) 

obtained by substituting for y and w. This equation remains invariant under 
SL(2), so we can use this knowledge to try to integrate it. In particular, 
it is invariant under the translation subgroup generated by ax, which has 
invariants y = u, z = ux , in terms of which (2.102) reduces to 

d 2z (dZ)2 2 2z-- - = z hey). 
dy2 dy 

This latter equation is invariant under the scale group (y, z) ~ (y, Az) (reflect
ing the symmetry of (2.102) under the scale group (x, u)~(A -IX, u» and 
hence can be reduced to a first order Riccatti equation 

dv 2 
2-+v =h(y) 

dy 
(2.103) 

for v = (log z)y = Zy/ z. However, at this point we are stuck. We have already 
used the translational and scaling symmetries to reduce (2.102) to a first 
order equation, but there is no remnant of the inversional symmetries 
generated by V3 which can be used to integrate the standard Riccati equation 
(2.103). Thus the best that can be said is that the solution of n-th order 
differential equation invariant under the projective group can be found 
from the general solution of a reduced (n - 3)-rd order equation by using 
two quadratures and the solution of an auxiliary first order Riccati equation. 

This whole example is illustrative of an important point. If we reduce 
the order of an ordinary differential equation using only a subgroup of the 
full symmetry group, we may very well lose any additional symmetry 
properties present in the full group. Only special types of subgroups, namely 
the normal subgroups presented in Exercise 1.24, will enable us to retain 
the full symmetry properties under reduction. Before discussing this case, 
it helps to return to symmetries of algebraic equations once again. 

Let G be an r-parameter group acting on Me IR m and let He G be a 
subgroup. Suppose that 77(X)=(77 I (X), ... , 77 m - s (X» form a complete set 
of functionally independent invariants of H. If H happens to be a normal 
subgroup, meaning that ghg- I E H whenever g E G, hE H, then there is an 
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induced action of G on the subset Me IR m - s determined by these invariants 
y = (y\ ... , ym-s) = 1/(x): 

g. y = g. 1/(x) = 1/(g. x), gE G, XEM. (2.104) 

Note that for any hE H 

where h = ghg -I E H; from this it is easy to see that this action on M is 
well defined. (In fact, H acts trivially on M, so (2.104) actually defines an 
action of the quotient group G/ H; see Exercise 3.11.) 

According to Proposition 2.18, any H-invariant subset of M can be 
written as the zero set YF = {F(x) = O} of some H-invariant function F(x) = 
F( 1/(x». It is not hard to see that, assuming H is a normal subgroup, 
YF eM is invariant under the full group G if and only if the reduced 
subvariety Y j: = {y: F(y) = O} c M is invariant under the induced action of 
Gon M. 

For the infinitesimal version, let us introduce s further variables x = 
(Xl, ... , XS) completing y = 1/(x) to a set of local coordinates (y, x) on M. 
Using the infinitesimal criterion of normality from Exercise 1.24(b), we see 
that each infinitesimal generator of G must be of the form 

k= 1, ... , r, (2.105) 

in these coordinates, where each 1/ i is independent of the parametric 
variables X. Thus Vk reduces to a vector field 

k=I, ... ,r, 

generating the reduced action of G on M. These we can use to check the 
invariance of the reduced subvariety Yj:, and hence that of Y F • 

Similar results hold for differential equations. Assume, as above, that 
the r-parameter group G acts on Me X x U = 1R2 and suppose He G is 
an s-parameter subgroup whose prolongation pr(s) H has s-dimensional 
orbits in M(s). (As before, degenerate cases can also be treated if required.) 
Let y = 1/(x, u(s», w = «x, u(s» be a complete set of functionally indepen
dent differential invariants for H on M(s), with corresponding invariants 
w(m) = (m)(x, u(s+m» on M(s+m), m ~ O. Any n-th order ordinary differential 
equation admitting H as a symmetry group can be written in the form 

a(x, u(n» = X( 1/(x, u(s», (n-s)(x, u(n») = X(y, w(n-s» = 0, 

using only the invariants y, w, ... , dn-sw/ dyn-s of pr(n) H. Moreover, since 
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H is a normal subgroup of G, there is an induced action of G on Me 
Yx W=1R2, with 

g. (y, w) = g. (7](x, u(s», {(x, u(s») 

= (7](pr(s) g' (x, u(s»), {(pr(s) g' (x, u(s»))), g E G, (2.106) 

cf. (2.104). Similarly, the action of G on M(n) reduces to an action of G 
on the space M(n-s) determining the derivatives of w with respect to y. It 
is not too difficult to see that this reduced action coincides with the prolonga
tion of the action of G on M defined by (2.106); in other words 

pr(n-s) g. (7](x, u(s», {(n-s)(x, u(n») 

= (7](pr(S) g' (x, u(s»), {(n-s)(pr(n) g' (x, u(n»))). 

(To check this, look at what happens to a representative smooth H-invariant 
function u = f(x).) 

Translating our earlier results for algebraic equations, we deduce the 
following result on normal subgroups of symmetry groups of ordinary 
differential equations. 

Theorem 2.60. Let H c G be an s-parameter normal subgroup of a Lie group 
of transformations acting on Me X x U = 1R2 such that pr(s) H has s
dimensional orbits in M(s). Let ~(x, u(n» = 0 be an n-th order ordinary 
differential equation admitting H as a symmetry group, with corresponding 
reduced equation X(y, w(n-s» = 0 for the invariants y = 7](x, u(s», w = 
{(x, u(s» of H There is an induced action of the quotient group Gj H on 
M c Y x W and ~ admits all of G as a symmetry group if and only if the 
H-reduced equation X admits the quotient group G j H as a symmetry group. 

An especially important example is the case of a two-parameter symmetry 
group. Here, owing to the special structure of two-dimensional Lie groups, 
we can use the preceding theorem to carry out the reduction in order by 
two using only quadratures. 

Theorem 2.61. Let ~(x, u(n» = 0 be an n-th order ordinary differential equation 
invariant under a two-parameter symmetry group G. Then there is an (n - 2) -nd 
order equation '&(z, v(n-2» = 0 with the property that the general solution to 
~ can be found by a pair of quadratures from the general solution to .&. 
PROOF. According to Exercise 1.21, we can find a basis {v, w} for any 
two-dimensional Lie algebra 9 with the property 

[v,w]=kv (2.107) 

for some constant k. (In fact, k can be taken to be 0 if 9 is abelian and 1 
in all other cases.) The one-parameter subgroup H generated by v is then 
a normal subgroup of G, with one-parameter quotient group Gj H. To effect 
the reduction of ~, we begin by determining first order differential invariants 
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y = l1(X, u), W = «x, u, ux ) for H using our earlier methods. By Proposition 
2.56, our n-th order equation is equivalent to an (n -1)st order equation 
;1(y, w(n-O) = 0; moreover, once we know the solution W = h(y) of this latter 
equation, we can reconstruct the solution to ;1 by solving the corresponding 
first order equation (2.94) using a single quadrature. Since H is normal, 
the reduced equation .i is invariant under the action of G / H on the variables 
(y, w), and hence we can employ our earlier methods for one-parameter 
symmetry groups to reduce the order yet again by one. On an infinitesimal 
level, suppose (x, y, w) = (x, l1(X, u), {(x, u, ux » form local coordinates on 
some subset of M(l). (If x happens to be one of the invariants, we can 
replace it by u or some combination y(x, u).) As in (2.105), normality, as 
expressed by (2.107), implies that the vector field w has first prolongation 

pr(l)w=a(x,y, W)dx +f3(y, W)dy+«/I(y, W)d w 

in terms of these coordinates, and hence reduces to a vector field 

w=f3(y, W)dy+«/I(y, W)d w 

on the space M, generating the quotient group action of G / H. Theorem 
2.60 assures us that W remains a symmetry of the preliminary reduced system 
.i, and hence we can reduce .i in order by one using either the method of 
differential invariants or that of changing coordinates to straighten out w, 
leading to a differential equation .l(z, v(n-2» = 0 of order n - 2. This com
pletes the reduction procedure, and the proof of the theorem. 0 

Example 2.62. Consider a second order differential equation of the form 

(2.108) 

where H is a given function. This equation admits the two-parameter 
symmetry group 

(x, u)~(Ax, u + ex), 

with infinitesimal generators v = Xd u and w = Xd x • Note that [v, w] = -v, so 
the generators are in the correct order to take advantage of Theorem 2.61. 
According to the basic procedure, we need to first determine the invariants 
of v, which are x and W = xUx - u, in terms of which (2.108) reduces to the 
first order equation 

This latter equation is separable, with implicit solution 

f dw 
. --=logx+c 

H(w) , 

reflecting the fact that it remains invariant under the reduced group (x, w) ~ 
(Ax, w) determined by w = Xd x , as guaranteed by the method. From this 
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solution, rewritten in explicit form w = h(x), we reconstruct the general 
solution to (2.108) by solving the linear equation. 

xux - u = h(x). 

The integrating factor is 1/ x 2 , as can be determined directly from the form 
of the underlying symmetry group generated by v, and hence we find 

u=x(f x-2h(X)dX+k) 

is the general solution to (2.108). 
It is instructive to see what would have happened if, unheeded by the 

general procedure, we had tried to integrate (2.108) by considering the two 
one-parameter groups in the reverse order. In this case, the invariants for 
ware y = u, z = xUx , whence Zy = XU;luxx + 1, and the equation reduces to 

z (:; - 1) = H (z - y ). (2.109) 

However, at this stage there is no symmetry property of (2.109) which 
reflects the symmetry of (2.108) under the group generated by v. This shows 
that it is important to do our reduction procedure in the right order, 
otherwise we may not end up with the solution. Reversing the procedure, 
we are left with the intriguing possibility of being able to integrate an 
(n -1)-st order equation by first changing it into an n-th order equation 
with several symmetries, whose order can then be reduced substantially. 
For instance, we can solve (2.109) by first substituting y = u, z = xUx , which 
changes it to (2.108), and then integrating the latter equation. This point 
will be investigated in greater detail in the exercises at the end of the chapter. 

Solvable Groups 

Turning to yet higher-dimensional symmetry groups, we find, as evidenced 
by the example of the projective group, that for r;:': 3, invariance of an n-th 
order equation under an r-parameter group will not in general imply that 
we can find the general solution by quadratures from the solution of the 
corresponding reduced (n - r)-th order equation. The problem is that there 
is not in general a sufficient supply of normal subgroups to ensure the 
continued applicability of Theorem 2.60 and the reduction procedure for 
one-parameter groups at each stage. This motivates the following definition 
of those groups which can be used to fully reduce or "solve" an equation 
to the extent promised by their dimensionality. 

Definition 2.63. Let G be a Lie group with Lie algebra g. Then G is solvable 
if there exists a chain of Lie subgroups 

{e} = G(O) c G(l) c G(2) c ... c G(r-ll c G(r) = G 
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such that for each k = 1, ... , r, O(k) is a k-dimensional subgroup of 0 and 
O(k-I) is a normal subgroup of O(k). Equivalently, there exists a chain of 
subalgebras 

{OJ = g(O) c g(1) c g(2) c ... c g(r-I) c g(r) = g, (2.110) 

such that for each k, dim g(k) = k and g(k-I) is a normal subalgebra of g(k): 

[g(k-I), g(k)] c g(k-I). 

The requirement for solvability is equivalent to the existence of a basis 
{VI, ... , vr } of 9 such that 

j-I 

[vjovj ]= L ctVk whenever i<j. 
k=1 

Note that any abelian Lie algebra, i.e. one for which the Lie bracket is 
always zero, is trivially solvable. Any two-dimensional Lie algebra is solv
able, since using the basis (2.107), we can set g(1) to be the one-dimensional 
sub algebra generated by V to produce the chain {OJ = g(O) c g(1) c g(2) = g. The 
simplest example of a nonsolvable Lie algebra is the three-dimensional 
algebra sl(2). 

Theorem 2.64. Let a(x, u(n» = 0 be an n-th order ordinary differential equation. 
If a admits a solvable r-parameter group of symmetries 0 such that for 
1 ~ k ~ r the orbits of pr(k) O(k) have dimension k, then the general solution 
of a can be found by quadratures from the general solution of an (n - r)-th 
order differential equation X(y, w(n-r» = O. In particular, if a admits an 
n-parameter solvable group of symmetries, then (subject to the above technical 
restrictions) the general solution to a can be found by quadratures alone. 

PROOF. The proof proceeds by induction along the chain of subalgebras 
(2.110) guaranteed by the solvability of O. At the k-th stage, we have used 
the invariance of a under the k-dimensional subalgebra g(k) to reduce it to 
an (n - k) -th order equation 

X(k)(y, w(n-k» = 0, 

in whiCh y, w, dw/ dy, ... , dn-kw/ dyn-k form a complete set of functionally 
independent differential invariants for the n-th prolongation pr(n) O(k); in 
partiCular, y = 11 (x, U(k», w = ~(x, U(k) form a complete set of invariants of 
the k-th prolongation of O(k). We also can reconstruct the general solution 
u = f(x) from the general solution w = h(y) of X(k) by a series of quadratures. 

To pass to the (k+ 1)-st stage, consider a generator Vk+1 of g(k+1) which 
does not lie in g(k). Since g(k) is a normal subalgebra of g(k+l), (2.105) says 
that pr(k) Vk+1 takes the form 

(k) (k-2) a a 
pr . Vk+1 = pr Vk+1 + a(y, w) -+ ",(y, w)-

ay aw 
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in which pr(k-2) Vk+l depends on the non invariant coordinates x, U, ••• , Uk-2 

needed to complete y, w to a coordinate system on M(k). 

Theorem 2.60 says that the original e'luation !1 is invariant under all of 
g(k+1) if and only if the reduced equation !1 (k) is invariant under the reduced 
vector field Vk+), which allows us to implement our reduction procedure 
for X (k) using the vector field Vk+l. Namely, we set 

y= 1](Y, w), 

to be independent invariants of the first prolongation pr(1) Vk+l. Then y, w, 
dwl ay, ... , dn-k-1wl dyn-k-l form a complete set of invariants for the 
(n - k)-th prolongation pr(n-k) Vk+l. Since X(k) determines an invariant 
subvariety of this group, there is an equivalent equation 

.& (k+l)(y, w(n-k-I)) = 0 

depending only on the invariants of pr(n-k) Vk+l. Moreover, to reconstruct 
the solutions to X (k) from those, w = h(y), to .& (k+l), we need only solve the 
first order equation 

This is invariant under the one-parameter group generated by Vk+l, and 
hence can be integrated by quadrature. This completes the induction step, 
and thus proves the theorem. 0 

Example 2.65. Consider the third order equation 

(2.111) 

There is a three-parameter group of symmetries, generated by the vector 
fields 

which is solvable since 

Thus (2.111) can be solved by quadratures. We proceed to implement the 
reduction procedure given in the proof of Theorem 2.64. First, for g(1) 

generated by v), we have invariants x, v = ux , in terms of which (2.111) 
reduces to 

(2.112) 

The second vector field V2 maintains its form V2 = ax when written using the 
invariants of g(l), so to reduce (2.112) for g(2) = Span{v), V2} we need the 
invariants 

y=v, 
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of pr(2) V2' In terms of these, (2.112) reduces to the first order equation 

y5wy=3y4W+W2. (2.113) 

This last Riccati equation should retain one further symmetry corresponding 
to the vector field V3' Indeed, in terms of x, y = ux , W = uxx , 

pr(2) V3 = uax - y2ay - 3ywaw , 

and the reduced vector field 

is a symmetry of (2.113). We can thus integrate (2.113) by setting t = -ljy, 
z = wj y3 (in terms of which V3 = -at), so (2.113) becomes 

dz 2 

dt =z . 

Thus z = Ij(c - t), or, in terms of the invariants of V2, 

y4 
W=--

cy+l 

To find v, we need to solve the autonomous equation 

dv v4 

dx=cv+l' 

(autonomy being guaranteed by invariance under V2)' We find the implicit 
solution 

6(x - c)v3 + 3cv+2 = 6(x - c)u~+3cux +2 = O. 

Solving for ux , we are left with one final quadrature to produce the general 
solution to the original equation (2.111). 

One interesting thing to note is that although the equation (2.113) is 
invariant under a reduced vector field corresponding to the symmetry V3 of 
(2.111), there is no corresponding symmetry of the intermediate reduced 
equation (2.112). Indeed, 

in terms of the invariants x, v = Ux of VI, but this vector field cannot be 
reduced to one which does not depend on u. As a consequence of this 
observation, we see that in the general reduction procedure, it is important 
to wait until we have the invariants for g(k) before trying to reduce the next 
vector field Vk+I; one cannot expect Vk+1 to naturally reduce relative to an 
earlier subalgebra g(j) if j < k! 
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Systems of Ordinary Differential Equations 

Knowledge of a group of symmetries of a system of first order ordinary 
differential equations has much the same consequences as knowledge of a 
similar group of symmetries of a single higher order equation. If we know 
a one-parameter symmetry group, then we can find the solution by quad
rature from the solution to a first order system with one fewer equation in 
it. Similarly, knowledge of an r-parameter solvable group of symmetries 
allows us to reduce the number of equations by r. These results clearly 
extend to higher order systems as well, so that invariance of an n-th order 
system under a one-parameter group, say, allows us to reduce the order of 
one of the equations in the system by one. However, a higher order system 
can always be replaced by an equivalent first order system, so we are justified 
in restricting our attention to the latter case. 

Theorem 2.66. Let 

1I=1, ... ,q, (2.114) 

be a first order system of q ordinary differential equations. Suppose G is a 
one-parameter group of symmetries of the system. Then there is a change of 
variables (y, w) = 1jJ( x, u) under which the system takes the form 

dw" _ I q_1 
dy - H,,(y, w , ... , w ), 11 = 1, ... , q. (2.115) 

Thus the system reduces to a system of q - 1 ordinary differential equations 
for w\ ... , wq - I together with the quadrature 

PROOF. Let v be the infinitesimal generator of G. Assuming vi<x.u) '" 0, we 
can locally find new coordinates y = 11(X, u), w" = C(x, u), 11 = 1, ... , q, 
such that v = a/ aw q in these coordinates. In fact, 

11(X, u), C1(x, u), ... , Cq - 1(x, u), 

will be a complete set of functionally independent invariants of G, so 

v( 11) =v(C) =0, 11 = 1, ... , q-l, 

while Cq(x, u) satisfies 

It is then a simple matter to check that the equivalent first order system for 
w\ ... , wq is invariant under the translation group generated by v = a/ awq 
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if and only if the right-hand sides are all independent of wq, i.e. it is of the 
form (2.115). 0 

Example 2.67. Consider an autonomous system of two equations 

du 
dx = F(u, v), 

dv 
-=H(u v) dx ,. 

Clearly v = aj ax generates a one-parameter symmetry group, so we can 
reduce this to a single first order equation plus a quadrature. The new 
coordinates are y = u, w = v and z = x in which we are viewing wand z as 
functions of y. Then 

du 1 
dx dzjdy' 

dv _ dwjdy 
dx - dzjdy' 

so we have the equivalent system 

1 dw _ H(y, w) 
dy - F(y, w)' 

dz 

dy F(y, w)' 

We thus are left with a single first order equation for w = w(y); the corre
sponding value of z = z(y) is determined by a quadrature: 

z = f (1 ) dy + c. 
F y,w 

If we revert to our original variables x, u, v we see that we just have the 
equation 

dv H(u, v) 

du F(u, v) 

for the phase plane trajectories of the system, the precise motion along 
these trajectories being then determined by quadrature: 

f du 
x = F(u, v(u)) + c. 

Theorem 2.68. Suppose du j dx = F( x, u) is a system of q first order, ordinary 
differential equations, and suppose G is an r-parameter solvable group of 
symmetries, acting regularly with r-dimensional orbits. Then the solutions 
u = f(x) can be found by quadrature from the solutions of a reduced system 
dw/ dy = H(y, w) of q - r first order equations. In particular, if the original 
system is invariant under a q-parameter solvable group, its general solution 
can be found by quadratures alone. 

The proof is left to the reader. 
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Example 2.69. Any linear, two-dimensional system 

ut = a (t) u + f3 (t) v, 

v, = ,,(t)u + 8(t)v, 

is invariant under the one-parameter group of scale transformations 
(t, u, v) ~ (t, Au, A v) with infinitesimal generator v = uau + vav , and hence 
can be reduced to a single first order equation by the method of Theorem 
2.66. We set w = log u, z = vi u, which straightens out v = aw ' These new 
variables satisfy the transformed system 

w,=a(t)+f3(t)z, 

z, = ,,(t) + (8(t) - a(t))z - f3(t)Z2, 

so if we can solve the Riccati equation for z, we can find w (and hence u 
and v) by quadrature. 

However, if the original system possesses some additional symmetry 
property, it may be unwise to carry out this preliminary reduction, as the 
resulting Riccati equation may no longer be invariant under some "reduced" 
symmetry group. For example, the system 

u, = - u + (t + 1) v, 

v, = u- tv 

has an additional one-parameter symmetry group with generatorw = tau +av , 

as the reader may verify, but the associated Riccati equation 

z, = 1 + (1- t)z - (1 + t)Z2 

has no obvious symmetry property. The problem is that the vector fields v 
and w generate a solvable, two-dimensional Lie group, but have the commu
tation relation [v, w] = -w, so we should be reducing first with respect to w. 
To implement the reduction procedure of Theorem 2.68, we need to first 
straighten out w = aw by choosing coordinates 

w=v, i=u-tv. 

The scaling group still has generator v = waw + iai in these variables. To 
straighten its i-component we further set £ = log i = log( u - tv), in terms of 
which 

w=aw, 

The system now takes the form 

dw =ez 
dt ' 

v= waw+az' 

d£ 
-=-t-l 
dt ' 
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which, as guaranteed by Theorem 2.68, can be integrated by quadratures. 
We find 

Z(t)=_!(t+1)2+ C, 

wet) = c erf[(t + 1)/.../2] + Ie, 

where C = loge cv'2/ 7T), and 

erf(y) = Jrr J: e- x2 dx 

is the standard error function. Thus the general solution to the original 
system is 

(2 2 (t+1) u(t) = V ;c e-(t+1) /2+ ct erf J2 + kt, ( t+ 1) v(t)=cerf J2 +k, 

where c and k are arbitrary constants. 

2.6. Nondegeneracy Conditions for Differential 
Equations 

Often one is interested in classifying all the symmetries of a system of 
differential equations, and so it is important to know when the infinitesimal 
methods developed in Section 2.3 can construct the most general connected 
symmetry group of the given system. For this to be the case, it will be 
necessary to impose an additional nondegeneracy condition, known as 
"local solvability", beyond the maximal rank condition of Definition 2.30. 
This relatively unfamiliar and somewhat technical condition requires that 
the system have solutions for "arbitrary initial data". In this section we 
discuss this concept and some of its consequences in detail. 

Local Solvability 

In order to motivate the definition of local solvability, let's see why, in 
contrast to the case of systems of algebraic equations, the infinitesimal 
criterion (2.25) is not in general a necessary condition for a Lie group G 
to be a symmetry group of a system of differential equations of maximal 
rank. For 'a system of algebraic equations F(x) = 0, to each point Xo on the 
subvariety Y F = {x: F(x) = O} there is, tautologously, a solution to the sys
tem; namely, Xo itself! In contrast, if ;lex, u(n» = 0 is a system of differential 
equations, and (xo, u&n» a point on the corresponding subvariety Y/l = 
{(x, u(n»): ;lex, u(n» = O}, there is in general no guarantee that there exists 
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a solution u = f(x) of the system which has these particular values for its 
derivatives at xo, i.e. u~n) = pr(n) f(xo). Therefore if G, a local group of 
transformations, is a symmetry group of the system of differential equations, 
in the sense that it transforms solutions to solutions, there is no assurance 
that G will leave the entire subvariety [fa invariant. We can only conclude 
that those points (xo, u~n» in [fa for which there does exist such a solution 
are transformed into other such points in [fa under group transformations. 
Therefore, to prove the necessity of the infinitesimal criterion of invariance, 
we need to assume that every point in [fa has a corresponding solution. 

Definition 2.70. A system of n-th order differential equations ~(x, u(n» = 0 
is locally solvable at the point 

(xo, u~n» E [fa = {(x, u(n»: ~(x, u(n» = O} 

if there exists a smooth solution u = f(x) of the system, defined for x in a 
neighbourhood of xc, which has the prescribed "initial conditions" u~n) = 
pr(n) f(xo). The system is locally solvable if it is locally solvable at every 
point of [fa. A system of differential equations is nondegenerate if at every 
point (xo, u~n» E [fa it is both locally solvable and of maximal rank. 

For a system of ordinary differential equations, this condition of local 
solvability coincides with the usual initial value problem, with (xo, u~n» 
corresponding to the usual initial data in this case. For instance, for a single 
second order equation 

(2.116) 

the initial data for local solvability consist offour numbers (XO, uO, u~, u~) 
subject only to the condition that they satisfy the equation, i.e. 

We are then required to find a solution u = f(x), defined for x near xc, 
such that 

Clearly the first two of these conditions form the usual initial value problem 
for (2.116), and we are thus assured of the existence of a solution u = f(x) 
satisfying these two conditions. (Indeed, we only need to assume that F is 
continuous.) The third condition u~ = f"(XO) is then given to us "for free" 
since f is a solution, even at xc, so 

f"(xo) = F(x°,f(xO),f'(xO» = F(xO, uO, u~) = u~. 

Similar reasoning shows that nonsingular systems of ordinary differential 
equations are always locally solvable. 

For systems of partial differential equations, the problem oflocal solvabil
ity is of a completely different character than the more usual existence 
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problems, e.g. Cauchy problems or boundary value problems. In the case 
of local existence, the initial data is only being prescribed at a single point 
xc, whereas one ordinarily requires the specification of the data along an 
entire submanifold of the space of independent variables. For example, in 
the case of the wave equation 

U,,- Uxx = 0, 

the question of local solvability becomes that of determining whether for 
every set of initial values 

subject only to the condition u?t = u~x, there exists a solution U = f(x, t) of 
the wave equation in a neighbourhood of (xo, to) with 

° a2f( ° 0) u xx =-2 x ,t , ax 
° a2f ( ° 0) u xt=-- x, t , 

ax at 

Clearly in this case the answer is yes, since by design u~ = u?t, so we can 
take f to be the polynomial solution 

f(x, t) = UO + u~(x - XO) + u?(t - to) 

+1 u~[(x - XO)2+ (t - to)2] + U~t(x - XO)(t - to), 

hence the wave equation is locally solvable. (Note that there is no question 
of uniqueness for the solutions to the local existence problem-even in this 
simple example no such result is valid.) The reader should contrast this 
problem with the usual Cauchy problem, in which the initial data is specified 
along the entire x-axis: 

u(x, 0) = g(x), 
au 
- (x, 0) = h(x). at 

There are two principal reasons why a system of partial differential 
equations might fail to be locally solvable. The first is that the system may 
have integrability conditions obtained by cross-differentiating the various 
equations. For example, the over-determined system 

Ux = yu, uy=o, (2.117) 

is not locally solvable since at any point (xo, Yo) there is no solution u(x, y) 
with "initial conditions" 
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values which algebraically satisfy the two equations. Indeed, cross-differenti
ation shows that 

0= Uxy = (YU)y = YUy+ U, 

hence u(x, y) == 0 is the only solution. 
Another interesting example, which actually arises from a variational 

problem (cf. Section 4.1), is the second order system 

Uxx + vxy + Vx = 0, 

uxy + Vyy - Ux = o. 
(2.118) 

As it stands, (2.118) is not locally solvable since there is an additional 
relationship among second order derivatives, namely 

Uxx + vxy = 0, 

obtained by differentiating the first equation with respect to y, the second 
with respect to x and subtracting. This in turn implies Vx = 0 and Uxx = 0, 
so any assignation of initial values 

( 0 0 0 0 0 0 0 0 0 0 0 0 0 0) x ,y ; u, v; u x, uy, vx, vy ; U xx , uxy , U yy , Vxx , v xy , Vyy 

which satisfies (2.118), but which does not have v~ = v~ = V~y = u~x = 0, has 
no local solution pertaining to it. 

The second source of systems which are not locally solvable are certain 
smooth, but not analytic, systems of differential equations which have no 
solutions. The original example of such a system was discovered by Lewy, 
[1], who showed that there exist smooth functions h(x, y, z) such that the 
first order system 

Ux - Vy + 2yuz + 2xvz = h(x, y, z), 

uy + Vx -2xuz + 2yvz = 0, 

has no smooth (or even C 1) solutions on any open subset of [R3. A related 
example is given by Nirenberg, [1; p. 8], who constructs a function h(x, y) 
such that the homogeneous linear system 

Ux - h(x, y)vy = 0, 

vx+h(x,y)uy=O, 
(2.119) 

has only constant solutions in a neighbourhood of the origin. 
As we will see, for analytic systems, the Cauchy-Kovalevskaya theorem 

provides the key to the proof of local solvability. For Coo systems, the 
question is much more delicate, owing to the Lewy-type phenomena, and 
very few general results are known. Before investigating the analytic case 
in more detail, we apply the local solvability criterion to the infinitesimal 
condition for group invariance of a system of differential equations. 
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Invariance Criteria 

Theorem 2.71. Let A(X, u(n» = 0 be a nondegenerate system of differential 
equations. A connected local group of transformations G acting on an open 
subset M c X x U is a symmetry group of the system if and only if 

pr(n) v[A,,(x, u(n»] = 0, v = 1, ... , I, whenever A(X, u(n» = 0, (2.120) 

for every infinitesimal generator v of G. 

PROOF. We already know that (2.120) is sufficient for G to be a symmetry 
group, so we need only prove the necessity of this condition. In light of 
the algebraic counterpart of this result in Theorem 2.8, it suffices to prove 
that the subvariety [fA = {A(X, u(n» = O} is an invariant subset of the prolon
ged group action pr(n) G whenever G transforms solutions of the system 
to other solutions. Let (xo, u~n» E [fA' Using the local solvability, let u = f(x) 
be a solution of the system defined in a neighbourhood of Xo such that 
u~n) = pr(n) f(xo). If g is a group element such that pr(n) g' (xo, u~n» is 
defined, then by appropriately shrinking the domain of definition of f, we 
can ensure that the transformed function j = g . f is a well-defined function 
in a neighbourhood of xo, where (xo, uo) = g' (xo, uo). Since G is a symmetry 
group, u = j(x) is also a solution to the system. Moreover, by the definition 
of the prolonged group action, (2.18), 

pr(n) g' (xo, u~n» = (xo, pr(n) (g. f)(xo» = (xo, u~n», 

hence the transformed point (xo, u~n» must again lie in [fA' This proves 
that [fA is an invariant subset of G, and the theorem follows. 0 

In order to appreciate the necessity of the local solvability condition in 
Theorem 2.71, we discuss a couple of examples. First consider the Nirenberg 
system (2.119). Since the only solutions near the origin are constants, the 
translational group (x, y, u, v) ~ (x, y + e, u, v) is a symmetry group. 
However, the infinitesimal criterion (2.120) does not hold; applying pr(1) v = 

Oy to the first equation we get hyvy, which is not zero as an algebraic 
consequence of the system. This group is also, for the same reason, a 
symmetry group of the over-determined system (2.117). However, 

pr(1) v(ux - yu) = -u, 

which does not vanish as an algebraic consequence of (2.117), and again 
the infinitesimal criterion (2.120) does not apply. However, we can get 
(2.120) to be both necessary and sufficient for G to be a symmetry group 
if we only require that it hold at points of local solvability: 

Theorem 2.72. Let A(x, u(n» = 0 be a system of differential equations of 
maximal rank. A local group of transformations G is a symmetry group of the 
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system if and only if for every point (xo, u~n») E 9'~ at which the system is 
locally solvable, we have 

pr(n) v(~v)(xo, u~n») = 0, V = 1, ... , I, 

for all infinitesimal generators v of G. 

The proof is immediate. o 

The Cauchy-Kovalevskaya Theorem 

For analytic systems of partial differential equations, the Cauchy-Kovalev
skaya theorem plays a pivotal role in the existence theory. Besides being 
the principal general existence result for solutions of such systems, this 
theorem also provides the key to the general theory of characteristics, which 
underlies any serious investigation of the behaviour of solutions of systems 
of partial differential equations. As we will see, the Cauchy-Kovalevskaya 
theorem also gives a proof of the local solvability of most analytic systems 
of differential equations. 

In its original form, the Cauchy-Kovalevskaya theorem treats the Cauchy 
problem on the initial hyperplane {t = to} for a system in Kovalevskayaform 

a = 1, ... , q. (2.121) 

Here (y, t) = (i, ... ,yP-l, t) are the independent variables, and u(n) denotes 
all partial derivatives of u with respect to both y and t up to order n except 
the derivatives U~t which appear on the left-hand side of (2.121). The Cauchy 
data for this system is given by 

aku'" 
at k (y,to)=hr(y), a=I, ... ,q, k=O, ... ,n-l, (2.122) 

where the hr are analytic functions on the hyperplane {t = to} for y in a 
neighbourhood of a point Yo E W- 1 • 

Theorem 2.73. Suppose the functions r", in the Kovalevskaya system (2.121) 
are analytic in their arguments, and the Cauchy data hk(y) in (2.122) are 
also analytic functions for y near Yo. Then there exists an analytic solution 
u = f(y, t) for the Cauchy problem (2.121), (2.122) defined for (y, t) in some 
neighbourhood of the point (Yo, to) on the hypersurface {t = to}. 

This theorem immediately proves the local solvability of the Kovalev
skaya system (2.121). 

Corollary 2.74. If ~ is an analytic system in Kovalevskayaform (2.121), then 
~ is locally solvable. 
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PROOF. Note that for the local solva!?illty problem for (2.121) we can 
prescribe the lower order t-derivatives u&n) at the initial point (Yo, to) in an 
arbitrary manner, the remaining n-th order derivatives, namely U~t,O' are 
then determined by the requirement that (Yo, to, u&n») be a solution to d. 
Given (Yo, to, u&n»), choose analytic functions hk:(y), k = 0, ... , n -1, a = 
1, ... , q, such that the y-derivatives 

O:%i:%n-k 

agree with the corresponding prescribed value uk:t,Jo, where uk:t,J == Dj(uk:t). 
(Again, hk:(y) could be an appropriate Taylor polynomial.) The correspond
ing solution u = fey, t) to the Cauchy problem (2.121), (2.122) ensured by 
the Cauchy-Kovalevskaya theorem then solves the local existence problem 
for d. Indeed 

aja~r(Yo, to) = ajh k: (yo) = uk:t,Jo 

for O:%k:%n-l, #J:%n-/c, while the n-th order derivatives a~f'X(yo, to) 
and U~t,O agree because both satisfy the given equations (2.121) at (Yo, to) 
with the same values of u&n). 0 

More generally, we can admit different order t-derivatives on the left
hand side, whereby a system will be in general Kovalevskaya form if 

~ 

anau a / at na = r a (t, y, u(n»), (2.123) 

in which n = max{n), ... , nq }, and ;;:) denotes all derivatives of each u{3 
up to order n{3 except the particular derivatives an"u{3 / atn" appearing on the 
left-hand side. The Cauchy problem (2.122) is the same except that for each 
a, k runs from ° to na - 1. All the results of this section, including Corollary 
2.74, remain valid for these more general Kovalevskaya forms; the proofs 
are only slightly more complicated, and are left for the reader to fill in the 
details. 

Characteristi cs 

The range of applicability of the Cauchy-Kovalevskaya existence theorem, 
and hence the local solvability theorem of Corollary 2.74, can be greatly 
extended by allowing the possibility of transforming a given system of 
analytic differential equations into a system in Kovalevskaya form (2.121) 
(or (2.123)) by a change of independent variables. To begin with, the system 

11 = 1, ... , q, 

must have the same number of equations as unknowns (dependent variables) 
to stand any chance of being transformed into a system of Kovalevskaya 
form, and we restrict our attention here to such systems. 
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It turns out that it suffices to consider changes of variable of the simple 
form 

t = I/! (x ), _ ( I P-I) _ ( I i-I i+1 P) y- Y, ... ,y - x , ... ,X ,x , ... ,X , (2.124) 

in which I/! is a smooth, real-valued function with nonzero gradient, V I/! (XO) ¥
o at the point Xo under investigation, and i is chosen so that a I/! (xo)/ axi ¥- 0 
so the change of variables (2.124) is locally invertible. Note that the initial 
hyperplane {t = to} in the (y, t) coordinates comes from the level set S = 
{x: I/!(x) = to} in the original coordinates, so the Cauchy problem in the 
x-coordinates consists of prescribing initial data on the hypersurface S. 
Under the change of variables (2.124), there is a corresponding system 

- (n) _ av(Y, t, U ) - 0, v = 1, ... , q, (2.125) 

involving y, t and derivatives of u with respect to y and t up to order n 
obtained by re-expressing the x-derivatives of u in terms of the y and t 

derivatives. We can apply the Cauchy-Kovalevskaya theorem to the trans
formed system (2.125) provided we can solve it for the !0h order t-deriva
tives U~t in terms of y, t and the remaining derivatives u(n). By the implicit 
function theorem, this is possible in a neighbourhood of a point (Yo, to, u&n)) 
provided the q x q matrix M with entries 

a, v = 1, ... , q, 

is nonsingular: det M ¥- O. 
Let us see what this matrix M looks like. If u~ is any n-th order 

x-derivative of u, then by the chain rule, 

where the omitted terms involve various n-th and lower order derivatives 
of u Q with respect to y and t except the key derivative U~t. Therefore, if 
we form the q x q matrix M(w) = Md(w; xo, u&n)) whose entries are the 
homogeneous polynomials 

a, v = 1, ... , q, (2.126) 

of degree n depending on W = (Wi> ••• , wp ), with W] == whwh ... Wjn' then 
the above matrix is obtained by evaluating M(w) at W = V I/!(xo). 

Definition 2.7S. Let a be an n-th order system of differential equations 
having the same number of equations as unknowns. Given a point (xo, u&n)) E 

Yd , form the q Xq matrix of polynomials (2.126). A nonzero p-tuple W is 
said to define a noncharacteristic direction (respectively characteristic direc
tion) to a at (xo, u&n)) if M(w) is nonsingular (respectively singular). A 
hypersurface S= {I/!(x) = c}, VI/! ¥- 0, is called noncharacteristic at (xo, u&n)) 
if W = V I/! (xo) determines a noncharacteristic direction there. 
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In particular, if the highest order derivatives in the system a(x, u(n» = 0 
occur linearly with coefficients only depending on x, then the matrix M(w) 
determining the characteristic directions depends only on xo, so we can 
omit reference to the particular solution u~n) and refer unambiguously to 
a characteristic or noncharacteristic direction at Xo itself. This is the case 
occurring most frequently in physical systems. 

Our earlier considerations show that we can apply the Cauchy-Kovalev
skaya theorem to the Cauchy problem provided the initial data lies on a 
noncharacteristic hypersurface. 

Theorem 2.76. If a(x, u(n» = 0 is an analytic system of differential equations 
and S is a noncharacteristic, analytic hypersurface for a at (xo, u~n», then 
there exists a local analytic solution to the Cauchy problem 

a(x, u(n» = 0, 

aku 
-k = hk(x), XE S, k=O, ... , n -1, 
an 

in a neighbourhood ofxo• Here the hk are analytic functions on S, and a/an 
denotes the normal derivative for S. 

Example 2.77. (a) In the case of the one-dimensional wave equation 

uti - Uxx = H(x, t, u, ux, u,), 

a direction w = ( T, g) is characteristic if and only if 

T2-e=0. 

We thus recover the familiar characteristic curves 

I/I(x,t)=t±x=k. 

Any curve not tangent to these lines can be used for valid Cauchy data. 
(b) The equations of linear isotropic elasticity are known as Navier's 

equations. In two dimensions they take the form 

(2JL + A)uxx + JLUyy+(JL + A)vxy = 0, 
(2.127) 

(JL + A)uxy + JLVxx + (2JL + A)vyy = 0, 

where A and JL are constants known as the Lame moduli. The 2 x 2 matrix 
M(g, .,.,) = M(w) determining the characteristics has the form 

M(g )=(2JL +A)e+JL.,.,2 (JL+A)g.,.,) 
,.,., (JL+A)g.,., JLe+(2JL+A).,.,2· 

Then w = (g, .,.,) is characteristic if and only if 

det M(g,.,.,) = (2JL + A)JL(e+ .,.,2)2= O. 
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Thus unless p, = 0 or 2p, + A = 0, in which case every direction is characteris
tic, there are no real characteristic directions to Navier's equations. Note 
that the case p, = 0, A = 1 yields the leading order terms in the not locally
solvable system (2.118), hence this latter system has every direction charac
teristic. 

Normal Systems 

Corollary 2.74 will provide an immediate solution to the local solvability 
problem for an analytic system provided we can find at least one noncharac
teristic direction to the system at the point (xo, u&n») of interest. As Example 
2.77(b) makes clear, not every system of partial differential equations 
satisfies this basic requirement, so we need to distinguish those systems 
which do. 

Definition 2.78. A system of q differential equations Il(x, u(n») = 0 in q 
dependent variables u = (u\ ... , u q ) is normal at the point (xo, u&n») E Y'/1 
if there exists at least one noncharacteristic direction w for 11 there. The 
system is normal if it is normal at each point of Y' /1. 

Theorem 2.79. A system of differential equations is normal at (xo, u&n») if and 
only if there is a change of variable (y, t) = X (x) transforming it into a system 
in Kovalevskaya form near (Yo, to) = x(xo). 

Corollary 2.80. If a system of differential equations is both analytic and normal 
at (xo, u&n») then it is locally solvable at (xo, u&n»). 

We just change variables and invoke Corollary 2.74 for the resulting 
Kovalevskaya system. Later we will see that Corollary 2.80 admits a con
verse! 

Prolongation of Differential Equations 

Definition 2.81. Let 

11 = 1, ... , I, 

be an n-th order system of differential equations defined by the vanishing 
of a smooth function 11: M(n) ~ ~I. The k-th prolongation of this system is 
the (n + k) -th order system of differential equations 
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obtained by differentiating the equations in .:l in all possible ways up to 

order k. In other words, .:l (k) consists of the (p + ~ -1) . I equations 

DJ.:lp(x, u(n+k») = 0, 

where 11 = 1, ... , I and J runs over all multi-indices of orders O:s; #J :s; k. 

For example, the first prolongation of the heat equation 

ut = Uxx 

is the third order system 

The second prolongation appends the additional fourth order equations 

Uxtt = Uxxxt , 

and so on. 

Proposition 2.82. If u = f(x) is a smooth solution of a system .:l(x, u(n») = 0, 
then it is also a solution to every prolongation of the system .:l (k)(X, u(n+k») = 0, 
k = 0,1,2, .... 

Definition 2.83. A system of differential equations is called totally nondegen
erate if it and all its prolongations are both of maximal rank and locally 
solvable. 

As we will see in a moment, any analytic system in Kovalevskaya form, 
and hence any normal analytic system, is always totally nondegenerate. 
Surprisingly, in the case of analytic systems with the same number of 
equations as unknowns, these are the only totally nondegenerate systems; 
if an analytic system is not normal, some prolongation of it is either not of 
maximal rank or not locally solvable. The Ceo case is more complicated, 
owing to the appearance of the Lewy phenomena of nonexistence. 

Theorem 2.84. An analytic system of differential equations 

11 = 1, ... , q, 

involving the same number of equations as dependent variables u 1, .•• , u q, is 
totally nondegenerate if and only if it is normal. 

PROOF. The Cauchy-Kovalevskaya theorem immediately proves that any 
normal system is totally nondegenerate. Indeed, by choosing a noncharac
teristic direction, we can assume that the system is in Kovalevskaya form 
(2.121). The k-th prolongation of such a system takes the form 

(2.128) 
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where J = (jlo ... ,j;) runs over all multi-indices with 1 ~jK ~ P -1, l+ i ~ k, 
DJ denotes the corresponding i-th order total derivative with respect to 
y = (y\ ... , yP-I), and U(n+I)/,J = DJ[U(n+I)/]. The right-hand side of (2.128) 
depends on derivatives U~/.K where m < n + I. We can therefore inductively 
solve for the derivatives U~/.K' m;;. n, in terms of y, I and derivatives UJ..L 

with j < n. Thus (2.128) is equivalent to a system of the form 

'" _ J,I (;;+k) u(n+I)/,J - r", (y, I, U ), (2.129) 
"""'-

in which 1+ #J ~ k and u(n+k) denotes all derivatives of U up to order n + k 
except those involving n or more I-derivatives. The maximal rank condition 
for A(k) follows easily since the submatrix of the full Jacobian matrix for 
(2.129), cf. Definition 2.30, corresponding to all the partial derivatives 

a ['" rJI] -a (3 u(n+I)/.J - .; , m;;. n, 
Urn/,K 

is the identity matrix. 
The local solvability of (2.129) follows from the Cauchy-Kovalevskaya 

theorem. We can specify the derivatives ~) at a point Yo, 10 arbitrarily; 
the values of the remaining derivatives in u~n+k) will then be determined 
by the prolonged system itself. Let h:;'(y), m = 0, ... , n -1, a = 1, ... , q, be 
analytic functions taking the prescribed values 

#J~n+k-m, 

at (Yo, (0)' Let U = f(y, t) be the analytic solution to the resulting Cauchy 
problem given by the Cauchy-Kovalevskaya theorem. Then 

for #J + m ~ n + k: for m < n this follows from the definition of h:;', while 
for m;;. n this follows since both pr(n+k) f(yo, to) and (Yo, to, u~n») satisfy 
the k-th prolongation of A at this point. Thus U = f(y, t) gives the solution 
to the local solvability problem for A at (Yo, to, u~n»). 

The proof of the converse in Theorem 2.84 rests on a beautiful result 
due to Finzi. 

Lemma 2.85. Suppose 

v = 1, ... , q, 

is an n-th order system of differential equations. Then A has no noncharacteris
tic directions at (xo, u~n») if and only if there exist homogeneous k-th order 
differential operators 

r!iJ v = L P~D}, v = 1, ... , q, 
#J=k 
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not all zero at (xo, u~n», such that at (xo, u~n» the combination 

q 
~ 9.O.:l ;;: Q(x u(n+k-l) 
i...J "V 0, 0 (2.130) 

v=l 

depends only on derivatives of u of order at most n + k - 1. 
Moreover, if there are no noncharacteristic directions for .:lfor all (x, u(n) 

in some relatively open subset [ttl.!' V, V open in M(n), then the differential 
operators 9.Ov depend smoothly on (x, u(n». In this case, (2.130) holds for all 
(x, u(n+k» E M(n+k) with project to a point (x, u(n» E [ttl. n V. 

The point of the lemma is the following. Ordinarily, if.:l is an n-th order 
system of differential equations and 9.0 1 , ••• , 9.Oq are k-th order differential 
operators, one would expect the linear combination L 9.Ov.:l v to depend on 
(n + k)-th order derivatives of the u's. However, in the case .:l has only 
characteristic directions, one can find certain nontrivial k-th order differen
tial operators 9.Ov such that the combination L 9.Ov.:lv depends on only 
(n + k -I )-st and lower order derivatives, and hence the condition L 9.Ov.:lv = 
0, which must hold for all solutions, provides an additional integrability 
condition on (n + k - 1)-st order derivatives of the u's which is not directly 
deduced from the (k-I)-st order prolongation .:l(k-l). Conversely, if a 
system has some nontrivial integrability conditions, Finzi's lemma implies 
that there cannot be any non characteristic directions for the system. We 
can now appreciate why the system (2.118) failed to have noncharacteristic 
directions: it is for the same reason that it is not locally solvable! The further 
ramifications of this result will be explored after we discuss the proof. 

PROOF OF LEMMA 2.85. According to Definition 2.75, the system .:l has only 
characteristic directions at a point if and only if the associated q x q matrix 
M(w) of n-th degree polynomials in w = (wt. ... , wp ) is singular for all 
values of w: 

A relatively easy result from linear algebra (see Exercise 2.3 1) says that this 
is true if and only if there exists a row vector u( w) = (u l ( w), ... , u q (w» ¥' 0 
of homogeneous polynomials in w such that 

u( w) . M (w ) ;;: 0 (2.131) 

for all w. In our case, suppose 

Uv(w)= L p~wJ. 
#J=k 

Then the coefficients P~ of the U v will serve as the coefficients of the 
operators 9.O v in (2.130). Indeed, it can easily be seen that if #J = k, 

DJ[.:lv(x, u(n»] = t L a.:l: U~K + ... , 
a=1 #K=n aUK 
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where U~K denotes the (n + k )-th order derivative DJ ( U';;.), and the omitted 
terms all depend on derivatives of orders at most n + k - 1. Thus 

for some well-defined Q depending on at most (n + k -l)-st order deriva
tives of u. On the other hand, the a-th entry of the product (2.131) of u 
and M is, by (2.126), 

q 

L L L 
v=l #J=k #K=n 

at (xo, u~n». Since U~K is also completely symmetric in the indices in 1, K, 
we conclude that at (xo, u~n», the leading summation in (2.132) vanishes, 
and hence (2.130) holds. The smooth dependence of the differential 
operators qjJp on (x, u(n» if there are no non-characteristic directions in any 
open subset of 9'A follows because ifM(w) = M(w; x, u(n» depends smoothly 
on the parameters (x, u(n», the polynomials u(w) = u(w; x, u(n» can also 
be chosen to depend smoothly on the same parameters. 

To prove the converse, it suffices to note that (2.130) can never occur 
for a system in Kovalevskaya form. Indeed any combination L qj)pAp with 
k-th order operators qjJp not all zero will always depend on (n + k)-th order 
derivatives, namely the k-th order derivatives of the U~I. Thus if A(x, u(n» = 0 
has a noncharacteristic direction at (xo, u~n», we can choose coordinates 
so that the system is in Kovalevskaya form, and hence (2.130) does not 
hold. 0 

Suppose a system of differential equations A satisfies the hypotheses of 
Lemma 2.85, so it is not normal at the point (xo, u~n». There are then 
integrability conditions of the form (2.130) in which some linear combina
tion of equations in the k-th prolongation A(k) depends on at most 
(n + k - 1 )-st order derivatives. At this stage, two distinct possibilities 
arise. 

(a) The integrability condition L qjJvAv = 0 vanishes at (xo, u~n» by virtue 
of the algebraic relations among the (n + k -l)-st and lower order 
derivatives already established by A (k-I), or 

(b) The integrability condition L qjJvAp = 0 is genuine, not being an 
algebraic consequence of A (k-I), and introduces a further relation among 
(n + k -l)-st and lower order derivatives. 

We formalize this dichotomy into a definition of under-determined and 
over-determined systems, respectively. 

Definition 2.86. Let A be an n-th order system of differential equations. Let 
(xo, u&n» be initial values satisfying the system. 
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(a) d is over-determined at (xo, u&n» if there exist homogeneous k-th order 
differential operators fig!, •.• , figq for some k;;?; 0, not all zero, such that 
the linear combination L figpd p = Q of equations in d(k), at the point 
(xo, u&n», depends only on derivatives of u of order at most n + k -1, 
and the linear combination Q does not vanish as an algebraic con
sequence of d (k-l). 

(b) d is under-determined at (xo, u&n» if (i) there exists at least one set of 
homogeneous k-th order operators fig!, ••. , figq, not all zero, with 
L figp d v = Q depending on at most (n + k -1) -st order derivatives at 
the point xo, and (ii) whenever fig!, .•• , figq satisfy the conditions in 
part (i), the resulting Q vanishes as an algebraic consequence of the 
previous prolongation d (k-l). 

More succinctly, an over-determined system is one in which there are 
nontrivial integrability conditions. In this case, some prolongation d (k-l) 
is not locally solvable since we can find a point (xo, u&n+k-l) E g'd(k-1) which 
does not satisfy the new integrability condition introduced by d(k). On the 
other hand, an under-determined system is one in which the equations in 
some prolongation d (k) are algebraically dependent, so the maximal rank 
condition cannot hold. In either case, the system is not totally nondegenerate. 
The third type of system, the normal systems, are then in a very definite 
sense precisely determined, and hence (in the analytic case) are the only 
totally nondegenerate systems; all others are either under- or over-deter
mined. This completes the proof of the Theorem 2.84. 0 

Example 2.S7. (a) Consider the second order system (2.118). As it stands 
the system is over-determined since 

Dy(uxx + vxy + vx) - DAuxy + Vyy - ux) = vxy + uxx , 

which depends on second order derivatives, but does not vanish as an 
algebraic consequence of (2.118). On the other hand, if we omit the lower 
order terms, the system 

uxy + Vyy =0, 

which corresponds to Navier's equations (2.127) when J..L = 0, A = 1, is under
determined, since the combination 

Dy(uxx + vxy ) - Dx(uxy + Vyy ) == 0 

vanishes identically. In this latter case the general solution 

u(x, y) = 4Jy(x, y) + ex, V(x, y) = -4JAx, y), 

depends on an arbitrary function 4J(x, y). As a matter of fact, this holds 
for every under-determined system d-there is at least one arbitrary function 
depending on all the independent variables in the form of the general 
solution. In this case the Cauchy problem does not uniquely determine the 
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solution, whereas in the over-determined case there does not, in general, 
exist a solution to the Cauchy problem. Thus for analytic systems, the 
normal systems are again precisely determined, here from the viewpoint of 
the Cauchy problem; over- or under-determined systems are characterized 
by their lack of existence or uniqueness respectively. 

NOTES 

The system of partial differential equations for the invariants of a local 
group of transformations pre-dates Lie's work, having arisen in the problem 
of Pfaff. Its integration was studied by Jacobi, Mayer, Darboux, Lie 
and, finally, Frobenius, [1], who proved the general result on the existence 
of functionally independent solutions. See Forsyth, [1; Vol. 1], or 
Caratheodory, [1], for a discussion of the classical approaches to this 
problem. The connection with the corresponding characteristic system of 
ordinary differential equations is also classical; Kamke, [1; vol. 2, § D4] 
gives a treatment closest in spirit to that given here, along with other methods 
of integration-see also Ince, [1; § 2.7]. 

The concepts of functional independence and dependence are classical, 
but, surprisingly, the standard proofs of the basic theorem 2.16 are remark
ably deficient, usually assuming that the rank of the differential d{ is 
constant. A modem proof of this result, not requiring extra hypotheses, can 
be based on a theorem of A. B. Brown, [1] (see also Milnor, [1; p. 11]) 
that states that the set U(x): x EM, rank d{ix < k} of critical values of a 
smooth map {: M ~ IRk contains no open subset of IR\ together with a 
theorem of Whitney (see Kahn, [1; Theorem 1.5]) that states that any closed 
subset K c IRk can be given as the set of zeros, K = {z: F(z) = O}, of some 
smooth function F: IRk ~ IR. To prove Theorem 2.16, then, assuming rank 
d{ < k everywhere, we set K = {[ 0], where U c M is any open set with 
compact closure, and choose F as in Whitney's theorem. Brown's theorem 
says that F does not vanish on any open subset of IRk, and hence satisfies 
the requirements of Definition 2.15 for functional dependence. (This simple 
proof does not, to my knowledge, appear in the literature!) 

In the case of analytic systems, the maximal rank condition for Theorem 
2.8 can be relaxed to hold only "almost everywhere" on the subvariety ElF, 
allowing the possibility of singularities. This result, which is not hard to 
prove, does not, however, seem to generalize to the Coo case. A similar 
generalization for Theorem 2.31 can thus also be proved for analytic systems 
of differential equations, allowing some singularities in the subvariety Ell>.. 

Lie originally formulated his theory of continuous groups expressly for 
the study of differential equations, but was well aware of the applicability 
of his powerful infinitesimal method to the study of invariants and algebraic 
equations. See Lie, [4], for the algebraic and geometric side of his work. 
Historical accounts of Lie's work and influence appear in Hawkins, [1], 
and Wussing, [1; § 111.3]. Most of Lie's work on ordinary differential 
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equations appears in his collected papers; the book [5] does not really do 
justice to the full extent of his discoveries. The key to Lie's approach to 
integrating higher order ordinary differential equations was his complete 
classification (up to change of variable) of all transformation groups on the 
plane 1R2. Using this he was able to exhaustively list all possible reductions 
in order for a single ordinary differential equation; see Lie, [3], for these 
results, along with many explicit examples of interest. Lie's results in [3] 
include the results of Section 2.5 on multi-parameter symmetry groups of 
higher order ordinary differential equations; all of the other treatments in 
the literature, including Cohen, [1], Ince, [1; Chap. 3], Markus, [1], and 
Ovsiannikov, [3; § 8] only do the case of one- and two-parameter groups. 
Theorem 2.68 on solvable symmetry groups of first order systems of ordinary 
differential equations, though, is due to Bianchi, [1; § 167]; see also Eisen
hart, [2; § 36]. This result clearly includes the corresponding Theorem 2.64 
on higher order equations, but I was unable to find an explicit statement 
of the latter result in the literature. 

Most of Lie's work on symmetry groups of partial differential equations 
was concerned with linear systems of first order equations, which, by the 
method of characteristics, are essentially equivalent to systems of ordinary 
differential equations. However, in [2] and [6], Lie did look into symmetries 
of higher order partial differential equations. In [2; Part 1], Lie computes 
the symmetry groups of a number of second order partial differential 
equations in two independent variables, including the heat equation whose 
symmetry group appears at the end of § 13. This group was recomputed by 
Appell, [1], and, in the higher dimensional case, Goff, [1]. Lie's work on 
higher order partial differential equations, however, was not developed at 
all by other researchers, one possible reason being that, in contrast to the 
case of ordinary differential equations, knowledge of the symmetry group 
of a system of partial differential equations did not aid one in determining 
the general solution to the system. (One intriguing possibility, though, is 
the "group splitting method" of Vessiot, [1]; see Ovsiannikov, [3, § 26], for 
a modem presentation.) The only other early work on symmetries of partial 
differential equations of which I am aware is the work of Bateman, [1], 
and Cunningham, [1], and Carmichael, [1], on the symmetries of the wave 
equation and Maxwell's equations. Apart from this, and despite the avail
ability of Noether's theorem after 1918, work on the theory and applications 
of symmetry groups of partial differential equations came to a complete 
standstill; it was not until the appearance of Birkhoff's book, [2], on 
hydrodynamics, that group methods in the study of the important partial 
differential equations of mathematical physics began to revive. Under the 
leadership of Ovsiannikov, [1], [2], in the late 1950's and 1960's, the Soviet 
school made great progress in the study of symmetry groups of many of 
these systems. Interest in the methods in the West grew through the works 
of Bluman and Cole, [1], [2], and the books of Ames, [1], resulting in a 
great surge of research activity in these areas in the past 15 years. 
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The basic method for computing symmetry groups, using the prolonga
tion formula for their infinitesimal generators, dates back to Lie. Indeed, 
the recursive form (2.44) of the prolongation formula appears in Lie, [2; 
§ 11], [3; § 1]; see also Eisenhart, [2; equation (28.12)]. The explicit formula 
(2.39), though, first appears in Olver, [2]. The alternative form (2.50) using 
the characteristic of such a vector field will be discussed in more detail in 
Chapter 5; Seshadri and Na, [1; § 3.2(e)] use it as an alternative method 
for computing ordinary symmetries. In this book, I have chosen to adopt 
an extremely simplified version of the theory of jets, due in its modern form 
to Ehresmann, [1], [2], which serves to clearly delineate the geometric 
foundations of this prolongation theory. A readable account of the more 
abstract, differential-geometric approach to jets can be found in Golubitsky 
and Guillemin, [1]; see also Section 3.5. Needless to say, all the results 
stated here have many alternative restatements and reformulations, using 
more and more technical and abstract mathematical machinery, a pointless 
exercise enjoyed by a number of researchers. The net result, of course, is 
always the same no matter how one tries to dress it up; the unfortunate 
reader of these versions comes away thoroughly confused, learning nothing 
of the ease and efficacy of applying this theory to concrete problems. I hope 
that this book has, for the most part, avoided such pitfalls, and that the use 
of local coordinates and illustrative examples will genuinely educate the 
reader interested in applications. 

By now, the literature on examples of explicit computations of symmetry 
groups of specific systems of differential equations has grown too 
voluminous to attempt to list here. The reader can find references in the 
book ofOvsiannikov, [3], as well as an extensive, but by no means complete, 
bibliography in Steinberg, [2]. The calculation of the symmetry group of 
the Euler equations is due to Buchnev, [1]. The derivation of the Hopf-Cole 
transformation (actually originally due to Forsyth, [1; Vol. 6, p. 102]-see 
also Whitham, [2; Chap. 4]) using group-theoretic methods can be found 
in Kumei and Bluman, [1], along with generalizations. The actual computa
tions for finding the symmetry group of a given system of differential 
equations are quite mechanical, and are thus amenable to implementation 
on a computer using a symbolic manipulation program. Several versions 
are being developed, including those of Rosenau and Schwarzmeier, [1], 
Steinberg, [1], Rosencrans, [2], and Champagne and Winternitz, [1], in 
MACSYMA, and Schwarz, [1], in REDUCE. There are also references in 
the Russian literature to such programs; see Ovsiannikov, [3; p. 89] for a list. 

There are several alternative approaches to the theory of symmetry groups 
of differential equations worth mentioning. For linear equations, Kalnins, 
Miller, Boyer and others (see Miller, [2], [3]) have emphasized the use of 
differential operators rather than vector fields to determine symmetries. The 
relation between their method and Lie's is made clear in Section 5.2. Ames, 
[1], proposed a method based on the group transformations themselves, 
circumventing the introduction of the infinitesimal generators, but this seems 
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to have limited applicability. Seshadri and Na, [1] make the point that one 
can considerably simplify the computation of symmetries if one imposes, 
a priori, restrictions on the form of the group, e.g., that it be projectable or 
a scaling group. An approach based on differential forms was proposed by 
Harrison and Estabrook [1], and developed by Edelen, [1], who also 
describes symbolic manipulation programs based on this method; see also 
Gragert, Kersten and Martini, [1]. The results are the same as the present 
approach, but their method suffers the drawback of having to first re-express 
a system of partial differential equations as the integrability conditions for 
a set of differential forms before one can proceed to the computation of 
symmetries. Nevertheless, the method can be useful, especially for con
structing Backlund transformations. An extension of the present infinitesimal 
method to free boundary problems can be found in Benjamin and Olver, [1]. 

The more technical matters raised in the final section of this chapter 
have only recently been seen to be of importance for symmetry group 
methods. The connection between existence of solutions and the theory of 
characteristics dates back to the work of Kovalevskaya, [1]. (The present 
development of this theory most closely parallels the presentation in Petrov
skii, [1].) Bourlet, [1], was the first to demonstrate the existence of systems 
which could not be solved using the Cauchy-Kovalevskaya theorem in any 
direction, but did not pursue the matter. Subsequently a number of research
ers in the last century, including Delassus, [1], and Riquier, [1], developed 
quite elaborate existence theorems for systems of partial differential 
equations generalizing the Cauchy-Kovalevskaya theorem. However, it was 
not until Finzi, [1], proved the important Lemma 2.85 (see also Hadamard, 
[1; § 25a]) that the true connections between solvability and integrability 
conditions became evident. The consequent definitions of over- and under
determined systems proposed here are new; see also Olver, [11]. Normality 
is a more classical concept; see also Vinogradov, [4], for a more technical 
version of this definition. Although there are definite connections between 
our definitions and the Spencer, Goldschmidt, et al. theory of overdeter
mined systems of partial differential equations, the present terminology is 
more precise. Comparing with the definitions in Pommaret, [1, § V.6.6], 
(which are for linear systems only) we find Pommaret's underdetermined 
systems to always have fewer equations than unknowns, whereas his over
determined systems include both the under- and over-determined systems 
of Definition 2.86. These issues are also closely related to questions on the 
"degree of determinancy" of a system of partial differential equations, which 
arise in relativity, and were discussed, but never fully resolved, by Cartan 
and Einstein, [1]. The question of local solvability of systems of partial 
differential equations is closely connected with the general Riquier existence 
theory, see Ritt, [1; Chap. 8] for a discussion. Nirenberg, [1; p. 15] proves 
the local solvability of fairly general types of elliptic systems. Nonsolvability 
due to integrability conditions was recognized in the last century; the Lewy 
type of nonsolvable Coo systems is much more recent. See Lewy, [1], and 
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Nirenberg, [1; p. 8] for examples. Applications of these results to symmetry 
group theory have appeared previously in Olver, [2], [7], [11], and 
Vinogradov, [5]. 

EXERCISES 

2.1. Let G be a local group of transformations acting on the manifold M. 
(a) Prove that a subset yc M is G-invariant if and only if Y=U (J is a 

union of orbits of G. 
(b) Prove Proposition 2.14. 
(c) Prove that a function F: M -,>IR' is G-invariant if and only if F is constant 

on the orbits of G. 
(d) Prove that the only invariants of the irrational flow on the torus are the 

constant functions. 

2.2. Let G be the one-parameter group of transformations of 1R3 generated by the 
vector field v of Exercise 1.11. Prove that G has only one independent global 
invariant. 

2.3. Let G act on the manifold M, and let He G be a subgroup. Prove that if 
Y c M is a (locally) H- invariant subset, and g EGis defined on all of Y, then 
g' Y = {g. x: x E Y} is (locally) invariant under the conjugate subgroup 
gHg- 1 = {ghg-I: hE H}. 

2.4. A system of submanifolds of M is called G-invariant if the group elements g 
map one submanifold to another submanifold in the system. For example, the 
set of parallel lines {y = kx + b}, k fixed, is invariant under any translation 
group of 1R2. Prove that the level sets of a function F: M -,>IR' are invariant 
under the transformation group G if and only if v(F) = H(F) for every 
infinitesimal generator v of G, where H, depending on v, is some function 
defined on the range of F. (Eisenhart, [2; p.82]). 

2.5. (a) Prove the local version of Proposition 2.10. 
(b) Prove the global version using a partition of unity-see Kahn [1; Theorem 

1.4]. 
(c) Prove Proposition 2.11. (Hint: Use Theorem 1.8.) 
(d) Prove that if Rj(x), i = 1, ... , p, are smooth, then 

P . p. 
I Rj(x)(x'-cj)= I ajx'+b 
i=1 i=1 

is an affine function of x if and only if Rj(x) = aj + Sj(x), where 

or, equivalently, 

where Sjj = -Sjj. 

P 

I Sj(x)(x j - cJ == 0, 
i=l 

P 

Sj(x) = I Sj/x)(xj - c) 
j~1 
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2.6. Let X = IR, U = IR and consider the one-parameter group 

g.: (x, u)>-+ (x cos(re) - u sin(rE), x sin(rE) + u cos(rE », 
where r2 = x 2 + u2• Let u = f(x) be a function defined for all x E IR. Prove that 
for any E "" 0, the transformed function i1 = g • . f(x) is not a globally defined 
function for i E IR. How does this affect our construction of the prolonged 
group action? 

2.7. Find the defining equations for the symmetry group of the nonlinear wave 
equation u, = uUx and determine some particular symmetry groups. Do your 
results change if the coefficient of Ux is replaced by feu) for some function 
f? (See also Example 5.7.) 

2.8. The Fokker-Planck equation is 

Find the symmetry group and interpret geometrically. Use the group transfor
mations to determine some particular solutions to this equation. (Bluman and 
Cole, [2; § 2.10]). 

2.9. Find the symmetry group of the telegraph equation UII = Uxx + u. Compare this 
group with that of the equivalent first order system u, + Ux = V, v, - Vx = u. 

2.10. Groups of higher order equations and their equivalent first order systems are 
not always comparable. For instance, compute the symmetry group of the 
two-dimensional wave equation UII = uxx , and compare this with the symmetry 
group of the equivalent system u, = v, Ux = w, v, = wx , Vx = WI' What about the 
two-dimensional Laplace equation? (Olver, [2], Ibragimov, [1; § 17.1]). 

*2.11. Prove that the symmetry group (2.65) of the two-dimensional wave equation 
(omitting the trivial linear symmetries u>-+ Au + a(x, t» is locally isomorphic 
to the group SO(3,2) of linear isometries z>-+ Rz of IRs with metric (dZ1)2 + 
(dZ2)2+(dz3 )2_(dz4 )2_(dzs)2. (See Exercise 1.29.) (Miller, [3; p. 223]). 

2.12. Find the symmetry group of the m-dimensional heat equation u, = J1u, x E IRm. 
How does it compare with the one-dimensional case? (Goff, [1].) 

2.13. Discuss the symmetry group of the Helmholtz equation J1u + Au = 0 for A a 
fixed constant, x E 1R3. (Miller, [3; § 3.1].) 

2.14. Discuss the symmetry group of the biharmonic equation J12 u = J1(J1u) = 0, 
x E IRm. How is it related to the symmetry group for Laplace's equation? 

2.15. Prove that the symmetry group for the Navier-Stokes equations 

au 
-+u' Vu = -Vp+ IIJ1U at ' v· u=O, 

where u E 1R2 or 1R3, II is the viscosity, is the same as that of the correspond
ing system of Euler equations (11=0). (Buchnev, [1], Lloyd, [1]). 

*2.16. (a) Maxwell's equations for the electric field E E 1R3 and the magnetic field 
B E 1R3 take the vector form 

E, =V xB, B, = -v xE, V· E=O, V· B=O. 

Discuss the symmetries of this system. 
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(b) An equivalent formulation is obtained by introducing the vector potential 
A with B = V x A, and noting that V x (At + E) = 0, hence there exists a 
scalar potential cjJ satisfying At + E = V cjJ. The resulting system is 

aA 
V ·-=tlcjJ. 

at 

How does the symmetry group of this latter system compare with the 
previous form of Maxwell's equations? (Ovsiannikov, [3; p.394], Fush
chich and Nikitin, [1]). 

*2.17. Perform a symmetry analysis of Navier's equations (2.127) of linear isotropic 
elasticity. Discuss the difference between the two- and three-dimensional cases. 
Do your results depend on the values of the Lame moduli A and f.L? (Olver, 
[9]). 

2.18. Group Classification. Often a system of differential equations arising from a 
physical problem will involve some arbitrary functions whose precise forms 
depend on the specific physical system under consideration. For example, the 
general equation of nonlinear heat conduction takes the form 

where K (u) depends on the particular type of conductor being modelled. 
There are often good physical motivations for studying those equations in 
which the form of the arbitrary functions provides a larger symmetry group 
than would otherwise be applicable. The problem of determining such func
tions is known as the group classification problem. Perform a group classification 
on the nonlinear heat conduction equation by proving: 
(a) If K is arbitrary (i.e. not any of the following special forms), then (*) 

has a three-parameter symmetry group. 
(b) If K(u)=(au+b)m for m;e-t a;eO, the symmetry group is four-

dimensional. 
(c) For K(u) = ce"'u, there is a four-parameter group. 
(d) For K (u) = (au + b) -4/3, a ;e 0, there is a five-parameter group. 
(e) For K(u) constant the group is infinite dimensional. 
(Ovsiannikov, [3; pp. 68-73]; see also Lie, [2].) 

2.19. Consider a first order homogeneous linear partial differential equation 

P - au 
It'(X)-i=O 
i=1 ax 

and let v = I t"i(x)a i be the corresponding vector field. 
(a) Show that w = I T/ i (x )a i generates a one-parameter symmetry group if and 

only if [v, w] = yv for some scalar-valued function y(x). 
(b) Suppose p = 2. Show that if w generates a nontrivial symmetry group, 

meaning w;e A v for some function A (x), then we can find the general 
solution to (*) by quadrature (provided we know the invariants ofw). 

(c) What about p""3? 
(Lie, [5; p. 434]). 
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2.20. Prove that the system Ux = 0, u y + xUz = 0 is not locally solvable. Prove that 
the group generated by v = xa z is a symmetry group, but v does not satisfy the 
infinitesimal criterion (2.120). 

*2.21. Suppose the differential equation P(x, u(n») = 0, x E IRP, U E IR, admits an 
infinite-dimensional symmetry group with generators p(x)a u where p is an 
arbitrary solution to a linear differential equation ~[p] = O. Prove that P is 
equivalent to a nonhomogeneous version of the same equation: ~[u] = f(x). 
(Kumei and Bluman, [1]). 

*2.22. (a) Prove that a differential equation P(x, u(n») = 0 is equivalent to a linear 
differential equation ~[u] = f(i) under a change of variables x = E(i, Ii), 
u = <I>(i, 17) if and only if it admits an infinite-dimensional symmetry group 
with generators of the form 

(_( __ ) ( __ )){aE a a<I> a} 
v = p ~ x, u ,<I> x, u ----:; --:+----:; --: , 

au ax au au 

where p(x, u) is an arbitrary solution to a linear differential equation. 
(Hint: Change variables and use the previous exercise.) 

(b) Discuss our derivation of the Hopf-Cole transformation in Example 2.42 
in light of this result. 

(c) Apply this technique to linearize the Thomas equation 

which arises in the study of chemical exchange processes. 
(d) Apply this technique to the potential form u, = U~2uxx of the nonlinear 

diffusion equation v, = DxCv-2vx ) of importance in porous media flow 
and solid state physics. 

(Kumei and Bluman, [1], Whitham [2; p. 95], Rosen, [1], Fokas and Yortsos, 
[1], Bluman and Kumei, [1]). 

*2.23. Two evolution equations, u, = P(x, u(n») and Vs = Q(y, vIm»), are said to be 
related if there exists a change of variables 

t= T(s,y), x = E(s, y), u = <I>(s, y, v) 

changing one into an equation equivalent to the other. 
(a) Prove that if u, = P is related to Us = Q, then 

a T a aE a a<I> a v=--+--+-
as at as ax as au 

is a symmetry of u, = P. 
(b) Prove that if 

a a a 
v = ret) -+ ~(t, x) -+ c/J(t, x, u)-

at ax au 

is a symmetry of u, = P, then there is a related evolution equation Vs = Q 
with v = as in the new coordinates. (In fact, for a large class of evolution 
equations, (*) is the most general symmetry, so we have a one-to-one 
correspondence between related evolution equations and symmetries.) 
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(c) Find a transformation relating the Korteweg-de Vries equation u, = 

Uxxx + uUx and the equation Vs = Vyyy + VVy + 1. (Kalnins and Miller, [2]). 

2.24. Let a E IR. Find the most general first order ordinary differential equation 
invariant uJlder the scaling group (x, u) ~ (Ax, A au), A > O. How are these 
equations solved by quadrature? 

2.25. Prove that the second order equation Uxx = xu + tan( ux ) has no continuous 
symmetry groups! (Cohen, [1; p. 206]). 

2.26. (a) Prove that the symmetry group of the equation Uxx = 0 is eight-dimensional, 
generated by 

xuax + u2au , 

x 2ax + xuau , 

Prove that the corresponding group is a subgroup of the projective group 
in the plane, namely, 

( ) ( ax + bu + e dx + eu + f) 
x,u ~ , , 

ax + f3u + 'Y ax + f3U + 'Y 

where af3 - ba 7f6 0, df3 - ea 7f6 O. Interpret these transformations geometri
cally. 

(b) Prove that the symmetry group of dnu/dx n =0 is (n+4)-dimensional. 
(Lie, [3], Markus, [1]). 

*2.27. Prove that a single n-th order ordinary differential equation has at most an 
(n + 4)-parameter symmetry group for n ~ 2. (Lie, [5], Markus, [1]). 

2.28. Prove that SL(2) is not a solvable Lie group. How about SO(3)? 

2.29. Consider the ordinary differential equation ~: u; - 4u = O. 
(a) Prove that ~ is of maximal rank everywhere. 
(b) Prove that the fifth prolongation ~ (5) is not of maximal rank. In particular, 

u;xx = 0 is a combination of the equations in ~ (5), but Uxxx = 0 is not. 
(Ritt, [1; p.79]). 

*2.30. Equations Invariant under "Nonloeal Symmetries". Lest the reader think that 
all methods for integrating ordinary differential equations reduce to the invari
ance of the equation under some symmetry group of the type presented here, 
we offer the following cautionary problem. 
(a) An exponential vector field is a formal expression of the form 

v* = eI P(x.u) dx (g(X, u) a: + cf>(x, u) aaJ, 

where J P(x, u) dx is, formally, the integral of the function P(x, u), once 
we choose a function u = f(x). Thus 

Dx [f P(x, u) dXJ = P(x, u), 

and so on. Substituting v* into the prolongation formula (2.50) (with g 
replaced by eI Pdx g, cf> by eI Pdx cf», prove that 

pr(n) v* = eI P(x,u) dx • yen), 
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where v(n) is an ordinary vector field on M(n). For example, ifv* = eI u dx au, 
then 

n a 
pr(n) v* = L D~[ eI u dx] -

k~O aUk 

= eI u dX[a u + ua ux + (ux + u2)au= + ... ]. 

(b) Prove that one can choose differential invariants for an exponential vector 
field of the form 

y = 11 (x, u), w = ~(x, u, ux ), n = 1,2, ... 

just as for an ordinary vector field. What are the third order differential 
invariants of eI u dx au? 

(c) Prove that an ordinary differential equation d(X, u(n» = 0 which is 
invariant under an exponential vector field: pr(n) V*(d) = 0 whenever d = 0, 
can be reduced in order by one. Use this to reduce the equation 

to a first order ordinary differential equation. 
(d) Conversely, prove that if d can be reduced in order by one by setting 

v = y(x, u, ux ), then d is invariant under the exponential vector field 

[ f ay/au ] a v*=exp - ---dx -. 
ay/aux au 

(e) How might these symmetries arise in practice? Consider the "wrong" 
reduction procedure used in Example 2.62 to obtain (2.109). We would 
like to say that the other symmetry v of (2.108) remains a symmetry of 
(2.109). However, pr(1) v = xau +a ux = x(ay + az ) is not a well-defined vector 
field in the (y, z)-coordinates. Prove that prO) v is an exponential vector 
field in these coordinates. (Hint: Show x = exp(J Z-I dy», and, moreover, 
remains a symmetry of (2.109). Use this information to complete the 
integration of (2.108). 

2.31. Let M(w) be a q x q matrix of homogeneous n-th order polynomials in w. 
Prove that det M(w) = 0 for all w if and only if there is a vector a(w) of 
homogeneous polynomials such that M(w)a(w) =0 for all w. What is the 
minimal degree of the polynomials required for a? Generalize to the case 
when the polynomials in M are homogeneous, but not all of the same degree. 
(Finzi, [1 D. 

2.32. Is a system of evolution equations always normal? 

2.33. Let dy(X, u(n», 11= 1, ... , I, be a totally non degenerate system of differential 
equations. Prove that a function Q(x, u(m» = 0 vanishes for all solutions 
u = f(x) to d if and only if there exist differential operators ffi y = 
L P~(x, u(m»D], 11= 1, ... , I, such that Q = L y ffiyd y for all functions u = 

f(x). (Hint: Use Proposition 2.10.) 



CHAPTER 3 

Group-Invariant Solutions 

When one is confronted with a complicated system of partial differential 
equations arising from some physically important problem, the discovery 
of any explicit solutions whatsoever is of great interest. Explicit solutions 
can be used as models for physical experiments, as benchmarks for testing 
numerical methods, etc., and often reflect the asymptotic or dominant 
behaviour of more general types of solutions. The methods used to find 
group-invariant solutions, generalizing the well-known techniques for 
finding similarity solutions, provide a systematic computational method for 
determining large classes of special solutions. These group-invariant sol
utions are characterized by their invariance under some symmetry group 
of the system of partial differential equations; the more symmetrical the 
solution, the easier it is to construct. The fundamental theorem on group
invariant solutions roughly states that the solutions which are invariant 
under a given r-parameter symmetry group of the system can all be found 
by solving a system of differential equations involving r fewer independent 
variables than the original system. In particular, if the number of parameters 
is one less than the number of independent variables in the physical system: 
r = p -1, then all the corresponding group-invariant solutions can be found 
by solving a system of ordinary differential equations. In this way, one reduces 
an intractable set of partial differential equations to a simpler set of ordinary 
differential equations which one might stand a chance of solving explicitly. 
In practical applications, these group-invariant solutions can, in most 
instances, be effectively found and, often, are the only explicit solutions 
which are known. 

This chapter is organized so that the applications-oriented reader can 
immediately learn the practical implementation of the method of construct
ing group-invariant solutions without having to delve into the theoretical 
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foundations needed to justify the method. Section 3.1 outlines the method, 
based on the construction of invariants for the given group action. This is 
illustrated in Section 3.2 by a number of interesting examples, including 
the heat equation, the Korteweg-de Vries equation and the Euler equations 
of ideal fluid flow. Further examples are indicated in the exercises at the 
end of the chapter as well as the cited references. The third section deals 
with the problem of classifying group-invariant solutions. Since there are 
almost always an infinite number of different symmetry groups one might 
employ to find invariant solutions, a means of determining which groups 
give fundamentally different types of invariant solutions is essential for 
gaining a complete understanding of the solutions which might be available. 
Since any transformation in the full symmetry group will take a solution 
to another solution, we need only find invariant solutions which are not 
related by a transformation in the full symmetry group. This classification 
problem can be solved by looking at the adjoint representation of the 
symmetry group on its Lie algebra, and includes an analogous classification 
of the different subgroups of the full symmetry group. 

