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Preface

UNIX Systems Programming: Communication, Concurrency and Threads is the second edition of 
Practical UNIX Programming: A Guide to Communication, Concurrency and Multithreading, 
which was published by Prentice Hall in 1995. We changed the title to better convey what the 
book is about. Several things have changed, besides the title, since the last edition.

The Internet has become a dominant aspect of computing and of society. Our private 
information is online; our software is under constant attack. Never has it been so important to 
write correct code. In the new edition of the book, we tried to produce code that correctly 
handles errors and special situations. We realized that saying handle all errors but giving code 
examples with the error handling omitted was not effective. Unfortunately, error handling 
makes code more complex. We have worked hard to make the code clear.

Another important development since the last edition is the adoption of a Single UNIX 
Specification, which we refer to as POSIX in the book. We no longer have to decide which 
vendor's version of a library function to use—there is an official version. We have done our best 
to comply with the standard.

The exercises and projects make this book unique. In fact, the book began as a project 
workbook developed as part of a National Science Foundation Grant. It became clear to us, 
after preliminary development, that the material needed to do the projects was scattered in 
many places—often found in reference books that provide many details but little conceptual 
overview. The book has since evolved into a self-contained reference that relies on the latest 
UNIX standards.

The book is organized into four parts, each of which contains topic chapters and project 
chapters. A topic chapter covers the specified material in a work-along fashion. The topic 
chapters have many examples and short exercises of the form "try this" or "what happens if." 
The topic chapters close with one or more exercise sections. The book provides programming 
exercises for many fundamental concepts in process management, concurrency and 
communication. These programming exercises satisfy the same need as do laboratory 
experiments in a traditional science course. You must use the concepts in practice to have real 
understanding. Exercises are specified for step-by-step development, and many can be 
implemented in under 100 lines of code.

The table below summarizes the organization of the book—twenty two chapters grouped into 
four parts. The fifteen topic chapters do not rely on the eight project chapters. You can skip the 
projects on the first pass through the book.

Part Topic Chapter # Project Chapter #

Technology's Impact 1   

Programs 2   

Processes in UNIX 3   
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I Fundamentals UNIX I/O 4   

Files and Directories 5   

UNIX Special Files 6   

  The Token Ring 7

II Asynchronous Events

Signals 8   

Times and Timers 9   

  Virtual Timers 10

  Cracking Shells 11

III Concurrency

POSIX Threads 12   

Thread Synchronization 13   

Semaphores 14   

POSIX IPC 15   

  Producer Consumer 16

  Virtual Machine 17

IV Communication Connection-Oriented Commun. 18   

  WWW Redirection 19

Connectionless Commun. 20   

  Internet Radio 21

  Server Performance 22

Project chapters integrate material from several topic chapters by developing a more extensive 
application. The projects work on two levels. In addition to illustrating the programming ideas, 
the projects lead to understanding of an advanced topic related to the application. These 
projects are designed in stages, and most full implementations are a few hundred lines long. 
Since you don't have to write a large amount of code, you can concentrate on understanding 
concepts rather than debugging. To simplify the programming, we make libraries available for 
network communication and logging of output. For a professional programmer, the exercises at 
the end of the topic chapters provide a minimal hands-on introduction to the material. 
Typically, an instructor using this book in a course would select several exercises plus one of 
the major projects for implementation during a semester course. Each project has a number of 
variations, so the projects can be used in multiple semesters.

There are many paths through this book. The topic chapters in Part I are prerequisites for the 
rest of the book. Readers can cover Parts II through IV in any order after the topic chapters of 



Part I. The exception is the discussion at the end of later chapters about interactions (e.g., how 
threads interact with signals).

We have assumed that you are a good C programmer though not necessarily a UNIX C 
programmer. You should be familiar with C programming and basic data structures. Appendix A 
covers the bare essentials of program development if you are new to UNIX.

This book includes synopsis boxes for the standard functions. The relevant standards that 
specify the function appear in the lower-right corner of the synopsis box.

A book like this is never done, but we had to stop somewhere. We welcome your comments 
and suggestions. You can send email to us at authors@usp.cs.utsa.edu. We have done our best 
to produce an error-free book. However, should you be the first to report an error, we will 
gratefully acknowledge you on the book web site. Information on the book is available on the 
WWW site http://usp.cs.utsa.edu/usp. All of the code included in the book can be downloaded 
from the WWW site.
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Chapter 1. Technology's Impact on Programs

This chapter introduces the ideas of communication, concurrency and asynchronous operation 
at the operating system level and at the application level. Handling such program constructs 
incorrectly can lead to failures with no apparent cause, even for input that previously seemed 
to work perfectly. Besides their added complexity, many of today's applications run for weeks 
or months, so they must properly release resources to avoid waste (so-called leaks of 
resources). Applications must also cope with outrageously malicious user input, and they must 
recover from errors and continue running. The Portable Operating System Interface (POSIX) 
standard is an important step toward producing reliable applications. Programmers who write 
for POSIX-compliant systems no longer need to contend with small but critical variations in the 
behavior of library functions across platforms. Most popular UNIX versions (including Linux and 
Mac OS X) are rapidly moving to support the base POSIX standard and various levels of its 
extensions.

Objectives

●     Learn how an operating system manages resources
●     Experiment with buffer overflows
●     Explore concurrency and asynchronous behavior
●     Use basic operating systems terminology
●     Understand the serious implications of incorrect code
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1.1 Terminology of Change

Computer power has increased exponentially for nearly fifty years [73] in many areas including 
processor, memory and mass-storage capacity, circuit density, hardware reliability and I/O 
bandwidth. The growth has continued in the past decade, along with sophisticated instruction 
pipelines on single CPUs, placement of multiple CPUs on the desktop and an explosion in 
network connectivity.

The dramatic increases in communication and computing power have triggered fundamental 
changes in commercial software.

●     Large database and other business applications, which formerly executed on a 
mainframe connected to terminals, are now distributed over smaller, less expensive 
machines.

●     Terminals have given way to desktop workstations with graphical user interfaces and 
multimedia capabilities.

●     At the other end of the spectrum, standalone personal computer applications have 
evolved to use network communication. For example, a spreadsheet application is no 
longer an isolated program supporting a single user because an update of the 
spreadsheet may cause an automatic update of other linked applications. These could 
graph the data or perform sales projections.

●     Applications such as cooperative editing, conferencing and common whiteboards 
facilitate group work and interactions.

●     Computing applications are evolving through sophisticated data sharing, realtime 
interaction, intelligent graphical user interfaces and complex data streams that include 
audio and video as well as text.

These developments in technology rely on communication, concurrency and asynchronous 
operation within software applications.

Asynchronous operation occurs because many computer system events happen at 
unpredictable times and in an unpredictable order. For example, a programmer cannot predict 
the exact time at which a printer attached to a system needs data or other attention. Similarly, 
a program cannot anticipate the exact time that the user presses a key for input or interrupts 
the program. As a result, a program must work correctly for all possible timings in order to be 
correct. Unfortunately, timing errors are often hard to repeat and may only occur once every 
million executions of a program.

Concurrency is the sharing of resources in the same time frame. When two programs execute 
on the same system so that their execution is interleaved in time, they share processor 
resources. Programs can also share data, code and devices. The concurrent entities can be 
threads of execution within a single program or other abstract objects. Concurrency can occur 
in a system with a single CPU, multiple CPUs sharing the same memory, or independent 
systems running over a network. A major job of a modern operating system is to manage the 
concurrent operations of a computer system and its running applications. However, concurrency 
control has also become an integral part of applications. Concurrent and asynchronous 
operations share the same problems—they cause bugs that are often hard to reproduce and 
create unexpected side effects.

Communication is the conveying of information by one entity to another. Because of the World 
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Wide Web and the dominance of network applications, many programs must deal with I/O over 
the network as well as from local devices such as disks. Network communication introduces a 
myriad of new problems resulting from unpredictable timings and the possibility of undetected 
remote failures.

The remainder of this chapter describes simplified examples of asynchronous operation, 
concurrency and communication. The buffer overflow problem illustrates how careless 
programming and lack of error checking can cause serious problems and security breaches. 
This chapter also provides a brief overview of how operating systems work and summarizes the 
operating system standards that are used in the book.
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1.2 Time and Speed

Operating systems manage system resources: processors, memory and I/O devices including 
keyboards, monitors, printers, mouse devices, disks, tapes, CD-ROMs and network interfaces. 
The convoluted way operating systems appear to work derives from the characteristics of 
peripheral devices, particularly their speed relative to the CPU or processor. Table 1.1 lists 
typical processor, memory and peripheral times in nanoseconds. The third column shows these 
speeds slowed down by a factor of 2 billion to give the time scaled in human terms. The scaled 
time of one operation per second is roughly the rate of the old mechanical calculators from fifty 
years ago.

Table 1.1. Typical times for components of a computer system. One 
nanosecond (ns) is 10–9 seconds, one microsecond (µs) is 10–6 

seconds, and one millisecond (ms) is 10–3 seconds.

item time
scaled time in human terms (2 billion 

times slower)

processor cycle 0.5 ns (2 GHz) 1 second

cache access 1 ns (1 GHz) 2 seconds

memory access 15 ns  30 seconds

context switch 5,000 ns (5 µs) 167 minutes

disk access 7,000,000 ns (7 ms) 162 days

quantum 100,000,000 ns (100 ms) 6.3 years

Disk drives have improved, but their rotating mechanical nature limits their performance. Disk 
access times have not decreased exponentially. The disparity between processor and disk 
access times continues to grow; as of 2003 the ratio is roughly 1 to 14,000,000 for a 2-GHz 
processor. The cited speeds are a moving target, but the trend is that processor speeds are 
increasing exponentially, causing an increasing performance gap between processors and 
peripherals.

The context-switch time is the time it takes to switch from executing one process to another. 
The quantum is roughly the amount of CPU time allocated to a process before it has to let 
another process run. In a sense, a user at a keyboard is a peripheral device. A fast typist can 
type a keystroke every 100 milliseconds. This time is the same order of magnitude as the 
process scheduling quantum, and it is no coincidence that these numbers are comparable for 
interactive timesharing systems.

Exercise 1.1 
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A modem is a device that permits a computer to communicate with another computer over a 
phone line. A typical modem is rated at 57,600 bps, where bps means "bits per second." 
Assuming it takes 8 bits to transmit a byte, estimate the time needed for a 57,600 bps modem 
to fill a computer screen with 25 lines of 80 characters. Now consider a graphics display that 
consists of an array of 1024 by 768 pixels. Each pixel has a color value that can be one of 256 
possible colors. Assume such a pixel value can be transmitted by modem in 8 bits. What 
compression ratio is necessary for a 768-kbps DSL line to fill a screen with graphics as fast as a 
57,600-bps modem can fill a screen with text?

Answer:

Table 1.2 compares the times. The text display has 80 x 25 = 2000 characters so 16,000 bits 
must be transmitted. The graphics display has 1024 x 768 = 786,432 pixels so 6,291,456 bits 
must be transmitted. The estimates do not account for compression or for communication 
protocol overhead. A compression ratio of about 29 is necessary!

Table 1.2. Comparison of time estimates for filling a screen.

modem type bits per second

time needed to display

text graphics

1979 telephone modem 300 1 minute 6 hours

1983 telephone modem 2,400 6 seconds 45 minutes

current telephone modem 57,600 0.28 seconds 109 seconds

current DSL modem 768,000 0.02 seconds 8 seconds
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1.3 Multiprogramming and Time Sharing

Observe from Table 1.1 that processes performing disk I/O do not use the CPU very efficiently: 
0.5 nanoseconds versus 7 milliseconds, or in human terms, 1 second versus 162 days. Because 
of the time disparity, most modern operating systems do multiprogramming. Multiprogramming 
means that more than one process can be ready to execute. The operating system chooses one 
of these ready processes for execution. When that process needs to wait for a resource (say, a 
keystroke or a disk access), the operating system saves all the information needed to resume 
that process where it left off and chooses another ready process to execute. It is simple to see 
how multiprogramming might be implemented. A resource request (such as read or write) 
results in an operating system request (i.e., a system call). A system call is a request to the 
operating system for service that causes the normal CPU cycle to be interrupted and control to 
be given to the operating system. The operating system can then switch to another process.

Exercise 1.2 

Explain how a disk I/O request might allow the operating system to run another process.

Answer:

Most devices are handled by the operating system rather than by applications. When an 
application executes a disk read, the call issues a request for the operating system to actually 
perform the operation. The operating system now has control. It can issue commands to the 
disk controller to begin retrieving the disk blocks requested by the application. However, since 
the disk retrieval does not complete for a long time (162 days in relative time), the operating 
system puts the application's process on a queue of processes that are waiting for I/O to 
complete and starts another process that is ready to run. Eventually, the disk controller 
interrupts the CPU instruction cycle when the results are available. At that time, the operating 
system regains control and can choose whether to continue with the currently running process 
or to allow the original process to run.

UNIX does timesharing as well as multiprogramming. Timesharing creates the illusion that 
several processes execute simultaneously, even though there may be only one physical CPU. 
On a single processor system, only one instruction from one process can be executing at any 
particular time. Since the human time scale is billions of times slower than that of modern 
computers, the operating system can rapidly switch between processes to give the appearance 
of several processes executing at the same time.

Consider the following analogy. Suppose a grocery store has several checkout counters (the 
processes) but only one checker (the CPU). The checker checks one item from a customer (the 
instruction) and then does the next item for that same customer. Checking continues until a 
price check (a resource request) is needed. Instead of waiting for the price check and doing 
nothing, the checker moves to another checkout counter and checks items from another 
customer. The checker (CPU) is always busy as long as there are customers (processes) ready 
to check out. This is multiprogramming. The checker is efficient, but customers probably would 
not want to shop at such a store because of the long wait when someone has a large order with 
no price checks (a CPU-bound process).

Now suppose that the checker starts a 10-second timer and processes items for one customer 
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for a maximum of 10 seconds (the quantum). If the timer expires, the checker moves to 
another customer even if no price check is needed. This is timesharing. If the checker is 
sufficiently fast, the situation is almost equivalent to having one slower checker at each 
checkout stand. Consider making a video of such a checkout stand and playing it back at 100 
times its normal speed. It would look as if the checker were handling several customers 
simultaneously.

Exercise 1.3 

Suppose that the checker can check one item per second (a one-second processor cycle time in 
Table 1.1). According to this table, what would be the maximum time the checker would spend 
with one customer before moving to a waiting customer?

Answer:

The time is the quantum that is scaled in the table to 6.3 years. A program may execute billions 
of instructions in a quantum—a bit more than the number of grocery items purchased by the 
average customer.

If the time to move from one customer to another (the context-switch time) is small compared 
with the time between switches (the CPU burst time), the checker handles customers 
efficiently. Timesharing wastes processing cycles by switching between customers, but it has 
the advantage of not wasting the checker resources during a price check. Furthermore, 
customers with small orders are not held in abeyance for long periods while waiting for 
customers with large orders.

The analogy would be more realistic if instead of several checkout counters, there were only 
one, with the customers crowded around the checker. To switch from customer A to customer 
B, the checker saves the contents of the register tape (the context) and restores it to what it 
was when it last processed customer B. The context-switch time can be reduced if the cash 
register has several tapes and can hold the contents of several customers' orders 
simultaneously. In fact, some computer systems have special hardware to hold many contexts 
at the same time.

Multiprocessor systems have several processors accessing a shared memory. In the checkout 
analogy for a multiprocessor system, each customer has an individual register tape and 
multiple checkers rove the checkout stands working on the orders for unserved customers. 
Many grocery stores have packers who do this.
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1.4 Concurrency at the Applications Level

Concurrency occurs at the hardware level because multiple devices operate at the same time. 
Processors have internal parallelism and work on several instructions simultaneously, systems 
have multiple processors, and systems interact through network communication. Concurrency 
is visible at the applications level in signal handling, in the overlap of I/O and processing, in 
communication, and in the sharing of resources between processes or among threads in the 
same process. This section provides an overview of concurrency and asynchronous operation.

1.4.1 Interrupts

The execution of a single instruction in a program at the conventional machine level is the 
result of the processor instruction cycle. During normal execution of its instruction cycle, a 
processor retrieves an address from the program counter and executes the instruction at that 
address. (Modern processors have internal parallelism such as pipelines to reduce execution 
time, but this discussion does not consider that complication.) Concurrency arises at the 
conventional machine level because a peripheral device can generate an electrical signal, called 
an interrupt, to set a hardware flag within the processor. The detection of an interrupt is part of 
the instruction cycle itself. On each instruction cycle, the processor checks hardware flags to 
see if any peripheral devices need attention. If the processor detects that an interrupt has 
occurred, it saves the current value of the program counter and loads a new value that is the 
address of a special function called an interrupt service routine or interrupt handler. After 
finishing the interrupt service routine, the processor must be able to resume execution of the 
previous instruction where it left off.

An event is asynchronous to an entity if the time at which it occurs is not determined by that 
entity. The interrupts generated by external hardware devices are generally asynchronous to 
programs executing on the system. The interrupts do not always occur at the same point in a 
program's execution, but a program should give a correct result regardless of where it is 
interrupted. In contrast, an error event such as division by zero is synchronous in the sense 
that it always occurs during the execution of a particular instruction if the same data is 
presented to the instruction.

Although the interrupt service routine may be part of the program that is interrupted, the 
processing of an interrupt service routine is a distinct entity with respect to concurrency. 
Operating-system routines called device drivers usually handle the interrupts generated by 
peripheral devices. These drivers then notify the relevant processes, through a software 
mechanism such as a signal, that an event has occurred.

Operating systems also use interrupts to implement timesharing. Most machines have a device 
called a timer that can generate an interrupt after a specified interval of time. To execute a 
user program, the operating system starts the timer before setting the program counter. When 
the timer expires, it generates an interrupt that causes the CPU to execute the timer interrupt 
service routine. The interrupt service routine writes the address of the operating system code 
into the program counter, and the operating system is back in control. When a process loses 
the CPU in the manner just described, its quantum is said to have expired. The operating 
system puts the process in a queue of processes that are ready to run. The process waits there 
for another turn to execute.

1.4.2 Signals
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A signal is a software notification of an event. Often, a signal is a response of the operating 
system to an interrupt (a hardware event). For example, a keystroke such as Ctrl-C generates 
an interrupt for the device driver handling the keyboard. The driver recognizes the character as 
the interrupt character and notifies the processes that are associated with this terminal by 
sending a signal. The operating system may also send a signal to a process to notify it of a 
completed I/O operation or an error.

A signal is generated when the event that causes the signal occurs. Signals can be generated 
either synchronously or asynchronously. A signal is generated synchronously if it is generated 
by the process or thread that receives it. The execution of an illegal instruction or a divide-by-
zero may generate a synchronous signal. A Ctrl-C on the keyboard generates an asynchronous 
signal. Signals (Chapter 8) can be used for timers (Chapter 10), terminating programs (Section 
8.2), job control (Section 11.7) or asynchronous I/O (Section 8.8).

A process catches a signal when it executes a handler for the signal. A program that catches a 
signal has at least two concurrent parts, the main program and the signal handler. Potential 
concurrency restricts what can be done inside a signal handler (Section 8.6). If the signal 
handler modifies external variables that the program can modify elsewhere, then proper 
execution may require that those variables be protected.

1.4.3 Input and output

A challenge for operating systems is to coordinate resources that have greatly differing 
characteristic access times. The processor can perform millions of operations on behalf of other 
processes while a program waits for a disk access to complete. Alternatively, the process can 
avoid blocking by using asynchronous I/O or dedicated threads instead of ordinary blocking I/O. 
The tradeoff is between the additional performance and the extra programming overhead in 
using these mechanisms.

A similar problem occurs when an application monitors two or more input channels such as 
input from different sources on a network. If standard blocking I/O is used, an application that 
is blocked waiting for input from one source is not able to respond if input from another source 
becomes available.

1.4.4 Processes, threads and the sharing of resources

A traditional method for achieving concurrent execution in UNIX is for the user to create 
multiple processes by calling the fork function. The processes usually need to coordinate their 
operation in some way. In the simplest instance they may only need to coordinate their 
termination. Even the termination problem is more difficult than it might seem. Chapter 3 
addresses process structure and management and introduces the UNIX fork, exec and wait 
system calls.

Processes that have a common ancestor can communicate through pipes (Chapter 6). 
Processes without a common ancestor can communicate by signals (Chapter 8), FIFOs (Section 
6.3), semaphores (Sections 14.2 and 15.2), shared address space (Section 15.3) or messages 
(Section 15.4 and Chapter 18).

Multiple threads of execution can provide concurrency within a process. When a program 



executes, the CPU uses the program counter to determine which instruction to execute next. 
The resulting stream of instructions is called the program's thread of execution. It is the flow of 
control for the process. If two distinct threads of execution share a resource within a time 
frame, care must be taken that these threads do not interfere with each other. Multiprocessor 
systems expand the opportunity for concurrency and sharing among applications and within 
applications. When a multithreaded application has more than one thread of execution 
concurrently active on a multiprocessor system, multiple instructions from the same process 
may be executed at the same time.

Until recently there has not been a standard for using threads, and each vendor's thread 
package behaved differently. A thread standard has now been incorporated into the POSIX 
standard. Chapters 12 and 13 discuss this new standard.

1.4.5 Multiple processors with shared memory

How many CPUs does a typical home computer have? If you think the answer is one, think 
again. In early machines, the main CPU handled most of the decision making. As machine 
design evolved, I/O became more complicated and placed more demands on the CPU. One way 
of enhancing the performance of a system is to determine which components are the 
bottlenecks and then improve or replicate these components. The main I/O controllers such as 
the video controller and disk controller took over some of the processing related to these 
peripherals, relieving the CPU of this burden. In modern machines, these controllers and other 
I/O controllers have their own special purpose CPUs.

What if after all this auxiliary processing has been offloaded, the CPU is still the bottleneck? 
There are two approaches to improving the performance. Admiral Grace Murray Hopper, a 
pioneer in computer software, often compared computing to the way fields were plowed in the 
pioneer days: "If one ox could not do the job, they did not try to grow a bigger ox, but used 
two oxen." It was usually cheaper to add another processor or two than to increase the speed 
of a single processor. Some problems do not lend themselves to just increasing the number of 
processors indefinitely. Seymour Cray, a pioneer in computer hardware, is reported to have 
said, "If you were plowing a field, which would you rather use? Two strong oxen or 1024 
chickens?"

The optimal tradeoff between more CPUs and better CPUs depends on several factors, including 
the type of problem to be solved and the cost of each solution. Machines with multiple CPUs 
have already migrated to the desktop and are likely to become more common as prices drop. 
Concurrency issues at the application level are slightly different when there are multiple 
processors, but the methods discussed in this book are equally applicable in a multiprocessor 
environment.

1.4.6 The network as the computer

Another important trend is the distribution of computation over a network. Concurrency and 
communication meet to form new applications. The most widely used model of distributed 
computation is the client-server model. The basic entities in this model are server processes 
that manage resources, and client processes that require access to shared resources. (A 
process can be both a server and a client.) A client process shares a resource by sending a 
request to a server. The server performs the request on behalf of the client and sends a reply 
to the client. Examples of applications based on the client-server model include file transfer 
(ftp), electronic mail, file servers and the World Wide Web. Development of client-server 
applications requires an understanding of concurrency and communication.



The object-based model is another model for distributed computation. Each resource in the 
system is viewed as an object with a message-handling interface, allowing all resources to be 
accessed in a uniform way. The object-based model allows for controlled incremental 
development and code reuse. Object frameworks define interactions between code modules, 
and the object model naturally expresses notions of protection. Many of the experimental 
distributed operating systems such as Argus [74], Amoeba [124], Mach [1], Arjuna [106], 
Clouds [29] and Emerald [11] are object based. Object-based models require object managers 
to track the location of the objects in the system.

An alternative to a truly distributed operating system is to provide application layers that run 
on top of common operating systems to exploit parallelism on the network. The Parallel Virtual 
Machine (PVM) and its successor, Message Passing Interface (MPI), are software libraries [10, 
43] that allow a collection of heterogeneous workstations to function as a parallel computer for 
solving large computational problems. PVM manages and monitors tasks that are distributed on 
workstations across the network. Chapter 17 develops a dispatcher for a simplified version of 
PVM. CORBA (Common Object Request Broker Architecture) is another type of software layer 
that provides an object-oriented interface to a set of generic services in a heterogeneous 
distributed environment [104].
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1.5 Security and Fault Tolerance

The 1950s and early 1960s brought batch processing, and the mid-to-late 1960s saw 
deployment of operating systems that supported multiprogramming. Time-sharing and real-
time programming gained popularity in the 1970s. During the 1980s, parallel processing moved 
from the supercomputer arena to the desktop. The 1990s was the decade of the network—with 
the widespread use of distributed processing, email and the World Wide Web. The 2000s 
appears to be the decade of security and fault-tolerance. The rapid computerization and the 
distribution of critical infrastructure (banking, transportation, communication, medicine and 
government) over networks has exposed enormous vulnerabilities. We have come to rely on 
programs that were not adequately designed or tested for a concurrent environment, written by 
programmers who may not have understood the implications of incorrectly working programs. 
The liability disclaimers distributed with most software attempts to absolve the manufacturers 
of responsibility for damage—software is distributed as is.

But, lives now depend on software, and each of us has a responsibility to become attuned to 
the implications of bad software. With current technology, it is almost impossible to write 
completely error-free code, but we believe that programmer awareness can greatly reduce the 
scope of the problem. Unfortunately, most people learn to program for an environment in which 
programs are presented with correct or almost correct input. Their ideal users behave 
graciously, and programs are allowed to exit when they encounter an error.

Real-world programs, especially systems programs, are often long-running and are expected to 
continue running after an error (no blue-screen of death or reboot allowed). Long-running 
programs must release resources, such as memory, when these resources are no longer 
needed. Often, programmers release resources such as buffers in the obvious places but forget 
to release them if an error occurs.

Most UNIX library functions indicate an error by a return value. However, C makes no 
requirement that return values be checked. If a program doesn't check a return value, 
execution can continue well beyond the point at which a critical error occurs. The consequence 
of the function error may not be apparent until much later in the execution. C also allows 
programs to write out of the bounds of variables. For example, the C runtime system does not 
complain if you modify a nonexistent array element—it writes values into that memory (which 
probably corresponds to some other variable). Your program may not detect the problem at the 
time it happened, but the overwritten variable may present a problem later. Because 
overwritten variables are so difficult to detect and so dangerous, newer programming 
languages, such as Java, have runtime checks on array bounds.

Even software that has been in distribution for years and has received heavy scrutiny is riddled 
with bugs. For example, an interesting study by Chou et al. [23] used a modified compiler to 
look for 12 types of bugs in Linux and OpenBSD source code. They examined 21 snapshots of 
Linux spanning seven years and one snapshot of OpenBSD. They found 1025 bugs in the code 
by using automatic scanning techniques. One of the most common bugs was the failure to 
check for a NULL return on functions that return pointers. If the code later uses the returned 
pointer, a core dump occurs.

Commercial software is also prone to bugs. Software problems with the Therac-25 [71], a 
medical linear accelerator used to destroy tumors, resulted in serious accidents.
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Another problem is the exponential growth in the number of truly malicious users who launch 
concerted attacks on servers and user computers. The next section describes one common type 
of attack, the buffer overflow.
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1.6 Buffer Overflows for Breaking and Entering

This section presents a simplified explanation of buffer overflows and how they might be used 
to attack a computer system. A buffer overflow occurs when a program copies data into a 
variable for which it has not allocated enough space.

Example 1.4 shows a code segment that may have a buffer overflow. A user types a name in 
response to the prompt. The program stores the input in a char array called buf. If the user 
enters more than 79 bytes, the resulting string and string terminator do not fit in the allocated 
variable.

Example 1.4 

The following code segment has the possibility of a buffer overflow.

    char buf[80];

    printf("Enter your first name:");
    scanf("%s", buf);

Your first thought in fixing this potential overflow might be to make buf bigger, say, 1000 
bytes. What user's first name could be that long? Even if a user decides to type in a very long 
string of characters, 1000 bytes should be large enough to handle all but the most persistent 
user. However, regardless of the ultimate size that you choose, the code segment is still 
susceptible to a buffer overflow. The user simply needs to redirect standard input to come from 
an arbitrarily large file.

Example 1.5 shows a simple way to fix this problem. The format specification limits the input 
string to one less than the size of the variable, allowing room for the string terminator. The 
program reads at most 79 characters into buf but stops when it encounters a white space 
character. If the user enters more than 79 characters, the program reads the additional 
characters in subsequent input statements.

Example 1.5 

The following code segment does not have a buffer overflow.

      char buf[80];

      printf("Enter your first name:");
      scanf("%79s", buf);

1.6.1 Consequences of buffer overflows

To understand what happens when a buffer overflow occurs, you need to understand how 
programs are laid out in memory. Most program code is executed in functions with local 
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variables that are automatic. While the details differ from machine to machine, programs 
generally allocate automatic variables on the program stack.

In a typical system, the stack grows from high memory to low memory. When a function is 
called, the lower part of the stack contains the passed parameters and the return address. 
Higher up on the stack (lower memory addresses) are the local automatic variables. The stack 
may store other values and have gaps that are not used by the program at all. One important 
fact is that the return address for each function call is usually stored in memory after (with 
larger address than) the automatic variables.

When a program writes beyond the limits of a variable on the stack, a buffer overflow occurs. 
The extra bytes may write over unused space, other variables, the return address or other 
memory not legally accessible to your program. The consequences can range from none, to a 
program crash and a core dump, to unpredictable behavior.

Program 1.1 shows a function that can have a buffer overflow. The checkpass function checks 
whether the entered string matches "mypass" and returns 1 if they match, and 0 otherwise.

Program 1.1 checkpass.c

A function that checks a password. This function is susceptible to buffer overflow.

#include <stdio.h>
#include <string.h>

int checkpass(void){
   int x;
   char a[9];
   x = 0;
   fprintf(stderr,"a at %p and\nx at %p\n", (void *)a, (void *)&x);
   printf("Enter a short word: ");
   scanf("%s", a);
   if (strcmp(a, "mypass") == 0)
      x = 1;
   return x;
}

Figure 1.1 shows a possible organization of the stack for a call to checkpass. The diagram 
assumes that integers and pointers are 4 bytes. Note that the compiler allocates 12 bytes for 
array a, even though the program specifies only 9 bytes, so that the system can maintain a 
stack pointer that is aligned on a word boundary.

Figure 1.1. Possible stack layout for the checkpass function of Program 
1.1.



If the character array a is stored on the stack in lower memory than the integer x, a buffer 
overflow of a may change the value of x. If the user enters a word that is slightly longer than 
the array a, the overflow changes the value of x, but there is no other effect. Exactly how long 
the entered string needs to be to cause a problem depends on the system. With the memory 
organization of Figure 1.1, if the user enters 12 characters, the string terminator overwrites 
one byte of x without changing its value. If the user enters more than 12 characters, some of 
them overwrite x, changing its value. If the user enters 13 characters, x changes to a nonzero 
value and the function returns 1, no matter what characters are entered.

If the user enters a long password, the return address is overwritten, and most likely the 
function will try to return to a location outside the address space of the program, generating a 
segmentation fault and core dump. Buffer overflows that cause an application program to exit 
with a segmentation fault can be annoying and can cause the program to lose unsaved data. 
The same type of overflow in an operating system function can cause the operating system to 
crash.

Buffer overflows in dynamically allocated buffers or buffers with static storage can also behave 
unpredictably. One of our students wrote a program that appeared to show an error in the C 
library. He traced a segmentation fault to a call to malloc and was able to show that the 
program was working until the call to malloc. The program had a segmentation fault before the 
call to malloc returned. He eventually traced the problem to a type of buffer overflow in which 
the byte before a buffer dynamically allocated by a previous malloc call was overwritten. (This 
can easily happen if a buffer is being filled from the back and a count is off by one.) Overwriting 
control information stored in the heap caused the next call to malloc to crash the program.

1.6.2 Buffer overflows and security



Security problems related to buffer overflows have been known for over a decade. They first 
acquired national attention when on November 2, 1988, Robert Morris released a worm on the 
Internet. A worm is a self-replicating, self-propagating program. This program forced many 
system administrators to disconnect their sites from the Internet so that they would not be 
continually reinfected. It took several days for the Internet to return to normal. One of the 
methods used by the Morris worm was to exploit a buffer overflow in the finger daemon. This 
daemon ran on most UNIX machines to allow the display of information about users.

In response to this worm, CERT, the Computer Emergency Response Team, was created [24]. 
The CERT Coordination Center is a federally funded center of Internet security expertise that 
regularly publishes computer security alerts.

Programs that are susceptible to buffer overflow are still being written, in spite of past 
experiences. The first six CERT advisories in 2002 describe buffer overflow flaws in various 
computer systems, including Common Desktop Environment for the Sun Solaris operating 
environment (a windowing system), ICQ from AOL (an instant messaging program used by 
over 100 million users), Simple Network Management Protocol (a network management 
protocol used by many vendors), and Microsoft Internet Explorer. In 1999 Steve Ballmer, the 
CEO of Microsoft, was quoted as saying, "You would think we could figure out how to fix buffer 
overflows by now." The problem is not that we do not know how to write correct code, the 
problem is that writing correct code takes more care than writing sloppy code. As long as 
priorities are to produce code quickly, sloppy code will be produced. The effects of poor coding 
are exacerbated by compilers and runtime systems that don't enforce range checking.

There are many ways in which buffer overflows have been used to compromise a system. Here 
is a possible scenario. The telnet program allows a user to remotely log in to a machine. It 
communicates over the network with a telnet daemon running on the remote machine. One of 
the functions of the telnet daemon is to query for a user name and password and then to 
create a shell for the user if the password is correct.

Suppose the function in the telnet daemon that requests and checks a password returns 1 if 
the password is correct and 0 otherwise, similar to the checkpass function of Program 1.1. 
Suppose the function allocates a buffer of size 100 for the password. This might seem 
reasonable, since passwords in UNIX are at most 8 bytes long. If the program does not check 
the length of the input, it might be possible to have input that writes over the return value (x in 
Program 1.1), causing a shell to be created even if the password is incorrect.

Any application that runs with root privileges and is susceptible to a buffer overflow might be 
used to create a shell with root privileges. The implementation is technical and depends on the 
system, but the idea is relatively simple. First, the user compiles code to create a shell, 
something like the following code.

   execvl("/bin/sh", "/bin/sh", NULL);
   exit(0);

The user then edits the compiled code file so that the compiled code appears at exactly the 
correct relative position in the file. When the user redirects standard input to this file, the 
contents of the file overwrite the return address. If the bytes that overwrite the return address 
happen to correspond to the address of the execvl code, the function return creates a new 
user shell. Since the program is already running with the user ID of root, the new shell also 



runs with this user ID, and the ordinary user now has root privileges. The vulnerability depends 
on getting the bytes in the input file exactly right. Finding the address of the execvl is not as 
difficult as it might first appear, because most processor instruction sets support a relative 
addressing mode.
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1.7 UNIX Standards

Not too long ago, two distinct and somewhat incompatible "flavors" of UNIX, System V from 
AT&T and BSD from Berkeley coexisted. Because no official standard existed, there were major 
and minor differences between the versions from different vendors, even within the same 
flavor. Consequently, programs written for one type of UNIX would not run correctly or 
sometimes would not even compile under a UNIX from another vendor.

The IEEE (Institute of Electronic and Electrical Engineers) decided to develop a standard for the 
UNIX libraries in an initiative called POSIX. POSIX stands for Portable Operating System 
Interface and is pronounced pahz-icks, as stated explicitly by the standard. IEEE's first attempt, 
called POSIX.1, was published in 1988. When this standard was adopted, there was no known 
historical implementation of UNIX that would not have to change to meet the standard. The 
original standard covered only a small subset of UNIX. In 1994, the X/Open Foundation 
published a more comprehensive standard called Spec 1170, based on System V. 
Unfortunately, inconsistencies between Spec 1170 and POSIX made it difficult for vendors and 
application developers to adhere to both standards.

In 1998, after another version of the X/Open standard, many additions to the POSIX standard, 
and the threat of world-domination by Microsoft, the Austin Group was formed. This group 
included members from The Open Group (a new name for the X/Open Foundation), IEEE POSIX 
and the ISO/IEC Joint Technical Committee. The purpose of the group was to revise, combine 
and update the standards. Finally, at the end of 2001, a joint document was approved by the 
IEEE and The Open Group. The ISO/IEC approved this document in November of 2002. This 
specification is referred to as the Single UNIX Specification, Version 3, or IEEE Std. 1003.1-
2001, POSIX. In this book we refer to this standard merely as POSIX.

Each of the standards organizations publishes copies of the standard. Print and electronic 
versions of the standard are available from IEEE and ISO/IEC. The Open Group publishes the 
standard on CD-ROM. It is also freely available on their web site [89]. The copy of the standard 
published by the IEEE is in four volumes: Base Definitions [50], Shell and Utilities [52], System 
Interfaces [49] and Rationale [51] and is over 3600 pages in length.

The code for this book was tested on three systems: Solaris 9, Redhat Linux 8 and Mac OS 
10.2. Table 1.3 lists the extensions of POSIX discussed in the book and the status of 
implementation of each on the tested systems. This indication is based on the man pages and 
on running the programs from the book, not on any official statement of compliance.

Table 1.3. POSIX extensions supported by our test systems.

code extension Solaris 9 Redhat 8 Mac OS 10.2

AIO asynchronous input and output yes yes no

CX extension to the ISO C standard yes yes yes
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FSC file synchronization yes yes yes

RTS realtime signals extension yes yes no

SEM semaphores yes unnamed only named only

THR threads yes almost yes

TMR timers yes yes no

TPS thread execution scheduling yes yes yes

TSA thread stack address attribute no no no

TSF thread-safe functions yes strtok_r only yes

XSI XSI extension yes yes timers, getsid, ftok, 
no IPC

_POSIX_VERSION 199506 199506 198808

A POSIX-compliant implementation must support the POSIX base standard. Many of the 
interesting aspects of POSIX are not part of the base standard but rather are defined as 
extensions to the base standard. Table E.1 of Appendix E gives a complete list of the extensions 
in the 2001 version of POSIX. Appendix E applies only to implementations that claim 
compliance with the 2001 version base standard. These implementations set the symbol 
_POSIX_VERSION defined in unistd.h to 200112L. As of the writing of this book, none of the 
systems we tested used this value. Systems that support the previous version of POSIX have a 
value of 199506L. Differences between the 1995 and 2001 standards for features supported by 
both are minor.

The new POSIX standard also incorporates the ISO/IEC International Standard 9899, also 
referred to as ISO C. In the past, minor differences between the POSIX and ISO C standards 
have caused confusion. Often, these differences were unintentional, but differences in published 
standards required developers to choose between them. The current POSIX standard makes it 
clear that any differences between the published POSIX standard and the ISO C standard are 
unintentional. If any discrepancies occur, the ISO C standard takes precedence.
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1.8 Additional Reading

Most general operating systems books present an overview and history of operating systems. 
Recommended introductions include Chapter 1 of Modern Operating Systems by Tanenbaum 
[122] or Chapters 1 to 3 of Operating Systems Concepts by Silberschatz et al. [107]. Chapters 
1 and 2 of Distributed Systems: Concepts and Design by Coulouris et al. discuss design issues 
for distributed systems [26]. Distributed Operating Systems by Tanenbaum [121] also has a 
good overview of distributed systems issues, but it provides fewer details about specific 
distributed systems than does [26]. See also Distributed Systems: Principles and Paradigms by 
Van Steen and Tanenbaum [127].

Advanced Programming in the UNIX Environment by Stevens [112] is a key technical reference 
on the UNIX interface to use in conjunction with this book. Serious systems programmers 
should acquire the POSIX Std. 1003.1 from the IEEE [50] or the Open Group web site [89]. The 
standard is surprisingly readable and thorough. The rationale sections included with each 
function provide a great deal of insight into the considerations that went into the standard. The 
final arbiter of C questions is the ISO C standard [56].

The CERT web site [24] is a good source for current information on recently discovered bugs, 
ongoing attacks and vulnerabilities. The book Know Your Enemy: Revealing the Security Tools, 
Tactics, and Motives of the Blackhat Community edited by members of the Honeynet Project 
[48] is an interesting glimpse into the realm of the malicious.
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Chapter 2. Programs, Processes and Threads

One popular definition of a process is an instance of a program whose execution has started but 
has not yet terminated. This chapter discusses the differences between programs and 
processes and the ways in which the former are transformed into the latter. The chapter 
addresses issues of program layout, command-line arguments, program environment and exit 
handlers.

Objectives

●     Learn about programs, processes and threads
●     Experiment with memory allocation and manipulation
●     Explore implications of static objects
●     Use environment variables for context
●     Understand program structure and layout
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2.1 How a Program Becomes a Process

A program is a prepared sequence of instructions to accomplish a defined task. To write a C 
source program, a programmer creates disk files containing C statements that are organized 
into functions. An individual C source file may also contain variable and function declarations, 
type and macro definitions (e.g., typedef) and preprocessor commands (e.g., #ifdef, 
#include, #define). The source program contains exactly one main function.

Traditionally, C source filenames have a .c extension, and header filenames have a .h 
extension. Header files usually only contain macro and type definitions, defined constants and 
function declarations. Use the #include preprocessor command to insert the contents of a 
header file into the source.

The C compiler translates each source file into an object file. The compiler then links the 
individual object files with the necessary libraries to produce an executable module. When a 
program is run or executed, the operating system copies the executable module into a program 
image in main memory.

A process is an instance of a program that is executing. Each instance has its own address 
space and execution state. When does a program become a process? The operating system 
reads the program into memory. The allocation of memory for the program image is not 
enough to make the program a process. The process must have an ID (the process ID) so that 
the operating system can distinguish among individual processes. The process state indicates 
the execution status of an individual process. The operating system keeps track of the process 
IDs and corresponding process states and uses the information to allocate and manage 
resources for the system. The operating system also manages the memory occupied by the 
processes and the memory available for allocation.

When the operating system has added the appropriate information in the kernel data structures 
and has allocated the necessary resources to run the program code, the program has become a 
process. A process has an address space (memory it can access) and at least one flow of 
control called a thread. The variables of a process can either remain in existence for the life of 
the process (static storage) or be automatically allocated when execution enters a block and 
deallocated when execution leaves the block (automatic storage). Appendix A.5 discusses C 
storage classes in detail.

A process starts with a single flow of control that executes a sequence of instructions. The 
processor program counter keeps track of the next instruction to be executed by that processor 
(CPU). The CPU increments the program counter after fetching an instruction and may further 
modify it during the execution of the instruction, for example, when a branch occurs. Multiple 
processes may reside in memory and execute concurrently, almost independently of each 
other. For processes to communicate or cooperate, they must explicitly interact through 
operating system constructs such as the filesystem (Section 5.1), pipes (Section 6.1), shared 
memory (Section 15.3) or a network (Chapters 18-22).

[ Team LiB ]   

file:///D|/Tutoriales%20&%20Programacion/Prep%20Finales/XxX/Prentice%20Hall%20-%20Unix%20Systems%20Programming%202nd%20Ed/NFO/lib.html
file:///D|/Tutoriales%20&%20Programacion/Prep%20Finales/XxX/Prentice%20Hall%20-%20Unix%20Systems%20Programming%202nd%20Ed/NFO/lib.html


[ Team LiB ]   

2.2 Threads and Thread of Execution

When a program executes, the value of the process program counter determines which process 
instruction is executed next. The resulting stream of instructions, called a thread of execution, 
can be represented by the sequence of instruction addresses assigned to the program counter 
during the execution of the program's code.

Example 2.1 

Process 1 executes statements 245, 246 and 247 in a loop. Its thread of execution can be 
represented as 2451, 2461, 2471, 2451, 2461, 2471, 2451, 2461, 2471 . . . , where the 
subscripts identify the thread of execution as belonging to process 1.

The sequence of instructions in a thread of execution appears to the process as an 
uninterrupted stream of addresses. From the point of view of the processor, however, the 
threads of execution from different processes are intermixed. The point at which execution 
switches from one process to another is called a context switch.

Example 2.2 

Process 1 executes its statements 245, 246 and 247 in a loop as in Example 2.1, and process 2 
executes its statements 10, 11, 12 . . . . The CPU executes instructions in the order 2451, 2461, 
2471, 2451, 2461, [context-switch instructions], 102, 112, 122, 132, [context-switch 
instructions], 2471, 2451, 2461, 2471 . . . . Context switches occur between 2461 and 102 and 
between 132 and 2471. The processor sees the threads of execution interleaved, whereas the 
individual processes see uninterrupted sequences.

A natural extension of the process model allows multiple threads to execute within the same 
process. Multiple threads avoid context switches and allow sharing of code and data. The 
approach may improve program performance on machines with multiple processors. Programs 
with natural parallelism in the form of independent tasks operating on shared data can take 
advantage of added execution power on these multiple-processor machines. Operating systems 
have significant natural parallelism and perform better by having multiple, simultaneous 
threads of execution. Vendors advertise symmetric multiprocessing support in which the 
operating system and applications have multiple undistinguished threads of execution that take 
advantage of parallel hardware.

A thread is an abstract data type that represents a thread of execution within a process. A 
thread has its own execution stack, program counter value, register set and state. By declaring 
many threads within the confines of a single process, a programmer can write programs that 
achieve parallelism with low overhead. While these threads provide low-overhead parallelism, 
they may require additional synchronization because they reside in the same process address 
space and therefore share process resources. Some people call processes heavyweight because 
of the work needed to start them. In contrast, threads are sometimes called lightweight 
processes.
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2.3 Layout of a Program Image

After loading, the program executable appears to occupy a contiguous block of memory called a 
program image. Figure 2.1 shows a sample layout of a program image in its logical address 
space [112]. The program image has several distinct sections. The program text or code is 
shown in low-order memory. The initialized and uninitialized static variables have their own 
sections in the image. Other sections include the heap, stack and environment.

Figure 2.1. Sample layout for a program image in main memory.

An activation record is a block of memory allocated on the top of the process stack to hold the 
execution context of a function during a call. Each function call creates a new activation record 
on the stack. The activation record is removed from the stack when the function returns, 
providing the last-called-first-returned order for nested function calls.

The activation record contains the return address, the parameters (whose values are copied 
from the corresponding arguments), status information and a copy of some of the CPU register 
values at the time of the call. The process restores the register values on return from the call 
represented by the record. The activation record also contains automatic variables that are 
allocated within the function while it is executing. The particular format for an activation record 
depends on the hardware and on the programming language.

In addition to the static and automatic variables, the program image contains space for argc 
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and argv and for allocations by malloc. The malloc family of functions allocates storage from a 
free memory pool called the heap. Storage allocated on the heap persists until it is freed or 
until the program exits. If a function calls malloc, the storage remains allocated after the 
function returns. The program cannot access the storage after the return unless it has a pointer 
to the storage that is accessible after the function returns.

Static variables that are not explicitly initialized in their declarations are initialized to 0 at run 
time. Notice that the initialized static variables and the uninitialized static variables occupy 
different sections in the program image. Typically, the initialized static variables are part of the 
executable module on disk, but the uninitialized static variables are not. Of course, the 
automatic variables are not part of the executable module because they are only allocated 
when their defining block is called. The initial values of automatic variables are undetermined 
unless the program explicitly initializes them.

Exercise 2.3 

Use ls -l to compare the sizes of the executable modules for the following two C programs. 
Explain the results.

Version 1: largearrayinit.c

int myarray[50000] = {1, 2, 3, 4};

int main(void) {
   myarray[0] = 3;
   return 0;
}

Version 2: largearray.c

int myarray[50000];

int main(void) {
    myarray[0] = 3;
    return 0;
}

Answer:

The executable module for Version 1 should be about 200,000 bytes larger than that of Version 
2 because the myarray of Version 1 is initialized static data and is therefore part of the 
executable module. The myarray of Version 2 is not allocated until the program is loaded in 
memory, and the array elements are initialized to 0 at that time.

Static variables can make a program unsafe for threaded execution. For example, the C library 
function readdir and its relatives described in Section 5.2 use static variables to hold return 
values. The function strtok discussed in Section 2.6 uses a static variable to keep track of its 
progress between calls. Neither of these functions can be safely called by multiple threads 
within a program. In other words, they are not thread-safe. External static variables also make 
code more difficult to debug because successive invocations of a function that references a 



static variable may behave in unexpected ways. For these reasons, avoid using static variables 
except under controlled circumstances. Section 2.9 presents an example of when to use 
variables with static storage class.

Although the program image appears to occupy a contiguous block of memory, in practice, the 
operating system maps the program image into noncontiguous blocks of physical memory. A 
common mapping divides the program image into equal-sized pieces, called pages. The 
operating system loads the individual pages into memory and looks up the location of the page 
in a table when the processor references memory on that page. This mapping allows a large 
logical address space for the stack and heap without actually using physical memory unless it is 
needed. The operating system hides the existence of such an underlying mapping, so the 
programmer can view the program image as logically contiguous even when some of the pages 
do not actually reside in memory.
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2.4 Library Function Calls

We introduce most library functions by a condensed version of its specification, and you should 
always refer to the man pages for more complete information.

The summary starts with a brief description of the function and its parameters, followed by a 
SYNOPSIS box giving the required header files and the function prototype. (Unfortunately, 
some compilers do not give warning messages if the header files are missing, so be sure to use 
lint as described in Appendix A to detect these problems.) The SYNOPSIS box also names the 
POSIX standard that specifies the function. A description of the function return values and a 
discussion of how the function reports errors follows the SYNOPSIS box. Here is a typical 
summary.

The close function deallocates the file descriptor specified by fildes.

SYNOPSIS

   #include <unistd.h>

   int close(int fildes);
                                   POSIX

If successful, close returns 0. If unsuccessful, close returns –1 and sets errno. The following 
table lists the mandatory errors for close.

errno cause

EBADF fildes is not valid

EINTR close was interrupted by a signal

This book's summary descriptions generally include the mandatory errors. These are the errors 
that the standard requires that every implementation detect. We include these particular errors 
because they are a good indication of the major points of failure. You must handle all errors, 
not just the mandatory ones. POSIX often defines many other types of optional errors. If an 
implementation chooses to treat the specified condition as an error, then it should use the 
specified error value. Implementations are free to define other errors as well. When there is 
only one mandatory error, we describe it in a sentence. When the function has more than one 
mandatory error, we use a table like the one for close.

Traditional UNIX functions usually return –1 (or sometimes NULL) and set errno to indicate the 
error. The POSIX standards committee decided that all new functions would not use errno and 
would instead directly return an error number as a function return value. We illustrate both 
ways of handling errors in examples throughout the text.
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Example 2.4 

The following code segment demonstrates how to call the close function.

int fildes;

if (close(fildes) == -1)
   perror("Failed to close the file");

The code assumes that the unistd.h header file has been included in the source. In general, 
we do not show the header files for code segments.

The perror function outputs to standard error a message corresponding to the current value of 
errno. If s is not NULL, perror outputs the string (an array of characters terminated by a null 
character) pointed to by s and followed by a colon and a space. Then, perror outputs an error 
message corresponding to the current value of errno followed by a newline.

SYNOPSIS

   #include <stdio.h>

   void perror(const char *s);
                                    POSIX:CX

No return values and no errors are defined for perror.

Example 2.5 

The output produced by Example 2.4 might be as follows.

Failed to close the file: invalid file descriptor

The strerror function returns a pointer to the system error message corresponding to the 
error code errnum.

SYNOPSIS

   #include <string.h>

   char *strerror(int errnum);
                                   POSIX:CX

If successful, strerror returns a pointer to the error string. No values are reserved for failure.

Use strerror to produce informative messages, or use it with functions that return error codes 
directly without setting errno.



Example 2.6 

The following code segment uses strerror to output a more informative error message when 
close fails.

int fildes;

if (close(fildes) == -1)
   fprintf(stderr, "Failed to close file descriptor %d: %s\n",
                   fildes, strerror(errno));

The strerror function may change errno. You should save and restore errno if you need to 
use it again.

Example 2.7 

The following code segment illustrates how to use strerror and still preserve the value of 
errno.

int error;
int fildes;

if (close(fildes) == -1) {
   error = errno;                           /* temporarily save errno */
   fprintf(stderr, "Failed to close file descriptor %d: %s\n",
                   fildes, strerror(errno));
   errno = error;    /* restore errno after writing the error message */
}

Correctly handing errno is a tricky business. Because its implementation may call other 
functions that set errno, a library function may change errno, even though the man page 
doesn't explicitly state that it does. Also, applications cannot change the string returned from 
strerror, but subsequent calls to either strerror or perror may overwrite this string.

Another common problem is that many library calls abort if the process is interrupted by a 
signal. Functions generally report this type of return with an error code of EINTR. For example, 
the close function may be interrupted by a signal. In this case, the error was not due to a 
problem with its execution but was a result of some external factor. Usually the program should 
not treat this interruption as an error but should restart the call.

Example 2.8 

The following code segment restarts the close function if a signal occurs.

int error;
int fildes;

while (((error = close(fildes)) == -1) && (errno == EINTR))  ;
if (error == -1)



   perror("Failed to close the file"); /* a real close error occurred */

The while loop of Example 2.8 has an empty statement clause. It simply calls close until it 
either executes successfully or encounters a real error. The problem of restarting library calls is 
so common that we provide a library of restarted calls with prototypes defined in restart.h. 
The functions are designated by a leading r_ prepended to the regular library name. For 
example, the restart library designates a restarted version of close by the name r_close.

Example 2.9 

The following code segment illustrates how to use a version of close from the restart library.

#include "restart.h"     /* user-defined library not part of standard */
int fildes;

if (r_close(fildes) == -1)
   perror("Failed to close the file"); /* a true close error occurred */

[ Team LiB ]   
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2.5 Function Return Values and Errors

Error handling is a key issue in writing reliable systems programs. When you are writing a 
function, think in terms of that function being called millions of times by the same application. 
How do you want the function to behave? In general, functions should never exit on their own, 
but rather should always indicate an error to the calling program. This strategy gives the caller 
an opportunity to recover or to shut down gracefully.

Functions should also not make unexpected changes to the process state that persist beyond 
the return from the function. For example, if a function blocks signals, it should restore the 
signal mask to its previous value before returning.

Finally, the function should release all the hidden resources that it uses during its execution. 
Suppose a function allocates a temporary buffer by calling malloc and does not free it before 
returning. One call to this function may not cause a problem, but hundreds or thousands of 
successive calls may cause the process memory usage to exceed its limits. Usually, a function 
that allocates memory should either free the memory or make a pointer available to the calling 
program. Otherwise, a long-running program may have a memory leak; that is, memory 
"leaks" out of the system and is not available until the process terminates.

You should also be aware that the failure of a library function usually does not cause your 
program to stop executing. Instead, the program continues, possibly using inconsistent or 
invalid data. You must examine the return value of every library function that can return an 
error that affects the running of your program, even if you think the chance of such an error 
occurring is remote.

Your own functions should also engage in careful error handling and communication. Standard 
approaches to handling errors in UNIX programs include the following.

●     Print out an error message and exit the program (only in main).
●     Return –1 or NULL, and set an error indicator such as errno.
●     Return an error code.

In general, functions should never exit on their own but should always report an error to the 
calling program. Error messages within a function may be useful during the debugging phase 
but generally should not appear in the final version. A good way to handle debugging is to 
enclose debugging print statements in a conditional compilation block so that you can 
reactivate them if necessary.

Example 2.10 

The following code segment shows an example of how to use conditional compilation for error 
messages in functions.

    #define DEBUG    /* comment this line out for no error messages */

    int myfun(int x) {
       x++;
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    #ifdef DEBUG
       fprintf(stderr, "The current value of x is %d\n", x);
    #endif
}

If you comment the #define line out, the fprintf statement is not compiled and myfun does 
no printing. Alternatively, you can leave the #define out of the code completely and define 
DEBUG on the compiler line as follows.

cc -DDEBUG ...

Most library functions provide good models for implementing functions. Here are guidelines to 
follow.

1.  Make use of return values to communicate information and to make error trapping easy 
for the calling program.

2.  Do not exit from functions. Instead, return an error value to allow the calling program 
flexibility in handling the error.

3.  Make functions general but usable. (Sometimes these are conflicting goals.)

4.  Do not make unnecessary assumptions about sizes of buffers. (This is often hard to 
implement.)

5.  When it is necessary to use limits, use standard system-defined limits rather than 
arbitrary constants.

6.  Do not reinvent the wheel—use standard library functions when possible.

7.  Do not modify input parameter values unless it makes sense to do so.

8.  Do not use static variables or dynamic memory allocation if automatic allocation will do 
just as well.

9.  Analyze all the calls to the malloc family to make sure the program frees the memory 
that was allocated.

10.  Consider whether a function is ever called recursively or from a signal handler or from a 
thread. Functions with variables of static storage class may not behave in the desired 
way. (The error number can cause a big problem here.)

11.  Analyze the consequences of interruptions by signals.

12.  Carefully consider how the entire program terminates.

[ Team LiB ]   
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2.6 Argument Arrays

A command line consists of tokens (the arguments) that are separated by white space: blanks, 
tabs or a backslash (\) at the end of a line. Each token is a string of characters containing no 
white space unless quotation marks are used to group tokens. When a user enters a command 
line corresponding to a C executable program, the shell parses the command line into tokens and 
passes the result to the program in the form of an argument array. An argument array is an 
array of pointers to strings. The end of the array is marked by an entry containing a NULL 
pointer. Argument arrays are also useful for handling a variable number of arguments in calls to 
execvp and for handling environment variables. (Refer to Section 3.5 for an example of their 
application.)

Example 2.11 

The following command line contains the four tokens: mine, -c, 10 and 2.0.

mine -c 10 2.0

The first token on a command line is the name of the command or executable. Figure 2.2 shows 
the argument array for the command line of Example 2.11.

Figure 2.2. The argv array for the call mine -c 10 2.0.

Example 2.12 
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The mine program of Example 2.11 might start with the following line.

int main(int argc, char *argv[])

In Example 2.12, the argc parameter contains the number of command-line tokens or arguments 
(four for Example 2.11), and argv is an array of pointers to the command-line tokens. The argv 
is an example of an argument array.

2.6.1 Creating an argument array with makeargv

This section develops a function, makeargv, that creates an argument array from a string of 
tokens. The makeargv function illustrates some complications introduced by static variables. We 
use this function in several projects and exercises of subsequent chapters.

Example 2.13 

Here is a prototype for a makeargv function that creates an argument array from a string of 
tokens.

char **makeargv(char *s);

The makeargv of Example 2.13 has a string input parameter and returns a pointer to an argv 
array. If the call fails, makeargv returns a NULL pointer.

Example 2.14 

The following code segment illustrates how the makeargv function of Example 2.13 might be 
invoked.

int i;
char **myargv;
char mytest[] = "This is a test";

if ((myargv = makeargv(mytest)) == NULL)
   fprintf(stderr, "Failed to construct an argument array\n");
else
   for (i = 0; myargv[i] != NULL; i++)
      printf("%d:%s\n", i, myargv[i]);

Example 2.15 

The following alternative prototype specifies that makeargv should pass the argument array as a 
parameter. This alternative version of makeargv returns an integer giving the number of tokens in 
the input string. In this case, makeargv returns –1 to indicate an error.

int makeargv(char *s, char ***argvp);



Example 2.16 

The following code segment calls the makeargv function defined in Example 2.15.

int i;
char **myargv;
char mytest[] = "This is a test";
int numtokens;

if ((numtokens = makeargv(mytest, &myargv)) == -1)
   fprintf(stderr, "Failed to construct an argument array\n");
else
   for (i = 0; i < numtokens; i++)
       printf("%d:%s\n", i, myargv[i]);

Because C uses call-by-value parameter passing, Example 2.15 shows one more level of 
indirection (*) when the address of myargv is passed. A more general version of makeargv allows 
an extra parameter that represents the set of delimiters to use in parsing the string.

Example 2.17 

The following prototype shows a makeargv function that has a delimiter set parameter.

int makeargv(const char *s, const char *delimiters, char ***argvp);

The const qualifier means that the function does not modify the memory pointed to by the first 
two parameters.

Program 2.1 calls the makeargv function of Example 2.17 to create an argument array from a 
string passed on the command line. The program checks that it has exactly one command-line 
argument and outputs a usage message if that is not the case. The main program returns 1 if it 
fails, and 0 if it completes successfully. The call to makeargv uses blank and tab as delimiters. 
The shell also uses the same delimiters, so be sure to enclose the command-line arguments in 
double quotes as shown in Example 2.18.

Example 2.18 

If the executable for Program 2.1 is called argtest, the following command creates and prints an 
argument array for This is a test.

argtest "This is a test"

Program 2.1 argtest.c

A program that takes a single string as its command-line argument and calls makeargv to create 
an argument array.

#include <stdio.h>



#include <stdlib.h>
int makeargv(const char *s, const char *delimiters, char ***argvp);

int main(int argc, char *argv[]) {
   char delim[] = " \t";
   int i;
   char **myargv;
   int numtokens;

   if (argc != 2) {
      fprintf(stderr, "Usage: %s string\n", argv[0]);
      return 1;
   }
   if ((numtokens = makeargv(argv[1], delim, &myargv)) == -1) {
      fprintf(stderr, "Failed to construct an argument array for %s\n", argv[1]);
      return 1;
   }
   printf("The argument array contains:\n");
   for (i = 0; i < numtokens; i++)
      printf("%d:%s\n", i, myargv[i]);
   return 0;
}

2.6.2 Implementation of makeargv

This section develops an implementation of makeargv based on the prototype of Example 2.17 as 
follows.

int makeargv(const char *s, const char *delimiters, char ***argvp);

The makeargv function creates an argument array pointed to by argvp from the string s, using 
the delimiters specified by delimiters. If successful, makeargv returns the number of tokens. If 
unsuccessful, makeargv returns –1 and sets errno.

The const qualifiers on s and delimiters show that makeargv does not modify either s or 
delimiters. The implementation does not make any a priori assumptions about the length of s 
or of delimiters. The function also releases all memory that it dynamically allocates except for 
the actual returned array, so makeargv can be called multiple times without causing a memory 
leak.

In writing general library programs, you should avoid imposing unnecessary a priori limitations 
on sizes (e.g., by using buffers of predefined size). Although the system-defined constant 
MAX_CANON is a reasonable buffer size for handling command-line arguments, the makeargv 
function might be called to make an environment list or to parse an arbitrary command string 
read from a file. This implementation of makeargv allocates all buffers dynamically by calling 
malloc and uses the C library function strtok to split off individual tokens. To preserve the input 
string s, makeargv does not apply strtok directly to s. Instead, it creates a scratch area of the 
same size pointed to by t and copies s into it. The overall implementation strategy is as follows.

1.  Use malloc to allocate a buffer t for parsing the string in place. The t buffer must be 
large enough to contain s and its terminating `\0'.



2.  Copy s into t. Figure 2.3 shows the result for the string "mine -c 10 2.0".

Figure 2.3. The makeargv makes a working copy of the string s in the 
buffer t to avoid modifying that input parameter.

3.  Make a pass through the string t, using strtok to count the tokens.

4.  Use the count (numtokens) to allocate an argv array.

5.  Copy s into t again.

6.  Use strtok to obtain pointers to the individual tokens, modifying t and effectively parsing 
t in place. Figure 2.4 shows the method for parsing the tokens in place.

Figure 2.4. The makeargv parses the tokens in place by using strtok.



The implementation of makeargv discussed here uses the C library function strtok to split a 
string into tokens. The first call to strtok is different from subsequent calls. On the first call, 
pass the address of the string to parse as the first argument, s1. On subsequent calls for parsing 
the same string, pass a NULL for s1. The second argument to strtok, s2, is a string of allowed 
token delimiters.

SYNOPSIS

   #include <string.h>

   char *strtok(char *restrict s1, const char *restrict s2);
                                                                  POSIX:CX

Each successive call to strtok returns the start of the next token and inserts a '\0' at the end of 
the token being returned. The strtok function returns NULL when it reaches the end of s1.

It is important to understand that strtok does not allocate new space for the tokens, but rather 
it tokenizes s1 in place. Thus, if you need to access the original s1 after calling strtok, you 
should pass a copy of the string.

The restrict qualifier on the two parameters requires that any object referenced by s1 in this 



function cannot also be accessed by s2. That is, the tail end of the string being parsed cannot be 
used to contain the delimiters. This restriction, one that would normally be satisfied in any 
conceivable application, allows the compiler to perform optimizations on the code for strtok. The 
const qualifier on the second parameter indicates that the strtok function does not modify the 
delimiter string.

Program 2.2 shows an implementation of makeargv. Since strtok allows the caller to specify 
which delimiters to use for separating tokens, the implementation includes a delimiters string 
as a parameter. The program begins by using strspn to skip over leading delimiters. This 
ensures that **argvp, which points to the first token, also points to the start of the scratch 
buffer, called t in the program. If an error occurs, this scratch buffer is explicitly freed. 
Otherwise, the calling program can free this buffer. The call to free may not be important for 
most programs, but if makeargv is called frequently from a shell or a long-running communication 
program, the unfreed space from failed calls to makeargv can accumulate. When using malloc or 
a related call, analyze whether to free the memory if an error occurs or when the function returns.

Program 2.2 makeargv.c

An implementation of makeargv.

#include <errno.h>
#include <stdlib.h>
#include <string.h>

int makeargv(const char *s, const char *delimiters, char ***argvp) {
   int error;
   int i;
   int numtokens;
   const char *snew;
   char *t;

   if ((s == NULL) || (delimiters == NULL) || (argvp == NULL)) {
      errno = EINVAL;
      return -1;
   }
   *argvp = NULL;
   snew = s + strspn(s, delimiters);         /* snew is real start of string */
   if ((t = malloc(strlen(snew) + 1)) == NULL)
      return -1;
   strcpy(t, snew);
   numtokens = 0;
   if (strtok(t, delimiters) != NULL)     /* count the number of tokens in s */
      for (numtokens = 1; strtok(NULL, delimiters) != NULL; numtokens++) ;

                             /* create argument array for ptrs to the tokens */
   if ((*argvp = malloc((numtokens + 1)*sizeof(char *))) == NULL) {
      error = errno;
      free(t);
      errno = error;
      return -1;
   }
                        /* insert pointers to tokens into the argument array */
   if (numtokens == 0)



      free(t);
   else {
      strcpy(t, snew);
      **argvp = strtok(t, delimiters);
      for (i = 1; i < numtokens; i++)
          *((*argvp) + i) = strtok(NULL, delimiters);
    }
    *((*argvp) + numtokens) = NULL;             /* put in final NULL pointer */
    return numtokens;
}

Example 2.19 freemakeargv.c

The following function frees all the memory associated with an argument array that was allocated 
by makeargv. If the first entry in the array is not NULL, freeing the entry also frees the memory 
allocated for all the strings. The argument array is freed next. Notice that it would be incorrect to 
free the argument array and then access the first entry.

#include <stdlib.h>

void freemakeargv(char **argv) {
   if (argv == NULL)
      return;
   if (*argv != NULL)
      free(*argv);
   free(argv);
}

[ Team LiB ]   
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2.7 Thread-Safe Functions

The strtok function is not a model that you should emulate in your programs. Because of its 
definition (page 35), it must use an internal static variable to keep track of the current location 
of the next token to parse within the string. However, when calls to strtok with different parse 
strings occur in the same program, the parsing of the respective strings may interfere because 
there is only one variable for the location.

Program 2.3 shows an incorrect way to determine the average number of words per line by 
using strtok. The wordaverage function determines the average number of words per line by 
using strtok to find the next line. The function then calls wordcount to count the number of 
words on this line. Unfortunately, wordcount also uses strtok, this time to parse the words on 
the line. Each of these functions by itself would be correct if the other one did not call strtok. 
The wordaverage function works correctly for the first line, but when wordaverage calls strtok 
to parse the second line, the internal state information kept by strtok has been reset by 
wordcount.

The behavior that causes wordaverage to fail also prevents strtok from being used safely in 
programs with multiple threads. If one thread is in the process of using strtok and a second 
thread calls strtok, subsequent calls may not behave properly. POSIX defines a thread-safe 
function, strtok_r, to be used in place of strtok. The _r stands for reentrant, an obsolescent 
term indicating the function can be reentered (called again) before a previous call finishes.

Program 2.3 wordaveragebad.c

An incorrect use of strtok to determine the average number of words per line.

#include <string.h>
#define LINE_DELIMITERS "\n"
#define WORD_DELIMITERS " "

static int wordcount(char *s) {
   int count = 1;

   if (strtok(s, WORD_DELIMITERS) == NULL)
      return 0;
   while (strtok(NULL, WORD_DELIMITERS) != NULL)
      count++;
   return count;
}

double wordaverage(char *s) {      /* return average size of words in s */
   int linecount = 1;
   char *nextline;
   int words;

   nextline = strtok(s, LINE_DELIMITERS);
   if (nextline == NULL)
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      return 0.0;
   words = wordcount(nextline);
   while ((nextline = strtok(NULL, LINE_DELIMITERS)) != NULL) {
      words += wordcount(nextline);
      linecount++;
   }
   return (double)words/linecount;
}

The strtok_r function behaves similarly to strtok except for an additional parameter, lasts, 
a user-provided pointer to a location that strtok_r uses to store the starting address for the 
next parse.

SYNOPSIS

   #include <string.h>

   char *strtok_r(char *restrict s, const char *restrict sep,
                  char **restrict lasts);
                                                                  POSIX:TSF

Each successive call to strtok_r returns the start of the next token and inserts a '\0' at the 
end of the token being returned. The strtok_r function returns NULL when it reaches the end 
of s.

Program 2.4 corrects Program 2.3 by using strtok_r. Notice that the identifier lasts used by 
each function has no linkage, so each invocation accesses a distinct object. Thus, the two 
functions use different variables for the third parameter of strtok_r and do not interfere.

Program 2.4 wordaverage.c

A correct use of strtok_r to determine the average number of words per line.

#include <string.h>
#define LINE_DELIMITERS "\n"
#define WORD_DELIMITERS " "

static int wordcount(char *s) {
   int count = 1;
   char *lasts;

   if (strtok_r(s, WORD_DELIMITERS, &lasts) == NULL)
      return 0;
   while (strtok_r(NULL, WORD_DELIMITERS, &lasts) != NULL)
      count++;
   return count;
}

double wordaverage(char *s) {     /* return average size of words in s */
   char *lasts;
   int linecount = 1;



   char *nextline;
   int words;

   nextline = strtok_r(s, LINE_DELIMITERS, &lasts);
   if (nextline == NULL)
      return 0.0;
   words = wordcount(nextline);
   while ((nextline = strtok_r(NULL, LINE_DELIMITERS, &lasts)) != NULL) {
      words += wordcount(nextline);
      linecount++;
   }
   return (double)words/linecount;
}

[ Team LiB ]   
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2.8 Use of Static Variables

While care must be taken in using static variables in situations with multiple threads, static 
variables are useful. For example, a static variable can hold internal state information between 
calls to a function.

Program 2.5 shows a function called bubblesort along with auxiliary functions for keeping 
track of the number of interchanges made. The variable count has a static storage class 
because it is declared outside any block. The static qualifier forces this variable to have internal 
linkage, guaranteeing that the count variable cannot be directly accessed by any function aside 
from bubblesort.c. The clearcount function and the interchange in the onepass function are 
the only code segments that modify count. The internal linkage allows other files linked to 
bubblesort.c to use an identifier, count, without interfering with the integer count in this file.

The three functions clearcount, getcount and bubblesort have external linkage and are 
accessible from outside. Notice that the static qualifier for onepass gives this function internal 
linkage so that it is not accessible from outside this file. By using appropriate storage and 
linkage classes, bubblesort hides its implementation details from its callers.

Program 2.5 bubblesort.c

A function that sorts an array of integers and counts the number of interchanges made in the 
process.

static int count = 0;

static int onepass(int a[], int n) { /* return true if interchanges are made */
   int i;
   int interchanges = 0;
   int temp;

   for (i = 0; i < n - 1; i++)
      if (a[i] > a[i+1]) {
         temp = a[i];
         a[i] = a[i+1];
         a[i+1] = temp;
         interchanges = 1;
         count++;
      }
   return interchanges;
}

void clearcount(void) {
   count = 0;
}

int getcount(void) {
   return count;
}
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void bubblesort(int a[], int n) {               /* sort a in ascending order */
   int i;
   for (i = 0; i < n - 1; i++)
      if (!onepass(a, n - i))
         break;
}

Exercise 2.20 

For each object and function in Program 2.5 give the storage and linkage class where 
appropriate.

Answer:

The function onepass has internal linkage. The other functions have external linkage. Functions 
do not have a storage class. The count identifier has internal linkage and static storage. All 
other variables have no linkage and automatic storage. (See Section A.5 for additional 
discussion about linkage.)

Section 2.9 discusses a more complex use of static variables to approximate object-oriented 
behavior in a C program.

[ Team LiB ]   
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2.9 Structure of Static Objects

Static variables are commonly used in the C implementation of a data structure as an object. 
The data structure and all the functions that access it are placed in a single source file, and the 
data structure is defined outside any function. The data structure has the static attribute, 
giving it internal linkage: it is private to that source file. Any references to the data structure 
outside the file are made through the access functions (methods, in object-oriented 
terminology) defined within the file. The actual details of the data structure should be invisible 
to the outside world so that a change in the internal implementation does not require a change 
to the calling program. You can often make an object thread-safe by placing locking 
mechanisms in its access functions without affecting outside callers.

This section develops an implementation of a list object organized according to the type of 
static structure just described. Each element of the list consists of a time and a string of 
arbitrary length. The user can store items in the list object and traverse the list object to 
examine the contents of the list. The user may not modify data that has already been put in the 
list. This list object is useful for logging operations such as keeping a list of commands executed 
by a program.

The requirements make the implementation of the list both challenging and interesting. Since 
the user cannot modify data items once they are inserted, the implementation must make sure 
that no caller has access to a pointer to an item stored in the list. To satisfy this requirement, 
the implementation adds to the list a pointer to a copy of the string rather than a pointer to the 
original string. Also, when the user retrieves data from the list, the implementation returns a 
pointer to a copy of the data rather than a pointer to the actual data. In the latter case, the 
caller is responsible for freeing the memory occupied by the copy.

The trickiest part of the implementation is the traversal of the list. During a traversal, the list 
must save the current position to know where to start the next request. We do not want to do 
this the way strtok does, since this approach would make the list object unsafe for multiple 
simultaneous traversals. We also do not want to use the strtok_r strategy, which requires the 
calling program to provide a location for storing a pointer to the next entry in the list. This 
pointer would allow the calling program to modify entries in the list, a feature we have ruled 
out in the specification.

We solve this problem by providing the caller with a key value to use in traversing the list. The 
list object keeps an array of pointers to items in the list indexed by the key. The memory used 
by these pointers should be freed or reused when the key is no longer needed so that the 
implementation does not consume unnecessary memory resources.

Program 2.6 shows the listlib.h file containing the prototypes of the four access functions: 
accessdata, adddata, getdata and freekey. The data_t structure holds a time_t value 
(time) and a pointer to a character string of undetermined length (string). Programs that use 
the list must include the listlib.h header file.

Program 2.6 listlib.h

The header file listlib.h.

file:///D|/Tutoriales%20&%20Programacion/Prep%20Finales/XxX/Prentice%20Hall%20-%20Unix%20Systems%20Programming%202nd%20Ed/NFO/lib.html


#include <time.h>

typedef struct data_struct {
     time_t time;
     char *string;
} data_t;

int accessdata(void);
int adddata(data_t data);
int freekey(int key);
int getdata(int key, data_t *datap);

Program 2.7 shows an implementation of the list object. The adddata function inserts a copy of 
the data item at the end of the list. The getdata function copies the next item in the traversal 
of the list into a user-supplied buffer of type data_t. The getdata function allocates memory 
for the copy of the string field of this data buffer, and the caller is responsible for freeing it.

The accessdata function returns an integer key for traversing the data list. Each key value 
produces an independent traversal starting from the beginning of the list. When the key is no 
longer needed, the caller can free the key resources by calling freekey. The key is also freed 
when the getdata function gives a NULL pointer for the string field of *datap to signify that 
there are no more entries to examine. Do not call freekey once you have reached the end of 
the list.

If successful, accessdata returns a valid nonnegative key. The other three functions return 0 if 
successful. If unsuccessful, these functions return –1 and set errno.

Program 2.7 listlib.c

A list object implementation.

#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include "listlib.h"
#define TRAV_INIT_SIZE 8

typedef struct list_struct {
     data_t item;
     struct list_struct *next;
} list_t;

static list_t endlist;
static list_t *headptr = NULL;
static list_t *tailptr = NULL;
static list_t **travptrs = NULL;
static int travptrs_size = 0;

int accessdata(void) {              /* return a nonnegative key if successful */
   int i;
   list_t **newptrs;



   if (headptr == NULL) {             /* can't access a completely empty list */
      errno = EINVAL;
      return -1;
   }
   if (travptrs_size == 0) {                               /* first traversal */
      travptrs = (list_t **)calloc(TRAV_INIT_SIZE, sizeof(list_t *));
      if (travptrs == NULL)     /* couldn't allocate space for traversal keys */
         return -1;
      travptrs[0] = headptr;
      travptrs_size = TRAV_INIT_SIZE;
      return 0;
   }
   for (i = 0; i < travptrs_size; i++) {    /* look for an empty slot for key */
      if (travptrs[i] == NULL) {
         travptrs[i] = headptr;
         return i;
      }
   }
   newptrs = realloc(travptrs, 2*travptrs_size*sizeof(list_t *));
   if (newptrs == NULL)        /* couldn't expand the array of traversal keys */
      return -1;
   travptrs = newptrs;
   travptrs[travptrs_size] = headptr;
   travptrs_size *= 2;
   return travptrs_size/2;
}

int adddata(data_t data) {   /* allocate node for data and add to end of list */
   list_t *newnode;
   int nodesize;

   nodesize = sizeof(list_t) + strlen(data.string) + 1;
   if ((newnode = (list_t *)(malloc(nodesize))) == NULL) /* couldn't add node */
      return -1;
   newnode->item.time = data.time;
   newnode->item.string = (char *)newnode + sizeof(list_t);
   strcpy(newnode->item.string, data.string);
   newnode->next = NULL;
   if (headptr == NULL)
      headptr = newnode;
   else
      tailptr->next = newnode;
   tailptr = newnode;
   return 0;
}

int getdata(int key, data_t *datap) { /* copy next item and set datap->string */
   list_t *t;

   if ( (key < 0) || (key >= travptrs_size) || (travptrs[key] == NULL) ) {
      errno = EINVAL;
      return -1;
   }
   if (travptrs[key] == &endlist) { /* end of list, set datap->string to NULL */
      datap->string = NULL;
      travptrs[key] = NULL;



      return 0;       /* reaching end of list natural condition, not an error */
   }
   t = travptrs[key];
   datap->string = (char *)malloc(strlen(t->item.string) + 1);
   if (datap->string == NULL) /* couldn't allocate space for returning string */
      return -1;
   datap->time = t->item.time;
   strcpy(datap->string, t->item.string);
   if (t->next == NULL)
      travptrs[key] = &endlist;
   else
      travptrs[key] = t->next;
   return 0;
}

int freekey(int key) {                /* free list entry corresponding to key */
   if ( (key < 0) || (key >= travptrs_size) ) {           /* key out of range */
      errno = EINVAL;
      return -1;
   }
   travptrs[key] = NULL;
   return 0;
}

The implementation of Program 2.7 does not assume an upper bound on the length of the 
string field of data_t. The adddata function appends to its internal list structure a node 
containing a copy of data. The malloc function allocates space for both the list_t and its 
string data in a contiguous block. The only way that adddata can fail is if malloc fails. The 
accessdata function also fails if there are not sufficient resources to provide an additional 
access stream. The freekey function fails if the key passed is not valid or has already been 
freed. Finally, getdata fails if the key is not valid. Reaching the end of a list during traversal is 
a natural occurrence rather than an error. The getdata function sets the string field of *datap 
to NULL to indicate the end.

The implementation in Program 2.7 uses a key that is just an index into an array of traversal 
pointers. The implementation allocates the array dynamically with a small initial size. When the 
number of traversal streams exceeds the size of the array, accessdata calls realloc to expand 
the array.

The data structures for the object and the code for the access functions of listlib are in a 
single file. Several later projects use this list object or one that is similar. In an object 
representation, outside callers should not have access to the internal representation of the 
object. For example, they should not be aware that the object uses a linked list rather than an 
array or other implementation of the abstract data structure.

The implementation of Program 2.7 allows nested or recursive calls to correctly add data to the 
list or to independently traverse the list. However, the functions have critical sections that must 
be protected in a multithreaded environment. Sections 13.2.3 and 13.6 discuss how this can be 
done.

Exercise 2.21 



What happens if you try to access an empty list in Program 2.7?

Answer:

The accessdata returns –1, indicating an error.

Program 2.8 executes commands and keeps an internal history, using the list data object of 
Program 2.7. The program takes an optional command-line argument, history. If history is 
present, the program outputs a history of commands run thus far whenever the program reads 
the string "history" from standard input.

Program 2.8 calls runproc to run the command and showhistory to display the history of 
commands that were run. The program uses fgets instead of gets to prevent a buffer overrun 
on input. MAX_CANON is a constant specifying the maximum number of bytes in a terminal input 
line. If MAX_CANON is not defined in limits.h, then the maximum line length depends on the 
particular device and the program sets the value to 8192 bytes.

Program 2.9 shows the source file containing the runproc and showhistory functions. When 
runproc successfully executes a command, it adds a node to the history list by calling adddata. 
The showhistory function displays the contents of each node in the list by calling the getdata 
function. After displaying the string in a data item, showhistory function frees the memory 
allocated by the getdata call. The showhistory function does not call freekey explicitly 
because it does a complete traversal of the list.

Program 2.8 keeplog.c

A main program that reads commands from standard input and executes them.

#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifndef MAX_CANON
#define MAX_CANON 8192
#endif

int runproc(char *cmd);
void showhistory(FILE *f);

int main(int argc, char *argv[]) {
   char cmd[MAX_CANON];
   int history = 1;

   if (argc == 1)
      history = 0;
   else if ((argc > 2) || strcmp(argv[1], "history")) {
      fprintf(stderr, "Usage: %s [history]\n", argv[0]);
      return 1;



   }
   while(fgets(cmd, MAX_CANON, stdin) != NULL) {
      if (*(cmd + strlen(cmd) - 1) == '\n')
          *(cmd + strlen(cmd) - 1) = 0;
      if (history && !strcmp(cmd, "history"))
         showhistory(stdout);
      else if (runproc(cmd)) {
         perror("Failed to execute command");
         break;
      }
   }
   printf("\n\n>>>>>>The list of commands executed is:\n");
   showhistory(stdout);
   return 0;
}

The runproc function of Program 2.9 calls the system function to execute a command. The 
runproc function returns 0 if the command can be executed. If the command cannot be 
executed, runproc returns –1 with errno set.

The system function passes the command parameter to a command processor for execution. It 
behaves as if a child process were created with fork and the child process invoked sh with 
execl.

SYNOPSIS

  #include <stdlib.h>

  int system(const char *command);
                                       POSIX:CX

If command is NULL, the system function always returns a nonzero value to mean that a 
command language interpreter is available. If command is not NULL, system returns the 
termination status of the command language interpreter after the execution of command. If 
system could not fork a child or get the termination status, it returns –1 and sets errno. A zero 
termination status generally indicates successful completion.

Program 2.9 keeploglib.c

The file keeploglib.c.

#include <stdio.h>
#include <stdlib.h>
#include "listlib.h"

int runproc(char *cmd) { /* execute cmd; store cmd and time in history list */
   data_t execute;

   if (time(&(execute.time)) == -1)
      return -1;
   execute.string = cmd;



   if (system(cmd) == -1)           /* command could not be executed at all */
      return -1;
   return adddata(execute);
}

void showhistory(FILE *f) {        /* output the history list of the file f */
   data_t data;
   int key;

   key = accessdata();
   if (key == -1) {
      fprintf(f, "No history\n");
      return;
   }
   while (!getdata(key, &data) && (data.string != NULL)) {
      fprintf(f, "Command: %s\nTime: %s\n", data.string, ctime(&(data.time)));
      free(data.string);
   }
}
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2.10 Process Environment

An environment list consists of an array of pointers to strings of the form name = value. The 
name specifies an environment variable, and the value specifies a string value associated with 
the environment variable. The last entry of the array is NULL.

The external variable environ points to the process environment list when the process begins 
executing. The strings in the process environment list can appear in any order.

SYNOPSIS

   extern char **environ
                             ISO C

If the process is initiated by execl, execlp, execv or execvp, then the process inherits the 
environment list of the process just before the execution of exec. The execle and execve 
functions specifically set the environment list as discussed in Section 3.5.

Example 2.22 environ.c

The following C program outputs the contents of its environment list and exits.

#include <stdio.h>

extern char **environ;

int main(void) {
   int i;

   printf("The environment list follows:\n");
   for(i = 0; environ[i] != NULL; i++)
     printf("environ[%d]: %s\n", i, environ[i]);
   return 0;
}

Environment variables provide a mechanism for using system-specific or user-specific 
information in setting defaults within a program. For example, a program may need to write 
status information in the user's home directory or may need to find an executable file in a 
particular place. The user can set the information about where to look for executables in a 
single variable. Applications interpret the value of an environment variable in an application-
specific way. Some of the environment variables described by POSIX are shown in Table 2.1. 
These environment variables are not required, but if one of these variables is present, it must 
have the meaning specified in the table.

Use getenv to determine whether a specific variable has a value in the process environment. 
Pass the name of the environment variable as a string.
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SYNOPSIS

  #include <stdlib.h>

  char *getenv(const char *name);
                                        POSIX:CX

The getenv function returns NULL if the variable does not have a value. If the variable has a 
value, getenv returns a pointer to the string containing that value. Be careful about calling 
getenv more than once without copying the first return string into a buffer. Some 
implementations of getenv use a static buffer for the return strings and overwrite the buffer on 
each call.

Table 2.1. POSIX environment variables and their meanings.

variable meaning

COLUMNS preferred width in columns for terminal

HOME user's home directory

LANG locale when not specified by LC_ALL or LC_*

LC_ALL overriding name of locale

LC_COLLATE name of locale for collating information

LC_CTYPE name of locale for character classification

LC_MESSAGES name of locale for negative or affirmative responses

LC_MONETARY name of locale for monetary editing

LC_NUMERIC name of locale for numeric editing

LC_TIME name of locale for date/time information

LINES preferred number of lines on a page or vertical screen

LOGNAME login name associated with a process

PATH path prefixes for finding executables

PWD absolute pathname of the current working directory

SHELL pathname of the user's preferred command interpreter

TERM terminal type for output

TMPDIR pathname of directory for temporary files



TZ time zone information

Example 2.23 

POSIX specifies that the shell sh should use the environment variable MAIL as the pathname of 
the mailbox for incoming mail, provided that the MAILPATH variable is not set. The following 
code segment sets mailp to the value of the environment variable MAIL if this variable is 
defined and MAILPATH is not defined. Otherwise, the segment sets mailp to a default value.

#define MAILDEFAULT "/var/mail"
char *mailp = NULL;

if (getenv("MAILPATH") == NULL)
   mailp = getenv("MAIL");
if (mailp == NULL)
    mailp = MAILDEFAULT;

The first call to getenv in Example 2.23 merely checks for the existence of MAILPATH, so it is 
not necessary to copy the return value to a separate buffer before calling getenv again.

Do not confuse environment variables with predefined constants like MAX_CANON. The 
predefined constants are defined in header files with #define. Their values are constants and 
known at compile time. To see whether a definition of such a constant exists, use the #ifndef 
compiler directive as in Program 2.8. In contrast, environment variables are dynamic, and their 
values are not known until run time.

Exercise 2.24 getpaths.c

Write a function to produce an argument array containing the components of the PATH 
environment variable.