The remaining two sections of this chapter are devoted to a rigorous 
presentation of the theoretical basis of the group-invariant solution method 
and can safely be omitted if one is only interested in applying these 
techniques. A rigorous, global geometrical setting for these results is pro
vided by the quotient manifold of a manifold under some regular group of 
transformations. Each point on the quotient manifold will correspond to 
an orbit of the group, so the quotient manifold has, essentially, r fewer 
dimensions where r is the number of parameters in the group. Group
invariant objects on the original manifold will have natural counterparts 
on the quotient manifold which serve to completely characterize them. In 
particular, a system of partial differential equations which is invariant under 
the given transformation group will have a corresponding reduced system 
of differential equations on the quotient manifold, the number of indepen
dent variables having thereby been reduced by r. Solutions of the reduced 
system will correspond to group-invariant solutions of the original system. 
The one complicating detail in this method is that even when the original 
manifold is an open subset of some Euclidean space, the quotient manifold 
is not in any natural wayan open subset of a "reduced" Euclidean space, 
so our earlier construction of jet spaces and symmetry groups is not immedi
ately applicable. At this point there are two routes available. The more 
concrete avenue of attack would be to restrict to suitably smaller open 
subsets of Euclidean space, thereby forcing the quotient manifold to also 
be the subset of some Euclidean space through a choice of new independent 
and dependent variables on it. However, in this approach, constructions 
become very unpleasantly coordinate-dependent and lose much of their 
innate simplicity. The more abstract approach, and the one adopted here, 
is to generalize our construction of jet spaces, prolongations and differential 
equations to arbitrary smooth manifolds. This is done by "completing" the 



188 3. Group-Invariant Solutions 

ordinary jet spaces so as to include "functions" determined by arbitrary 
p-dimensional submanifolds, which may be multiple-valued or have infinite 
derivatives. Although this method requires a fair amount of abstraction and 
mathematical sophistication just to state the definitions, the principal results 
on group-invariant solutions retain their strong geometrical flavour and, as 
far as the proofs are concerned, become practically trivial. The more techni
cally complicated local coordinate picture is then straightforwardly derived 
from this abstract reformulation of the reduction procedure. 

3.1. Construction of Group-Invariant Solutions 

Consider a system of partial differential equations a defined over an open 
subset M e X x U = IRP x IRq of the space of independent and dependent 
variables. Let G be a local group of transformations acting on M. Roughly, 
a solution u = f(x) of the system is said to be G-invariant if it is left 
unchanged by all the group transformations in G, meaning that for each 
g E G, the functions f and (provided it is defined) g. f agree on their 
common domains of definition. For example, the fundamental solution 
u = log(x2 + y2) for the two-dimensional Laplace equation Uxx + Uyy = 0 is 
invariant under the one-parameter rotation group SO(2): (x, y, u)~ 
(x cos 0 - y sin 0, x sin 0 + y cos 0, u), acting on the independent variables 
x, y. More rigorously, we can define a G-invariant solution of a system of 
partial differential equations as a solution u = f(x) whose graph rf = 
{(x.J(x))}e M is a locally G-invariant subset of M; see Definition 2.12. 

If G is a symmetry group of a system of partial differential equations a, 
then, under some additional regularity assumptions on the action of G, we 
can find all the G-invariant solutions to a by solving a reduced system of 
differential equations, denoted by M G, which will involve fewer indepen
dent variables than the original system a. To see how this reduction is 
effected, we begin by making the simplifying assumption that G act project
ably on M. This means that the transformations in G all take the form 
(x, ii) = g. (x, u) = (Eg(x), cI>g(x, u)), i.e. the changes in the independent 
variables x do not depend on the dependent variables u. (More generally, 
nonprojectable group actions will be treated subsequently, but the basic 
technique is the same.) There is then a projected group action x = g. x = 
Eg(x) on an open subset Oe X. We make the regularity assumption that 
both the action of G on M and the projected action of G on 0 are regular 
in the sense of Definition 1.26, and that the orbits of both of these actions 
have the same dimension s, where s is strictly less than p, the number of 
independent variables in the system. (The case s = p is fairly trivial, while 
if s > p, no G-invariant functions exist. Usually s will be the same as the 
dimension of G itself, but this need not be the case.) Under these assump
tions, Theorem 2.17 implies that locally there exist p - s functionally 
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independent invariants i = 71 1(X), ... , yP-S = 71 P':S(X) of the projected 
group action on n c X. Each of these functions is also an invariant of the 
full group action on M, and, furthermore, we can find q additional invariants 
of the action of G on M, of the form Vi = ,I(X, u), ... , vq = ,q(x, u), which, 
together with the 71'S provide a complete set of p + q - s functionally 
independent invariants for G on M. We write this complete collection of 
invariants concisely as 

y = 71(X), v = '(x, u). (3.1) 

In the construction of the reduced system of differential equations for the 
G-invariant solutions to ~, the y's will play the role of the new independent 
variables, and the v's the role of the new dependent variables. Note in 
particular that there are s fewer independent variables i, ... , yP-S which 
will appear in this reduced system, where s is the dimension of the orbits 
ofG. 

There is now a one-to-one correspondence between G-invariant functions 
u = f(x) on M and arbitrary functions v = hey) involving the new variables. 
To explain this correspondence, we begin by invoking the implicit function 
theorem to solve the system y = 71(X) for p - s of the independent variables, 
say x = (x\ ... , x ip -,), in terms of the new variables y\ ... , yP-S and the 
remaining s old independent variables, denoted as x = (x\ ... , x j ,). Thus 
we have the solution 

x=y(x,y) (3.2) 

for some well-defined function 1'. The first p - s of the old independent 
variables x are known as principal variables, and the remaining s of these 
variables x are the parametric variables, as they will, in fact, enter parametri
cally into all the subsequent formulae. The precise manner in which one 
splits the variables x into principal and parametric variables is restricted 
only by the requirement that the (p - s) x (p - s) submatrix (a71 j I axil of 
the full Jacobian matrix a71/ ax is invertible, so that the implicit function 
theorem is applicable; otherwise, the choice is entirely arbitrary. We need 
to make a further transversality assumption on the action of G on M, cf. 
(3.35). that allows us to solve the other system of invariants v = '(x, u) for 
all of the dependent variables u\ ... , uq in terms of x\ ... , xP, and 
Vi, •.. , v q, and hence in terms of the new variables y, v and the parametric 
variables x: 

u = §(x, v) = §(x, 1'(x, y), v) == 8(x, y, v) (3.3) 

near any point (xo, uo) EM. 
If v = hey) is any smooth function, then (3.3) coupled with (3.1) produces 

a corresponding G-invariant function on M, of the form 

u = f(x) = 8(x, 71(X), h( 71 (x))). (3.4) 
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Conversely, if u = f(x) is any G-invariant function on M, then it is not too 
difficult to see that there necessarily exists a function v = h (y) such that f 
and the corresponding function (3.4) locally agree. Thus, we have seen how 
G-invariance of functions serves to decrease the number of variables upon 
which they depend. 

We are now interested in finding all the G-invariant solutions to some 
system of partial differential equations 

11=1, ... ,1. 

In other words, we want to know when a function of the form (3.4) 
corresponding to a function v = hey) is a solution to a. This will impose 
certain constraints on the function h; these are found by computing the 
formulae for the derivatives of a function of the form (3.4) with respect to 
x in terms of the derivatives of v = h (y) with respect y, and then substituting 
these into the system of differential equations a. Thus we need to know 
how the derivatives of functions v = hey) are related to the derivatives of 
the corresponding G-invariant function u = f(x). However, this is an easy 
application of the chain rule. Differentiating (3.4) with respect to x leads 
to a system of equations of the form 

au a A at) at) aTJ at) av aTJ 
-=-[t)(x, y, v)]=--;;+- -+---, 
ax ax ax ay ax av ay ax 

since y = TJ(x). Here, au/ax, etc., denote Jacobian matrices of first order 
derivatives of the indicated variables. Moreover, using (3.2), we can rewrite 
aTJ / ax in terms of y and the parametric variables x. Thus we obtain an 
equation of the form 

au/ax = t)\(x, y, v, av/ay) 

expressing the first order derivatives of any G-invariant function u with 
respect to x in terms of y, v, the first order derivatives of v with respect to 
y, plus the parametric variables x. Continuing to differentiate using the 
chain rule, and substituting according to (3.2) whenever necessary, we are 
led to general formulae 

for all the derivatives of such a u up to order n with respect to x in terms 
of y, v, the derivatives of v with respect to y up to order n, and the ubiquitous 
parametric variables x. At this point, it is worth considering a specific 
example. 

Example 3.1. Consider the one-parameter scaling group 

(x, t, u)~(Ax, At, u), 
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acting on XXU=1R3. On the upper half space M={t>O}, the action is 
regular, with global independent invariants y = xl t and v = u. If we treat v 
as a function of y, we can compute formulae for the derivatives of u with 
respect to x and t in terms of y, v and the derivatives of v with respect to 
y, along with a single parametric variable, which we designate to be t, so 
that x will be the corresponding principal variable. We find, using the chain 
rule, that if u = v = v(y) = v(xl t), then 

-2 -\ 
U, = -t XVy = -t yVy-

Further differentiations yield the second order formulae 

(3.5) 

and so on. 

Once the relevant formulae relating derivatives of u with respect to x to 
those of v with respect to y have been determined, the reduced system of 
differential equations for the G-invariant solutions to the system a is 
determined by substituting these expressions into the system wherever they 
occur. In general, this leads to a system of equations of the form 

A (A (n») - 0 au x, y, V -, 11 = 1, .... , 1, 

still involving the parametric variables X. If G is actually a symmetry group 
for a, this resulting system will in fact always be equivalent to a system of 
equations, denoted 

11=1, .•• ,1, 

which are independent of the parametric variables, and thus constitute a 
genuine system of differential equations for v as a function of y. This is the 
reduced system a; G for the G-invariant solutions to the system a. Every 
solution v = hey) of al G will correspond, via (3.4), to a G-invariant solution 
to a, and, moreover, every G-invariant solution can be constructed in this 
manner. 

Example 3.2. The one-dimensional wave equation UII - Un: = 0 is invariant 
under the scaling group presented in Example 3.1. To construct the corre
sponding scale-invariant solutions, we need only substitute the derivative 
formulae (3.5) into the wave equation, and solve the resulting ordinary 
differential equation. Upon substituting, we find the equation 

t-2(y2Vyy + 2yvy - Vyy ) = O. 

As promised by the general theory, this equation is equivalent to an equation 

(y2 -l)vyy + 2yvy = 0 

in which the parametric variable t no longer appears. This latter ordinary 
differential equation is the reduced equation for the scale-invariant solutions 
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to the wave equation. It is easily integrated, with general solution 

v = c logl(y -1)/ (y + 1)1 + c', 

where c, c' are arbitrary constants. Replacing the variables y, v in the solution 
by their expressions in terms of x, t, u, we deduce the general scale-invariant 
solution to the wave equation (for the particular scaling symmetry group 
under consideration) to be 

U = c logl(x - t)/(x + t)1 + c'. 

For the reader's convenience, we summarize the basic computational 
procedures for finding group-invariant solutions of a given system of partial 
differential equations from the beginning. We list the steps in order, starting 
with the computation of the symmetry group. 

(I) Find all the infinitesimal generators v of symmetry groups of the 
system using the basic prolongation methods from Chapter 2, specifically 
the infinitesimal criterion (2.25). 

(II) Decide on the "degree of symmetry" s of the invariant solutions. 
Here 1",. s ",. p will correspond to the dimension of the orbits of some 
subgroup of the full symmetry group. The reduced systems of differential 
equations for the invariant solutions will depend on p - s independent 
variables. Thus to reduce the system of partial differential equations to a 
system of ordinary differential equations, we need to choose s = p - 1. In 
general, the smaller s is the more invariant solutions there will be, but the 
harder the reduced system A./ G will be to solve explicitly. 

(III) Find all s-dimensional subgroups G of the full symmetry group 
found in part I. This is equivalent (Theorem 1.51) to finding all s
dimensional subalgebras of the full Lie algebra of infinitesimal symmetries 
v. To each such subgroup or sub algebra there will correspond a set of 
group-invariant solutions reflecting the symmetries inherent in G itself. The 
problem of classifying subalgebras of a given Lie algebra will be explored 
in detail in Section 3.3 (In principle, an s-dimensional subgroup G may 
have orbits of dimension smaller than s, and, as we remarked earlier, it is 
the dimension of the orbits which matters. In practice, however, this mode 
of degeneracy rarely occurs, so we can content ourselves with fixing the 
dimension of the subgroup.) 

(IV) Fixing the symmetry group G, we construct a complete set of 
functionally independent invariants, as in Section 2.1, which we divide into 
two classes 

yl = 17 1(X, u), ... , yP-S = 17 P- S(X, u), 

Vi = ~I(X, u), ... , vq = ~q(x, u), 
(3.6) 

corresponding to the new independent and dependent variables respectively. 
If G acts projectably, the choice of independent and dependent variables 
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is prescribed by requiring the 1/ i 'S to be independent of u; in the more 
general case, there is quite a bit of freedom in this choice, and different 
choices will lead to seemingly different reduced systems, all of which are 
related by some form of "hodograph" transformation. 

(V) Provided G acts transversally, (cf. Proposition 3.37) we can solve 
(3.6) for p - S of the x's, which we denote by X, and all of the u's in terms 
of y, v and the remaining s parametric variables X. 

x = y(x, y, v), u = 5(x, y, v). (3.7) 

Furthermore, considering v as a function of y we can use (3.6), (3.7) and 
the chain rule to differentiate and thereby find expressions for the x
derivatives of any G-invariant u in terms of y, v, y-derivatives of v and the 
parametric variables x: 

(3.8) 

(VI) Substitute the expressions (3.7), (3.8) into the system a(x, u(n)) = o. 
The resulting system of equations will always be equivalent to a system 
of differential equations for v = hey) independent of the parametric 
variables x: 

a/ G(y, v(n)) = o. (3.9) 

At this stage we have constructed the reduced system of differential equations 
for the G-invariant solutions. 

(VII) Solve the reduced system (3.9). For each solution v = hey) of a/ G 
there corresponds a G-invariant solution u = f(x) of the original system, 
which is given implicitly by the relation 

'(x, u) = h[ 1/(x, u)]. (3.10) 

Repeating steps IV through VII for each symmetry group G determined 
in step III will yield a complete set of group-invariant solutions for our 
system. 

3.2. Examples of Group-Invariant Solutions 

Before attempting to prove that the basic procedure for constructing group
invariant solutions outlined in the preceding section works, we will illustrate 
the method with some systematic examples, constructing group-invariant 
solutions of the Korteweg-de Vries, heat and Euler equations. These will 
lead naturally into the problem of how to classify group-invariant solutions 
in such a way as to find "all" such solutions with a minimum of computa
tional difficulty. Before addressing this question, however, we begin with 
our examples. 



194 3. Group-Invariant Solutions 

Example 3.3. The Heat Equation. The symmetry group of the heat equation 

ut = Uxx 

was computed in Example 2.41; it consisted of a six-parameter group of 
symmetries particular to the heat equation itself plus an infinite-dimensional 
subgroup stemming from the linearity of the equation. For each one
parameter subgroup of the full symmetry group there will be a corresponding 
class of group-invariant solutions which will be determined from a reduced 
ordinary differential equation, whose form will in general depend on the 
particular subgroup under investigation. 

(a) Travelling Wave Solutions. In general, travelling wave solutions to a 
partial differential equation arise as special group-invariant solutions in 
which the group under consideration is a translation group on the space of 
independent variables. In the present example, consider the translation 
group 

(x, t, u)~(x+ ce, t+ e, u), e E IR, 

generated by at + cax, in which c is a fixed constant, which will determine 
the speed of the waves. Global invariants of this group are 

y = x- ct, v=u, (3.11) 

so that a group-invariant solution v = h(y) takes the familiar form u = 
h(x - ct) determining a wave of unchanging profile moving at the constant 
velocity c. Solving for the derivatives of u with respect to x and t in terms 
of those of v with respect to y we find 

ut = -cvY ' 

and so on. Substituting these expressions into the heat equation, we find 
the reduced ordinary differential equation for the travelling wave solutions 
to be 

The general solution of this linear, constant coefficient equation is 

v(y)=ke-cY+I 

for k, I arbitrary constants. Substituting back according to (3.11), we find 
the most general travelling wave solution to the heat equation to be an 
exponential of the form 

u(x, t)=ke-c(x-ct)+I. 

(b) Scale-Invariant (Similarity) Solutions. There are two one-parameter 
groups of scaling symmetries of the heat equation, and we consider a linear 
combination 

a E IR, 
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of their infinitesimal generators, which corresponds to the scaling group 

(x, t, u)~('\x, ,\2t, ,\2aU ), ,\ EIR+. 

On the half space {(x, t, U): t> O}, global invariants of this one-parameter 
group are provided by the functions 

y = x/Jr, v = rau. 

Solving for the derivatives of u in terms of those of v, we find 

Here we are treating t as the parametric variable, and we have succeeded 
in expressing the relevant derivatives of u with respect to x and t in terms 
of y, v, the derivatives of v with respect to y, and the parametric variable 
t as in (3.8). 

Substituting these expressions into the heat equation, we find 

ta-1vyy = t a - 1( -hvy + av). 

As guaranteed by the general theory, this equation is equivalent to one in 
which the parametric variable t does not occur, namely 

Vyy +!yvy - av = 0, 

which forms the reduced equation for the scale-invariant solutions. The 
solutions of this linear ordinary differential equation can be written in terms 
of parabolic cylinder functions. Indeed, if we set 

w = v exp(h2), 

then w satisfies a scaled form of Weber's differential equation, 

wyy = [(a +~) + "hy2]w. 

The general solution of this equation is 

w(y)=kU(2a+!. ~)+kV(2a+!. ~), 
where U(b, z), V(b, z) are parabolic cylinder functions, cf. Abramowitz and 
Stegun, [1; § 19.1]. Thus the general scale-invariant solution to the heat 
equation takes the form 

( ) a -X2/S/{k ( 1 x) k* ( I x)} u x,t =t e U 2a+2:,fft + V 2a+2:,fft . 

Particular values of a lead to special scale-invariant solutions which are 
expressible in terms of elementary functions. For instance, if a = 0, we 
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obtain the probability solution 

u(x, t) = k* erf(x/.J2i) + k*, 
where erf is the error function. Since U( -n -!, z) = e- zZ/ 4 Hen(z) where 
Hen is the n-th Hermite polynomial, if a = -(n + 0/2 we obtain the solutions 

u(x, t) = t-(n+1)!2 e-x2/ 4t Hen (x/.J2i), 

which include the source solution (n = 0). Similarly, the relation V(n +!, z) = 
.J2/ 1Te z2/4 He!(z), where He!(z) = (_i)n Hen(iz), leads to the heat poly
nomials (see Widder, [1]) 

x, x 2 + 2 t, x 3 + 6xt, etc., 

as special scale-invariant solutions. 
(c) Galilean-Invariant Solutions. The one-parameter group of Galilean 

boosts, generated by Vs = 2tax - xUiJ u has global invariants y = t, v = 
U exp(x2/ 4t) on the upper half space {t > O}. We find 

( 
X2 1 ) -xZ/4t 

U = --- ve . 
xx 4t2 2t 

Therefore, for the heat equation the reduced equation for Galilean-invariant 
solutions is a first order ordinary differential equation 2yvy + v = 0, despite 
the fact that the heat equation was a second order partial differential 
equation. The solution is v(y) = k/./Y. Hence the most general Galilean
invariant solution is a scalar multiple of the source solution, 

u(x t) =~ e-xZ/ 4t 
, v'i ' 

which we earlier found as a scale-invariant solution. Thus a given solution 
may be invariant under more than one subgroup of the full symmetry group. 

We can clearly extend this list of group-invariant solutions by considering 
further one-parameter subgroups obtained from more general linear combi
nations of the infinitesimal generators of the full symmetry group. At the 
moment, however, without some means of classifying these solutions, it is 
somewhat pointless to continue. Once we have determined the correct 
classification procedure, we will return to this question and find (in a sense) 
the most general group-invariant solution to the heat equation. See Example 
3.17. 

Example 3.4. The symmetry group of the Korteweg-de Vries equation 

Ut + Uxxx + UUx = 0 

was computed in Example 2.44. Let us look at particular group-invariant 
solutions. 

(a) Travelling Wave Solutions. Here the group is the same translational 
group already looked at in the previous example. In terms of the invariants 
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y = X - ct, V = u the reduced equation is 

Vyyy + VVy - cVy = 0. 

This can be immediately integrated once, 

Vyy +!v2 - CV = k, 

and a second integration is performed after multiplying by Vy: 

!v2 = _!V3+!CV2+ kv+ 1 2 y 6 2 , 
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(3.12) 

where k and I are arbitrary constants. The general solution can be written 
in terms of elliptic functions, u = [j> (x - ct + 5), 5 being an arbitrary phase 
shift. If u ~ ° sufficiently rapidly as Ixl ~ 00, then k = 1=0 in (3.12). This 
equation has real solutions 

v = 3c sech2[!.JCy + 5], 

provided the wave speed c is positive. These produce the celebrated "one 
soliton" solutions 

u(x, t) = 3c sech2[lfc(x - ct) + 5] 

to the Korteweg-de Vries equation. (If c = 0, we also obtain the singular 
stationary solution u = -12(x+ 5)-2.) More generally, if we only require u 
to be bounded, we obtain the periodic "cnoidal wave" solutions 

u(x, t) = a cn2[A (x - ct) + 5] + m, 

where cn is the Jacobi elliptic function of modulus k=v(r3-r2)/(r3-rl), 
a = r3 - r2, A = v(r3 - rl)/6, m = r2 and rl < r2 < r3 are the roots of the cubic 
polynomial on the right-hand side of (3.12). 

(b) Galilean-Invariant Solutions. Next look at the one-parameter group 
of Galilean boosts generated by tax + au' Here, for t> 0, Y = t and v = tu - x 
are independent invariants, from which we calculate 

Uxxx = 0, 

where x is the parametric variable. The reduced equation is simply dv/ dy = 
0, so the general Galilean-invariant solution is u = (x + 5)/ t for 5 an arbitrary 
constant. 

A more interesting class of solutions with Galilean-like invariance can 
be found by adding a time translational component to this group. The 
generator tax + aa, + au, a ;6 0, has global invariants 

v= u-bt, 

where b = 1/ a. We have 

u = v+bt, u, = -btvy + b, 

so the reduced equation is 

Vyyy + VVy + b = 0. 
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This integrates once, leading to a second-order equation 

Vyy +!v2 + by+ c = 0 

known as the first Painleve transcendent. Its solutions v = h (y) are meromor
phic in the entire complex plane, but are essentially new functions not 
expressible in terms of standard special functions. The corresponding sol
utions of the Korteweg-de Vries equation take the form 

u(x, t) = hex -!bt2 ) + bt. 

(c) Scale-Invariant Solutions. Finally consider the group of scaling sym
metries 

Invariants on the half space {t > O} are 

We find 

_ -5/3 
Uxxx - t V yyy, u = _!t-5/3(·yv + 2v) t 3 y , 

so that the reduced equation is 

It is by no means obvious how to solve this third order ordinary differential 
equation directly. However, motivated by a transformation discovered by 
Miura, [1], for the Korteweg-de Vries equation itself (see Exercise 5.11), 
let us set 

The equation for W is 

O 1 1 2 1 2 + 1 3 1 +1 2 +1 2 = Wyyyy-3WWyyy-3WWy-6W Wyy 18W Wy -3YWyy 9YWWy-3Wy 9W 

= (Dy -lw)( Wyyy -tw2Wy -hwy -lw). 

Therefore every solution to the "modified" third-order equation 

gives rise to a scale-invariant solution of the Korteweg-de Vries equation 
by the above transformation. The above equation can be integrated once: 

Wyy =t'sw3 +hw+ k 

for some constant k. This equation is the second Painleve transcendent, which 
shares similar properties to the first. See Ince, [1], for an extensive discussion 
of these equations. 
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Example 3.5. For the Euler equations of three-dimensional incompressible 
ideal fluid flow, 

Ut+U·VU=-Vp, 
(3.13) 

V 'u=O, 

there are four independent variables: x = (x, y, z) and t, so we can discuss 
solutions which are invariant under one-, two- and three-parameter sub
groups of the full symmetry group, which was determined in Example 2.45. 
Here we look at a couple of such subgroups, leading to solutions of physical 
or mathematical interest. In all cases, the group will contain a one-parameter 
subgroup of either uniform, time-independent translations in a fixed direc
tion, which we may as well take to be the z-axis, or rotations around a fixed 
axis, again taken as the z-axis. 

(a) Translationally-Invariant Solutions. For solutions invariant under the 
translation group generated by an the three-dimensional Euler equations 
(3.13) reduce to their two-dimensional counterparts, which have the same 
form but with u = (u, v), p depending only on x = (x, y), t, together with an 
equation 

W t + UW", + VWy = ° (3.14) 

for the vertical component of the velocity, which can be integrated by 
solving the characteristic equation dt = dx I u = dy I v. Of course, the two
dimensional Euler equations are still far too difficult to solve explicitly, so 
we look for solutions invariant under a second one-parameter group. 

For the time-dependent translational group GfJ generated by v fJ = 
{3a y + {3tav - {3uya p , {3 (t) ,c 0, invariants are given by 

t, x, u=u, v=v-({3r1{3)y, p=p+!({3u/{3)y2, 

with t, x being independent variables. The reduced system 

Ut + UU'" = -fix, Vt + UV'" + ({3tl {3) v = 0, (3.15) 

is readily solved: 

U = [ -{3tx+ ut]1 {3, v = h({3x - u)1 {3, 

p = W{3{3u - {3;)x2 + (2{3tu t - {3uu)x + T]I {32, 

where u( t), T( t) are arbitrary functions of t, and h is an arbitrary function 
of the single invariant {3(t)x-u(t) for the second equation in (3.15). Thus 
we obtain the GfJ-invariant solution 

u = [ -{3tx+ ut]1 {3, v = [{3tY + h({3x - u)]1 {3, 

p = W{3{3u - {3;)x2 -.!{3{3uy2+ (2{3tut - {3uu)x + T]I {32, 

of the two-dimensional Euler equations. In particular, if {3(t) == 1, we can 
further solve (3.14) explicitly, with 

u = Ut, v=h(x-u(t)), W = H(x - u(t), Y - th(x - u(t))), 

p = -uux+ T(t), 
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being the three-dimensional solution invariant under the group of transla
tions in the y- and z-directions. (Here u(t), T(t), h(g), H(g, 1/) are arbitrary 
smooth functions.) 

Although this determines all solutions of the two-dimensional Euler 
equations which are invariant under the group generated by vf3' it is instruc
tive to see what happens if we try to determine the more specialized solutions 
which are invariant under the two-parameter group generated by Vf3 and 
Va = aax + atau - attxap • Invariants are 

u = u - (atl a )x, v = v - ({3'/ (3)y, 

which are functions of the sole remaining independent variable t. The 
reduced system of ordinary differential equations is 

Ut + (atl a)u = 0 = vt + ({3'/ (3)iJ, 

plus the divergence-free condition 

(a,/ a) + ({3'/ (3) = o. 

(3.16a) 

(3.16b) 

An important point here is that unless a(t) = kl (3(t) for some constant k, 
(3.16b) is inconsistent and there are no solutions to the reduced equations. 
In other words, there is no guarantee in general that the reduced system of 
differential equations for some symmetry group be consistent, and hence 
no guarantee that any such solutions exist. 

(b) Rotationally-Invariant Solutions. For the group of rotations about 
the z-axis, generated by -yax + xay - vau + uav , invariants are provided by 
r = .J x 2 + y2, Z, t, P and the cylindrical components of the velocity u = 

u cos 8 + v sin 8, v = -u sin 8 + v cos 8, W = w. The reduced equations are 

(3.17) 
= -P .. 

cf. Berker, [I]. If we further assume translational invariance under a., so 
U, v, w, p are independent of z, then we can solve (3.17) explicitly: 

u=utlr, v=r-1hnr2-u(t)], w=h[!r2-u(t)], 

p=-utt logr-!r-2u:+ f: s-3h[!S2_ U (t)]2ds+T(t), 

where u(t), T(t) and h(g), h(g) are arbitrary functions. These are the most 
general solutions depending only on t and the cylindrical radius r. 

How about solutions which are completely rotationally-invariant, i.e. 
have the full SO(3) invariance group? Although SO(3) acts projectably on 
1R3 xIR3 via (x, u)~(Rx, Ru), R E SO(3), and regularly with three
dimensional orbits on an open subset of 1R3 x 1R3, the projected group 
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action x~ Rx on 1R3 has only two-dimensional orbits. In this case the 
transversality conditions (3.34) are violated and we are unable to construct 
a reduced system afSO(3). Another way to see this is to look at the invariants 
for SO(3), which are t, lxi, x . u, lui, p, and note that there are one too many 
independent and one too few dependent variables to carry through the 
reduction procedure. Thus no SO(3)-invariant solutions exist. 

As a final example, we look directly at the system (3.17) for rotationally
invariant solutions. This system has a number of symmetry groups, most of 
which come from symmetry groups for the full Euler equations (3.13). There 
is, however, one additional symmetry generator, v* = r- 2(ij- l afj - ap ), which 
does not come from a symmetry of (3.13)! Thus, reducing a system ~ by a 
known symmetry group G may lead to a system ~/ G with additional 
symmetry properties not shared by the original system. Let us look for 
solutions invariant under the one-parameter group generated by at-v*, 
which has invariants r, z, U, w, w = ~r2v2+ t, q = P - r-2t. These satisfy the 
reduced system 

uw,+wwz=-q., (rn),+(rW).=O. 
(3.18) 

This system is still too complicated to solve in general; however, following 
Kapitanskii, [1], we look for solutions with the ansatz 

u = u(r), w = w(r), w = ~(r)z+ 17(r). 

The first and last equations in (3.18) imply 

Differentiating the third equation with respect to r, we find the compatibility 
condition 

0= -q,z = (u{,+e),Z+(U17,+~17)" 
hence u~, + e = k, U17, + ~17 = I are constant. Using the above formula for 
~, we find that u must satisfy the ordinary differential equation 

This equation admits a two-parameter group of symmetries, generated by 
w = ra, + uau, W = r-la, - r-2ua u, and hence can be integrated using the 
methods of Section 2.5. For k < 0 we have 

u(r) = ar- l cosh(br2+ c5), 

a, b, c5 arbitrary constants, hence 

() arctan exp(br2+ c5) 
w r = - 2ab2 , ~(r) = -2ab sinh(br2+ c5), 

q(r, z) = _~kZ2 -Iz -![u(r)]2+ f' 2s-3 w(s) ds, 
'0 
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and, from the last equation of (3.18), 

11(r) = -2b sinh(br2+ 8), 

and 1 = -4ab2• Thus the general such solution is 

3. Group-Invariant Solutions 

u = u(r), v = r-l~2w(r) -2t, w = g(r)z+ 11(r), p= tr-2+q(r, z), 

with U, W, g, 11, q being as above. Kapitanskii notes that since v is given by 
a square root, these solutions can be arranged to provide solutions of the 
Euler equations on cylindrical domains which blow up in finite time (IVul ~ 
(0) even though the normal component of u on the boundary is smooth for 
all t. The reason, of course, is that the singularity W (r) = t can be arranged 
to cross the boundary without affecting the normal component ofu. (Similar 
sorts of behaviour can be arranged for the simpler translationally-invariant 
solutions.) This observation, therefore, does not answer the outstanding 
problem of whether smooth solutions to the three-dimensional Euler 
equations can develop singularities after a finite time. 

3.3. Classification of Group-Invariant Solutions 

In general, to each s-parameter subgroup H of the full symmetry group G 
of a system of differential equations in p> S independent variables, there 
will correspond a family of group-invariant solutions. Since there are almost 
always an infinite number of such subgroups, it is not usually feasible to 
list all possible group-invariant solutions to the system. We need an effective, 
systematic means of classifying these solutions, leading to an "optimal 
system" of group-invariant solutions from which every other such solution 
can be derived. Since elements g E G not in the subgroup H will transform 
an H-invariant solution to some other group-invariant solution, only those 
solutions not so related need be listed in our optimal system. The basic 
result is the following: 

Proposition 3.6. Let G be the symmetry group of a system of differential 
equations ~ and let He G be an s-parameter subgroup. If u = f(x) is an 
H-invariant solution to ~ and g EGis any other group element, then the 
transformed function u = j(x) = g. f(x) is a ii-invariant solution, where ii = 
gHg- 1 is the conjugate subgroup to H under g. 

The proof follows directly from Exercise 2.3 using the graph r f as the 
invariant subset. As a consequence of this result, the problem of classifying 
group-invariant solutions reduces to the problem of classifying subgroups 
of the full symmetry group G under conjugation, We thus need to study 
the conjugacy map h~ghg-l on a Lie group in detail, after which we will 
return to our original classification problem. 
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The Adjoint Representation 

Let G be a Lie group. For each gEG, group conjugation Kg(h)=ghg-t, 
hE G, determines a diffeomorphism on G. Moreover, Kg 0 Kg' = K gg', Ke = 
~G, so Kg determines a global group action of G on itself, with each 
conjugacy map Kg being a group homomorphism: Kg(hh') = Kg(h)Kg(h'), 
etc. The differential dKg: TGlh -i> TGIKg(h) is readily seen to preserve the 
right-invariance of vector fields, and hence determines a linear map on the 
Lie algebra of G, called the adjoint representation: 

Ad g(v) = dKg(v), vEg. (3.19) 

Note that the adjoint representation gives a linear global action of G on g: 

Ad(g· g')=AdgoAdg', Ade=l 

Ifv E 9 generates the one-parameter subgroup H = {exp(ev): e E IR}, then 
by (1.22) Ad g(v) is easily seen to generate the conjugate one-parameter 
subgroup Kg(H) = gHg-l. This remark readily generalizes to higher 
dimensional subgroups using the fact that they are completely determined 
by their one-parameter subgroups. 

Proposition 3.7. Let Hand iI be connected, s-dimensional Lie subgroups of 
the Lie group G with corresponding Lie subalgebras I) and G of the Lie algebra 
9 of G. Then iI = gHg-1 are conjugate subgroups if and only if G = Ad g(l)) 
are conjugate subalgebras. 

The adjoint representation of a Lie group on its Lie algebra is often most 
easily reconstructed from its infinitesimal generators. If v generates the 
one-parameter subgroup {exp(ev)}, then we let ad v be the vector field on 
9 generating the corresponding one-parameter group of adjoint transforma
tions: 

ad vi .. = ~ I £=0 Ad(exp(ev))w, wEg. (3.20) 

A fundamental fact is that the infinitesimal adjoint action agrees with the 
Lie bracket on g: 

Proposition 3.8. Let G be a Lie group with Lie algebra g. For each v E g, the 
adjoint vector ad v at WE 9 is 

ad vi .. = [w, v] = -[v, w], (3.21) 

where we are using the identification ofTgl .. with 9 itselfsince 9 is a vector space. 
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PROOF. We identify g = Tole. Using (3.20), the definition (3.19) of the 
adjoint representation, and the right-invariance of w, we find 

= lim .!.{dexp(ev)[wlexp(-.. l] -wle }. 
e-+O E 

If we replace e by -e, this last expression is the same as the definition 
(1.57) of the Lie derivative of w with respect to v, so (3.21) follows from 
Proposition 1.64. 0 

Note. In most references, the adjoint map ad vlw has the other sign +[ v, w]. 
The reason is our choice in Chapter 1 of right-invariant vector fields to 
define the Lie algebra, rather than the more traditional left-invariant vector 
fields. (The reasons for this choice were discussed in Exercise 1.33.) In this 
book, we will consistently use (3.21) for the infinitesimal adjoint action. 

In the case oc GL(n) is a matrix Lie group with Lie algebra gc gl(n), 
the above formulae are particularly easy to verify. Since KA(B) = ABA-I, 
where A, BE 0 are n x n matrices, the adjoint map is also given by conju
gation 

Ad A(X) = AXA-I, AE 0, XEg. 

Letting A = eEY, Y E g, and differentiating with respect to e, we find 

ad Ylx = YX -XY=[X, Y], 

agreeing with the commutator bracket on gl(n). 

Example 3.9. Let 0 = SO(3) be the group of rotations in 1R3. The Lie algebra 
50(3) is spanned by the matrices 

(
0 0 0) 

AX = 0 0 -1 , 

o 1 0 

-1 0) o 0 , 

o 0 

generating the one-parameter subgroups 

R;~(~ 
0 

-s~n 6} (OOS 6 0 sin 6) 
cos (J R~= 0 1 o , 
sin (J cos (J -sin (J 0 cos (J 

(OOS 6 -sin (J 

~) R~ = Si~ (J cos (J 

0 
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of counterclockwise rotations about the coordinate axes. The adjoint action 
of, say, R~ on the genera,tor AY can be found by differentiating the product 
R;R~R:6 with respect to e and setting e = 0; we find 

Ad R;(AY) = ( Si~ 8 -s~n 8 co~ 8) = cos 8. AY +sin 8. AZ, 

-cos 8 0 0 

and, similarly, 

Ad R~(N) = -sin 8· AY +cos 8· N. 

Thus the adjoint action of the subgroup R; of rotations around the x-axis 
in physical space is the same as the group of rotations around the AX-axis 
in the Lie algebra space 50(3). Similar remarks apply to the other subgroups, 
so if R E SO(3) is any rotation matrix relative to the given (x, y, z)-coordin
ates in IKe, its adjoint map Ad R acting on 50(3) = 1R3 has the same matrix 
representation R relative to the induced basis {AX, AY, N}. (The fact that 
the adjoint representation of SO(3) agrees with its natural physical rep
resentation is accidental and will not hold for other matrix Lie groups.) 
Finally, the infinitesimal generators of the adjoint action are found by 
differentiation; for example, 

which agrees with the commutator 

[AY, AX] = AXAY -AYAx = AZ. 

Conversely, if we know the infinitesimal adjoint action ad 9 of a Lie 
algebra 9 on itself, we can reconstruct the adjoint representation Ad G of 
the underlying Lie group, either by integrating the system of linear ordinary 
differential equations 

dw 
de =ad vi ... , w(O) =wo, 

with solution 

w( e) = Ad( exp( ev) )wo, 

or, perhaps more simply, by summing the Lie series (cf. (1.19» 

co en 

Ad(exp(ev»wo= L -(ad v)" (wo) 
n=O n! 

(3.22) 

(3.23) 
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(The convergence of (3.23) follows since (3.22) is a linear system of ordinary 
differential equations, for which (3.23) is the corresponding matrix 
exponential. ) 

Example 3.10. The Lie algebra spanned by VI = ax, V2 = a" V3 = tax + au, 
V4 = xax + 3 tat - 2uau generates the symmetry group of the Korteweg-de 
Vries equation. To compute the adjoint representation, we use the Lie series 
(3.23). For instance 

Ad(exp( eV2) )V4 = V4 - e[ V2, V4] +!e2[ V2, [V2' V4]] _ ••• 

In this manner, we construct the table 

Ad VI V2 V3 V4 

VI VI V2 V3 V4 - eVI 

V2 VI V2 V3 - eVI V4 - 3ev2 

V3 VI V2+ eVI V3 V4 + 2ev3 
(3.24) 

V2 eEvl e3Ev2 e-2Ev3 V4 

with the (i,j)-th entry indicating Ad(exp(evi»Vj' 

Classification of Subgroups and Subalgebras 

Definition 3.11. Let G be a Lie group. An optimal system of s-parameter 
subgroups is a list of conjugacy inequivalent s-parameter subgroups with 
the property that any other subgroup is conjugate to precisely one subgroup 
in the list. Similarly, a list of s-parameter subalgebras forms an optimal 
system if every s-parameter subalgebra of 9 is equivalent to a unique member 
of the list under some element of the adjoint representation: 6 = Ad g(~), 
gEG. 

Proposition 3.7 says that the problem of finding an optimal system of 
subgroups is equivalent to that of finding an optimal system of subalgebras, 
and so we concentrate on the latter. Unfortunately, this problem can still 
be quite complicated, and, for once, infinitesimal techniques do not seem 
to be overly useful. 

For one-dimensional subalgebras, this classification problem is essen
tially the same as the problem of classifying the orbits of the adjoint 
representation, since each one-dimensional subalgebra is determined by a 
nonzero vector in g. Although some sophisticated techniques are available 
for Lie algebras with additional structure, in essence this problem is attacked 
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by the naIve approach of taking a general element v in 9 and subjecting it 
to various adjoint transformations so as to "simplify" it as much as possible. 
We treat a couple of illustrative examples. 

Example 3.12. Consider the symmetry algebra 9 of the Korteweg-de Vries 
equation whose adjoint representation was determined in Example 3.10. 
Given a nonzero vector 

our task is to simplify as many of the coefficients a j as possible through 
judicious applications of adjoint maps to v. 

Suppose first that a4 ;f:. o. Scaling v if necessary, we can assume that a4 = 1. 
Referring to table (3.24), if we act on such a v by Ad(exp( -!a3v3», we can 
make the coefficient of V3 vanish: 

v' = Ad(exp( -!a3v3»v = a;vI + a~v2+v4 

for certain scalars a;, a~ depending on at> a2, a3. Next we act on v' by 
Ad(expaa~v2» to cancel the coefficient ofv2, leading to v"=a;vI+v4, and 
finally by Ad(exp(a;v l » to cancel the remaining coefficient, so that v is 
equivalent to V4 under the adjoint representation. In other words, every 
one-dimensional subalgebra generated by a v with a4 ;f:. 0 is equivalent to 
the subalgebra spanned by V4. 

The remaining one-dimensional subalgebras are spanned by vectors of 
the above form with a4 = o. If a3;f:. 0, we scale to make a3 = 1, and then act 
on v by Ad( exp( a l V2», so that v is equivalent to v' = a~v2 + V3 for some a~. 
We can further act on v' by the group generated by V4; this has the net effect 
of scaling the coefficients of V2 and V3: 

v" = Ad(exp(ev4»v' = a~e3'v2+ e-2·v3. 

This is a scalar multiple of v''' = a~e5'v2 +V3, so, depending on the sign of 
a~, we can make the coefficient of V2 either +1, -lor O. Thus any one
dimensional subalgebra spanned by v with a4 = 0, a3 ;f:. 0 is equivalent to 
one spanned by either V3 + V2, V3 - V2 or v3. The remaining cases, a3 = a4 = 0, 
are similarly seen to be equivalent either to V2 (a2 ;f:. 0) or to VI (a2 = a3 = 

a4 = 0). The reader can check that no further simplifications are possible. 
Recapitulating, we have found an optimal system of one-dimensional 

subalgebras to be those spanned by 

(a) V4 = xax + 3 tat - 2uau, 

(b l ) V3+V2= tax+at+a u, 

(b2) V3 -V2 = tax -at +au, (3.25) 

(b3) V3= tax+au, 

(c) V2=a" 

(d) VI = ax· 
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This list can be reduced slightly if we admit the discrete symmetry (x, t, U) ~ 
(-x, -t, u), not in the connected component of the identity of the full 
symmetry group, which maps V3 -V2 to V3 +V2, thereby reducing the number 
of inequivalent subalgebras to five. 

Example 3.13. Consider the six-dimensional symmetry algebra g of the heat 
equation (2.55), which is generated by the vector fields 

(For the moment we are ignoring the trivial infinite-dimensional subalgebra 
coming from the linearity of the heat equation.) From the commutator table 
for this algebra, we obtain the following table: 

Ad VI V2 V3 

VI VI V2 V3 
V2 VI V2 V3 
V3 VI V2 V3 
V4 e'VI e2'V2 V3 
Vs VI- eV3 V2+ 2eVI- e2V3 V3 
V6 VI + 2eVS V2 - 2eV3 + 4eV4 + 4e2V6 V3 

Ad V4 Vs V6 

VI V4 - eVI VS+ eV3 V6 - 2eVS - e2V3 
V2 V4- 2eV2 Vs - 2eVI V6 -4eV4 +2eV3 +4e2V2 
V3 V4 Vs V6 
V4 V4 e-'VS e-2'V6 
Vs V4+ eVS Vs V6 
V6 V4+ 2eV6 Vs V6 

where the (i,j)-th entry gives Ad(exp(ev;))vj • 

Let V = al VI + a2V2 + ... + a6v6 be an element of g, which we shall try to 
simplify using suitable adjoint maps. A key observation here is that the 
function 17 (v) = (a4)2-4a2a6 is an invariant of the full adjoint action: 
17(Ad g(v)) = 17(V), VE g, g E G. The detection of such an invariant is impor
tant since it places restrictions on how far we can expect to simplify v. For 
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example, if TJ (v) ~ 0, then we cannot simultaneously make a2, a4 and a6 
all zero through adjoint maps; if TJ(v) < ° we cannot make either a2 or 
a6 zero! 

To begin the classification process, we concentrate on the a2, a4, a6 
coefficients of v. If v is as above, then 

6 

V = L ajvj = Ad( exp( aV6)) 0 Ad( exp(,8v2))V 
i=l 

has coefficients 

a2 = a2 - 2,8a4 + 4,82 a6, 

a4 = 4aa2+ (1- 8a,8)a4 -4,8(1-4a,8)a6' 

a6 = 4a 2a2 + 2a(1-4a,8)a4 + (1-4a,8)2a6. 

(3.26) 

There are now three cases, depending on the sign of the invariant TJ: 
Case 1. If TJ(v) > 0, then we choose ,8 to be either real root of the 

quadratic equation 4a6,82- 2a4,8 + a2 = 0, and a = a6/(8,8a6 - 2a4) (which is 
always well defined). Then a2 = a6 = 0, while a4 = .J TJ (v) ~ 0, so v is equivalent 
to a multiple of v = V4 + aivi + a3v3 + a5v5' Acting further by adjoint maps 
generated respectively by V5 and VI we can arrange that the coefficients of 
V5 and VI in v vanish. Therefore, every element with TJ(v) > ° is equivalent 
to a multiple of V4 + aV3 for some a E IR. No further simplifications are 
possible. 

Case 2. If TJ(V) <0, set ,8=0, a=-a4/4a2 to make a4=0. Acting on v 
by the group generated by V4, we can make the coefficients of V2 and V6 
agree, so v is equivalent to a scalar mUltiple ofv = (V2+V6) + aivi + a3v3 + a5v5' 
Further use of the groups generated by VI and V5 show that v is equivalent 
to a scalar multiple of V2 + V6 + aV3 for some a E!R-

Case 3. If TJ(v) = 0, there are two subcases. If not all of the coefficients 
a2, a4 , a6 vanish, then we can choose a and ,8 in (3.26) so that a2 ~ 0, but 
a4 =a6=0, so V is equivalent to a multiple of v=v2+alvl+a3v3+a5v5' 
Suppose a5 ~ 0. Then we can make the coefficients of VI and V3 zero using 
the groups generated by VI and V2, while the group generated by V4 indepen
dently scales the coefficients of V2 and V5' Thus such a v is equivalent to a 
multiple of either V2+V5 or V2-V5' If, on the other hand, a5=0, then the 
group generated by V5 can be used to reduce v to a vector of the form 
V2 + aV3, a E IR. 

The last remaining case occurs when a2 = a4 = a6 = 0, for which our earlier 
simplifications were unnecessary. If al ~ 0, then using groups generated by 
V5 and V6 we can arrange V to become a multiple of VI' If al = 0, but a5 ~ 0, 
we can first act by any map Ad( exp( eV2)) to get a nonzero coefficient in 
front of Vb reducing to the previous case. The only remaining vectors are 
the multiples of V3, on which the adjoint representation acts trivially. 
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In summary, an optimal system of one-dimensional sub algebras of the 
heat algebra is provided by those generated by 

(a) V4 + aV3, 11 > 0, a E!R, 

(b) V2+V6+ aV3, 11 <0, a E!R, 

(cl) V2- VS, 11 =0, 

(c2) V2+ VS, 11 = 0, (3.27) 

(d) V2+ aV3, 11 = 0, a E!R, 

(e) Vh 11 =0, 

(f) V3, 11 =0. 

Again, the discrete symmetry (x, t, u)t-')o(-x, t, u) will map V2-VS to 
V2+VS, and the list is reduced by one. 

Inclusion of the additional infinite-dimensional symmetry algebra {va = 
a(x, t)au }, a a solution to the heat equation, does not essentially alter this 
classification. If v + Va is in this larger algebra, with v ~ 0 in the above 
six-dimensional heat algebra, then we can always find vfj = f3(x, t)au such 
that Ad(exp(vfj))(v+va) = v. For instance, if v = VI = ax, then 

f3(X,t)=-t
x 

a(y,t)dy-L ax(O,s)ds 

will do. (The reader should check that f3 is a solution to the heat equation.) 
The only remaining vectors not equivalent to ones in the six-dimensional 
algebra are thus those of the form Va only. We will not attempt to classify 
these vectors as they do not lead to group-invariant solutions to the heat 
equation. 

Once we have classified one-dimensional sub algebras of a Lie algebra, 
we can go on to find optimal systems of higher dimensional subgroups. 
Lack of space precludes us from pursuing this interesting problem any 
further here, so we refer the reader to Ovsiannikov, [3; §14.8], for some of 
the techniques available. 

Classification of Group-Invariant Solutions 

Definition 3.14. An optimal system of s-parameter group-invariant solutions 
to a system of differential equations is a collection of solutions u = f(x) 
with the following properties: 

(i) Each solution in the list is invariant under some s-parameter symmetry 
group of the sy!>tem of differential equations. 
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(ii) If u = j(x) is any other solution invariant under an s-parameter sym
metry group, then there is a further symmetry g of the system which 
maps j to a solution f = g . j on the list. 

Proposition 3.15. Let G be the full symmetry group of a system of partial 
differential equations a. Let {Ha} be an optimal system of s-parameter 
subgroups of G. Then the collection of all Ha-invariant solutions, for Ha in 
the optimal system, forms an optimal system of s-parameter group-invariant 
solutions to a. 

The proof is immediate from Proposition 3.6. Moreover, our earlier 
classification of subalgebras is now directly applicable to the classification 
of group-invariant solutions. 

Example 3.16. For the Korteweg-de Vries equation, we've already done all 
the work to provide a complete list of invariant solutions in our earlier 
treatment of Example 3.4. Indeed, according to our optimal system of 
one-dimensional sub algebras (3.25) of the full symmetry algebra, we need 
only find group-invariant solutions for the one-parameter subgroups gener
ated by: (a) v4-scaling; (b) v3+v2-modified Galilean boosts; (c) V3-
Galilean boosts; (d) v2-time translations; and (e) vI-space translations. 
All of these except the last were determined in Example 3.4, to which we 
refer the reader. The space translationally-invariant solutions are all con
stant, and hence trivially appear among the other solutions. Any other 
group-invariant solution of the Korteweg-de Vries equation can thus be 
found by transforming one of the solutions of Example 3.4 by an appropriate 
group element. 

For example, the travelling wave solutions, which correspond to the 
symmetry group generated by V2 + CVI = at + cax can be recovered from the 
stationary solutions u = f(x), invariant under the group generated by V2 = at. 
Referring to table (3.24), we see that 

Ad( exp( CV3) )V2 = V2 + CVi> 

where V3 = tax + au generates the one-parameter Galilean symmetry group 
for the Korteweg-de Vries equation. According to Proposition 3.6, if u = f(x) 
is any stationary solution, then j = exp( cV3)f will be a travelling wave 
solution with velocity c. From (2.68), we see that 

j(x, t) = f(x - ct) + c, 

where f(x) is any elliptic function satisfying 

f"'+ fl'=O. 

In particular, if 

u = fo(x) =3c sech2(WCx+ 8)- c, 
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which, as the reader can check, is a stationary solution to the Korteweg
de Vries equation for any c> 0, we recover the one-soliton solution with 
velocity c. 

Example 3.17. Finally, we look at the classification of the group-invariant 
solutions to the heat equation u, = Uxx- The construction of the group
invariant solutions for each of the one-dimensional subgroups in the optimal 
system (3.27) proceeds in the same fashion as Example 3.3, and we merely 
list the results. 

(a) 

Invariants are y = x/..fi, v = t-au; the reduced equation is Vyy +!JVy - av = 0, 
and the invariant solutions are our earlier parabolic cylinder solutions 

u(x, t) = t a e-X2/S , { kU( 2a+!, ~) +kV( 2a+!, ~)}. 
(b) V2+V6 + aV3 = 4txax + (4t2 + 1)at - (x2 + 2t - a)uau• 

Invariants are 

The reduced equation is 

Vyy + (a + y2)V = 0. 

Invariant solutions are expressed in terms of parabolic cylinder functions 
with imaginary arguments (Abramowitz and Stegun, [1; §19.17]) 

u(x, t) = (4t2+ 1)-1/4{ kW( -~, ~) 

_ (a - x )} { - tx2 a } +kW --, ~ exp -2---arctan(2t) . 
2 -v-8t2 +2 4t +1 2 

(c) 

Invariants are: 

The reduced equation is Airy's equation 

Vyy = yv. 

Solutions are written in terms of Airy functions 

u(x, t) = {k Ai(x+ t2 ) + k Bi(x+ t2)} exp(xt +~t3). 
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The corresponding invariant solutions for V2+VS are obtained by replacing 
x by-x. 

(d) 

Invariants are x, v = e -atu, and the reduced equation Vxx = av leads to the 
solutions 

{
keat ~osh(vax+5), 

u(x,t)= kx+k, 
keat cos(Fax+5), 

a>O, 

a =0, 

a<O. 

For the two remaining subalgebras, that generated by VI has only constants 
for its invariant solutions, which already appear in (d), and that generated 
by V3 has no invariant solutions. Thus the above solutions constitute an 
optimal system of group-invariant solutions to the heat equation whereby 
any other group-invariant solution can be found by transforming one of 
these solutions by a suitable group element. 

In our previous encounter with this problem, Example 3.3, we determined 
group invariant solutions for a couple of subgroups not appearing in the 
optimal system (3.27). By the general theory, these solutions can be derived 
from the above solutions by suitable group transformations. For example, 
since 

Ad[ exp( - !cv s)]( V2 + CV I) = V2 + lc2v3, 

we could have found the travelling wave solutions by transforming the 
solutions invariant under V2 + aV3, a";' c2/ 4, by the Galilean boost exp(!cvs), 
and indeed u = k e../7ix+at + k e-../7ix+at gets changed into the travelling wave 
solution u = k + k e-c(x-ct) when a = c2/ 4. 

3.4. Quotient Manifolds 

In order to provide a rigorous formulation of the basic method for finding 
group-invariant solutions of systems of differential equations outlined in 
Section 3.1, we need to gain a better understanding of the geometry underly
ing these constructions. The concept of the quotient manifold of a smooth 
manifold under a regular group of transformations will provide the natural 
setting for all group-invariant objects. Ultimately, we will see how the 
reduced system of differential equations for the group-invariant solutions 
naturally lives on the quotient manifold. We begin by discussing this quotient 
manifold in general. 

Let G be a local group of transformations acting on a smooth manifold 
M. There is an induced equivalence relation among the points of M, with 
x being equivalent to y if they lie in the same orbit of G. Let M / G denote 
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the set of equivalence classes, or, equivalently, the set of orbits of G. The 
projection 7T: M -+ MIG associates to each x in M its equivalence class 
7T( x) E MIG, which can be identified with the orbit of G passing through 
x. In particular, 7T(g. x) = 7T(X) for any g E G such that g' x is defined. 
Conversely, given a point w E MIG, 7T -\ { w} will be the orbit determined 
by w, realized as a subset of M. The quotient space MIG has a natural 
topology obtained by requiring that the projection 7T[ U] of an open subset 
Uc M is open iQ MIG. 

In general, the quotient space MIG will be an extremely complicated 
topological space with no readily comprehensible structure. However, if we 
further require G to act regularly on M, then we can endow MIG with the 
structure of a smooth manifold. If M is an m-dimensional manifold and 
G has s-dimensional orbits, then the quotient manifold MIG will be of 
dimension m - s. t Thus the quotient manifold construction has the effect 
of reducing the dimension by s, the dimension of the orbits of G. 

Once we have constructed the quotient manifold, the general philosophy 
is that any object on M which is invariant under the action of G will have 
a natural counterpart on the lower-dimensional quotient manifold MIG 
whose properties completely characterize the original object on M. As a 
first example, consider a G-invariant function F: M -+ JRI. Since F(g· x) = 

F(x) whenever g' x is defined, F is constant along the orbits of G. Therefore 
there is a well-defined function F = FIG: MIG -+ jRI such that F( 7T(X)) = 
F(x) whenever x EM. Conversely, if F: MIG -+ jRI then the function 
F: M -+ jRI given by F(x) = F( 7T(X)), x EM is clearly a G-invariant function 
on M. There is thus a one-to-one correspondence between G-invariant 
functions on M and arbitrary functions on MIG. Note further that in any 
local coordinate chart, the functions defined on MIG depend on s fewer 
variables than their counterparts on M merely because we have reduced 
the dimension of the underlying manifold by s. Thus projection to the 
quotient manifold has the net effect of reducing the number of degrees of 
freedom by s, the dimension of the orbits of the group action. 

Theorem 3.1S. Let M be a smooth m-dimensional manifold. Suppose G is a 
local group of transformations which acts regularly on M with s-dimensional 
orbits. Then there exists a smooth (m - s) -dimensional manifold, called the 
quotient manifold of M by G and denoted MIG, together with a projection 
7T: M -+ MIG, which satisfy the following properties. 

(a) The projection 7T is a smooth map between manifolds. 
(b) The points x and y lie in the same orbit ofG in M ifand only if 7T(X) = 7T(y). 
(c) If 9 denotes the Lie algebra of infinitesimal generators of the action of 

G, then the linear map 

d7T: TMlx -+ T(M I G)I1T(X) 

is onto, with kernel glx = {vlx: VE g}. 

t It may, however, not be a Hausdorff manifold; see the subsequent discussion. 
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PROOF. As above, MIG is simply the set of all orbits of G on M. Coordinate 
charts on MIG are constructed using the flat local coordinate charts on M 
provided by Frobenius' Theorem 1.43 using the regularity of G. The local 
coordinates Ya = (y~, ... ,y:;') on such a chart Va are such that each orbit 
intersects Va in at most one slice (J (") Va = {y~ = c~, ... ,y:;'-s = c:;'-S}, the 
constants c~, ... , c:;'-s uniquely determining the orbit (J. The corresponding 
coordinate chart Va on MIG is defined as the set of all orbits with nonempty 
intersection with Va, so 

Va ={WE MIG: 7T-1{W}(") Va ¥0}. 

Local coordinates on Va are determined by the slice coordinates 
y~, ... ,y:;,-s; in other words the coordinate map Xa: Va ~ IR m - s is defined 
so that Xa(w)=(c~, ... ,c:;'-S) when 7T-1{W} intersects Va in the slice 
determined by y~ = c~, ... ,y:;'-s = c:;'-s. Clearly the projection 7T: M ~ 
MIG is smooth in these coordinates since 7T(Y~, ... ,y:;') = (y~, ... ,y:;'-S) 
for Ya E Va. Furthermore, 

i = 1, ... , m - s, 

i=m-s+l, ... ,m, 

so d7T: TMIYa ~ T(MIG)I1T(Ya) is onto, with kernel spanned by 
al ay:;'-s+\ ... ,al ay:;', which is the same as the span of the infinitesimal 
generators 9 of G at Yo. 

The only remaining point is to prove that the overlap functions Xf3 0 X~I 
are smooth on the intersection Va (") Vf3 of two local coordinate charts on 
MIG. This is more or less clear if the corresponding flat coordinate charts 
Va and Vf3 are sufficiently small, and intersect on M, but this latter possibility 
need not occur. However, a fairly straightforward argument based on the 
connectivity of the orbits of G can be applied here, and the result holds; 
the details are given in Palais, [1]. 0 

In order to see a little more clearly what the local coordinates on the 
quotient manifold mean, consider some general local coordinates x = 

(x\ ... , xm) on M. Theorem 2.17 shows that by possibly shrinking the 
coordinate chart, we can find a complete set of functionally independent 
invariants 77 1(X), ... , 77 m - s (X), with each orbit intersecting the chart in at 
most one connected component, which is a level set { 77 I (x) = 
ch ••• , 77 m- s(X) = cm- s}. The constants ch ... , cm- s uniquely determine the 
orbit, then, and hence can be chosen as new local coordinates on the quotient 
manifold MIG, which agree with a set of flat coordinates used in the proof 
of the theorem. Thus local coordinates on the quotient manifold MIG are 
provided by a complete set of functionally independent invariants for the group 
action: 
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Figure 7. Quotient manifold for re/G2• 

Example 3.19. Consider the group of scale transformations 

A>O. 

The action is regular on M = 1R2\{0}, the orbits being semi-parabolas y = kx2 

for x> 0 or x < 0 and the positive and negative y-axis. Since each orbit is 
uniquely determined by its point of intersection with the unit circle SI = 
{x 2 + y2 = I}, we can identify M / G2 with SI. A local coordinate on M / G2 

is provided by the group invariant y / x 2 for x> 0 or x < 0, or by x 2/ y if 
y> 0 or y < 0, giving four overlapping coordinate charts on M / G. (A better 
choice of coordinate on M / G is perhaps given by the multiple-valued 
"angular" invariant (1 = arctan(y/ x2).) Clearly, no global coordinate chart 
valid for all nonzero (x, y) can be found in this case. 

The same construction works for any of the two-dimensional scaling 
groups G": (x, y) ~ (Ax, A "y) provided a> 0, the "angular" invariant (1 = 
arctan(y / x") providing the identification M / G" = SI. (The case a < 0 is 
discussed in Exercise 3.14.) 

As remarked earlier, one technical difficulty that can arise is that the 
quotient manifold M / G may not satisfy the Hausdorff separation property, 
and so we are naturally led to consider a more general notion of manifold 
than is usual. In other words, although M / G will always satisfy the require
ments (a) and (b) in Definition 1.1, there may exist distinct points y 
and y in M / G which cannot be "separated" by open neighbourhoods, i.e. 
if U is any neighbourhood of y and if any neighbourhood of y, then 
U () if:l= 0. One can develop the entire theory of manifolds omitting the 
Hausdorff axiom, in which case, as shown by Palais, [1], the quotient 
manifold construction keeps one in the same "category". Alternatively, the 
approach most often taken in practice is to remove non-Hausdorff "sin
gularities" in M / G by restricting attention to a suitably small open submani-
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Figure 8. Non-Hausdorff quotient manifold. 

fold !VI of the original manifold M with !VI I GeM I G an open, Hausdorff 
submanifold. For instance, !VI might be a coordinate chart on which we 
construct a complete set of functionally independent invariants, in which 
case !VI I G will have global coordinates provided by these invariants, and 
so can be realized as an open subset of the Euclidean space IR m - s• 

Example 3.20. Consider the vector field v = (x2 + y2)a x on 1R2. The one
parameter group G generated by v takes the form (x, y) = exp(ev)(x, y), 
where y = y and 

x = {y tan(ey+arctan(xly)), 
x/(l- ex), 

The orbits of G consist of 

(a) The origin (0,0), 
(b) The horizontal lines {y = c} with c;o!' 0, 
(c) The positive x-axis {y=O,x>O}, 
(d) The negative x-axis {y=O,x<O}. 

y;o!'O, 

y=O. 

Thus G acts regularly on M=1R2\{0}. The quotient manifold MIG is 
one-dimensional and looks like a copy of the real line but with two "infinitely 
close" origins! Indeed, the single invariant of G is the coordinate y, each 
orbit not on the x-axis being uniquely determined by its vertical displace
ment. Thus the points in MIG determined by the horizontal lines (b) are 
coordinatized by 7T(X, y) = y, x;o!' 0, so we can identify this part of MIG 
with the positive and negative real axes, corresponding to the images of the 
upper and lower half-planes respectively under the projection 7T: M ~ MIG. 
However, there must be two points in MIG corresponding to the positive 
and negative x-axes in 1R2; we denote these by 0+ and 0_ respectively, which 
can be viewed as two distinct, but infinitely close, origins of the quotient 
manifold MIG, which otherwise just looks like a copy of the real line: 

MIG = {y> O}u{y<O}u{O+}u{O_}. 

A basic neighbourhood of the "origin" 0+ is just U+ = {y: y = 0+ or 0 < Iyl < 
5+} for some constant 5+>0, a typical neighbourhood of 0_ being U_= 
{y: y = 0_ or 0 < Iyl < 5_}, 5_ > O. Clearly U+ n U_;o!' 0 no matter what 5+ 
and 5_ are, so the points 0+ and 0_ do not satisfy the Hausdorff separation 



218 3. Group-Invariant Solutions 

property. (A more physically relevant example of a non-Hausdorff quotient 
space is provided by the scaling groups G a of Example 3.19 when a < 0; 
see Exercise 3.14.) 

Proposition 3.21. Let G act regularly on the manifold M with s-dimensional 
orbits. 

(a) A smooth function F: M ~ IRI is G-invariant if and only if there is a 
smooth function F= FIG: MIG~IRI such that F(x) = F[7T(X)] for all 
XEM. 

(b) A smooth n-dimensional submanifold N c M is G-invariant if and only 
if there is a smooth (n - s) -dimensional submanifold N = N I GeM I G 
such that N = 7T[N] and hence N = 7T- I [N]. 

(c) A subvariety f:fF = {x: F(x) = O} defined by a smooth function F: M ~ IRI 
is G-invariant ifand only if there is a smooth subvarietyf:f F = {y: F(y) = O} 
defined by F: MIG ~ IRI such that f:f F = 7T[ f:f F]' (In this case, it is not 
necessarily true that F = F 0 7T unless F itself happens to be G-invariant.) 

This proposition is just a global restatement of Theorem 2.17 and 
Proposition 2.18, and we leave the details of the construction to the reader. 

Dimensional Analysis 

In the case of scaling groups, the preceding constructions provide an easy 
proof of the so-called Pi theorem, which forms the foundation of the method 
of dimensional analysis. In any physical problem, there are certain funda
mental physical quantities, such as length, time, mass, etc., which can all 
be scaled independently of each other. Let Zl, ... , zr denote these quantities, 
so the group under consideration transforms according to 

(Zl, ... , Zr)~(AIZI, ... , Arzr), 

where the scaling factors A = (Ah ... , Ar) are arbitrary positive real numbers. 
Thus the underlying group is just the Cartesian products of r copies of the 
mUltiplicative group IR+ of positive real numbers. There also exist certain 
derived physical quantities, such as velocity, force, fluid density and so on, 
which also scale under a rescaling of the fundamental physical units. Calling 
these quantities x = (Xl, ... , xm) and, assuming dimensional homogeneity, 
the action of our scaling group on the derived quantities takes the form 

in which the exponents aij, i = 1, ... , r, j = 1, ... , m, are prescribed by the 
physical dependence of the quantities x j on the fundamental units /. For 
example, if yl denotes length, y2 time and y3 mass, then changes in velocity 
v, being the ratio of length over time, and fluid density p, the ratio of mass 
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to volume (or length cubed), are given by 

If a derived quantity remains unchanged under the given scalings, then it 
is called dimensionless. The first part of the Pi theorem tells how many 
independent dimensionless quantities exist, this being determined by the 
number of independent invariants of the underlying group action. 

In general, certain functional relations of the form F(x l , ••• , xm) = 0 
among the derived quantities are posited. For instance, for waves in deep 
water, the velocity v might be determined as a function of wave length I 
and the gravitational acceleration g. (In this simple model, we ignore surface 
tension and other effects.) Such a relation is called unit-free if it is unchanged 
under a rescaling of the fundamental quantities. Such unit-free relations 
are often of great physical significance. The second part of the Pi theorem 
states that any such unit-free relation can be re-expressed solely in terms 
of the dimensionless combinations of the derived physical quantities. For 
instance, in our example, if A = (AI. A2, A3 ) represent the scalings in length, 
time and mass respectively, then 

A· (v, I, g) = (AIA;-IV, All, AIA;-2g ). 

Obviously, the only dimensionless quantity here is the Froude number v2/ Ig, 
or powers thereof. Thus any unit-free relation determining wave speed as 
a function of wave length and gravitational acceleration must take the form 

v = cyTg, 

in which only the constant c remains to be determined. We now state the 
Pi theorem in general. 

Theorem 3.22. Let z\ ... , zr be fundamental physical quantities which scale 
independently according to Zi ~ AiZi. Let Xl, ••• , xm be the derived quantities 
scaling according to (3.28) for some r x m matrix of constants A = (aij). Let 
s be the rank of A. Then there exist m - s independent dimensionless "power 
products" 

k= 1, ... , m -s, (3.29) 

with the property that any other dimensionless quantity can be written as a 
function of 7T I , ••• , 7Tm- s• If F(x l , ••• , xm) = 0 is any unit-free relation among 
the given derived quantities, then there is an equivalent relation 
F(x\ ... , xm) = 0 which can be expressed solely in terms of the above 
dimensionless power products: 

F= F( 7T I , ••• , 7T m - s ) =0. 

PROOF. Consider the positive octant of IR m , M = {x = (x\ ... ,xm): Xi> 0, 
i = 1, ... , m}. If G = IR+ X· .• X IR+ is the r- fold Cartesian product of the 
mUltiplicative group IR+, then (3.28) determines a global action of G on M. 
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The infinitesimal generators of this action are found by differentiating (3.28) 
with respect to Ai and setting Al = ... = Ar = 1. We find 

I a 2 a m a 
V, = ail x -I + ai2x -2 + ... + aimx --;;;-

ax ax ax 

to be the generator corresponding to the i- th copy of IR+ in O. The dimension 
of the span of Vh ... ,Vr at x EM is clearly the same as the rank of the 
matrix A = (aij), namely s, hence 0 has s-dimensional orbits. Global 
invariants for 0 on the entire octant M are given by power products of 
the form (3.29) provided Vi( 7T k ) = 0 for i = 1, ... , r. This holds if and only 
if the exponents /3jk in (3.29) satisfy the linear system 

m 

L aij/3jk = 0, 
j=1 

i=I, ... ,r. (3.30) 

There are m - s linearly independent solutions to this system leading to 
m - s functionally independent power products. Moreover, the power prod
ucts uniquely determine the orbits of 0 on M. Indeed, if 7Tk(X) = 7T k (.i) 
for all k, set x j = e'i.ij for j = 1, ... , m. The exponents tj satisfy the linear 
system Lj tj/3jk = 0 for k = 1, ... , r. Since we have constructed a basis for the 
null space of A, this is true if and only if there exist real numbers Sh' .. , Sr 
such that tj = Li Siaij' But then x = A . .i where Ai = e\ and hence x and .i 
lie in the same orbit of G. Since each orbit is thus a common level set of 
the global invariants 7T I , ••• , 7T m - s, the action of 0 is automatically regular 
and 7T I, ... , 7T m - s provide global coordinates on the quotient manifold 
0/ M, which can be identified with the positive octant of IR m - s• The second 
part of the theorem now follows immediately from part (c) of Proposition 
3.21. 0 

Example 3.23. Assume that the resistance D of an object immersed in a 
fluid is determined by a unit-free function of fluid density p, fluid velocity 
v, object diameter d, and fluid viscosity /-L. Letting Ah A2, A3 be the scaling 
parameters of length, time and mass respectively, we obtain the consequent 
scaling of the relevant derived quantities 

A· (p, v, d, /-L, D) = (A 13 A3P, AIA21 v, Aid, A ~I A21 A3/-L, AIA22 A3D). 

(For instance, D is written in units oflength xmass/(time)2, etc.) The matrix 
A in this case takes the form 

(
-3 

A= ~ 

1 1 

-1 0 

o 0 

-1 

-1 

1 

which is of rank 3. There are thus 5 - 3 = 2 independent dimensionless power 
products. To determine them, according to (3.30) we need to analyze the 
null space of A, which is spanned by the column vectors (1, 1, 1, -1,0) T, 
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(-1, -2, -2,0,1) T. These correspond to the independent power products 

pvd 
71'1 =R=-, 

I-' 

the first of which is the Reynolds number for the flow. According to the Pi 
theorem, any unit-free relation between our five quantities must be of the 
form F(R, K) = 0, or, upon solving for K, the resistance is given by D = 
pv2d 2h(R), where h is a function whose form remains to be determined. 

3.5. Group-Invariant Prolongations and Reduction 

In the basic program to rigorously implement the general procedure for 
constructing group-invariant solutions to differential equations, there is one 
primary hurdle that must be overcome. In general, if the system of differential 
equations A is defined over an open subset M c X x U of the space of 
independent and dependent variables upon which the symmetry group a 
acts regularly, then the reduced system of differential equations AI a for 
the a-invariant solutions will naturally live on the quotient manifold Mia. 
The difficulty is that although Mia has the structure of a smooth manifold, 
it will not in general be an open subset of any Euclidean space and so our 
earlier construction of jet spaces and prolonged group actions is no longer 
applicable. In practice, however, we work in local coordinate charts, and 
so we can make the more modest assumption that there are p + q - s func
tionally-independent invariants on M, 111(X, u), ... , l1 P+ q - S (x, u), determin
ing global coordinates on Mia, which can therefore be viewed as an open 
subset of the Euclidean space IRp+q-s. Here s denotes the dimension of the 
orbits of G. At this point, a second difficulty arises in that there is in general 
no natural way of distinguishing which of the invariants l1 j will be the new 
independent variables and which will be the new dependent variables. If 
a acts projectably, then, as we have seen, there are precisely p - s invariants 
which depend only on x, which can be designated as the new independent 
variables, the remaining q invariants becoming the new dependent variables. 
In the general case, however, there is no way of determining new indepen
dent and dependent variables in a consistent manner, and one is forced to 
make an arbitrary choice among the given invariants, assigning p - s of 
them the role of independent variables y = (/, ... ,yP-S), and the remaining 
q the role of dependent variables v = (v\ ... ,vq ). In this way, we have 
forced Mia to be a subset of the Euclidean space Y x V = IRP-s x IRq, and 
hence can determine an explicit form for the reduced system AI a by 
regarding v as a function of y. Already, the roles of independent and 
dependent variables are starting to blur. Different assignations of invariants 
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will lead to seemingly different expressions for the reduced system, but--,and 
this must be emphasized-these will all be equivalent under an interchange 
of the roles of independent and dependent variables reminiscent of the 
hodograph transformation of fluid dynamics. 

So far, this would be all right for our purposes, were it not for yet 
another complication. Once we have selected the new independent variables 
y and dependent variables v for our reduced system III G, there is no 
guarantee that a given function v = h(y) will correspond to a smooth, 
single-valued function u = f(x); vice versa, there exists the possibility of 
G-invariant functions u = f(x) not corresponding to smooth functions of 
the form v = h(y) relative to the given choice of independent and dependent 
variables. The problem in both instances is that a function on one of the 
spaces may give rise to a "function" with infinite derivatives or multiple 
values on the other space, and these are excluded by our perhaps artificial 
division of the coordinates into independent and dependent variables. 
This point is perhaps made more clear through the use of an illustrative 
example. 

Example 3.24. Suppose p = 2, q = 1 so M = X x U has coordinates (x, t, u). 
Consider the one-parameter group of translations G: (x, t, u)~ 
(x, t + e, u). Suppose instead of choosing the natural invariants x and u to 
coordinatize MIG = /R2 we were to choose the invariants y = x + u and 
v = u, with y the new independent and v the new dependent variable. Any 
function v = h (y) on MIG = Y x V will determine a two-dimensional G
invariant submanifold of M, given by the equation u = h(x + u), but unless 
h'(y),= 1, this equation will not determine u explicitly as a function of x 
(and t). For example, the function v = yin MIG corresponds to the vertical 
plane {x = O}, which is certainly not the graph of a function u = f(x, t). On 
the other hand, the G-invariant function u = -x reduces to the vertical line 
y = 0, which is not the graph of a function of the form v = h(y). Although 
this example is somewhat artificial, the phenomena may be unavoidable in 
more complicated situations. 

The principal reason for all these technical complications is our attach
ment to the distinction between independent and dependent variables, a 
stance which becomes increasingly untenable in light of the above reasoning. 
If we abandon this prejudice, the general construction of the reduced system 
for group-invariant solutions becomes very natural. Once the basic coordin
ate-free construction has been made, the technicalities involved in introduc
ing particular independent and dependent variables, both on M and MIG, 
can be handled with a minimum of difficulty. We therefore commence this 
section with a coordinate-free reformulation of our basic jet space construc
tion, this time valid for arbitrary manifolds, not just open subsets of 
Euclidean space. 
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Extended Jet Bundles 

Let us begin by looking a bit closer at our earlier constructions of the jet 
space M(n) for Me X x U = IRP x IRq. Each point (xo, u~n» E M(n) is deter
mined by the derivatives of a smooth function u = f(x) whose graph passes 
through the base point Zo = (xo, uo) E M, with u~n) = pr(n) f(xo). Two such 
functions are said to be n-th order equivalent at Zo if they determine the 
same point in M(n)lzo:= {(x, u(n»: (x, u) = zo}; in other words, f and j are 
n-th order equivalent at (xo, uo) if their derivatives up to order n agree: 

a = 1, ••• ,q, O"z;. # J "z;. n. 

From this point of view, the jet space M(n)l zo can be regarded as the set of 
n-th order equivalence classes on the space of all smooth functions u = f(x) 
whose graphs pass through Zo = (xo, uo). 

Thus the important object is not the function f but rather its graph 
rf = {(x,f(x))}, which is a p-dimensional submanifold of M. However, not 
every p-dimensional submanifold of M is the graph of a smooth function, 
so not every such submanifold passing through the point Zo E M will deter
mine a point in M(n)lzo' The goal here is to "extend" the jet space M(n)l zo 
to include those submanifolds with "vertical tangents". The implicit function 
theorem tells us which submanifolds are the graphs of smooth functions. 

Proposition 3.25. A p-dimensional submanifold reM c X x U is the graph 
of a smooth function u = f( x) if and only if r satisfies the properties of being 

(a) Transverse. For each Zo = (xo, uo) E r, r intersects the vertical space Uzo = 
{(xo, u): u E U} transversally, meaning Trlzor1 TUzolzo = {OJ. 

(b) Single-Valued. r intersects each vertical space Uzo' Zo EM, in at most one 
point. 

Of course, if we change coordinates on M, the requisite vertical planes 
will change, so a submanifold which is the graph of a function in one 
coordinate system may not be in another. For instance, the parabola u = x 2 

is the graph of a function when x E IR is the independent and u E IR the 
dependent variable, but if we let y = u be the new independent and v = x 
the new dependent variable, then the parabola fails the transversality condi
tion at the origin and the single-valuedness condition for all y> O. However, 
if we have a sufficiently small p-dimensional submanifold r, we can always 
arrange local coordinates so that r is the graph of a function. 

Once we allow arbitrary changes in the independent and dependent 
variables, it is senseless to exclude certain p-dimensional submanifolds 
merely because they happen to violate the transversality or single-valuedness 
conditions in some given set of coordinates. From this standpoint, the role 
offunctions u = f(x) is now played by arbitrary p-dimensional submanifolds 
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f e M. At this point, we see that we have freed ourselves entirely from our 
dependence on Euclidean coordinates (x, u) and the definitions to follow 
will make sense for arbitrary (p + q )-dimensional manifolds M. 

Definition 3.26. Let f and f be regular p-dimensional submanifolds of the 
smooth manifold M. We say that f and f have n-th order contact at a 
common point Zo E f n f if and only if there exists a local coordinate chart 
W containing Zo = (xo, uo) with coordinates (x, u) = (xl, ... ,xP, u l , ... , u q ), 

such that f n Wand f n W coincide with the graphs of smooth functions 
u = f(x) and u = j(x) which are n-th order equivalent at Zo: pr(n) f(xo) = 
pr(n) j(xo). 

It is not difficult to see that the property of having n-th order contact at 
Zo is independent of the choice of local coordinates at zo, provided only 
that f and f are both transverse to the vertical space VTf> and hence are 
locally the graphs of smooth functions. Clearly n--th order contact determines 
an equivalence relation on the set of p-dimensional submanifolds passing 
through a point. 

Definition 3.27. Let M be a smooth manifold and p a fixed integer with 
0< p < dim M. The extended jet space M~)Iz> is defined as the set of 
equivalence classes of the set of all p-dimensional submanifolds passing 
through Z under the equivalence relation of n-th order contact. The extended 
jet bundle is the union of all these spaces: M~n) = U ZEM M~)lz. 

If f eM is any p-dimensional submanifold, and Z E f, the n-th prolonga
tion pr(n) flz E M~n)lz is the equivalence class determined by f. If f and f 
have n-th order contact at zo, they certainly have k-th order contact for any 
k < n, so there is a natural projection 1T~: M~n) ~ M~k>, 1T~(pr(n) f) = pr(k) f. 
In particular, M~) = M. The next result makes precise in what sense the 
extended jet space is the "completion" of the ordinary jet space (in the 
same way that projective space is tqe "completion" of Euclidean space). 

Theorem 3.28. If M is a smooth (p + q) -dimensional manifold, then the 
extended jet bundle M~n) determined by p-dimensional submanifolds is a 
smooth p+q(P!n)-dimensional manifold. If fe M is any regular p
dimensional submanifold, its prolongation pr(n) f is a regular p-dimensional 
submanifold of M~n). If Me M is a local coordinate chart, which determines 
a local choice of independent and dependent variables (x, u), then the subspace 

M(n)lz == {pr(n) flz: Z E f, Tfl, n TV,I, = {On 

determined by the transverse submanifolds f passing through z, is an open 
dense subset of the extended jet space M~n)I,. Moreover, the union of all such 
subspaces, M (n), is. isomorphic to the ordinary Euclidean jet space: M( n) = 
M X VI X· •• X Vn = {(x, u(n»: (x, u) EM}. Iffe M coincides with the graph 
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of a smoothfunction u = f(x), then under the above identification its prolonga
tion pr(n) f c M(n) c M~n) coincides with the graph of the prolongation of 
f: pr(n) f={(x, pr(n) f(x))}. 

Thus, except for the singular subvariety y(n)lz -= M~n)lz \M(n)lz> consist
ing of the prolongations of nontransverse submanifolds, the extended jet 
space looks just like the ordinary jet space discussed in Chapter 2. The 
proof of this theorem is not difficult; an illustrative example should indicate 
how one would fill in the details in general. 

Example 3.29. Let Me 1Jl2 be open and let p = 1, so we are considering 
one-dimensional submanifolds (curves) in M. Two curves determine the 
same point in M~n)lzo ifand only ifin some local coordinates near Zo = (xo, Yo) 
they are given as the graphs of functions u = f(x), u = j(x) with the same 
derivatives up to order n at Xo: 

Uo = f(xo) = j(xo),j'(xo) = j'(xo), ... ,fn)(xo) = j<n)(xo). 

In the case n = 1, then, the curves f and f have first order contact at Zo 
if and only if they are tangent at zoo Thus M~)lzo is given by the set of all 
tangent lines to curves passing through zoo Since every such line is determined 
by the angle (J it makes with the horizontal, varying from (J = 0 to (J = 7T, 

we can identify M~)lzo with the circle SI, where the "angular" coordinate 
satisfies 0",. (J < 7T. Topologically, then, M O) = M X SI. Choosing coordin
ates (x, u) on M, the Euclidean jet space MO)l zo is the subset of M~)lzo 
given by those curves whose tangent line is not vertical, i.e. (J ~ 1T/2. We 
can identify this subset with the usual jet space {(x, u, uxH by setting 
Ux = tan (J. 

Turning to the case n = 2, we see that two curves f and f have second 
order contact at Zo if and only if they osculate at zo, i.e. have the same 
tangent and curvature there. Thus M~)lzo can be identified with the set of 
all circles of positive radius passing through zo, including the degenerate 
straight lines. I claim that this space is topologically equivalent to a Mobius 
band! The natural projection 7Ti: M~)lzo ~ M~)lzo = SI associates the com
mon tangent line to any pair of osculating curves, so the inverse image of 

x 

R1T -
u 

Figure 9. Extended jet space M~ for Me 1R2. 

x 
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a point (J E Sl (Le. a tangent line through zo) is isomorphic to IR, the additional 
coordinate being the signed curvature of the curve with the given tangent 
direction. Thus, locally M~)I", looks like the Cartesian product of a piece 
of Sl with IR. However, if we fix the curvature, but let (J increase from 0 to 
7T, in essence we are rotating the given curve through an angle of 7T. The 
result is a curve with the same tangent, but whose curvature has changed 
sign! Thus as the circle Sl is traversed, the copy of IR over each point 
twists once, and we have a MobIus band. In local coordinates (x, u), the 
open dense subset M(2)1", C M~)I", is obtained by cutting the band along 
the line (J = 7T/2, the result being isomorphic to the two-dimensional plane 
VI x V 2 = {(ux, uxx )}. 

Further results on the structure of the extended jet space are given in 
the exercises. 

Differential Equations 

Definition 3.30. Let M be a smooth manifold with extended jet bundle M~n) 
determined by p-dimensional submanifolds. A system of differential 
equations over M is determined by a closed subvariety 9'! C M~n). A solution 
to the system is a p-dimensional submanifold r whose prolongation lies 
entirely within the subvariety: pr(n) r c 9'!. 

If we choose a local coordinate chart M c M, and concentrate on the 
subset M(n) c M~n), then we reduce to our previous concept of a system of 
differential equations: 9'.1 == 9'! 1\ M(n) = {(x, u(n»): a(x, u(n») = O} for some 
set of smooth functions a: M(n) ~ 1R/. A transverse, single-valued submani
fold r, which thus is the graph of a smooth function u = f(x), is a solution 
in the above sense if and only if the corresponding function f is a solution 
in the traditional sense: a(x, pr(n) f(x)) = O. In addition we are allowing the 
possibility of both multiple-valued solutions and solutions with vertical 
tangents (infinite derivatives) provided they are in some sense "limits" of 
classical solutions. Any "traditional" system of differential equations 
defined over an open subset M of Euclidean space X x V can always be 
made into such an "extended" system by taking the closure of its subvariety 
in M~n): 9'! = 9'.1' 

Example 3.31. Consider the nonlinear wave equation U t + uUx = O. Here the 
underlying space isM = 1R2 x IR, with coordinates (x, t, u), and the equation 
determines a subvariety in the first jet space M O) = IRs with coordinates 
(x, t; u; ux , ut ). The extended jet space M~)lz is, as in the previous example, 
equivalent to the set of all planes passing through z = (x, t, u). Each plane 
is uniquely determined by its normal direction n = (A, JL, /I), and two nonzero 
normal vectors n, ii determine the same plane if and only if they are scalar 
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multiples, X = KA, iL = KJ.L, ;; = KV. The entries [A, J.L, v] of the normal vector 
thus provide "homogeneous" coordinates on M~)lz (which is isomorphic 
to 1R1P'2). 

A function u = f(x, I) determines a two-dimensional sub manifold ff with 
normal n = ( -Ix, - j" 1), so A = -Ix, J.L = - j" v = 1 form one set of 
homogeneous coordinates for pr(1)ff' A more general submanifold f = 

{F(x, I, u) = O} has normal n = V F, and hence pr(1) f = {(x, I; u; [Fx, F" Fum 
in our coordinates. In particular, f and ff have the same tangent plane if 
and only if their homogeneous coordinates are equivalent: Fx = - KIx, F, = 
-Kj" Fu = K, from which we deduce the familiar formulae Ux = - Fxl Fu, 
u, = - F,/ Fu. Consequently, M(l)lz is the open subset of M~)lz where the 
third homogeneous coordinate v does not vanish, and in this case Ux = - A I v, 
u, = - J.LI v. 

If we substitute these expressions into the equation, we find an explicit 
formula for the extended subvariety 

9'! = {(x, I; u; [A, J.L, v]): A + uJ.L = O}. 

A solution is then a two-dimensional submanifold f = {F(x, I, u) = O} with 
pr(1) f c 9'!. meaning a,F + uaxF = 0 (V F ~ 0). This equation can now be 
solved directly by the characteristic methods of Section 2.1, leading to 
F = F(x - lu, u) f~r the general solution. Alternatively, we can use a "hodo
graph" coordinate change and choose new independent variables 1 and u 
and new dependent variable x. Note that x, = -J.LI A, XU = -vi A, so in the 
(I, u; X; x"xu) coordinates on M~>' the equation becomes x, = u, with 
elementary solution x= lu+h(u), h an arbitrary function of u. Note that 
although this choice of coordinates leads to globally defined solutions, in 
the original coordinates (x, I; u) solutions can become multiple-valued, 
leading to the familiar phenomena of wave breaking. (In our present inter
pretation, these multiple-valued functions remain solutions, while for 
physical applications, one would replace them by shock solutions.) 

Group Actions 

If g: M ~ M is any diffeomorphism and f c M is a p-dimensional submani
fold, then g' f = {g. x: x E f} is also a p-dimensional submanifold. 
Moreover, g preserves the equivalence relation of n-th order contact, so 
there is an induced diffeomorphism pr(n) g of the extended jet space M~n): 

pr(n) g(pr(n) flz) == pr(n) (g. nlg... Z E f. (3.31) 

Thus for any local group of transformations G acting on M, there is an 
induced action pr(n) G, the n-th prolongalion of G, on M~n). In any local 
coordinate chart M c M, this action agrees with our earlier notion of 
prolongation on the corresponding Euclidean jet space M(n)c M~n). Note 
especially that since any p-dimensional submanifold, transverse or not, is 
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now being regarded as the graph of a "function", we no longer have to 
worry about domains of definition of the prolonged group action; if g is 
defined on M g, then pr(n) g is defined on all of M~'J2. In particular, if G is 
a global group of transformations, its prolongation to M~n) is still a global 
group of transformations. (Compare this with Example 2.26.) 

If v is a vector field on M, its prolongation pr(n) v is the vector field on 
M~n) which generates the prolongation pr(n) [exp(ev)] of the one-parameter 
group generated by v. Since this agrees with the usual prolongation on any 
coordinate chart M c: M, we immediately conclude that the formula for 
pr(n) v is the same as that given in Theorem 2.36 on the subspace M(n) c: M~n). 
(Notice that by this remark, we conclude the invariance of (2.38) under 
arbitrary changes of independent and dependent variables!) 

A locally solvable system of differential equations 9't c: M~n) is invariant 
under the group action of G if and only if pr(n) G preserves 9't. i.e. 
pr(n) g[9't] c: 9't. The corresponding infinitesimal criterion is that pr(n) v 
is tangent to 9't whenever v is an infinitesimal generator of G. In local 
coordinates on M c: M, this reduces to our usual infinitesimal criterion of 
invariance (2.25), which is both necessary and sufficient provided 9'4 = 9't Il 
M(n) is both locally solvable and of maximal rank, and the complete 
subvariety 9't c: M~n) is just the closure of 9'4' (Otherwise we would have 
to check invariance in other coordinate systems.) Thus the theory of sym
metry groups of systems of differential equations on extended jet bundles 
does not differ in any essential aspect from our previous theory of symmetry 
groups of differential equations, and, in fact, reduces to it as soon as local 
coordinates are introduced on M. 

The Invariant Jet Space 

The real key that unlocks the geometrical insight behind the construction 
of group-invariant solutions is the determination of the structure of that 
subset of the jet space traced out by their prolongations. Suppose G acts 
on a smooth manifold M, on which some system of differential equations 
9't is defined. The G-invariant solutions to the system will be certain 
p-dimensional submanifolds r c: M, corresponding to the graphs of func
tions in local coordinate charts, which are locally invariant under the 
action of G. In general, these G-invariant submanifolds will not fill up the 
entire jet space M~n), but only a certain subspace I~n) = I~n)( G) called the 
invariant space of G. It is defined as 

I~n)IZo == {z~n) E M~n)IZo: there exists a locally G-invariant 
p-dimensional submanifold r passing through Zo 

with prolongation z~n) = pr(n) fl Zo}. 

In most cases of practical interest, M is an open subset of some fixed 
Euclidean space, with ordinary jet space M(n) c: M~n). There is a correspond-
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ing invariant space l(n) = l~n) n M(n), which is determined by the prolonga
tions of G-invariant functions u = f(x): 

l(n)IXo = {(xo, u~n») E M(n): there exists a locally G-invariant function 
defined in a neighbourhood of Xo such that u~n) = pr(n) f(xo)}. 

For practical purposes, the space l(n) is the easiest to work with, while in 
the theoretical proofs, its extension l~n) comes into the forefront. 

Example 3.32. Consider the case p = 2, q = 1, so X has coordinates (x, t) 
and U the single dependent variable u. Let G be the translation group 
(x, t; u)>-+(x+ e, t; u), with infinitesimal generator a/ax. A function u = 
f(x, t) is G-invariant if and only if f is independent of x. Thus 

1(1) = {(x, t; u; ux , u,): Ux = O}, 

since at each point Ux = af / ax vanishes, while u, = af / a t can be specified 
arbitrarily. Similarly, 

1(2) = {(x, t; u; ux, u,; uxx , UXlo Uti): Ux = Uxx = ux, = O}, 

and so on. As a useful exercise, at this point the reader should determine 
1(1) and 1(2) in the case G = SO(2) is the rotation group with infinitesimal 
generator - tax + xa,. 

In Theorem 3.38 we will give an explicit characterization of the invariant 
space in general. However, we can already prove most of the important 
properties of this space even without the explicit formulae: 

Proposition 3.33. Let M be a smooth manifold, and G a local group of 
transformations acting on M. Then the invariant jet space 1<;) c M~n) corre
sponding to G is invariant under the action of pr(n) G on M<;): 

gEG. 

PROOF. Let z~n) be a point in 1<;)1"" so that by definition there exists a 
locally G-invariant p-dimensional submanifold r passing through Zo with 
pr(n) fi", = z~n). If g is any element of G such that Zo = g • Zo is defined, then 
the transformed sub'llanifold f = g. r = {g. z: z E r, g. z is defined} is also 
locally G-invariant. (Why?) Thus, by (3.31), 

which, being the prolongation of a locally G-invariant submanifold, lies in 
l~n)1 Zo. This completes the proof. (The same proof clearly works for the 
ordinary invariant space l(n) c M(n).) 0 
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Connection with the Quotient Manifold 

Since the invariant jet space I~n) for a group action is itself invariant under 
the prolonged group action pr(n) G, we can define a quotient space 
I~n) I pr(n) G by contracting the orbits of pr(n) G in I~n) to points. In the 
case G acts regularly on the underlying manifold M, this "prolonged 
quotient manifold" can be identified with the n-jet space of the correspond
ing quotient manifold MIG. This result, which becomes elementary to both 
state and prove in the language of extended jet bundles (but is considerably 
more complicated if we stick to ordinary jet spaces, as will be seen 
subsequently) immediately leads to the reduced system of differential 
equations for G-invariant solutions: 

Proposition 3.34. Let G be a local group of transformations acting regularly 
on the (p + q) -dimensional manifold M with s-dimensional orbits, s:s; p, and 
let MIG be the corresponding (p + q - s) -dimensional quotient manifold. Let 
M~n) be the extended n-jet space generated by p-dimensional submanifolds 
of M, and I~n) c M~n) the corresponding invariant space generated by the 
G-invariant p-dimensional submanifolds. Then there is a natural projection 
7T(n): I~n) ~ (M I G)~n) onto the extended n-jet space corresponding to (p - s)
dimensional submanifolds of MIG with the following properties: 

(a) If Z EM has image 7T(Z) = WE MI G, where 7T: M ~ MI G is the natural 
projection, then 

is a diffeomorphism. 
(b) If f c M is any G-invariant p-dimensional submanifold, with image 

f/G= 7T[f]c MIG, then 

7T(n)[pr(n) fI,] = pr(n) (f I G)lw (3.32) 

for any Z E f with image w = 7T( z) E fiG. 
(c) Two points z(n) and i(n) in I~n) have the same image in (MIG)~n) under 

7T(n) if and only if they lie in the same orbit of pr(n) G. Thus 

I<;)/pr(n) G=(MIG)~n) 

with 7T(n) coinciding with the natural projection. 

PROOF. Almost all of these properties follow directly from the correspon
dence between G-invariant p-dimensional submanifolds of M and general 
(p - s)-dimensional submanifolds of MIG described in Proposition 3.21, 
and the following lemma. 

Lemma 3.35. Let f and f be locally G-invariant submanifolds of M with 
images fiG and fiG in MIG. Then f and f have n-th order contact at 



3.5. Group-Invariant Prolongations and Reduction 231 

Zo E M if and only if flO and flO have n-th order contact at Wo = 7T( zo) E 
Mia. 

PROOF. Choose flat local coordinates (t, y, v) = (t\ ... , tS, y\ ... , 
yP-S, Vi, ••. , v q ) near Zo = (to, Yo, vo), the orbits of a being the slices {y = 
c, v = c}, such that f and f are the graphs of functions v = f(y, t), v = j(y, t) 
respectively. The O-invariance of f and f implies thatf and j are indepen
dent of t, and, moreover, in the corresponding local coordinates (y, v) on 
M 10, flO and flO have the same respective formulae v = f(y), v = j(y). 
The lemma is thus trivial: n-th order contact of f and f means that the 
n- th order derivatives off and j with respect to both y and t agree at Yo, to. 
But the t-derivatives are all identically zero, so this is clearly equivalent to 
the requirement that just the n-th order derivatives of f and j with respect 
to y agree at Yo, which is the same as flO and flO having n-th order 
oo~~ 0 

To prove Proposition 3.34, we define the map 7T(n) using (3.32), the 
lemma assuring us that it is well defined. Part (a) follows from the correspon
dence between a-invariant submanifolds of M and their images in MIG. 
To prove part (c), let f and f be locally a-invariant submanifolds represent
ing zen) = pr(n) flz and zen) = pr(n) fl 1T(Z). The images 7T(n)(Z(n») = 
pr(n)(f I O)I1T(Z) and 7T(n)(Z(n») = pr(n)(f I O)I1T(Z) are the same if and only if 
flO and flO have n-th order contact at W=7T(Z)=7T(Z). We conclude 
that Z and Z lie in the same orbit of a in M, so by Proposition 1.24 there 
exist elements gl>"" gk E a such that Z = gl . g2 ..... gk' z. Let f* = 
gl . g2 ..... gk' f. Then f* passes through Z, and has the same projection 
f* 10 = flO as f. By Lemma 3.35, f* and f have n-th order contact at Z. 
Therefore 

zen) = pr(n) fl Z = pr(n) f*1 Z = pr(n)[gl . g2 ..... gk' fJl Z 

= pr(n) gl . pr(n) g2 ..... pr(n) gk(pr(n) flz) = pr(n) gl ..... pr(n) gk(Z(n»), 

so zen) and zen) lie in the same orbit of pr(n) G. o 

The Reduced Equation 

Let .'I! c M~n) correspond to a system d of partial differential equations 
admitting the symmetry group G. If r is the graph of a a-invariant solution 
to d, then not only is its prolongation pr(n) f a submanifold of .'It it 
also necessarily lies in the invariant space I~n). This suggests that the 
determination of such solutions is accomplished through the analysis of 
the intersection .'I! n I~n) of these two subvarieties, whose invariance under 
pr(n) a is guaranteed by Proposition 3.33. Using the projection of Proposi
tion 3.34, we will then arrive at the reduced system 9'!/G = 7T(n)[9'! n I~n)]. 
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It is now easy to state and prove the fundamental theorem on the construc
tion of group-invariant solutions. 

Theorem 3.36. Let G be a symmetry group of a system of differential equations 
9'! c M~n). A p-dimensional manifold fc M is a G-invariant solution if and 
only if the corresponding (p - s) -dimensional submanifold f / GeM / G is a 
solution to the reduced system 9'!/G = 7T(n)[9'! n [~)] c (M / G)~n). 

PROOF. If f is such a solution, its prolongation pr(n) f lies in the intersection 
9'! n [~n). Then by Proposition 3.34, 7T(n)[pr(n) f] = pr(n)(f / G) lies in 9'!/G, 
hence f / G is a solution to the reduced system. To prove the converse, note 
first that by Proposition 3.33, 9'! n [~) is pr(n) G-invariant, hence if z(n) E [~) 
has projection 7T(n)(Z(n» E 9'!/G, then z(n) E 9'! n [~). (Indeed, we can find 
i(n) E 9'! n [~n) lying in the same orbit of pr(n) G.) Therefore, if f / G is a 
solution to the reduced system, and f= 7T-1(f/G) the corresponding G
invariant submanifold of M, then by (3.32) pr(n) f c 9'! n [~) since 
7T(n)[pr(n) f] = pr(n)(f / G) c 9'!/G' Thus f is a solution. 0 

Local Coordinates 

Theorem 3.36 does provide the rigorous justification of the general method· 
for constructing group-invariant solutions. Its almost trivial proof is a good 
illustration of the power of mathematical abstraction for simplifying and 
simultaneously generalizing seemingly complicated constructions. On the 
other hand, from a more practical standpoint its slick presentation is rather 
disconcerting, so we need to bring the abstract jet space constructions back 
down to earth, which means re-introducing local coordinates. We thus let 
(x, u) = (x\ ... , x P, u\ ... , uq ) be local coordinates on M, which we can 
now regard as an OPen subset of the Euclidean space X x U, with jet space 
M(n)c M~n). 

If G is a local group of transformations acting on M, the invariant 
space [(n) c M(n) differs from the extended.invariant space [~n) C M~n) just 
by the images of nontransversal G-invariant submanifolds f. In particular, 
[(0) eM consists of all points Zo = (xo, uo) such that there is at least one 
locally G-invariant function u = f(x) whose graph passes through to. Note 
that while [<:) = M, provided only that s, the dimension of the orbits of G, 
does not exceed p, the same cannot be said of [(0). For example, in the case 
G = SO(2) acting as the group of rotations on X x U = 1R2, the locally 
G-invariant functions are u = ±J c2 - x 2, whose graphs are circular arcs. No 
such graphs pass through the points on the x-axis, so [(0) = {(x, u): u ~ O} 
is strictly contained in M = X x U. In general, outside [(0) there are no 
G-invariant functions at all, so we may as well restrict attention to [(0) itself 
and assume from now on that M = [(0), meaning that through each point 
of M there passes the graph of some G-invariant function u = f(x). There 
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is a simple explicit characterization of this requirement in the case of a 
regular group action. 

Proposition 3.37. Let G act regularly on M c X X U. Then Zo E M lies in [(0) 

if and only if the orbit of G through Zo is transverse to the vertical space U'o ' 
in which case G is said to act transversally at Zoo 

PROOF. The necessity of transversality of G at Zo is clear, since if f is locally 
G-invariant, f contains a relatively open subset W n (J of the orbit (J passing 
through zo, so transversality of f implies transversality of (J. To prove 
sufficiency, note that by definition, G acts transversally at Zo if and only if 

(3.33) 

since 91'0 is the tangent space to the orbit (J through Zoo Let Wo = 7T(Zo) be 
the image point in M / G. Theorem 3.18 implies that dzr[ TU'oI'o] == TU*lwo 
is a q-dimensional subspace of T(M/G)lwo' Let f be any (p-s)
dimensional submanifold transverse to this subspace, meaning Tflwon 
TU*IWo={O}. Then f= 7T- 1(f) is easily seen to be a G-invariant p
dimensional submanifold of M passing through zo, transverse to U'o ' and 
hence Zo E [(0). 0 

In local coordinates, if 9 is spanned by the vector fields 

Vk = L g~(x, u)ax i + L «p~(x, u)a"a, k = 1, ... , r, 
j 

then (3.33) is equivalent to the condition that the rank of the p x r matrix 
with entries g~(x, u) be exactly s, the dimension of the orbit, at Zo= (xo, uo): 

(3.34) 

For example, the action of SO(2) on 1R2 is generated by -uax + xa". We 
have s = rank( -u, x) = 1 provided (x, u) ~ (0, 0), while rank( -u) = 1 except 
when u = O. Thus SO(2) acts transversally everywhere except on the x-axis, 
which agrees with our earlier computation. 

This clears up the connection between transversality and the existence 
of G-invariant functions, at least on the local level. The question of existence 
of globally defined G-invariant functions is considerably more delicate, and 
does not follow even if the local transversality condition holds everywhere. 
See Exercise 3.15 for an example. 

From now on, we assume G acts transversally everywhere, so [(0) = M. 
Then the invariant space [(n) can be described explicitly using the 
infinitesimal generators of G. 

Theorem 3.38. Let G act regularly and transversally on M c X x U. Let 

k = 1, ... , r, 
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be a basis for the infinitesimal generators. Then the n-th invariant space 
/(n) c M(n) is determined by the equations 

/(n) = {(x, u(n»): DJQ~(x, u(n») = 0, k = 1, ... , r, a = 1, ... , q, #J:s;;, n -t}, 

where Q~ = l/J~ - L ~~u~ are the characteristics of the vector fields Vk' (See 
(2.48).) 

PROOF. We outline the proof for n = 1, whereby /(1) is the common vanishing 
set of the characteristics Q~(x, u(I)), leaving the extension to general n to 
the reader. If u = f(x) is a G-invariant function, then, for a = 1, ... , q, 

must vanish whenever u = f(x). The right-hand side is thus Q~(x, pr(1) f(x)). 
Since every point in /(1) is determined by the first prolongation of such a 
G-invariant function, we conclude that /(1) is contained in the set where 
Q~ = 0 for all a, k. This part holds for any group action whatsoever. 

To prove the converse, we have to use the restrictions on the group 
action. The easiest way to proceed is to introduce flat local coordinates 
(y, v) = (i, ... , yP, Vi, ••• , v q ) where the orbits of G are the slices {yl = 
Cl> ••• ,yP-S = cp-s> Vi = CI> ... , v q = cq } and hence at each point (Yo, vo), the 
space of infinitesimal generators gbool\:l) is spanned by the tangent vectors 
oj oyP-S+I, ... ,oj oyp. In this case, the vanishing of all the characteristics 
is equivalent to the conditions ova j oyk = 0 for all a = 1, ... ,q, k = 
p - S + 1, ... ,p. To any point (Yo, v~l)) E M(1) satisfying these equations, it 
is easy to associate a function v = h(y) with v~1) = pr(1) h(yo). (For instance, 
h can be constant!), and hence the reverse inclusion is valid, proving the 
theorem. 

There are, however, two technical points to be dealt with in this coordinate 
change. The first is that changing coordinates does not alter the characteris
tics, or, more precisely, does not change their common vanishing set. This 
follows from the general formula of Exercise 3.21 for the behaviour of 
characteristics under a change of variables. The other point is that the graph 
of u = f(x), when re-expressed in the (y, v)-coordinates, may fail to be 
transverse to the vertical v-space, and hence not be the graph of a well
defined function v = h(y). This, however, is easily rectified by "skewing" 
the v coordinates through a linear change of variables y = y + Lv, v = v for 
some constant p x q matrix L. The (y, v)-coordinates are still flat, and L 
can always be determined so that the graph of u = f(x) is once again 
transverse to the vertical space. 0 

Example 3.39. In the case of the rotation group SO(2), the infinitesimal 
generator is v = -uox + xOu , with characteristic Q = x + uUx' The first invariant 
space at (x, u) with u,eO is thus /(1) = {(x, u, ux): x+uux=O}. Note that 
even if u = 0, Q does not vanish unless x = 0, so /(1) is still described by 
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the vanishing of the characteristic except at the origin x = u = 0. There, 
however, /(1) is still empty, but Q == ° for all ux , so the regularity of the 
group action is essential for the validity of Theorem 3.38. Higher order 
invariant spaces are constructed by differentiating, so for u ¥ 0, 

/(2) = {(x, u, ux , uxx ): x+ uUx = 0,1 + uUxx + u; = O}, 

and so on. 

To proceed to the quotient manifold, we make the further assumption 
that there exist p + q - s globally defined, functionally independent 
invariants for G on M, which we partition into new independent variables 
/ = 71 i (X, u), i = 1, ... , P - s, and new dependent variables va = ("(x, u), 
a = 1, ... , q. (This can always be arranged by shrinking the domain M still 
further.) These provide global coordinates on the quotient manifold M / G, 
which we can therefore regard as an open subset of the (p+q-s)
dimensional Euclidean space Y x V. 

As we saw in Proposition 3.34, the projection 7T(n) provides a diffeomorph
ism between the full invariant space /~l,() at a point Zo E M and the full 
extended jet space (M / G)~n)lwo at the image poiI\t Wo = 7T(Zo) EM/G. 
However, with the introduction of local coordinates on both M and M / G, 
we must impose transversality requirements on the relevant submanifolds 
to ensure that they locally look like the graphs of smooth functions. As a 
result, the basic correspondence between the invariant space /(n)I 'o and the 
usual jet space (M / G)(n)lwo loses much of the innate simplicity of the 
extended version in Theorem 3.36. 

Example 3.24 illustrated how graphs of smooth G-invariant functions 
might project down to nontransverse submanifolds of M / G, or, vice versa, 
smooth functions on M / G might correspond to nontransverse G-invariant 
submanifolds of M. To maintain the basic correspondence, then, we must 
avoid these pathological cases and concentrate on those G-invariant func
tions on M which correspond to smooth functions on M / G and conversely. 
More specifically, the invariant space /(n)I 'o traced out by the prolongations 
of G-invariant functions u = f(x) differs from the extended invariant space 
/~n)I'o only by those~ints in the "vertical" subvariety 'V(n)I 'o = 
M~n)I'o\M(n)I'o' Let ('V/G)(n)lwo==7T(n)['V(n)I'on/~n)I'o] be its image in 
(M / G)~n); a point therein represents the prolongation of a submanifold of 
M / G passing through Wo which does not correspond to a graph of a smooth 
G-invariant function passing through Zoo The remainder of the jet space, 

(M/G)(n)lwo = (M / G)(n)lwo\(r;G)(n)lwo 

represents the prolongations of "nice" functions v = h(y) which correspond 
to locally G-invariant functions u = f(x) near Zoo 

Conversely, the usual jet space (M / G)(n)lwo differs from the extended 
jet space (M / G)~n)lwo by the vertical subvariety ('V / G)(n)lwo == 
(M / G)~n)lwo\(M / G)(n)lwo' Let .y(n)I 'o be its pre-image in /~n)I'o' so 
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7T(n)[v(n)I Zo] = ('V / G)(n)1 woO A point thereof represents the prolongation of 
a G-invariant submanifold passing through Zo which does not correspond 
to the graph of a smooth function v = h (y) on M / G. The remainder of the 
invariant space 

contains the prolongations of all "nice" G-invariant functions u = f(x) 
which correspond to explicit functions v = h(y) on M / G. It is on these 
"nice" prolongation spaces that a correspondence similar to that of 
Proposition 3.34 holds. 

Proposition 3.40. The projection 7T(n): I~n)IZo -+ (M / G)~n)lwo induces a 
diffeomorphism iT(n): j<n)I Zo -+ (M/G)(n)lwo for Wo = 7T(Zo). 

So much for geometry; how does this all work out explicitly in the given 
local coordinates? Functional independence of the invariants 'T/, { requires 
that the Jacobian matrix 

have rank p + q - s everywhere. The transversality condition (3.34), when 
coupled with the infinitesimal criterion for invariance of 'T/i, {", requires 
that the last q columns of J have rank q everywhere: 

(3.35) 

By the implicit function theorem, we can then locally solve for all q 
dependent variables u \ ... , u q along with p - s of the independent vari
ables, say x = (x\ ... , x ip-,) in terms of y = (yl, ... ,yP-S), v = (v\ ... , v q ) 

and the remaining s independent variables x = (x j " ••• , x j ,): 

x = y(x, y, v), u = 5(x, y, v). (3.36) 

For each fixed value Yo, Vo of the reduced variables, (3.36) determines an 
orbit of G in M parametrized by the "parametric variables" x. 

If v = h (y) is a function whose graph lies in M / G, then the corresponding 
G-invariant p-dimensional submanifold of M is determined by the 
equations 

{(x, u) = h[ 'T/(x, u)], (3.37) 

obtained by replacing y and v by their expressions as invariants on M. This 
submanifold of M will be the graph of a function u = f(x) if and only if 
we can solve (3.37) for u as a function of x, which requires that the q x q 
matrix a{!au-(ah/ay)' (a'T/jau) be nonsingular. (As in Section 3.1, the 
derivative symbols denote Jacobian matrices.) Since we can identify h with 
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v, it makes sense to write this transversality condition as 

det( a( _ av aTJ) ;e o. 
au ayau (3.38) 

The contrary case when this determinant vanishes will correspond to G
invariant submanifolds of M which are not transverse to the vertical space 
Un and, hence, determine the singular subvariety (r;G)(n)lw which we 
must avoid! 

From (3.37), we can differentiate to find the expressions for the derivatives 
of u with respect to x in terms of those of v with respect to y. By the chain 
rule, 

a( + a( au = av(aTJ + aTJ au), 
ax au ax ay ax au ax (3.39) 

each derivative again representing a Jacobian matrix of the appropriate 
size. This can be rewritten in the form 

( a( _ av aTJ)au = av aTJ _ a(, 
au ay au ax ay ax ax (3.40) 

whereby our transversality condition (3.38) permits us to solve explicitly 
for auf ax, 

au = (a( _ av aTJ)-l(av aTJ _ a(), 
ax au ay au ay ax ax 

as a function of x, u and av / ay. The fir!)t p + q variables can in tum be 
replaced by their expressions (3.36) leading to the formula 

au = l>l(X' y, v, av), 
ax ay 

for the first order x-derivatives of a G-invariant function u = f(x) in terms 
of the first order derivatives of its representative v = h (y). 

Higher order derivatives are treated by further differentiating (3.39). If 
we introduce the total Jacobian matrices OxTJ, Ox( with entries DiTJ i , Di(a 
respectively, then (3.39) has the simpler form 

av 
Ox( = - . OxTJ. ay 

Differentiating with respect to x, we find, with self-evident notation, 

2 av 2.. a2v 2 Ox(=-OxTJ+-2(OxTJ) , (3.41) ay ay 
where 



238 3. Group-Invariant Solutions 

(We leave it to the reader to fill in the appropriate indices.) If we group 
the terms involving the second order derivatives of u together, we get an 
expression of the form 

( at _ av a11)a2u = §2(X' u, au, av, a2v). 
au ay au ax2 ax ay ay2 

Again, (3.38) allows us to invert the matrix on the left-hand side, leading 
to an expression for a2u/ax2 in terms of x, u,au/ax and v,av/ay. The first 
collection of variables can be replaced by their appropriate expressions in 
terms of y, v, av/ay and the parametric variables X, so 

2 a u A (2) -2=8ix,y, V ), 
ax 

for some well-determined function 82, The n-th order case is very similar, 
replacing (3.41) we have a formula of the form 

n av n D Y=-D ..... + ... 
x!. ay x·, , (3.42) 

where the omitted terms depend on lower order total derivatives of 11, as 
well as y-derivatives of v up to order n. Furthermore 

n at anu 
D xt = au axn + ... , 

the omitted terms depending on (n -1)-st and lower order derivatives of 
u. Thus (3.42) is of the form 

( at _ av a 11) an~ = §n(X' U, ••• , an~~~, av, ... , an~). 
au ay au ax ax ay ay 

As before, we can invert the matrix on the left, and substitute for all the 
derivatives of u which appear on the right their formerly computed 
expressions, leading to an explicit formula 

(3.43) 

for the n-th order derivatives of u with respect to x in terms of y, v and 
the derivatives of v with respect to y up to order n, plus the ubiquitous 
parametric variables X. 

These formulae serve to parametrize the invariant space, so that if 
7T( z) = ware related, then 

j(n)l, = {(x, u(n»: u(n) = 8(n)(x, y, v(n» for some (y, v(n» E (M;1h(n)lw}' 

so that for each fixed (y, v(n» satisfying (3.38), the corresponding orbit of 
pr(n) G in j(n) is parametrized by X. Moreover, the projection 7T(n)(X, u(n» 
of such a point is simply the point (y, v(n» E (M / G)(n) obtained by omitting 
the variables x. 
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Finally, let a(x, u(n» = 0 be a system of partial differential equations on 
M which determine a subvariety [It. c M(n). The G-invariant solutions of 
this system (provided they exist) will have prolongations in the intersection 
[It. n [(n). If we further require each such G-invariant solution u = f(x) to 
correspond to a smooth function v = h(y) on the quotient manifold, we 
must further restrict to the subspace j(n) and look at [It. n j<n). Since j(n) 

is parametrized by i, y, v(n), as given by (3.43), we can find this intersection 
by re-expressing a in terms of i, y, v(n), so A(i, y, v(n» = a(x, u(n» whenever 
(3.43) holds, whereby 

[It. n j(n) = {(i, y, v(n» E j<n): A(i, y, v(n» = O}. 

Furthermore, if G is a symmetry group of a, [It. n j(n) is locally invariant 
under the prolonged group action pr(n) G, for which (y, v(n» form a complete 
set of independent invariants. By Proposition 2.18, there is an equivalent 
set of equations, which we call a; G, which are independent of the parametric 
variables i, so 

[It. n j(n) = {(i, y, v(n» E j(n): a/ G(y, v(n» = O}. 

From the above form of the projection '7T(nl, we immediately conclude that 
the part of the reduced system in CM/G)(n), namely 

[I tJ.jG = '7T(n)( [It. n j<n» = {(y, v(n»: a/ G(y, v(n» = O}, (3.44) 

is given by the equations a; G. Thus we have completely justified our 
procedure of Section 3.1. Theorem 3.36, when completed with Proposition 
3.40, shows that we have proved the following rigorous version of the 
construction of group-invariant solutions to systems of partial differential 
equations. 

Theorem 3.41. Let G be a local group of transformations acting regularly and 
transversally on M c X x U with globally defined independent invariants, 
whereby M / G c Y x V. Let a be a system of partial differential equations 
defined over M for which G is a symmetry group. Then there is a reduced 
system of differential equations a; Gover M / G, determined by (3.44), with 
the property that any G-invariant function u = f( x) on M corresponding to a 
well-defined function v = h (y) on M / G will be a solution to a if and only if 
its representative h is a solution to a/ G. 

(Suitable changes of coordinates on M / G will lead to all the G-invariant 
solutions to a, even those which might originally be nontransverse for the 
original choice of coordinates.) This completes our development of the 
theory and justification of the group reduction procedure. 

NOTES 

Despite numerous claims that the concept of a group-invariant solution of 
a system of partial differential equations did not originate in its fullgenerality 
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until the 1950's, Lie, in one of his last papers, [6], actually did introduce 
the present general method for finding such solutions. Lie was concerned 
with solutions to systems of partial differential equations invariant under 
groups of contact transformations, but his results include the local versions 
of the present reduction theorems. In Section 65 of the above-mentioned 
paper he proves that the solutions to a partial differential equation in two 
independent variables, which are invariant under a one-parameter group, 
can all be found by solving a related ordinary differential equation. The 
generalization to systems of partial differential equations invariant under 
multi-parameter groups, i.e. our Theorem 3.41, is stated and proved in 
Section 76 of the same paper, but, as far as I am aware, has never before 
been referred to in any of the literature on this subject! 

Lie died before he could make any application of his discovery. Much 
later, A. J. A. Morgan, [1], and Michal, [1], restated the special case of 
Lie's result for one-parameter symmetry groups. Subsequently, Ovsiannikov, 
[1], [2], reproved the general case, again unaware of the earlier work of 
Lie. Prior to these rediscoveries, a number of special instances of group
invariant solutions, especially similarity solutions, appeared sporadically 
in the literature, but without any indication that they were special cases of 
a much more general theory. The first such construction of which I am 
aware is in a paper of Boltzmann, [1]. Mter the tum of the century, similarity 
solutions appear extensively in the work of Prandtl, Meyer and Blasius, 
and, later, Falkner and Skan, on boundary layers in fluid mechanics; see 
Birkhoff, [2; Chap. 5], for these and other references, as well as a discussion 
of the history of the Pi theorem 3.22 from dimensional analysis. Sedov, [1], 
gave great emphasis to the applicability of scaling groups of symmetries 
and the consequential similarity solutions in the theory of dimensional 
analysis of complicated systems. (A good modem introduction to the use 
of similarity methods in engineering applications is the book of Seshadri 
and Na, [1].) It remained for Birkhoff, [2], to champion the use of more 
general symmetry groups for constructing explicit solutions to partial 
differential equations, and thereby directly inspire the rediscovery of Lie's 
method. 

Since Ovsiannikov began his extensive investigations, the reduction 
method for constructing group-invariant solutions to partial differential 
equations has become the focus of much research activity, first in the Soviet 
Union, and, subsequently, in Europe and the United States. There is by 
now a large body of Soviet papers on the symmetry properties and explicit 
solutions for the equations of fluid mechanics, including the recent work 
of Kapitanskii, [1], [2], mentioned in the text; see Ovsiannikov, [3; p. 391] 
for a complete bibliography. (Alternative techniques for constructing 
explicit solutions in fluid mechanics can be found in Berker, [1].) The 
appearance of extra symmetries after performing a group reduction noticed 
by Kapitanskii has also been looked at by Rosen, [2]. 

Group-invariant solutions have been used to great effect in the description 
of the asymptotic behaviour of much more general solutions to systems of 
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partial differential equations. The book of Barenblatt, [1], gives a good 
introduction to the applications to hyperbolic equations. In the same vein, 
Ablowitz and Kodama, [1], have given a rigorous analysis of the asymptotic 
behaviour of solutions to the Korteweg-de Vries equation, proving that any 
solution decaying to 0 at ±oo ultimately breaks up into a finite number of 
distinct solitons (travelling waves) plus a dispersive tail decaying like the 
second Painleve transcendent solution described here. (Incidentally, the 
complete classification of the group-invariant solutions of the Korteweg-de 
Vries equation appeared first in Kostin, [1].) Related ideas appear in the 
St.-Venant problem in elasticity-see Ericksen, [1]. 

The general connection between completely integrable (soliton) 
equations such as the Korteweg-de Vries equation and ordinary differential 
equations of Painleve type using the mechanism of group-invariance was 
first conjectured by Ablowitz, Ramani and Segur, [1]. Proofs of certain 
special cases of the general conjecture, which gives a quite useful test for 
"integrability", were given by Ablowitz, Ramani and Segur, [2] and McLeod 
and Olver, [1]. (Recently this method has been significantly extended by 
Weiss, Tabor and Carnevale, [1].) 

The rigorous foundation of the general method for constructing group
invariant solutions based on Palais' monograph, [1], using quotient mani
folds first appeared in Olver, [2], where the definition of extended jet 
bundles was first proposed. The present treatment is a much simplified 
version of this theory. (See also Vinogradov, [5].) These extended jet bundles 
are much less appreciated in the field of differential geometry, but their use 
should become more widespread, especially when one must deal with 
differential equations with multiple-valued solutions. 

The adjoint representation of a Lie group on its Lie algebra was known 
to Lie. Its use in classifying group-invariant solutions appears in Ovsian
nikov, [2; § 86], and [3; § 20]. The latter reference contains more details 
on how to perform the classification of subgroups of a Lie group under the 
adjoint action. The method has received extensive development by Patera, 
Winternitz and Zassenhaus: see [1] and the references therein for many 
examples of optimal systems of subgroups for the important Lie groups of 
mathematical physics. The classification of the symmetry algebra of the 
heat equation is originally due to Weisner, [1], in his investigation of the 
connections between Lie groups and special functions. See also Kalnins 
and Miller, [1], where this classification is applied to the problem of 
separation of variables. 

A generalization of the concept of a group-invariant solution known as 
a partially-invariant solution was introduced by Ovsiannikov, [2; § 17], [3; 
Chap. 6]. In essence, a partially-invariant solution is one whose graph, while 
not fully invariant under the group transformations, gets mapped into a 
submanifold of dimension strictly less than p + r thereby. Here p is the 
number of independent variables and r the dimension of the orbits of G. 
(Note that a general function's graph would get mapped into a (p + r)
dimensional manifold under all the group transformations.) In certain 
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cases these, too, can be found explicitly by solving a reduced system of 
differential equations in fewer independent variables, but the intervening 
calculations are quite a bit more complicated than in the fully invariant 
case. The interested reader can refer to the above-mentioned works of 
Ovsiannikov for a full development of this theory. 

A second possible generalization was proposed by BIuman and Cole, 
[1], and Ames, [1; Vol. 2, § 2.10], and called the "nonclassical method" for 
group-invariant solutions. Here one requires not that the entire subvariety 
9'! be pr(n) G-invariant, but only that its intersection with the invariant 
space, 9'! 11 I~n) be pr(n) G-invariant. Although this method does lead to 
reduced equations, it is a little too general in that, once we admit the 
prolongations of the equations into the picture, every group of transforma
tions on M satisfies this requirement and, conversely, every solution of the 
system can be obtained in this manner. See Exercise 3.20 and a forthcoming 
paper on this point. 

EXERCISES 

3.1. Consider the axially symmetric wave equation u" - Uxx + (u/ x) = O. 
(a) What is the symmetry group? 
(b) Find and classify the group-invariant solutions. 
(c) What is the fundamental solution to this equation? 

3.2. The BBM equation u, + Ux + uUx - Uxx, = 0 arises as a model equation for the 
uni-directional propagation of long waves in shallow water. 
(a) What is the symmetry group of this equation? 
(b) Find group-invariant solutions corresponding to the various one-para

meter subgroups found in part (a). (McLeod and Olver, [1].) 

3.3. Determine the scale-invariant solutions to Boltzmann's problem u, = (uux)x, 
the solutions of which represent diffusion of some material in a medium, the 
rate of diffusion of which is proportional to the concentration of the material. 
What other types of group-invariant solutions exist? (Dresner, [1; § 4.1].) 

*3.4. Discuss the group-invariant solutions to the two-dimensional wave equation. 
Can you classify them? 

3.5. Discuss the scale-invariant solutions to the two-dimensional Euler equations 
of ideal fluid flow. (The reduced equations are not, as far as I know, soluble 
in closed form!) 

3.6. Assume that the fluid resistance of an object is determined by the density of 
the fluid p, the velocity of the object v, the object diameter d, and the 
compressibility p-2 dp/ dp ofthe fluid. Let c2 = dp/ dp denote the sound speed. 
Prove that D = pv2 d 2f(M), where M = v/ c is the Mach number of the 
fluid. (M < 1 corresponds to subsonic motion, M> 1 to supersonic motion.) 
(Birkhoff, [2; p. 92].) 

3.7. In 1947, G. I. Taylor determined the energy released from the first atomic 
explosion in New Mexico by applying a similarity analysis to the photographs 
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of it. In an expanding spherical shock wave, the radius R will depend on time 
t, energy E released, and the ambient air density Po and pressure Po. Assuming 
dimensional homogeneity, prove that 

for some function h({;). (For t small, the argument ( of h is small, so we can 
approximate R=hot2/sEI/SpOI/S, ho=h(O); this was the relation used by 
Taylor.) (Taylor, [1], [2].) 

*3.8. Find the orbits of the adjoint representation of the Euclidean groups E(2) and 
E(3). (See Exercise 1.29.) 

*3.9. Prove that every sub algebra of the Korteweg-de Vries symmetry algebra (2.68) 
is uniquely equivalent to one subalgebra in the optimal system consisting of 
0, the one-dimensional subalgebras (3.25), the subalgebras spanned by 

{VI> V4}, {V2, V4}, {V3' v4}, {VI> V3}, {VI> V2 +V3}, {VI> V2 -V3}, 

{VI> V2}, {VI> V3, v4}, {VI> V2, v4}, {VI> V2, V3}, 

and the full symmetry algebra itself. 

3.10. Consider the differential equation ~[u] = uxy = 0, on M = X x U = 1R3. 
(a) Prove that the one-parameter group 0 of translations in the x-direction, 

(x,y, u)-(x+e,Y, u) is a symmetry group. 
(b) Show that the reduced equation ~/ 0 on M /0 is vacuous, so any function 

on M /0 determines a O-invariant solution to ~. 
(c) More generally, prove that if 0 is a regular symmetry group of a system 

of differential equations ~, and its invariant space I(n) is a subset of the 
corresponding subvariety Y A c M(nl, then every function on M /0 gives 
rise to a O-invariant solution to ~. How might the condition I(n) c YA c 

M(n) be checked in practice? (See also Exercise 3.18.) 

3.11. (a) Suppose 0 is a symmetry group of the system ~ and He 0 is a normal 
subgroup acting regularly on Me X x U. Prove that the reduced system 
~/ H is invariant under the quotient group 0/ H acting on M/ H. 

(b) Suppose p = 2, q = 1 and a(x, u(n» = 0 is a single n-th order partial 
differential equation. Prove that if ~ is invariant under an (n + 1)
parameter solvable Lie group, then all group-invariant solutions corre
sponding to a particular one-parameter subgroup can be found by 
quadrature. 

3.12. Suppose V is a vector field on the smooth manifold M and i = q(x) the system 
of ordinary differential equations describing the flow of v. Suppose 0 acts 
regularly on M, and is a symmetry group of this system. Prove that there is 
an induced vector field v = d7T(V) on the quotient manifold M /0 whose flow 
corresponds to that ofv on M. Discuss how this result applies to Theorem 2.66. 

3.13. Let 0 be a Lie group and He 0 a closed subgroup, which acts on 0 itself 
by right translation: g - g' h, hE H. Prove that the quotient space 0/ H is a 
smooth manifold. What is 0/ H in the case 0 = SO(3) and H = SO(2), a 
one-parameter subgroup of rotations about a fixed axis? 
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3.14. (a) Consider the scaling group G:(x,y)t-+(Ax,A-Iy) acting regularly on 
M = 1R2\{0}. Prove that the quotient manifold is not Hausdorff and discuss 
its structure. 

(b) Do the same problem for the scaling group of symmetries of the Korteweg
de Vries equation. (Olver, [2].) 

3.15. Let p = 2, q = 1 and consider the one-parameter group G: (x, y, u)t-+ 
(x + e, y + eu, u). Prove that G acts transversally everywhere, but there are no 
nonconstant globally-defined G-invariant functions. 

3.16. The p-Grassmann bundle of an m-dimensional manifold M, m;;?: p, is defined 
so that over each point x EM, Grass(p, M)ix = Grass(p, TMix) is the Grass
mann manifold of p-planes in the tangent space TMix' (See Exercise 1.2.) 
Prove that this is the same as the first extended jet bundle: Grass(p, M) = M~). 
(Olver, [2].) 

3.17. Let G be a group of transformations acting on Me X x U with prolongation 
pr(n) G acting on M(n). 

(a) Prove that the dimension of the orbits of pr(n) G is greater than or equal 
to the dimension of the orbits of G. Give an example where the strict 
inequality holds. 

(b) Prove that if G is an r-parameter group, and G has r-dimensional orbits, 
then the same is true of pr(n) G. 

(c) Prove that if G has r-dimensional orbits, then I(n) = (I(l))(n-l), where 
(I(1»)(n-1) denotes the (n -1)-st prolongation of the invariant space 1(1) c 
M(l) as determined by Definition 2.81. Interpret Corollary 2.54 in light 
of this result. 

*3.18. Explicit Characterization of the Invariant Space 
(a) Let p = q = 1, and let G be a regular one-parameter group of transforma

tions acting on Me X x U with a single global invariant (x, u). Prove 
that the invariant space I(n) c M(n) is defined by the equations 

I(n) = ({x, u(n»): D~( = 0, k = 1,2, ... , n}. 

(b) Let q = 1 but p be arbitrary. Let G be a regular one-parameter group of 
transformations acting on M with global invariants T/ I(X, u), ... , T/P (x, u). 
Prove that 

1(1) = ({x, u(l)): D( T/ \ ... , T/P)/D(x\ ... , xP) = O}, 

where the defining equation stands for the p x p "total Jacobian deter
minant" 

D(T/I, ... ,T/P) 

D(x\ ... , xP) 

What if G is an r-parameter group? 
(c) Generalize part (b) to give an explicit characterization of the invariant 

space I(n) in general. 
(d) How is this result related to Theorem 3.38? 

3.19. Show that the vector field v = 2tax +a, + 8tau is not a symmetry of the equation 
Ul/ = uUxx, but nevertheless one can use the method of this chapter to find 
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solutions which are invariant under the one-parameter group generated by v. 
Show that none of these arise among the standard group-invariant solutions. 
Explain. (See the following exercise.) (Olver and Rosenau, [1].) 

3.20. The Nonclassical Method for Group-Invariant Solutions. In Bluman and Cole, 
[1], the following method is proposed as a generalization of the reduction 
method for finding group-invariant solutions. 
(a) Let l1 be an n-th order system of partial differential equations over M 

with corresponding subvariety 91 c M~n). Let G be a regular group of 
transformations acting on M with invariant space I~n) c M~n). Prove that 
if the intersection 91 f1 I~n) is invariant under pr(n) G, then there is a 
reduced system of differential equations f1/ G on the quotient manifold 
M / G such that all the solutions to l1/ G give rise to G-invariant solutions 
to l1 and conversely. (Note especially that 91 itself does not have to be 
invariant under pr(n) G, so these groups are more general than symmetry 
groups as defined in Chapter 2.) 

(b) Interpret Exercise 3.19 in light of this result. 
(c) Let.1 be any system of differential equations and G any (regular) group 

of transformations. Prove that a suitable prolongation of 91 f1 1<;) (as 
per Definition 2.81) is always pr(n) G-invariant. Thus one can use any 
group to effect the reduction of part (a). (Hint: Use the prolongation 
formula (2.50) and the characterization of the invariant space in Theorem 
3.37.) 

(d) Conversely, show that if u = f(x) is any solution to .1, then there exists a 
group G leading to f by the reduction method of part (a). 

(Olver and Rosenau, [1].) 

3.21. Let v be a vector field on Me X x U = IRP x IRq, and let Q = (Q" ... , Qq) be 
the characteristic of v in the (x, u)-coordinates, cf. (2.48). Let y = Y(x, u), 
v = 'I'(x, u) be a change of coordinates on M, and let Q = (Q" ... , Qq) be the 
characteristic of v in the new (y, v)-coordinates on M. Prove that Q is related 
to Q by the change of variables formula 

_ q (0'l'1l P 0 yj ovll) 
QIl= L Q" ~-L ~-;J' 

,,=\ "u j=\ "u uy 
{3 = I, ... , q. 



CHAPTER 4 

Symmetry Groups and 
Conservation Laws 

In the study of systems of differential equations, the concept of a conserva
tion law, which is a mathematical formulation of the familiar physical laws 
of conservation of energy, conservation of momentum and so on, plays an 
important role in the analysis of basic properties of the solutions. In 1918, 
Emmy Noether proved the remarkable result that for systems arising from 
a variational principle, every conservation law of the system comes from a 
corresponding symmetry property. t For example, invariance of a variational 
principle under a group of time translations implies the conservation of 
energy for the solutions of the associated Euler-Lagrange equations, and 
invariance under a group of spatial translations implies conservation of 
momentum. This basic principle constitutes the first fundamental result in 
the study of classical or quantum-mechanical systems with prescribed groups 
of symmetries. Moreover, Noether's method is the only really systematic 
procedure for constructing conservation laws for complicated systems of 
partial differential equations. 

For the applicability of Noether's theorem, one needs some form of 
variational structure in the system under consideration. The first section of 
this chapter gives a rudimentary introduction to the relevant aspects of the 
calculus of variations, of which the construction of the Euler-Lagrange 
equations characterizing the minimizers of a variational problem is the most 
important. Beyond this, not many of the results from the calculus of 
variations will be required, so the student interested in further studying this 
important field of mathematics would be well advised to consult any of the 
standard reference books on the subject. Not every symmetry group of a 

t There is now an English translation of Noether's paper, [1], available. The reader is strongly 

urged to read this essential work. 
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system of Euler-Lagrange equations will give rise to a conservation law; 
one needs the group to satisfy an additional "variational" property of 
leaving the variational integral in a certain sense invariant. Section 4.2 
develops the theory of variational symmetries, illustrated by a number of 
examples. In the case of a system of ordinary differential equations in 
variational forQl, the variational character of a symmetry group doubles the 
effectiveness of the reduction procedure presented in Section 2.5, so that a 
system of Euler-Lagrange equations which admits a one-parameter group 
of variational symmetries can be reduced in order by two. 

The third section of this chapter is devoted to the systematic development 
of the theory of conservation laws of systems of differential equations. An 
important complication here is the existence of trivial conservation laws, 
which apply to any system of differential equations and in essence provide 
no new information on the behaviour of solutions to the particular system 
being considered. Pending some proofs to be given at the end of Chapter 
5, we are able to completely characterize such trivial laws. Each nontrivial 
conservation law is, for normal systems of differential equations, uniquely 
characterized by a certain function, called its characteristic. Once we have 
the connection between conservation laws and their characteristics well in 
hand, the proof of the so-called "classical form" of Noether's theorem is 
immediate. In the second half of Section 4.4 we apply the constructions 
embodied in Noether's theorem to determine conservation laws for a number 
of systems of physical importance. Lack of space, however, precludes us 
from applying these conservation laws to the direct study of properties of 
solutions of the systems, which include global existence results, decay 
estimates, scattering theory, crack and dislocation problems, stability of 
solutions and so on; these can be found in the references discussed at the 
end of the chapter. 

4.1. The Calculus of Variations 

As usual, to keep things as simple as possible, we will work in Euclidean 
space, with X = IRP, with coordinates x = (Xl, ... ,xP) representing the 
independent variables and U = IRq, with coordinates u = (u I, ••• , uq) the 
dependent variables in our problem. (Extension of these local results to 
variational problems over smooth manifolds is not difficult; however, global 
results require the introduction of topological tools-see Anderson and 
Duchamp, [1] or Vinogradov, [1].) Let n c X be an open, connected subset 
with smooth boundary an. A variational problem consists of finding the 
extrema (maxima or minima) of a functional 

.<£[u] = In L(x, u(n») dx 
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in some class offunctions u = f(x) defined over O. The integrand L(x, u(n», 
called the Lagrangian of the variational problem Ie, is a smooth function 
of x, u and various derivatives of u. The precise specification of the class 
of functions over which Ie is to be extremized will depend both on boundary 
conditions which might be pertinent to the physical problem, as well as 
differentiability conditions required of the extremals u = f(x). 

As a simple example, the problem of finding a curve of minimum length 
joining two points (a, b) and (c, d) in the plane can be cast into variational 
form as follows. Assume that the minimizing curve is given as the graph of 
a function u = f(x). The length of such a curve is 

The variational problem consists of minimizing Ie over the space of 
differentiable functions u = f(x), say, such that b = f(a) and d = f(c). 

The precise degree of smoothness required of the extrema of a given 
variational problem, the space of functions being extremized over, and the 
appropriate norm(s) are quite delicate matters in general and quickly lead 
into advanced topics in nonlinear functional analysis. The complex issues 
involved are not directly relevant to our immediate area of inquiry, however, 
and we therefore adopt the admittedly oversimplifying assumption of only 
considering smooth (COO) extremals of a variational problem. Extending 
our results on symmetry groups and conservation laws to more general 
types of functions must then be done on a case by case basis. 

The Variational Derivative 

In finite dimensions, the extrema of a smooth real-valued function f(x), 
x E IRm, are determined by looking at the points where the gradient V f(x) 
vanishes. The gradient itself is found by seeing how f changes under small 
changes in x: 

(Vf(x), y) = ~ I.=/(x+ ey), 

where (x, y) is the usual inner product on IRm. For functionals Ie[ u], the 
role of the gradient is played by the "variational derivative" of Ie. To 
construct this object, we look at how Ie changes under small "variations" 
in u. The inner product (., .) on IR m is replaced by the L2 inner product 

(f, g)= Lf(X). g(x) dx= L J/a(x)ga(x) dx 

between vector-valued functions f, g: IRP -+ IRq. This motivates the following 
definition: 
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Definition 4.1. Let 2[ u] be a variational problem. The variational derivative 
of 2 is the unique q-tuple 

«52[u] = (<<5 12[u], ... , «5q2[u]), 

with the property that 

~I 2[f+ e'11] = f «52[f(x)]· '11(x) dx 
de £=0 n 

(4.1) 

whenever u = f(x) is a smooth function defined on n, and '11 (x) = 

('11 1(x), ... , '11 Q (x)) is a smooth function with compact support in n, so that 
f + e'11 still satisfies any boundary conditions that might be imposed on the 
space of functions over which we are extremizing 2. The component 
«5a 2 = «521 «5u a is the variational derivative of 2 with respect to u a. 

Proposition 4.2. Ifu = f(x) is an extremal of 2[u], then 

«52[f(x)] = 0, XEn. (4.2) 

PROOF. Since f is an extremal, for any '11 of compact support in n, f + e'11 
lies in the same function space, so, as a function of e, 2[f + e'11] must 
have an extremum at e = o. Therefore, by elementary calculus, (4.1) must 
vanish for all '11 of compact support in n, hence (4.2) must hold every
where. (The same argument proves the uniqueness of «52.) 0 

The general formula for the variational derivative is not difficult to find. 
First of all, interchanging the order of differentiation and integration (which 
is justified under our assumption of smoothness) 

~ I £=02[f + e'11] = L ~ I £=0 L(x, pr(n)(j + e'11 )(x)) dx 

= f {L a: (x, pr(n) f(x)) . aJ '11 a (x)} dx, 
n a,J aUJ 

where the u, are as usual the partial derivatives of ua , and aJ '11 a the 
corresponding derivatives of '11 a • Since '11 has compact support, we can use 
the divergence theorem to integrate the latter expression by parts, with the 
boundary terms on an vanishing. Each partial derivative a I ax~ when applied 
to the derivatives aLI au, of the Lagrangian, becomes the total derivative 
Dj since L depends on x through the function u = f(x) also-see Definition 
2.34. Therefore 

ddl 2[f+e'11]=f {t [L(-D)J a:(x,pr(n)f(x))]'11 a (X)}dX, 
e £=0 n a=l J aUJ 

where, for J = (jh ... ,A), 

(-D)J = (-l)kDJ = (-Dj)(-Dh ) ... (-DA ). 
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The operator appearing in the preceding formula is of key importance in 
the calculus of variations. 

Definition 4.3. For I:,.;: a:";: q, the a-th Euler operator is given by 

a 
Ea =L (-D)'-a' 

, au, 
(4.3) 

the sum extending over all multi-indices J = Ut> ... ,A) with l:,.;:j" :,.;: p, k ~ O. 
Note that to apply Ea to any given function L(x, u(n» of u and its derivatives, 
only finitely many terms in the summation are required, since L depends 
on only finitely many derivatives u~. 

Thus, according to our calculation, the variational derivative of 2'[ u] = 
In L(x, u(n» dx is found by applying the Euler operator to the Lagrangian: 
52'[u] = E(L), where E(L) = (E)(L), ... , Eq(L». Proposition 4.2 provides 
the classical necessary conditions for smooth extremals of a variational 
problem. (Of course, not every solution to the Euler-Lagrange equations 
is an extremal. The other solutions furnish other types of critical points for 
the functional.) 

Theorem 4.4. If u = f(x) is a smooth extremal of the variational problem 
2'[u] = In L(x, u(n» dx, then it must be a solution of the Euler-Lagrange 
equations 

11 = 1, ... , q. 

Example 4.5. Let us look at the special case p = q = 1, so we are considering 
a single function u = f(x) of a single independent variable. The Euler 
operator here takes the form 

00 ja a a 2 a 
E= L (-D) -=--D -+D --... 

j=O x aUj au x aux x auxx ' 

where Dx is the total derivative with respect to x, and uj = dju/ dxj. The 
Euler-Lagrange equation for an n-th order variational problem 

2'[u] = J: L(x, u(n» dx 

takes the form 

aL aL 2 aL n n aL 
O=E(L)=--Dx-+Dx--·· .+(-1) D x-. 

au aux auxx aUn 

It is a 2n-th order ordinary differential equation provided L satisfies the 
nondegeneracy condition a2 L/ au~ ¥ O. In particular, for a first order vari
ational problem, L = L(x, u, ux ), we recover the familiar second order Euler-
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Lagrange equation 

aL aL aL a2L a2L a2L 
0= --D x - = ----- ux ---- uxx-. 

au aux au ax aux au aux au; 

Thus, for our curve length minimizing problem, the Euler-Lagrange 
equation is 

-Dx(~) = - (I +U~?/2 O. 

The solutions are all straight lines u = mx + k, and these are the only smooth 
candidates for the minimization problem. 

Example 4.6. Perhaps the most famous variational problem comes from 
Dirichlet's principle for Laplace's equation au = O. Here we set 

2[u] = J !IVuI2 dx = J !.t u; dX, 
n n ,~1 

where u; = auf ax; and .0 eX = IRP• The Euler-Lagrange equation is 

P aL P 
O=E(L)= L (-D;)-=- L D;(u;)=-au, 

;~1 au; ;~1 

which agrees with Laplace's equation up to sign. Further examples will 
appear later in this chapter. 

Null Lagrangians and Divergences 

Occasionally, for a given variational problem the Euler-Lagrange equations 
vanish identically and so every function is a possible extremal of the 
problem. For example, if 

then 

for all u. In this case the variational pl;oblem is trivial, since by the funda
mental theorem of calculus 

2[u]= Lb 
DA!u2) dx=4u21:~a' 

so any function u = f(x) satisfying the relevant boundary conditions will 
give the same value for 2. 
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This situation readily generalizes to the case of several independent 
variables. If x = (x\ ... , x P ) and P(x, u(n» = (P1(x, u(n», ... , Pp(x, u(n») is 
a p-tuple of smooth functions of x, u and the derivatives of u, we define 
the total divergence of P to be the function 

(4.4) 

where each Dj is the total derivative with respect to x~ For instance, if 
p = 2, and P = (uuy, uUx), then 

Div P = DAuuy)+ Dy(uux) = 2uuxy +2uxuy-

If a Lagrangian L(x, u(n» can be written as a divergence, so L = Div P for 
some p-tuple P, then, by the divergence theorem, 

2[ u] = f L dx = J p. dS 
n an 

for any function u = f(x) and any bounded domain n with smooth boundary 
an. Thus 2[1] depends only on the boundary behaviour of u = f(x), and 
will be unaffected by the variations 11 used in the definition of the variational 
derivative. Therefore the Euler-Lagrange equations for such a functional 
are identically o. Remarkably, these are the only such examples of "null 
Lagrangians" . 

Theorem 4.7. A function L(x, u(n» of x, u and the derivatives of u, defined 
everywhere on X X u(n>, is a null Lagrangian, meaning that the Euler
Lagrange equations E(L) == 0 vanish identically for all x, u, if and only if it is 
a total divergence: L = Div p, for some p-tuple of functions P = (Plo ••• , Pp) 
of x, u and the derivatives of u. 

PROOF. The proof that E(Div P) == 0 follows from the above remarks, or by 
direct computation; see section 5.4. To prove the converse, suppose 
L(x, u(n» is a null Lagrangian, and consider the derivative 

Each term in this sum can be integrated by parts, for example 

leading to an expression of the form 

d q aL A 

- L(x, eU(n» = L u'" L (-D),-", (x, eU(n» + Div P( e; x, u(2n» 
de ",=1' au, 

= U· E(L)(x, eU(2n»+ Div P(e; x, U(2n» 
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for some p-tuple P of functions of x, u and derivatives of u whose precise 
form is not of importance. (Hqwever, see Section 5.4.) Since E(L) =: 0, we 
can integrate with respect to e, 

L(x, u(n» - L(x, 0) = Div P, where P(x, u(2n» = f P(e; x, u(2n» de. 

Finally, since L is defined on all of IRP, we can always find a p-tuple p(x) 
of ordinary functions of x such that div p(x) = L(x, 0), so the theorem 
holds with P = P+ p. 0 

Invariance of the Euler Operator 

Since the Euler-Lagrange equations determine the extremals of a variational 
problem, their solution set should remain unchanged by a change of vari
ables. This suggests that the Euler operator itself should be, more or less, 
invariant under a change of variables. Here we derive the basic formula 
expressing this fact. 

Note first that if 

x = 2(x, u), ii = cP(x, u), (4.5) 

is any change of variables, there is an induced change of variables 

ii(n) = cP(n)(x, u(n» 

for the derivatives, given by prolongation. Thus, given a function u = f(x), 
(4.5) implicitly defines the transformed function ii = j(x) (provided the 
conditions required by the implicit function theorem are satisfied). Each 
functional 

2[f] = L L(x, pr(n) f(x» dx 

will be transformed into a new form 

i'[j] = In L(x, pr(n) j(x» dX. 

In this latter integral, the transformed domain 

n = {x = E(x,/(x»: x E n} 

will depend not only on the original domain n, but also on the precise 
function u = f(x) on which 2 is being evaluated. The formula for the new 
Lagrangian follows readily from the change of variables formula for multiple 
integrals: 

L(x, pr(n) f(x» = L(x, pr(n) j(x» det J(x, pr(l) f(x», (4.6) 
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whenever (x, u) are given by (4.5), where J is the Jacobian matrix with entries 

i,j= 1, ... ,p, 

corresponding to the function f. Here we are assuming, for simplicity, that 
the change of variables is orientation-preserving, so det J(x) > O. 

Theorem 4.8. Let L(x, u(n» and L(x, u(n» be two Lagrangians related by the 
change of variables formula (4.6). Then 

a = 1, ... , q, (4.7) 

whenever (x, u(n» and (x, u(n» are so related, where F "f3 is the determinant 
of the following (p + 1) x (p + 1) matrix 

c-' D 0;:;01 aE'!au") lo!:- p-

F "f3 = det Dt:SP D O;:;OP 
(4.8) 

P- aSP /au" 
D t<P f3 Dp<Pf3 a<pf3 /au" 

PROOF. Let u = f(x) be a given function defined over a domain n and let 
u = j(x), x E ii, be the corresponding function in the transformed variables, 
which is usually well defined as long as n is sufficiently small. For E 

sufficiently small, the perturbations Us = f(x, E) = f(x) + E7](X), 7] of com
pact support in n, have corresponding expressions u = j(x, E) determined 
implicitly by the relations 

x = S(x,/(x) + E7](X», u = <p(x,/(x) + E7](X». (4.9) 

u 

u = fIx) + ';7(X,E) 

9 --... "' "' 

Figure 10. Change of coordinates for the variation of a functional. 

x 
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An important point is that since TJ has compact support in n, each i(x, e) = 
i( x) + ij (x, e) is defined over a common domain 

n={x=E(x,!(x»: XEn} 

independent of 13, and ij has compact support in n. The variational derivative 
of .!£ was determined by differentiating .!£[f + eTJ] with respect to 13 at 13 = 0; 
similarly, by a slight generalization of the argument leading to the formula 
(4.3) for the Euler operator, we find 

d I - - f - ail - .!£[f] = E .. (L) . - dx, 
de e=O .n ae e=O 

(4.10) 

where E .. (i) is evaluated at u = J We now need to evaluate aij/ae. 
Keeping in mind that when variations of !i: are computed, the base 

variables x are not allowed to depend on 13, we find from (4.9) that 

p ax j q a'j:(i 
O ~ D- i ~ - a = L.. j:! -+ L.. -a TJ , 

j=l ae a=l au 

hence, by Cramer's rule, 

axjl -1 p q a'j:(i 
- =- L K· L ~TJa 
ae e=O detJ i=l !1 a=l aua , 

where Kij is the (i,j)-th cofactor of the Jacobian matrix J(x). Therefore, 

ap I q a4>~ p axjl - = L -a TJ a+ L Dj4>~-
ae e=O a=l au j=l ae e=O 

1 q {a4>Jl p aEi} a 
=-d J L -a detJ -. ~ Dj4>Jl· Kij-a TJ . 

et a=l. au I,}=l au 

The reader can recognize the expression in brackets as the column expansion 
of the determinant (4.8) along the last column, where the intermediary 
summation Lj Dj4>~' Kij is the row expansion of the (i, p + 1}-st minor 
along its last row. Thus 

aPI 1 q - =-- L Fa~TJa. 
ae e=O det J a=l 

Substituting into (4.10) and changing variables, we find 

dl - - f { q -} - .!£[f] = L FaJlE .. ~(L)· TJa dx. 
de e=O n a.~=l 

On the other hand, this must equal 

!!..I .!£[f + eTJ] = f {f Eua(L)TJa} dx, 
de £=0 n a=l 

from which (4.7) follows since TJ is arbitrary. o 
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Example 4.9. In the case p = q = 1, 

L(x, u{n) = i(x, u(n)DxE(x, u(l), 

and (4.7) simplifies to 

a(E, <1» -
Eu(L) = ( ) Eu(L), a x, u 

(4.11) 

where we need only the Jacobian determinant 

a(E, <1» (aE/ax aE/au) det 
a(x, u) a<l>/ax a<l>/au 

of partial derivatives of E and <1>. Indeed, the determinant appearing in (4.8), 

( ) -d (DxE aE/au) -d (aE/ax+uxaE/au aE/au) FlI x - et - et 
Dx<l> a <I> / au a <I> / ax + uxa<l> / au a <I> / au 

equals the above determinant by an elementary column operation. For 
example, if 

.2'[ u] = tb !u~ dx, 

and we use the hodograph transformation x = u, U = x, then 

2[u]= f:!(U;r2uxdx= tb (2ux)-ldX, 

and 

Eu(L) = -Uxx = -U~3uxx = -Eu(i), 

verifying (4.11). However, in general we cannot replace the total derivatives 
in (4.8) by partial derivatives. (See Exercise 4.15.) 

4.2. Variational Symmetries 

In order to apply group methods in the calculus of variations, we need to 
make precise the notion of a symmetry group of a functional 

.2'[u] = f L(x, u(n) dx. 
00 

(4.12) 

The groups considered here will be local groups oftransformations G acting 
on an open subset M c 0 0 x U c X x U. As discussed in detail in Chapter 
2, if u = f(x) is a smooth function defined over a suitably small sub domain 
o cOo, such that the graph of f lies in M, each transformation g in G 
sufficiently close to the identity will transform f to another smooth function 
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u = j(x) = g. f(x) defined over n cOo. (Note that unless G is projectable, 
n will, in general, not only depend on g, but also on f itself.) A symmetry 
group G will be one that, roughly speaking, leaves the variational integral 
!t unchanged for all such f 

Definition 4.10. A local group of transformations G acting on Me 0 0 x U 
is a variational symmetry group of the functional (4.12) if whenever 0 is a 
subdomain with closure n cOo, u = f( x) is a smooth function defined over 
o whose graph lies in M, and g EGis such that u = j(x) = g. f(x) is a 
single-valued function defined over n, then 

In L(x, pr(n)j(x» dx = L L(x, pr(n) f(x» dx. (4.13) 

Example 4.11. Consider the case when X = ~ and we have a first order 
variational problem 

!t[u] = r L(x, u, ux ) dx. (4.14) 

If L does not depend on x, then the translation group (x, u) ~ (x + e, u) is 
a variational symmetry group of !to Indeed, since x = x + e, u = u, if u = f(x) 
is any function defined over a smaller subinterval [c, d] c (a, b), then u = 
j(x) = f(x - e) is defined over [c, d] = [c + e, d + e], which, for e sufficiently 
small, is still a subinterval of (a, b). To verify (4.13), we have 

f: L(j(x),j'(x» dx= fi L(f(x-e),f'(x-e» dx= Id 
L(f(x),f'(x» dx, 

using a change of variables. 

Infinitesimal Criterion of Invariance 

In accordance with our usual modus operandi, we now find the analogous 
infinitesimal criterion for the invariance of a variational problem under a 
group of transformations. Again this condition will be necessary and 
sufficient for a connected group of transformations to be a symmetry group 
of the variational problem. 

Theorem 4.12. A connected group of transformations G acting on Me 0 0 x U 
is a variational symmetry group of the functional (4.12) if and only if 

pr(n)v(L)+LDivg=O (4.15) 

for all (x, u(n» E M(n) and every infinitesimal generator 

p. a q a 
v= I f(x, U)-i+ I t:P,.(x, u)-a 

i=! ax a=! au 
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ofG. In (4.15), Div ~denotes the total divergence of the p-tuple~ = (~\ ... , e), 
cf. (4.4). 

PROOF. For each g E G, the group transformation 

(x, Ii) = g. (x, u) = (Eg(x, u), cPg(x, u» 

can be regarded as a change of variables, so by the same reasoning as led 
to (4.6) we can rewrite the symmetry condition (4.13) in the form 

L L(x, pr(n)(g. f)(x» det Jg(x, pr(1) f(x» dx = L L(x, pr(n) f(x» dx, 

where the Jacobian matrix has entries 

J ~(x, u(l) = DiE~(x, u(I). 

Since this is required to hold for all subdomains n and all functions u = f(x), 
the integrands must agree pointwise: 

(4.16) 

for all (x, u(n» E M(n). To obtain the infinitesimal version of (4.16) we set 
g = ge = exp(ev) and differentiate with respect to e. We need the formula 

~ [det J;, (x, u(I)] = Div ~(pr(I) ge . (x, ~(1») det J g, (x, u(I) ( 4.17) 

expressing the fact that the divergence of a vector field measures the rate 
of change of volume under the induced flow. Indeed, if we replace u by a 
function f(x), then (4.17) reduces to the identity of Exercise 1.36 for the 
reduced vector field v=I;=1 ~i(x.f(x»a/axi. 

Using (4.17) and (2.21), the derivative of (4.16) with respect to e when 
g = ge = exp(ev) is 

(pr(n) veL) + L Div ~) det J g, = 0, (4.18) 

the expression in parentheses being evaluated at (x, u~n» = pr(n) ge . (x, u(n». 
In particular, at e = 0, ge is the identity map and we have proved the necessity 
of (4.15) for G to be a variational symmetry group. Conversely, if (4.15) 
holds everywhere, then (4.18) holds for e sufficiently small. The left-hand 
side of (4.18), though, is just the derivative of the left-hand side of (4.16) 
(for g = ge) with respect to e; thus, integrating from ° to e we prove (4.16) 
for g sufficient near the identity. The usual connectivity arguments complete 
the proof of (4.16) for all g E G, and hence the theorem. 0 

Example 4.13. For an easy illustration of Theorem 4.12, we re-derive the 
result of Example 4.11. The infinitesimal generator of the horizontal transla
tion group is ax, with prolongation pr(I)ax = ax. Also ~(x, u) = 1, so Dx~ = 0. 
Thus for 2= S! L(u, ux ) dx, we find 

pr(I) axCL) + LDx~ = 0, 
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trivially, so (4.15) is verified. Another easy example is the arc-length integral 
2o[u]=I!,Jl+u~dx, with v=-uax+xau the generator of the rotation 
group. We have 

and ~= -u, so 

Thus Theorem 4.12 implies the geometrically obvious fact that arc-length 
is unchanged by a rigid rotation. 

Symmetries of the Euler-Lagrange Equations 

In both of the preceding examples, as the reader may readily check, invari
ance of the given variational integral under a group of symmetries implies 
that the associated Euler-Lagrange equations is also invariant under the 
group. This result holds in general. 

Theorem 4.14. If G is a variational symmetry group of the functional 2[ u] = 
Ino L(x, urn)~ dx, then G is a symmetry group of the Euler-Lagrange equations 
E(L) = O. 

Intuitively, what is happening is that if g E G and u = f(x) is an extremal 
of 2[u], then clearly 11 = g' f(x) (provided it is defined) is an extremal of 
the transformed variational problem 2'[11] coming from (x, 11) = g' (x, u). 
But if G is a variational symmetry group, 2'[ 11] = 2[ 11], hence g' f is also 
an extremal of 2. The problem is that there are also non-extremal solutions 
of the Euler-Lagrange equations. One approach would be to use the change 
of variables formula from Theorem 4.8. Rather than belabour the point here, 
we refer the reader to Theorem 5.37 for a direct, computational proof. 

It is not true that every symmetry group of the Euler-Lagrange equations 
is also a variational symmetry group of the original variational problem! 
The most common counterexamples are given by groups of scaling transfor
mations. 

Example 4.15. The Wave Equation. We return to the wave equation Ul/ = 
U xx + uYY ' whose symmetry group was found in Example 2.43. The wave 
equation is the Euler-Lagrange equation for the variational problem 

2[u]= f f f [!ui-!u~-!u;] dxdydt. 

Let us find out which of the symmetries listed in (2.65) are variational 
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symmetries of 2. We use the infinitesimal criterion (4.15) with L = 
~u; - ~u; - ~u;. The translations are easily found to be variational symmetries 
since their prolongations have no effect on the derivatives of u. Next consider 
a rotation group generator, say rxy=-yax+xay- The term Divg in (4.15) 
vanishes. Moreover, pr(l) Txy = rxy - uyaux + UXa Uy' hence (4.15) reads 

pr(l) rxy(L) = uyux - uxuy = 0, 

so 2 is rotationally invariant under the group generated by Txy- A similar 
computation shows that Txt and Tyt also generate variational symmetry 
groups. Turning to the dilatational subgroup, we have 

(I) d- + + pr - xax yay tat - uxaux - Uya Uy - utau" 

and, in this case, 

Div g= DAx) + Dy(Y)+ Dt(t) =3. 

Therefore 

pr(l) d(L) + L Div g = L, 

so d does not generate a variational symmetry group of 2. However, if we 
modify the dilatational generator to be 

m == d -~uau = xax + yay + tat -~uau, 

then 
pr(l) m(L)+ L Div g= -3L+3L= 0, 

so m does generate a variational symmetry group. Finally, consider an 
inversional group, say that generated by 

ix = (x2 - y2 + t2)ax + 2xyay + 2xtat - xuau' 

We have 

pr(l) ix = ix - (u + 3xux + 2yuy + 2tut)aux + (2yux - 3xuy)auy - (2tux + 3xut)au" 

and 

Therefore 

pr(l) iAL)+L Div g= uux-3x(u;- u;- u;)+6xL= uUx, 

and hence ix is not a variational symmetry according to Definition 4.10. 
Neither are the other two one-parameter inversional subgroups of the 
symmetry group (2.65) nor is any linear combination thereof. Finally, if 
a(x, y, t) is a solution of the wave equation, with symmetry generator 
Va = aau , we find 

so we get a variational symmetry if and only if a is a constant. Thus the 
variational symmetry group of L is generated by the translations, the 
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"rotations", the scaling group generated by m and the group generated by 
au' Theorem 4.12 assures us that there are no other variational symmetries. 
(Of course, this could be checked directly by solving (4.15) for the 
coefficients of the infinitesimal generator v.) 