Answer:

#include <stdlib.h>
#define PATH_DELIMITERS ":"

int makeargv(const char *s, const char *delimiters, char ***argvp);

char **getpaths(void) {
   char **myargv;
   char *path;

   path = getenv("PATH");
   if (makeargv(path, PATH_DELIMITERS, &myargv) == -1)
      return NULL;
   else
      return myargv;
}
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2.11 Process Termination

When a process terminates, the operating system deallocates the process resources, updates 
the appropriate statistics and notifies other processes of the demise. The termination can either 
be normal or abnormal. The activities performed during process termination include canceling 
pending timers and signals, releasing virtual memory resources, releasing other process-held 
system resources such as locks, and closing files that are open. The operating system records 
the process status and resource usage, notifying the parent in response to a wait function.

In UNIX, a process does not completely release its resources after termination until the parent 
waits for it. If its parent is not waiting when the process terminates, the process becomes a 
zombie. A zombie is an inactive process whose resources are deleted later when its parent 
waits for it. When a process terminates, its orphaned children and zombies are adopted by a 
special system process. In traditional UNIX systems, this special process is called the init 
process, a process with process ID value 1 that periodically waits for children.

A normal termination occurs under the following conditions.

●     return from main
●     Implicit return from main (the main function falls off the end)
●     Call to exit, _Exit or _exit

The C exit function calls user-defined exit handlers that were registered by atexit in the 
reverse order of registration. After calling the user-defined handlers, exit flushes any open 
streams that have unwritten buffered data and then closes all open streams. Finally, exit 
removes all temporary files that were created by tmpfile() and then terminates control. Using 
the return statement from main has the same effect as calling exit with the corresponding 
status. Reaching the end of main has the same effect as calling exit(0).

The _Exit and _exit functions do not call user-defined exit handlers before terminating 
control. The POSIX standard does not specify what happens when a program calls these 
functions: that is, whether open streams are flushed or temporary files are removed.

The functions exit, _Exit and _exit take a small integer parameter, status, indicating the 
termination status of the program. Use a status value of 0 to report a successful termination. 
Programmer-defined nonzero values of status report errors. Example 3.22 on page 77 
illustrates how a parent can determine the value of status when it waits for the child. Only the 
low-order byte of the status value is available to the parent process.

SYNOPSIS

   #include <stdlib.h>

   void exit(int status);
   void _Exit(int status);
                                ISO C
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SYNOPSIS

   #include <unistd.h>

   void _exit(int status);

                               POSIX

The C atexit function installs a user-defined exit handler. Exit handlers are executed on a last-
installed-first-executed order when the program returns from main or calls exit. Use multiple 
calls to atexit to install several handlers. The atexit function takes a single parameter, the 
function to be executed as a handler.

SYNOPSIS

   #include <stdlib.h>

   int atexit(void (*func)(void));
                                        ISO C

If successful, atexit returns 0. If unsuccessful, atexit returns a nonzero value.

Program 2.10 has an exit handler, showtimes, that causes statistics about the time used by the 
program and its children to be output to standard error before the program terminates. The 
times function returns timing information in the form of the number of clock ticks. The 
showtimes function converts the time to seconds by dividing by the number of clock ticks per 
second (found by calling sysconf). Chapter 9 discusses time more completely.

Program 2.10 showtimes.c

A program with an exit handler that outputs CPU usage.

#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/times.h>

static void showtimes(void) {
   double ticks;
   struct tms tinfo;

   if ((ticks = (double) sysconf(_SC_CLK_TCK)) == -1)
      perror("Failed to determine clock ticks per second");
   else if (times(&tinfo) == (clock_t)-1)
      perror("Failed to get times information");
   else {
      fprintf(stderr, "User time:              %8.3f seconds\n",
         tinfo.tms_utime/ticks);
      fprintf(stderr, "System time:            %8.3f seconds\n",
         tinfo.tms_stime/ticks);



      fprintf(stderr, "Children's user time:   %8.3f seconds\n",
         tinfo.tms_cutime/ticks);
      fprintf(stderr, "Children's system time: %8.3f seconds\n",
         tinfo.tms_cstime/ticks);
   }
}

int main(void) {
   if (atexit(showtimes))  {
      fprintf(stderr, "Failed to install showtimes exit handler\n");
      return 1;
   }
    /*  rest of main program goes here */
   return 0;
}

A process can also terminate abnormally either by calling abort or by processing a signal that 
causes termination. The signal may be generated by an external event (like Ctrl-C from the 
keyboard) or by an internal error such as an attempt to access an illegal memory location. An 
abnormal termination may produce a core dump, and user-installed exit handlers are not called.
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2.12 Exercise: An env Utility

The env utility examines the environment and modifies it to execute another command. When 
called without arguments, the env command writes the current environment to standard output. 
The optional utility argument specifies the command to be executed under the modified 
environment. The optional -i argument means that env should ignore the environment inherited 
from the shell when executing utility. Without the -i option, env uses the [name=value] 
arguments to modify rather than replace the current environment to execute utility. The env 
utility does not modify the environment of the shell that executes it.

SYNOPSIS

   env [-i] [name=value] ... [utility [argument ...]]
                                                           POSIX:Shell and Utilities

Example 2.25 

Calling env from the C shell on a machine running Sun Solaris produced the following output.

HOME=/users/srobbins
USER=srobbins
LOGNAME=srobbins
PATH=/bin:/usr/bin:/usr/ucb:/usr/bin/X11:/usr/local/bin
MAIL=/var/mail/srobbins
TZ=US/Central
SSH2_CLIENT=129.115.12.131 41064 129.115.12.131 22
TERM=sun-cmd
DISPLAY=sqr3:12.0
SSH2_SFTP_LOG_FACILITY=-1
PWD=/users/srobbins

Write a program called doenv that behaves in the same way as the env utility when executing 
another program.

1.  When called with no arguments, the doenv utility calls the getenv function and outputs the 
current environment to standard output.

2.  When doenv is called with the optional -i argument, the entire environment is replaced by 
the name=value pairs. Otherwise, the pairs modify or add to the current environment.

3.  If the utility argument is given, use system to execute utility after the environment 
has been appropriately changed. Otherwise, print the changed environment to standard 
output, one entry per line.

4.  One way to change the current environment in a program is to overwrite the value of the 
environ external variable. If you are completely replacing the old environment (-i option), 
count the number of name=value pairs, allocate enough space for the argument array 

file:///D|/Tutoriales%20&%20Programacion/Prep%20Finales/XxX/Prentice%20Hall%20-%20Unix%20Systems%20Programming%202nd%20Ed/NFO/lib.html


(don't forget the extra NULL entry), copy the pointers from argv into the array, and set 
environ.

5.  If you are modifying the current environment by overwriting environ, allocate enough 
space to hold the old entries and any new entries to be added. Copy the pointers from the 
old environ into the new one. For each name=value pair, determine whether the name is 
already in the old environment. If name appears, just replace the pointer. Otherwise, add 
the new entry to the array.

6.  Note that it is not safe to just append new entries to the old environ, since you cannot 
expand the old environ array with realloc. If all name=value pairs correspond to entries 
already in the environment, just replace the corresponding pointers in environ.
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2.13 Exercise: Message Logging

The exercise in this section describes a logging library that is similar to the list object defined in 
listlib.h and listlib.c of Program 2.6 and Program 2.7, respectively. The logging utility 
allows the caller to save a message at the end of a list. The logger also records the time that 
the message was logged. Program 2.11 shows the log.h file for the logger.

Program 2.11 log.h

The header file log.h for the logging facility.

#include <time.h>

typedef struct data_struct {
     time_t time;
     char *string;
} data_t;

int addmsg(data_t data);
void clearlog(void);
char *getlog(void);
int savelog(char *filename);

The data_t structure and the addmsg function have the same respective roles as the list_t 
structure and adddata function of listlib.h. The savelog function saves the logged messages 
to a disk file. The clearlog function releases all the storage that has been allocated for the 
logged messages and empties the list of logged messages. The getlog function allocates 
enough space for a string containing the entire log, copies the log into this string, and returns a 
pointer to the string. It is the responsibility of the calling program to free this memory when 
necessary.

If successful, addmsg and savelog return 0. A successful getlog call returns a pointer to the 
log string. If unsuccessful, addmsg and savelog return –1. An unsuccessful getlog call returns 
NULL. These three functions also set errno on failure.

Program 2.12 contains templates for the four functions specified in log.h, as well as the static 
structures for the list itself. Complete the implementation of loglib.c. Use the logging facility 
to save the messages that were printed by some of your programs. How might you use this 
facility for program debugging and testing?

Program 2.12 loglib.c

A template for a simple logging facility.

#include <stdlib.h>
#include <string.h>
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#include "log.h"

typedef struct list_struct {
     data_t item;
     struct list_struct *next;
} log_t;

static log_t *headptr = NULL;
static log_t *tailptr = NULL;

int addmsg(data_t data) {
   return 0;
}

void clearlog(void) {
}

char *getlog(void) {
   return NULL;
}

int savelog(char *filename) {
   return 0;
}
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2.14 Additional Reading

The prerequisite programming background for doing the projects in this text includes a general 
knowledge of UNIX and C. Appendix A summarizes the basics of developing programs in a UNIX 
environment. UNIX in a Nutshell: A Desktop Quick Reference for System V by Robbins and Gilly 
is a good user's reference [94]. A Practical Guide to the UNIX System, 3rd ed. by Sobell [108] 
gives an overview of UNIX and its utilities from the user perspective. The classic reference to C 
is The C Programming Language, 2nd ed. by Kernighan and Ritchie [62]. C: A Reference 
Manual, 4th ed. by Harbison and Steele [46] provides a detailed discussion of many of the C 
language issues that you might encounter in programming the projects for this text. Finally, 
Standard C Library by Plauger is an interesting, but ultimately detailed, look at C library 
function implementation [91]. The final arbiter of C questions is the ISO C Standard [56].

[ Team LiB ]   

file:///D|/Tutoriales%20&%20Programacion/Prep%20Finales/XxX/Prentice%20Hall%20-%20Unix%20Systems%20Programming%202nd%20Ed/NFO/lib.html
file:///D|/Tutoriales%20&%20Programacion/Prep%20Finales/XxX/Prentice%20Hall%20-%20Unix%20Systems%20Programming%202nd%20Ed/0130424110_14051533.html
file:///D|/Tutoriales%20&%20Programacion/Prep%20Finales/XxX/Prentice%20Hall%20-%20Unix%20Systems%20Programming%202nd%20Ed/NFO/lib.html


[ Team LiB ]   

Chapter 3. Processes in UNIX

A process is the basic active entity in most operating-system models. This chapter covers the 
UNIX process model, including process creation, process destruction and daemon processes. 
The chapter uses process fans and process chains to illustrate concepts of parentage, 
inheritance and other process relationships. The chapter also looks at the implications of critical 
sections in concurrent processes.

Objectives

●     Learn how to create processes
●     Experiment with fork and exec
●     Explore the implications of process inheritance
●     Use wait for process cleanup
●     Understand the UNIX process model

[ Team LiB ]   
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3.1 Process Identification

UNIX identifies processes by a unique integral value called the process ID. Each process also 
has a parent process ID, which is initially the process ID of the process that created it. If this 
parent process terminates, the process is adopted by a system process so that the parent 
process ID always identifies a valid process.

The getpid and getppid functions return the process ID and the parent process ID, 
respectively. The pid_t is an unsigned integer type that represents a process ID.

SYNOPSIS

   #include <unistd.h>

   pid_t getpid(void);
   pid_t getppid(void) ;
                                  POSIX

Neither the getpid nor the getppid functions can return an error.

Example 3.1 outputPID.c

The following program outputs its process ID and its parent process ID. Notice that the return 
values are cast to long for printing since there is no guarantee that a pid_t will fit in an int.

#include <stdio.h>
#include <unistd.h>

int main (void) {
   printf("I am process %ld\n", (long)getpid());
   printf("My parent is %ld\n", (long)getppid());
   return 0;
}

System administrators assign a unique integral user ID and an integral group ID to each user 
when creating the user's account. The system uses the user and group IDs to retrieve from the 
system database the privileges allowed for that user. The most privileged user, superuser or 
root, has a user ID of 0. The root user is usually the system administrator.

A UNIX process has several user and group IDs that convey privileges to the process. These 
include the real user ID, the real group ID, the effective user ID and the effective group ID. 
Usually, the real and effective IDs are the same, but under some circumstances the process can 
change them. The process uses the effective IDs for determining access permissions for files. 
For example, a program that runs with root privileges may want to create a file on behalf of an 
ordinary user. By setting the process's effective user ID to be that of this user, the process can 
create the files "as if" the user created them. For the most part, we assume that the real and 
effective user and group IDs are the same.
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The following functions return group and user IDs for a process. The gid_t and uid_t are 
integral types representing group and user IDs, respectively. The getgid and getuid functions 
return the real IDs, and getegid and geteuid return the effective IDs.

SYNOPSIS

   #include <unistd.h>

   gid_t getegid(void);
   uid_t geteuid(void);
   git_t getgid(void);
   uid_t getuid(void);
                               POSIX

None of these functions can return an error.

Example 3.2 outputIDs.c

The following program prints out various user and group IDs for a process.

#include <stdio.h>
#include <unistd.h>

int main(void) {
   printf("My real user ID is       %5ld\n", (long)getuid());
   printf("My effective user ID is  %5ld\n", (long)geteuid());
   printf("My real group ID is      %5ld\n", (long)getgid());
   printf("My effective group ID is %5ld\n", (long)getegid());
   return 0;
}

[ Team LiB ]   
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3.2 Process State

The state of a process indicates its status at a particular time. Most operating systems allow some 
form of the states listed in Table 3.1. A state diagram is a graphical representation of the allowed 
states of a process and the allowed transitions between states. Figure 3.1 shows such a diagram. The 
nodes of the graph in the diagram represent the possible states, and the edges represent possible 
transitions. A directed arc from state A to state B means that a process can go directly from state A 
to state B. The labels on the arcs specify the conditions that cause the transitions between states to 
occur.

Figure 3.1. State diagram for a simple operating system.

While a program is undergoing the transformation into an active process, it is said to be in the new 
state. When the transformation completes, the operating system puts the process in a queue of 
processes that are ready to run. The process is then in the ready or runnable state. Eventually the 
component of the operating system called the process scheduler selects a process to run. The process 
is in the running state when it is actually executing on the CPU.

Table 3.1. Common process states.

state meaning

new being created

running instructions are being executed

blocked waiting for an event such as I/O

ready waiting to be assigned to a processor

done finished
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A process in the blocked state is waiting for an event and is not eligible to be picked for execution. A 
process can voluntarily move to the blocked state by executing a call such as sleep. More commonly, 
a process moves to the blocked state when it performs an I/O request. As explained in Section 1.2, 
input and output can be thousands of times slower than ordinary instructions. A process performs I/O 
by requesting the service through a library function that is sometimes called a system call. During the 
execution of a system call, the operating system regains control of the processor and can move the 
process to the blocked state until the operation completes.

A context switch is the act of removing one process from the running state and replacing it with 
another. The process context is the information that the operating systems needs about the process 
and its environment to restart it after a context switch. Clearly, the executable code, stack, registers 
and program counter are part of the context, as is the memory used for static and dynamic variables. 
To be able to transparently restart a process, the operating system also keeps track of the process 
state, the status of program I/O, user and process identification, privileges, scheduling parameters, 
accounting information and memory management information. If a process is waiting for an event or 
has caught a signal, that information is also part of the context. The context also contains information 
about other resources such as locks held by the process.

The ps utility displays information about processes. By default, ps displays information about 
processes associated with the user. The -a option displays information for processes associated with 
terminals. The -A option displays information for all processes. The -o option specifies the format of 
the output.

SYNOPSIS

  ps [-aA] [-G grouplist] [-o format]...[-p proclist]
     [-t termlist] [-U userlist]
                                                             POSIX Shells and Utilities

Example 3.3 

The following is sample output from the ps -a command.

>% ps -a
  PID TTY      TIME CMD
20825 pts/11   0:00 pine
20205 pts/11   0:01 bash
20258 pts/16   0:01 telnet
20829 pts/2    0:00 ps
20728 pts/4    0:00 pine
19086 pts/12   0:00 vi

The POSIX:XSI Extension provides additional arguments for the ps command. Among the most useful 
are the full (-f) and the long (-l) options. Table 3.2 lists the fields that are printed for each option. 
An (all) in the option column means that the field appears in all forms of ps.

Example 3.4 

The execution of the ps -la command on the same system as for Example 3.3 produced the following 
output.

F S  UID   PID  PPID C PRI NI ADDR  SZ WCHAN TTY    TIME CMD
8 S 4228 20825 20205 0  40 20    ? 859     ? pts/11 0:00 pine



8 S 4228 20205 19974 0  40 20    ? 321     ? pts/11 0:01 bash
8 S 2852 20258 20248 0  40 20    ? 328     ? pts/16 0:01 telnet
8 O  512 20838 18178 0  50 20    ? 134       pts/2  0:00 ps
8 S 3060 20728 20719 0  40 20    ? 845     ? pts/4  0:00 pine
8 S 1614 19086 18875 0  40 20    ? 236     ? pts/12 0:00 vi

Table 3.2. Fields reported for various options of the ps command in the 
POSIX:XSI Extension.

header option meaning

F -l flags (octal and additive) associated with the process

S -l process state

UID -f, -l user ID of the process owner

PID (all) process ID

PPID -f, -l parent process ID

C -f, -l processor utilization used for scheduling

PRI -l process priority

NI -l nice value

ADDR -l process memory address

SZ -l size in blocks of the process image

WCHAN -l event on which the process is waiting

TTY (all) controlling terminal

TIME (all) cumulative execution time

CMD (all) command name (arguments with -f option)
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3.3 UNIX Process Creation and fork

A process can create a new process by calling fork. The calling process becomes the parent, 
and the created process is called the child. The fork function copies the parent's memory 
image so that the new process receives a copy of the address space of the parent. Both 
processes continue at the instruction after the fork statement (executing in their respective 
memory images).

SYNOPSIS

   #include <unistd.h>

   pid_t fork(void);
                                     POSIX

Creation of two completely identical processes would not be very useful. The fork function 
return value is the critical characteristic that allows the parent and the child to distinguish 
themselves and to execute different code. The fork function returns 0 to the child and returns 
the child's process ID to the parent. When fork fails, it returns –1 and sets the errno. If the 
system does not have the necessary resources to create the child or if limits on the number of 
processes would be exceeded, fork sets errno to EAGAIN. In case of a failure, the fork does 
not create a child.

Example 3.5 simplefork.c

In the following program, both parent and child execute the x = 1 assignment statement after 
returning from fork.

#include <stdio.h>
#include <unistd.h>

int main(void) {
   int x;

   x = 0;
   fork();
   x = 1;
   printf("I am process %ld and my x is %d\n", (long)getpid(), x);
   return 0;
}

Before the fork of Example 3.5, one process executes with a single x variable. After the fork, 
two independent processes execute, each with its own copy of the x variable. Since the parent 
and child processes execute independently, they do not execute the code in lock step or modify 
the same memory locations. Each process prints a message with its respective process ID and x 
value.
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The parent and child processes execute the same instructions because the code of Example 3.5 
did not test the return value of fork. Example 3.6 demonstrates how to test the return value of 
fork.

Example 3.6 twoprocs.c

After fork in the following program, the parent and child output their respective process IDs.

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>

int main(void) {
   pid_t childpid;

   childpid = fork();
   if (childpid == -1) {
      perror("Failed to fork");
      return 1;
   }
   if (childpid == 0)                              /* child code */
      printf("I am child %ld\n",  (long)getpid());
   else                                           /* parent code */
      printf("I am parent %ld\n",  (long)getpid());
   return 0;
}

The original process in Example 3.6 has a nonzero value of the childpid variable, so it 
executes the second printf statement. The child process has a zero value of childpid and 
executes the first printf statement. The output from these processes can appear in either 
order, depending on whether the parent or the child executes first. If the program is run 
several times on the same system, the order of the output may or may not always be the same.

Exercise 3.7 badprocessID.c

What happens when the following program executes?

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>

int main(void) {
   pid_t childpid;
   pid_t mypid;

   mypid = getpid();
   childpid = fork();
   if (childpid == -1) {
      perror("Failed to fork");
      return 1;
   }



   if (childpid == 0)                                   /* child code */
      printf("I am child %ld, ID = %ld\n", (long)getpid(), (long)mypid);
   else                                                /* parent code */
      printf("I am parent %ld, ID = %ld\n", (long)getpid(), (long)mypid);
   return 0;
}

Answer:

The parent sets the mypid value to its process ID before the fork. When fork executes, the 
child gets a copy of the process address space, including all variables. Since the child does not 
reset mypid, the value of mypid for the child does not agree with the value returned by getpid.

Program 3.1 creates a chain of n processes by calling fork in a loop. On each iteration of the 
loop, the parent process has a nonzero childpid and hence breaks out of the loop. The child 
process has a zero value of childpid and becomes a parent in the next loop iteration. In case 
of an error, fork returns –1 and the calling process breaks out of the loop. The exercises in 
Section 3.8 build on this program.

Figure 3.2 shows a graph representing the chain of processes generated for Program 3.1 when 
n is 4. Each circle represents a process labeled by its value of i when it leaves the loop. The 

edges represent the is-a-parent relationship. A B means process A is the parent of process 
B.

Figure 3.2. Chain of processes generated by Program 3.1 when called 
with a command-line argument of 4.



Program 3.1 simplechain.c

A program that creates a chain of n processes, where n is a command-line argument.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main (int argc, char *argv[]) {
   pid_t childpid = 0;
   int i, n;

   if (argc != 2){   /* check for valid number of command-line arguments */
      fprintf(stderr, "Usage: %s processes\n", argv[0]);
      return 1;
   }
   n = atoi(argv[1]);
   for (i = 1; i < n; i++)
      if (childpid = fork())
         break;

   fprintf(stderr, "i:%d  process ID:%ld  parent ID:%ld  child ID:%ld\n",
           i, (long)getpid(), (long)getppid(), (long)childpid);
   return 0;
}



Exercise 3.8 

Run Program 3.1 for large values of n. Will the messages always come out ordered by 
increasing i?

Answer:

The exact order in which the messages appear depends on the order in which the processes are 
selected by the process scheduler to run. If you run the program several times, you should 
notice some variation in the order.

Exercise 3.9 

What happens if Program 3.1 writes the messages to stdout, using printf, instead of to 
stderr, using fprintf?

Answer:

By default, the system buffers output written to stdout, so a particular message may not 
appear immediately after the printf returns. Messages to stderr are not buffered, but instead 
written immediately. For this reason, you should always use stderr for your debugging 
messages.

Program 3.2 creates a fan of n processes by calling fork in a loop. On each iteration, the newly 
created process breaks from the loop while the original process continues. In contrast, the 
process that calls fork in Program 3.1 breaks from the loop while the newly created process 
continues for the next iteration.

Program 3.2 simplefan.c

A program that creates a fan of n processes where n is passed as a command-line argument.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main (int argc, char *argv[]) {
   pid_t childpid = 0;
   int i, n;

   if (argc != 2){   /* check for valid number of command-line arguments */
      fprintf(stderr, "Usage: %s processes\n", argv[0]);
      return 1;
   }
   n = atoi(argv[1]);
   for (i = 1; i < n; i++)
      if ((childpid = fork()) <= 0)
         break;



   fprintf(stderr, "i:%d  process ID:%ld  parent ID:%ld  child ID:%ld\n",
           i, (long)getpid(), (long)getppid(), (long)childpid);
   return 0;
}

Figure 3.3 shows the process fan generated by Program 3.2 when n is 4. The processes are 
labeled by the value of i at the time they leave the loop. The original process creates n–1 
children. The exercises in Section 3.9 build on this example.

Figure 3.3. Fan of processes generated by Program 3.2 with a 
command-line argument of 4.

Exercise 3.10 

Explain what happens when you replace the test

(childpid = fork()) <= 0

of Program 3.2 with

(childpid = fork()) == -1

Answer:

In this case, all the processes remain in the loop unless the fork fails. Each iteration of the loop 
doubles the number of processes, forming a tree configuration illustrated in Figure 3.4 when n 
is 4. The figure represents each process by a circle labeled with the i value at the time it was 
created. The original process has a 0 label. The lowercase letters distinguish processes that 
were created with the same value of i. Although this code appears to be similar to that of 
Program 3.1, it does not distinguish between parent and child after fork executes. Both the 



parent and child processes go on to create children on the next iteration of the loop, hence the 
population explosion.

Exercise 3.11 

Run Program 3.1, Program 3.2, and a process tree program based on the modification 
suggested in Exercise 3.10. Carefully examine the output. Draw diagrams similar to those of 

Figure 3.2 through Figure 3.4, labeling the circles with the actual process IDs. Use  to 
designate the is-a-parent relationship. Do not use large values of the command-line argument 
unless you are on a dedicated system. How can you modify the programs so that you can use 
ps to see the processes that are created?

Answer:

In their current form, the programs complete too quickly for you to view them with ps. Insert 
the sleep(30); statement immediately before return in order to have each process block for 
30 seconds before exiting. In another command window, continually execute ps -l. Section 3.4 
explains why some of the processes may report a parent ID of 1 when sleep is omitted.

Figure 3.4. Tree of processes produced by the modification of Program 
3.2 suggested in Exercise 3.10.

The fork function creates a new process by making a copy of the parent's image in memory. 
The child inherits parent attributes such as environment and privileges. The child also inherits 
some of the parent's resources such as open files and devices.

Not every parent attribute or resource is inherited by the child. For instance, the child has a 
new process ID and of course a different parent ID. The child's times for CPU usage are reset to 
0. The child does not get locks that the parent holds. If the parent has set an alarm, the child is 
not notified when the parent's alarm expires. The child starts with no pending signals, even if 
the parent had signals pending at the time of the fork.

Although a child inherits its parent's process priority and scheduling attributes, it competes for 



processor time with other processes as a separate entity. A user running on a crowded time-
sharing system can obtain a greater share of the CPU time by creating more processes. A 
system manager on a crowded system might restrict process creation to prevent a user from 
creating processes to get a bigger share of the resources.
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3.4 The wait Function

When a process creates a child, both parent and child proceed with execution from the point of 
the fork. The parent can execute wait or waitpid to block until the child finishes. The wait 
function causes the caller to suspend execution until a child's status becomes available or until 
the caller receives a signal. A process status most commonly becomes available after 
termination, but it can also be available after the process has been stopped. The waitpid 
function allows a parent to wait for a particular child. This function also allows a parent to check 
whether a child has terminated without blocking.

The waitpid function takes three parameters: a pid, a pointer to a location for returning the 
status and a flag specifying options. If pid is –1, waitpid waits for any child. If pid is greater 
than 0, waitpid waits for the specific child whose process ID is pid. Two other possibilities are 
allowed for the pid parameter. If pid is 0, waitpid waits for any child in the same process 
group as the caller. Finally, if pid is less than –1, waitpid waits for any child in the process 
group specified by the absolute value of pid. Process groups are discussed in Section 11.5.

The options parameter of waitpid is the bitwise inclusive OR of one or more flags. The 
WNOHANG option causes waitpid to return even if the status of a child is not immediately 
available. The WUNTRACED option causes waitpid to report the status of unreported child 
processes that have been stopped. Check the man page on waitpid for a complete 
specification of its parameters.

SYNOPSIS

   #include <sys/wait.h>

   pid_t wait(int *stat_loc);
   pid_t waitpid(pid_t pid, int *stat_loc, int options);
                                                                   POSIX

If wait or waitpid returns because the status of a child is reported, these functions return the 
process ID of that child. If an error occurs, these functions return –1 and set errno. If called 
with the WNOHANG option, waitpid returns 0 to report that there are possible unwaited-for 
children but that their status is not available. The following table lists the mandatory errors for 
wait and waitpid.

errno cause

ECHILD caller has no unwaited-for children (wait), or process or process group specified by 
pid does not exist (waitpid), or process group specified by pid does not have a 
member that is a child of caller (waitpid)

EINTR function was interrupted by a signal
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EINVAL options parameter of waitpid was invalid

Example 3.12 

The following code segment waits for a child.

pid_t childpid;

childpid = wait(NULL);
if (childpid != -1)
   printf("Waited for child with pid %ld\n", childpid);

The r_wait function shown in Program 3.3 restarts the wait function if it is interrupted by a 
signal. Program 3.3 is part of the restart library developed in this book and described in 
Appendix B. The restart library includes wrapper functions for many standard library functions 
that should be restarted if interrupted by a signal. Each function name starts with r_ followed 
by the name of the function. Include the restart.h header file when you use functions from 
the restart library in your programs.

Program 3.3 r_wait.c

A function that restarts wait if interrupted by a signal.

#include <errno.h>
#include <sys/wait.h>

pid_t r_wait(int *stat_loc) {
   int retval;

   while (((retval = wait(stat_loc)) == -1) && (errno == EINTR)) ;
   return retval;
}

Example 3.13 

The following code segment waits for all children that have finished but avoids blocking if there 
are no children whose status is available. It restarts waitpid if that function is interrupted by a 
signal or if it successfully waited for a child.

pid_t childpid;

while (childpid = waitpid(-1, NULL, WNOHANG))
   if ((childpid == -1) && (errno != EINTR))
      break;

Exercise 3.14 

What happens when a process terminates, but its parent does not wait for it?



Answer:

It becomes a zombie in UNIX terminology. Zombies stay in the system until they are waited for. 
If a parent terminates without waiting for a child, the child becomes an orphan and is adopted 
by a special system process. Traditionally, this process is called init and has process ID equal 
to 1, but POSIX does not require this designation. The init process periodically waits for 
children, so eventually orphaned zombies are removed.

Example 3.15 fanwait.c

The following modification of the process fan of Program 3.2 causes the original process to print 
out its information after all children have exited.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>
#include "restart.h"

int main(int argc, char *argv[]) {
   pid_t childpid;
   int i, n;

   if (argc != 2) {
      fprintf(stderr, "Usage: %s n\n", argv[0]);
      return 1;
   }
   n = atoi(argv[1]);
   for (i = 1; i < n; i++)
      if ((childpid = fork()) <= 0)
         break;

   while(r_wait(NULL) > 0) ; /* wait for all of your children */
   fprintf(stderr, "i:%d  process ID:%ld  parent ID:%ld  child ID:%ld\n",
           i, (long)getpid(), (long)getppid(), (long)childpid);
   return 0;
}

Exercise 3.16 

What happens if you interchange the while loop and fprintf statements in Example 3.15?

Answer:

The original process still exits last, but it may output its ID information before some of its 
children output theirs.

Exercise 3.17 



What happens if you replace the while loop of Example 3.15 with the statement wait(NULL);?

Answer:

The parent waits for at most one process. If a signal happens to come in before the first child 
completes, the parent won't actually wait for any children.

Exercise 3.18 parentwaitpid.c

Describe the possible forms of the output from the following program.

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>

int main (void) {
   pid_t childpid;
                          /* set up signal handlers here ... */
   childpid = fork();
   if (childpid == -1) {
      perror("Failed to fork");
      return 1;
   }
   if (childpid == 0)
      fprintf(stderr, "I am child %ld\n", (long)getpid());
   else if (wait(NULL) != childpid)
      fprintf(stderr, "A signal must have interrupted the wait!\n");
   else
      fprintf(stderr, "I am parent %ld with child %ld\n", (long)getpid(),
           (long)childpid);
   return 0;
}

Answer:

The output can have several forms, depending on exact timing and errors.

1.  If fork fails (unlikely unless some other program has generated a runaway tree of 
processes and exceeded the system limit), the "Failed to fork" message appears. 
Otherwise, if there are no signals, something similar to the following appears.

I am child 3427
I am parent 3426 with child 3427

2.  If the parent catches a signal after the child executes fprintf but before the child's 
return, the following appears.

I am child 3427
A signal must have interrupted the wait!



3.  If the parent catches a signal after the child terminates and wait returns successfully, 
the following appears.

I am child 3427
I am parent 3426 with child 3427

4.  If the parent catches a signal between the time that the child terminates and wait 
returns, either of the previous two results is possible, depending on when the signal is 
caught.

5.  If the parent catches a signal before the child executes fprintf and if the parent 
executes its fprintf first, the following appears.

A signal must have interrupted the wait!
I am child 3427

6.  Finally, if the parent catches a signal before the child executes fprintf and the child 
executes its fprintf first, the following appears.

I am child 3427
A signal must have interrupted the wait!

Exercise 3.19 

For the child of Exercise 3.18 to always print its message first, the parent must run wait 
repeatedly until the child exits before printing its own message. What is wrong with the 
following?

while(childpid != wait(&status)) ;

Answer:

The loop fixes the problem of interruption by signals, but wait can fail to return the childpid 
because it encounters a real error. You should always test errno as demonstrated in the 
r_wait of Program 3.3.

Exercise 3.20 fanwaitmsg.c

The following program creates a process fan. All the forked processes are children of the 
original process. How are the output messages ordered?

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>



int main (int argc, char *argv[]) {
   pid_t childpid = 0;
   int i, n;

   if (argc != 2){      /* check number of command-line arguments */
      fprintf(stderr, "Usage: %s processes\n", argv[0]);
      return 1;
   }
   n = atoi(argv[1]);
   for (i = 1; i < n; i++)
      if ((childpid = fork()) <= 0)
         break;
   for( ; ; ) {
      childpid = wait(NULL);
      if ((childpid == -1) && (errno != EINTR))
        break;
   }
   fprintf(stderr, "I am process %ld, my parent is %ld\n",
                   (long)getpid(), (long)getppid());
   return 0;
}

Answer:

Because none of the forked children are parents, their wait function returns –1 and sets errno 
to ECHILD. They are not blocked by the second for loop. Their identification messages may 
appear in any order. The message from the original process comes out at the very end after it 
has waited for all of its children.

Exercise 3.21 chainwaitmsg.c

The following program creates a process chain. Only one forked process is a child of the original 
process. How are the output messages ordered?

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>

int main (int argc, char *argv[]) {
   pid_t childpid;
   int i, n;
   pid_t waitreturn;

   if (argc != 2){   /* check number of command-line arguments */
      fprintf(stderr, "Usage: %s processes\n", argv[0]);
      return 1;
   }
   n = atoi(argv[1]);
   for (i = 1; i < n; i++)
      if (childpid = fork())
         break;
   while(childpid != (waitreturn = wait(NULL)))



      if ((waitreturn == -1) && (errno != EINTR))
         break;
   fprintf(stderr, "I am process %ld, my parent is %ld\n",
                     (long)getpid(), (long)getppid());
   return 0;
}

Answer:

Each forked child waits for its own child to complete before outputting a message. The 
messages appear in reverse order of creation.

3.4.1 Status values

The stat_loc argument of wait or waitpid is a pointer to an integer variable. If it is not NULL, 
these functions store the return status of the child in this location. The child returns its status 
by calling exit, _exit, _Exit or return from main. A zero return value indicates 
EXIT_SUCCESS; any other value indicates EXIT_FAILURE. The parent can only access the 8 least 
significant bits of the child's return status.

POSIX specifies six macros for testing the child's return status. Each takes the status value 
returned by a child to wait or waitpid as a parameter.

SYNOPSIS

   #include <sys/wait.h>

   WIFEXITED(int stat_val)
   WEXITSTATUS(int stat_val)
   WIFSIGNALED(int stat_val)
   WTERMSIG(int stat_val)
   WIFSTOPPED(int stat_val)
   WSTOPSIG(int stat_val)
                                     POSIX

The six macros are designed to be used in pairs. The WIFEXITED evaluates to a nonzero value 
when the child terminates normally. If WIFEXITED evaluates to a nonzero value, then 
WEXITSTATUS evaluates to the low-order 8 bits returned by the child through _exit(), exit() 
or return from main.

The WIFSIGNALED evaluates to a nonzero value when the child terminates because of an 
uncaught signal (see Chapter 8). If WIFSIGNALED evaluates to a nonzero value, then WTERMSIG 
evaluates to the number of the signal that caused the termination.

The WIFSTOPPED evaluates to a nonzero value if a child is currently stopped. If WIFSTOPPED 
evaluates to a nonzero value, then WSTOPSIG evaluates to the number of the signal that caused 
the child process to stop.

Example 3.22 showreturnstatus.c



The following function determines the exit status of a child.

#include <errno.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/wait.h>
#include "restart.h"

void show_return_status(void) {
   pid_t childpid;
   int status;

   childpid = r_wait(&status);
   if (childpid == -1)
      perror("Failed to wait for child");
   else if (WIFEXITED(status) && !WEXITSTATUS(status))
      printf("Child %ld terminated normally\n", (long)childpid);
   else if (WIFEXITED(status))
      printf("Child %ld terminated with return status %d\n",
             (long)childpid, WEXITSTATUS(status));
   else if (WIFSIGNALED(status))
      printf("Child %ld terminated due to uncaught signal %d\n",
             (long)childpid, WTERMSIG(status));
   else if (WIFSTOPPED(status))
      printf("Child %ld stopped due to signal %d\n",
             (long)childpid, WSTOPSIG(status));
}
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3.5 The exec Function

The fork function creates a copy of the calling process, but many applications require the child 
process to execute code that is different from that of the parent. The exec family of functions 
provides a facility for overlaying the process image of the calling process with a new image. The 
traditional way to use the fork–exec combination is for the child to execute (with an exec 
function) the new program while the parent continues to execute the original code.

SYNOPSIS

   #include <unistd.h>

   extern char **environ;
   int execl(const char *path, const char *arg0, ... /*, char *(0) */);
   int execle (const char *path, const char *arg0, ... /*, char *(0),
               char *const envp[] */);
   int execlp (const char *file, const char *arg0, ... /*, char *(0) */);
   int execv(const char *path, char *const argv[]);
   int execve (const char *path, char *const argv[], char *const envp[]);
   int execvp (const char *file, char *const argv[]);
                                                                              POSIX

All exec functions return –1 and set errno if unsuccessful. In fact, if any of these functions return 
at all, the call was unsuccessful. The following table lists the mandatory errors for the exec 
functions.

errno cause

E2BIG size of new process's argument list and environment list is greater than 
system-imposed limit of ARG_MAX bytes

EACCES search permission on directory in path prefix of new process is denied, new 
process image file execution permission is denied, or new process image file is 
not a regular file and cannot be executed

EINVAL new process image file has appropriate permission and is in a recognizable 
executable binary format, but system cannot execute files with this format

ELOOP a loop exists in resolution of path or file argument

ENAMETOOLONG the length of path or file exceeds PATH_MAX, or a pathname component is 
longer than NAME_MAX

ENOENT component of path or file does not name an existing file, or path or file is 
an empty string

ENOEXEC image file has appropriate access permission but has an unrecognized format 
(does not apply to execlp or execvp)
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ENOTDIR a component of the image file path prefix is not a directory

The six variations of the exec function differ in the way command-line arguments and the 
environment are passed. They also differ in whether a full pathname must be given for the 
executable. The execl (execl, execlp and execle) functions pass the command-line arguments 
in an explicit list and are useful if you know the number of command-line arguments at compile 
time. The execv (execv, execvp and execve) functions pass the command-line arguments in an 
argument array such as one produced by the makeargv function of Section 2.6. The argi 
parameter represents a pointer to a string, and argv and envp represent NULL-terminated arrays 
of pointers to strings.

The path parameter to execl is the pathname of a process image file specified either as a fully 
qualified pathname or relative to the current directory. The individual command-line arguments 
are then listed, followed by a (char *)0 pointer (a NULL pointer).

Program 3.4 calls the ls shell command with a command-line argument of -l. The program 
assumes that ls is located in the /bin directory. The execl function uses its character-string 
parameters to construct an argv array for the command to be executed. Since argv[0] is the 
program name, it is the second argument of the execl. Notice that the first argument of execl, 
the pathname of the command, also includes the name of the executable.

Program 3.4 execls.c

A program that creates a child process to run ls -l.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>

int  main(void) {
   pid_t childpid;

   childpid = fork();
   if (childpid == -1)  {
       perror("Failed to fork");
       return 1;
   }
   if (childpid == 0) {                            /* child code */
       execl("/bin/ls", "ls", "-l", NULL);
       perror("Child failed to exec ls");
       return 1;
   }
   if (childpid != wait(NULL)) {                  /* parent code */
       perror("Parent failed to wait due to signal or error");
       return 1;
   }
   return 0;
}



An alternative form is execlp. If the first parameter (file) contains a slash, then execlp treats 
file as a pathname and behaves like execl. On the other hand, if file does not have a slash, 
execlp uses the PATH environment variable to search for the executable. Similarly, the shell tries 
to locate the executable file in one of the directories specified by the PATH variable when a user 
enters a command.

A third form, execle, takes an additional parameter representing the environment of the new 
process. For the other forms of execl, the new process inherits the environment of the calling 
process through the environ variable.

The execv functions use a different form of the command-line arguments. Use an execv function 
with an argument array constructed at run time. The execv function takes exactly two 
parameters, a pathname for the executable and an argument array. (The makeargv function of 
Program 2.2 is useful here.) The execve and execvp are variations on execv; they are similar in 
structure to execle and execlp, respectively.

Program 3.5 shows a simple program to execute one program from within another program. The 
program forks a child to execute the command. The child performs an execvp call to overwrite its 
process image with an image corresponding to the command. The parent, which retains the 
original process image, waits for the child, using the r_wait function of Program 3.3 from the 
restart library. The r_wait restarts its wait function if interrupted by a signal.

Example 3.23 

The following command line to Program 3.5 causes execcmd to create a new process to execute 
the ls -l command.

execcmd ls -l

Program 3.5 avoids constructing the argv parameter to execvp by using a simple trick. The 
original argv array produced in Example 3.23 contains pointers to three tokens: myexec, ls and -
l. The argument array for the execvp starts at &argv[1] and contains pointers to the two tokens 
ls and -l.

Exercise 3.24 

How big is the argument array passed as the second argument to execvp when you execute 
execcmd of Program 3.5 with the following command line?

execcmd ls -l *.c

Answer:

The answer depends on the number of .c files in the current directory because the shell expands 
*.c before passing the command line to execcmd.



Program 3.6 creates an argument array from the first command-line argument and then calls 
execvp. Notice that execcmdargv calls the makeargv function only in the child process. Program 
2.2 on page 37 shows an implementation of the makeargv function.

Program 3.5 execcmd.c

A program that creates a child process to execute a command. The command to be executed is 
passed on the command line.

#include <errno.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
#include "restart.h"

int main(int argc, char *argv[]) {
   pid_t childpid;

   if (argc < 2){      /* check for valid number of command-line arguments */
      fprintf (stderr, "Usage: %s command arg1 arg2 ...\n", argv[0]);
      return 1;
   }
   childpid = fork();
   if (childpid == -1) {
      perror("Failed to fork");
      return 1;
   }
   if (childpid == 0) {                                      /* child code */
      execvp(argv[1], &argv[1]);
      perror("Child failed to execvp the command");
      return 1;
   }
   if (childpid != r_wait(NULL)) {                          /* parent code */
      perror("Parent failed to wait");
      return 1;
   }
   return 0;
}

Exercise 3.25 

How would you pass a string containing multiple tokens to execcmdargv of Program 3.6?

Answer:

Place the command string in double quotes so that the command line interpreter treats the string 
as a single token. For example, to execute ls -l, call execcmdargv with the following command 
line.

execcmdargv "ls -l"



Exercise 3.26 

Program 3.6 only calls the makeargv function in the child process after the fork. What happens if 
you move the makeargv call before the fork?

Answer:

A parent call to makeargv before the fork allocates the argument array on the heap in the parent 
process. The fork function creates a copy of the parent's process image for the child. After fork 
executes, both parent and child have copies of the argument array. A single call to makeargv 
does not present a problem. However, when the parent represents a shell process, the allocation 
step might be repeated hundreds of times. Unless the parent explicitly frees the argument array, 
the program will have a memory leak.

Program 3.6 execcmdargv.c

A program that creates a child process to execute a command string passed as the first 
command-line argument.

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>
#include "restart.h"

int makeargv(const char *s, const char *delimiters, char ***argvp);

int main(int argc, char *argv[]) {
   pid_t childpid;
   char delim[] = " \t";
   char **myargv;

   if (argc != 2) {
      fprintf(stderr, "Usage: %s string\n", argv[0]);
      return 1;
   }
   childpid = fork();
   if (childpid == -1) {
      perror("Failed to fork");
      return 1;
   }
   if (childpid == 0) {                              /* child code */
     if (makeargv(argv[1], delim, &myargv) == -1) {
        perror("Child failed to construct argument array");
     } else {
        execvp(myargv[0], &myargv[0]);
        perror("Child failed to exec command");
     }
     return 1;
   }
   if (childpid != r_wait(NULL)) {                  /* parent code */
      perror("Parent failed to wait");



      return 1;
   }
   return 0;
}

The exec function copies a new executable into the process image. The program text, variables, 
stack and heap are overwritten. The new process inherits the environment (meaning the list of 
environment variables and their associated values) unless the original process called execle or 
execve. Files that are open at the time of the exec call are usually still open afterward.

Table 3.3 summarizes the attributes that are inherited by processes after exec. The second 
column of the table gives library functions related to the items. The IDs associated with the 
process are intact after exec runs. If a process sets an alarm before calling exec, the alarm still 
generates a signal when it expires. Pending signals are also carried over on exec in contrast to 
fork. The process creates files with the same permissions as before exec ran, and accounting of 
CPU time continues without being reinitialized.

Table 3.3. Attributes that are preserved after calls to exec. The second 
column lists some library functions relevant to these attributes. A * 

indicates an attribute inherited in the POSIX:XSI Extension.

attribute relevant library function

process ID getpid

parent process ID getppid

process group ID getpgid

session ID getsid

real user ID getuid

real group ID getgid

supplementary group IDs getgroups

time left on an alarm signal alarm

current working directory getcwd

root directory  

file mode creation mask umask

file size limit* ulimit

process signal mask sigprocmask

pending signals sigpending



time used so far times

resource limits* getrlimit, setrlimit

controlling terminal* open, tcgetpgrp

interval timers* ualarm

nice value* nice

semadj values* semop
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3.6 Background Processes and Daemons

The shell is a command interpreter that prompts for commands, reads the commands from 
standard input, forks children to execute the commands and waits for the children to finish. 
When standard input and output come from a terminal type of device, a user can terminate an 
executing command by entering the interrupt character. (The interrupt character is settable, 
but many systems assume a default value of Ctrl-C.)

Exercise 3.27 

What happens when you execute the following commands?

cd /etc
ls -l

Now execute the ls -l command again, but enter a Ctrl-C as soon as the listing starts to 
display. Compare the results to the first case.

Answer:

In the first case, the prompt appears after the directory listing is complete because the shell 
waits for the child before continuing. In the second case, the Ctrl-C terminates the ls.

Most shells interpret a line ending with & as a command that should be executed by a 
background process. When a shell creates a background process, it does not wait for the 
process to complete before issuing a prompt and accepting additional commands. Furthermore, 
a Ctrl-C from the keyboard does not terminate a background process.

Exercise 3.28 

Compare the results of Exercise 3.27 with the results of executing the following command.

ls -l &

Reenter the ls -l & command and try to terminate it by entering Ctrl-C.

Answer:

In the first case, the prompt appears before the listing completes. The Ctrl-C does not affect 
background processes, so the second case behaves in the same way as the first.

A daemon is a background process that normally runs indefinitely. The UNIX operating system 
relies on many daemon processes to perform routine (and not so routine) tasks. Under the 
Solaris operating environment, the pageout daemon handles paging for memory management. 
The in.rlogind handles remote login requests. Other daemons handle mail, file transfer, 
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statistics and printer requests, to name a few.

The runback program in Program 3.7 executes its first command-line argument as a 
background process. The child calls setsid so that it does not get any signals because of a Ctrl-
C from a controlling terminal. (See Section 11.5.) The runback parent does not wait for its child 
to complete.

Program 3.7 runback.c

The runback program creates a child process to execute a command string in the background.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>
#include "restart.h"

int makeargv(const char *s, const char *delimiters, char ***argvp);

int main(int argc, char *argv[]) {
   pid_t childpid;
   char delim[] = " \t";
   char **myargv;

   if (argc != 2) {
      fprintf(stderr, "Usage: %s string\n", argv[0]);
      return 1;
   }
   childpid = fork();
   if (childpid == -1) {
      perror("Failed to fork");
      return 1;
   }
   if (childpid == 0) {                 /* child becomes a background process */
     if (setsid() == -1)
        perror("Child failed to become a session leader");
     else if (makeargv(argv[1], delim, &myargv) == -1)
        fprintf(stderr, "Child failed to construct argument array\n");
     else {
        execvp(myargv[0], &myargv[0]);
        perror("Child failed to exec command");
     }
     return 1;                                  /* child should never return */
   }
   return 0;                                                 /* parent exits */
}

Example 3.29 

The following command is similar to entering ls -l & directly from the shell.

runback "ls -l"
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3.7 Critical Sections

Imagine a scenario in which a computer system has a printer that can be directly accessed by 
all the processes in the system. Each time a process wants to print something, it writes to the 
printer device. How would the printed output look if several processes wrote to the printer 
simultaneously? The individual processes are allowed only a fixed quantum of processor time. If 
the quantum expires before a process completes writing, another process might send output to 
the printer. The resulting printout would have the output from the processes interspersed—an 
undesirable feature.

The problem with the previous scenario is that the processes are "simultaneously" attempting 
to access a shared resource—a resource that should be used by only one process at a time. 
That is, the printer requires exclusive access by the processes in the system. The portion of 
code in which each process accesses such a shared resource is called a critical section. 
Programs with critical sections must be sure not to violate the mutual exclusion requirement.

One method of providing mutual exclusion uses a locking mechanism. Each process acquires a 
lock that excludes all other processes before entering its critical section. When the process 
finishes the critical section, it releases the lock. Unfortunately, this approach relies on the 
cooperation and correctness of all participants. If one process fails to acquire the lock before 
accessing the resource, the system fails.

A common approach is to encapsulate shared resources in a manner that ensures exclusive 
access. Printers are usually handled by having only one process (the printer daemon) with 
permissions to access the actual printer. Other processes print by sending a message to the 
printer daemon process along with the name of the file to be printed. The printer daemon puts 
the request in a queue and may even make a copy of the file to print in its own disk area. The 
printer daemon removes request messages from its queue one at a time and prints the file 
corresponding to the message. The requesting process returns immediately after writing the 
request or after the printer daemon acknowledges receipt, not when the printing actually 
completes.

Operating systems manage many shared resources besides the obvious devices, files and 
shared variables. Tables and other information within the operating system kernel code are 
shared among processes managing the system. A large operating system has many diverse 
parts with possibly overlapping critical sections. When one of these parts is modified, you must 
understand the entire operating system to reliably determine whether the modification 
adversely affects other parts. To reduce the complexity of internal interactions, some operating 
systems use an object-oriented design. Shared tables and other resources are encapsulated as 
objects with well-defined access functions. The only way to access such a table is through these 
functions, which have appropriate mutual exclusion built in. In a distributed system, the object 
interface uses messages. Changes to modules in a properly designed object-oriented system do 
not have the same impact as they do for uncontrolled access.

On the surface, the object-oriented approach appears to be similar to the daemons described in 
Section 3.6, but structurally these approaches can be very different. There is no requirement 
that daemons encapsulate resources. They can fight over shared data structures in an 
uncontrolled way. Good object-oriented design ensures that data structures are encapsulated 
and accessed only through carefully controlled interfaces. Daemons can be implemented with 
an object-oriented design, but they do not have to be.
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3.8 Exercise: Process Chains

This section expands on the process chain of Program 3.1. The chain is a vehicle for 
experimenting with wait and with sharing of devices. All of the processes in the chain created 
by Program 3.1 share standard input, standard output and standard error. The fprintf to 
standard error is a critical section of the program. This exercise explores some implications of 
critical sections. Later chapters extend this exercise to critical sections involving other devices 
(Chapter 6) and a token-ring simulation (Chapter 7).

Program 3.1 creates a chain of processes. It takes a single command-line argument that 
specifies the number of processes to create. Before exiting, each process outputs its i value, its 
process ID, its parent process ID and the process ID of its child. The parent does not execute 
wait. If the parent exits before the child, the child becomes an orphan. In this case, the child 
process is adopted by a special system process (which traditionally is a process, init, with 
process ID of 1). As a result, some of the processes may indicate a parent process ID of 1.

Do not attempt this exercise on a machine with other users because it strains the resources of 
the machine.

1.  Run Program 3.1 and observe the results for different numbers of processes.

2.  Fill in the actual process IDs of the processes in the diagram of Figure 3.2 for a run with 
command-line argument value of 4.

3.  Experiment with different values for the command-line argument to find out the largest 
number of processes that the program can generate. Observe the fraction that are 
adopted by init.

4.  Place sleep(10); directly before the final fprintf statement in Program 3.1. What is 
the maximum number of processes generated in this case?

5.  Put a loop around the final fprintf in Program 3.1. Have the loop execute k times. Put 
sleep(m); inside this loop after the fprintf. Pass k and m on the command line. Run 
the program for several values of n, k and m. Observe the results.

6.  Modify Program 3.1 by putting a wait function call before the final fprintf statement. 
How does this affect the output of the program?

7.  Modify Program 3.1 by replacing the final fprintf statement with four fprintf 
statements, one each for the four integers displayed. Only the last one should output a 
newline. What happens when you run this program? Can you tell which process 
generated each part of the output? Run the program several times and see if there is a 
difference in the output.

8.  Modify Program 3.1 by replacing the final fprintf statement with a loop that reads 
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nchars characters from standard input, one character at a time, and puts them in an 
array called mybuf. The values of n and nchars should be passed as command-line 
arguments. After the loop, put a '\0' character in entry nchars of the array so that it 
contains a string. Output to standard error in a single fprintf the process ID followed 
by a colon followed by the string in mybuf. Run the program for several values of n and 
nchars. Observe the results. Press the Return key often and continue typing at the 
keyboard until all of the processes have exited.

[ Team LiB ]   
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3.9 Exercise: Process Fans

The exercises in this section expand on the fan structure of Program 3.2 through the 
development of a simple batch processing facility, called runsim. (Modifications in Section 14.6 
lead to a license manager for an application program.) The runsim program takes exactly one 
command-line argument specifying the maximum number of simultaneous executions. Follow 
the outline below for implementing runsim. Write a test program called testsim to test the 
facility. Suggested library functions appear in parentheses.

1.  Write a program called runsim that takes one command-line argument.

2.  Check for the appropriate command-line argument and output a usage message if the 
command line is incorrect.

3.  Initialize pr_limit from the command line. The pr_limit variable specifies the 
maximum number of children allowed to execute at a time.

4.  Initialize the pr_count variable to 0. The pr_count variable holds the number of active 
children.

5.  Execute the following main loop until end-of-file is reached on standard input.

a.  If pr_count is pr_limit, wait for a child to finish (wait) and decrement 
pr_count.

b.  Read a line from standard input (fgets) of up to MAX_CANON characters and 
execute a program corresponding to that command line by forking a child (fork, 
makeargv, execvp).

c.  Increment pr_count to track the number of active children.

d.  Check to see if any of the children have finished (waitpid with the WNOHANG 
option). Decrement pr_count for each completed child.

6.  After encountering an end-of-file on standard input, wait for all the remaining children 
to finish (wait) and then exit.

Write a test program called testsim that takes two command-line arguments: the sleep time 
and the repeat factor. The repeat factor is the number of times testsim iterates a loop. In the 
loop, testim sleeps for the specified sleep time and then outputs a message with its process ID 
to standard error. Use runsim to run multiple copies of the testsim program.

Create a test file called testing.data that contains commands to run. For example, the file 
might contain the following lines.
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testsim 5 10
testsim 8 10
testsim 4 10
testsim 13 6
testsim 1 12

Run the program by entering a command such as the following.

runsim 2 < testing.data

[ Team LiB ]   
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3.10 Additional Reading

The Design of the UNIX Operating System by Bach [9] discusses process implementation under 
System V. The Design and Implementation of the 4.3BSD UNIX Operating System by Leffler et 
al. [70] discusses process implementation for BSD UNIX. Both of these books provide detailed 
examinations of how real operating systems are implemented. Operating Systems: Design and 
Implementation, 2nd ed. by Tanenbaum and Woodhull [125] develops a full implementation of 
a UNIX-like operating system called MINIX. Solaris Internals: Core Kernel Architecture by 
Mauro and McDougall [79] is another detailed book on a UNIX implementation.

There are many books that discuss Linux implementation. For example, Linux Device Drivers, 
2nd ed. by Rubini and Corbet [102] provides a detailed guide to writing device drivers for 
Linux. IA-64 Linux Kernel: Design and Implementation by Mossberger et al. [83] discusses the 
implementation of Linux on the Itanium processor.

Most general operating systems books such as Operating Systems Concepts, 6th ed. by 
Silberschatz et al. [107] and Modern Operating Systems by Tanenbaum [122] address the 
process model. Both of these references have case studies on UNIX and on Mach, a well-known 
microkernel operating system. Comparing these two systems would be useful at this point. P.S. 
to Operating Systems by Dowdy and Lowery [31] focuses on performance issues and analytical 
models.
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Chapter 4. UNIX I/O

UNIX uses a uniform device interface, through file descriptors, that allows the same I/O calls to 
be used for terminals, disks, tapes, audio and even network communication. This chapter 
explores the five functions that form the basis for UNIX device-independent I/O. The chapter 
also examines I/O from multiple sources, blocking I/O with timeouts, inheritance of file 
descriptors and redirection. The code carefully handles errors and interruption by signals.

Objectives

●     Learn the basics of device-independent I/O
●     Experiment with read and write
●     Explore ways to monitor multiple descriptors
●     Use correct error handling
●     Understand inheritance of file descriptors

[ Team LiB ]   
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4.1 Device Terminology

A peripheral device is piece of hardware accessed by a computer system. Common peripheral 
devices include disks, tapes, CD-ROMs, screens, keyboards, printers, mouse devices and 
network interfaces. User programs perform control and I/O to these devices through system 
calls to operating system modules called device drivers. A device driver hides the details of 
device operation and protects the device from unauthorized use. Devices of the same type may 
vary substantially in their operation, so to be usable, even a single-user machine needs device 
drivers. Some operating systems provide pseudodevice drivers to simulate devices such as 
terminals. Pseudoterminals, for example, simplify the handling of remote login to computer 
systems over a network or a modem line.

Some operating systems provide specific system calls for each type of supported device, 
requiring the systems programmer to learn a complex set of calls for device control. UNIX has 
greatly simplified the programmer device interface by providing uniform access to most devices 
through five functions—open, close, read, write and ioctl. All devices are represented by 
files, called special files, that are located in the /dev directory. Thus, disk files and other 
devices are named and accessed in the same way. A regular file is just an ordinary data file on 
disk. A block special file represents a device with characteristics similar to a disk. The device 
driver transfers information from a block special device in blocks or chunks, and usually such 
devices support the capability of retrieving a block from anywhere on the device. A character 
special file represents a device with characteristics similar to a terminal. The device appears to 
represent a stream of bytes that must be accessed in sequential order.

[ Team LiB ]   
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4.2 Reading and Writing

UNIX provides sequential access to files and other devices through the read and write 
functions. The read function attempts to retrieve nbyte bytes from the file or device 
represented by fildes into the user variable buf. You must actually provide a buffer that is 
large enough to hold nbyte bytes of data. (A common mistake is to provide an uninitialized 
pointer, buf, rather than an actual buffer.)

SYNOPSIS

   #include <unistd.h>

   ssize_t read(int fildes, void *buf, size_t nbyte);
                                                              POSIX

If successful, read returns the number of bytes actually read. If unsuccessful, read returns –1 
and sets errno. The following table lists the mandatory errors for read.

errno cause

ECONNRESET read attempted on a socket and connection was forcibly closed by its peer

EAGAIN O_NONBLOCK is set for file descriptor and thread would be delayed

EBADF fildes is not a valid file descriptor open for reading

EINTR read was terminated due to receipt of a signal and no data was transferred

EIO process is a member of a background process group attempting to read from 
its controlling terminal and either process is ignoring or blocking SIGTTIN or 
process group is orphaned

ENOTCONN read attempted on socket that is not connected

EOVERFLOW the file is a regular file, nbyte is greater than 0, and the starting position 
exceeds offset maximum

ETIMEDOUT read attempted on socket and transmission timeout occurred

EWOULDBLOCK file descriptor is for socket marked O_NONBLOCK and no data is waiting to be 
received (EAGAIN is alternative)

A read operation for a regular file may return fewer bytes than requested if, for example, it 
reached end-of-file before completely satisfying the request. A read operation for a regular file 
returns 0 to indicate end-of-file. When special files corresponding to devices are read, the 
meaning of a read return value of 0 depends on the implementation and the particular device. 
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A read operation for a pipe returns as soon as the pipe is not empty, so the number of bytes 
read can be less than the number of bytes requested. (Pipes are a type of communication 
buffer discussed in Chapter 6.) When reading from a terminal, read returns 0 when the user 
enters an end-of-file character. On many systems the default end-of-file character is Ctrl-D.

The ssize_t data type is a signed integer data type used for the number of bytes read, or –1 if 
an error occurs. On some systems, this type may be larger than an int. The size_t is an 
unsigned integer data type for the number of bytes to read.

Example 4.1 

The following code segment reads at most 100 bytes into buf from standard input.

char buf[100];
ssize_t bytesread;

bytesread = read(STDIN_FILENO, buf, 100);

This code does no error checking.

The file descriptor, which represents a file or device that is open, can be thought of as an index 
into the process file descriptor table. The file descriptor table is in the process user area and 
provides access to the system information for the associated file or device.

When you execute a program from the shell, the program starts with three open streams 
associated with file descriptors STDIN_FILENO, STDOUT_FILENO and STDERR_FILENO. 
STDIN_FILENO and STDOUT_FILENO are standard input and standard output, respectively. By 
default, these two streams usually correspond to keyboard input and screen output. Programs 
should use STDERR_FILENO, the standard error device, for error messages and should never 
close it. In legacy code standard input, standard output and standard error are represented by 
0, 1 and 2, respectively. However, you should always use their symbolic names rather than 
these numeric values. Section 4.6 explains how file descriptors work.

Exercise 4.2 

What happens when the following code executes?

char *buf;
ssize_t bytesread;

bytesread = read(STDIN_FILENO, buf, 100);

Answer:

The code segment, which may compile without error, does not allocate space for buf. The 
result of read is unpredictable, but most probably it will generate a memory access violation. If 
buf is an automatic variable stored on the stack, it is not initialized to any particular value. 
Whatever that memory happens to hold is treated as the address of the buffer for reading.



The readline function of Program 4.1 reads bytes, one at a time, into a buffer of fixed size 
until a newline character ('\n') or an error occurs. The function handles end-of-file, limited 
buffer size and interruption by a signal. The readline function returns the number of bytes 
read or –1 if an error occurs. A return value of 0 indicates an end-of-file before any characters 
were read. A return value greater than 0 indicates the number of bytes read. In this case, the 
buffer contains a string ending in a newline character. A return value of –1 indicates that errno 
has been set and one of the following errors occurred.

●     An error occurred on read.
●     At least one byte was read and an end-of-file occurred before a newline was read.
●     nbytes-1 bytes were read and no newline was found.

Upon successful return of a value greater than 0, the buffer contains a string ending in a 
newline character. If readline reads from a file that does not end with a newline character, it 
treats the last line read as an error. The readline function is available in the restart library, of 
Appendix B.

Program 4.1 readline.c

The readline function returns the next line from a file.

#include <errno.h>
#include <unistd.h>

int readline(int fd, char *buf, int nbytes) {
   int numread = 0;
   int returnval;

   while (numread < nbytes - 1) {
      returnval = read(fd, buf + numread, 1);
      if ((returnval == -1) && (errno == EINTR))
         continue;
      if ( (returnval == 0) && (numread == 0) )
         return 0;
      if (returnval == 0)
         break;
      if (returnval == -1)
         return -1;
      numread++;
      if (buf[numread-1] == '\n') {
         buf[numread] = '\0';
         return numread;
      }
   }
   errno = EINVAL;
   return -1;
}

Example 4.3 



The following code segment calls the readline function of Program 4.1 to read a line of at most 
99 bytes from standard input.

int bytesread;
char mybuf[100];

bytesread = readline(STDIN_FILENO, mybuf, sizeof(mybuf));

Exercise 4.4 

Under what circumstances does the readline function of Program 4.1 return a buffer with no 
newline character?

Answer:

This can only happen if the return value is 0 or –1. The return value of 0 indicates that nothing 
was read. The return of –1 indicates some type of error. In either case, the buffer may not 
contain a string.

The write function attempts to output nbyte bytes from the user buffer buf to the file 
represented by file descriptor fildes.

SYNOPSIS

  #include <unistd.h>

  ssize_t write(int fildes, const void *buf, size_t nbyte);
                                                                    POSIX

If successful, write returns the number of bytes actually written. If unsuccessful, write returns 
–1 and sets errno. The following table lists the mandatory errors for write.

errno cause

ECONNRESET write attempted on a socket that is not connected

EAGAIN O_NONBLOCK is set for file descriptor and thread would be delayed

EBADF fildes is not a valid file descriptor open for writing

EFBIG attempt to write a file that exceeds implementation-defined maximum; file is 
a regular file, nbyte is greater than 0, and starting position exceeds offset 
maximum

EINTR write was terminated due to receipt of a signal and no data was transferred



EIO process is a member of a background process group attempting to write to 
controlling terminal, TOSTOP is set, process is neither blocking nor ignoring 
SIGTTOU and process group is orphaned

ENOSPC no free space remaining on device containing the file

EPIPE attempt to write to a pipe or FIFO not open for reading or that has only one 
end open (thread may also get SIGPIPE), or write attempted on socket shut 
down for writing or not connected (if not connected, also generates SIGPIPE 
signal)

EWOULDBLOCK file descriptor is for socket marked O_NONBLOCK and write would block 
(EAGAIN is alternative)

Exercise 4.5 

What can go wrong with the following code segment?

#define BLKSIZE 1024
char buf[BLKSIZE];

read(STDIN_FILENO, buf, BLKSIZE);
write(STDOUT_FILENO, buf, BLKSIZE);

Answer:

The write function assumes that the read has filled buf with BLKSIZE bytes. However, read 
may fail or may not read the full BLKSIZE bytes. In these two cases, write outputs garbage.

Exercise 4.6 

What can go wrong with the following code segment to read from standard input and write to 
standard output?

#define BLKSIZE 1024
char buf[BLKSIZE];
ssize_t bytesread;

bytesread = read(STDIN_FILENO, buf, BLKSIZE);
if (bytesread > 0)
   write(STDOUT_FILE, buf, bytesread);

Answer:

Although write uses bytesread rather than BLKSIZE, there is no guarantee that write actually 
outputs all of the bytes requested. Furthermore, either read or write can be interrupted by a 
signal. In this case, the interrupted call returns a –1 with errno set to EINTR.



Program 4.2 copies bytes from the file represented by fromfd to the file represented by tofd. 
The function restarts read and write if either is interrupted by a signal. Notice that the write 
statement specifies the buffer by a pointer, bp, rather than by a fixed address such as buf. If 
the previous write operation did not output all of buf, the next write operation must start 
from the end of the previous output. The copyfile function returns the number of bytes read 
and does not indicate whether or not an error occurred.

Example 4.7 simplecopy.c

The following program calls copyfile to copy a file from standard input to standard output.

#include <stdio.h>
#include <unistd.h>

int copyfile(int fromfd, int tofd);

int main (void) {
   int numbytes;

   numbytes = copyfile(STDIN_FILENO, STDOUT_FILENO);
   fprintf(stderr, "Number of bytes copied: %d\n", numbytes);
   return 0;
}

Exercise 4.8 

What happens when you run the program of Example 4.7?

Answer:

Standard input is usually set to read one line at a time, so I/O is likely be entered and echoed 
on line boundaries. The I/O continues until you enter the end-of-file character (often Ctrl-D by 
default) at the start of a line or you interrupt the program by entering the interrupt character 
(often Ctrl-C by default). Use the stty -a command to find the current settings for these 
characters.

Program 4.2 copyfile1.c

The copyfile.c function copies a file from fromfd to tofd.

#include <errno.h>
#include <unistd.h>
#define BLKSIZE 1024

int copyfile(int fromfd, int tofd) {
   char *bp;
   char buf[BLKSIZE];
   int bytesread, byteswritten;
   int totalbytes = 0;



   for (  ;  ;  ) {
      while (((bytesread = read(fromfd, buf, BLKSIZE)) == -1) &&
             (errno == EINTR)) ;         /* handle interruption by signal */
      if (bytesread <= 0)          /* real error or end-of-file on fromfd */
         break;
      bp = buf;
      while (bytesread > 0) {
         while(((byteswritten = write(tofd, bp, bytesread)) == -1 ) &&
              (errno == EINTR)) ;        /* handle interruption by signal */
         if (byteswritten <= 0)                     /* real error on tofd */
            break;
         totalbytes += byteswritten;
         bytesread -= byteswritten;
         bp += byteswritten;
      }
      if (byteswritten == -1)                       /* real error on tofd */
          break;
   }
   return totalbytes;
}

Exercise 4.9 

How would you use the program of Example 4.7 to copy the file myin.dat to myout.dat?

Answer:

Use redirection. If the executable of Example 4.7 is called simplecopy, the line would be as 
follows.

simplecopy < myin.dat > myout.dat

The problems of restarting read and write after signals and of writing the entire amount 
requested occur in nearly every program using read and write. Program 4.3 shows a separate 
r_read function that you can use instead of read when you want to restart after a signal. 
Similarly, Program 4.4 shows a separate r_write function that restarts after a signal and writes 
the full amount requested. For convenience, a number of functions, including r_read, r_write, 
copyfile and readline, have been collected in a library called restart.c. The prototypes for 
these functions are contained in restart.h, and we include this header file when necessary. 
Appendix B presents the complete restart library implementation.

Program 4.3 r_read.c

The r_read.c function is similar to read except that it restarts itself if interrupted by a signal.

#include <errno.h>
#include <unistd.h>

ssize_t r_read(int fd, void *buf, size_t size) {



   ssize_t retval;

   while (retval = read(fd, buf, size), retval == -1 && errno == EINTR) ;
   return retval;
}

Program 4.4 r_write.c

The r_write.c function is similar to write except that it restarts itself if interrupted by a signal 
and writes the full amount requested.

#include <errno.h>
#include <unistd.h>

ssize_t r_write(int fd, void *buf, size_t size) {
   char *bufp;
   size_t bytestowrite;
   ssize_t byteswritten;
   size_t totalbytes;

   for (bufp = buf, bytestowrite = size, totalbytes = 0;
        bytestowrite > 0;
        bufp += byteswritten, bytestowrite -= byteswritten) {
      byteswritten = write(fd, bufp, bytestowrite);
      if ((byteswritten) == -1 && (errno != EINTR))
         return -1;
      if (byteswritten == -1)
         byteswritten = 0;
      totalbytes += byteswritten;
   }
   return totalbytes;
}

The functions r_read and r_write can greatly simplify programs that need to read and write 
while handling signals.

Program 4.5 shows the readwrite function that reads bytes from one file descriptor and writes 
all of the bytes read to another one. It uses a buffer of size PIPE_BUF to transfer at most 
PIPE_BUF bytes. This size is useful for writing to pipes since a write to a pipe of PIPE_BUF bytes 
or less is atomic. Program 4.6 shows a version of copyfile that uses the readwrite function. 
Compare this with Program 4.2.

Program 4.5 readwrite.c

A program that reads from one file descriptor and writes all the bytes read to another file 
descriptor.

#include <limits.h>
#include "restart.h"
#define BLKSIZE PIPE_BUF



int readwrite(int fromfd, int tofd) {
   char buf[BLKSIZE];
   int bytesread;

   if ((bytesread = r_read(fromfd, buf, BLKSIZE)) == -1)
      return -1;
   if (bytesread == 0)
      return 0;
   if (r_write(tofd, buf, bytesread) == -1)
      return -1;
   return bytesread;
}

Program 4.6 copyfile.c

A simplified implementation of copyfile that uses r_read and r_write.

#include <unistd.h>
#include "restart.h"
#define BLKSIZE 1024

int copyfile(int fromfd, int tofd) {
   char buf[BLKSIZE];
   int bytesread, byteswritten;
   int totalbytes = 0;

   for (  ;  ;  ) {
      if ((bytesread = r_read(fromfd, buf, BLKSIZE)) <= 0)
         break;
      if ((byteswritten = r_write(tofd, buf, bytesread)) == -1)
         break;
      totalbytes += byteswritten;
   }
   return totalbytes;
}

The r_write function writes all the bytes requested and restarts the write if fewer bytes are 
written. The r_read only restarts if interrupted by a signal and often reads fewer bytes than 
requested. The readblock function is a version of read that continues reading until the 
requested number of bytes is read or an error occurs. Program 4.7 shows an implementation of 
readblock. The readblock function is part of the restart library. It is especially useful for 
reading structures.

Program 4.7 readblock.c

A function that reads a specific number of bytes.

#include <errno.h>
#include <unistd.h>

ssize_t readblock(int fd, void *buf, size_t size) {
   char *bufp;



   size_t bytestoread;
   ssize_t bytesread;
   size_t totalbytes;

   for (bufp = buf, bytestoread = size, totalbytes = 0;
        bytestoread > 0;
        bufp += bytesread, bytestoread -= bytesread) {
      bytesread = read(fd, bufp, bytestoread);
      if ((bytesread == 0) && (totalbytes == 0))
         return 0;
      if (bytesread == 0) {
         errno = EINVAL;
         return -1;
      }
      if ((bytesread) == -1 && (errno != EINTR))
         return -1;
      if (bytesread == -1)
         bytesread = 0;
      totalbytes += bytesread;
   }
   return totalbytes;
}

There are only three possibilities for the return value of readblock. The readblock function 
returns 0 if an end-of-file occurs before any bytes are read. This happens if the first call to read 
returns 0. If readblock is successful, it returns size, signifying that the requested number of 
bytes was successfully read. Otherwise, readblock returns –1 and sets errno. If readblock 
reaches the end-of-file after some, but not all, of the needed bytes have been read, readblock 
returns –1 and sets errno to EINVAL.

Example 4.10 

The following code segment can be used to read a pair of integers from an open file descriptor.

struct {
   int x;
   int y;
} point;
if (readblock(fd, &point, sizeof(point)) <= 0)
   fprintf(stderr, "Cannot read a point.\n");

Program 4.8 combines readblock with r_write to read a fixed number of bytes from one open 
file descriptor and write them to another open file descriptor.

Program 4.8 readwriteblock.c

A program that copies a fixed number of bytes from one file descriptor to another.

#include "restart.h"

int readwriteblock(int fromfd, int tofd, char *buf, int size) {



   int bytesread;

   bytesread = readblock(fromfd, buf, size);
   if (bytesread != size)                      /* can only be 0 or -1 */
      return bytesread;
   return r_write(tofd, buf, size);
}
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4.3 Opening and Closing Files

The open function associates a file descriptor (the handle used in the program) with a file or 
physical device. The path parameter of open points to the pathname of the file or device, and 
the oflag parameter specifies status flags and access modes for the opened file. You must 
include a third parameter to specify access permissions if you are creating a file.

SYNOPSIS

   #include <fcntl.h>
   #include <sys/stat.h>

   int open(const char *path, int oflag, ...);
                                                          POSIX

If successful, open returns a nonnegative integer representing the open file descriptor. If 
unsuccessful, open returns –1 and sets errno. The following table lists the mandatory errors for 
open.

errno cause

EACCES search permission on component of path prefix denied, or file exists and 
permissions specified by oflag denied, or file does not exist and write 
permission on parent directory denied, or O_TRUNC specified and write 
permission denied

EEXIST O_CREAT and OEXCL are set and named file already exists

EINTR signal was caught during open

EISDIR named file is directory and oflag includes O_WRONLY or O_RDWR

ELOOP a loop exists in resolution of path

EMFILE OPEN_MAX file descriptors currently open in calling process

ENAMETOOLONG the length of path exceeds PATH_MAX, or a pathname component is longer 
than NAME_MAX

ENFILE maximum allowable number of files currently open in system

ENOENT O_CREAT not set and name file does not exist, or O_CREAT is set and either 
path prefix does not exist or or path is an empty string

ENOSPC directory or file system for new file cannot be expanded, the file does not 
exist and O_CREAT is specified
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ENOTDIR a component of the path prefix is not a directory

ENXIO O_NONBLOCK is set, the named file is a FIFO, O_WRONLY is set, no process has 
file open for reading; file is a special file and device associated with file does 
not exist

EOVERFLOW named file is a regular file and size cannot be represented by an object of 
type off_t

EROFS the named file resides on a read-only file system and one of O_WRONLY, 
O_RDWR, O_CREAT (if the file does not exist), or O_TRUNC is set in oflag

Construct the oflag argument by taking the bitwise OR (|) of the desired combination of the 
access mode and the additional flags. The POSIX values for the access mode flags are 
O_RDONLY, O_WRONLY and O_RDWR. You must specify exactly one of these designating read-only, 
write-only or read-write access, respectively.

The additional flags include O_APPEND, O_CREAT, O_EXCL, O_NOCTTY, O_NONBLOCK and 
O_TRUNC. The O_APPEND flag causes the file offset to be moved to the end of the file before a 
write, allowing you to add to an existing file. In contrast, O_TRUNC truncates the length of a 
regular file opened for writing to 0. The O_CREAT flag causes a file to be created if it doesn't 
already exist. If you include the O_CREAT flag, you must also pass a third argument to open to 
designate the permissions. If you want to avoid writing over an existing file, use the 
combination O_CREAT | O_EXCL. This combination returns an error if the file already exists. The 
O_NOCTTY flag prevents an opened device from becoming a controlling terminal. Controlling 
terminals are discussed in Section 11.5. The O_NONBLOCK flag controls whether the open returns 
immediately or blocks until the device is ready. Section 4.8 discusses how the O_NONBLOCK flag 
affects the behavior of read and write. Certain POSIX extensions specify additional flags. You 
can find the flags in fcntl.h.

Example 4.11 

The following code segment opens the file /home/ann/my.dat for reading.

int myfd;
myfd = open("/home/ann/my.dat", O_RDONLY);

This code does no error checking.

Exercise 4.12 

How can the call to open of Example 4.11 fail?

Answer:

The open function returns –1 if the file doesn't exist, the open call was interrupted by a signal 
or the process doesn't have the appropriate access permissions. If your code uses myfd for a 



subsequent read or write operation, the operation fails.

Example 4.13 

The following code segment restarts open after a signal occurs.

int myfd;
while((myfd = open("/home/ann/my.dat", O_RDONLY)) == -1 &&
       errno == EINTR) ;
if (myfd == -1)               /* it was a real error, not a signal */
   perror("Failed to open the file");
else                                                /* continue on */

Exercise 4.14 

How would you modify Example 4.13 to open /home/ann/my.dat for nonblocking read?

Answer:

You would OR the O_RDONLY and the O_NONBLOCK flags.

myfd = open("/home/ann/my.dat", O_RDONLY | O_NONBLOCK);

Each file has three classes associated with it: a user (or owner), a group and everybody else 
(others). The possible permissions or privileges are read(r), write(w) and execute(x). These 
privileges are specified separately for the user, the group and others. When you open a file with 
the O_CREAT flag, you must specify the permissions as the third argument to open in a mask of 
type mode_t.

Historically, the file permissions were laid out in a mask of bits with 1's in designated bit 
positions of the mask, signifying that a class had the corresponding privilege. Figure 4.1 shows 
an example of a typical layout of such a permission mask. Although numerically coded 
permission masks frequently appear in legacy code, you should avoid using numerical values in 
your programs.

Figure 4.1. Historical layout of the permissions mask.

POSIX defines symbolic names for masks corresponding to the permission bits so that you can 
specify file permissions independently of the implementation. These names are defined in sys/
stat.h. Table 4.1 lists the symbolic names and their meanings. To form the permission mask, 



bitwise OR the symbols corresponding to the desired permissions.

Table 4.1. POSIX symbolic names for file permissions.

symbol meaning

S_IRUSR read by owner

S_IWUSR write by owner

S_IXUSR execute by owner

S_IRWXU read, write, execute by owner

S_IRGRP read by group

S_IWGRP write by group

S_IXGRP execute by group

S_IRWXG read, write, execute by group

S_IROTH read by others

S_IWOTH write by others

S_IXOTH execute by others

S_IRWXO read, write, execute by others

S_ISUID set user ID on execution

S_ISGID set group ID on execution

Example 4.15 

The following code segment creates a file, info.dat, in the current directory. If the info.dat 
file already exists, it is overwritten. The new file can be read or written by the user and only 
read by everyone else.

int fd;
mode_t fdmode = (S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH);

if ((fd = open("info.dat", O_RDWR | O_CREAT, fdmode)) == -1)
   perror("Failed to open info.dat");

Program 4.9 copies a source file to a destination file. Both filenames are passed as command-
line arguments. Because the open function for the destination file has O_CREAT | O_EXCL, the 
file copy fails if that file already exists.



Program 4.9 copyfilemain.c

A program to copy a file.

#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/stat.h>
#include "restart.h"

#define READ_FLAGS O_RDONLY
#define WRITE_FLAGS (O_WRONLY | O_CREAT | O_EXCL)
#define WRITE_PERMS (S_IRUSR | S_IWUSR)

int main(int argc, char *argv[]) {
   int bytes;
   int fromfd, tofd;

   if (argc != 3) {
      fprintf(stderr, "Usage: %s from_file to_file\n", argv[0]);
      return 1;
   }

   if ((fromfd = open(argv[1], READ_FLAGS)) == -1) {
      perror("Failed to open input file");
      return 1;
   }

   if ((tofd = open(argv[2], WRITE_FLAGS, WRITE_PERMS)) == -1) {
      perror("Failed to create output file");
      return 1;
   }

   bytes = copyfile(fromfd, tofd);
   printf("%d bytes copied from %s to %s\n", bytes, argv[1], argv[2]);
   return 0;                                   /* the return closes the files */
}

Program 4.9 returns immediately after performing the copy and does not explicitly close the 
file. The return from main causes the necessary cleanup to release the resources associated 
with open files. In general, however, you should be careful to release open file descriptors by 
calling close.

The close function has a single parameter, fildes, representing the open file whose resources 
are to be released.

SYNOPSIS

   #include <unistd.h>

   int close(int fildes);
                                     POSIX



If successful, close returns 0. If unsuccessful, close returns –1 and sets errno. The following 
table lists the mandatory errors for close.

errno cause

EBADF fildes is not a valid file descriptor

EINTR the close function was interrupted by a signal

Program 4.10 shows an r_close function that restarts itself after interruption by a signal. Its 
prototype is in the header file restart.h.

Program 4.10 r_close.c

The r_close.c function is similar to close except that it restarts itself if interrupted by a signal.

#include <errno.h>
#include <unistd.h>

int r_close(int fd) {
   int retval;

   while (retval = close(fd), retval == -1 && errno == EINTR) ;
   return retval;
}

[ Team LiB ]   
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4.4 The select Function

The handling of I/O from multiple sources is an important problem that arises in many different 
forms. For example, a program may want to overlap terminal I/O with reading input from a disk 
or with printing. Another example occurs when a program expects input from two different 
sources, but it doesn't know which input will be available first. If the program tries to read from 
source A, and in fact, input was only available from source B, the program blocks. To solve this 
problem, we need to block until input from either source becomes available. Blocking until at 
least one member of a set of conditions becomes true is called OR synchronization. The condition 
for the case described is "input available" on a descriptor.

One method of monitoring multiple file descriptors is to use a separate process for each one. 
Program 4.11 takes two command-line arguments, the names of two files to monitor. The parent 
process opens both files before creating the child process. The parent monitors the first file 
descriptor, and the child monitors the second. Each process echoes the contents of its file to 
standard output. If two named pipes are monitored, output appears as input becomes available.

Program 4.11 monitorfork.c

A program that monitors two files by forking a child process.

#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include "restart.h"

int main(int argc, char *argv[]) {
   int bytesread;
   int childpid;
   int fd, fd1, fd2;

   if (argc != 3) {
      fprintf(stderr, "Usage: %s file1 file2\n", argv[0]);
      return 1;
   }
   if ((fd1 = open(argv[1], O_RDONLY)) == -1) {
      fprintf(stderr, "Failed to open file %s:%s\n", argv[1], strerror(errno));
      return 1;
   }
   if ((fd2 = open(argv[2], O_RDONLY)) == -1) {
      fprintf(stderr, "Failed to open file %s:%s\n", argv[2], strerror(errno));
      return 1;
   }
   if ((childpid = fork()) == -1) {
      perror("Failed to create child process");
      return 1;
   }
   if (childpid > 0)                                         /* parent code */
      fd = fd1;
   else
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      fd = fd2;
   bytesread = copyfile(fd, STDOUT_FILENO);
   fprintf(stderr, "Bytes read: %d\n", bytesread);
   return 0;
}

While using separate processes to monitor two file descriptors can be useful, the two processes 
have separate address spaces and so it is difficult for them to interact.

Exercise 4.16 

How would you modify Program 4.11 so that it prints the total number of bytes read from the 
two files?

Answer:

Set up some form of interprocess communication before creating the child. For example, the 
parent process could create a pipe and the child could send its byte count to the pipe when it has 
finished. After the parent has processed its file, the parent could wait for the child and read the 
byte count from the pipe.

The select call provides a method of monitoring file descriptors from a single process. It can 
monitor for three possible conditions—a read can be done without blocking, a write can be done 
without blocking, or a file descriptor has error conditions pending. Older versions of UNIX defined 
the select function in sys/time.h, but the POSIX standard now uses sys/select.h.

The nfds parameter of select gives the range of file descriptors to be monitored. The value of 
nfds must be at least one greater than the largest file descriptor to be checked. The readfds 
parameter specifies the set of descriptors to be monitored for reading. Similarly, writefds 
specifies the set of descriptors to be monitored for writing, and errorfds specifies the file 
descriptors to be monitored for error conditions. The descriptor sets are of type fd_set. Any of 
these parameters may be NULL, in which case select does not monitor the descriptor for the 
corresponding event. The last parameter is a timeout value that forces a return from select 
after a certain period of time has elapsed, even if no descriptors are ready. When timeout is 
NULL, select may block indefinitely.

SYNOPSIS

   #include <sys/select.h>

   int select(int nfds, fd_set *restrict readfds,
              fd_set *restrict writefds, fd_set *restrict errorfds,
              struct timeval *restrict timeout);

   void FD_CLR(int fd, fd_set *fdset);
   int FD_ISSET(int fd, fd_set *fdset);
   void FD_SET(int fd, fd_set *fdset);
   void FD_ZERO(fd_set *fdset);
                                                                              POSIX

On successful return, select clears all the descriptors in each of readfds, writefds and 



errorfds except those descriptors that are ready. If successful, the select function returns the 
number of file descriptors that are ready. If unsuccessful, select returns –1 and sets errno. The 
following table lists the mandatory errors for select.

errno cause

EBADF one or more file descriptor sets specified an invalid file descriptor

EINTR the select was interrupted by a signal before timeout or selected event occurred

EINVAL an invalid timeout interval was specified, or nfds is less than 0 or greater than 
FD_SETSIZE

Historically, systems implemented the descriptor set as an integer bit mask, but that 
implementation does not work for more than 32 file descriptors on most systems. The descriptor 
sets are now usually represented by bit fields in arrays of integers. Use the macros FD_SET, 
FD_CLR, FD_ISSET and FD_ZERO to manipulate the descriptor sets in an implementation-
independent way as demonstrated in Program 4.12.

The FD_SET macro sets the bit in *fdset corresponding to the fd file descriptor, and the FD_CLR 
macro clears the corresponding bit. The FD_ZERO macro clears all the bits in *fdset. Use these 
three macros to set up descriptor masks before calling select. Use the FD_ISSET macro after 
select returns, to test whether the bit corresponding to the file descriptor fd is set in the mask.