Proposition 4.16. If v and ware variational symmetries of 2[ u], then so is 
their Lie bracket [v, w]. 

The proof is left to the reader. (See Exercise 4.1.) 

Reduction of Order 

As we've seen in Section 2.5, knowledge of a one-parameter symmetry group 
of a single ordinary differential equation allows us to reduce the order of 
the equation by one. In this section, we will see that knowledge of a 
one-parameter group of variational symmetries for the Euler-Lagrange 
equation of some variational problem allows us to reduce the order of the 
equation by two! In effect, the variational structure of the differential 
equation and the symmetry group doubles the power of Lie's integration 
theory. 

The easiest way to see how this happens is to use the invariance of the 
Euler-Lagrange equations under changes of variable as presented in 
Theorem 4.8, which allows us to change both independent and dependent 
variables without affecting the variational nature of the problem. Thus, let 
x, u E IR, and let 2[u] be an n-th order variational problem with 2n-th order 
Euler-Lagrange equations. Suppose v = g(x, u)ax + (,b(x, u)au is the 
infinitesimal generator of a one-parameter group of variational symmetries 
of 2. Note that by the definition of variational symmetry, v will remain a 
variational symmetry under a change of both independent and dependent 
variables. As in Section 2.5, we now introduce particular new variables 
y = 77(X, u), w = '(x, u) so that v takes the elementary form v = al aw in these 
new coordinates. Let 2[ w] = J i(y, w(n» dy be the corresponding vari
ational problem in the (y, w) variables. According to the above remarks, v 
remains a variational symmetry of 2, so by the infinitesimal criterion (4.15) 
we have 

pr(n) v(i) = ail aw = 0, 

hence i = i(y, wy , Wyy, ••• ) is independent of w. The Euler-Lagrange 
equation for 2 thus takes the form 

(4.19) 



262 4. Symmetry Groups and Conservation Laws 

where Wj = djw / dY. Thus the expression in the brackets is constant, indepen
dent of y, and hence a first integral of the Euler-Lagrange equations. (This 
constitutes our first real encounter with Noether's theorem.) 

Note further that if we introduce the new dependent variable v = wY ' so 
Vj = djv / dyj = Wj+h the expression in brackets can be written as the vari
ational derivative of 2[ v] = J L(y, v(n-l) dy, where 

L(y, v, ... , Vn-I) = i(y, wY ' ••• , wn ). 

Every solution W = f(y) of the original2n-th order Euler-Lagrange equation 
corresponds to a solution v = h(y) of the (2n - 2)-nd order equation 

Ev(L)(y, v(2n-2» = A (4.20) 

for some constant A (depending on the initial conditions), where W is 
recovered by quadrature: 

W = f h (y) dy + c. 

Note that we can write (4.20) as a pure Euler-Lagrange equation for 

2A [v]= f [L(y,v(n-l)-Av]dy. 

(Alternatively, A can be thought of as a Lagrange multiplier, so we are 
minimizing 2[ v] subject to the constraint J v dy = 0, say; see Courant and 
Hilbert, [1; p.218].) 

Theorem 4.17. Let p = q = 1. Let ,;e[u] be an n-th order variational problem 
with Euler-Lagrange equation of order 2n. Suppose G is a one-parameter 
group of variational symmetries of ,;e. Then there exists a one-parameter family 
of variational problems 2A[ v] of order n -1, with Euler-Lagrange equations 
of order 2n - 2, such that every solution of the Euler-Lagrange equation for 
,;e[ u] can be found by quadrature from the solutions to the Euler- Lagrange 
equation for 2A [v], A E IR. 

Example 4.18. In the case of first order variational problems, as in (4.14), 
knowledge of a one-parameter group of variational symmetries allows us 
to integrate the second order Euler-Lagrange equation 

aL aL 
E(L)=--Dx-=O 

au aux 
(4.21) 

completely by quadratures. (For a general one-parameter symmetry group 
of a second order ordinary differential equation, we can only expect to 
reduce to a first order equation.) Thus if L is independent of u, (4.21) 
reduces to DAaL/aux ) =0, hence 

aL . 
-a (x, ux)=A 

Ux 
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for some constant A. We can solve this implicit relation for Ux = F(x, A), 
so the general solution is 

u= f F(x,A)dx+c. 

If L( u, ux ) is independent of x, we can reduce to the previous case by 
using the hodograph change of variables of Example 4.9: y = u, w = x. A 
somewhat more direct approach, however, is to note that if we mUltiply the 
Euler-Lagrange equation by Ux> we can find a first integral 

aL 2 a2L a2 L ( aL) 0= uxE(L) = Ux-- U x --- uxuxx - 2 = Dx L- Ux- . 
au au aux au x aux 

Thus 

defines Ux implicitly as a function of u and A, which we can integrate to 
recover the solution of the Euler-Lagrange equation: 

f du 
( ) =x+c. 

F u,A 

The method can be extended to multi-parameter groups, but, unless they 
are abelian, we cannot in general expect to reduce the order by two at each 
stage. (See Exercise 4.11 and the later development of Hamiltonian systems 
in Chapter 6.) Here we content ourselves with an illustrative example. 

Example 4.19. Kepler's Problem. We show how the above procedure can be 
used to immediately integrate the two-dimensional version of Kepler's 
problem of a mass under a central gravitational force field. The functional 
IS 

2= f Wx;+y;)- U(r)] dt, 

in which (x(t), y(t» are the coordinates of the mass, r2 = x 2 + y2, and U is 
the potential function; for the three-dimensional gravitational attraction of 
a mass moving in the (x, y)-plane, U(r) = -y/ r. The Euler-Lagrange 
equations are 

Xtt = -~ U'(r), 
r 

Ytt = _:!:' U'(r). 
r 

Clearly, 2 is invariant under the abelian two-parameter group of time 
translations and spatial rotations with infinitesimal generators at and xay -

yax respectively. Introducing the polar coordinates (r, (J, t), we see that these 
vector fields become at and a/J. By analogy with the case of a one-parameter 
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group, this says that we should regard r as the new independent variable 
and 8 and t as the new dependent variables, which should effect a reduction 
of the second order system to a system solvable by quadratures. Note first 
that 

Xt='!"(cos 8-rsin 8· 8,), 
t, 

Yt =.!..(sin 8+ r cos 8·8,), 
t, 

hence in polar coordinates 

which is, as expected, independent of both t and 8. The Euler-Lagrange 
equations can thus be immediately integrated once, leading to 

where A, J.L are constants. Note that if we revert back to t as the independent 
variable, the first equation gives the well-known conservation of energy, 
while the second equation is just Kepler's second law, r28t = J.L, that the 
mass sweeps out equal areas in equal times. Retaining r as the independent 
variable, however, we can eliminate t, from these two equations, 

hence 

8= J r(2AJ.L-2r2_2J.Ld~2r2u(r)_1)1/2+8o. 
In particular, if U(r) = -yr- I , we can integrate this explicitly, 

where 

8-8o=arcsin[~G-~) ]. 

p = J.L 2• 
Y 

Thus the orbits are conic sections 

r= p 
1- E sin( 8 - 80 ) 

of eccentricity E. Similarly, we can determine t by a single quadrature: 

J ,28, J rdr 
t = - dr+ to = ( 2 2 () 2)1/2 + to, J.L 2Ar - 2r U r - J.L 
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which, in the gravitational case, yields 

s y "" 
t = 2A - (2A )3/210g( v2As + 2Ar+ y), 

We have thus completely solved Kepler's problem by quadratures. 

4.3. Conservation Laws 

Consider a system of differential equations A(x, u(n») = O. A conservation 
law is a divergence expression 

Div P=O (4.22) 

which vanishes for all solutions u = f(x) of the given system. Here P = 

(PI(x, u(n»), ... , Pp(x, u(n»)) is a p-tuple of smooth functions of x, u and 
the derivatives of u, and Div P = DIPI + ... + DpPp is its total divergence. 

For example, in the case of Laplace's equation, some conservation laws 
are readily apparent. First of all, the equation itself is a conservation law 
since 

Au = Div(grad u) = 0 

for all solutions u. Multiplying Laplace's equation by Ui = auf axi yields p 
further conservation laws. 

Later we will see how to establish yet more conservation laws. 
In the case of a system of ordinary differential equations involving a 

single independent variable x E IR, a conservation law takes the form DxP = 0 
for all solutions u = f(x) of the system. This requires that P(x, u(n») be 
constant for all solutions of the system. Thus a conservation law for a system 
of ordinary differential equations is equivalent to the classical notion of a 
first integral or constant of the motion of the system. As we will see, (4.22) 
is the appropriate generalization of this concept to partial differential 
equations, and includes familiar concepts of conservation of mass, energy, 
momentum, etc. arising in physical applications. 

In a dynamical problem, one of the independent variables is distinguished 
as the time t, the remaining variables x = (Xl, ••• , x P ) being spatial variables. 
In this case, a conservation law takes the form 

D,T+DivX';"O, 

in which Div is the spatial divergence of X with respect to xl, ... , xp• The 
conserved density, T, and the associated flux, X = (Xi> ... , X p ), are func
tions of x, t, u and the derivatives of u with respect to both x and t. In this 
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situation, it is easy to see that for certain types of solutions, the conserved 
density, when integrated, provides us with a constant of the motion of the 
system. More specifically, suppose n c IRP is a spatial domain, and u = f(x, t) 
a solution defined for all x E n, a ~ t ~ b. Consider the functional 

gnU](t) = In T(x, t, pr(n) f(x, t» dx, (4.23) 

which, for fixed f, n, depends on t alone. The basic conservative property 
of T states that gnU] depends only on the initial values of fat t = a and 
the boundary values of f on an. 

Proposition 4.20. Suppose T, X are the conserved density and flux for a 
conservation law of a given system of differential equations. Then for any 
bounded domain n c IRP with smooth boundary an, and any solution u = f( x, t) 
defined for x E n, a ~ t ~ b, the functional (4.23) satisfies 

gn[f](t) - gnU](a) = - f' f X(x, T, pr(n)f (x, T» . dS dT. (4.24) 
a an 

Conversely, if (4.24) holds for all such domains and solutions u = f(x, t), then 
T, X define a conservation law. 

PROOF. By the divergence theorem 

dd gnU](t) = f D,T(x, t, pr(n+l) f) dx = - f X(x, t, pr(n) f) . dS. 
t n an 

Then (4.24) follows upon integration. The converse follows by differentiating 
(4.24) with respect to t, yielding 

In {D,T(x, t, pr(n+l) f)+Div X(x, t, pr(n+l) f)} dx=O. 

Since this holds for arbitrary subdomains, the integrand itsel~ must vanish, 
proving the converse. D 

Corollary 4.21. If n c IRP is bounded, and u = f(x, t) is a solution such that 
X(x, t, pr(n)f(x, t» ~ 0 as x~ an, then gnU] is a constant, independent oft. 

Usually, X(x, t, 0) == 0, so one requires that the solution f(x, t) vanish 
sufficiently rapidly as x ~ an (so that there is no flux over an), or, if n has 
unbounded components, as Ixl ~ 00. 

Example 4.22. Perhaps the most graphic physical illustration of the relation
ship between conserved densities and fluxes comes from the equations of 
compressible, inviscid fluid motion. Let x E 1R3 represent the spatial coordi
nates, and u = u(x, t) E 1R3 the velocity of a fluid particle at position x and 
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time t. Further let p(x, t) be the density, and p(x, t) the pressure; in the 
particular case of isentropic (constant entropy) flow, pressure p = P( p) will 
depend on density alone. The equation of continuity takes the form 

p, + Div(pu) = 0, 

where Div(pu) = Lj a(puj )/ axj is the spatial divergence, while momentum 
balance yields the three equations 

au i 3 .au i 1 ap -+ L u)-.=---., 
at j=i ax) pax' 

i = 1, 2, 3. 

The equation of continuity is already in the form of a conservation law, 
with density T = p and flux X = pu. This leads to the integral equation 
for the conservation of mass 

~ f p dx = - f pu· n dS. 
dt n an 

Here In p dx is clearly the mass of fluid within the domain 0, while pu· n, 
with n the unit normal to aO, is the instantaneous mass flux of fluid out of 
a point on the boundary aO. Thus we see that the net change in mass inside 
o equals the flux of fluid into O. In particular, if the normal component 
of velocity u . n on aO vanishes, there is no net change in mass within the 
domain 0, and we have a law of conservation of mass: 

f n p dx = constant. 

The momentum balance equations, coupled with the continuity equation, 
yield three further conservation laws 

3 

D,(pu i ) + L Dj(puiuj + pB{) = 0, 
j=i 

i = 1, 2, 3. 

In integrated form, these are the laws of conservation of linear momentum 

d f' f . - pu' dx = - (pu'(u· n) + pnJ dS, 
dt n an 

i = 1,2,3 

(ni being the i-th component of the normal n). The first term in the boundary 
integral denotes the transport of momentum pu i due to the flow across the 
surface ao, while the second term is the net change in momentum due to 
the pressure across aO. In this way Xj = pUiUi + pB{ does represent the 
components of momentum flux. Finally, if the flow is isentropic, we can 
introduce the internal energy W( p) = I P -2 P( p) dp per unit mass, measuring 
the work done by the fluid against the pressure. The law of conservation 
of energy takes the form 
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or, in integrated form, 

dd f [!pluI 2 +pW(p)] dx=-f (!pluI 2 +P(p)+pW(p»U· ndS. 
t n an 

Here In!plul 2 dx is the kinetic energy, while JnPW(p)dx the internal 
(potential) energy of the fluid. The surface integral represents the transport 
of kinetic and potential energy across an together with the rate of working 
due to the pressure across the boundary. In particular, if U· n = ° on an, 
both mass and energy are conserved. 

Trivial Conservation Laws 

There are two distinct ways in which a conservation law could trivially 
hold. In the first kind of triviality, the p-tuple P itself in (4.22) vanishes 
for all solutions of the given system. This type of triviality is usually easy 
to eliminate by solving the system and its prolongations a (k) for certain of 
the variables u~ in terms of the remaining variables, and substituting for 
these distinguished variables wherever they occur. For example, in the case 
of an evolution equation u, = P(x, u(n», we can always solve for any time 
derivative of u, e.g. u", UXh etc., solely in terms of x, u and spatial derivatives 
of u. As a net result, any dynamical conservation law is equivalent, up to 
the addition of a trivial conservation law of the first kind, to a conservation 
law in which the conserved density T depends only on x, t, u and spatial 
derivatives of u. For evolution equations, this is the usual form of a 
conservation law. 

Example 4.23. Consider the system of first order evolution equations 

which is equivalent to the one-dimensional wave equation u" = u=. The 
expression 

is clearly a conservation law. According to the above remarks, we can 
replace the conserved density and flux by ones depending on spatial deriva
tives, resulting in the equivalent conservation law 

D,(!u~+!v~) - DAuxvx) = 0. 

These differ by the trivial conservation law 

D,(!u;-!v~) + DAvxux - u,ux) = 0, 

whose density and flux both vanish on solutions of the system. 
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A second possible type of triviality occurs when the divergence identity 

Div P=O 

holds for all functions u = f(x), regardless of whether they solve the given 
system of differential equations. For example, in the case p = 2 the identity 

DAuy) - Dy(ux)== 0 

clearly holds for any smooth function u = f(x, y), and hence provides a 
trivial conservation law of the second kind for any partial differential 
equation involving u = f(x, y). A less obvious example is the identity 

DAuyvz - uzvy) + Dy(uzvx - uxvz) + Dz(uxvy - uyvx) == 0 

involving Jacobian determinants. Any such p-tuple P(x, u(n»), whose diver
gence vanishes identically, is called a null divergence. The conservation law 
offered by any null divergence does not depend on the particular structure 
of any given system of differential equation, and we are thus justified in 
labelling these laws as trivial. 

As with the Poincare lemma, which characterizes the kernel of the 
ordinary divergence operator (cf. Example 1.62), there is a similar charac
terization of all null divergences/trivial conservation laws of the second kind. 

Theorem 4.24. Suppose P = (PI, ... ,Pp ) is a p-tuple of smooth functions 
depending on x = (x\ ... ,xP ), u = (u\ ... , u q ) and derivatives of u defined 
on all of the jet space X X u(n). Then P is a null divergence: Div P == 0 if and 
only if there exist smooth functions Qjk, j, k = 1, ... ,p, depending on x, u and 
derivatives of u such that 

j, k= 1, ... , p, 

and 

j= 1, ... ,p, 

for all (x, u(n»). 

In particular, if p = 3, Theorem 4.24 says that 

Div P= DI PI+ D 2 P2 + D3 P3== 0 

if and only if P is a "total curl": P = Curl Q, i.e. 

(4.25) 

(4.26) 

(Here we identify Q12 = -Q21 with Q3, etc.) For our previous example, 

and the corresponding Q is (uvx, uVY ' uVz). 
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Although for any fixed function u = f(x), Theorem 4.24 reduces to the 
Poincare lemma, the fact that the resulting Qjk can be taken to depend just 
on x, u and derivatives of u for all such functions is a considerably more 
delicate matter. The proof turns out to be rather complicated, and will be 
deferred until Section 5.4, when we have considerably more algebraic 
machinery at our disposal. 

In general, a trivial conservation law will be, by definition, a linear 
combination of trivial laws of the above two kinds. In other words D iv P = 0 
is a trivial conservation law of the system if and only if there exist functions 
Qjk satisfying (4.25) such that (4.26) holds for all solutions of /:1. Two 
conservation laws P and P are equivalent if they differ by a trivial conserva
tion law, so P = P+ R where R is trivial. We will only be interested in 
classifying conservation laws up to equivalence, so by "conservation law" 
in general we really mean "equivalence class of conservation laws". 

Characteristics of Conservation Laws 

Consider a conservation law of a totally non degenerate system of differential 
equations /:1(x, u(n) = O. According to Exercise 2.33, Div P vanishes on all 
solutions of the system if and only if there exist functions Q~(x, u(m) such 
that 

(4.27) 
P,J 

for all (x, u). Now, each of the terms in (4.27) can be integrated by parts; 
for example, if 1 ~ j ~ p, 

Q~ Dj /:1 p = Dj ( Q~/:1J - Dj ( QD/:1p. 

In this way, we obtain an equivalent identity 

/ 

Div P= Div R+ L Qp/:1,,= Div R+Q· /:1, 
11=1 

in which the I-tuple Q = (Q\, ... , Q/) has entries 

Q" = L (-D)JQ~, 
J 

(4.28) 

and R = (Rio' .. ,Rp) (whose precise expression is not required here) 
depends linearly on the components /:1" of the given system of differential 
equations and their total derivatives. Thus R is a trivial conservation law 
(of the first kind), and if we replace P by P - R, we have an equivalent 
conservation law of the special form 

DivP=Q· /:1. (4.29) 

We call (4.29) the characteristic form of the conservation law (4.27), and 
the I-tuple Q = (Q\, ... , Q,) the characteristic of the given conservation law. 
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In general, unless I = 1 the characteristic of a given conservation law is 
not uniquely determined, this stemming from the fact that the Qv in (4.29) 
are not uniquely determined. Note that if Q and Q both satisfy (4.29) for 
the same P, then Q. L\ = Q. L\. Since L\ is nondegenerate, Proposition 2.11 
implies that Q - Q vanishes on all solutions. This motivates the definition 
of a trivial characteristic Q as one which vanishes for all solutions of the 
system. Two characteristics Q and Q are equivalent if they differ by a trivial 
characteristic, so Q = Q for all solutions u = f(x) to L\. In general, charac
teristics are only determined up to equivalence. 

Example 4.25. In order to find the characteristic for the conservation law 
of the wave equation in Example 4.23, we need to rewrite the left-hand side 
in the form (4.27), which is 

D,(!u;+!u~) - DAuxu,) = u,D,(u, - vx) + u,DAv, - ux). 

Therefore, according to (4.28), the characteristic is 

Q = (-D,(ut), -DAut» = (-utt , -uxt ), 

and there is an equivalent conservation law in characteristic form, which 
is found by integrating by parts: 

DtGu~-!u;+ utvx) + DA -UtVt) = -u,/u, - vx) - uxt(vt - ux). 

It is important to note that replacing the t-derivatives by x-derivatives in 
this conservation law will, as in Example 4.23, lead to an equivalent 
conservation law, but that this will not in general remain in characteristic 
form. In the present example, the conserved density is equivalent to ! u~ + 
!v~, the flux to -UxVx, but the resulting conservation law 

DtGu~+!v~)+ DA -uxvx) = uAuxt - vxx )+ vAvxt - uxx ) 

is definitely not in characteristic form. In general, replacing a conservation 
law by an equivalent one does not maintain the characteristic form. 

Furthermore, this last conservation law has as its characteristic 

Q = (-DAux), -DAvx» = (-uxx , -vxx ), 

which is not the same as our previous characteristic. However, the difference 

Q - Q = (-(utt - uxx ), -(Vtt - vxx» 
is a trivial characteristic, since it vanishes for all solutions of the system. 
Thus these two equivalent conservation laws can have equivalent, but not 
identical, characteristics. We finally note that the characteristic forms of 
the two conservation laws are different, that of the latter law being 

Dt(!u~+!v~)+ DAuxvx - UxUt - vxvt) = -uxx(ut - vx) - vxx(vt - ux). 

Thus, a single (equivalence class of) conservation laws may have more than 
one characteristic form. Finally, we remark that one can add any null 
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divergence to any of the above conservation laws without affecting its 
validity, or the form(s) of the characteristic. 

The preceding example should give the reader a good idea of the algebraic 
complexity of the general relationship between characteristics and conserva
tion laws. Nevertheless, if we restrict our attention to normal, nondegenerate 
systems (in particular, normal analytic systems), there is a one-to-one 
correspondence between equivalence classes of conservation laws and 
equivalence classes of characteristics, so that each conservation law is 
uniquely determined by its characteristic and vice versa, provided one keeps 
the equivalence relations in mind. This result forms the cornerstone for 
much of the general theory and classification of conservation laws, including 
Noether's theorem. (Counterexamples in the case of abnormal systems will 
be discussed in Section 5.3.) 

Theorem 4.26. Let a(x, u(n» = 0 be a normal, totally nondegenerate system 
of differential equations. Let the p-tuples P and P determine conservation laws 
with respective characteristics Q and Q. Then P and P are equivalent conserva
tion laws if and only if Q and Q are equivalent characteristics. 

Clearly the theorem reduces to proving that a conservation law in charac
teristic form (4.29) is trivial if and only if its characteristic Q is trivial. 
Several complications arise because there are two types of triviality for 
conservation laws which must be treated. The proof itself is quite compli
cated, and the reader may at first be well advised to skip ahead to Section 
4.4 at this point. 

As a warm-up exercise for the general proof, we begin with the simple 
case of a single n-th order ordinary differential equation 

in which Uk = dku/ dxk are the derivatives of the single dependent variable 
u. A conservation law in characteristic form is 

in which Q(x, u(m» is a single function of x, u and the derivatives of u. 
Note that in this case, the only trivial conservation laws of the second kind 
are the constants, so the proof will be considerably simplified. First suppose 
P is a trivial conservation law. Since a is nondegenerate, 

I 

P= L A k • D~a+c 
k=O 
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for certain functions Ab and c E IR. By Leibniz' rule, 

I 

DxP= L [DxAk' D!A+Ak · D!+lA] 
k=O 

I 

= (DxAo) . A + L (Ak- I + DxAk) . D!A + AI' D~+I A. 
k=1 

Equating this to Q. A, we find that 
I 

(DxAo-Q)' A+ L (Ak-I+DxAd' D!A+A" D~+IA=O k=1 
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for all x, ",. Now, the prolongations A (1+1) of A are assumed to be of maximal 
rank. According to Proposition 2.11, then, a linear combination of the 
functions A, DxA, ... , D~+I A determining A (/+1) will vanish identically if 
and only if the coefficients vanish for all solutions of A (1+1). Thus we find 

AI=O, k = 1, 2, ... , I, 

and 

DxAo-Q=O, 

whenever u = f(x) is a solution to A. An easy induction shows that Ak = 0 
on solutions to A for k = I, 1-1, ... , 1, 0, and hence the final equation 
requires Q to vanish for all solutions too. This means Q is a trivial charac
teristic, and hence we've proved that a trivial conservation law necessarily 
has a trivial characteristic. 

In order to prove the converse, we need to solve our equation A for the 
highest order derivative, 

Un = f(x, u, ... , Un-I), (4.30) 

which can be done in a neighbourhood of any point (xo, u&n») at which A 
is normal, which, in the present circumstance means aA(xo, u&n»)/ aUn ;c o. 
Before continuing, it is important to note that replacing A by the algebraically 
equivalent equation Un = f does not affect the structure of the space of 
conservation laws: 

Lemma 4.27. Suppose A and X are two totally nondegenerate systems of partial 
differential equations which are algebraically equivalent in the sense that their 
corresponding subvarieties [fa and [fA in the jet space M(n) coincide, 

[f!:J. = {(x, u(n»): A(x, u(n») = O} = [fA = {(x, u(n»): X(x, u(n») = O}. 

A p-tuple P is then a conservation law for A if and only if it is a conservation 
law for X. It is trivial as a conservation law for A if and only if it is trivial 
as a conservation law for X. If Div P = Q. A is in characteristic form for A, 
it is also in characteristic form for X: Div P = Q. X. Finally, Q is a trivial 
characteristic for A if and only if Q is a trivial characteristic for X. 
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PROOF. The statement that a function R(x, u(n») vanishes for all solutions 
of ~ is, by local solvability, equivalent to saying that R(x, u(n») = 0 whenever 
(x, u(n») E [ft.. Clearly this requirement is independent of the particular 
functions ~ or £i used to characterize the subvariety [f t. (or its prolongations). 
This trivial observation is sufficient to prove all the statements in the lemma 
save the last one. The requirement that Q be a trivial characteristic means 
that the expression Q. ~ = R vanish to second order on some appropriate 
prolongation ~ (k) of ~. (This means that both R and all its partial derivatives 
aR/ ax i, aR/ au~ vanish on the prolonged subvariety [ft.(k).) Again, this 
geometric condition is clearly independent of the particular functions ~ or 
£i used to characterize [ft., and hence also Yt.(k) = [fl.(k). 0 

Returning to our proof of Theorem 4.26 in the ordinary differential 
equation case, we are trying to show that if Q is a trivial characteristic, 
then Dx P = Q . ~ is necessarily a trivial conservation law. By Lemma 4.27, 
we can assume that ~ has the form (4.30). Moreover, differentiating (4.30) 
and substituting we can find expressions for higher order derivatives Un+k, 
k ~ 0, in terms of x, u, ... , Un-I. These can be substituted into the conserva
tion law P, leading to an equivalent conservation law P*(x, u, ... , Un-I) 
depending on only (n -1)-st and lower order derivatives of u. 

Now in the general case, as Example 4.25 made clear, replacing a 
conservation law by an equivalent one does not necessarily preserve the 
characteristic form itself, and so we have no reason to expect DxP* = 0 to 
be in characteristic form. (Indeed, in the general case this will turn out to 
be a major complication in the proof.) However, in the present situation 
the argument at this stage radically simplifies. Namely, since p* only 
depends on (n -1)-st and lower order derivatives, the only way n-th and 
higher order derivatives appear in 

aP* aP* aP* 
DxP* =--+ ul --+· .. + Un--

ax au aUn_1 

is in the final term. Thus by local solvability (4.27) holds if and only if 

where Q* = aP / aUn_1 is the characteristic which, by the first half of the 
theorem, is equivalent to the original characteristic Q, and is hence also 
trivial. Moreover, Q* only depends on (n -1)-st and lower order derivatives 
of u, so the only way that it can be trivial is if it vanishes identically, 
Q* = aP / aUn_1 == o. This implies DxP* == 0, and hence p* is a trivial con
servation law of the second kind. (In the present case this means P* is a 
constant!) Thus P is also trivial, and the theorem is proved in this special 
case. 

The proof of Theorem 4.26 in the general case proceeds along similar 
lines, although the details, especially in the second part of the proof, become 
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much more complicated. First suppose that P is a trivial conservation law, 
so that by nondegeneracy of a, there exist functions AUx, u(m» such that 

Pi = L A{"DJa,,+Ri, i = 1, ... , p, (4.31) 
",J 

where R = (R I, ... , Rp) is a null divergence. In this case 

Div P= L {DiA{,,' DJa"+A{,,DiDJa,,}. 
i,v,l 

Assuming P is in characteristic form, we equate this latter expression to 
Q. a, thereby obtaining a linear combination of the derivatives DK a" which 
vanishes identically in x and u. Again, by the maximal rank condition on 
the prolongations of a, Proposition 2.11 requires that the coefficient of each 
derivative DK a" must vanish whenever u = f(x) is a solution to the system. 
An easy induction along the same lines as in the ordinary differential 
equation case shows that each coefficient A{" must vanish whenever u is a 
solution, and, finally, each Q" = 0 whenever u = f(x) is a solution to a. 
Thus a trivial conservation law necessarily has a trivial characteristic and 
the first half of the theorem is proved. 

To prove the converse, we first need to use a change of independent 
variable (y, t) = I/J(x) which makes the system a equivalent to one in 
Kovalevskaya form 

~n " " =~-r ( (;;) U nt - n - "y, t, u , at v = 1, ... , q, (4.32) 

the r" depending on all derivatives u~ up to order n except the U~t. (See 
Theorem 2.76. The extension to the more general Kovalevskaya form (2.123) 
is not difficult, but the notation is more complicated, so this will be left to 
the reader.) Using Lemma 4.27, it suffices to prove that if Q = (QI, ... , Qq) 
is a trivial characteristic for a system in Kovalevskaya form, then the 
corresponding conservation law is trivial. We can begin with the conserva
tion law itself in characteristic form 

~ q 

DtT+Div y= L Q,,(u~t-r,,), (4.33) 
,.,=1 

in which T will be called the conserved density and DTV refers to the "spatial 
part" of the total divergence coming from the variables (y\ ... ,yP-I). 

Now, as in Section 2.6, for each prolongation ofa system jn Kovalevskaya 
form, we can find expressions for the derivatives U~lt,J, m;;;'; n, in terms of 
derivatives of u of the form Ukt,K, k < n. Substituting these expressions into 
both T and Y in our conservation law, we construct an equivalent conserva
tion law 

DtT*+Div Y*=O 
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in which T* and Y* are all independent of the derivatives u;:tt,J, m"'" n. 
However, as Example 4.25 made clear, this equivalent conservation law is 
not necessarily in characteristic form. The best that we can say is that there 
exist differential functions Q!* such that 

D,T*+Div Y*= L Q!*(u:"J-DJfv ) (4.34) 
v,J 

holds for all x and u, and by the first half of the theorem that the correspond
ing characteristic Q*, cf. (4.28), is trivial, so Q*=O whenever (4.32) holds. 
Since T* and y* are independent of the u::,,J, the only place that such 
derivatives could crop up on the left-hand side of (4.34) is in D,T*, and 
we easily find 

* ~ aT* v * D, T = £., v U n',J + S , 
v,J aU(n-l),,J 

where S* is independent of u::',,J, m "'" n. Comparing this with the right-hand 
side of (4.34), and using Exercise 2.5(d), we find that 

Q!* = aT* / au ('n-I)',J + S!, 

provided J only involves y-derivatives; otherwise, Q!* = S!. Here the S! 
vanish for all solutions to (4.32), and satisfy 

L S!(u:,,J-DJfv)=O. 
v,J 

Thus the S! do not enter into (4.34) in any essential way, and we can replace 
Q! * by Q! * = Q! * - S! without altering (4.34) or affecting the triviality of 
the associated characteristic Q*. Thus the characteristic of our conservation 
law is equivalent to one with components 

- aT* 
Q~ = L (-D)J v Ev( T*). 

J aU(n-I)"J 
(4.35) 

Here Ev denotes the "Euler operator" corresponding to WV = u('n-I)', where 
we are treating w\ ... , wq as independent functions of just the spatial 
variables (y\ ... ,yP-l). 

Since only y-derivatives appear in (4.35), Q~ = Ev( T*) is independent 
of the u::',,J, m "'" n. Thus Q~ is trivial if and only if it vanishes identically, 
so 

Ev( T*) == 0, v = 1, ... , q. 

In this identity, we are treating each t-derivative Uk" O.;;;k';;;n-l, as a 
distinct dependent variable, with only y-derivatives appearing in the relevant 
Euler operators. To complete the proof, we need a slight extension of our 
characterization of null Lagrangians in Theorem 4.7 to the case when only 
some of the Euler equations vanish identically. The proof of this result is 
left to the reader. 
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Lemma 4.28. Suppose L(x, u(n), v(n» depends on the independent variables 
x E IRP, and dependent variables u E IRq, v E IR' and their derivatives. Then 

Eu,,(L) == 0 for a = 1, ... , q, 

if and only if 
L= Div p+ i(x, v(n» 

for some p-tuple P(x, u(m), v(m», where i depends only on x, v and derivatives 
ofv. 

In our case, we conclude that 

T*= 6TV R+ j* 

(i51V meaning y-divergence) where j* does not depend on w" = u(n-I)' or 
their y-derivatives. By Theorem 4.24, To = 6TV R is the conserved density 
of a trivial conservation law (with flux - D,R) and hence we have an 
equivalent conservation law 

D,j*+DIV Y*=o (4.36) 

in which the conserved density depends only on t, y and u~, J, V = 1, ... , q, 
0 ... k ... n - 2, #J ~ O. Moreover, Y* can, without loss of generality, be 
assumed to depend only on t, y and u~"J for v = 1, ... ,q, 0 ... k ... n -1, 
# J ~ 0 (otherwise replace it by an equivalent expression using (4.32». Thus 
no derivatives of the form um',J, m ~ n can appear in (4.36), so the only 
way it can vanish on solutions to (4.32) is if it vanishes identically! But this 
means that (4.36) is a trivial conservation law of the second kind. Tracing 
back our reasoning, we see that the original conservatiort law (4.33) is 
equivalent to the trivial law (4.36) and hence must itself be trivial. This 
completes the proof that, for a system in Kovalevskaya form (and hence 
any normal system), trivial characteristics necessarily come from trivial 
conservation laws. 0 

4.4. Noether's Theorem 

The general principle relating symmetry groups and conservation laws was 
first determined by E. Noether, [1], who stated it in almost complete 
generality. The version presented in this section is the one most familiar to 
physicists and engineers, requiring only knowledge of ordinary symmetry 
group theory as developed in Chapter 2, but is far from the most comprehen
sive version of Noether's theorem available. We will return to this topic in 
Section 5.3, where the complete, general form of Noether's theorem, which 
subsumes the present version, will be proved. Nevertheless, the result here 
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is still of great practical use, and we will illustrate its effectiveness with a 
number of examples of physical importance. 

Theorem 4.29. Suppose G is a (local) one-parameter group of symmetries of 
the variational problem .5t'[u] = J L(x, u(n» dx. Let 

p. a q a 
v= L f(x, u) -j+ L CPa (x, u)-a 

j=1 ax a=1 au 
(4.37) 

be the infinitesimal generator of G, and 

P . 
Qa(x, u) = CPa - L fuf, 

;=1 

the corresponding characteristic of v, as in (2.48). Then Q = (QI> ... , Qq) is 
also the characteristic of a conservation law for the Euler- Lagrange equations 
E(L) = 0; in other words, there is a p-tuple P(x, u(m» = (PI, ... , Pp) such that 

q 

Div P = Q. E(L) = L Q~E~(L) (4.38) 
11=1 

is a conservation law in characteristic form for the Euler- Lagrange equations 
E(L) =0. 

PROOF. We substitute the prolongation formula (2.50) into the infinitesimal 
invariance criterion (4.15), to find 

0= pr(n) v(L) + L Div g 
P p. 

= pr(n) vQ(L)+ L gjDjL+ L L Djg' 
i=1 i=1 

= pr(n) vQ(L) + Div(Lg), 

where Lg is the p-tuple with components (Lg I, ... , Le). The first term in 
this equation can be integrated by parts: 

aL . = L Qa· (-D)]-a +DIV A 
a,J au] 

q 

= L QaEa(L)+Div A, 
a=1 

where A = (AI, ... ,Ap) is some p-tuple of functions depending on Q, L 
and their derivatives whose precise form is not required here. We have 
proved that 

pr(n) vQ(L) = Q. E(L) + Div A (4.39) 
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for some A. Therefore, 

0= Q. E(L) + Div(A + L~), (4.40) 

and (4.38) holds with P = -(A + L~). This completes the proof of Noether's 
iliwrem. 0 

From this standpoint, the essence of Noether's theorem is reduced to 
the integration by parts formula (4.39). To find the explicit expression for 
the resulting conservation law P = -(A + L~), we thus need to find the 
general formula for A in terms of L and the characteristic Q of the symmetry. 
The general formula appears in Proposition 5.74; here we look at the case 
of first order variational problems in detail. (An alternative approach is to 
construct P directly from the basic formula (4.38) once the characteristic 
Q is known. This somewhat ad hoc technique is often useful in practice, 
when the general formula is rather cumbersome to apply directly.) If 
L(x, u(l)) depends only on first order derivatives, 

(I) q { aL ~ aL} pr vQ(L) = L Q"'-a + t.... DjQ",-", . 
",=1 au j=1 aUj 

Only the second batch of summands need to be integrated by parts, so we 
find (4.39) holds with A j = L", Q", aLI au~. Thus we have the following 
version of Noether's theorem for first order variational problems. 

Corollary 4.30. Suppose 5l'[u] = J L(x, u(1») dx is a first order variational 
problem, and v as in (4.37) a variational symmetry. Then 

q aL . q p . aL 
Pj = "'~1 4>", au~ + fL - "'~1 j~1 ~}u; au~' i = 1, ... ,p, (4.41) 

form the components of a conservation law Div P = 0 for the Euler-Lagrange 
equations E(L) = O. 

Example 4.31. Consider a system of n particles moving in 1R3 subject to 
some potential force field. The kinetic energy of this system takes the form 

K(i) =! £ m"li"'12, 
a=l 

where m", is the mass and x'" = (x"', y"', z"') the position of the a-th particle. 
The potential energy U(t, x) will depend on the specific problem; for 
instance, 

might depend only on the pairwise gravitational interaction between masses, 
or (if n = 1) we may have the central gravitational force of Kepler's problem. 
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Newton's equations of motion 

rn",x~=-V",U=-(Uxa, Uya, Uza), a=l, ... ,n, 

are in variational form, being the Euler-Lagrange equations for the action 
integral e'oo (K - U) dt. 

A vector field 

v= T(t X)~+L~"'(t x)· ~= ~+L (g",_a_+T/",_a_+l"'~) 
, at" ' ax'" at '" ax" ay" az'" 

will generate a variational symmetry group if and only if 

pr(l) v(K - U) + (K - U)D,T = 0 (4.42) 

for all (t, x). Noether's theorem immediately provides a corresponding 
conservation law or first integral 

n 

T = L rn", ~'" . ,,'" - TE = constant, (4.43) 
",=1 

where E = K + U is the total energy of the system. In this example, we 
investigate what form the potential must take so that certain groups of direct 
physical interest be variational symmetries, and deduce the form of the 
corresponding conservation law. 

First, the group of time translations has generator v = a,. Since pr(l) v = v, 
(4.42) holds if and only if au/at = 0, i.e. U does not depend explicitly on 
t. The resulting conservation law is just the energy E. Invariance of a physical 
system under time translations generally implies conservation of energy. 
Next consider the group of simultaneous translations of all the particles in 
afixeddirectionaE 1R3. The group x'" ~x'" + eahasgeneratorv = L" a· a/ax"'. 
Again pr(l) v = v, so (4.42) holds if and only if v( U) = 0 meaning that U is 
translationally invariant in the given direction. The corresponding first 
integral is the linear momentum 

L rn" a . x" = constant. 
'" 

Again, in most physical systems translational invariance implies conserva
tion of linear momentum. As a last example, consider the group of simul
taneous rotations of all the masses about some fixed axis which, for sim
plicity, we take as the z-axis. The generator of this group is 

v=~ (x"_a __ y,,,_a_), pr(l) v=v+~ (x"..i.._y·,,_a_). 
~ ay" ax'" ~ ay" ax" 

Note that pr(l) v(K) = 0, hence rotations form a variational symmetry group 
if and only if U is rotationally invariant: v( U) = O. The conservation law 
is that of angular momentum 

L rn,,(x"ya - y"x") = constant. 
'" 
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Again, in general, rotational invariance implies conservation of angular 
momentum. For example, the nobody problem admits all seven symmetries 
and thus has conservation of energy, linear and angular momentum, while 
Kepler's problem only retain energy and angular momentum; the transla
tional invariance no longer holds since one mass has been fixed at the origin. 

Example 4.32. Elastostatics. In elasticity, conservation laws take on an added 
importance because they provide nontrivial path-independent integrals, 
thereby allowing one to investigate singularities such as cracks by integrating 
appropriate quantities far away from them. Let x Ene IRP represent the 
material coordinates of an elastic body in some reference configuration, 
and u E IRq the spatial coordinates representing the deformation, so u(x) is 
the deformed position of the initial point x. Thus, in physical applications, 
p = q = 2 or 3 for planar or three-dimensional elasticity. In the hyperelastic 
theory, assuming the absence of body forces, the equilibrium deformations 
are determined as minima of the energy functional 

CW[u] = L W(x, u(l)) dx 

subject to appropriate boundary conditions on an. In most cases W, the 
stored energy junction, will depend on material coordinates, deformation, 
and deformation gradient Vu = (au a j ax i), the last measuring the strain due 
to the deformation.t The precise form of the stored energy function will 
depend on the constitutive assumptions governing the type of elastic material 
of which the body is composed. Nevertheless, certain universal physical 
constraints will impose certain general restrictions on the form of W. Each 
of these constraints will appear in the guise of a variational symmetry group 
of CW, and then Noether's theorem will immediately lead to corresponding 
conservation laws, valid for general elastic materials. 

First of all, since W is independent of any external forces, it presumably 
does not depend on the frame of reference of the observer. This means that 
W must be invariant under the Euclidean group 

E(q): ut---+Ru+a, 

in the spatial variables. Translational invariance implies W = W(x, Vu) is 
independent of u; the corresponding conservation laws are just 

P 

L Di(aWjauf)=o, a = 1, ... , q, 
i=1 

which are nothing but the Euler-Lagrange equations themselves, expressed 
in divergence form. The rotational invariance of W: 

W(x, RVu) = W(x, Vu), R E SO(q), 

t There do, however, exist theories of "higher grade" materials, allowing dependence of W 

on higher order derivatives. 
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leads to conservation laws 

P {a oW aWl L D· u --uf3- =0 
;=\' aur au~ , 

a, f3 = 1, ... , q, 

whose characteristics are those of the infinitesimal rotations u a aul' - uf3 aua • 

Further conservation laws can result if we impose additional restrictions 
on the type of elastic material. For instance, if the body is homogeneous, 
W = W(V u) does not depend on x. Invariance under the translation group 
x ~ x + a, a E IRP, leads to p further conservation laws. 

P (q aW . ) L D; L uj-a-8{W =0, 
;=\ a=\ au; 

the components of which form Eshelby's celebrated energy-momentum 
tensor. When integrated around the tip of a crack it determines the associated 
energy-release rate. For a homogeneous, isotropic material, the symmetry 
group SO(p):x~Qx, which requires W(Vu·Q)=W(Vu), leads to 
!p(p -1) further laws 

P [. k aW . k k· ] L D· x'ua-x ua)-+(8~x -8·x')W =0 
;=\' k 'au~ , , 

corresponding to the infinitesimal generators Xk a/ax j -x j a/axk. Further 
interesting conservation laws can be found by imposing still more restrictions 
on the nature of the stored energy function W. Restricting to a homogeneous 
material, if W(V u) is a homogeneous function of degree n, so 

W(AVu) = A nW(Vu), 

for all V u, then the scaling group 

A>O, 

(x, u)~(Ax, A (n-p)/n u ), A >0, 

is a variational symmetry group since 

t W(Vu) di = L W(A -p/nVu)A P dx = L W(Vu) dx. 

(If we just scale x or u individually, we have a symmetry of the Euler
Lagrange equations, but not a variational symmetry unless p = n.) The 
infinitesimal generator of this group is 

P . a n-p q a a 
L x'-.+-- L u -a' 
;=\ ax' n a=\ au 

so the conservation law is 

P {n -p q a w. P q . a W} 
~ D· -- ~ ua_+x'W- ~ ~ x'ua - =0 i... J i... a i... '- J a • 
;=\ n a=\ au; j=\ a=\ au; 
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Now in practice, the homogeneity assumption on W is rather special. For 
a general function W, then, a slightly modified form of the above conserva
tion law yields the divergence identity 

p {q aW. p q . aWl L D; L ua_a+x·w- L L xVt--a =pw, 
;=1 a=1 au; j=1 a=1 au; 

which was recently used by Knops and Stuart, [1], to prove uniqueness of 
equilibrium solutions corresponding to homogeneous deformations. (See 
Exercise 5.25 for a general theorem of this type.) If W is homogeneous of 
degree p, then there is a full conformal group of variational symmetries. 
The infinitesimal generators of the inversional transformations take the form 

with conservation laws 

Again, if W is not homogeneous, these tum into divergence identities: 

p ..[ aw] L D;C{=Xl pW- L Uk-a' 
;=1 a.k aUk 

This method of using symmetries of special variational problems to construct 
useful divergence identities for more general functionals seems quite promis
ing, but has yet to be fully developed. 

Divergence Symmetries 

A cursory inspection of the proof of Noether's theorem reveals that the 
hypothesis that the vector field v generate a group of variational symmetries 
is overly restrictive for us to deduce the existence of a conservation law. 
This inspires the following relaxation of the definition of a variational 
symmetry group. 

Definition 4.33. Let !e[ u] = J L dx be a functional. A vector field v on 
M c X x U is an infinitesimal divergence symmetry of !e if there exists a 
p-tuple B(x, u(m») = (BI' ... , Bp) of functions of x, u and derivatives of u 
such that 

pr(n) v(L) + L Div ~ = Div B (4.44) 

for all x, u in M. 
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Compare Theorem 4.12 for the motivation and notation for the 
"infinitesimal criterion" (4.44). In particular, if B = 0 we recover our pre
vious notion of variational symmetry. Each infinitesimal divergence sym
metry of a variational problem generates a one-parameter group gE = exp( ev) 
of transformations on M, but the precise symmetry properties of such groups 
of divergence symmetries is less transparent than for the ordinary groups of 
variational symmetries. However, we do have the following generalization 
of Theorem 4.14. 

Theorem 4.34. If v is an infinitesimal divergence symmetry of a variational 
problem, then v generates a symmetry group of the associated Euler- Lagrange 
equations. 

The proof of this result is deferred until Section 5.3, when a generalization 
will be developed. In practice, then, to determine divergence symmetries 
of a given variational problem, one first computes the general symmetry 
group of the corresponding Euler-Lagrange equations. It is then a fairly 
straightforward matter to check which linear combination of these sym
metries satisfies the additional criterion (4.44) so as to actually be a diver
gence symmetry. (See also Proposition 5.39.) 

The statement of Noether's theorem 4.29 remains the same if we replace 
variational symmetry by divergence symmetry in the hypothesis: the charac
teristic Q of the infinitesimal divergence symmetry remains the characteristic 
of a conservation law of the Euler-Lagrange equations. The only thing that 
changes in the proof is the incorporation of the extra term Div B stemming 
from (4.44) in the formulae so that, for instance, (4.40) is replaced by 

Q. E(L) + Div(A + Lg) = Div B. 

Thus the conclusion (4.38) holds, with P = B - A - L~ in this case. 

Example 4.35. Let us look at the invariance of the Lagrangian K - U for a 
system of n masses under Galilean boosts: 

(t, x"')~(t, x'" + eta), 

where a E 1R3. The infinitesimal generator of this action has prolongation 

n ( a .a ) pr(J) v= I ta· -", +a· ----:-; ; 
",~1 ax ax 

thus 
n n 

pr(J)v(L)= I m",a·x"'-t I a·V",U. 
a=l 0:=1 

This never vanishes identically (unless a = 0), so the Galilean boost is never 
an ordinary variational symmetry. However, the first term in pr(1) v(L) is a 
divergence, namely D,(I m",a . x"'), so v generates a group of divergence 
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symmetries provided U is translationally invariant in the direction of a. 
The associated first integral is 

I maa' x a -tI maa' "a. 
a 

The first summation when divided by the total mass I ma determines the 
position of the centre of mass of the system in the direction a, while the 
second is just the linear momentum in the same direction. We thus find 
that if U is translationally invariant in a given direction, not only is the 
linear momentum in that direction a constant, but the centre of mass in 
that direction is a linear function of t: 

Centre of Mass = t(Momentum)/ (Mass) + c. 

In particular, if U is invariant under the complete translation group in 1R3, 

the centre of mass of any such system moves linearly in a fixed direction. 

Example 4.36. Return to the wave equation in two spatial dimensions 
considered in Examples 2.43 and 4.15. It has already been shown that, of 
the full group of symmetries of the wave equation, the translations, rotations 
and (modified) dilatations are symmetries of the associated variational 
problem. It is now seen that the inversions, while not variational symmetries 
in the strict sense, are divergence symmetries. In the case of ix, we have 

pr(l) ixCL) + L Div ~ = UUx = DxC! u2). 

There are thus ten conservation laws for the wave equation arising from 
geometrical symmetry groups-three from translations, three from rotations, 
one dilatational and, finally, three inversional conservation laws. In the 
following table, we just list the ten conserved densities, leaving the reader 
to determine the associated fluxes. 

Symmetry Characteristic 

Translations Ux 

uy 
u, 

Rotations xuy - YUx 

xu, + tux 
yu,+tuy 

Dilatations xUx + YUy + tu, +! u 

Inversions (x2_ y2+ t2)ux +2xyuy + 2xtu, + xu 
2xyux + (y2_X2+ t2)uy +2ytu, + yu 
2xtux +2ytuy +(x2+ y2+ t2)u, + tu 

Conserved Density 

Px = UxU, 

Py = uyu, 
E =!(u;+ u;+ u;) 

A=xPy-YPx 
Mx=xE+tPx 

My=yE+tPy 

D = xPx + yPy +! uu, + tE 

Ix = xD - yA +! xuu, + tMx 
Iy = yD-xA+!yuu,+ tMy 
I, = (x2+ y2)E -!u2+2tD- t2E 
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Consequently, if u(x, y, t) is any global solution to the wave equation 
decaying sufficiently rapidly as x 2 + y2 ~ 00, then the spatial integrals of each 
of the above densities is a constant, independent of t. Thus we obtain 
conservation of energy 

'l: = f f E dx dy = constant 

and similar statements about linear momenta ~x and ~y (the integrals of 
Px and Py) and angular momentum .sIl. The hyperbolic rotations yield the 
linear dependence of associated energy moments on t; for instance, 

- f f xE dx dy = ~ xt + Cfd 

for some constant Cfd, where ~ x is the constant linear momentum. The 
dilatational group leads to the useful identity 

-:rf f !u2dxdy= f f (xPx+yPy)dxdy+'l:t+ce, 

ce constant. The three inversional conservation laws, e.g. 

f f [(X2+y2)E_!u2) dxdy= 'l:t2+2cet+Cfd*, 

while less physically motivated, are of key importance in the development 
of scattering theory for both linear and nonlinear wave equations. 

Finally, there are the symmetry generators Va = a(x, y, t)au stemming 
from the linearity of the equation. These satisfy 

pr(1) va(L) = a,u,- axux - ayuy = D,(a,u) - Dx(axu) - Dy(ayu), 

since a is a solution to the wave equation. Thus, except in the special case 
of constant a, these are not variational symmetries in the sense of Definition 
4.10; they do generate divergence symmetries. The corresponding conserva
tion laws are the reciprocity relations 

D,(au, - a,u) - Dx(aux - axu) - Dy(auy - ayu) 

= a(u" - Uxx - Uyy ) - u(a" - axx - ayy ) = 0, 

vanishing whenever a and u both solve the wave equation. In integrated 
form this law is just Green's formula, as applied to the wave operator. (See 
Section 5.3 for a general discussion of reciprocity relations.) 

NOTES 

The calculus of variations has its origins in the work of Euler and the 
Bernoullis in the eighteenth century, the operator bearing Euler's name 
first appearing in 1744. However, it was not until the work of Weierstrass 
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and Hilbert in the latter half of the nineteenth century that some semblance 
of rigor appeared in the subject. The book by Gel'fand and Fomin, [1], 
gives a reasonable introduction to the calculus of variations, of which we 
are only using the most elementary ideas here. Conservation laws are of 
even older origin, although the idea of conservation of energy was not 
conceptualized until the work of Helmholtz in the 1840's. (See Elkana, [1], 
for an interesting study of the historical development of this idea.) See 
Whitham, [2; § 6.1], for a more detailed development of the conservation 
laws of fluid mechanics outlined in Example 4.22. 

In this book I have not attempted to present any of the numerous 
applications of conservation laws to the study of differential equations, but 
have concentrated just on their systematic derivation using the symmetry 
group method of Noether. Lax, [2], uses conservation laws (called "entropy
flux pairs" in this context) to prove global existence theorems and determine 
realistic conditions for shock wave solutions to hyperbolic systems. This is 
further developed in DiPerna, [1], [2], where extra conservation laws are 
applied to the decay of shock waves and further existence theorems. Con
servation laws have been applied to problems of stability by Benjamin, [1], 
and Holm, Marsden, Ratiu and Weinstein, [1]. Morawetz, [1] and Strauss, 
[1], use them in scattering theory. In elasticity, conservation laws (or, rather, 
their path-independent integral form-see Exercise 4.2) are of key import
ance in the study of cracks and dislocations; see the Qapers in Bilby, Miller 
and Willis, [1]. Knops and Stuart, [1], have used them to prove uniqueness 
theorems for elastic equilibria. The above is only a small sampling of all 
the applications which have appeared. 

Trivial conservation laws were known for a long time by people in general 
relativity. Those of the second kind go under the name of "strong conserva
tion laws" since they hold regardless of the underlying field equations; see 
the review papers of J. G. Fletcher, [1], and Goldberg, [1]. The characteristic 
form of a conservation law appears in Steudel, [1], but the connection 
between trivial characteristics and trivial conservation laws of Theorem 4.26 
is much more recent. See Vinogradov, [5], for a closely related result; the 
present theorem was first announced in Olver, [11]. 

The concept of a variational symmetry, including the basic infinitesimal 
criterion (4.15), is due to Lie, [7], from his early theory of integral invariants. 
The first people to notice a connection between symmetries and conserva
tion laws were Jacobi, [1], and later, Schutz, [1]. Engel, [1], developed the 
correspondence between the conservation of linear and angular momenta 
and linear motion of the centre of mass with invariance under translational, 
rotational and Galilean symmetries in the context of classical mechanics. 
Klein and Hilbert's investigations into Einstein's theory of general relativity 
inspired Noether to her remarkable paper, [1], in which both the concept 
of a variational symmetry group and the connection with conservation laws 
were set down in complete generality. The version of Noether's theorem 
appearing in this chapter is only a special case of her more general theorem, 
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to be discussed in Section 5.3. The extension of Noether's methods to 
include divergence symmetries is due to Bessel-Hagen, [1]. 

Thus by 1922 all the machinery for a detailed, systematic investigation 
into the symmetry properties and consequent conservation laws of the 
important equations of mathematical physics was available. Strangely 
enough, this did not occur until quite recently. One possible explanation 
is that the constructive infinitesimal methods of Lie for computing symmetry 
groups were never quite reconciled with the theorem of Noether. In any 
event, the next significant reference to Noether's paper is in a review article 
by the physicist Hill, [1], in which the special case of Noether's theorem 
discussed in this chapter was presented, with implications that this was all 
Noether had actually proved on the subject. Unfortunately, the next twenty 
years saw a succession of innumerable papers either re-deriving the basic 
Noether theorem 4.29 or purporting to generalize it, while in reality only 
reproving Noether's original result or special cases thereof. The mathemati
cal physics literature to this day abounds with such papers, and it would 
be senseless to list them here. (I know of close to 50 such references, but 
I am certain many more exist!) Some references can be found in the book 
of Logan, [1] (which again only treats the special form of Noether's theorem 
for classical symmetry groups) and also other references mentioned 
below. 

The lack of investigation into and appreciation of Noether's theorem 
has had some interesting consequences. Eshelby's energy-momentum tensor, 
which has much importance in the study of cracks and dislocations in elastic 
media, was originally found using ad hoc techniques, Eshelby, [1]. It was 
not related to symmetry properties of the media, as in Example 4.32, until 
the work of Giinther, [1], and Knowles and Sternberg, [1]. An extension 
to the equations of linear elastodynamics was made by D. C. Fletcher, [1]. 
Recently, Olver, [8], [9], found further undetected symmetries of the 
equations of linear elasticity, with consequent new conservation laws. 
Similarly, the important identities of Morawetz, [1], used in scattering theory 
for the wave equation were initially derived from scratch. Subsequently 
Strauss, [1], showed how these were related to the conformal invariance of 
the equation. (The further conservation laws to be found in Chapter 5 have 
yet to be applied here.) A similar development holds for the work of Baker 
and Tavel, [1], on conservation laws in optics, and no doubt further examples 
exist. 

The use of variational symmetry groups to reduce the order of ordinary 
differential equations which are the Euler-Lagrange equations of some 
variational problem presented in Theorem 4.17 is not as well known as its 
Hamiltonian counterpart, Theorem 6:35. A version of Theorem 4.17 for 
Lagrangians depending on only first order derivatives of the dependent 
variables is given in Whittaker, [1; p. 55], but I was unable to locate a 
reference to the full statement of this theorem in the literature. 
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EXERCISES 

4.l. Let 5£ be a functional. Prove that if v and w generate one-parameter variational 
symmetry groups of 5£, then so does their Lie bracket [v, w]. 

4.2. Suppose p = 2 and DxP + DyQ = 0 is a conservation law for a system of 
differential equations. Prove that if u(x, y) is any solution to the system, the 
line integral 

f c Q(x, y, u(m» dx - P(x, y, u(m» dy 

does not depend on the path C. 

4.3. If the case of a mechanical system, such as that in Example 4.31, time
translational invariance implies conservation of energy, space-translational 
invariance implies conservation of linear momentum (in the given direction) 
while, as in Example 4.35, Galilean invariance implies linear motion of the 
centre of mass. Prove that if a system admits laws of conservation of energy 
and the linear motion of the centre of mass, then it automatically admits the 
law of conservation of linear momentum as well. (Schutz, [1]). 

4.4. The 88M equation u, + Ux + uUx - Uxx , = 0 can be put into variational form by 
letting u = Vx • Find three conservation laws of this equation using Noether's 
theorem. (Olver, [3]). 

4.5. The equation Un = Uxxxx describes the vibrations of a rod. Compute symmetries 
and conservation laws of this equation using Noether's theorem. 

*4.6. Prove that Maxwell's equations in the physical form of Exercise 2.16(a) are 
not the Euler-Lagrange equations for some variation problem, but in potential 
form of Exercise 2.16(b) are. Find the Lagrangian. Which of the symmetries 
of Exercise 2.16 lead to conservation laws and what are these laws? 

*4.7. Find a variational principle for Navier's equations (2.127) of linear elasticity. 
Discuss symmetries and the associated conservation laws, including triviality, 
in this instance. Do the same for the abnormal system (2.118). 

4.8. The Emden-Fowler equation is 

d 2 u 2 du 5 
-+--+u =0. 
dx2 x dx 

(a) Determine a variational problem such that the Emden-Fowler equation 
is the Euler-Lagrange equation thereof. (Hint: Multiply by x 2.) 

(b) Find a simple variational scaling symmetry and use this to integrate the 
Emden-Fowler equation. 

(Dresner, [1; p. 14], Logan, [1; p. 52], Rosenau, [1]). 

4.9. Prove that the damped harmonic oscillator mX + ax + lex = 0, m "" 0, can be 
made into the form of an Euler-Lagrange equation by multiplying by 
exp(at/m). Prove that the vector field v=a,-(ax/2m)ax generates a one
parameter group of variational symmetries. Use this to integrate the equation 
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by quadrature. How does this method compare in effort with the usual method 
of solving linear ordinary differential equations? (Logan, [1; p. 57]; see also 
Exercise 5.38.) 

4.10. Consider an n-th order ordinary differential equation, on Me X xU"" 1R2, 

dnu - = H(x u(n-I)) dx n , • 

Prove that the first integrals of this equation are the same as the invariants of 
the one-parameter group generated by 

a a a a (n I) a 
-+ux-+uxx -+'" +un_I--+H(x,u - )-
ax au aux aUn -2 aUn _ 1 

acting on the jet space M(n-I). Find the solution to Uxx = u using this remark. 
(Cohen [1; pp. 86,99]). 

4.11. Consider a variational problem of the form .:£ = J L(x, U;I uxx ) dx, x, U E IR. 
(a) Prove that the two-parameter group (x, u)>-+(x, au+ b), a ~ 0, is a vari

ational symmetry group. 
(b) What is the Euler-Lagrange equation for .:£? 
(c) Show how the Euler-Lagrange equation can be integrated twice using the 

translational invariance, but that the resulting second order equation is 
not in general scale-invariant. 

(d) Do the same for the scaling symmetry. 
(e) Integrate the Euler-Lagrange equation twice by using the two first 

integrals given by Noether's theorem, but show again that one cannot in 
general reduce the order any further. 

(f) What happens if one uses the methods of Section 2.5 on the equation? 

This shows that, whereas a one-parameter variational symmetry group will in 
general allow one to reduce a system of Euler-Lagrange equations by two, a 
two-parameter variational symmetry group does not in general allow one to 
reduce the order by four! (This problem will be taken up in a Hamiltonian 
framework in Chapter 6.) 

4.12. Show that if .:£ is a variational problem depending on a single independent 
and single dependent variable, and .:£ is invariant under a two-parameter 
abelian group of symmetries, then one can reduce the order of the correspond
ing Euler-Lagrange equation by four. 

4.13. (a) Suppose.1 = E(L) = 0 forms the Euler-Lagrange equations of some vari
ational problem, and G is a regular group of variational symmetries (or 
even divergence symmetries) acting on M. Prove that the reduced system 
M G = 0 for the G-invariant solutions of .1 is also the Euler-Lagrange 
equations for some variational problem on the quotient manifold M / G. 
Does this generalize to nonvariational symmetry groups? 

(b) Find variational principles for the equations for the group-invariant sol
utions to the Korteweg-de Vries equation (2.66), using the substitution 
u = Vx to first put the Korteweg-de Vries equation itself into variational 
form. 
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4.14. The heat equation u, = Uxx cannot be put into variational form (except through 
some artificial tricks-see Exercises 5.26 and 5.27). Prove, however, that the 
equation for the scale-invariant solutions is equivalent to an Euler-Lagrange 
equation. (Hint: Look for an appropriate function to multiply it by.) Generalize 
to higher dimensions. (Thus reduction by a symmetry group will usually 
maintain a variational structure if there is one to begin with, but may also 
introduce a variational structure where none existed before!) 

4.15. Suppose p = 1, q = 2 and we have a functional 

2[u, u] = f L(x, u, u, ux , ux ,"') dx. 

Consider the "hodograph" change of variables y = u, v = U, V = x, and let 

2[ v, v] = f [(y, v, v, vy, vy, ... ) dy 

be the transformed functional. Prove that the corresponding Euler-Lagrange 
equations are related by the formula 

4.16. Use Noether's theorem to give an alternative proof of the Reduction Theorem 
4.17 that does not directly rely on a change of variables. Apply your result to 
Exercises 4.8 and 4.9. 



CHAPTER 5 

Generalized Symmetries 

The symmetry groups of differential equations or variational problems 
considered so far in this book have all been local transformation groups 
acting "geometrically" on the space of independent and dependent vari
ables. E. Noether was the first to recognize that one could significantly 
extend the application of symmetry group methods by including derivatives 
of the relevant dependent variables in the transformations (or, more 
correctly, their infinitesimal generators). More recently, these "generalized 
symmetries"t have proved to be of importance in the study of nonlinear 
wave equations, where it appears that the possession of an infinite number 
of such symmetries is a characterizing property of "solvable" equations, 
such as the Korteweg-de Vries equation, which have "soliton" solutions or 
can be linearized either directly or via inverse scattering. 

The first section of this chapter presents the basic theory of generalized 
vector fields and the associated group transformations, which are now found 
by solving the Cauchy problem for some associated system of evolution 
equations. The determination of the generalized symmetries of a system of 
differential equations is essentially the same as before, although the interven-

t Some authors have mistakenly attributed the introduction of these symmetries to the work 
of Lie and Backlund, and have given the misleading misnomer of "Lie-Backlund transforma
tions". (In particular, they are not the same as true Backlund transformations, which do not 
have group properties.) We have chosen the term "generalized symmetry" rather than "Noether 
transformation" since the latter already has acquired several other meanings in the context of 
variational problems. A fuller discussion of the curious history of these symmetries appears 
in the notes at the end of the chapter. 
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ing calculations usually are far more complicated. A second approach to 
this problem is through the use of a recursion operator, which will generate 
infinite families of symmetries at once. These are presented in the second 
section. For linear systems, recursion operators and symmetries are essen
tially the same objects, while for nonlinear equations, only very special 
"solvable" equations appear to have recursion operators. 

Many of our earlier applications of geometrical symmetries remain valid 
for generalized symmetries. In particular, Noether's theorem now provides 
a complete one-to-one correspondence between one-parameter groups of 
generalized variational symmetries of some functional and the conservation 
laws of its associated Euler-Lagrange equations. Thus, one can hope to 
completely classify conservation laws by constructive symmetry group 
methods. In particular, the recursion operator interpretation of symmetry 
groups of linear systems leads at once to infinite families of conservation 
laws depending on higher order derivatives in very general situations. Recent 
results have further crystallized the roles of trivial symmetries and conserva
tion laws in the Noether correspondence for totally nondegenerate systems, 
with the consequence that each nontrivial variational symmetry group gives 
rise to a nontrivial conservation law, and conversely. Under-determined 
systems fall under the ambit of Noether's second theorem, which relates 
infinite-dimensional groups of variational symmetries to dependencies 
among the Euler-Lagrange equations themselves. All these will be discussed 
in detail in the third section of this chapter. 

Underlying much of our algebraic manipulations involving symmetries, 
conservation laws, differential operators and the like, a subject best 
described as the "formal variational calculus", is a certain complex, called 
the variational complex, doing for the variational calculus what the de 
Rham complex does for ordinary vector calculus on manifolds. There are 
three fundamental results which motivate the consideration of this complex: 
the first is the characterization of the kernel of the Euler operator as the 
space of total divergences; the second is the characterization, in Theorem 
4.24, of the space of null divergences (trivial conservation laws of the second 
kind) as "total curls"; the third is Helmholtz's version of the inverse 
problem of the calculus of variations which states when a given set of 
differential equations forms the Euler-Lagrange equations for some 
variational problem. All of these results are manifestations of the 
exactness of the full variational complex at different stages. Although 
each result could be proved as it stands, the variational complex, whose 
fundamental role in the geometric theory of the calculus of variations 
is becoming more and more apparent, provides the unifying theme behind 
them, and the complete proof of exactness of it is not much more difficult 
to obtain. Thus we have devoted the last section of this chapter to a self
contained exposition of this complex, together with a much simplified proof 
of exactness thereof. 
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5.1. Generalized Symmetries of Differential 
Equations 

Consider a vector field 

p. a q a 
v= L f(x, U)-i+ L <Pa(x, u)-a 

i=\ ax a=\ au 

defined on some open subset M of the space of independent and dependent 
variables X x U. Provided the coefficient functions gi, <Pa depend only on 
x and u, v will generate a (local) one-parameter group of transformations 
exp(ev) acting pointwise on the underlying space M of the type discussed 
in detail in the previous chapters. A significant generalization of the notion 
of symmetry group is obtained by relaxing this geometrical assumption, 
and allowing the coefficient functions gi, <Pa to also depend on derivatives 
of u. In this chapter, we will explore the many consequences of such an 
extension of the notion of symmetry. 

Differential Functions 

Before proceeding with the development of the theory of generalized vector 
fields, it is useful to introduce some notation. Throughout this chapter 
M c X x U will denote a fixed connected open subset of the space of 
independent and dependent variables. The prolongations M(n) c X X u(n) 
are then open subsets of the corresponding jet spaces, with (x, u(n) E M(n) 
if and only if (x, u) EM. We let d denote the space of smooth functions 
P(x, u(n) depending on x, u and derivatives of u up to some finite, but 
unspecified order n, defined for (x, u(n) E M(n). The functions in dare 
called differential functions (in analogy with the differential polynomials of 
differential algebra). Each differential function is thus a smooth function 
P: M(n) ~ IR for some (finite) n. If m ~ n, then P(x, u(n) can also be viewed 
as a function on M(m) since the coordinates (x, u(n) form part of the 
coordinates (x, u(m) on M(m). If we do not care as to precisely how many 
derivatives of u that P depends on, we will write P[u] = P(x, u(n) for P, 
where the square brackets will serve to remind us that P depends on x, u 
and derivatives of u. We further define d' to be the vector space of I-tuples 
of differential functions, P[u] = (p\[u], ... , P,[u]), where each ~ E d. 

Note that d is an algebra, meaning that we can add differential functions 
and mUltiply them together. There are also a number of fundamental 
differential operators on d which we have already encountered. Both the 
partial derivatives a/ axi and a/ aur take a differential function to another 
differential function, but in general do not preserve the order of derivatives 
on which they depend. For instance, P = Uxxx + xUUx depends on third order 
derivatives, but aP / au = xUx only depends on first order derivatives. 
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Similarly, the total derivatives Dj: d-+d are linear maps, with DjP[u] 
depending on (n + 1}-st order derivatives when P[u] = P(x, u(n» depends 
on n-th order derivatives. Two other important operators are the total 
divergence Div: d P -+ d and the Euler operator E: d -+ d q defined in the 
preceding chapter. 

Generalized Vector Fields 

Definition 5.1. A generalized vector field will be a (formal) expression of the 
form 

p. a q a 
v= I f[U]-i+ I cPa[u]-a 

i=1 ax a=1 au 
(5.1) 

in which gi and cPa are smooth differential functions. 

Thus, for example, 

a a 
v=xu -+u -xax xxau 

is a generalized vector field in the case p = q = 1. For the moment, we will 
avoid any discussion of the precise meaning of such an object, but work 
with such generalized vector fields as if they were ordinary vector fields. 
Thus, in accordance with the prolongation formula of Theorem 2.36, we 
can define the prolonged generalized vector field 

whose coefficients are determined by the formula 

cP~ = D J ( cPa - i~1 giu~ ) + i~1 giu~i' (5.2) 

with the same notation as before. Thus, in our previous example, 

(I) _ a a a 
pr v- xUx-+ uxx-+[uxxx - (xuxx + ux)ux]-, 

ax au aux 

the coefficient of aj aux being computed as 

DAuxx -xu;)+ xUxUxx = DAuxx ) - Dx(xux)ux. 

Since all the prolongations of v have the same general expression for 
their coefficient functions cP~, it is helpful to pass to the "infinite" prolonga
tion, and take care of all the derivatives at once. Specifically, given a 
generalized vector field v, its infinite prolongation (or prolongation for short) 
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is the formally infinite sum 

p ; a q } a 
prv= L g-;+ L L cPa-a' 

;=1 aX a=l} au} 
(5.3) 

where each cP~ is given by (5.2), and the sum in (5.3) now extends over all 
multi-indices J=(j]' ... ,A) for k~O, 1~jK~P. Note that if P[u]= 
P(x, u(n» is any differential function, pr v(P) = pr(n) v(P) is again a differen
tial function. In particular, since P depends on only finitely many derivatives 
of u, only finitely many terms in the sum (5.3) are ever required to compute 
pr v(P). Thus questions about the "convergence" of (5.3) never arise. 

Whatever the geometrical significance of a generalized vector field (a 
subject we will explore in depth later in this section) the formal condition 
that it be an "infinitesimal symmetry" of a system of differential equations 
is clear. 

Definition S.2. A generalized vector field v is a generalized infinitesimal 
symmetry of a system of differential equations 

if and only if 

pr v[ll p ] = 0, 

for every smooth solution u = f(x). 

11= 1, ... , I, 

II = 1, ... , I, (5.4) 

This is the direct analogue of the infinitesimal symmetry criterion in 
Theorems 2.31 and 2.72. According to the latter result, we need to make 
some nondegeneracy assumptions on the system Il. Note that by the preced
ing discussion if the coefficients ofv depend on m-th order derivatives u(m), 

then the left-hand sides of (5.4) will in general depend on (m + n)-th order 
derivatives. Thus if we are going to require (5.4) to vanish for all solutions 
of the system, we must impose nondegeneracy conditions not only on the 
system Il itself but also on all its prolongations Il (k), k = 0, 1, .... To avoid 
always restating this hypothesis, we will assume it throughout this chapter. 

Blanket Hypothesis. Unless stated otherwise, all systems of differential 
equations are assumed to be totally nondegenerate in the sense of Definition 
2.83; namely they, and all their prolongations, are of maximal rank and locally 
solvable. 

In particular, if Il is_ a normal, analytic system, as discussed in Section 
2.6, then Il satisfies this hypothesis. In ihis case (5.4) holds for all solutions 
if and only if there exist differential operators c.!lJ~p. = L P~p.D), P~p. E d, such 
that 

I 

pr v(ll p ) = L c.!lJ p p.llp. (5.5) 
p.=1 
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for all functions u = f(x). (See Exercise 2.33.) Both (5.4) and (5.5) are useful 
versions of the basic infinitesimal criterion for a generalized symmetry group. 

Example 5.3. Consider the heat equation 

a[ u] = u, - Uxx = o. 

The generalized vector field v = Uxd u has prolongation 

d a a a 
prv= ux-+ uxx-+ux,-+ uxxx--+· . '. 

au aux au, auxx 

Thus 

and hence according to (5.5) v is a generalized symmetry of the heat equation. 
More generally, any generalized vector field of the form v = 0)[ u ]au , where 
0) is any linear, constant-coefficient differential operator, is easily seen to 
be a generalized symmetry of the heat equation. 

Evolutionary Vector Fields 

Among all the generalized vector fields, those in which the coefficients ~i[ u] 
of the aj axi are zero playa distinguished role. 

Definition 5.4. Let Q[ u] = (Q1[ u], ... , Qq[ u]) E ,s;1.q be a q-tuple of differen
tial functions. The generalized vector field 

q a 
vQ = L Q .. [u]-.. 

.. =1 au 

is called an evolutionary vector field, and Q is called its characteristic. 

Note that according to (5.2), the prolongation of an evolutionary vector 
field takes a particularly simple form: 

(5.6) 

Any generalized vector field v as in (5.1) has an associated evolutionary 
representative v Q in which the characteristic Q has entries 

P . 
Q .. = rP .. - L fuf, a = 1, ... , q, (5.7) 

i=l 

where uf = au" j axi. These two generalized vector fields determine essen
tially the same symmetry. 
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Proposition 5.5. A generalized vector field v is a symmetry of a system of 
differential equations if and only if its evolutionary representative v Q is. 

PROOF. According to the alternative form (2.50) of the prolongation formula, 

P . 
pr v[Ll v ] = pr vQ[LlJ + L fDiLl v • (5.8) 

i=1 

The second set of terms vanishes on all solutions to Ll, so the proposition 
follows easily from Definition 5.2. 0 

For example, the symmetry uxau of the heat equation is just the evolution
ary representative of the translational symmetry generator -ax' Similarly, 
the Galilean generator -2tax + xuau has evolutionary representative (2tux + 
xu )au , which, as the reader can check, is also a symmetry of the heat equation. 

We will distinguish between the symmetries discussed in Chapter 2 and 
the true generalized symmetries here by referring to the former as geometric 
symmetries since they act geometrically on the underlying space X x U. 
(Another suggestive name in use is point transformations.) According to the 
previous example, every geometric symmetry has an evolutionary rep
resentative with characteristic depending on at most first order derivatives. 
However, not every such evolutionary symmetry comes from a geometrical 
group of transformations; the characteristic must be of the specific form 
(5.7), with gi and l/Ja depending only on x and u. 

Equivalence and Trivial Symmetries 

Note that if vQ is an evolutionary vector field and the q-tuple Q vanishes 
on solutions of the system Ll then by (5.6) all the coefficients of the 
prolongation pr v Q also vanish on all solutions. Therefore v Q is automatically 
a generalized symmetry of the system Ll. Such symmetries are called trivial, 
and we are primarily interested in nontrivial symmetries of the system. A 
generalized symmetry is trivial if its evolutionary form is. Two generalized 
symmetries v and v are called equivalent if their difference v-v is a trivial 
symmetry of the system. This induces an equivalence relation on the space 
of generalized symmetries of the given system; moreover, we will classify 
symmetries up to equivalence so by a symmetry of the system we really 
mean a whole equivalence class of generalized symmetries, each differing 
from the other by a trivial symmetry. For example, in the case of the heat 
equation, the time translational symmetry at, its evolutionary form -utau 

and the generalized symmetry -uxxau are all equivalent, and for all practical 
purposes determine the self-same symmetry group. 
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Example 5.6. Let's look at the case of a system of first order ordinary 
differential equations 

a = 1, ... , q. (5.9) 

Suppose we are interested in finding generalized symmetries 

a q a 
v = T(t, u, u" .. . )-+ L ~a(t, u, U" •• ')-a' 

at a=1 au 

We simplify the computation by replacing v by its evolutionary representative 

q a 
vQ = L Qa(t, U, u" .. ')-a' where 

a=1 au 

Moreover, for solutions U = !(t), the system (5.9) provides expressions for 
the derivatives du a / dt solely in terms of u and t. Differentiating (5.9) will 
similarly lead to expressions for all higher order derivatives dku a / dt k in 
terms of just u and t. Under the above notion of equivalence, we are allowed 
to substitute these expressions into Q, leading to an equivalent vector field 
of the simple form 

q ~ a 
w= L Qa(t,u)-a' 

a=1 au 

In other words, for systems of first order ordinary differential equations, 
any generalized symmetry is always equivalent to a geometric symmetry in 
which only the dependent variables are transformed. 

Computation of Generalized Symmetries 

In principle, the computation of generalized symmetries of a given system 
of differential equations proceeds in the same way as the earlier computa
tions of geometrical symmetries, but with the following added features: 
First we should put the symmetry in evolutionary form vQ-this has the 
effect of reducing the number of unknown functions from p + q to just q, 
while simultaneously simplifying the computation of the prolongation pr vQ. 
One must then a priori fix the order of derivatives on which the characteristic 
Q(x, u(m» may depend. The basic trade-off in this regard is that the more 
derivatives of u that Q depends on, the more possible generalized sym
metries there are to be found, but, on the other hand, the more tedious and 
time-consuming it will be to. solve the ensuing symmetry equations. Of 
course, such an approach cannot hope to find all generalized symmetries 
(unless one can treat evolutionary vector fields depending on all orders of 
derivatives u(m) simultaneously) but taking m not too large will often yield 
important information on the general form of the symmetries. Finally one 
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must deal with the occurrence of trivial symmetries; the easiest way to 
handle these is to eliminate any superfluous derivatives in Q by substitution 
using the prolongations of the system, as was done in the preceding example. 

Example 5.7. Consider the elementary nonlinear wave equation 

U, = UUX ' 

Suppose vQ = Q[u]a" is a generalized symmetry in evolutionary form. Note 
that we can replace any t-derivatives of u occurring in Q by their correspond
ing expressions involving only x-derivatives without changing the 
equivalence class of v. For instance, u, is replaced by uUx, ux, by uUxx + u;, 
Uti by u2uxx + 2uu; and so on. Thus every symmetry is uniquely equivalent 
to one with characteristic Q = Q(x, t, u, Un uxx, ... ). The infinitesimal condi
tion (5.4) for invariance is then 

(5.10) 

which must be satisfied for all solutions. To calculate second order sym
metries, we require Q = Q(x, t, u, UX , uxx ), so (5.10) becomes, upon substitut
ing for u, according to the equation and simplifying 

aQ aQ 2 aQ aQ 
--u-+u -+3u u --=u Q at ax xaux x xxauxx X' 

By the method of characteristics, cf. (2.12), the most general solution of 
this linear, first order partial differential equation is 

( 1 Uxx) Q = uxR x + tu, u, t +-, -3 , 
Ux U x 

where R is an arbitrary function of its arguments. Which ofthe!:;e generalized 
symmetries correspond to geometrical symmetries of the type discussed in 
Chapter 2? For this to be the case, the characteristic Q must be of the form 
Q = 4J - ux~ - UUxT, where 4J, ~ and T depend only on x, t and u, and where 
v = ~ax + Ta, + 4Ja" is the corresponding infinitesimal generator. Thus 

Q = uxl/l(x + tu, u) + (tux + l)4J(x + tu, u), 

for some 1/1, and where -~ - UT = 1/1 + t4J. Thus there is quite a lot of freedom 
in the forms of ~ and· T; however, if ~ + UT = 0 = 4J, then the evolutionary 
form of v is trivial, Q = 0, so every geometric symmetry is equivalent to one 
in which T = 0, i.e. 