Program 4.12 whichisready.c

A function that blocks until one of two file descriptors is ready.

#include <errno.h>
#include <string.h>
#include <sys/select.h>

int whichisready(int fd1, int fd2) {
   int maxfd;
   int nfds;
   fd_set readset;

   if ((fd1 < 0) || (fd1 >= FD_SETSIZE) ||
       (fd2 < 0) || (fd2 >= FD_SETSIZE)) {
      errno = EINVAL;
      return -1;
   }
   maxfd = (fd1 > fd2) ? fd1 : fd2;
   FD_ZERO(&readset);
   FD_SET(fd1, &readset);
   FD_SET(fd2, &readset);
   nfds = select(maxfd+1, &readset, NULL, NULL, NULL);
   if (nfds == -1)
      return -1;
   if (FD_ISSET(fd1, &readset))



      return fd1;
   if (FD_ISSET(fd2, &readset))
      return fd2;
   errno = EINVAL;
   return -1;
}

The function whichisready blocks until at least one of the two file descriptors passed as 
parameters is ready for reading and returns that file descriptor. If both are ready, it returns the 
first file descriptor. If unsuccessful, whichisready returns –1 and sets errno.

Program 4.13 copy2files.c

A function that uses select to do two concurrent file copies.

#include <errno.h>
#include <stdio.h>
#include <string.h>
#include <sys/time.h>
#include "restart.h"

int copy2files(int fromfd1, int tofd1, int fromfd2, int tofd2) {
   int bytesread;
   int maxfd;
   int num;
   fd_set readset;
   int totalbytes = 0;

   if ((fromfd1 < 0) || (fromfd1 >= FD_SETSIZE) ||
       (tofd1 < 0) || (tofd1 >= FD_SETSIZE) ||
       (fromfd2 < 0) || (fromfd2 >= FD_SETSIZE) ||
       (tofd2 < 0) || (tofd2 >= FD_SETSIZE))
      return 0;
   maxfd = fromfd1;                     /* find the biggest fd for select */
   if (fromfd2 > maxfd)
      maxfd = fromfd2;

   for ( ; ; ) {
      FD_ZERO(&readset);
      FD_SET(fromfd1, &readset);
      FD_SET(fromfd2, &readset);
      if (((num = select(maxfd+1, &readset, NULL, NULL, NULL)) == -1) &&
         (errno == EINTR))
         continue;
      if (num == -1)
         return totalbytes;
      if (FD_ISSET(fromfd1, &readset)) {
         bytesread = readwrite(fromfd1, tofd1);
         if (bytesread <= 0)
            break;
         totalbytes += bytesread;
      }
      if (FD_ISSET(fromfd2, &readset)) {
         bytesread = readwrite(fromfd2, tofd2);
         if (bytesread <= 0)



            break;
         totalbytes += bytesread;
      }
   }
   return totalbytes;
}

The whichisready function of Program 4.12 is problematic because it always chooses fd1 if both 
fd1 and fd2 are ready. The copy2files function copies bytes from fromfd1 to tofd1 and from 
fromfd2 to tofd2 without making any assumptions about the order in which the bytes become 
available in the two directions. The function returns if either copy encounters an error or end-of-
file.

The copy2files function of Program 4.13 can be generalized to monitor multiple file descriptors 
for input. Such a problem might be encountered by a command processor that was monitoring 
requests from different terminals. The program cannot predict which source will produce the next 
input, so it must use a method such as select. In addition, the set of monitored descriptors is 
dynamic—the program must remove a source from the monitoring set if an error condition arises 
on that source's descriptor.

The monitorselect function in Program 4.14 monitors an array of open file descriptors fd. When 
input is available on file descriptor fd[i], the program reads information from fd[i] and calls 
docommand. The monitorselect function has two parameters: an array of open file descriptors 
and the number of file descriptors in the array. The function restarts the select or read if either 
is interrupted by a signal. When read encounters other types of errors or an end-of-file, 
monitorselect closes the corresponding descriptor and removes it from the monitoring set. The 
monitorselect function returns when all descriptors have indicated an error or end-of-file.

The waitfdtimed function in Program 4.15 takes two parameters: a file descriptor and an ending 
time. It uses gettimeout to calculate the timeout interval from the end time and the current time 
obtained by a call to gettimeofday. (See Section 9.1.3.) If select returns prematurely because 
of a signal, waitfdtimed recalculates the timeout and calls select again. The standard does not 
say anything about the value of the timeout parameter or the fd_set parameters of select 
when it is interrupted by a signal, so we reset them inside the while loop.

You can use the select timeout feature to implement a timed read operation, as shown in 
Program 4.16. The readtimed function behaves like read except that it takes an additional 
parameter, seconds, specifying a timeout in seconds. The readtimed function returns –1 with 
errno set to ETIME if no input is available in the next seconds interval. If interrupted by a signal, 
readtimed restarts with the remaining time. Most of the complication comes from the need to 
restart select with the remaining time when select is interrupted by a signal. The select 
function does not provide a direct way of determining the time remaining in this case. The 
readtimed function in Program 4.16 sets the end time for the timeout by calling 
add2currenttime in Program 4.15. It uses this value when calling waitfdtimed from Program 
4.15 to wait until the file descriptor can be read or the time given has occurred.

Program 4.14 monitorselect.c

A function to monitor file descriptors using select.



#include <errno.h>
#include <string.h>
#include <unistd.h>
#include <sys/select.h>
#include <sys/types.h>
#include "restart.h"
#define BUFSIZE 1024
void docommand(char *, int);

void monitorselect(int fd[], int numfds) {
   char buf[BUFSIZE];
   int bytesread;
   int i;
   int maxfd;
   int numnow, numready;
   fd_set readset;

   maxfd = 0;                  /* set up the range of descriptors to monitor */
   for (i = 0; i < numfds; i++) {
       if ((fd[i] < 0) || (fd[i] >= FD_SETSIZE))
          return;
       if (fd[i] >= maxfd)
          maxfd = fd[i] + 1;
   }
   numnow = numfds;
   while (numnow > 0) {            /* continue monitoring until all are done */
      FD_ZERO(&readset);                  /* set up the file descriptor mask */
      for (i = 0; i < numfds; i++)
         if (fd[i] >= 0)
            FD_SET(fd[i], &readset);
      numready = select(maxfd, &readset, NULL, NULL, NULL);  /* which ready? */
      if ((numready == -1) && (errno == EINTR))     /* interrupted by signal */
         continue;
      else if (numready == -1)                          /* real select error */
         break;
      for (i = 0; (i < numfds) && (numready > 0); i++) { /* read and process */
         if (fd[i] == -1)                         /* this descriptor is done */
            continue;
         if (FD_ISSET(fd[i], &readset)) {        /* this descriptor is ready */
            bytesread = r_read(fd[i], buf, BUFSIZE);
            numready--;
            if (bytesread > 0)
               docommand(buf, bytesread);
            else  {           /* error occurred on this descriptor, close it */
               r_close(fd[i]);
               fd[i] = -1;
               numnow--;
            }
         }
      }
   }
   for (i = 0; i < numfds; i++)
       if (fd[i] >= 0)
           r_close(fd[i]);
}



Program 4.15 waitfdtimed.c

A function that waits for a given time for input to be available from an open file descriptor.

#include <errno.h>
#include <string.h>
#include <sys/select.h>
#include <sys/time.h>
#include "restart.h"
#define MILLION 1000000L
#define D_MILLION 1000000.0

static int gettimeout(struct timeval end,
                               struct timeval *timeoutp) {
   gettimeofday(timeoutp, NULL);
   timeoutp->tv_sec = end.tv_sec - timeoutp->tv_sec;
   timeoutp->tv_usec = end.tv_usec - timeoutp->tv_usec;
   if (timeoutp->tv_usec >= MILLION) {
      timeoutp->tv_sec++;
      timeoutp->tv_usec -= MILLION;
   }
   if (timeoutp->tv_usec < 0) {
      timeoutp->tv_sec--;
      timeoutp->tv_usec += MILLION;
   }
   if ((timeoutp->tv_sec < 0) ||
       ((timeoutp->tv_sec == 0) && (timeoutp->tv_usec == 0))) {
      errno = ETIME;
      return -1;
   }
   return 0;
}

struct timeval add2currenttime(double seconds) {
   struct timeval newtime;

   gettimeofday(&newtime, NULL);
   newtime.tv_sec += (int)seconds;
   newtime.tv_usec += (int)((seconds - (int)seconds)*D_MILLION + 0.5);
   if (newtime.tv_usec >= MILLION) {
      newtime.tv_sec++;
      newtime.tv_usec -= MILLION;
   }
   return newtime;
}

int waitfdtimed(int fd, struct timeval end) {
   fd_set readset;
   int retval;
   struct timeval timeout;

   if ((fd < 0) || (fd >= FD_SETSIZE)) {
      errno = EINVAL;
      return -1;
   }
   FD_ZERO(&readset);



   FD_SET(fd, &readset);
   if (gettimeout(end, &timeout) == -1)
      return -1;
   while (((retval = select(fd + 1, &readset, NULL, NULL, &timeout)) == -1)
           && (errno == EINTR)) {
      if (gettimeout(end, &timeout) == -1)
         return -1;
      FD_ZERO(&readset);
      FD_SET(fd, &readset);
   }
   if (retval == 0) {
      errno = ETIME;
      return -1;
   }
   if (retval == -1)
      return -1;
   return 0;
}

Program 4.16 readtimed.c

A function do a timed read from an open file descriptor.

#include <sys/time.h>
#include "restart.h"

ssize_t readtimed(int fd, void *buf, size_t nbyte, double seconds) {
   struct timeval timedone;

   timedone = add2currenttime(seconds);
   if (waitfdtimed(fd, timedone) == -1)
      return (ssize_t)(-1);
   return r_read(fd, buf, nbyte);
}

Exercise 4.17 

Why is it necessary to test whether newtime.tv_usec is greater than or equal to a million when it 
is set from the fractional part of seconds? What are the consequences of having that value equal 
to one million?

Answer:

Since the value is rounded to the nearest microsecond, a fraction such as 0.999999999 might 
round to one million when multiplied by MILLION. The action of functions that use struct 
timeval values are not specified when the tv_usec field is not strictly less than one million.

Exercise 4.18 

One way to simplify Program 4.15 is to just restart the select with the same timeout whenever 
it is interrupted by a signal. What is wrong with this?



Answer:

If your program receives signals regularly and the time between signals is smaller than the 
timeout interval, waitfdtimed never times out.

The 2000 version of POSIX introduced a new version of select called pselect. The pselect 
function is identical to the select function, but it uses a more precise timeout structure, struct 
timespec, and allows for the blocking or unblocking of signals while it is waiting for I/O to be 
available. The struct timespec structure is discussed in Section 9.1.4. However, at the time of 
writing, (March 2003), none of the our test operating systems supported pselect.

[ Team LiB ]   
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4.5 The poll Function

The poll function is similar to select, but it organizes the information by file descriptor rather 
than by type of condition. That is, the possible events for one file descriptor are stored in a 
struct pollfd. In contrast, select organizes information by the type of event and has 
separate descriptor masks for read, write and error conditions. The poll function is part of the 
POSIX:XSI Extension and has its origins in UNIX System V.

The poll function takes three parameters: fds, nfds and timeout. The fds is an array of 
struct pollfd, representing the monitoring information for the file descriptors. The nfds 
parameter gives the number of descriptors to be monitored. The timeout value is the time in 
milliseconds that the poll should wait without receiving an event before returning. If the 
timeout value is –1, poll never times out. If integers are 32 bits, the maximum timeout period 
is about 30 minutes.

SYNOPSIS

  #include <poll.h>

  int poll(struct pollfd fds[], nfds_t nfds, int timeout);
                                                                      POSIX:XSI

The poll function returns 0 if it times out. If successful, poll returns the number of descriptors 
that have events. If unsuccessful, poll returns –1 and sets errno. The following table lists the 
mandatory errors for poll.

errno cause

EAGAIN allocation of internal data structures failed, but a subsequent request may succeed

EINTR a signal was caught during poll

EINVAL nfds is greater than OPEN_MAX

The struct pollfd structure includes the following members.

int fd;         /* file descriptor */
short events;   /* requested events */
short revents;  /* returned events */

The fd is the file descriptor number, and the events and revents are constructed by taking the 
logical OR of flags representing the various events listed in Table 4.2. Set events to contain the 
events to monitor; poll fills in the revents with the events that have occurred. The poll 
function sets the POLLHUP, POLLERR and POLLNVAL flags in revents to reflect the existence of 
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the associated conditions. You do not need to set the corresponding bits in events for these. If 
fd is less than zero, the events field is ignored and revents is set to zero. The standard does 
not specify how end-of-file is to be handled. End-of-file can either be communicated by an 
revents flag of POLLHUP or a normal read of 0 bytes. It is possible for POLLHUP to be set even if 
POLLIN or POLLRDNORM indicates that there is still data to read. Therefore, normal reading 
should be handled before error checking.

Table 4.2. Values of the event flags for the poll function.

event flag meaning

POLLIN read other than high priority data without blocking

POLLRDNORM read normal data without blocking

POLLRDBAND read priority data without blocking

POLLPRI read high-priority data without blocking

POLLOUT write normal data without blocking

POLLWRNORM same as POLLOUT

POLLERR error occurred on the descriptor

POLLHUP device has been disconnected

POLLNVAL file descriptor invalid

Program 4.17 implements a function to process commands from multiple file descriptors by 
using the poll function. Compare the implementation with that of Program 4.14. The select 
call modifies the file descriptor sets that are passed to it, and the program must reset these 
descriptor sets each time it calls select. The poll function uses separate variables for input 
and return values, so it is not necessary to reset the list of monitored descriptors after each call 
to poll. The poll function has a number of advantages. The masks do not need to be reset 
after each call. Unlike select, the poll function treats errors as events that cause poll to 
return. The timeout parameter is easier to use, although its range is limited. Finally, poll does 
not need a max_fd argument.

Program 4.17 monitorpoll.c

A function to monitor an array of file descriptors by using poll.

#include <errno.h>
#include <poll.h>
#include <stdlib.h>
#include <stropts.h>



#include <unistd.h>
#include "restart.h"
#define BUFSIZE 1024

void docommand(char *, int);

void monitorpoll(int fd[], int numfds)  {
   char buf[BUFSIZE];
   int bytesread;
   int i;
   int numnow = 0;
   int numready;
   struct pollfd *pollfd;

   for (i=0; i< numfds; i++)             /* initialize the polling structure */
      if (fd[i] >= 0)
          numnow++;
   if ((pollfd = (void *)calloc(numfds, sizeof(struct pollfd))) == NULL)
      return;
   for (i = 0; i < numfds; i++) {
      (pollfd + i)->fd = *(fd + i);
      (pollfd + i)->events = POLLRDNORM;
   }
   while (numnow > 0) {        /* Continue monitoring until descriptors done */
      numready = poll(pollfd, numfds, -1);
      if ((numready == -1) && (errno == EINTR))
         continue;                /* poll interrupted by a signal, try again */
      else if (numready == -1)            /* real poll error, can't continue */
         break;
      for (i = 0; i < numfds && numready > 0; i++)  {
         if ((pollfd + i)->revents) {
            if ((pollfd + i)->revents & (POLLRDNORM | POLLIN) ) {
               bytesread = r_read(fd[i], buf, BUFSIZE);
               numready--;
               if (bytesread > 0)
                  docommand(buf, bytesread);
               else
                  bytesread = -1;                             /* end of file */
            } else if ((pollfd + i)->revents & (POLLERR | POLLHUP))
               bytesread = -1;
            else                    /* descriptor not involved in this round */
               bytesread = 0;
            if (bytesread == -1) {      /* error occurred, remove descriptor */
               r_close(fd[i]);
               (pollfd + i)->fd = -1;
               numnow--;
            }
         }
      }
   }
   for (i = 0; i < numfds; i++)
       r_close(fd[i]);
   free(pollfd);
}
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4.6 File Representation

Files are designated within C programs either by file pointers or by file descriptors. The 
standard I/O library functions for ISO C (fopen, fscanf, fprintf, fread, fwrite, fclose and 
so on) use file pointers. The UNIX I/O functions (open, read, write, close and ioctl) use file 
descriptors. File pointers and file descriptors provide logical designations called handles for 
performing device-independent input and output. The symbolic names for the file pointers that 
represent standard input, standard output and standard error are stdin, stdout and stderr, 
respectively. These symbolic names are defined in stdio.h. The symbolic names for the file 
descriptors that represent standard input, standard output and standard error are 
STDIN_FILENO, STDOUT_FILENO and STDERR_FILENO, respectively. These symbolic names are 
defined in unistd.h.

Exercise 4.19 

Explain the difference between a library function and a system call.

Answer:

The POSIX standard does not make a distinction between library functions and system calls. 
Traditionally, a library function is an ordinary function that is placed in a collection of functions 
called a library, usually because it is useful, widely used or part of a specification, such as C. A 
system call is a request to the operating system for service. It involves a trap to the operating 
system and often a context switch. System calls are associated with particular operating 
systems. Many library functions such as read and write are, in fact, jackets for system calls. 
That is, they reformat the arguments in the appropriate system-dependent form and then call 
the underlying system call to perform the actual operation.

Although the implementation details differ, versions of UNIX follow a similar implementation 
model for handling file descriptors and file pointers within a process. The remainder of this 
section provides a schematic model of how file descriptors (UNIX I/O) and file pointers (ISO C I/
O) work. We use this model to explain redirection (Section 4.7) and inheritance (Section 4.6.3, 
Section 6.2 and Chapter 7).

4.6.1 File descriptors

The open function associates a file or physical device with the logical handle used in the 
program. The file or physical device is specified by a character string (e.g., /home/johns/my.
dat or /dev/tty). The handle is an integer that can be thought of as an index into a file 
descriptor table that is specific to a process. It contains an entry for each open file in the 
process. The file descriptor table is part of the process user area, but the program cannot 
access it except through functions using the file descriptor.

Example 4.20 

Figure 4.2 shows a schematic of the file descriptor table after a program executes the following.
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myfd = open("/home/ann/my.dat", O_RDONLY);

The open function creates an entry in the file descriptor table that points to an entry in the 
system file table. The open function returns the value 3, specifying that the file descriptor entry 
is in position three of the process file descriptor table.

Figure 4.2. Schematic diagram of the relationship between the file 
descriptor table, the system file table and the in-memory inode table in 
a UNIX-like operating system after the code of Example 4.20 executes.

The system file table, which is shared by all the processes in the system, has an entry for each 
active open. Each system file table entry contains the file offset, an indication of the access 
mode (i.e., read, write or read-write) and a count of the number of file descriptor table entries 
pointing to it.

Several system file table entries may correspond to the same physical file. Each of these entries 
points to the same entry in the in-memory inode table. The in-memory inode table contains an 
entry for each active file in the system. When a program opens a particular physical file that is 
not currently open, the call creates an entry in this inode table for that file. Figure 4.2 shows 
that the file /home/ann/my.dat had been opened before the code of Example 4.20 because 
there are two entries in the system file table with pointers to the entry in the inode table. (The 
label B designates the earlier pointer in the figure.)

Exercise 4.21 



What happens when the process whose file descriptor table is shown in Figure 4.2 executes the 
close(myfd) function?

Answer:

The operating system deletes the fourth entry in the file descriptor table and the corresponding 
entry in the system file table. (See Section 4.6.3 for a more complete discussion.) If the 
operating system also deleted the inode table entry, it would leave pointer B hanging in the 
system file table. Therefore, the inode table entry must have a count of the system file table 
entries that are pointing to it. When a process executes the close function, the operating 
system decrements the count in the inode entry. If the inode entry has a 0 count, the operating 
system deletes the inode entry from memory. (The operating system might not actually delete 
the entry right away on the chance that it will be accessed again in the immediate future.)

Exercise 4.22 

The system file table entry contains an offset that gives the current position in the file. If two 
processes have each opened a file for reading, each process has its own offset into the file and 
reads the entire file independently of the other process. What happens if each process opens 
the same file for write? What would happen if the file offset were stored in the inode table 
instead of the system file table?

Answer:

The writes are independent of each other. Each user can write over what the other user has 
written because of the separate file offsets for each process. On the other hand, if the offsets 
were stored in the inode table rather than in the system file table, the writes from different 
active opens would be consecutive. Also, the processes that had opened a file for reading would 
only read parts of the file because the file offset they were using could be updated by other 
processes.

Exercise 4.23 

Suppose a process opens a file for reading and then forks a child process. Both the parent and 
child can read from the file. How are reads by these two processes related? What about writes?

Answer:

The child receives a copy of the parent's file descriptor table at the time of the fork. The 
processes share a system file table entry and therefore also share the file offset. The two 
processes read different parts of the file. If no other processes have the file open, writes 
append to the end of the file and no data is lost on writes. Subsection 4.6.3 covers this 
situation in more detail.

4.6.2 File pointers and buffering

The ISO C standard I/O library uses file pointers rather than file descriptors as handles for I/O. 
A file pointer points to a data structure called a FILE structure in the user area of the process.



Example 4.24 

The following code segment opens the file /home/ann/my.dat for output and then writes a 
string to the file.

FILE *myfp;

if ((myfp = fopen("/home/ann/my.dat", "w")) == NULL)
   perror("Failed to open /home/ann/my.dat");
else
   fprintf(myfp, "This is a test");

Figure 4.3 shows a schematic of the FILE structure allocated by the fopen call of Example 4.24. 
The FILE structure contains a buffer and a file descriptor value. The file descriptor value is the 
index of the entry in the file descriptor table that is actually used to output the file to disk. In 
some sense the file pointer is a handle to a handle.

Figure 4.3. Schematic handling of a file pointer after fopen.

What happens when the program calls fprintf? The result depends on the type of file that was 
opened. Disk files are usually fully buffered, meaning that the fprintf does not actually write 
the This is a test message to disk, but instead writes the bytes to a buffer in the FILE structure. 
When the buffer fills, the I/O subsystem calls write with the file descriptor, as in the previous 
section. The delay between the time when a program executes fprintf and the time when the 
writing actually occurs may have interesting consequences, especially if the program crashes. 
Buffered data is sometimes lost on system crashes, so it is even possible for a program to 



appear to complete normally but its disk output could be incomplete.

How can a program avoid the effects of buffering? An fflush call forces whatever has been 
buffered in the FILE structure to be written out. A program can also call setvbuf to disable 
buffering.

Terminal I/O works a little differently. Files associated with terminals are line buffered rather 
than fully buffered (except for standard error, which by default, is not buffered). On output, line 
buffering means that the line is not written out until the buffer is full or until a newline symbol 
is encountered.

Exercise 4.25 bufferout.c

How does the output appear when the following program executes?

#include <stdio.h>

int main(void) {
   fprintf(stdout, "a");
   fprintf(stderr, "a has been written\n");
   fprintf(stdout, "b");
   fprintf(stderr, "b has been written\n");
   fprintf(stdout, "\n");
   return 0;
}

Answer:

The messages written to standard error appear before the 'a' and 'b' because standard 
output is line buffered, whereas standard error is not buffered.

Exercise 4.26 bufferinout.c

How does the output appear when the following program executes?

#include <stdio.h>

int main(void) {
   int i;
   fprintf(stdout, "a");
   scanf("%d", &i);
   fprintf(stderr, "a has been written\n");
   fprintf(stdout, "b");
   fprintf(stderr, "b has been written\n");
   fprintf(stdout, "\n");
   return 0;
}

Answer:



The scanf function flushes the buffer for stdout, so 'a' is displayed before the number is read 
in. After the number has been entered, 'b' still appears after the b has been written 
message.

The issue of buffering is more subtle than the previous discussion might lead you to believe. If 
a program that uses file pointers for a buffered device crashes, the last partial buffer created 
from the fprintf calls may never be written out. When the buffer is full, a write operation is 
performed. Completion of a write operation does not mean that the data actually made it to 
disk. In fact, the operating system copies the data to a system buffer cache. Periodically, the 
operating system writes these dirty blocks to disk. If the operating system crashes before it 
writes the block to disk, the program still loses the data. Presumably, a system crash is less 
likely to happen than an individual program crash.

4.6.3 Inheritance of file descriptors

When fork creates a child, the child inherits a copy of most of the parent's environment and 
context, including the signal state, the scheduling parameters and the file descriptor table. The 
implications of inheritance are not always obvious. Because children receive a copy of their 
parent's file descriptor table at the time of the fork, the parent and children share the same file 
offsets for files that were opened by the parent prior to the fork.

Example 4.27 openfork.c

In the following program, the child inherits the file descriptor for my.dat. Each process reads 
and outputs one character from the file.

#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/stat.h>

int main(void) {
   char c = '!';
   int myfd;

   if ((myfd = open("my.dat", O_RDONLY)) == -1) {
      perror("Failed to open file");
      return 1;
   }
   if (fork() == -1) {
      perror("Failed to fork");
      return 1;
   }
   read(myfd, &c, 1);
   printf("Process %ld got %c\n", (long)getpid(), c);
   return 0;
}

Figure 4.4 shows the parent and child file descriptor tables for Example 4.27. The file descriptor 
table entries of the two processes point to the same entry in the system file table. The parent 
and child therefore share the file offset, which is stored in the system file table.



Figure 4.4. If the parent opens my.dat before forking, both parent and 
child share the system file table entry.

Exercise 4.28 

Suppose the first few bytes in the file my.dat are abcdefg. What output would be generated by 
Example 4.27?

Answer:

Since the two processes share the file offset, the first one to read gets a and the second one to 
read gets b. Two lines are generated in the following form.

Process nnn got a
Process mmm got b



In theory, the lines could be output in either order but most likely would appear in the order 
shown.

Exercise 4.29 

When a program closes a file, the entry in the file descriptor table is freed. What about the 
corresponding entry in the system file table?

Answer:

The system file table entry can only be freed if no more file descriptor table entries are pointing 
to it. For this reason, each system file table entry contains a count of the number of file 
descriptor table entries that are pointing to it. When a process closes a file, the operating 
system decrements the count and deletes the entry only when the count becomes 0.

Exercise 4.30 

How does fork affect the system file table?

Answer:

The system file table is in system space and is not duplicated by fork. However, each entry in 
the system file table keeps a count of the number of file descriptor table entries pointing to it. 
These counts must be adjusted to reflect the new file descriptor table created for the child.

Example 4.31 forkopen.c

In the following program, the parent and child each open my.dat for reading, read one 
character, and output that character.

#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/stat.h>

int main(void) {
   char c = '!';
   int myfd;

   if (fork() == -1) {
      perror("Failed to fork");
      return 1;
   }
   if ((myfd = open("my.dat", O_RDONLY)) == -1) {
      perror("Failed to open file");
      return 1;
   }
   read(myfd, &c, 1);
   printf("Process %ld got %c\n", (long)getpid(), c);
   return 0;



}

Figure 4.5 shows the file descriptor tables for Example 4.31. The file descriptor table entries 
corresponding to my.dat point to different system file table entries. Consequently, the parent 
and child do not share the file offset. The child does not inherit the file descriptor, because each 
process opens the file after the fork and each open creates a new entry in the system file table. 
The parent and child still share system file table entries for standard input, standard output and 
standard error.

Figure 4.5. If the parent and child open my.dat after the fork call, their 
file descriptor table entries point to different system file table entries.

Exercise 4.32 

Suppose the first few bytes in the file my.dat are abcdefg. What output would be generated by 
Example 4.31?



Answer:

Since the two processes use different file offsets, each process reads the first byte of the file. 
Two lines are generated in the following form.

Process nnn got a
Process mmm got a

Exercise 4.33 fileiofork.c

What output would be generated by the following program?

#include <stdio.h>
#include <unistd.h>

int main(void) {
   printf("This is my output.");
   fork();
   return 0;
}

Answer:

Because of buffering, the output of printf is likely to be written to the buffer corresponding to 
stdout, but not to the actual output device. Since this buffer is part of the user space, it is 
duplicated by fork. When the parent and the child each terminate, the return from main causes 
the buffers to be flushed as part of the cleanup. The output appears as follows.

This is my output.This is my output.

Exercise 4.34 fileioforkline.c

What output would be generated by the following program?

#include <stdio.h>
#include <unistd.h>

int main(void) {
   printf("This is my output.\n");
   fork();
   return 0;
}

Answer:

The buffering of standard output is usually line buffering. This means that the buffer is flushed 
when it contains a newline. Since in this case a newline is output, the buffer will probably be 
flushed before the fork and only one line of output will appear.
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4.7 Filters and Redirection

UNIX provides a large number of utilities that are written as filters. A filter reads from standard 
input, performs a transformation, and outputs the result to standard output. Filters write their 
error messages to standard error. All of the parameters of a filter are communicated as 
command-line arguments. The input data should have no headers or trailers, and a filter should 
not require any interaction with the user.

Examples of useful UNIX filters include head, tail, more, sort, grep and awk. The cat 
command takes a list of filenames as command-line arguments, reads each of the files in 
succession, and echoes the contents of each file to standard output. However, if no input file is 
specified, cat takes its input from standard input and writes its results to standard output. In 
this case, cat behaves like a filter.

Recall that a file descriptor is an index into the file descriptor table of that process. Each entry 
in the file descriptor table points to an entry in the system file table, which is created when the 
file is opened. A program can modify the file descriptor table entry so that it points to a 
different entry in the system file table. This action is known as redirection. Most shells interpret 
the greater than character (>) on the command line as redirection of standard output and the 
less than character (<) as redirection of standard input. (Associate > with output by picturing it 
as an arrow pointing in the direction of the output file.)

Example 4.35 

The cat command with no command-line arguments reads from standard input and echoes to 
standard output. The following command redirects standard output to my.file with >.

cat > my.file

The cat command of Example 4.35 gathers what is typed from the keyboard into the file my.
file. Figure 4.6 depicts the file descriptor table for Example 4.35. Before redirection, entry [1] 
of the file descriptor table points to a system file table entry corresponding to the usual 
standard output device. After the redirection, entry [1] points to a system file table entry for 
my.file.

Figure 4.6. Status of the file descriptor table before and after 
redirection for the process that is executing cat > my.file.
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The redirection of standard output in cat > my.file occurs because the shell changes the 
standard output entry of the file descriptor table (a pointer to the system file table) to reference 
a system file table entry associated with my.file. To accomplish this redirection in a C 
program, first open my.file to establish an appropriate entry in the system file table. After the 
open operation, copy the pointer to my.file into the entry for standard output by executing the 
dup2 function. Then, call close to eliminate the extra file descriptor table entry for my.file.

The dup2 function takes two parameters, fildes and fildes2. It closes entry fildes2 of the 
file descriptor table if it was open and then copies the pointer of entry fildes into entry 
fildes2.

SYNOPSIS

  #include <unistd.h>

  int dup2(int fildes, int fildes2);
                                                  POSIX

On success, dup2 returns the file descriptor value that was duplicated. On failure, dup2 returns –
1 and sets errno. The following table lists the mandatory errors for dup2.

errno cause

EBADF fildes is not a valid open file descriptor, or fildes2 is negative or greater than or 
equal to OPEN_MAX



EINTR dup2 was interrupted by a signal

Example 4.36 

Program 4.18 redirects standard output to the file my.file and then appends a short message 
to that file.

Figure 4.7 shows the effect of the redirection on the file descriptor table of Program 4.18. The 
open function causes the operating system to create a new entry in the system file table and to 
set entry [3] of the file descriptor table to point to this entry. The dup2 function closes the 
descriptor corresponding to the second parameter (standard output) and then copies the entry 
corresponding to the first parameter (fd) into the entry corresponding to the second parameter 
(STDOUT_FILENO). From that point on in the program, a write to standard output goes to my.
file.

Figure 4.7. Status of the file descriptor table during the execution of 
Program 4.18.

Program 4.18 redirect.c

A program that redirects standard output to the file my.file.

#include <fcntl.h>
#include <stdio.h>
#include <sys/stat.h>
#include <unistd.h>
#include "restart.h"
#define CREATE_FLAGS (O_WRONLY | O_CREAT | O_APPEND)
#define CREATE_MODE (S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH)

int main(void) {
   int fd;

   fd = open("my.file", CREATE_FLAGS, CREATE_MODE);
   if (fd == -1) {
       perror("Failed to open my.file");
       return 1;



   }
   if (dup2(fd, STDOUT_FILENO) == -1) {
      perror("Failed to redirect standard output");
      return 1;
   }
   if (r_close(fd) == -1) {
      perror("Failed to close the file");
      return 1;
   }
   if (write(STDOUT_FILENO, "OK", 2) == -1) {
      perror("Failed in writing to file");
      return 1;
   }
   return 0;
}

[ Team LiB ]   

file:///D|/Tutoriales%20&%20Programacion/Prep%20Finales/XxX/Prentice%20Hall%20-%20Unix%20Systems%20Programming%202nd%20Ed/0130424110_14051533.html
file:///D|/Tutoriales%20&%20Programacion/Prep%20Finales/XxX/Prentice%20Hall%20-%20Unix%20Systems%20Programming%202nd%20Ed/NFO/lib.html


[ Team LiB ]   

4.8 File Control

The fcntl function is a general-purpose function for retrieving and modifying the flags 
associated with an open file descriptor. The fildes argument of fcntl specifies the descriptor, 
and the cmd argument specifies the operation. The fcntl function may take additional 
parameters depending on the value of cmd.

SYNOPSIS

  #include <fcntl.h>
  #include <unistd.h>
  #include <sys/types.h>

  int fcntl(int fildes, int cmd, /* arg */ ...);
                                                              POSIX

The interpretation of the return value of fcntl depends on the value of the cmd parameter. 
However, if unsuccessful, fcntl returns –1 and sets errno. The following table lists the 
mandatory errors for fcntl.

errno cause

EACCES cmd is F_SETLK and locking not allowed

EBADF fildes is not a valid open file descriptor or file is not opened properly for type 
of lock

EINTR cmd is F_SETLKW and function interrupted by a signal

EINVAL cmd is invalid, or cmd is F_DUPFD and arg is negative or greater than or equal to 
OPEN_MAX, or cmd is a locking function and arg is invalid, or fildes refers to a 
file that does not support locking

EMFILE cmd is F_DUPFD and OPEN_MAX descriptors for process are open, or no file 
descriptors greater than or equal to arg are available

ENOLCK cmd is F_SETLK or F_SETLKW and locks would exceed limit

EOVERFLOW one of values to be returned cannot be represented correctly, or requested lock 
offset cannot be represented in off_t

The fcntl function may only be interrupted by a signal when the cmd argument is F_SETLKW 
(block until the process acquires an exclusive lock). In this case, fcntl returns –1 and sets 
errno to EINTR. Table 4.3 lists the POSIX values of the cmd parameter for fcntl.
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An important example of the use of file control is to change an open file descriptor to use 
nonblocking I/O. When a file descriptor has been set for nonblocking I/O, the read and write 
functions return –1 and set errno to EAGAIN to report that the process would be delayed if a 
blocking I/O operation were tried. Nonblocking I/O is useful for monitoring multiple file 
descriptors while doing other work. Section 4.4 and Section 4.5 discuss the select and poll 
functions that allow a process to block until any of a set of descriptors becomes available. 
However, both of these functions block while waiting for I/O, so no other work can be done 
during the wait.

Table 4.3. POSIX values for cmd as specified in fcntl.h.

cmd meaning

F_DUPFD duplicate a file descriptor

F_GETFD get file descriptor flags

F_SETFD set file descriptor flags

F_GETFL get file status flags and access modes

F_SETFL set file status flags and access modes

F_GETOWN if fildes is a socket, get process or group ID for out-of-band signals

F_SETOWN if fildes is a socket, set process or group ID for out-of-band signals

F_GETLK get first lock that blocks description specified by arg

F_SETLK set or clear segment lock specified by arg

F_SETLKW same as FSETLK except it blocks until request satisfied

To perform nonblocking I/O, a program can call open with the O_NONBLOCK flag set. A program 
can also change an open descriptor to be nonblocking by setting the O_NONBLOCK flag, using 
fcntl. To set an open descriptor to perform nonblocking I/O, use the F_GETFL command with 
fcntl to retrieve the flags associated with the descriptor. Use inclusive bitwise OR of 
O_NONBLOCK with these flags to create a new flags value. Finally, set the descriptor flags to this 
new value, using the F_SETFL command of fcntl.

Example 4.37 setnonblock.c

The following function sets an already opened file descriptor fd for nonblocking I/O.

#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>



int setnonblock(int fd) {
   int fdflags;

   if ((fdflags = fcntl(fd, F_GETFL, 0)) == -1)
      return -1;
   fdflags |= O_NONBLOCK;
   if (fcntl(fd, F_SETFL, fdflags) == -1)
      return -1;
   return 0;
}

If successful, setnonblock returns 0. Otherwise, setnonblock returns –1 and sets errno.

The setnonblock function of Example 4.37 reads the current value of the flags associated with 
fd, performs a bitwise OR with O_NONBLOCK, and installs the modified flags. After this function 
executes, a read from fd returns immediately if no input is available.

Example 4.38 setblock.c

The following function changes the I/O mode associated with file descriptor fd to blocking by 
clearing the O_NONBLOCK file flag. To clear the flag, use bitwise AND with the complement of the 
O_NONBLOCK flag.

#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>

int setblock(int fd) {
   int fdflags;

   if ((fdflags = fcntl(fd, F_GETFL, 0)) == -1)
      return -1;
   fdflags &= ~O_NONBLOCK;
   if (fcntl(fd, F_SETFL, fdflags) == -1)
      return -1;
   return 0;
}

If successful, setblock returns 0. If unsuccessful, setblock returns –1 and sets errno.

Example 4.39 process_or_do_work.c

The following function assumes that fd1 and fd2 are open for reading in nonblocking mode. If 
input is available from either one, the function calls docommand with the data read. Otherwise, 
the code calls dosomething. This implementation gives priority to fd1 and always handles input 
from this file descriptor before handling fd2.

#include <errno.h>



#include <unistd.h>
#include "restart.h"

void docommand(char *, int);
void dosomething(void);

void process_or_do_work(int fd1, int fd2) {
   char buf[1024];
   ssize_t bytesread;

   for ( ; ; ) {
      bytesread = r_read(fd1, buf, sizeof(buf));
      if ((bytesread == -1) && (errno != EAGAIN))
         return;                                    /* a real error on fd1 */
      else if (bytesread > 0) {
         docommand(buf, bytesread);
         continue;
      }
      bytesread = r_read(fd2, buf, sizeof(buf));
      if ((bytesread == -1) && (errno != EAGAIN))
         return;                                    /* a real error on fd2 */
      else if (bytesread > 0)
         docommand(buf, bytesread);
      else
         dosomething();          /* input not available, do something else */
   }
}

[ Team LiB ]   
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4.9 Exercise: Atomic Logging

Sometimes multiple processes need to output to the same log file. Problems can arise if one 
process loses the CPU while it is outputting to the log file and another process tries to write to 
the same file. The messages could get interleaved, making the log file unreadable. We use the 
term atomic logging to mean that multiple writes of one process to the same file are not mixed 
up with the writes of other processes writing to the same file.

This exercise describes a series of experiments to help you understand the issues involved 
when multiple processes try to write to the same file. We then introduce an atomic logging 
library and provide a series of examples of how to use the library. Appendix D.1 describes the 
actual implementation of this library, which is used in several places throughout the book as a 
tool for debugging programs.

The experiments in this section are based on Program 3.1, which creates a chain of processes. 
Program 4.19 modifies Program 3.1 so that the original process opens a file before creating the 
children. Each child writes a message to the file instead of to standard error. Each message is 
written in two pieces. Since the processes share an entry in the system file table, they share 
the file offset. Each time a process writes to the file, the file offset is updated.

Exercise 4.40 

Run Program 4.19 several times and see if it generates output in the same order each time. 
Can you tell which parts of the output came from each process?

Answer:

On most systems, the output appears in the same order for most runs and each process 
generates a single line of output. However, this outcome is not guaranteed by the program. It 
is possible (but possibly unlikely) for one process to lose the CPU before both parts of its output 
are written to the file. In this, case the output is jumbled.

Program 4.19 chainopenfork.c

A program that opens a file before creating a chain of processes.

#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/stat.h>

#define BUFSIZE 1024
#define CREATE_FLAGS (O_WRONLY | O_CREAT | O_TRUNC)
#define CREATE_PERMS (S_IRUSR | S_IWUSR| S_IRGRP | S_IROTH)

int main  (int argc, char *argv[]) {
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   char buf[BUFSIZE];
   pid_t childpid = 0;
   int fd;
   int i, n;

   if (argc != 3){       /* check for valid number of command-line arguments */
      fprintf (stderr, "Usage: %s processes filename\n", argv[0]);
      return 1;
   }
                                        /* open the log file before the fork */
   fd = open(argv[2], CREATE_FLAGS, CREATE_PERMS);
   if (fd < 0) {
      perror("Failed to open file");
      return 1;
   }
   n = atoi(argv[1]);                              /* create a process chain */
   for (i = 1; i < n; i++)
       if (childpid = fork())
          break;
   if (childpid == -1) {
      perror("Failed to fork");
      return 1;
   }
                                       /* write twice to the common log file */
   sprintf(buf, "i:%d process:%ld ", i, (long)getpid());
   write(fd, buf, strlen(buf));
   sprintf(buf, "parent:%ld child:%ld\n", (long)getppid(), (long)childpid);
   write(fd, buf, strlen(buf));
   return 0;
}

Exercise 4.41 

Put sleep(1); after the first write function in Program 4.19 and run it again. Now what 
happens?

Answer:

Most likely, each process outputs the values of the first two integers and then each process 
outputs the last two integers.

Exercise 4.42 

Copy chainopenfork.c to a file called chainforkopen.c and move the code to open the file 
after the loop that forks the children. How does the behavior of chainforkopen.c differ from 
that of chainopenfork.c?

Answer:

Each process now has a different system file table entry, and so each process has a different 
file offset. Because of O_TRUNC, each open deletes what was previously written to the file. Each 
process starts writing from the beginning of the file, overwriting what the other processes have 



written. The last process to write has control of the final file contents.

Exercise 4.43 

Run chainforkopen several times and see if it generates the same order of the output each 
time. Which process was executed last? Do you see anything unusual about the contents of the 
file?

Answer:

The process that outputs last may be different on different systems. If the last process writes 
fewer bytes than another process, the file contains additional bytes after the line written by the 
last process.

If independent processes open the same log file, the results might be similar to that of Exercise 
4.43. The last process to output overwrites what was previously written. One way to try to 
solve this problem is to call lseek to move to the end of the file before writing.

Exercise 4.44 

Copy chainforkopen.c to a file called chainforkopenseek.c. Add code before each write to 
perform lseek to the end of the file. Also, remove the O_TRUNC flag from CREATE_FLAGS. Run 
the program several times and observe the behavior. Use a different file name each time.

Answer:

The lseek operation works as long as the process does not lose the CPU between lseek and 
write. For fast machines, you may have to run the program many times to observe this 
behavior. You can increase the likelihood of creating mixed-up output, by putting sleep(1); 
between lseek and write.

If a file is opened with the O_APPEND flag, then it automatically does all writes to the end of the 
file.

Exercise 4.45 

Copy chainforkopen.c to a file called chainforkappend.c. Modify the CREATE_FLAGS constant 
by replacing O_TRUNC with O_APPEND. Run the program several times, possibly inserting sleep
(1) between the write calls. What happens?

Answer:

The O_APPEND flag solves the problem of processes overwriting the log entries of other 
processes, but it does not prevent the individual pieces written by one process from being 
mixed up with the pieces of another.



Exercise 4.46 

Copy chainforkappend.c to a file called chainforkonewrite.c. Combine the pair of sprintf 
calls so that the program uses a single write call to output its information. How does the 
program behave?

Answer:

The output is no longer interleaved.

Exercise 4.47 

Copy chainforkonewrite.c to a file called chainforkfprintf.c. Replace open with a 
corresponding fopen function. Replace the single write with fprintf. How does the program 
behave?

Answer:

The fprintf operation causes the output to be written to a buffer in the user area. Eventually, 
the I/O subsystem calls write to output the contents of the buffer. You have no control over 
when write is called except that you can force a write operation by calling fflush. Process 
output can be interleaved if the buffer fills in the middle of the fprintf operation. Adding sleep
(1); shouldn't cause the problem to occur more or less often.

4.9.1 An atomic logging library

To make an atomic logger, we have to use a single write call to output information that we 
want to appear together in the log. The file must be opened with the O_APPEND flag. Here is the 
statement about the O_APPEND flag from the write man page that guarantees that the writing 
is atomic if we use the O_APPEND flag.

If the O_APPEND flag of the file status flags is set, the file offset will be set to the 
end of the file prior to each write and no intervening file modification operation 
will occur between changing the file offset and the write operation.

In the examples given here, it is simple to combine everything into a single call to write, but 
later we encounter situations in which it is more difficult. Appendix D.1 contains a complete 
implementation of a module that can be used with a program in which atomic logging is 
needed. A program using this module should include Program 4.20, which contains the 
prototypes for the publicly accessible functions. Note that the interface is simple and the 
implementation details are completely hidden from the user.

Program 4.20 atomic_logger.h

The include file for the atomic logging module.



int atomic_log_array(char *s, int len);
int atomic_log_clear();
int atomic_log_close();
int atomic_log_open(char *fn);
int atomic_log_printf(char *fmt, ...);
int atomic_log_send();
int atomic_log_string(char *s);

The atomic logger allows you to control how the output of programs that are running on the 
same machine is interspersed in a log file. To use the logger, first call atomic_log_open to 
create the log file. Call atomic_log_close when all logging is completed. The logger stores in a 
temporary buffer items written with atomic_log_array, atomic_log_string and 
atomic_log_printf. When the program calls atomic_log_send, the logger outputs the entire 
buffer, using a single write call, and frees the temporary buffers. The atomic_log_clear 
operation frees the temporary buffers without actually outputting to the log file. Each function 
in the atomic logging library returns 0 if successful. If unsuccessful, these functions return –1 
and set errno.

The atomic logging facility provides three formats for writing to the log. Use atomic_log_array 
to write an array of a known number of bytes. Use atomic_log_string to log a string. 
Alternatively, you can use atomic_log_printf with a syntax similar to fprintf. Program 4.21 
shows a version of the process chain that uses the first two forms for output to the atomic 
logger.

Exercise 4.48 

How would you modify Program 4.21 to use atomic_log_printf?

Answer:

Eliminate the buf array and replace the four lines of code involving sprintf, 
atomic_log_array and atomic_log_string with the following.

atomic_log_printf("i:%d process:%ld ", i, (long)getpid());
atomic_log_printf("parent:%ld child ID:%ld\n",
                  (long)getppid(), (long)childpid);

Alternatively use the following single call.

atomic_log_printf("i:%d process:%ld parent:%ld child:%ld\n",
                  i, (long)getpid(), (long)getppid(), (long)childpid);

Program 4.21 chainforkopenlog.c

A program that uses the atomic logging module of Appendix D.1.

#include <stdio.h>
#include <stdlib.h>



#include <string.h>
#include <unistd.h>
#include "atomic_logger.h"

#define BUFSIZE 1024

int main  (int argc, char *argv[]) {
   char buf[BUFSIZE];
   pid_t childpid = 0;
   int i, n;

   if (argc != 3){       /* check for valid number of command-line arguments */
      fprintf (stderr, "Usage: %s processes filename\n", argv[0]);
      return 1;
   }
   n = atoi(argv[1]);                              /* create a process chain */
   for (i = 1; i < n; i++)
       if (childpid = fork())
          break;
   if (childpid == -1) {
      perror("Failed to fork");
      return 1;
   }

   if (atomic_log_open(argv[2]) == -1) {             /* open atomic log file */
      fprintf(stderr, "Failed to open log file");
      return 1;
   }
                                /* log the output, using two different forms */
   sprintf(buf, "i:%d process:%ld", i, (long)getpid());
   atomic_log_array(buf, strlen(buf));
   sprintf(buf, " parent:%ld child:%ld\n", (long)getppid(), (long)childpid);
   atomic_log_string(buf);
   if (atomic_log_send() == -1) {
      fprintf(stderr, "Failed to send to log file");
      return 1;
   }
   atomic_log_close();
   return 0;
}

Exercise 4.49 

Modify Program 4.19 to open an atomic log file after forking the children. (Do not remove the 
other open function call.) Repeat Exercises 4.40 through Exercise 4.47 after adding code to 
output the same information to the atomic logger as to the original file. Compare the output of 
the logger with the contents of the file.

Exercise 4.50 

What happens if Program 4.19 opens the log file before forking the children?

Answer:



Logging should still be atomic. However, if the parent writes information to the log and doesn't 
clear it before the fork, the children have a copy of this information in their logging buffers.

Another logging interface that is useful for debugging concurrent programs is the remote 
logging facility described in detail in Appendix D.2. Instead of logging information being sent to 
a file, it is sent to another process that has its own environment for displaying and saving the 
logged information. The remote logging process has a graphical user interface that allows the 
user to display the log. The remote logger does not have a facility for gathering information 
from a process to be displayed in a single block in the log file, but it allows logging from 
processes on multiple machines.

[ Team LiB ]   
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4.10 Exercise: A cat Utility

The cat utility has the following POSIX specification[52].

NAME
cat - concatenate and print files

SYNOPSIS
cat [-u] [file ...]

DESCRIPTION
        The cat utility shall read files in sequence and shall write
        their contents to the standard output in the same sequence.

OPTIONS
        The cat utility shall conform to the Base Definitions volume
        of IEEE STd 1003.1-2001, Section 12.2, Utility Syntax Guidelines.

        The following option shall be supported:

        -u      Write bytes from the input file to the standard output
                without delay as each is read

OPERANDS
        The following operand shall be supported:

        file    A pathname of an input file. If no file operands are
                specified, the standard input shall be used. If a file
                is '-', the cat utility shall read from the standard
                input at that point in the sequence. The cat utility
                shall not close and reopen standard input when it is
                referenced in this way, but shall accept multiple
                occurrences of '-' as a file operand.

STDIN
        The standard input shall be used only if no file operands are
        specified, or if a file operand is '-'. See the INPUT FILES
        section.

INPUT FILES
        The input files can be any file type.

ENVIRONMENT VARIABLES
        (.... a long section omitted here ....)

ASYNCHRONOUS EVENTS
        Default.

STDOUT
        The standard output shall contain the sequence of bytes read from
        the input files.  Nothing else shall be written to the standard
        output.
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STDERR
        The standard error shall be used only for diagnostic messages.

OUTPUT FILES
        None.

EXTENDED DESCRIPTION
        None.

EXIT STATUS
        The following exit values shall be returned:

        0:      All input files were output successfully.

        >0      An error occurred.

CONSEQUENCES OF ERRORS
        Default.

The actual POSIX description continues with other sections, including APPLICATION USAGE, 
EXAMPLES and RATIONALE.

1.  Compare the POSIX description of cat with the man page for cat on your system and 
note any differences.

2.  Execute the cat command for many examples, including multiple input files and files 
that don't exist. Include a case in which you redirect standard input to a disk file and 
use several '-' files on the command line. Explain what happens.

3.  Write your own cat utility to conform to the standard. Try to duplicate the behavior of 
the actual cat utility.

4.  Read the section of the cat man page on ENVIRONMENT VARIABLES.

5.  Experiment with the effect of relevant environment variables on the behavior of cat.

6.  Incorporate the handling of environment variables into your own cat utility.
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file:///D|/Tutoriales%20&%20Programacion/Prep%20Finales/XxX/Prentice%20Hall%20-%20Unix%20Systems%20Programming%202nd%20Ed/NFO/lib.html


[ Team LiB ]   

4.11 Additional Reading

Advanced Programming in the UNIX Environment by Stevens [112] has an extensive discussion 
of UNIX I/O from a programmer's viewpoint. Many books on Linux or UNIX programming also 
cover I/O. The USENIX Conference Proceedings are a good source of current information on 
tools and approaches evolving under UNIX.
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Chapter 5. Files and Directories

Operating systems organize raw storage devices in file systems so that applications can use 
high-level operations rather than low-level device calls to access information. UNIX file systems 
are tree structured, with nodes representing files and arcs representing the contains 
relationship. UNIX directory entries associate filenames with file locations. These entries can 
either point directly to a structure containing the file location information (hard link) or point 
indirectly through a symbolic link. Symbolic links are files that associate one filename with 
another. This chapter also introduces functions for accessing file status information and 
directories from within programs.

Objectives

●     Learn about file systems and directories
●     Experiment with directory traversal
●     Explore UNIX inode implementation
●     Use functions for accessing directories
●     Understand hard links and symbolic links

[ Team LiB ]   
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5.1 UNIX File System Navigation

Operating systems organize physical disks into file systems to provide high-level logical access 
to the actual bytes of a file. A file system is a collection of files and attributes such as location 
and name. Instead of specifying the physical location of a file on disk, an application specifies a 
filename and an offset. The operating system makes a translation to the location of the physical 
file through its file systems.

A directory is a file containing directory entries that associate a filename with the physical 
location of a file on disk. When disks were small, a simple table of filenames and their positions 
was a sufficient representation for the directory. Larger disks require a more flexible 
organization, and most file systems organize their directories in a tree structure. This 
representation arises quite naturally when the directories themselves are files.

Figure 5.1 shows a tree-structured organization of a typical file system. The square nodes in 
this tree are directories, and the / designates the root directory of the file system. The root 
directory is at the top of the file system tree, and everything else is under it.

Figure 5.1. Tree structure of a file system.

The directory marked dirA in Figure 5.1 contains the files my1.dat, my2.dat and dirB. The 
dirB file is called a subdirectory of dirA because dirB is a directory contained in dirA of the 
file system tree. Notice that dirB also contains a file named my1.dat. Clearly, the filename is 
not enough to uniquely specify a file.

The absolute or fully qualified pathname specifies all of the nodes in the file system tree on the 
path from the root to the file itself. The absolute path starts with a slash (/) to designate the 
root node and then lists the names of the nodes down the path to the file within the file system 
tree. The successive names are separated by slashes. The file my1.dat in dirA in Figure 5.1 
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has the fully qualified pathname /dirA/my1.dat, and my1.dat in dirB has the fully qualified 
pathname /dirA/dirB/my1.dat.

5.1.1 The current working directory

A program does not always have to specify files by fully qualified pathnames. At any time, each 
process has an associated directory, called the current working directory, that it uses for 
pathname resolution. If a pathname does not start with /, the program prepends the fully 
qualified path of the current working directory. Hence, pathnames that do not begin with / are 
sometimes called relative pathnames because they are specified relative to the fully qualified 
pathname of the current directory. A dot (.) specifies the current directory, and a dot-dot (..) 
specifies the directory above the current directory. The root directory has both dot and dot-dot 
pointing to itself.

Example 5.1 

After you enter the following command, your shell process has the current working directory /
dirA/dirB.

cd /dirA/dirB

Exercise 5.2 

Suppose the current working directory of a process is the /dirA/dirB directory of Figure 5.1. 
State three ways by which the process can refer to the file my1.dat in directory dirA. State 
three ways by which the process can refer to the file my1.dat in directory dirB. What about the 
file my3.dat in dirC?

Answer:

Since the current working directory is /dirA/dirB, the process can use /dirA/my1.dat, ../
my1.dat or even ./../my1.dat for the my1.dat file in dirA. Some of the ways by which the 
process can refer to the my1.dat file of dirB include my1.dat, /dirA/dirB/my1.dat, ./my1.
dat, or ../dirB/my1.dat. The file my3.dat in dirC can be referred to as /dirC/my3.dat 
or ../../dirC/my3.dat.

The PWD environment variable specifies the current working directory of a process. Do not 
directly change this variable, but rather use the getcwd function to retrieve the current working 
directory and use the chdir function to change the current working directory within a process.

The chdir function causes the directory specified by path to become the current working 
directory for the calling process.

SYNOPSIS

   #include <unistd.h>



   int chdir(const char *path);
                                           POSIX

If successful, chdir returns 0. If unsuccessful, chdir returns –1 and sets errno. The following 
table lists the mandatory errors for chdir.

errno cause

EACCES search permission on a path component denied

ELOOP a loop exists in resolution of path

ENAMETOOLONG the length of path exceeds PATH_MAX, or a pathname component is longer 
than NAME_MAX

ENOENT a component of path does not name an existing directory

ENOTDIR a component of the pathname is not a directory

Example 5.3 

The following code changes the process current working directory to /tmp.

char *directory = " /tmp";

if (chdir(directory) == -1)
   perror("Failed to change current working directory to /tmp");

Exercise 5.4 

Why do ENOENT and ENOTDIR represent different error conditions for chdir?

Answer:

Some of the components of path may represent symbolic links that have to be followed to get 
the true components of the pathname. (See Section 5.4 for a discussion of symbolic links.)

The getcwd function returns the pathname of the current working directory. The buf parameter 
of getcwd represents a user-supplied buffer for holding the pathname of the current working 
directory. The size parameter specifies the maximum length pathname that buf can 
accommodate, including the trailing string terminator.

SYNOPSIS

   #include <unistd.h>



   char *getcwd(char *buf, size_t size);
                                                    POSIX

If successful, getcwd returns a pointer to buf. If unsuccessful, getcwd returns NULL and sets 
errno. The following table lists the mandatory errors for getcwd.

errno cause

EINVAL size is 0

ERANGE size is greater than 0, but smaller than the pathname + 1.

If buf is not NULL, getcwd copies the name into buf. If buf is NULL, POSIX states that the 
behavior of getcwd is undefined. In some implementations, getcwd uses malloc to create a 
buffer to hold the pathname. Do not rely on this behavior.

You should always supply getcwd with a buffer large enough to fit a string containing the 
pathname. Program 5.1 shows a program that uses PATH_MAX as the buffer size. PATH_MAX is an 
optional POSIX constant specifying the maximum length of a pathname (including the 
terminating null byte) for the implementation. The PATH_MAX constant may or may not be 
defined in limits.h. The optional POSIX constants can be omitted from limits.h if their 
values are indeterminate but larger than the required POSIX minimum. For PATH_MAX, the 
_POSIX_PATH_MAX constant specifies that an implementation must accommodate pathname 
lengths of at least 255. A vendor might allow PATH_MAX to depend on the amount of available 
memory space on a specific instance of a specific implementation.

Program 5.1 getcwdpathmax.c

A complete program to output the current working directory.

#include <limits.h>
#include <stdio.h>
#include <unistd.h>
#ifndef PATH_MAX
#define PATH_MAX 255
#endif

int main(void) {
    char mycwd[PATH_MAX];

    if (getcwd(mycwd, PATH_MAX) == NULL) {
        perror("Failed to get current working directory");
        return 1;
    }
    printf("Current working directory: %s\n", mycwd);
    return 0;
}



A more flexible approach uses the pathconf function to determine the real value for the 
maximum path length at run time. The pathconf function is one of a family of functions that 
allows a program to determine system and runtime limits in a platform-independent way. For 
example, Program 2.10 uses the sysconf member of this family to calculate the number of 
seconds that a program runs. The sysconf function takes a single argument, which is the name 
of a configurable systemwide limit such as the number of clock ticks per second (_SC_CLK_TCK) 
or the maximum number of processes allowed per user (_SC_CHILD_MAX).

The pathconf and fpathconf functions report limits associated with a particular file or 
directory. The fpathconf takes a file descriptor and the limit designator as parameters, so the 
file must be opened before a call to fpathconf. The pathconf function takes a pathname and a 
limit designator as parameters, so it can be called without the program actually opening the 
file. The sysconf function returns the current value of a configurable system limit that is not 
associated with files. Its name parameter designates the limit.

SYNOPSIS

   #include <unistd.h>

   long fpathconf(int fildes, int name);
   long pathconf(const char *path, int name);
   long sysconf(int name);
                                                      POSIX

If successful, these functions return the value of the limit. If unsuccessful, these functions 
return –1 and set errno. The following table lists the mandatory errors.

errno cause

EINVAL name has an invalid value

ELOOP a loop exists in resolution of path (pathconf)

Program 5.2 shows a program that avoids the PATH_MAX problem by first calling pathconf to 
find the maximum pathname length. Since the program does not know the length of the path 
until run time, it allocates the buffer for the path dynamically.

Program 5.2 getcwdpathconf.c

A program that uses pathconf to output the current working directory

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(void) {



   long maxpath;
   char *mycwdp;

   if ((maxpath = pathconf(".", _PC_PATH_MAX)) == -1) {
      perror("Failed to determine the pathname length");
      return 1;
   }
   if ((mycwdp = (char *) malloc(maxpath)) == NULL) {
      perror("Failed to allocate space for pathname");
      return 1;
   }
   if (getcwd(mycwdp, maxpath) == NULL) {
      perror("Failed to get current working directory");
      return 1;
   }
   printf("Current working directory: %s\n", mycwdp);
   return 0;
}

5.1.2 Search paths

A user executes a program in a UNIX shell by typing the pathname of the file containing the 
executable. Most commonly used programs and utilities are not in the user's current working 
directory (e.g., vi, cc). Imagine how inconvenient it would be if you actually had to know the 
locations of all system executables to execute them. Fortunately, UNIX has a method of looking 
for executables in a systematic way. If only a name is given for an executable, the shell 
searches for the executable in all possible directories listed by the PATH environment variable. 
PATH contains the fully qualified pathnames of important directories separated by colons.

Example 5.5 

The following is a typical value of the PATH environment variable.

/usr/bin:/etc:/usr/local/bin:/usr/ccs/bin:/home/robbins/bin:.

This specification says that when you enter a command your shell should search /usr/bin first. 
If it does not find the command there, the shell should next examine the /etc directory and so 
on.

Remember that the shell does not search subdirectories of directories in the PATH unless they 
are also explicitly specified in the PATH. If in doubt about which version of a particular program 
you are actually executing, use which to get the fully qualified pathname of the executable. The 
which command is not part of POSIX, but it is available on most systems. Section 5.5 describes 
how you can write your own version of which.

It is common for programmers to create a bin directory for executables, making bin a 
subdirectory of their home directories. The PATH of Example 5.5 contains the /home/robbins/
bin directory. The bin directory appears before dot (.), the current directory, in the search 
path leading to the problem discussed in the next exercise.



Exercise 5.6 

A user develops a program called calhit in the subdirectory progs of his or her home directory 
and puts a copy of the executable in the bin directory of the same account. The user later 
modifies calhit in the progs directory without copying it to the bin directory. What happens 
when the programmer tries to test the new version?

Answer:

The result depends on the value of the PATH environment variable. If the user's PATH is set up 
in the usual way, the shell searches the bin directory first and executes the old version of the 
program. You can test the new version with ./calhit.

Resist the temptation to put the dot (.) at the beginning of the PATH in spite of the problem 
mentioned in Exercise 5.6. Such a PATH specification is regarded as a security risk and may 
lead to strange results when your shell executes local programs instead of the standard system 
programs of the same name.
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5.2 Directory Access

Directories should not be accessed with the ordinary open, close and read functions. Instead, 
they require specialized functions whose corresponding names end with "dir": opendir, 
closedir and readdir.

The opendir function provides a handle of type DIR * to a directory stream that is positioned 
at the first entry in the directory.

SYNOPSIS

   #include <dirent.h>

   DIR *opendir(const char *dirname);
                                                 POSIX

If successful, opendir returns a pointer to a directory object. If unsuccessful, opendir returns 
a null pointer and sets errno. The following table lists the mandatory errors for opendir.

errno cause

EACCES search permission on a path prefix of dirname or read permission on 
dirname is denied

ELOOP a loop exists in resolution of dirname

ENAMETOOLONG the length of dirname exceeds PATH_MAX, or a pathname component is 
longer than NAME_MAX

ENOENT a component of dirname does not name an existing directory

ENOTDIR a component of dirname is not a directory

The DIR type, which is defined in dirent.h represents a directory stream. A directory stream is 
an ordered sequence of all of the directory entries in a particular directory. The order of the 
entries in a directory stream is not necessarily alphabetical by file name.

The readdir function reads a directory by returning successive entries in a directory stream 
pointed to by dirp. The readdir returns a pointer to a struct dirent structure containing 
information about the next directory entry. The readdir moves the stream to the next position 
after each call.

SYNOPSIS
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   #include <dirent.h>

   struct dirent *readdir(DIR *dirp);
                                                 POSIX

If successful, readdir returns a pointer to a struct dirent structure containing information 
about the next directory entry. If unsuccessful, readdir returns a NULL pointer and sets errno. 
The only mandatory error is EOVERFLOW, which indicates that the value in the structure to be 
returned cannot be represented correctly. The readdir function also returns NULL to indicate 
the end of the directory, but in this case it does not change errno.

The closedir function closes a directory stream, and the rewinddir function repositions the 
directory stream at its beginning. Each function has a dirp parameter that corresponds to an 
open directory stream.

SYNOPSIS

   #include <dirent.h>

   int closedir(DIR *dirp);
   void rewinddir(DIR *dirp);
                                         POSIX

If successful, the closedir function returns 0. If unsuccessful, it returns –1 and sets errno. 
The closedir function has no mandatory errors. The rewinddir function does not return a 
value and has no errors defined.

Program 5.3 displays the filenames contained in the directory whose pathname is passed as a 
command-line argument.

Program 5.3 shownames.c

A program to list files in a directory.

#include <dirent.h>
#include <errno.h>
#include <stdio.h>

int main(int argc, char *argv[]) {
   struct dirent *direntp;
   DIR *dirp;

   if (argc != 2) {
      fprintf(stderr, "Usage: %s directory_name\n", argv[0]);
      return 1;
   }

   if ((dirp = opendir(argv[1])) == NULL) {
      perror ("Failed to open directory");
      return 1;



   }

   while ((direntp = readdir(dirp)) != NULL)
      printf("%s\n", direntp->d_name);
   while ((closedir(dirp) == -1) && (errno == EINTR)) ;
   return 0;
}

Exercise 5.7 

Run Program 5.3 for different directories. Compare the output with that from running the ls 
shell command for the same directories. Why are they different?

Answer:

The ls command sorts filenames in alphabetical order. The readdir function displays filenames 
in the order in which they occur in the directory file.

Program 5.3 does not allocate a struct dirent variable to hold the directory information. 
Rather, readdir returns a pointer to a static struct dirent structure. This return structure 
implies that readdir is not thread-safe. POSIX includes readdir_r as part of the POSIX:TSF 
Extension, to provide a thread-safe alternative.

POSIX only requires that the struct dirent structure have a d_name member, representing a 
string that is no longer than NAME_MAX. POSIX does not specify where additional information 
about the file should be stored. Traditionally, UNIX directory entries contain only filenames and 
inode numbers. The inode number is an index into a table containing the other information 
about a file. Inodes are discussed in Section 5.3.

5.2.1 Accessing file status information

This section describes three functions for retrieving file status information. The fstat function 
accesses a file with an open file descriptor. The stat and lstat functions access a file by name.

The lstat and stat functions each take two parameters. The path parameter specifies the 
name of a file or symbolic link whose status is to be returned. If path does not correspond to a 
symbolic link, both functions return the same results. When path is a symbolic link, the lstat 
function returns information about the link whereas the stat function returns information about 
the file referred to by the link. Section 5.4 explains symbolic links. The buf parameter points to 
a user-supplied buffer into which these functions store the information.

SYNOPSIS

  #include <sys/stat.h>

  int lstat(const char *restrict path, struct stat *restrict buf);
  int stat(const char *restrict path, struct stat *restrict buf);
                                                                           POSIX



If successful, these functions return 0. If unsuccessful, they return –1 and set errno. The 
restrict modifier on the arguments specifies that path and buf are not allowed to overlap. 
The following table lists the mandatory errors for these functions.

errno cause

EACCES search permission on a path component denied

EIO an error occurred while reading from the file system

ELOOP a loop exists in resolution of path

ENAMETOOLONG the length of the pathname exceeds PATH_MAX (lstat), the length of path 
exceeds PATH_MAX (stat), or a pathname component is longer than 
NAME_MAX

ENOENT a component of path does not name an existing file

ENOTDIR a component of the path prefix is not a directory

EOVERFLOW the file size in bytes, the number of blocks allocated to file or the file serial 
number cannot be represented in the structure pointed to by buf

The struct stat structure, which is defined in sys/stat.h, contains at least the following 
members.

dev_t     st_dev;       /* device ID of device containing file */
ino_t     st_ino;       /* file serial number */
mode_t    st_mode;      /* file mode */
nlink_t   st_nlink;     /* number of hard links */
uid_t     st_uid;       /* user ID of file */
gid_t     st_gid;       /* group ID of file */
off_t     st_size;      /* file size in bytes (regular files) */
                        /* path size (symbolic links) */
time_t    st_atime;     /* time of last access */
time_t    st_mtime;     /* time of last data modification */
time_t    st_ctime;     /* time of last file status change */

Example 5.8 printaccess.c

The following function displays the time that the file path was last accessed.

#include <stdio.h>
#include <time.h>
#include <sys/stat.h>

void printaccess(char *path) {
   struct stat statbuf;



   if (stat(path, &statbuf) == -1)
      perror("Failed to get file status");
   else
      printf("%s last accessed at %s", path, ctime(&statbuf.st_atime));
}

Exercise 5.9 printaccessmodbad.c

What is wrong with the following function that attempts to print both the access time and the 
time of modification of a file? How would you fix it?

#include <stdio.h>
#include <time.h>
#include <sys/stat.h>

void printaccessmodbad(char *path) {
   struct stat statbuf;

   if (stat(path, &statbuf) == -1)
      perror("Failed to get file status");
   else
     printf("%s accessed: %s modified: %s", path,
            ctime(&statbuf.st_atime), ctime(&statbuf.st_mtime));
}

Answer:

The string returned by ctime ends with a newline, so the result is displayed on 2 lines. More 
importantly, ctime uses static storage to hold the generated string, so the second call to ctime 
will probably write over the string containing the access time. To solve the problem, save the 
access time in a buffer before calling ctime the second time, as in the following code. An 
alternative would be to use two separate print statements. After the strncpy call, the string is 
terminated at the position that would have contained the newline.

printaccessmod.c

#include <stdio.h>
#include <string.h>
#include <time.h>
#include <sys/stat.h>
#define CTIME_SIZE 26

void printaccessmod(char *path) {
   char atime[CTIME_SIZE];   /* 26 is the size of the ctime string */
   struct stat statbuf;

   if (stat(path, &statbuf) == -1)
      perror("Failed to get file status");
   else {
      strncpy(atime, ctime(&statbuf.st_atime), CTIME_SIZE - 1);
      atime[CTIME_SIZE - 2] = 0;
      printf("%s accessed: %s modified: %s", path, atime,



               ctime(&statbuf.st_mtime));
   }
}

The fstat function reports status information of a file associated with the open file descriptor 
fildes. The buf parameter points to a user-supplied buffer into which fstat writes the 
information.

SYNOPSIS

  #include <sys/stat.h>

  int fstat(int fildes, struct stat *buf);
                                                   POSIX

If successful, fstat returns 0. If unsuccessful, fstat returns –1 and sets errno. The following 
table lists the mandatory errors for fstat.

errno cause

EBADF fildes is not a valid file descriptor

EIO an I/O error occurred while reading from the file system

EOVERFLOW the file size in bytes, the number of blocks allocated to file or the file serial 
number cannot be represented in the structure pointed to by buf

5.2.2 Determining the type of a file

The file mode member st_mode specifies the access permissions of the file and the type of file. 
Table 4.1 on page 105 lists the POSIX symbolic names for the access permission bits. POSIX 
specifies the macros of Table 5.1 for testing the st_mode member for the type of file. A regular 
file is a randomly accessible sequence of bytes with no further structure imposed by the 
system. UNIX stores data and programs as regular files. Directories are files that associate 
filenames with locations, and special files specify devices. Character special files represent 
devices such as terminals; block special files represent disk devices. The ISFIFO tests for pipes 
and FIFOs that are used for interprocess communication.Chapter 6 discusses special files, and 
Chapter 14 discusses interprocess communication based on message queues, semaphores and 
shared memory.

Example 5.10 isdirectory.c

The isdirectory function returns true (nonzero) if path is a directory, and false (0) otherwise.

#include <stdio.h>
#include <time.h>
#include <sys/stat.h>



int isdirectory(char *path) {
   struct stat statbuf;

   if (stat(path, &statbuf) == -1)
      return 0;
   else
      return S_ISDIR(statbuf.st_mode);
}

Table 5.1. POSIX macros for testing for the type of file. Here m is of 
type mode_t and the value of buf is a pointer to a struct stat structure.

macro tests for

S_ISBLK(m) block special file

S_ISCHR(m) character special file

S_ISDIR(m) directory

S_ISFIFO(m) pipe or FIFO special file

S_ISLNK(m) symbolic link

S_ISREG(m) regular file

S_ISSOCK(m) socket

S_TYPEISMQ(buf) message queue

S_TYPEISSEM(buf) semaphore

S_TYPEISSHM(buf) shared memory object
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5.3 UNIX File System Implementation

Disk formatting divides a physical disk into regions called partitions. Each partition can have its 
own file system associated with it. A particular file system can be mounted at any node in the 
tree of another file system. The topmost node in a file system is called the root of the file 
system. The root directory of a process (denoted by /) is the topmost directory that the process 
can access. All fully qualified paths in UNIX start from the root directory /.

Figure 5.2 shows a typical root file system tree containing some of the standard UNIX 
subdirectories. The /dev directory holds specifications for the devices (special files) on the 
system. The /etc directory holds files containing information regarding the network, accounts 
and other databases that are specific to the machine. The /home directory is the default 
directory for user accounts. The /opt directory is a standard location for applications in System 
V Release 4. Look for include files in the /usr/include directory. The /var directory contains 
system files that vary and can grow arbitrarily large (e.g., log files, or mail when it arrives but 
before it has been read). POSIX does not require that a file system have these subdirectories, 
but many systems organize their directory structure in a similar way.

Figure 5.2. Structure of a typical UNIX file system

5.3.1 UNIX file implementation

POSIX does not mandate any particular representation of files on disk, but traditionally UNIX 
files have been implemented with a modified tree structure, as described in this section. 
Directory entries contain a filename and a reference to a fixed-length structure called an inode. 
The inode contains information about the file size, the file location, the owner of the file, the 
time of creation, time of last access, time of last modification, permissions and soon.

Figure 5.3 shows the inode structure for a typical file. In addition to descriptive information 
about the file, the inode contains pointers to the first few data blocks of the file. If the file is 
large, the indirect pointer is a pointer to a block of pointers that point to additional data blocks. 
If the file is still larger, the double indirect pointer is a pointer to a block of indirect pointers. If 
the file is really huge, the triple indirect pointer contains a pointer to a block of double indirect 
pointers. The word block can mean different things (even within UNIX). In this context a block 
is typically 8K bytes. The number of bytes in a block is always a power of 2.

Figure 5.3. Schematic structure of a traditional UNIX file.
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Exercise 5.11 

Suppose that an inode is 128 bytes, pointers are 4 bytes long, and the status information takes 
up 68 bytes. Assume a block size of 8K bytes and block pointers of 32 bits each. How much 
room is there for pointers in the inode? How big a file can be represented with direct pointers? 
Indirect? Double indirect? Triple indirect?

Answer:

The single, double, and triple indirect pointers take 4 bytes each, so 128 - 68 - 12 = 48 bytes 
are available for 12 direct pointers. The size of the inode and the block size depend on the 
system. A file as large as 8192 x 12 = 98, 304 bytes can be represented solely with direct 
pointers. If the block size is 8K bytes, the single indirect pointer addresses an 8K block that can 
hold 8192 ÷ 4 = 2048 pointers to data blocks. Thus, the single indirect pointer provides the 
capability of addressing an additional 2048 x 8192 = 16, 777, 216 bytes or 16 megabytes of 
information. Double indirect addressing provide 2048 x 2048 pointers with the capability of 
addressing an additional 32 gigabytes. Triple indirect addressing provides 2048 x 2048 x 2048 
pointers with the capability of addressing an additional 64 terabytes. However, since 20483 = 
233, pointers would need to be longer than 4 bytes to fully address this storage.



Exercise 5.12 

How large a file can you access using only the single indirect, double indirect, and triple indirect 
pointers if the block size is 8K bytes and pointers are 64 bits?

Answer:

A block can now hold only 1024 pointers, so the single indirect pointer can address 1024 x 
8192 = 8,388,608 bytes. Double indirect addressing provides 1024 x 1024 pointers with the 
capability of addressing an additional 8 gigabytes. Triple indirect addressing provides 1024 x 
1024 x 1024 pointers with the capability of addressing an additional 8 terabytes.

Exercise 5.13 

How big can you make a disk partition if the block size is 8K bytes and pointers are 32 bits? 
How can bigger disks be handled? What are the tradeoffs?

Answer:

32-bit addresses can access approximately 4 billion blocks (4,294,967,296 to be exact). 8K 

blocks give 245  3.5 x 1013 bytes. With a block address of fixed size, there is a tradeoff 
between maximum partition size and block size. Larger blocks mean a larger partition for a 
fixed address size. The block size usually determines the smallest retrievable unit on disk. 
Larger blocks can be retrieved relatively more efficiently but can result in greater internal 
fragmentation because of partially filled blocks.

The tree-structured representation of files is fairly efficient for small files and is also flexible if 
the size of the file changes. When a file is created, the operating system finds free blocks on 
the disk in which to place the data. Performance considerations dictate that blocks of the same 
file should be located close to one another on the disk to reduce the seek time. It takes about 
twenty times as long to read a 16-megabyte file in which the data blocks are randomly placed 
than one in which the data blocks are contiguous.

When a system administrator creates a file system on a physical disk partition, the raw bytes 
are organized into data blocks and inodes. Each physical disk partition has its own pool of 
inodes that are uniquely numbered. Files created on that partition use inodes from that 
partition's pool. The relative layout of the disk blocks and inodes has been optimized for 
performance.

POSIX does not require that a system actually represent its files by using inodes. The ino_t 
st_ino member of the struct stat is now called a file serial number rather than an inode 
number. POSIX-compliant systems must provide the information corresponding to the 
mandatory members of the struct stat specified on page 155, but POSIX leaves the actual 
implementation unspecified. In this way, the POSIX standard tries to separate implementation 
from the interface.

Exercise 5.14 

Give some limitations of a file implementation based on inodes.



Answer:

The file must fit entirely in a single disk partition. The partition size and maximum number of 
files are fixed when the system is set up.

5.3.2 Directory implementation

A directory is a file containing a correspondence between filenames and file locations. UNIX has 
traditionally implemented the location specification as an inode number, but as noted above, 
POSIX does not require this. The inode itself does not contain the filename. When a program 
references a file by pathname, the operating system traverses the file system tree to find the 
filename and inode number in the appropriate directory. Once it has the inode number, the 
operating system can determine other information about the file by accessing the inode. (For 
performance reasons, this is not as simple as it seems, because the operating system caches 
both directory entries and inode entries in main memory.)

A directory implementation that contains only names and inode numbers has the following 
advantages.

1.  Changing the filename requires changing only the directory entry. A file can be moved 
from one directory to another just by moving the directory entry, as long as the move 
keeps the file on the same partition or slice. (The mv command uses this technique for 
moving files to locations within the same file system. Since a directory entry refers to an 
inode on the same partition as the directory entry itself, mv cannot use this approach to 
move files between different partitions.)

2.  Only one physical copy of the file needs to exist on disk, but the file may have several 
names or the same name in different directories. Again, all of these references must be 
on the same physical partition.

3.  Directory entries are of variable length because the filename is of variable length. 
Directory entries are small, since most of the information about each file is kept in its 
inode. Manipulating small variable-length structures can be done efficiently. The larger 
inode structures are of fixed length.
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5.4 Hard Links and Symbolic Links

UNIX directories have two types of links—links and symbolic links. A link, sometimes called a 
hard link, is a directory entry. Recall that a directory entry associates a filename with a file 
location. A symbolic link, sometimes called a soft link, is a file that stores a string used to 
modify the pathname when it is encountered during pathname resolution. The behavioral 
differences between hard and soft links in practice is often not intuitively obvious. For simplicity 
and concreteness, we assume an inode representation of the files. However, the discussion 
applies to other file implementations.

A directory entry corresponds to a single link, but an inode may be the target of several of 
these links. Each inode contains the count of the number of links to the inode (i.e., the total 
number of directory entries that contain the inode number). When a program uses open to 
create a file, the operating system makes a new directory entry and assigns a free inode to 
represent the newly created file.

Figure 5.4 shows a directory entry for a file called name1 in the directory /dirA. The file uses 
inode 12345. The inode has one link, and the first data block is block 23567. Since the file is 
small, all the file data is contained in this one block, which is represented by the short text in 
the figure.

Figure 5.4. Directory entry, inode and data block for a simple file.
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5.4.1 Creating or removing a link

You can create additional links to a file with the ln shell commandor the link function. The 
creation of the new link allocates a new directory entry and increments the link count of the 
corresponding inode. The link uses no other additional disk space.

When you delete a file by executing the rm shell command or by calling the unlink function 
from a program, the operating system deletes the corresponding directory entry and 
decrements the link count in the inode. It does not free the inode and the corresponding data 
blocks unless the operation causes the link count to be decremented to 0.

The link function creates a new directory entry for the existing file specified by path1 in the 
directory specified by path2.

SYNOPSIS

   #include <unistd.h>

   int link(const char *path1, const char *path2);



                                                           POSIX

If successful, the link function returns 0. If unsuccessful, link returns –1 and sets errno. The 
following table lists the mandatory errors for link.

errno cause

EACCES search permission on a prefix of path1 or path2 denied, or link requires 
writing in a directory with write permission denied, or process does not have 
required access permission for file

EEXIST path2 resolves to a symbolic link or to an existing file

ELOOP a loop exists in resolution of path1 or path2

EMLINK number of links to file specified by path1 would exceed LINK_MAX

ENAMETOOLONG the length of path1 or path2 exceeds PATH_MAX, or a pathname component 
is longer than NAME_MAX

ENOENT a component of either path prefix does not exist, or file named by path1 
does not exist, or path1 or path2 points to an empty string

ENOSPC directory to contain the link cannot be extended

ENOTDIR a component of either path prefix is not a directory

EPERM file named by path1 is a directory and either calling process does not have 
privileges or implementation does not allow link for directories

EROFS link would require writing in a read-only file system

EXDEV link named by path2 and file named by path1 are on different file systems, 
and implementation does not support links between file systems

Example 5.15 

The following shell command creates an entry called name2 in dirB containing a pointer to the 
same inode as /dirA/name1.

ln /dirA/name1 /dirB/name2

The result is shown in Figure 5.5.

Example 5.16 

The following code segment performs the same action as the ln shell command of Example 



5.15.

#include <stdio.h>
#include <unistd.h>

if (link("/dirA/name1", "/dirB/name2") == -1)
   perror("Failed to make a new link in /dirB");

Figure 5.4 shows a schematic of /dirA/name1 before the ln command of Example 5.15 or the 
link function of Example 5.16 executes. Figure 5.5 shows the result of linking.

Figure 5.5. Two hard links to the same file shown in Figure 5.4.

The ln command (or link function) creates a link (directory entry) that refers to the same 
inode as dirA/name1. No additional disk space is required, except possibly if the new directory 
entry increases the number of data blocks needed to hold the directory information. The inode 
now has two links.

The unlink function removes the directory entry specified by path. If the file's link count is 0 
and no process has the file open, the unlink frees the space occupied by the file.

SYNOPSIS

   #include <unistd.h>

   int unlink(const char *path);
                                           POSIX



If successful, the unlink function returns 0. If unsuccessful, unlink returns –1 and sets errno. 
The following table lists the mandatory errors for unlink.

errno cause

EACCES search permission on a component of the path prefix is denied, or write 
permission is denied for directory containing directory entry to be removed

EBUSY file named by path cannot be unlinked because it is in use and the 
implementation considers this an error

ELOOP a loop exists in resolution of path

ENAMETOOLONG the length of path exceeds PATH_MAX, or a pathname component is longer 
than NAME_MAX

ENOENT a component of path does not name an existing file, or path is an empty 
string

ENOTDIR a component of the path prefix is not a directory

EPERM file named by path is a directory and either the calling process does not 
have privileges or implementation does not allow unlink for directories

EROFS unlink would require writing in a read-only file system

Exercise 5.17 

The following sequence of operations might be performed by a text editor when editing the file /
dirA/name1.

Open the file /dirA/name1.

Read the entire file into memory.

Close /dirA/name1.

Modify the memory image of the file.

Unlink /dirA/name1.

Open the file /dirA/name1 (create and write flags).

Write the contents of memory to the file.



Close /dirA/name1.

How would Figures 5.4 and 5.5 be modified if you executed this sequence of operations on each 
configuration?

Answer:

After these operations were applied to Figure 5.4, the new file would have the same name as 
the old but would have the new contents. It might use a different inode number and block. This 
is what we would expect. When the text editor applies the same set of operations to the 
configuration of Figure 5.5, unlinking removes the directory entry for /dirA/name1. The unlink 
reduces the link count but does not delete the file, since the link /dirB/name2 is still pointing to 
it. When the editor opens the file /dirA/name1 with the create flag set, a new directory entry 
and new inode are created. We now have /dirA/name1 referring to the new file and /dirB/
name2 referring to the old file. Figure 5.6 shows the final result.

Figure 5.6. Situation after a text editor changes a file. The original file 
had inode 12345 and two hard links before editing (i.e., the 

configuration of Figure 5.5).

Exercise 5.18 

Some editors back up the old file. One possible way of doing this is with the following sequence 
of operations.

Open the file /dirA/name1.



Read the entire file into memory.

Close /dirA/name1.

Modify the memory image of the file.

Rename the file /dirA/name1 /dirA/name1.bak.

Open the file /dirA/name1 (create and write flags).

Write the contents of memory to the file.

Close /dirA/name1.

Describe how this strategy affects each of Figures 5.4 and 5.5.

Answer:

Starting with the configuration of Figure 5.4 produces two distinct files. The file /dirA/name1 
has the new contents and uses a new inode. The file /dirA/name1.bak has the old contents 
and uses the old inode. For the configuration of Figure 5.5, /dirA/name1.bak and /dirB/name2 
point to the old contents using the old inode. The second open creates a new inode for dirA/
name1, resulting in the configuration of Figure 5.7.

Figure 5.7. Situation after one file is changed with an editor that makes 
a backup copy.



The behavior illustrated in Exercises 5.17 and 5.18 may be undesirable. An alternative 
approach would be to have both /dirA/name1 and /dirB/name2 reference the new file. In 
Exercise 5.22 we explore an alternative sequence of operations that an editor can use.

5.4.2 Creating and removing symbolic links

A symbolic link is a file containing the name of another file or directory. A reference to the 
name of a symbolic link causes the operating system to locate the inode corresponding to that 
link. The operating system assumes that the data blocks of the corresponding inode contain 
another pathname. The operating system then locates the directory entry for that pathname 
and continues to follow the chain until it finally encounters a hard link and a real file. The 
system gives up after a while if it doesn't find a real file, returning the ELOOP error.

Create a symbolic link by using the ln command with the -s option or by invoking the symlink 
function. The path1 parameter of symlink contains the string that will be the contents of the 
link, and path2 gives the pathname of the link. That is, path2 is the newly created link and 
path1 is what the new link points to.

SYNOPSIS

   #include <unistd.h>

   int symlink(const char *path1, const char *path2);
                                                                 POSIX

If successful, symlink returns 0. If unsuccessful, symlink returns –1 and sets errno. The 
following table lists the mandatory errors for symlink.

errno cause

EACCES search permission on a component of the path prefix of path2 is denied, or 
link requires writing in a directory with write permission denied 

EEXIST path2 names an existing file or symbolic link

EIO an I/O error occurred while reading from or writing to the file system

ELOOP a loop exists in resolution of path2

ENAMETOOLONG the length of path2 exceeds PATH_MAX, or a pathname component is longer 
than NAME_MAX or the length path1 is longer than SYMLINK_MAX

ENOENT a component of path2 does not name an existing file, or path2 is an empty 
string

ENOSPC directory to contain the link cannot be extended, or the file system is out of 
resources



ENOTDIR a component of the path prefix for path2 is not a directory

EROFS the new symbolic link would reside on a read-only file system

Example 5.19 

Starting with the situation shown in Figure 5.4, the following command creates the symbolic 
link /dirB/name2, as shown in Figure 5.8.

ln -s /dirA/name1 /dirB/name2

Figure 5.8. Ordinary file with a symbolic link to it.

Example 5.20 

The following code segment performs the same action as the ln -s of Example 5.19.

if (symlink("/dirA/name1", "/dirB/name2") == -1)
   perror("Failed to create symbolic link in /dirB");

Unlike Exercise 5.17, the ln command of Example 5.19 and the symlink function of Example 
5.20 use a new inode, in this case 13579, for the symbolic link. Inodes contain information 
about the type of file they represent (i.e., ordinary, directory, special, or symbolic link), so 
inode 13579 contains information indicating that it is a symbolic link. The symbolic link requires 
at least one data block. In this case, block 15213 is used. The data block contains the name of 
the file that /dirB/name2 is linked to, in this case, /dirA/name1. The name may be fully 
qualified as in this example, or it may be relative to its own directory.



Exercise 5.21 

Suppose that /dirA/name1 is an ordinary file and /dirB/name2 is a symbolic link to /dirA/
name1, as in Figure 5.8. How are the files /dirB/name2 and /dirA/name1 related after the 
sequence of operations described in Exercise 5.17?

Answer:

/dirA/name1 now refers to a different inode, but /dirB/name2 references the name dirA/
name1, so they still refer to the same file, as shown in Figure 5.9. The link count in the inode 
counts only hard links, not symbolic links. When the editor unlinks /dirA/name1, the operating 
system deletes the file with inode 12345. If other editors try to edit /dirB/name2 in the interval 
during which /dirA/name1 is unlinked but not yet created, they get an error.

Figure 5.9. Situation after editing a file that has a symbolic link.

Exercise 5.22 

How can the sequence of operations in Exercise 5.17 be modified so that /dirB/name2 
references the new file regardless of whether this was a hard link or a symbolic link?

Answer:

The following sequence of operations can be used.

Open the file /dirA/name1.

Read the entire file into memory.



Close /dirA/name1.

Modify the memory image of the file.

Open the file /dirA/name1 with the O_WRONLY and O_TRUNC flags.

Write the contents of memory to the file.

Close /dirA/name1.

When the editor opens the file the second time, the same inode is used but the contents are 
deleted. The file size starts at 0. The new file will have the same inode as the old file.

Exercise 5.23 

Exercise 5.22 has a possibly fatal flaw: If the application or operating system crashes between 
the second open and the subsequent write operation, the file is lost. How can this be prevented?

Answer:

Before opening the file for the second time, write the contents of memory to a temporary file. 
Remove the temporary file after the close of /dirA/name1 is successful. This approach allows 
the old version of the file to be retrieved if the application crashes. However, a successful 
return from close does not mean that the file has actually been written to disk, since the 
operating system buffers this operation. One possibility is to use a function such as fsync after 
write. The fsync returns only after the pending operations have been written to the physical 
medium. The fsync function is part of the POSIX:FSC Extension.

Exercise 5.24 

Many programs assume that the header files for the X Window System are in /usr/include/
X11, but under Sun's Solaris operating environment these files are in the directory /usr/
openwin/share/include/X11. How can a system administrator deal with the inconsistency?

Answer:

There are several ways to address this problem.

1.  Copy all these files into /usr/include/X11.

2.  Move all the files into /usr/include/X11.

3.  Have users modify all programs that contain lines in the following form.

#include <X11/xyz.h>



Replace these lines with the following.

#include, "/usr/openwin/share/include/X11/xyz.h"

4.  Have users modify their makefiles so that compilers look for header files in the following 
directory.

/usr/openwin/share/include

5.  Create a symbolic link from /usr/include/X11 to the following directory.

/usr/openwin/share/include/X11

All the alternatives except the last have serious drawbacks. If the header files are copied to the 
directory /usr/include/X11, then two copies of these files exist. Aside from the additional disk 
space required, an update might cause these files to be inconsistent. Moving the files (copying 
them to the directory /usr/include/X11 and then deleting them from /usr/openwin/share/
include/X11) may interfere with operating system upgrades. Having users modify all their 
programs or makefiles is unreasonable. Another alternative not mentioned above is to use an 
environment variable to modify the search path for header files.

Exercise 5.25 

Because of a large influx of user mail, the root partition of a server becomes full. What can a 
system administrator do?

Answer:

Pending mail is usually kept in a directory with a name such as /var/mail or /var/spool/
mail, which may be part of the root partition. One possibility is to expand the size of the root 
partition. This expansion usually requires reinstallation of the operating system. Another 
possibility is to mount an unused partition on var. If a spare partition is not available, the /var/
spool/mail directory can be a symbolic link to any directory in a partition that has sufficient 
space.

Exercise 5.26 

Starting with Figure 5.8, execute the command rm /dirA/name1. What happens to /dirB/
name2?

Answer:

This symbolic link still exists, but it is pointing to something that is no longer there. A reference 
to /dirB/name2 gives an error as if the symbolic link /dirB/name2 does not exist. However, if 
later a new file named /dirA/name1 is created, the symbolic link then points to that file.



When you reference a file representing a symbolic link by name, does the name refer to the link 
or to the file that the link references? The answer depends on the function used to reference 
the file. Some library functions and shell commands automatically follow symbolic links and 
some do not. For example, the rm command does not follow symbolic links. Applying rm to a 
symbolic link removes the symbolic link, not what the link references. The ls command does 
not follow symbolic links by default, but lists properties such as date and size of the link itself. 
Use the -L option with ls to obtain information about the file that a symbolic link references. 
Some operations have one version that follows symbolic links (e.g., stat) and another that 
does not (e.g., lstat). Read the man page to determine a particular function's behavior in 
traversing symbolic links.
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5.5 Exercise: The which Command

The which command is available on many systems. It takes the name of an executable as a 
command-line argument and displays the fully qualified pathname of the corresponding 
executable. If the argument to which contains a path specifier (/), which just checks to see if 
this path corresponds to an executable. If the argument does not contain a path specifier, 
which uses the PATH environment variable to search directories for the corresponding 
executable. If which locates the executable, it prints the fully qualified path. Otherwise, which 
prints an message indicating that it could not find the executable in the path.

Implement a which command. If no path-specifier character is given, use getenv to get the 
PATH environment variable. Start by creating a fully qualified path, using each component of 
the PATH until an appropriate file is found. Write a checkexecutable function with the following 
prototype.

int checkexecutable(char *name);

The checkexecutable function returns true if the given file is executable by the owner of the 
current process. Use geteuid and getegid to find the user ID and group ID of the owner of the 
process. Use stat to see if this user has execute privilege for this file. There are three cases to 
consider, depending on whether the user is the owner of the file, in the same group as the file 
or neither.

The which command of the csh shell also checks to see if an alias is set for the command-line 
argument and reports that alias instead of searching for an executable. See if you can 
implement this feature.
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5.6 Exercise: Biffing

Some systems have a facility called biff that enables mail notification. When a user who is 
logged in receives mail, biff notifies the user in some way (e.g., beeping at the terminal or 
displaying a message). UNIX folklore has it that biff's original author had a dog named Biff 
who barked at mail carriers.

Program 5.4 shows the code for a C program called simplebiff.c that beeps at the terminal at 
regular intervals if the user ostudent has pending mail. The program beeps by sending a Ctrl-G 
(ASCII 7) character to standard error. Most terminals handle the receipt of Ctrl-G by producing 
a short beep. The program continues beeping every 10 seconds, until it is killed or the mail file 
is removed. This simple version assumes that if the mail file exists, it has mail in it. On some 
systems the mail file may exist but contain zero bytes when there is no mail. Program 8.10 on 
page 281 gives a version that does not have this problem.

Example 5.27 

The following command starts simplebiff.

simplebiff &

The & tells the shell to run simplebiff in the background so that ostudent can do something 
else.

Exercise 5.28 

What happens if you execute the command of Example 5.27 and then log off?

Answer:

The simplebiff program continues to run after you log off, since it was started in the 
background. Execute ps -a to determine simplebiff's process ID. Kill the simplebiff process 
by entering the command kill -KILL pid. Make sure simplebiff is gone by doing another 
ps -a.

Program 5.4 simplebiff.c

A simple program to notify ostudent of pending mail.

#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/stat.h>
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#define MAILFILE "/var/mail/ostudent"
#define SLEEPTIME 10

int main(void) {
   int mailfd;

   for( ; ; ) {
      if ((mailfd = open(MAILFILE, O_RDONLY)) != -1) {
         fprintf(stderr, "%s", "\007");
         while ((close(mailfd) == -1) && (errno == EINTR)) ;
      }
      sleep(SLEEPTIME);
   }
}

Mail is usually stored in a file in the /var/mail or /var/spool/mail directory. A file in that 
directory with the same name as the user's login name contains all unread mail for that user. If 
ostudent has mail, an open of /var/mail/ostudent succeeds; otherwise, the open fails. If the 
file exists, the user has unread mail and the program beeps. In any case, the program sleeps 
and then repeats the process indefinitely.

Exercise 5.29 

Run Program 5.4 after replacing the user name and mail directory names so that they are 
appropriate for your system.

Program 5.4 is not very general because the user name, mail directory and sleep time are 
hardcoded. In addition, the stat function provides more information about a file without the 
overhead of open.

Exercise 5.30 

Modify Program 5.4 to use stat instead of open.

Exercise 5.31 

On some systems, a user's new mail file always exists but has zero bytes if the user has no 
mail. Modify simplebiff to account for this case.

The POSIX-approved way of getting the user name is to call getuid to find out the user ID and 
then call getpwuid to retrieve the user's login name. The getpwuid function takes the user's 
numerical ID as a parameter and retrieves a passwd structure that has the user's name as a 
member.

SYNOPSIS

   #include <pwd.h>

   struct passwd *getpwuid(uid_t uid);



                                                   POSIX

If unsuccessful, getpwuid returns a NULL pointer and sets errno.

The struct passwd structure is defined in pwd.h. The POSIX base definition specifies that the 
struct passwd structure have at least the following members.

char   *pw_name      /* user's login name */
uid_t  pw_uid        /* numerical user ID */
gid_t  pw_gid        /* numerical group ID */
char   *pwd_dir      /* initial working directory */
char   *pw_shell     /* program to use as shell */

Exercise 5.32 

Find out the base directory name of the directory in which unread mail is stored on your 
system. (The base directory in Program 5.4 is /var/mail/.) Construct the pathname of the 
unread mail by concatenating the base mail directory and the program's user name. Use 
getuid and getpwuid in combination to determine the user name at run time.

The directory used for mail varies from system to system, so you must determine the location 
of the system mail files on your system in order to use simplebiff. A better version of the 
program would allow the user to specify a directory on the command line or to use system-
specific information communicated by environment variables if this information is available. The 
POSIX:Shell and Utilities standard specifies that the sh shell use the MAIL environment variable 
to determine the pathname of the user's mail filefor the purpose of incoming mail notification. 
The same standard also specifiesthat the MAILCHECK environment variable be used to specify 
how often (in seconds) the shell should check for the arrival of new messages for notification. 
The standard states that the default value of MAILCHECK should be 600.

Exercise 5.33 

Rewrite Program 5.4 so that it uses the value of MAILCHECK for the sleep time if that 
environment variable is defined. Otherwise, it should use a default value of 600.

Exercise 5.34 

Rewrite your program of Exercise 5.33 so that it uses the value passed on the command line as 
the pathname for the user's mailbox. If simplebiff is called with no command-line arguments, 
the program should use the value of the MAIL environment variable as the pathname. If MAIL is 
undefined and there were no command-line arguments, the program should use a default path 
of /var/mail/user. Use the method of Exercise 5.32 to find the value of user.

Exercise 5.35 

Rewrite Program 5.4 so that it has the following synopsis.



simplebiff [-s n] [-p pathname]

The [ ] in the synopsis indicates optional command-line arguments. The first command-line 
argument specifies a sleep interval. If -s n is not provided on the command line and 
MAILCHECK is not defined, use thevalue of SLEEPTIME as a default. The -p pathname specifies a 
pathname for the system mail directory. If this option is not specified on the command line, use 
the MAIL environment variable value as a default value. If MAIL is not defined, use the 
MAILFILE defined in the program. Read the man page for the getopt function and use it to 
parse the command-line arguments.
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5.7 Exercise: News biff

The simplebiff program informs the user of incoming mail. A user might also want to be 
informed of changes in other files such as the Internet News files. If a system is a news server, 
it probably organizes articles as individual files whose pathname contains the newsgroup name.

Example 5.36 

A system keeps its news files in the directory /var/spool/news. Article 1034 in newsgroup 
comp.os.unix is located in the following file.

/var/spool/news/comp/os/unix/1034

The following exercises develop a facility for biffing when any file in a list of files changes.

1.  Write a function called lastmod that returns the time at which a file was last modified. 
The prototype for lastmod is as follows.

time_t lastmod(char *pathname);

Use stat to determine the last modification time. The time_t is time in seconds since 
00:00:00 UTC, January 1, 1970. The lastmod function returns –1 if there is an error 
and sets errno to the error number set by stat.

2.  Write a main program that takes a pathname as a command-line argument and calls 
lastmod to determine the time of last modification of the corresponding file. Use ctime 
to print out the time_t value in a readable form. Compare the results with those 
obtained from ls -l.

3.  Write a function called convertnews that converts a newsgroup name to a fully qualified 
pathname. The prototype of convertnews is as follows.

char *convertnews(char *newsgroup);

If the environment variable NEWSDIR is defined, use it to determinethe path. Otherwise, 
use /var/spool/news. (Call getenv to determine whether the environment variable is 
defined.) For example, if the newsgroup is comp.os.unix and NEWSDIR is not defined, 
the pathname is the following.

/var/spool/news/comp/os/unix

The convertnews function allocates space to hold the converted string and returns a 
pointer to that space. (A common error is to return a pointer to an automatic variable 
defined within convertnews.) Do not modify newsgroup in convertnews. The 
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convertnews returns a NULL pointer and sets errno if there was an error.

4.  Write a program that takes a newsgroup name and a sleeptime value as command-line 
arguments. Print the time of the last modification of the newsgroup and then loop as 
follows.

a.  Sleep for sleeptime.

b.  Test to see whether the newsgroup has been modified.

c.  If the newsgroup directory has been modified, print a message with the 
newsgroup name and the time of modification.

Test the program on several newsgroups. Post news to a local newsgroup to verify that 
the program is working. The newsgroup directory can be modified both by news arrival 
and by expiration. Most systems expire news in the middle of the night.

5.  Generalize your newsbiff program so that it reads in a list of files to be tracked from a 
file. Your program should store the files and their last modification times in a list. (For 
example, you can modify the list object developed in Section 2.9 for this purpose.) Your 
program should sleep for a specified number of seconds and then update the 
modification times of the files in the list. If any have changed, print an informative 
message to standard output.
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5.8 Exercise: Traversing Directories

The exercises in this section develop programs to traverse directory trees in depth-first and 
breadth-first orders. Depth-first searches explore each branch of a tree to its leaves before 
looking at other branches. Breadth-first searches explore all the nodes at a given level before 
descending lower in the tree.

Example 5.37 

For the file system tree in Figure 5.1 on page 146, depth-first ordering visits the nodes in the 
following order.

/
  dirC
     my3.dat
  dirA
     dirB
        my1.dat
     my1.dat
     my2.dat

The indentation of the filenames in Example 5.37 shows the level in the file system tree. Depth-
first search is naturally recursive, as indicated by the following pseudocode.

depthfirst(root) {
   for each node at or below root
      visit node;
        if node is a directory
           depthfirst(node);
}

Example 5.38 

For the file system tree in Figure 5.1, breadth-first order visits the nodes in the following order.

/
/dirC
/dirA
/dirC/my3.dat
/dirA/dirB
/dirA/my1.dat
/dirA/my2.dat
/dirA/dirB/my1.dat

Breadth-first search can be implemented with a queue similar to the history queue of Program 
2.8 on page 47. As the program encounters each directory node at a particular level, it 
enqueues the complete pathname for later examination. The following pseudocode assumes the 
existence of a queue. The enqueue operation puts a node at the end of the queue, and the 
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dequeue operation removes a node from the front of the queue.

breadthfirst(root){
    enqueue(root);
    while (queue is not empty) {
       dequeue(&next);
       for each node directly below next:
           visit the node
           if node is a directory
              enqueue(node)
    }
 }

Exercise 5.39 

The UNIX du shell command is part of the POSIX:UP Extension. The command displays the 
sizes of the subdirectories of the tree rooted at the directory specified by its command-line 
argument. If called with no directory, the du utility uses the current working directory. If du is 
defined on your system, experiment with it. Try to determine which search strategy it uses to 
traverse the tree.

Develop a program called mydu that uses a depth-first search strategy to display the sizes of 
the subdirectories in a tree rooted at the specified file.

1.  Write a function called depthfirstapply that has the following prototype.

int depthfirstapply(char *path, int pathfun(char *path1));

The depthfirstapply function traverses the tree, starting at path. It applies the 
pathfun function to each file that it encounters in the traversal. The depthfirstapply 
function returns the sum of the positive return values of pathfun, or –1 if it failed to 
traverse any subdirectory of the directory. An example of a possible pathfun is the 
sizepathfun function specified in the next part.

2.  Write a function called sizepathfun that has the following prototype.

int sizepathfun(char *path);

The sizepathfun function outputs path along with other information obtained by calling 
stat for path. The sizepathfun returns the size in blocks of the file given by path or -1 
if path does not correspond to an ordinary file.

3.  Use depthfirstapply with the pathfun given by sizepathfun to implement the 
following command.

showtreesize pathname



The showtreesize command writes pathname followed by its total size to standard 
output. If pathname is a directory, the total size corresponds to the size of the entire 
subtree rooted at pathname. If pathname is a special file, print an informative message 
but no size.

4.  Write a command called mydu that is called with a command-line argument rootpath as 
follows.

mydu rootpath

The mydu program calls a modified depthfirstapply with the function sizepathfun. It 
outputs the size of each directory followed by its pathname. The size of the directory 
does not count the size of subtrees of that directory. The program outputs the total size 
of the tree at the end and exits.

5.  Write breadthfirstapply that is similar to depthfirstapply but uses a breadth-first 
search strategy.

[ Team LiB ]   
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5.9 Additional Reading

Advanced Programming in the UNIX Environment by Stevens [112] has a good technical 
discussion of files and directories. Depth-first and breadth-first search strategies are discussed 
in standard algorithms books such as An Introduction to Algorithms by Cormen, Leiserson and 
Rivest [25].

[ Team LiB ]   
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Chapter 6. UNIX Special Files

This chapter discusses UNIX special files that represent devices. Two important examples of 
special files are pipes and FIFOs, interprocess communication mechanisms that allow processes 
running on the same system to share information and hence cooperate. The chapter introduces 
the client-server model and also discusses how to handle special files representing devices such 
as terminals.

Objectives

●     Learn about interprocess communication
●     Experiment with client-server interactions
●     Explore pipes and redirection
●     Use device control to set parameters
●     Understand how UNIX achieves device independence

[ Team LiB ]   
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6.1 Pipes

The capacity to communicate is essential for processes that cooperate to solve a problem. The 
simplest UNIX interprocess communication mechanism is the pipe, which is represented by a 
special file. The pipe function creates a communication buffer that the caller can access 
through the file descriptors fildes[0] and fildes[1]. The data written to fildes[1] can be 
read from fildes[0] on a first-in-first-out basis.

SYNOPSIS

  #include <unistd.h>

  int pipe(int fildes[2]);
                                      POSIX

If successful, pipe returns 0. If unsuccessful, pipe returns –1 and sets errno. The following 
table lists the mandatory errors for pipe.

errno cause

EMFILE more than MAX_OPEN-2 file descriptors already in use by this process

ENFILE number of simultaneously open files in system would exceed system-imposed limit

A pipe has no external or permanent name, so a program can access it only through its two 
descriptors. For this reason, a pipe can be used only by the process that created it and by 
descendants that inherit the descriptors on fork. The pipe function described here creates a 
traditional unidirectional communication buffer. The POSIX standard does not specify what 
happens if a process tries to write to fildes[0] or read from fildes[1].

When a process calls read on a pipe, the read returns immediately if the pipe is not empty. If 
the pipe is empty, the read blocks until something is written to the pipe, as long as some 
process has the pipe open for writing. On the other hand, if no process has the pipe open for 
writing, a read from an empty pipe returns 0, indicating an end-of-file condition. (This 
description assumes that access to the pipe uses blocking I/O.)

Example 6.1 

The following code segment creates a pipe.

int fd[2];
if (pipe(fd) == -1)
   perror("Failed to create the pipe");
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If the pipe call executes successfully, the process can read from fd[0] and write to fd[1].

A single process with a pipe is not very useful. Usually a parent process uses pipes to 
communicate with its children. Program 6.1 shows a simple program in which the parent 
creates a pipe before forking a child. The parent then writes a string to the pipe and prints a 
message to standard error. The child reads a message from the pipe and then prints to 
standard error. This program does not check for errors on the read or write operations.

Program 6.1 parentwritepipe.c

A program in which a parent writes a string to a pipe and the child reads the string. The 
program does not check for I/O errors.

#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#define BUFSIZE 10

int main(void) {
   char bufin[BUFSIZE] = "empty";
   char bufout[] = "hello";
   int bytesin;
   pid_t childpid;
   int fd[2];

   if (pipe(fd) == -1) {
      perror("Failed to create the pipe");
      return 1;
   }
   bytesin = strlen(bufin);
   childpid = fork();
   if (childpid == -1) {
      perror("Failed to fork");
      return 1;
   }
   if (childpid)                                       /* parent code */
      write(fd[1], bufout, strlen(bufout)+1);
   else                                                 /* child code */
      bytesin = read(fd[0], bufin, BUFSIZE);
   fprintf(stderr, "[%ld]:my bufin is {%.*s}, my bufout is {%s}\n",
           (long)getpid(), bytesin, bufin, bufout);
   return 0;
}

Exercise 6.2 

Run Program 6.1 and explain the results. Does the child always read the full string?

Answer:



The parent's bufin always contains the string "empty". The child's bufin most likely contains 
the string "hello". However, reads from pipes are not atomic. That is, there is no guarantee 
that a single read call actually retrieves everything written by a single write call. It is possible 
(though not likely in this case) that the child's bufin could contain something like "helty" if 
read retrieves only partial results. If the parent's write operation fails, the child's bufin 
contains "empty".

Exercise 6.3 

Consider the following code segment from Program 6.1.

if (childpid)
   write(fd[1], bufout, strlen(bufout)+1);
else
   bytesin = read(fd[0], bufin, BUFSIZE);

What happens if you replace it with the following code?

if (childpid)
   copyfile(STDIN_FILENO, fd[1]);
else
   copyfile(fd[0], STDOUT_FILENO);

(The copyfile function is shown in Program 4.6 on page 100.)

Answer:

The parent process reads from standard input and writes to the pipe, while the child reads from 
the pipe and echoes to standard output. The parent echoes everything entered at the keyboard 
as it is typed, and the child writes to the screen as it reads each entered line from the pipe. A 
difficulty arises, however, when you enter the end-of-file character (usually Ctrl-D) at the 
terminal. The parent detects the end of the input, displays the message written by its fprintf, 
and exits with no problem, closing its descriptors to the pipe. Unfortunately, the child still has fd
[1] open, so the copyfile function does not detect that input has ended. The child hangs, 
waiting for input, and does not exit. Since the parent has exited, the prompt appears, but the 
child process is still running. Unless you execute ps you might think that the child terminated 
also. To fix the problem, replace the substitute code with the following.

if (childpid && (close(fd[0]) != -1))
   copyfile(STDIN_FILENO, fd[1]);
else if (close(fd[1]) != -1)
   copyfile(fd[0], STDOUT_FILENO);

Program 6.2 shows a modification of Program 3.2 from page 68. The modification demonstrates 
how to use reading from pipes for synchronization. The parent creates a pipe before creating n-
1 children. After creating all its children, the parent writes n characters to the pipe. Each 
process, including the parent, reads a character from the pipe before proceeding to output its 
information to standard error. Since the read from the pipe blocks until there is something to 
read, each child waits until the parent writes to the pipe, thereby providing a synchronization 



point called a barrier. None of the processes can do any writing to standard error until all of the 
processes have been created. Section 6.8 gives another example of barrier synchronization. 
Notice that Program 6.2 uses r_write and r_read rather than write and read to ensure that 
the parent actually writes everything and that the children actually perform their reads. The 
children do not synchronize after the barrier.

Program 6.2 synchronizefan.c

A synchronized process fan. Processes wait until all have been created before echoing their 
messages to standard error.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include "restart.h"

int main  (int argc, char *argv[]) {
   char buf[] = "g";
   pid_t childpid = 0;
   int fd[2];
   int i, n;

   if (argc != 2){      /* check for valid number of command-line arguments */
      fprintf (stderr, "Usage: %s processes\n", argv[0]);
      return 1;
   }
   n = atoi(argv[1]);
   if (pipe(fd) == -1) {                 /* create pipe for synchronization */
      perror("Failed to create the synchronization pipe");
      return 1;
   }
   for (i = 1; i < n;  i++)                  /* parent creates all children */
       if ((childpid = fork()) <= 0)
           break;
   if (childpid > 0) {          /* write synchronization characters to pipe */
      for (i = 0; i < n; i++)
         if (r_write(fd[1], buf, 1) != 1)
            perror("Failed to write synchronization characters");
   }
   if (r_read(fd[0], buf, 1) != 1)                      /* synchronize here */
      perror("Failed to read synchronization characters");
   fprintf(stderr, "i:%d  process ID:%ld  parent ID:%ld  child ID:%ld\n",
           i, (long)getpid(), (long)getppid(), (long)childpid);
   return (childpid == -1);
}
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file:///D|/Tutoriales%20&%20Programacion/Prep%20Finales/XxX/Prentice%20Hall%20-%20Unix%20Systems%20Programming%202nd%20Ed/0130424110_14051533.html
file:///D|/Tutoriales%20&%20Programacion/Prep%20Finales/XxX/Prentice%20Hall%20-%20Unix%20Systems%20Programming%202nd%20Ed/NFO/lib.html


[ Team LiB ]   

6.2 Pipelines

Section 4.7 explains how a process can redirect standard input or output to a file. Redirection 
allows programs that are written as filters to be used very generally. This section describes how 
to use redirection with pipes to connect processes together. (You may want to review Section 
4.7, which explains how a process can redirect standard input or output to a file.)

Example 6.4 

The following commands use the sort filter in conjunction with ls to output a directory listing 
sorted by size.

ls -l > my.file
sort -n +4 < my.file

The first option to sort gives the type of sort (n means numeric). The second option instructs 
the program to find the sort key by skipping four fields.

The first command of Example 6.4 causes the process that runs the ls -l to redirect its 
standard output to the disk file my.file. Upon completion, my.file contains the unsorted 
directory listing. At this point, the second command creates a process to run the sort with its 
standard input redirected from my.file. Since sort is a filter, the sorted listing appears on 
standard output. Unfortunately, when the pair of commands completes, my.file remains on 
disk until explicitly deleted.

An alternative approach for outputting a sorted directory listing is to use an interprocess 
communication (IPC) mechanism such as a pipe to send information directly from the ls 
process to the sort process.

Example 6.5 

The following alternative to the commands of Example 6.4 produces a sorted directory listing 
without creating the intermediate file my.file.

ls -l | sort -n +4

The vertical bar (|) of Example 6.5 represents a pipe. A programmer can build complicated 
transformations from simple filters by feeding the standard output of one filter into the 
standard input of the other filter through an intermediate pipe. The pipe acts as a buffer 
between the processes, allowing them to read and write at different speeds. The blocking 
nature of read and write effectively synchronize the processes.

The connection between ls and sort in Example 6.5 differs from redirection because no 
permanent file is created. The standard output of ls is "connected" to the standard input of 
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sort through the intermediate communication buffer. Figure 6.1 shows a schematic of the 
connection and the corresponding file descriptor tables after the processes representing ls and 
sort establish the connection. The ls process redirects its standard output to the write 
descriptor of the pipe, and sort redirects its standard input to the read descriptor of the pipe. 
The sort process reads the data that ls writes on a first-in-first-out basis. The sort process 
does not have to consume data at the same rate as ls writes it to the pipe.

Figure 6.1. Status of the file descriptor table during execution of 
Example 6.5.

Program 6.3 shows a program that implements the equivalent of Example 6.5. Figures 6.2 to 
6.4 depict the state of the file descriptor table for Program 6.3. In Figure 6.2, the child process 
inherits a copy of the file descriptor table of the parent. Both processes have read and write 
descriptors for the pipe. Figure 6.3 shows the file descriptor table after the child redirects its 
standard output and the parent redirects its standard input, but before either process closes 
unneeded file descriptors. Figure 6.4 shows the configuration after each process completes the 
close calls. This is the configuration inherited by execl.

Figure 6.2. Status of the file descriptor table after the fork in Program 
6.3.



Figure 6.3. Status of the file descriptor table after both dup2 functions of 
Program 6.3.



Figure 6.4. Status of the file descriptor table after all close calls of 
Program 6.3.



Exercise 6.6 

Explain why the only return values in Program 6.3 indicate error conditions. Under what 
circumstances does this program execute successfully?

Answer:

The program executes successfully when both parent and child successfully run execl on their 
respective programs and these programs complete successfully. If execution reaches one of the 
return statements of Program 6.3, at least one of the execl calls failed. Once an execl call 
completes successfully, the program on which execl was run is responsible for the error 
handling.

Program 6.3 simpleredirect.c

A program to execute the equivalent of ls -l | sort -n +4.

#include <errno.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>

int main(void) {
   pid_t childpid;
   int fd[2];

   if ((pipe(fd) == -1) || ((childpid = fork()) == -1)) {



      perror("Failed to setup pipeline");
      return 1;
   }

   if (childpid == 0) {                                  /* ls is the child */
      if (dup2(fd[1], STDOUT_FILENO) == -1)
         perror("Failed to redirect stdout of ls");
      else if ((close(fd[0]) == -1) || (close(fd[1]) == -1))
         perror("Failed to close extra pipe descriptors on ls");
      else {
         execl("/bin/ls", "ls", "-l", NULL);
         perror("Failed to exec ls");
      }
      return 1;
   }
   if (dup2(fd[0], STDIN_FILENO) == -1)               /* sort is the parent */
       perror("Failed to redirect stdin of sort");
   else if ((close(fd[0]) == -1) || (close(fd[1]) == -1))
       perror("Failed to close extra pipe file descriptors on sort");
   else {
      execl("/bin/sort", "sort", "-n", "+4", NULL);
      perror("Failed to exec sort");
   }
   return 1;
}

Exercise 6.7 

What output would be generated if the file descriptors fd[0] and fd[1] were not closed before 
the calls to execl?

Answer:

No output would be generated. The sort process reads from standard input until an end-of-file 
occurs. Since it is reading from a pipe, sort detects an end-of-file (read returns 0) only when 
the pipe is empty and no processes have the pipe open for writing. As illustrated in Figure 6.4, 
only the ls program (the child) can write to the pipe. Eventually, this program terminates, and 
sort (the parent) detects end-of-file. If Program 6.3 omits the close calls, the situation looks 
like Figure 6.3. When the child terminates, the parent still has file descriptor [4] open for 
writing to the pipe. The parent blocks indefinitely, waiting for more data.

[ Team LiB ]   
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6.3 FIFOs

Pipes are temporary in the sense that they disappear when no process has them open. POSIX 
represents FIFOs or named pipes by special files that persist even after all processes have 
closed them. A FIFO has a name and permissions just like an ordinary file and appears in the 
directory listing given by ls. Any process with the appropriate permissions can access a FIFO. 
Create a FIFO by executing the mkfifo command from a shell or by calling the mkfifo function 
from a program.

The mkfifo function creates a new FIFO special file corresponding to the pathname specified by 
path. The mode argument specifies the permissions for the newly created FIFO.

SYNOPSIS

   #include <sys/stat.h>

   int mkfifo(const char *path, mode_t mode);
                                                       POSIX

If successful, mkfifo returns 0. If unsuccessful, mkfifo returns –1 and sets errno. A return 
value of –1 means that the FIFO was not created. The following table lists the mandatory errors 
for mkfifo.

errno cause

EACCES search permission on a component of path prefix denied, or write permission 
on parent directory of FIFO denied

EEXIST named file already exists

ELOOP a loop exists in resolution of path

ENAMETOOLONG length of path exceeds PATH_MAX, or a pathname component is longer than 
NAME_MAX

ENOENT component of path prefix specified by path does not name existing file, or 
path is an empty string

ENOSPC directory to contain new file cannot be extended, or the file system is out of 
resources

ENOTDIR component of path prefix is not a directory

EROFS the named file would reside on a read-only file system

Unlike many other I/O functions, mkfifo does not set errno to EINTR.
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Example 6.8 

The following code segment creates a FIFO, myfifo, in the current working directory. This FIFO 
can be read by everybody but is writable only by the owner.

#define FIFO_PERMS  (S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH)

if (mkfifo("myfifo", FIFO_PERMS) == -1)
   perror("Failed to create myfifo");

Remove a FIFO the same way you remove a file. Either execute the rm command from a shell 
or call unlink from a program. Example 6.9 shows a code segment that removes the FIFO that 
Example 6.8 created. The code assumes that the current working directory of the calling 
program contains myfifo.

Example 6.9 

The following code segment removes myfifo from the current working directory.

if (unlink("myfifo") == -1)
   perror("Failed to remove myfifo");

Program 6.4 creates a named pipe from a path specified on the command line. It then forks a 
child. The child process writes to the named pipe, and the parent reads what the child has 
written. Program 6.4 includes error checking, identifying each message with the process ID. 
This identification of messages is important because the parent and child share standard error.

Program 6.4 parentchildfifo.c

The parent reads what its child has written to a named pipe.

#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/wait.h>
#define BUFSIZE 256
#define FIFO_PERM  (S_IRUSR | S_IWUSR)

int dofifochild(const char *fifoname, const char *idstring);
int dofifoparent(const char *fifoname);

int main (int argc, char *argv[]) {
   pid_t childpid;

   if (argc != 2) {                           /* command line has pipe name */
      fprintf(stderr, "Usage: %s pipename\n", argv[0]);



      return 1;
   }
   if (mkfifo(argv[1], FIFO_PERM) == -1) {           /* create a named pipe */
      if (errno != EEXIST) {
         fprintf(stderr, "[%ld]:failed to create named pipe %s: %s\n",
              (long)getpid(), argv[1], strerror(errno));
         return 1;
      }
   }
   if ((childpid = fork()) == -1){
      perror("Failed to fork");
      return 1;
   }
   if (childpid == 0)                                   /* The child writes */
      return dofifochild(argv[1], "this was written by the child");
   else
      return dofifoparent(argv[1]);
}

The dofifochild function of Program 6.5 shows the actions taken by the child to write to the 
pipe. Notice that Program 6.5 uses snprintf rather than sprintf to construct the message. 
The first three parameters to snprintf are the buffer address, the buffer size and the format 
string. The snprintf does not write beyond the specified size and always inserts a null 
character to terminate what it has inserted. Program 6.5 also uses r_write instead of write to 
make sure that the child writes the entire message.

Program 6.5 dofifochild.c

The child writes to the pipe and returns.

#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/stat.h>
#include "restart.h"
#define BUFSIZE 256

int dofifochild(const char *fifoname, const char *idstring) {
   char buf[BUFSIZE];
   int fd;
   int rval;
   ssize_t strsize;

   fprintf(stderr, "[%ld]:(child) about to open FIFO %s...\n",
          (long)getpid(), fifoname);
   while (((fd = open(fifoname, O_WRONLY)) == -1) && (errno == EINTR)) ;
   if (fd == -1) {
      fprintf(stderr, "[%ld]:failed to open named pipe %s for write: %s\n",
             (long)getpid(), fifoname, strerror(errno));
      return 1;
   }



   rval = snprintf(buf, BUFSIZE, "[%ld]:%s\n", (long)getpid(), idstring);
   if (rval < 0) {
      fprintf(stderr, "[%ld]:failed to make the string:\n", (long)getpid());
      return 1;
   }
   strsize = strlen(buf) + 1;
   fprintf(stderr, "[%ld]:about to write...\n", (long)getpid());
   rval = r_write(fd, buf, strsize);
   if (rval != strsize) {
      fprintf(stderr, "[%ld]:failed to write to pipe: %s\n",
             (long)getpid(), strerror(errno));
      return 1;
   }
   fprintf(stderr, "[%ld]:finishing...\n", (long)getpid());
   return 0;
}

The dofifoparent function of Program 6.6 shows the actions taken by the parent to read from 
the pipe.

Exercise 6.10 

What happens to the named pipe after the processes of Program 6.4 exit?

Answer:

Since neither process called unlink for the FIFO, it still exists and appears in the directory 
listing of its path.

Program 6.6 dofifoparent.c

The parent reads what was written to a named pipe.

#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/stat.h>
#include "restart.h"
#define BUFSIZE 256
#define FIFO_MODES O_RDONLY

int dofifoparent(const char *fifoname) {
   char buf[BUFSIZE];
   int fd;
   int rval;

   fprintf(stderr, "[%ld]:(parent) about to open FIFO %s...\n",
                       (long)getpid(), fifoname);
   while (((fd = open(fifoname, FIFO_MODES)) == -1) && (errno == EINTR))  ;
   if (fd == -1) {



      fprintf(stderr, "[%ld]:failed to open named pipe %s for read: %s\n",
             (long)getpid(), fifoname, strerror(errno));
      return 1;
   }
   fprintf(stderr, "[%ld]:about to read...\n", (long)getpid());
   rval = r_read(fd, buf, BUFSIZE);
   if (rval == -1) {
      fprintf(stderr, "[%ld]:failed to read from pipe: %s\n",
             (long)getpid(), strerror(errno));
      return 1;
   }
   fprintf(stderr, "[%ld]:read %.*s\n", (long)getpid(), rval, buf);
   return 0;
}
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6.4 Pipes and the Client-Server Model

The client-server model is a standard pattern for process interaction. One process, designated 
the client, requests a service from another process, called the server. The chapters in Part 4 of 
the book develop and analyze applications that are based on the client-server model with 
network communication. This section introduces client-server applications that use named pipes 
as the communication vehicle. We look at two types of client-server communication—simple-
request and request-reply. In simple-request, the client sends information to the server in a 
one-way transmission; in request-reply the client sends a request and the server sends a reply.

Programs 6.7 and 6.8 illustrate how the simple-request protocol can be useful in logging. The 
client writes logging information to a named pipe rather than to standard error. A server reads 
from the named pipe and writes to a file. At first glance, the use of the named pipe appears to 
have added an extra step with no benefit. However, pipes and FIFOs have a very important 
property—writes of no more than PIPE_BUF bytes are guaranteed to be atomic. That is, the 
information is written as a unit with no intervening bytes from other writes. In contrast, an 
fprintf is not atomic, so pieces of the messages from multiple clients might be interspersed.

The server of Program 6.7 creates the pipe if it does not already exist. The server opens the 
pipe for both reading and writing, even though it will not write to the pipe. When an attempt is 
made to open a pipe for reading, open blocks until another process opens the pipe for writing. 
Because the server opens the pipe for reading and writing, open does not block. The server 
uses copyfile to read from the pipe and to write to standard output. To write to a file, just 
redirect standard output when the server is started. Since the server has the pipe open for 
writing as well as reading, copyfile will never detect an end-of-file. This technique allows the 
server to keep running even when no clients are currently writing to the pipe. Barring errors, 
the server runs forever.

Program 6.7 pipeserver.c

The program reads what is written to a named pipe and writes it to standard output.

#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/stat.h>
#include "restart.h"
#define FIFOARG 1
#define FIFO_PERMS (S_IRWXU | S_IWGRP| S_IWOTH)

int main (int argc, char *argv[]) {
   int requestfd;

   if (argc != 2) {    /* name of server fifo is passed on the command line */
      fprintf(stderr, "Usage: %s fifoname > logfile\n", argv[0]);
      return 1;
   }
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                         /* create a named pipe to handle incoming requests */
   if ((mkfifo(argv[FIFOARG], FIFO_PERMS) == -1) && (errno != EEXIST)) {
       perror("Server failed to create a FIFO");
       return 1;
   }
                    /* open a read/write communication endpoint to the pipe */
   if ((requestfd = open(argv[FIFOARG], O_RDWR)) == -1) {
       perror("Server failed to open its FIFO");
       return 1;
   }
   copyfile(requestfd, STDOUT_FILENO);
   return 1;
}

The client in Program 6.8 writes a single line to the pipe. The line contains the process ID of the 
client and the current time. Multiple copies of Program 6.8 can run concurrently. Because of the 
atomic nature of writes to the pipe, pieces of the messages from different clients are not 
interleaved.

Program 6.8 pipeclient.c

The client writes an informative message to a named pipe.

#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <time.h>
#include <unistd.h>
#include <sys/stat.h>
#include "restart.h"
#define FIFOARG 1

int main (int argc, char *argv[]) {
   time_t curtime;
   int len;
   char requestbuf[PIPE_BUF];
   int requestfd;

   if (argc != 2) {  /* name of server fifo is passed on the command line */
      fprintf(stderr, "Usage: %s fifoname", argv[0]);
      return 1;
   }

   if ((requestfd = open(argv[FIFOARG], O_WRONLY)) == -1) {
       perror("Client failed to open log fifo for writing");
       return 1;
   }

   curtime = time(NULL);
   snprintf(requestbuf, PIPE_BUF, "%d: %s", (int)getpid(), ctime(&curtime));
   len = strlen(requestbuf);



   if (r_write(requestfd, requestbuf, len) != len) {
      perror("Client failed to write");
      return 1;
   }
   r_close(requestfd);
   return 0;
}

Exercise 6.11 

How would you start Program 6.7 so that it uses the pipe mypipe and the log file it creates is 
called mylog? When will the program terminate?

Answer:

pipeserver mypipe > mylog

The program does not terminate unless it is killed. You can kill it by typing Ctrl-C at the 
keyboard. No client error can cause the server to terminate.

Exercise 6.12 

Start the pipeserver of Program 6.7 and run several copies of the pipeclient of Program 6.8 
and observe the results.

We now consider a second example of the client-server model with named pipes, a simple time 
(sequence number) server that illustrates some of the difficulties in using the client-server 
model with pipes and FIFOs.

The implementation uses two named pipes—a request pipe and a sequence pipe. Clients write a 
byte to a request pipe (e.g., 'g'). The server responds by writing a sequence number to the 
sequence pipe and incrementing the sequence number. Unfortunately, reading from a pipe is 
not an atomic operation. Since the sequence number is more than one byte, it is possible 
(though unlikely) that a client may not get all of the bytes of a sequence number in one read. 
Depending on the interleaving of the client processes, the next client may get part of the 
previous sequence number. To handle this possibility, a client that does a partial read of the 
sequence number immediately transmits an error designator (e.g., 'e') on the request pipe. 
When the server encounters the error character, it closes and unlinks the pipes. The other 
clients then detect an error.

As before, the server opens both pipes for reading and writing. The server terminates only 
when it receives an 'e' byte from a client. When that happens, future clients block when they 
try to open the request pipe for writing. Pending clients receive an error when they try to write 
to the request pipe since no process has this pipe open. When a process writes to a pipe or 
FIFO that no process has open for reading, write generates a SIGPIPE signal. Unless the 
process has specifically prevented it, the signal causes the process to terminate immediately. 
Section 8.4 explains how to respond to these types of signals.

Programs 6.9 and 6.10 illustrate the difficulties of implementing a request-reply protocol by 



using named pipes. When multiple clients make requests, the server replies can be read by any 
client. This allows a sequence number meant for one process to be read by another process. 
Second, because reads are not atomic, a partial read by one client causes the next client to 
receive incorrect results. The solution in Program 6.9 and Program 6.10 is for the client to send 
an error code, which causes the server to terminate. This strategy may suffice for closely 
cooperating processes, but it is not applicable in general. A malicious client could cause the 
protocol to behave incorrectly without detecting an error. In most cases, the client should never 
be able to cause the server to fail or exit. The exercise of Section 6.10 explores an alternative 
strategy in which the server creates a separate named pipe for each distinct client. Now each 
pipe only has a single reader, eliminating the two problems described above.

Program 6.9 seqserverbad.c

A sequence server reads a character from the request pipe and transmits a sequence number 
to the sequence pipe. (See text for a discussion.)

#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/stat.h>
#include "restart.h"
#define ERROR_CHAR'e'
#define OK_CHAR 'g'
#define REQUEST_FIFO 1
#define REQ_PERMS (S_IRUSR | S_IWUSR | S_IWGRP | S_IWOTH)
#define SEQUENCE_FIFO 2
#define SEQ_PERMS (S_IRUSR | S_IWUSR | S_IRGRP| S_IROTH)

int main (int argc, char *argv[]) {
   char buf[1];
   int reqfd, seqfd; long seqnum = 1;
   if (argc != 3) {            /* names of fifos passed on the command line */
      fprintf(stderr, "Usage: %s requestfifo sequencefifo\n", argv[0]);
      return 1;
   }

                         /* create a named pipe to handle incoming requests */
   if ((mkfifo(argv[REQUEST_FIFO], REQ_PERMS) == -1) && (errno != EEXIST)) {
       perror("Server failed to create request FIFO");
       return 1;
   }
   if ((mkfifo(argv[SEQUENCE_FIFO], SEQ_PERMS) == -1) && (errno != EEXIST)){
       perror("Server failed to create sequence FIFO");
       if (unlink(argv[REQUEST_FIFO]) == -1)
          perror("Server failed to unlink request FIFO");
       return 1;
   }
   if (((reqfd = open(argv[REQUEST_FIFO], O_RDWR)) == -1) ||
       ((seqfd = open(argv[SEQUENCE_FIFO], O_RDWR)) == -1)) {
      perror("Server failed to open one of the FIFOs");
      return 1;
   }
   for ( ; ; ) {



      if (r_read(reqfd, buf, 1) == 1) {
         if ((buf[0] == OK_CHAR) &&
             (r_write(seqfd, &seqnum, sizeof(seqnum)) == sizeof(seqnum)))
            seqnum++;
         else if (buf[0] == ERROR_CHAR)
            break;
      }
   }
   if (unlink(argv[REQUEST_FIFO]) == -1)
      perror("Server failed to unlink request FIFO");
   if (unlink(argv[SEQUENCE_FIFO]) == -1)
      perror("Server failed to unlink sequence FIFO");
   return 0;
}

Program 6.10 seqclientbad.c

The client writes a request to a request pipe and reads the sequence number from the 
sequence pipe. This client can cause the server to exit.

#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <unistd.h>
#include <sys/stat.h>
#include "restart.h"
#define ERROR_CHAR 'e'
#define OK_CHAR 'g'
#define REPEAT_MAX 100
#define REQUEST_FIFO 1
#define SEQUENCE_FIFO 2
#define SLEEP_MAX 5

int main (int argc, char *argv[]) {
   int i;
   char reqbuf[1];
   int reqfd, seqfd;
   long seqnum;

   if (argc != 3) {            /* names of pipes are command-line arguments */
      fprintf(stderr, "Usage: %s requestfifo sequencefifo\n", argv[0]);
      return 1;
   }
   if (((reqfd = open(argv[REQUEST_FIFO], O_WRONLY)) == -1) ||
       ((seqfd = open(argv[SEQUENCE_FIFO], O_RDONLY)) == -1)) {
       perror("Client failed to open a FIFO");
       return 1;
   }
   for (i = 0; i < REPEAT_MAX; i++) {
       reqbuf[0] = OK_CHAR;
       sleep((int)(SLEEP_MAX*drand48()));
       if (r_write(reqfd, reqbuf, 1) == -1) {
          perror("Client failed to write request");



          break;
       }
       if (r_read(seqfd, &seqnum, sizeof(seqnum)) != sizeof(seqnum) ) {
           fprintf(stderr, "Client failed to read full sequence number\n");
           reqbuf[0] = ERROR_CHAR;
           r_write(reqfd, reqbuf, 1);
           break;
       }
       fprintf(stderr, "[%ld]:received sequence number %ld\n",
               (long)getpid(), seqnum);
    }
   return 0;
}

The situation with nonatomic reads from pipes can actually be worse than described here. We 
have assumed that a read becomes nonatomic as follows.

1.  The server gets two requests and writes two sequence numbers (4-byte integers) to the 
pipe.

2.  One client calls read for the sequence pipe requesting four bytes, but read returns only 
two bytes.

3.  The second client calls read for the sequence pipe to read the next four bytes. These 
four bytes consist of the last two bytes from the first sequence number and the first two 
bytes of the second sequence number.

Under these circumstances the first client detects an error, and the server shuts down. The 
second client may or may not know an error occurred.

However, another scenario is technically possible, although it is very unlikely. Suppose the 
server writes two 4-byte integer sequence numbers and the bytes in the pipe are abcdefgh. 
The POSIX standard does not exclude the possibility that the first client will read the bytes abgh 
and the second one will read the bytes cdef. In this case, the sequence numbers are incorrect 
and the error is not detected at all.

Exercise 6.13 

Try running one copy of Program 6.9 (seqserverbad) and two copies of Program 6.10 
(seqclientbad). What happens?

Answer:

This should work correctly. The two copies of seqclientbad should get disjoint sets of 
sequence numbers.

Exercise 6.14 

Try running two copies of Program 6.9 (seqserverbad) and one copy of Program 6.10 



(seqclientbad). What happens?

Answer:

Either server can respond to a request for a sequence number. It is possible that the client will 
get the same sequence number twice.

Exercise 6.15 

Change the seqclientbad to have a SLEEP_MAX of 0 and a REPEAT_MAX of 1,000,000. Comment 
out the last fprintf line. Run two copies of the client with one copy of the server. What 
happens?

Answer:

It is possible, but unlikely, that the server will terminate because one of the clients received an 
incorrect number of bytes when requesting the sequence number.

[ Team LiB ]   
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6.5 Terminal Control

Many special files represent devices with characteristics that are platform dependent, making 
standardization difficult. However, since terminal control was thought to be essential on all 
systems, the POSIX standards committee decided to include library functions for manipulating 
special files representing terminals and asynchronous communication ports. This section 
describes these functions and the way to use them.

The stty command reports or sets terminal I/O characteristics. When executed without any 
arguments or with the -a or -g options, the stty command outputs information about the 
current terminal to standard output. The -a produces a longer form of the readable information 
produced by stty without arguments; the -g option produces the information in a form that 
can be used by a program. The second form of stty allows operands to change the behavior of 
the terminal associated with a shell.

SYNOPSIS

   stty [-a | -g]
   stty operands
                           POSIX:Shell and Utilities

Exercise 6.16 

Execute stty, stty -a and stty -g on your system. Try to interpret the results.

Answer:

The stty command outputs the following under Sun Solaris 9.

speed 9600 baud; -parity
rows = 34; columns = 80; ypixels = 680; xpixels = 808;
swtch = <undef>;
brkint -inpck -istrip icrnl -ixany imaxbel onlcr tab3
echo echoe echok echoctl echoke iexten

The stty -a command on the same system outputs a more complete listing of the terminal 
settings.

speed 9600 baud;
rows = 34; columns = 80; ypixels = 680; xpixels = 808;
csdata ?
eucw 1:0:0:0, scrw 1:0:0:0
intr = ^c; quit = ^\; erase = ^?; kill = ^u;
eof = ^d; eol = <undef>; eol2 = <undef>; swtch = <undef>;
start = ^q; stop = ^s; susp = ^z; dsusp = ^y;
rprnt = ^r; flush = ^o; werase = ^w; lnext = ^v;
-parenb -parodd cs8 -cstopb -hupcl cread -clocal -loblk
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-crtscts -crtsxoff -parext -ignbrk brkint ignpar -parmrk
-inpck -istrip -inlcr -igncr icrnl -iuclc ixon -ixany -ixoff
imaxbel isig icanon -xcase echo echoe echok -echonl -noflsh
-tostop echoctl -echoprt echoke -defecho -flusho -pendin iexten
opost -olcuc onlcr -ocrnl -onocr -onlret -ofill -ofdel tab3

The stty -g command outputs the following on a single line.

2506:1805:d00bd:8a3b:3:1c:7f:15:4:0:0:0:11:13:1a:19:12:f:
17:16:0:0:1:1:0:00:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:
0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0

The interpretation of the fields closely follows the flags in the struct termios structure 
described below.

The stty -a command displays the current terminal settings, and the second form of stty 
allows you to change them. One important operand of stty is sane. This operand sets all 
modes to reasonable values and is useful if you terminate a program that has set the modes in 
an inconvenient way. You can use stty sane to recover when, for example, local echo has 
been turned off and you cannot see what you are typing. Sometimes you will have to terminate 
the line containing the stty command with a Ctrl-J rather than pressing the Return key if 
Return has been set to send a carriage return rather than a newline.

Programs access terminal characteristics through the struct termios structure, which includes 
at least the following members.

tcflag_t  c_iflag;      /* input modes */
tcflag_t  c_oflag;      /* output modes */
tcflag_t  c_cflag;      /* control modes */
tcflag_t  c_lflag;      /* local modes */
cc_t      c_cc[NCCS];   /* control characters */

The c_cc array of the struct termios structure holds the values of the characters that have 
special meaning to the terminal device drivers, for example, the end of input or program break 
characters. Table 6.1 on page 206 lists the special characters and their default settings.

The c_iflag member of the struct termios structure controls the way a terminal handles 
input; the c_oflag controls the way a terminal handles output. The c_cflag specifies hardware 
control information for the terminal, and the c_lflag controls the editing functions of the 
terminal. Table 6.2 on page 210 lists the POSIX values that these flags can take on. You can 
set an action by performing a bitwise OR of the appropriate struct termios field with the 
corresponding flag, and you can clear it by performing a bitwise AND with the complement of 
the flag.

Example 6.17 

The ECHO value of the c_lflag field of struct termios specifies that characters typed at 
standard input should be echoed to standard output of the terminal. The following code 
segment clears the ECHO flag in a struct termios structure.



struct termio term;
term.c_lflag &= ~ECHO;

The tcgetattr function retrieves the attributes associated with the terminal referenced by the 
open file descriptor fildes. The attributes are returned in a struct termios structure pointed 
to by termios_p. The tcsetattr function sets the parameters of the terminal referenced by the 
open file descriptor fildes from the struct termios structure pointed to by termios_p. The 
optional_actions parameter controls the point at which the changes take effect: TCSANOW 
signifies that changes occur immediately, and TCSADRAIN signifies that changes occur after all 
output to fildes is transmitted. If optional_actions is TCSAFLUSH, the changes occur after all 
output to fildes is transmitted. In this case, all input received but not read is discarded.

SYNOPSIS

  #include <termios.h>

  int tcgetattr(int fildes, struct termios *termios_p);
  int tcsetattr(int fildes, int optional_actions,
                const struct termios *termios_p);
                                                              POSIX

These functions return 0 if successful. If unsuccessful, these functions return –1 and set errno. 
The following table lists the mandatory errors for these functions.

errno cause

EBADF fildes is not a valid file descriptor

EINTR a signal interrupted tcsetattr

EINVAL optional_actions is not a supported value, or attempt to change attribute 
represented in struct termios to an unsupported value

ENOTTY file associated with fildes is not a terminal

Program 6.11 shows a ttysetchar function that sets a particular character. The ttsetchar 
function first calls tcgetattr to read the current settings of the terminal into a struct 
termios structure. After modifying the desired characters, ttysetchar calls tcsetattr to 
change the actual terminal settings. It is possible for tcsetattr to be interrupted by a signal 
while it is waiting for output to drain, so we restart it in this case.

Example 6.18 

The following code segment calls the ttysetchar function of Program 6.11 to set the character 
that indicates end of terminal input to Ctrl-G. (The usual default is Ctrl-D.)



if (ttysetchar(STDIN_FILENO, VEOF, 0x07) == -1)
   perror("Failed to change end-of-file character");

Table 6.1. The POSIX special control characters

canonical mode noncanonical mode description usual default

VEOF  EOF character Ctrl-D

VEOL  EOL character none

VERASE  ERASE character backspace or delete

VINTR VINTR INTR character Ctrl-C

VKILL  KILL character Ctrl-U

 VMIN MIN value 1

VQUIT VQUIT QUIT character Ctrl-\

VSUSP VSUSP SUSP character Ctrl-Z

 VTIME TIME value 0

VSTART VSTART START character Ctrl-Q

VSTOP VSTOP STOP character Ctrl-S

Program 6.11 ttysetchar.c

A function that sets a particular terminal control character to be a particular value.

#include <errno.h>
#include <termios.h>
#include <unistd.h>

int ttysetchar(int fd, int flagname, char c) {
   int error;
   struct termios term;

   if (tcgetattr(fd, &term) == -1)
      return -1;
   term.c_cc[flagname] = (cc_t)c;
   while (((error = tcsetattr(fd, TCSAFLUSH, &term)) == -1) &&
           (errno == EINTR)) ;
   return error;
}



Program 6.12 shows a function that uses tcgetattr and tcsetattr to turn echoing on or off. 
When echoing is turned off, the characters that you type do not appear on the screen.

Exercise 6.19 

Why did Program 6.12 use tcgetattr to read the existing struct termios structure before 
setting the echo flags?

Answer:

The code shouldn't change any of the other settings, so it reads the existing struct termios 
structure before modifying it.

Program 6.12 setecho.c

A function to turn terminal echo on or off.

#include <errno.h>
#include <termios.h>
#include <unistd.h>
#define ECHOFLAGS (ECHO | ECHOE | ECHOK | ECHONL)

int setecho(int fd, int onflag) {
   int error;
   struct termios term;

   if (tcgetattr(fd, &term) == -1)
      return -1;
   if (onflag)                                        /* turn echo on */
      term.c_lflag |= ECHOFLAGS;
   else                                              /* turn echo off */
      term.c_lflag &= ~ECHOFLAGS;
   while (((error = tcsetattr(fd, TCSAFLUSH, &term)) == -1) &&
           (errno == EINTR)) ;
   return error;
}

Exercise 6.20 

What happens when you run the following program? Under what circumstances might such 
behavior be useful?

#include <unistd.h>
int setecho(int fd, int onflag);

int main(void) {
   setecho(STDIN_FILENO, 0);
   return 0;
}



Answer:

After you run this program, you will not see anything that you type on the computer screen. 
You can log out or use stty sane to set the echo back on. Turning off echoing is used for 
entering passwords and other secrets.

Program 6.13 shows the passwordnosigs function that retrieves the password entered at the 
controlling terminal of a process. It returns 0 if successful. On failure it returns –1 and sets 
errno. Notice that passwordnosigs sets the errno based on the first error that occurs. While 
most functions return immediately after an error, functions that must always restore state have 
to clean up before they return. The program calls the setecho function of Program 6.12 to turn 
echoing off and on. It must turn the terminal echo back on before returning or the user won't 
be able to see what is typed.

Program 6.13 passwordnosigs.c

A function that prompts for and reads a password, assuming that no signals will occur.

#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <string.h>
#include <termios.h>
#include <unistd.h>
#include "restart.h"

int readline(int fd, char *buf, int nbytes);
int setecho(int fd, int onflag);

int passwordnosigs(char *prompt, char *passbuf, int passmax) {
   int fd; int firsterrno = 0;
   int passlen;
   char termbuf[L_ctermid];

   if (ctermid(termbuf) == NULL) {                /* find the terminal name */
      errno = ENODEV;
      return -1;
   }
   if ((fd = r_open2(termbuf, O_RDWR)) == -1)         /* open the terminal  */
      return -1;
   if (setecho(fd, 0) == -1)                               /* turn echo off */
      firsterrno = errno;
   else if (r_write(fd, prompt, strlen(prompt)) == -1)      /* write prompt */
      firsterrno = errno;
   else if ((passlen = readline(fd, passbuf, passmax)) == 0)
      firsterrno = EINVAL;
   else if (passlen == -1)
      firsterrno = errno;
   else
      passbuf[passlen-1] = '\0';                     /* remove newline */
   if ((setecho(fd, 1) == -1) && !firsterrno)  /* always turn echo back on */
      firsterrno = errno;



   if ((r_write(fd,"\n",1) == -1) && !firsterrno)
      firsterrno = errno;
   if ((r_close(fd) == -1) && !firsterrno)
      firsterrno = errno;
   if (firsterrno)
      errno = firsterrno;
   return firsterrno ? -1 : 0;
}

The passwordnosigs uses readline of Program 4.1 on page 95 to read in a line from the 
terminal. We were able to use it here because it was written to use a general file descriptor 
rather than just reading from standard input.

The passwordnosigs function uses the controlling terminal as determined by the ctermid 
function rather than using standard input. The controlling terminal is usually something like /
dev/tty and often shares the same physical devices as standard input and standard output, 
which are usually the keyboard and screen. One of the consequences of using a controlling 
terminal rather than standard input and standard output is that controlling terminals cannot be 
redirected from the command line. This is often used for passwords to discourage users from 
storing passwords in a file.

Exercise 6.21 

What happens if a signal aborts a program that is executing passwordnosigs? This could 
happen if the user enters Ctrl-C after being prompted for the password.

Answer:

If the signal comes in after passwordnosigs turns off echoing, the user won't be able to see 
subsequent typing at the terminal. If you do this, try typing stty sane followed by Return to 
get the terminal back to echo mode. Chapter 8 addresses this issue more carefully in Program 
8.4 on page 266.

Table 6.2 lists the flags for terminal control. Chapter 8 discusses some of the issues related to 
terminals and signals. The project of Chapter 11 explores many aspects of terminal 
configuration and the interaction of terminal devices with user processes.

6.5.1 Canonical and noncanonical input processing

A common misconception is that somehow the keyboard and screen are connected, so 
everything that you type automatically appears on the screen. The keyboard and screen are, in 
fact, separate devices that communicate with terminal device drivers running on the computer. 
The device drivers receive bytes from the keyboard, buffering and editing them as specified by 
the settings for these devices.

The usual method of handling terminal input, canonical mode, processes input one line at a 
time. The special characters of Table 6.1 are used for terminating input and simple editing such 
as erasing the last character typed. A line is a sequence of bytes delimited by a newline (NL), 
an end-of-file (EOF) or an end-of-line (EOL).



In canonical mode, read requests do not return until the user enters a line delimiter (or the 
process receives a signal). The ERASE and KILL characters work only on the portion of a line 
that has not yet been delimited. A read request can return only one line, regardless of the 
number of bytes requested. If the system defines the POSIX constant MAX_CANON for the 
terminal, input lines cannot be longer than MAX_CANON.

A consequence of canonical mode processing is that input from a terminal behaves differently 
from input from other devices such as disks. In noncanonical mode, input is not assembled into 
lines. The device driver does not respond to the ERASE and KILL characters. Noncanonical input 
processing has two controlling parameters—MIN and TIME. The MIN parameter controls the 
smallest number of bytes that should be gathered before read returns. The TIME parameter 
refers to a timer with a 0.1-second granularity used for timing out bursty transmissions. Table 
6.3 summarizes the settings for MIN and TIME.

Table 6.2. The POSIX values of flags for terminal control.

field flag description

c_iflag BRKINT signal interrupt on break

 ICRNL map CR to NL on input

 IGNBRK ignore break condition

 IGNCR ignore CR

 IGNPAR ignore characters with parity errors

 INLCR map NL to CR on input

 INPCK enable input parity check

 ISTRIP strip character

 IXOFF enable start/stop input control

 IXON enable start/stop output control

 PARMRK mark parity errors

c_oflag OPOST postprocess output

 OCRNL map CR to NL on output (POSIX:XSI Extension)

 ONOCR no CR output at column 0 (POSIX:XSI Extension)



 ONLRET NL performs CR function (POSIX:XSI Extension)

c_cflag CSIZE character size (CS5—CS8 for 5 to 8 bits, respectively)

 CSTOPB send two stop bits, else one

 CREAD enable receiver

 PARENB enable parity

 PARODD odd parity, else even

 HUPCL hang up on last close

 CLOCAL ignore modem status lines

c_lflag ECHO enable echo

 ECHOE echo ERASE as an error-correcting backspace

 ECHOK enable KILL

 ECHONL echo a newline

 ICANON canonical input (erase and kill processing)

 IEXTEN enable extended (implementation-defined) functions

 ISIG enable signals

 NOFLSH disable flush after interrupt, quit, or suspend

 TOSTOP send SIGTTOU for background output

Program 6.14 shows a function that sets the current terminal to be in noncanonical mode with 
single-character input. After a setnoncanonical call, the terminal device driver delivers each 
character as typed, treating the ERASE and KILL characters as ordinary characters. The function 
returns 0 on success. If an error occurs, setnoncanonical returns –1 and sets errno.

Exercise 6.22 

How would you set the terminal back to canonical mode after a call to the function 
setnoncanonical?

Answer:

This may be a problem on some systems. POSIX allows c_cc[MIN] and c_cc[TIME] to be used 
for VEOF and VEOL in canonical mode. On some systems, a call to setnoncanonical will 
overwrite these values. Unless these values have been saved, there is no way to restore them 
to their original values. If you just set the ICANON bit in the c_lflag of the struct termios 



structure, it may not return the terminal to the previous canonical mode state. Program 6.15 
provides a method for handling this.

Table 6.3. Parameters for noncanonical mode processing.

case meaning

MIN > 0, TIME > 0 TIME is an interbyte timer If TIME expires or MIN bytes are received, read 
is satisfied.

MIN > 0, TIME = 0 read blocks until at least MIN bytes received

MIN = 0, TIME > 0 read is satisfied when a single byte arrives or TIME expires

MIN = 0, TIME = 0 minimum of number of bytes requested or number of bytes available 
returned

Exercise 6.23 

Suppose that standard input has been set to noncanonical mode. Five characters have been 
typed at the keyboard. You try to read 10 bytes from standard input. What happens in each of 
the following cases?

a.  MIN = 5 and TIME = 0

b.  MIN = 0 and TIME = 100

c.  MIN = 20 and TIME = 100

d.  MIN = 3 and TIME = 100

e.  MIN = 20 and TIME = 0

f.  MIN = 0 and TIME = 0

Answer:

a.  You receive 5 bytes immediately.

b.  You receive 5 bytes immediately.

c.  You receive 5 bytes after a delay of 10 seconds.

d.  You receive 5 bytes immediately.



e.  You block until at least 5 more characters are entered.

f.  You receive 5 bytes immediately.

Program 6.14 setnoncanonical.c

A function that sets the terminal associated with the caller to perform single character input 
(rather than line processing).

#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <termios.h>
#include <unistd.h>
#include "restart.h"

int ttysetchar(int fd, int flagname, char c);

int setnoncanonical(void) {
   int error;
   int fd;
   int firsterrno = 0;
   struct termios term;
   char termbuf[L_ctermid];

   if (ctermid(termbuf) == NULL) {               /* find the terminal name */
      errno = ENODEV;
      return -1;
   }
   if ((fd = r_open2(termbuf, O_RDONLY)) == -1)       /* open the terminal */
      return -1;
   if (tcgetattr(fd, &term) == -1)                  /* get its termios */
      firsterrno = errno;
   else {
      term.c_lflag &= ~ICANON;
      while (((error = tcsetattr(fd, TCSAFLUSH, &term)) == -1) &&
              (errno == EINTR)) ;
      if (error)
         firsterrno = errno;
   }
   if (!firsterrno && (ttysetchar(fd, VMIN, 1) || ttysetchar(fd, VTIME, 0)))
      firsterrno = errno;
   if ((r_close(fd) == -1) && !firsterrno)
      firsterrno = errno;
   if (firsterrno)
      errno = firsterrno;
   return firsterrno ? -1 : 0;
}

Program 6.15 shows two functions for saving and restoring the struct termios structure. Each 
takes a pointer to a struct termios structure as a parameter and returns 0 on success. On 
error these functions return –1 with errno set. The correct way to temporarily set noncanonical 



mode is as follows.

1.  Call gettermios to save struct termios structure in a local variable.

2.  Call setnoncanonical.

3.  Do the noncanonical mode processing.

4.  Restore the original terminal mode by calling settermios.

Program 6.15 savetermios.c

Functions for saving and restoring the terminal mode.

#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <termios.h>
#include <unistd.h>
#include "restart.h"

int gettermios(struct termios *termp) {
   int fd;
   int firsterrno = 0;
   char termbuf[L_ctermid];

   if (ctermid(termbuf) == NULL) {                /* find the terminal name */
      errno = ENODEV;
      return -1;
   }
   if ((fd = r_open2(termbuf, O_RDONLY)) == -1)        /* open the terminal */
      return -1;
   if (tcgetattr(fd, termp) == -1)                       /* get its termios */
      firsterrno = errno;
   if ((r_close(fd) == -1) && !firsterrno)
      firsterrno = errno;
   if (firsterrno) {
      errno = firsterrno;
      return -1;
   }
   return 0;
}

int settermios(struct termios *termp) {
   int error;
   int fd;
   int firsterrno = 0;
   char termbuf[L_ctermid];

   if (ctermid(termbuf) == NULL) {                /* find the terminal name */
      errno = ENODEV;
      return -1;



   }
   if ((fd = r_open2(termbuf, O_RDONLY)) == -1)        /* open the terminal */
      return -1;
   while (((error = tcsetattr(fd, TCSAFLUSH, termp)) == -1) &&
           (errno == EINTR)) ;
   if (error)
      firsterrno = errno;
   if ((r_close(fd) == -1) && !firsterrno)
      firsterrno = errno;
   if (firsterrno) {
      errno = firsterrno;
      return -1;
   }
   return 0;
}
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6.6 Audio Device

An audio device (microphone, speaker) is an example of a peripheral device represented by a 
special file. The device designation for this device on many systems is /dev/audio. The 
discussion in this section illustrates the nature of special files, but it is specific to Sun systems. 
The audio device may behave differently on different systems. Note: If you logged in from an 
ASCII terminal or X-terminal, you cannot use the audio device even if the system has one.

Example 6.24 

The following command plays the audio file sample.au on the speaker of a Sun workstation.

cat sample.au > /dev/audio

The audio device may support several audio formats, and you may have to set the audio device 
for the proper format before Example 6.24 works correctly. Audio files typically contain a 
header giving information about the format of the audio file. Sending the file directly to the 
audio device, as in this example, may cause the header to be interpreted as audio data. You 
will probably hear a series of clicks at the beginning of the playback. Many systems have a 
utility for playing audio. The utility reads the header and uses this information to program the 
audio device for the correct format. This command utility may be called audioplay or just play.

In this section, we assume that we are using audio files in a fixed format and that the audio 
device has already been set for that format.

Program 6.16 contains a library of functions for reading and writing from the audio device. 
None of these library functions pass the file descriptor corresponding to the audio device. 
Rather, the audio library is treated as an object that calling programs access through the 
provided interface (open_audio, close_audio, read_audio and write_audio).

The open_audio opens /dev/audio for read or write access, using blocking I/O. If the audio 
device has already been opened, open hangs until the device is closed. If the audio device had 
been opened with the O_NONBLOCK flag, open would have returned with an error if the device 
were busy.

The open_audio function attempts to open both the microphone and the speaker. A process 
that will only record can call open with O_RDONLY; a process that will only play can call open 
with O_WRONLY. If it is interrupted by a signal, open_audio restarts open.

The speaker can handle data only at a predetermined rate, so write_audio may not send the 
entire buffer to the speaker in one write function. Similarly, read_audio reads only the data 
currently available from the microphone and returns the number of bytes actually read. The 
get_record_buffer_size function uses ioctl to retrieve the size of the blocks that the audio 
device driver reads from the audio device.
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Program 6.16 audiolib.c

The audio device object and its basic operations.

#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stropts.h>
#include <unistd.h>
#include <sys/audio.h>
#include "restart.h";
#define AUDIO "/dev/audio"

static int audio_fd = -1;   /* audio device file descriptor */

int open_audio(void) {
   while (((audio_fd = open(AUDIO, O_RDWR)) == -1) && (errno == EINTR)) ;
   if (audio_fd == -1)
      return -1;
   return 0;
}

void close_audio(void) {
   r_close(audio_fd);
   audio_fd = -1;
}

int read_audio(char *buffer, int maxcnt) {
   return r_read(audio_fd, buffer, maxcnt);
}

int write_audio(char *buffer, int maxcnt) {
   return r_write(audio_fd, buffer, maxcnt);
}

int get_record_buffer_size(void) {
   audio_info_t myaudio;
   if (audio_fd == -1)
      return -1;
   if (ioctl(audio_fd, AUDIO_GETINFO, &myaudio) == -1)
      return -1;
   else
      return myaudio.record.buffer_size;
}

The ioctl function provides a means of obtaining device status information or setting device 
control options. The ioctl function has variable syntax. Its first two parameters are an open 
file descriptor and an integer specifying the type of request. Different requests may require 
different additional parameters.

SYNOPSIS

  #include <stropts.h>



  int ioctl(int fildes, int request, .... /* arg */);
                                                            POSIX

If successful, ioctl returns a value other than –1 that depends on the request value. If 
unsuccessful, ioctl returns –1 and sets errno. The mandatory errors depend on the value of 
request. See the man page for ioctl for further information.

The ioctl function provides a means of obtaining device status information or setting device 
control options. The Sun Solaris operating environment uses the AUDIO_GETINFO request of 
ioctl to retrieve information about the audio device. The audio_info_t type defined in 
audioio.h holds configuration information about the audio device.

typedef struct audio_info {
   audio_prinfo_t   play;          /* output status information */
   audio_prinfo_t   record;        /* input status information */
   uint_t           monitor_gain;  /* input to output mix */
   uchar_t          output_muted;  /* nonzero if output muted */
   uchar_t _xxx[3];                /* Reserved for future use */
   uint_t _yyy[3];                 /* Reserved for future use */
} audio_info_t;

The audio_prinfo_t member of the preceding structure is defined as follows.

struct audio_prinfo {
   /* The following values describe the audio data encoding */
   uint_t   sample_rate;  /* samples per second */
   uint_t   channels;     /* number of interleaved channels */
   uint_t   precision;    /* number of bits per sample */
   uint_t   encoding;     /* data encoding method */

   /* The following values control audio device configuration */
   uint_t   gain;         /* volume level */
   uint_t   port;         /* selected I/O port */
   uint_t   avail_ports;  /* available I/O ports */
   uint_t   _xxx[2];      /* reserved for future use */
   uint_t   buffer_size;  /* I/O buffer size */

   /* The following values describe the current device state */
   uint_t   samples;      /* number of samples converted */
   uint_t   eof;          /* end-of-file counter (play only) */
   uchar_t  pause;        /* nonzero if paused, zero to resume */
   uchar_t  error;        /* nonzero if overflow/underflow */
   uchar_t  waiting;      /* nonzero if a process wants access */
   uchar_t  balance;      /* stereo channel balance */
   ushort_t minordev;

   /* The following values are read-only device state flags */
   uchar_t  open;         /* nonzero if open access granted */
   uchar_t  active;       /* nonzero if I/O active */
} audio_prinfo_t;

The buffer_size member of the audio_prinfo_t structure specifies how large a chunk of 



audio data the device driver accumulates before passing the data to a read request. The 
buffer_size for play specifies how large a chunk the device driver accumulates before sending 
the data to the speaker. Audio tends to sound better if the program sends and receives chunks 
that match the corresponding buffer_size settings. Use ioctl to determine these sizes in an 
audio application program. The get_record_buffer_size function in Program 6.16 returns the 
appropriate block size to use when reading from the microphone, or –1 if an error occurs.

Program 6.17 reads from the microphone and writes to the speaker. Terminate the program by 
entering Ctrl-C from the keyboard. It is best to use headphones when trying this program to 
avoid feedback caused by a microphone and speaker in close proximity. The audiolib.h 
header file contains the following audio function prototypes.

int open_audio(void);
void close_audio(void);
int read_audio(char *buffer, int maxcnt);
int write_audio(char *buffer, int length);

Program 6.17 audiocopy.c

A simple program that reads from the microphone and sends the results to the speaker.

#include <stdio.h>
#include <stdlib.h>
#include "audiolib.h"

#define BUFSIZE 1024
int main (void) {
   char buffer[BUFSIZE];
   int bytesread;

   if (open_audio() == -1) {
      perror("Failed to open audio");
      return 1;
   }
   for( ; ; ) {
      if ((bytesread = read_audio(buffer, BUFSIZE)) == -1) {
          perror("Failed to read microphone");
          break;
      } else if (write_audio(buffer, bytesread) == -1) {
          perror("Failed to write to speaker");
          break;
      }
   }
   close_audio();
   return 1;
}

The implementation of Program 6.16 opens the audio device for blocking I/O. Nonblocking 
reads are complicated by the fact that read can return –1 either if there is an error or if the 
audio device is not ready with the data. The latter case has an errno value of EAGAIN and 
should not be treated as an error. The primary reason for opening the audio device in 
nonblocking mode is so that open does not hang when the device is already open. An 



alternative is to open the audio device in nonblocking mode and then to use fcntl to change 
the mode to blocking.

Example 6.25 nonblockingaudio.c

The following program opens the audio device for nonblocking I/O. It then reads BLKSIZE bytes 
from the audio device into a buffer. It does nothing with the audio that is read in other than 
display the number of bytes read.

#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include "restart.h"
#define AUDIO_DEVICE "/dev/audio"
#define BLKSIZE 1024

int main(void) {
   int audiofd;
   char *bp;
   char buffer[BLKSIZE];
   unsigned bytesneeded;
   int bytesread;

   if ((audiofd = open(AUDIO_DEVICE, O_NONBLOCK | O_RDWR)) == -1) {
      perror("Failed to open audio device");
      return 1;
    }

   bp = buffer;
   bytesneeded = BLKSIZE;
   while(bytesneeded != 0) {
      bytesread = r_read(audiofd, bp, bytesneeded);
      if ((bytesread == -1) && (errno != EAGAIN))
         break;
      if (bytesread > 0) {
         bp += bytesread;
         bytesneeded -= bytesread;
      }
   }
   fprintf(stderr, "%d bytes read\n", BLKSIZE - bytesneeded);
   return 0;
}

In testing audio programs, keep in mind that the audio device is closed when the program 
exits. If the audio buffer still holds data that has not yet reached the speakers, that data may 
be lost. The draining of a device after a close is system dependent, so read the man page 
before deciding how to handle the situation.
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6.7 Exercise: Audio

The exercises in this section assume that the operating system handles the audio device in a 
way similar to how the Solaris operating environment handles it.

1.  Add the following access functions to the audio object of Program 6.16.

a.  The play_file function plays an audio file. It has the following prototype.

int play_file(char *filename);

The play_file outputs the audio file specified by filename to the audio device, 
assuming that the speaker has already been opened. If successful, play_file 
returns the total number of bytes output. If unsuccessful, play_file returns –1 
and sets errno.

b.  The record_file function saves incoming audio data to a disk file. It has the 
following prototype.

int record_file(char *filename, int seconds);

The record_file function saves audio information for a time interval of seconds 
in the file given by filename, assuming that the microphone has already been 
opened. If successful, record_file returns the total number of bytes recorded. 
If unsuccessful, record_file returns –1 and sets errno.

c.  The get_record_sample_rate function determines the sampling rate for 
recording. It has the following prototype.

int get_record_sample_rate(void);

If successful, get_record_sample_rate returns the sampling rate for recording. 
If unsuccessful, get_record_sample_rate returns –1 and sets errno.

d.  The get_play_buffer_size returns the buffer size that the audio device driver 
uses to transfer information to the audio output device. It has the following 
prototype.

int get_play_buffer_size(void);

If successful, get_play_buffer_size returns the buffer size for recording. If 
unsuccessful, get_play_buffer_size returns –1 and sets errno.
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e.  The get_play_sample_rate function determines the sampling rate for playing. It 
has the following prototype.

int get_play_sample_rate(void);

If successful, get_play_sample_rate returns the sampling rate used for playing 
audio files on the speaker. If unsuccessful, get_play_sample_rate returns –1 
and sets errno. A rate of 8000 samples/second is considered voice quality.

f.  The set_play_volume function changes the volume at which sound plays on the 
speaker. It has the following prototype.

int set_play_volume(double volume);

The set_play_volume sets the gain on the speaker. The volume must be 
between 0.0 and 1.0. If successful, set_play_volume returns 0. If unsuccessful, 
set_play_volume returns –1 and sets errno.

g.  The set_record_volume function changes the volume of incoming sound from 
the microphone. It has the following prototype.

int set_record_volume(double volume);

The set_record_volume function sets the gain on the microphone. The volume 
value must be between 0.0 and 1.0. If successful, set_record_volume returns 0. 
If unsuccessful, it returns –1 and sets errno.

2.  Rewrite Program 6.17 to copy from the microphone to the speaker, using the preferred 
buffer size of each of these devices. Call get_record_buffer_size and 
get_play_buffer_size to determine the respective sizes. Do not assume that they are 
the same in your implementation.

3.  Use the record_file function to create eight audio files, each of which is ten seconds in 
duration: pid1.au, pid2.au, and so on. In the file pid1.au, record the following 
message (in your voice): "I am process 1 sending to standard error". Record similar 
messages in the remaining files. Play the files back by using the play_file function.

4.  Be sure to create a header file (say, audiolib.h) with the prototypes of the functions in 
the audio library. Include this header file in any program that calls functions from this 
library.

5.  Record your speaking of the individual numerical digits (from 0 to 9) in ten different 
files. Write a function called speak_number that takes a string representing an integer 
and speaks the number corresponding to the string by calling play_file to play the 
files for the individual digits. (How does the program sound compared to the computer-
generated messages of the phone company?)



6.  Replace the fprintf statement that outputs the various IDs in Program 3.1 on page 67 
with a call to play_file. For the process with i having value 1, play the file pid1.au, 
and so on. Listen to the results for different numbers of processes when the speaker is 
opened before the fork loop. What happens when the speaker is opened after the fork? 
Be sure to use snprintf to construct the filenames from the i value. Do not hardcode 
the filenames into the program.

7.  Make a recording of the following statement in file pid.au: "My process ID is". Instead 
of having each process in the previous part play a pidi.au file corresponding to its i 
number, use speak_number to speak the process ID. Handle the parent and child IDs 
similarly.

8.  Redesign the audio object representation and access functions so that processes have 
the option of opening separately for read and for write. Replace audio_fd with the 
descriptors play_fd and record_fd. Change the open_audio so that it sets both 
play_fd and record_fd to the file descriptor value returned by open. Add the following 
access functions to the audio object of Program 6.16.

a.  The open_audio_for_record function opens the audio device for read 
(O_RDONLY). It has the following prototype.

int open_audio_for_record(void);

The function returns 0 if successful or –1 if an error occurs.

b.  The open_audio_for_play function opens the audio device for write (O_WRONLY). 
It has the following prototype.

int open_audio_for_play(void);

The open_audio_for_play function returns 0 if successful or –1 if an error 
occurs.
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6.8 Exercise: Barriers

A barrier is a synchronization construct used by cooperating processes to block until all 
processes reach a particular point. The exercises in this section use a FIFO to implement a 
barrier. They extend the simple barrier of Program 6.2.

Write a barrier server that takes two command-line arguments: the name of a barrier (name) 
and the size of the barrier (n). The size represents the number of processes that need to block 
at that barrier. The server creates a named pipe, name.request, to handle requests for the 
barrier and a named pipe, name.release, for writing the release characters. For example, if the 
barrier name is mybarrier, the server creates pipes called mybarrier.request and mybarrier.
release. The server then does the following in a loop.

1.  Open name.request for reading.

2.  Read exactly n characters from name.request.

3.  Close name.request.

4.  Open name.release for writing.

5.  Write exactly n characters to name.release.

6.  Close name.release.

Write the following barrier function for use by the clients.

int waitatbarrier(char *name);

The function blocks at the barrier with the given name. If successful, the waitatbarrier 
function returns 0. If unsuccessful, waitatbarrier returns –1 and sets errno. The 
waitatbarrier does the following in a loop.

1.  Open name.request for writing.

2.  Write one byte to name.request.

3.  Close name.request.

4.  Open name.release for reading.

5.  Read one byte from name.release.
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6.  Close name.release.

Be sure that waitatbarrier closes any pipe that it opens, even if an error occurs. If an error 
occurs on a read or write, save the value of errno, close the pipe, restore errno and return –
1.

This function works because of the way blocking is done when a pipe is opened. An open 
operation for read will block until at least one process has called open for writing. Similarly, an 
open operation for write will block until at least one process called open for reading. The client 
will block on the open of the request pipe until the server has opened it. It will then block on 
the open of the release pipe until the server has read the bytes from all of the other processes 
and opened the release pipe for writing. A second attempt to use the barrier with the same 
name will block on the open of the request pipe until all of the processes have passed the first 
barrier since the server has closed the request pipe.

Test your clients and server by modifying the process chain of Program 3.1 on page 67 or the 
process fan of Program 3.2 on page 68. Have each one use the same named barrier several 
times. Each time they wait at the barrier, they should print a message. If the modification is 
working correctly, all the first messages should be printed before any of the second ones. Are 
there any circumstances under which reusing a barrier can fail?

Generalize your barrier server to handle many different barriers. You should still have one 
request pipe. The clients send the name and size of the barrier they are requesting in a single 
write to the request pipe. The server keeps a dynamic list of the barriers. If a request for a new 
barrier comes in, the server creates a new release pipe, adds this barrier to its list, and creates 
a child process to handle the barrier. If a request for an old barrier comes in, it is ignored.

Clients can create as many barriers as they need, but each client now has to know how many 
other clients there are. Alternatively, the server can be given the number of clients on the 
command line when it starts up. See if you can devise a mechanism for the server to find out 
from the clients how many they are. Be careful, this is not easy.
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6.9 Exercise: The stty Command

Do the following to become more familiar with terminal control.

1.  Read the man page on struct termios.

2.  Execute stty -a and try to understand the different fields.

3.  Compare the facilities provided by the specific terminal calls to those provided by use of 
ioctl. Read the struct termios information in Section 7 of the man pages for 
additional information.

Read the man page for stty and write your own program modeled after it.
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6.10 Exercise: Client-Server Revisited

Section 6.4 developed an implementation of request-reply using named pipes. The 
implementation was limited because multiple readers do not behave well with pipes. Write a 
new version of these programs in which the clients send their process IDs rather than single 
characters. To service each request, the server uses a FIFO whose name includes the process 
ID of the client. After servicing the request, the server closes the response FIFO and unlinks it. 
Be sure that no client can cause this version of the server to exit.

Although the clients are sending multibyte process IDs to the server, the server will not receive 
interleaved IDs because writes to the pipe are atomic. Since only one process is reading from 
each pipe, reads do not need to be atomic.

If the server is responsible for creating the pipe from the process ID that is sent to it, the client 
may try to open the pipe before it exists, generating an error. Have the client create the reply 
pipe before sending its ID to the server on the request pipe. After sending its ID, the client 
opens the reply pipe for reading and blocks until the server opens it for writing. After the client 
receives its reply, it can close and unlink the reply pipe.

Note that both the client and the server need to run in the same directory so that they can 
access the same pipes.
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6.11 Additional Reading

The USENIX Conference Proceedings are a good source of current information on tools and 
approaches evolving under UNIX. Operating Systems Review is an informal publication of 
SIGOPS, the Association for Computing Machinery Special Interest Group on Operating 
Systems. Operating Systems Review sometimes has articles on recent developments in the 
area of file systems and device management.

Advanced Programming in the UNIX Environment by Stevens [112] contains some nice case 
studies on user-level device control, including a program to control a PostScript printer, a 
modem dialer, and a pseudo terminal management program. Understanding the LINUX Kernel: 
From I/O Ports to Process Management by Bovet and Cesati [16] discusses underlying I/O 
implementation issues in LINUX. Data Communications Networking Devices by Held [47] is a 
general reference on network device management. Finally, SunOS 5.3 Writing Device Drivers is 
a very technical guide to implementing drivers for block-oriented and character-oriented 
devices under Solaris [119].
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Chapter 7. Project: The Token Ring

The projects of this chapter explore pipes, forks and redirection in the context of a ring of 
processes. Such a ring allows simple and interesting simulations of ring network topologies. The 
chapter also introduces fundamental ideas of distributed processing, including processor 
models, pipelining and parallel computation. Distributed algorithms such as leader election 
illustrate important implementation issues.