5.1. Generalized Symmetries of Differential Equations 301 

If we restrict our attention to projectable symmetries, then it can be shown 
that this subgroup is generated by the following eight vector fields: 

a" 
xax + ta" 

tax -au, 

xa,+u2au, 

xtax + t2a, - (x + tu )au, 

x 2ax+ xta,+ (x+ tu)uau. 

The preceding example might give the reader an overly optimistic assess
ment of the computational complexity of the problem of computing general
ized symmetries. In practice, given a system of differential equations, the 
computation of all generalized symmetries of a given order is inherently 
feasible, but only after a considerable investment of time and computational 
dexterity on the part of the investigator. The following example, which is 
still relatively easy, should give a better idea of what is required. 

Example 5.8. Here we compute all third order generalized symmetries of 
Burgers' equation, which we take in potential form 

(5.11) 

We take our infinitesimal generator in evolutionary form v = Qau, where we 
assume Q depends on x, t, u, Ux. uxx, Uxxx• The symmetry condition (5.4) is 

(5.12) 

Since this is only required to hold on solutions, we can substitute for any 
t derivatives of u therein using (5.11) and its prolongations. Upon analysing 
(5.12) in detail, we can read off the coefficients of the various derivatives 
of u in descending order. The coefficients of the fifth order derivative Uxxxxx 

cancel, so we proceed to terms involving Uxxxx• From the only term involving 
u~, we see that Q is affine in uxxx, 

Q = a(t)uxxx + Q'(x, t, u, ux, uxx ), 

where a depends only on t due to the other terms involving Uxxxx

Proceeding to the terms involving the third order derivative uxxx, we find 

Thus Q' is affine in uxx, with 

where f3 = f3(t) is a function of t alone. The coefficient of u~ in (5.12) now 
reads 
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hence 

Q = a(uxxx + 3uxuxx + u!) + (!a,x+ /3)(uxx + u~) + A(x, t, u)ux + B(x, t, u). 

The only other terms involving Uxx are 

(3a,ux +!allx+ /3,)uxx = (2Auux + 3a,ux + 2Ax)uxx

Thus A does not depend on u, and 

A =!a llx 2+!/3,x+ 'Y, 

where 'Y = 'Y( t) is yet another function of t. The coefficient of u~ now implies 

B(x, t, u) = p(x, t) e-u + CT(X, t) 

with p and CT to be determined. The coefficient of Ux reads 

!al/lx2+ !/3I1X + 'Y, = 2CTx +!a ll , 

so 

CT(X, t) = ;/gall,x3 +!/3l1x2+ (h,-!a,,)x+ 5, 

where 5 = 5(t). The remaining terms in (5.12), which do not involve deriva
tives of u, are just 

Thus p(x, t) is any solution to the heat equation p, = Pxx, while using the 
above form of CT, we conclude 

all" = 0, /3111 = 0, 

Thus a and /3 are, respectively, cubic and quadratic polynomials in t, 

a(t) = C9t3 + cst2+ c7 t + C6, /3(t) = cst2+ c4 t + C3, 

where c3, ••• , C9 are arbitrary constants, whence 

for further constants Co, Ch C2• 

Assembling all the information we have obtained, we conclude that every 
third order generalized symmetry of the potential Burgers' equation has as 
its characteristic Q a linear, constant-coefficient combination of the follow
ing ten "basic" characteristics 

Qo=l, 

Q\ = uX , 

Q2= tux+!x, 

Q3= uxx+u~, 

Q4 = t( Uxx + u~) +!xux, (5.13) 
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Qs = t2( Uxx + U;) + txux + Gt +!x2), 

Q6 = Uxxx + 3uxuxx + u~, 
Q7 = t(Uxxx + 3uxuxx + u~) +!x(uxx + u;), 

Q8 = t2(UXXX + 3uxuxx + u~) + tx(uxx + u;) + (!t+!X2)Ux, 
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Q9 = t3 (Uxxx + 3uxuxx + u~) +~t2X(UXX + U;) + (~t2+~tX2)Ux + (~tx +kx3 ), 

plus the infinite family of characteristics 

where p is an arbitrary solution to the heat equation. Of these characteristics, 
the first six, Qo, ... , Qs, and the characteristics Qp correspond to the 
geometrical symmetries computed in Example 2.42. For example, Q4 is 
equivalent to 

which is the characteristic corresponding to the vector field 

generating the scaling group of symmetries. In general Qo, ... , Qs, Qp are 
equivalent to the characteristics for vo, ... , Vs, v p in (2.60) respectively (at 
least up to sign). 

One could continue in this fashion to compute higher and higher order 
generalized symmetries, but the computations grow rapidly more and more 
involved. The reader might try fourth order characteristics Q = 
Q(x, t, u, ... , uxxxx ) to gain a feeling for this phenomenon. In Section 5.2 
we will discover a more systematiy means of finding these symmetries. 

Group Transformations 

What is the group of transformations corresponding to a generalized vector 
field? If v is a genuine generalized vector field, its one-parameter group 
exp( eV) can no longer act geometrically on the underlying domain M c 

X x U since the coefficients of v depend on derivatives of u, which are also 
being transformed. Nor can we define a prolonged group action on any 
finite jet space M(n) since the coefficients of pr(n) v will depend on still 
higher order derivatives of u than appear in M(n). The easiest way to resolve 
this dilemma is to define an action of the group exp(ev) on a space of 
smooth functions as follows:t First replace v by its evolutionary representa-

t See also Exercise 5.8 for an alternative method. 
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tive V Q as above and consider the system of evolution equations 

:: = Q(x, u(m)), (5.14) 

where Q is the characteristic of v. The solution (provided it exists) to the 
Cauchy problem u(x, 0) = f(x) will determine the group action: 

[exp(svQln(x) == u(x, d. 

Here we are forced to assume that the solution to this Cauchy problem is 
uniquely determined provided the initial data f(x) is chosen in some 
appropriate space of functions, at least for e sufficiently small. The resulting 
flow exp(evQ) will then be on the given function space. Of course, the 
verification of this hypothesis leads to some very difficult problems on 
existence and uniqueness of solutions to systems of evolution equations 
which lie far beyond the scope of this book. Our results are, barring a 
resolution of these problems, of a somewhat formal nature, but nevertheless 
will have direct practical applications. Note that our uniqueness assumption 
implies that exp(evQ) determines a local one-parameter group of trans
formations on the function space. 

Example 5.9. Let p = 2, q = 1 with coordinates (x, y, u) and consider the 
translation group G generated by v = ax' The induced action of G on 
functions u = f(x, y), as defined in Section 2.2, is 

[exp(ev).n(x, y) = f(x - e, y). 

The evolutionary form of v is the generalized vector field Vo = -uxau' The 
associated one-parameter group is determined by solving the Cauchy 
problem 

u(x, y, 0) = f(x, y). 

The solution is 

[exp(evo).n(x, y) = u(x, y, e) = f(x - e, y). 

Thus v and Vo generate the same action, and in this sense are equivalent 
vector fields. 

Theorem 5.10. The evolutionary vector field v = v Q is a symmetry of the system 
of differential equations A. if and only if the corresponding group exp(ev) 
transforms solutions of the system to other solutions. 

Remark. This theorem is of course subj~ct to various technical assumptions, 
namely 

(1) A. is a totally nondegenerate system as in our blanket hypothesis. 
(2) The system of evolution equations appropriate to v is uniquely solvable 

in some space of functions which includes all the (local) solutions to A.. 
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(3) A certain system of linear equations (5.15) appearing in the proof has 
unique solutions. 

PROOF. Let Ue = exp(ev)! (N.B.: the e subscript is not a derivative.) If Ue 

is a parametrized family of solutions, then 

O - ~ A ( (n» _ ~ D Q ( (n» a~v ( (n» _ [A ( (n»] - '-lv X,U e - £.., J a X,U e a X,U e -prvQ '-lv X,U e • 
ae a,J aUJ 

Setting e = 0 verifies (5.4). Conversely, suppose (5.5) holds. Assume that 
for e sufficiently small, the only solution v = (VI, ... , v') of the linear system 
of evolution equations 

av v 
_ ~ /.L _ ~ pJ ( (m)(» /.L 
- £.., ~V/.Lv - £.., V/.L X, U e X VI. 

ae /.L /.L,J 

v = 1, ... , I, (5.15) 

with zero initial values v(x, 0) == 0 is the zero solution v(x, e) == O. Then (5.5) 
and the above computation imply that if U = f(x) is a solution to ~ then 
VV(x, e) = ~v(x, u~n» satisfies this initial value problem, and hence 
~v(x, u~n» = 0 for all e, proving that Ue is a solution. 0 

If P[u] is any differential function, and u(x, e) a smooth solution to 
(5.14), then it is not difficult to see that 

In other words, pr vQ(P) determines the infinitesimal change in P under 
the one-parameter group generated by vQ: 

P[exp(evQ)f] = P[f]+ e prvQ(P)[f]+O(e2 ). (5.16) 

As in (1.18), we can continue to expand in powers of e, leading to the Lie 
series 

00 en 
P[exp(evQ)f]= L ,(prvQ)np[f]. 

n~O n. 
(5.17) 

(Here (prvQ)2(P)=prvQ[prvQ(P)], etc.) In particular, if P[u]=u, then 
(5.17) provides a (formal) Lie series solution to the evolutionary system 
(5.14). (We will not try to analyze the actual convergence of (5.17); see the 
following example.) 

Example 5.11. Let p = q = 1 and consider the generalized vector field v = 
uxxa". The corresponding one-parameter group will be obtained by solving 
the Cauchy problem 

au 
-=u ae xx, 

U(X, 0) = f(x), (5.18) 
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the solution being u(x, e) = exp(ev)f(x). Thus exponentiating the general
ized vector field v= uxxa" is equivalent to solving the heat equation! 

Several difficulties will be immediately apparent to any reader familiar 
with this problem. First, for e < 0 we are dealing with the "backwards heat 
equation", which is a classic ill-posed problem and may not even have 
solutions. Thus we should only expect to have a "semi-group" of transform a
tions generated by v. Secondly, as an example due to Tikhonov makes clear, 
unless we impose some growth conditions the solution will not in general 
be unique. Furthermore, if P[ u] = u in (5.17), we obtain the (formal) series 
solution 

to (5.18). However, as shown by Kovalevskaya, even if f is analytic, this 
Lie series for u may not converge. In fact, it will converge only if f is an 
entire analytic function satisfying the growth condition V(x)\ ~ C exp(Kx2) 

for positive constants C, K. (These are the same growth conditions needed 
to ensure uniqueness of solutions.) This example gives a good indication 
of some of the difficulties associated with rigorously implementing our 
exponentiation of generalized vector fields. 

Symmetries and Prolongations 

The connection between generalized symmetries of systems of differential 
equations and their prolongations is based on the following important 
characterization of evolutionary vector fields. It says that except for 
the trivial translation fields ajax;, evolutionary vector fields are uniquely 
determined by the fact that they commute with the operations of total 
differentiation. 

Lemma 5.12. If vQ is an evolutionary vector field, then 

pr vQ[D;P] = D;[pr vQ(P)], 

for all P E d. Conversely, given a vector field 

i = 1, ... , p, 

p a q a 
v* = I ~k[U]-k + I I cP~[u]-" 

k=1 ax ,,=1 J aUJ 

(5.19) 

for some ~;, cP~ E d, we have [v*, D;] = 0 for i = 1, ... ,p if and only if 

p a 
v*=prvQ+ I c;-; 

;=1 ax 
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PROOF. Note first the commutation relation 

(5.20) 

where J\i is obtained by deleting one i from the multi-index J. (If i does 
not occur in J, this term is zero by convention.) This implies 

Relabelling J\i as J in the second summation (so J becomes J, i), this is 
easily seen to equal 

To prove the converse, we have by (5.20) 

This vanishes if and only if Die = 0 for all i, k, and 4>~i = Di4>~ for all 
i, J, a. Thus each gk is necessarily a constant and, by induction, 4>~ = D,Qa, 
where Qa = 4>~ is the coefficient of aua • 

Theorem 5.13. If v Q is a symmetry of the system a, then it is also a symmetry 
of any prolongation a(k). 

PROOF. All the equations in a(k) are of the form D,a" = O. By the lemma, 

whenever u is a solution since pr vQ(a,,) vanishes on solutions by assump
tioo. D 

The Lie Bracket 

As with ordinary vector fields, there is a Lie bracket between generalized 
vector fields, which, owing to the appearance of derivatives of u in their 
coefficient functions, must arise from the form of their prolongations. As 
with the usual Lie bracket, the easiest definition is as a commutator, but 
can also be related to the corresponding one-parameter groups (see Exercise 
5.7). 
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Definition 5.14. Let v and w be generalized vector fields. Their Lie bracket 
[v, w] is the unique generalized vector field satisfying 

pr [v, w](P) = prv[prw(P)] - pr w[pr v(P)] 

for all differential functions P E d. 

(5.21) 

There is a slight complication here in that it is not obvious that the 
right-hand side of (5.21) really is the prolongation of a generalized vector 
field. However, this follows from the explicit formulae for the Lie bracket. 

Proposition 5.15. (a) Let vQ and VR be evolutionary vector fields. Then their 
Lie bracket [v Q, v R] = V s is also an evolutionary vector field with characteristic 

(5.22) 

(In (5.22), pr vQ acts component-wise on R E d q, with entries pr vQ(Rk ) and 
conversely. ) 

(b) More generally, if 
. a a 

v=I f[u]-a i+I tPa[u]-a a' 
i X a U 

. a a 
W=Il1'[U]-a i+I l/Ja[U]-a a' 

i X a U 

then 

p . . a q a 
[v,w] = I {prv(l1')-prw(f)}-i+ I {prv(l/Ja)-prw(tPa)}-a' (5.23) 

i=l ax a=l au 

Moreover, if v has characteristic Q and w characteristic R, then [v, w] has 
characteristic S as given by (5.22). 

PROOF. In the basic formula (5.21) with v=vQ, W=VR, the coefficient of 
a/ au a in pr [v, w] is clearly given by the a-th component of (5.22), Sa. Thus 
to prove part (a), it suffices to show that [pr vQ, pr VR] is an evolutionary 
vector field, which will necessarily imply that it agrees with pr v s. This 
immediately follows from Lemma 5.12 since both pr vQ and pr VR commute 
with all total derivatives, the same is true of their commutator, which 
contains no terms involving any a/axi. This proves part (a). Part (b) follows 
from the prolongation formula (5.8), and is left to the reader. 0 

Proposition 5.16. The Lie bracket between generalized vector fields has the 
usual properties of 

(a) Bilinearity: 

[cu+ c'v, w] = c[u, w] + c'[ v, w], c, c' E IR, 
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(b) Skew-Symmetry: 

[V,W]=-[W,V], 

(c) Jacobi Identity: 

[u, [v, W]] + [w, [u, V]] + [v, [w, u]] =0, 

for any generalized vector fields u, v, w. 

Indeed, these properties clearly hold when we replace each vector field 
by its prolongation, and this suffices to prove their validity. The commutator 
definition (5.21) of the Lie bracket immediately implies: 

Proposition 5.17. The set of generalized symmetries of a nondegenerate system 
of differential equations forms a Lie algebra. 

Example S.lS. In certain cases, this result can be used to construct new 
generalized symmetries from known ones. For example, consider the list of 
symmetries (5.13) of the potential Burgers' equation. Using Vi to denote the 
symmetry with characteristic Qi, we conclude that [Vi, Vj] is a symmetry with 
characteristic prvi(Qj)-prvj(QJ for any i,j. For example, 

pr V6( Q7) - pr V7( Q6) = -~(uxxxx +4uxuxxx + 3u~ +6u;uxx + u;) 

gives the characteristic QIO of a new, fourth order symmetry VIO= -~[V6' V7] 
of Burgers' equation. This process can be repeated indefinitely, so [V7' VIO] 
will be a fifth order symmetry and so on. Thus Burgers' equation has an 
infinite collection of generalized symmetries depending on progressively 
higher and higher order derivatives of u. (See Example 5.31 for more 
information.) 

Evolution Equations 

Consider a system of evolution equations 

au 
-= P[u] 
at (5.24) 

in which P[ u] = P(x, u(n» E ,sd.q depends on x E IRP, U E IRq and x-derivatives 
of u only. Substituting according to (5.24) and its derivatives, we see that 
any evolutionary symmetry must be equivalent to one whose characteristic 
Q[u] = Q(x, t, u(m» depends only on x, t, u and the x-derivatives of u. On 
the other hand, (5.24) itself can be thought of as the equations for the flow 
exp( tv p) of the evolutionary vector field with characteristic P. The symmetry 
criterion (5.4), which in this case is 

v = 1, ... , q, (5.25) 
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is readily seen to be equivalent to the following Lie bracket condition on 
the two generalized vector fields, generalizing the correspondence between 
symmetries of systems of first order ordinary differential equations and the 
Lie bracket of the corresponding vector fields. 

Proposition 5.19. An evolutionary vector field v Q is a symmetry of the system 
of evolution equation u, = P[ u] if and only if 

aVQ 
-+[vp, vQ] =0 
at 

(5.26) 

holds identically in (x, t, u(m». (Here aVQ/at denotes the evolutionary vector 
field with characteristic a Q / at.) 

PROOF. Note that according to the prolongation of the system of evolution 
equations, the derivative u~, = au~ / at evolves according to u~, = D,Pa[u]. 
Using this and the formula for the total derivative, it is easy to see that on 
solutions 

aQv ~ a aQv aQv () 
D,Qv=-+£" uJ'-a=-+prvp Qv' 

at a,J . au, at 

since Qv only depends on x-derivatives of u. Thus (5.25) is equivalent to 
the equation 

aQ -+ pr vp( Q) = pr vQ(P), 
at 

which, as there are no more t-derivatives of u present, must hold identically 
in x, t and u. The equivalence with (5.26) follows easily from the formula 
(5.22) for the Lie bracket. 0 

In particular, if Q[u] = Q(x, u(m» does not depend explicitly on t, then 
(5.26) reduces to the condition that the two vector fields Vp and vQ commute: 

(5.27) 

It is not difficult to show that, under certain existence and uniqueness 
hypotheses, this condition is equivalent to the condition that the correspond
ing one-parameter symmetry groups commute: 

exp( ev p) exp( iv Q)f = exp( iv Q) exp( ev p)f (5.28) 

where defined. (See Exercise 5.7.) Consequently, we have the reciprocity 
relation that, provided P, Q E sir only depend on x, u and x-derivatives of 
u, the vector field v Q is a generalized symmetry on the system U t = P if and 
only ifvp is a generalized symmetry of u, = Q. In particular, for P as above, 
the vector field Vp itself is always a symmetry of u, = P[u]. Indeed, Vp is 
equivalent to the evolutionary form of the time translational symmetry group 
generated by at, stemming from the "autonomy" of the evolution equation. 
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The reader may try rechecking the symmetry condition (5.26) for the 
symmetries of Burgers' equation found in Example 5.8. 

In general, beyond the fact that they form a Lie algebra, not much can 
be said about the structure of the generalized symmetry group of a system 
of differential equations. There is, however, one important special case 
where a bit more is known. Namely, if we have a single polynomial evolution 
equation in a single spatial variable, then the space of polynomial, t
independent generalized symmetries is necessarily abelian! In other words, 
any two such generalized symmetry groups which commute with the flow 
determined by such an evolution equation necessarily commute with each 
other. (This statement is quite surprising since it is certainly not true for 
general Lie groups.) 

Before stating the result, we fix notation. Let Un = anu/ axn, n = 0,1,2, ... 
be the spatial derivatives of a single dependent variable u(x, t), where x E~. 
Consider the evolution equation 

au/at = P[u] = P(u, uh ..• , un), (5.29) 

where P is a polynomial in its arguments, independent of x. An evolutionary 
vector field vQ = Q[u]a", where Q(u, ... , un) is of the same form as P, 
determines a symmetry if and only if it commutes with Vp. In particular, 
the elementary symmetries 

Vp = P[u]a", (5.30) 

reflecting the invariance of (5.29) under space and time translations, always 
commute with P. If P itself is a mUltiple of ux , then the argument reverses 
to show that any vQ of the above form generates a symmetry group. Barring 
this exceptional trivial case, we have the following commutativity theorem. 

Theorem 5.20. Let U t = P be a single polynomial evolution equation in a single 
spatial variable, and assume that P[ u] ¥ cUx • If v Q and v R are polynomial 
symmetries of the above type, so [vp,vQ]=O=[VP,VR], then necessarily 
[VQ,VR]=O. 

Example 5.21. Returning to the symmetries of Burgers' equation, which is 
of the form for which the theorem is applicable, consider the symmetries 
V6 and VIO corresponding to the (x, t)-independent characteristics Q6 and 
QIO, the latter appearing in Example 5.18. Both vector fields commute with 
V3, the vector field determining Burgers' equation, and hence should com
mute with each other. Indeed, by a somewhat lengthy computation, the 
reader can see that pr V6( QIO) - pr VIO( Q6) = O. We conclude, in particular, 
that both V3 and VIO are symmetries of the third order evolution equation 
Ut = Q6[U]. 

Note that the noncommutativity of the other generalized symmetries of 
Burgers' equation, e.g. [V6' V7] = -~VIO' does not contradict Theorem 5.20 
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since it only applies to those symmetries whose characteristics do not depend 
explicitly on x or t. 

The proof of Theorem 5.20 rests on a second important result which 
partially characterizes those polynomial evolution equations which admit 
nonelementary polynomial generalized symmetries. 

Theorem 5.22. Suppose the polynomial evolution equation u/ = P admits a 
generalized symmetry vQ with polynomial characteristic Q(u, ... , un) which 
is not a linear combination of the two elementary symmetries Vo and Vp. Then 
the equation is of the form 

au -
-= AUn + P(u, ... , Un-I), at (5.31) 

where A is a nonzero constant and P depends only on (n -1) -st and lower 
order derivatives of u. 

In other words, for an equation to stand any chance of admitting some 
nonelementary generalized symmetry of the above form, it must be linear 
in the highest order spatial derivative. Reciprocally, since Vp is a symmetry 
of u/ = Q, unless P = cUx , Q must also be linear in its highest derivative: 
Q = f.LUm + Q( u, ... ,um - I ), f.L ¥ O. A good illustration of this result is 
Burgers' equation and its evolutionary symmetries V6 and VIO, all of which 
are of this form. An example of an evolution equation which is not of the 
form (5.31), but which nonetheless admits non polynomial generalized sym
metries, was given in Example 5.7. 

Before proving this latter theorem, let us see how it immediately implies 
the Commutativity Theorem 5.20. Suppose both vQ and VR are symmetries 
of the evolution equation u/ = P and consider the Lie bracket Vs = [vQ, VR]' 

According to Proposition 5.17, Vs is also a symmetry of u/ = P. On the other 
hand, an elementary calculation shows that when Q and R are x-indepen
dent differential polynomials in u, the characteristic S = pr vQ(R) - pr VR( Q) 
of their Lie bracket cannot possibly contain any terms which are 
linear in the derivatives Uk. Thus, by Theorem 5.22, the only way Vs 

could be a symmetry of u/ = P is if it vanishes identically, proving 
Theorem 5.20. 0 

PROOF OF THEOREM 5.22. Every differential polynomial in u, Uh"" Un is 
a linear combination of the monomials UK = UkoU~1 ••• u~n in which K = 
(ko, ... , k,,) is an ordered multi-index of nonnegative integers. We order 
such monomials lexicographically, so K < L if k" = 1m ... , k",+1 = Im+h but 
k", < 1m for some O:S;; m :s;; n. The leading term of such a differential poly
nomial P will be that monomial UK, appearing in P with nonzero coefficient, 
which is highest in the lexicographic ordering. Without loss of generality, 
assume that the leading terms in both P and Q occur with coefficient 1. 
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(Otherwise multiply by some scalar.) The proof of the theorem depends on 
a detailed analysis of the leading terms of the symmetry condition 

(5.32) 

We begin with a generalization of the commutation formula (5.20), which 
is proved by an easy induction. 

Lemma 5.23. Let k, I;:;: O. Then 

1(1-1) 2 
= Pk -/+ IDxPk-1+ 1 +--2- DxPk-1+2+' . " (5.33) 

where Pk == akP == ap / aUk for k;:;: 0, while Pk = 0 for k < 0 by convention. 

In (5.32), we have, by the above definition of Pk , 

n 

prvQ(P)= L D~Q' Pk=PnD~Q+Pn-ID~-IQ+"" 
k=O 

The leading term in this expression is the only one involving Un+ m ' which 
by the above lemma is an+m[prvQ(P)] = PnQm. This, however, yields no 
information as the same leading term occurs in prvp(Q). 

Except in the trivial case n = m = 0, which we leave to the reader, the 
next highest order terms all involve Un + m - I • These yield 

an+m-I[pr vQ(P)] = Pn( Qm-I + nDxQm) + Pn- I Qm· 

Comparing with an+m-I[pr vp( Q)], we find 

nPnDxQm = mQmDxPn, or nDx log Qm = mDx log Pn. 

We therefore deduce the important condition 

(5.34) 
for some nonzero constant y. 

As a first consequence of (5.34), we see that we can assume without loss 
of generality that n> m. For if n < m, we simply interchange the roles of 
P and Q, while if n = m, (5.34) implies aP / aUn = ±yaQ / aum, hence 

Q[u] = ±y-Ip[u]+ Q*(u, ... , Un-I)' 

But Vp always commutes with itself, so vQ commutes with Vp if and only if 
v Q* does, and hence we replace Q by Q* to proceed. 

Now, suppose P has leading term UK and Q has leading term u L• Then 
(5.34) implies the relations 

k,. = 1, km-I = ... = km+1 = 0, 

j<m, (5.35) 



314 5. Generalized Symmetries 

between the two multi-indices. We still need to prove km = ... = ko =0 to 
prove the theorem, and for this we need to look at the terms involving 
U n+ m -2' Assume n + m;;. 2. Then by (5.33) 

[ n(n-1) 2 ] an+ m - 2[pr VQ(P)] = Pn Qm-2+ nDxQm-l + 2 DxQm 

+ Pn - 1[ Qm-l + (n -1) DxQml + Pn - 2Qm' 

Comparing with pr vp( Q), we deduce that 

(5.36) 

We have already proved that Pn depends only on u, UI>"" Um. Assume 
km > O. Then the leading term in (5.36) is u f , where 1= 
(ko+ 10, ••• , km- 1 + 1m-I> km + 1m -1, 0,1), and it only appears in the middle 
terms on each side. (The arguments supporting this are slightly different 
depending on whether m = n -lor m < n -1.) Comparing the coefficient 
of u f on each side, we find !n(n-1)(lm-l)=!m(m-1)km. But by (5.35) 
this implies n = m, which contradicts our assumption. A similar analysis, 
by induction, shows that any kt > 0, j < m, automatically implies n = m. 
Thus kj = 0 for all j ~ m and the theorem is proved. 

The only case not covered by the above analysis is when n + m < 2, which 
by the previous remarks, reduces to n = 1, m = 0 as the only open possibility. 
This last easy case is left for the reader to do. (See Exercise 5.4.) 0 

5.2. Recursion Operators 

The method of Section 5.1 provides a systematic means of determining all 
the generalized symmetries of a given order of a system of differential 
equations, but suffers the drawback that the order of derivatives on which 
the coefficients of the symmetry depends must be specified in advance. Thus 
the method cannot simultaneously generate all generalized symmetries of 
the system. In this section we explore a second method for generating 
symmetries based on the notion of a recursion operator. While this method 
cannot provide an exhaustive classification of all possible symmetries 
without further analysis, it does provide a mechanism for generating infinite 
hierarchies of generalized symmetries, depending on higher order deriva
tives of u, in one step. Unfortunately, while the verification that a given 
operator does determine a recursion operator is fairly straightforward, in 
contrast to the previous method, this technique is not fully constructive. 
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The deduction of the form of the recursion operator (if it exists) requires 
a certain amount of inspired guesswork, often based on the form of lower 
order symmetries determined by the earlier method. 

Definition 5.24. Let a be a system of differential equations. A recursion 
operator for a is a linear operator f!ll: Str ~.r/lq in the space of q-tuples of 
differential functions with the property that whenever vQ is an evolutionary 
symmetry of a, so is v Q with Q = f!llQ. 

Thus if we are fortunate enough to know a recursion operator f!ll for a 
system of differential equations, we can generate an infinite family of 
symmetries from anyone symmetry VQo merely by applying f!ll successively 
to the characteristic Qo; in other words, each Qj = f!lljQo, j = 0,1,2, ... is 
the characteristic of a generalized symmetry. Often, but not always, f!ll will 
be a q x q matrix of differential operators. 

Example 5.25. As an easy example, we show that the differential operator 
f!ll) = Dx is a recursion operator for the heat equation u, = Uxx' Now vQ is a 
generalized symmetry of the heat equation if and only if D,Q = D~ Q on all 
solutions. Then Q = DxQ is also the characteristic of a symmetry since 

on solutions. Thus, starting with the basic scaling symmetry uau we can 
generate a whole hierarchy of generalized symmetries by recursively apply
ing f!ll); we find Ux = f!ll) (u), Uxx = f!ll i( u), etc. are all characteristics of 
generalized symmetries of the heat equation. Put another way, the "flow" 
generated by the heat equation commutes with the "flow" determined by 
the evolution equations u, = aku/ axk, k;;;:: 0, cf. (5.28). 

By the same arguments, the t-derivative D, is also a recursion operator, 
but it is trivially related to Dx since D,Q = D~Q whenever Q is the charac
teristic of a symmetry. (In general, f!llm is trivially a recursion operator 
whenever f!ll is.) There is, however, a second recursion operator not related 
to D x, namely f!ll2 = tDx +h. To see this, we find 

(D, - D~)( tDx +h) Q = (tDx +h )(D,Q - D~Q), 

so Q = f!ll2Q gives a symmetry whenever Q does. We thus obtain a double 
infinity of generalized symmetries of the heat equation, by applying f!ll) or 
f!ll2 successively to Qo = u. These have characteristics 

Qo= u, 

Q5 = f!ll~[ u] = t 2uxx + txux + (4t +!x2 )u, 
(5.37) 

Q6 = f!ll~[u] = uXXX, Q7 = f!ll 2f!lli[u] = tuxxx +huxx, etc. 
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(Note that since fill 1 fill 2 = fill 2 fill 1 +!, if we are only interested in independent 
characteristics, it doesn't matter in which order fill1 and fill2 are applied.) 
The first six of these, Qo, ... , Qs, are (up to sign) the characteristics of the 
geometrical symmetries of the heat equation computed in Example 2.41; 
the rest of these are genuine generalized symmetries. 

The above results for the heat equation actually generalize to arbitrary 
linear systems of differential equations as follows. 

Proposition 5.26. Let a[ u] = 0 be a linear system of differential equations, 
with a denoting a linear differential operator. A second linear differential 
operator fill: .sII.q ~.sII.q not depending on u or its derivatives is a recursion 
operator for a if and only if Q = fill [u] is the characteristic of a "linear" 
generalized symmetry to the system. 

In other words, for a linear system every generalized symmetry whose 
characteristic depends linearly on u and its derivatives determines a recur
sion operator and conversely. For linear systems, then, the whole theory of 
(linear) symmetries could be developed using the recursion operators as 
the fundamental objects. This is the approach favoured by Miller, [3], and 
his coworkers. Proposition 5.26 provides the link between their approach 
and the more geometrical Lie-Ovsiannikov theory developed in this book. 
(The latter has the advantage of simultaneously treating nonlinear systems, 
which are not covered by the operator method.) 

The proof of Proposition 5.26 is easy. If fill is a recursion operator, then 
Q = fill [u] trivially gives a symmetry since Qo = u is the characteristic for 
the trivial scaling symmetry group (x, u)~(x, Au) stemming from the 
linearity of the system. Conversely, if vQ is a symmetry, by (5.4) and the 
linearity of a, 

on all solutions. Total nondegeneracy of a implies the existence of a 
differential operator ~ satisfying afill[u] = ~a[u] for all u, cf. (5.5). It is 
easily seen that since a and fill are independent of u, we can choose ~ to 
also be independent of u, and afill = ~a identically. Thus if Q = fillQ, Q the 
characteristic of asymmetry, so a[ Q] = 0, then a[ Q] = ~ a[ Q] = 0 on 
solutions, and Q gives another symmetry. 0 

Example 5.27. For the two-dimensional wave equation, the ten-parameter 
conformal symmetry group was derived in Example 2.43; the corresponding 
characteristics are given in Example 4.36. According to Proposition 5.26 
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there are ten recursion operators, namely 

(translations) 

q; =xDx+yDy+tD" 

,jx = (x2 - y2+ t2)Dx + 2xyDy + 2xtD, + x, 

,jy = 2xyDx+ (y2_X2+ t2)Dy +2ytD, + y, 

,j, = 2xtDx + 2ytDy + (x2+ y2+ t2)D, + t. 

( dilatation) 

(5.38) 

(inversions) 

Applying successive products of these operators to Qo = U leads to vast 
numbers of generalized symmetries of the wave equation; for example 

~xy~x,[ u] = xtuxy - ytuxx + x 2uy, - xyux' - YUh 

and so on. There are a number of dependencies among the resulting 
symmetries stemming from relations among the operators, e.g. 

~xyD, - ~x,Dy + ~y,Dx = O. 

In his thesis, Delong, [1], proves that there are (2k+ 1)(2k+2)(2k+3)/6 
independent k-th order symmetries generated by these recursion operators; 
for instance, there are 35 independent second order symmetries like the 
above example. A significant open problem is whether every generalized 
symmetry of the wave equation can be obtained in this way. 

Frechet Derivatives 

For nonlinear systems, there is an analogous criterion for a differential 
operator to be a recursion operator, but to state it we need to introduce the 
notion of the (formal) Frechet derivative of a differential function. 

Definition S.2S. Let P[u] = P(x, u(n» E,s4r be an r-tuple of differential func
tions. The Prichet derivative of P is the differential operator Op: ,s4q ~,s4r 
defined so that 

Op(Q)= ~1.=oP[u+eQ[u]] (5.39) 

In other words, to evaluate 0 p( Q) we replace u (and its derivatives) in 
P by u + eQ and differentiate the resulting expression with respect to e. 
For example, if P[ u] = UxUxx, then 

d I 2 2 Op(Q)= de £=o(ux+eDxQ)(uxx+eDxQ)=uxDxQ+UxxDxQ, 
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so 0 p = uxD~ + uxxDx. This calculation easily generalizes and shows that 
the Frechet derivative of a general r- tuple P = (Ph ... , P,) is the q x r matrix 
differential operator with entries 

J.L = 1, ... ,r, v = 1, ... , q, (5.40) 

the sum being over all multi-indices 1. In particular, if P = a[ u] is a linear 
differential polynomial, then 0 p = a is the same as the differential operator 
determining it. There is an intimate connection between the Frechet deriva
tive and evolutionary vector fields. 

Proposition 5.29. If P E d' and Q E d q, then 

o p( Q) = pr vQ(P). (5.41) 

This follows directly from the formulae (5.6), (5.40). Alternatively, one 
can remark that both sides determine the infinitesimal variation in P under 
the action of the one-parameter group generated by vQ, cf. (5.16), and hence 
must agree. 0 

Criteria for Recursion Operators 

This last formula readily leads to a general characterization of recursion 
operators. 

Theorem 5.30. Suppose a[ u] = 0 is a system of differential equations. If 
in: s'lq ~ d q is a linear operator such that 

(5.42) 

for all solutions u to a, where ~: s'lq ~ s'lq is a linear differential operator, 
then in is a recursion operator for the system. 

PROOF. According to (5.41), an evolutionary vector field vQ is a symmetry 
to a if and only if 

D~( Q) = pr vQ(a) = 0 

for all solutions to a. If in satisfies (5.42), and Q = inQ, then 

D~Q = D~(inQ) = ~(D~Q) = 0 

for all solutions. Thus Q is also a symmetry, and the theorem follows. 0 

Example 5.31. Return to Burgers' equation u, = Uxx + u~ for which we com
puted generalized symmetries in Examples 5.8 and 5.18. The structure of 
the resulting characteristics strongly suggests that, like the heat equation, 
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Burgers' equation has two recursion operators. Inspection of Qo, QI> Q3, 
Q6 and QIO leads us to conjecture that flll = Dx + Ux is a recursion operator 
since QI = flll Qo, Q3 = flll QI, etc. To prove this, we note that the Frechet 
derivative for Burgers' equation (S.I1) is 

DA =Dt-D;-2uxDx. 

We find, by Leibniz' rule, 

DAflll = DtDx - D! - 2uxD; + UxDt + Uxt 

- uxD; -2uxxDx - Uxxx -2u;Dx -2uxuxx' 

Now for solutions of Burgers' equation, Uxt = Uxxx + 2uxuxx, hence 

DAflll = (Dx+ ux)(Dt - D;-2uxDx) = flllDA (S.43) 

on solutions, verifying (S.42). There is thus an infinite hierarchy of sym
metries, with characteristics fll ~ Qo, k = 0, I, 2, .... For example, the next 
characteristic after QIO in the sequence is 

QI5 = flll QIO = Uxxxxx + SUxuxxxx + 10uxxuxxx + 10u;uxxx 

+ ISuxu;x + 10u!uxx + u~. 

To obtain the characteristics depending on x and t, we require a second 
recursion operator, which, by inspection, we guess to be 

Using (S.43), we find 

on solutions, proving that fll2 is also a recursion operator. There is thus a 
doubly infinite hierarchy of generalized symmetries of Burgers' equation, 
with characteristics fll~fll~Qo, k,1";30. For instance, Q2=fll2Qo, Q4= 
fll2flll Qo, and so on. 

The Korteweg-de Vries Equation 

In the case of nonlinear equations, we often have to expand the class of 
possible recursion operators to include formal "integro-differential" 
operators. As an example, we prove that the operator 

is a recursion operator for the Korteweg-de Vries equation, in the form 

(S.44) 
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(This is the same as (2.66) under the change of variable x~ -x.) The integral 
operator D~l will only be defined on those differential functions which are 
total derivatives, so if Q = DxR, then we set R = D~l Q. t (Actually, this 
only defines D~lQ up to an additive constant, which we can normalize by 
requiring R(O, 0) = 0.) If vQ is a generalized symmetry, then ~Q will only 
be defined if Q = DxR for some R E.sIl. Thus, we could run into difficulties 
in trying to obtain a full hierarchy of symmetries ~kQ, k = 0, 1, 2, .... 

Before addressing these difficulties, we first show that formally ~ is a 
recursion operator. The relevant Frechet derivative is 

D~= Dt-D!- uDx-ux, 

and we will prove that, on solutions of the Korteweg-de Vries equation, 
D~~ = ~D~, verifying (5.42). Treating D~l as the inverse of D x , we find 

D~~ = D; Dt +~ uDt + ~ Ut +~ uxD~l Dt +~ Uxt D~I 

- {D~ +~uD! +~uxD; + (3uxx +~ u2)Dx +~(uxxx + uUx) 

+Huxxxx + uUxx + U;)D~I}. 

On the other hand, since Dx· u=uDx+ux, we have D~I. (uDx+ux)=u. 
Therefore 

~D~ = D;Dt+~uDt+~uxD~l Dt 

- {D~ +~ uD; +~ uxD; + (3uxx +~ u2)Dx + (uxxx + uUx)}. 

Finally, 

D~~ - ~D~ =hut - Uxxx - uUx)+Huxt - Uxxxx - uUxx - U;)D~I, 

which vanishes on solutions of (5.44). This proves that ~ is a recursion 
operator. 

If we start applying ~ successively to the translational symmetry -ax, 
with characteristic Qo = ux , we first obtain 

which is equivalent to the characteristic U t of the translational symmetry 
-at. Noting that QI = DA Uxx +4 u2 ), we find 

Q2= ~QI = uxxxxx+~uuxxx+~uxuxx+~U2ux 

to be the characteristic of a genuine generalized symmetry, as the reader 
can check. Similarly 

Q3 = ~ Q2 = Uxxxrixx + ~ uUxxxxx + 7 UxUxxxx + ¥ UxxUxxx + Ii u 2 Uxxx 

+~ uUxuxx +Ii u! +~ u3ux 

t More generally, one might try defining D-;;1 P = J~ P(x, u(n)) dx, but this takes us outside the 
class of differential functions. 
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gives a seventh order generalized symmetry. As the following result shows, 
we can continue this recursive procedure indefinitely, leading to higher and 
higher order generalized symmetries. 

Theorem 5.32. Let Qo = UX' For each k ~ 0, the differential polynomial Qk = 

rJlkQo is a total x-derivative, Qk = DxRk, and hence we can recursively define 
Qk+l = rJlQk' Each Qk is the characteristic of a symmetry of the Korteweg-de 
Vries equation. 

In fact, by Theorem 5.20, the vector fields Vk = VQk determine an infinite 
collection of mutually commuting flows 

au/at = Qk[U] = U2k+l + ... , 

called the "higher order Korteweg-de Vries equations". All of the above 
vector fields are thus symmetries of anyone of these remarkable evolution 
equations. 

PROOF OF THEOREM 5.32. We proceed by induction on k, so assume that 
Qk = DxRk for some Rk E d. From the form of the recursion operator, 

Qk+l = D-;Qk +juQk+~uxD;IQk = DADxQk+~uD;IQk+lD;I(UQd]. 

If we can prove that UQk = DxSk for some differential polynomial Sk E d, 
we will have proved that Qk+l = DxRk+l' where Rk+1 is the above expression 
in brackets, which will complete the induction step. 

To prove this fact, note first that the formal adjoint of the recursion 
operator rJl ist 

We use this to integrate the expression UQk by parts, cf. (5.46), so 

UQk = urJlk[uxJ = Ux ' (rJl*)k[U] + DxAk 

for some differential function Ak E d. On the other hand, using a further 
integration by parts 

uArJl*)k[ u] = Ux . D;1 rJl k[ ux] = UX ' D;1 Qk = -UQk + DxBk 

for some Bk E d. Substituting into the previous identity, we conclude 

UQk = DxSk, where Sk = hAk + Bd, 

proving the claim. o 

There were two other geometrical symmetry groups of the Korteweg-de 
Vries equation. The characteristic of the Galilean group tax -au is 1 + tux. 
and 

t See the beginning of the following section. 
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which is equivalent to the scaling symmetry group. However, this latter 
characteristic is not a total derivative, so we cannot re-apply the recursion 
operator to get a meaningful generalized symmetry. 

5.3. Generalized Symmetries and Conservation Laws 

The correspondence between ordinary variational symmetries and conserva
tion laws of systems of Euler- Lagrange equations readily generalizes, a fact 
recognized even by Noether herself. In fact, once we admit generalized 
symmetries into the picture, Noether's theorem provides a one-to-one corre
spondence between variational symmetries and conservation laws. In this 
section we develop this result in the form due to Bessel-Hagen. (See Exercise 
5.23 for Noether's original version.) The basic computational results depend 
on the concept of the adjoint of a differential operator. 

Adjoints of Differential Operators 

If 

is a differential operator, its (formal) adjoint is the differential operator ~* 
which satisfies 

L p. ~Qdx= L Q. ~*Pdx (5.45) 

for every pair of differential functions P, Q E sIl which vanish when u = 0, 
every domain 0 c IRP and every function u = f(x) of compact support in O. 
An easy integration by parts shows that 

meaning that for any Q E sIl, 

~*Q=I (-D)APJQ]. 
J 

For example, if 

then its adjoint is 

~* = (-DJ2+(-DJ· u = D!-uDx-ux. 
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Similarly, a matrix differential operator 0): ,r;1k ~,r;11 with entries 0)J.LV has 
adjoint 0)*: ,r;11 ~ ,r;1k with entries 0)!v = (0)VJ.L)*' the adjoint of the transposed 
entries of 0). Note that (0)~)* = ~*0)* for any operators 0), ~. An operator 
0) is self-adjoint if 0)* = 0); it is skew-adjoint if 0)* = -0). For example, 
D; + u is self-adjoint, while D! + 2uDx + Ux is skew-adjoint. Note that (5.45) 
is equivalent to the integration by parts formula 

p. 0)Q = Q. 0)* P+ Div A, (5.46) 

where A E ,r;1P is a bilinear expression involving P, Q and their derivatives, 
with coefficients depending on x, u and derivatives of u. Equivalently 

E(P· 0)Q) = E( Q. 0)* P), (5.47) 

where E is the Euler operator, cf. Theorem 4.7. 
Note that if P E ,r;11, its Frechet derivative has adjoint D~: ,r;11 ~,r;1q with 

entries 

IL = 1, ... ,1, 1I = 1, ... , q. (5.48) 

(Although (5.48) bears some similarity to the Euler operator, it is in fact a 
differential operator, not a differential function, and is thus quite different.) 
For example, if P = Uxx + u;, 

In particular, if P E ,r;1, 

E(P) = (I (-D)) a~) = D~(l), 
) au) 

1 denoting the constant differential function. We note finally the important 
formula for the variational derivative of the product of two functions 

E(P· Q) = D~( Q) + Dt(P), 

which follows from Leibniz' rule: 

Characteristics of Conservation Laws 

(5.49) 

Before restricting our attention to Euler-Lagrange equations, we look at 
conservation laws in general again. Recall that every conservation law of 
a system of differential equations d is equivalent to one in characteristic form 

I 

Div P= Q. d= I Qvdv. (5.50) 
v=l 
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Using the notion of a Frechet derivative, we readily obtain a necessary and 
sufficient conditions for a given I-tuple Q to be the characteristic of a 
conservation law. 

Proposition 5.33. Let !:!. = 0 be a system of differential equations. An I-tuple 
QEd' is the characteristic of a conservation law if and only if 

(5.51) 

for all (x, u). 

PROOF. According to Theorem 4.7, Q. !:!. is a total divergence (5.50) if and 
only if E( Q. !:!.) = O. Thus (5.51) follows at once from the product rule (5.49). 

o 

In particular, a necessary condition for Q to be the characteristic of a 
conservation law for!:!. is 

D!( Q) = 0 for all solutions to !:!., (5.52) 

since DM!:!.) = 0 automatically on solutions. This simplified form of (5.51) 
can often be used effectively to eliminate many possible I-tuples Q from 
consideration as characteristics of conservation laws, and thus readily lead 
to a complete classification of conservation laws for the system. 

Example 5.34. Consider Burgers' equation in physical form 

If Q[u] E d is the characteristic of a conservation law, then we can always 
replace t-derivatives of u by x-derivatives using the equation, so there is 
an equivalent characteristic of the form Q(x, t, u, ux, ... , un), Un = anu/ axn. 
Let us see what (5.52) says about the form of Q. For Burgers' equation, 

Da=D1-D;-uDx-ux, so D!=-D1-D;+uDx' 

The leading order terms in (5.52) are 

aQ aQ 
D*(Q)=-(-u -u )+ .. '=-2-u + ... a aUn n,l n+2 aUn n+2 , 

on solutions, the omitted terms depending on (n + 1)-st and lower order 
x-derivatives of u. Thus (5.52) implies that aQ/aun =0, so Q actually only 
depends on (n -1)-st and lower order derivatives of u. Proceeding by 
induction, we conclude that Q = q(x, t) cannot depend on u or its derivatives 
in any nontrivial way. Moreover, 

D!(q) = ql- qxx+ uqx = 0 

if and only if q is a constant. Thus the only nontrivial conservation law for 
Burgers' equation has a constant for its characteristic; the corresponding 
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law is the equation itself: 

D,(u) + Dx( -Ux _!u2) = O. 

Variational Symmetries 

As with the geometrical form of Noether's theorem discussed in Chapter 
4, the general form of Noether's theorem will only provide a correspondence 
between conservation laws and variational symmetries. These are defined in 
analogy with the divergence symmetries of (4.44). 

Definition S.3S. A generalized vector field 

P . a q a 
v= L f-i + L CPa-a 

i=1 ax a=1 au 

is a variational symmetry ofthe functional 2( u] = J L(x, u(n») dx if and only 
if there exists a p-tuple B[ u] E sliP of differential functions such that 

prv(L)+L Div s= Div B 

for all x, u. (Here s = (s\ ... , e) is as in (4.15).) 

(5.53) 

We first show that we can effectively restrict our attention to variational 
symmetries which are in evolutionary form. 

Proposition S.36. A generalized vector field v is a variational symmetry of 
2[u] if and only ifits evolutionary representative vQ is. (Note: This statement 
is false if we omit the divergence term Div B in our definition (5.53).) 

PROOF. Using the basic prolongation formula (5.8), 

p. P 
prv(L)+LDivs=prvQ(L)+ L fDi L + L L DiSi 

i=1 i=l 

P . 
= pr vQ(L) + L Di(fL). 

i=1 

Therefore, (5.53) holds if and only if 

pr vQ(L) = Div B, (5.54) 

D 

As with ordinary symmetries, every generalized variational symmetry of 
a variational problem is necessarily a symmetry of the corresponding Euler
Lagrange equations. (The converse of this statement remains not true in 
general.) 



326 5. Generalized Symmetries 

Theorem 5.37. If the generalized vector field v is a variational symmetry of 
.,P[u] = J L(x, u(n») dx, then v is a generalized symmetry of the Euler-Lagrange 
equations E(L) = O. 

The proof is based on the following important commutation formula. 

Lemma 5.38. Suppose LEd, Q E d q• Then 

E[pr vQ(L)] = pr vQ[E(L)] + D~E(L). (5.55) 

PROOF. According to the integration by parts formula (4.39) and the identity 
(5.49), 

E[pr vQ(L)] = E[ Q. E(L)] = Dt(d Q] + Db[E(L)]. 

We now need the important result that a = E(L) is an Euler-Lagrange 
expression if and only if its Frechet derivative is a self-adjoint differential 
operator: D! = DA • This fundamental theorem, which is the variational 
analogue of the equality of mixed partial derivatives, and constitutes the 
solution to the inverse problem of the calculus of variations, will be proved 
in Section 5.4. (See Theorem 5.68.) Assuming this result, (5.55) follows 
easily from (5.41) since 

o 
PROOF OF THEOREM 5.37. By Propositions 5.5 and 5.36 we can replace v 
by its evolutionary form v Q without affecting the validity of the theorem. 
If vQ is a variational symmetry, (5.54) implies that the left-hand side of 
(5.55) vanishes. But D~ is a linear differential operator, hence the symmetry 
condition (5.5) for a = E(L) holds, completing the proof. 0 

Thus to find all the variational symmetries of a system of Euler-Lagrange 
equations, it suffices to use the methods of Sections 5.1 or 5.2 to construct 
symmetries of the Euler-Lagrange equations and then check which of them 
satisfy the additional variational requirement (5.53). Actually, we don't 
need to re-apply pr v to the Lagrangian, or even know precisely what the 
Lagrangian is, since we can use the following intrinsic characterization of 
a variational symmetry. 

Proposition 5.39. Let a = 0 be a system of differential equations whose Frechet 
derivative is self-adjoint: D! = DA , so a is the Euler-Lagrange equations for 
some variational problem.t An evolutionary vector field vQ is a variational 
symmetry thereof if and only if 

(5.56) 

for all x, u. 

t This assumes the restriction on the domain M of Theorem 5.68. 
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The proof is immediate from the preceding calculations and the solution 
to the inverse problem in Theorem 5.68. 0 

Group Transformations 

Assuming that the variational symmetry is in evolutionary form, we can 
deduce that the corresponding group transformations leave the functional 
itself invariant in the following sense. 

Proposition 5.40. Given the relevant existence and uniqueness results on the 
Cauchy problem for the associated system of evolution equations, a generalized 
vector field vQ is a variational symmetry of the functional 2oo[u] = 
Ioo L(x, u(n» dx if and only if for every subdomain fl c flo and every function 
u = f(x) in the appropriate function space 

(5.57) 

where ilJao depends only on the values of exp(evQ)f and its derivatives on the 
boundary afl. 

Another way of interpreting this result is that a generalized vector field 
vQ is a variational symmetry of a functional 2 if and only if 2 determines 
a conservation law for the system of evolution equations u, = Q determining 
the flow of vQ. 

PROOF. Differentiating (5.57) with respect to e, we find 

r prvQ(L) dx=f B· dS= r (Div B) dx In aO Jo 
for some BE .st1P depending on u and its derivatives; both sides of this latter 
identity are to be evaluated at u = exp(evQ)f. Since this holds for an arbitrary 
subdomain fl, we conclude the equality of the integrands, 

pr vQ(L) = Div B, 

verifying the infinitesimal criterion (5.54). The converse follows upon 
integration with respect to E. 0 

Example 5.41. Consider the functional 

2[u] = Lb 
!u; dx, x, U E IR. 

The generalized symmetry v = -uxau is easily seen to be a variational 
symmetry of 2: 
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Indeed v is just the evolutionary form of the translation field v = ax, and 
generates the one-parameter group 

exp(ev)f(x) = f(x- e). 

If [c, d] c (a, b) is any subinterval, the boundary contribution in the proof 
of (5.57) is 

g{}(x, u(l) = -!u; I :=c = ![f'( c? - 1'( d)2J; 

indeed (5.57) in this case reads 

td 
H1'(x-e)]2dx= td 

H1'(x)fdx+ r !([1'(c-e)J2-[f'(d-e)]2} de. 

Note especially that we cannot dispense with the boundary contribution in 
general since the only solution vanishing on the boundary is the trivial 
solution u == o. 

Noether's Theorem 

As the reader may have already noticed, in the case that the system of 
differential equations !J.. is the Euler-Lagrange equations for some variational 
problem, the condition (5.51) for Q to be the characteristic of a conservation 
law and the condition (5.56) for vQ to generate a variational symmetry 
group coincide. Thus, using Theorem 4.26, we immediately deduce the 
general form of Noether's theorem. 

Theorem 5.42. A generalized vector field v determines a variational symmetry 
group of the functional X[ u ] = f L dx if and only if its characteristic Q E sdq 

is the characteristic of a conservation law Div P = 0 for the corresponding 
Euler-Lagrange equations E(L) = O. In particular, if X is a nondegenerate 
variational problem, there is a one-to-one correspondence betwe:!n equivalence 
classes of nontrivial conservation laws of the Euler- Lagrange equations and 
equivalence classes of variational symmetries of the functional. 

Note that two variational symmetries are equivalent provided they differ 
by a trivial symmetry, meaning one whose characteristic vanishes on all 
solutions of the Euler-Lagrange equations. (However, it is not true that a 
symmetry which happens to be equivalent to a variational symmetry is 
necessarily variational-see Exercise 5.22.) 

Example 5.43. As a first illustration of this result, consider the Kepler 
problem x+/J-r-3x=O, ji+/J-r-3y=O, z+/J-r-3 z=O, r2=x2+y2+z2, for a 
mass moving in a gravitational potential due to a fixed mass at the origin. 
The associated Lagrangian is L=Hi2+y2+i2)-/J-r-l. We've already seen 
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in Example 4.31 how the conservation laws of energy and angular momenta 
arise from the variational symmetry groups of time translations and rotations 
in 1R3. Owing to the Newtonian nature of the force field, there are three 
additional "hidden" generalized variational symmetries of this system, 
leading to three further independent conservation laws. One such 
infinitesimal generator is the vector field 

Vx = (yy + zi)ax + (iy - 2xy)ay + (iz - 2xi)az , 

the other two being obtained by permuting the variables x, y, z. To prove 
that Vx is indeed a variational symmetry, we compute 

pr(l) Vx = Vx + (yji + zz + y2+ i 2)ax + (xy - 2xji - xy)ay + (xz - 2xz - ii)ai , 

and hence 

pr(l) vAL) = (yy + zi)x+ (iy - 2xy)ji+ (iz - 2xi)z 

+ W-3[(Y2+ z2)i - xyy - xzi] 

= D,[i(yy+ zi) _X(y2+ i 2)+ w-1X], 

verifying (5.54). The corresponding conservation laws are found from the 
characteristic form (5.50), or, more simply, by noting that pr(l) vAL) itself 
vanishes on solutions of the Euler-Lagrange equations, so 

Rx == i(yy+ zi) _X(y2+ i 2)+ W-1X 

is a first integral of the Kepler problem. Coupled with the other conservation 
laws Ry and Rz obtained by permuting the variables, we deduce the con
stancy of the Runge- Lenz vector, which can be written as 

R == (Rx, Ry, Rz ) = x x A - fJ-x/lxl = x x (x x x) - fJ-x/lxl, 

where x = (x, y, z) is the position vector and A = x x x the angular momen
tum. Physically, R points along the major axis of the conic section deter
mined by the planetary orbit, its magnitude determining the eccentricity. 
(See Thirring, [1; p. 147].) 

Example 5.44. The sine-Gordon equation ux , = sin u is the Euler-Lagrange 
equation for the functional 

2[ u] = f f (! uxu, - cos u) dx dt. 

The generalized vector field VI with characteristic QI = Uxxx +! u! is a vari
ational symmetry of 2. This can be seen directly, or, slightly easier, by 
using Proposition 5.39. Note that 

D* - D3 3 2 D 3 Q. - - x - 2: u x x - UxUxx ' 
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A short calculation shows that 

pr VQ'[Uxt - sin u] = Uxxxxt +~u;Uxxt + 3uxuxxuxt - (uxxx +~ u!) cos U 

= -D~.[uxt - sin u], 

verifying (5.56). The associated conservation law has characteristic form 

Dt( -~u~+ku!) + DAuxxuxt - Uxx sin U +~u; cos u) 

= (uxxx +~u!)(uxt -sin u). 

In particular, the conserved density determines a functional 

,o/"\[u] = L: Gu!-~u;x) dx, 

whose value is independent of t whenever u(x, t) is a solution whose 
derivatives decay rapidly as Ixl"'" 00. 

An even more tedious computation shows that 

( + 5 2 +5 2 +3 5) VQ,= Uxxxxx 2UxUxxx 2UxUxx gU x au 
is also a variational symmetry, with associated conservation law 

(See Exercises 5.12 and 5.21 for further results on this equation.) 

Self-adjoint Linear Systems 

Consider a system of linear differential equations Il[ u] = 0 determined by 
a q x q matrix of differential operators 

p." v = 1, ... , q, 

whose coefficients depend only on x. As is well known, this system is the 
Euler-Lagrange equations for a variational problem if and only if Il is 
self-adjoint: Il * = Il. In this case, we can take the functional simply to be 

2?[ u] = ~ f U· Il[ u] dx. (5.58) 

(See also Theorem 5.68.) 
Any conservation law for the given self-adjoint linear system can, without 

loss of generality, be taken in characteristic form Dir P = Q. Il. By Noether's 
theorem, the characteristic Q determines a variational symmetry of the 
corresponding quadratic variational problem. Here we investigate in some 
detail the cases of linear conservation laws, where P is linear in U and its 
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derivatives, and hence Q depends only on x, and quadratic conservation 
laws, with P being quadratic and Q linear in u and its derivatives. The 
former case will lead to "reciprocity" relations relating pairs of solutions 
of the system; the latter will be closely tied to our theory of recursion 
operators for linear systems developed in the preceding section. 

For a linear conservation law, note that Vq = I qa(x)au a generates a 
symmetry group of a linear system if and only if q(x) is a solution itself: 
.:l[ q] = o. (The group transformations are just u ~ u + gq, reflecting the 
linearity of .:l.) Also note that the Frechet derivative in this case is automati
cally 0, so (5.56) is verified and v q is always a variational symmetry. Noether's 
theorem allows us to conclude the existence of a linear conservation law 

Div P[u] = q(x) . .:l[u] (5.59) 

for any solution q(x) of.:l. Alternatively, we can derive (5.59) directly using 
our basic integration by parts procedure: 

Proposition 5.45. Let .:l[ u] = 0 be a self-adjoint linear system. Then, for any 
functions u(x), v(x), we have the reciprocity relation 

v· .:l[ u] - u . .:l[ v] = Div P[ u, v], (5.60) 

where P E ,sdP is some bilinear expression involving u and v and their derivatives. 

The general formula for P in terms of .:l is quite complicated. In the 
second order case, however, we can derive a relatively simple expression. 
It is not difficult to see that any self-adjoint second order matrix differential 
operator can be written in the particular form 

1'-, v = 1, ... , q, 

where the coefficients satisfy 

The corresponding variational problem can either be taken in the form 
(5.58), or, by a simple integration by parts, in first order form 

(5.61) 

If we define the q x q matrix differential operators qjJ i, i = 1, ... ,p, with 
entries 

. P 
qjJ~v= I a~v(x)Dj+b~v(x), 

j~1 
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then the reciprocity relation (5.60) holds with 

Pi=v' 0J i[U]-U' 0J i [v], 

Equivalently, we have the integral form 

5. Generalized Symmetries 

i = 1, ... , p. 

f (v' 0J[u] - U· 0J[v))· dS= f (v' a[u]- U· a[v)) dx, (5.62) 
an n 

where V· 0J[u] = (v' 0J 1[u], ... , V· 0JP[u)). 
For instance, in the case of Laplace's equation, (5.62) is the familiar 

form of Green's formula since 0J[u] = Vu. For Navier's equations (2.127) 

JLau+(JL+A)V(V· u)=O 

of linear isotropic elasticity, (5.62) is equivalent to the standard Betti 
reciprocal theorem 

f (u . u[ v] - v . u[ u)) dS = f {u' [JL a v + ( JL + A) v (V . v)] 
an n 

-v[JLau+(JL+A)V(V, u)]} dx, 

in which 

U[u]=JL(Vu+VuT)+A(V' u)I 

is the stress tensor associated with the displacement u. (Here (5.61), which 
is 

is not exactly the same as the usual variational principle derived from the 
stored energy function, but differs from it only by the null Lagrangian 

N = L JLa( ua , u ll )/ a(xi, x j ).) 
i;><j 

a;><1l 

Turning to the quadratic conservation laws, the characteristic Q is a 
linear function of u and its derivatives, hence Q(x, u(m») = 0J[u] for some 
q X q matrix of differential operators 0J whose coefficients depend only on 
x. Noether's theorem implies that Q is the characteristic of a variational 
symmetry, and hence a symmetry of the Euler-Lagrange equations them
selves. Proposition 5.26 implies that 0J is a recursion operator for the linear 
system, so a0J = gja for some differential operator gj. Not every recursion 
operator gives rise to a variational symmetry, however, but it is easy to 
characterize those which do. 

Proposition 5.46. A q-tuple Q = 0J[ u] of linear functions in u and its derivatives 
forms the characteristic of a conservation law for the linear system a[ u] = 0 
if and only if the product differential operator 0J* . a is skew-adjoint. 
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This is an immediate consequence of (5.51) using the fact that the Frechet 
derivative of a linear q-tuple a[ u] is the same as the differential operator 
a which determines it. In particular, if a is self-adjoint, this condition takes 
the form 

(5.63 ) 

meaning that the operator !ffi appearing in the recursion condition aqj; = !ffi a 

must agree with -qj;*. Note that in this case, any odd power qj;2k+l of qj; 

also satisfies (5.63). We conclude that a self-adjoint linear system with one 
quadratic conservation law always has an infinite hierarchy of such laws 

Div p(k) = qj;2k+l[U] . a[u] 

depending on higher and higher order derivatives of u. 
Under our nondegeneracy hypothesis, a symmetry operator qj; determines 

a trivial conservation law if and only if it is a multiple of a, i.e. qj; = 'If. a 

for some differential operator 'If. The question of how many nontrivial 
quadratic conservation laws of a given order there are, then, is related to 
the (complicated) question of how many inequivalent symmetry operators 
of a given order there are, which was considered in Section 5.2. Note further 
that if qj; is any linear recursion operator, so aqj; =!ffia for some operator 
!ffi, then we can always "skew-symmetrize" qj; to produce a new recursion 
operator ~ =!<qj; - !ffi*) which does satisfy (5.63) and hence does determine 
a conservation law. To see this, it suffices to take the adjoint of the symmetry 
condition, 

using the self-adjointness of a, hence 

In particular, since for any symmetry operator qj;, the operator !ffi has the 
same leading order terms, we see that there is a one-to-one correspondence 
between quadratic conservation laws and those skew-adjoint leading terms 
of recursion operators. For scalar equations, the leading order terms must 
be of odd order, and for every such term we get a conservation law. If 
qj;1, ... , qj;k are linear first order variational symmetry operators, then the 
skew-symmetrized product 

(5.64) 

gives a k-th (or lower) order variational operator. (For scalar equations, 
we need only take k odd, and then the operator is k-th order.) In many 
examples, it appears that every quadratic conservation law can be generated 
in this way. 
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Example 5.47. Here we conclude our investigation into the symmetries and 
conservation laws of the two-dimensional wave equation Utt = Uxx + Uyy of 
Examples 2.43, 4.36 and 5.27. Here a = Di - D; - D;. Of the recursion 
operators listed in (5.38), the first six, corresponding to translations and 
rotations, all commute with a and are all skew-adjoint and hence all satisfy 
(5.63). The resulting conservation laws were determined in Example 4.36. 
For the dilatational operator qjJ, we find aqjJ = (qjJ + 2)a, but qjJ* = -qjJ - 3. 
Thus qjJ does not determine a conservation law; however, the modified 
dilatation operator.M = qjJ+! does satisfy (5.63): 

a.M=(.M+2)a, and .M*=qjJ*+!=-qjJ-~=-.M-2. 

See Example 4.36 for the conservation law. Finally, each inversional 
operator also determines a conservation law, since, for .1>x, say, 

a.1>x = (.1>x+4x)a, and .1>~=-.1>x-4x. 

The corresponding conservation laws were found in Example 4.36. 
Higher order quadratic conservation laws are found by looking at "skew

symmetrized" odd order products (5.64) of these basic recursion operators, 
e.g. H@lxy Al.1>x+.1>x.M@lxy]. A partial listing of some of the second order 
conservation laws and their corresponding symmetry operators is given in 
the following table. (See also Example 5.49.) 

Recursion 
Operator 

DxfilxyDx 

DxfilxyDy -! D; -! D; 
Dxfilx,Dx 

where 

Characteristic 

- YUxxx + XUxyy + uxy 

- YUxxy + XUxyy -! Uxx +! Uyy 

xUxx, + tuxxx + ux, 

xUxxx + YUxxy + tuxx, +~uxx 

x2ux" + 2xtuxx, + t2uxxx + xu" + 
2tux, +xuxx 

(x2 + y2 + t2) Uxx, + 2xtuxxx + 
2 ytuxxy + 2xux, + 3 tuxx 

TA _ 1( 2 + 2 + 2 ) -'2 U xt U xx U xy , 

Conserved 
Density 

H u;, + u;x + U;y) 

Hu~, + u;, + u;,) 

ux,(XUXy - YUxJ 

uxx(Yuy, +! u,) - Uyy(xux, +! u,) 

xT+ tuxxux, 

T*+tT 

(x2+ t2) T+!u; + 
t(2xux,u" - uyuy,) 

(x2+ y2+ t2)T+ u;+2tT* 

T* = xUxxUx, + YUxxuy, +!uxxu, 
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Action of Symmetries on Conservation Laws 

A second method of generating conservation laws is to apply known sym
metry group generators to known conservation laws. Unfortunately, the 
method is not guaranteed to produce nontrivial laws, but we can determine 
precisely when it does. 

Proposition 5.48. Let a be totally nondegenerate and Div P = 0 a conservation 
law. If v R is an evolutionary symmetry of a, then the induced p-tuple P = 
prvR(P), with entries Pj=prvR(P;), is also a conservation law: DivP=O. 
Moreover, if a = E(L) is a system of Euler-Lagrange equations, P has 
characteristic Q corresponding to the variational symmetry vQ, and VR is a 
variational symmetry, then P has characteristic Q corresponding to the Lie 
bracket v Q = [v R, V Q] of the two symmetries. 

PROOF. We assume that the conservation law is in characteristic form (5.50). 
(Note that if Po is a trivial conservation law, so is pr VR(PO), so this first 
step is justified.) Applying pr VR, we find 

(5.65) 

using (5.19). Since pr VR(a) = 0 for solutions of a, the right-hand side of 
(5.65) vanishes on solutions, proving the first part of the theorem. If a = E(L) 
and VR is variational, then we can use Proposition 5.39 to rewrite the second 
term in (5.65) and integrate by parts, 

Q. prvR(a) = -Q. D1{(a) = -DR(Q) . a- Div B = -prvQ(R) . a- Div B 

for some p-tuple B which depends linearly on a and its total derivatives, 
and hence forms a trivial conservation law of the first kind. Thus, by (5.22), 

Div[pr VR(P) + B] = {pr VR( Q) - pr vQ(R)} . a = Q. a 

is the characteristic form of our conservation law and the proof is complete. 
D 

This result is most useful in the case of self-adjoint linear systems. Indeed, 
if P E SIlP determines a quadratic conservation law corresponding to the 
linear characteristic Q = ~[u], and VR is a linear symmetry, so R = ~[u] 

for some differential operator ~ satisfying a . ~ = i· a, then pr v R (P) yields 
a conservation law with characteristic Q = (~. ~ + i* . ~)[u]. In particular, 
if VR is a variational symmetry, then Q has characteristic corresponding to 
the commutator operator [~, ~] = ~ . ~ - ~. ~. 

Example 5.49. For the two-dimensional wave equation, the conserved 
densities in the table of Example 5.47 are most easily computed using this 
method. For example, the conservation law with characteristic Uxxt can be 
constructed either by applying the prolongation of the symmetry v = ~ uxxiJu 
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to the energy conservation law with characteristic U t , or the prolongation 
of w =! uxtau to the momentum conservation law with characteristic Ux. (In 
the former case, aD; = D;a, so the new characteristic is indeed pr v( ut ) + 
!(D;)*ut = uxxt .) In the first case, the new density is 

pr vn u; +! u; +! u~] =! (utuxxt + UxUxxx + UyUxxy ) == T, 

while in the second it is 
1 _ -pr w[ uxut] = 2 (utuxxt + uxuxtt ) = T. 

Since both these densities have the same characteristics, they should be 
equivalent: 

T= T+DxR+DyS 

on solutions of the wave equation. In other words, we have the freedom to 
(a) substitute for derivatives according to the equation and its prolongation, 
and (b) integrate by parts with respect to x and y (but not t); thus UtUxxt 
is equivalent to -U;t, but not UxxUtt . The reader can verify that T and T 
are both equivalent to the second order density listed in the above-mentioned 
table. 

As a second example, the conservation law corresponding to the operator 
Dxfllxt Dx is found by applying the symmetry v =! fIlxt Dx[ U ]au = 
!{xuxt + tuxx )au to the conservation law with characteristic Ux. We find 

pr v[uxut] = !{Dx(xuxt + tUxx)ut + uxDt(xuxt + tuxx )} 

= !(xuxxt + Uxt + tUxxx)ut +! ux(xuxtt + tUxxt + uxx ). 

Both lower order terms UtUxt and UxUxx are x-derivatives, hence this density 
is equivalent to the one in the table by a similar integration by parts. 

Abnormal Systems and Noether's Second Theorem 

The connection between variational symmetries and conservation laws for 
systems which fail to be totally nondegenerate is less transparent. Although 
the basic integration by parts formula (4.39) still yields a variational sym
metry for each conservation law and vice versa, there is now no guarantee 
that nontrivial symmetries will give rise to nontrivial conservation laws or 
the reverse. In the case of analytic systems, we saw that there are two basic 
types of abnormality possible. Over-determined systems are less well under
stood in this regard, and the precise relationship between their symmetries 
and conservation laws remains to be determined. Under-determined systems, 
however, fall under the ambit of Noether's second theorem which is con
cerned with systems possessing infinite-dimensional groups of variational 
symmetries. The resulting dependencies among the Euler-Lagrange 
equations can be re-interpreted as trivial conservation laws determined by 
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nontrivial variational symmetry groups, so the nice one-to-one correspon
dence of Theorem 5.42 breaks down in the under-determined case. 

Theorem 5.50. The variational problem 2[ u] = J L dx admits an infinite
dimensional group of variational symmetries whose characteristics Q[ u; h] 
depend on an arbitrary function h(x) (and its derivatives) if and only if there 
exist differential operators 0)), ... , 0)q, not all zero, such that 

(5.66) 

for all x, u. 

PROOF. Assume first that the Euler-Lagrange equations for 2 are under
determined, so there is a relation of the form (5.66) among them. Let h(x) 
be arbitrary. Then an easy integration by parts shows that 

0= h(x)[0)) E)(L) + ... + 0)q Eq(L)] 

(5.67) 

for some p-tuple P E.sIIP depending linearly on E(L) and its derivatives. If 
we set Q" = 0)~[h], ." = 1, ... , q, then the above identity is in the form of a 
conservation law in characteristic form, where Q is the characteristic and 
P = P[u; h] E .sliP the conservation law, which is actually trivial (of the first 
kind). Now we can clearly use (5.67) to prove that for any function 
h(x), vQ[u;hl determines a variational symmetry of the functional 2[u]. 

The proof of the converse is straightforward if Q,,[u; h] = 0).,[h] are all 
linear in h and its derivatives, 0)., being differential operators whose 
coefficients can depend on u. Starting with the condition (5.54) that vQ be 
a variational symmetry, we integrate by parts to obtain the corresponding 
conservation law 

Div P = Q. E(L) = 0))[h]E)(L) + ... + 0)q[h]Eq(L). 

Further integration by parts, effectively reversing the arguments in (5.67), 
leads to an identity of the form 

Div P = h(x)[0)tE)(L) + ... + 0)~Eq(L)], (5.68) 

which holds for an arbitrary function h(x). The proof is completed using 
the following "formal" version of the du Bois-Reymond lemma of the 
variational calculus. 

Lemma 5.51. Let R(x, u(n») be a differential function and suppose for every 
smooth function h(x), there exists P[u] = Ph[u] E.sIIP such that 

h(x)R(x, u(n») = Div P(x, u(m»). 

Then R(x, u(n») = r(x) is a function of x alone. 

PROOF. Assume R depends on the n-th and lower order derivatives of u 
and that aR(xo, u~n»)/ au~ =;e 0 for some #J = n ~ 0, (xo, u~n») E M(n). Choose 
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h(x) such that a,h (xo) ¥- 0, but all other derivatives of h of order :0;;; n vanish 
at Xo. A straight-forward calculation shows that 

E",(h· R)(xo, u&"» = (-l)"a,h(xo) . aR(xo, u&"»lau~ ¥- o. 
Theorem 4.7 implies that h· R is not a total divergence, contradicting 
our assumption. An easy induction now proves that R can only depend 
oox 0 

An easy corollary of this result will be quite important for subsequent 
developments. 

Corollary 5.52. Let P E.sti r be an r-tuple of differential functions. Then 
In p. Q dx = 0 for all Q E .stir, all n c X if and only if P == 0 for all x, u. 

PROOF. Using the lemma component-wise, we conclude that P = p(x) 
depends on x alone. Further, given 1:0;;; 1/:0;;; r, choose Q/oL[ u] = 8; u'" for any 
1:0;;; a:O;;; q. Then E",(p' Q) = p,,(x) == 0 by Theorem 4.7, hence P == 0 for all 
~ u. 0 

Returning to (5.68), we See that 

~f E\(L) + ... +~: Eq(L) = r(x) 

is a function of x alone. If r == 0 we're done; otherwise we divide by r(x) 
and differentiate once more (with respect to any variable Xi) to produce 
an identity of the required form (5.66). 0 

More generally, if h(x) appears nonlinearly in Q[u; h], we can neverthe
less reduce to the previous case using the following: 

Lemma 5.53. Suppose Q[u; h] is the characteristic of a variational symmetry 
of 5£ depending on an arbitrary function h(x). Let <2lJQ = <2lJQ [u;h] denote the 
Frechet derivative of Q with respect to h, with entries 

Then Q' = <2lJQ[k] is the characteristic of a variational symmetry depending 
linearly on the arbitrary function k(x). 

PROOF. By assumption, for any function h(x), there exists a p-tuple Bh[U] E 

.stiP such that 

pr vQ[u;h](L) = Div Bh• 

If we replace h by h + ek in this identity and differentiate with respect to 
e at e = 0, we obtain 

pr vQ,(L) = Div B', 

which proves the lemma. o 



5.3. Generalized Symmetries and Conservation Laws 339 

In Theorem 5.50, each of the nontrivial symmetries Q[u; h] (linear in 
h) gives rise to a trivial conservation law with Q as the characteristic. This 
remark has a converse also, that says that if a system of Euler-Lagrange 
equations has a trivial conservation law, which corresponds to a nontrivial 
variational symmetry, then it is necessarily under-determined, and hence 
admits an entire infinite-dimensional family of such symmetries depending 
on an arbitrary function. (See Exercise 5.24.) (In relativity, cf. Goldberg, 
[1], these "trivial" conservation laws are in fact among the most important 
identities of the subject. Here, perhaps, our choice of terminology is slightly 
misleading.) 

Example 5.54. Parametric Variational Problems. Consider a first order vari
ational problem of the form 

£'[u, v] = f L(x, u, v, ux, vx) dx, 

with x E R Consider the infinite-dimensional symmetry group consisting of 
arbitrary coordinate changes x~"'(x) in the independent variable. Its 
infinitesimal generators are of the form Vh = h(x)ax for h an arbitrary 
function of x. The infinitesimal criterion (4.15) says that this is a variational 
symmetry group provided 

subscripts denoting derivatives of L. (Generalizing to divergence symmetries 
doesn't add anything here.) As both h and hi are arbitrary, L must be 
independent of x, and of the form L= uxi(u, v, vx/ux). We conclude that 
we are necessarily dealing with a parametric variational problem 

in which we can treat v, say, as a function of u only. 
Noether's second theorem says that there is a dependency between the 

two original Euler-Lagrange equations 

The evolutionary form of Vh is -h(x)(uxau + vxaJ, so according to (5.66), 
(5.67) we have the identity 

This argument clearly extends to both higher order and higher dimensional 
problems. 
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Example 5.55. Consider the variational problem 

whose Euler-Lagrange equations, 

-Eu(L) = Uxx + vxy = 0, 

5. Generalized Symmetries 

were see to be under-determined in Section 2.6, with DyEu(L) - DxEv(L) == 
o. The proof of Theorem 5.50 provides the corresponding infinite
dimensional symmetry group, generated by Vh = -hyou + hxov for arbitrary 
h(x, y), with group transformations 

obviously leaving I£ invariant. Although these groups are certainly non
trivial, the corresponding conservation laws are trivial. For instance, if 
h(x, y) = -y, so Vh =ou we get the trivial law with components (ux + vY' 0), 
i.e. 

Admittedly this doesn't look trivial, but if we add in the obviously trivial 
law (of the first kind) (y(UXY + vyy ), -y(uxx + vxy» we obtain an equivalent 
trivial conservation law of the second kind, since 

(ux + vy) + Y(UXY + VYY ) = Dy(Y(ux + vy», 
-y(uxx + vxy ) = - D;(y(ux + vy». 

The lesson is that for abnormal systems one must exercise even more care 
in distinguishing trivial laws from nontrivial laws; here even the characteris
tics no longer are a foolproof indicator of triviality. 

5.4. The Variational Complex 

As mentioned in the introduction to this chapter, the variational complex 
draws its inspiration from three principal results that have formed the basis 
of much of our work on symmetries, conservation laws, differential operators 
and so on. First is the characterization of the kernel of the Euler operator 
as the space of total divergences given in Theorem 4.7; second is the 
characterization of all null divergences as total curls given in Theorem 4.24; 
third is the characterization of Euler- Lagrange equations by the self-adjoint
ness of their Frechet derivatives-see the proof of Lemma 5.38. The two 
latter results especially are not easy to prove, as the reader may have 
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discovered, but, when restated in a more natural differential form language, 
can be recovered through the construction of suitable homotopy operators 
similar to those used in the proof of the Poincare lemma in Section 1.5. 
(The reader is well advised to become thoroughly familiar with the concepts 
of ordinary differential forms on manifolds, as developed in Section 1.5, 
before attempting to explore the more complicated types of forms to be 
treated here.) Although in this book we will only require the above three 
special instances of the full variational complex, we have chosen to include 
it in its entirety because (a) the proofs are not any more difficult in the 
general case, and (b) a familiarity with this complex will provide the reader 
with an excellent preparation for further reading and research into recent 
work on the geometric theory of the calculus of variations on manifolds. 