Objectives

●     Learn about ring-based network architectures
●     Experiment with interprocess communication
●     Explore distributed algorithms on a ring topology
●     Use fork and pipes
●     Understand implications of inheritance

[ Team LiB ]   
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7.1 Ring Topology

The ring topology is one of the simplest and least expensive configurations for connecting 
communicating entities. Figure 7.1 illustrates a unidirectional ring structure. Each entity has 
one connection for input and one connection for output. Information circulates around the ring 
in a clockwise direction. Rings are attractive because interconnection costs on the ring scale 
linearly—in fact, only one additional connection is needed for each additional node. The latency 
increases as the number of nodes increases because the time it takes for a message to circulate 
is longer. In most hardware implementations, the rate at which nodes can read information 
from the ring or write information to the ring does not change with increasing ring size, so the 
bandwidth is independent of the size of the ring. Several network standards, including token 
ring (IEEE 802.5), token bus (IEEE 802.4) and FDDI (ANSI X3T9.5) are based on ring 
connectivity.

Figure 7.1. Unidirectional ring with five nodes.

This chapter develops several projects based on the ring topology of Figure 7.1. The nodes 
represent processes and the links represent pipes. Each process is a filter that reads from 
standard input and writes to standard output. Process n-1 redirects its standard output to the 
standard input of process n through a pipe. Once the ring structure is set up, the project can be 
extended to simulate network standards or to implement algorithms for mutual exclusion and 
leader election based on the ring architecture.
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Section 7.2 presents a step-by-step development of a simple ring of processes connected by 
pipes. Section 7.3 provides several exploratory exercises that build on the basic ring structure. 
The figures of Section 7.2 trace the code through the creation of two processes on the ring, but 
the basic ring is too complicated to trace manually much beyond that.

We suggest that before working through Section 7.3, you use the fork-pipe simulator to try 
some of the examples. The book web page has a link to this simulator, which shows a diagram 
of the processes and pipes as it traces the code. The simulator also allows experimentation with 
process chains, fans and trees as well as more complicated structures such as a bidirectional 
ring. The simulator allows you to experiment with the effects of using different CPU scheduling 
algorithms, or you can single-step through the code, determining which process runs at each 
step. The simulator also can produce a log of the output generated and a trace of the 
instructions executed.

Once you have a thorough understanding of the ring and its behavior, you can go on to the 
other projects in this chapter. Section 7.4 tests the ring connectivity and operation by having 
the ring generate a Fibonacci sequence. Section 7.5 and Section 7.6 present two alternative 
approaches for protecting critical sections on the ring. Once the ring structure is set up, the 
basic project of Section 7.2 can be extended to simulate network standards or to implement 
algorithms for mutual exclusion and leader election based on the ring architecture. The 
remaining sections of the chapter describe extensions exploring different aspects of network 
communication, distributed processing and parallel algorithms. The extensions described in 
each of the later sections are independent of those in other sections.

[ Team LiB ]   
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7.2 Ring Formation

This section develops a ring of processes starting with a ring containing a single process. You 
should review Section 4.6 if you are not clear on file descriptors and redirection.

Example 7.1 

The following code segment connects the standard output of a process to its standard input 
through a pipe. We omit the error checking for clarity.

int fd[2];

pipe(fd);
dup2(fd[0], STDIN_FILENO);
dup2(fd[1], STDOUT_FILENO);
close(fd[0]);
close(fd[1]);

Figures 7.2–7.4 illustrate the status of the process at various stages in the execution of 
Example 7.1. The figures use [0] to designate standard input and [1] to designate standard 
output. Be sure to use STDIN_FILENO and STDOUT_FILENO when referring to these file 
descriptors in program code. The entries of the file descriptor table are pointers to entries in 
the system file table. For example, pipe write in entry [4] means "a pointer to the write entry 
in the system file table for pipe," and standard input in entry [0] means "a pointer to the entry 
in the system file table corresponding to the default device for standard input"—usually the 
keyboard.

Figure 7.2 depicts the file descriptor table after the pipe has been created. File descriptor 
entries [3] and [4] point to system file table entries that were created by the pipe call. The 
program can now write to the pipe by using a file descriptor value of 4 in a write call.

Figure 7.2. Status of the process of Example 7.1 after pipe(fd) executes.
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Figure 7.3 shows the status of the file descriptor table after the execution of the dup2 functions. 
At this point the program can write to the pipe using either 1 or 4 as the file descriptor value. 
Figure 7.4 shows the configuration after descriptors [3] and [4] are closed.

Figure 7.3. Status of the process of Example 7.1 after both dup2 
functions execute.

Figure 7.4. Status of the process at the end of Example 7.1.

Exercise 7.2 

What happens if, after connecting standard output to standard input through a pipe, the 
process of Example 7.1 executes the following code segment?

int i, myint;

for (i = 0; i < 10; i++) {
   write(STDOUT_FILENO, &i, sizeof(i));
   read(STDIN_FILENO, &myint, sizeof(myint));
   fprintf(stderr, "%d\n", myint);
}



Answer:

The code segment outputs the integers from 0 to 9 to the screen (assuming that standard error 
displays on the screen).

Exercise 7.3 

What happens if you replace the code in Exercise 7.2 by the following code?

int i, myint;

for (i = 0; i < 10; i++) {
   read(STDIN_FILENO, &myint, sizeof(myint));
   write(STDOUT_FILENO, &i, sizeof(i));
   fprintf(stderr, "%d\n", myint);
}

Answer:

The program hangs on the first read because nothing had yet been written to the pipe.

Exercise 7.4 

What happens if you replace the code in Exercise 7.2 by the following?

int i, myint;
for (i = 0; i < 10; i++) {
   printf("%d ", i);
   scanf("%d", &myint);
   fprintf(stderr, "%d\n", myint);
}

Answer:

The program may hang on the scanf if the printf buffers its output. Put an fflush(stdout) 
after the printf to get output.

Example 7.5 

The following code segment creates a ring of two processes. Again, we omit error checking for 
clarity.

int fd[2];
pid_t haschild;

pipe(fd);                                                         /* pipe a */
dup2(fd[0], STDIN_FILENO);



dup2(fd[1], STDOUT_FILENO);
close(fd[0]);
close(fd[1]);
pipe(fd);                                                         /* pipe b */
haschild = fork();
if (haschild > 0)
   dup2(fd[1], STDOUT_FILENO);            /* parent(A) redirects std output */
else if (!haschild)
   dup2(fd[0], STDIN_FILENO);               /* child(B) redirects std input */
close(fd[0]);
close(fd[1]);

The parent process in Example 7.5 redirects standard output to the second pipe. (It was coming 
from the first pipe.) The child redirects standard input to come from the second pipe instead of 
the first pipe. Figures 7.5–7.8 illustrate the connection mechanism.

Figure 7.5. Connections to the parent process of Example 7.5 after the 
second pipe(fd) call executes.

Figure 7.5 shows the file descriptor table after the parent process A creates a second pipe. 
Figure 7.6 shows the situation after process A forks child process B. At this point, neither of the 
dup2 functions after the second pipe call has executed.

Figure 7.6. Connections of the processes of Example 7.5 after the fork. 
Process A is the parent and process B is the child.



Figure 7.7 shows the situation after the parent and child have each executed their last dup2. 
Process A has redirected its standard output to write to pipe b, and process B has redirected its 
standard input to read from pipe b. Finally, Figure 7.8 shows the status of the file descriptors 
after all unneeded descriptors have been closed and a ring of two processes has been formed.

Figure 7.7. Connections of the processes of Example 7.5 after the if 
statement executes. Process A is the parent and process B is the child.



Figure 7.8. Connections of the processes of Example 7.5 after the entire 
code segment executes. Process A is the parent and process B is the 

child.



Exercise 7.6 

What would happen if the code of Exercise 7.2 is inserted after the ring of two processes of 
Example 7.5?

Answer:

The new code is executed by two processes. Each process writes 10 integers to the pipe and 
reads the integers written by the other process. The processes cannot get too far out of step, 
since each process needs to read from the other before writing the next value. You should see 
two lines of 0 followed by two lines of 1, etc.

The code of Example 7.5 for forming a ring of two processes easily extends to rings of arbitrary 
size. Program 7.1 sets up a ring of n processes. The value of n is passed on the command line 
(and converted to the variable nprocs). A total of n pipes is needed. Notice, however, that the 
program needs an array only of size 2 rather than 2n to hold the file descriptors. After the ring 
of two processes is created, the parent drops out and the child forks again. (Try to write your 
own code before looking at the ring program.)

Program 7.1 ring.c

A program to create a ring of processes.

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>



int main(int argc,  char *argv[ ]) {
   pid_t childpid;             /* indicates process should spawn another     */
   int error;                  /* return value from dup2 call                */
   int fd[2];                  /* file descriptors returned by pipe          */
   int i;                      /* number of this process (starting with 1)   */
   int nprocs;                 /* total number of processes in ring          */
           /* check command line for a valid number of processes to generate */
   if ( (argc != 2) || ((nprocs = atoi (argv[1])) <= 0) ) {
       fprintf (stderr, "Usage: %s nprocs\n", argv[0]);
       return 1;
   }
   if (pipe (fd) == -1) {      /* connect std input to std output via a pipe */
      perror("Failed to create starting pipe");
      return 1;
   }
   if ((dup2(fd[0], STDIN_FILENO) == -1) ||
       (dup2(fd[1], STDOUT_FILENO) == -1)) {
      perror("Failed to connect pipe");
      return 1;
   }
   if ((close(fd[0]) == -1) || (close(fd[1]) == -1)) {
      perror("Failed to close extra descriptors");
      return 1;
   }
   for (i = 1; i < nprocs;  i++) {         /* create the remaining processes */
      if (pipe (fd) == -1) {
         fprintf(stderr, "[%ld]:failed to create pipe %d: %s\n",
                (long)getpid(), i, strerror(errno));
         return 1;
      }
      if ((childpid = fork()) == -1) {
         fprintf(stderr, "[%ld]:failed to create child %d: %s\n",
                 (long)getpid(), i, strerror(errno));
         return 1;
      }
      if (childpid > 0)               /* for parent process, reassign stdout */
          error = dup2(fd[1], STDOUT_FILENO);
      else                              /* for child process, reassign stdin */
          error = dup2(fd[0], STDIN_FILENO);
      if (error == -1) {
         fprintf(stderr, "[%ld]:failed to dup pipes for iteration %d: %s\n",
                 (long)getpid(), i, strerror(errno));
         return 1;
      }
      if ((close(fd[0]) == -1) || (close(fd[1]) == -1)) {
         fprintf(stderr, "[%ld]:failed to close extra descriptors %d: %s\n",
                (long)getpid(), i, strerror(errno));
         return 1;
      }
      if (childpid)
         break;
   }                                               /* say hello to the world */
   fprintf(stderr, "This is process %d with ID %ld and parent id %ld\n",
           i, (long)getpid(), (long)getppid());
   return 0;
}
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7.3 Ring Exploration

The following exercises test and modify Program 7.1. You can try these either by compiling the 
ring code or by using the fork-pipe simulator. A link to the simulator appears on the book web 
page. For each modification, make a new copy of the program. Suggested names for the 
executables are shown in parentheses.

1.  Run the program shown in Program 7.1 (ring).

2.  Create a makefile with descriptions for compiling and linting the program. Use make to 
compile the program. Add targets for additional parts of this project. (Refer to Section 
A.3 if you are unfamiliar with the make utility.)

3.  Make any corrections required to eliminate all lint errors and warning messages that 
reflect problems with the program. (Refer to Section A.4 if you are unfamiliar with the 
lint utility.)

4.  Run ring for several values of the command-line argument and observe what happens 
as the number of processes in the ring varies from 1 to 20.

5.  Modify the original ring program by putting a wait call before the final fprintf 
statement (ring1). How does this affect the output of the program?

6.  Modify the original ring program by putting a wait call after the final fprintf 
statement (ring2). How does this affect the output of the program?

7.  Replace the fprintf statement in the original ring program with calls to sprintf and 
prtastr (ring3). Write a prtastr function with the following prototype.

void prtastr(const char *s, int fd, int n);

The prtastr function prints the s string one character at a time to the file specified by 
descriptor fd using write. After outputting each character, prtastr calls the following 
function.

wastesometime.c

void wastesometime(int n) {
   static volatile int dummy = 0;
   int i;

   for (i=0; i < n; i++)
      dummy++;
}
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This just wastes some CPU time. The variable dummy is declared to be volatile so that the 
action of the for loop is not optimized away. Use prtastr to output the string to 
standard error. Pass the value of n used by prtastr as an optional command-line 
argument to ring3. Use 0 as the default value for this parameter. (The single character 
at a time gives the ring processes more opportunity to interleave their output.) Run the 
program with a value of n that causes a small, but barely noticeable, delay between the 
output of characters.

8.  Compare the results of running the modified ring3 if you do the following.

a.  Insert wait before the call to prtastr (ring4).

b.  Insert wait after the call to prtastr (ring5).

9.  Modify ring1 as follows (ringtopology).

a.  Before the wait, each process allocates an array of nprocs elements to hold the 
IDs of all the processes on the ring. The process puts its own process ID in 
element zero of the array and sets its variable next_ID to its process ID.

b.  Do the following for k going from 1 to nprocs-1.

i.  Write next_ID to standard output.

ii.  Read next_ID from standard input.

iii.  Insert next_ID into position k of the ID array.

c.  Replace the fprintf after the wait with a loop that outputs the contents of the 
ID array to standard error in a readable single-line format. This output tests the 
ring connectivity, since the ID array contains the processes in the order in which 
they appear upstream from a given process.

10.  Modify ringtopology by having the child rather than the parent break out of the loop 
(ringchildbreak). We are now creating a process fan instead of a chain. Determine 
how this affects the topology. Do we still have a ring? If using the simulator, you can 
just modify ring since you do not need to send anything around to ring to determine 
the topology.

11.  Modify ringtopology by having neither process break out of the loop (ringnobreak). 
We are now creating a process tree instead of a chain. Determine how this affects the 
topology. Do we still have a ring? The number of processes is now greater than nprocs. 
How does the number of processes depend on nprocs? You will need to adjust the loop 
that sends the process IDs around the ring.

12.  Modify ring1 to be a bidirectional ring (information can flow in either direction between 



neighbors on the ring). Standard input and output are used for the flow in one direction. 
File descriptors 3 and 4 are used for the flow in the other direction. Test the connections 
by accumulating ID arrays for each direction (biring).

13.  Modify ring1 to create a bidirectional torus of processes. Accumulate ID arrays to test 
connectivity. A torus has a two-dimensional structure. It is like a mesh except that the 
processes at the ends are connected together. The n2 processes are arranged in n rings 
in each dimension (torus). Each process has four connections (North, South, East, and 
West).

Use the ring simulator that is linked on the book web site to explore various aspects of this 
problem. Modify the ring simulator example to illustrate the effects of items 4 through 6. Make 
printing nonatomic to illustrate items 7 and 8. Pass data around the ring as in item 9, and 
construct a bidirectional ring for item 10.
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7.4 Simple Communication

Section 7.2 established the connections for a ring of processes. This section develops a simple 
application in which processes generate a sequence of Fibonacci numbers on the ring. The next 
number in a Fibonacci sequence is the sum of the previous two numbers in the sequence.

In this project, the processes pass information in character string format. The original parent 
outputs the string "1 1" representing the first two Fibonacci numbers to standard output, 
sending the string to the next process. The other processes read a string from standard input, 
decode the string, calculate the next Fibonacci number, and write to standard output a string 
representing the previous Fibonacci number and the one just calculated. Each process then 
writes the result of its calculation to standard error and exits. The original parent exits after 
receiving a string and displaying the numbers received.

Start with the original ring function of Program 7.1 and replace the fprintf with code to read 
two integers from standard input in the string format described below, calculate the next 
integer in a Fibonacci sequence, and write the result to standard output.

1.  Each string is the ASCII representation of two integers separated by a single blank.

2.  The original parent writes out the string "1 1", representing two ones and then reads a 
string. Be sure to send the string terminator.

3.  All other processes first read a string and then write a string.

4.  Fibonacci numbers satisfy the formula xn+1 = xn + xn- . Each process receives two 
numbers (e.g., a followed by b), calculates c = a + b and writes b followed by c as a 
null-terminated string. (The b and c values should be written as strings separated by a 
single blank.)

5.  After sending the string to standard output, the process writes a single-line message to 
standard error in the following form.

Process i with PID x and parent PID y received a b and sent b c.

6.  After sending the message to standard error, the process exits. Try to write the program 
in such a way that it handles the largest possible number of processes and still 
calculates the Fibonacci numbers correctly. The execution either runs out of processes 
or some process generates a numeric overflow when calculating the next number. 
Attempt to detect this overflow and send the string "0 0".

Notes: The program should be able to calculate Fib(46)=1,836,311,903, using 45 processes or 
Fib(47)=2,971,215,073, using 46 processes. It may even be able to calculate Fib(78)
=8,944,394,323,791,464, using 77 processes. With a little extra work, the program can 
compute higher values. A possible approach for detecting overflow is to check whether the 
result is less than the first integer in the string.
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This program puts a heavy load on the CPU of a machine. Don't try this project with more than 
a few processes unless it is running on a dedicated computer. Also, on some systems, a limit on 
the number of processes for a user may interfere with running the program for a large number 
of processes.
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7.5 Mutual Exclusion with Tokens

All the processes on the ring share the standard error device, and the call to prtastr described 
in Section 7.3 is a critical section for these processes. This section describes a simple token-
based strategy for granting exclusive access to a shared device. The token can be a single 
character that is passed around the ring. When a given process acquires the token (reads the 
character from standard input), it has exclusive access to the shared device. When that process 
completes its use of the shared device, it writes the character to standard output so that the 
next process in the ring can acquire the token. The token algorithm for mutual exclusion is 
similar to the speaking stick (or a conch [42]) used in some cultures to enforce order at 
meetings. Only the person who holds the stick can speak.

The acquisition of mutual exclusion starts when the first process writes a token (just a single 
character) to its standard output. From then on, the processes use the following strategy.

1.  Read the token from standard input.

2.  Access the shared device.

3.  Write the token to standard output.

If a process does not wish to access the shared device, it merely passes the token on.

What happens to the preceding algorithm at the end? After a process has completed writing its 
messages to standard error, it must continue passing the token until all other processes on the 
ring are done. One strategy for detecting termination is to replace the character token by an 
integer. The initial token has a zero value. If a process finishes its critical section but will still 
access the shared device at a later time, it just passes the token unchanged. When a process 
no longer needs to access the shared device, it performs the following shutdown procedure.

1.  Read the token.

2.  Increment the token.

3.  Write the token.

4.  Repeat until the token has a value equal to the number of processes in the ring.

a.  Read the token.

b.  Write the token.

5.  Exit.

The repeat section of the shutdown procedure has the effect of forcing the process to wait until 
everyone is finished. This strategy requires that the number of processes on the ring be known.
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Implement and test mutual exclusion with tokens as follows.

1.  Start with version ring3 of the ring program from Section 7.3.

2.  Implement mutual exclusion for standard error by using the integer token method just 
described but without the shutdown procedure. The critical section should include the 
call to prtastr.

3.  Test the program with different values of the command-line arguments. In what order 
do the messages come out and why?

4.  Vary the tests by having each process repeat the critical section a random number of 
times between 0 and r. Pass r as a command-line argument. Before each call to 
prtastr, read the token. After calling prtastr, write the token. When done with all 
output, execute a loop that just passes the token. (Hint: Read the man page on drand48 
and its related functions. The drand48 function generates a pseudorandom double in the 
range [0, 1). If drand48 generates a value of x, then y = (int)(x*n) is an integer 

satisfying 0  = y < n.) Use the process ID for a seed so that the processes use 
independent pseudorandom numbers.

5.  The messages that each process writes to standard error should include the process ID 
and the time the operation began. Use the time function to obtain a time in seconds. 
Print the time in a nice format as in Example 5.8. (Page 302 in Chapter 9 has a more 
detailed description of time.)

[ Team LiB ]   
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7.6 Mutual Exclusion by Voting

One problem with the token method is that it generates continuous traffic (a form of busy 
waiting) even when no process enters its critical section. If all the processes need to enter their 
critical sections, access is granted by relative position as the token travels around the ring. An 
alternative approach uses an algorithm of Chang and Roberts for extrema finding [22]. 
Processes that need to enter their critical sections vote to see which process obtains access. 
This method generates traffic only when a process requires exclusive access. The approach can 
be modified to accommodate a variety of priority schemes in the determination of which 
process goes next.

Each process that is contending for mutual exclusion generates a voting message with a unique 
two-part ID. The first part of the ID, the sequence number, is based on a priority. The second 
part of the ID, the process ID, breaks ties if two processes have the same priority. Examples of 
priority include sequence numbers based on the current clock time or on the number of times 
that the process has acquired mutual exclusion in the past. In each of these strategies, the 
lower value corresponds to a higher priority. Use the latter strategy.

To vote, the process writes its ID message on the ring. Each process that is not participating in 
the vote merely passes the incoming ID messages to the next process on the ring. When a 
process that is voting receives an ID message, it bases its actions on the following paradigm.

1.  If the incoming message has a higher ID (lower priority) than its own vote, the process 
throws away the incoming message.

2.  If the incoming message has a lower ID (higher priority) than its own vote, the process 
forwards the message.

3.  If the incoming message is its own message, the process has acquired mutual exclusion 
and can begin the critical section.

Convince yourself that the winner of the vote is the process whose ID message is the lowest for 
that ballot.

A process relinquishes mutual exclusion by sending a release message around the ring. Once a 
process detects that the vote has started either because it initiated the request or because it 
received a message, the process cannot initiate another vote until it detects a release message. 
Thus, of the processes that decided earliest to participate, the process that received access the 
fewest times in the past wins the election.

Implement the voting algorithm for exclusive access to standard error. Incorporate random 
values of the delay value, which is the last parameter of the prtastr function defined in 
Section 7.3. Devise a strategy for graceful exit after all of the processes have completed their 
output.
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7.7 Leader Election on an Anonymous Ring

Specifications of distributed algorithms refer to the entities that execute the algorithm as 
processes or processors. Such algorithms often specify an underlying processor model in terms 
of a finite-state machine. The processor models are classified by how the state transitions are 
driven (synchrony) and whether the processors are labeled.

In the synchronous processor model, the processors proceed in lock step and state transitions 
are clock-driven. In the asynchronous processor model, state transitions are message-driven. 
The receipt of a message on a communication link triggers a change in processor state. The 
processor may send messages to its neighbors, perform some computation, or halt as a result 
of the incoming message. On any given link between processors, the messages arrive in the 
order they were sent. The messages incur a finite, but unpredictable, transmission delay.

A system of communicating UNIX processes connected by pipes, such as the ring of Program 
7.1, is an example of an asynchronous system. A massively parallel SIMD (single-instruction, 
multiple-data) machine such as the CM-2 is an example of a synchronous system.

A processor model must also specify whether the individual processors are labeled or whether 
they are indistinguishable. In an anonymous system, the processors have no distinguishing 
characteristic. In general, algorithms involving systems of anonymous processors or processes 
are more complex than the corresponding algorithms for systems of labeled ones.

The UNIX fork function creates a copy of the calling process. If the parent and child were 
completely identical, fork would not accomplish anything beyond the activities of a single 
process. In fact, UNIX distinguishes the parent and child by their process IDs, and fork returns 
different values to the parent and child so that each is aware of the other's identity. In other 
words, fork breaks the symmetry between parent and child by assigning different process IDs. 
Systems of UNIX processors are not anonymous because the processes can be labeled by their 
process IDs.

Symmetry-breaking is a general problem in distributed computing in which identical processes 
(or processors) must be distinguished to accomplish useful work. Assignment of exclusive 
access is an example of symmetry-breaking. One possible way of assigning mutual exclusion is 
to give preference to the process with the largest process ID. Usually, a more equitable method 
would be better. The voting algorithm of Section 7.6 assigns mutual exclusion to the process 
that has acquired it the fewest times in the past. The algorithm uses the process ID only in the 
case of ties.

Leader election is another example of a symmetry-breaking algorithm. Leader election 
algorithms are used in some networks to designate a particular processor to partition the 
network, regenerate tokens, or perform other operations. For example, what happens in a 
token-ring network if the processor holding the token crashes? When the crashed processor 
comes back up, it does not have a token and activity on the network comes to a standstill. One 
of the nonfaulty processors must take the initiative to generate another token. Who should 
decide which processor is in charge?

There are no deterministic algorithms for electing a leader on an anonymous ring. This section 
discusses the implementation of a probabilistic leader-election algorithm for an anonymous 
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ring. The algorithm is an asynchronous version of the synchronous algorithm proposed by Itai 
and Roteh [58]. This is a probabilistic algorithm for leader election on an anonymous 
synchronous ring of size n. The synchronous version of the algorithm proceeds in phases. Each 
process keeps track of the number of active processes, m. These are the processes still 
competing for being chosen as the leader.

1.  Phase zero

a.  Set local variable m to n.

b.  Set active to TRUE.

2.  Phase k

a.  If active is TRUE,

i.  Choose a random number, x, between 1 and m.

ii.  If the number chosen was 1, send a one-bit message around the ring.

b.  Count the number of one-bit messages received in the next n-1 clock pulses as 
follows.

i.  If only one active process chose 1, the election is completed.

ii.  If no active processes chose 1, go to the next phase with no change.

iii.  If p processes chose 1, set m to p.

iv.  If the process is active and it did not choose 1, set its local active to 
FALSE.

In summary, on each phase the active processes pick a random number between 1 and the 
number of active processes. Any process that picks a 1 is active on the next round. If no 
process picks a 1 on a given round, the active processes try again. The probability of a 
particular process picking a 1 increases as the number of active processes decreases. On 
average, the algorithm eliminates processes from contention at a rapid rate. Itai and Roteh 
showed that the expected number of phases needed to choose a leader on a ring of size n is 

less than e  2.718, independently of n.

Using the ring of Program 7.1, implement a simulation of this leader-election algorithm to 
estimate the probability distribution J(n,k), which is the probability that it takes k phases to 
elect a leader on a ring of size n.

The implementation has to address two problems. The first problem is that the algorithm is 
specified for a synchronous ring, but the implementation is on an asynchronous ring. 



Asynchronous rings clock on the messages received (i.e., each time a process reads a message, 
it updates its clock). The processes must read messages at the correct point in the algorithm or 
they lose synchronization. Inactive processes must still write clock messages.

A second difficulty arises because the theoretical convergence of the algorithm relies on the 
processes having independent streams of random numbers. In practice, the processes use a 
pseudorandom-number generator with an appropriate seed. The processes are supposedly 
identical, but if they start with the same seed, the algorithm will not work. The implementation 
can cheat by using the process ID to generate a seed, but ultimately it should include a method 
of generating numbers based on the system clock or other system hardware. (The first few 
sections of Chapter 10 discuss library functions for accessing the system clock and timers.)
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7.8 Token Ring for Communication

This section develops a simulation of communication on a token-ring network. Each process on 
the ring now represents an Interface Message Processor (IMP) of a node on the network. The 
IMP handles message passing and network control for the host of the node. Each IMP process 
creates a pair of pipes to communicate with its host process, as shown in Figure 7.9. The host 
is represented by a child process forked from the IMP.

Figure 7.9. IMP-host structure.

Each IMP waits for messages from its host and from the ring. For simplicity, a message consists 
of five integers—a message type, the ID of the source IMP, the ID of the destination IMP, a 
status, and a message number. The possible message types are defined by the enumerated 
type msg_type_t.

typedef enum msg_type{TOKEN, HOST2HOST, IMP2HOST, HOST2IMP, IMP2IMP} msg_type_t;

The IMP must read a TOKEN message from the ring before it writes any message it originates to 
the ring. When it receives an acknowledgment of its message, it writes a new TOKEN message 
on the ring. The acknowledgments are indicated in the status member that is of type 
msg_status_t defined by the following.

typedef enum msg_status{NONE, NEW, ACK} msg_status_t;

The IMP waits for a message from either its host or the ring. When an IMP detects that the host 
wants to send a message, it reads the message into a temporary buffer and sets the got_msg 
flag. Once the got_msg flag is set, the IMP cannot read any additional messages from the host 
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until the got_msg flag is clear.

When the IMP detects a message from the network, its actions depend on the type of message. 
If the IMP reads a TOKEN message and it has a host message to forward (got_msg is set), the 
IMP writes the host message to the network. If the IMP has no message to send (got_msg is 
clear), it writes the TOKEN message on the network.

If the IMP reads a message other than a TOKEN message from the ring, its actions depend on 
the source and destination IDs in the message.

1.  If the source ID of the message matches the IMP's ID, the message was its own. The 
IMP prints a message to standard error reporting whether the message was received by 
the destination. In any case, the IMP writes a TOKEN message to the ring and clears 
got_msg.

2.  If the destination ID of the message matches the IMP's ID, the message is for the IMP 
or the IMP's host. The IMP prints a status message to standard error reporting the type 
of message. The IMP changes the status of the message to ACK and writes the message 
to the ring. If the message is for the host, also send the message to the host through 
the pipe.

3.  Otherwise, the IMP writes the message to the ring unchanged.

The actual IEEE 802.5 token-ring protocol is more complicated than this. Instead of fixed-
length messages, the IMPs use a token-holding timer set to a prespecified value when 
transmission starts. An IMP can transmit until the timer expires, so messages can be quite 
long. There can also be a priority scheme [111]. In the actual token-ring protocol, one IMP is 
designated as the active monitor for the ring. It periodically issues control frames to tell the 
other stations that the active monitor is present. The active monitor detects whether a token 
has been lost and is responsible for regenerating tokens. All the stations periodically send 
standby-monitor-present control frames downstream to detect breaks in the ring.

Start with Program 7.1. Modify it so that after the ring is created, each IMP process creates two 
pipes and a child host process, as shown in Figure 7.9. Redirect standard output and standard 
input of the child host as shown in Figure 7.9, and have the child execute the hostgen program 
with the appropriate command-line arguments. The IMP enters an infinite loop to monitor its 
possible inputs, using select. When input is available, the IMP performs the simple token-ring 
protocol described above.

Write and test a separate program, hostgen, that takes two command-line arguments: an 
integer process number n and an integer sleep time s. The hostgen program monitors standard 
input and logs any input it receives to standard error. Use the read_timed of Program 4.16 on 
page 115 with a random timeout between 0 and s seconds. If a timeout occurs, write a random 
integer between 0 and n to standard output. Test the hostgen program separately.
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7.9 Pipelined Preprocessor

The C preprocessor, cpp, preprocesses C source code so that the C compiler itself does not 
have to worry about certain things. For example, say a C program has a line such as the 
following.

#define BUFSIZE 250

In this case, cpp replaces all instances of the token BUFSIZE by 250. The C preprocessor deals 
with tokens, so it does not replace an occurrence of BUFSIZE1 with 2501. This behavior is 
clearly needed for C source code. It should not be possible to get cpp into a loop with 
something like the following.

#define BUFSIZE (BUFSIZE + 1)

Various versions of cpp handle this difficulty in different ways.

In other situations, the program may not be dealing with tokens and might replace any 
occurrence of a string, even if that string is part of a token or consists of several tokens. One 
method of handling the loops that may be generated by recursion is not to perform any 
additional test on a string that has already been replaced. This method fails on something as 
simple as the following statements.

#define BUFSIZE 250
#define BIGGERBUFSIZE (BUFSIZE + 1)

Another way to handle this situation is to make several passes through the input file, one for 
each #define and to make the replacements sequentially. The processing can be done more 
efficiently (and possibly in parallel) with a pipeline. Figure 7.10 shows a four-stage pipeline. 
Each stage in the pipeline applies a transformation to its input and then outputs the result for 
input to the next stage. A pipeline resembles an assembly line in manufacturing.

Figure 7.10. Four-stage pipeline.

This section develops a pipeline of preprocessors based on the ring of Program 7.1. To simplify 
the programming, the preprocessors just convert single characters to strings of characters.

1.  Write a processchar function that has the following prototype.

int processchar(int fdin, int fdout, char inchar, char *outstr);
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The processchar function reads from file descriptor fdin until end-of-file and writes to 
file descriptor fdout, translating any occurrence of the character inchar into the string 
outstr. If successful, processchar returns 0. If unsuccessful, processchar returns–1 
and sets errno. Write a driver to test this function before using it with the ring.

2.  Modify Program 7.1 so that it now takes four command-line arguments (ringpp). Run 
the program by executing the following command.

ringpp n conf.in file.in file.out

The value of the command-line argument n specifies the number of stages in the 
pipeline. It corresponds to nprocs-2 in Program 7.1. The original parent is responsible 
for generating pipeline input by reading file.in, and the last child is responsible for 
removing output from the pipeline and writing it to file.out. Before ringpp creates the 
ring, the original parent opens the file conf.in, reads in n lines, each containing a 
character and a string. It stores this information in an array. The ringpp program reads 
the conf.in file before any forking, so the information in the array is available to all 
children.

3.  The original parent is responsible for copying the contents of the file.in input file to its 
standard output. When it encounters end-of-file on file.in, the process exits. The 
original parent generates the input for the pipeline and does not perform any pipeline 
processing.

4.  The last child is responsible for removing output from the pipeline. The process copies 
data from its standard input to file.out, but it does not perform any pipeline 
processing. The process exits when it encounters an end-of-file on its standard input.

5.  For i between 2 and n+1, child process i uses the information in the (i-1)-th entry of 
the translation array to translate a character to a string. Each child process acts like a 
filter, reading the input from standard input, making the substitution and writing the 
result to standard output. Call the processchar function to process the input. When 
processchar encounters an end-of-file on input, each process closes its standard input 
and standard output, then exits.

6.  After making sure that the program is working correctly, try it with a big file (many 
megabytes) and a moderate number (10 to 20) of processes.

7.  If possible, try the program on a multiprocessor machine to measure the speedup. (See 
Section 7.10 for a definition of speedup.)

Each stage of the pipeline reads from its standard input and writes to its standard output. You 
can generalize the problem by having each stage run execvp on an arbitrary process instead of 
calling the same function. The conf.in file could contain the command lines to execvp instead 
of the table of string replacements specific to this problem.

It is also possible to have the original parent handle both the generation of pipeline input and 
the removal of its output. In this case, the parent opens file.in and file.out after forking its 



child. The process must now handle input from two sources: file.in and its standard input. It 
is possible to use select to handle this, but the problem is more complicated than might first 
appear. The process must also monitor its standard output with select because a pipe can fill 
up and block additional writes. If the process blocks while writing to standard output, it is not 
able to remove output from the final stage of the pipeline. The pipeline might deadlock in this 
case. The original parent is a perfect candidate for threading. Threads are discussed in Chapters 
12 and 13.
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7.10 Parallel Ring Algorithms

Parallel processing refers to the partitioning of a problem so that pieces of the problem can be 
solved in parallel, thereby reducing the overall execution time. One measure of the 
effectiveness of the partitioning is the speedup, S(n), which is defined as follows.

Ideally, the execution time is inversely proportional to the number of processors, implying that 
the speedup S(n) is just n. Unfortunately, linear speedup is a rare achievement in practical 
settings for a number of reasons. There is always a portion of the work that cannot be done in 
parallel, and the parallel version of the algorithm incurs overhead when the processors 
synchronize or communicate to exchange information.

The problems that are most amenable to parallelization have a regular structure and involve 
exchange of information following well-defined patterns. This section looks at two parallel 
algorithms for the ring: image filtering and matrix multiplication. The image filtering belongs to 
a class of problems in which each processor performs its calculation independently or by 
exchanging information with its two neighbors. In matrix multiplication, a processor must 
obtain information from all the other processors to complete the calculation. However, the 
information can be propagated by a simple shift. Other parallel algorithms can also be adapted 
for efficient execution on the ring, but the communication patterns are more complicated than 
those of the examples done here.

7.10.1 Image filtering

A filter is a transformation applied to an image. Filtering may remove noise, enhance detail or 
blur image features, depending on the type of transformation. This discussion considers a 
greyscale digital image represented by an n x n array of bytes. Common spatial filters replace 
each pixel value in such an image by a function of the original pixel and its neighbors. The filter 
algorithm uses a mask to specify the neighborhood that contributes to the calculation. Figure 
7.11 shows a 3 x 3 mask of nearest neighbors. This particular mask represents a linear filter 
because the function is a weighted sum of the pixels in the mask. In contrast, a nonlinear filter 
cannot be written as a linear combination of pixels under the mask. Taking the median of the 
neighboring pixels is an example of a nonlinear filter.

Figure 7.11. Mask for applying a smoothing filter to an image.
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The values in the mask are the weights applied to each pixel in the sum when the mask is 
centered on the pixel being transformed. In Figure 7.11, all weights are 1/9. If ai,j is the pixel 
at position (i, j) of the original image and bi,j is the pixel at the corresponding position in the 
filtered image, the mask in Figure 7.11 represents the pixel transformation

This transformation blurs sharp edges and eliminates contrast in an image. In filtering 
terminology, the mask represents a low-pass filter because it keeps slowly varying (low-
frequency) components and eliminates high-frequency components. The mask in Figure 7.12 is 
a high-pass filter that enhances edges and darkens the background.

Figure 7.12. Mask for applying a difference filter to an image.

Filtering algorithms on the ring

The ring of processes is a natural architecture for parallelizing the types of filters described by 
masks such as those of Figures 7.11 and 7.12. Suppose a ring of n processes is to filter an n x 
n image. Each process can be responsible for computing the filter for one row or one column of 
the image. Since ISO C stores arrays in row-major format (i.e., the elements of a two-
dimensional array are stored linearly in memory by first storing all elements of row zero 
followed by all elements of row one, and so on), it is more convenient to have each process 
handle one row.

To perform the filtering operation in process p, do the following.

1.  Obtain rows p-1, p, and p+1 of the original image. Represent the pixel values of three 
rows of the original image by the following array.

unsigned char a[3][n+2];



Put the image pixels of row p-1 in a[0][1], . . ., a[0][n]. Set a[0][0] and a[0][n+1] 
to 0 to compute the result for border pixels without worrying about array bounds. 
Handle rows p and p+1 similarly. If p is 1, set a[0][0], . . . , a[0][n+1] to 0 
corresponding to the row above the image. If p is n, set a[2][0], . . . , a[2][n+1] to 0 
corresponding to the row of pixels below the bottom of the image.

2.  Compute the new values for the pixels in row p and store the new values in an array.

unsigned char b[n+2];

To compute the value of b[i], use the following program segment.

int sum;
int i;
int j;
int m;

sum = 0;
for (j = 0; j < 3; j++)
   for (m = i - 1; m < i + 2; m++)
      sum += a[j][m];
b[i] = (unsigned char) (sum/9);

The value of b[i] is the pixel value bp,i in the new image.

3.  Insert b in row p of the new image.

The preceding description is purposely vague about where the original image comes from and 
where it goes. This I/O is the heart of the problem. The simplest approach is to have each 
process read the part of the input image it needs from a file and write the resulting row to 
another file. In this approach, the processes are completely independent of each other. Assume 
that the original image is stored as a binary file of bytes in row-major order. Use lseek to 
position the file offset at the appropriate place in the file, and use read to input the three 
needed rows. After computing the new image, use lseek and write to write the row in the 
appropriate place in the image. Be sure to open the input and output image files after the fork 
so that each process on the ring has its own file offsets.

A bidirectional ring

An alternative approach uses nearest-neighbor communication. Process p on the ring reads in 
only row p. It then writes row p to its neighbors on either side and reads rows p-1 and p+1 
from its neighbors. This exchange of information requires the ring to be bidirectional, that is, a 
process node can read or write from the links in each direction. (Alternatively, replace each link 
in the ring by two unidirectional links, one in each direction.) It is probably overkill to 
implement the linear filter with nearest-neighbor communication, but several related problems 
require it.

For example, the explicit method of solving the heat equation on an n x n grid uses a nearest-



neighbor update of the form

The constant D is related to the rate that heat diffuses on the grid. The array bi,j is the new 
heat distribution on the grid after one unit of time has lapsed. It becomes the initial array ai,j 
for the next time step. Clearly, the program should not write the grid to disk between each time 
step, so here a nearest-neighbor exchange is needed.

Block computation

Another important issue in parallel processing is the granularity of the problem and how it maps 
to the number of processes. The ring is typically under 100 processes, while the images of 
interest may be 1024 x 1024 pixels. In this case, each process computes the filter for a block of 
rows.

Suppose the ring has m processes and the image has n x n pixels, where n = qm+r. The first r 
processes are responsible for q+1 rows, and the remaining processes are responsible for q 
rows. Each process computes from q and r the range of rows that it is responsible for. Pass m 
and n as command-line arguments to the original process in the ring.

7.10.2 Matrix multiplication

Another problem that lends itself to parallel execution on a ring is matrix multiplication. To 
multiply two n x n matrices, A and B, form a third matrix C that has an entry in position (i, j) 
given by the following.

In other words, element (i, j) of the result is the product of row i of the first matrix with 
column j of the second matrix. Start by assuming that there are n processes on the ring. Each 
input array is stored as a binary file in row-major form. The elements of the array are of type 
int.

One approach to matrix multiplication is for process p to read row p of the input file for matrix A 
and column p of the input file for matrix B. Process p accumulates row p of matrix C. It 
multiplies row p of A by column p of B and sets c[p,p] to the resulting value. It then writes 
column p of matrix B to the ring and reads column p-1 from its neighbor. Process p then 
computes element c[p,p-1], and so on.



The row-column is very efficient once the processes have read the columns of B, but since B is 
stored in row-major form, the file accesses are inefficient if the process is accessing a column 
of B, since the read must seek for each element. In addition it is likely that matrix multiplication 
is an intermediate step in a larger calculation that might have the A and B distributed to 
processes in row-major form. The following algorithm performs matrix multiplication when 
process p starts with row p of A and row p of B.

Process p is going to compute row p of the result. On each iteration, a row of B contributes one 
term to the sum needed to calculate each element of row p of the product matrix. Each process 
eventually needs all the entries of B, and it receives the rows of B one at a time from its 
neighbors. Use the following arrays.

int a[n+1];        /* holds the pth row of A */
int b[n+1];        /* starts with the pth row of B */
int c[n+1];        /* holds the pth row of C */

Initialize the elements of a[] and b[] from their respective files. Initialize c[], using

for (k = 1; k < n+1; k++)
   c[k] = a[p] * b[k];

In process p, this approach accounts for the contribution of row p of B to row p of the output C. 
In other words, c[p,k] = a[p,p]*b[p,k]. Process p does the following.

m = p;
write(STDOUT_FILENO, &b[1], n*sizeof(int));
read(STDIN_FILENO, &b[1], n*sizeof(int));
for (k = 1; k < n+1; k++) {
   if (m-- == 0)
      m = n;
   c[k] += a[m]*b[k];
}

The read function fills the b[] array with the values of the row of B held initially by the process 
immediately before it on the ring. One execution of the for loop adds the contribution of row p-
1 of B to row p of the result corresponding to c[p,k]= c[p,k] +a[p,p-1]* b[p-1,k]. Execute 
this code n-1 times to multiply the entire array. Write the resulting c[] as row p of the output 
file. Note: The proposed strategy may cause a deadlock if n is so large that the write exceeds 
the size of PIPE_BUF. A more robust strategy might use select to process the reading and 
writing simultaneously.

[ Team LiB ]   

file:///D|/Tutoriales%20&%20Programacion/Prep%20Finales/XxX/Prentice%20Hall%20-%20Unix%20Systems%20Programming%202nd%20Ed/0130424110_14051533.html
file:///D|/Tutoriales%20&%20Programacion/Prep%20Finales/XxX/Prentice%20Hall%20-%20Unix%20Systems%20Programming%202nd%20Ed/NFO/lib.html


[ Team LiB ]   

7.11 Flexible Ring

A flexible ring is a ring in which nodes can be added and deleted. The flexibility is useful for 
fault recovery and for network maintenance.

1.  Modify ring of Program 7.1 to use named pipes or FIFOs instead of unnamed pipes. 
Devise an appropriate naming scheme for the pipes.

2.  Devise and implement a scheme for adding a node after node i in the ring. Pass i on the 
command line.

3.  Devise and implement a scheme for deleting a node i in the ring. Pass i on the command 
line.

After testing the strategies for inserting and deleting nodes, convert the token-ring 
implementation of Section 7.8 to one using named pipes. Develop a protocol so that any node 
can initiate a request to add or delete a node. Implement the protocol.

This project leaves most of the specification open. Figure out what it means to insert or delete a 
node.

[ Team LiB ]   

file:///D|/Tutoriales%20&%20Programacion/Prep%20Finales/XxX/Prentice%20Hall%20-%20Unix%20Systems%20Programming%202nd%20Ed/NFO/lib.html
file:///D|/Tutoriales%20&%20Programacion/Prep%20Finales/XxX/Prentice%20Hall%20-%20Unix%20Systems%20Programming%202nd%20Ed/NFO/lib.html


[ Team LiB ]   

7.12 Additional Reading

Early versions of the ring project described in this chapter can be found in [95]. A simulator 
that explores the interaction between pipes and forks is discussed in [97]. This simulator can be 
run either locally or from the Web and is available on the book web site. Local and Metropolitan 
Area Networks, 6th ed. by Stallings [111] has a good discussion of the token ring, token bus 
and FDDI network standards. Each of these networks is based on a ring architecture. Stallings 
also discusses the election methods used by these architectures for token regeneration and 
reconfiguration. The paper "A resilient mutual exclusion algorithm for computer networks" by 
Nishio et al. [88] analyzes the general problem of regenerating lost tokens in computer 
networks.

The theoretical literature on distributed algorithms for rings is large. The algorithms of Section 
7.6 are based on a paper by Chang and Roberts [22], and the algorithms of Section 7.7 are 
discussed in Itai and Roteh [58]. A nice theoretical article on anonymous rings is "Computing 
on an anonymous ring" by Attiya et al. [7]. Introduction to Parallel Computing : Design and 
Analysis of Algorithms by Kumar et al. [67] presents a good overview of parallel algorithms and 
a discussion of how to map these algorithms onto particular machine architectures.
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Part II: Asynchronous Events

Chapter 8.  Signals

Chapter 9.  Times and Timers

Chapter 10.  Project: Virtual Timers

Chapter 11.  Project: Cracking Shells
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Chapter 8. Signals

Few people appreciate the insidious nature of asynchronous events until they encounter a 
problem that is difficult to reproduce. This chapter discusses signals and their effect on 
processes, emphasizing the concurrent aspects of signal handling. The chapter begins by 
defining basic signal concepts such as generation and delivery as well as explaining the 
difference between ignoring a signal and blocking a signal. Sample programs demonstrate how 
to use signals for notification and how to suspend a process while waiting for a signal. The 
chapter also covers error handling, signal safety and asynchronous I/O.

Objectives

●     Learn the fundamentals of signal handling
●     Experiment with signals for control
●     Explore the POSIX signal facilities
●     Use signal masks and handlers
●     Understand async-signal safety

[ Team LiB ]   
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8.1 Basic Signal Concepts

A signal is a software notification to a process of an event. A signal is generated when the 
event that causes the signal occurs. A signal is delivered when the process takes action based 
on that signal. The lifetime of a signal is the interval between its generation and its delivery. A 
signal that has been generated but not yet delivered is said to be pending. There may be 
considerable time between signal generation and signal delivery. The process must be running 
on a processor at the time of signal delivery.

A process catches a signal if it executes a signal handler when the signal is delivered. A 
program installs a signal handler by calling sigaction with the name of a user-written function. 
The sigaction function may also be called with SIG_DFL or SIG_IGN instead of a handler. The 
SIG_DFL means take the default action, and SIG_IGN means ignore the signal. Neither of these 
actions is considered to be "catching" the signal. If the process is set to ignore a signal, that 
signal is thrown away when delivered and has no effect on the process.

The action taken when a signal is generated depends on the current signal handler for that 
signal and on the process signal mask. The signal mask contains a list of currently blocked 
signals. It is easy to confuse blocking a signal with ignoring a signal. Blocked signals are not 
thrown away as ignored signals are. If a pending signal is blocked, it is delivered when the 
process unblocks that signal. A program blocks a signal by changing its process signal mask, 
using sigprocmask. A program ignores a signal by setting the signal handler to SIG_IGN, using 
sigaction.

This chapter discusses many aspects of POSIX signals. Section 8.2 introduces signals and 
presents examples of how to generate them. Section 8.3 discusses the signal mask and the 
blocking of signals, and Section 8.4 covers the catching and ignoring of signals. Section 8.5 
shows how a process should wait for the delivery of a signal. The remaining sections of the 
chapter cover more advanced signal handling topics. Section 8.6 discusses interactions between 
library functions and signal handling, Section 8.7 covers siglongjmp, and Section 8.8 
introduces POSIX asynchronous I/O. Other aspects of signals are covered in other chapters. 
Section 9.4 covers POSIX realtime signals, and Section 13.5 covers the use of signals with 
threads.
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8.2 Generating Signals

Every signal has a symbolic name starting with SIG. The signal names are defined in signal.h, 
which must be included by any C program that uses signals. The names of the signals represent 
small integers greater than 0. Table 8.1 describes the required POSIX signals and lists their 
default actions. Two signals, SIGUSR1 and SIGUSR2, are available for users and do not have a 
preassigned use. Some signals such as SIGFPE or SIGSEGV are generated when certain errors 
occur; other signals are generated by specific calls such as alarm.

Table 8.1. The POSIX required signals.

signal description default action

SIGABRT process abort implementation dependent

SIGALRM alarm clock abnormal termination

SIGBUS access undefined part of memory object implementation dependent

SIGCHLD child terminated, stopped or continued ignore

SIGCONT execution continued if stopped continue

SIGFPE error in arithmetic operation as in division by zero implementation dependent

SIGHUP hang-up (death) on controlling terminal (process) abnormal termination

SIGILL invalid hardware instruction implementation dependent

SIGINT interactive attention signal (usually Ctrl-C) abnormal termination

SIGKILL terminated (cannot be caught or ignored) abnormal termination

SIGPIPE write on a pipe with no readers abnormal termination

SIGQUIT interactive termination: core dump (usually Ctrl-|) implementation dependent

SIGSEGV invalid memory reference implementation dependent

SIGSTOP execution stopped (cannot be caught or ignored) stop

SIGTERM termination abnormal termination

SIGTSTP terminal stop stop

SIGTTIN background process attempting to read stop

SIGTTOU background process attempting to write stop
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SIGURG high bandwidth data available at a socket ignore

SIGUSR1 user-defined signal 1 abnormal termination

SIGUSR2 user-defined signal 2 abnormal termination

Generate signals from the shell with the kill command. The name kill derives from the fact 
that, historically, many signals have the default action of terminating the process. The 
signal_name parameter is a symbolic name for the signal formed by omitting the leading SIG 
from the corresponding symbolic signal name.

SYNOPSIS

    kill -s signal_name pid...
    kill -l [exit_status]
    kill [-signal_name] pid...
    kill [-signal_number] pid...
                                             POSIX:Shell and Utilities

The last two lines of the synopsis list the traditional forms of the kill command. Despite the 
fact that these two forms do not follow the POSIX guidelines for command-line arguments, they 
continue to be included in the POSIX standard because of their widespread use. The last form 
of kill supports only the signal_number values of 0 for signal 0, 1 for signal SIGHUP, 2 for 
signal SIGINT, 3 for signal SIGQUIT, 6 for signal SIGABRT, 9 for signal SIGKILL, 14 for signal 
SIGALRM and 15 for signal SIGTERM.

Example 8.1 

The following command is the traditional way to send signal number 9 (SIGKILL) to process 
3423.

kill -9 3423

Example 8.2 

The following command sends the SIGUSR1 signal to process 3423.

kill -s USR1 3423

Example 8.3 

The kill -l command gives a list of the available symbolic signal names. A system running 
Sun Solaris produced the following sample output.

% kill -l
HUP INT QUIT ILL TRAP ABRT EMT FPE
KILL BUS SEGV SYS PIPE ALRM TERM USR1
USR2 CLD PWR WINCH URG POLL STOP TSTP



CONT TTIN TTOU VTALRM PROF XCPU XFSZ WAITING
LWP FREEZE THAW CANCEL LOST XRES RTMIN RTMIN+1
RTMIN+2 RTMIN+3 RTMAX-3 RTMAX-2 RTMAX-1 RTMAX

Call the kill function in a program to send a signal to a process. The kill function takes a 
process ID and a signal number as parameters. If the pid parameter is greater than zero, kill 
sends the signal to the process with that ID. If pid is 0, kill sends the signal to members of 
the caller's process group. If the pid parameter is -1, kill sends the signal to all processes for 
which it has permission to send. If the pid parameter is another negative value, kill sends the 
signal to the process group with group ID equal to |pid|. Section 11.5 discusses process 
groups.

SYNOPSIS

   #include <signal.h>

   int kill(pid_t pid, int sig);
                                            POSIX:CX

If successful, kill returns 0. If unsuccessful, kill returns –1 and sets errno. The following 
table lists the mandatory errors for kill.

errno cause

EINVAL sig is an invalid or unsupported signal

EPERM caller does not have the appropriate privileges

ESRCH no process or process group corresponds to pid

A user may send a signal only to processes that he or she owns. For most signals, kill 
determines permissions by comparing the user IDs of caller and target. SIGCONT is an 
exception. For SIGCONT, user IDs are not checked if kill is sent to a process that is in the 
same session. Section 11.5 discusses sessions. For security purposes, a system may exclude an 
unspecified set of processes from receiving the signal.

Example 8.4 

The following code segment sends SIGUSR1 to process 3423.

if (kill(3423, SIGUSR1) == -1)
   perror("Failed to send the SIGUSR1 signal");

Normally, programs do not hardcode specific process IDs such as 3423 in the kill function call. 
The usual way to find out relevant process IDs is with getpid, getppid, getgpid or by saving 
the return value from fork.



Example 8.5 

This scenario sounds grim, but a child process can kill its parent by executing the following 
code segment.

if (kill(getppid(), SIGTERM) == -1)
    perror ("Failed to kill parent");

A process can send a signal to itself with the raise function. The raise function takes just one 
parameter, a signal number.

SYNOPSIS

  #include <signal.h>

  int raise(int sig);
                                 POSIX:CX

If successful, raise returns 0. If unsuccessful, raise returns a nonzero error value and sets 
errno. The raise function sets errno to EINVAL if sig is invalid.

Example 8.6 

The following statement causes a process to send the SIGUSR1 signal to itself.

if (raise(SIGUSR1) != 0)
   perror("Failed to raise SIGUSR1");

A key press causes a hardware interrupt that is handled by the device driver for the keyboard. 
This device driver and its associated modules may perform buffering and editing of the 
keyboard input. Two special characters, the INTR and QUIT characters, cause the device driver 
to send a signal to the foreground process group. A user can send the SIGINT signal to the 
foreground process group by entering the INTR character. This user-settable character is often 
Ctrl-C. The user-settable QUIT character sends the SIGQUIT signal.

Example 8.7 

The stty -a command reports on the characteristics of the device associated with standard 
input, including the settings of the signal-generating characters. A system running Sun Solaris 
produced the following output.

% stty -a
speed 9600 baud;
rows = 57; columns = 103; ypixels = 0; xpixels = 0;
eucw 1:0:0:0, scrw 1:0:0:0
intr = ^c; quit = ^|; erase = ^?; kill = ^u;
eof = ^d; eol = <undef>; eol2 = <undef>; swtch = <undef>;
start = ^q; stop = ^s; susp = ^z; dsusp = ^y;



rprnt = ^r; flush = ^o; werase = ^w; lnext = ^v;
-parenb -parodd cs8 -cstopb hupcl cread -clocal -loblk -crtscts
-parext -ignbrk brkint ignpar -parmrk -inpck -istrip -inlcr -igncr
icrnl -iuclc ixon -ixany -ixoff imaxbel
isig icanon -xcase echo echoe echok -echonl -noflsh
-tostop echoctl -echoprt echoke -defecho -flusho -pendin iexten
opost -olcuc onlcr -ocrnl -onocr -onlret -ofill -ofdel

The terminal in Example 8.7 interprets Ctrl-C as the INTR character. The QUIT character (Ctrl-| 
above) generates SIGQUIT. The SUSP character (Ctrl-Z above) generates SIGSTOP, and the 
DSUSP character (Ctrl-Y above) generates SIGCONT.

The alarm function causes a SIGALRM signal to be sent to the calling process after a specified 
number of real seconds has elapsed. Requests to alarm are not stacked, so a call to alarm 
before the previous timer expires causes the alarm to be reset to the new value. Call alarm 
with a zero value for seconds to cancel a previous alarm request.

SYNOPSIS

  #include <unistd.h>

  unsigned alarm(unsigned seconds);
                                               POSIX

The alarm function returns the number of seconds remaining on the alarm before the call reset 
the value, or 0 if no previous alarm was set. The alarm function never reports an error.

Example 8.8 simplealarm.c

Since the default action for SIGALRM is to terminate the process, the following program runs for 
approximately ten seconds of wall-clock time.

#include <unistd.h>

int main(void) {
   alarm(10);
   for ( ; ; ) ;
}
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8.3 Manipulating Signal Masks and Signal Sets

A process can temporarily prevent a signal from being delivered by blocking it. Blocked signals 
do not affect the behavior of the process until they are delivered. The process signal mask gives 
the set of signals that are currently blocked. The signal mask is of type sigset_t.

Blocking a signal is different from ignoring a signal. When a process blocks a signal, the 
operating system does not deliver the signal until the process unblocks the signal. A process 
blocks a signal by modifying its signal mask with sigprocmask. When a process ignores a signal, 
the signal is delivered and the process handles it by throwing it away. The process sets a signal 
to be ignored by calling sigaction with a handler of SIG_IGN, as described in Section 8.4.

Specify operations (such as blocking or unblocking) on groups of signals by using signal sets of 
type sigset_t. Signal sets are manipulated by the five functions listed in the following synopsis 
box. The first parameter for each function is a pointer to a sigset_t. The sigaddset adds 
signo to the signal set, and the sigdelset removes signo from the signal set. The 
sigemptyset function initializes a sigset_t to contain no signals; sigfillset initializes a 
sigset_t to contain all signals. Initialize a signal set by calling either sigemptyset or 
sigfillset before using it. The sigismember reports whether signo is in a sigset_t.

SYNOPSIS

  #include <signal.h>

  int sigaddset(sigset_t *set, int signo);
  int sigdelset(sigset_t *set, int signo);
  int sigemptyset(sigset_t *set);
  int sigfillset(sigset_t *set);
  int sigismember(const sigset_t *set, int signo);
                                                      POSIX:CX

The sigismember function returns 1 if signo is in *set and 0 if signo is not in *set. If 
successful, the other functions return 0. If unsuccessful, these other functions return –1 and set 
errno. POSIX does not define any mandatory errors for these functions.

Example 8.9 

The following code segment initializes signal set twosigs to contain exactly the two signals 
SIGINT and SIGQUIT.

if ((sigemptyset(&twosigs) == -1) ||
    (sigaddset(&twosigs, SIGINT) == -1)  ||
    (sigaddset(&twosigs, SIGQUIT) == -1))
    perror("Failed to set up signal mask");

A process can examine or modify its process signal mask with the sigprocmask function. The 
how parameter is an integer specifying the manner in which the signal mask is to be modified. 
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The set parameter is a pointer to a signal set to be used in the modification. If set is NULL, no 
modification is made. If oset is not NULL, the sigprocmask returns in *oset the signal set 
before the modification.

SYNOPSIS

  #include <signal.h>

  int sigprocmask(int how, const sigset_t *restrict set,
                  sigset_t *restrict oset);
                                                                  POSIX:CX

If successful, sigprocmask returns 0. If unsuccessful, sigprocmask returns –1 and sets errno. 
The sigprocmask function sets errno to EINVAL if how is invalid. The sigprocmask function 
should only be used by a process with a single thread. When multiple threads exist, the 
pthread_sigmask function (page 474) should be used.

The how parameter, which specifies the manner in which the signal mask is to be modified, can 
take on one of the following three values.

SIG_BLOCK: add a collection of signals to those currently blocked

SIG_UNBLOCK: delete a collection of signals from those currently blocked

SIG_SETMASK: set the collection of signals being blocked to the specified set

Keep in mind that some signals, such as SIGSTOP and SIGKILL, cannot be blocked. If an 
attempt is made to block these signals, the system ignores the request without reporting an 
error.

Example 8.10 

The following code segment adds SIGINT to the set of signals that the process has blocked.

sigset_t newsigset;

if ((sigemptyset(&newsigset) == -1) ||
    (sigaddset(&newsigset, SIGINT) == -1))
   perror("Failed to initialize the signal set");
else if (sigprocmask(SIG_BLOCK, &newsigset, NULL) == -1)
   perror("Failed to block SIGINT");

If SIGINT is already blocked, the call to sigprocmask has no effect.

Program 8.1 displays a message, blocks the SIGINT signal while doing some useless work, 
unblocks the signal, and does more useless work. The program repeats this sequence 
continually in a loop.



If a user enters Ctrl-C while SIGINT is blocked, Program 8.1 finishes the calculation and prints a 
message before terminating. If a user types Ctrl-C while SIGINT is unblocked, the program 
terminates immediately.

Program 8.1 blocktest.c

A program that blocks and unblocks SIGINT.

#include <math.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc,  char *argv[]) {
    int i;
    sigset_t intmask;
    int repeatfactor;
    double y = 0.0;

    if (argc != 2) {
        fprintf(stderr, "Usage: %s repeatfactor\n", argv[0]);
        return 1;
    }
    repeatfactor = atoi(argv[1]);
    if ((sigemptyset(&intmask) == -1) || (sigaddset(&intmask, SIGINT) == -1)){
        perror("Failed to initialize the signal mask");
        return 1;
    }
    for ( ; ; ) {
        if (sigprocmask(SIG_BLOCK, &intmask, NULL) == -1)
            break;
        fprintf(stderr, "SIGINT signal blocked\n");
        for (i = 0; i < repeatfactor; i++)
            y += sin((double)i);
        fprintf(stderr, "Blocked calculation is finished, y = %f\n", y);
        if (sigprocmask(SIG_UNBLOCK, &intmask, NULL) == -1)
            break;
        fprintf(stderr, "SIGINT signal unblocked\n");
        for (i = 0; i < repeatfactor; i++)
            y += sin((double)i);
        fprintf(stderr, "Unblocked calculation is finished, y=%f\n", y);
    }
    perror("Failed to change signal mask");
    return 1;
}

The function makepair of Program 8.2 takes two pathnames as parameters and creates two 
named pipes with these names. If successful, makepair returns 0. If unsuccessful, makepair 
returns –1 and sets errno. The function blocks all signals during the creation of the two pipes to 
be sure that it can deallocate both pipes if there is an error. The function restores the original 
signal mask before the return. The if statement relies on the conditional left-to-right evaluation 
of && and ||.



Exercise 8.11 

Is it possible that after a call to makepair, pipe1 exists but pipe2 does not?

Answer:

Yes. This could happen if pipe1 already exists but pipe2 does not and the user does not have 
write permission to the directory. It could also happen if the SIGKILL signal is delivered 
between the two calls to mkfifo.

Program 8.2 makepair.c

A function that blocks signals while creating two pipes. (See Exercise 8.11 and Exercise 8.12 for 
a discussion of some flaws.)

#include <errno.h>
#include <signal.h>
#include <unistd.h>
#include <sys/stat.h>
#define R_MODE (S_IRUSR | S_IRGRP | S_IROTH)
#define W_MODE (S_IWUSR | S_IWGRP | S_IWOTH)
#define RW_MODE (R_MODE | W_MODE)

int makepair(char *pipe1, char *pipe2) {
    sigset_t blockmask;
    sigset_t oldmask;
    int returncode = 0;

    if (sigfillset(&blockmask) == -1)
        return -1;
    if (sigprocmask(SIG_SETMASK, &blockmask, &oldmask) == -1)
        return -1;
    if (((mkfifo(pipe1, RW_MODE) == -1) && (errno != EEXIST)) ||
          ((mkfifo(pipe2, RW_MODE) == -1) && (errno != EEXIST))) {
        returncode = errno;
        unlink(pipe1);
        unlink(pipe2);
    }
    if ((sigprocmask(SIG_SETMASK, &oldmask, NULL) == -1) && !returncode)
        returncode = errno;
    if (returncode) {
        errno = returncode;
        return -1;
    }
    return 0;
}

Exercise 8.12 

Does a makepair return value of 0 guarantee that FIFOs corresponding to pipe1 and pipe2 are 



available on return?

Answer:

If one of the files already exists, mkfifo returns –1 and sets errno to EEXIST. The makepair 
function assumes that the FIFO exists without checking whether the file was a FIFO or an 
ordinary file. Thus, it is possible for makepair to indicate success even if this previously existing 
file is not a FIFO.

In Program 8.3, the parent blocks all signals before forking a child process to execute an ls 
command. Processes inherit the signal mask after both fork and exec, so the ls command 
executes with signals blocked. The child created by fork in Program 8.3 has a copy of the 
original signal mask saved in oldmask. An exec command overwrites all program variables, so 
an executed process cannot restore the original mask once exec takes place. The parent 
restores the original signal mask and then waits for the child.

Program 8.3 blockchild.c

A program that blocks signals before calling fork and execl.

#include <errno.h>
#include <stdio.h>
#include <signal.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
#include "restart.h"

int main(void) {
    pid_t child;
    sigset_t mask, omask;

    if ((sigfillset(&mask) == -1) ||
          (sigprocmask(SIG_SETMASK, &mask, &omask) == -1)) {
        perror("Failed to block the signals");
        return 1;
    }
    if ((child = fork()) == -1) {
        perror("Failed to fork child");
        return 1;
    }
    if (child == 0) {                                   /* child code */
        execl("/bin/ls", "ls", "-l", NULL);
        perror("Child failed to exec");
        return 1;
    }
    if (sigprocmask(SIG_SETMASK, &omask, NULL) == -1){ /* parent code */
        perror("Parent failed to restore signal mask");
        return 1;
    }
    if (r_wait(NULL) == -1) {
        perror("Parent failed to wait for child");



        return 1;
    }
    return 0;
}

Exercise 8.13 

Run Program 8.3 from a working directory with a large number of files. Experiment with 
entering Ctrl-C at various points during the execution and explain what happens.

Answer:

The main program can be interrupted while the listing is being displayed, and the prompt will 
appear in the middle of the listing. The execution of ls will not be interrupted by the signal.

Program 8.4 password.c

A function that retrieves a user password.

#include <errno.h>
#include <fcntl.h>
#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <termios.h>
#include <unistd.h>
#include "restart.h"

int setecho(int fd, int onflag);

int password(const char *prompt, char *passbuf, int passmax) {
    int fd;
    int firsterrno = 0;
    sigset_t signew, sigold;
    char termbuf[L_ctermid];

    if (ctermid(termbuf) == NULL) {                 /* find the terminal name */
        errno = ENODEV;
        return -1;
    }
    if ((fd = open(termbuf, O_RDONLY)) == -1)  /* open descriptor to terminal */
        return -1;
    if ((sigemptyset(&signew) == -1) ||  /* block SIGINT, SIGQUIT and SIGTSTP */
          (sigaddset(&signew, SIGINT) == -1) ||
          (sigaddset(&signew, SIGQUIT) == -1) ||
          (sigaddset(&signew, SIGTSTP) == -1) ||
          (sigprocmask(SIG_BLOCK, &signew, &sigold) == -1) ||
          (setecho(fd, 0) == -1)) {                    /* set terminal echo off */
        firsterrno = errno;
        sigprocmask(SIG_SETMASK, &sigold, NULL);
        r_close(fd);
        errno = firsterrno;
        return -1;



    }
    if ((r_write(STDOUT_FILENO, (char *)prompt, strlen(prompt)) == -1) ||
          (readline(fd, passbuf, passmax) == -1))              /* read password */
        firsterrno = errno;
    else
        passbuf[strlen(passbuf) - 1] = 0;                    /* remove newline */
    if ((setecho(fd, 1) == -1) && !firsterrno)           /* turn echo back on */
        firsterrno = errno;
    if ((sigprocmask(SIG_SETMASK, &sigold, NULL) == -1) && !firsterrno )
        firsterrno = errno;
    if ((r_close(fd) == -1) && !firsterrno)   /* close descriptor to terminal */
        firsterrno = errno;
    return firsterrno ? errno = firsterrno, -1: 0;
}

Program 8.4 shows an improvement on the passwordnosigs function of Program 6.13 on page 
208. The password function blocks SIGINT, SIGQUIT and SIGTSTP while terminal echo is set off, 
preventing the terminal from being placed in an unusable state if one of these signals is 
delivered to the process while this function is executing.
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8.4 Catching and Ignoring Signals—sigaction

The sigaction function allows the caller to examine or specify the action associated with a 
specific signal. The sig parameter of sigaction specifies the signal number for the action. The 
act parameter is a pointer to a struct sigaction structure that specifies the action to be 
taken. The oact parameter is a pointer to a struct sigaction structure that receives the 
previous action associated with the signal. If act is NULL, the call to sigaction does not 
change the action associated with the signal. If oact is NULL, the call to sigaction does not 
return the previous action associated with the signal.

SYNOPSIS

  #include <signal.h>

  int sigaction(int sig, const struct sigaction *restrict act,
                struct sigaction *restrict oact);
                                                                   POSIX:CX

If successful, sigaction returns 0. If unsuccessful, sigaction returns –1 and sets errno. The 
following table lists the mandatory errors for sigaction.

errno cause

EINVAL sig is an invalid signal number, or attempt to catch a signal that cannot be 
caught, or attempt to ignore a signal that cannot be ignored

ENOTSUP SA_SIGINFO bit of the sa_flags is set and the implementation does not support 
POSIX:RTS or POSIX:XSI

The struct sigaction structure must have at least the following members.

struct sigaction {
   void (*sa_handler)(int); /* SIG_DFL, SIG_IGN or pointer to function */
   sigset_t sa_mask;        /* additional signals to be blocked
                                  during execution of handler */
   int sa_flags;            /* special flags and options */
   void(*sa_sigaction) (int, siginfo_t *, void *); /* realtime handler */
};

The storage for sa_handler and sa_sigaction may overlap, and an application should use only 
one of these members to specify the action. If the SA_SIGINFO flag of the sa_flags field is 
cleared, the sa_handler specifies the action to be taken for the specified signal. If the 
SA_SIGINFO flag of the sa_flags field is set and the implementation supports either the POSIX:
RTS or the POSIX:XSI Extension, the sa_sigaction field specifies a signal-catching function.
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Example 8.14 

The following code segment sets the signal handler for SIGINT to mysighand.

struct sigaction newact;

newact.sa_handler = mysighand;  /* set the new handler */
newact.sa_flags = 0;            /* no special options */
if ((sigemptyset(&newact.sa_mask) == -1) ||
    (sigaction(SIGINT, &newact, NULL) == -1))
    perror("Failed to install SIGINT signal handler");

In the POSIX base standard, a signal handler is an ordinary function that returns void and has 
one integer parameter. When the operating system delivers the signal, it sets this parameter to 
the number of the signal that was delivered. Most signal handlers ignore this value, but it is 
possible to have a single signal handler for many signals. The usefulness of signal handlers is 
limited by the inability to pass values to them. This capability has been added to the POSIX:
RTS and POSIX:XSI Extensions, which can use the alternative sa_sigaction field of the 
struct sigaction structure to specify a handler. This section describes using the sa_handler 
field of sigaction to set up the handler; Section 9.4 describes using the sa_sigaction field for 
the handler.

Two special values of the sa_handler member of struct sigaction are SIG_DFL> and 
SIG_IGN. The SIG_DFL value specifies that sigaction should restore the default action for the 
signal. The SIG_IGN value specifies that the process should handle the signal by ignoring it 
(throwing it away).

Example 8.15 

The following code segment causes the process to ignore SIGINT if the default action is in effect 
for this signal.

struct sigaction act;

if (sigaction(SIGINT, NULL, &act) == -1)  /* Find current SIGINT handler */
   perror("Failed to get old handler for SIGINT");
else if (act.sa_handler == SIG_DFL) {    /* if SIGINT handler is default */
   act.sa_handler = SIG_IGN;         /* set new SIGINT handler to ignore */
   if (sigaction(SIGINT, &act, NULL) == -1)
      perror("Failed to ignore SIGINT");
}

Example 8.16 

The following code segment sets up a signal handler that catches the SIGINT signal generated 
by Ctrl-C.

void catchctrlc(int signo) {
   char handmsg[] = "I found Ctrl-C\n";



   int msglen = sizeof(handmsg);

   write(STDERR_FILENO, handmsg, msglen);
}
...
struct sigaction act;
act.sa_handler = catchctrlc;
act.sa_flags = 0;
if ((sigemptyset(&act.sa_mask) == -1) ||
    (sigaction(SIGINT, &act, NULL) == -1))
   perror("Failed to set SIGINT to handle Ctrl-C");

Exercise 8.17 

Why didn't Example 8.16 use fprintf or strlen in the signal handler?

Answer:

POSIX guarantees that write is async-signal safe, meaning that it can be called safely from 
inside a signal handler. There are no similar guarantees for fprintf or strlen, but they may 
be async-signal safe in some implementations. Table 8.2 on page 285 lists the functions that 
POSIX guarantees are async-signal safe.

Example 8.18 

The following code segment sets the action of SIGINT to the default.

struct sigaction newact;

newact.sa_handler = SIG_DFL;    /* new handler set to default */
newact.sa_flags = 0;            /* no special options */
if ((sigemptyset(&newact.sa_mask) == -1) ||
    (sigaction(SIGINT, &newact, NULL) == -1))
   perror("Failed to set SIGINT to the default action");

Example 8.19 testignored.c

The following function takes a signal number parameter and returns 1 if that signal is ignored 
and 0 otherwise.

#include <signal.h>
#include <stdio.h>

int testignored(int signo) {
   struct sigaction act;
   if ((sigaction(signo, NULL, &act) == -1) || (act.sa_handler != SIG_IGN))
      return 0;
   return 1;
}



Program 8.5 estimates the average value of sin(x) on the interval from 0 to 1 by computing the 
average of the sine of randomly picked values. The main program loop chooses a random 
value, x, between 0 and 1, adds sin(x) to a running sum, increments the count of the values, 
and prints the current count and average. The program illustrates the use of a signal handler to 
gracefully terminate a program. When the user enters Ctrl-C at standard input, the signal 
handler sets doneflag to signify that the program should terminate. On each iteration of the 
computation loop, the program tests doneflag to see whether it should drop out of the loop 
and print a final message.

Program 8.5 signalterminate.c

A program that terminates gracefully when it receives a Ctrl-C.

#include <math.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>

static volatile sig_atomic_t doneflag = 0;

/* ARGSUSED */
static void setdoneflag(int signo) {
    doneflag = 1;
}

int main (void) {
    struct sigaction act;
    int count = 0;
    double sum = 0;
    double x;

    act.sa_handler = setdoneflag;            /* set up signal handler */
    act.sa_flags = 0;
    if ((sigemptyset(&act.sa_mask) == -1) ||
          (sigaction(SIGINT, &act, NULL) == -1)) {
        perror("Failed to set SIGINT handler");
        return 1;
    }

    while (!doneflag) {
        x = (rand() + 0.5)/(RAND_MAX + 1.0);
        sum += sin(x);
        count++;
        printf("Count is %d and average is %f\n", count, sum/count);
    }

    printf("Program terminating ...\n");
    if (count == 0)
        printf("No values calculated yet\n");
    else
        printf("Count is %d and average is %f\n", count, sum/count);
    return 0;
}



Code that accesses doneflag is a critical section because the signal handler can modify this 
variable while the main program examines it. (See Chapter 14 for a discussion of critical 
sections and atomic operations.) We handle the problem here by declaring doneflag to be 
sig_atomic_t, an integral type that is small enough to be accessed atomically. The volatile 
qualifier on doneflag informs the compiler that the variable may be changed asynchronously to 
program execution. Otherwise, the compiler might assume that doneflag is not modified in the 
while loop and generate code that only tests the condition on the first iteration of the loop.

Exercise 8.20 

Why is it okay to use perror and printf in Program 8.5 even though these functions are not 
"signal safe"?

Answer:

Signal safety is a problem when both the signal handler and the main program use these 
functions. In this case, only the main program uses these functions.

When both a signal handler and the main program need to access data that is larger than 
sig_atomic_t, care must be taken so that the data is not modified in one part of the program 
while being read in another. Program 8.6 also calculates the average value of sin(x) over the 
interval from 0 to 1, but it does not print the result on each iteration. Instead, the main 
program loop generates a string containing the results every 10,000th iteration. A signal 
handler for SIGUSR1 outputs the string when the user sends SIGUSR1 to the process.

Program 8.6 averagesin.c

A program to estimate the average values of sin(x) over the interval from 0 to 1.

#include <errno.h>
#include <limits.h>
#include <math.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#define BUFSIZE 100

static char buf[BUFSIZE];
static int buflen = 0;

/* ARGSUSED */
static void handler(int signo) {          /* handler outputs result string */
    int savederrno;

    savederrno = errno;
    write(STDOUT_FILENO, buf, buflen);
    errno = savederrno;
}



static void results(int count, double sum) {       /* set up result string */
    double average;
    double calculated;
    double err;
    double errpercent;
    sigset_t oset;
    sigset_t sigset;

    if ((sigemptyset(&sigset) == -1) ||
          (sigaddset(&sigset, SIGUSR1) == -1) ||
          (sigprocmask(SIG_BLOCK, &sigset, &oset) == -1) )
        perror("Failed to block signal in results");
    if (count == 0)
        snprintf(buf, BUFSIZE, "No values calculated yet\n");
    else {
        calculated = 1.0 - cos(1.0);
        average = sum/count;
        err = average - calculated;
        errpercent = 100.0*err/calculated;
        snprintf(buf, BUFSIZE,
                 "Count = %d, sum = %f, average = %f, error = %f or %f%%\n",
                 count, sum, average, err, errpercent);
    }
    buflen = strlen(buf);
    if (sigprocmask(SIG_SETMASK, &oset, NULL) == -1)
        perror("Failed to unblock signal in results");
}

int main(void) {
    int count = 0;
    double sum = 0;
    double x;
    struct sigaction act;

    act.sa_handler = handler;
    act.sa_flags = 0;
    if ((sigemptyset(&act.sa_mask) == -1) ||
          (sigaction(SIGUSR1, &act, NULL) == -1) ) {
        perror("Failed to set SIGUSR1 signal handler");
        return 1;
    }
    fprintf(stderr, "Process %ld starting calculation\n", (long)getpid());
    for ( ; ; ) {
        if ((count % 10000) == 0)
            results(count, sum);
        x = (rand() + 0.5)/(RAND_MAX + 1.0);
        sum += sin(x);
        count++;
        if (count == INT_MAX)
            break;
    }
    results(count, sum);
    handler(0);        /* call handler directly to write out the results */
    return 0;
}



The signal handler uses write instead of printf, since printf may not be safe to use in a 
signal handler. The handler avoids strlen for the same reason. The string and its length are 
global variables accessible to both the main program and the signal handler. Modifying the 
string in the main program and writing the string to standard output in the signal handler are 
critical sections for this program. The main program protects its critical section by having 
results block the signal while modifying the string and its length. Notice also that handler 
saves and restores errno, since write may change it.

Legacy programs sometimes use signal instead of sigaction to specify signal handlers. 
Although signal is part of ISO C, it is unreliable even when used in a program with a single 
thread. Always use sigaction to set up your handlers.
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8.5 Waiting for Signals—pause, sigsuspend and sigwait

Signals provide a method for waiting for an event without busy waiting. Busy waiting means 
continually using CPU cycles to test for the occurrence of an event. Typically, a program does 
this testing by checking the value of a variable in a loop. A more efficient approach is to 
suspend the process until the waited-for event occurs; that way, other processes can use the 
CPU productively. The POSIX pause, sigsuspend and sigwait functions provide three 
mechanisms for suspending a process until a signal occurs.

8.5.1 The pause function

The pause function suspends the calling thread until the delivery of a signal whose action is 
either to execute a user-defined handler or to terminate the process. If the action is to 
terminate, pause does not return. If a signal is caught by the process, pause returns after the 
signal handler returns.

SYNOPSIS

  #include <unistd.h>

  int pause(void);
                                    POSIX

The pause function always returns –1. If interrupted by a signal, pause sets errno to EINTR.

To wait for a particular signal by using pause, you must determine which signal caused pause 
to return. This information is not directly available, so the signal handler must set a flag for the 
program to check after pause returns.

Exercise 8.21 

The following code segment uses pause to cause a process to wait for a particular signal by 
having the signal handler set the sigreceived variable to 1. What happens if a signal is 
delivered between the test of sigreceived and pause?

static volatile sig_atomic_t sigreceived = 0;

while(sigreceived == 0)
    pause();

Answer:

The previously delivered signal does not affect pause. The pause function does not return until 
some other signal or another occurrence of the same signal is delivered to the process. A 
workable solution must test the value of sigreceived while the signal is blocked.
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Exercise 8.22 

What is wrong with the following attempt to prevent a signal from being delivered between the 
test of sigreceived and the execution of pause in Exercise 8.21?

static volatile sig_atomic_t sigreceived = 0;

int signum;
sigset_t sigset;

sigemptyset(&sigset);
sigaddset(&sigset, signum);
sigprocmask(SIG_BLOCK, &sigset, NULL);
while(sigreceived == 0)
   pause();

Answer:

Unfortunately, the code segment executes pause while the signal is blocked. As a result, the 
program never receives the signal and pause never returns. If the program unblocks the signal 
before executing pause, it might receive the signal between the unblocking and the execution 
of pause. This event is actually more likely than it seems. If a signal is generated while the 
process has the signal blocked, the process receives the signal right after unblocking it.

8.5.2 The sigsuspend function

The delivery of a signal before pause was one of the major problems with the original UNIX 
signals, and there was no simple, reliable way to get around the problem. The program must do 
two operations "at once"—unblock the signal and start pause. Another way of saying this is that 
the two operations together should be atomic (i.e., the program cannot be logically interrupted 
between execution of the two operations). The sigsuspend function provides a method of 
achieving this.

The sigsuspend function sets the signal mask to the one pointed to by sigmask and suspends 
the process until a signal is caught by the process. The sigsuspend function returns when the 
signal handler of the caught signal returns. The sigmask parameter can be used to unblock the 
signal the program is looking for. When sigsuspend returns, the signal mask is reset to the 
value it had before the sigsuspend function was called.

SYNOPSIS
  #include <signal.h>

  int sigsuspend(const sigset_t *sigmask);
                                                   POSIX:CX

The sigsuspend function always returns –1 and sets errno. If interrupted by a signal, 
sigsuspend sets errno to EINTR.



Exercise 8.23 

What is wrong with the following code that uses sigsuspend to wait for a signal?

sigfillset(&sigmost);
sigdelset(&sigmost, signum);
sigsuspend(&sigmost);

Answer:

The sigmost signal set contains all signals except the one to wait for. When the process 
suspends, only the signal signum is unblocked and so it seems that only this signal can cause 
sigsuspend to return. However, the code segment has the same problem that the solution 
using pause had. If the signal is delivered before the start of the code segment, the process still 
suspends itself and deadlocks if another signum signal is not generated.

Example 8.24 

The following code segment shows a correct way to wait for a single signal. Assume that a 
signal handler has been set up for the signum signal and that the signal handler sets 
sigreceived to 1.

 1  static volatile sig_atomic_t sigreceived = 0;
 2
 3  sigset_t maskall, maskmost, maskold;
 4  int signum = SIGUSR1;
 5
 6  sigfillset(&maskall);
 7  sigfillset(&maskmost);
 8  sigdelset(&maskmost, signum);
 9  sigprocmask(SIG_SETMASK, &maskall, &maskold);
10  if (sigreceived == 0)
11     sigsuspend(&maskmost);
12  sigprocmask(SIG_SETMASK, &maskold, NULL);

The code omits error checking for clarity.

Example 8.24 uses three signal sets to control the blocking and unblocking of signals at the 
appropriate time. Lines 6 through 8 set maskall to contain all signals and maskmost to contain 
all signals but signum. Line 9 blocks all signals. Line 10 tests sigreceived, and line 11 
suspends the process if the signal has not yet been received. Note that no signals can be 
caught between the testing and the suspending, since the signal is blocked at this point. The 
process signal mask has the value maskmost while the process is suspended, so only signum is 
not blocked. When sigsuspend returns, the signal must have been received.

Example 8.25 

The following code segment shows a modification of Example 8.24 that allows other signals to 



be handled while the process is waiting for signum.

 1  static volatile sig_atomic_t sigreceived = 0;
 2
 3  sigset_t maskblocked, maskold, maskunblocked;
 4  int signum = SIGUSR1;
 5
 6  sigprocmask(SIG_SETMASK, NULL, &maskblocked);
 7  sigprocmask(SIG_SETMASK, NULL, &maskunblocked);
 8  sigaddset(&maskblocked, signum);
 9  sigdelset(&maskunblocked, signum);
10  sigprocmask(SIG_BLOCK, &maskblocked, &maskold);
11  while(sigreceived == 0)
12     sigsuspend(&maskunblocked);
13  sigprocmask(SIG_SETMASK, &maskold, NULL);

The code omits error checking for clarity.

Instead of blocking all signals and then unblocking only signum, Example 8.25 does not change 
the other signals in the signal mask. As before, the sigreceived variable declared in line 1 is 
declared outside any block and has static storage class. The code assumes that sigreceived is 
modified only in the signal handler for signum and that signal handler sets the value to 1. Thus, 
only the delivery of signum can make this variable nonzero. The rest of the code starting with 
line 3 is assumed to be inside some function.

The three signal sets declared in line 3 are initialized to contain the currently blocked signals in 
lines 6, 7 and 10. Line 8 adds the signal signum to the set maskblocked if it was not already 
blocked, and line 9 removes signum from maskunblocked if it was not already unblocked. The 
consequence of these two lines is that maskblocked contains exactly those signals that were 
blocked at the start of the code segment, except that signum is guaranteed to be in this set. 
Similarly, maskunblocked contains exactly those signals that were blocked at the start of the 
code segment, except that signum is guaranteed not to be in this set.

Line 10 guarantees that the signum signal is blocked while the value of sigreceived is being 
tested. No other signals are affected. The code ensures that sigreceived does not change 
between its testing in line 11 and the suspending of the process in line 12. Using 
maskunblocked in line 12 guarantees that the signal will not be blocked while the process is 
suspended, allowing a generated signal to be delivered and to cause sigsuspend to return. 
When sigsuspend does return, the while in line 11 executes again and tests sigreceived to 
see if the correct signal came in. Signals other than signum may have been unblocked before 
entry to the code segment and delivery of these signals causes sigsuspend to return. The code 
tests sigreceived each time and suspends the process again until the right signal is delivered. 
When the while condition is false, the signal has been received and line 13 executes, restoring 
the signal mask to its original state.

Example 8.26 

The following code segment shows a shorter, but equivalent, version of the code in Example 
8.25.



 1  static volatile sig_atomic_t sigreceived = 0;
 2
 3  sigset_t masknew, maskold;
 4  int signum = SIGUSR1;
 5
 6  sigprocmask(SIG_SETMASK, NULL, &masknew);
 7  sigaddset(&masknew, signum);
 8  sigprocmask(SIG_SETMASK, &masknew, &maskold);
 9  sigdelset(&masknew, signum);
10  while(sigreceived == 0)
11     sigsuspend(&masknew);
12  sigprocmask(SIG_SETMASK, &maskold, NULL);

This code omits error checking for clarity.

Lines 6 and 7 set masknew to contain the original signal mask plus signum. Line 8 modifies the 
signal mask to block signum. Line 9 modifies masknew again so that now it does not contain 
signum. This operation does not change the process signal mask or the signals that are 
currently blocked. The signal signum is still blocked when line 10 tests sigreceived, but it is 
unblocked when line 11 suspends the process because of the change made to masknew on line 9.

The code segment in Example 8.26 assumes that sigreceived is initially 0 and that the handler 
for signum sets sigreceived to 1. It is important that the signal be blocked when the while is 
testing sigreceived. Otherwise, the signal can be delivered between the test of sigreceived 
and the call to sigsuspend. In this case, the process blocks until another signal causes the 
sigsuspend to return.

Exercise 8.27 

Suppose the sigsuspend in Example 8.26 returns because of a different signal. Is the signum 
signal blocked when the while tests sigreceived again?

Answer:

Yes, when sigsuspend returns, the signal mask has been restored to the state it had before the 
call to sigsuspend. The call to sigprocmask before the while guarantees that this signal is 
blocked.

Program 8.7 simplesuspend.c

An object that allows a program to safely block on a specific signal.

#include <errno.h>
#include <signal.h>
#include <unistd.h>

static int isinitialized = 0;



static struct sigaction oact;
static int signum = 0;
static volatile sig_atomic_t sigreceived = 0;

/* ARGSUSED */
static void catcher (int signo) {
    sigreceived = 1;
}

int initsuspend (int signo) {        /* set up the handler for the pause */
    struct sigaction act;
    if (isinitialized)
        return 0;
    act.sa_handler = catcher;
    act.sa_flags = 0;
    if ((sigfillset(&act.sa_mask) == -1) ||
          (sigaction(signo, &act, &oact) == -1))
        return -1;
    signum = signo;
    isinitialized = 1;
    return 0;
}

int restore(void) {
    if (!isinitialized)
        return 0;
    if (sigaction(signum, &oact, NULL) == -1)
        return -1;
    isinitialized = 0;
    return 0;
}

int simplesuspend(void) {
    sigset_t maskblocked, maskold, maskunblocked;
    if (!isinitialized) {
        errno = EINVAL;
        return -1;
    }
    if ((sigprocmask(SIG_SETMASK, NULL, &maskblocked) == -1) ||
          (sigaddset(&maskblocked, signum) == -1) ||
          (sigprocmask(SIG_SETMASK, NULL, &maskunblocked) == -1) ||
          (sigdelset(&maskunblocked, signum) == -1) ||
          (sigprocmask(SIG_SETMASK, &maskblocked, &maskold) == -1))
        return -1;
    while(sigreceived == 0)
        sigsuspend(&maskunblocked);
    sigreceived = 0;
    return sigprocmask(SIG_SETMASK, &maskold, NULL);
}

Program 8.7 shows an object implementation of functions to block on a specified signal. Before 
calling simplesuspend, the program calls initsuspend to set up the handler for the signal to 
pause on. The program calls restore to reset signal handling to the prior state.

Program 8.8 uses the functions of Program 8.7 to wait for SIGUSR1.



Program 8.8 simplesuspendtest.c

A program that waits for SIGUSR1.

#include <signal.h>
#include <stdio.h>
#include <unistd.h>

int initsuspend(int signo);
int restore(void);
int simplesuspend(void);

int main(void) {
    fprintf(stderr, "This is process %ld\n", (long)getpid());
    for ( ; ; ) {
        if (initsuspend(SIGUSR1)) {
            perror("Failed to setup handler for SIGUSR1");
            return 1;
        }
        fprintf(stderr, "Waiting for signal\n");
        if (simplesuspend()) {
            perror("Failed to suspend for signal");
            return 1;
        }
        fprintf(stderr, "Got signal\n");
        if (restore()) {
            perror("Failed to restore original handler");
            return 1;
        }
    }
    return 1;
}

Program 8.9, which is based on the strategy of Example 8.25, uses two signals to control the 
setting or clearing of a flag. To use the service, a program calls initnotify with the two 
signals that are to be used for control. The signo1 signal handler sets the notifyflag; the 
signo2 signal handler clears the notifyflag. After the initialization, the program can call 
waitnotifyon to suspend until the notification is turned on by the delivery of a signo1 signal.

Program 8.9 notifyonoff.c

An object that provides two-signal control for turning on or off a service.

#include <errno.h>
#include <signal.h>
#include <stdio.h>

static volatile sig_atomic_t notifyflag = 1;
static int signal1 = 0;
static int signal2 = 0;



/* ARGSUSED */
static void turnon(int s) {
    notifyflag = 1;
}

/* ARGSUSED */
static void turnoff(int s) {
    notifyflag = 0;
}

/* ---------------------------Public functions --------------------------*/
int initnotify(int signo1, int signo2) {        /* set up for the notify */
    struct sigaction newact;

    signal1 = signo1;
    signal2 = signo2;
    newact.sa_handler = turnon;                 /* set up signal handlers */
    newact.sa_flags = 0;
    if ((sigemptyset(&newact.sa_mask) == -1) ||
          (sigaddset(&newact.sa_mask, signo1) == -1) ||
          (sigaddset(&newact.sa_mask, signo2) == -1) ||
          (sigaction(signo1, &newact, NULL) == -1))
        return -1;
    newact.sa_handler = turnoff;
    if (sigaction(signo2, &newact, NULL) == -1)
        return -1;
    return 0;
}

int waitnotifyon(void) {          /* Suspend until notifyflag is nonzero */
    sigset_t maskblocked, maskold, maskunblocked;

    if ((sigprocmask(SIG_SETMASK, NULL, &maskblocked) == -1) ||
          (sigprocmask(SIG_SETMASK, NULL, &maskunblocked) == -1) ||
          (sigaddset(&maskblocked, signal1) == -1) ||
          (sigaddset(&maskblocked, signal2) == -1) ||
          (sigdelset(&maskunblocked, signal1) == -1) ||
          (sigdelset(&maskunblocked, signal2) == -1) ||
          (sigprocmask(SIG_BLOCK, &maskblocked, &maskold) == -1))
        return -1;
    while (notifyflag == 0)
        sigsuspend(&maskunblocked);
    if (sigprocmask(SIG_SETMASK, &maskold, NULL) == -1)
        return -1;
    return 0;
}

Section 5.6 presented a simplebiff program to notify a user when mail is present. Program 
8.10 shows a more sophisticated version that uses stat to determine when the size of the mail 
file increases. The program outputs the bell character to inform the user that new mail has 
arrived. This program uses the service of Program 8.9 to turn mail notification on or off without 
killing the process. The user sends a SIGUSR1 signal to turn on mail notification and a SIGUSR2 
signal to turn off mail notification.

Program 8.10 biff.c



A biff program that uses the notifyonoff service.

#include <errno.h>
#include <limits.h>
#include <pwd.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/stat.h>
#include "notifyonoff.h"
#define MAILDIR "/var/mail/"

static int checkmail(char *filename) {               /* is there new mail ? */
    struct stat buf;
    int error = 0;
    static long newsize = 0;
    static long oldsize = 0;

    error = stat(filename, &buf);                   /* check the file status */
    if ((error == -1) && (errno != ENOENT))
        return -1;                       /* real error indicated by -1 return */
    if (!error)
        newsize = (long)buf.st_size;
    else
        newsize = 0;
    if (newsize > oldsize)
        error = 1;                           /* return 1 to indicate new mail */
    else
        error = 0;                        /* return 0 to indicate no new mail */
    oldsize = newsize;
    return error;
}

int main(int argc, char *argv[]) {
    int check;
    char mailfile[PATH_MAX];
    struct passwd *pw;
    int sleeptime;

    if (argc != 2) {
        fprintf(stderr, "Usage: %s sleeptime\n", argv[0]);
        return 1;
    }
    sleeptime = atoi(argv[1]);
    if ((pw = getpwuid(getuid())) == NULL) {
        perror("Failed to determine login name");
        return 1;
    }
    if (initnotify(SIGUSR1, SIGUSR2) == -1) {
        perror("Failed to set up turning on/off notification");
        return 1;
    }



    snprintf(mailfile, PATH_MAX,"%s%s",MAILDIR,pw->pw_name);

    for( ; ; ) {
        waitnotifyon();
        sleep(sleeptime);
        if ((check = checkmail(mailfile)) == -1) {
            perror("Failed to check mail file");
            break;
        }
        if (check)
            fprintf(stderr, "\007");
    }
    return 1;
}

8.5.3 The sigwait function

The sigwait function blocks until any of the signals specified by *sigmask is pending and then 
removes that signal from the set of pending signals and unblocks. When sigwait returns, the 
number of the signal that was removed from the pending signals is stored in the location 
pointed to by signo.

SYNOPSIS
  #include <signal.h>

  int sigwait(const sigset_t *restrict sigmask,
              int *restrict signo);
                                                          POSIX:CX

If successful, sigwait returns 0. If unsuccessful, sigwait returns –1 and sets errno. No 
mandatory errors are defined for sigwait.

Note the differences between sigwait and sigsuspend. Both functions have a first parameter 
that is a pointer to a signal set (sigset_t *). For sigsuspend, this set holds the new signal 
mask and so the signals that are not in the set are the ones that can cause sigsuspend to 
return. For sigwait, this parameter holds the set of signals to be waited for, so the signals in 
the set are the ones that can cause the sigwait to return. Unlike sigsuspend, sigwait does 
not change the process signal mask. The signals in sigmask should be blocked before sigwait 
is called.

Program 8.11 uses sigwait to count the number of times the SIGUSR1 signal is delivered to the 
process. Notice that no signal handler is necessary, since the signal is always blocked.

Program 8.11 countsignals.c

A program that counts the number of SIGUSR1 signals sent to it.

#include <signal.h>
#include <stdio.h>



#include <unistd.h>

int main(void) {
    int signalcount = 0;
    int signo;
    int signum = SIGUSR1;
    sigset_t sigset;

    if ((sigemptyset(&sigset) == -1) ||
          (sigaddset(&sigset, signum) == -1) ||
          (sigprocmask(SIG_BLOCK, &sigset, NULL) == -1))
        perror("Failed to block signals before sigwait");
    fprintf(stderr, "This process has ID %ld\n", (long)getpid());
    for ( ; ; ) {
        if (sigwait(&sigset, &signo) == -1) {
            perror("Failed to wait using sigwait");
            return 1;
        }
        signalcount++;
        fprintf(stderr, "Number of signals so far: %d\n", signalcount);
    }
}

[ Team LiB ]   
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8.6 Handling Signals: Errors and Async-signal Safety

Be aware of three difficulties that can occur when signals interact with function calls. The first 
concerns whether POSIX functions that are interrupted by signals should be restarted. Another 
problem occurs when signal handlers call nonreentrant functions. A third problem involves the 
handling of errors that use errno.

What happens when a process catches a signal while it is executing a library function? The 
answer depends on the type of call. Terminal I/O can block the process for an undetermined 
length of time. There is no limit on how long it takes to get a key value from a keyboard or to 
read from a pipe. Function calls that perform such operations are sometimes characterized as 
"slow". Other operations, such as disk I/O, can block for short periods of time. Still others, such 
as getpid, do not block at all. Neither of these last types is considered to be "slow".

The slow POSIX calls are the ones that are interrupted by signals. They return when a signal is 
caught and the signal handler returns. The interrupted function returns –1 with errno set to 
EINTR. Look in the ERRORS section of the man page to see if a given function can be 
interrupted by a signal. If a function sets errno and one of the possible values is EINTR, the 
function can be interrupted. The program must handle this error explicitly and restart the 
system call if desired. It is not always possible to logically determine which functions fit into 
this category, so be sure to check the man page.

It was originally thought that the operating system needs to interrupt slow calls to allow-the 
user the option of canceling a blocked call. This traditional treatment of handling blocked 
functions has been found to add unneeded complexity to many programs. The POSIX 
committee decided that new functions (such as those in the POSIX threads extension) would 
never set errno to EINTR. However, the behavior of traditional functions such as read and 
write was not changed. Appendix B gives a restart library of wrappers that restart common 
interruptible functions such as read and write.

Recall that a function is async-signal safe if it can be safely called from within a signal handler. 
Many POSIX library functions are not async-signal safe because they use static data structures, 
call malloc or free, or use global data structures in a nonreentrant way. Consequently, a single 
process might not correctly execute concurrent calls to these functions.

Normally this is not a problem, but signals add concurrency to a program. Since signals occur 
asynchronously, a process may catch a signal while it is executing a library function. (For 
example, suppose the program interrupts a strtok call and executes another strtok in the 
signal handler. What happens when the first call resumes?) You must therefore be careful when 
calling library functions from inside signal handlers. Table 8.2 lists the functions that POSIX 
guarantees are safe to call from a signal handler. Notice that functions such as fprintf from 
the C standard I/O library are not on the list.

Signal handlers can be entered asynchronously, that is, at any time. Care must be taken so 
that they do not interfere with error handling in the rest of the program. Suppose a function 
reports an error by returning -1 and setting errno. What happens if a signal is caught before 
the error message is printed? If the signal handler calls a function that changes errno, an 
incorrect error might be reported. As a general rule, signal handlers should save and restore 
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errno if they call functions that might change errno.

Example 8.28 

The following function can be used as a signal handler. The myhandler saves the value of errno 
on entry and restores it on return.

void myhandler(int signo) {
   int esaved;
   esaved = errno;
   write(STDOUT_FILENO, "Got a signal\n", 13);
   errno = esaved;
}

Table 8.2. Functions that POSIX guarantees to be async-signal safe.

_Exit getpid sigaddset

_exit getppid sigdelset

accept getsockname sigemptyset

access getsockopt sigfillset

aio_error getuid sigismember

aio_return kill signal

aio_suspend link sigpause

alarm listen sigpending

bind lseek sigprocmask

cfgetispeed lstat sigqueue

cfgetospeed mkdir sigset

cfsetispeed mkfifo sigsuspend

cfsetospeed open sleep

chdir pathconf socket

chmod pause socketpair

chown pipe stat

clock_gettime poll symlink

close posix_trace_event sysconf

connect pselect tcdrain

creat raise tcflow



dup read tcflush

dup2 readlink tcgetattr

execle recv tcgetpgrp

execve recvfrom tcsendbreak

fchmod recvmsg tcsetattr

fchown rename tcsetpgrp

fcntl rmdir time

fdatasync select timer_getoverrun

fork sem_post timer_gettime

fpathconf send timer_settime

fstat sendmsg times

fsync sendto umask

ftruncate setgid uname

getegid setpgid unlink

geteuid setsid utime

getgid setsockopt wait

getgroups setuid waitpid

getpeername shutdown write

getpgrp sigaction  

Signal handling is complicated, but here are a few useful rules.

●     When in doubt, explicitly restart library calls within a program or use the restart library 
of Appendix B.

●     Check each library function used in a signal handler to make sure that it is on the list of 
async-signal safe functions.

●     Carefully analyze the potential interactions between a signal handler that changes an 
external variable and other program code that accesses the variable. Block signals to 
prevent unwanted interactions.

●     Save and restore errno when appropriate.
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8.7 Program Control with siglongjmp and sigsetjmp

Programs sometimes use signals to handle errors that are not fatal but that can occur in many 
places in a program. For example, a user might want to avoid terminating a program while 
aborting a long calculation or an I/O operation that has blocked for a long time. The program's 
response to Ctrl-C should be to start over at the beginning (or at some other specified 
location). A similar situation occurs when the program has nested prompts or menus and 
should start over when a user misenters a response. Object-oriented languages often handle 
these situations by throwing exceptions that are caught elsewhere. C programs can use signals 
indirectly or directly to handle this type of problem.

In the indirect approach, the signal handler for SIGINT sets a flag in response to Ctrl-C. The 
program tests the flag in strategic places and returns to the desired termination point if the flag 
is set. The indirect approach is complicated, since the program might have to return through 
several layers of functions. At each return layer, the program tests the flag for this special case.

In the direct approach, the signal handler jumps directly back to the desired termination point. 
The jump requires unraveling the program stack. A pair of functions, sigsetjmp and 
siglongjmp, provides this capability. The sigsetjmp function is analogous to a statement label, 
and siglongjmp function is analogous to a goto statement. The main difference is that the 
sigsetjmp and siglongjmp pair cleans up the stack and signal states as well as doing the jump.

Call the sigsetjmp at the point the program is to return to. The sigsetjmp provides a marker 
in the program similar to a statement label. The caller must provide a buffer, env, of type 
sigjmp_buf that sigsetjmp initializes to the collection of information needed for a jump back 
to that marker. If savemask is nonzero, the current state of the signal mask is saved in the env 
buffer. When the program calls sigsetjmp directly, it returns 0. To jump back to the sigsetjmp 
point from a signal handler, execute siglongjmp with the same sigjmp_buf variable. The call 
makes it appear that the program is returning from sigsetjmp with a return value of val.

SYNOPSIS

  #include <setjmp.h>

  void siglongjmp(sigjmp_buf env, int val);
  int sigsetjmp(sigjmp_buf env, int savemask);
                                                            POSIX:CX

No errors are defined for siglongjmp. The sigsetjmp returns 0 when invoked directly and the 
val parameter value when invoked by calling siglongjmp.

The C standard library provides functions setjmp and longjmp for the types of jumps referred 
to above, but the action of these functions on the signal mask is system dependent. The 
sigsetjmp function allows the program to specify whether the signal mask should be reset 
when a signal handler calls this function. The siglongjmp function causes the signal mask to be 
restored if and only if the value of savemask is nonzero. The val parameter of siglongjmp 
specifies the value that is to be returned at the point set by sigsetjmp.
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Program 8.12 sigjmp.c

Code to set up a signal handler that returns to the main loop when Ctrl-C is typed.

#include <setjmp.h>
#include <signal.h>
#include <stdio.h>
#include <unistd.h>

static sigjmp_buf jmpbuf;
static volatile sig_atomic_t jumpok = 0;

/* ARGSUSED */
static void chandler(int signo) {
    if (jumpok == 0) return;
    siglongjmp(jmpbuf, 1);
}

int main(void)  {
    struct sigaction act;

    act.sa_flags = 0;
    act.sa_handler = chandler;
    if ((sigemptyset(&act.sa_mask) == -1) ||
          (sigaction(SIGINT, &act, NULL) == -1)) {
        perror("Failed to set up SIGINT handler");
        return 1;
    }
                                                  /* stuff goes here */
    fprintf(stderr, "This is process %ld\n", (long)getpid());
    if (sigsetjmp(jmpbuf, 1))
        fprintf(stderr, "Returned to main loop due to ^c\n");
    jumpok = 1;
    for ( ; ; )
        ;                                       /* main loop goes here */
}

Program 8.12 shows how to set up a SIGINT handler that causes the program to return to the 
main loop when Ctrl-C is typed. It is important to execute sigsetjmp before calling siglongjmp 
in order to establish a point of return. The call to sigaction should appear before the 
sigsetjmp so that it is called only once. To prevent the signal handler from calling siglongjmp 
before the program executes sigsetjmp, Program 8.12 uses the flag jumpok. The signal 
handler tests this flag before calling siglongjmp.
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8.8 Programming with Asynchronous I/O

Normally, when performing a read or write, a process blocks until the I/O completes. Some types 
of performance-critical applications would rather initiate the request and continue executing, 
allowing the I/O operation to be processed asynchronously with program execution. The older 
method of asynchronous I/O uses either SIGPOLL or SIGIO to notify a process when I/O is 
available. The mechanism for using these signals is set up with ioctl. This section discusses the 
newer version which is part of the POSIX:AIO Asynchronous I/O Extension that was introduced 
with the POSIX:RTS Realtime Extension.

The POSIX:AIO Extension bases its definition of asynchronous I/O on four main functions. The 
aio_read function allows a process to queue a request for reading on an open file descriptor. The 
aio_write function queues requests for writing. The aio_return function returns the status of an 
asynchronous I/O operation after it completes, and the aio_error function returns the error 
status. A fifth function, aio_cancel, allows cancellation of asynchronous I/O operations that are 
already in progress.

The aio_read and aio_write functions take a single parameter, aiocbp, which is a pointer to an 
asynchronous I/O control block. The aio_read function reads aiocbp->aio_bytes from the file 
associated with aiocbp->aio_fildes into the buffer specified by aiocbp->aio_buf. The function 
returns when the request is queued. The aio_write function behaves similarly.

SYNOPSIS

  #include <aio.h>

  int aio_read(struct aiocb *aiocbp);
  int aio_write(struct aiocb *aiocbp);
                                                   POSIX:AIO

If the request was successfully queued, aio_read and aio_write return 0. If unsuccessful, these 
functions return –1 and set errno. The following table lists the mandatory errors for these 
functions that are specific to asynchronous I/O.

errno cause

EAGAIN system did not have the resources to queue request (B)

EBADF aiocbp->aio_fildes invalid (BA)

EFBIG aiocbp->aio_offset exceeds maximum (aio_write) (BA)

ECANCELED request canceled because of explicit aio_cancel (A)

EINVAL invalid member of aiocbp (BA)

EOVERFLOW aiocbp->aio_offset exceeds maximum (aio_read) (BA)
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Errors that occur before the return of aio_read or aio_write have a B tag. These are values that 
errno can have if the call returns –1. The errors that may occur after the return have an A tag. 
These errors are returned by a subsequent call to aio_error. The aio_read and aio_write 
functions also have the mandatory errors of their respective read and write counterparts.

The struct aiocb structure has at least the following members.

int             aio_fildes;     /* file descriptor */
volatile void   *aio_buf;       /* buffer location */
size_t          aio_nbytes;     /* length of transfer */
off_t           aio_offset;     /* file offset */
int             aio_reqprio;    /* request priority offset */
struct sigevent aio_sigevent;   /* signal number and value */
int             aio_lio_opcode; /* listio operation */

The first three members of this structure are similar to the parameters in an ordinary read or 
write function. The aio_offset specifies the starting position in the file for the I/O. If the 
implementation supports user scheduling (_POSIX_PRIORITIZED_IO and 
_POSIX_PRIORITY_SCHEDULING are defined), aio_reqprio lowers the priority of the request. The 
aio_sigevent field specifies how the calling process is notified of the completion. If 
aio_sigevent.sigev_notify has the value SIGEV_NONE, the operating system does not generate 
a signal when the I/O completes. If aio_sigevent.sigev_notify is SIGEV_SIGNAL, the operating 
system generates the signal specified in aio_sigevent.sigev_signo. The aio_lio_opcode 
function is used by the lio_listio function (not discussed here) to submit multiple I/O requests.

The aio_error and aio_return functions return the status of the I/O operation designated by 
aiocbp. Monitor the progress of the asynchronous I/O operation with aio_error. When the 
operation completes, call aio_return to retrieve the number of bytes read or written.

SYNOPSIS

 #include <aio.h>

 ssize_t aio_return(struct aiocb *aiocbp);
 int aio_error(const struct aiocb *aiocbp);
                                                        POSIX:AIO

The aio_error function returns 0 when the I/O operation has completed successfully or 
EINPROGRESS if the I/O operation is still executing. If the operation fails, aio_error returns the 
error code associated with the failure. This error status corresponds to the value of errno that 
would have been set by the corresponding read or write function. The aio_return function 
returns the status of a completed underlying I/O operation. If the operation was successful, the 
return value is the number of bytes read or written. Once aio_return has been called, neither 
aio_return nor aio_error should be called for the same struct aiocb until another 
asynchronous operation is started with this buffer. The results of aio_return are undefined if the 
asynchronous I/O has not yet completed.

POSIX asynchronous I/O can be used either with or without signals, depending on the setting of 
the sigev_notify field of the struct aiocb. Programs 8.13 and 8.14 illustrate how to do 



asynchronous I/O with signals. The general idea is to set up a signal handler that does all the work 
after the initial I/O operation is started.

Program 8.13 is a program for copying one file to another. The reading from the first file is done 
with asynchronous I/O, and the writing to the second file is done with ordinary I/O. This approach 
is appropriate if the input is from a pipe or a network connection that might block for long periods 
of time and if the output is to an ordinary file. Program 8.13 takes two filenames as command-line 
arguments and opens the first for reading and the second for writing. The program then calls the 
initsignal function to set up a signal handler and initread to start the first read. The signal is 
set up as a realtime signal as described in Section 9.4. The main program's loop calls dowork and 
checks to see if the asynchronous copy has completed with a call to getdone. When the copying is 
done, the program displays the number of bytes copied or an error message.

Program 8.14 contains the signal handler for the asynchronous I/O as well as initialization 
routines. The initread function sets up a struct aiocb structure for reading asynchronously and 
saves the output file descriptor in a global variable. It initializes three additional global variables 
and starts the first read with a call to readstart.

Program 8.14 keeps track of the first error that occurs in globalerror and the total number of 
bytes transferred in totalbytes. A doneflag has type sig_atomic_t so that it can be accessed 
atomically. This is necessary since it is modified asynchronously by the signal handler and can be 
read from the main program with a call to getdone. The variables globalerror and totalbytes 
are only available after the I/O is complete, so they are never accessed concurrently by the signal 
handler and the main program.

The signal handler in Program 8.14 uses the struct aiocb that is stored in the global variable 
aiocb. The signal handler starts by saving errno so that it can be restored when the handler 
returns. If the handler detects an error, it calls seterror to store errno in the variable 
globalerror, provided that this was the first error detected. The signal handler sets the doneflag 
if an error occurs or end-of-file is detected. Otherwise, the signal handler does a write to the 
output file descriptor and starts the next read.

Program 8.13 asyncsignalmain.c

A main program that uses asynchronous I/O with signals to copy a file while doing other work.

#include <errno.h>
#include <fcntl.h>
#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/stat.h>
#include "asyncmonitorsignal.h"
#define BLKSIZE 1024
#define MODE (S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH)

void dowork(void);

int main(int argc, char *argv[]) {
   char buf[BLKSIZE];



   int done = 0;
   int error;
   int fd1;
   int fd2;
                                        /* open the file descriptors for I/O */
   if (argc != 3) {
      fprintf(stderr, "Usage: %s filename1 filename2\n", argv[0]);
      return 1;
   }
   if ((fd1 = open(argv[1], O_RDONLY)) == -1) {
      fprintf(stderr, "Failed to open %s:%s\n", argv[1], strerror(errno));
      return 1;
   }
   if ((fd2 = open(argv[2], O_WRONLY | O_CREAT | O_TRUNC, MODE)) == -1) {
      fprintf(stderr, "Failed to open %s: %s\n", argv[2], strerror(errno));
      return 1;
   }
   if (initsignal(SIGRTMAX) == -1) {
      perror("Failed to initialize signal");
      return 1;
   }
   if (initread(fd1, fd2, SIGRTMAX, buf, BLKSIZE) == -1) {
      perror("Failed to initate the first read");
      return 1;
   }
   for ( ; ; ) {
      dowork();
      if (!done)
         if (done = getdone())
            if (error = geterror())
               fprintf(stderr, "Failed to copy file:%s\n", strerror(error));
            else
               fprintf(stderr, "Copy successful, %d bytes\n", getbytes());
   }
}

Program 8.14 asyncmonitorsignal.c

Utility functions for handling asynchronous I/O with signals.

#include <aio.h>
#include <errno.h>
#include <signal.h>
#include "restart.h"

static struct aiocb aiocb;
static sig_atomic_t doneflag;
static int fdout;
static int globalerror;
static int totalbytes;

static int readstart();
static void seterror(int error);

/* ARGSUSED */
static void aiohandler(int signo, siginfo_t *info, void *context) {



    int  myerrno;
    int  mystatus;
    int  serrno;

    serrno = errno;
    myerrno = aio_error(&aiocb);
    if (myerrno == EINPROGRESS) {
        errno = serrno;
        return;
    }
    if (myerrno) {
        seterror(myerrno);
        errno = serrno;
        return;
    }
    mystatus = aio_return(&aiocb);
    totalbytes += mystatus;
    if (mystatus == 0)
        doneflag = 1;
    else if (r_write(fdout, (char *)aiocb.aio_buf, mystatus) == -1)
        seterror(errno);
    else if (readstart() == -1)
        seterror(errno);
    errno = serrno;
}

static int readstart() {                     /* start an asynchronous read */
    int error;
    if (error = aio_read(&aiocb))
        seterror(errno);
    return error;
}

static void seterror(int error) {            /* update globalerror if zero */
    if (!globalerror)
        globalerror = error;
    doneflag = 1;
}

/* --------------------------Public Functions ---------------------------- */
int getbytes() {
    if (doneflag)
        return totalbytes;
    errno = EINVAL;
    return -1;
}

int getdone() {                                          /* check for done */
    return doneflag;
}

int geterror() {               /* return the globalerror value if doneflag */
    if (doneflag)
        return globalerror;
    errno = EINVAL;
    return errno;
}



int initread(int fdread, int fdwrite, int signo, char *buf, int bufsize) {
    aiocb.aio_fildes = fdread;                          /* set up structure */
    aiocb.aio_offset = 0;
    aiocb.aio_buf = (void *)buf;
    aiocb.aio_nbytes = bufsize;
    aiocb.aio_sigevent.sigev_notify = SIGEV_SIGNAL;
    aiocb.aio_sigevent.sigev_signo = signo;
    aiocb.aio_sigevent.sigev_value.sival_ptr = &aiocb;
    fdout = fdwrite;
    doneflag = 0;
    globalerror = 0;
    totalbytes = 0;
    return readstart();                                 /* start first read */
}

int initsignal(int signo) {        /* set up the handler for the async I/O */
    struct sigaction newact;

    newact.sa_sigaction = aiohandler;
    newact.sa_flags = SA_SIGINFO;
    if ((sigemptyset(&newact.sa_mask) == -1) ||
          (sigaction(signo, &newact, NULL) == -1))
        return -1;
    return 0;
}

int suspenduntilmaybeready() {            /* return 1 if done, 0 otherwise */
    const struct aiocb *aiocblist;

    aiocblist = &aiocb;
    aio_suspend(&aiocblist, 1, NULL);
    return doneflag;
}

The r_write function from the restart library in Appendix B guarantees that all the bytes 
requested are written if possible. Program 8.14 also contains the suspenduntilmaybeready 
function, which is not used in Program 8.13 but will be described later.

The signal handler does not output any error messages. Output from an asynchronous signal 
handler can interfere with I/O operations in the main program, and the standard library routines 
such as fprintf and perror may not be safe to use in signal handlers. Instead, the signal handler 
just keeps track of the errno value of the first error that occurred. The main program can then 
print an error message, using strerror.

Example 8.29 

The following command line calls Program 8.13 to copy from pipe1 to pipe2.

asyncsignalmain pipe1 pipe2

Asynchronous I/O can be used without signals if the application has to do other work that can be 
broken into small pieces. After each piece of work, the program calls aio_error to see if the I/O 
operation has completed and handles the result if it has. This procedure is called polling.



Program 8.15 shows a main program that takes a number of filenames as parameters. The 
program reads each file, using asynchronous I/O, and calls processbuffer to process each input. 
While this is going on, the program calls dowork in a loop.

Program 8.15 uses utility functions from Program 8.16. The main program starts by opening each 
file and calling initaio to set up the appropriate information for each descriptor as an entry in the 
static array defined in Program 8.16. Each element of the array contains a struct aiocb structure 
for holding I/O and control information. Next, the first read for each file is started with a call to 
readstart. The program does not use signal handlers. The main program executes a loop in which 
it calls readcheck to check the status of each operation after each piece of dowork. If a read has 
completed, the main program calls processbuffer to handle the bytes read and starts a new 
asynchronous read operation. The main program keeps track of which file reads have completed 
(either successfully or due to an error) in an array called done.

Program 8.15 asyncpollmain.c

A main program that uses polling with asynchronous I/O to process input from multiple file 
descriptors while doing other work.

#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <string.h>
#include "asyncmonitorpoll.h"

void dowork(void);
void processbuffer(int which, char *buf, int bufsize);

int main(int argc, char *argv[]) {
   char *buf;
   int done[NUMOPS];
   int fd[NUMOPS];
   int i;
   int numbytes, numfiles;

   if (argc < 2) {
      fprintf(stderr, "Usage: %s filename1 filename2 ...\n", argv[0]);
      return 1;
   } else if (argc > NUMOPS + 1) {
      fprintf(stderr, "%s: only supports %d simultaneous operations\n",
              argv[0],  NUMOPS);
      return 1;
   }
   numfiles = argc - 1;

   for (i = 0; i < numfiles; i++)  {            /* set up the I/O operations */
      done[i] = 0;
      if ((fd[i] = open(argv[i+1], O_RDONLY)) == -1) {
         fprintf(stderr, "Failed to open %s:%s\n", argv[i+1], strerror(errno));
         return 1;
      }
      if (initaio(fd[i], i) == -1) {
         fprintf(stderr, "Failed to setup I/O op %d:%s\n", i, strerror(errno));



         return 1;
      }
      if (readstart(i) == -1) {
         fprintf(stderr, "Failed to start read %d:%s\n", i, strerror(errno));
         return 1;
      }
   }
   for (  ;  ;  ) {                                         /* loop and poll */
      dowork();
      for (i = 0; i < numfiles; i++) {
         if (done[i])
            continue;
         numbytes = readcheck(i, &buf);
         if ((numbytes == -1) && (errno == EINPROGRESS))
            continue;
         if (numbytes <= 0) {
            if (numbytes == 0)
               fprintf(stderr, "End of file on %d\n", i);
            else
               fprintf(stderr, "Failed to read %d:%s\n", i, strerror(errno));
            done[i] = 1;
            continue;
         }
         processbuffer(i, buf, numbytes);
         reinit(i);
         if (readstart(i) == -1) {
            fprintf(stderr, "Failed to start read %d:%s\n", i, strerror(errno));
            done[i] = 1;
         }
      }
   }
}

Program 8.16 asyncmonitorpoll.c

Utility functions for handling asynchronous I/O with polling.

#include <aio.h>
#include <errno.h>
#include <stdio.h>
#include <unistd.h>
#include "asyncmonitorpoll.h"
#define BLKSIZE 1024                            /* size of blocks to be read */

typedef struct {
    char buf[BLKSIZE];
    ssize_t bytes;
    struct aiocb control;
    int doneflag;
    int startedflag;
} aio_t;

static aio_t iops[NUMOPS];                         /* information for the op */

/* -------------------------- Public Functions ----------------------------- */
int initaio(int fd, int handle)       {          /* set up control structure */



    if (handle >= NUMOPS) {
        errno = EINVAL;
        return -1;
    }
    iops[handle].control.aio_fildes = fd;              /* I/O operation on fd */
    iops[handle].control.aio_offset = 0;
    iops[handle].control.aio_buf = (void *)iops[handle].buf;
    iops[handle].control.aio_nbytes = BLKSIZE;
    iops[handle].control.aio_sigevent.sigev_notify = SIGEV_NONE;
    iops[handle].doneflag = 0;
    iops[handle].startedflag = 0;
    iops[handle].bytes = 0;
    return 0;
}

/* return -1 if not done or error
             errno = EINPROGRESS if not done
   otherwise, return number of bytes read with *buf pointing to buffer
*/
int readcheck(int handle, char **bufp) {   /* see if read for handle is done */
    int error;
    ssize_t numbytes;
    struct aiocb *thisp;

    thisp = &(iops[handle].control);            /* get a pointer to the aiocp */
    if (iops[handle].doneflag) {       /* done already, don't call aio_return */
        numbytes = iops[handle].bytes;
        *bufp = (char *)iops[handle].control.aio_buf; /* set pointer to buffer */
        return numbytes;
    }
    error = aio_error(thisp);
    if (error) {
        errno = error;
        return -1;
    }
    numbytes = aio_return(thisp);
    iops[handle].bytes = numbytes;
    *bufp = (char *)iops[handle].control.aio_buf;    /* set pointer to buffer */
    iops[handle].doneflag = 1;
    return numbytes;
}

int readstart(int handle) {    /* start read for I/O corresponding to handle */
    int error;
    struct aiocb *thisp;

    thisp = &(iops[handle].control);            /* get a pointer to the aiocp */
    if (iops[handle].startedflag) {                        /* already started */
        errno = EINVAL;
        return -1;
    }
    if ((error = aio_read(thisp)) == -1) {
        errno = error;
        return -1;
    }
    iops[handle].startedflag = 1;
    return 0;
}



void reinit(int handle) {   /* must be called before doing another readstart */
    iops[handle].doneflag = 0;
    iops[handle].startedflag = 0;
    iops[handle].bytes = 0;
}

Example 8.30 

The following command line calls Program 8.15 for inputs pipe1, pipe2 and pipe3.

asyncpollmain pipe1 pipe2 pipe3

What if a program starts asynchronous I/O operations as in Program 8.13 and runs out of other 
work to do? Here are several options for avoiding busy waiting.

1.  Switch to using standard blocking I/O with select.

2.  Use signals as in Program 8.13, or use pause or sigsuspend in a loop. Do not use sigwait, 
since this function requires the signals to be blocked.

3.  Switch to using signals as in Program 8.15 by blocking the signal and calling sigwait in a 
loop.

4.  Use aio_suspend.

The aio_suspend function takes three parameters, an array of pointers to struct aiocb 
structures, the number of these structures and a timeout specification. If the timeout specification 
is not NULL, aio_suspend may return after the specified time. Otherwise, it returns when at least 
one of the I/O operations has completed and aio_error no longer returns EINPROGRESS. Any of 
the entries in the array may be NULL, in which case they are ignored.

SYNOPSIS

  #include <aio.h>

  int aio_suspend(const struct aiocb * const list[], int nent,
                  const struct timespec *timeout);
                                                                           POSIX:AIO

If successful, aio_suspend returns 0. If unsuccessful, aio_suspend returns –1 and sets errno. 
The following table lists the mandatory errors for aio_suspend.

errno cause

EAGAIN timeout occurred before asynchronous I/O completed



EINTR a signal interrupted aio_suspend

Program 8.14 has a suspenduntilmaybeready function that uses aio_suspend to suspend the 
calling process until the asynchronous I/O operation is ready. It can be called from the main 
program of Program 8.13 in place of dowork when there is no other work to be done. In this case, 
there is only one asynchronous I/O operation and the function returns 1 if it has completed, and 0 
otherwise.

The aio_cancel function attempts to cancel one or more asynchronous I/O requests on the file 
descriptor fildes. The aiocbp parameter points to the control block for the request to be 
canceled. If aiocbp is NULL, the aio_cancel function attempts to cancel all pending requests on 
fildes.

SYNOPSIS

  #include <aio.h>

  int aio_cancel(int fildes, struct aioch *aiocbp);
                                                              POSIX:AIO

The aio_cancel function returns AIO_CANCELED if the requested operations were successfully 
canceled or AIO_NOTCANCELED if at least one of the requested operations could not be canceled 
because it was in progress. It returns AIO_ALLDONE if all the operations have already completed. 
Otherwise, the aio_cancel function returns –1 and sets errno. The aio_cancel function sets 
errno to EBADF if the fildes parameter does not correspond to a valid file descriptor.

Exercise 8.31 

How would you modify Programs 8.15 and 8.16 so that a SIGUSR1 signal cancels all the 
asynchronous I/O operations without affecting the rest of the program?

Answer:

Set up a signal handler for SIGUSR1 in asyncmonitorpoll that cancels all pending operations 
using aio_cancel. Also set a flag signifying that all I/O has been canceled. The readcheck 
function checks this flag. If the flag is set, readcheck returns –1 with errno set to ECANCELED.
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8.9 Exercise: Dumping Statistics

The atexit function showtimes of Program 2.10 on page 53 can almost work as a signal 
handler to report the amount of CPU time used. It needs an unused parameter for the signal 
number, and the functions used in showtimes must be async-signal safe. Implement a signal 
handler for SIGUSR1 that outputs this information to standard error. The program probably 
produces correct output most of the time, even though it calls functions such as perror and 
fprintf that are not async-signal safe.

Read your system documentation and try to find out if these functions are async-signal safe on 
your system. This information may be difficult to find. If you are using unsafe functions, try to 
make your program fail. This may not be easy to do, as it may happen very rarely. In any case, 
write a version that uses only those functions that POSIX requires to be async-signal safe as 
listed in Table 8.2 on page 285. You can avoid using perror by producing your own error 
messages. You will need to write your own functions for converting a double value to a string. 
Section 13.7 gives a signal-safe implementation of perror that uses mutex locks from the 
POSIX:THR Threads Extension.
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8.10 Exercise: Spooling a Slow Device

This exercise uses asynchronous I/O to overlap the handling of I/O from a slow device with 
other program calculations. Examples include printing or performing a file transfer over a slow 
modem. Another example is a program that plays an audio file in the background while doing 
something else. In these examples, a program reads from a disk file and writes to a slow device.

Write a program that uses aio_read and aio_write to transfer data to a slow device. The 
source of information is a disk file. Model your program after Programs 8.13 and 8.14. Pass the 
name of the input and output files as command-line arguments.

The main program still initiates the first read. However, now the signal handler initiates an 
aio_write if the asynchronous read completes. Similarly, when the asynchronous write 
completes, the signal handler initiates another aio_read.

Begin testing with two named pipes for the input and the output. Then, use a disk file for the 
output. Redirect the output from the pipe to a file and use diff to check that they are the 
same. If a workstation with a supported audio device is available, use an audio file on disk as 
input and "/dev/audio" as the output device.

Keep statistics on the number of bytes transferred and the number of write operations needed. 
Add a signal handler that outputs this information when the program receives a SIGUSR1 signal. 
The statistics can be kept in global variables. Block signals when necessary to prevent different 
signal handlers from accessing these shared variables concurrently.

This program is particularly interesting when the output goes to the audio device. It is possible 
to tell when the program is computing by the gaps that occur in the audio output. Estimate the 
percentage of time spent handling I/O as compared with calculation time.
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8.11 Additional Reading

Advanced Programming in the UNIX Environment by Stevens [112] has a good historical 
overview of signals. Beginning Linux Programming, 2nd ed. by Stones and Matthew discusses 
signals in Linux [117]. The article "Specialization tools and techniques for systematic 
optimization of system software" by McNamee et al. [80] introduces a toolkit for writing 
efficient system code and uses signal handling as a principal case study for the toolkit.
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Chapter 9. Times and Timers

Operating systems use timers for purposes such as process scheduling, timeouts for network 
protocols, and periodic updates of system statistics. Applications access system time and timer 
functions to measure performance or to identify the time when events occur. Applications also 
use timers to implement protocols and to control interaction with users such as that needed for 
rate-limited presentations. This chapter discusses representations of time in the POSIX base 
standard as well as interval timers in the POSIX:XSI Extension and POSIX:TMR Extension. The 
chapter also explores concepts such as timer drift and timer overrun and demonstrates how to 
use POSIX realtime signals with timers.

Objectives

●     Learn how time is represented
●     Experiment with interval timers
●     Explore interactions of timers and signals
●     Use timers to assess performance
●     Understand POSIX realtime signals
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9.1 POSIX Times

POSIX specifies that systems should keep time in terms of seconds since the Epoch and that 
each day be accounted for by exactly 86,400 seconds. The Epoch is defined as 00:00 
(midnight), January 1, 1970, Coordinated Universal Time (also called UTC, Greenwich Mean 
Time or GMT). POSIX does not specify how an implementation should align its system time with 
the actual time and date.

Most operations need to be measured with timers with greater than one-second resolution. Two 
POSIX extensions, the POSIX:XSI Extension and the POSIX:TMR Extension, define time 
resolutions of microseconds and nanoseconds, respectively.

9.1.1 Expressing time in seconds since the Epoch

The POSIX base standard supports only a time resolution of seconds and expresses time since 
the Epoch using a time_t type, which is usually implemented as a long. A program can access 
the system time (expressed in seconds since the Epoch) by calling the time function. If tloc is 
not NULL, the time function also stores the time in *tloc.

SYNOPSIS

  #include <time.h>
  time_t time(time_t *tloc);
                                        POSIX:CX

If successful, time returns the number of seconds since the Epoch. If unsuccessful, time 
returns (time_t) –1. POSIX does not define any mandatory errors for time.

Exercise 9.1 

The time_t type is usually implemented as a long. If a long is 32 bits, at approximately what 
date would time_t overflow? (Remember that one bit is used for the sign.) What date would 
cause an overflow if an unsigned long were used? What date would cause an overflow if a 64-
bit data type were used?

Answer:

For a 32-bit long, time would overflow in approximately 68 years from January 1, 1970, so the 
system would not have a "Y2K" problem until the year 2038. For a time_t value that is an 
unsigned long, the overflow would occur in the year 2106, but this would not allow time to 
return an error. For a 64-bit data type, the overflow would not occur for another 292 billion 
years, long after the sun has died!

The difftime function computes the difference between two calendar times of type time_t, 
making it convenient for calculations involving time. The difftime function has two time_t 
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parameters and returns a double containing the first parameter minus the second.

SYNOPSIS

  #include <time.h>

  double difftime(time_t time1, time_t time0);
                                                          POSIX:CX

No errors are defined for difftime.

Example 9.2 simpletiming.c

The following program calculates the wall-clock time that it takes to execute function_to_time.

# include <stdio.h>
# include <time.h>
void function_to_time(void);

int main(void) {
   time_t tstart;

   tstart = time(NULL);
   function_to_time();
   printf("function_to_time took %f seconds of elapsed time\n",
           difftime(time(NULL), tstart));
   return 0;
}

Example 9.2 uses a time resolution of one second, which may not be accurate enough unless 
function_to_time involves substantial computation or waiting. Also, the time function 
measures wall-clock or elapsed time, which may not meaningfully reflect the amount of CPU 
time used. Section 9.1.5 presents alternative methods of timing code.

9.1.2 Displaying date and time

The time_t type is convenient for calculations requiring the difference between times, but it is 
cumbersome for printing dates. Also, a program should adjust dates and times to account for 
factors such as time zone, daylight-saving time and leap seconds.

The localtime function takes a parameter specifying the seconds since the Epoch and returns 
a structure with the components of the time (such as day, month and year) adjusted for local 
requirements. The asctime function converts the structure returned by localtime to a string. 
The ctime function is equivalent to asctime(localtime(clock)). The gmtime function takes a 
parameter representing seconds since the Epoch and returns a structure with the components 
of time expressed as Coordinated Universal Time (UTC).

SYNOPSIS



  #include <time.h>

  char *asctime(const struct tm *timeptr);
  char *ctime(const time_t *clock);
  struct tm *gmtime(const time_t *timer);
  struct tm *localtime(const time_t *timer);
                                                    POSIX:CX

No errors are defined for these functions.

The ctime function takes one parameter, a pointer to a variable of type time_t, and returns a 
pointer to a 26-character English-language string. The ctime function takes into account both 
the time zone and daylight saving time. Each of the fields in the string has a constant width. 
The string might be stored as follows.

Sun Oct 06 02:21:35 1986\n\0

Example 9.3 timeprint.c

The following program prints the date and time. The printf format did not include '\n' 
because ctime returns a string that ends in a newline.

#include <stdio.h>
#include <time.h>

int main(void) {
   time_t tcurrent;

   tcurrent = time(NULL);
   printf("The current time is %s", ctime(&tcurrent));
   return 0;
}

Exercise 9.4 badtiming.c

What is wrong with the following program that prints the time before and after the function 
function_to_time executes?

#include <stdio.h>
#include <time.h>

void function_to_time(void);

int main(void) {
   time_t tend, tstart;

   tstart = time(NULL);
   function_to_time();
   tend = time(NULL);
   printf("The time before was %sThe time after was %s",
           ctime(&tstart), ctime(&tend));



   return 0;
}

Answer:

The ctime function uses static storage to hold the time string. Both calls to ctime store the 
string in the same place, so the second call may overwrite the first value before it is used. Most 
likely, both times will be printed as the same value.

The gmtime and localtime functions break the time into separate fields to make it easy for 
programs to output components of the date or time. ISO C defines the struct tm structure to 
have the following members.

int tm_sec;        /* seconds after the minute [0,60] */
int tm_min;        /* minutes after the hour [0,59] */
int tm_hour;       /* hours since midnight [0,23] */
int tm_mday;       /* day of the month [1,31] */
int tm_mon;        /* months since January [0,11] */
int tm_year;       /* years since 1900 */
int tm_wday;       /* days since Sunday [0,6] */
int tm_yday;       /* days since January 1 [0,365] */
int tm_isdst;      /* flag indicating daylight-saving time */

Example 9.5 

The following code segment prints the number of days since the beginning of the year.

struct tm *tcurrent;

tcurrent = localtime(time(NULL));
printf("%d days have elapsed since Jan 1\n", tcurrent->tm_yday);

Unfortunately, the asctime, ctime and localtime are not thread-safe. The POSIX:TSF Thread 
Safe Extension specifies thread-safe alternatives that have a caller-supplied buffer as an 
additional parameter.

SYNOPSIS

  #include <time.h>

  char *asctime_r(const struct tm *restrict timeptr, char *restrict buf);
  char *ctime_r(const time_t *clock, char *buf);
  struct tm *gmtime_r(const time_t *restrict timer,
                       struct tm *restrict result);
  struct tm *localtime_r(const time_t *restrict timer,
                       struct tm *restrict result);
                                                                   POSIX:TSF

If successful, these functions return a pointer to the parameter holding the result. For 
asctime_r and ctime_r, the result is in buf. For gmtime_r and localtime_r, the result is in 



result. If unsuccessful, these functions return a NULL pointer.

Example 9.6 

The following code segment prints the number of days since the beginning of the year, using 
the thread-safe localtime_r function.

struct tm tbuffer;

if (localtime_r(time(NULL), &tbuffer) != NULL)
   printf("%d days have elapsed since Jan 1\n", tbuffer.tm_yday);

9.1.3 Using struct timeval to express time

A time scale of seconds is too coarse for timing programs or controlling program events. The 
POSIX:XSI Extension uses the struct timeval structure to express time on a finer scale. The 
struct timeval structure includes the following members.

time_t   tv_sec;   /* seconds since the Epoch */
time_t   tv_usec;  /* and microseconds */

Certain POSIX functions that support a timeout option (e.g., select) specify the timeout values 
by using variables of type struct timeval. In this case, the structure holds the length of the 
interval in seconds and microseconds.

The gettimeofday function retrieves the system time in seconds and microseconds since the 
Epoch. The struct timeval structure pointed to by tp receives the retrieved time. The tzp 
pointer must be NULL and is included for historical reasons.

SYNOPSIS

  #include <sys/time.h>

  int gettimeofday(struct timeval *restrict tp, void *restrict tzp);
                                                                   POSIX:XSI

The gettimeofday function returns 0. No values are reserved to indicate an error. However, 
many systems have implemented gettimeofday so that it returns –1 and sets errno if 
unsuccessful. Our programs check to make sure gettimeofday returns 0.

Program 9.1 shows how to measure the running time of function_to_time by using 
gettimeofday. The gettimeofdaytiming program reads the time before and after calling 
function_to_time and prints the time difference as a number of microseconds.

Exercise 9.7 

What is the maximum duration that can be timed by the method of Program 9.1? How could 



you extend this?

Answer:

If a long is 32 bits, the maximum duration is 231 – 1 microseconds, or approximately 35 
minutes. You could extend this by using a long long (usually 64 bits) for timedif. Changes 
must be made in the declaration of timedif, the definition of MILLION (1000000LL) and the 
format specifier (lld).

Program 9.1 gettimeofdaytiming.c

A program that measures the running time of a function by using gettimeofday.

#include <stdio.h>
#include <sys/time.h>
#define MILLION 1000000L

void function_to_time(void);

int main(void) {
   long timedif;
   struct timeval tpend;
   struct timeval tpstart;

   if (gettimeofday(&tpstart, NULL)) {
      fprintf(stderr, "Failed to get start time\n");
      return 1;
   }

   function_to_time();                               /* timed code goes here */
   if (gettimeofday(&tpend, NULL)) {
      fprintf(stderr, "Failed to get end time\n");
      return 1;
   }
   timedif = MILLION*(tpend.tv_sec - tpstart.tv_sec) +
                      tpend.tv_usec - tpstart.tv_usec;
   printf("The function_to_time took %ld microseconds\n", timedif);
   return 0;
}

The gettimeofdaytest program shown in Program 9.2 tests gettimeofday resolution by 
calling gettimeofday in a loop until it produces 20 differences. Program 9.2 displays the 
differences along with the average difference and the number of calls made to gettimeofday. 
On most systems, the resolution will be a small number of microseconds. If the number of calls 
to gettimeofday is not much more than 21, then the limiting factor on the resolution is the 
time it takes to execute gettimeofday. On most modern systems, many consecutive calls to 
gettimeofday will return the same value. Often, one of the values displayed will be much 
greater than the others. This can happen if a context switch occurs while the timing loop is 
executing.

9.1.4 Using realtime clocks



A clock is a counter that increments at fixed intervals called the clock resolution. The POSIX:
TMR Timers Extension contains clocks that are represented by variables of type clockid_t. 
POSIX clocks may be systemwide or only visible within a process. All implementations must 
support a systemwide clock with a clockid_t value of CLOCK_REALTIME corresponding to the 
system realtime clock. Only privileged users may set this clock, but any user can read it.

Program 9.2 gettimeofdaytest.c

A program to test the resolution of gettimeofday.

#include <stdio.h>
#include <sys/time.h>
#define MILLION 1000000L
#define NUMDIF 20

int main(void) {
   int i;
   int numcalls = 1;
   int numdone = 0;
   long sum = 0;
   long timedif[NUMDIF];
   struct timeval tlast;
   struct timeval tthis;

   if (gettimeofday(&tlast, NULL)) {
      fprintf(stderr, "Failed to get first gettimeofday.\n");
      return 1;
   }
   while (numdone < NUMDIF) {
      numcalls++;
      if (gettimeofday(&tthis, NULL)) {
         fprintf(stderr, "Failed to get a later gettimeofday.\n");
         return 1;
      }
      timedif[numdone] = MILLION*(tthis.tv_sec - tlast.tv_sec) +
                      tthis.tv_usec - tlast.tv_usec;
      if (timedif[numdone] != 0) {
         numdone++;
         tlast = tthis;
      }
   }
   printf("Found %d differences in gettimeofday:\n", NUMDIF);
   printf("%d calls to gettimeofday were required\n", numcalls);
   for (i = 0; i < NUMDIF; i++) {
      printf("%2d: %10ld microseconds\n", i, timedif[i]);
      sum += timedif[i];
   }
   printf("The average nonzero difference is %f\n", sum/(double)NUMDIF);
   return 0;
}

The struct timespec structure specifies time for both POSIX:TMR clocks and timers, as well as 



the timeout values for the POSIX thread functions that support timeouts. The struct timespec 
structure has at least the following members.

time_t   tv_sec;   /* seconds */
long     tv_nsec;  /* nanoseconds */

POSIX provides functions to set the clock time (clock_settime), to retrieve the clock time 
(clock_gettime), and to determine the clock resolution (clock_getres). Each of these 
functions takes two parameters: a clockid_t used to identify the particular clock and a pointer 
to a struct timespec structure.

SYNOPSIS

   #include <time.h>

   int clock_getres(clockid_t clock_id, struct timespec *res);
   int clock_gettime(clockid_t clock_id, struct timespec *tp);
   int clock_settime(clockid_t clock_id, const struct timespec *tp);
                                                                   POSIX:TMR

If successful, these functions return 0. If unsuccessful, these functions return –1 and set errno. 
All three functions set errno to EINVAL if clockid_t does not specify a known clock. The 
clock_settime also sets errno to EINVAL if tp is out of the range of clock_id or if tp-

>tv_nsec is not in the range [0, 109).

Example 9.8 clockrealtimetiming.c

The following program measures the running time of function_to_time by using the POSIX:
TMR clocks.

#include <stdio.h>
#include <time.h>
#define MILLION 1000000L

void function_to_time(void);

int main (void) {
   long timedif;
   struct timespec tpend, tpstart;

   if (clock_gettime(CLOCK_REALTIME, &tpstart) == -1) {
      perror("Failed to get starting time");
      return 1;
   }
   function_to_time();                               /* timed code goes here */
   if (clock_gettime(CLOCK_REALTIME, &tpend) == -1) {
      perror("Failed to get ending time");
      return 1;
   }
   timedif = MILLION*(tpend.tv_sec - tpstart.tv_sec) +
            (tpend.tv_nsec - tpstart.tv_nsec)/1000;



   printf("The function_to_time took %ld microseconds\n", timedif);
   return 0;
}

The CLOCK_REALTIME typically has a higher resolution than gettimeofday. Program 9.3 which is 
similar to Program 9.2 tests the resolution of CLOCK_REALTIME by measuring the average of 20 
changes in the clock reading. The program also calls clock_getres to display the nominal 
resolution in nanoseconds for setting the clock and for timer interrupts (Section 9.5). This 
nominal resolution is typically large, on the order of milliseconds, and is unrelated to the 
resolution of clock_gettime for timing. The resolution of clock_gettime is typically better 
than one microsecond.

Program 9.3 clockrealtimetest.c

A program to test the resolution of CLOCK_REALTIME.

#include <stdio.h>
#include <time.h>
#define BILLION 1000000000L
#define NUMDIF 20

int main(void) {
   int i;
   int numcalls = 1;
   int numdone = 0;
   long sum = 0;
   long timedif[NUMDIF];
   struct timespec tlast;
   struct timespec tthis;

   if (clock_getres(CLOCK_REALTIME, &tlast))
      perror("Failed to get clock resolution");
   else if (tlast.tv_sec != 0)
      printf("Clock resolution no better than one second\n");
   else
      printf("Clock resolution: %ld nanoseconds\n", (long)tlast.tv_nsec);
   if (clock_gettime(CLOCK_REALTIME, &tlast)) {
      perror("Failed to get first time");
      return 1;
   }
   while (numdone < NUMDIF) {
      numcalls++;
      if (clock_gettime(CLOCK_REALTIME, &tthis)) {
         perror("Failed to get a later time");
         return 1;
      }
      timedif[numdone] = BILLION*(tthis.tv_sec - tlast.tv_sec) +
                      tthis.tv_nsec - tlast.tv_nsec;
      if (timedif[numdone] != 0) {
         numdone++;
         tlast = tthis;
      }
   }



   printf("Found %d differences in CLOCK_REALTIME:\n", NUMDIF);
   printf("%d calls to CLOCK_REALTIME were required\n", numcalls);
   for (i = 0; i < NUMDIF; i++) {
      printf("%2d: %10ld nanoseconds\n", i, timedif[i]);
      sum += timedif[i];
   }
   printf("The average nonzero difference is %f\n", sum/(double)NUMDIF);
   return 0;
}

9.1.5 Contrasting elapsed time to processor time

The time function measures real time, sometimes called elapsed time or wall-clock time. In a 
multiprogramming environment many processes share the CPU, so real time is not an accurate 
measure of execution time. The virtual time for a process is the amount of time that the 
process spends in the running state. Execution times are usually expressed in terms of virtual 
time rather than wall-clock time.

The times function fills the struct tms structure pointed to by its buffer parameter with time-
accounting information.

SYNOPSIS

  #include <sys/times.h>

  clock_t times(struct tms *buffer);
                                           POSIX

If successful, times returns the elapsed real time, in clock ticks, since an arbitrary point in the 
past such as system or process startup time. The return value may overflow its possible range. 
If times fails, it returns (clock_t) –1 and sets errno.

The struct tms structure contains at least the following members.

clock_t  tms_utime;   /* user CPU time of process */
clock_t  tms_stime;   /* system CPU time on behalf of process */
clock_t  tms_cutime   /* user CPU time of process and terminated children */
clock_t  tms_cstime;  /* system CPU time of process and terminated children */

Program 9.4 estimates the total of the amount of CPU time used by function_to_time as well 
as the fraction of the total CPU time used. It displays the total time in units of seconds 
expressed as a double. The resolution of the calculation is in clock ticks. A typical value for the 
number of ticks per second is 100. This number is suitable for accounting but does not have 
enough resolution for performance measurements of short events. If function_to_time takes 
only a few clock ticks to execute, you can obtain better resolution by calling it in a loop several 
times and dividing the resulting time by the number of iterations of the loop.

Program 9.4 calls sysconf as introduced in showtimes (Program 2.10 on page 53) to determine 
the number of clock ticks in a second. The calculation does not include any CPU time used by 
children of the process, but it does include both the user time and the system time used on 



behalf of the process. The fraction of the total CPU time may be inaccurate if a context switch 
occurs during the execution of the function.

Program 9.5, which is similar to the time shell command, prints the number of clock ticks and 
seconds used to execute an arbitrary program. The timechild function passes its own 
command-line argument array to execv in the same way as does Program 3.5 on page 81 and 
calculates the child's time by subtracting the process time from the total time. Since the 
process has only one child, what is left is the child's time.

Program 9.4 cpufraction.c

A program that calculates the CPU time in seconds for function_to_time and its fraction of 
total.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/times.h>

void function_to_time(void);

int main(void) {
   double clockticks, cticks;
   clock_t tcend, tcstart;
   struct tms tmend, tmstart;

   if ((clockticks = (double) sysconf(_SC_CLK_TCK)) == -1) {
      perror("Failed to determine clock ticks per second");
      return 1;
   }
   printf("The number of ticks per second is %f\n", clockticks);
   if (clockticks == 0) {
      fprintf(stderr, "The number of ticks per second is invalid\n");
      return 1;
   }
   if ((tcstart = times(&tmstart)) == -1) {
      perror("Failed to get start time");
      return 1;
   }
   function_to_time();
   if ((tcend = times(&tmend)) == -1) {
      perror("Failed to get end times");
      return 1;

   }
   cticks = tmend.tms_utime + tmend.tms_stime
             - tmstart.tms_utime - tmstart.tms_stime;
   printf("Total CPU time for operation is %f seconds\n",cticks/clockticks);
   if ((tcend <= tcstart) || (tcend < 0) || (tcstart < 0)) {
      fprintf(stderr, "Tick time wrapped, couldn't calculate fraction\n);
      return 1;
   }
   printf("Fraction of CPU time used is %f\n", cticks/(tcend - tcstart));
   return 0;



}

Example 9.9 

The following command line uses timechild of Program 9.5 to time the execution of Program 
9.4.

timechild cpufraction

Program 9.5 timechild.c

A program that executes its command-line argument array as a child process and returns the 
amount of time taken to execute the child.

#include <errno.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/times.h>
#include <sys/types.h>
#include <sys/wait.h>
#include "restart.h"

int main(int argc, char *argv[]) {
   pid_t child;
   double clockticks;
   double cticks;
   struct tms tmend;

   if (argc < 2){   /* check for valid number of command-line arguments */
      fprintf (stderr, "Usage: %s command\n", argv[0]);
      return 1;
   }
   if ((child = fork()) == -1) {
      perror("Failed to fork");
      return 1;
   }
   if (child == 0) {                                 /* child code */
      execvp(argv[1], &argv[1]);
      perror("Child failed to execvp the command");
      return 1;
   }
   if (r_wait(NULL) == -1) {                         /* parent code */
      perror("Failed to wait for child");
      return 1;
   }
   if (times(&tmend) == (clock_t)-1) {
      perror("Failed to get end time");
      return 1;
   }
   if ((clockticks = (double) sysconf(_SC_CLK_TCK)) == -1) {
       perror("Failed to determine clock ticks per second");
       return 1;
   }



   if (clockticks == 0) {
      fprintf(stderr, "Invalid number of ticks per second\n");
      return 1;
   }
   cticks = tmend.tms_cutime + tmend.tms_cstime
           - tmend.tms_utime - tmend.tms_stime;
   printf("%s used %ld clock ticks or %f seconds\n", argv[1],
          (long)cticks, cticks/clockticks);
   return 0;
}
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9.2 Sleep Functions

A process that voluntarily blocks for a specified time is said to sleep. The sleep function causes 
the calling thread to be suspended either until the specified number of seconds has elapsed or 
until the calling thread catches a signal.

SYNOPSIS

   #include <unistd.h>

   #unsigned sleep(unsigned seconds);

                                         POSIX

The sleep function returns 0 if the requested time has elapsed or the amount of unslept time if 
interrupted. The sleep function interacts with SIGALRM, so avoid using them concurrently in the 
same process.

Example 9.10 beeper.c

The following program beeps every n seconds, where n is passed as a command-line argument.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char *argv[]) {
   int sleeptime;

   if (argc != 2) {
      fprintf(stderr, ";Usage:%s n\n", argv[0]);
      return 1;
   }
   sleeptime = atoi(argv[1]);
   fprintf(stderr, "Sleep time is %d\n", sleeptime);
   for ( ; ; ) {
      sleep(sleeptime);
      printf("\007");
      fflush(stdout);
   }
}

The nanosleep function causes the calling thread to suspend execution until the time interval 
specified by rqtp has elapsed or until the thread receives a signal. If nanosleep is interrupted 
by a signal and rmtp is not NULL, the location pointed to by rmtp contains the time remaining, 
allowing nanosleep to be restarted. The system clock CLOCK_REALTIME determines the 
resolution of rqtp.
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SYNOPSIS
  #include <time.h>

  int nanosleep(const struct timespec *rqtp, struct timespec *rmtp);

                                                        POSIX:TMR

If successful, nanosleep returns 0. If unsuccessful, nanosleep returns –1 and sets errno. The 
following table lists the mandatory errors for nanosleep.

errno cause

EINTR nanosleep interrupted by a signal

EINVAL rqtp specifies a nanosecond value that is not in [0, 109)

The data structures used by nanosleep allow for nanosecond resolution, but the resolution of 
CLOCK_REALTIME is typically much larger, on the order of 10 ms. The nanosleep function is 
meant to replace usleep, which is now considered obsolete. The main advantage of nanosleep 
over usleep is that nanosleep, unlike sleep or usleep, does not affect the use of any signals, 
including SIGALRM.

Program 9.6 tests the resolution of the nanosleep function. It executes 100 calls to nanosleep 
with a sleep time of 1000 nanoseconds. If nanosleep had a true resolution of 1 ns, this would 
complete in 100 µsec. The program takes about one second to complete on a system with a 10 
ms resolution.

[ Team LiB ]   
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9.3 POSIX:XSI Interval Timers

A timer generates a notification after a specified amount of time has elapsed. In contrast to a 
clock, which increments to track the passage of time, a timer usually decrements its value and 
generates a signal when the value becomes zero. A computer system typically has a small 
number of hardware interval timers, and the operating system implements multiple software 
timers by using these hardware timers.

Operating systems use interval timers in many ways. An interval timer can cause a periodic 
interrupt, triggering the operating system to increment a counter. This counter can keep the 
time since the operating system was booted. UNIX systems traditionally keep the time of day 
as the number of seconds since January 1, 1970. If an underlying interval timer generates an 
interrupt after 100 microseconds and is restarted each time it expires, the timer interrupt 
service routine can keep a local counter to measure the number of seconds since January 1, 
1970, by incrementing this local counter after each 10,000 expirations of the interval timer.

Program 9.6 nanotest.c

A function that tests the resolution of nanosleep.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/time.h>
#define COUNT 100
#define D_BILLION 1000000000.0
#define D_MILLION 1000000.0
#define MILLION 1000000L
#define NANOSECONDS 1000

int main(void) {
   int i;
   struct timespec slptm;
   long tdif;
   struct timeval tend, tstart;

   slptm.tv_sec = 0;
   slptm.tv_nsec = NANOSECONDS;
   if (gettimeofday(&tstart, NULL) == -1) {
      fprintf(stderr, "Failed to get start time\n");
      return 1;
   }
   for (i = 0; i < COUNT; i++)
      if (nanosleep(&slptm, NULL) == -1) {
         perror("Failed to nanosleep");
         return 1;
      }
   if (gettimeofday(&tend, NULL) == -1) {
      fprintf(stderr,"Failed to get end time\n");
      return 1;
   }
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   tdif = MILLION*(tend.tv_sec - tstart.tv_sec) +
                   tend.tv_usec - tstart.tv_usec;
   printf("%d nanosleeps of %d nanoseconds\n", COUNT, NANOSECONDS);
   printf("Should take %11d microseconds or %f seconds\n",
             NANOSECONDS*COUNT/1000, NANOSECONDS*COUNT/D_BILLION);
   printf("Actually took %11ld microseconds or %f seconds\n", tdif,
             tdif/D_MILLION);
   printf("Number of seconds per nanosleep was %f\n",
             (tdif/(double)COUNT)/MILLION);
   printf("Number of seconds per nanosleep should be %f\n,
             NANOSECONDS/D_BILLION);
   return 0;
}

Time-sharing operating systems can also use interval timers for process scheduling. When the 
operating system schedules a process, it starts an interval timer for a time interval called the 
scheduling quantum. If this timer expires and the process is still executing, the scheduler 
moves the process to a ready queue so that another process can execute. Multiprocessor 
systems need one of these interval timers for each processor.

Most scheduling algorithms have a mechanism for raising the priority of processes that have 
been waiting a long time to execute. The scheduler might use an interval timer for priority 
management. Every time the timer expires, the scheduler raises the priority of the processes 
that have not executed.

The interval timers of the POSIX:XSI Extension use a struct itimerval structure that 
contains the following members.

struct timeval it_value;    /* time until next expiration */
struct timeval it_interval; /* value to reload into the timer */

Here it_value holds the time remaining before the timer expires, and it_interval holds the 
time interval to be used for resetting the timer after it expires. Recall that a struct timeval 
structure has fields for seconds and microseconds.

A conforming POSIX:XSI implementation must provide each process with the following three 
user interval timers.

ITIMER_REAL: decrements in real time and generates a SIGALRM signal when it expires.

ITIMER_VIRTUAL: decrements in virtual time (time used by the process) and generates a 
SIGVTALRM signal when it expires.

ITIMER_PROF: decrements in virtual time and system time for the process and generates 
a SIGPROF signal when it expires.

POSIX provides the getitimer function for retrieving the current time interval and the 
setitimer function for starting and stopping a user interval timer. The which parameter 
specifies the timer (i.e., ITIMER_REAL, ITIMER_VIRTUAL or ITIMER_PROF). The getitimer 
function stores the current value of the time for timer which in the location pointed to by 



value. The setitimer function sets the timer specified by which to the value pointed to by 
value. If ovalue is not NULL, setitimer places the previous value of the timer in the location 
pointed to by ovalue. If the timer was running, the it_value member of *ovalue is nonzero 
and contains the time remaining before the timer would have expired.

SYNOPSIS

   #include <sys/time.h>

   int getitimer(int which, struct itimerval *value);
   int setitimer(int which, const struct itimerval *restrict value,
                            struct itimerval *restrict ovalue);
                                                                       POSIX:XSI

If successful, these functions return 0. If unsuccessful, they return –1 and set errno. The 
setitimer function sets errno to EINVAL if the number of microseconds in value is not in the 

range [0, 106).

If the it_interval member of *value is not 0, the timer restarts with this value when it 
expires. If the it_interval of *value is 0, the timer does not restart after it expires. If the 
it_value of *value is 0, setitimer stops the timer if it is running.

Program 9.7 uses an ITIMER_PROF timer to print out an asterisk for each two seconds of CPU 
time used. The program first calls setupinterrupt to install myhandler as the signal handler 
for SIGPROF. Then, the program calls setupitimer to set up a periodic timer, using 
ITIMER_PROF, that expires every 2 seconds. The ITIMER_PROF timer generates a SIGPROF signal 
after every two seconds of CPU time used by the process. The process catches the SIGPROF 
signal and handles it with myhandler. This handler function outputs an asterisk to standard 
error.

Program 9.7 periodicasterisk.c

A program that prints an asterisk for each two seconds of CPU time used.

#include <errno.h>
#include <signal.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/time.h>

/* ARGSUSED */
static void myhandler(int s) {
   char aster = '*';
   int errsave;
   errsave = errno;
   write(STDERR_FILENO, &aster, 1);
   errno = errsave;
}

static int setupinterrupt(void) {              /* set up myhandler for SIGPROF */



   struct sigaction act;
   act.sa_handler = myhandler;
   act.sa_flags = 0;
   return (sigemptyset(&act.sa_mask) || sigaction(SIGPROF, &act, NULL));
}

static int setupitimer(void) {    /* set ITIMER_PROF for 2-second intervals */
   struct itimerval value;
   value.it_interval.tv_sec = 2;
   value.it_interval.tv_usec = 0;
   value.it_value = value.it_interval;
   return (setitimer(ITIMER_PROF, &value, NULL));
}

int main(void) {
   if (setupinterrupt() == -1) {
      perror("Failed to set up handler for SIGPROF");
      return 1;
   }
   if (setupitimer() == -1) {
      perror("Failed to set up the ITIMER_PROF interval timer");
      return 1;
   }
   for ( ; ; );                        /* execute rest of main program here */
}

Exercise 9.11 

Write a program that sets ITIMER_REAL to expire in two seconds and then sleeps for ten 
seconds. How long does it take for the program to terminate? Why?

Answer:

POSIX states that the interaction between setitimer and any of alarm, sleep or usleep is 
unspecified, so we can't predict how long it will take. Avoid this combination in your programs 
by using nanosleep instead of sleep.

Exercise 9.12 

What is wrong with the following code, which should print out the number of seconds remaining 
on the ITIMER_VIRTUAL interval timer?

struct itimerval *value;

getitimer(ITIMER_VIRTUAL, value);
fprintf(stderr, "Time left is %ld seconds\n", value->it_value.tv_sec);

Answer:

Although the variable value is declared as a pointer to a struct itimerval structure, it does 
not point to anything. That is, there is no declaration of an actual struct itimerval structure 



that value represents.

Program 9.8 uses the interval timer ITIMER_VIRTUAL to measure the execution time of 
function_to_time. This example, unlike Program 9.1, uses virtual time. Remember that the 
value returned by getitimer is the time remaining, so the quantity is decreasing.

Exercise 9.13 

How can you modify Program 9.8 to compensate for the overhead of calling setitimer and 
getitimer?

Answer:

Call the setitimer and getitimer pair with no intervening statements and use the time 
difference as an estimate of the timing overhead.

Exercise 9.14 

What happens if we replace the final return in Program 9.8 with the infinite loop for( ; ; );?

Answer:

After using one million seconds of virtual time, the program receives a SIGVTALRM signal and 
terminates. One million seconds is approximately 12 days.

Program 9.8 xsitimer.c

A program that uses a POSIX:XSI interval timer to measure the execution time of a function.

#include <stdio.h>
#include <sys/time.h>
#define MILLION 1000000L

void function_to_time(void);

int main(void) {
   long diftime;
   struct itimerval ovalue, value;

   ovalue.it_interval.tv_sec = 0;
   ovalue.it_interval.tv_usec = 0;
   ovalue.it_value.tv_sec = MILLION;                    /* a large number */
   ovalue.it_value.tv_usec = 0;
   if (setitimer(ITIMER_VIRTUAL, &ovalue, NULL) == -1) {
      perror("Failed to set virtual timer");
      return 1;
   }
   function_to_time();                            /* timed code goes here */
   if (getitimer(ITIMER_VIRTUAL, &value) == -1) {



      perror("Failed to get virtual timer");
      return 1;
   }
   diftime = MILLION*(ovalue.it_value.tv_sec - value.it_value.tv_sec) +
               ovalue.it_value.tv_usec - value.it_value.tv_usec;
   printf("The function_to_time took %ld microseconds or %f seconds.\n",
            diftime, diftime/(double)MILLION);
   return 0;
}

[ Team LiB ]   
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9.4 Realtime Signals

In the base POSIX standard, a signal handler is a function with a single integer parameter that 
represents the signal number of the generating signal. The POSIX:XSI Extension and the POSIX:
RTS Realtime Signal Extension have expanded signal-handling capabilities to include the 
queueing of signals and the passing of information to signal handlers. The standard expands the 
sigaction structure to allow for additional parameters to the signal handler. If 
_POSIX_REALTIME_SIGNALS is defined, your implementation supports realtime signals.

Section 8.4 introduces the sigaction function for examining or specifying the action associated 
with a signal. The struct sigaction structure contains at least the fields given below and 
specifies the action taken by the sigaction function.

SYNOPSIS

  #include <signal.h>

  struct sigaction {
     void (*sa_handler)(int); /* SIG_DFL, SIG_IGN, or pointer to function */
     sigset_t sa_mask;        /* additional signals to be blocked
                                 during execution of handler */
     int sa_flags;           /* special flags and options */
     void(*sa_sigaction) (int, siginfo_t *, void *); /* realtime handler */
  };
                                                                          POSIX:CX

The sa_sigaction member specifies an alternative type of signal handler. This handler is used 
if sa_flags & SA_SIGINFO is nonzero. The form of this handler must be as follows.

void func(int signo, siginfo_t *info, void *context);

The signo parameter, which is equivalent to the parameter of sa_handler, gives the number of 
the caught signal. The context is not currently defined by the POSIX standard. The siginfo_t 
structure has at least the following members.

int si_signo;                   /* signal number */
int si_code;                    /* cause of the signal */
union sigval si_value;          /* signal value */

The si_signo parameter contains the signal number. This value is the same as the value 
passed by the signo parameter of func.

The si_code parameter reports the cause of the signal. POSIX defines the following values for 
si_code: SI_USER, SI_QUEUE, SI_TIMER, SI_ASYNCIO and SI_MESGQ. A value of SI_USER means 
that the signal was generated explicitly by a function such as kill, raise or abort. In these 
situations, there is no way of generating a value for si_value, so it is not defined. A value of 
SI_QUEUE means that the sigqueue function generated the signal. A value of SI_TIMER means 
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that a POSIX:RTS timer expired and generated the signal. A value of SI_ASYNCIO means 
completion of asynchronous I/O, and a value of SI_MESGQ means the arrival of a message on an 
empty message queue. The si_code variable may have other, implementation-defined values.

POSIX defines the contents of si_value only when the implementation supports the POSIX:RTS 
Extension and the si_code is SI_QUEUE, SI_TIMER, SI_ASYNCIO or SI_MESGQ. In these cases, 
the si_value contains the application-specified signal value. The union sigval is defined as 
follows.

int sival_int;
void *sival_ptr;

According to this definition, either an integer or a pointer can be transmitted to the signal 
handler by the generator of the signal.

When multiple signals are pending, POSIX guarantees that at least one instance is delivered if 
the signal is unblocked. Additional instances may be lost. For applications in which it is 
important to receive every signal, use the POSIX:RTS signal queuing facility. The sigqueue 
function is an extension to kill that permits signals to be queued. Multiple instances of a signal 
generated with the kill function may not be queued, even if instances of the same signal 
generated by sigqueue are.

The sigqueue function sends signal signo with value value to the process with ID pid. If signo 
is zero, error checking is performed, but no signal is sent. If SA_SIGINFO in the sa_flags field 
of the struct sigaction structure was set when the handler for signo was installed, the signal 
is queued and sent to the receiving process. If SA_SIGINFO was not set for signo, the signal is 
sent at least once but might not be queued.

SYNOPSIS

  #include <signal.h>

  int sigqueue(pid_t pid, int signo, const union sigval value);
                                                                    POSIX:RTS

If successful, sigqueue returns 0. If unsuccessful, sigqueue returns –1 and sets errno. The 
following table lists the mandatory errors for sigqueue.

errno cause

EAGAIN system does not have resources to queue this signal

EINVAL signo is an invalid or unsupported signal

EPERM caller does not have the appropriate privileges

ESRCH no process corresponds to pid



Example 9.15 

The following code segment checks to see whether process ID mypid corresponds to a valid 
process.

pid_t mypid;
union sigval qval;

if ((sigqueue(mypid, 0, qval) == -1) && (errno == ESRCH))
   fprintf(stderr, "%ld is not a valid process ID\n", (long)mypid);

Program 9.9 shows a program that sends queued signals to a process. The program behaves 
like the kill command, but it calls sigqueue instead of kill. The process ID, the signal 
number and the signal value are command-line arguments.

The union sigval union can hold either a pointer or an integer. When the signal is generated 
from the same process by sigqueue, a timer, asynchronous I/O or a message queue, the 
pointer can pass an arbitrary amount of information to the signal handler. It does not make 
sense to use sigqueue to send a pointer from another process unless the address space of the 
sending process is accessible to the receiver.

Program 9.9 sendsigqueue.c

A program that sends a queued signal to a process.

#include <signal.h>
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]) {
   int pid;
   int signo;
   int sval;
   union sigval value;

   if (argc != 4) {
      fprintf(stderr, "Usage: %s pid signal value\n", argv[0]);
      return 1;
   }
   pid = atoi(argv[1]);
   signo = atoi(argv[2]);
   sval = atoi(argv[3]);
   fprintf(stderr,"Sending signal %d with value %d to process %d\n",
                   signo, sval, pid);
   value.sival_int = sval;
   if (sigqueue(pid, signo, value) == -1) {
      perror("Failed to send the signal");
      return 1;
   }
   return 0;
}



Program 9.10 prints its process ID, sets up a signal handler for SIGUSR1, and suspends itself 
until a signal arrives. The signal handler just displays the values it receives from its parameters. 
Notice that the signal handler uses fprintf, which is not async-signal safe. This risky use works 
only because the main program does not use fprintf after it sets up the handler. The signal 
handler blocks other SIGUSR1 signals. Any other signal causes the process to terminate. You can 
use Program 9.9 in conjunction with Program 9.10 to experiment with POSIX realtime signals.

The asyncmonitorsignal.c module of Program 8.14 on page 292 showed how to use a 
realtime signal with asynchronous I/O. The read is started by initread. Three fields of the 
aio_sigevent structure are used to set up the signal. The sigev_notify field is set to 
SIGEV_SIGNAL, and the signal number is set in the sigev_signo field. Setting the sigev_value.
sival_ptr field to &aiocb makes this pointer available to the signal handler in the si_value.
sival_ptr field of the handler's second parameter. In Program 8.14, aiocb was a global 
variable, so it was accessed directly. Instead, aiocb could have been local to initread with a 
static storage class.

Program 9.10 sigqueuehandler.c

A program that receives SIGUSR1 signals and displays their values. See the text for comments 
about using fprintf in the signal handler.

#include <signal.h>
#include <stdio.h>
#include <unistd.h>

static void my_handler(int signo, siginfo_t* info, void *context) {
   char *code = NULL;

   switch(info->si_code) {
      case SI_USER:      code = "USER"; break;
      case SI_QUEUE:     code = "QUEUE"; break;
      case SI_TIMER:     code = "TIMER"; break;
      case SI_ASYNCIO:   code = "ASYNCIO"; break;
      case SI_MESGQ:     code = "MESGQ"; break;
      default:           code = "Unknown";
   }
   fprintf(stderr, "Signal handler entered for signal number %d\n", signo);
   fprintf(stderr, "Signal=%3d, si_signo=%3d, si_code=%d(%s), si_value=%d\n,"
          signo, info->si_signo, info->si_code, code, info->si_value.sival_int);
}

int main(void) {
   struct sigaction act;

   fprintf(stderr, "Process ID is %ld\n", (long)getpid());
   fprintf(stderr, "Setting up signal SIGUSR1 = %d ready\n", SIGUSR1);

   act.sa_flags = SA_SIGINFO;
   act.sa_sigaction = my_handler;
   if ((sigemptyset(&act.sa_mask) == -1) ||
       (sigaction(SIGUSR1, &act, NULL) == -1)) {



      perror("Failed to set up SIGUSR1 signal");
      return 1;
   }
   /* no fprintf calls from here on */
   for( ; ; )
      pause();
}

[ Team LiB ]   
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9.5 POSIX:TMR Interval Timers

The interval timer facility of the POSIX:XSI Extension gives each process a small fixed number 
of timers, one of each of the types ITIMER_REAL, ITIMER_VIRTUAL, ITIMER_PROF and so on. 
The POSIX:TMR Extension takes an alternative approach in which there are a small number of 
clocks, such as CLOCK_REALTIME, and a process can create many independent timers for each 
clock.

POSIX:TMR timers are based on the struct itimerspec structure, which has the following 
members.

struct timespec it_interval;  /* timer period */
struct timespec it_value;     /* timer expiration */

As with POSIX:XSI timers, the it_interval is the time used for resetting the timer after it 
expires. The it_value member holds the time remaining before expiration. The struct 
timespec structure has the potential of offering better resolution than struct timeval since its 
fields measure seconds and nanoseconds rather than seconds and microseconds.

A process can create specific timers by calling timer_create. The timers are per-process timers 
that are not inherited on fork. The clock_id parameter of timer_create specifies which clock 
the timer is based on, and *timerid holds the ID of the created timer. The evp parameter 
specifies the asynchronous notification to occur when the timer expires. The timer_create 
function creates the timer and puts its ID in the location pointed to by timerid.

SYNOPSIS

  #include <signal.h>
  #include <time.h>

  int timer_create(clockid_t clock_id, struct sigevent *restrict evp,
                   timer_t *restrict timerid);

  struct sigevent {
        int            sigev_notify   /* notification type */
        int            sigev_signo;   /* signal number */
        union sigval   sigev_value;   /* signal value */
  };

  union sigval {
        int     sival_int;            /* integer value */
        void    *sival_ptr;           /* pointer value */
  };
                                                                   POSIX:TMR

If successful, timer_create returns 0. If unsuccessful, timer_create returns –1 and sets 
errno. The following table lists the mandatory errors for timer_create.
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errno cause

EAGAIN system does not have resources to honor request, or calling process already has 
maximum number of timers allowed

EINVAL specified clock ID is not defined

The members of the struct sigevent structure shown in the synopsis are required by the 
POSIX:TMR Extension. The standard does not prohibit an implementation from including 
additional members.

Example 9.16 

The following code segment creates a POSIX:TMR timer based on the CLOCK_REALTIME.

timer_t timerid;

if (timer_create(CLOCK_REALTIME, NULL, &timerid) == -1)
   perror("Failed to create a new timer);

The *evp parameter of timer_create specifies which signal should be sent to the process when 
the timer expires. If evp is NULL, the timer generates the default signal when it expires. For 
CLOCK_REALTIME, the default signal is SIGALRM. For the timer expiration to generate a signal 
other than the default signal, the program must set evp->sigev_signo to the desired signal 
number. The evp->sigev_notify member of the struct sigevent structure specifies the 
action to be taken when the timer expires. Normally, this member is SIGEV_SIGNAL, which 
specifies that the timer expiration generates a signal. The program can prevent the timer 
expiration from generating a signal by setting the evp->sigev_notify member to SIGEV_NONE.

The timer_delete function deletes the POSIX:TMR timer with ID timerid.

SYNOPSIS

  #include <time.h>

  int timer_delete(timer_t timerid);
                                               POSIX:TMR

If successful, timer_delete returns 0. If unsuccessful, timer_delete returns –1 and sets 
errno. The timer_delete function sets errno to EINVAL if timerid does not correspond to a 
valid timer.

Exercise 9.17 

What happens if a program calls timer_delete when there are pending signals for timerid?



Answer:

POSIX does not specify what happens to pending signals. You should not make any 
assumptions about their disposition when calling timer_delete.

If several timers generate the same signal, the handler can use evp->sigev_value to 
distinguish which timer generated the signal. To do this, the program must use the SA_SIGINFO 
flag in the sa_flags member of struct sigaction when it installs the handler for the signal. 
(See Program 9.13 for an example of how to do this.)

The following three functions manipulate the per-process POSIX:TMR timers. The 
timer_settime function starts or stops a timer that was created by timer_create. The flags 
parameter specifies whether the timer uses relative or absolute time. Relative time is similar to 
the scheme used by POSIX:XSI timers, whereas absolute time allows for greater accuracy and 
control of timer drift. Absolute time is further discussed in Section 9.6. The timer_settime 
function sets the timer specified by timerid to the value pointed to by value. If ovalue is not 
NULL, timer_settime places the previous value of the timer in the location pointed to by 
ovalue. If the timer was running, the it_value member of *ovalue is nonzero and contains 
the time remaining before the timer would have expired. Use timer_gettime like getitimer to 
get the time remaining on an active timer.

It is possible for a timer to expire while a signal is still pending from a previous expiration of 
the same timer. In this case, one of the signals generated may be lost. This is called timer 
overrun. A program can determine the number of such overruns for a particular timer by calling 
timer_getoverrun. Timer overruns occur only for signals generated by the same timer. Signals 
generated by multiple timers, even timers using the same clock and signal, are queued and not 
lost.