The variational complex naturally splits in two halves. In the first half, 
the relevant differential forms are expressions involving the differentials dx i 

of the independent variables, but whose coefficients are now differential 
functions. Replacing the ordinary differential d is now a "total" differential 
D which uses total instead of partial derivatives. Although this is the easier 
of the two halves to define, the proof of exactness is by far the more 
complicated and requires the machinery of "higher Euler operators" 
developed at the end of this section. The result on null divergences appears 
at the next-to-Iast stage of this half of the complex. In the second half of 
the variational complex, the role of functions is taken by the functionals 
of the variational calculus, with "functional forms" being defined 
analogously. The differential now is similar to the variational derivative 
of a functional, and is hence called the variational differential. Although 
the objects in this half are less familiar, the proof of exactness relies on a 
relatively simple extension of the de Rham homotopy operator. Included 
here is the solution to Helmholtz' inverse problem of the calculus of 
variations. The Euler operator itself provides the link between the two 
halves; the characterization of null Lagrangians providing the remaining step 
in the full exactness of the variational complex. 

The D-Complex 

The first half of the variational complex is obtained by adapting the de 
Rham complex to the space of differential functions defined over Me 
X x U. A total differential r-form will take the form 

W = L P,[u] dx' , 
in which the coefficients P, E $I are now differential functions, and dx' = 
dx i, A' •• A dx i" 1 :!iiOjl < ... <jr:!iiO p form the standard basis of Ar T* X. If 
we replace u by some function u = f(x), then we recover an ordinary 
differential r-form on the space X. We differentiate w treating the u's as 
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functions of the x's, leading to the total differential 

P ; J 
Dw = L L D;PJdx /\ dx. 

;=1 J 

For example, if p = 2, then 

w = YUx dx+ uUxy dy 

is a total one-form, with total differential 

(5.69) 

Dw = [Dx(uuxy ) - Dy(Yux)] dx /\ dy = [uuxxy + uxuxy - Ux - YUxy ] dx /\ dy. 

Since when we specialize U = f(x), the total differential agrees with the 
exterior derivative, it is easy to see that D defines a complex (called the 
"big D-complex") on the spaces of total differential forms, meaning that 
D(Dw) = 0 for any form w. Over suitable subdomains Me X x U this 
complex is exact. The precise requirement on M is that it be totally star
shaped, meaning that it be (a) vertically star-shaped, so each vertical slice 
Mx = {u: (x, u) E M} is a star-shaped subdomain of U, and (b) the base 
horizontal slice n = {x: (x, 0) EM} is a star-shaped subdomain of X. 

Theorem 5.56. Let M be totally star-shaped. Then the D-complex 

o 0 0 0 

O~IR ~ /\0 ~/\l~' .. ~/\p-l ~/\p 

is exact, where /\ r denotes the space of total r-forms. In other words, if w E /\ r 

for 0 < r < p, then w is D-closed: Dw = 0, if and only if w is D-exact: w = DT/ 
for some total (r -I)-form T/, while if WE /\0' so w isjust a differentialfunction, 
then Dw = 0 if and only if w is constant. 

Example 5.57. Exactness of the D-complex at the /\p_I-stage is easily seen 
to be equivalent to the characterization of null divergences given in Theorem 
4.24. Indeed, using the notation of Example 1.62, any (p - I)-form w = 
L (- I)j-l ~ dxf can be identified with its coefficients P = (Ph' .. , Pp) E sliP. 
We have Dw = (Div P) dx l /\ ••• /\ dxP, so w is D-closed if and only if P is 
a null divergence ........ On the other hand, a (p - 2)-form takes the form T/ = 
L (- I)j+k-lQjk dx jk where Qjk = -Qkj' and DT/ = w if and only if ~ = 
L DkQjk' (Explicit formulae for the Q's in terms of the P's will be found 
in the course of the proof of Theorem 5.56.) 

If we specialize u = f(x) everywhere, then the D-complex reduces to the 
ordinary de JUtam complex, which by the Poincare lemma (Theorem 1.61) 
is exact. However, this does not prove the exactness of the D-complex! To 
see why not, let w[u] be a total r-form depending on u and its derivatives 
and wf(x) = w[f(x)] the corresponding r-form on n c X once we substitute 
f(x) for u everywhere. We have Dw = 0 if and only if dWf = 0 for each f, 
and hence wf = diif for some (r -I)-form iif(x). What is not clear from the 
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Poincare homotopy formula (1.69) for ijf is that there is a total (r -1)-form 
1][u], depending just on u and its derivatives, which specializes to the given 
ijf in every case: 1][f(x)] = ijf(x) for all f, the reason being that (1.69) is 
not a local map. 

Indeed, the de Rham complex is exact even at the 
!\P-l T*O 4!\p T*O~O stage, but this is most definitely not true for the 
D-complex. Everytotalp-form w = L[u] dx 1 " • •• " dxP is trivially D-closed, 
but it is D-exact, w = D 1], if and only if L is a total divergence, L = Div P, 
and, as we know, not every differential function is a total divergence. The 
proof of Theorem 5.56 will therefore require new methods, in particular a 
new "total homotopy operator". The proof will be deferred until the end 
of this section. 

The next step in the variational complex is to continue the D-complex 
beyond the !\p-stage. This is something we essentially already know how 
to do, since by Theorem 4.7, w = L dx 1 " ••• "dxP is D-exact, meaning 
L = Div P for some P E .st1P, if and only if E(L) = 0, where E is the Euler 
operator. Thus D: !\P-l ~ !\p should be followed by the Euler operator or 
variational derivative expressed, perhaps, in a more intrinsic way. This will 
be implemented, and the variational complex continued even further, 
through the introduction of "functional forms" and the "variational differen
tial", which in a sense accomplish for the dependent variables what the 
D-complex did for the independent variables. 

Vertical Forms 

The total r- forms concentrated on the "horizontal" variables x in M c X x U 
in that only the differentials dx i appeared. Vertical forms are constructed 
by similarly concentrating on the "vertical" variables, which consist of the 
u's and all their derivatives. t Specifically, a vertical k-form is a finite sum 

w = L Pj[u] du~,'''· .. " du~:, (5.70) 

in which the coefficients Pj E.st1 are differential functions. Since only the 
differentials du~ appear in these forms, the analogue of the differential of 
the ordinary de Rham complex is the vertical differential 

(5.71) 

For example, if p = q = 1, a typical vertical two-form might be w = 
xu= du "dux. Its vertical differential is then Jw = x du " dux" du=, the 
independent variable x only appearing parametrically. 

t One can, of course, construct "hybrid" forms in both sets of variables, leading to the important 
"variational bicomplex". However, this would take us too far afield. 
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Since any given vertical form w can depend on only finitely many of the 
variables u~, and hence lives on a finite jet space M(nl, the vertical differen
tial dw is in reality the same as the de Rham differential in these variables, 
the remaining independent variables playing the role of parameters. Thus 
the vertical differential is readily seen to have the usual bilinearity, anti
derivation and closure properties of the ordinary differential: 

d(cw + c'w') = c dw + c'dw', 

d(w 1\ 1]) = (dw) 1\ 1] + (-l)kw 1\ d1], 

d(dw) =0, 

for W, W' E A k, the space of vertical k-forms over M, 1] E A I and c, c' con
stants. Moreover, the proof of the Poincare lemma immediately extends to 
this situation to prove exactness of the "vertical complex" over suitable 
subdomains Me X x U. 

Theorem 5.58. Let Me X x U be vertically star-shaped. Then the vertical 
complex 

;'Od;'ld;'2d 
1\ -1\ -1\ -'" 

is exact. In other words, for k> 0 a vertical k-form w is closed: dw = 0, if and 
only if it is exact: w = d1] for some (k -1)-form 1]. For k = 0, a O-form or 
differential function is d-closed if and only if it is a function of x only. 

Note that although any given vertical form depends on only finitely many 
variables, the entire vertical complex never terminates since we can keep 
bringing in higher and higher order derivatives of u to construct nonzero 
vertical k-forms for any k ~ O. 

The proof of Theorem 5.58 uses the same homotopy operator as was 
used in the ordinary Poincare lemma, but adapted to the infinity of variables 
u~. The basic scaling vector field is pr Vu = I u~a/ au~, the infinite prolonga
tion of the evolutionary vector field Vu = I u a a/ au a • There is a well-defined 
interior product between such vector fields and vertical forms, with {a/ aun 
and {dun being the dual bases of the relevant tangent and cotangent spaces. 
(Note that since vertical forms are required to be finite sums (5.70), we can 
allow infinite sums in our vector fields, since in computing pr Vu J w, say, 
only finitely many terms in the full prolongation of Vu are needed.) The 
formula for the homotopy operator corresponding to (1.69) is then 

A( .. ) f 1 { ..} dA h w = prvu J w[Au] -, 
o A 

(5.72) 

.. .. k 
and we find for w E A ,k > 0, 

w = dh(w) + h(dw). 
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In (5.72), w[u] indicates the dependence of w on u and all its derivatives, 
so to find w[Au] we replace each u~ appearing in w (either explicitly or as 
a differential) by Au~. Taking the interior product and then integrating 
out the A's completes the determination of h(w). (In particular, there is no 
singularity in the integrand at A = 0.) 

Example 5.59. Let p = q = 1. If w = xUx du /\ dux, then £lw = x dux /\ du /\ dux = 
0, so w is closed. To find a one-form -ry such that w = £l-ry we need only 
evaluate 

-ry = h(w) = f 1 {pr Vu J [x(Aux) d(Au) /\ d(Aux)]} dA 
o A 

= f A 2{xuux dux - xu; du} dA 

= 1(xuux dux - xu; du),' 

which is correct. 

Each vertical k-form determines an alternating k-linear map from the 
space of vertical vector fields v* = L Q~a/ au~ to the space .stl of differential 
functions; in particular, it determines an alternating multi-linear map on 
the space To of evolutionary vector fields. The precise formula is written 
using determinants, as in (1.49), so if w is given by (5.70), then 

(w; pr v), ... , pr Vk) = L p~ det(DJ,Q~), (5.73) 
.. ,J 

where Qj E .stlq is the characteristic of Vj and the determinant is of the k x k 
matrix with the indicated (i,j) entry. For instance, 

(xuxx du /\ dux; pr vQ, pr VR) = xUxx det( Q R) 
DxQ DxR 

= xuxA QDxR - RDxQ). 

Total Derivatives of Vertical Forms 

For each i = 1, ... ,p, the total derivative D; can be thought of as a kind of 
vector field on the infinite jet space. As such, we can allow it to act on 
vertical forms as a "Lie derivative", which is determined by the following 
rules: 

(a) Linearity 

c, C' E IR, (5.74a) 
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(b) Derivation 

Dj(w".ry) = (Djw) " -ry + W" (Dj-ry), 

(c) Commutation with the Vertical Differential 

Dj(dw) = d(Djw), 

(5.74b) 

(5.74c) 

together with its well-established action on differential functions. (See (1.59), 
(1.60), (1.61).) In particular, D j acts on the basic forms by D j du~ = 

d(Djun = dU~j. The action is easy to reconstruct from these properties. For 
example, 

DAxuxx du" dux) = DAxuxx ) du" dux + xuxxDx(du) " dux 

+xuxxdu" Dx(dux) 

= (xuxxx + uxx ) du " dux + xUxx du " duxx, (5.75) 

the middle term vanishing since DAdu) = dux. The proof that (5.74) deter
mine a well-defined action of D j is not difficult; in essence, it is a direct 
consequence of the same uniqueness property of the ordinary Lie derivative. 
One key property is that the total derivative is compatible with the evaluation 
of vertical forms on evolutionary vector fields: 

(5.76) 

whenever 1 ~ i ~ p, WE" k, Vj = Vo;, Qj E sir. Thus, for example, the D x -

derivative of xuxA QDxR - RDxQ) agrees with the evaluation of the two
form (5.75) on pr Vo and pr VR. The proof of (5.76) rests on the Lie derivative 
formulae in Exercise 1.35 together with the fact (5.19) that total derivatives 
commute with evolutionary vector fields. 

Functionals and Functional Forms 

Actually, what we are really interested in are the "functional versions" of 
our vertical forms, which are related to them just as functionals are related 
to differential functions. Although the basic notion of a functional appeared 
in its traditional guise in Chapter 4, subsequent developments necessitate 
a more algebraic approach to these fundamental objects of the calculus of 
variations. Each differential function L E .st1. determines a functional 2[ u] = 
J n L[ u] dx defined over any region n c X in its domain of definition. 
Provided we ignore boundary contributions (say by considering only func
tions u = f(x) vanishing sufficiently rapidly near the boundary) a second 
function i E.st1. will determine the same functional, i.e. J n L[ u] dx = 
J n i[ u] dx for all such u, if and only if it differs from L by a total divergence: 

i=L+OivP, forsome PE.st1.P• (5.77) 
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This is the essential content of Theorem 4.7 in the case that P[u] = 0 on 
an. Condition (5.77) does not any longer depend on the domain n, and 
determines an equivalence relation on the space of differential functions. 
Specifically, Land i are equivalent, and determine the same functional, 
provided (5.77) holds. Each functional is thereby uniquely determined by 
an equivalence class of differential functions and conversely. It is reasonable, 
therefore, to define the space of functionals, denoted fii, as the set of 
equivalence classes of the space d of differential functions under the 
equivalence relation (5.77). Put another way, fii = dj Div( d P ) is the quotient 
vector space of d under the subspace of total divergences, i.e. the "cokernel" 
of the total divergence map Div: d P -+ d. The natural projection from d to 
fii which associates to each differential function L its equivalence class or 
functional will be denoted suggestively by an integral sign, so J L dx E fii is 
the functional, or equivalence class, corresponding to LEd. In particular, 
J L dx = 0 if and only if L = Div P for some P. This allows us the freedom 
of "integrating functionals by parts": 

f (p. DiQ) dx= - f (Q. DiP) dx, P, QEd. 

(From our earlier standpoint, the image of the total divergence can be 
identified with the image of D: /\P-l -+ /\p' where L[u] corresponds to the 
p-form L[u] dx = L[u] dx 1 /\ ••• /\ dx p • We can identify fii, the space of 
functionals, with the cokernel fii "" /\/D /\p_p the projection of w = L dx 
being the functional J w = J L dx. Indeed, if we were pursuing a truly coordin
ate-free presentation, we should be working with /\p' the space of total 
p-forms, rather than d, the space of differential functions. Note also that 
we could thus complete the D-complex by appending the trivially exact 
piece /\P-l 9.. /\p -+ fii -+ 0, but this is not as interesting as the full variational 
complex.) 

One important point is that whereas the space d of differential functions 
is an algebra, the same is no longer true of the space fii of functionals, 
since we cannot mUltiply functionals together in any natural way. For 
example, the differential functions Ux and Uxxx both determine trivial func
tionals: J Ux dx = 0 = J Uxxx dx, but their product UxUxxx is not a divergence, 
and hence 2 = J UxUxxx dx =;e 0 is not a trivial functional. Indeed, 52 = 
- 2 Uxxxx =;e 0, hence by Theorem 4.7 2 =;e o. Of course we can still take constant 
coefficient linear combinations of functionals, so fii is a vector space. 

Similarly, we define an equivalence relation on the space A k of vertical 
k-forms, with w equivalent to w' if they differ by a total divergence 

P A A,+ D' A ""+ ~ D A 
W = W IV 7J = W t... i7Ji' 

A A k 
7Ji E /\ , 

i=l 

where Di acts on 7Ji according to (5.74). The space of equivalence classes 
is the space of functional k-forms, denoted 

/\: = A k /Div(A ky. 
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The natural projection from A k to !\: is again denoted by an integral sign, 
so J w dx stands for the equivalence class containing wE A k. In particular, 
J Div ~ dx = 0 for any p-tuple of vertical k-forms ~. Coupled with the 
derivational property of the total derivative C 5. 7 4b), this gives the integration 
by parts formula 

f W 1\ Di~ dx = - f (DiW) 1\ ~ dx, 

Example 5.60. Let p = q = 1 and consider the functional two-form 

w = f {ux du 1\ duxx } dx. 

(5.78) 

We can integrate this by parts using the fact that duxx = DxCdux), so by (5.78) 

w = - f {DxCux du) 1\ dux} dx = - f {(uxx du + Ux dux) 1\ dux} dx 

= - f {uxx du 1\ dux} dx. 

It doesn't help, though, to try a second integration by parts, since we get 

w=+ f {DxCuxx du)l\du}dx=+ f {uxxduxl\du}dx, 

which is exactly the same as before. 

Just as we are not allowed to multiply functionals, there is no well-defined 
wedge product between functional forms, since if 

w=w+Div17 and 8=8+Div{;, 

are equivalent forms, there is no guarantee that W 1\ 8 and W 1\ 8 are 
equivalent. In the above example, duxx = DxC dux) is trivial, but the functional 
two-form w is not trivial. (See Proposition 5.64.) 

Each functional form is an alternating multi-linear map from the space 
of evolutionary vector fields to the space of functionals, defined so that 

(w; Vb"', Vk)= f (w; prvb"" prVk) dx, (5.79) 

whenever w = J w dx, W E A k. This is well defined by virtue of (5.76). For 
example, if w = J {ux du 1\ duxxl dx as above, then 

What is slightly less obvious is that this action uniquely determines w: 
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Lemma 5.61. If wand Wi are functional k-forms, then w = Wi if and only if 
(w; Vt. ••• , Vk) = (Wi; Vt. ••• ,Vk) for every set of evolutionary vector fields 
Vt. ••. , Vk' 

The proof rests on a more basic result: 

Lemma 5.62. Suppose u E IRq and v E IR r are both dependent variables depending 
on XEIRP. Suppose 2[u, v]=J L(x, u(n), v(n») dx is a functional with the 
property that 2[ u, Q[ u]] = 0 for all differential r-tuples Q E d r depending on 
x, u and derivatives of u. Then 2[ u, v] = 0 as a functional in u and v. 

PROOF. An equivalent way of stating this result is saying that if for every 
QEd r 

L[u, Q[u]] = Div Po[u] 

for some PQ E d P depending on x, u and derivatives of u, then 

L[u, v] = Div P*[u, v] 

for some p-tuple p* depending on x, u, v and derivatives of u and v. In 
particular, 

L[u, Q[u]] = Div P*[u, Q[u]], 

where p* depends on Q and its total derivatives alone. (The same is not 
necessarily true of PQ, especially if it was constructed using the method of 
proof of Theorem 4.7.) 

To prove this result, let Q, R E dr. Then by the methods used to determine 
the variational derivative 

0= ~1£=o2[U, Q+eR]= f Ev(L)[u,Q]' Rdx, 

where Ev(L) denotes the variational derivative of L with respect to v. By 
Corollary 5.52, Ev(L)[u, Q[u]]==O for all Q, hence Ev(L)[u, v] =0 for all 
u, v. Similarly, differentiating 2[ u + eP[ u], Q[ u + eP[ u]]] with respect to 
e at e = 0 and using the vanishing of Ev(L), we find Eu(L) == O. Theorem 
4.7 immediately implies L[u, v] = Div P*[u, v] for some P*, proving 
the lemma. 0 

To prove Lemma 5.61, we need only show that 

2[u; Q\ ... , Qk]==(W; Vt. .•• , Vk)=O 

for all QV E d q, 11 = 1, ... , k, if and only if w = Div ~ for some p-tuple of 
vertical forms ~. Lemma 5.62 implies that 

(w; prvt. ... , pr Vk) = Div P*[u; Q\ ... , Qk), 

where p* depends on QI, ... , Qk and their total derivatives only. As it 
stands, the components Pj of P* can certainly be chosen to be linear in 
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each Q\ but may not be alternating functions thereof. However, if we 
replace p* by its "skew-symmetrization", 

P..,*[ . QI Qk] _ ~"( 1 )7Tp*[ . Q7T1 Q7Tk] U, , ... , - k! -; - U,' ... , , 

(the sum being over all permutations 7T of {I, ... , k}) we maintain the 
condition 

(w; prvlo ••• , prvk)= Div P*[u; Q\ ... , Qk]. 

Moreover, each component of P* is an alternating, multi-linear function 
of the QP's and their total derivatives, and hence can be identified with a 
vertical k-form 

Pj[u; Q\ ... , Qk] =(~j; prvlo ••• , prvk)' 

Since this holds for all such QI, ... , Qk, we conclude that w = Div ~, and 
the lemma is proved. 0 

Let us look in more detail at the cases of functional one- and two-forms. 
Anyone-form 

w= f {EP~[U]dU~}dX 
is determined by a finite collection of differential functions P~, but the P~ 
are not uniquely determined by w. Indeed, since du~ = DJ du a, we can 
integrate each summand by parts, leading to the simpler expression 

w = f Lt Pa[u] du a } dx= f {po du} dx, where Pa =~ (-D)JP~, 
(5.80) 

called the canonical form of w. It is not hard to see that each functional 
one-form does have a uniquely determined canonical form. 

Proposition 5.63. Let w = J {p. du} dx and cd = J {p. du} dx be functional one
forms in canonical form, so P, P E .sIJq• Then w = cd if and only if P = P. 

PROOF. It suffices to show that a functional one-form w = 0 if and only if 
the p-tuple P appearing in its canonical form vanishes identically. Evaluat
ing (5.80) on an arbitrary vector field, we have 

(w;VQ)= f (p. Q)dx. 

According to Lemma 5.61, w = 0 if and only if this vanishes for all such 
vQ, but by Corollary 5.52 this occurs if and only if P = 0, proving the 
result. 0 
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Next consider the case of functional two-forms, the most general one of 
which is 

W = f {~~ P~~[u] du~" dui} dx, 
J,K 

the sum as usual being finite. To simplify the vertical two-form in the 
integrand, we rewrite du~ = DJ du" and integrate by parts. This leads to an 
expression of the form 

W = f { L P~~[u] du" "dU~} dx, 
"'~,l 

where the P~~ are determined from the P~~ and their derivatives. Define 
the differential operators 

whereby the above expression can be written as 

W = f { f du"" rj .. ~ dU~} dx, 
.. ,~~l 

(5.81) 

or, using a more compact matrix notation, 

W = f {du" rj du} dx. 

As it stands, though, the matrix differential operator rj = (rj .. ~) is not 
uniquely determined by w. Indeed, (5.81) can be integrated by parts, leading 
to an equivalent expression 

w = f {~~ rj!~(du")" du~ } dx = - f {~ du~ "rj!~(du") dX} 

involving the adjoint rj* = (rj~ .. ) of rj. Ifwe set CZlJ = rj - rj*, so CZlJ: dr ~ sdq 

is a skew-adjoint differential operator: CZlJ* = -CZlJ, then w has the canonical 
form 

w =! f {du" CZlJ du} dx, CZlJ*=-CZlJ. 

Its value on a pair of evolutionary vector fields is then 

(W;VQ,VR)=! f {Q'CZlJR-R'CZlJQ}dx= f {Q'CZlJR}dx 

(5.82) 

since CZlJ is skew-adjoint. This canonical form is uniquely determined by w. 

Proposition S.64. Let W = ! J {du " CZlJ ( du)} dx, cd = ! J {du " rj ( du)} dx be func
tional two-forms in canonical form, so CZlJ and rj are skew-adjoint q x q matrix 
differential operators. Then w = cd if and only if CZlJ = rj. 
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PROOF. By Lemma 5.61, it suffices to prove that if £0: SIr ~.stlq is skew
adjoint, then J (Q. £0R) dx = 0 for all q-tuples Q, R E.stlq if and only if 
£0 = O. Corollary 5.52 implies that £0R = 0 for all R, which implies 
that £0 = O. (See Exercise 5.29.) 0 

The Variational Differential 

Definition 5.65. Let w = J w dx be a functional k-form corresponding to 
the vertical k-form w. The variational differential of w is the functional 
(k+ I)-form corresponding to the vertical differential of w: 

8w = f (dw) dx. (5.83) 

The commutativity relatioh (5.74c) assures us that this operator is well 
defined on the spaces of functional forms. The basic properties follow at 
once from those of the vertical differential, so we immediately have an exact 
variational complex. 

Theorem 5.66. Let M c X x U be vertically star-shaped. The variational 
differential determines an exact complex 

o Il 1 Il 2 Il 3 Il 
O~!\* ~ !\* ~ !\* ~ !\* ~ ... 

on the spaces of functional forms on M. In other words, a functional form is 
closed: 8w = 0, if and only if it is exact: w = 8"1. 

PROOF. The homotopy formula (5.72) immediately projects to a homotopy 
formula for the variational differential: if w is any functional k-form, k> 0, 
then 

w=8h(w)+h(8w), 

where, for w = J w dx, 

h(w)= f h(w)dx= f {L (prVuJW[AU])~A}dX. (5.84) 

This also extends to the case when k = 0, i.e. w is a functional, since w only 
differs from dh(w) + h(dw) by a function of x alone, and any such function 
determines a trivial functional. This suffices to prove Theorem 5.66 in all 
cases. 0 

Example 5.67. Consider the functional two-form 

w = f {uxxx du A dux} dx. 
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(Note that w is not in canonical form, which would be 

! f {du" (2 Uxxx dux + Uxxxx du)} dx 
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corresponding to the skew-adjoint operator 2uxxxDx + uxxxx.) The variational 
derivative is the functional three-form 

8w = f {duxxx " du " dux} dx. 

This form is trivial: integrating by parts, we see 

8w = - f {duxx " Dx(du" dux)} dx 

= - f {duxx " dux" dux + duxx " du " duxx } dx = o. 

Equivalently, duxxx " du" dux = DAduxx " du" dux) is a total x-derivative. 
(Another way to see this is to note that the evaluation of the corresponding 
vertical three-form on a triple of evolutionary vector fields is an x-derivative: 

To compute a one-form Tf whose variational differential is w, we use the 
homotopy formula (5.84), 

Tf = h(w) = f {f A 2(uuxxx dux - UxUxxx du) dA} dx 

= f Huuxxx dux -luxuxxx du} dx. 

This has the canonical form 

and, indeed 

8Tf = f {-lu duxxxx " du - ~ux duxxx " du - ~uxxx dux" du} dx 

can be shown to be equal to w through a couple of integrations by parts. 
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The exactness of the variational complex at the /\ ~ -stage is of especial 
importance since it provides the afore-mentioned solution to the inverse 
problem of the calculus of variations. To see this, we need to first relate 
the variational differential to the variational derivative. If X = J L dx is a 
functional, which we regard as an element of /\~, then its variational 
differential is the functional one-form 

As in (5.80), we can integrate this latter form by parts, leading to the 
canonical form 

BX=f{ f (L(-D)] a:) du a} dx=f{E(L)' du}dx, 
a~l] au] 

cf. (4.3). Proposition 5.63 implies that BX can be uniquely identified with 
the Euler-Lagrange expression E(L), and this provides the connection 
between the variational differential and our previous notation for the vari
ational derivative. (Indeed, if we interpret the differentials du a as 
infinitesimal variations in the ua , with corresponding variations du~ = 

D] du a in the derivatives, then the above computation is the same as the 
traditional determination of the Euler-Lagrange equations from the 
definition of the variational derivative.) Exactness of the variational complex 
at the /\ ~ -stage, then, is equivalent to Theorem 4.7 that a functional is trivial 
if and only if its variational derivative vanishes identically. 

We can thus "glue" the D-complex to the complex determined by the 
variational differential to obtain the full variational complex 

D D D D E 15 25 

O~IR~ /\0- /\1 -' .. - /\P_I- /\p - /\* - /\* -" " 
which is exact over totally star-shaped domains Me X x U. 

Next consider the variational differential of a functional one-form, which 
we take in canonical form w = J {po du} dx. We find 

Bw = f {L L ap; du~" dual dx = f {Dp(du)" du} dx, 
a {3,J au] 

where Dp is the Fn!chet derivative of P, cf. (5.40). As in (5.82), we can 
integrate by parts a second time, leading to the canonical form 

Bw = 4 f {du" (D ~ - D p) du} dx. 

In particular, w is closed if and only if D p is a self-adjoint differential 
operator. Exactness of the variational complex, coupled with the explicit 
form for the homotopy operator (5.84), thus gives the complete solution to 
the problem of characterizing the image of the Euler-Lagrange operator. 
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Theorem 5.68. Let P[ u] E stlP be defined over a vertically star-shaped region 
Me X X U. Then P is the Euler-Lagrange expression for some variational 
problem .P = J L dx, i.e. P = E(L), if and only if the Frechet derivative 0 p 

is self-adjoint: D~ = 0 p. In this case, a Lagrangian for P can be explicitly 
constructed using the homotopy formula 

L[u] = I U· P[Au] dA. 

Example 5.69. Let p = q = 1. The functional 

.P[u] = f Gu;"'-uu;) dx 

has Euler-Lagrange expression 

E(L)[ u] = P[ u] = Uxxxx + 2uuxx + u;. 

The Frechet derivative of P is the ordinary differential operator 

o p = D! + 2uD; + 2uxDx + 2uxx, 

(5.85) 

which is easily seen to be self-adjoint. If, on the other hand, we were just 
given P, we could reconstruct a variational problem using (5.85), 

.5l'[u] = f {I u(Auxxxx+2A2uUxx+A2U;) dA} dx 

f {t 2 2 t 2} d = 2UUxxxx+:3U uxx+:3UUx x. 

The Lagrangian, while not the same as the original one, is still equivalent, 
since 

We have thus solved Helmholtz' version of the inverse problem of the 
calculus of variations: characterizing those q-tuples P[ u] E stlq which are 
Euler-Lagrange expressions. (The conditions requiring the self-adjointness 
of the operator 0 p are often referred to as the Helmholtz conditions.) 
Although the solution is very neat, from the wider perspective of determining 
which systems of differential equations a = 0 arise from variational prin
ciples, it is somewhat unsatisfactory. If one happens to write the equations 
in the "wrong" order, say at = Ez(L), a 2 = Et(L), etc., then the Helmholtz 
conditions for a will not hold, and the variational structure of the system 
will remain undiscovered. Even more difficult to detect will be when a is 
equivalent to a set of Euler-Lagrange equations, so a = A . E(L) for some 
invertible q x q matrix of differential functions A, or, even more generally, 
a = 0)E(L) for some differential operator 0). The solution to the general 
equivalence problem is unknown, even in the case when A is a constant 
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matrix! (Some special cases have been considered-see the notes at the end 
of the chapter.) 

Higher Euler Operators 

Although the D-complex was perhaps simpler to write down, the construc
tion of a suitable homotopy operator is considerably more complicated. 
The usual de Rham formula no longer works, and we are forced to introduce 
the so-called "higher Euler operators". These arise most naturally through 
a detailed analysis of the fundamental integration by parts formula (4.39) 
used in the proof of Noether's theorem. 

Definition 5.70. For each 1,,;; a";; q and each multi-index J, the higher Euler 
operators E~ are defined so that the formula 

q 

prvQ(P) = I I DAQa· E~(P)) (5.86) 
a=l J 

holds for every evolutionary vector field vQ and every differential function 
PEd. 

The fact that (5.86) serves to uniquely determine these operators can 
perhaps best be appreciated through an example. 

Example 5.71. Let p = q = 1, so there are Euler operators E(O), E(l), E(2), etc. 
satisfying 

(5.87) 

for general P = P(x, u, ux , • •• ). Suppose P = P(x, u, ux , uxx ) depends only 
on second order derivatives, so 

To rewrite this in the form (5.87), we must integrate the second and third 
terms by parts: 

aP aP (ap) DxQ'-=-Q'Dx-+Dx Q- , 
a~ a~ a~ 
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Comparing with (5.87), we see that for such P, 

(0) aP aP 2 aP 
E (P)=--Dx-+Dx-, 

au aux auxx 

If we carry through the same procedure for general P, we find that (5.87) 
holds provided we set 

E(k)(p) = I (l)(_Dx/-k ap, 
t=k k aUt 

so that 

(0) aP aP 2 ap 3 aP 
E (P)=--D -+D --D -+ ... 

au x aux x auxx x auxxx 

agrees with the usual Euler operator, while 

(I) aP aP 2 aP 3 ap 
E (P)=--2Dx -+3D x ---4Dx --+"', 

aux auxx auxxx auxxxx 

(2) aP aP 2 aP 3 aP 
E (P)=--3Dx --+6Dx ---l0Dx--+"', 

auxx auxxx auxxxx auxxxxx 

and so on. 

To state the general formula for the higher Euler operators, we need 
some further multi-index notation. Let I, J be unordered multi-indices of 
the type introduced in Chapter 2. We say J c I if all the indices in J appear 
in 1. We write IV for the remaining indices in 1. For example, if p = 4, 
J = (1,1,2,4) is contained in 1= (1,1,1,2,4,4) and IV = (1, 4). Given 
1= (ih ... ,in ), let j = (ih ... , ~) be the "transposed" ordered multi-index, 
where ~. equals the number of occurrences of the integer j in I; for the 
above example, j = (3,1,0,2) since there are three 1 's, one 2, no 3's and 
two 4's in 1. Set I! = j! = it! i2 ! ... ~!, and define the multinomial coefficient 
(J) = I!/ (J !(IV)!) when J c I; 0 otherwise. In the above example, I! = 
3!·1!· O!· 2!=12, (j)= 12/(2 ·1)=6. 

Proposition S.72. Let 1,,-;;; a ,,-;;; q, #J;;", O. Then 

(5.88) 

for all P E d. 

PROOF. First note that 

(5.89) 
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for any I, a formula which is easy to prove by induction starting with the 
Leibniz rule RDjQ = D j ( QR) - QDjR. Evaluating the left-hand side of 
(5.86), 

Interchanging the order of summation proves (5.88) and hence the unique
ness of the higher Euler operators. In particular, for J = 0, E~ = Ea agrees 
with the usual Euler operator. 0 

Example 5.73. Let p = 2, q = 1 and let x, y denote the independent variables. 
Then, for instance, 

and so on. 

Actually, for theoretical purposes, the precise formula for the E~ is not 
important; what is important is that they are uniquely determined by the 
integration by parts formula (5.86). As a first application, we find the explicit 
expression for the divergence in the key formula (4.39) used in Noether's 
theorem. 

Proposition 5.74. Let QE .<lr, LE d. Then 

pr vQ(L) = Q. E(L) + Div A, (5.90) 

where 

k= 1, ... ,po (5.91) 

PROOF. We compute 

• q P ik + 1 I k 
DIV A= L L L --Dlk[QaE,; (L)]. 

a~I#I;;'Ok~1 #1+1 ' 

Now change the summation variable to be J = (1, k), so ik + 1 = jk and 
#1 + 1 = #J = Ljk' Thus the coefficient of DJ[QaE~(L)] is unity. Comparing 
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this with (5.86), we see that only the terms Qa Ea (L) corresponding to #J = 0 
are missing. Thus (5.90) follows immediately. 0 

The higher Euler operators are also intimately connected with the total 
derivatives. 

Proposition 5.75. Let 1.;;; a .;;; q, 1.;;; i.;;; p, #J ~ O. Then 

{ 
J\' E '(P) if icJ, 

E~(DjP) = Oa 
if i ¢. J, 

(5.92) 

for any P E d. 

PROOF. Although this can be proved directly from (5.88), it is simpler to 
use the uniqueness properties of (5.86). We have 

prvQ(DjP) = L DJ[QaE~(DjP)], 
a,J 

On the other hand, by (5.19), this equals 

D j prvQ(P) = L DPdQaE~(P)]. 
a,K 

Replacing K by J = (K, i) and comparing the two expressions immediately 
gives (5.92) by uniqueness. 0 

Corollary 5.76. A differential function P is an "n-th order divergence", i.e. 
there exist QI E d, # I = n, such that P = L DIQI, if and only if E~ (P) = 0 for 
all a = 1, ... , q, 0.;;; # J .;;; n - 1. 

The Total Homotopy Operator 

As in our proof of the Poincare lemma in Section 1.5, the construction of 
the homotopy operator for the D-complex rests on a formula for the Lie 
derivative of a total differential form .with respect to an evolutionary vector 
field. To establish this result, we begin by noting that any operator, such 
as a total derivative, higher Euler operator or prolonged vector field, which 
acts on the space d of differential functions, can be made to act coefficient
wise on the total differential forms. For example, if W = L PI dx I, PI E d, then 

pr vQ(w) = L pr vQ(P1 ) dx I. (5.93) 

In particular, the total differential can be written as 

P . p. 

Dw = L Dj(dx'" w) = L dx'" Djw, (5.94) 
;=1 i=l 

the Dj's acting only on the coefficients of w. 
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The first goal in our construction is to establish a formula mimicking 
(1.65), but for the total differential. Thus we need to find "interior product" 
operators IQ: /\k -+ /\k-I' k = 1, ... , p, Q E .stJ. q, such that 

(5.95) 

for any W E /\ r' 0 < r < p. It turns out that this total interior product can be 
written most succinctly in terms of the higher Euler operators: 

(5.96) 

Before proving that this does satisfy (5.95), we look at a couple of special 
cases. 

Example 5.77. If W = L dx l A ••• A dxP, then IQ(w) E /\p-I and hence has the 
form 

IQ(w)= f (_l)k-1A k dxk. 
k=1 

Since (_l)k-1 dx k = ax k ...J (dx l A ••• A dxP ), (5.96) implies that 

ik+1 Ik 
Ak= L #1+1 DI[Qa E.; (L)], 

a,I 

which recovers the divergence terms in (5.90), which we can rewrite in 
"homotopy form" 

prvQ(w)=D(IQ(w»+Q· E(w). 

Example S.7S. Let r = p -I, so W is of the form 

P • 
w= L (_l)k- 1Pk dx k. 

k=1 

The (p -2)-form IQ(w) has the form 

IQ(w)= L (_l) i +k-IRjk dxik, 
j<k 

where 

The Lie derivative formula (5.95) takes the form 

P 

prvQ(Pd= L DjRjk+Ak, 
j=1 

(5.97) 

(5.98) 
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where Ak is given by (5.91) when L = Div P, which, using (5.92), is 

~ +1 
A = '" '" _'k_ D [Q EI,k\I(R)]. 

k t... t... #1+1 I a a I a,lleI 

(We leave to the reader the direct verification of (5.98).) 
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(5.99) 

The proof of (5.95) is perhaps the most complex calculation of this book. 
(However, the present proof of the exactness of the D-complex is much 
easier than previous computational proofs!) We begin by analyzing the 
right-hand side using (5.94): 

P I 
IQ(Dw) = L IQ[D,(dx A w)] 

1=1 

P ik+l {lk[a I]} =L L Dr QaE.; -kJD,(dx AW) , 
a,l k,1=1 p - r+ #1 ax 

(5.100) 

since Dw is an (r+ I)-form. The principal constituent in (5.100) is the 
interior summation 

(5.101) 

which we break into two pieces according to whether k = 1 or k>" 1. If k >" 1, 
then by (5.92), E~k . D, = E~\I,k, where, by convention, this operator is 0 if 
1 does not appear in 1. Also, according to Exercise 1.37, 

a I ,(a) -kJ(dx Aw)=-dx" -kJw , 
ax ax 

k>"l. 

We conclude that 

E~k[a~k J D,(dx' "w) ] = -E~\l,k[ dx' " (a~k J w )] whenever k>" 1. 

(5.102) 

The case k = 1 is a bit more delicate. First note that E~k . Dk = E~, so the 
relevant sum is 

(5.103) 
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On the right-hand side of (5.103), we use the two further identities of 
Exercise 1.37: 

p a k L -kJ(dx I\w)=(p-r)w 
k=laX 

in the first summation, and 

-;. J (dx k 1\ w) = W -dxk 1\ (-;. J w) 
ax ax 

in the second. This yields 

f (ik+ l)E~k[-;' J Dk(dxk 1\ w)] 
k=1 ax 

=(p-r+#I)E~(w)- f ikE~[dxkl\(-;'JW)] (5.104) 
k=1 ax 

since L~=I ik = #1. Combining (5.101), (5.102) and (5.104), we conclude that 

=(p-r+#I)E~(w)- f (ik+1-8nE~\1.k[dxll\(-;'Jw)]. 
k,1=1 ax 

(5.105) 

This is our key identity in the proof of (5.95). 
We now have 

IQ(Dw)= L DI(Q",E~(w)) 
",,1 

By (5.86), the first summation on the right-hand side is just pr vQ(w), so to 
complete the proof of (5.95), we need only identify the second summation 
with 

But these two summations agree upon changing the multi-index summation 
variable from J to 1= (J, 1), noting that ik = jk + 8f, #1 = #J + 1. This 
completes the proof of (5.95). 
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We now specialize (5.95) to the case of the scaling vector field prvu 
introduced earlier in the proof of the exactness of the variational complex. 
Note that if P[u] = P(x, u(n») is any smooth differential function defined 
on a vertically star-shaped domain, then 

d a aP 1 
-P[Au]= L u, -a[Au]=-prvu(P)[Au], 
dA a,J au, A 

where the notation means that we first apply pr Vu to P and then evaluate 
at Au. Integrating, we find 

II dA 
P[u]-P[O]= prvu(P)[Au]-, 

o A 

where P[O] = P(x, 0) is a function of x alone. Since pr Vu acts coefficient-wise 
on a total differential form w(x, u(n»), we have the analogous formula 

II dA 
w[u] -w[O] = prvu(w)[Au]-, 

o A 
(5.106) 

where w[O] = w(x, 0) is an ordinary differential form on the base space X. 
If we now use (5.95) in the case Q = u, whereby 

lu(w) = f L f ik+ 1 Dl{uaE~k(--; J w)}, 
a~1 1 k~IP-r+#I+l ax 

(5.107) 

we obtain the homotopy formula 

w[u] - w[O] = DH(w) + H(Dw), (5.108) 

where the total homotopy operator is 

II dA 
H(w) = lu(w)[Au]-, 

o A 
(5.109) 

meaning that we first evaluate lu(w) and then replace u by Au wherever it 
occurs. Except for the extra term w[O] this would suffice to prove the 
exactness of the D-complex. However, w[O] is an ordinary differential form 
on n = M n {u = OJ, so provided n is also star-shaped we can use the 
ordinary Poincare homotopy operator (1.69), with 

w[O] - Wo = dh(w[O]) + h(dw[O]), (5.110) 

where Wo = 0 if r> 0, while Wo = f(O) if w[O] = f(x) is a function, r = O. For 
such forms, the total derivatives Di and the partial derivatives a/ axi are the 
same, so we can replace the differential d by the total differential D. 
Combining (5.108) and (5.110), we obtain 

w - Wo = DH*(w) + H*(Dw), 

for w E 1\ r, 0,,;;; r < p, where 

H*(w) = H(w) + h(w[O]) 

(5.111) 
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is the combined homotopy operator. Now that we have established (5.111), 
the proof of Theorem 5.56 is straightforward. 

The homotopy formula (5.108) also extends to total p-forms w = 

L[u] dx l A' •• A dxP if we utilize the modified formula (5.97) for the Lie 
derivative. Translating the differential form language, we see that if L[ u] = 
L(x, u(n» is defined over a totally star-shaped domain Me X x U, then 

L[u] = Div B*[u]+ f U· E(L)[Au] dA, (5.112) 

where B* is the sum of the p-tuples B[u] E d P and b(x) with entries 

II q ~ + 1 
Bk[U] = L L _'_k -D1(UaE~k(L)[Au]) dA, 

oa=I1#1+1 

bk(x) = f xkL(Ax, 0) dA, 

k=I, ... ,p. (5.113) 

In particular, if E(L) = 0, then L = Div B* with B* as above. Thus we have 
an explicit formula writing any null Lagrangian as a divergence. 

Example 5.79. Let p = 2, q = 1. Consider the null Lagrangian L = UxUyy. 
According to (5.112), L = DxA + DyB, where 

A = tl {uE(x)(L) + DAuE(xx)(L» +!Dy(uE(xY)(L» + ... } dA, 

B = f {uE(Y)(L) +!DAuE(XY)(L»+ Dy(uE(YY)(L» + ... } dA, 

where the differential functions E(x)(L), E(Y)(L), etc. are to be evaluated at 
Au. In the case L = uxuYY' we have 

E(x)(L) = UYY' E(Y)(L) = -2uxy, E(YY)(L) = Ux, 

and all the other terms in A and B vanish. (See Example 5.73.) Thus 

A = f u(Auyy ) dA =!uuyy, 

B = f: u( -2Auxy ) + Dy[u(Aux)] dA = -!UUXy +!UXuy, 

satisfy the above divergence identity. Even from this relatively simple 
example, it is easy to see how the homotopy formula (5.113) can rapidly 
become unmanageable. In practice, it is often easier to determine the 
divergence form directly by inspection, using (5.113) only as a last resort. 

We conclude this section by specializing (5.111) to the case of total 
(p -1)-forms. 
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Theorem 5.80. Let P E sir and let L = Div P. Then 

P 

Pk = I DjQJk + Bt, k = 1, ... ,p, (5.114) 
j=! 

where B* = B + b is the p-tuple determined by (5.113), and QJk = Qjk + ~k' 
where 

In particular, if P is a null divergence, then (5.115) shows how to write 
P explicitly as a "total curl" Pk = I DjQJk, where QJk = -Q~. For example, 
in the case p = 2, we have 

if and only if 

where 

Q = f GuE(Y)(P) +lDAuE(XY)(P)]+~Dy[uE(YY)(P)]+' .. 

-!uE(x)(P) -~Dx[uE(xx)(P)] -lDy[uE(XY)(P)] _ ... } dA, (5.116) 

where E(x)(P), E(Y)(P), etc. are all evaluated at Au. As a specific example, 
let P = uyuxy + uxuYY' P = -uyuxx - uxuxY' which do form a null divergence. 
The only nonzero Euler expressions appearing in (5.116) are 

E(Y)(P) = -2uxy, E(xy)(P) = uY' E(YY)(P) = ux, 

E(x)(P) = 2uxy, E(xx)(P) = -uY' E(xy)(P) = -ux. 

Thus 

Q = f {u( -Auxy)+lDx[u(Auy)]+~Dy[u(Aux)] 
- u(Auxy ) +~Dx[ u(Auy)] +lDy[ u(Aux)]} dA = uxuy 

satisfies P = DyQ, P = - DxQ. 

NOTES 

Generalized symmetries first made their appearance in their present form 
in the fundamental paper of Noether, [1], in which their role in the 
construction of conservation laws was clearly enunciated. Anderson and 



366 5. Generalized Symmetries 

Ibragimov, [1], and Ibragimov, [1], try to make the case that they date back 
to the investigations of Lie and Backlund, hence their choice of the term 
"Lie-Backlund transformation" for these objects. As far as I can determine, 
Lie only allows dependence of the group transformations on derivatives of 
the dependent variables in his theory of contact transformations, which are 
much more restrictive than generalized symmetries. He further, in Lie, [1; 
§ 1.4], proposes the problem of looking at higher order generalizations of 
these contact transformations. Backlund, [1], in response, does write down 
transformations depending on derivatives of the dependent variables of 
arbitrary order, and so in a sense anticipates the theory of g)peralized 
symmetries, but he and Lie always require that the corresponding'prolonga
tions "close off" to define genuine geometrical transformations on some jet 
space. Backlund concludes that the only such transformations are the 
prolongations of ordinary point transformations or of Lie's contact transfor
mations, hence fails to make the jump to true generalized symmetries. More 
telling is the fact that Backlund requires his transformations to depend on 
only finitely many derivatives of the dependent variables, while for true 
generalized symmetries, this is only the case for the infinitesimal generators 
(which Backlund never considers); the group transformations determined 
by the solutions of the associated evolution equation (5.14) are truly non
local, and are not determined solely by the values of finitely many derivatives 
of the dependent variables at a single point. 

Since their introduction by Noether, generalized symmetries have been 
rediscovered many times, including the papers of Johnson, [1], [2], in 
differential geometry, Steudel, [1], in the calculus of variations, and Ander
son, Kumei and Wulfman, [1], among others. Recent applications to 
differential equations can be found in Anderson and Ibragimov, [1], Kos
mann-Schwarzbach, [1], [2], Fokas, [3], and Ibragimov, [1]; the last refer
ence includes an extensive discussion of those second and third order 
evolution equations, as well as general second order equations in two 
independent variables, admitting generalized symmetries. Steudel, [1], was 
the first to note the importance of placing a generalized vector field in its 
evolutionary form. Recent investigations into the symmetry properties of 
systems of linear equations, including those of field theory (Fushchich and 
Nikitin, [1], and Kalnins, Miller and Williams, [1]) and elasticity (Olver, 
[9]) have uncovered new generalized symmetries depending on first order 
derivatives of the dependent variables, whose significance is not yet fully 
understood, although they appear to playa role in the separation of variables 
for such systems. The commutativity theorem 5.20 for polynomial sym
metrir:s is due to Tu, [1], and Ibragimov and Shabat, [1]; see also Ibragimov, 
[1; § 19] for further developments. A more complete discussion of the 
properties of the heat equation mentioned in Example 5.11 can be found 
in Kovalevskaya, [1], Forsyth, [1; Vol. 5, § 26] and Copson, [1; § 12.4, 12.5]. 

The use of recursion operators for constructing infinite families of gen
eralized symmetries is based on the recursive construction of the higher 
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order Korteweg-de Vries equations due to Lenard (see Gardner, Greene, 
Kruskal and Miura, [1]) and was first presented in the general form in 
Olver, [1]. Recursion operators are closely related to the strong and 
hereditary symmetries of Fuchssteiner, [1]; see Zakharov and Konopel
chenko, [1], for further developments. For linear partial differential 
equations, higher order symmetries have been directly applied to the method 
of separation of variables by Miller, Kalnins, Boyer, Winternitz and others 
using the operator-theoretic approach mentioned in the text; see Miller, 
[3], and the references therein. The results concerning the number of 
independent symmetries of a given order of Laplace's equation and the 
wave equation appears in Delong's thesis, [1]. Weir, [1], has proved that 
all second order symmetries of these two equations are linear symmetries, 
but the general case remains open. Delong also proved that every linear 
symmetry of the Laplace and wave equations is a polynomial in the first 
order symmetries. However, this is not true for more general linear 
equations; see Exercise 5.2. 

If we omit the part concerning trivial symmetries and conservations laws, 
the version of Noether's theorem 5.42 stated here dates back to Bessel
Hagen, [1]. (See Exercise 5.23 for Noether's original version, which does 
not use divergence symmetries.) The correspondence between non
trivial conservation laws and nontrivial variational symmetry groups proved 
here is new (see Olver, [11]), although a closely related theorem has recently 
appeared in Vinogradov, [5]. Proposition 5.40 concerning the geometric 
interpretation of the group transformations of a variational symmetry can 
be found in Edelen, [1; p. 149]. The existence of infinite families of conversa
tion laws for self-adjoint linear systems of differential equations was the 
cause of some astonishment in the mid-1960's with the discovery of the 
"zilch tensor" and related objects by Lipkin, [1], T. A. Morgan, [1] and 
Kibble, [1], in their work on field theories. An explanation using generalized 
symmetries and the full version of Noether's theorem similar to Proposition 
5.46 was soon proposed by Steudel, [3]. Proposition 5.48 discussing the 
action of symmetries on conservation laws also appears in Khamitova, 
[1]. 

The statement and proof of Noether's second theorem 5.50 on infinite
dimensional symmetry groups is from Noether's paper, [1]. The connections 
with the abnormality of the underlying system of Euler-Lagrange equations, 
however, is new; see Olver, [11]. One outstanding problem here is to 
complete the classification of symmetries and conservation laws for over
determined systems of Euler-Lagrange equations. In particular, does there 
exist an over-determined system for which a trivial variational symmetry 
group gives rise to a nontrivial conservation law? Such a system must be 
quite complicated; for instance, Exercise 5.41 shows that it cannot be 
homogeneous in u and its derivatives. (Fokas, [2], refers to an example of 
Ibragimov where this occurs, but the cited paper does not contain the 
purported example.) 
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The history of the variational complex and, in particular, the inverse 
problem in the calculus of variations is quite interesting. Helmholtz, [1], 
first proposed the problem of determining which systems of differential 
equations are the Euler-Lagrange equations for some variational problem 
and found necessary conditions in the case of a single second order ordinary 
differential equation. Mayer, [1], generalized Helmholtz' conditions to the 
case of first order Lagrangians involving one independent variable and 
several dependent variables, and also proved they sufficed to guarantee the 
existence of a suitable functional. In two incisive papers on this subject 
Hirsch, [1], [2], extended these results to the cases of higher order 
Lagrangians involving either one independent and several dependent vari
ables, or two or three independent and one dependent variable. Hirsch's 
papers also include further results on what order derivatives can appear in 
the Lagrangian, as well as the "multiplier problem": when can one multiply 
a differential equation by a differential function so as to make it an Euler
Lagrange equation? However, the general self-adjointness condition and 
the homotopy formula (5.85) were independently discovered by Volterra, 
[1; pp. 43, 48]; see also Vainberg, [1], for a modem version. The next major 
work on the inverse problem was the profound paper of Douglas, [1], in 
which he states and solves the problem of determining when a system of 
two second order ordinary differential equations is equivalent to the Euler
Lagrange equations for some functional depending on at most first order 
derivatives of the dependent variables; the complexity of his solution no 
doubt hindered further researches in this direction. Further recent work on 
this more difficult version of the inverse problem-when a system of differen
tial equations is equivalent to a system of Euler-Lagrange equations-can 
be found in Anderson and Duchamp, [2], and Henneaux, [1]. The general 
case, however, remains unsolved to this day. See also Atherton and Homsy, 
[1], for further references on the inverse problem. 

In the early 1970's, the inverse problem was seen to be part of a much 
larger machine-the variational complex and, more generally, the vari
ational bicomplex-which has evolved into a pre-eminent position of the 
geometric theory of the calculus of variations. Intimations of this machinery 
can be found in Dedecker's work, [1], on the applications of algebraic 
topology to the calculus of variations. This complex first appears explicitly 
in the work of Vinogradov, [1], where deep methods from algebraic topology 
are used to prove exactness. A closely related complex appears in contem
poraneous work of Tulczyjew, [1], [2]. Further developments are to be 
found in Kupershmidt, [1], Takens, [1], Anderson and Duchamp, [1] and 
Tsujishita, [1]. (A different complex including the solution to the inverse 
problem can be found in Olver and Shakiban, [1], and Shakiban, [1].) The 
formal variational calculus methods used in the development of this complex 
presented in Section 5.4, and in particular the abstract definition of a 
functional, owes much to the work of Gel'fand and Dikii, [1], [2], on the 
Korteweg-de Vries equation. Further developments of this complex can be 
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found in the comprehensive papers of Vinogradov, [2], [3], [4], and in 
Olver, [4]. The new proof of exactness of the variational complex presented 
here was discovered by I. Anderson; the homotopy operators (5.109) serve 
to considerably simplify the earlier computational proofs of exactness of 
the D-complex of Takens, [1], and Anderson and Duchamp, [1]. The higher 
order Euler operators themselves first appeared in work of Kruskal, Miura, 
Gardner and Zabusky, [1], on the Korteweg-de Vries equation, and were 
subsequently developed by Aldersley, [1], Galindo and Martinez-Alonso, 
[1], and Olver, [3]. The present presentation is due to I. Anderson. It is 
hoped that these methods will inspire further research in the geometric 
theory of the calculus of variations. 

EXERCISES 

5.1. Prove that the full symmetry group of the Kepler problem in IR\ including 
those symmetries giving the Runge-Lenz vector, is locally isomorphic to the 
group SO(3,1) of "rotations" in 1R4 preserving the Lorentz metric (dXl)2+ 
(dX2)2+(dx3)2_(dx4)2. (Goldstein, [1; p. 422]). 

*5.2. The Schrodinger equation for a hydrogen atom is the quantized version of 
the Kepler problem and takes the form 

~u + Ixr1u = Au, 

where A is a constant, x E 1R3 and u E IR. 
(a) Find the geometrical symmetries of this equation for different values of A. 
(b) Prove that the "Runge-Lenz vector" 

Q[u] = (x XV) xVu -V x(x xVu)+2Ixl-1xu 

provides three second order generalized symmetries, their characteristics 
being the three components of Q. Further show that these symmetries are 
not derivable from the first order symmetries of the equation coming from 
the evolutionary forms of the geometrical symmetries of part (a). 

(Miller, [2; p.376], Kalnins, Miller and Winternitz, [1]) 

*5.3. Prove that the system 

has only one nontrivial generalized symmetry, namely, 

l' = (uxxx + 3vvx )a u + 4vxxxav. 

(Ibragimov and Shabat, [1]) 

5.4. Suppose P( u, ux ) = p( u) Ux + fi( u) and Q( u) = q( u) are polynomials. Prove 
that the generalized vector fields l'p and l'Q commute if and only if p is a 
constant and either fi = 0 or q = O. (This is the last remaining special case 
required to prove Theorem 5.22.) 

5.5. Let ~ be a linear system of differential equations and g; a linear recursion 
operator. Prove that whenever u = f(x) is a solution to ~, so is Ii = g;f(x). 
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How is exp( tr!iJ) u = u + tr!iJu + ... related to the flow generated by the symmetry 
with characteristic r!iJu? Does this result generalize to recursion operators for 
nonlinear systems? 

5.6. Let u, = r!iJu be a linear evolution equation and (,lJu)a u a linear symmetry. 
Prove that (g'*u)a u is a linear symmetry of the adjoint equation u, = -r!iJ*u. 

5.7. Prove that, under appropriate existence and uniqueness assumptions, two 
evolutionary vector fields commute, [vQ' v R] = 0, if and only if their one
parameter groups exp(evQ), exp(E"vR) commute. Interpret. 

5.8. An alternative approach to the definition of the flow associated with a general
ized vector field v = L giax ; + L ¢"au' would be as follows. Consider the infinite 
prolongation (5.3), and write down the infinite system of ordinary differential 
equations 

dur J 
--=¢". 
dE 

Define the flow of v on the infinite jet space to be the solution of this system 
with given initial values (x, u(oo») = (x\ u", un: 

exp[ E pr v](x, u(OO») = (x( E), u(oo)( E»). 

For the "heat vector field" v = uxxau, compare this method with the evolutionary 
method (5.18) in the case of analytic initial data. Does this carry over to more 
general vector fields? (Anderson and Ibragimov, [1]). 

5.9. (a) What happens if one applies the recursion operators for Burgers' equation 
to the symmetry with characteristic p(x, t) e- u, p a solution to the heat 
equation? 

(b) How are the recursion operators for Burgers' equation and the heat 
equation related through the Hopf-Cole transformation of Example 2.42? 

5.10. (a) Prove that the nonlinear diffusion equation u, = Dx(u-2ux) admits the 
recursion operator f1l = D; . u- I D-;I. How is this related to Exercise 
2.22(d)? 

(b) Prove that a general nonlinear diffusion equation u, = Dx (K (u) ux) admits 
generalized symmetries if and only if K is either constant or a mUltiple 
of (U+C)-2. (Bluman and Kumei, [1]). 

5.11. The modified Korteweg-de Vries equation is u, = Uxxx + u2ux. 
(a) Compute the geometrical symmetry group of this equation. 
(b) Prove that the operator f1l = D;+~U2+~uxD~1 . u is a recursion operator. 

(The last summand is the operator that takes a differential function, 
multiplies it by u, then takes D-;I (if possible) and finally mUltiplies the 
result by ~ux') What are the first few generalized symmetries of this 
equation? 

(c) Let Vx = u, so v will be a solution of the "potential modified Korteweg-de 
Vries equation" v, = Vxxx +tv!. Find a recursion operator for this equation. 

(d) Prove that if u is any solution to the modified Korteweg-de Vries equation, 
then its Miura transformation w = u2+Hu, is a solution to the 
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Korteweg-de Vries equation. How do the symmetries and recursion 
operators of these ·two equations match up? (Miura, [1], Olver, [1]). 

*5.12. Prove that the operator £n = V; + u; - uxV;l . Uxx is a recursion operator for 
the sine-Gordon equation ux , = sin u. (Hint: In (5.42), ~ = £n*.) What are 
some generalized symmetries? Can you relate them to those of the potential 
modified Korteweg-de Vries equation in the previous example? (Hint: Try 
scaling v.) (Olver, [1]). 

5.13. Discuss the conservation laws and linear recursion operators for the following 
linear equations: 
(a) The telegraph equation u" = Uxx + u. (See Exercise 2.9.) 
(b) The axially symmetric wave equation u,,-uxx+(u/x)=O. (See Exercise 

3.1.) 

*5.14. Discuss the symmetries and conservation laws of the Helmholtz equation 
/lu+Au=O, xE1R3. 

**5.15. Discuss the generalized symmetries of Maxwell's equations. (See Exercise 
2.16.) What about conservation laws? (Fushchich and Nikitin, [1]). 

*5.16. (a) Derive the conservation laws for the two-dimensional wave equation listed 
in Example 5.47. Compare the direct method with the method from 
Example 5.49. Continue the list to find new second order conserved 
densities for the wave equation. 

(b) Let x E IRP, t E IR, u E IRq, and consider an autonomous system of partial 
differential equations /lex, U(n» = 0 involving u and its x and t derivatives 
in which t does not explicitly appear. Prove that if T(x, t, u(m» is a 
conserved density, so are the partial derivatives aT / at, a2 T / a t2, etc. Use 
this result to check your work in part (a). 

5.17. (a) Let u, = f'iJu be a linear evolution equation. Prove that J q(x, t)u dx is 
conserved if and only if q(x, t) is a solution to the adjoint equation 
q, =-f'iJ*q. 

(b) Prove that if q(x, t)=(x-2tax)m(l), then J q(x, t)udx is a conservation 
law for the heat equation u, = Uxx• What does this imply about the time 
evolution of the moment J xmu(x, t) dx when u is a solution to the heat 
equation? 

(c) Do the same as part (b) for the Fokker-Planck equation of Exercise 2.8. 
(Steinberg and Wolf, [1]). 

5.18. Try to generalize Example 5.34 by discussing the validity of the following 
statement: If u, = P(x, u, ... , u2m ) is an evolution equation in only one spatial 
variable and aP / aU2m 7J! 0, then the only nontrivial conservation laws have 
characteristics independent of u and its derivatives. 

5.19. Hamilton's principle in geometrical optics requires the minimization of the 
integral J! N(x)ldx/dtl dt in which X(t)EIR3, N(x) is the optical index of the 
material and 1·1 is the usual length on 1R3. What are the Euler-Lagrange 
equations? Prove that the variational symmetries of space translations and 
rotations lead, respectively, to Snell's law in the form No = constant, where 
0= Idx/ dtl- l dx/ dt is the unit velocity vector, and the "Optical sine theorem" 
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N D X X = constant. Further, prove that the time translational symmetry leads 
to a trivial conservation law. What does this imply about the above Euler
Lagrange equations? (Baker and Tavel, [1]). 

5.20. Let P = q = 3. Prove that any functional .:t'[ u] = J L( div u) dx depending only 
on div u = Ux + vy + Wz admits an infinite-dimensional variational symmetry 
group. Discuss the consequences of Noether's second theorem in this case. 

5.21. In Kumei, [1], the author finds "new" conservation laws of the sine-Gordon 
equation UXI = sin U by starting with the elementary conservation law 

D/(!u~)+ DAcos u) = 0 

and applying generalized symmetries to it. For instance, the evolutionary 
symmetry with characteristic Q = u'" +!u~ is shown to lead to the conservation 
law 

DI [uxux", +~UXU~UXI] - DA(u", +!u~) sin u] = o. 
Prove that this conservation law is trivial! (What is its characteristic?) More 
generally, prove that any conservation law derived by this method from a 
symmetry whose characteristic does not explicitly depend on x is necessarily 
trivial. 

5.22. Let .:t'[ u] = J !u~ dx. Show that the vector field v = u"au is a variational sym
metry, but the equivalent vector field (for the Euler-Lagrange equation Ux" = 0) 
v = (ux + Uxx )au is not a variational symmetry. Thus the equivalence relation 
on symmetries does not respect the variational property. 

*5.23. Noether's Version of Noether's Theorem. A generalized vector field v will be 
called a strict variational symmetry of .:t' = J L dx if 

prv(L)+L Div t"=O, 

i.e. there is no divergence term in (5.53), as we had in our original discussion 
of variational symmetries in Chapter 4. 
(a) Prove that for each conservation law of the Euler-Lagrange equation 

E(L) = 0 there is a corresponding strict variational symmetry which gives 
rise to it via Noether's theorem. 

(b) Prove that such a strict variational symmetry is unique up to addition of 
a null divergence in the sense that v = L t"i a Xi + L cf> a au·, and v = 
L iiax' + L 4>a au• are both strict variational symmetries giving rise to the 
same conservation law if and only if 

(c) What are the strict variational symmetries corresponding to the inversional 
symmetries of the wave equation? 

(Noether, [1]). 

*5.24. Prove that if the Euler-Lagrange equations E(L) = 0 admit a trivial conservation 
law corresponding to a nontrivial variational symmetry, then they are 
necessarily under-determined and admit an infinite family of such laws. 
(Compare Exercise 5.19.) 
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5.25. Let ft'[u] = J L[u] dx be a functional, and let v generate a one-parameter 
(generalized) group which does not leave ft' invariant but rather multiplies it 
by a scalar factor. (For example, the scaling symmetries for the wave equation 
are of this type.) Prove that there is a divergence identity of the form Div P[ u] = 

L[u] which holds whenever u is a solution of the Euler-Lagrange equations 
E(L) = O. (Steudel, [2]) 

* 5.26 .. One trick used to construct variational principles for arbitrary systems of 
differential equations is the following. If ~v[u] = 0, II = 1, ... , I is the system, 
we let ft'[u] = J !1~[u]12 dx = J! L (~v[uW dx (called a "weak Lagrangian 
structure" by Anderson and Ibragimov, [1; § 14.3]). 
(a) Prove that the Euler-Lagrange equations for ft' take the form 8ft' = 

D~(~) = o. Thus solutions of ~ = 0 are solutions of the Euler-Lagrange 
equation for ft', but the converse is not true in general. What is ft' and 
8ft' in the case of the heat equation u, = uxx ? 

(b) Prove that if v Q is any generalized symmetry of ~, then one can construct 
a conservation law for ~ with characteristic D" ( Q) using the techniques 
of Noether's theorem, but the conservation law is always trivial! Thus this 
method for finding variational principles in practice leads only to trivial 
conservation laws. 

*5.27. A second method for finding variational principles for arbitrary systems of 
differential equations ~ = (~h ... , ~I) = 0 is to introduce auxiliary variables 
v = (vI, ... , Vi) and consider the problem ft'[ u, v] = J v . ~[u] dx. 
(a) Prove that the Euler-Lagrange equations for ft' are ~ = 0 and D~( v) = o. 
(b) Find variational symmetries and conservation laws for the heat equation 

u, = Uxx by this method. How does one interpret these results physically? 
(Atherton and Homsy, [1]). 

5.28. Define a pseudo-variational symmetry v to be a generalized vector field that 
satisfies (5.53) only on solutions u of the Euler-Lagrange equations. Prove 
that to every pseudo-variational symmetry of a normal variational problem 
there corresponds a conservation law, but that there is also always a true 
variational symmetry giving rise to the same law. How is the true variational 
symmetry related to the pseudo-variational symmetry? 

5.29. Let ~: siJr ~ siJs be a matrix differential operator. Prove that ~Q = 0 for all 
Q E siJr if and only if ~ = 0 is the zero operator. 

5.30. Let ~ be a scalar differential operator. 
(a) Prove that ~ is self-adjoint if and only if ~ can be written in the form 

~= L (DJ · PJ+PJ· DJ) 
#J even 

for certain differential functions PJ. 
(b) Prove that ~ is skew-adjoint if and only if 

~ = L (DJ· PJ+PJ · DJ) 
#J odd 

for certain PJ. 
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(c) In the case p = 1, prove that qj; is self-adjoint if and only if 

qj; = I D~QjD~ 
j 

for certain differential functions Qj. Does this result generalize to the case p "'" 2? 

5.31. Let p = q = 1, and let P(x, u(2n+1)) be a differential function. Prove that the 
Frechet derivative D p is skew-adjoint, D~ = -D p if and only if P is linear in 
u, ux, ••• , U2n+l' Is this true if p > I? 

*'5.32. The Substitution Principle. For subsequent applications in Chapter 7, we will 
require a slight generalization of the technical vanishing results such as those 
in Corollary 5.52 and Lemma 5.61. The basic problem is that one has an 
expression depending on one or more q-tuples of differential functions 
Q1, ••• , Qk E.riJq and, possibly, their total derivatives, with the property 
that it vanish whenever each Qj = 15El j is a variational derivative of some 
functionals Ell>"" Elk E fli. The conclusion to be drawn is that the same 
expression will vanish no matter what the Qj are, variational derivatives or 
otherwise. 

More specifically, the reader should prove the following. 
(a) Let P E.riJq be a fixed q-tuple of differential functions. Then J p. Q dx = 0 

whenever Q = 15El E.riJq is a variational derivative, if and only if P = 0, 
and hence J p. Q dx = 0 for all Q E .riJq. 

(b) Let qj;: .riJq -+ .riJ' be an r x q matrix of differential operators. Then qj;Q = 0 
whenever Q = 15El E .riJq is a variational derivative if and only if qj; = 0, and 
hence qj;Q = 0 for all Q E .riJq. 

(c) Suppose qj;: .riJq -+.riJq is a differential operator. Then J Q. qj;R dx = 0 for 
all variational derivatives Q = 15El, R = 15~ E.riJq if and only if qj; = 0, and 
hence J Q. qj;R dx = 0 for all Q, R E .riJq• 

*5.33. Let p = q = 1. Prove that if L= L(u(n») does not explicitly depend on x, then 
J UX E(L) dx = O. 'This shows that one must be careful with the above "substitu
tion principle", since the following "slight" genenilization of part (a) is not 
true: If P E .riJq, and J p. Q dx = 0 for all Q( u(n») = 15El E.riJq which do not 
depend explicitly on x, then P = O. The above (P = ux ) is a definite counter
example. Is this the only such counterexample? 

5.34. Let P( u(m») be a q-tuple of homogeneous differential functions of degree 
a ¥- -1: P( Au(m») = A a P( u(m»). Prove that P = E( L) for some Lagrangian L if 
and only if E( u . P) = (a + 1) P. Is this true if a = -I? (Olver and Shakiban, 
[1], Shakiban, [1]). 

*5.35. Prove the Helmholtz theorem 5.68 directly, without using variational forms: 
If P E .riJq has self-adjoint Frechet derivative, then P = E(L) where L is given 
by (5.85). Conversely, if P = E(L) for some L, then D p is self-adjoint. 

5.36. (a) Show that a single evolution equation U t = P[u], u E Ill, is never the 
Euler-Lagrange equation for a variational problem. Is the same true for 
systems of evolution equations? 

(b) One common trick to put a single evolution equation into variational form 
is to replace u by a potential function v with u = vx , yielding Vxt = P[ vx ]. 

Show that the Korteweg-de Vries equation becomes the Euler-Lagrange 
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equation of some functional in this way. Which of the geometrical and 
generalized symmetries of the Korteweg-de Vries equation yield conserva
tion laws via Noether's theorem? 

(c) Find necessary and sufficient conditions on P that the trick of part (b) 
yields an Euler-Lagrange equation. 

(d) A second trick to convert such an evolution equation is to just differentiate 
with respect to x: Uxt = DxP[u]. Prove that this yields an Euler-Lagrange 
equation if and only if DxP depends only on x, u~, Uu. ... (not u), and 
the equation is equivalent to an evolution equation W t = Q[ w], W = Ux 

for which the trick in part (b) is applicable. 

*5.37. (a) Prove that if Q(x, u(n) is any system of differential functions which satisfies 
the Helmholtz conditions DQ = Dt>, and peA, x, u(m) anyone-parameter 
family of q-tuples of differential functions such that 

P(O, x, u(m) = I(x), P(1, x, u(m) = u 

for some fixed I(x), then 

L = L :~ . Q(x, p(n) dA 

is a Lagrangian for Q: E (L) = Q. 
(b) This method is useful for finding variational principles for systems of 

differential equations not defined on the entire jet space M(n). For example, 
let p=q=l, Q=U:;2uxx +UyY' and use P(A)=(1-A)x+Au to find a 
variational principle for Q. Why does the classical construction (5.85) 
break down in this case? (Horndeski, [1]). 

*5.38. Given a differential equation A[ u] = 0, the multiplier problem of the calculus 
of variations is to determine a nonvanishing differential function Q[ u] and 
that 0 = Q. A = E(L) is the Euler-Lagrange equation for some variational 
problem. 
(a) Prove that if A[u] = Uxx - H(x, u, ux ) is a second order ordinary differential 

equation, then Q(x, u, ux ) is such a multiplier if and only if Q satisfies 
the partial differential equation 

aQ + ux aQ+~(QH)=O. 
ax au aux 

Conclude that any second order ordinary differential equation is always 
locally equivalent to an Euler-Lagrange equation of some first order 
variational problem. (See Exercises 4.8 and 4.9.) 

(b) Find all mUltipliers and corresponding variational problems for the 
equation Uxx - Ux = O. 

(c) Discuss the case of a higher order differential equation. (Hirsch, [1]; see 
Douglas, [1], for generalizations to systems of ordinary differential 
equations and Anderson and Duchamp, [2], for second order partial 
differential equations.) 

**5.39. Here we generalize the formulae in Theorem 4.8 for the action of the Euler 
operator under a change of variables, where now the new variables can depend 
on derivatives of the old variables. Let x = (Xl, ... , x P ), u = (u l , ... , uq ) be 
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the original variables and ~[u] = J L(x, u(n» dx be a variational problem with 
Euler-Lagrange expressions E(L). Suppose y = (yl, ... ,yP) and w = 

(Wi, ... , wq ) are new variables, with x = P(y, w(m», u = Q(y, w(m» for certain 
differential functions P E .s4P, Q E .s4q• Let 2[ w] = J i(y, w(l) dy be the corre
sponding variational problem. Prove that 

E .(i) = ~ D(Ph ···, PP' QIl) E (L) 
w L.. D( I P "') u~ • 

1l=1 X, ••• ,X,W 

Here the coefficient of Eu~ is a differential operator, given by a determinantal 
formula 

in which 

D(Ph ···, PP' QIl) 
D(x\ . .. , x P, w"') 

aP 
D -~-D P,'" -L.. a '" J 

J UJ 

is the Frechet derivative of P with respect to u"', D~,,,, its adjoint, and in the 
expansion of the determinant, the differential operators are written first in any 
product. For example, 

D(P, Q) (R) = det( DxP D~)R = D* (D p. R) - D*(D Q. R). 
D(x, u) DxQ D~ Q x P x 

Discuss how (4.7) is a special case. Try some specific examples, e.g. x = y, 
u = wx , to see how this works in practice. 

5.40. An n-th order divergence is a differential function P[u] such that 

P= L DIQI 
#I=n 

for certain differential functions QI' For example, 

UxxUyy - U;y = D;( -!u~) + DxDy(uxuy) + D~( -!u;) 

is a second order divergence. 

(a) Prove that P is an n-th order divergence if and only if E~(P) = 0 for all 
a = 1, ... , q, 0 ... #1 ... n -1. (See Corollary 5.76.) 

(b) Show that 

is a second order divergence, and 

is a third order divergence. Can you generalize this result? (Olver, [6]). 

*5.41. Suppose d[U] = 0 is a homogeneous system of differential equations in the 
sense that d[Au] = A'" d[U] for all A E IR, where a is the degree of homogeneity. 
Prove that if Div P = 0 is a conservation law with trivial characteristic for such 
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a system, then P itself is a trivial conservation law. (Hint: First reduce to the 
case of a homogeneous conservation law P[Au] = All P[ u]. Use the homotopy 
formula (5.113) to reconstruct P from the characteristic form Div P = Q. Il, 
where Q = 0 whenever Il = 0, Q homogeneous.) (Olver, [11]). 

5.42. (a) If .:t'[u] = I L[u] dx is a functional, and vQ an evolutionary vector field, 
prove that the prolonged action 

prvQ(.:t')= f prvQ(L)dx 

gives a well-defined map on the space BF of functionals. 
(b) Prove that the action is effective, i.e. prvQ(.:t') =0 for all .:t'E BF if and 

only if Q = o. Similarly prove that pr vQ(.:t') = 0 for all Q E d q if and only 
if .:t' = 0 in BF. 

(c) Generalize this to define the Lie derivative of a functional form with 
respect to an evolutionary vector field. Prove a homotopy formula gen
eralizing (1.66) or (5.84) to functional forms. 

5.43. Let W be a vertical k-form and vQ an evolutionary vector field with flow 
exp(evQ) determined by (5.14). Define a suitable action exp(evQ)*w of this 
flow on w anq prove the Lie derivative formula 

(As always, assume existence and uniqueness for the relevant initial value 
problem.) Can the same be done if we use the definition of Exercise 5.8 for 
the flow generated by v Q ? 



CHAPTER 6 

Finite-Dimensional 
Hamiltonian Systems 

The guiding concept of a Hamiltonian system of differential equations forms 
the basis of much of the more advanced work in classical mechanics, 
including motion of rigid bodies, celestial mechanics, quantization theory 
and so on. More recently, Hamiltonian methods have become increasingly 
important in the study of the equations of continuum mechanics, including 
fluids, plasmas and elastic media. In this book, we are concerned with just 
one aspect of this vast subject, namely the interplay between symmetry 
groups, conservation laws and reduction in order for systems in Hamiltonian 
form. The Hamiltonian version of Noether's theorem has a particularly 
attractive geometrical flavour, which remains somewhat masked in our 
previous Lagrangian framework. 

No previous knowledge of Hamiltonian mechanics will be assumed, so 
our first order of business will be to make precise the concept of a Hamil
tonian system of differential equations. In this chapter, we concentrate on 
the more familiar, and conceptually easier case of systems of ordinary 
differential equations. Once we have mastered these, the generalizations to 
systems of evolution equations to be taken up in Chapter 7 will be quite 
natural. There are, at the outset, several different approaches to Hamiltonian 
mechanics, and that adopted here is slightly novel. It is important to realize 
the necessity of a coordinate-free treatment of "Hamiltonian structures" 
which does not assume the introduction of special canonical coordinates 
(the p's and q's of the elementary classical mechanics texts). Admittedly, 
one always has the temptation to simplify matters as much as possible, and, 
for finite-dimensional systems of constant rank, Darboux' theorem says that 
we could, if desired, always introduce such coordinates, with the attendant 
simplification in the formulae, but this may not always be the most natural 
or straightforward approach to the problem. Besides, in the infinite-
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dimensional version of this theory to be discussed later, such a result is no 
longer available; hence, if we are to receive a proper grounding in the 
finite-dimensional theory to make the ascension to infinite dimensions and 
evolution equations, we must cast aside the crutch of canonical coordinates 
and approach the Hamiltonian structure from a more intrinsic standpoint. 

Even so, there are still several coordinate-free approaches to Hamiltonian 
mechanics. The one that requires the least preparatory work in differential 
geometric foundations concentrates on the Poisson bracket as the funda
mental object of study. This has the advantage of avoiding differential forms 
almost entirely, and proceeding directly to the heart of the subject. In 
addition, the Poisson bracket approach admits Hamiltonian structures of 
varying rank (in a sense to be defined shortly), which have proved important 
in recent work on collective motion and stability. It includes as an important 
special case the Lie-Poisson bracket on the dual to a Lie algebra which 
plays a key role in representation theory and geometric quantization, as 
well as providing the theoretical basis for the general theory of reduction 
of Hamiltonian systems with symmetry. 

6.1. Poisson Brackets 

Given a smooth manifold M, a Poisson bracket on M assigns to each pair 
of smooth, real-valued functions F, H: M ~ IR another smooth, real-valued 
function, which we denote by {F, H}. There are certain basic properties 
that such a bracket operation must satisfy in order to qualify as a Poisson 
bracket. We state these properties initially in the simple, coordinate-free 
manner. Subsequently, local coordinate versions will be found, which, 
especially if M is an open subs~t of some Euclidean space, could equally 
well be taken as the defining properties for a Poisson bracket. 

Definition 6.1. A Poisson bracket on a smooth manifold M is an operation 
that assigns a smooth real-valued function {F, H} on M to each pair F, H 
of smooth, real-valued functions, with the basic properties: 

(a) Bilinearity: 

{cF+ c'P, H} = c{F, H}+ c'{P, H}, {F, cH + c' P} = c{F, H}+ c'{F, P}, 

for constants c, c' E IR, 

(b) Skew-Symmetry: 

{F, H} = -{H, F}, 

(c) Jacobi Identity: 

{{F, H}, P}+{{P, F}, H}+{{H, P}, F} = 0, 
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(d) Leibniz' Rule: 

{F, H· P}={F, H}' P+H· {F, Pl. 

(Here . denotes the ordinary mUltiplication of real-valued functions.) In 
all these equations, F, Hand P are arbitrary smooth real-valued functions 
on M. 

A manifold M with a Poisson bracket is called a Poisson manifold, the 
bracket defining a Poisson structure on M. The notion of a Poisson manifold 
is slightly more general than that of a symplectic manifold, or manifold 
with Hamiltonian structure; in particular, the underlying manifold M need 
not be even-dimensional. This is borne out by the standard examples from 
classical mechanics. 

Example 6.2. Let M be the even-dImensional Euclidean space 1R2" with 
coordinates (p, q) = (p\ ... ,p", q\ ... ,q"). (In physical problems, the p's 
represent momenta and the q's positions of the mechanical objects.) If 
F(p, q) and H(p, q) are smooth functions, we define their Poisson bracket 
to be the function 

" {aF aH aF aH} 
{F, H}=.I -a j -a j--a j -a j • 

.=1 q P P q 
(6.1) 

This bracket is clearly bilinear and skew-symmetric; the verifications of the 
Jacobi identity and the Leibniz rule are straightforward exercises in vector 
calculus which we leave to the reader. We note the particular bracket 
identities 

(6.2) 

in which i and j run from 1 to n, and 8J is the Kronecker symbol, which 
is 1 if i = j and 0 otherwise. (In (6.2) we are viewing the coordinates 
themselves as functions on M.) 