SYNOPSIS

  #include <time.h>

  int timer_getoverrun(timer_t timerid);
  int timer_gettime(timer_t timerid, struct itimerspec *value);
  int timer_settime(timer_t timerid, int flags,
       const struct itimerspec *value, struct itimerspec *ovalue);
                                                                     POSIX:TMR

If successful, the timer_settime and timer_gettime functions return 0, and the 
timer_getoverrun function returns the number of timer overruns. If unsuccessful, all three 
functions return –1 and set errno. All three functions set errno to EINVAL when timerid does 
not correspond to a valid POSIX:TMR timer. The timer_settime function also sets errno to 

EINVAL when the nanosecond field of value is not in the range [0, 109).

Program 9.11 shows how to create a timer that generates periodic interrupts. It generates a 
SIGALRM interrupt every two seconds of real time.

Exercise 9.18 



Why didn't we use strlen in Program 9.11 to find the length of the message?

Answer:

The strlen function is not guaranteed to be async-signal safe.

Exercise 9.19 

Program 9.11 uses pause in an infinite loop at the end of the program but Program 9.7 does 
not. What would happen if we used pause in Program 9.7?

Answer:

Nothing! There is no output.Program 9.7 measures virtual time and the process is not using any 
virtual time when it is suspended. Program 9.11 uses real time.

Program 9.11 periodicmessage.c

A program that displays a message every two seconds.

#include <errno.h>
#include <signal.h>
#include <stdio.h>
#include <time.h>
#include <unistd.h>
#define BILLION 1000000000L
#define TIMER_MSG "Received Timer Interrupt\n"

/* ARGSUSED */
static void interrupt(int signo, siginfo_t *info, void *context) {
   int errsave;

   errsave = errno;
   write(STDOUT_FILENO, TIMER_MSG, sizeof(TIMER_MSG) - 1);
   errno = errsave;
}

static int setinterrupt() {
   struct sigaction act;

   act.sa_flags = SA_SIGINFO;
   act.sa_sigaction = interrupt;
   if ((sigemptyset(&act.sa_mask) == -1) ||
       (sigaction(SIGALRM, &act, NULL) == -1))
      return -1;
   return 0;
}

static int setperiodic(double sec) {
   timer_t timerid;
   struct itimerspec value;



   if (timer_create(CLOCK_REALTIME, NULL, &timerid) == -1)
      return -1;
   value.it_interval.tv_sec = (long)sec;
   value.it_interval.tv_nsec = (sec - value.it_interval.tv_sec)*BILLION;
   if (value.it_interval.tv_nsec >= BILLION) {
      value.it_interval.tv_sec++;
      value.it_interval.tv_nsec -= BILLION;
   }
   value.it_value = value.it_interval;
   return timer_settime(timerid, 0, &value, NULL);
}

int main(void) {
   if (setinterrupt() == -1) {
      perror("Failed to setup SIGALRM handler");
      return 1;
   }
   if (setperiodic(2.0) == -1) {
      perror("Failed to setup periodic interrupt");
      return 1;
   }
   for ( ; ; )
      pause();
}

Program 9.12 creates a POSIX:TMR timer to measure the running time of function_to_time. 
The program is similar to Program 9.8, but it uses real time rather than virtual time.

Program 9.12 tmrtimer.c

A program that uses a POSIX:TMR timer to measure the running time of a function.

#include <stdio.h>
#include <time.h>
#define MILLION 1000000L
#define THOUSAND 1000

void function_to_time(void);

int main(void) {
   long diftime;
   struct itimerspec nvalue, ovalue;
   timer_t timeid;

   if (timer_create(CLOCK_REALTIME, NULL, &timeid) == -1) {
      perror("Failed to create a timer based on CLOCK_REALTIME");
      return 1;
   }
   ovalue.it_interval.tv_sec = 0;
   ovalue.it_interval.tv_nsec = 0;
   ovalue.it_value.tv_sec = MILLION;                /* a large number */
   ovalue.it_value.tv_nsec = 0;
   if (timer_settime(timeid, 0, &ovalue, NULL) == -1) {



      perror("Failed to set interval timer");
      return 1;
   }
   function_to_time();                        /* timed code goes here */
   if (timer_gettime(timeid, &nvalue) == -1) {
      perror("Failed to get interval timer value");
      return 1;
   }
   diftime = MILLION*(ovalue.it_value.tv_sec - nvalue.it_value.tv_sec) +
      (ovalue.it_value.tv_nsec - nvalue.it_value.tv_nsec)/THOUSAND;
   printf("The function_to_time took %ld microseconds or %f seconds.\n",
           diftime, diftime/(double)MILLION);
   return 0;
}
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9.6 Timer Drift, Overruns and Absolute Time

One of the problems associated with POSIX:TMR timers and POSIX:XSI timers, as described so 
far, is the way they are set according to relative time. Suppose you set a periodic interrupt with 
an interval of 2 seconds, as in Program 9.7 or Program 9.11. When the timer expires, the 
system automatically restarts the timer for another 2-second interval. Let's say the latency 
between when the timer was due to expire and when the timer was reset is 5 µsec. The actual 
period of the timer is 2.000005 seconds. After 1000 interrupts the timer will be off by 5 ms. 
This inaccuracy is called timer drift.

The problem can be even more severe when the timer is restarted from the timer signal 
handler rather than from the it_interval field of struct itimerval or struct itimerspec. 
In this case, the latency depends on the scheduling of the processes and the timer resolution. A 
typical timer resolution is 10 ms. With a latency of 10 ms, the timer drift will be 10 seconds 
after 1000 iterations.

Exercise 9.20 

Consider an extreme case of a repeating timer with period of 22 ms when the timer has a 
resolution of 10 ms. Estimate the timer drift for 10 expirations of the timer.

Answer:

If you set the time until expiration to be 22 ms, this value will be rounded up to the clock 
resolution to give 30 ms, giving a drift of 8 ms every 30 ms. These results are summarized in 
the following table. The drift grows by 8 ms on each expiration.

expiration number  1 2 3 4 5 6 7 8 9 10

time 0 30 60 90 120 150 180 210 240 270 300

drift 0 8 16 24 32 40 48 56 64 72 80

desired expiration 22 44 66 88 110 132 154 176 198 220 242

timer set for 22 22 22 22 22 22 22 22 22 22 22

rounded to resolution 30 30 30 30 30 30 30 30 30 30 30

One way to handle the drift problem is keep track of when the timer should actually expire and 
adjust the value for setting the timer each time. This method uses absolute time for setting the 
timer rather than relative time.

Exercise 9.21 

For the specific case described by Exercise 9.20, devise a procedure for setting the timers 
according to absolute time. What is the timer drift for 10 iterations? Work out a chart similar to 
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the one of Exercise 9.20.

Answer:

1.  Before starting the timer for the first time, determine the current time, add 22 ms to 
this and save the value as T. This is the desired expiration time.

2.  Set the timer to expire in 22 ms.

3.  In the signal handler, determine the current time, t. Set the timer to expire in time (T - 
t + 22 ms). Add 22 ms to T so that T represents the next desired expiration time.

If the timer resolution is 30 ms, then the time at the beginning of step 3 is approximately t = T 
+ 30 ms, and the timer is set to expire in 12 ms. No matter how long the program runs, the 
total timer drift will be less than 10 ms.

expiration number  1 2 3 4 5 6 7 8 9 10

time 0 30 50 70 90 110 140 160 180 200 220

drift 0 8 6 4 2 0 8 6 4 2 0

desired expiration 22 44 66 88 10 132 154 176 198 220 242

timer set for 22 14 16 18 20 22 14 16 18 20 22

rounded to resolution 30 20 20 20 20 30 20 20 20 20 30

The procedure of Exercise 9.21 assumes that the value (T - t + 22 ms) is never negative. You 
cannot set a timer to expire in the past. A negative value means that a timer expiration has 
been missed completely. This is called a timer overrun. A timer overrun also occurs when the 
timer is set to automatically restart and a new signal is generated before the previous one has 
been handled by the process.

The POSIX:TMR timers can make it easier to use absolute time, and they can keep track of 
timer overruns. POSIX:TMR does not queue signals generated by the same timer. The 
timer_getoverrun function can be called from within the timer signal handler to obtain the 
number of missed signals. The flags parameter of timer_settime can be set to 
TIMER_ABSOLUTE to signify that the time given in the it_value member of the *value 
parameter represents the real time rather than a time interval. The time is related to the clock 
from which the timer was generated.

Exercise 9.22 

Outline the procedure for using POSIX:TMR timers with absolute time to solve the problem of 
Exercise 9.21.

Answer:



The procedure for using absolute time with POSIX:TMR timers is as follows.

1.  Before starting the first timer for the first time, determine the current time by using 
clock_gettime and add 22 ms to this. Save this value as T.

2.  Set the timer to expire at time T. Use the TIMER_ABSOLUTE flag.

3.  In the timer signal handler, add 22 ms to T and set the timer to expire at time T.

The abstime program of Program 9.13 demonstrates various scenarios for using the POSIX:
TMR timer facility. Program 9.13 has three modes of operation: absolute time, relative time and 
automatic periodic reset. Use the abstime program as follows.

abstime -a | -r | -p [inctime [numtimes [spintime]]]

The first command-line argument must be -a, -r or -p specifying absolute time, relative time 
or automatic periodic reset. The optional additional arguments (inctime, numtimes and 
spintime) control the sequence in which timer expirations occur. The program generates 
numtimes SIGALARM signals that are inctime seconds apart. The signal handler wastes 
spintime seconds before handling the timer expiration.

The abstime program uses a POSIX:TMR timer that is created with timer_create and started 
with timer_settime. For absolute times, the abstime program sets the TIMER_ABSTIME flag in 
timer_settime and sets the it_value member of value field to the current absolute time 
(time since January 1, 1970) plus the inctime value. When the timer expires, abstime 
calculates a new absolute expiration time by adding inctime to the previous expiration time. If 
relative time is set, the program sets it_value to the value specified by inctime. When the 
timer expires, the handler uses inctime to restart the timer. For periodic time, abstime sets 
relative time and automatically restarts the timer so that the handler does not have to restart 
it. The program calculates the time it should take to finish numtimes timer expirations and 
compares the calculated value with the actual time taken.

Program 9.14 is a header file that defines a data type and the prototypes of the functions in 
Program 9.15 that are used in the main program of Program 9.13. You must link these files 
with Program 9.13 to run the abstime program.

Example 9.23 

The following command uses abstime with absolute time. It simulates a signal handler that 
takes 5 milliseconds to execute and does 1000 iterations with a time interval of 22 milliseconds. 
If the timing were exact, the 5 milliseconds of spin time would not affect the total running time, 
which should be 22 seconds.

abstime -a 0.022 1000 0.005

Exercise 9.24 



The command of Example 9.23 uses absolute time. Are there differences in output when it is 
run with relative time instead?

Answer:

For an execution of

abstime -a 0.022 1000 0.005

the output might be the following.

pid = 12374
Clock resolution is 10000.000 microseconds or 0.010000 sec.
Using absolute time
Interrupts: 1000 at 0.022000 seconds, spinning 0.005000
Total time: 22.0090370, calculated: 22.0000000, error = 0.0090370

For an execution of

abstime -r 0.022 1000 0.005

the output might be the following.

pid = 12376
Clock resolution is 10000.000 microseconds or 0.010000 sec.
Using relative time
Interrupts: 1000 at 0.022000 seconds, spinning 0.005000
Total time: 30.6357934, calculated: 22.0000000, error = 8.6357934

When absolute timers are used, the error is much less than 1 percent, while relative timers 
show the expected drift corresponding to the amount of processing time and timer resolution.

The resolution of the clock is displayed by means of a call to clock_getres. A typical value for 
this might be anywhere from 1000 nanoseconds to 20 milliseconds. The 20 milliseconds 
(20,000,000 nanoseconds or 50 Hertz) is the lowest resolution allowed by the POSIX:TMR 
Extension. One microsecond (1000 nanoseconds) is the time it takes to execute a few hundred 
instructions on most fast machines. Just because a system has a clock resolution of 1 
microsecond does not imply that a program can use timers with anything near this resolution. A 
context switch is often needed before the signal handler can be entered and, as Table 1.1 on 
page 5 points out, a context switch can take considerably longer than this.

Example 9.25 

The following command uses Program 9.13 to estimate the effective resolution of the hardware 
timer on a machine by calling abstime with an inctime of 0, default numtimes of 1 and default 
spintime of 0. The abstime program displays the clock resolution and starts one absolute time 
clock interrupt to expire at the current time. The timer expires immediately.



abstime -a 0

Example 9.26 

The following command uses Program 9.13 to determine the maximum number of timer signals 
that can be handled per second by starting 1000 timer interrupts with an inctime of 0. These 
should all expire immediately. The abstime program then displays the minimum time for 1000 
interrupts.

abstime -a 0.0 1000 0.0

Program 9.13 illustrates some other useful tips in using POSIX:TMR timers. Information about 
the timer that generated the signal is available in the signal handler. When a timer is created, 
an integer or a pointer can be stored in the sigev_value member of the struct sigevent 
structure. If the signal handler is to restart that timer or if multiple timers are to share a signal 
handler, the signal handler must have access to the timer ID of the timer that generated the 
signal. If the signal handler was set up with the SA_SIGINFO flag, it can access the value that 
timer_create stored in sigev_value through its second parameter. The timer_create cannot 
directly store the timer ID in its sigev_value because the ID is not known until after the timer 
has been created. It therefore stores a pointer to the timer ID in the sival_ptr member of 
union sigval.

Program 9.13 abstime.c

The abstime program illustrates POSIX:TMR timers with absolute time. Program 9.14 and 
Program 9.15 are called.

#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include "abstime.h"
#define INCTIME 0.01
#define NUMTIMES 1
#define SPINTIME 0.0

int main(int argc, char *argv[]) {
   struct sigaction act;
   struct timespec clockres, currenttime;
   timer_data data;
   struct sigevent evp;
   sigset_t sigset;
   double tcalc, tend, tstart, ttotal;

   data.exitflag = 0;
   data.inctime = INCTIME;
   data.numtimes = NUMTIMES;
   data.spintime = SPINTIME;
   data.type = -1;



   if (argc > 1) {
       if (!strcmp(argv[1], "-r"))
          data.type = TYPE_RELATIVE;
       else if (!strcmp(argv[1], "-a"))
          data.type = TYPE_ABSOLUTE;
       else if (!strcmp(argv[1], "-p"))
          data.type = TYPE_PERIODIC;
   }
   if ( (argc < 2) || (argc > 5) || (data.type < 0) ){
      fprintf(stderr,
         "Usage: %s -r | -a | -p [inctime [numtimes [spintime]]]\n",
         argv[0]);
      return 1;
   }
   if (argc > 2)
       data.inctime = atof(argv[2]);
   if (argc > 3)
       data.numtimes = atoi(argv[3]);
   if (argc > 4)
       data.spintime = atof(argv[4]);
   fprintf(stderr, "pid = %ld\n", (long)getpid());

   act.sa_flags = SA_SIGINFO;
   act.sa_sigaction = timehandler;
   if ((sigemptyset(&act.sa_mask) == -1) ||
       (sigaction(SIGALRM, &act, NULL)) == -1) {
      perror("Failed to set handler for SIGALRM");
      return 1;
   }
   evp.sigev_notify = SIGEV_SIGNAL;
   evp.sigev_signo = SIGALRM;
   evp.sigev_value.sival_ptr = &data;
   if (timer_create(CLOCK_REALTIME, &evp, &data.timid) < 0) {
      perror("Failed to create a timer");
      return 1;
   }
   if (clock_getres(CLOCK_REALTIME, &clockres) == -1)
      perror("Failed to get clock resolution");
   else
      fprintf(stderr, "Clock resolution is %0.3f microseconds or %0.6f sec.\n",
         D_MILLION*time_to_double(clockres), time_to_double(clockres));
   data.tvalue.it_interval.tv_sec = 0;
   data.tvalue.it_interval.tv_nsec = 0;
   data.tvalue.it_value = double_to_time(data.inctime);
   data.flags = 0;
   if (clock_gettime(CLOCK_REALTIME, &currenttime) == -1) {
      perror("Failed to get current time");
      return 1;
   }
   tstart = time_to_double(currenttime);
   if (data.type == TYPE_ABSOLUTE) {
      data.tvalue.it_value.tv_nsec += currenttime.tv_nsec;
      data.tvalue.it_value.tv_sec += currenttime.tv_sec;
      if (data.tvalue.it_value.tv_nsec >= BILLION) {
         data.tvalue.it_value.tv_nsec -= BILLION;
         data.tvalue.it_value.tv_sec++;
      }



      data.flags = TIMER_ABSTIME;
      fprintf(stderr,"Using absolute time\n");
   }
   else if (data.type == TYPE_RELATIVE)
      fprintf(stderr,"Using relative time\n");
   else if (data.type == TYPE_PERIODIC) {
      data.tvalue.it_interval = data.tvalue.it_value;
      fprintf(stderr,"Using periodic time\n");
   }
   fprintf(stderr, "Interrupts: %d at %.6f seconds, spinning %.6f\n",
         data.numtimes, data.inctime, data.spintime);
   if (timer_settime(data.timid, data.flags, &data.tvalue, NULL) == -1){
      perror("Failed to start timer");
      return 1;
   }
   if (sigemptyset(&sigset) == -1) {
      perror("Failed to set up suspend mask");
      return 1;
   }
   while (!data.exitflag)
      sigsuspend(&sigset);
   if (clock_gettime(CLOCK_REALTIME, &currenttime) == -1) {
      perror("Failed to get expiration time");
      return 1;
   }
   tend = time_to_double(currenttime);
   ttotal=tend - tstart;
   tcalc = data.numtimes*data.inctime;
   fprintf(stderr, "Total time: %1.7f, calculated: %1.7f, error = %1.7f\n",
       ttotal, tcalc, ttotal - tcalc);
   return 0;
}

Program 9.14 abstime.h

The abstime.h include file contains constants, type definitions, and prototypes used by 
abstime and abstimelib.

#define BILLION  1000000000L
#define D_BILLION 1000000000.0
#define D_MILLION 1000000.0
#define TYPE_ABSOLUTE 0
#define TYPE_RELATIVE 1
#define TYPE_PERIODIC 2

typedef struct {
   timer_t timid;
   int type;
   int flags;
   int numtimes;
   int exitflag;
   double inctime;
   double spintime;
   struct itimerspec tvalue;



} timer_data;

struct timespec double_to_time(double tm);
double time_to_double(struct timespec t);
void timehandler(int signo, siginfo_t* info, void *context);

Program 9.15 abstimelib.c

The abstimelib module contains the signal handler and utility routines used by abstime.

#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include "abstime.h"

static struct timespec add_to_time(struct timespec t, double tm) {
   struct timespec t1;

   t1 = double_to_time(tm);
   t1.tv_sec = t1.tv_sec + t.tv_sec;
   t1.tv_nsec = t1.tv_nsec + t.tv_nsec;
   while (t1.tv_nsec >= BILLION) {
      t1.tv_nsec = t1.tv_nsec - BILLION;
      t1.tv_sec++;
   }
   return t1;
}

static int spinit (double stime) {    /* loops for stime seconds and returns */
   struct timespec tcurrent;
   double tend, tnow;
   if (stime == 0.0)
      return 0;
   if (clock_gettime(CLOCK_REALTIME, &tcurrent) == -1)
      return -1;
   tnow = time_to_double(tcurrent);
   tend = tnow + stime;
   while (tnow < tend) {
      if (clock_gettime(CLOCK_REALTIME, &tcurrent) == -1)
         return -1;
      tnow = time_to_double(tcurrent);
   }
   return 0;
}

/* ------------------------- Public functions -------------------------- */

double time_to_double(struct timespec t) {
   return t.tv_sec + t.tv_nsec/D_BILLION;
}

struct timespec double_to_time(double tm) {



   struct timespec t;

   t.tv_sec = (long)tm;
   t.tv_nsec = (tm - t.tv_sec)*BILLION;
   if (t.tv_nsec == BILLION) {
      t.tv_sec++;
      t.tv_nsec = 0;
   }
   return t;
}

void timehandler(int signo, siginfo_t* info, void *context) {
   timer_data *datap;
   static int timesentered = 0;

   timesentered++;
   datap = (timer_data *)(info->si_value.sival_ptr);
   if (timesentered >= datap->numtimes) {
      datap->exitflag = 1;
      return;
   }
   if (spinit(datap->spintime) == -1) {
      write(STDERR_FILENO, "Spin failed in handler\n", 23);
      datap->exitflag = 1;
   }
   if (datap->type == TYPE_PERIODIC)
      return;
   if (datap->type == TYPE_ABSOLUTE)
      datap->tvalue.it_value =
         add_to_time(datap->tvalue.it_value, datap->inctime);
   if (timer_settime(datap->timid, datap->flags, &datap->tvalue, NULL) == -1) {
      write(STDERR_FILENO, "Could not start timer in handler\n",33);
      datap->exitflag = 1;
   }
}

Program 9.16 timesignals.c

A program that calculates the time to receive 1000 SIGALRM signals.

#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/time.h>
#define COUNT 1000
#define MILLION 1000000L

static int count = 0;

/* ARGSUSED */
static void handler(int signo, siginfo_t *info, void *context) {
   count++;
}



int main(void) {
   struct sigaction act;
   sigset_t sigblocked, sigunblocked;
   long tdif;
   struct timeval tend, tstart;

   act.sa_flags = SA_SIGINFO;
   act.sa_sigaction = handler;
   if ((sigemptyset(&act.sa_mask) == -1) ||
       (sigaction(SIGALRM, &act, NULL) == -1)) {
      perror("Failed to set up handler for SIGALRM");
      return 1;
   }
   if ((sigemptyset(&sigblocked) == -1) ||
       (sigemptyset(&sigunblocked) == -1) ||
       (sigaddset(&sigblocked, SIGALRM) == -1) ||
       (sigprocmask(SIG_BLOCK, &sigblocked, NULL) == -1)) {
      perror("Failed to block signal");
      return 1;
   }
   printf("Process %ld waiting for first SIGALRM (%d) signal\n",
           (long)getpid(), SIGALRM);
   sigsuspend(&sigunblocked);
   if (gettimeofday(&tstart, NULL) == -1) {
      perror("Failed to get start time");
      return 1;
   }
   while (count <= COUNT)
      sigsuspend(&sigunblocked);
   if (gettimeofday(&tend, NULL) == -1) {
      perror("Failed to get end time");
      return 1;
   }
   tdif = MILLION*(tend.tv_sec - tstart.tv_sec) +
                   tend.tv_usec - tstart.tv_usec;
   printf("Got %d signals in %ld microseconds\n", count-1, tdif);
   return 0;
}

Although the timer resolution might be as large as 10 ms, signals may be processed at a much 
higher rate than timer signals can be generated. Program 9.16 waits for SIGALRM signals and 
calculates the time to receive 1000 signals after the first one arrives. You can use Program 9.17 
to send signals to a process. It takes two command-line arguments: a process ID and a signal 
number. It sends the signals as fast as it can until the process dies. A reasonably fast machine 
should be able to handle several thousand signals per second.

Program 9.17 multikill.c

The multikill program continually sends signals to another process until the process dies.

#include <signal.h>
#include <stdio.h>
#include <stdlib.h>



int main(int argc, char *argv[]) {
   int pid;
   int sig;
   if (argc != 3) {
       fprintf(stderr, "Usage: %s pid signal\n", argv[0]);
       return 1;
   }
   pid = atoi(argv[1]);
   sig = atoi(argv[2]);
   while (kill(pid, sig) == 0) ;
   return 0;
}
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9.7 Additional Reading

Realtime issues promise to become more important in the future. The book POSIX.4: 
Programming for the Real World by Gallmeister [39] provides a general introduction to realtime 
programming under the POSIX standard. POSIX.4 was the name of the standard before it was 
approved. It is now an extension of the POSIX standard referred to as POSIX:RTS. The POSIX:
TMR Extension is one of the required components for systems supporting POSIX:RTS.

[ Team LiB ]   
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Chapter 10. Project: Virtual Timers

Many systems create multiple "virtual" timers from a single hardware timer. This chapter 
develops application-level virtual timers based on a single operating system timer. The project 
explores timers, signals and the testing of asynchronous programs with timed input. Special 
care must be taken in blocking and unblocking the signals at the right times. The project 
emphasizes careful, modular design by specifying a well-defined interface between the user-
implemented virtual timers and the underlying timer facility.

Objectives

●     Learn about testing and timing
●     Experiment with POSIX interval timers
●     Explore implications of asynchronous operation
●     Use POSIX realtime signals
●     Understand timer implementation

[ Team LiB ]   
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10.1 Project Overview

This chapter's project develops an implementation of multiple timers in terms of a single 
operating system timer. The project consists of five semi-independent modules. Three of these 
are created as objects with internal static data; the other two are standalone programs 
designed for driving the timers and for debugging output. Figure 10.1 shows the five modules 
and their relationships. A dashed arrow indicates communication through a pipe. A solid arrow 
signifies that a function in the source module calls a function in the target module.

Figure 10.1. The five timer modules to be created in this project.
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Standard output of the testtime program is fed into standard input of the timermain program. 
The timermain program calls only functions in virtualtimers. The virtualtimers object calls 
functions in hardwaretimer and show. The show object, which is only for debugging, calls 
functions in virtualtimers.

The project design has two layers—a "hardware" level (hardwaretimer) and a virtual timer 
level (virtualtimers). The hardwaretimer layer encapsulates a single operating system timer 
that generates a signal when it expires. The underlying timer object can be either a POSIX:XSI 
timer or a POSIX:TMR timer. While not truly a hardware timer, it is treated as such. The object 
provides interface functions that hide the underlying timer from outside users. In theory, if the 
program has access to a real hardware timer, the underlying object can be this timer and the 
interface remains the same. The interface functions manipulate a single timer that generates a 
signal when it expires.

The virtualtimers object provides the core facilities for creating and manipulating multiple, 
low-overhead, application-level software timers. The virtualtimers object calls functions in 
the hardwaretimer to implement these software timers. The virtualtimers object also calls 
functions in the show object for logging and debugging.

The show object contains functions to display a running log of the timer operations during 
debugging. The show object calls functions from virtualtimers to obtain status information 
about the timers.

Each of the objects has a header file with the same name and a .h extension that contains 
prototypes for the functions accessible from outside the module. Any program that calls 
functions from one of these modules should include its corresponding .h file.

Two main programs are used for testing the timer objects. The first one, timermain, receives 
input from standard input and calls functions in the virtualtimers object. The timermain 
program might, for example, start a timer to expire after a given interval when it receives 
appropriate input. The timermain program calls only functions in the virtualtimers object.

It is critical to the debugging process that experiments producing incorrect results be precisely 
repeatable. Then, when a bug is detected, the programmer can fix the code and repeat the 
same experiment with the modified code. Experiments that rely on the timing of keyboard input 
are almost impossible to repeat. To solve this problem, the testtime program supplies input 
data through a pipe to timermain at precisely timed intervals. The testtime program reads 



lines from standard input and interprets the first integer on the line as a delay time. After 
waiting for this amount of time, testtime sends the rest of the input line to standard output. 
The testtime program then reads its next input line and continues.

This project chapter describes the implementation of virtual timers in stages. Section 10.2 
introduces the data structures and gives examples of setting a single timer. Section 10.3 
introduces the three objects and specifies how to handle the setting of a single timer with 
POSIX:XSI timers. Section 10.4 handles multiple active timers. Section 10.5 discusses some of 
the race conditions that can occur with multiple timers and ways to avoid them, and Section 
10.6 discusses advanced timer issues in terms of POSIX:TMR timers. Section 10.7 introduces a 
simple timer application.

[ Team LiB ]   
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10.2 Simple Timers

Operating systems often implement multiple software timers that are based on a single 
hardware timer. A software timer can be represented by a timer number and an indication of 
when the timer expires. The implementation depends on the type of hardware timer available.

Suppose the hardware timer generates interrupts at regular short intervals called the clock tick 
time. The timer interrupt service routine monitors the time remaining on each timer (in terms 
of clock ticks) and decrements this time for each tick of the clock. When a timer decrements to 
0, the program takes the appropriate action. This approach is inefficient if the number of timers 
is large or if the clock tick time is short.

Alternatively, a program can keep the timer information in a list sorted by expiration time. Each 
entry contains a timer number and an expiration time. The first entry in the list contains the 
first timer to expire and the time until expiration (in clock ticks). The second entry contains the 
next timer to expire and the expiration time relative to the time the first timer expires, and so 
on. With this representation, the interrupt service routine decrements only one counter on each 
clock tick, but the program incurs additional overhead when starting a timer. The program must 
insert the new timer in a sorted list and update the time of the timer that expires immediately 
after the new one.

Exercise 10.1 

For each of the two implementation approaches described above, what is the time complexity of 
the interrupt handler and the start timer function in terms of the number of timers?

Answer:

Suppose there are n timers. For the first method, the interrupt handler is O(n) since all timer 
values must be decremented. The start timer function is O(1) since a timer can be started 
independently of the other timers. For the second method, the interrupt handler is usually O(1) 
since only the first timer value must be decremented. However, when the decrement causes 
the first timer to expire, the next entry has to be examined to make sure it did not expire at 
the same time. This algorithm can degenerate to O(n) in the worst case, but in practice the 
worst case is unlikely. The start timer function is O(n) to insert the timer in a sorted array but 
can take less than O(n) if the timer data is represented by a more complex data structure such 
as a heap.

If the system has a hardware interval timer instead of a simple clock, a program can set the 
interval timer to expire at a time corresponding to the software timer with the earliest 
expiration. There is no overhead unless a timer expires, one is started, or one is stopped. 
Interval timers are efficient when the timer intervals are long.

Exercise 10.2 

Analyze the interrupt handler and the start timer function for an interval timer.

Answer:
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The interrupt handler is the same order as the clock tick timer above. The complexity of 
starting the timer depends on how the timers are stored. If the timers are kept in a sorted 
array, the start timer function is O(n).

The first version of the project uses an interval timer to implement multiple timers, replacing 
the hardware timer by a POSIX:XSI ITIMER_REAL timer. When ITIMER_REAL expires, it 
generates a SIGALRM signal. The SIGALRM signal handler puts an entry in an event list sorted by 
order of occurrence. Each entry just contains a timer number giving a timer that expired.

Figure 10.2 shows a simple implementation of five software timers represented by the timers 
data structure. The individual timers (designated by [0] through [4]) are represented by long 
entries in the array active. An array entry of –1 represents a timer that is not active. The 
events array keeps a list of timers that have expired, and numevents holds the number of 
unhandled events. The running variable, which holds the timer number of the currently running 
timer, will be needed for later parts of the project.

Figure 10.2. The timers data structure with no timers active.

Start a timer by specifying a timer number and an interval in microseconds. Figure 10.3 shows 
the data structure after timer [2] is started for five seconds (5,000,000 microseconds). No 
timers have expired, so the event list is still empty.

Figure 10.3. The timers data structure after timer [2] has been set for 
five seconds.



Just writing the information into the active array in Figure 10.2 is not enough to implement a 
timer. The program must set the ITIMER_REAL timer for 5,000,000 microseconds. On delivery 
of a SIGALRM signal, the program must clear the active array entry and insert an entry in the 
events array. Figure 10.4 shows the timers data structure after ITIMER_REAL expires.

Figure 10.4. The timers data structure after timer [2] expires.
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10.3 Setting One of Five Single Timers

This section describes an implementation for setting one of five possible software timers, using 
the underlying process interval timer ITIMER_REAL. The main program takes the timer number 
and the timer interval (in microseconds) as command-line arguments and calls the timerstart 
function. The main program then waits for the timer to expire, prints out a message that the 
timer has expired, and exits.

10.3.1 The virtualtimers object

Implement the software timers in an object called virtualtimers. Use a static variable called 
timers of type timerdata_t to hold the internal timer data for the object as shown below.

#define MAXTIMERS 5
typedef struct timerdata_t {
   long active[MAXTIMERS];
   int events[MAXTIMERS];
   int numevents;
   int running;
} timerdata_t;

The members of timerdata_t have the following meanings.

active is an array with an entry for each timer. Each entry holds the expiration time (in 
µ sec) relative to the starting time of the running timer. A negative value 
signifies that the timer is not active. (In this part only one timer is ever active.)

events is an array with an entry for each timer that has expired and has not yet been 
removed. The entries contain timer numbers and appear in increasing order of 
expiration time. (There is at most one timer on the list for the program of this 
section.)

numevents is the number of entries in the events array.

running is the number of the timer that is running or –1 if none are active. The running 
timer is the one that is next to expire. It is the one whose expiration time causes 
the one real timer (set with sethardwaretimer) to generate a signal.

The integer representation of the time intervals simplifies the code but limits the length of the 
intervals to about 2000 seconds (a little more than half an hour) for 32-bit integers. This should 
be more than enough time for testing the algorithms of the project.

Place the timers data structure in virtualtimers.c along with the following functions that are 
callable from outside the object.

int getevent(int eventnumber);
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Return the timer number associated with a particular entry in the events array. 
The eventnumber parameter specifies the position in the events array, which is 
indexed from 0. The getevent functions returns –1 if eventnumber is negative or 
greater than or equal to numevents.

int getnumevents(void);

Return the value of numevents.

int getrunning(void);

Return the timer number of the running timer or –1 if there is no running timer.

long getvalue(int n);

Return the current value of a timer n from the active array or –1 if the timer is 
not active or the timer number is invalid.

int removetop(void);

Remove the top event from events and return the event's timer number or –1 if 
events is empty. This function is needed later when multiple timers are handled.

int timerinit(void);

Initialize the timers data structure as shown in Figure 10.2. The function also 
calls catchsetup of the hardwaretimer object and showinit of the show object. 
If successful, timerinit returns 0. If unsuccessful, timerinit returns –1 and 
sets errno.

void timerstart(int n, long interval);

Start timer n with the time interval given in microseconds. For this part, assume 
that no timers are active. The interval is the number of microseconds in the 
future after which the timer should expire. To start timer n, do the following.

1.  Remove timer n from the event list if it is there.

2.  Set running to timer n.

3.  Set active[n] to the appropriate time value.

4.  Start the interval timer by calling the sethardwaretimer function in the hardwaretimer 
object.



void timerstop(int n);

Stop timer n if it is active and remove the timer from events if it is there. This 
function is needed later when multiple timers are handled.

void waitforevent(void);

Wait until there is an event in events and then return without changing events. 
Do not use busy waiting, but instead, call waitforinterrupt from the 
hardwaretimer module.

The virtualtimers object also contains the private timerhandler function, which it passes to 
the hardware timer module by calling catchsetup in timerinit.

static void timerhandler(void);

Handle the timer signal. This function is called by the actual signal handler in 
hardwaretimer to maintain the timers structure when the real hardware timer 
expires. Do the following steps in timerhandler.

1.  Add the running timer to the end of events.

2.  Make the running timer inactive.

3.  Update the timers data structure.

4.  Reset the interval timer if there is an active timer. (There will not be one in the single-
timer case.)

Since the hardwaretimer object handles the signals, it must contain the actual signal handler. 
The prototype of the signal handler may depend on the implementation and should not be part 
of the virtualtimers object. Since the timers must be manipulated when the signal is caught, 
this work should be done in the virtualtimers object. The real signal handler calls 
timerhandler to do this. Since timerhandler has internal linkage, the timerinit function 
passes a reference to it when calling catchsetup in the hardwaretimer object. The 
timerhandler is an example of a callback. Callbacks are frequently used by applications to 
request that a service call one of the application's functions when some event occurs.

10.3.2 The hardwaretimer object

The hardwaretimer object contains code to handle a single "hardware" timer. The functions 
that are accessible from outside the object are as follows.

int blockinterrupt(void);

Block the SIGALRM signal. The blockinterrupt function returns 1 if the signal 



was already blocked and 0 otherwise.

int catchsetup(void (*handler)(void));

Set up a signal handler to catch the SIGALRM signal by calling sigaction. If 
successful, catchsetup returns 0. If unsuccessful, catchsetup returns –1 and 
sets errno. The handler parameter is the name of the function that does the 
work of handling the signal. The actual signal handler in hardwaretimer just 
calls the handler function. The virtualtimers object calls the function 
catchsetup to set up signal handling.

long gethardwaretimer(void);

Return the time remaining on the hardware timer if it is running or 0 if it is not 
running. If unsuccessful, gethardwaretimer returns –1 and sets errno. Use 
getitimer to implement this function.

int isinterruptblocked(void);

Return 1 if the SIGALRM signal is blocked and 0 otherwise.

void sethardwaretimer(long interval);

Start the ITIMER_REAL timer running with the given interval in microseconds. 
Call sethardwaretimer only when the timer interrupt is blocked or the interval 
timer is stopped. The interval parameter specifies the interval for setting the 
timer in microseconds. Use setitimer to implement this function.

void stophardwaretimer(void);

Stop the hardware timer if it is running. This function is harder to implement 
than it might seem. We discuss this later since it is not needed in this section.

void unblockinterrupt(void);

Unblock the SIGALRM signal.

void waitforinterrupt(void);

Call sigsuspend to wait until a signal is caught. The waitforinterrupt function 
does not guarantee that the signal was from a timer expiration. This function is 
normally entered with the timer signal blocked. The signal set used by 
sigsuspend must not unblock any signals that were already blocked, other than 
the one being used for the timers. If the main program has blocked SIGINT, the 
program should not terminate if Ctrl-C is entered.



Some of these functions are not needed until a later part of this project. The interface to the 
hardware timer is isolated in this file, so using POSIX:TMR timers or a different underlying timer 
than ITIMER_REAL only requires changing these functions. Define a header file called 
hardwaretimer.h that has the prototypes of the functions in the hardwaretimer object.

10.3.3 Main program implementation

Write a main program called timermain that initializes everything by calling timerinit and 
then loops, reading from standard input until an error or end-of-file occurs. Specifically, 
timermain does the following tasks in the loop.

1.  Read a pair of integers (a timer number and an interval in microseconds) from standard 
input.

2.  Call timerstart with these values.

3.  Call waitforevent.

4.  Print the return value of waitforevent to standard output.

Use scanf to read in the values from standard input.

10.3.4 Instrumentation of the timer code with show

Code with signal handlers and timers is hard to test because of the unpredictable nature of the 
events that drive the program. A particular timing of events that causes an error might occur 
rarely and not be easily reproducible. Furthermore, the behavior of the program depends not 
only on the input values but also on the rate at which input data is generated.

This section describes how to instrument the code with calls to a show function as a preliminary 
step in testing. This instrumentation is critical for debugging the later parts of the project. Two 
versions of the show function are presented here: one outputs to standard output and the other 
uses remote logging. This subsection explains what show does and how to use it in the program.

The prototype for show is as follows.

void show(int traceflag, const char *msg, long val1, long val2,
             int blockedflag);

If the traceflag is 0, show does nothing, allowing you to easily remove the debugging output. 
If traceflag is 1, the show function displays the message in the second parameter and the 
status of the timer data structure. The show function displays the val1 and val2 parameters if 
they are nonnegative. Usually, these parameters will represent a timer number and an interval 
in microseconds, but sometimes they will represent two timers. The blockedflag is 1 if the 
timer signal is supposed to be blocked when the call is made and 0 if the timer signal should 
not be blocked. It will be important to keep track of the blocking and unblocking of the signal in 
the complete timer implementation.



The virtualtimers file should have a traceflag global variable initialized to 1. Insert a call to 
showinit in the timerinit function of the virtualtimers module. Insert calls to show liberally 
throughout the virtualtimers module. For example, the first line of timerstart could be the 
following.

show(traceflag, "Timer Start Enter", n, interval, 0);

A call to start timer [3] for 1,000,000 microseconds might then produce the following output.

****  4.0067: Timer Start Enter 3 1000000 U(2,5.000) A:(2,5.000) (4,9.010) (1E 4)

The fields are as follows.

●     4.0067 is the time in seconds since showinit was called.
●     The message states where the show function was called.
●     3 is the timer being started.
●     1000000 is the duration of the timer interval.
●     U indicates that the call was made with the interrupt unblocked.
●     (2,5.000) gives the currently running timer and its interval in seconds.
●     A:(2,5.000) (4,9.010) shows two active timers and their corresponding intervals.
●     (1E 4) indicates one event for timer [4].

Program 10.1 can be used with this project to display messages similar to the one above.

Program 10.1 show.c

A version of show that prints to standard output.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include "hardwaretimer.h"
#include "show.h"
#include "virtualtimers.h"
#define MILLION 1000000L

static double initialtod = 0.0;
static int maxtimers;
static double gettime(void);
static double timetodouble(long interval);

static double getrelativetime(void) {    /* seconds since showinit was called */
   return gettime() - initialtod;
}

static double gettime(void) {    /* seconds since January 1, 1970 as a double */
   double thistime = 0.0;



   struct timeval tval;

   if (gettimeofday(&tval, NULL))
      fprintf(stderr, "Failed to get time of day\n");
   else
      thistime = tval.tv_sec + (double)tval.tv_usec/MILLION;
   return thistime;
}

static void showtimerdata(void) {       /* display the timers data structure */
   int i;

   printf("(%d,%.3f) A:", getrunning(),
      timetodouble(getvalue(getrunning())));
   for (i = 0; i < maxtimers; i++)
      if (getvalue(i) >= 0)
         printf("(%d,%.3f) ", i, timetodouble(getvalue(i)));
   printf(" (%dE", getnumberevents());
   for (i = 0; i < getnumberevents(); i++)
      printf(" %d", getevent(i));
   printf(")\n");
}

static double timetodouble(long interval) {        /* microseconds to seconds */
   return (double)interval/MILLION;
}

/* ------------------------Public Functions --------------------------------- */
void show(int traceflag, const char *msg, long val1, long val2,
             int blockedflag) {    /* displays timers with message for evtype */
   int wasblockedflag;

   if (!traceflag)
      return;
   wasblockedflag = blockinterrupt();
   printf("**** %8.4f: ", getrelativetime());
   printf("%s ",msg);
   if (val1 >= 0)
      printf("%ld ", val1);
   if (val2 >= 0)
      printf("%ld ", val2);
   if (blockedflag)
      printf("B");
   else
      printf("U");
   if (blockedflag != wasblockedflag)
      printf("***");
   showtimerdata();
   fflush(stdout);
   if (!wasblockedflag)
      unblockinterrupt();
}

void showinit(int maxt) {      /* set initialtod to seconds since Jan 1, 1970 */
   initialtod = gettime();
   maxtimers = maxt;
}



Put the code of Program 10.1 in a separate file. Instrument the timer functions so that each 
time something of interest occurs, the program calls show with the appropriate parameters. For 
this part, just insert the following four lines.

●     In the first line of timerhandler insert the following.

show(traceflag, "Timer Handler Enter", timers.running, -1, 1);

●     Before returning from timerhandler insert the following.

show(traceflag, "Timer Handler Exit", timers.running, -1, 1);

●     Before the first line of timerstart insert the following.

show(traceflag, "Timer Start Enter", n, interval, 0);

●     Before returning from timerstart insert the following.

show(traceflag, "Timer Start Exit", n, interval, 0);

Test the program with a variety of appropriate inputs and observe the output of show. 
Remember that printf is not async-signal safe. The calls to show in timerhandler cause a 
problem if timermain also uses the standard I/O library without blocking the signals during the 
calls. The show function blocks the timer interrupt before producing any output to avoid this 
problem as well as to protect the shared timers data structure.

Program 10.2 gives an alternative implementation of show that uses the remote logging facility 
described in Appendix D.2. It avoids a possible buffer overflow by calling snprintfappend to 
add to the message. This function takes parameters similar to those of snprintf but appends 
to a string given by the first parameter. The second parameter is a limit on the total size of the 
buffer used to hold the string.

In this version, the showinit function opens a connection to the remote logger, using the 
default parameters. Each output message is associated with a generator string indicating the 
source of the message. The generator is just the timer gotten from the val1 parameter. The 
output message has the following fields separated by tabs so they can be displayed in a table.

●     The message from the msg parameter.
●     val1 (the timer).
●     val2 (a second timer or an interval).
●     The letter U if the blockedflag parameter is 0 and the letter B otherwise. If this does 

not correspond to the actual blocked state of the timer signal, this is followed by three 
asterisks as a warning.

●     The number of the currently running timer if any.
●     A list of all active timers, each being represented by an ordered pair consisting of the 

timer number and the remaining time relative to the running timer.



●     The number of events followed by the list of events.

Figure 10.9 on page 363 shows sample output from one window of the remote logger.

Program 10.2 showremote.c

A version of show that uses a remote logging facility.

#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include "hardwaretimer.h"
#include "rlogging.h"
#include "show.h"
#include "virtualtimers.h"
#define MILLION 1000000L
#define MSGBUFSIZE 256

static double initialtod = 0.0;
static LFILE *lf;
static int maxtimers;
static double gettime(void);
static double timetodouble(long interval);

static void snprintfappend(char *s, size_t n, const char *fmt, ...) {
   va_list ap;
   int sizeleft;

   sizeleft = n - strlen(s) - 1;
   if (sizeleft <= 0)
      return;
   va_start(ap, fmt);
   vsnprintf(s + strlen(s), sizeleft, fmt, ap);
}

static void createlogstring(char *msg, int n) {       /* create string to log */
   int i;

   if (getrunning() >= 0)
      snprintfappend(msg, n, "\t%d\t", getrunning());
   else
      snprintfappend(msg, n, "\t\t");
   for (i = 0; i < maxtimers; i++)
      if (getvalue(i) >= 0)
         snprintfappend(msg, n, "(%d,%.3f) ",
                 i, timetodouble(getvalue(i)));
   snprintfappend(msg, n, "\t (%dE", getnumberevents());
   for (i = 0; i < getnumberevents(); i++)
      snprintfappend(msg, n, " %d", getevent(i));
   snprintfappend(msg, n, ")\n");
}



static double getrelativetime(void) {    /* seconds since showinit was called */
   return gettime() - initialtod;
}

static double gettime(void) {    /* seconds since January 1, 1970 as a double */
   double thistime = 0.0;
   struct timeval tval;

   if (gettimeofday(&tval, NULL))
      fprintf(stderr, "Warning, cannot get time of day\n");
   else
      thistime = tval.tv_sec + (double)tval.tv_usec/MILLION;
   return thistime;
}

static double timetodouble(long interval) {        /* microseconds to seconds */
   return (double)interval/MILLION;
}

/* ------------------------Public Functions --------------------------------- */
void showinit(int maxt) {      /* set initialtod to seconds since Jan 1, 1970 */
   initialtod = gettime();
   maxtimers = maxt;
   lf = lopen(NULL, 0);
   if (lf == NULL)
      fprintf(stderr,"Cannot open remote logger\n");
   else
      lsendtime(lf);
}

void show(int traceflag, const char *msg, long val1, long val2,
             int blockedflag) {         /* log timers with message for evtype */
   char genbuf[20];
   char msgbuf[MSGBUFSIZE];
   int wasblockedflag;

   if (!traceflag)
      return;
   wasblockedflag = blockinterrupt();
   if (val1 < 0)
      genbuf[0] = 0;
   else
      sprintf(genbuf, "Timer %ld", val1);
   snprintf(msgbuf, MSGBUFSIZE, "%8.4f: ", getrelativetime());
   snprintfappend(msgbuf, MSGBUFSIZE, "%s", msg);
   if (val1 >= 0)
      snprintfappend(msgbuf, MSGBUFSIZE, "\t%ld", val1);
   else
      snprintfappend(msgbuf, MSGBUFSIZE, "%s", "\t");
   if (val2 >= 0)
      snprintfappend(msgbuf, MSGBUFSIZE, "\t%ld", val2);
   else
      snprintfappend(msgbuf, MSGBUFSIZE, "%s", "\t");
   if (blockedflag)
      snprintfappend(msgbuf, MSGBUFSIZE, "%s", "\tB");
   else
      snprintfappend(msgbuf, MSGBUFSIZE, "%s", "\tU");



   if (blockedflag != wasblockedflag)
      snprintfappend(msgbuf, MSGBUFSIZE, "%s", "***");
   createlogstring(msgbuf, MSGBUFSIZE);
   lprintfg(lf, genbuf, msgbuf);
   if (!wasblockedflag)
      unblockinterrupt();
}
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10.4 Using Multiple Timers

The potential interactions of multiple timers make their implementation more complex than that of 
single timers. All the times in the active array are specified relative to the start of the underlying 
ITIMER_REAL interval timer. Suppose that a program wants to set timer [4] for seven seconds and that 
two seconds have elapsed since it set timer [2] for five seconds. Use the following procedure.

1.  Find out how much time is left on the real timer. (Call gethardwaretimer.)

2.  Find the start of the real timer relative to the currently running timer by subtracting the time left 
on the real timer from the timer value of the running timer. (Use getrunning.)

3.  Calculate the time of the timer to be set relative to the start time by adding the relative start 
time from step 2 to the requested time.

Figure 10.3 on page 346 shows the timers data structure after a program sets timer 2 for five seconds 
(5,000,000 microseconds). Suppose that two seconds later the program sets timer [4] for seven 
seconds (7,000,000 microseconds). Figure 10.5 shows the timers data structure after timer [4] is set. 
The program calls gethardwaretimer and finds that there are three seconds left (3,000,000 
microseconds) on the interval timer, so two seconds (5,000,000 - 3,000,000 microseconds) have 
elapsed since it set timer [2]. The program then computes the time for timer [4] relative to the start of 
the original setting of the real timer as nine seconds (2,000,000 + 7,000,000 microseconds).

Figure 10.5. The timers data structure after timer 4 has been set.

The running timer is the same in Figure 10.3 and Figure 10.5 because timer [4] expires after timer 
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[2]. The program did not change the running timer designation or reset the timer in this case. 
Continuing the situation of Figure 10.5, suppose that a program wants to set timer [3] for one second 
and a call to gethardwaretimer shows that the real timer has two seconds left. Timer [3] should expire 
before the real timer is scheduled to expire, so the program must reset the real timer. Figure 10.6 
shows the situation after the program sets timer [3]. The program resets the real timer to expire in one 
second and adjusts all of the other times in active. The new times are relative to the start time of timer 
[3] rather than to that of timer [2] (three seconds ago), so the program subtracted three seconds from 
each of the active times.

Figure 10.6. The timers data structure after timer [3] has been set.

Figure 10.7 shows the situation a little over a second after timer [3] was set. Timer [3] expires and 
timer [2] becomes the running timer. All the times are readjusted to expire relative to timer [2].

Figure 10.7. The timers data structure after timer [3] expires.



Figure 10.8 shows the situation two seconds later. Timer [2] expires and timer [4] becomes the 
running timer.

Figure 10.8. The timers data structure after timer [2] expires.

10.4.1 Setting multiple timers



Modify the timerstart function and add a timerstop function to handle all of the cases of timers being 
set while other timers are active. At any moment, each timer is either active or inactive. An active timer 
cannot appear in events, but it is added to events when it expires. If any of the timers is active, exactly 
one of them is running. The running timer is the one that is next to expire. Its expiration time has been 
used in sethardwaretimer, so a signal is generated when its time expires.

How starting and stopping should affect events is an arbitrary implementation decision. The 
implementation outlined here removes an event corresponding to the timer to be started or stopped if 
one is there. This choice ensures that no timer is represented by more than one event in events, so 
events can be declared to be the same size as active. The bound on events simplifies the 
implementation.

With multiple timers active, timerhandler must update the timers data structure by subtracting active
[running] from all active times. If the time becomes 0, the corresponding timer has expired and that 
timer number should be placed in events and made inactive. This method handles multiple timers 
expiring at the same time.

Section 10.3 handled the case of starting a timer when no timer is active. A similar case is the one in 
which the timer to be started is already active but all other timers are inactive.

Suppose some other timer is the running timer when a timer is started. If the timer to be started 
expires after the running timer, only one entry in the timers data structure needs to be modified. 
However, if starting this timer causes it to expire before the currently running timer, the interval timer 
must be reset. The entries in the active array must also be adjusted relative to the starting time of the 
new running timer. To make the adjustment, decrement the active times by the time that the currently 
running timer has been active (runtime). Use gethardwaretimer to find the remaining time on the 
interval timer and calculate runtime = active[running] - remaining.

When the running timer changes, take the following actions.

1.  Remove the new timer from events if it is there.

2.  Adjust all active times by runtime.

3.  Set a new running timer.

4.  Start the interval timer by calling sethardwaretimer.

The case in which the timer to be started is the running timer can be treated either as a special case of 
the above or as a separate case.

A call to timerstop for a timer that is not active just removes the timer from events. If the timer was 
active but not running, set it to be inactive. The interesting case is that of stopping the running timer. 
This case is similar to the case of starting a timer that becomes the running timer because the timers 
data structure needs to be updated by runtime and a new running timer has to be selected.

In this part, the program should handle all combinations of starting and stopping timers as well as 
removing events from the event list. Enhance the timerstart and timerhandler functions 
appropriately and write the functions removetop and timerstop, which were not needed before. Insert 



appropriate calls to show.

Modify timermain so that it interprets a negative interval as a command to stop the timer. Instead of 
waiting for an event in the main loop, remove and display all events without blocking before waiting for 
additional input.

Exercise 10.3 

What happens if scanf is used for standard input in this version of timermain?

Answer:

Neither scanf or sscanf are guaranteed to interact correctly with signals. The scanf function may 
indicate end-of-file when a signal is caught by the process. Use the readline function from Program 4.1 
on page 95. This function detects end-of-file correctly and is not affected by signals. You can then use 
sscanf to parse the input line (after blocking the signals).

Exercise 10.4 

Why can the single timer of Section 10.3 use scanf without a problem?

Answer:

The program waits for the signal to be caught before calling scanf.

10.4.2 Testing with multiple timers

Even code instrumented by show is difficult to test systematically, since the action of the program 
depends on the speed of the input typing. One approach to this problem is to use a driver, testtime, to 
generate the input for the program. Program 10.3 shows the testtime program. It must be linked to 
the hardwaretimer object.

As with any filter, testtime reads from standard input and writes to standard output. The input consists 
of lines containing three integers, n, m and p. The filter reads in these three integers, waits n 
microseconds, and then outputs m and p on a single line. If m < 0, testtime exits after waiting n 
microseconds. The testtime program ignores any characters on the line after the three integers, so a 
user can add comments to the end of each input line.

Example 10.5 

Suppose testtime receives the following input.

1000000  2  5000000 Timer 2 expires at time 6
2000000  4  7000000 Timer 4 expires at time 10
1000000  3  1000000 Timer 1 preempts 2 to expire at time 5

The testtime program waits one second and outputs the following line.

2 5000000



The program then waits two more seconds and outputs the following line.

4 7000000

The program then waits one second and outputs the following line.

3 1000000

Exercise 10.6 

Suppose the three lines in Example 10.5 are in the file timer.input and you execute the following 
command. What happens?

testtime < timer.input | timermain

Answer:

After getting the third line of the file at time 4 seconds, timermain detects end-of-file when testtime 
exits. This occurs before any timers expire. We can fix this problem by adding the following line to 
timer.input.

7000000 -1 1000000 Everything done 6 units from now

Program 10.3 testtime.c

The program testtime.

#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
#include "hardwaretimer.h"

static int timerexpired = 0;

static void myalarm() {
   timerexpired = 1;
}

int main(int argc, char *argv[]) {   /* Test the hardware timer and prototype */
   long interval;
   int n1;
   int n2;

   if (argc != 1) {
      fprintf(stderr, "Usage: %s\n", argv[0]);
      return 1;
   }
   catchinterrupt(myalarm);

   for( ; ; ){
      if (scanf("%ld%d%d%*[^\n]", &interval, &n1, &n2) == EOF)
         break;
      if (interval <= 0)



         break;
      blockinterrupt();
      sethardwaretimer(interval);
      while (!timerexpired)
         waitforinterrupt();
      timerexpired = 0;
      if (n1 < 0)
         break;
      printf("%d %d\n", n1, n2);
      fflush(stdout);
      fprintf(stderr, "%d %d\n", n1, n2);
   }
   return 0;
}

If the 4-line file described in Example 10.5 and Exercise 10.6 is used as illustrated, the command causes 
timer [2] to start 1 second after execution begins and to expire five seconds later (at time 6). Two 
seconds later (at time 3), timer [4] starts and expires in seven seconds (at time 10). One second later 
(at time 4), timer [3] is set to expire in one second (at time 5). This is exactly the situation illustrated 
in Figure 10.6 on page 358.

Figure 10.9 displays the output generated for this input by Program 10.1, using an appropriately 
instrumented implementation of virtualtimers. Figure 10.10 displays the corresponding output 
generated by Program 10.2.

Figure 10.9 The output generated by Program 10.1.

****   0.0001: Initialize U(-1,-0.000) A: (0E)
****   0.9975: Start Enter 2 5000000 U(-1,-0.000) A: (0E)
****   0.9976: None Running 2 5000000 B(-1,-0.000) A: (0E)
****   0.9977: Start Exit 2 5000000 U(2,5.000) A:(2,5.000) (0E)
****   3.0072: Start Enter 4 7000000 U(2,5.000) A:(2,5.000) (0E)
****   3.0073: Start Another Running 4 2 B(2,5.000) A:(2,5.000) (0E)
****   3.0074: Start Running Used 4 2009705 B(2,5.000) A:(2,5.000) (0E)
****   3.0075: Start Running Expires First 4 B(2,5.000) A:(2,5.000) (4,9.010) (0E)
****   4.0173: Start Enter 3 1000000 U(2,5.000) A:(2,5.000) (4,9.010) (0E)
****   4.0174: Start Another Running 3 2 B(2,5.000) A:(2,5.000) (4,9.010) (0E)
****   4.0175: Start Running Used 3 3019778 B(2,5.000) A:(2,5.000) (4,9.010) (0E)
****   4.0176: Start This Expires First 3 B(3,1.000) A:(2,1.980) (3,1.000) (4,5.990) (0E)
****   5.0269: Handler Start 3 1000000 B(3,1.000) A:(2,1.980) (3,1.000) (4,5.990) (0E)
****   5.0271: Handler Setting Hardware 2 980222 B(2,0.980) A:(2,0.980) (4,4.990) (1E 3)
****   5.0272: Handler Exit B(2,0.980) A:(2,0.980) (4,4.990) (1E 3)
****   6.0170: Handler Start 2 980222 B(2,0.980) A:(2,0.980) (4,4.990) (1E 3)
****   6.0172: Handler Setting Hardware 4 4009705 B(4,4.010) A:(4,4.010) (2E 3 2)
****   6.0173: Handler Exit B(4,4.010) A:(4,4.010) (2E 3 2)
****  10.0369: Handler Start 4 4009705 B(4,4.010) A:(4,4.010) (2E 3 2)
****  10.0371: Handler Setting Hardware 4 B(4,-0.000) A: (3E 3 2 4)
****  10.0372: Handler Exit B(4,-0.000) A: (3E 3 2 4)

Figure 10.10. The output generated by Program 10.2.
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10.5 A Robust Implementation of Multiple Timers

What happens if a SIGALRM signal is delivered during execution of the timerstart function? 
Both the timerhandler and the timerstart functions modify the timers data structure, a 
shared resource. This is the classical critical section problem for shared variables, and care 
must be taken to ensure that the timers data structure is not corrupted. It is difficult to 
determine if such a problem exists in the code by testing alone. The events that might cause 
corruption of the data structure are rare and usually would not show up during testing. If such 
an event occurred, it would not be easily repeatable and so there might be little information 
about its cause.

A race condition occurs when the outcome of a program depends on the exact order in which 
different threads of execution execute statements. The timerstart function is executed by the 
main thread of execution. That same thread executes timerhandler, but the thread that 
generates the SIGALRM signal determines when the timer expires. You can prevent race 
conditions of this type by ensuring that the critical sections are executed in a mutually exclusive 
manner.

You must analyze the problem to determine where the critical sections are. In this case, the 
analysis is simple since there is only one global variable, the timers data structure. Any 
function that modifies this structure must do so at a time when the SIGALRM signal handler may 
not be entered. The simplest approach is to block the SIGALRM signal before modifying the 
timers data structure.

Just blocking SIGALRM may not be sufficient. What happens if the interval timer expires during 
the execution of the timerstart function and SIGALRM is blocked? The timerstart function 
might make a new timer the running timer and reset the interval timer. Before the timerstart 
function terminates, it unblocks SIGALRM. At this point, the signal is delivered and the handler 
assumes that the new timer had expired. Although this sequence of events is extremely 
unlikely, a correctly working program must account for all possibilities. Exercise 10.7 shows 
another problem.

Exercise 10.7 

Describe a sequence of events in which the timerstop function could fail even if it blocked the 
signal on entry and unblocked it on exit.

Answer:

The timerstop function blocks the SIGALRM signal. The timer to be stopped then expires (i.e., 
the interval timer generates a signal). This signal is not immediately delivered to the process, 
since the signal is blocked. The timerstop function then starts the interval timer corresponding 
to the next timer to expire. Before it returns, the timerstop function unblocks the signal and 
the signal is delivered. The signal handler behaves as if the running timer just expired, when in 
fact a different timer had expired.
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The simplest solution to the problem described in Exercise 10.7 is to modify the hardwaretimer 
module. The stophardwaretimer function (which should be called with the SIGALRM signal 
blocked) should stop the timer and check to see if the SIGALRM signal is pending by using 
sigpending. If it is, the stophardwaretimer function removes the signal either by calling 
sigwait or by ignoring it and catching it again. The sethardwaretimer function can solve a 
similar problem by calling stophardwaretimer.

Exercise 10.8 

How would you test to see if you solved this problem correctly?

Answer:

This cannot be done just by simple testing, since the problem occurs only when a timer expires 
in a narrow window. To test this, you will have to make the timerstop take some extra time.

Exercise 10.9 

What would happen if you put a call to sleep(10) in timerstop to increase the chance that the 
error would occur?

Answer:

The sleep function might be implemented with SIGALRM, so sleep should not be called from a 
program that catches SIGALRM. The program has unpredictable results. The nanosleep function 
does not interact with SIGALRM and could be used in timerstop.

Program 10.4 is a function that can be used to waste a number of microseconds by busy 
waiting. It calls gettimeofday in a loop until the required number of microseconds has passed.

Program 10.4 wastetime.c

A function that does busy waiting for a given number of microseconds.

#include <stdio.h>
#include <sys/time.h>
#define MILLION 1000000L

int wastetime(int maxus) {               /* waste maxus microseconds of time */
    long timedif;
    struct timeval tp1, tp2;

    if (gettimeofday(&tp1, NULL)) {
        fprintf(stderr, "Failed to get initial time\n");
        return 1;
    }
    timedif = 0;
    while (timedif < maxus) {



        if (gettimeofday(&tp2, NULL)) {
            fprintf(stderr, "Failed to get check time\n");
            return 1;
        }
        timedif = MILLION*(tp2.tv_sec - tp1.tv_sec) +
                  tp2.tv_usec - tp1.tv_usec;
        if (timedif < 0)
            break;
    }
    return 0;
}

Analyze the timerstart and timerstop functions and modify the implementation of Section 
10.4 so that the timers are handled robustly. Devise a method of testing to verify that the 
program works correctly. (The test will involve simulating rare events.)

[ Team LiB ]   
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10.6 POSIX:TMR Timer Implementation

POSIX:TMR timers have several advantages over POSIX:XSI timers. A program can create 
several POSIX:TMR timers for a given clock such as CLOCK_REALTIME. The timers have a 
potentially greater resolution since values are given to the nearest nanosecond rather than the 
nearest microsecond. The program can specify which signal is delivered for each timer, and the 
signal handler can determine which timer generated the signal. Also, the signals generated by 
the timers are queued, and the program can determine when signals have been lost due to 
overruns.

Several implementations of multiple timers of Section 10.4 with POSIX:TMR timers are 
possible. The simplest method is to use one timer and make minor changes in the data types to 
accommodate the higher resolution. Alternatively, a separate POSIX:TMR timer can implement 
each software timer. Starting and stopping a timer and handling the timer signal are 
independent of the other timers, so the only shared structure is the event queue. The 
virtualtimers and hardwaretimer object might have to be reorganized. There may be a limit 
to the number of timers that are supported for each process given by the constant TIMER_MAX. 
If the number of timers needed is small, this method would be the easiest to implement. A third 
approach is to use a single POSIX:TMR timer but modify the method of implementation to make 
the timing more accurate.

One of the problems with the original timer implementation of this chapter is that there can be 
a significant amount of timer drift, as discussed in Section 9.6. This drift can be virtually 
eliminated by the use of absolute time rather than relative time. Instead of storing the times 
relative to the running timer in the active array, store the absolute time of expiration. This 
approach will probably require 64 bits for each entry, perhaps a struct timeval or struct 
timespec. Alternatively, use a long long to store the number of microseconds or nanoseconds 
since the Epoch. This has the advantage of simplifying comparisons of time, but times must be 
converted to a struct timespec or struct timeval when timers are set.

[ Team LiB ]   
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10.7 mycron, a Small Cron Facility

The cron facility in UNIX allows users to execute commands at specified dates and times. This 
facility is quite flexible and allows regularly scheduled commands. It is implemented with a 
cron daemon that processes a file containing timing and command information.

Implement a simplified personal cron facility called mycron. Write a program that takes one 
command-line argument. The argument represents a data file containing time intervals and 
commands. Each line of the data file specifies a command and the frequency at which that 
command is to be executed. The lines of the data file have the following format.

interval command

The interval argument specifies the number of seconds between execution of instances of the 
command. The command argument is the command to execute with its arguments.

1.  Implement the preceding cron facility, assuming that none of the intervals in the cron 
data file are longer than the maximum interval that the timers can handle (about 30 
minutes). Call the executable mycron.

2.  Handle the case in which the intervals can be arbitrarily large. Assume that the number 
of seconds in the interval will fit in a long. Try to do this without modifying the timer 
functions.

3.  Find a way to adjust the starting times so that if two commands have the same interval, 
they will not always be executing at the same time.

[ Team LiB ]   
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10.8 Additional Reading

An array representation for timers works well when the number of timers is small. Consider 
using a priority queue for the timers and a linked list for the events. "Hashed and hierarchical 
timing wheels: Data structures for efficient implementation of a timer facility" by Varghese and 
Lauck [128] describes alternative implementations. The POSIX Rationale section on Clocks and 
Timers [51] provides an excellent discussion of the issues involved in implementing timers at 
the system level. Aron and Drushel [5] discuss system timer efficiency in "Soft timers: efficient 
microsecond software timer support for network processing."
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Chapter 11. Project: Cracking Shells

By developing a shell from the bottom up, this chapter explores the intricacies of process 
creation, termination, identification and the correct handling of signals. Example programs 
handle foreground and background processes, pipelines, process groups, sessions and 
controlling terminals. The chapter also looks at job control and terminal I/O. The closing project 
integrates these concepts by incorporating job control into a shell.

Objectives

●     Learn how shells work
●     Experiment with background processes
●     Explore signal handling and job control
●     Use redirection and pipelines
●     Understand process groups and controlling terminals

[ Team LiB ]   
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11.1 Building a Simple Shell

A shell is a process that does command-line interpretation. In other words, a shell reads a 
command line from standard input and executes the command corresponding to the input line. 
In the simplest case, the shell reads a command and forks a child to execute the command. 
The parent then waits for the child to complete before reading in another command. A real shell 
handles process pipelines and redirection, as well as foreground process groups, background 
process groups and signals.

This section starts with the simplest of shells. Later sections add features piece by piece. The 
shells use the makeargv function of Program 2.2 on page 37 to parse the command-line 
arguments. Section 11.2 adds redirection, and Section 11.3 adds pipelines. Section 11.4 
explains how a shell handles signals for a foreground process. The programs for each of these 
phases are given, along with a series of exercises that point out the important issues. Work 
through these exercises before going on to the main part of the project. The heart of this 
project is signal handling and job control. Section 11.5 introduces the machinery needed for job 
control. Section 11.6 describes how background processes are handled without job control, and 
Section 11.7 introduces job control at the user level. Finally, Section 11.8 specifies the 
implementation of a complete shell with job control.

Program 11.1 shows Version 1 of ush (ultrasimple shell). The shell process forks a child that 
builds an argv type array and calls execvp to execute commands entered from standard input.

Program 11.1 ush1.c

Version 1 of ush has no error checking or prompts.

#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/wait.h>
#define MAX_BUFFER 256
#define QUIT_STRING "q"

int makeargv(const char *s, const char *delimiters, char ***argvp);

int main (void) {
    char **chargv;
    char inbuf[MAX_BUFFER];

    for( ; ; ) {
        gets(inbuf);
        if (strcmp(inbuf, QUIT_STRING) == 0)
            return 0;
        if ((fork() == 0) && (makeargv(inbuf, " ", &chargv) > 0))
            execvp(chargv[0], chargv);
        wait(NULL);
    }
}
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Exercise 11.1 

Run Program 11.1 with a variety of commands such as ls, grep and sort. Does ush1 behave 
as expected?

Answer:

No. Program 11.1 does not display a prompt or expand filenames containing wildcards such as 
* and ?. The ush1 shell also does not handle quotation marks in the same way as standard 
shells do. A normal shell allows quotation marks to guarantee that a particular argument is 
passed to the exec in its entirety and is not interpreted by the shell as something else. You 
may also notice that certain commands such as cd do not behave in the expected way.

Exercise 11.2 

What happens if Program 11.1 doesn't call wait?

Answer:

If a user enters a command before the previous one completes, the commands execute 
concurrently.

Another problem is that Version 1 of ush does not trap errors on execvp. This omission has 
some interesting consequences if you enter an invalid command. When execvp succeeds, 
control never comes back from the child. However, when it fails, the child falls through and 
tries to get a command line too!

Exercise 11.3 

Run Program 11.1 with several invalid commands. Execute ps and observe the number of shells 
that are running. Try to quit. What happens?

Answer:

Each time you enter an invalid command, ush1 creates a new process that behaves like an 
additional shell. You must enter q once for each process.

Exercise 11.4 

Only the child parses the command line in Program 11.1. What happens if the parent parses the 
command line before forking? What are the memory allocation and deallocation issues involved 
in moving the makeargv call before fork in these programs?

Answer:



When the child exits, all memory allocated by the child is freed. If the parent calls makeargv 
before fork, the shell has to later free the memory allocated by makeargv.

Version 1 of ush is susceptible to buffer overflows because it uses gets rather than fgets. A 
long command can exceed the space allocated for input. Program 11.2 shows an improved 
version of ush that prompts for user input and handles an unsuccessful execvp call. The system-
defined constant MAX_CANON replaces the user-defined MAX_BUFFER, and fgets replaces gets.

The shell in Program 11.2 does not exit if there is an error on fork. In general, the shell should 
be impervious to errors—and bullet-proofing takes a lot of effort. The function executecmd 
replaces the makeargv and execvp calls. Control should never return from this function.

Program 11.2 ush2.c

Version 2 of ush handles simple command lines.

#include <limits.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
#define PROMPT_STRING "ush2>>"
#define QUIT_STRING "q"

void executecmd(char *incmd);

int main (void) {
    pid_t childpid;
    char inbuf[MAX_CANON];
    int len;

    for( ; ; ) {
        if (fputs(PROMPT_STRING, stdout) == EOF)
            continue;
        if (fgets(inbuf, MAX_CANON, stdin) == NULL)
            continue;
        len = strlen(inbuf);
        if (inbuf[len - 1] == '\n')
            inbuf[len - 1] = 0;
        if (strcmp(inbuf, QUIT_STRING) == 0)
            break;
        if ((childpid = fork()) == -1)
            perror("Failed to fork child");
        else if (childpid == 0) {
            executecmd(inbuf);
            return 1;
        } else
            wait(NULL);
    }
    return 0;
}



Program 11.3 shows a simple version of executecmd for Program 11.2. We will augment this 
function as we improve the shell. The executecmdsimple.c version simply constructs an 
argument array and calls execvp.

Program 11.3 executecmdsimple.c

A simplified version of executecmd for Program 11.2.

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#define BLANK_STRING " "

int makeargv(const char *s, const char *delimiters, char ***argvp);

void executecmd(char *incmd) {
    char **chargv;
    if (makeargv(incmd, BLANK_STRING, &chargv) <= 0) {
        fprintf(stderr, "Failed to parse command line\n");
        exit(1);
    }
    execvp(chargv[0], chargv);
    perror("Failed to execute command");
    exit(1);
}

Exercise 11.5 

Why does Program 11.3 treat a makeargv return value of 0 as an error?

Answer:

The makeargv returns the number of items in the command argument array. Technically, an 
empty command is not an error, and a real shell would ignore it without printing a warning 
message. For more complicated command lines that include redirection and pipelines, an empty 
command portion is considered to be an error. You may want to consider adding additional 
checks and not count it as an error in some circumstances.

Exercise 11.6 

Try the cd command as input to Program 11.2. What happens? Why? Hint: Read the man page 
on cd for an explanation.

Answer:

The cd command changes the user's environment, so it must be internal to the shell. External 
commands are executed by children of the shell process, and a process cannot change the 



environment of its parent. Most shells implement cd as an internal command or a built-in 
command.

Exercise 11.7 

What happens when Program 11.2 encounters commands such as ls -l and q with leading and 
interspersed extra blanks?

Answer:

Program 11.2 correctly handles commands such as ls -l because makeargv handles leading 
and interspersed blanks. The q command does not work because this command is handled 
directly by ush2, which has no provision for handling interspersed blanks.

Exercise 11.8 

Execute the command stty -a under your regular shell and record the current settings of the 
terminal control characters. The following is a possible example of what might appear.

intr = ^c; quit = ^|; erase = ^?; kill = ^u;
eof = ^d; eol = <undef>; eol2 = <undef>; swtch = <undef>;
start = ^q; stop = ^s; susp = ^z; dsusp = ^y;
rprnt = ^r; flush = ^o; werase = ^w; lnext = ^v;

Try each of the control characters under ush2 and under a regular shell and compare the 
results.

In Exercise 11.8 the erase and werase continue to work even though there is no explicit code 
to handle them in ush2 because ush2 does not receive characters directly from the keyboard. 
Instead, the terminal device driver processes input from the keyboard and passes the input 
through additional modules to the program. As described in Section 6.5.1, terminals can 
operate in either canonical (line-buffered) or noncanonical mode. Canonical mode is the default.

In canonical mode, the terminal device driver returns one line of input at a time. Thus, a 
program does not receive any input until the user enters a newline character, even if the 
program just reads in a single character. The terminal device driver also does some processing 
of the line while the line is being gathered. If the terminal line driver encounters the erase or 
werase characters, it adjusts the input buffer appropriately.

Noncanonical mode allows flexibility in the handling of I/O. For example, an editing application 
might display the message "entering cbreak mode" to report that it is entering noncanonical 
mode with echo disabled and one-character-at-a-time input. In noncanonical mode, input is 
made available to the program after a user-specified number of characters have been entered 
or after a specified time has elapsed. The canonical mode editing features are not available. 
Programs such as editors usually operate with the terminal in noncanonical mode, whereas user 
programs generally operate with the terminal in canonical mode.
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11.2 Redirection

POSIX handles I/O in a device-independent way through file descriptors. After obtaining an 
open file descriptor through a call such as open or pipe, the program can execute read or 
write, using the handle returned from the call. Redirection allows a program to reassign a 
handle that has been opened for one file to designate another file. (See Section 4.7 for a review 
of redirection.)

Most shells allow redirection of standard input, standard output and possibly standard error 
from the command line. Filters are programs that read from standard input and write to 
standard output. Redirection on the command line allows filters to operate on other files 
without recompilation.

Example 11.9 

The following cat command redirects its standard input to my.input and its standard output to 
my.output.

cat < my.input > my.output

Recall that open file descriptors are inherited on exec calls (unless specifically prevented). For 
shells this means that the child must redirect its I/O before calling execvp. (After the execvp, 
the process no longer has access to the variables holding the destination descriptors.)

Program 11.4 shows a version of executecmd that redirects standard input and standard output 
as designated by the input command line incmd. It calls parseandredirectin and 
parseandredirectout, which are shown in Program 11.5.

Program 11.4 executecmdredirect.c

A version of executecmd that handles redirection.

#include <errno.h>
#include <stdio.h>
#include <unistd.h>

int makeargv(const char *s, const char *delimiters, char ***argvp);
int parseandredirectin(char *s);
int parseandredirectout(char *s);

void executecmd(char *incmd) {
    char **chargv;
    if (parseandredirectout(incmd) == -1)
        perror("Failed to redirect output");
    else if (parseandredirectin(incmd) == -1)
        perror("Failed to redirect input");
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    else if (makeargv(incmd, " \t", &chargv) <= 0)
        fprintf(stderr, "Failed to parse command line\n");
    else {
        execvp(chargv[0], chargv);
        perror("Failed to execute command");
    }
    exit(1);
}

The parseandredirectin function looks for the standard input redirection symbol <. If the 
symbol is found, the program replaces it with a string terminator. This removes it from the 
command. The program then uses strtok to remove leading and trailing blanks and tabs. What 
is left is the name of the file to use for redirection. The parseandredirectout function works 
similarly.

Since the version of executecmd in Program 11.4 calls parseandredirectout before 
parseandredirectin, it assumes that the output redirection appears on the command line 
after the input redirection.

Exercise 11.10 

How does Program 11.2 handle the following command? How would you fix it?

sort > t.2 < t.1

Answer:

After the call to parseandredirectout, the > is replaced by a string terminator so the 
command is just sort. The redirection of standard input is ignored. One way to fix this problem 
is to use strchr to find the positions of both redirection symbols before handling redirection. If 
both symbols are present, the redirection corresponding to the one that appears last should be 
done first.

Link ush2 with executecmdredirect and parseandredirect to obtain a shell that handles 
simple redirection.

Exercise 11.11 

How would ush2 handle redirection from an invalid file?

Answer:

If parseandredirectin or parseandredirectout fails to open the file, the function returns –1 
and executecmdredirect does not attempt to execute the command.
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11.3 Pipelines

Pipelines, introduced in Section 6.2, connect filters in an assembly line to perform more 
complicated functions.

Example 11.12 

The following command redirects the output of ls -l to the standard input of sort and the 
standard output of sort to the file temp.

ls -l | sort -n +4 > temp

The ls and the sort commands are distinct processes connected in a pipeline. The connection 
does not imply that the processes share file descriptors, but rather that the shell creates an 
intervening pipe to act as a buffer between them.

Program 11.5 parseandredirect.c

Functions to handle redirection of standard input and standard output. These functions must be 
called in a particular order. The redirection that occurs last must be handled first.

#include <errno.h>
#include <fcntl.h>
#include <string.h>
#include <unistd.h>
#include <sys/stat.h>
#define FFLAG (O_WRONLY | O_CREAT | O_TRUNC)
#define FMODE (S_IRUSR | S_IWUSR)

int parseandredirectin(char *cmd) {    /* redirect standard input if '<' */
    int error;
    int infd;
    char *infile;

    if ((infile = strchr(cmd, '<')) == NULL)
        return 0;
    *infile = 0;                  /* take everything after '<' out of cmd */
    infile = strtok(infile + 1, " \t");
    if (infile == NULL)
        return 0;
    if ((infd = open(infile, O_RDONLY)) == -1)
        return -1;
    if (dup2(infd, STDIN_FILENO) == -1) {
        error = errno;                       /* make sure errno is correct */
        close(infd);
        errno = error;
        return -1;
    }
    return close(infd);
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}

int parseandredirectout(char *cmd) {  /* redirect standard output if '>' */
    int error;
    int outfd;
    char *outfile;

    if ((outfile = strchr(cmd, '>')) == NULL)
        return 0;
    *outfile = 0;                  /* take everything after '>' out of cmd */
    outfile = strtok(outfile + 1, " \t");
    if (outfile == NULL)
        return 0;
    if ((outfd = open(outfile, FFLAG, FMODE)) == -1)
        return -1;
    if (dup2(outfd, STDOUT_FILENO) == -1) {
        error = errno;                        /* make sure errno is correct */
        close(outfd);
        errno = error;
        return -1;
    }
    return close(outfd);
}

Program 11.6 contains a version of executecmd that handles a pipeline of arbitrary length. The 
implementation uses makeargv with the pipeline symbol as a delimiter to make an array of 
commands for the pipeline. For each command (except the last), executecmd creates a pipe 
and a child process. The executecmd redirects the standard output of each command, except 
the last through a pipe, to the standard input of the next one. The parent redirects its standard 
output to the pipe and executes the command by calling executeredirect of Program 11.7. 
The child redirects its standard input to come from the pipe and goes back to the loop to create 
a child to handle the next command in the pipeline. For the last command in the list, 
executecmd does not create a child or pipe but directly calls executeredirect.

Errors need to be handled very carefully. Program 11.6 creates multiple child processes. This 
version of executecmd never returns. An error in any of the processes results in a call to 
perror_exit, which prints an appropriate message to standard error and exits.

The executeredirect function takes three parameters: the command string and two flags. If 
the first flag is nonzero, executeredirect allows standard input to be redirected. If the second 
flag is nonzero, executeredirect allows standard output to be redirected. The pipeline can 
redirect standard input only for the first command in the pipeline and can redirect standard 
output only for the last one.

The executecmd function only sets the first flag parameter of executeredirect for the call with 
i equals 0. The executecmd only sets the second flag after the last loop iteration completes. If 
the pipeline contains only one command (no pipeline symbol on the command line), 
executecmd does not execute the loop body and calls executeredirect with both flags set. In 
this case, executeredirect behaves similarly to the executecmd in executecmdredirect 
(Program 11.4).



The first if in executeredirect handles the case of the output redirection occurring before the 
input redirection, as discussed in Exercise 11.10.

Exercise 11.13 

What would this shell do with the following command.

ls -l > temp1 | sort -n +4 > temp

Answer:

The redirection of standard output to temp1 would be ignored. The shell would treat > and 
temp1 as names of files to list. Most real shells would detect this as an error.

Exercise 11.14 

How are the processes in the following pipeline related when they are executed by 
executecmdpipe?

ls -l | sort -n +4 | more

Answer:

The first command, ls -l, is a child of the shell. The second command, sort -n +4, is a child 
of ls. The third command, more, is a child of sort.

Program 11.6 executecmdpipe.c

The executecmd function that handles pipelines.

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

void executeredirect(char *s, int in, int out);
int makeargv(const char *s, const char *delimiters, char ***argvp);

static void perror_exit(char *s) {
    perror(s);
    exit(1);
}

void executecmd(char *cmds) {
    int child;
    int count;
    int fds[2];



    int i;
    char **pipelist;

    count = makeargv(cmds, "|", &pipelist);
    if (count <= 0) {
        fprintf(stderr, "Failed to find any commands\n");
        exit(1);
    }
    for (i = 0; i < count - 1; i++) {              /* handle all but last one */
        if (pipe(fds) == -1)
            perror_exit("Failed to create pipes");
        else if ((child = fork()) == -1)
            perror_exit("Failed to create process to run command");
        else if (child) {                                       /* parent code */
            if (dup2(fds[1], STDOUT_FILENO) == -1)
                perror_exit("Failed to connect pipeline");
            if (close(fds[0]) || close(fds[1]))
                perror_exit("Failed to close needed files");
            executeredirect(pipelist[i], i==0, 0);
            exit(1);
        }
        if (dup2(fds[0], STDIN_FILENO) == -1)                    /* child code */
            perror_exit("Failed to connect last component");
        if (close(fds[0]) || close(fds[1]))
            perror_exit("Failed to do final close");
    }
    executeredirect(pipelist[i], i==0, 1);             /* handle the last one */
    exit(1);
}

Program 11.7 executeredirect.c

A function to handle a single command with possible redirection.

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

int makeargv(const char *s, const char *delimiters, char ***argvp);
int parseandredirectin(char *s);
int parseandredirectout(char *s);

void executeredirect(char *s, int in, int out) {
    char **chargv;
    char *pin;
    char *pout;

    if (in && ((pin = strchr(s, '<')) != NULL) &&
          out && ((pout = strchr(s, '>')) != NULL) && (pin > pout) ) {
        if (parseandredirectin(s) == -1) { /* redirect input is last on line */
            perror("Failed to redirect input");
            return;
        }



        in = 0;
    }
    if (out && (parseandredirectout(s) == -1))
        perror("Failed to redirect output");
    else if (in && (parseandredirectin(s) == -1))
        perror("Failed to redirect input");
    else if (makeargv(s, " \t", &chargv) <= 0)
        fprintf(stderr,"Failed to parse command line\n");
    else {
        execvp(chargv[0], chargv);
        perror("Failed to execute command");
    }
    exit(1);
}
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11.4 Signal Handling in the Foreground

Most shells support job control that allows users to terminate running processes and move 
processes between the foreground and the background. The ordinary user may not be explicitly 
aware that signals control these actions.

Suppose a user enters Ctrl-C to terminate a running process. The terminal device driver buffers 
and interprets characters as they are typed from the keyboard. If the driver encounters the 
intr character (usually Ctrl-C), it sends a SIGINT signal. In normal shell operation, Ctrl-C 
causes the executing command to be terminated but does not cause the shell to exit.

Program 11.8 ush3.c

A shell that does not exit on SIGINT or SIGQUIT.

#include <limits.h>
#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
#define PROMPT_STRING "ush3>>"
#define QUIT_STRING "q"

void executecmd(char *incmd);
int signalsetup(struct sigaction *def, sigset_t *mask, void (*handler)(int));

int main (void) {
    sigset_t blockmask;
    pid_t childpid;
    struct sigaction defaction;
    char inbuf[MAX_CANON];
    int len;

    if (signalsetup(&defaction, &blockmask, SIG_IGN) == -1) {
        perror("Failed to set up shell signal handling");
        return 1;
    }
    if (sigprocmask(SIG_BLOCK, &blockmask, NULL) == -1) {
        perror("Failed to block signals");
        return 1;
    }

    for( ; ; ) {
        if (fputs(PROMPT_STRING, stdout) == EOF)
            continue;
        if (fgets(inbuf, MAX_CANON, stdin) == NULL)
            continue;
        len = strlen(inbuf);
        if (inbuf[len - 1] == '\n')
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            inbuf[len - 1] = 0;
        if (strcmp(inbuf, QUIT_STRING) == 0)
            break;
        if ((childpid = fork()) == -1) {
            perror("Failed to fork child to execute command");
        } else if (childpid == 0) {
            if ((sigaction(SIGINT, &defaction, NULL) == -1) ||
                  (sigaction(SIGQUIT, &defaction, NULL) == -1) ||
                  (sigprocmask(SIG_UNBLOCK, &blockmask, NULL) == -1)) {
                  perror("Failed to set signal handling for command ");
                  return 1;
            }
            executecmd(inbuf);
            return 1;
        }
        wait(NULL);
    }
    return 0;
}

If a user enters Ctrl-C with ush2 in Program 11.2, the shell takes the default action, which is to 
terminate the shell. The shell should not exit under these circumstances. Program 11.8 shows a 
modification of ush2 that ignores SIGINT and SIGQUIT.

After setting up various signal handling structures by calling signalsetup, ush3 ignores and 
blocks SIGINT and SIGQUIT. The ush3 shell forks a child as before. The key implementation 
point here is that the child must restore the handlers for SIGINT and SIGQUIT to their defaults 
before executing the command. Program 11.9 shows the signalsetup function that initializes 
various signal structures to block SIGINT and SIGQUIT.

Program 11.9 signalsetup.c

A function for setting up signal structures for ush3.