More generally, we can determine a Poisson bracket on any Euclidean 
space M = IRm. Just let (p, q, z) = (p\ ... , p", q\ ... , q", z\ ... , Zl) be the 
coordinates, so 2n + I = m, and define the Poisson bracket between two 
functions F(p, q, z), H(p, q, z) by the same formula (6.1). In particular, if 
the function F(z) depends on the z's only, then {F, H} = 0 for all functions 
H. Such functions, in particular the Zk'S themselves, are known as distin
guished functions or Casimir functions and are characterized by the property 
that their Poisson bracket with any other function is always zero. We must 
supplement the basic coordinate bracket relations (6.2) by the additional 
relations 

(6.3) 

for all i = I, ... , n, and j, k = 1, ... , I. Although this example appears to be 
somewhat special, Darboux' Theorem 6.22 will show that locally, except at 
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singular points, every Poisson bracket looks like this. We therefore call (6.1) 
the canonical Poisson bracket. 

Definition 6.3. Let M be a Poisson manifold. A smooth, real-valued function 
c: M ~ IR is called a distinguished function if the Poisson bracket of C with 
any other real-valued function vanishes identically, i.e. {C, H} = 0 for all 
H: M~IR. 

In the case of the canonical Poisson bracket (6.1) on 1R2n, the only 
distinguished functions are the constants, which always satisfy the require
ments of the definition. At the other extreme, if the Poisson bracket is 
completely trivial, i.e. {F, H} = 0 for every F, H, then every function is 
distinguished. 

Hamiltonian Vector Fields 

Let M be a Poisson manifold, so the Poisson bracket satisfies the basic 
requirements of Definition 6.1. Concentrating for the moment on just the 
bilinearity and Leibniz rule, note that given a smooth function H on M, 
the map F~{F, H} defines a derivation on the space of smooth functions 
F on M, and hence by (1.20), (1.21) determines a vector field on M. This 
observation leads to a fundamental definition. 

Definition 6.4. Let M be a Poisson manifold and H: M ~ IR a smooth 
function. The Hamiltonian vector field associated with H is the unique 
smooth vector field VH on M satisfying 

vH(F) = {F, H} = -{H, F} (6.4) 

for every smooth function F: M ~ IR. The equations governing the flow of 
v H are referred to as Hamilton's equations for the "Hamiltonian" function H. 

Example 6.S. In the case of the canonical Poisson bracket (6.1) on IR m , 

m = 2n + I, the Hamiltonian vector field corresponding to H (p, q, z) is 
clearly 

(6.5) 

The corresponding flow is obtained by integrating the system of ordinary 
differential equations 

dqi=aH 
dt api' 

dz j 

-=0 
dt ' 

i = 1, ... , n, 

j = 1, ... , I, 

(6.6) 

(6.7) 
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which are Hamilton's equations in this case. In the nondegenerate case 
m = 2n, we have just (6.6), which is the canonical form of Hamilton's 
equations in classical mechanics. More generally, (6.7) just adds in the 
constancy of the distinguished coordinates zj under the flow. In particular, 
if H depends only on the distinguished coordinates z, its Hamiltonian flow 
is completely trivial. This remark holds in general: A function C on a 
Poisson manifold is distinguished if and only if its Hamiltonian vector field 
v c = 0 vanishes everywhere. 

There is a fundamental connection between the Poisson bracket of two 
functions and the Lie bracket of their associated Hamiltonian vector fields, 
which forms the basis of much of the theory of Hamiltonian systems. 

Proposition 6.6. Let M be a Poisson manifold. Let F, H: M -i> IR be smooth 
functions with corresponding Hamiltonian vector fields v F, v H' The Hamiltonian 
vector field associated with the Poisson bracket of F and H is, up to sign, the 
Lie bracket of the two Hamiltonian vector fields: 

(6.8) 

PROOF. Let P: M -i> IR be any other smooth function. Using the commutator 
definition of the Lie bracket, we find 

= {{P, F}, H}-{{P, H}, F} 

= {P, {F, H}} 

where we have made use of the Jacobi identity, the skew-symmetry of the 
Poisson bracket, and the definition (6.4) of a Hamiltonian vector field. Since 
P is arbitrary, this suffices to prove (6.8). 0 

Example 6.7. Let M=1R2 with coordinates (p, q) and canonical Poisson 
bracket {F, H} = FqHp - FpHq. For a function H(p, q), the corresponding 
Hamiltonian vector field is v H = Hpaq - Hqa p• Thus for H = 4( p2 + q2) we 
have VH = paq - qap, whereas for F = pq, VF = qaq - pap. The Poisson bracket 
of F and H is {F, H} = p2 - q2, which has Hamiltonian vector field V{F,H} = 
2paq+2qap- This agrees with the commutator [VH' VF], as the reader can 
verify. 
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The Structure Functions 

To determine the general local coordinate picture for a Poisson manifold, 
we first look at the Hamiltonian vector fields. Let x = (Xl, ... , xm) be local 
coordinates on M and H(x) a real-valued function. The associated Hamil
tonian vector field will be of the general form VH = L~=I ~i(X) al ax i, where 
the coefficient functions ~i(X), which depend on H, are to be determined. 
Let F(x) be a second smooth function. Using (6.4), we find 

But, again by (6.4), 

so this formula becomes 

m . aF 
{F, H} = L {Xl, H}-i. 

i=1 ax 
(6.9) 

On the other hand, using the skew-symmetry of the Poisson bracket, we 
can turn this whole procedure around and compute the latter set of Poisson 
brackets in terms of the particular Hamiltonian vector fields Vi = V x; associ
ated with the local coordinate functions Xi; namely 

{ i } _ { i} _ A ( ) _ ~ {j i} aH x, H - - H, x - -Vi H - - f.., x, x j' 
j=1 ax 

the last equality following from a second application of (6.9), with H 
replacing F and Xi replacing H. Thus we obtain the basic formula 

m m . . aF aH 
{F, H} = L L {Xl, XJ}-i -j 

i=1 j=1 ax ax 
( 6.10) 

for the Poisson bracket. In other words, to compute the Poisson bracket of 
any pair of functions in some given set of local coordinates, it suffices to 
know the Poisson brackets between the coordinate functions themselves. 
These basic brackets, 

i,j = 1, ... , m, ( 6.11) 

are called the structure functions of the Poisson manifold M relative to the 
given local coordinates, and serve to uniquely determine the Poisson struc
ture itself. For convenience, we assemble the structure functions into a 
skew-symmetric m x m matrix J(x), called the structure matrix of M. Using 
V H to denote the (column) gradient vector for H, the local coordinate form 
(6.10) for the Poisson bracket takes the form 

{F, H}=VF' lVH. ( 6.12) 



384 6. Finite-Dimensional Hamiltonian Systems 

For example, in the case of the canonical bracket (6.1) on IR m, m = 2n + I, 
the structure matrix has the simple form 

(
0 -I 0) 

J= I 0 0 
000 

relative to the (p, q, z )-coordinates, where I is the n x n identity matrix. 
The Hamiltonian vector field associated with H(x) has the form 

m (m .. aH a ) VH = L L j"(x)-j -i , 
i=1 j=1 ax ax 

(6.13) 

or, in matrix notation, VH = (JV H) . ax, ax being the "vector" with entries 
a/ax i. Therefore, in the given coordinate chart, Hamilton's equations take 
the formt 

dx 
dt = J(x)V H(x). 

Alternatively, using (6.9), we could write this in the "bracket form" 

dx 
dt = {x, H}, 

(6.14) 

the i-th component of the right-hand side being {x\ H}. Any system of first 
order ordinary differential equations is said to be a Hamiltonian system if 
there is a Hamiltonian function H(x) and a matrix of functions J(x) 
determining a Poisson bracket (6.13) whereby the system takes the form 
(6.14). Of course, we need to know which matrices J(x) are the structure 
matrices for Poisson brackets. 

Proposition 6.S. Let J(x) = (Jij(x» be an m x m matrix of functions of x = 
(x\ ... , xm) defined over an open subset Me IRm. Then J(x) is the structure 
matrix for a Poisson bracket {F, H} = V F· JV Hover M if and only if it has 
the properties of: 

(a) Skew-Symmetry: 

i,j = 1, ... , m, 

(b) Jacobi Identity: 

I {Jila,Jjk+Jk'a,fj+Jjla,Jki}=O, 
'=1 

for all x EM. (Here, as usual, a, = a/ ax'.) 

i,j, k = 1, ... , m, (6.15) 

t More generally, we can allow H(x, t) to depend on t as well, which leads to a time-dependent 
Hamiltonian vector field; see Section 6.3. 
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PROOF. In its basic form (6.12) the Poisson bracket is automatically bilinear 
and satisfies Leibniz' rule. The skew-symmetry of the structure matrix is 
clearly equivalent to the skew-symmetry of the bracket. Thus we need only 
verify the equivalence of (6.15) with the Jacobi identity. Note that by (6.10), 
(6.11) 

{{Xi, x j}, Xk} = I fk(x)aIJij(x), 
1=1 

so (6.15) is equvalent to the Jacobi identity for the coordinate functions x\ 
x j and Xk. More generally, for F, H, P: M ~ IR, 

{{F, H}, P} = I fk-;{ I Jij a~ a~} a~ 
k,1=1 ax i,j=1 ax ax ax 

L {fkafj aF aH aP 
i,j,k,1 axl axi ax j axk 

Summing cyclically on F, H, P, we find that the first set of terms vanishes 
by virtue of (6.15), while the remaining terms cancel due to the skew
symmetry of the structure matrix. 0 

Note that we could just as well take the requirements of Proposition 6.8 
on the structure matrix as the definition of a Poisson bracket (6.12) in a 
local coordinate chart. The conditions (6.15) guaranteeing the Jacobi iden
tity form a large system of nonlinear partial differential equations which 
the structure functions must satisfy. In particular, any constant skew
symmetric matrix J trivially satisfies (6.15) and thus determines a Poisson 
bracket. 

The Lie- Poisson Structure 

One of the most important examples of a Poisson structure is that associated 
with an r-dimensional Lie algebra g. Let ct, i,j, k = 1, ... , r, be the structure 
constants of 9 relative to a basis {VI> •.. , vr }. Let V be another r-dimensional 
vector space, with coordinates x = (Xl, ... ,xr) determined by a basis 
{WI>"" w r }. Define the Lie-Poisson bracket between two functions 
F, H: V ~ IR to be 

k k aF aH 
{F, H}= L cijx -. - .. 

i,j,k=1 ax' ax] 
( 6.16) 

This clearly takes the form (6.10) with linear structure functions fj(x) = 
L~=I ctxk. The verification of the properties of Proposition 6.8 for the 
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structure matrix follows easily from the basic properties (1.43), (1.44) of 
the structure constants; in particular, (6.15) reduces to the Jacobi identity 
(1.44), as the reader can easily verify .. 

There is a more intrinsic characterization of the Lie-Poisson bracket. 
First, recall that if V is any vector space and F: V ~ IR a smooth, real-valued 
function, then the gradient V F(x) at any point x E V is naturally an element 
of the dual vector space V* consisting of all (continuous) linear functions 
on V. Indeed, by definition, 

(V F(x);y) = lim F(x+ ey) - F(x) 
£-+0 E 

for any y E V, where ( ; ) is the natural pairing between V and its dual V*. 
Keeping this in mind, we identify the vector space V used in our initial 
construction of the Lie-Poisson bracket with the dual space g* to the Lie 
algebra g, {WI> ... , wr } being the dual basis to {VI> ... , vr }. If F: g* ~ IR is any 
smooth function, then its gradient V F(x) is an element of (g*)* = 9 (since 
9 is finite-dimensional). Then the Lie-Poisson bracket has the coordinate
free form 

{F, H}(x) = (x;[V F(x), V H(x)]), xEg*, ( 6.17) 

where [ , ] is the ordinary Lie bracket on the Lie algebra 9 itself; the proof 
is left to the reader. If H: 9 ~ IR is any function, the associated system of 
Hamilton's equations takes the form 

dx i = ± CkXk aH 
dt j.k~1 I) ax)' 

i = 1, ... , r, 

in which the coordinates Xk themselves appear explicitly. 

Example 6.9. Consider the three-dimensional Lie algebra 50(3) of the rota
tion group SO(3). Using the basis VI = ya z - zay , V2 = zax - xa" V3 = xay - yax 

of infinitesimal rotations around the X-, y- and z-axes of 1R3 (or their matrix 
counterparts), we have the commutation relations [VI> V2] = -V3, [V3' VI] = 
-V2, [V2' V3] = -VI' Let WI> W2, W3 be a dual basis for 50(3)* = 1R3 and u = 

UIWI + U2W2+ U3W3 a typical point therein. If F: 50(3)* ~ IR, then its gradient 
is the vector 

aF aF aF 
V F=-lvI +-2V2+-3V3E50(3). 

au au au 

Thus from (6.17) we find the Lie-Poisson bracket on 50(3)* to be 

{F H} = u l (aF aH _ aF aH) + u2( aF aH _ aF aH) 
, au3 au2 au2 au3 au I au3 au3 au I 

3( aF aH aF aH) 
+ u au2 aul- aul au2 

=-u·VFxVH, 
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using the standard cross product on /R3• Thus the structure matrix is 

J(U)=( ~3 
_u 2 

o uEso(3)*. 

Hamilton's equations corresponding to the Hamiltonian function H(u) are 
therefore 

du 
dt = u xV H(u). 

For example, if 

where It. 12 , 13 are certain constants, then Hamilton's equations become the 
Euler equations for the motion of a rigid body 

( 6.18) 

in which (It. 12, 13 ) are the moments of inertia about the coordinate axes 
and u\ u2 , u3 the corresponding body angular momenta. (The angular 
velocities are Wi = uij h) The Hamiltonian function is the kinetic energy of 
the body. 

6.2. Symplectic Structures and Foliations 

In order to gain a more complete understanding of the geometry underlying 
a general Poisson structure on a smooth manifold, we need to look more 
closely at the structure matrix J(x) which determines the local coordinate 
form of the Poisson bracket. The most important invariant of this matrix 
is its rank. If the rank is maximal everywhere, then, as we will see, we are 
in the more standard situation of a "symplectic structure" on a smooth 
manifold, treated in most books on Hamiltonian mechanics. In the more 
general case of nonmaximal rank, the Poisson manifold M will be seen to 
be naturally foliated into symplectic submanifolds in such a way that any 
Hamiltonian system on M naturally restricts to anyone of the symplectic 
submanifolds and hence, by restriction, returns us to the more classical case 
of Hamiltonian mechanics. However, for many problems it is more natural 
to remain on th~ larger Poisson manifold itself, especially when one is 
interested in the collective behaviour of systems depending on parameters, 
with the underlying symplectic structure varying with the parameters them
selves. 



388 6. Finite·Dimensional Hamiltonian Systems 

The Correspondence Between One-Forms and Vector Fields 

As we saw in the previous section, a Poisson structure on a manifold M 
sets up a correspondence between smooth functions H: M ~ IR and their 
associated Hamiltonian vector fields v H on M. In local coordinates, this 
correspondence is determined by multiplication of the gradient V H by the 
structure matrix J(x) determined by the Poisson bracket. This can be given 
a more intrinsic formulation if we recall that the coordinate-free version of 
the gradient of a real-valued function H is its differential dB. Thus the 
Poisson structure determines a correspondence between differential one
forms dH on M and their associated Hamiltonian vector fields v H, which 
in fact extends to general one-forms: 

Proposition 6.10. Let M be a Poisson manifold and x EM. Then there exists 
a unique linear map 

from the cotangent space to M at x to the corresponding tangent space, such 
that for any smooth real-valued function H: M ~ IR, 

( 6.19) 

PROOF. At any point x E M, the cotangent space T* Mix is spanned by the 
differentials {dx l , ••• , dxm} corresponding to the local coordinate functions 
near x. From (6.13), we see that at x E M 

j=1, ... , m. 

By linearity, for any w = I aj dx j E T* Mix, 

B(w)= I Jij(x)aj--;I 
i.j=1 ax x 

is essentially matrix multiplication by the structure matrix J(x), proving 
the proposition. 0 

Example 6.11. In the case of IR m with canonical coordinates (p, q, z), as in 
Example 6.2, if 

1 

W = I [aidpi + bidqi] + I Cj dz j 
i=1 j=1 

is anyone-form, then 

n {a a } B(w)= I ai-i-bi-i . 
i=1 aq ap 



6.2. Symplectic Structures and Foliations 389 

In this particular case, the form of B does not vary from point to point. In 
particular, the kernel of B has the same dimension as the number of 
distinguished cooodinates z\ ... , Zl. 

Rank of a Poisson Structure 

Definition 6.12. Let M be a Poisson manifold and x E M. The rank of M 
at x is the rank of the linear map Blx: T* Mix ~ TMlx. 

In local coordinates, Blx is the same as multiplication by the structure 
matrix J(;JC), so the rank of M at x equals the rank of J(x), independent 
of the choice of coordinates. Skew-symmetry of J immediately implies: 

Proposition 6.13. The rank of a Poisson manifold at any point is always an 
even integer. 

For example, the canonical Poisson structure (6.1) on IR m , m = 2n + I, is 
of constant rank 2n everywhere. Later we will see that every Poisson structure 
of constant rank 2n looks locally like the canonical structure of this rank. 
In the case of the Lie-Poisson structure on 50(3)*, the rank is 2 everywhere 
except at the origin u = 0, where the rank is O. 

Since the rank of a linear mapping is determined by the dimension of 
its kernel, or of its range, we can compute the rank 2n of a Poisson manifold 
at a point either by looking at JClx = {w E T* Mix: B(w) = O}, which has 
dimension m - 2n, or the image space .relx = {v = B(w) E TMlx: wE T* Mix}, 
which has dimension 2n. For instance, in the case of the canonical Poisson 
bracket (6.1), JClx is spanned by the "distinguished differentials" 
dz 1, ••• , dz l, while .relx is spanned by the elementary Hamiltonian vector 
fields a/ aqi, a/ api corresponding to the coordinate functions pi, _qi respec
tively. The image space .relx is of particular significance; it can be character
ized as the span of all the Hamiltonian 'vector fields on M at x: 

Symplectic Manifolds 

In classical mechanics, one usually imposes an additional nondegeneracy 
requirement on the Poisson bracket, which leads to the more restrictive 
notion of a symplectic structure on a manifold. 

Definition 6.14. A Poisson manifold M of dimension m is symplectic if its 
Poisson structure has maximal rank m everywhere. 
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In particular, according to Proposition 6.13, a symplectic manifold is 
necessarily even-dimensional. The canonical example is the Poisson bracket 
(6.1) on IR m in the case m = 2n, so there are no extra distinguished coordin
ates. In terms of local coordinates, a structure matrix J(x) determines a 
symplectic structure provided it satisfies the additional nondegeneracy con
dition det J(x) ¥- 0 everywhere. In this case, the complicated nonlinear 
equations (6.15) reflecting the Jacobi identity simplify to a linear system of 
differential equations involving the entries of the inverse matrix K (x) = 
[J(X)]-I. 

Proposition 6.15. A matrix J(x) determines a symplectic structure on M c: IR m 

if and only ifits inverse K(x) = [J(X)]-I satisfies the conditions: 

(a) Skew-Symmetry: 

Kij(x) = -Kji(x), 

(b) Closure (Jacobi Identity): 

everywhere. 

i,j = 1, ... , m, 

i,j, k = 1, ... , m, (6.20) 

PROOF. The equivalence of the skew-symmetry of J to that of K is elemen
tary. To prove the equivalence of (6.20) and (6.15), we use the formula for 
the derivative of a matrix inverse akK = - K· akJ· K, where K = rl. Sub
stituting into (6.20), we find 

m 

L {Kj/KjnakJ'n + KklKinajJ'n + KjIKkna;f'n} = o. 
l,n~1 

Multiplying by JiiJflJ'\ and summing over i,j, k from 1 to m, leads to 
(6.15) with a slightly different labelling of indices. 0 

Maps Between Poisson Manifolds 

If M and N are Poisson manifolds, a Poisson map is a smooth map ¢: M ~ N 
preserving the Poisson brackets: 

In the case of symplectic manifolds these are the canonical maps of classical 
mechanics. A good example is provided by the flow generated by a Hamil
tonian vector field . 

. Proposition 6.16. Let M be a Poisson manifold and VH a Hamiltonian vector 
field. For each t, the flow exp( tv H): M ~ M determines a (local) Poisson map 
from M to itself. 
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PROOF. Let F and P be real-valued functions, and let 4>, = exp(tvH)' If we 
differentiate the Poisson condition {F 04>" po 4>t} = {F, P} 04>, with respect 
to t we find the infinitesimal version 

at the point 4>t(x). By (6.4) this is the same as the Jacobi identity. At t = 0, 
4>0 is the identity, and trivially Poisson, so a simple integration proves the 
Poisson condition for general t. 0 

For example, if M = 1R2 with canonical coordinates (p, q), then the 
function H =!( p2 + q2) generates the group of rotations in the plane, deter
mined by VH = paq - qap- Thus each rotation in 1R2 is a canonical map. 

Since any Hamiltonian flow preserves the Poisson bracket on M, in 
particular it preserves its rank. 

Corollary 6.17. If VH is a Hamiltonian vector field on a Poisson manifold M, 
then the rank of Mat exp( tv H)X is the same as the rank of Mat xfor any t E R 

For instance, the origin in 50(3)*, being the only point of rank 0, is a 
fixed point of any Hamiltonian system with the given Lie-Poisson structure. 
In fact, any point of rank ° on a Poisson manifold is a fixed point for any 
Hamiltonian system there. 

Poisson Submanifolds 

Definition 6.18. A submanifold N eM is a Poisson submanifold ifits defining 
immersion 4>: IV ~ M is a Poisson map. 

An equivalent way of stating this definition is that for any pair of functions 
F, H: M ~ IR which restrict to functions ft, H: N ~ IR on N, their Poisson 
bracket {F, H} M naturally restricts to a Poisson bracket {ft, H} N. For 
example, the submanifolds {z = c} of IR m, m = 2n + I corresponding to con
stant values of the distinguished coordinates are easily seen to be Poisson 
submanifolds, with the natural reduced Poisson bracket with respect to the 
remaining coordinates (p, q). 

If N c M is an arbitrary submanifold then there is a simple test that will 
tell whether or not it can be made into a Poisson submanifold, the reduced 
Poisson structure, if it exists, being uniquely determined by the above 
remark. 

Proposition 6.19. A submanifold N of a Poisson manifold M is a Poisson 
submanifold if and only ifTNly ~ ~Iyfor all YEN, meaning every Hamiltonian 
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vector field on M is everywhere tangent to N. In particular, if TNly = Yt'ly for 
all YEN, N is a symplectic submanifold of M. 

PROOF. Since a Poisson bracket is determined by its local character, we can 
without loss of generality assume that N is a regular submanifold of M 
and use fiat local coordinates (y, w) = (y\ ... , y", w\ ... , wm -") with N = 
{(y, w): w=O}. First suppose that N is a Poisson submanifold, and let 
fI: N ~ IR be any smooth function. Then we can extend fI to a smooth 
function H: M ~ IR defined in a neighbourhood of N, with Ii = HIN. In 
our local coordinates, fI = Ii (y) and H (y, w) is any function so that 
H(y, 0) = Ii(y). If F: N ~ IR has a similar extension F, then by definition 
the Poisson bracket between F and Ii on N is obtained by restricting that 
of F and H to N: 

{F, Ii}N ={F, H}IN. 

In particular, for any choice of F, fI, the bracket {F, H}IN cannot depend 
on the particular extensions F and H which are selected. Clearly, this is 
possible if and only if {F, H}IN contains no partial derivatives of either F 
or H with respect to the normal coordinates Wi, so 

I .. aF aH -.. aF ali 
{F, H} N = I J'1(y, O)-i -. = I J'1(Y)-i - .. 

i,i ay ay} i,i ay ay} 
(6,21) 

But then the Hamiltonian vector field v H, when restricted to N, takes the form 

I - aH a vH N = I J'1(Y)-a i-a i' 
i,i Y Y 

(6.22) 

and is thus tangent to N everywhere. 
Conversely, if the tangency condition Yt'ly c TNly holds for all YEN, 

any Hamiltonian vector field, when restricted to N must be a combination 
of the tangential basis vectors ala/ only, and hence of the form (6,22). If 
F( w) depends on walone, then {F, H} =vH(F) must therefore vanish when 
restricted to N. In particular, 

{/, wi} = {w k , wi} = 0 on N for all i,j, k, 

and hence the Poisson bracket on N takes the form (6.21) in which 
jii(y) = jii(y, 0) = {y\ yi}lN. The fact that the structure functions pi(y) of 
the induced Poisson bracket on N satisfy the Jacobi identity easily follows 
from (6.15) since on restriction to N all the w-terms vanish. Thus N is a 
Poisson submanifold and the proposition is proved. Note that the rank of 
the Poisson structure on N at YEN equals the rank of the Poisson structure 
on M at the same point. 0 

Example 6.20. For the Lie-Poisson structure on 50(3)*, the subspace Yt'lu 
at u E 50(3)* is spanned by the elementary Hamiltonian vectors VI = 

u3a2 - u2a3, V2 = u 1a3 - U3al> V3 = u2al - u 1a2, (a i = al au i), corresponding to the 
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coordinate functions u\ u 2, u3 respectively. If u ~ 0, these vectors span a 
two-dimensional subspace of T 50(3)*lu, which coincides with the tangent 
space to the sphere S~ = {u: lui = p} passing through u: Yel u = Ts~lu, lui = p. 
Proposition 6.19 therefore implies that each such sphere is a symplectic 
submanifold of 50(3)*. In terms of spherical coordinates u 1 = p cos ° sin 4>, 
u 2 = p sin ° sin 4>, u3 = P cos 4> on s~, the Poisson bracket between F( 0, 4> ) 
and H (0, 4» is computed by extending them to a neighbourhood of s~, 
e.g. set F( p, 0,4» = F( 0,4», H( p, 0,4» = H( 0,4», computing the Lie
Poisson bracket {F, H}, and then restricting to s~. However, according to 
(6.10), {F, H}={O, 4>}(FeHq,-Fq,He), so we only really need compute the 
Lie-Poisson bracket between the spherical angles 0,4>: 

{O, 4>} = -u' (V uO x V u4» = -1/ p sin 4>. 

Thus 

- - -1 (aFaH aFaH) 
{F, H} = p sin 4> ao a4> - a4> ao 

is the induced Poisson bracket on S~c50(3)*. 

Thus, if N c M is a Poisson submanifold, any Hamiltonian vector field 
VH on M is everywhere tangent to N and thereby naturally restricts to a 
Hamiltonian vector field VH on N, where H = HIN is the restriction of H 
to N and we are using the induced Poisson structure on N to compute v H' 
Ifwe are only interested in solutions to the Hamiltonian system correspond
ing to H on M with initial conditions Xo in N, we can restrict to the 
Hamiltonian system corresponding to H on N without loss of information, 
thereby reducing the order of the system. In particular, as far as finding 
particular solutions of the Hamiltonian system goes, we may as well restrict 
to the minimal Poisson submanifolds of M in which the initial data lies. 
According to the next theorem, these are always symplectic submanifolds, 
so every Hamiltonian system can be reduced to one in which the Poisson 
bracket is symplectic. 

Theorem 6.21. Let M be a Poisson manifold. The system of Hamiltonian vector 
fields Ye on M is integrable, so through each point x E M there passes an 
integral submanifold N of Ye satisfying TNly = Yel y for each YEN Each 
integral submanifold is a symplectic submanifold of M, and, collectively, these 
submanifolds determine the symplectic foliation of the Poisson manifold M. 
Moreover, if H: M ~ IR is any Hamiltonian function, and x(t) = exp(tvH )xo 
any solution to the correspondin~ Hamiltonian system, with initial data Xo E N, 
then x(t) EN remains in a single integral submanifold N for all t. 

PROOF. This is a direct consequence of Hermann's infinite-dimensional 
generalization of Frobenius' Theorem 1.41. The involutiveness of Ye follows 
from the fact that the Lie bracket of two Hamiltonian vector fields is again 
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a Hamiltonian vector field, (6.8). The rank-invariance of 'Je is given in 
Corollary 6.17. 0 

Thus each Poisson manifold naturally splits into a collection of even
dimensional symplectic submanifolds-the leaves of the symplectic foli
ation. The dimension of any such leaf N equals the rank of the Poisson 
structure at any point YEN, so if M has nonconstant rank, the symplectic 
leaves will be of varying dimensions. For example, in the case of 50(3)* 
the leaves are just the spheres S~ centred at the origin together with the 
singular point u = O. Any Hamiltonian system on M naturally restricts to 
any symplectic leaf. If we are only interested in the dynamics of particular 
solutions, then, we could effectively restrict our attention to the single 
symplectic submanifold in which our solution lies. For instance, the sol
utions of the equations (6.18) of rigid body motion naturally live on the 
spheres I u I = p. 

Darboux' Theorem 

Ifwe restrict attention to the places where the Poisson structure is of constant 
rank (in particular, on the open submanifold where its rank achieves its 
maximum) the geometric picture underlying the symplectic foliation sim
plifies considerably. In fact, as with the constant rank version of Frobenius' 
Theorem 1.43, we can introduce flat local coordinates which make the 
foliation of a particularly simple, canonical form. This is the content of 
Darboux'theorem. 

Theorem 6.22. Let M be an m-dimensional Poisson manifold of constant rank 
2n:o;; m everywhere. At each Xo EM there exist canonical local coordinates 
(p,q,z)=(pl, ... ,pn,ql, ... ,qn,zl, ... ,z'), 2n+l=m, in terms of which 
the Poisson bracket takes the form 

n (aF aH aF aH) {F,H}=L -;--1-;--1--;--10' 
I~I uq up up uq 

The leaves of the symplectic foliation intersect the coordinate chart in the slices 
{Zl = C), .•• , z' = c,} determined by the distinguished coordinates z. 

PROOF. If the rank of the Poisson structure is 0 everywhere, there is nothing 
to prove. Indeed, the Poisson bracket is trivial: {F, H} == 0 for all F, H, and 
any set of local coordinates z = (Zl, ... , z'), 1 = m, satisfies the conditions 
of the theorem. Otherwise, we proceed by induction on the "half-rank" n. 

Since the rank at Xo is nonzero, we can find real-valued functions F and 
P on M whose Poisson bracket does not vanish at Xo: 
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In particular, vpl", ¥ 0, so we can use Proposition 1.29 to straighten out vp 
is a neighbourhood U of Xo and thereby find a function Q(x) satisfying 

Vp(Q) = {Q, P} = 1 

for all x E U. (In the notation of proposition 1.29, Q would be the coordinate 
yl.) Since {Q, P} is constant, (6.8) and (6.13) imply that 

[Vp, vQ] = v{Q.P} = ° 
for all x E U. On the other hand, vQ( Q) = {Q, Q} = 0, so vp and vQ form a 
commuting, linearly independent pair of vector fields defined on U. If we 
set p = P(x), q = Q(x), then Frobenius' Theorem 1.43 allows us to complete 
p, q to form a system of local coordinates (p, q, y3, ... , ym) on a possibly 
smaller neighbourhood [; c U of Xo with vp = aq , Vq = -ap there. The bracket 
relations {p, q} = 1, {p, yi} = ° = {q, /}, i = 3, ... , m, imply that the structure 
matrix takes the form 

J(P,q,y)=(-! ~ ~), 
° j(p, q, y) 

where j has entries jij = {/, yj}, i,j = 3, ... , m. Finally, we prove that j is 
actually independent of p and q, and hence forms the structure matrix of 
a Poisson bracket in the y variables of rank two less than that of J, from 
which the induction step is clear. To prove the claim, we just use the Jacobi 
identity and the above bracket relations; for instance 

ajij - .. aq= {Jll, p} = {{yl, yl}, p} = 0, 

and similarly for p. o 

Example 6.23. Let us compute the canonical coordinates for the Lie-Poisson 
bracket on 50(3)*. According to the proof of Darboux' theorem, we need 
only find functions P(u), Q(u) whose Poisson bracket is identically 1. Here 
the function z = u3 generates the rotational vector field V3 = u2a\ - u \ a2 , which 
can be straightened out using the polar angle e = arctan( u2 / u \) provided 
(u\u 2 )¥(0,0). We find {e,z}=v3(e)=-I, hence e and z will provide 
canonical coordinates on the symplectic spheres S~ = {lui = p}. Indeed, an 
easy calculation shows that if we re-express F( u) and H (u) in terms of e, 
z and p, then the Lie-Poisson bracket is simply {F, H} = FzHe - FeHz. In 
other words, while the symplectic leaves in 50(3)* are spheres, canonical 
coordinates are provided by cylindrical coordinates z, e! 
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The Co-adjoint Representation 

In the case of a Lie-Poisson bracket on the dual to a Lie algebra g*, the 
induced symplectic foliation has a particularly nice interpretation in terms 
of the dual to the adjoint representation of the underlying Lie group G on 
the Lie algebra g. (See Section 3.3.) 

Definition 6.24. Let G be a Lie group with Lie algebra g. The co-adjoint 
action of a group element g EGis the linear map Ad* g: g* ~ g* on the 
dual space satisfying 

(Ad* g(w); w)=(w; Ad g-I(W) (6.23) 

for all w E g*, WE g. Here ( ; ) is the natural pairing between 9 and g*, and 
Ad g the adjoint action of g on g. 

If we identify the tangent space Tg*I." w E g*, with g* itself, and similarly 
for g, then the infinitesimal generators of the co-adjoint action are determined 
by differentiating (6.23): 

(ad* vi.,; w) = -(w; ad vi .. ) = (w; [v, w]), (6.24) 

for v, W E g, wE g* (cf. (3.21). 
The fundamental result that connects the co-adjoint action with the 

Lie-Poisson bracket is the following: 

Theorem 6.25. Let G be a connected Lie group with co-adjoint representation 
Ad* G on g*. Then the orbits of Ad* G are precisely the leaves of the symplectic 
foliation induced by the Lie- Poisson bracket on g*. Moreover, for each g E G, 
the co-adjoint map Ad* g is a Poisson mapping on g* preserving the leaves 
of the foliation. 

PROOF. Let VE 9 and consider the linear function H(w) = H.(w) = (w, v) on 
g*. Note that for wE g*, the gradient V H(w), considered as an element of 
T*g*l., =g, is just v itself. Using the intrinsic definition (6.17) of the Lie
Poisson bracket, we find 

vH(F)(w) = {F, H}{w) = (w; [V F(w), V H(w)]) 

= (w; [V F(w), v]) = (w, ad v(V F(w))) 

= -(ad* v(w); V F(w» 

for any F: g* ~ IR. On the other hand, 

is uniquely determined by its action on all such functions. We conclude that 
the Hamiltonian vector field determined by the linear function H = H. 
coincides, up to sign, with the infinitesimal generator of the co-adjoint 
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action determined by v E g: V H = -ad* v. Thus the corresponding one-par
ameter groups satisfy 

exp(tvH) = Ad*[exp( -tv)]. 

Proposition 6.16 and the usual connectivity arguments show that Ad* g is 
a Poisson mapping for each g E G. 

Moreover, the subspace JYeI"" W E g*, is spanned by the Hamiltonian vector 
fields v H corresponding to all such linear functions H = H v , v E g, hence 
JYeI", = ad* gl", coincides with the space spanned by the corresponding 
infinitesimal generators ad* vi",. Since ad* gl", is precisely the tangent space 
to the co-adjoint orbit of G through w, which is connected, we immediately 
conclude that this co-adjoint orbit is the corresponding integral submanifold 
~~ 0 

Corollary 6.26. The orbits of the co-adjoint representation of G are even
dimensional submanifolds of g*. 

Example 6.27. In the case of the rotation group SO(3), the co-adjoint orbits 
are the spheres S~ c 50(3)* determined in Example 6.20. Indeed, according 
to Example 3.9, the adjoint representation of a rotation matrix R E SO(3) 
on the Lie algebra 50(3) = ~3 coincides with the rotation R itself relative 
to the standard basis: Ad R(v) = Rv, VE 50(3). Thus the co-adjoint action 
Ad* R of R on 50(3)* has matrix representation Ad* R = (R-1)T = R rela
tive to the corresponding dual basis on 50(3)* = ~3, and the co-adjoint 
representation of SO(3) coincides with its usual action on ~3 under the 
above identifications. In particular, the co-adjoint orbits are precisely the 
spheres S!, p ~ O. 

6.3. Symmetries, First Integrals and Reduction 
of Order 

For a system of ordinary differential equations in Lagrangian form, i.e. the 
Euler~Lagrange equations associated to some variational problem, 
Noether's theorem provides a connection between one-parameter vari
ational symmetry groups of the system and conservation laws or first 
integrals. Moreover, the knowledge of such a first integral allows us to 
reduce the order of the system by two in the case of a one-parameter 
symmetry group, indicating that we only need find half as many symmetries 
as the order of the system in order to integrate it entirely by quadrature. 
All of these statements carry over to the Hamiltonian framework, and, in 
fact, arise in a far more natural geometric setting than our original 
Lagrangian results. In this section we discuss the general theory of symmetry 
and reduction for finite-dimensional Hamiltonian systems. 
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First Integrals 

Consider a system of ordinary differential equations in Hamiltonian form 

dx 
dt = l(x)V H(x, t), ( 6.25) 

where H(x, t) is the Hamiltonian function and lex) the structure matrix 
determining the Poisson bracket. In this case, first integrals are readily 
characterized using the Poisson bracket. 

Proposition 6.28. A function P(x, t) is a first integral for the Hamiltonian 
system (6.25) if and only if 

ap 
-+{P H}=O 
at ' 

(6.26) 

for all x, t. In particular, a time-independent function P(x) is a first integral 
if and only if {P, H} = 0 everywhere. 

PROOF. Let VH be the Hamiltonian vector field determining (6.25). Then, 
by (1.17), if x(t) is any solution to Hamilton's equations, 

~{P(x(t), t)} = ap(x(t), t)+VH(P)(X(t), t). 
dt at 

Thus dP / dt = 0 along solutions if and only if (6.26) holds everywhere. 
o 

Some first integrals are immediately apparent from the form of (6.26). 

Corollary 6.29. Ifx, = IV H is any Hamiltonian system with time-independent 
Hamiltonian function H(x), then H(x) itself is automatically a first integral. 

Corollary 6.30. If x, = IV H is a Hamiltonian system, then any distinguished 
function C(x) for the Poisson bracket determined by I is automatically a first 
integral. 

The first integrals supplied by the distinguished functions arise from 
degeneracies in the Poisson bracket itself and are not governed by any 
intrinsic symmetry properties of the particular Hamiltonian system under 
investigation. If the Poisson bracket is symplectic, only the constants are 
distinguished functions and Corollary 6.30 provides no new information. 
For a Poisson structure of constant rank, the common level sets of the 
distinguished functions are the leaves of the symplectic foliation, so Corol
lary 6.30 is just a restatement of Theorem 6.21 that any solution is contained 
in a single symplectic leaf. 
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Hamiltonian Symmetry Groups 

For systems of Euler-Lagrange equations, first integrals arise from vari
ational symmetry groups; for Hamiltonian systems this role is played by 
the one-parameter Hamiltonian symmetry groups whose infinitesimal gen
erators (in evolutionary form) are Hamiltonian vector fields. First, it is easy 
to show that any first integral leads to such a symmetry group. 

Proposition 6.31. Let P(x, t) be a first integral of a Hamiltonian system. Then 
the Hamiltonian vector field vp determined by P generates a one-parameter 
symmetry group of the system. 

PROOF. Note first that since the structure matrix J(x) does not depend on 
t, the Hamiltonian vector field associated with ap I at is just the t-derivative 
av pi at of that associated with P. Thus the Hamiltonian vector field associated 
with the combination aPlat+{p, H} occurring in (6.26) is, using (6.8), 

avplat+[VH, vp]. 
If P is a first integral, this last vector field vanishes, which is just the 
condition (5.26) that vp generate a symmetry group. 0 

In particular, if H (x) is time-independent, the associated symmetry group 
is generated by VH, which is equivalent to the generator at of the symmetry 
group of time translations reflecting the autonomy of the Hamiltonian 
system. For a distinguished function C(x), the corresponding symmetry is 
trivial: Vc = O. 

Example 6.32. Consider the equations of a harmonic oscillator Pt = -q, qt = p, 
which form a Hamiltonian system on M = 1R2 relative to the canonical 
Poisson bracket. The Hamiltonian function H (q, p) = !( p2 + q2) is thus a 
first integral, reflecting the fact that the solutions move on the circles 
p2 + q2 = constant. 

Not every Hamiltonian symmetry group corresponds directly to a first 
integral. For example, on M=M\{(p,O):p~O}, the vector field w= 
_(p2+q2)-I(pap +qaq ) generates a symmetry group. Moreover, w=vp is 
Hamiltonian for P(p, q) = arctan(ql p). But P is not a first integral; in 
fact p( p( t), q( t» = t + 80 , a linear function of t, whenever (p( t), q( t» solves 
the system. 

The problem here, and more generally, is that there is not a one-to-one 
correspondence between Hamiltonian vector fields and their corresponding 
Hamiltonian functions. For example, the function P(p, q, t) = 
arctan( q I p) - t, which is a first integral for the oscillator, has the same 
Hamiltonian vector field v p = w = V p as P. More generally, we can add any 
time-dependent distinguished function C(x, t) (meaning that for each fixed 
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t, C is a distinguished function) to a given function P without changing 
the form of its Hamiltonian vector field. Once we recognize the possibility 
of modifying the function determining a Hamiltonian symmetry group, we 
can readily prove a converse to the preceding proposition. This forms the 
Hamiltonian version of Noether's theorem. 

Theorem 6.33. A vector w generates a Hamiltonian symmetry group of a 
Hamiltonian system of ordinary differential equations if and only if there exists 
a first integral P(x, t) so that w=vp is the corresponding Hamiltonian vector 
field. A second function P(x, t) determines the same Hamiltonian symmetry 
if and only if P = P + C for some time-dependent distinguished function C (x, t). 

PROOF. The second statement follows immediately from Definition 6.3 of 
a distinguished function applied to the difference P - P. To prove the first 
part, let w = v p for some function P(x, t). The symmetry condition (5.26) 
implies that the Hamiltonian vector field associated with the function 
ap/at+{p, H} vanishes everywhere, and hence this combination must be 
a time-dependent distinguished function C(x, t): 

dP ap - -
-=-+{P H}= C. 
dt at ' 

Set C(x, t) = J~ C(x, r) dr, so that C is also distinguished. Moreover, for 
solutions x(t) of the Hamiltonian system, 

dC aC --=-+{C H}= C. 
dt at ' 

It is now easy to see that the modified function P = P - C has the same 
Hamiltonian vector field, v p = w, and provides a first integral: dP / dt = 0 on 
solutions. 0 

In particular, if the Poisson bracket is symplectic, the only time-depen
dent distinguished functions are functions C(t) which depend only oil t. 
In this case the theorem states that the Hamiltonian vector field v p generates 
a symmetry group if and only if there is a function C(t) such that P(x, t) = 
P(x, t) - C(t) is a first integral. Note that even though both H(x) and P(x) 
might be t-independent, the first integral P(x, t) = P(x) - C(t) may be 
required to depend on t! (Indeed, this was precisely the case in Example 
6.32.) See Exercise 6.2 for further information on this case. 

Example 6.34. The equations of motion of n point masses subject to pairwise 
potential interactions discussed in Example 4.31 can be put into a canonical 
Hamiltonian form. We use the positions qi = (x\ yi, Zi) and momenta Pi = 
(~i, r/, ,i) = miq;, i = 1, ... , n, as canonical coordinates. The Hamiltonian 
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function is the total energy 

where the potential V(r) depends only on the distance between the two 
masses. The equations of motion are thus 

dpi= _ aU 
dt aqi' 

dqi=~ 
dt mi 

i = 1, ... , n. 

Several geometrical symmetry groups are immediately apparent. Simul
taneous translation of all the masses in a given direction a = (a I, a2 , a3 ) is 
generated by the Hamiltonian vector field 

A "(Ia 2 a 3 a ) Vp= I a -.+a -+a -. , 
i=1 ax' ay' az' 

and corresponds to the first integral P = La· Pi representing the linear 
momentum in the given direction. Similarly, the group SO(3) of simul
taneous rotations of the masses about the origin leads to the integrals of 
angular momentum. For example, Q = L (Xi'T/i - yigt the angular momen
tum about the z-axis, generates the symmetry group 

of simultaneous rotations about the z-axis. Besides the six momentum 
integrals, the constancy of the Hamiltonian function itself implies conserva
tion of energy. Three further first integrals are provided by the uniform 
motion of the centre of mass, and these lead to three further Hamiltonian 
symmetry groups. For example, in the x-direction we have 

" " R = I mixi - t I gi = constant, 
i=l i=l 

and hence 

"( a a ) vR=-I t-i +-i 
i=1 ax a~ 

generates a one-parameter symmetry group of Galilean boosts. 

Reduction of Order in Hamiltonian Systems 

The use of symmetry groups to effect a reduction in order of a Hamiltonian 
system of ordinary differential equations parallels the methods for Euler
Lagrange equations of Section 4.3, but with the added advantage of an 
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immediate geometrical interpretation. We first remark that if the underlying 
Poisson bracket is degenerate, we can always restrict attention to a single 
symplectic leaf. Thus each nonconstant distinguished function will reduce 
the order of the system by one. Other kinds of first integrals, which generate 
nontrivial Hamiltonian symmetry groups, can then be used to reduce the 
order by two. For simplicity, we restrict our attention to time-independent 
first integrals. 

Theorem 6.35. Suppose v p ¢ 0 generates a Hamiltonian symmetry group of 
the Hamiltonian system x = JV H corresponding to the time-independent first 
integral P(x). Then there is a reduced Hamiltonian system involving two fewer 
variables with the property that every solution of the original system can be 
determined using one quadrature from those of the reduced system. 

PROOF. The construction is the same as the initial step in the proof of 
Darboux' Theorem 6.22. We introduce new variables p = P(x), q = Q(x), 
y = (/, ... ,ym-2) = Y(x) which straighten out the symmetry, so vp = aq in 
the (p, q, y)-coordinates. In terms of these coordinates, the structure matrix 
has the form 

J(P.q.y)~(-! 
1 

o 
_aT 

where a(p, q, y) is a row vector of length m - 2 and j(p, y) is an (m - 2) x 
(m - 2) skew-symmetric matrix, which is independent of q, and for each 
fixed value of p is the structure matrix for a Poisson bracket in the y 
variables. (If y = (/, ... , ym-2) are chosen as flat coordinates as in the 
proof of Darboux' theorem, then a = 0 and j(y) is independent of p also, 
as we saw earlier. However, to effect the reduction procedure this is not 
necessary, and, indeed, may be impractical to achieve.) The proofs of the 
above statements on the form of the structure matrix follow as in the "flat" 
case. 

The reduced system will be Hamiltonian with respect to the re
duced structure matrix j(p, y) for any fixed value of the first integral 
p = P(x). Note that in terms of the (p, q, y) coordinates 

0= {p, H} = -vp(H) = -aFl /aq, 

hence H = H(p, y) also only depends on p and y. Therefore Hamilton's 
equations take the form 

dp 
-=0 
dt ' 

dq aH m-2. aH 
-=--+ I a)(p,y)j, 
dt ap j=! ay 

(6.27a) 

(6.27b) 
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dyi m-2 N.. aH 
-dt = .L rep, y) -a i' 

)=1 Y 
i = 1, ... , m -2. (6.27c) 

The first equation says that P is a constant (as it should be). Fixing a value 
of p, we see that the (m -2) equations (6.27c) form a Hamiltonian system 
relative to the reduced structure matrix j(p, y) and the Hamiltonian function 
H(p, y); this is the reduced system referred to in the statement of the 
theorem. Finally, (6.27b), which governs the time evolution of the remaining 
coordinate q, can be integrated by a single quadrature once we know the 
solution to the reduced system (6.27c), since the right-hand side does not 
depend on q. 0 

Example 6.36. Let M = ~4 with canonical Poisson bracket and consider a 
Hamiltonian function of the form 

The corresponding Hamiltonian system 

(6.28) 

determines the motion of two particles of unit mass on a line whose 
interaction comes from a potential VCr) depending on their relative displace
ments. This system admits an obvious translational invariance v = aql + aq2 ; 

the corresponding first integral is the linear momentum PI + P2' According 
to the theorem, we can reduce the order of the system by two if we introduce 
new coordinates 

p = PI + P2, y=PI' 

which straighten out v = aq • In these variables, the Hamiltonian function is 

and the Poisson bracket is 

{F, H}= aFaH + aFaH + aFaH _ aFaH _ aFaH _ aFaH. 
aq ay ar ay aq ap ay aq ay ar ap aq 

Further, the Hamiltonian system splits into 

and 

dp aH 
-=--=0 
dt aq , 

dq aH aH 
-=-+-=y 
dt ap ay , 

dy aH aH , 
-= ----= - V (r), 
dt aq ar 

dr aH 
-=-=2y-p. 
dt ay 

(6.29) 

(6.30) 
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The solution to the first pair, 

p=a, q = f yet) dt+b, 

(a, b constant) can be determined from the solutions to the second pair 
(6.30). These form a reduced Hamiltonian system relative to the reduced 
Poisson bracket {F, H} = FrHy - FyHr for functions of y and r, with the 
energy (6.29) obtained by fixing p = a. Presently, we will see how the 
two-dimensional system (6.30) can be explicitly integrated, thereby solving 
the original two-particle system (6.28). 

As with the general reduction method for ordinary differential equations, 
if the vector field v p associated with the first integral P is too complicated, 
it may not be possible to explicitly find the change of variables that straightens 
it out, and so the reduction method cannot be completed. (Of course, the 
fact that P is a first integral certainly allows a reduction in order by one in 
all cases.) For example, if the Hamiltonian H(x) is time-independent, it 
provides a first integral, but straightening out its corresponding vector field 
v H is the same problem as solving the Hamiltonian system itself! In this 
special case, however, the fact that v H is equivalent to the time translational 
symmetry generator at allows us to reduce the order by two provided we 
are willing to go to a time-dependent Hamiltonian framework. 

Proposition 6.37. Let i = JV H be a Hamiltonian system in which H(x) does 
not depend on t. Then there is a reduced, time-dependent Hamiltonian system 
in two fewer variables, from whose solutions those of the original system can 
be found by quadrature. 

PROOF. The reduction in order by two per se is easy. First, since H is 
constant, we can restrict to a level set H(x) = c, reducing the order by one. 
Furthermore, the resulting system remains autonomous and so can be 
reduced in order once more using the method in Example 2.67. The problem 
is that unless we choose our coordinates more astutely, the system resulting 
from this reduction will not be of Hamiltonian form in any obvious way. 

The easiest way to proceed is to first introduce the coordinates (p, q, y) 
used in the proof of Darboux' Theorem 6.22, relative to which the original 
system takes the form 

dt aq' 

dq aH 
-=-
dt ap' 

d i m-2 "H 
.2:..= L jij(y)~, 
dt j=l ay 

i=1, ... ,m-2. 
dp aH 
-=--

Assume that a H / a p ~ 0, so that we can solve the equation w = H (p, q, y) 
locally for p = K (w, q, y). (If aH / ap = 0 everywhere, q is a first integral and 
we can use the previous reduction procedure!) We take t, wand y to be 
the new dependent variables and q the new independent variable, in terms 
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of which the system takes the form 

dt 1 aK dw 
dq = aH/ap = aw' dq =0, (6.31a) 

dyi= mt jij(y)aH/iJyj mt jij(y) a~. 
dq j=1 aH /iJp j=1 ay 

(6.31b) 

The system (6.31b) is Hamiltonian using the reduced Poisson bracket 
corresponding to the structure matrix j (y) and Hamiltonian function 
K (w, q, y). For each fixed value of w, once we have solved (6.31 b) we can 
determine the remaining variable t(q) from (6.31a) by a single quadrature. 
This completes the procedure. 0 

Example 6.38. In the case of an autonomous Hamiltonian system 

q,=aH/ap, p, = -aH/aq, 

in the plane, we can use this method to explicitly integrate it. We first solve 
w = H(p, q) for one of the coordinates, say p, in terms of q and w, which 
is constant. The first equation, then, leaves an autonomous equation for q, 
which we can solve by quadrature. For example, in the case of a single 
pendulum H( p, q) =!p2 + (1- cos q), so on the level curve H = w + 1, p = 
v'2( w + cos q). The remaining equation 

dq / dt = p = v'2( w + cos q) 

can be solved in terms of Jacobi elliptic functions 

q(t) = 2 sin-I{sn(k-I(t+ 6), k)}, 

where sn has modulus k = v'2/ (w + o. 
Similarly, in the case of the two-particle system on the line from Example 

6.36, setting H(y, r) = w +!p2, we find 

y =!p ±v' £r) - V(r). 

Thus we recover the solution just by integrating 

dr 
dt = 2y - P = ±2v'w - V(r). 

Example 6.39. Consider the equations of rigid body motion (6.18), which 
were realized as a Hamiltonian system on 50(3)*. The distinguished function 
C(u) = lul2 naturally reduces the order by one by restriction to a level set 
or co-adjoint orbit. Provided the moments of inertia II, 12 , 13 are not all 
equal, the Hamiltonian itself provides a second independent first integral. 
We conclude that the integral curves of this Hamiltonian vector field are 
determined by the intersection of a sphere { C (u) = 1 U 12 = c} and an ellipsoid 
{H (u) = w} forming the common level set of these two first integrals. The 
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explicit solutions can be determined by eliminating two of the variables, 
say u 2 and u3 , from the pair of equations C(u) = c, H(u) = w. Proposition 
6.37 then guarantees that the one remaining equation for u 1 = Y is 
autonomous, and hence can be integrated. It turns out to be of the form 

and hence the solutions can be written in terms of elliptic functions. See 
Whittaker; [1; Chap. 6] for the explicit formula and a geometric interpre
tation. 

Reduction Using Multi-parameter Groups 

As we already saw in the case of Euler-Lagrange equations (cf. Exercise 
4.11), it is not true that a Hamiltonian system which admits an r-parameter 
symmetry group can be fully reduced in order by 2r, even if the group is 
solvable. In the Hamiltonian case, however, we can actually determine the 
degree of reduction which can be effected. Interestingly, this question is 
closely tied with the structure of the co-adjoint action of the symmetry 
group on its Lie algebra. We begin by considering an example. 

Example 6.40. Let M = 1R4 with canonical coordinates (p, p, q, q) and con
sider a Hamiltonian function of the form H(p, pe ii , t). Hamilton's equations 
are 

dp 
-=0 
dt ' 

(6.32) 

where r = pe ii is the second argument of H. They admit a two-parameter 
solvable symmetry group, generated by 

which correspond to the two first integrals P = p, Q = pq + p. Nevertheless, 
we can in general only reduce the order of (6.32) by two! There are, in fact, 
four distinct ways in which this reduction can be effected, and we examine 
them in turn. 

(1) The simplest approach is to use the two first integrals directly and 
restrict to a common level set. Let s = pq + p, so sand p are constant. If we 
treat p, p, r, s as the new variables (which is valid provided p #- 0) then the 
reduced system is 

dr 
-=rH-dt p' 

(6.33) 

which is Hamiltonian using the reduced Poisson bracket {F, H} = 

r(F,Hp - FpH,}. However, there is no residual symmetry property of (6.33) 
reflecting the invariance of (6.32) under v and w, so barring any special 
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structure of the Hamiltonian function H(p, r, t) (e.g. time-independence) 
we cannot reduce any further. 

(2) Alternatively, we can employ the reduction procedure of Theorem 
6.35 using the Hamiltonian symmetry v. Here the coordinates are already 
in the appropriate form, with y = (p, q). Fixing p, we see that once we have 
solved the third and fourth equation in (6.32) for p and q, we can determine 
q by quadrature. The reduced system for p and q is canonically Hamiltonian, 
but there is no symmetry or first integral of it which comes from the second 
Hamiltonian symmetry group of the full system. Again the order can only 
be reduced by two. 

(3) Reduction using the symmetry group generated by w leads to a similar 
conclusion. The relevant flat coordinates are s = pq + p, q, r = pii and z = 
qe- ii in terms of which w = aii, H = H(s - rz, r, t) = H(r, s, z, t). The system 
is now 

ds 
-=0 
dt ' 

dq M 

-=H dt S> 

dr M 

-=-H dt Z> 

dz M 

-=H dt ,. (6.34) 

Fixing s, the third and fourth equation form a Hamiltonian system, the 
solutions of which determine q by quadrature. Again, no symmetry or 
integral reflecting the original invariance under v remains. 

(4) The final possibility is to ignore the Hamiltonian structure of (6.32) 
entirely and reduce using the symmetry procedure of Section 2.5. Noting 
that [v, w] = v, we first reduce using v, which is trivial. Namely the first, 
third and fourth equations of (6.32), once solved, will determine q(t) by 
quadrature. This third order system remains invariant under the reduced 
vector field if = - pap + aij' We set r = peii and use r, p, q as variables. The 
result is identical with (6.33), using which we can determine q (and hence 
q) by quadrature. As in part (2), no further reduction is possible in general! 

Finally, note that for certain special initial conditions, e.g. p = 0, we can 
actually compute the solution by quadrature alone. Thus the degree of 
reduction possible would appear to depend both on the structure of the 
symmetry group and the precise initial conditions desired for the solution. 

Hamiltonian Transformation Groups 

Throughout the following discussion, the underlying symmetry group will 
be assumed to be Hamiltonian in the following strict sense. 

Definition 6.41. Let M be a Poisson manifold. Let G be a Lie group with 
structure constants c~, i,j, k = 1, ... , r, relative to some basis of its Lie 
algebra g. The functions PI,"', P,: M ~ ~ generate a Hamiltonian action 
of G on M provided their Poisson brackets satisfy the relations 

, 
{Pi, ~}=- I C~Pk' i,j=I, ... ,r. 

k~1 
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Note that by (6.8), the corresponding Hamiltonian vector fields Vi = vP; 
satisfy the same commutation relations (up to sign) 

and therefore generate a local action of G on M by Theorem 1.57. Given 
a Hamiltonian system on M, we will say that G is a Hamiltonian symmetry 
group if each of its generating functions Pi is a first integral, {P;, H} = 0, i = 
1, ... , r, which implies that each Vi generates a one-parameter symmetry 
group. 

As we saw in Section 2.5 and Exercise 3.12, any first order system of 
differential equations on a manifold M which admits a regular symmetry 
group G reduces to a first order system on the quotient manifold M / G. 
(Of course, if G is not solvable, we will not be able to reconstruct the 
solutions to the original system from those of the reduced system by 
quadrature, but we ignore this point at the moment.) In the case M is a 
Poisson manifold, and G a Hamiltonian group of transformations, the 
quotient manifold naturally inherits a Poisson structure, relative to which 
the redu~ed system is Hamiltonian. Moreover, the degree of degeneracy of 
the Poisson bracket on M / G will determine how much further we can 
reduce the system using any distinguished functions on the quotient space. 

Theorem 6.42. Let G be a Hamiltonian group of transformations acting 
regularly on the Poisson manifold M. Then the quotient manifold M / G inherits 
a Poisson structure so that whenever F, H: M / G ~ IR correspond to the 
G-invariant functions F, H: M ~ IR, their Poisson bracket {F, H} M / G corre
sponds to the G-invariantfunction {F, H}M' Moreover, ifG is a Hamiltonian 
symmetry group for a Hamiltonian system on M, then there is a reduced 
Hamiltonian system on M / G whose solutions are just the projections of the 
solutions of the system on M. 

PROOF. First note that the fact that the Poisson bracket {F, H} of two 
G-invariant functions remains G-invariant is a simple consequence of the 
Jacobi identity and the connectivity of G; we find, for i = 1, ... , r, 

Vi({F, H}) = {{F, H}, Pi} = {{F, PJ, H}+ {F, {H, PJ} = 0 

since F and H are invariant, verifying the infinitesimal invariance condition 
(2.1). Thus the Poisson bracket is well defined on M / G; the verification 
that it satisfy the properties of Definition 6.1 is trivial. 

Now if H: M ~ IR has G as a Hamiltonian symmetry group, then H is 
automatically a G-invariant function: vi(H) = {H, Pi} = 0 since each Pi is, 
by assumption, a first integral. Let H: M / G ~ IR be the corresponding 
function on the quotient manifold. To prove that the corresponding Hamil
tonian vector fields are related, d7T(v H) = V H, 7T: M ~ M / G the natural 
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projection, it suffices to note that by (1.24) 

d7T(VH )(P) 0 7T =VH[P 0 7T] = {P 0 7T, H}M 

for any P: M / G ~ R But this equals 

{P, H}M/G 0 7T =VfI(P) 0 7T 

409 

by the definition of the Poisson bracket on M / G, and hence proves the 
correspondence. 0 

Example 6.43. Consider the Euclidean space 1R6 with canonical coordinates 
(p, q) = (p\ p2, p3, q\ q2, q3). The functions 

Pl 7 q2p3_ q3p 2, 

satisfy the bracket relations 

{P1 ,P2 }=P3 , 

and hence generate a Hamiltonian action of the rotation group SO(3) on 
1R6, which is, in fact, given by (p, q) ~ (Rp, Rq), R E SO(3). This action is 
regular on the open subset M = {(p, q): p, q are linearly independent}, with 
three-dimensional orbits and global invariants 

'T/ (p, q) = p . q, 

We can thus identify the quotient manifold with the subset M / G = 
{(x, y, z): x> 0, z> 0, y2<4xz} of IR\ where x = g, y = 'T/, z =, are the new 
coordinates. 

How do we compute the reduced Poisson bracket on M / G? According 
to (6.10), we need only compute the basic Poisson brackets between the 
corresponding invariants g, 'T/, , using the Poisson bracket on M itself, and 
re-expressing them in terms of the invariants themselves. For instance, since 

3 (a g a'T/ ag a'T/) 3 i 2 {g,'T/}= I 00-00 =-I (p) =-2g, 
i=\ uq up up uq i=\ 

we have {x, y} M / G = - 2x. Similarly the bracket relations {g, '} = - 'T/, { 'T/, n = 
-2~ on M lead to the structure functions {x, Z}M/G = -y, {y, Z}M/G = -2z 
on M/ G. The structure matrix on M / G is thus 

with Poisson bracket 

-2x 

o 
2z 

{P, H} = -2x(PxHy - F;.l~x) - y(PxHz - PzHx) - 2z(PyHz - PzHy). 

Any Hamiltonian system on M admitting the angular momenta Pi as 
first integrals will reduce to a Hamiltonian system on M / G. For example, 
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the general Kepler problem of a mass moving in a central force field with 
potential V(r) is such a candidate. Here the Hamiltonian function is the 
energy H(p, q) =~lpI2+ V(lql). The reduced system on MIG is obtained 
by rewriting H in terms of the invariants and then using the given Poisson 
bracket to reconstruct the Hamiltonian vector field. We find reduced Hamil
tonian H(x, y, z) = x+ V(z), where V(z) = V(J2Z), and reduced system 

XI = -yV'(z), YI=2x-2zV'(z), ZI=Y' ( 6.35) 

(The reader may enjoy deriving this directly from Hamilton's equations 
on M.) 

Now MIG is three-dimensional, so there is at least one distinguished 
function. This is easily seen to be C(x, y, z) = 4xz - y2, which is an invariant 
of any Hamiltonian system on MIG. (In the original variables, C = Ip x qI2.) 
The hyperboloids 4xz - y2 = e, being the level sets of C, are the leaves of 
the symplectic foliation, and hence we can restrict (6.35) to any such leaf. 
Using (x, z) as coordinates, we find the fully reduced system 

XI = -J4xz- eV'(z), Zl =J4xz- e, (6.36) 

which is Hamiltonian relative to the induced Poisson bracket {F, H} = 

-J4xz - e(fixHz - FzHx) on the hyperboloid. This final two-dimensional 
system can be solved by the method of Proposition 6.37, so we can solve 
the reduced system (6.35) by quadrature. However, at this stage we cannot 
use this solution to integrate the original central force problem because 
SO(3) is not a solvable group. But, as we will soon see, this difficulty can 
be circumvented by an alternative approach to the reduction procedure. 

The Momentum Map 

The above approach to the reduction problem, while geometrically appeal
ing, leaves something to be desired from a computational standpoint. The 
problem is that we are concentrating initially on the more complicated 
aspect of a Hamiltonian symmetry group, namely the group transformations 
and ignoring the first integrals, which are also present, until after the 
symmetry reduction has been effected, at which point they manifest their 
presence as distinguished functions. A more logical approach would be to 
use the first integrals at the outset, restricting the system to a common level 
set thereof, and then completing the reduction by using any residual sym
metry properties of the resulting system. This turns out to be equivalent to 
the above procedure, but now we stand a better chance of being able to 
reconstruct the solution to the original system by quadratures alone. 

The first step here is to organize the first integrals furnished by a Hamil
tonian group of symmetries in a more natural framework. It is here that 
the dual to the Lie algebra of the symmetry group and, subsequently, the 
co-adjoint action makes its appearance. 
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Definition 6.44. Let G be a Hamiltonian group of transformations acting 
on the Poisson manifold M, generated by the real-valued functions 
PI, ... , Pro The momentum map for G is the smooth map P: M ~ g* given 
by 

P(X) = I Pi(X)Wi, 
i=1 

in which {WI> ... ' wr } are the dual basis to g* for the basis {VI> ... , vr } of 9 
relative to which the structure constants ct were computed. 

The key property of the momentum map, which explains why we allowed 
it to take values in g*, is its invariance (or, more correctly, "equivariance") 
with respect to the co-adjoint representation of G on g*. 

Proposition 6.45. Let P: M ~ g* be the momentum map determined by a 
Hamiltonian group action of G on the Poisson manifold M. Then 

P(g·X) = Ad* g(P(x» ( 6.37) 

for all x E M, g E G. 

PROOF. As usual, it suffices to prove the infinitesimal form of this identity, 
which is 

XEM, (6.38) 

for any generator Vj E g, j = 1, ... , r, of G. If we identify Tg*lp(x) with g* 
itself, then 

r r r 

dP(vj Ix) = I Vj(Pi )Wi = I {Pi, P; }(X)Wi = - I ct Pk(X)Wi, 
;=1 ;=1 i.k=l 

cf. (1.24), (6.4). By (6.24) this expression is the same as the right-hand side 
of (6.38). 

To prove (6.37), we note that if g = exp(evj) and we differentiate 
with respect to e, then we recover (6.38) at x = exp(evj )x. Since this holds 
at all x, the usual connectivity arguments prove that (6.37) holds in 
general. 0 

Example 6.46. Consider the Hamiltonian action of SO(3) on 1R6 presented 
in Example 6.43. The momentum map is 

P(p, q) = (q2p3_ q3p2)W I +(q3p l_ qlp3)W2+(qlp2- q2p l)W3' 

where {WI, W2, W3} are the basis of 50(3)* of Example 6.9. Note that if we 
identify 50(3)* with 1R3 , P( p, q) = q x P is the same as the cross product of 
vectors in 1R3. In this case, SO(3) acts on 50(3)* by rotations, and the 
equivariance of the momentum map is just a restatement of the rotational 
invariance of the cross product: R(qxp)=(Rq)x(Rp) for RESO(3). 
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Now, as remarked earlier, any Hamiltonian system with G as a Hamil
tonian symmetry group naturally restricts to a system of ordinary differential 
equations on the common level set {Pi(x) = ci } of the given first integrals. 
Note that these common level sets are just the level sets of the momentum 
map, denoted Ya = {x: P(x) = a} where a = L CiWi E g*. Moreover, the 
reduced system will automatically remain invariant under the residual 
symmetry group 

Ga == {g E G: g' Ya c Ya } 

of group elements leaving the chosen level set invariant. There is any easy 
characterization of this residual group. 

Proposition 6.47. Let P: M ~ g* be the momentum map associated with a 
Hamiltonian group action. Then the residual symmetry group of a level set 
Y a = {P(x) = a} is the isotropy subgroup of the element a E g*: 

Ga = {g E G: Ad* g(a) = a}. 

Moreover, if g E G has the property that it takes one point x E Y a to a point 
g' x E Y a, then g EGa, and has this property for all x E Ya' 

PROOF. By definition, g E Ga if and only if peg . x) = a whenever P(x) = a. 
But, by the equivariance of P, 

a = P(g· x) = Ad* g(P(x» = Ad* g(a), 

so g is in the isotropy subgroup of a. The second statement easily follows 
from this identity. 0 

Note that the residual Lie algebra corresponding to Ga is the isotropy 
subalgebra ga == {VE g: ad* via = O}, which is readily computable. In par
ticular, the dimension of Ga can be computed as the dimension of its Lie 
algebra ga' For instance, if G is an abelian Lie group, its co-adjoint 
representation is trivial, Ad* g( a) = a for all g E G, a E g*, hence Ga = G 
for every a. Therefore any Hamiltonian system admitting an abelian Hamil
tonian symmetry group remains invariant under the full group, even on 
restriction to a common level set Ya' This will imply that we can always 
reduce such a system in order by 2r, twice the dimension. of the group. As 
a second example, consider the two-parameter solvable group of Example 
6.40. Here the momentum map is 

pep, q, p, q) = PWI + (pq + P)W2' 

where {WI, W2} are a basis of g* dual to the basis {v, w} of g. The co-adjoint 
representation of g = exp(elv+ e2W) is found to be 

Ad* g(clwl + C2(2) = e-"clwl + (ele2 1(e-" -l)cI + C2)W2 
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(with appropriate limiting values if E2 = 0). Thus the isotropy subgroup of 
a = C1 WI + C2W2 is just {e} unless C1 = 0, in which case it is all of G. Thus 
we expect that the restriction of a Hamiltonian system with symmetry group 
G to a level set ga = {p = c l , pq + p = C2} will retain no residual symmetry 
group unless CI = 0, in which case the entire group G will remain. This is 
precisely what we observed. 

Once we have restricted the Hamiltonian system to the level set ga, the 
idea is then to utilize the methods of Section 2.5 to reduce further using 
the residual symmetry group Ga. Under certain regularity assumptions on 
the group action, the quotient manifold gal Ga, on which the fully reduced 
system will live, has a natural identification as a Poisson sub manifold of 
MIG. Thus the fully reduced system inherits a Hamiltonian structure itself. 
In particular, if the residual group Ga is solvable (rather than G itself being 
solvable) we can reconstruct the solutions to the original system on ga by 
quadrature from those of the fully reduced system on gal Ga. The general 
result follows: 

Theorem 6.48. Let M be a Poisson manifold and G a regular Hamiltonian 
group of transformations. Let a E g*. Assume that the momentum map P: M -+ 

g* is of maximal rank everywhere on the level set ga = p-I{a}, and that the 
residual symmetry group Ga acts regularly on the submanifold gao Then there 
is a natural immersion €jJ making gal Ga into a Poisson submanifold of MIG 
in such a way that the diagram 

( 6.39) 

commutes. (Here 7T and 7Ta are the natural projections and i the immersion 
realizing ga as a submanifold of M.) Moreover, any Hamiltonian system on 
M which admits G as a Hamiltonian symmetry group naturally restricts to 
systems on the other spaces in (6.39), which are Hamiltonian on MIG and 
gal Ga, and which are related by the appropriate maps. In particular, we 
obtain a Hamiltonian system on gal Ga by first restricting to ga and then 
projecting using 7T a. 

PROOF. Assume G is a global group of transformations, although the proof 
is easily modified to incorporate the local case. According to the diagram, 
if z = 7Ta(X) E gal Ga, then we should define €jJ(z) = 7T(X) EM I G. Note that 
7Ta (X) = 7Ta (.X) if and only if x = g. x for some g EGa, but this means 
7T(X) = 7T(X) and hence €jJ is well defined. Similarly, €jJ is one-to-one since 
if x, x Ega and 7T(X) = 7T(X), then x = g. x for some g E G; according to 



414 6. Finite-Dimensional Hamiltonian Systems 

Proposition 6.47, g EGa, and hence 7Ta(X) = 7Ta(.X). Finally, 4> is an immer
sion, meaning d4> has maximal rank everywhere, since d4> 0 d7Ta = d7T 0 di, 
and by Proposition 6.47, 

ker d7Ta = ga = 9 n TEla = ker(d7T 0 di). 

Let if: MIG~~ correspond to the G-invariant function H: M ~~, so 
by Theorem 6.42 the corresponding Hamiltonian systems are related: Vii = 
d7T(VH). We also know that VH is everywhere tangent to the level set ::ta, 
and hence there is a reduced vector field v on ::ta with VH = di(v) there. 
Moreover, as VH has G as a symmetry group, v retains Ga as a residual 
symmetry group and there is thus a well-defined vector field v* = d7Ta(V) on 
the quotient manifold ::tal Ga. Furthermore, this vector field agrees with 
the restriction of Vii to the submanifold 4> (::ta I Ga) since 

there. 
This last argument proves that every Hamiltonian vector field on MIG 

is everywhere tangent to 4>(::taIGa). Proposition 6.19 then implies that 4> 
makes ::tal Ga into a Poisson submanifold of MIG and, moreover, the 
restriction of a Hamiltonian vector field Vii on MIG to ::t,x! Ga (i.e. v*) is 
Hamiltonian with respect to the induced Poisson structure. This completes 
the proof of the theorem and hence the reduction procedure. 0 

If M is symplectic, then it is not true that MIG is necessarily symplectic. 
However, it is possible to show that the submanifolds ::tal Ga form the leaves 
of the symplectic foliation of MIG! (See Exercise 6.14.) 

Example 6.49. Consider the abelian Hamiltonian symmetry group G acting 
on ~6, with canonical coordinates (p, q) = (p\ p2, p3, q\ q2, q3), generated 
by the functions p=p3, Q=qlp2_q2p l. The corresponding Hamiltonian 
vector fields 

a 
v -
I- aq3 

generate a two-parameter abelian group of transformations. Any Hamil
tonian function of the form H(p,u,y,{,t), where p=J(qlf+(q2f, u= 
J(plf+ (p2)2, y = qlp2_ q2p\ {= p3, has G as a symmetry group; in 
particular, H = ~ I pl2 + V( p), a cylindrically symmetrical energy potential, 
is such a function. 

The method of Proposition 6.48 will allow us to reduce the order of such 
a Hamiltonian system by four. (And, if H does not depend on t, we can 
integrate the entire system by quadratures.) First we restrict to the level set 
y = {P = {, Q = y} for {, y constant. If we use cylindrical coordinates 

q = (p cos 0, p sin 0, z), p = (u cos IjI, U sin IjI, n 
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for q and p, then 

'Y = pO" sine '" - 0) = pO" sin 4>, 

where 4> = '" - O. In terms of the variables p, 0, 4>, z, t the Hamiltonian 
system, when restricted to Y, takes the form 

PI = cos 4>. Hen 4>1 = sin 4>(0"-1 Hp - p-IHu ) 

01 = P -I sin 4>Hu + Hoy, 

(6.40a) 

(6.40b) 

the subscripts on H denoting partial derivatives. These variables are also 
designed so that on Y, VI = azo V2 = aB• Theorem 6.48 guarantees that (6.40) 
is invariant under the reduced symmetry group of Y, which, owing to the 
abelian character of G, is all of G itself. This is reflected in the fact that 
neither Z nor (J appears explicitly on the right-hand sides of (6.40). Thus, 
once we have determined pet) and 4>(t) to solve the first two equations, 
(J(t) and z(t) are determined by quadrature. 

Moreover, Theorem 6.48 says that (6.40a) forms a Hamiltonian system 
in its own right. Fixing 'Y and ~, let 

H (p, 4>, t) = H (p, 'Y / (p sin 4> ), 'Y, ~, t) 

be the reduced Hamiltonian. Note that 

An easy computation using the chain rule shows that (6.40a) is the same as 
-I • 2 A.HA 

PI=-'Y psm 'I' "', 
A. -I • 2 A.HA 
'1'1 = 'Y P SIn 'I' p' (6.41) 

which is indeed Hamiltonian. In particular, if H (and hence H) is indepen
dent of t we can, in principle, integrate (6.41) by quadrature and hence 
solve the original system. (In practice, however, even for simple functions 
H, the intervening algebraic manipulations may prove to be overly complex.) 

In general, if a Hamiltonian system is invariant under an r-parameter 
abelian Hamiltonian symmetry group, one can reduce the order by 2r. This 
is because the residual symmetry group is always the entire abelian group 
itself owing to the triviality of the co-adjoint action. A 2n-th order Hamil
tonian system with an n-parameter abelian Hamiltonian symmetry group, 
or, equivalently possessing n first integrals PI (x), ... , Pn (x) which are in 
involution: 

{Pi, fj} = 0 for all i,j, 

is called a completely integrable Hamiltonian system since, in principle, its 
solutions can be determined by quadrature alone. Actually, much more can 

t These, of course, are not universally valid local coordinates; if p = 0 we must use slightly 
different variables. 
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be said about such completely integrable systems and the topic forms a 
significant chapter in the classical theory of Hamiltonian mechanics. 

Example 6.50. Consider the group of simultaneous rotations (p, q) ~ 
(Rp, Rq), R E SO(3) acting on 1R6. In Example 6.43 this was shown to be a 
Hamiltonian group action generated by the components of the angular 
momentum vector ro = q x p. Any Hamiltonian function of the form 
H(lpl, Iql, p. q) will be rotationally-invariant and thereby generate a Hamil
tonian system with SO(3) as a Hamiltonian symmetry group. On the subset 
M = {(p, q): q x p,e OJ, SO(3) acts regularly with three-dimensional orbits. 
According to Theorem 6.48, we will be able to reduce any such Hamiltonian 
system in degree by a total of four; three from the reduction to a common 
level set [t." = {q x p = ro} and one further degree from the residual symmetry 
group 0." = SO(2) of rotations around the ro-axis. 

Before charging ahead with the reduction, it will help to make a small 
observation. By the equivariance of the momentum map P: 1R6 ~ 50(3)* = 1R3 , 

P( p, q) = q x p = ro, we see that R E SO(3) maps the level set Y." to the level 
set R· Y." = [tR.". Thus we can choose R so as to make ro = (0, 0, w), W > 0, 
point in the direction of the positive z-axis. All other solutions, except those 
of zero angular momentum, which must be treated separately, can be found 
by suitably rotating these solutions. If ro is of this form, both p and q must 
lie in the xy-plane. We use polar coordinates (p, 0) for q and (00,1/1) for p 
(as in the previous example). Choosing three of these as local coordinates 
on [t." (and ignoring singular points) we obtain the reduced system 

Here ¢ denotes the angle from q to p, so W = pu sin ¢, and T = P . q = 
pu cos ¢; subscripts on H denote partial derivatives. The residual symmetry 
group of rotations around the z-axis is generated by 

2 a la 2 a la a v=-q -+q --p -+p -=-
aql aq2 apl ap2 a8' 

and is reflected in the fact that 0 does not appear on the right-hand side 
of the equations in (6.42). We can thus determine OCt) by a single quadrature 
from the solutions to the fully reduced system 

(6.43) 

which are Hamilton's equations for 

il(p, 00) = H(p, 00, pu cos ¢), where w2 = pu sin ¢. 

We leave it to the reader to check that the appropriate Poisson bracket is 

A A (aft ail aft ail) {F,H}=cos¢ ------ . 
ap au au ap 
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In particular, if H is independent of t, we can integrate (6.43) by quadrature, 
leading to a full solution to the original system. The reader might check 
that the present procedure is, more or less, equivalent to our integration of 
the Kepler problem in Example 4.19. 

NOTES 

Hamiltonian mechanics and the closely allied concept of a Poisson bracket 
has its origins in the original investigations of Poisson, Hamilton, Ostrograd
skii and Liouville in the nineteenth century; see Whittaker, [1; p.264] for 
details on the historical development of the classical theory, which relied 
exclusivelY on the canonical coordinates (p, q) of a symplectic structure 
on 1R2n. Besides the classical work of Whittaker, [1], good general references 
for the theory of Hamiltonian mechanics in the symplectic framework 
include the books of Abraham and Marsden, [1], Arnol'd, [3], and Gold
stein, [1]. 

The more general notion of a Poisson structure first appears in Lie's 
theory of "function groups" and the integration of systems of first order 
linear partial differential equations; see Lie, [4; Vol. 2, Chap. 8], Forsyth, 
[1; Vol. 5, § 137], and Caratheodory, [1; Chap. 9] for this theory. Lie already 
proved the general Darboux Theorem 6.22 for a Poisson structure of constant 
rank, and called the distinguished functions "ausgezeichnete functionen", 
which Forsyth translates as "indicial functions". In this book, I have chosen 
to use Caratheodory's translation of Lie's term. Recently, Weinstein, [3], 
proposed the less historically motivated term of "Casimir function" for 
these objects, which has been the more popular terminology of late. Lie's 
theory was by and large forgotten by both the mathematics and physics 
communities. Poisson structures were re-introduced, more or less indepen
dently, by Dirac, [1], lost, [1], Sudarshan and Mukunda, [1], and in its 
present form, Lichnerowicz, [1], [2], and Weinstein, [3]. They have received 
greater and greater importance in both mathematical physics and differential 
geometry through work of Marsden and Weinstein, [2], Conn, [1], and 
others. 

Lie was also well aware of the Poisson bracket associated with the dual 
of a Lie algebra and its connections with the co-adjoint representation. The 
explicit formula for this Lie-Poisson bracket can be found in Lie, [4; Vol. 
2, p. 294]. This bracket too was forgotten until the 1960's, when it was 
rediscovered by Berezin, [1], and used by Ki rill ov, [1], Kostant, [1], and 
Souriau, [1], in connection with representation theory and geometric quan
tization. This bracket then bore the name of one or more of the above 
authors until Weinstein, [2], pointed out its much earlier appearance in 
Lie's work, and proposed the name "Lie-Poisson bracket". The connection 
of rigid body motion with the Lie-Poisson bracket on SO(3) is due to 
Arnol'd, [2]. See Whittaker, [1; § 69], Goldstein, [1; Chap. 4], for classical 
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developments of these equation and Holmes and Marsden, [1], for a more 
detailed exposition along the lines of this chapter. See Weinstein, [4], for 
applications to stability theory. 

The reduction of Hamiltonian systems with symmetry has a long history, 
and most of the techniques, including Jacobi's "elimination of the node" 
appear in their classical form in Whittaker, [1]. The modern approach to 
this theory has its origins in the paper of Smale, [1], where the present 
version of the momentum map was introduced. Further developments due 
to Souriau, [1], and Meyer, [1], led to the fully developed Marsden and 
Weinstein, [1], approach to the reduction procedure. The treatment in this 
chapter is a slightly simplified and slightly less general version of the 
Marsden-Weinstein theory. Completely integrable Hamiltonian systems, 
which we've only touched on, have been a subject of immense importance 
throughout the history of classical mechanics. Most of these examples, such 
as rigid body motion in 1R3 and the Kepler problem, have been known for 
a long time, but the Toda lattice of Exercise 6.11 is of more recent origin. 
Manakov, [1], has shown the complete integrability of rigid body motion 
in IR". Generalizing the notion of complete integrability to include 
systems whose integrals are not in involution, as in Exercise 6.12, has been 
popularized in recent years by Mishchenko and Forrtenko, [1], and 
Kozlov, [1]. 

EXERCISES 

6.1. Suppose P(x, t) is a first integral of a time-independent Hamiltonian system. 
Prove that the derivatives a P / a t, a2 P / a t2, etc. are also all first integrals. 
(Whittaker, [1; p. 336]). 

6.2. Suppose x = J'V H(x) is a time-independent Hamiltonian system. Suppose vp 
is a Hamiltonian symmetry of the system corresponding to a time-independent 
function P(x). Prove that for any solution x( t) of the system, P(x( t» = at + b 
is a linear function of t. How does this compare with Theorem 6.33? Prove 
that if the Hamiltonian system has a fixed point xo, then a = 0 and P is actually 
a first integral as it stands. 

6.3. Suppose vp is a Hamiltonian symmetry of the Hamiltonian system x = J'V H. 
Letf(s) be any real-valued function of the real variable s. Prove thatf(P(x»vp 
is again a Hamiltonian symmetry and find the corresponding first integral. 

6.4. Let M be a Poisson manifold of constant rank. Prove that a function c: M -'> ~ 

is a distinguished function if and only if C is constant on the leaves of the 
symplectic foliation of M. Does this generalize to the case of nonconstant 
rank? (Weinstein, [3~). 

6.5. Discuss the Lie-Poisson bracket and co-adjoint orbits for the Lie algebra 51(2). 

6.6. Determine the Lie-Poisson bracket on the Euclidean groups E(2) and E(3). 
What does it look like when restricted to a co-adjoint orbit? 
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6.7. Suppose {F, H} is a Poisson bracket on IR m whose structure functions ]ij(X) 
depend linearly on x E IRm. Prove that this bracket determines a Lie-Poisson 
structure on IRm. 

6.8. Solve the Hamiltonian system corresponding to the Hamiltonian function 
H(p, p, q, ij) =!p2+!ij-2(p2_1) on 1R4 with canonical Poisson bracket. (Whit
taker, [1; p. 314]). 

6.9. For a conservative mechanical system, discuss the process of choosing coordin
ates that fix the centre of mass and the angular momentum of the system in 
light of our general group-reduction procedure. . 

*6.10. The motion of n identical point vortices in the plane is governed by the 
canonical Hamiltonian system in M = 1R2n corresponding to the Hamiltonian 
function 

H(p,q)= I Y;'Yjlog[(/_pj)2+(qi_qj)2] 
i#j 

in which (p \ q i) is the planar coordinates of the i- th vortex and Yi its strength. 
Prove that the Euclidean group E(2) of simultaneous translations and rotations 
of the vortices forms a symmetry group of this system. Show that each 
infinitesimal generator of this group is a Hamiltonian vector field, and deter
mine the corresponding conserved quantity. Show that, however, the entire 
group E(2) is not a Hamiltonian symmetry group in the strict sense of 
Definition 6.41. For what values of n is the vortex problem completely 
integrable? (Kozlov, [1; p. 15]). 

6.11. The three-particle Toda lattice is governed by the Hamiltonian system with 
Hamiltonian function 

where 

and we use the canonical Poisson structure on 1R6. Prove that the functions 

are first integrals, and hence the Toda lattice is a completely integrable 
Hamiltonian system. Is it possible to explicitly integrate it? (Toda, [1; § 2.10]). 

6.12. Suppose a Hamiltonian system on a 2n-dimensional symplectic manifold is 
invariant under an n-parameter solvable Hamiltonian transformation group. 
Prove that the solutions whose initial conditions cause the n integrals to all 
vanish can (in principle) be found by quadrature, generalizing Example 6.40. 
(Mishchenko and Fomenko, [1], Kozlov, [1]). 

6.13. Let M = 1R2n with the canonical Poisson structure. Discuss the reduction 
Theorem 6.48 for the symmetry group so(2) whose action is generated by the 
energy of a harmonic oscillator, H(p, q) =HI p12+ IqI2). (Arnol'd, [3; p. 377]). 

*6.14. Let G and M satisfy the hypotheses of Theorem 6.48. Prove that if M is 
symplectic, the quotient manifold gal Ga is also symplectic. (Marsden and 
Weinstein, [1]). 
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6.15. Corresponding to a Hamiltonian system 

dqi= aH 
dt api' 

dpi=_ aH 
dt aqi' 

H = H(t, p, q), 

in canonical form is the Hamilton-Jacobi partial differential equation 

au (au) -+H t - x =0. 
at ' ax' 

Prove that the vector field v = A( t, x, auf ax )au is a generalized symmetry of 
the Hamilton-Jacobi equation if and only if A( t, q, p) is a first integral of 
Hamilton's equations. (Fokas, [1]). 

6.16. Suppose ..P[u] = S L(t, u(n») dt is a functional involving t E IR, u E IR. Define 
a change of variables 

Finally, let 

I aL aL " I aL p =--D,-+" ·+(-D,) - -, 
au, aU II aUn 

2 aL aL " 2 aL p =--D,-+" ·+(-D,) - -, 
aU II aU III au" 

" aL p =-
au" 

H(p, q) = -L+ plq2+ p2q3 + ... + p"-I q" + p"u", 

where Un = d"u/ dtn is determined implicitly from the equation for p". Prove 
that u( t) satisfies the Euler-Lagrange equation for..P if and only if (p( t), q(t)) 
satisfy Hamilton's equations for H relative to the canonical Poisson bracket. 
(Whittaker, [1; p. 266]). 

*6.17. Integral Invariants. Let M be a Poisson manifold and VH a Hamiltonian vector 
field on M. If ScM is any subset, set S( t) = {exp( tv H )x: XES}, assuming 
the Hamiltonian flow exp( tv H) at time t is defined over all of S. A differential 
k-form w on M is called an (absolute) integral invariant of the Hamiltonian 
system determined by VH if SS(,) w = Is w for all k-dimensional compact sub
manifolds ScM (with boundary). 
(a) Prove that w is an integral invariant if and only if VH(W) = 0 on all of M. 
(b) Prove that if F(x) is any first integral of the Hamiltonian system, the 

one-form dF is an absolute integral invariant. Does the converse hold? 
(c) Suppose M is symplectic and K(x) = J(X)-I is as in Proposition 6.15 in 

terms of local coordinates x. Prove that the differential two-form 

m 

D=! I Kij(x)dxi"dxj 

i.j=l 

is independent of the choice oflocal coordinates, and is an integral invariant 
of any Hamiltonian system with the given Poisson structure. 
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(d) Conversely, prove that a two-form 0 on M determines a symplectic 
Poisson structure if and only if it is closed: dO = 0, and of maximal rank. 

(e) Prove that if wand C are absolute integral invariants for VH, so is w /I C. 
(f) Prove Liouville's theorem that any Hamiltonian system in 1R2" with canoni

cal Poisson bracket (6.1) is volume preserving: 

Vol(S(t)) = Vol(S), 

(See Exercise 1.36.) (Cartan, [1], Amol'd, [3]). 

6.18. Let VH be a Hamiltonian vector field on the Poisson manifold M. 
(a) Prove that if the k-form w is an integral invariant and w generates a 

symmetry group, then the (k -I)-form w J w is an integral invariant. Also 
show that the Lie derivative w( w) is an integral invariant. 

(b) If M is symplectic, prove that any Hamiltonian system with two non
Hamiltonian symmetries has a first integral. What about Hamiltonian 
symmetries? (Rosencrans, [1]). 

*6.19. Let N be a smooth manifold, and M = T* N its cotangent bundle. Then there 
is a natural symplectic structure on M = T* N which can be described in any 
of the following equivalent ways. 
(a) Let q = (ql, ... , q") be local coordinates on N. Then T* Nlq is spanned 

by the basic one-forms dq I, ... , dq", so that w E T* Nlq can be written as 
w = L pi dqi; hence (q, p) determine the local coordinates on T* N. Define 

{F, H} = £ aF aH _ aF aH. 
i=1 aq' ap' ap' aq' 

Prove that { , } is a Poisson bracket, which is well defined on all of T* N. 
(b) Let 1T: T* N ~ N be the projection. The canonical one-form 0 on M = T* N 

is defined so that for any tangent vector v E TMI., at wE M = T* N, 

(0, v) = (w, d1T(V). 

Prove that in the local coordinates of part (a), 0 = L / dqi. Therefore, its 
exterior derivative 0 = dO, as in Exercise 6.17(c), defines the Poisson 
bracket on T* M. 

(c) Let v be a vector field on N with flow exp(ev): N ~ N. Prove that Exp(ev) 
(x, w)= (exp(ev)x, exp(-ev)*w) for (x, W)E T* N defines a flow on M= 
T* N. What is its infinitesimal generator? If H: T* N -+ IR is any function, 
prove that there is a unique vector field v H on M = T* N such that 

for all (x, w) E T* N, v a vector field on N, and that this vector field is the 
Hamiltonian vector field associated with H relative to the above symplectic 
structure. 

*6.20. Multi-vectors. The dual objects to differential forms on a manifold are called 
"multi-vectors" and are defined as alternating, k-linear, real-valued maps on 
the cotangent space T* Mix, varying smoothly from point to point. 
(a) Prove that a "un i-vector" (i.e. k = 1) is the same as a vector field. 
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(b) Prove that in a local coordinate chart, any k-vector is of the form 

8 = I. hl(x)a i, /I ••• /I ai" 
I 

where the sum is over all strictly increasing multi-indices I, ai = a/ axi form 
a basis for the tangent space TMlx, and hi depends smoothly on x. 

(c) Let lex) be the structure matrix for a Poisson bracket on M. Prove that 

m 

o =! I. fj(x)a i /I aj 
i.j=l 

determines a bi-vector, defined so that 

(0; dH, dF) = {H, F} 

for any pair of real-valued functions H, F. 
(d) Prove that if 8 is a k-vector and ~ an I-vector, then there is a uniquely 

defined (k+l-l)-vector [8,C], called the Schouten bracket of 8 and~, 
determined by the properties that [.,.] is bilinear, skew-symmetric: 
[8, ~] = (_1)kl[~, 8], satisfies the Leibniz rule 

[8, ~ /I 1)] = [8, C] /I 1) + (-1) kl+l ~ II[ 8, 1)], 

and agrees with the ordinary Lie bracket in the case 8 and ~ are vector 
fields (uni-vectors). What is the analogue of the Jacobi identity for the 
Schouten bracket? 

(e) Prove that if 0 is a bi-vector then the bracket between functions Hand 
F defined by (*) is necessarily bilinear and alternating; it satisfies the 
Jacobi identity if and only if the tri-vector [0,0] obtained by bracketing 
o with itself vanishes identically: 

[0,0]=0. 

Thus the definition of a Poisson structure on a manifold M is equivalent 
to choosing a bi-vector satisfying (**). (Lichnerowicz, [1], [2]). 



CHAPTER 7 

Hamiltonian Methods for 
Evolution Equations 

The equilibrium solutions of the equations of nondissipative continuum 
mechanics are usually found by minimizing an appropriate variational 
integral. Consequently, smooth solutions will satisfy the Euler-Lagrange 
equations for the relevant functional and one can employ the group-theoretic 
methods in the Lagrangian framework discussed in Chapters 4 and 5. 
However, when presented with the full dynamical problem, one encounters 
systems of evolution equations for which the Lagrangian viewpoint, even 
if applicable, no longer is appropriate or natural to the problem. In this 
case, the Hamiltonian formulation of systems of evolution equations 
assumes the natural variational role for the system. 

Historically, though, the recognition of the correct general form for an 
infinite-dimensional generalization to evolution equations of the classical 
concept of a finite-dimensional Hamiltonian system has only recently been 
acknowledged. Part of the problem was the excessive reliance on canonical 
coordinates, guranteed by Darboux' theorem in finite dimensions, but no 
longer valid for evolutionary systems. The Poisson bracket approach adop
ted here, however, does readily generalize in this context. The principal 
innovations needed to convert a Hamiltonian system of ordinary differential 
equations (6.14) to a Hamiltonian system of evolution equations are: 

(i) replacing the Hamiltonian function H(x) by a Hamiltonian functional 
Jt'[ u], 

(ii) replacing the vector gradient operation V H by the variational derivative 
BJt' of the Hamiltonian functional, and 

(iii) replacing the skew-symmetric matrix J(x) by a skew-adjoint differential 
operator qj;, which may depend on u. 
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The resulting Hamiltonian system will take the form 

au 
-= q/). 5~[u]. 
at 

There are certain restrictions, based on the Jacobi identity for the associ
ated Poisson bracket, that a differential operator q/) must satisfy in order 
to qualify as a true Hamiltonian operator. These are described in Section 
7.1; in their original form they are hopelessly complicated to work with 
but, using the theory of "functional multi-vectors", an efficient, simple 
computational algorithm for determining when an operator q/) is Hamil
tonian is devised. The second section explores the standard applications of 
symmetry groups and conservation laws to Hamiltonian systems of evolution 
equations. The main tool is the Hamiltonian form of Noether's theorem. 
Applications to the Korteweg-de Vries equation and the Euler equations 
of ideal fluid flow are presented. 

The final section deals with the recent theory of bi-Hamiltonian systems. 
Occasionally, as in the case of the Korteweg-de Vries equation, one runs 
across a system of evolution equations which can be written in Hamiltonian 
form in two distinct ways. In this case, subject to a mild compatibility 
condition, the system will necessarily have an infinite hierarchy of mutually 
commuting conservation laws and consequent Hamiltonian flows, generated 
by a recursion operator based on the two Poisson brackets, and hence can 
be viewed as a "completely integrable" Hamiltonian system. Such systems 
have many other remarkable properties, including soliton solutions, lineariz
ation by inverse scattering and so on. A new proof of the basic theorem on 
bi-Hamiltonian systems is given here, along with some applications. 

7 :1. Poisson Brackets 

Recall first the basic set-up of the formal variational calculus presented in 
Section 5.4. Let Me X x U be an open subset of the space of independent 
and dependent variables x = (Xl, ... , x P ) and u = (u I, ... , u q ). The algebra 
of differential functions P(x, u(n») = P[u] over M is denoted by d, and its 
quotient space under the image of the total divergence is the space g; of 
functionals q; = J P dx. 

The main goal of this section is to make precise what we mean by a 
system of evolution equations 

u, = K[u] = K(x, u(n»), K E d q ,' 

being a Hamiltonian system. Here K depends only on spatial variables x 
and spatial derivatives of u; t is singled out to playa special role. To do 
this, we need to pursue analogies to the various components of (6.14) in 
the present context. Firstly, the role of the Hamiltonian function in (6.14) 
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should be played by a Hamiltonian functional 'Je = J H dx E fJi. Therefore, 
we must replace the gradient operation by the "functional gradient" or 
variational derivative 8'Je E sir of 'Je. The remaining ingredient is the 
analogue of the skew-symmetric matrix J(x) which serves to define the 
Poisson bracket. Here we need a linear operator f0: .<;/jq ~.<;/jq on the space 
of q-tuples of differential functions, which, in most instances, will be a 
linear q x q matrix differential operator, and may depend on x, u and 
derivatives of u. To qualify as a Hamiltonian operator, f0 must enjoy further 
properties, which are found by looking at the corresponding Poisson bracket. 

In finite dimensions, the Poisson brackets of two functions is a function 
which depends bilinearly on the respective gradients, the coefficients being 
determined by the Hamiltonian matrix J(x), cf. (6.12). Thus, for evolution 
equations, the Poisson bracket of two functionals must be a functional 
depending bilinearly on the respective variational derivatives. Clearly, for 
a candidate Hamiltonian operator f0, the correct expression for the corre
sponding Poisson bracket has the form 

{gp, 2l} = f 8gp· f082l dx, (7.1) 

whenever gp, 2l E fJi are functionals. Of course, the Hamiltonian operator f0 
must satisfy certain further restrictions in order that (7.1) be a true Poisson 
bracket. 

Definition 7.1. A linear operator f0: .<;/jq ~.<;/jq is called Hamiltonian if its 
Poisson bracket (7.1) satisfies the conditions of skew-symmetry 

{gp, 2l} = -{2l, gp}, (7.2) 

and the Jacobi identity 

{{gp, 2l}, ~} + {{~, gp}, 2l} + {{2l, ~}, gp} = 0, (7.3) 

for all functionals gp, 2l, ~ E fJi. 

If we compare Definition 7.1 with the finite-dimensional version of 
Definition 6.1, we see that two of the earlier conditions have been dropped. 
Of these, bilinearity is apparent from the form (7.1) of the bracket. The 
Leibniz rule has no counterpart in this situation, since, as we saw in Section 
5.4, there is no well-defined multiplication between functionals. However, 
the principal use of Leibniz' rule was to deduce the existence of a Hamil
tonian vector field from a real-valued function H, satisfying (6.4). This does 
carryover to the functional case: 

Proposition 7.2. Let f0 be a Hamiltonian operator with Poisson bracket (7.1). 
To each functional 'Je = J H dx E fJi, there is an evolutionary vector field v:J(, 
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called the Hamiltonian vector field associated with 'le, which satisfies 

pr v.re(9P) = {9P, 'le} (7.4) 

for all functionals 9P E fF. Indeed, v.re has characteristic ~8'le = ~E(H). 

PROOF. Let 9P = J P dx, P E d. Then, using the integration by parts formula 
(5.90), we find 

{9P, 'le}= f E(P)· ~E(H) dx= f prv£,})E(H)(P) dx=prv£,})E(H)(f PdX). 

(See Exercise 5.42.) Thus (7.4) holds provided V.re=V£,})E(H). o 

The Hamiltonian flow corresponding to a functional 'le[ u] is obtained 
by exponentiating the corresponding Hamiltonian vector field v.re. According 
to (5.14), then, a Hamiltonian system of evolution equations takes the form 

au 
-= ~. 8'Jt. at ' (7.5) 

where 8 is the variational derivative, and ~ the Hamiltonian operator. Note 
the complete analogy with the finite-dimensional Hamiltonian system (6.14). 
Before proceeding to examples of Hamiltonian systems, we need to have 
some reasonably straightforward means of determining when a given 
operator ~ is Hamiltonian. To begin with, the requirements imposed by 
the skew-symmetry of the Poisson bracket is immediate, being the infinite
dimensional version of the skew-symmetry of the matrix J in (6.14). 

Proposition 7.3. Let ~ be a q x q matrix differential operator with bracket 
(7.1) on the space offunctionals. Then the bracket is skew-symmetric, i.e. (7.2) 
holds, if and only if ~ is skew-adjoint: ~* = -~. 

PROOF. If 9P = J Pdx, f!l = J Q dx, then (7.2) can be written as 

f E(P)· ~E( Q) dx = - f E( Q) . ~E(P) dx. 

Using the definition (5.45) of the adjoint ~*, we find this equivalent to 

f E(P)· (~+~*)E(Q) dx=O. 

If this holds for all P, QEd, then, as in the proof of Proposition 5.64, using 
the "substitution principle" enunciated in Exercise 5.32, we must have 
~+~*=O. 0 
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Lie Derivatives of Differential Operators 

Before analyzing the Jacobi identity, we need to make an addendum to the 
formal variational calculus developed in Section 5.4. IfvQ is an evolutionary 
vector field, and fjiJ = L PK [u] DK a differential operator whose coefficients 
may depend on u, then we define the Lie derivative of fjiJ with respect to 
vQ to be the infinitesimal change in fjiJ under the one-parameter group 
exp( ev Q). Clearly this is the differential operator 

(7.6) 

obtained by letting vQ act on the coefficients of fjiJ. This definition extends 
to matrix differential operators, where now pr vQ acts on the individual 
entries. 

For example, if fjiJ = D! + 2uDx + ux, and vQ = uxxau , then 

pr vQ(fjiJ) = 2 pr vQ(u)Dx + pr vQ(ux) = 2uxxDx + UXXX• 

The one-parameter group exp(evQ) in this case is found by solving the heat 
equation UE = uxx, and prvQ(fjiJ) represents the infinitesimal change in fjiJ when 
u(x, e) is a solution to the heat equation. 

The main formula we need is the following version of Leibniz' rule: 

(7.7) 

which holds for any P E stir, Q E stiq and fjiJ: stir ~ stis an s x r matrix differen
tial operator. This can either be proved directly from the definition, or from 
(7.6) using the commutation formula (5.19). 

The Jacobi Identity 

At first sight, the direct verification of the Jacobi identity (7.3), even for the 
simplest skew-adjoint operators, appears a hopelessly complicated compu
tational task. However, a considerable simplification is effected by utilizing 
some of our basic results from the formal variational calculus, bringing this 
problem within the realm of feasibility. An even further simplification can 
be made by introducing a version of the functional forms of Section 5.4 
(although here they are, in a sense, "dual" objects), after which· the 
verification of the Jacobi identity becomes a more or less routine compu
tation. 

Let g}, 22., (lJl be functionals, with variational derivatives 8g} = P, 822. = Q, 
8(lJl = R in sti q• (Note the change of notation: P is no longer the integrand 
for g}!) With this notation, the first term in the Jacobi identity (7.3) becomes 

{{g},22.},(lJl}=prV0'l(f p. fjiJQdX) =f prv~R(P·fjiJQ)dx. 
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Using Leibniz' rule, and (7.7), this is 

{{gp, 2l}, 9ll} = f {pr VqjJR(P) . ~Q+ p. pr VqjJR(~) . Q 

+ p. ~[pr VqjJR( Q)]} dx. (7.8) 

From the formula (5.41) connecting the Lie derivative and Frechet deriva
tive, the first term in this expression is 

f prvqjJR(P)'~Qdx= f Dp(~R)·~Qdx. 
Similarly, if we use the fact that ~ is skew-adjoint, the third term has an 
analogous form 

f p. ~[pr VqjJR( Q)] dx = - f ~p. DQ(~R) dx. (7.9) 

The second and third components in the Jacobi identity contribute similar 
expressions; for example, {{2l, 9ll}, gp} contains the terms 

f DQ(~P)· ~R dx and - f ~Q' DR(~P) dx. (7.10) 

But according to Theorem 5.68, the Frechet derivative of Q = (j2l is a 
self-adjoint differential operator, so the first integral in (7.10) equals 

f ~p. DQ(~R) dx, 

and cancels the integral (7.9) when substituted into the Jacobi identity. 
Thus, once we have expanded the Jacobi identity in this way, six of the 
terms cancel and we are left with the equivalent form 

f [p. prvqjJR(~)Q+R' prvqjJQ(~)P+Q' prvqjJp(~)R] dx=O, (7.11) 

which must vanish for all P, Q, R which are variational derivatives of 
functionals. 

At this stage, a further simplification arises. Note that the integrand in 
(7.11) depends only on P, Q and R and their total derivatives. According 
to our general "substitution principle" announced in Exercise 5.32, this 
expression vanishes for all variational derivatives P = (jgp, Q = (j2l, R = (j911 
if and only if it vanishes for arbitrary q-tuples P, Q, R E sir. We have thus 
proved 

Proposition 7.4. Let ~ be a skew-adjoint q x q matrix differential operator. 
Then the bracket (7.1) satisfies the Jacobi identity if and only if (7.11) vanishes 
for all q-tuples P, Q, R E .s4q• 
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Corollary 7.S. If q; is a skew-adjoint q x q matrix differential operator whose 
coefficients do not depend on u or its derivatives, then q; is automatically a 
Hamiltonian operator. 

In fact, in this case pr vQ(q;) = 0 for any evolutionary vector field VQ, so 
(7.11) is trivially satisfied. 0 

Example 7.6. The Korteweg-de Vries equation 

can in fact be written in Hamiltonian form in two distinct ways. Firstly, we 
see 

where q; = Dx and 

is one of the classical conservation laws. Note that q; is certainly skew
adjoint, and hence by Corollary 7.5 is automatically Hamiltonian. The 
Poisson bracket is 

(7.12) 

(To gain a true appreciation of the efficacy of our formal variational methods, 
the reader might try verifying the Jacobi identity for (7.12) directly!) 

The second Hamiltonian form is a bit less obvious. We find 

u, = (D! +~uDx +lux)u = 'l8:Jeo, 

where 

:Jeo[u] = f !u 2 dx 

is another of the conserved quantities, and 

'l = D! + ~uDx + lux. 

It is easy to prove that 'l is skew-adjoint; to prove the Jacobi identity we 
look at (7.11). The first term there is 

f p pr V~(R)( 'l)Q dx = f p[~( 'lR)Qx +H 'lR)xQ] dx 

= f [~PRxxxQx+lpRxxxxQ+~uPR~Qx+~uxPRQx 
+ ~uPRxxQ + luxPRxQ + ~uxPRQ] dx 
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where we are using x-subscripts as abbreviations for total derivatives: 
Px = DxP, Pxx = D!P, etc. We must add in the corresponding expressions 
stemming from the other two terms in (7.11) and then prove that the resulting 
integrand is a null Lagrangian, i.e. a total Dx-derivative, no matter what 
P, Q and R are. This is true, and we leave the proof to the reader, since 
later we will find a much simpler proof of this fact. We conclude that 

{g>, .92} = f [Sg>· (D! +~uDx +lux)j).92] dx (7.13) 

does define a Poisson bracket on the space of functionals. 

Although the above computation is quite a bit more tractable than the 
direct verification of the Jacobi identity, it still requires quite a lot of 
computational stamina even in such a relatively simple example. An even 
more radical simplification can be effected if we employ a theory of multi
linear maps similar to that developed in Section 5.4. (An applications
oriented reader may wish to skip ahead to Section 7.2 at this stage.) 

Functional Multi-vectors 

In finite dimensions, multi vectors are the dual objects to differential forms. 
In Exercise 6.20 it was shown how to develop the theory of finite-dimensional 
Poisson structures based on the theory of multi vectors. Here we introduce 
the analogous objects for infinite-dimensional Hamiltonian systems of evol
ution equations. Since we are working with open subsets of Euclidean space 
Me X x U, the theory of functional multi-vectors is identical with that of 
functional forms developed in Section 5.4. The only reason that we employ 
different terminology and notation is that, from a more global standpoint, 
the transformation rules for these objects under changes of variable are not 
the same; functional forms transform like Euler-Lagrange expressions 
whereas functional multi-vectors are more like evolutionary vector fields. 
Except for this distinction (which will not actually occur in this book) these 
objects are the same. 

Recall that each functional k-form determines an alternating k-linear 
map from the space To of evolutionary vector fields to the space 3' of 
functionals. Similarly, a functional k-vector will be determined by an 
alternating k-linear map from the "dual" space /\.~ of functional one-forms 
to 3'. Since each evolutionary vector field is uniquely determined by its 
characteristic, we can identify To with s,r, the space of q-tuples of differential 
functions on M. Similarly, according to Proposition 5.63, each functional 
one-form is uniquely determined by its canonical form, and hence we can 
also identify /\.~ with sr. Under these two identifications (which depend 
on the precise Euclidean coordinates on M), we obtain the identification 
of functional multi-vectors and forms. 
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Each functional form arises from a vertical form, so correspondingly 
each functional multi-vector arises from a vertical multi-vector. To preserve 
the notational distinction between the two, we use the notation ()~ for the 
"uni-vector" corresponding to the one-form du~; thus 

«()~; P) = DJPa whenever P = (Ph"', Pq ) E d q• 

(From now on we replace I\.~ by d q.) Note that we could identify ()~ with 
the derivation a/au~, which could be adopted as an alternative notation for 
multi-vectors, but one that is heavier and, later, slightly confusing. A general 
functional k-vector is thus a finite sum 

with coefficients R~ Ed; it defines the k-linear map 

(0; p\ ... , pk) = f [E R~ det(DJ'p~)] dx, 

cf. (5.73). The total derivatives act as Lie derivatives on the vertical k-vectors, 
with Di«(}~) = O~i' cf. (5.74). The space 1\.: of functional k-vectors is then 
the quotient space of the space of vertical k-vectors (Le. finite sums of 
wedge products of the ()~ with coefficients in d) under the image of total 
divergence. By Lemma 5.61, every functional k-vector is uniquely deter
mined by its values on the space of q-tuples of differential functions. In 
this way, all of the theorems and examples of functional forms discussed 
in Section 5.4 carryover to functional multi-vectors once we replace du~ 
by its counterpart O~ and the vector fields pr v Q by their characteristics 
QE dq.t 

For example, any functional uni-vector 

can be put into canonical form 

y= f {R' O} dx= f Lt Ra oa } dx, 

by an integration by parts. (Thus we can identify 1\.:; with To, the space of 
evolutionary vector fields!) Similarly, any functional bi-vector has the 
canonical form 

o =~ f {O A 9M}dx =~ f LJ~l Oa A ~a{30{3 } dx, (7.14) 

t One tricky point in this theory is that while the spaces 1\ ~ and 1\: of functional forms and 
multi-vectors are defined in a dual manner, they are not naturally dual vector spaces for any 

k> I! This is a reflection of our inability to define a multiplication on the space ;g; of functionals. 



432 7. Hamiltonian Methods for Evolution Equations 

where ~ = (~al3) is a skew-adjoint q x q matrix differential operator; see 
Proposition 5.64. Such a bi-vector defines the bilinear map 

(8; P, Q) =! f (P~Q- Q~P) dx = f (p. ~Q) dx, 

where we used the skew-adjoint nature of ~. In particular, if P and Q are 
variational derivatives (or differentials if we revert back to !\~), 

(8; {jpj>, {j!!l) = f ({jpj>. ~8!!l) dx 

reproduces the bracket {pj>, !!l} determined by the skew-adjoint operator ~. 
For example, the Poisson bracket for the second Hamiltonian operator ~ 
of the Korteweg-de Vries example is represented by the bi-vector 

(7.15) 

the term involving e A e trivially vanishing. 
The Jacobi identity provides a natural example of a functional tri-vector. 

Note that in its original form, the left-hand side of (7.3) is clearly an 
alternating, tri-linear function of the variational derivatives {jpj>, 8!!l, {jgjl. 
Therefore (7.11), although it may not appear to be, is an alternating tri-linear 
fUhction of the q-tuples P, Q, R and hence determines a functional tri-vector, 
which we denote by 

'I' =! f {e A prV('}J9(~) A e} dx, (7.16) 

so that ('I'; P, Q, R) is the left-hand side of (7.11). (See also Exercise 7.12.) 
It remains to explain the notation in (7.16). 

The "vector field" V('}J9 is a formal evolutionary vector field whose charac
teristic is the q-tuple 

q 

(~e)a = L ~al3el3 
13 =1 

of vertical uni-vectors; thus formally 

In particular, if R E .sIi is any differential function, 
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is a vertical uni-vector. For example, in the case of the second Hamiltonian 
operator for the Korteweg-de Vries equation, we have 

prv~6(u) = <t8 = 8xxx+~u8x+!ux8, 

pr V~6( ux) = Dx<t8 = 8xxxx +~u8xx + ux8x +!uxx8, 

and so on. 
Secondly, we can let pr V~6 act on a differential operator, say 0), as a 

Lie derivative; the resulting object will be a differential operator whose 
coefficients are functional uni-vectors in that they involve lJ~'s. For example, 

pr V'€6( <t) = pr v'€6(D~ + ~uDx +!ux) 

= ~ pr V'€6( u)Dx +! pr V~6(Ux) 

= ~(lJxxx + ~ulJx +!uxlJ)Dx +!C lJxxxx + ~ulJxx + uxlJx + !uxxlJ). 

Finally, we apply pr V~6(0) to lJ itself by a combination of differentiating 
and wedging in the obvious manner. For instance, the tri-vector for the 
Jacobi identity corresponding to <t is 

~ f {lJ" prv~6(<t)" lJ} dx = f HlJ" lJxxx " lJx+~ulJ" lJx " lJx+~ux8" lJ" lJx 

+!lJ " lJxxxx " lJ + ~ulJ " lJxx " 8 

+iuxlJ" 8x " lJ +fguxxlJ" lJ" 8} dx 

= -! f {lJ" lJx " 8xxx } dx 

by the basic properties of the wedge product. This final tri-vector is also 
trivial, as can be seen by a simple integration by parts: 

f {lJ" 8x " lJxxx } dx = - f {Dx(lJ" 8x)" 8xx } dx 

= - f {lJx " lJx " lJxx + lJ " lJxx " lJxx } dx = o. 

Note that according to this notation, if we evaluate 'l', as given in (7.16), 
on P, Q, R E sir we obtain six terms, the first two of which are 

By Exercise 7.12, since 0) is a skew-adjoint differential operator, so is 
prvQ(0) for any evolutionary vector field vQ. Thus these two particular 
terms are equal and combine to give the first term in the Jacobi identity 
(7.11). Thus, as claimed above, ('l'; P, Q, R) is the same as the left-hand 
side of (7.11). Moreover, using Lemma 5.61 (or, rather, its counterpart for 
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functional multi-vectors), we see that vanishing of (7.11) is equivalent to 
the triviality of the tri-vector qt. 

Proposition 7.7. Let '2lJ be a skew-adjoint q x q matrix differential operator. 
Then '2lJ is Hamiltonian ifand only if the functional tri-vector (7.16) vanishes: 
qt=O. 

There is one final simplification available. Let us extend the definition 
of the prolonged "vector field" pr V!ilJ9 to the space of vertical uni-vectors 
by setting 

prv!ilJ9(8~)=0 

for all a, J and extending it to act as a derivation. Thus we can write the 
integrand of (7.16) as 

(7.17) 

the minus sign coming from the fact that we have interchanged a wedge 
product of 8's. Moreover, pr V!ilJ9, being evolutionary, commutes with total 
differentiation: 

k= 1, ... ,p, 

cf. (5.19), even when it acts on vertical multi-vectors. Therefore, ifcI> = J <i> dx 
is any functional k-vector, we can unambiguously define the (k+ 1)-vector 

(See Exercise 5.42.) In particular, the bi-vector 0 determining the Poisson 
bracket, (7.14), can be acted on this way, and by (7.17) we find 

prv!ilJ9(0)=~ f {prv!ilJ9(8A'2lJ8)}dx=-qt, 

agrees, up to sign, with the tri-vector corresponding to the Jacobi identity. We 
have thus proved 

Theorem 7.8. Let'2lJ be a skew-adjoint q x q matrix differential operator and 
o = ~ J {8 A '2lJ8} dx the corresponding functional bi-vector. Then '2lJ is Hamil
tonian if and only if 

(7.18) 

Example 7.9. Let us return one final time to the Hamiltonian operator ~ 
associated with the Korteweg-de Vries equation. According to (7.15) and 
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(7.18) we need only check the vanishing of 

prv\\'8 f HOld1xxx +luOAOx}dx=l f {~(O)AOAOx}dx 
=l f (Oxxx A 0 A Ox+~uOx A 0 A Ox 

+luxo A 0 A Ox) dx 

=0, 
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by our earlier computation. Thus we have proved, in a completely elementary 
fashion, the fact that ~ is Hamiltonian. 

Example 7.10. Consider the Euler equations of inviscid ideal fluid flow 

au 
-+U' Vu= -Vp 
at ' 

v ·u=o. 

(See Example 2.45 for the notation.) As these stand, they cannot take the 
form of a Hamiltonian system since, in particular, we have no equation 
governing the temporal evolution of the pressure p. The easiest way to 
circumvent this difficulty is to rewrite the equations in terms of the vorticity 
w = V X u. Taking the curl of the first set of equations, we find the vorticity 
equation 

aw 
-=w' Vu-u' Vw 
at ' 

which we will put into Hamiltonian form 

aw {j'J{ 
-=0;
at (jw 

(7.19) 

(7.20) 

for a suitable Hamiltonian operator 0;. The Hamiltonian functional is the 
energy 

'J{ = f !lul2 dx, 

but for (7.20) we need to compute its variational derivative with respect to 
w, not u! This is done (formally) by introducing the vector stream function 
+ satisfying V x + = u, V· + = O. Let TJ(x) have compact support, with 
V x TJ = t. Then 

~IE=O'J{[w+et]= f u'TJdx= f (Vx+)'TJdx= f +'(VxTJ)dx 

= f +. t dx, 

hence {j'J{/ {jw = +. 
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In the two-dimensional case, u = (u, v) depends on (x, y, t) and there is 
a single vorticity W = Vx - uy. The vorticity equation is then 

aw 
- = -UWx - VWy = wxl/ly - wyl/lx, at (7.21) 

where 1/1 is the stream function, with I/Ix = v, I/Iy = -u. If we set 

then we see that (7.21) is of the form (7.20) using the energy as the 
Hamiltonian functional. 

To prove that :!lJ is a Hamiltonian operator, note first that 

:!lJ*=-Dy ' wx+Dx' wy=-:!lJ, 

so :!lJ is skew-adjoint. The Jacobi identity is proved by checking (7.18): 

0=prV9n8 f {wx8" 8y -Wy8" 8J dxdy 

= f {DAwx8y - w/Jx) " 8" 8y - Dy(wx8y - w/Jx) " 8" 8x} dx dy 

= f {wA8xy " 8" 8y - 8yy " 8" 8x) + wy(8xy" 8" 8x - 8xx " 8" 8y)} dx dy. 

Integrating the second and fourth terms by parts, we find this equals 

f {wA 8xy " 8 " 8y + 8y " 8 " 8xy ) + wxy8y " 8 " 8x 

+ wy( 8xy " 8" 8x + 8x " 8 " 8xy ) + wxy8x " 8 " 8y} dx dy = 0, 

since the wedge product is alternating. Thus :!lJ verifies the conditions of 
Theorem 7.8 and defines a true Poisson bracket, relative to which the 
two-dimensional Euler equations are Hamiltonian. The three-dimensional 
version is left to the reader; see Exercise 7.5. 

7.2. Symmetries and Conservation Laws 

In outline, the correspondence between Hamiltonian symmetry groups and 
conservation laws for systems of evolution equations in Hamiltonian form 
proceeds exactly as in the finite-dimensional case discussed in Section 6.3. 
First, we need to investigate the "distinguished functionals" arising from 
degeneracies of the Poisson bracket itself; these will provide conservation 
laws for any system having the given Hamiltonian structure. Further con
servation laws, particular to the symmetry properties of the individual 



7.2. Symmetries and Conservation Laws 437 

Hamiltonian functionals, can then be deduced from generalized symmetries 
which are themselves Hamiltonian. 

Distinguished Functionals 

Definition 7.11. Let 90 be a q x q Hamiltonian differential operator. A 
distinguished functional for 90 is a functional 'f5 E g; satisfying 9Oi3'f5 = 0 for 
all x, u. 

In other words, the Hamiltonian system corresponding to a distinguished 
functional is completely trivial: u, = O. From (7.4) we conclude that a 
functionai 'f5 is distinguished if and only if its Poisson bracket with every 
other functional is trivial: 

{'f5, :1e} = 0 for all :1e E g;. 

This immediately implies the conservative nature of such functionals. 

Proposition 7.12. Let 90 be a Hamiltonian operator. If'f5 is a distinguished 
functional for 90, then 'f5 determines a conservation law for every Hamiltonian 
system u, = 9Oi3:1e relative to 90. 

Example 7.13. For the first Hamiltonian operator 90 = Dx of the Korteweg-de 
Vries equation, a distinguished functional must satisfy Dxi3'f5 = 0, or, 
equivalently, i3'f5 is constant. Every such functional is a constant multiple 
of the mass Al[u] = J u dx. Thus, according to Proposition 7.12, the LI 
solutions to any evolution equation of the form u, = Dxi3:1e automatically 
satisfy the constraint of mass conservation J u dx = constant. (Actually, this 
can be generalized, see Exercise 7.8.) The second Hamiltonian operator 'If, 
on the other hand, has no nontrivial distinguished functionals, and thus 
might be regarded as "symplectic". 

Lie Brackets 

As in the finite-dimensional set-up, the main result required for establishing 
a Noether-type theorem relating symmetry groups and conservation laws 
is the correspondence between the Poisson bracket of functionals and the 
commutator of their corresponding Hamiltonian vector fields. 

Proposition 7.14. Let { " . } be a Poisson bracket determined by a differential 
operator 90. Let '!J>, !!l E g; befunctionals, with corresponding Hamiltonian vector 
fields v~, V21' Then the Hamiltonian vector field corresponding to the Poisson 
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bracket {fiJ>, El} is the Lie bracket of the two vector fields; 

v{@',2l}=-[v@"v2l ]=[V2l, v@']. 

(The Lie bracket is that given by Definition 5.14.) 

(7.22) 

PROOF. Let ~ be an arbitrary functional. Applying the prolongation of 
v{@'.2l} to ~, and using (7.4) and the Jacobi identity, we find 

pr v{@',2l}(~) = {~, {fiJ>, El}} 

= {{~, fiJ>}, El} - {{~, El}, fiJ>} 

= prv2l({~' fiJ>}) -prV@'({~, El}) 

= (PrV2l . pr v@' - pr v@'· pr V2l )~. 

By (5.21), this latter expression is the prolongation of the Lie bracket between 
v@" V2l, so 

for every ~ E:Ji. Exercise 5.42 says that this can happen only if the two 
generalized vector fields are equal, which proves (7.22). 0 

Conservation Laws 

As we remarked in Chapter 4, any conservation law of a system of evolution 
equations takes the form 

in which Div denotes spatial divergence and the conserved density 
T(x, t, u(n») can be assumed without loss of generality to depend only on 
x-derivatives of u. Equivalently, for n c X, the functional 

.o/"[t; u] = L T(x, t, u(n») dx 

isa constant, independent of t, for all solutions u such that T(x, t, u(n») ~ 0 
as x~an. 

Note that if T(x, t, u(n») is any such differential function, and u is a 
solution to the evolutionary system u, = P[u], then 

D,T=a,T+prvp(T), 

where a, = aj at denotes the partial t-derivative. Thus T is the density for 
a conservation law of the system if and only if its associated functional .0/" 
satisfies 

a.o/"jat+ pr vp(.o/") =0. (7.23) 
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In the case our system is of Hamiltonian form, the bracket relation (7.4) 
immediately leads to the Noether relation between Hamiltonian symmetries 
and conservation laws. 

Theorem 7.15. Let u, = qj}{j'le be a Hamiltonian system of evolution equations. 
A Hamiltonian vector field vg> with characteristic qj}{j(l}, (l} E ;]i, determines a 
generalized symmetry group of the system if and only if there is an equivalent 
functional {ffi = (l} - Cfi, differing only from (l} by a time-dependent distinguished 
functional Cfi[ t; u], such that {ffi determines a conservation law. 

PROOF. By a time-dependent distinguished functional we mean, in analogy 
with Chapter 6, a functional Cfi[t; u] = J C(t, X, u(n) dx, with C depending 
on t, x, u and x-derivatives of u, and with the property that for each fixed 
to, Cfi[ to; u] is a distinguished functional for qj}: qj}{jri = O. Now, according 
to Proposition 5.19, vg> is a symmetry of the Hamiltonian system ifand only if 

(7.24) 

V;l'( being the associated Hamiltonian vector field. Since qj} does not explicitly 
depend on t, aVg>/ at is the Hamiltonian vector field corresponding to the 
functional a(l}/at, while by the previous proposition, [V;l'(, vg>] is the Hamil
tonian vector field for the Poisson bracket of (l} and 'Je. Thus (7.24) says 
that the Hamiltonian vector field for the combined functional a,(l} + {(l}, 'le} 
is zero, and hence 

a(l} -- + {(l} 'le} = Cfi 
at ' 

for some time-dependent distinguished functional 

cg[t; u] = f C(t, x, u(n) dx. 

Now set 

Cfi[t; u] = L cg[s; u] ds;:; f (L C(s, x, u(n) dS) dx, 

and let {ffi = (l} - ri. Then 

a{ffi = a(l} _ cg 
at at ' 

while by the definition of distinguished functional, 

{(l}, 'le} = {{ffi, 'le}. 

Thus {ffi satisfies the condition (7.23) that it be conserved, and the 
theorem is proved. 0 

Example 7.16. Consider the Korteweg-de Vries equation 

(7.25) 
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whose two Hamiltonian structures were discussed in Example 7.6. Let's 
investigate which of the classical symmetry groups of Example 2.44 are 
Hamiltonian and hence lead to conservation laws. The symmetries are 
generated by 

cf. (2.68) with x replaced by -x, with corresponding characteristics 

Q\ = uX , Q2 = Uxxx + uux, Q3 = 1 + tux, Q4 = 2u + XUx + 3t(uxxx + uUx), 

(up to sign). 
For the first Hamiltonian operator fil! = D x , there is one independent 

nontrivial distinguished functional, the mass (ljJo =.itt = J u dx, which is there
fore conserved. Of the above four characteristics, the first three are Hamil
tonian 

Qj=Dx8(ljJj, 

with conserved functionals 

i=1,2,3, (7.26) 

Note that (ljJ2 is just the Hamiltonian functional for (7.25) with fil! as the 
Hamiltonian operator. Invariance of (ljJ3, when combined with that of (ljJ1> 
proves that the first moment of u is a linear function of t, 

f xu dx = at + b, a, b constant, 

with a = - J ~U2 dx, for any solution u decaying sufficiently rapidly as Ixl ~ 00 

or any periodic solution, where the integral is now over one period. The 
fourth characteristic Q4 is not of the form (7.26), and hence does not lead 
to a conservation law. 

What about the second Hamiltonian operator 'l: = D~ + ~uDx + 1ux ? Here 
there are no longer any distinguished functionals. In this case Qh Q2 and 
Q4 (but not Q3) are Hamiltonian, 

i=1,2,4, (7.27) 

where 

are the corresponding conservation laws. In this case, nothing new is 
obtained. Note that the other conservation law (ljJ2 did not arise from one 
of the geometrical symmetries. According to Theorem 7.15, however, there 
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is a Hamiltonian symmetry which gives rise to it, namely V@2' The characteris
tic of this generalized symmetry is 

Qs = 'l:l)[iP2 = (D~ +~uDx +!ux)(u= +~U2) = uxxxxx +~uuxxx +~uxuxx +~U2ux' 

We have thus rediscovered the fifth order generalized symmetry of Section 
5.2! Pressing on, we note that Qs happens to satisfy the Hamiltonian 
condition (7.26) for ~ with the functional 

[iPs = f (~u~-~UU;+fzU4)dx 

providing a further conservation law for the Korteweg-de Vries equation. 
By now, the signs of a recursive procedure of generating conservation laws 
and corresponding Hamiltonian symmetries of the Korteweg-de Vries 
equation are starting to appear. We take the new conservation law [iPs, 
determine its Hamiltonian vector field relative to the operator 'l:, which, by 
Theorem 7.15 is necessarily a symmetry, and then try to find a further 
functional [iP6 for which it is the Hamiltonian vector field relative to the 
other Hamiltonian operator ~, and so on. The rigorous implementation of 
this recursion scheme for general equations with two Hamiltonian structures 
will be the subject of Section 7.3. 

Example 7.17. The two-dimensional Euler equations were cast into Hamil
tonian form in Example 7.10. Let us investigate what type of conservation 
laws arise as a result. First we need to look at the distinguished functionals 
for the Hamiltonian operator ~ = wxDy - wyDx. A straightforward computa
tion proves that a differential function P[ w] lies in the kernel of ~: ~P = 0, 
if and only if P = P( W ) is a function of w (but not x or y, nor any derivatives 
of w). We conclude that the functionals 

C€[ w ] = f c (w) dx dy, 

where C (w) is any smooth function of the vorticity w, are all distinguished 
and hence are conserved for solutions of the Euler equations. These are 
the well-known "area integrals" and reflect the point-wise conservation of 
vorticity for two-dimensional incompressible fluid flow. 

Conservation laws arising from the Euclidean symmetries of the Euler 
equations found in Example 2.45 are constructed next. Note first that we 
need to find the "w-characteristic" of each of the symmetry generators, i.e. 
rewrite it as the prolongation of an evolutionary vector field in the form 
v = Q(x, y, t, u, v, p, w, .. . )aw • If v is a Hamiltonian vector field, we may 
then deduce the existence of a conservation law [iP[ w] with ~l)[iP = Q. For 
instance, the translational symmetry 

a = a(t), 
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has evolutionary form 

Va = (a, - aux)au - avxav - (a,,x + apx)ap

Prolonging Va, we see that its w-coefficient is 

where 

PfJa = f a(t)yw dx dy = f a(t)u dx dy 

(integrating by parts) is the associated conserved functional. Similarly, the 
translational symmetries v (3 lead to conservation laws 

PfJ{3 = - f /3(t)xw dx dy = f /3(t)v dx dy, 

where /3(t) is also an arbitrary function of t. The fact that PfJa and PfJ{3 are 
conservation laws for any functions a(t) and /3(t) appears to be paradoxical, 
but this is resolved by looking at the boundary contributions. In vector 
form, if aCt) = (a(t), /3(t», then we have the divergence identity 

D,(a· u) + Div[(a· u -a,' x)u + pa] = 0 

valid for all solutions u = (u, v) of the Euler equations. This integrates to 
the generalized momentum relations 

ddf (a(t),u)dx=-f [(a·u-a,·x)u+pa]·dS 
t n m 

valid over an arbitrary subdomain n. It is in this sense that the above 
functionals PfJa , PfJ{3 are "conserved". 

The rotational symmetry 

has w-evolutionary form 

(ywx - xWy)aw, 

which is Hamiltonian. We find 

(ywx - xWy) = 0J(1x2+!J2) = 0J{)fj, 

where 

is the conserved angular momentum of the fluid. For the two-dimensional 
Euler equations, then, there are three infinite families of conservation 
laws-two coming from the generalized translational symmetries and one, 
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the area integrals, reflecting the degeneracy of the underlying Poisson 
bracket-together with the individual conservation laws of angular momen
tum and energy. The three-dimensional case is somewhat different-see 
Exercise 7.5. 

7.3. Bi-Hamiltonian Systems 

In this final section, we discuss the remarkable properties of systems of 
evolution equations which, like the Korteweg-de Vries equation, can be 
written in Hamiltonian form in not just one but two different ways. We will 
thus be interested in systems of the form 

(7.28) 

in which both 0) and 'if: are Hamiltonian operators and ilfo[u] and ilfl[u] 
appropriate Hamiltonian functionals. Subject to a compatibility condition 
between the two Poisson structures determined by 0) and 'if:, we will be able 
to recursively construct an infinite hierarchy of symmetries and conservation 
laws for the system in the following manner. 

According to Theorem 7.15, if g>[u] is any conserved functional for 
(7.28), then both of the Hamiltonian vector fields Vg))8f9> and V\!'of9> are sym
metries. In particular, since both ilfo and ilfl are conserved, not only is the 
original vector field VK, =vg))o~, =v\!'o~o a symmetry of (7.28), but so are the 
two additional vector fields vg))o~o and V\!'8~,. The recursion algorithm pro
ceeds on the assumption that one of these new symmetries, say V\!'8~" is a 
Hamiltonian vector field for the other Hamiltonian structure, so 

for some functional ilf2. Again, by Theorem 7.15, ilf2 (or some equivalent 
functional) is conserved, and so we obtain yet a further symmetry, this time 
with characteristic 'if:8ilf2. At this stage, the recursion pattern is clear. At the 
n-th stage we determine a new functional ilfn + 1 satisfying the recursion 
relation 

(7.29) 

This will provide both a further conservation law for the original system 
(7.28) plus a further symmetry Vn+1 with characteristic Kn+1 = 'if:8ilfn• Note 
that if we define the operator in = 'if:. 0)-1 then, formally, 

and, as will be the case, we suspect that in will define a recursion operator 
for our system. 
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Example 7.18. Consider the Korteweg-de Vries equation, which was shown 
to have two Hamiltonian structures in Example 7.6, with 

The operator connecting our hierarchy of Hamiltonian symmetries is thus 

~ = ?S. ~-1 = D; +~u +luxD~I, 

which is nothing but the Lenard recursion operator of Section 5.2! Thus 
our results on bi-Hamiltonian systems will provide ready-made proofs of 
the existence of infinitely many conservation laws and symmetries for the 
Korteweg-de Vries equation. 

To proceed rigorously, however, we need to ensure that the two Hamil
tonian structures be "compatible" in the following precise sense: 

Definition 7.19. A pair of skew-adjoint q x q matrix differential operators 
~ and ?S is said to form a Hamiltonian pair if every linear combination 
a~ + b?S, a, b E IR, is a Hamiltonian operator. A system of evolution equations 
is a bi-Hamiltonian system if it can be written in the form (7.28) where ~, ?S 
form a Hamiltonian pair. 

Lemma 7.20. If~, ?S are skew-adjoint operators, then they form a Hamiltonian 
pair if and only if~, ?S and ~ + ?S are all Hamiltonian operators. 

PROOF. Note that the Jacobi identity, in any of its forms (7.3), (7.11) or 
(7.18) is a quadratic expression in qjJ. The lemma is then an easy consequence 
of the fact that any quadratic polynomial vanishing at three distinct points 
must vanish identically. More specifically, given P, Q, R E str, let 
$(rilJ, ~; P, Q, R) denote the left-hand side of (7.11). The corresponding 
symmetric bilinear form is 

$(~, ?S; P, Q, R) 

=~ f [po prv~R(?S)Q+R· prv~Q(?s)P+Q· prv~p(?s)R 
+p. prv~R(~)Q+R· prv~Q(~)P+Q· prv~p(~)R] dx. (7.30) 

If ~, ?S and ~ + ?S are Hamiltonian, then 

$(~, ~; P, Q, R) = $(?S, ?S; P, Q, R) = ° 
and 

$(~ +?S, ~ +?S; P, Q, R) = 

$(~, ~; P, Q, R) + 2$(~, ?S; P, Q, R) + $(?S, ?S; P, Q, R) = 0, 
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hence 

,1(qj;, ~; P, Q, R) = O. (7.31) 

From this it is easy to check that 

,1(a@ + b~, aqj; + b~; P, Q, R) = 0, 

for any a, bE IR. o 

Corollary 7.21. Let qj; and ~ be Hamiltonian differential operators. Then qj;, ~ 

form a Hamiltonian pair if and only if 

(7.32) 

where 

are the functional bi-vectors representing the respective Poisson brackets. 

Indeed, we have 

,1(qj;, qj;; P, Q, R) = (pr v@/1(0@); P, Q, R), 

so evaluating (7.32) at p, Q, R reproduces (7.31). o 

Example 7.22. Consider the Hamiltonian operators qj;, ~ connected with 
the Korteweg-de Vries equation. We have 

trivially, while, 

by the properties of the wedge product. Thus qj; and ~ form a Hamiltonian 
pair. 

Incidentally, when we discuss Hamiltonian pairs, we are always excluding 
the trivial case when one operator is a constant multiple of the other. In 
the case of systems (as opposed to scalar equations) we must impose an 
additional constraint on one of the operators, qj;, owing to the appearance 
of its inverse in the form of the recursion operator. 

Definition 7.23. A differential operator qj;: .s;i' ~.s;is is degenerate if there is 
a nonzero differential operator rj: .s;is ~.s;i such that rj . qj; == O. 
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For example, the matrix operator 

is degenerate (and Hamiltonian), since if f0 = (1, - D x ), then f0. 0) == 0. It 
is not difficult to see that degeneracy is strictly a matrix phenomenon; any 
nonzero scalar operator 0): .stJ ~.StJ is automatically nondegenerate. (A useful 
criterion for nondegeneracy is given in Exercise 7.14.) 

We are now in a position to state the main theorem on bi-Hamiltonian 
systems. 

Theorem 7.24. Let 

ut = K 1[ u] = 0)fj;/{1 = 'l:fj;/{o 

be a bi-Hamiltonian system of evolution equations. Assume that the operator 
0) of the Hamiltonian pair is nondegenerate. Let ~ = 'l:. 0) -I be the correspond
ing recursion operator, and let Ko = 0)fj;/{o. Assume that for each n = 1, 2, 3, ... 
we can recursively define 

n ;;;'1, 

meaning that for each n, K n - I lies in the image of 0). Then there exists a 
sequence of functionals ;;eo, ;/{Io ;/{2, .•• such that 

(i) for each n ;;;'1, the evolution equation 

(7.33) 

is a bi-Hamiltonian system; 
(ii) the corresponding evolutionary vector fields v n = V Kn all mutually 

commute: 

n, m;;;. 0; 

(iii) the Hamiltonianfunctionals ;/(n are all in involution with respect to either 
Poisson bracket: 

n, m;;;.O, (7.34) 

and hence provide an infinite collection of conservation laws for each of 
the above bi-Hamiltonian systems. 

Before proving the theorem, some remarks are in order. Although as it 
stands, the result is quite powerful, there is one annoying defect; namely 
the fact that we must assume at each stage that we can apply the recursion 
operator to K n - I to produce K n, i.e. prove that K n - I lies in the image of 
0). In most examples known to date, this always seems to be the case, but 
it would be nice to have a general proof of this. (The argument given in 
Theorem 5.32 seems to be fairly specific to the Korteweg-de Vries equation:) 
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At the moment, though, except in some special instances, this seems to be 
the best that we can do. A second problem is that of determining whether 
all the Hamiltonian functionals 7/{n are independent; in practice this is 
usually easy to see from the leading terms of the corresponding evolution 
equations. 

The proof itself rests on the following technical lemma: 

Lemma 7.25. Suppose ~, 'l: form a Hamiltonian pair with ~ nondegenerate. 
Let P, Q, R, E.rir satisfy 

'l:Q = ~R. (7.35) 

If P = f)r!P, Q = f)!!l. are variational derivatives of functionals r!P, !!l. E $, then so 
is R = f)r!ll for some r!ll E $. 

Before proving the lemma, let us see how it is used to prove the theorem. 
For each n;,?; 0, we let Kn = ~Qn where, by assumption, Qn E.st1Q is a 
well-defined q-tuple of differential functions. By the lemma, if Qn-I = f)7/{n-h 

Qn = f)7/{n are variational derivatives, so is Qn+1 = f)7/{n+1 for some 7/{n+1 E fF. 
Since we already know Qo = f)7/{0, QI = f)7/{1 are of this form, the existence 
of the functionals 7/{no n ;,?; 0 follows by an easy induction. This proves part (i). 

Part (ii) follows from part (iii) using (7.22), so we concentrate on (iii). 
According to (7.4) 

and 

so 

We now use the skew-symmetry of the Poisson brackets to work our way 
down. If n < m, then 

where k is the integer part of (m - n )/2 and the final bracket is the ~- Poisson 
bracket if m - n is even, the 'l:-Poisson bracket if m - n is odd. This proves 
(7.34) and completes the proof of the theorem. 0 

PROOF OF LEMMA 7.25. Referring back to the derivation of (7.11) from the 
Jacobi identity (7.3) we recall that the large number of cancellations resulted 
from the fact that, at that stage, the q-tuples P, Q, R were assumed to be 
variational derivatives of functionals and, consequently, their Frechet 
derivatives were all self-adjoint operators. If we were to drop this initial 
assumption and carry through the computation for arbitrary q-tuples 
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P, Q, R E ,r;;1q, we would find an identity of the form 

J{(fiiJ, fij); P, Q, R) = .2(fij), fiiJ; P, Q, R)+ ,j(fij), fij); P, Q, R), 

where J{(fiiJ, fiiJ; P, Q, R) is the left-hand side of (7.3), ,j(fij), fiiJ; P, Q, R) is 
as in (7.30) and .2 is the quadratic version of the bilinear expression 

.2(fij), ~; P, Q, R) 

=! f {fij)p. (DQ-Dt,)~R+fij)Q' (DR-D'JD~P+fij)R' (Dp-D~)~Q 

+ ~p. (D Q - Dt,)fij)R + ~Q' (DR -D~)fiiJP+ ~R' (D p -D~)fij)Q} dx. 

The above identity has a bilinear counterpart 

J{(fij), ~; P, Q, R) = .2(fij), ~; P, Q, R)+ ,j(fij), ~; P, Q, R), (7.36) 

which holds for arbitrary P, Q, R E ,r;;1 and arbitrary skew-adjoint operators 
fiiJ, ~. Here 

J{(fij),~;P,Q,R) 

=!{prV!'/JR f p. ~Qdx+prv!'/JP f Q. ~Rdx+prv!'/JQ f R· ~Pdx 

+prv\/!R f p. fij)Qdx+prv\/!p f Q. fiiJRdx+prv\/!Q f R· fij)PdX}. 

In particular, if fij), ~ form a Hamiltonian pair, then the ,j term in (7.36) 
vanishes. 

Now replace P by S = 13Y, R by T = MY in (7.36) and assume that P, Q, R 
are related by (7.35). Since Q, Sand T are all variational derivatives of 
functionals, Theorem 5.68, (7.36) and (7.31) imply that 

0= .2(fij), ~; Q, S, T) = J{(fij), ~; Q, S, T). (7.37) 

Moreover, using (7.35) and the skew-adjointness of fij) and ~ we find (upon 
rearranging terms) 

J{(fij), ~; Q, S, T) 

=!{prv\/!P f S· ~Tdx+prv\/!s f T· ~Pdx+prv\/!T f p. ~Sdx 

+prv!'/JR f S· fiiJTdx+prv!'/Js f T· fij)R dx+prv!'/JT f R· fij)S dX} 

=HJ{(~, ~; P, S, T)+J{(fij), fij); R, S, T}}. 
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Now 'l is Hamiltonian and P, S, T are all variational derivatives of func
tionals, so X( 'l, 'l; P, S, T) is just the Jacobi identity for 'l and hence 
vanishes. We still don't know that R is the variational derivative of some 
functional, so we cannot make the same claim for X(qj;, qj;; R, S, T). 
However, by (7.36), (7.37) and Theorem 5.68 (for Sand T) we find 

0= X( qj;, qj;; R, S, T) = 5£( qj;, qj;; R, S, T) 

= f qj;T· (DR-D~)qj;Sdx=-f T· qj;(DR-D~)qj;Sdx. 

Note that the operator qj;(D R - D~)qj; is skew-adjoint. Since this identity 
holds for arbitrary variational derivatives S = 8!f, T = 8fJ, Proposition 5.64 
and the substitution principle of Exercise 5.32 imply that 

Finally, the nondegeneracy hypothesis on qj; allows us to conclude that 

Taking adjoints, we have 

One further application of the nondegeneracy of qj; allows us to conclude 
that R satisfies the Helmholtz conditions 0 ~ = 0 R, and hence, by Theorem 
5.68, is the variational derivative of some functional. 0 

Recursion Operators 

We have seen that given a bi-Hamiltonian system, the operator rJi = 'l. qj;-l, 

when applied successively to the initial equation Ko = qj;8;J{o, produces an 
infinite sequence of generalized symmetries of the original system (subject 
to the technical assumptions contained in Theorem 7.24). It is still not clear 
that rJi is a true recursion operator for the system, in the sense that whenever 
vQ is a generalized symmetry, so is VqjQ. So far we only know it for symmetries 
with Q = Kn for some n. In order to establish this more general result, we 
need a formula for the infinitesimal change of the Hamiltonian operator 
itself under a Hamiltonian flow. 

Lemma 7.26. Let u, = K = qj;8;J{ be a Hamiltonian system of evolution equations 
with corresponding vector field v K = v;re. Then 

(7.38) 
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PROOF. Let L = 8'Je, so K = r!lJL. Let P = 81?P, Q = 821. be arbitrary variational 
derivatives. By the Jacobi identity for r!lJ, in the form (7.11), and (7.7), (5.41), 

f [po PrV~(r!lJ)Q] dx= f [po prv~(r!lJ)L-Q' prv~(r!lJ)L] dx 

= f {po [prv~(K)-r!lJ prV~(L)] 
-Q. [prv~(K)-r!lJ prv~(L)]} dx 

= f {po [OK (r!lJQ) - r!lJOL(r!lJQ)] 

- Q. [0 K(r!lJP) - r!lJOL(r!lJP)]} dx 

= f [po OK(r!lJQ)-Q· Odr!lJP)] dx 

= f [po (OKr!lJ+r!lJO'UQ] dx. 

The next to last equality follows from the fact that r!lJ 0 Lr!lJ is self-adjoint 
since r!lJ is skew-adjoint, while 0 L is self-adjoint since L = 8'Je is a variational 
derivative. The result now follows by the substitution principle. 0 

Theorem 7.27. Let u, = K = r!lJ8'Jet = ~8'Jeo be a bi-Hamiltonian system of 
evolution equations. Then the operator Pli = ~. r!lJ -I is a recursion operator for 
the system. 

PROOF. We must verify the infinitesimal criterion in Theorem 5.30. Using 
the previous lemma, we have 

prvdPli)=prvd~)' r!lJ-I_~. r!lJ- 1 • prvK(r!lJ)· r!lJ- 1 

=(OK~+~Ot)· r!lJ-I_~. r!lJ-1(OKr!lJ + r!lJot)r!lJ- 1 

= 0 KPli - Pli 0 K' 

Therefore, whenever u is a solution, 

(D, - 0 K) . Pli = Pli . D, + pr VK (Pli) - 0 K . Pli = Pli . (D, - 0 K), 

and (5.42) is verified. o 

Notice that in this theorem, we did not require that (r!lJ, ~) form a 
Hamiltonian pair-only that each individual operator be Hamiltonian. Thus 
the recursion operator remains valid in more general situations. However, 
without the assumption that (r!lJ, ~) form a Hamiltonian pair, it is unclear 
whether the symmetries v"' n = 0, 1, 2, ... , determined by recursion, are 
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Hamiltonian or not. There are, as yet, no examples of this phenomenon 
known. 

Example 7.28. The Boussinesq equation, which we take in the form 

arises in a model for uni-directional propagation of long waves in shallow 
water (despite the fact that it admits waves travelling in both directions!) 
It can be converted into an equivalent evolutionary system 

(7.39) 

which turns out to be bi-Hamiltonian. The first Hamiltonian formulation 
is easy to discern. We take 

as the Hamiltonian operator (which trivially satisfies the Jacobi identity 
since it has constant coefficients) and Hamiltonian functional 

~t\[u, v] = f (-~U~+~U3+~V2) dx. 

The second Hamiltonian structure is not so obvious. The Hamiltonian 
functional is 

~o[u, v] = f 1V dx, 

Even the proof that ~ is Hamiltonian is a rather laborious computation. 
The associated bi-vector is 

8\1:=1 f {8A8xxx+2u8A8x+2v8A{x-4v8xA{ 

+!{ A {xxxxx + 1U{ A {xxx - 2u{x A {xx + !f-u2 { A {x} dx, 

where 8 = (8, {), and 8 and { are the basic uni-vectors corresponding to u 
and v respectively. Evaluating (7.18) (for ~), we use the fact that 

pr v\!o( u) = 8xxx + 2u8x + ux8 + 3v{x + 2vx{, 

pr v\!o( v) = 3v8x + vx8 + !{xxxxx + ~u{xxx + 5ux{xx 

+ (3uxx +.\fu2 ){x + (~uxxx +.\fuux ){, 
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and a lot of integration by parts-the reader may wish to try his or her skill 
at this! The proof that 9tI, 'If form a Hamiltonian pair is easier; since 9tI has 
constant coefficients, pr V~9(e!?i)) = 0, so we only need to verify 

There is thus a whole hierarchy of conservation laws and commuting flows 
for the Boussinesq equation. The recursion operator is 

fill = 'If. 9tI-1 = 

D~ + 2u + UxD;I) 
3v+ vxD;1 

and we can apply fill successively to the right-hand side of (7.39) to obtain 
the symmetries. The first stage in this recursion is the flow 

(~:) = 'lf8(J{1 = 9tI8(J{2 

with consequent conservation law 

(J{2[U, v] = f Guxxvxx+.!j!uuxxv+~U~V+~U3V+~V3) dx. 

Alternatively, one can start out with the translational Hamiltonian symmetry 

where 

'*1 [u, v] = f uv dx, 

are both conserved. By Theorem 7.27, applying fill to this symmetry leads 
to a second hierarchy of commuting flows and consequent conservation 
laws, the first of which is 

( ul ) _ cP ~ _ ru. ~ _ ( Vxxx +4uvx +4uxv ) 
- 08tn 1 - ;;V81fL2 - 1 32 2 , 

VI 3Uxxxxx +4uuxxx + 8uxuxx +TU UX + 4vvx 

where 

'*2[U, V]=f au~x-2uu~+~u4+2uv2_~v~) dx 

is yet another conservation law. (At each stage, one needs to know that the 
operator 9tI can be inverted, but this is proved in a similar fashion as the 
Korteweg-de Vries case.) 
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NOTES 

Although Hamiltonian systems of ordinary differential equations have been 
of paramount importance in the theory of both classical and quantum 
mechanics, the extension of these ideas and techniques to infinite
dimensional systems governed by systems of evolution equations has been 
very slow in maturing. The main reason for this delay has been the insistence 
on using canonical coordinates for finite-dimensional systems, which always 
exist by virtue of Darboux' theorem; these coordinates, however, do not 
appear to exist for the evolutionary systems of interest, and hence familiarity 
with the more general concept of a Poisson structure is a prerequisite here. 
(The infinite-dimensional version of Darboux' theorem proved by Wein
stein, [1], does not seem to apply in this context.) 

The correct formulation of a Hamiltonian structure for evolution 
equations was based on two significant developments. Arnol'd, [1], [2], 
showed that the Euler equations for ideal fluid flow could be viewed as a 
Hamiltonian system on the infinite-dimensional group of volume-preserving 
diffeomorphisms of the underlying space using the Lie-Poisson bracket (as 
generalized to the corresponding infinite-dimensional Lie algebra). Arnol'd 
wrote his Hamiltonian structure in Lagrangian (moving) coordinates; the 
Eulerian version was first discovered by Kuznetsov and Mikhailov, [1]. The 
version presented here, including the derivation of the conservation laws, 
is based on Olver, [5] and Ibragimov, [1; § 25.3]. (The Poisson bracket 
presented here, while formally correct, fails to incorporate boundary effects, 
and needs to be slightly modified when discussing solutions over bounded 
domains; see Lewis, Marsden, Montgomery and Ratiu, [1], for a discussion 
of this point.) Subsequently, Marsden and Weinstein, [2], showed that the 
Lagrangian and Eulerian Poisson brackets were indeed the same. This 
method of Arnol'd has been applied with great success to determine the 
Hamiltonian structures of many of the systems of differential equations 
arising in fluid mechanics, plasma physics, etc. These have been used for 
proving new nonlinear stability results for these complicated systems; see 
Holm, Marsden, Ratiu and Weinstein, [1], and the references therein. 

The second important development in the general theory was the dis
covery by Gardner, [1], that the Korteweg-de Vries equation could be 
written as a completely integrable Hamiltonian system. This idea was further 
developed by Zakharov and Fadeev, [1], Gel'fand and Dikii, [1], [2], and 
Lax, [3]. Adler, [1], showed that the (first) Hamiltonian structure of the 
Korteweg-de Vries equation could be viewed as a formal Lie-Poisson 
structure on the infinite-dimensional Lie algebra of pseudo-differential 
operators on the real line, and extended these results to more general soliton 
equations having Lax representations, including the Boussinesq equation 
of Example 7.28. (See Lax, [1].) 

Early versions of the theory of Hamiltonian systems of evolution 
equations were restricted by their insistence on introducing canonical coor-
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dinates; see Broer, [1], for a representative of this approach. The general 
concept of a Hamiltonian system of evolution equations first surfaces in 
the work of Magri, [1], Vinogradov, [2], Kupershmidt, [1] and Manin, [1]. 
Further developments, including the simplified techniques for verifying the 
Jacobi identity, appear in Gel'fand and Dorfman, [1], Olver, [4] and 
Kosmann-Schwarzbach, [3]. The computational methods based on func
tional multi-vectors presented here are a slightly modified version of the 
methods introduced in the second of these papers. The operator pr V~8 in 
(7.18) is the same as the Schouten bracket with the bi-vector e determining 
the Poisson bracket, an approach favoured by Magri, [1], and Gel'fand 
and Dorfman, [1]. (See Exercise 6.20 for the finite-dimensional version of 
this bracket and Olver, [10], for a general infinite-dimensional form.) 

The basic theorem on bi-Hamiltonian systems is due to Magri, [1], [2], 
who was also the first to publish the second Hamiltonian structure for the 
Korteweg-de Vries and other equations. Magri's method was developed by 
Gel'fand and Dorfman, [1], [2], and Fuchssteiner and Fokas, [1]. The 
second Hamiltonian structures of other soliton equations were found by 
Adler, [1], and Gel'fand and Dikii, [3], with further developments by 
Kupershmidt and Wilson, [1]. Recently, Kupershmidt, [2], has found a 
Htri-Hamiltonian" system arising in fluid mechanics; see Exercise 7.11. The 
concept of a bi-Hamiltonian system has also recently surfaced in work on 
finite-dimensional Hamiltonian systems, in which families of conservation 
laws are constructed using a related recursive procedure; see Hojman and 
Harieston, [1], and Crampin, [1], and the references therein. The only 
substantial example of a finite-dimensional bi-Hamiltonian system of which 
I am currently aware, however, is the Toda lattice, treated by M. Leo, 
R. A. Leo, Soliani, Solombrino and Mancarella, [1]. 

The proof of the basic Theorem 7.24 on bi-Hamiltonian systems is based 
on that of Gel'fand and Dorfman, [1]. The annoying technical hypothesis 
on the invertibility of the operator qJJ at each stage is not particularly 
satisfying. However, it is possible to drop this hypothesis if qJJ happens to 
be a constant-coefficient operator; the proof relies on the exactness of an 
infinite-dimensional generalization of a complex due to Lichnerowicz, [1], 
based on the Schouten bracket. See Olver, [10], for the conjecture in more 
general situations and a forthcoming paper for a proof in the constant 
coefficient case. 

EXERCISES 

*7.1. Let p = q = 1. Find all Hamiltonian operators of the form 

D~+PDx+Q, 

where P and Q are differential functions. (Try P, Q just depending on u and 
Ux first.) (Gel'fand and Dorfman, [1]). 
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7.2. Let p = 1, q = 3, with dependent variables u, v, w. Let 

f0 = (~~x ~x ). 
Dx 0 D~+2uDx+ux 

Prove that f0 is Hamiltonian. (Adler, [1]). 

7.3. Prove that Maxwell's equations in the physical form of Exercise 2.16(a) form 
a Hamiltonian system with Poisson bracket 

f( 8~ 8~ 8~ 8~) 
{~, ~} = 8E . V x 8B - 8E . V x 8B dx. 

Discuss symmetries and conservation laws. (See also Exercises 4.6 and 5.15.) 
(Born and Infeld, [1], Marsden, [1]). 

7.4. Derive the conservation laws Pf',,,, Pf'{3 for the two-dimensional Euler equations 
found in Example 7.17 directly from the conservation law of energy using 
Proposition 5.48. (Ibragimov, [1; p. 357]). 

*7.5. Prove that the three-dimensional Euler equations for incompressible fluid flow, 
when replaced by the corresponding vorticity equations for w = V xu, form a 
Hamiltonian system relative to the operator f0, where 

f0P=w· V P-(Vw)V x P 

(V denoting total gradient, curl or divergence). Find the conservation laws 
corresponding to known symmetry groups. Prove that the only nontrivial 
distinguished functional is the "total helicity" cg = J (u . w) dx. (Olver, [5]; see 
Serre, [1], for the n-dimensional case.) 

7.6. Let ;£[u] be a variational problem with Euler-Lagrange equations 8;£=0. 
Suppose vQ generates a variational symmetry group with conservation law 
Div P = O. Prove that the corresponding dynamical Hamiltonian equations 
u, = f0 . 8;£ have a corresponding conservation law if and only if v Q = v q> is 
Hamiltonian with respect to the given Poisson bracket. 

7.7. The dynamical equations of elasticity take the form 

a2 u Q 
P (aw) 

--2 = L D j ~, 
at j~1 aU j 

a = 1, ... , q, 

where W(x, Vu) is the stored energy function, cf. Example 4.32. Prove that 
these can be put into Hamiltonian form using the energy 

~= f [!lu,12 + W(x, Vu)] dx 

as the Hamiltonian and u, v = u, as canonical variables. Discuss the conserva
tion laws of this system in light of Exercise 7.6 and Example 4.32 (D. C. 
Fletcher, [1], Marsden and Hughes, [1; § 5.5]). 

7.8. (a) Let f0 = Sllq ~ Sllq be a differential operator. Prove that if '(6 [ u] is any 
functional satisfying f0* . 8cg = 0, then cg is a conservation law for any 
evolutionary system of the form u, = f0Q for any Q E Sllq. 
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(b) Prove that any evolution equation of the form u, = Dr; Q, with x, u E IR, 
always conserves the first m + 1 moments Ali = J xiu dx, j = 0, 1, ... , m, of 
any solution. 

7.9. Prove that the operators 

form a Hamiltonian pair making the modified Korteweg-de Vries equation 
u, = Uxxx + u2ux into a bi-Hamiltonian system. Find the recursion operator and 
the first few symmetries. How do these relate to the Korteweg-de Vries equation 
under the Miura transformation of Exercise 5.11 ? (Magri, [2]) 

7.10. The Harry Dym equation is u, = D~(U-l/2). Prove that this is a bi-Hamiltonian 
system with 0) = 2uDx + ux , ~ = D~. Discuss distinguished functionals, sym
metries and conservation laws for this equation. (Magri, [1]; Ibragimov, [1; 
p.300], shows how this equation can be transformed into the Korteweg-de 
Vries equation.) 

**7.11. The system of equations 

is equivalent, under a change of variables, to a system of Boussinesq equations 
modelling the bi-directional propagation of long waves in shallow water, first 
found by Whitham, [1] and Broer, [1]. Prove that this system is tri-Hamiltonian, 
meaning that it can be written as a Hamiltonian system using anyone of the 
three Hamiltonian operators 

and any two of these operators form a Hamiltonian pair. Discuss symmetries 
and conservation laws of the system. (Kupershmidt, [2]). 

7.12. (a) Prove that if 0) is a self-adjoint (respectively, skew-adjoint) matrix differen
tial operator, and vQ is any evolutionary vector field, then the Lie derivative 
pr vQ(0) is self-adjoint (skew-adjoint). 
(b) Prove directly that (7.11) is an alternating, trilinear function of P, Q, R. 

7.13. Prove that if 0): .st/ ->.st/ and ~: .st/ ->.st/ are nonzero scalar differential operators, 
then ~. 0): .st/ ->.st/ is a nonzero differential operator. Deduce that any scalar 
differential operator is nondegenerate in the sense of Definition 7.23. 

*7.14. Let 0):.st/ r ->.st/s be a differential operator, and let J{*={QE .st/S: 0)*Q=O} be 
the kernel of its adjoint. Prove that if J{* is a finite-dimensional vector space 
over IR, then 0) is nondegenerate in the sense of Definition 7.23. How many 
distinguished functionals does a nondegenerate Hamiltonian operator have? 
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