#include <signal.h>
#include <stdio.h>

int signalsetup(struct sigaction *def, sigset_t *mask, void (*handler)(int)) {
    struct sigaction catch;

    catch.sa_handler = handler;  /* Set up signal structures  */
    def->sa_handler = SIG_DFL;
    catch.sa_flags = 0;
    def->sa_flags = 0;
    if ((sigemptyset(&(def->sa_mask)) == -1) ||
          (sigemptyset(&(catch.sa_mask)) == -1) ||
          (sigaddset(&(catch.sa_mask), SIGINT) == -1) ||
          (sigaddset(&(catch.sa_mask), SIGQUIT) == -1) ||
          (sigaction(SIGINT, &catch, NULL) == -1) ||
          (sigaction(SIGQUIT, &catch, NULL) == -1) ||
          (sigemptyset(mask) == -1) ||
          (sigaddset(mask, SIGINT) == -1) ||



          (sigaddset(mask, SIGQUIT) == -1))
        return -1;
    return 0;
}

Exercise 11.15 

If a user enters Ctrl-C while ush3 in Program 11.8 is executing fgets, nothing appears until the 
return key is pressed. What happens if the user enters Ctrl-C in the middle of a command line?

Answer:

When the user enters Ctrl-C in the middle of a command line, some systems display the 
symbols ^C. All the characters on the line before entry of Ctrl-C are ignored because the 
terminal driver empties the input buffer when Ctrl-C is entered (canonical input mode). These 
characters still appear on the current input line because ush3 does not redisplay the prompt.

Exercise 11.16 

The parent process of ush3 ignores and blocks SIGINT and SIGQUIT. The child unblocks these 
signals after resetting their handlers to the default. Why is this necessary?

Answer:

Suppose the parent does not block SIGINT and the operating system delivers a SIGINT signal 
before ush3 restores the SIGINT handler to the default. Since the ush3 child ignores SIGINT, 
the child continues to execute the command after the user enters Ctrl-C.

The ush3 implementation isn't the final answer to correct shell signal handling. In fact, the shell 
should catch SIGINT rather than ignore it. Also, the parent in ush3 has SIGINT and SIGQUIT 
blocked at all times. In fact, the parent should have them unblocked and block them only 
during certain critical time periods. Remember that ignoring is different from blocking. Ignore a 
signal by setting the signal handler to be SIG_IGN, and block a signal by setting a flag in the 
signal mask. Blocked signals are not delivered to the process but are held for later delivery.

In ush4, the parent shell and the child command handle the SIGINT in different ways. The 
parent shell clears the input line and goes back to the prompt, which the shell accomplishes 
with calls to sigsetjmp and siglongjmp.

The strategy for the child is different. When the child is forked, it inherits the signal mask and 
has a copy of the signal handler from the parent. The child should not go to the prompt if a 
signal occurs. Instead, the child should take the default action, which is to exit. To accomplish 
this, the parent blocks the signal before the fork. The child then installs the default action 
before unblocking the signal. When the child executes execvp, the default action is 
automatically installed since execvp restores any signals being caught to have their default 
actions. The program cannot afford to wait until execvp automatically installs the default 
action. The reason is that the child needs to unblock the signal before it executes execvp and a 
signal may come in between unblocking the signal and the execvp.



The parent shell in Program 11.10 uses sigsetjmp, discussed in Section 8.7, to return to the 
prompt when it receives Ctrl-C. The sigsetjmp function stores the signal mask and current 
environment in a designated jump buffer. When the signal handler calls siglongjmp with that 
jump buffer, the environment is restored and control is transferred to the point of the 
sigsetjmp call. Program 11.10 sets the jumptoprompt point just above the shell prompt. When 
called directly, sigsetjmp returns 0. When called through siglongjmp, sigsetjmp returns a 
nonzero value. This distinction allows the shell to output a newline when a signal has occurred. 
The siglongjmp call pops the stack and restores the register values to those at the point from 
which the sigsetjmp was originally called.

In the shells discussed in this chapter we do not need to worry about function calls that are 
interrupted by a signal. No signal handler in any of these shells returns. Instead, the shells call 
siglongjmp, so no function has an opportunity to set errno to EINTR. Notice also that ush4 
executes the command, even if it could not successfully block SIGINT and SIGQUIT.

Program 11.10 ush4.c

A shell that uses siglongjmp to handle Ctrl-C.

#include <limits.h>
#include <setjmp.h>
#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
#define PROMPT_STRING "ush4>>"
#define QUIT_STRING "q"

void executecmd(char *incmd);
int signalsetup(struct sigaction *def, sigset_t *mask, void (*handler)(int));
static sigjmp_buf jumptoprompt;
static volatile sig_atomic_t okaytojump = 0;

/* ARGSUSED */
static void jumphd(int signalnum) {
    if (!okaytojump) return;
    okaytojump = 0;
    siglongjmp(jumptoprompt, 1);
}

int main (void) {
    sigset_t blockmask;
    pid_t childpid;
    struct sigaction defhandler;
    int len;
    char inbuf[MAX_CANON];

    if (signalsetup(&defhandler, &blockmask, jumphd) == -1) {
        perror("Failed to set up shell signal handling");



        return 1;
    }

    for( ; ; ) {
        if ((sigsetjmp(jumptoprompt, 1)) &&   /* if return from signal, \n */
              (fputs("\n", stdout) == EOF) )
            continue;
        wait(NULL);
        okaytojump = 1;
        if (fputs(PROMPT_STRING, stdout) == EOF)
            continue;
        if (fgets(inbuf, MAX_CANON, stdin) == NULL)
            continue;
        len = strlen(inbuf);
        if (inbuf[len - 1] == '\n')
            inbuf[len - 1] = 0;
        if (strcmp(inbuf, QUIT_STRING) == 0)
            break;
        if (sigprocmask(SIG_BLOCK, &blockmask, NULL) == -1)
            perror("Failed to block signals");
        if ((childpid = fork()) == -1)
            perror("Failed to fork");
        else if (childpid == 0) {
            if ((sigaction(SIGINT, &defhandler, NULL) == -1) ||
                  (sigaction(SIGQUIT, &defhandler, NULL) == -1) ||
                  (sigprocmask(SIG_UNBLOCK, &blockmask, NULL) == -1)) {
                perror("Failed to set signal handling for command ");
                return 1;
            }
            executecmd(inbuf);
            return 1;
        }
        if (sigprocmask(SIG_UNBLOCK, &blockmask, NULL) == -1)
            perror("Failed to unblock signals");
    }
    return 0;
}

Compilers sometimes allocate local variables in registers for efficiency. It is important that 
variables that should not be changed when siglongjmp is executed are not stored in registers. 
Use the volatile qualifier from ISO C to suppress this type of assignment.

Program 11.10 uses the same signal handler for both SIGINT and SIGQUIT. Therefore, 
signalsetup sets the signals to block both of them when they are caught. It wasn't necessary 
to block these signals in ush3, but it did not hurt to do so. The child of Program 11.10 installs 
the default action before unblocking the signal after fork. The parent shell only blocks SIGINT 
and SIGQUIT when it is creating a child to run the command.

Exercise 11.17 

Why did we move wait in ush4 from the bottom of the loop to the top of the loop?

Answer:



If wait is at the bottom of the loop and you kill a child with Ctrl-C, the shell jumps back to the 
start of the loop without waiting for the child. When a new command is entered, the shell will 
wait for the child that was killed instead of waiting for the new command to complete.

Exercise 11.18 

Why can't we fix the problem described in Exercise 11.17 by restarting wait when errno is 
EINTR?

Answer:

When a function like wait is interrupted by the signal, it returns only when the signal handler 
returns. In this case, the signal handler is executing a siglongjmp, so wait does not return 
when the signal is caught.

[ Team LiB ]   

file:///D|/Tutoriales%20&%20Programacion/Prep%20Finales/XxX/Prentice%20Hall%20-%20Unix%20Systems%20Programming%202nd%20Ed/NFO/lib.html


[ Team LiB ]   

11.5 Process Groups, Sessions and Controlling Terminals

The previous section implemented signal handling for ush with simple commands. Signal 
handling for pipelines and background processes requires additional machinery. Pipelines need 
process groups, and background processes need sessions and controlling terminals.

11.5.1 Process Groups

A process group is a collection of processes established for purposes such as signal delivery. 
Each process has a process group ID that identifies the process group to which it belongs. Both 
the kill command and the kill function treat a negative process ID value as a process group 
ID and send a signal to each member of the corresponding process group.

Example 11.19 

The following command sends SIGINT to the process group 3245.

kill -INT -3245

In contrast, the following command sends SIGINT just to the process 3245.

kill -INT 3245

The process group leader is a process whose process ID has the same value as the process 
group ID. A process group persists as long as any process is in the group. Thus, a process 
group may not have a leader if the leader dies or joins another group.

A process can change its process group with setpgid. The setpgid function sets the process 
group ID of process pid to have process group ID pgid. It uses the process ID of the calling 
process if pid is 0. If pgid is 0, the process specified by pid becomes a group leader.

SYNOPSIS

  #include <unistd.h>

  int setpgid(pid_t pid, pid_t pgid);
                                         POSIX

The setpgid function returns 0 if successful. If unsuccessful, setpgid returns –1 and sets 
errno. The following table lists the mandatory errors for setpgid.

errno cause
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EACCES pid corresponds to a child that has already called exec

EINVAL pgid is negative or has an unsupported value

EPERM pid is the process ID of a session leader, or pid is the process ID of a child process 
not in the caller's session, or pgid does not match pid and there is no process with 
a process ID matching pgid in the caller's session

ESRCH pid does not match the caller's process ID or that of any of its children

When a child is created with fork, it gets a new process ID but it inherits the process group ID 
of its parent. The parent can use setpgid to change the group ID of a child as long as the child 
has not yet called exec. A child process can also give itself a new process group ID by setting 
its process group ID equal to its process ID.

Example 11.20 

The following code segment forks a child that calls executecmd. The child places itself in a new 
process group.

pid = fork();
if ((pid == 0) && (setpgid(getpid(), getpid()) != -1))) {
   executecmd(cmd);
   return 1;
}

Either or both of the calls to getpid could be replaced with 0.

Exercise 11.21 

What can go wrong with the following alternative to the code of Example 11.20?

pid = fork();
if ((pid > 0) && (setpgid(pid, pid) == -1)) {
   perror("Failed to set child's process group");
else if (pid == 0) {
    executecmd(cmd);
    return 1;
}

Answer:

The alternative code has a race condition. If the child performs execvp in executecmd before 
the parent calls setpgid, the code fails.

The getpgrp function returns the process group ID of the caller.



SYNOPSIS

  #include <unistd.h>

  pid_t getpgrp(void);
                               POSIX

No errors are defined for getpgrp.

The POSIX:XSI Extension also defines a setpgrp function that is similar to setpgid. However, 
setpgrp allows greater flexibility than is required for job control and may present a security 
risk.

11.5.2 Sessions

To make signal delivery transparent, POSIX uses sessions and controlling terminals. A session 
is a collection of process groups established for job control purposes. The creator of a session is 
called the session leader. We identify sessions by the process IDs of their leaders. Every 
process belongs to a session, which it inherits from its parent.

Each session may have a controlling terminal associated with it. A shell uses the controlling 
terminal of its session to interact with the user. A particular controlling terminal is associated 
with exactly one session. A session may have several process groups, but at any given time 
only one of these process groups can receive input from and send output to the controlling 
terminal. The designated process group is called the foreground process group or the 
foreground job. The other process groups in the session are called background process groups 
or background jobs. The main purpose of job control is to change which process group is in the 
foreground. The background process groups are not affected by keyboard input from the 
controlling terminal of the session.

Use the ctermid function to obtain the name of the controlling terminal. The ctermid function 
returns a pointer to a string that corresponds to the pathname of the controlling terminal for 
the current process. This string may be in a statically generated area if s is a NULL pointer. If s 
is not NULL, it should point to a character array of at least L_ctermid bytes. The ctermid 
function copies a string representing the controlling terminal into that array.

SYNOPSIS

  #include <stdio.h>

  char *ctermid(char *s);
                               POSIX:CX

The ctermid function returns an empty string if it is unsuccessful.

Exercise 11.22 

What happens if you enter Ctrl-C while executing the following command string in ush4?



ls -l | sort -n +4 | more

Answer:

The SIGINT signal is delivered to the three child processes executing the three filters as well as 
to the parent shell process because all of these processes are in the foreground process group. 
The parent catches SIGINT with jumphd; the three children take the default action and 
terminate.

Section 3.6 introduced background processes. The & character at the end of the command line 
designates a command or pipeline to be run as a background process group in most shells.

Exercise 11.23 

What happens if you enter Ctrl-C while the following command is executing in the C shell?

ls -l | sort -n +4 | more &

Answer:

None of the processes in the pipeline receive the SIGINT signal, since the pipeline is in the 
background and has no connection to the controlling terminal.

A process can create a new session with itself as the leader by calling setsid. The setsid 
function also creates a new process group with the process group ID equal to the process ID of 
the caller. The calling process is the only one in the new process group and the new session. 
The session has no controlling terminal.

SYNOPSIS

  #include <unistd.h>

  pid_t setsid(void);
                                POSIX

If successful, setsid returns the new value of the process group ID. If unsuccessful, setsid 
returns (pid_t)–1 and sets errno. The setsid function sets errno to EPERM if the caller is 
already a process group leader.

A process can discover session IDs by calling getsid. The getsid function takes a process 
group ID parameter, pid, and returns the process group ID of the process that is the session 
leader of the process specified by pid. If 0, pid specifies the calling process.

SYNOPSIS

  #include <unistd.h>

  pid_t getsid(pid_t pid);



                                 POSIX:XSI

If successful, getsid returns a process group ID. If unsuccessful, getsid returns –1 and sets 
errno. The following table lists the mandatory errors for getsid.

errno cause

EPERM process specified by pid is not in the same session as the calling process and the 
implementation does not allow access to the process group ID of that session leader

ESRCH no process corresponds to pid

Figure 11.1 shows a shell with several process groups. Each solid rectangle represents a 
process with its process ID, process group ID and the session ID. All of the processes have 
session ID 1357, the process ID and session ID of the shell. The process group ID is the same 
as the process ID of one of its members, the process group leader.

Figure 11.1. Five process groups for session 1357.

Example 11.24 

The following sequence of commands might give rise to the process group structure of Figure 



11.1.

ls -l | sort -n +4 | grep testfile > testfile.out &
grep process | sort > process.out &
du . > du.out &
cat /etc/passwd | grep users | sort | head > users.out &

Exercise 11.25 

Write a short program called showid that takes one command-line argument. The showid 
program outputs to standard error a single line with its command-line argument, its process ID, 
parent process ID, process group ID and session ID. After the display, showid starts an infinite 
loop that does nothing. Execute the following commands to verify how your login shell handles 
process groups and sessions for pipelines.

showid 1 | showid 2 | showid 3

Which process in the pipeline is the process group leader? Is the shell in the same process 
group as the pipeline? Which processes in the pipeline are children of the shell and which are 
grandchildren? How does this change if the pipeline is started in the background?

Answer:

The results vary depending on the shell that is used. Some shells make all the processes 
children of the shell. Others have only the first or last process in the pipeline as a child of the 
shell and the rest are grandchildren. Either the first or the last process may be the process 
group leader. If a shell does not support job control, it is possible for the shell to be the process 
group leader of the pipeline unless the pipeline is started in the background.

Summary:

●     The shell is a session leader.
●     All processes created by the shell are in this session.
●     All processes created on a single command line are in the same process group.
●     If the shell supports job control or the command line is started in the background, a new 

process group is formed for these processes.
●     One of the process groups of the shell is the foreground process group and can interact 

with the controlling terminal.
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11.6 Background Processes in ush

The main operational properties of a background process are that the shell does not wait for it 
to complete and that it is not terminated by a SIGINT sent from the keyboard. A background 
process appears to run independently of the terminal. This section explores handling of signals 
for background processes. A correctly working shell must prevent terminal-generated signals 
and input from being delivered to a background process and must handle the problem of having 
a child divorced from its controlling terminal.

Program 11.11 shows a modification of ush4 that allows a command to be executed in the 
background. An ampersand (&) at the end of a command line specifies that ush5 should run the 
command in the background. The program assumes that there is at most one & on the line and 
that, if present, it is at the end. The shell determines whether the command is to be executed in 
the background before forking the child, since both parent and child both must know this 
information. If the command is executed in the background, the child calls setpgid so that it is 
no longer in the foreground process group of its session. The parent shell does not wait for 
background children.

Program 11.11 ush5.c

A shell that attempts to handle background processes by changing their process groups.

#include <limits.h>
#include <setjmp.h>
#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
#define BACK_SYMBOL '&'
#define PROMPT_STRING "ush5>>"
#define QUIT_STRING "q"

void executecmd(char *incmd);
int signalsetup(struct sigaction *def, sigset_t *mask, void (*handler)(int));

static sigjmp_buf jumptoprompt;
static volatile sig_atomic_t okaytojump = 0;

/* ARGSUSED */
static void jumphd(int signalnum) {
    if (!okaytojump) return;
    okaytojump = 0;
    siglongjmp(jumptoprompt, 1);
}

int main (void) {
    char *backp;
    sigset_t blockmask;
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    pid_t childpid;
    struct sigaction defhandler;
    int inbackground;
    char inbuf[MAX_CANON];
    int len;

    if (signalsetup(&defhandler, &blockmask, jumphd) == -1) {
        perror("Failed to set up shell signal handling");
        return 1;
    }

    for( ; ; ) {
        if ((sigsetjmp(jumptoprompt, 1)) &&   /* if return from signal, \n */
              (fputs("\n", stdout) == EOF) )
            continue;
        okaytojump = 1;
        printf("%d",(int)getpid());
        if (fputs(PROMPT_STRING, stdout) == EOF)
            continue;
        if (fgets(inbuf, MAX_CANON, stdin) == NULL)
            continue;
        len = strlen(inbuf);
        if (inbuf[len - 1] == '\n')
            inbuf[len - 1] = 0;
        if (strcmp(inbuf, QUIT_STRING) == 0)
            break;
        if ((backp = strchr(inbuf, BACK_SYMBOL)) == NULL)
            inbackground = 0;
        else {
            inbackground = 1;
            *backp = 0;
        }
        if (sigprocmask(SIG_BLOCK, &blockmask, NULL) == -1)
            perror("Failed to block signals");
        if ((childpid = fork()) == -1)
            perror("Failed to fork");
        else if (childpid == 0) {
            if (inbackground && (setpgid(0, 0) == -1))
                return 1;
            if ((sigaction(SIGINT, &defhandler, NULL) == -1) ||
                  (sigaction(SIGQUIT, &defhandler, NULL) == -1) ||
                  (sigprocmask(SIG_UNBLOCK, &blockmask, NULL) == -1)) {
                perror("Failed to set signal handling for command ");
                return 1;
            }
            executecmd(inbuf);
            return 1;
        }
        if (sigprocmask(SIG_UNBLOCK, &blockmask, NULL) == -1)
            perror("Failed to unblock signals");
        if (!inbackground)    /* only wait for child not in background */
            wait(NULL);
    }
    return 0;
}



Exercise 11.26 

Execute the command ls & several times under ush5. Then, execute ps -a (still under this 
shell). Observe that the previous ls processes still appear as <defunct>. Exit from the shell and 
execute ps -a again. Explain the status of these processes before and after the shell exits.

Answer:

Since no process has waited for them, the background processes become zombie processes. 
They stay in this state until the shell exits. At that time, init becomes the parent of these 
processes, and since init periodically waits for its children, the zombies eventually die.

The shell in Program 11.12 fixes the problem of zombie or defunct processes. When a command 
is to be run in the background, the shell does an extra call to fork. The first child exits 
immediately, leaving the background process as an orphan that can then be adopted by init. 
The shell now waits for all children, including background processes, since the background 
children exit immediately and the grandchildren are adopted by init.

Program 11.12 ush6.c

A shell that cleans up zombie background processes.

#include <errno.h>
#include <limits.h>
#include <setjmp.h>
#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
#define BACK_SYMBOL '&'
#define PROMPT_STRING ">>"
#define QUIT_STRING "q"

void executecmd(char *incmd);
int signalsetup(struct sigaction *def, struct sigaction *catch,
                sigset_t *mask, void (*handler)(int));

static sigjmp_buf jumptoprompt;
static volatile sig_atomic_t okaytojump = 0;

/* ARGSUSED */
static void jumphd(int signalnum) {
    if (!okaytojump) return;
    okaytojump = 0;
    siglongjmp(jumptoprompt, 1);
}

int main (void) {
    char *backp;



    sigset_t blockmask;
    pid_t childpid;
    struct sigaction defhandler, handler;
    int inbackground;
    char inbuf[MAX_CANON+1];

    if (signalsetup(&defhandler, &handler, &blockmask, jumphd) == -1) {
        perror("Failed to set up shell signal handling");
        return 1;
    }

    for( ; ; ) {
        if ((sigsetjmp(jumptoprompt, 1)) &&   /* if return from signal, \n */
              (fputs("\n", stdout) == EOF) )
            continue;
        if (fputs(PROMPT_STRING, stdout) == EOF)
            continue;
        if (fgets(inbuf, MAX_CANON, stdin) == NULL)
            continue;
        if (*(inbuf + strlen(inbuf) - 1) == '\n')
            *(inbuf + strlen(inbuf) - 1) = 0;
        if (strcmp(inbuf, QUIT_STRING) == 0)
            break;
        if ((backp = strchr(inbuf, BACK_SYMBOL)) == NULL)
            inbackground = 0;
        else {
            inbackground = 1;
            *backp = 0;
            if (sigprocmask(SIG_BLOCK, &blockmask, NULL) == -1)
                perror("Failed to block signals");
            if ((childpid = fork()) == -1) {
                perror("Failed to fork child to execute command");
                return 1;
            } else if (childpid == 0) {
                if (inbackground && (fork() != 0) && (setpgid(0, 0) == -1))
                    return 1;
                if ((sigaction(SIGINT, &defhandler, NULL) == -1) ||
                      (sigaction(SIGQUIT, &defhandler, NULL) == -1) ||
                      (sigprocmask(SIG_UNBLOCK, &blockmask, NULL) == -1)) {
                    perror("Failed to set signal handling for command ");
                    return 1;
                }
                executecmd(inbuf);
                perror("Failed to execute command");
                return 1;
            }
            if (sigprocmask(SIG_UNBLOCK, &blockmask, NULL) == -1)
                perror("Failed to unblock signals");
            wait(NULL);
        }
        return 0;
    }

Exercise 11.27 

Execute a long-running background process such as rusers & under the shell given in Program 



11.12. What happens when you enter Ctrl-C?

Answer:

The background process is not interrupted because it is not part of the foreground process 
group. The parent shell catches SIGINT and jumps back to the main prompt.

Exercise 11.28 

Use the showid function from Exercise 11.25 to determine which of three processes in a pipeline 
becomes the process group leader and which are children of the shell in ush6. Do this for 
pipelines started both in the foreground and background.

Answer:

If the parent starts the pipeline in the foreground, all the processes have the same process 
group as the shell and the shell is the process group leader. The first process in the pipeline is a 
child of the shell and the others are grandchildren. If the shell starts the pipeline in the 
background, the first process in the pipeline is the process group leader. Its parent will 
eventually be init. The other processes are children or grandchildren of the first process in the 
pipeline.

The zombie child problem is more complicated if the shell does job control. In this case, the 
shell must be able to detect whether the background process is stopped because of a signal (e.
g., SIGSTOP). The waitpid function has an option for detecting children stopped by signals, but 
not for detecting grandchildren. The background process of Program 11.12 is a grandchild 
because of the extra fork call, so ush6 cannot detect it.

Program 11.13 shows a direct approach, using waitpid, for handling zombies. To detect 
whether background processes are stopped for a signal, ush7 uses waitpid with the WNOHANG 
for background processes rather than forking an extra child. The –1 for the first argument to 
waitpid means to wait for any process. If the command is not a background command, ush7 
explicitly waits for the corresponding child to complete.

Program 11.13 ush7.c

A shell that handles zombie background processes by using waitpid.

#include <limits.h>
#include <setjmp.h>
#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
#define BACK_SYMBOL '&'
#define PROMPT_STRING "ush7>>"
#define QUIT_STRING "q"



void executecmd(char *incmd);
int signalsetup(struct sigaction *def, sigset_t *mask, void (*handler)(int));
static sigjmp_buf jumptoprompt;
static volatile sig_atomic_t okaytojump = 0;

/* ARGSUSED */
static void jumphd(int signalnum) {
    if (!okaytojump) return;
    okaytojump = 0;
    siglongjmp(jumptoprompt, 1);
}

int main (void) {
    char *backp;
    sigset_t blockmask;
    pid_t childpid;
    struct sigaction defhandler;
    int inbackground;
    char inbuf[MAX_CANON];
    int len;

    if (signalsetup(&defhandler, &blockmask, jumphd) == -1) {
        perror("Failed to set up shell signal handling");
        return 1;
    }

    for( ; ; ) {
        if ((sigsetjmp(jumptoprompt, 1)) &&   /* if return from signal, newline */
              (fputs("\n", stdout) == EOF) )
            continue;
        okaytojump = 1;
        printf("%d",(int)getpid());
        if (fputs(PROMPT_STRING, stdout) == EOF)
            continue;
        if (fgets(inbuf, MAX_CANON, stdin) == NULL)
            continue;
        len = strlen(inbuf);
        if (inbuf[len - 1] == '\n')
            inbuf[len - 1] = 0;
        if (strcmp(inbuf, QUIT_STRING) == 0)
            break;
        if ((backp = strchr(inbuf, BACK_SYMBOL)) == NULL)
            inbackground = 0;
        else {
            inbackground = 1;
            *backp = 0;
        }
        if (sigprocmask(SIG_BLOCK, &blockmask, NULL) == -1)
            perror("Failed to block signals");
        if ((childpid = fork()) == -1)
            perror("Failed to fork");
        else if (childpid == 0) {
            if (inbackground && (setpgid(0, 0) == -1))
                return 1;
            if ((sigaction(SIGINT, &defhandler, NULL) == -1) ||
                  (sigaction(SIGQUIT, &defhandler, NULL) == -1) ||



                  (sigprocmask(SIG_UNBLOCK, &blockmask, NULL) == -1)) {
                perror("Failed to set signal handling for command ");
                return 1;
            }
            executecmd(inbuf);
            return 1;
        }
        if (sigprocmask(SIG_UNBLOCK, &blockmask, NULL) == -1)
            perror("Failed to unblock signals");
        if (!inbackground)        /* wait explicitly for the foreground process */
            waitpid(childpid, NULL, 0);
        while (waitpid(-1, NULL, WNOHANG) > 0);    /* wait for background procs */
    }
    return 0;
}

Exercise 11.29 

Repeat Exercise 11.28 for Program 11.13.

Answer:

The results are the same as for Exercise 11.28 except that when started in the background, the 
first process in the pipeline is a child of the shell.

Exercise 11.30 

Compare the behavior of ush6 and ush7 under the following scenario. Start a foreground 
process that ignores SIGINT. While that process is executing, enter Ctrl-C.

Answer:

The shell of ush6 jumps back to the main loop before waiting for the process. If this shell 
executes another long-running command and the first command terminates, the shell waits for 
the wrong command and returns to the prompt before the second command completes. This 
difficulty does not arise in ush7 since the ush7 shell waits for a specific foreground process.
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11.7 Job Control

A shell is said to have job control if it allows a user to move the foreground process group into 
the background and to move a process group from the background to the foreground. Job 
control involves changing the foreground process group of a controlling terminal.

The tcgetpgrp function returns the process group ID of the foreground process group of a 
particular controlling terminal. To obtain an open file descriptor for the controlling terminal, 
open the pathname obtained from the ctermid function described in Section 11.5.

SYNOPSIS

  #include <unistd.h>

  pid_t tcgetpgrp(int fildes);
                                      POSIX

If successful, the tcgetpgrp function returns the process group ID of the foreground process 
group associated with the terminal. If the terminal has no foreground process group, 
tcgetpgrp returns a value greater than 1 that doesn't match any existing process group ID. If 
unsuccessful, the tcgetpgrp function returns –1 and sets errno. The following table lists the 
mandatory errors for tcgetpgrp.

errno cause

EBADF fildes is invalid

ENOTTY caller does not have a controlling terminal, or fildes does not correspond to a 
controlling terminal

The tcsetpgrp function sets the foreground process group of the controlling terminal 
associated with fildes to pgid_id. If a background process calls tcsetpgrp on a fildes 
associated with its controlling terminal, its process group receives a SIGTTOU signal, provided 
that this process is not blocking or ignoring SIGTTOU.

SYNOPSIS

  #include <unistd.h>

  int tcsetpgrp(int fildes, pid_t pgid_id);
                                               POSIX

If successful, tcsetpgrp returns 0. If unsuccessful, tcsetpgrp returns –1 and sets errno. The 
following table lists the mandatory errors for tcsetpgrp.
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errno cause

EBADF fildes is invalid

EINVAL implementation does not support the value of pgid_id

ENOTTY caller does not have a controlling terminal, or fildes does not correspond to a 
controlling terminal, or controlling terminal is no longer associated with the session 
of the caller

EPERM value of pgid_id is supported but does not match the process group ID of any 
process in the session of the caller

In addition to running processes in the foreground and background, job control allows users to 
selectively stop processes and resume their execution later. For example, you may want to run 
a long job in the background but periodically halt it to examine its status or provide input. The 
C shell and the KornShell allow job control, as do most shells under Linux, but the Bourne shell 
does not. This section describes job control in the C shell. The Linux shells and the KornShell 
are almost identical with respect to job control.

A job consists of the processes needed to run a single command line. When a shell starts a job 
in the background, it assigns a job number and displays the job number and process IDs of the 
processes in the job. If a pipeline is started in the background, all processes in the pipeline 
have the same job number. The job number is typically a small integer. If there are no other 
jobs in the background, the shell assigns the command job number 1. Generally, shells assign a 
background job a number that is one greater than the current largest background job number.

The jobs command displays the jobs running under a shell.

Example 11.31 

The following commands illustrate job control for the C shell. The shell displays the prompt 
ospmt%. The commands appear after this prompt. The shell produces the other messages 
shown.

ospmt% du . | sort -n > duout &
[1] 23145 23146
ospmt% grep mybook *.tex > mybook.out &
[2] 23147
ospmt% rusers | grep myboss > myboss.out &
[3] 23148 23149
ospmt% jobs
[1]  + Running         du . | sort -n > duout
[2]  - Running         grep mybook *.tex > mybook.out
[3]    Running         rusers | grep myboss > myboss.out

The jobs command shows three running background jobs. The job number is at the start of the 
line in square brackets. If the second job finishes first, the shell displays the following line when 
the user presses the return.



[2]    Done            grep mybook *.tex > mybook.out

If at that time the user executes another jobs command, the following output appears.

[1]  + Running         du . | sort -n > duout
[3]  - Running         rusers | grep myboss > myboss.out

You may refer to job n by %n in various shell commands. Example 11.31 shows a + after the job 
number of job [1], meaning that it is the current job and is the default for the fg and bg 
commands. The - represents the previous job.

Example 11.32 

The following command kills job 2 without referring to process IDs.

kill -KILL %2

A background job can be either running or stopped. To stop a running job, use the stop 
command. The stopped job becomes the current job and is suspended.

Example 11.33 

The following command stops job two.

stop %2

To start a stopped job running in the background, use the bg command. In this case, bg or bg 
% or bg %2 all work, since job 2 is the current job.

Use the fg command to move a background job (either running or stopped) into the 
foreground, and the SIGSTOP character (typically Ctrl-Z) to move the foreground job into the 
background in the stopped state. The combination Ctrl-Z and bg makes the foreground job a 
running background job.

Since fg, bg and jobs are built into the shell, these commands may not have their own man 
pages. To get information on these commands in the C shell, execute man csh.

Exercise 11.34 

Experiment with job control (assuming that it is available). Move processes in and out of the 
foreground.

A shell that supports job control must keep track of all foreground and background process 
groups in its session. When the terminal generates a SIGSTOP interrupt (usually in response to 
Ctrl-Z), the foreground process group is placed in the stopped state. How should the shell get 



back in control? Fortunately, waitpid blocks the parent shell until the state of one of its 
children changes. Thus, an appropriate call to waitpid by the parent shell allows the shell to 
regain control after the foreground process group is suspended. The shell can start a suspended 
process group by sending it the SIGCONT signal. If the shell wants to restart that group in the 
foreground, it must use tcsetpgrp to tell the controlling terminal what the foreground process 
group is. Since a given process or process group can run in the foreground or the background 
at different times during its execution, each child command must start a new process group 
regardless of whether it is started in the background or foreground.

One job control problem not yet addressed in this discussion is how a process obtains input 
from standard input. If the process is in the foreground, there is no problem. If there is no job 
control and the process is started in the background, its standard input is redirected to /dev/
null to prevent it from grabbing characters from the foreground process. This simple 
redirection does not work with job control. Once a process redirects standard input, it cannot 
use standard input to read from the original controlling terminal when brought to the 
foreground. The solution specified by POSIX is for the kernel to generate a SIGTTIN signal when 
a background process attempts to read from the controlling terminal. The default action for 
SIGTTIN stops the job. The shell detects a change in the status of the child when it executes 
waitpid and then displays a message. The user can then choose to move the process to the 
foreground so it can receive input.

Background jobs can write to standard error. If a background process attempts to write to 
standard output while standard output is still directed to the controlling terminal, the terminal 
device driver generates a SIGTTOU for the process. In this case, the c_lflag member of the 
struct termios structure for the terminal has the TOSTOP flag set. A user then has the option 
of moving the job to the foreground so that it can send output to the controlling terminal. If the 
process has redirected standard input and standard output, it does I/O from the redirected 
sources.

Exercise 11.35 

Write a simple program that writes to standard output. Start the program in the background 
under your regular shell and see if it can write to standard output without generating a SIGTTOU 
signal.
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11.8 Job Control for ush

This section describes an implementation of job control for ush. Start by testing ush7 in the 
following cases to make sure that it correctly handles the SIGINT and SIGQUIT.

1.  Simple commands.

2.  Incorrect commands.

3.  Commands with standard input and output redirected.

4.  Pipelines.

5.  Background processes.

6.  All of the above interrupted by Ctrl-C.

11.8.1 A job list object

To do job control, ush must keep track of its children. Use a list object similar to the one used 
in Program 2.9 to keep a program history. The nodes in the list should have the following 
structure.

typedef enum jstatus
       {FOREGROUND, BACKGROUND, STOPPED, DONE, TERMINATED}
   job_status_t;

typedef struct job_struct {
    char *cmdstring;
    pid_t pgid;
    int job;
    job_status_t jobstat;
    struct job_struct *next;
} joblist_t;

static joblist_t *jobhead = NULL;
static joblist_t *jobtail = NULL;

Place the list structure in a separate file along with the following functions to manipulate the job 
list.

int add(pid_t pgid, char *cmd, job_status_t status);

Add the specified job to the list. The pgid is the process group ID, and cmd is the 
command string for the job. The status value can be either FOREGROUND or 
BACKGROUND. If successful, add returns the job number. If unsuccessful, add 
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returns –1 and sets errno. It uses getlargest to determine the largest job 
number and uses a job number that is one greater than this.

int delete(int job);

Remove the node corresponding to the specified job from the list. If successful, 
delete returns the job number. If unsuccessful, delete returns –1 and sets 
errno. Be sure to free all space associated with the deleted node.

showjobs(void);

Output a list of jobs and each one's status. Use the following format.

[job]  status  pgid  cmd

int setstatus(int job, job_status_t status);

Set the status value of the node of the corresponding job. If successful, 
setstatus returns 0. If unsuccessful, setstatus returns –1 and sets errno.

int getstatus(int job, job_status_t *pstatus);

Return the status value associated with the specified job in *pstatus. If 
successful, getstatus returns 0. If unsuccessful, getstatus returns –1 and sets 
errno.

pid_t getprocess(int job);

Return the process group ID of the specified job. If job doesn't exist, 
getprocess returns 0.

int getlargest(void);

Scan the job list for the largest job number currently in the list. The getlargest 
function returns the largest job number if any nodes are on the list or 0 if the list 
is empty.

Write a driver program to thoroughly test the list functions independently of ush.

11.8.2 The job list in ush

After the job list functions are working, add the job list object to ush as follows.

1.  Each time ush forks a child to run a background process, it adds a node to the job list. It 
sets the pgid member of the joblist_t node to the value returned from fork. The 



process status is BACKGROUND.

2.  If the command is executed in the background, ush outputs a message of the following 
form.

[job]  pid1  pid2 ....

job is the job number and pid1, pid2 and so on are the process IDs of the children in 
the process group for the command. The parent ush knows only the process ID of the 
initial child, so the child that calls executecmd must produce this message.

3.  The ush calls showjobs when a user enters the jobs command.

4.  Replace the waitpid call in ush with a more sophisticated strategy by using waitpid in 
a loop with the WUNTRACED option. The WUNTRACED option specifies that waitpid should 
report the status of any stopped child whose status has not yet been reported. This 
report is necessary for implementing job control in the next stage.

Test ush with the job list. Do not add job control in this step. Execute the jobs command 
frequently to see the status of the background processes. Carefully experiment with an existing 
shell that has job control. Make sure that ush handles background and foreground processes 
similarly.

11.8.3 Job control in ush

Incorporate job control into ush by adding the following commands to ush in addition to the 
jobs command of the previous section.

stop stop the current job

bg start the current job running in the background

bg %n start job n running in the background

fg %n start job n running in the foreground

mykill -NUM %n send the signal SIGNUM to job n

Some of these commands refer to the current job. When there are several jobs, one is the 
current job. The current job starts out as the first background job to be started. A user can 
make another job the current job by bringing it to the foreground with fg.

The ush shell now must handle SIGCONT, SIGTSTP, SIGTTIN and SIGTTOU in addition to SIGINT 
and SIGQUIT. When ush detects that a child has stopped because of a SIGTTIN or a SIGTTOU, it 
writes an informative message to standard error to notify the user that the child is waiting for 
input or output, respectively. The user can move that job to the foreground to read from or 
write to the controlling terminal.



Test the program thoroughly. Pay particular attention to how your regular shell does job control 
and adjust ush to look as similar as possible.

11.8.4 Process behavior in waiting for a pipeline

What happens when a shell starts a pipeline in the foreground and one of the processes in the 
pipeline terminates? The result depends on which process in the pipeline is the child of the shell.

Exercise 11.36 

Make a new version of showid from Exercise 11.28 on page 395 that sleeps for one minute 
after displaying the IDs. Call the new program showidsleep. Run ush7 with each of the 
following command lines. What happens?

showidsleep first | showid second
showid first | showidsleep second

Answer:

For the first command line, the shell displays the prompt after one minute since the first 
command in the pipeline is the child of the shell. For the second command line, the shell 
displays the prompt immediately since it waits only for the first command in the pipeline. This is 
probably not the desired behavior. Typically, a pipeline consists of a sequence of filters, and the 
last one in the sequence is the last to finish.

Exercise 11.37 

How would you solve the problem described in Exercise 11.36?

Answer:

One solution would be to rewrite executecmdpipe so that the last command of the pipeline was 
executed by the first process created. A better solution would be to have all of the processes in 
the pipeline be children of the shell and have the shell wait for all of them.
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11.9 Additional Reading

Books on C shell programming include UNIX Shell Programming by Arthur [6], UNIX Shell 
Programming, Revised Edition by Kochan and Wood [64] and Portable Shell Programming by 
Blinn [13]. Learning the Korn Shell, 2nd ed. by Rosenblatt [101] is a clear reference on the 
KornShell. Another book on the KornShell is The New KornShell Command and Programming 
Language, 2nd ed. by Bolsky and Korn [15]. Using csh and tsch by DuBois [33] is another 
general shell reference. Linux Application Development by Johnson and Troan [60] develops a 
shell called ladsh over several chapters to illustrate application programming concepts.
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Part III: Concurrency

Chapter 12.  POSIX Threads

Chapter 13.  Thread Synchronization

Chapter 14.  Critical Sections and Semaphores

Chapter 15.  POSIX IPC

Chapter 16.  Project: Producer Consumer Synchronization

Chapter 17.  Project: The Not Too Parallel Virtual Machine
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Chapter 12. POSIX Threads

One method of achieving parallelism is for multiple processes to cooperate and synchronize 
through shared memory or message passing. An alternative approach uses multiple threads of 
execution in a single address space. This chapter explains how threads are created, managed 
and used to solve simple problems. The chapter then presents an overview of basic thread 
management under the POSIX standard. The chapter discusses different thread models and 
explains how these models are accommodated under the standard.

Objectives

●     Learn basic thread concepts
●     Experiment with POSIX thread calls
●     Explore threaded application design
●     Use threads in unsynchronized applications
●     Understand thread-safety and error handling

[ Team LiB ]   
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12.1 A Motivating Problem: Monitoring File Descriptors

A blocking read operation causes the calling process to block until input becomes available. 
Such blocking creates difficulties when a process expects input from more than one source, 
since the process has no way of knowing which file descriptor will produce the next input. The 
multiple file descriptor problem commonly appears in client-server programming because the 
server expects input from multiple clients. Six general approaches to monitoring multiple file 
descriptors for input under POSIX are as follows.

1.  A separate process monitors each file descriptor (Program 4.11)

2.  select (Program 4.12 and Program 4.14)

3.  poll (Program 4.17)

4.  Nonblocking I/O with polling (Example 4.39)

5.  POSIX asynchronous I/O (Program 8.14 and Program 8.16)

6.  A separate thread monitors each file descriptor (Section 12.2)

In the separate process approach, the original process forks a child process to handle each file 
descriptor. This approach works for descriptors representing independent I/O streams, since 
once forked, the children don't share any variables. If processing of the descriptors is not 
independent, the children may use shared memory or message passing to exchange 
information.

Approaches two and three use blocking calls (select or poll) to explicitly wait for I/O on the 
descriptors. Once the blocking call returns, the calling program handles each ready file 
descriptor in turn. The code can be complicated when some of the file descriptors close while 
others remain open (e.g., Program 4.17). Furthermore, the program can do no useful 
processing while blocked.

The nonblocking strategy of the fourth approach works well when the program has "useful 
work" that it can perform between its intermittent checks to see if I/O is available. 
Unfortunately, most problems are difficult to structure in this way, and the strategy sometimes 
forces hard-coding of the timing for the I/O check relative to useful work. If the platform 
changes, the choice may no longer be appropriate. Without very careful programming and a 
very specific program structure, the nonblocking I/O strategy can lead to busy waiting and 
inefficient use of processor resources.

POSIX asynchronous I/O can be used with or without signal notification to overlap processing 
with monitoring of file descriptors. Without signal notification, asynchronous I/O relies on 
polling as in approach 4. With signal notification, the program does its useful work until it 
receives a signal advising that the I/O may be ready. The operating system transfers control to 
a handler to process the I/O. This method requires that the handler use only async-signal-safe 
functions. The signal handler must synchronize with the rest of the program to access the data, 
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opening the potential for deadlocks and race conditions. Although asynchronous I/O can be 
tuned very efficiently, the approach is error-prone and difficult to implement.

The final approach uses a separate thread to handle each descriptor, in effect reducing the 
problem to one of processing a single file descriptor. The threaded code is simpler than the 
other implementations, and a program can overlap processing with waiting for input in a 
transparent way.

Threading is not as widely used as it might be because, until recently, threaded programs were 
not portable. Each vendor provided a proprietary thread library with different calls. The POSIX 
standard addresses the portability issue with POSIX threads, described in the POSIX:THR 
Threads Extension. Table E.1 on page 860 lists several additional extensions that relate to the 
more esoteric aspects of POSIX thread management. Section 12.2 introduces POSIX threads by 
solving the multiple file descriptor problem. Do not focus on the details of the calls when you 
first read this section. The remainder of this chapter discusses basic POSIX thread management 
and use of the library. Chapter 13 explains synchronization and signal handling with POSIX 
threads. Chapters 14 and 15 discuss the use of semaphores for synchronization. Semaphores 
are part of the POSIX:SEM Extension and the POSIX:XSI Extension and can be used with 
threads. Chapters 16 and 17 discuss projects that use threads and synchronization.

[ Team LiB ]   
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12.2 Use of Threads to Monitor Multiple File Descriptors

Multiple threads can simplify the problem of monitoring multiple file descriptors because a 
dedicated thread with relatively simple logic can handle each file descriptor. Threads also make 
the overlap of I/O and processing transparent to the programmer.

We begin by comparing the execution of a function by a separate thread to the execution of an 
ordinary function call within the same thread of execution. Figure 12.1 illustrates a call to the 
processfd function within the same thread of execution. The calling mechanism creates an 
activation record (usually on the stack) that contains the return address. The thread of 
execution jumps to processfd when the calling mechanism writes the starting address of 
processfd in the processor's program counter. The thread uses the newly created activation 
record as the environment for execution, creating automatic variables on the stack as part of 
the record. The thread of execution continues in processfd until reaching a return statement 
(or the end of the function). The return statement copies the return address that is stored in 
the activation record into the processor program counter, causing the thread of execution to 
jump back to the calling program.

Figure 12.1. Program that makes an ordinary call to processfd has a 
single thread of execution.

Figure 12.2 illustrates the creation of a separate thread to execute the processfd function. The 
pthread_create call creates a new "schedulable entity" with its own value of the program 
counter, its own stack and its own scheduling parameters. The "schedulable entity" (i.e., 
thread) executes an independent stream of instructions, never returning to the point of the call. 
The calling program continues to execute concurrently. In contrast, when processfd is called 
as an ordinary function, the caller's thread of execution moves through the function code and 
returns to the point of the call, generating a single thread of execution rather than two separate 
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ones.

Figure 12.2. Program that creates a new thread to execute processfd has 
two threads of execution.

We now turn to the specific problem of handling multiple file descriptors. The processfd 
function of Program 12.1 monitors a single file descriptor by calling a blocking read. The 
function returns when it encounters end-of-file or detects an error. The caller passes the file 
descriptor as a pointer to void, so processfd can be called either as an ordinary function or as 
a thread.

The processfd function uses the r_read function of Program 4.3 instead of read to restart 
reading if the thread is interrupted by a signal. However, we recommend a dedicated thread for 
signal handling, as explained in Section 13.5. In this case, the thread that executes processfd 
would have all signals blocked and could call read.

Program 12.1 processfd.c

The processfd function monitors a single file descriptor for input.

#include <stdio.h>
#include "restart.h"
#define BUFSIZE 1024

void docommand(char *cmd, int cmdsize);



void *processfd(void *arg) { /* process commands read from file descriptor */
   char buf[BUFSIZE];
   int fd;
   ssize_t nbytes;

   fd = *((int *)(arg));
   for ( ; ; )  {
      if ((nbytes = r_read(fd, buf, BUFSIZE)) <= 0)
         break;
      docommand(buf, nbytes);
   }
   return NULL;
}

Example 12.1 

The following code segment calls processfd as an ordinary function. The code assumes that fd 
is open for reading and passes it by reference to processfd.

void *processfd(void *);
int fd;

processfd(&fd);

Example 12.2 

The following code segment creates a new thread to run processfd for the open file descriptor 
fd.

void *processfd(void *arg);

int error;
int fd;
pthread_t tid;

if (error = pthread_create(&tid, NULL, processfd, &fd))
   fprintf(stderr, "Failed to create thread: %s\n", strerror(error));

The code of Example 12.1 has a single thread of execution, as illustrated in Figure 12.1. The 
thread of execution for the calling program traverses the statements in the function and then 
resumes execution at the statement after the call. Since processfd uses blocking I/O, the 
program blocks on r_read until input becomes available on the file descriptor. Remember that 
the thread of execution is really the sequence of statements that the thread executes. The 
sequence contains no timing information, so the fact that execution blocks on a read call is not 
directly visible to the caller. The code in Example 12.2 has two threads of execution. A separate 
thread executes processfd, as illustrated in Figure 12.2.

The function monitorfd of Program 12.2 uses threads to monitor an array of file descriptors. 
Compare this implementation with those of Program 4.14 and Program 4.17. The threaded 
version is considerably simpler and takes advantage of parallelism. If docommand causes the 



calling thread to block for some reason, the thread runtime system schedules another runnable 
thread. In this way, processing and reading are overlapped in a natural way. In contrast, 
blocking of docommand in the single-threaded implementation causes the entire process to block.

If monitorfd fails to create thread i, it sets the corresponding thread ID to itself to signify that 
creation failed. The last loop uses pthread_join, described in Section 12.3, to wait until all 
threads have completed.

Program 12.2 monitorfd.c

A function to monitor an array of file descriptors, using a separate thread for each descriptor.

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void *processfd(void *arg);

void monitorfd(int fd[], int numfds) {       /* create threads to monitor fds */
   int error, i;
   pthread_t *tid;

   if ((tid = (pthread_t *)calloc(numfds, sizeof(pthread_t))) == NULL) {
      perror("Failed to allocate space for thread IDs");
      return;
   }
   for (i = 0; i < numfds; i++)   /* create a thread for each file descriptor */
      if (error = pthread_create(tid + i, NULL, processfd, (fd + i))) {
         fprintf(stderr, "Failed to create thread %d: %s\n",
                         i, strerror(error));
         tid[i] = pthread_self();
      }
   for (i = 0; i < numfds; i++) {
      if (pthread_equal(pthread_self(), tid[i]))
         continue;
      if (error = pthread_join(tid[i], NULL))
         fprintf(stderr, "Failed to join thread %d: %s\n", i, strerror(error));
   }
   free(tid);
   return;
}

[ Team LiB ]   
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12.3 Thread Management

A thread package usually includes functions for thread creation and thread destruction, scheduling, 
enforcement of mutual exclusion and conditional waiting. A typical thread package also contains a 
runtime system to manage threads transparently (i.e., the user is not aware of the runtime system). 
When a thread is created, the runtime system allocates data structures to hold the thread's ID, stack 
and program counter value. The thread's internal data structure might also contain scheduling and 
usage information. The threads for a process share the entire address space of that process. They 
can modify global variables, access open file descriptors, and cooperate or interfere with each other 
in other ways.

POSIX threads are sometimes called pthreads because all the thread functions start with pthread. 
Table 12.1 summarizes the basic POSIX thread management functions introduced in this section. The 
programs listed in Section 12.1 used pthread_create to create threads and pthread_join to wait 
for threads to complete. Other management functions deal with thread termination, signals and 
comparison of thread IDs. Section 12.6 introduces the functions related to thread attribute objects, 
and Chapter 13 covers thread synchronization functions.

Table 12.1. POSIX thread management functions.

POSIX function description

pthread_cancel terminate another thread

pthread_create create a thread

pthread_detach set thread to release resources

pthread_equal test two thread IDs for equality

pthread_exit exit a thread without exiting process

pthread_kill send a signal to a thread

pthread_join wait for a thread

pthread_self find out own thread ID

Most POSIX thread functions return 0 if successful and a nonzero error code if unsuccessful. They do 
not set errno, so the caller cannot use perror to report errors. Programs can use strerror if the 
issues of thread safety discussed in Section 12.4 are addressed. The POSIX standard specifically 
states that none of the POSIX thread functions returns EINTR and that POSIX thread functions do not 
have to be restarted if interrupted by a signal.

12.3.1 Referencing threads by ID

POSIX threads are referenced by an ID of type pthread_t. A thread can find out its ID by calling 
pthread_self.
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SYNOPSIS

  #include <pthread.h>

  pthread_t pthread_self(void);
                                          POSIX:THR

The pthread_self function returns the thread ID of the calling thread. No errors are defined for 
pthread_self.

Since pthread_t may be a structure, use pthread_equal to compare thread IDs for equality. The 
parameters of pthread_equal are the thread IDs to be compared.

SYNOPSIS

   #include <pthread.h>

   pthread_t pthread_equal(thread_t t1, pthread_t t2);
                                                              POSIX:THR

If t1 equals t2, pthread_equal returns a nonzero value. If the thread IDs are not equal, 
pthread_equal returns 0. No errors are defined for pthread_equal.

Example 12.3 

In the following code segment, a thread outputs a message if its thread ID is mytid.

pthread_t mytid;

if (pthread_equal(pthread_self(), mytid))
   printf("My thread ID matches mytid\n");

12.3.2 Creating a thread

The pthread_create function creates a thread. Unlike some thread facilities, such as those provided 
by the Java programming language, the POSIX pthread_create automatically makes the thread 
runnable without requiring a separate start operation. The thread parameter of pthread_create 
points to the ID of the newly created thread. The attr parameter represents an attribute object that 
encapsulates the attributes of a thread. If attr is NULL, the new thread has the default attributes. 
Section 12.6 discusses the setting of thread attributes. The third parameter, start_routine, is the 
name of a function that the thread calls when it begins execution. The start_routine takes a single 
parameter specified by arg, a pointer to void. The start_routine returns a pointer to void, which 
is treated as an exit status by pthread_join.

SYNOPSIS

  #include <pthread.h>

  int pthread_create(pthread_t *restrict thread,



                     const pthread_attr_t *restrict attr,
                     void *(*start_routine)(void *), void *restrict arg);
                                                                             POSIX:THR

If successful, pthread_create returns 0. If unsuccessful, pthread_create returns a nonzero error 
code. The following table lists the mandatory errors for pthread_create.

error cause

EAGAIN system did not have the resources to create the thread, or would exceed system limit on 
total number of threads in a process

EINVAL attr parameter is invalid

EPERM caller does not have the appropriate permissions to set scheduling policy or parameters 
specified by attr 

Do not let the prototype of pthread_create intimidate you—threads are easy to create and use.

Example 12.4 

The following code segment creates a thread to execute the function processfd after opening the my.
dat file for reading.

void *processfd(void *arg);

int error;
int fd;
pthread_t tid;

if ((fd = open("my.dat", O_RDONLY)) == -1)
   perror("Failed to open my.dat");
else if (error = pthread_create(&tid, NULL, processfd, &fd))
   fprintf(stderr, "Failed to create thread: %s\n", strerror(error));
else
   printf("Thread created\n");

12.3.3 Detaching and joining

When a thread exits, it does not release its resources unless it is a detached thread. The 
pthread_detach function sets a thread's internal options to specify that storage for the thread can 
be reclaimed when the thread exits. Detached threads do not report their status when they exit. 
Threads that are not detached are joinable and do not release all their resources until another thread 
calls pthread_join for them or the entire process exits. The pthread_join function causes the caller 
to wait for the specified thread to exit, similar to waitpid at the process level. To prevent memory 
leaks, long-running programs should eventually call either pthread_detach or pthread_join for 
every thread.

The pthread_detach function has a single parameter, thread, the thread ID of the thread to be 
detached.



SYNOPSIS

   #include <pthread.h>

   int pthread_detach(pthread_t thread);
                                                     POSIX:THR

If successful, pthread_detach returns 0. If unsuccessful, pthread_detach returns a nonzero error 
code. The following table lists the mandatory errors for pthread_detach.

error cause

EINVAL thread does not correspond to a joinable thread

ESRCH no thread with ID thread

Example 12.5 

The following code segment creates and then detaches a thread to execute the function processfd.

void *processfd(void *arg);

int error;
int fd
pthread_t tid;

if (error = pthread_create(&tid, NULL, processfd, &fd))
   fprintf(stderr, "Failed to create thread: %s\n", strerror(error));
else if (error = pthread_detach(tid))
   fprintf(stderr, "Failed to detach thread: %s\n", strerror(error));

Example 12.6 detachfun.c

When detachfun is executed as a thread, it detaches itself.

#include <pthread.h>
#include <stdio.h>

void *detachfun(void *arg) {
    int i = *((int *)(arg));
    if (!pthread_detach(pthread_self()))
        return NULL;
    fprintf(stderr, "My argument is %d\n", i);
    return NULL;
}

A nondetached thread's resources are not released until another thread calls pthread_join with the 
ID of the terminating thread as the first parameter. The pthread_join function suspends the calling 
thread until the target thread, specified by the first parameter, terminates. The value_ptr 



parameter provides a location for a pointer to the return status that the target thread passes to 
pthread_exit or return. If value_ptr is NULL, the caller does not retrieve the target thread return 
status.

SYNOPSIS

   #include <pthread.h>

   int pthread_join(pthread_t thread, void **value_ptr);
                                                          POSIX:THR

If successful, pthread_join returns 0. If unsuccessful, pthread_join returns a nonzero error code. 
The following table lists the mandatory errors for pthread_join.

error cause

EINVAL thread does not correspond to a joinable thread

ESRCH no thread with ID thread

Example 12.7 

The following code illustrates how to retrieve the value passed to pthread_exit by a terminating 
thread.

int error;
int *exitcodep;
pthread_t tid;

if (error = pthread_join(tid, &exitcodep))
   fprintf(stderr, "Failed to join thread: %s\n", strerror(error));
else
   fprintf(stderr, "The exit code was %d\n", *exitcodep);

Exercise 12.8 

What happens if a thread executes the following?

pthread_join(pthread_self());

Answer:

Assuming the thread was joinable (not detached), this statement creates a deadlock. Some 
implementations detect a deadlock and force pthread_join to return with the error EDEADLK. 
However, this detection is not required by the POSIX:THR Extension.

Calling pthread_join is not the only way for the main thread to block until the other threads have 
completed. The main thread can use a semaphore or one of the methods discussed in Section 16.6 
to wait for all threads to finish.



12.3.4 Exiting and cancellation

The process can terminate by calling exit directly, by executing return from main, or by having one 
of the other process threads call exit. In any of these cases, all threads terminate. If the main 
thread has no work to do after creating other threads, it should either block until all threads have 
completed or call pthread_exit(NULL).

A call to exit causes the entire process to terminate; a call to pthread_exit causes only the calling 
thread to terminate. A thread that executes return from its top level implicitly calls pthread_exit 
with the return value (a pointer) serving as the parameter to pthread_exit. A process will exit with 
a return status of 0 if its last thread calls pthread_exit.

The value_ptr value is available to a successful pthread_join. However, the value_ptr in 
pthread_exit must point to data that exists after the thread exits, so the thread should not use a 
pointer to automatic local data for value_ptr.

SYNOPSIS

   #include <pthread.h>

   void pthread_exit(void *value_ptr);
                                                         POSIX:THR

POSIX does not define any errors for pthread_exit.

Threads can force other threads to return through the cancellation mechanism. A thread calls 
pthread_cancel to request that another thread be canceled. The target thread's type and 
cancellability state determine the result. The single parameter of pthread_cancel is the thread ID of 
the target thread to be canceled. The pthread_cancel function does not cause the caller to block 
while the cancellation completes. Rather, pthread_cancel returns after making the cancellation 
request.

SYNOPSIS

   #include <pthread.h>

   int pthread_cancel(pthread_t thread);
                                                        POSIX:THR

If successful, pthread_cancel returns 0. If unsuccessful, pthread_cancel returns a nonzero error 
code. No mandatory errors are defined for pthread_cancel.

What happens when a thread receives a cancellation request depends on its state and type. If a 
thread has the PTHREAD_CANCEL_ENABLE state, it receives cancellation requests. On the other hand, 
if the thread has the PTHREAD_CANCEL_DISABLE state, the cancellation requests are held pending. By 
default, threads have the PTHREAD_CANCEL_ENABLE state.

The pthread_setcancelstate function changes the cancellability state of the calling thread. The 
pthread_setcancelstate takes two parameters: state, specifying the new state to set; and 



oldstate, a pointer to an integer for holding the previous state.

SYNOPSIS

   #include <pthread.h>

   int pthread_setcancelstate(int state, int *oldstate);
                                                            POSIX:THR

If successful, pthread_setcancelstate returns 0. If unsuccessful, it returns a nonzero error code. 
No mandatory errors are defined for pthread_setcancelstate.

Program 12.3 shows a modification of the processfd function of Program 12.1 that explicitly 
disables cancellation before it calls docommand, to ensure that the command won't be canceled 
midstream. The original processfd always returns NULL. The processfdcancel function returns a 
pointer other than NULL if it cannot change the cancellation state. This function should not return a 
pointer to an automatic local variable, since local variables are deallocated when the function returns 
or the thread exits. Program 12.3 uses a parameter passed by the calling thread to return the 
pointer.

Program 12.3 processfdcancel.c

This function monitors a file descriptor for input and calls docommand to process the result. It 
explicitly disables cancellation before calling docommand.

#include <pthread.h>
#include "restart.h"
#define BUFSIZE 1024

void docommand(char *cmd, int cmdsize);

void *processfdcancel(void *arg) { /* process commands with cancellation */
   char buf[BUFSIZE];
   int fd;
   ssize_t nbytes;
   int newstate, oldstate;

   fd = *((int *)(arg));
   for ( ; ; )  {
      if ((nbytes = r_read(fd, buf, BUFSIZE)) <= 0)
         break;
      if (pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &oldstate))
         return arg;
      docommand(buf, nbytes);
      if (pthread_setcancelstate(oldstate, &newstate))
         return arg;
   }
   return NULL;
}

As a general rule, a function that changes its cancellation state or its type should restore the value 
before returning. A caller cannot make reliable assumptions about the program behavior unless this 
rule is observed. The processfdcancel function saves the old state and restores it rather than just 



enabling cancellation after calling docommand.

Cancellation can cause difficulties if a thread holds resources such as a lock or an open file descriptor 
that must be released before exiting. A thread maintains a stack of cleanup routines using 
pthread_cleanup_push and pthread_cleanup_pop. (We do not discuss these here.) Although a 
canceled thread can execute a cleanup function before exiting (not discussed here), it is not always 
feasible to release resources in an exit handler. Also, there may be points in the execution at which 
an exit would leave the program in an unacceptable state. The cancellation type allows a thread to 
control the point when it exits in response to a cancellation request. When its cancellation type is 
PTHREAD_CANCEL_ASYNCHRONOUS, the thread can act on the cancellation request at any time. In 
contrast, a cancellation type of PTHREAD_CANCEL_DEFERRED causes the thread to act on cancellation 
requests only at specified cancellation points. By default, threads have the 
PTHREAD_CANCEL_DEFERRED type.

The pthread_setcanceltype function changes the cancellability type of a thread as specified by its 
type parameter. The oldtype parameter is a pointer to a location for saving the previous type. A 
thread can set a cancellation point at a particular place in the code by calling pthread_testcancel. 
Certain blocking functions, such as read, are automatically treated as cancellation points. A thread 
with the PTHREAD_CANCEL_DEFERRED type accepts pending cancellation requests when it reaches such 
a cancellation point.

SYNOPSIS

   #include <pthread.h>

   int pthread_setcanceltype(int type, int *oldtype);
   void pthread_testcancel(void);
                                                       POSIX:THR

If successful, pthread_setcanceltype returns 0. If unsuccessful, it returns a nonzero error code. No 
mandatory errors are defined for pthread_setcanceltype. The pthread_testcancel has no return 
value.

12.3.5 Passing parameters to threads and returning values

The creator of a thread may pass a single parameter to a thread at creation time, using a pointer to 
void. To communicate multiple values, the creator must use a pointer to an array or a structure. 
Program 12.4 illustrates how to pass a pointer to an array. The main program passes an array 
containing two open file descriptors to a thread that runs copyfilemalloc.

Program 12.4 callcopymalloc.c

This program creates a thread to copy a file.

#include <errno.h>
#include <fcntl.h>
#include <pthread.h>
#include <stdio.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
#define PERMS (S_IRUSR | S_IWUSR)



#define READ_FLAGS O_RDONLY
#define WRITE_FLAGS (O_WRONLY | O_CREAT | O_TRUNC)

void *copyfilemalloc(void *arg);

int main (int argc, char *argv[]) {        /* copy fromfile to tofile */
   int *bytesptr;
   int error;
   int fds[2];
   pthread_t tid;

   if (argc != 3) {
      fprintf(stderr, "Usage: %s fromfile tofile\n", argv[0]);
      return 1;
   }
   if (((fds[0] = open(argv[1], READ_FLAGS)) == -1) ||
       ((fds[1] = open(argv[2], WRITE_FLAGS, PERMS)) == -1)) {
      perror("Failed to open the files");
      return 1;
   }
   if (error = pthread_create(&tid, NULL, copyfilemalloc, fds)) {
      fprintf(stderr, "Failed to create thread: %s\n", strerror(error));
      return 1;
   }
   if (error = pthread_join(tid, (void **)&bytesptr)) {
      fprintf(stderr, "Failed to join thread: %s\n", strerror(error));
      return 1;
   }
   printf("Number of bytes copied: %d\n", *bytesptr);
   return 0;
}

Program 12.5 shows an implementation of copyfilemalloc, a function that reads from one file and 
outputs to another file. The arg parameter holds a pointer to a pair of open descriptors representing 
the source and destination files. The variables bytesp, infd and outfd are allocated on 
copyfilemalloc's local stack and are not directly accessible to other threads.

Program 12.5 also illustrates a strategy for returning values from the thread. The thread allocates 
memory space for returning the total number of bytes copied since it is not allowed to return a 
pointer to its local variables. POSIX requires that malloc be thread-safe. The copyfilemalloc 
function returns the bytesp pointer, which is equivalent to calling pthread_exit. It is the 
responsibility of the calling program (callcopymalloc) to free this space when it has finished using 
it. In this case, the program terminates, so it is not necessary to call free.

Program 12.5 copyfilemalloc.c

The copyfilemalloc function copies the contents of one file to another by calling the copyfile 
function of Program 4.6 on page 100. It returns the number of bytes copied by dynamically 
allocating space for the return value.

#include <stdlib.h>
#include <unistd.h>
#include "restart.h"

void *copyfilemalloc(void *arg)  { /* copy infd to outfd with return value */



   int *bytesp;
   int infd;
   int outfd;

   infd = *((int *)(arg));
   outfd = *((int *)(arg) + 1);
   if ((bytesp = (int *)malloc(sizeof(int))) == NULL)
      return NULL;
   *bytesp = copyfile(infd, outfd);
   r_close(infd);
   r_close(outfd);
   return bytesp;
}

Exercise 12.9 

What happens if copyfilemalloc stores the byte count in a variable with static storage class and 
returns a pointer to this static variable instead of dynamically allocating space for it?

Answer:

The program still works since only one thread is created. However, in a program with two 
copyfilemalloc threads, both store the byte count in the same place and one overwrites the other's 
value.

When a thread allocates space for a return value, some other thread is responsible for freeing that 
space. Whenever possible, a thread should clean up its own mess rather than requiring another 
thread to do it. It is also inefficient to dynamically allocate space to hold a single integer. An 
alternative to having the thread allocate space for the return value is for the creating thread to do it 
and pass a pointer to this space in the argument parameter of the thread. This approach avoids 
dynamic allocation completely if the space is on the stack of the creating thread.

Program 12.6 creates a copyfilepass thread to copy a file. The parameter to the thread is now an 
array of size 3. The first two entries of the array hold the file descriptors as in Program 12.4. The 
third array element stores the number of bytes copied. Program 12.6 can retrieve this value either 
through the array or through the second parameter of pthread_join. Alternatively, callcopypass 
could pass an array of size 2, and the thread could store the return value over one of the incoming 
file descriptors.

Program 12.6 callcopypass.c

A program that creates a thread to copy a file. The parameter of the thread is an array of three 
integers used for two file descriptors and the number of bytes copied.

#include <errno.h>
#include <fcntl.h>
#include <pthread.h>
#include <stdio.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/types.h>
#define PERMS (S_IRUSR | S_IWUSR)
#define READ_FLAGS O_RDONLY
#define WRITE_FLAGS (O_WRONLY | O_CREAT | O_TRUNC)



void *copyfilepass(void *arg);

int main (int argc, char *argv[]) {
   int *bytesptr;
   int error;
   int targs[3];
   pthread_t tid;

   if (argc != 3) {
      fprintf(stderr, "Usage: %s fromfile tofile\n", argv[0]);
      return 1;
   }

   if (((targs[0] = open(argv[1], READ_FLAGS)) == -1) ||
       ((targs[1] = open(argv[2], WRITE_FLAGS, PERMS)) == -1)) {
      perror("Failed to  open the files");
      return 1;
   }
   if (error = pthread_create(&tid, NULL, copyfilepass, targs)) {
      fprintf(stderr, "Failed to create thread: %s\n", strerror(error));
      return 1;
   }
   if (error = pthread_join(tid, (void **)&bytesptr)) {
      fprintf(stderr, "Failed to join thread: %s\n", strerror(error));
      return 1;
   }
   printf("Number of bytes copied: %d\n", *bytesptr);
   return 0;
}

The copyfilepass function of Program 12.7 uses an alternative way of accessing the pieces of the 
argument. Compare this with the method used by the copyfilemalloc function of Program 12.5.

Program 12.7 copyfilepass.c

A thread that can be used by callcopypass to copy a file.

#include <unistd.h>
#include "restart.h"

void *copyfilepass(void *arg)  {
   int *argint;

   argint = (int *)arg;
   argint[2] = copyfile(argint[0], argint[1]);
   r_close(argint[0]);
   r_close(argint[1]);
   return argint + 2;
}

Exercise 12.10 

Why have copyfilepass return a pointer to the number of bytes copied when callcopypass can 
access this value as args[2]?



Answer:

If a thread other than the creating thread joins with copyfilepass, it has access to the number of 
bytes copied through the parameter to pthread_join.

Program 12.8 shows a parallel file-copy program that uses the thread in Program 12.7. The main 
program has three command-line arguments: an input file basename, an output file basename and 
the number of files to copy. The program creates numcopiers threads. Thread i copies infile.i to 
outfile.i.

Exercise 12.11 

What happens in Program 12.8 if a write call in copyfile of copyfilepass fails?

Answer:

The copyfilepass returns the number of bytes successfully copied, and the main program does not 
detect an error. You can address the issue by having copyfilepass return an error value and pass 
the number of bytes written in one of the elements of the array used as a parameter for thread 
creation.

When creating multiple threads, do not reuse the variable holding a thread's parameter until you are 
sure that the thread has finished accessing the parameter. Because the variable is passed by 
reference, it is a good practice to use a separate variable for each thread.

Program 12.8 copymultiple.c

A program that creates threads to copy multiple file descriptors.

#include <errno.h>
#include <fcntl.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#define MAXNAME 80
#define R_FLAGS O_RDONLY
#define W_FLAGS (O_WRONLY | O_CREAT)
#define W_PERMS (S_IRUSR | S_IWUSR)

typedef struct {
   int args[3];
   pthread_t tid;
} copy_t;

void *copyfilepass(void *arg);

int main(int argc, char *argv[]) {
   int *bytesp;
   copy_t *copies;
   int error;
   char filename[MAXNAME];



   int i;
   int numcopiers;
   int totalbytes = 0;

   if (argc != 4) {
      fprintf(stderr, "Usage: %s infile outfile copies\n", argv[0]);
      return 1;
   }
   numcopiers = atoi(argv[3]);
   if ((copies = (copy_t *)calloc(numcopiers, sizeof(copy_t))) == NULL) {
      perror("Failed to allocate copier space");
      return 1;
   }
              /* open the source and destination files and create the threads */
   for (i = 0; i < numcopiers; i++) {
      copies[i].tid = pthread_self();       /* cannot be value for new thread */
      if (snprintf(filename, MAXNAME, "%s.%d", argv[1], i+1) == MAXNAME) {
         fprintf(stderr, "Input filename %s.%d too long", argv[1], i + 1);
         continue;
      }
      if ((copies[i].args[0] = open(filename, R_FLAGS)) == -1) {
         fprintf(stderr, "Failed to open source file %s: %s\n",
                         filename, strerror(errno));
         continue;
      }
     if (snprintf(filename, MAXNAME, "%s.%d", argv[2], i+1) == MAXNAME) {
         fprintf(stderr, "Output filename %s.%d too long", argv[2], i + 1);
         continue;
      }
      if ((copies[i].args[1] = open(filename, W_FLAGS, W_PERMS)) == -1) {
         fprintf(stderr, "Failed to open destination file %s: %s\n",
                         filename, strerror(errno));
         continue;
      }
      if (error = pthread_create((&copies[i].tid), NULL,
                                  copyfilepass, copies[i].args)) {
         fprintf(stderr, "Failed to create thread %d: %s\n", i + 1,
                 strerror(error));
         copies[i].tid = pthread_self();    /* cannot be value for new thread */
      }

   }
                     /* wait for the threads to finish and report total bytes */
   for (i = 0; i < numcopiers; i++) {
      if (pthread_equal(copies[i].tid, pthread_self()))        /* not created */
         continue;
      if (error = pthread_join(copies[i].tid, (void**)&bytesp)) {
         fprintf(stderr, "Failed to join thread %d\n", i);
         continue;
      }
      if (bytesp == NULL) {
         fprintf(stderr, "Thread %d failed to return status\n", i);
         continue;
      }
      printf("Thread %d copied %d bytes from %s.%d to %s.%d\n",
             i, *bytesp, argv[1], i + 1, argv[2], i + 1);
      totalbytes += *bytesp;
   }
   printf("Total bytes copied = %d\n", totalbytes);



   return 0;
}

Program 12.9 shows a simple example of what can go wrong. The program creates 10 threads that 
each output the value of their parameter. The main program uses the thread creation loop index i as 
the parameter it passes to the threads. Each thread prints the value of the parameter it received. A 
thread can get an incorrect value if the main program changes i before the thread has a chance to 
print it.

Exercise 12.12 

Run Program 12.9 and examine the results. What parameter value is reported by each thread?

Answer:

The results vary, depending on how the system schedules threads. One possibility is that main 
completes the loop creating the threads before any thread prints the value of the parameter. In this 
case, all the threads print the value 10.

Program 12.9 badparameters.c

A program that incorrectly passes parameters to multiple threads.

#include <pthread.h>
#include <stdio.h>
#include <string.h>
#define NUMTHREADS 10

static void *printarg(void *arg) {
   fprintf(stderr, "Thread received %d\n", *(int *)arg);
   return NULL;
}

int main (void) {        /* program incorrectly passes parameters to threads */
   int error;
   int i;
   int j;
   pthread_t tid[NUMTHREADS];

   for (i = 0; i < NUMTHREADS; i++)
      if (error = pthread_create(tid + i, NULL, printarg, (void *)&i)) {
         fprintf(stderr, "Failed to create thread: %s\n", strerror(error));
         tid[i] = pthread_self();
      }
   for (j = 0; j < NUMTHREADS; j++)
      if (pthread_equal(pthread_self(), tid[j]))
         continue;
      if (error = pthread_join(tid[j], NULL))
         fprintf(stderr, "Failed to join thread: %s\n", strerror(error));
   printf("All threads done\n");
   return 0;
}

Exercise 12.13 



For each of the following, start with Program 12.9 and make the specified modifications. Predict the 
output, and then run the program to see if you are correct.

1 Run the original program without any modification.

2 Put a call to sleep(1); at the start of printarg.

3 Put a call to sleep(1); inside the first for loop after the call to pthread_create.

4 Put a call to sleep(1); after the first for loop.

5.-8. Repeat each of the items above, using i as the loop index rather than j.

Answer:

The results may vary if it takes more than a second for the threads to execute. On a fast enough 
system, the result will be something like the following.

1.  Output described in Exercise 12.12.

2.  Each thread outputs the value 10, the value of i when main has finished its loop.

3.  Each thread outputs the correct value since it executes before the value of i changes.

4.  Same as in Exercise 12.12.

5.  All threads output the value 0, the value of i when main waits for the first thread to 
terminate. The results may vary.

6.  Same as 5.

7.  Same as 3.

8.  Same as 4.

Exercise 12.14 whichexit.c

The whichexit function can be executed as a thread.

#include <errno.h>
#include <pthread.h>
#include <stdlib.h>
#include <string.h>

void *whichexit(void *arg) {
   int n;
   int np1[1];
   int *np2;
   char s1[10];



   char s2[] = "I am done";
   n = 3;
   np1[0] = n;
   np2 = (int *)malloc(sizeof(int *));
   *np2 = n;
   strcpy(s1, "Done");
   return(NULL);
}

Which of the following would be safe replacements for NULL as the parameter to pthread_exit? 
Assume no errors occur.

1.  n

2.  &n

3.  (int *)n

4.  np1

5.  np2

6.  s1

7.  s2

8.  "This works"

9.  strerror(EINTR)

Answer:

1.  The return value is a pointer, not an integer, so this is invalid.

2.  The integer n has automatic storage class, so it is illegal to access it after the function 
terminates.

3.  This is a common way to return an integer from a thread. The integer is cast to a pointer. 
When another thread calls pthread_join for this thread, it casts the pointer back to an 
integer. While this will probably work in most implementations, it should be avoided. The C 
standard [56, Section 6.3.2.3] says that an integer may be converted to a pointer or a 
pointer to an integer, but the result is implementation defined. It does not guarantee that the 
result of converting an integer to a pointer and back again yields the original integer.

4.  The array np1 has automatic storage class, so it is illegal to access the array after the 
function terminates.

5.  This is safe since the dynamically allocated space will be available until it is freed.

6.  The array s1 has automatic storage class, so it is illegal to access the array after the function 
terminates.



7.  The array s2 has automatic storage class, so it is illegal to access the array after the function 
terminates.

8.  This is valid in C, since string literals have static storage duration.

9.  This is certainly invalid if strerror is not thread-safe. Even on a system where strerror is 
thread-safe, the string produced is not guaranteed to be available after the thread 
terminates. 
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12.4 Thread Safety

A hidden problem with threads is that they may call library functions that are not thread-safe, 
possibly producing spurious results. A function is thread-safe if multiple threads can execute 
simultaneous active invocations of the function without interference. POSIX specifies that all the 
required functions, including the functions from the standard C library, be implemented in a 
thread-safe manner except for the specific functions listed in Table 12.2. Those functions whose 
traditional interfaces preclude making them thread-safe must have an alternative thread-safe 
version designated with an _r suffix.

An important example of a function that does not have to be thread-safe is strerror. Although 
strerror is not guaranteed to be thread-safe, many systems have implemented this function 
in a thread-safe manner. Unfortunately, because strerror is listed in Table 12.2, you can not 
assume that it works correctly if multiple threads call it. We use strerror only in the main 
thread, often to produce error messages for pthread_create and pthread_join. Section 13.7 
gives a thread-safe implementation called strerror_r.

Another interaction problem occurs when threads access the same data. The individual copier 
threads in Program 12.8 work on independent problems and do not interact with each other. In 
more complicated applications, a thread may not exit after completing its assigned task. 
Instead, a worker thread may request additional tasks or share information. Chapter 13 
explains how to control this type of interaction by using synchronization primitives such as 
mutex locks and condition variables.

Table 12.2. POSIX functions that are not required to be thread-safe.

asctime fcvt getpwnam nl_langinfo

basename ftw getpwuid ptsname

catgets gcvt getservbyname putc_unlocked

crypt getc_unlocked getservbyport putchar_unlocked

ctime getchar_unlocked getservent putenv

dbm_clearerr getdate getutxent pututxline

dbm_close getenv getutxid rand

dbm_delete getgrent getutxline readdir

dbm_error getgrgid gmtime setenv

dbm_fetch getgrnam hcreate setgrent

dbm_firstkey gethostbyaddr hdestroy setkey

dbm_nextkey gethostbyname hsearch setpwent
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dbm_open gethostent inet_ntoa setutxent

dbm_store getlogin l64a strerror

dirname getnetbyaddr lgamma strtok

dlerror getnetbyname lgammaf ttyname

drand48 getnetent lgammal unsetenv

ecvt getopt localeconv wcstombs

encrypt getprotobyname localtime wctomb

endgrent getprotobynumber lrand48  

endpwent getprotoent mrand48  

endutxent getpwent nftw  

In traditional UNIX implementations, errno is a global external variable that is set when system 
functions produce an error. This implementation does not work for multithreading (see Section 
2.7), and in most thread implementations errno is a macro that returns thread-specific 
information. In essence, each thread has a private copy of errno. The main thread does not 
have direct access to errno for a joined thread, so if needed, this information must be returned 
through the last parameter of pthread_join.
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12.5 User Threads versus Kernel Threads

The two traditional models of thread control are user-level threads and kernel-level threads. 
User-level threads, shown in Figure 12.3, usually run on top of an existing operating system. 
These threads are invisible to the kernel and compete among themselves for the resources 
allocated to their encapsulating process. The threads are scheduled by a thread runtime system 
that is part of the process code. Programs with user-level threads usually link to a special 
library in which each library function is enclosed by a jacket. The jacket function calls the 
thread runtime system to do thread management before and possibly after calling the jacketed 
library function.

Figure 12.3. User-level threads are not visible outside their 
encapsulating process.

Functions such as read or sleep can present a problem for user-level threads because they 
may cause the process to block. To avoid blocking the entire process on a blocking call, the 
user-level thread library replaces each potentially blocking call in the jacket by a nonblocking 
version. The thread runtime system tests to see if the call would cause the thread to block. If 
the call would not block, the runtime system does the call right away. If the call would block, 
however, the runtime system places the thread on a list of waiting threads, adds the call to a 
list of actions to try later, and picks another thread to run. All this control is invisible to the user 
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and to the operating system.

User-level threads have low overhead, but they also have some disadvantages. The user thread 
model, which assumes that the thread runtime system will eventually regain control, can be 
thwarted by CPU-bound threads. A CPU-bound thread rarely performs library calls and may 
prevent the thread runtime system from regaining control to schedule other threads. The 
programmer has to avoid the lockout situation by explicitly forcing CPU-bound threads to yield 
control at appropriate points. A second problem is that user-level threads can share only 
processor resources allocated to their encapsulating process. This restriction limits the amount 
of available parallelism because the threads can run on only one processor at a time. Since one 
of the prime motivations for using threads is to take advantage of multiprocessor workstations, 
user-level threads alone are not an acceptable approach.

With kernel-level threads, the kernel is aware of each thread as a schedulable entity and 
threads compete systemwide for processor resources. Figure 12.4 illustrates the visibility of 
kernel-level threads. The scheduling of kernel-level threads can be almost as expensive as the 
scheduling of processes themselves, but kernel-level threads can take advantage of multiple 
processors. The synchronization and sharing of data for kernel-level threads is less expensive 
than for full processes, but kernel-level threads are considerably more expensive to manage 
than user-level threads.

Figure 12.4. Operating system schedules kernel-level threads as 
though they were individual processes.



Hybrid thread models have advantages of both user-level and kernel-level models by providing 
two levels of control. Figure 12.5 illustrates a typical hybrid approach. The user writes the 
program in terms of user-level threads and then specifies how many kernel-schedulable entities 
are associated with the process. The user-level threads are mapped into the kernel-schedulable 
entities at runtime to achieve parallelism. The level of control that a user has over the mapping 
depends on the implementation. In the Sun Solaris thread implementation, for example, the 
user-level threads are called threads and the kernel-schedulable entities are called lightweight 
processes. The user can specify that a particular thread be run by a dedicated lightweight 
process or that a particular group of threads be run by a pool of lightweight processes.

Figure 12.5. Hybrid model has two levels of scheduling, with user-level 
threads mapped into kernel entities.

The POSIX thread scheduling model is a hybrid model that is flexible enough to support both 
user-level and kernel-level threads in particular implementations of the standard. The model 
consists of two levels of scheduling—threads and kernel entities. The threads are analogous to 
user-level threads. The kernel entities are scheduled by the kernel. The thread library decides 
how many kernel entities it needs and how they will be mapped.

POSIX introduces the idea of a thread-scheduling contention scope, which gives the 
programmer some control over how kernel entities are mapped to threads. A thread can have a 
contentionscope attribute of either PTHREAD_SCOPE_PROCESS or PTHREAD_SCOPE_SYSTEM. 



Threads with the PTHREAD_SCOPE_PROCESS attribute contend for processor resources with the 
other threads in their process. POSIX does not specify how such a thread contends with threads 
outside its own process, so PTHREAD_SCOPE_PROCESS threads can be strictly user-level threads 
or they can be mapped to a pool of kernel entities in some more complicated way.

Threads with the PTHREAD_SCOPE_SYSTEM attribute contend systemwide for processor 
resources, much like kernel-level threads. POSIX leaves the mapping between 
PTHREAD_SCOPE_SYSTEM threads and kernel entities up to the implementation, but the obvious 
mapping is to bind such a thread directly to a kernel entity. A POSIX thread implementation can 
support PTHREAD_SCOPE_PROCESS, PTHREAD_SCOPE_SYSTEM or both. You can get the scope with 
pthread_attr_getscope and set the scope with pthread_attr_setscope, provided that your 
POSIX implementation supports both the POSIX:THR Thread Extension and the POSIX:TPS 
Thread Execution Scheduling Extension.
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12.6 Thread Attributes

POSIX takes an object-oriented approach to representation and assignment of properties by 
encapsulating properties such as stack size and scheduling policy into an object of type 
pthread_attr_t. The attribute object affects a thread only at the time of creation. You first 
create an attribute object and associate properties, such as stack size and scheduling policy, 
with the attribute object. You can then create multiple threads with the same properties by 
passing the same thread attribute object to pthread_create. By grouping the properties into a 
single object, POSIX avoids pthread_create calls with a large number of parameters.

Table 12.3 shows the settable properties of thread attributes and their associated functions. 
Other entities, such as condition variables and mutex locks, have their own attribute object 
types. Chapter 13 discusses these synchronization mechanisms.

Table 12.3. Summary of settable properties for POSIX thread attribute 
objects.

property function

attribute objects pthread_attr_destroy

pthread_attr_init

state pthread_attr_getdetachstate

pthread_attr_setdetachstate

stack pthread_attr_getguardsize

pthread_attr_setguardsize

pthread_attr_getstack

pthread_attr_setstack

scheduling pthread_attr_getinheritsched

pthread_attr_setinheritsched

pthread_attr_getschedparam

pthread_attr_setschedparam

pthread_attr_getschedpolicy

pthread_attr_setschedpolicy

pthread_attr_getscope
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pthread_attr_setscope

The pthread_attr_init function initializes a thread attribute object with the default values. 
The pthread_attr_destroy function sets the value of the attribute object to be invalid. POSIX 
does not specify the behavior of the object after it has been destroyed, but the variable can be 
initialized to a new thread attribute object. Both pthread_attr_init and 
pthread_attr_destroy take a single parameter that is a pointer to a pthread_attr_t attribute 
object.

SYNOPSIS

   #include <pthread.h>

   int pthread_attr_destroy(pthread_attr_t *attr);
   int pthread_attr_init(pthread_attr_t *attr);
                                                            POSIX:THR

If successful, pthread_attr_destroy and pthread_attr_init return 0. If unsuccessful, these 
functions return a nonzero error code. The pthread_attr_init function sets errno to ENOMEM if 
there is not enough memory to create the thread attribute object.

Most of the get/set thread attribute functions have two parameters. The first parameter is a 
pointer to a thread attribute object. The second parameter is the new value of the attribute for 
a set operation or a pointer to location to hold the value for a get operation. The 
pthread_attr_getstack and pthread_attr_setstack each have one additional parameter.

12.6.1 The thread state

The pthread_attr_getdetachstate function examines the state of an attribute object, and the 
pthread_attr_setdetachstate function sets the state of an attribute object. The possible 
values of the thread state are PTHREAD_CREATE_JOINABLE and PTHREAD_CREATE_DETACHED. The 
attr parameter is a pointer to the attribute object. The detachstate parameter corresponds to 
the value to be set for pthread_attr_setdetachstate and to a pointer to the value to be 
retrieved for pthread_attr_getdetachstate.

SYNOPSIS

  #include <pthread.h>

  int pthread_attr_getdetachstate(const pthread_attr_t *attr,
                                  int *detachstate);
  int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate);
                                                                   POSIX:THR

If successful, these functions return 0. If unsuccessful, they return a nonzero error code. The 
pthread_attr_setdetachstate function sets errno to EINVAL if detachstate is invalid.

Detached threads release their resources when they terminate, whereas joinable threads should 



be waited for with a pthread_join. A thread that is detached cannot be waited for with a 
pthread_join. By default, threads are joinable. You can detach a thread by calling the 
pthread_detach function after creating the thread. Alternatively, you can create a thread in the 
detached state by using an attribute object with thread state PTHREAD_CREATE_DETACHED.

Example 12.15 

The following code segment creates a detached thread to run processfd.

int error, fd;
pthread_attr_t tattr;
pthread_t tid;

if (error = pthread_attr_init(&tattr))
   fprintf(stderr, "Failed to create attribute object: %s\n",
                    strerror(error));
else if (error = pthread_attr_setdetachstate(&tattr,
                 PTHREAD_CREATE_DETACHED))
   fprintf(stderr, "Failed to set attribute state to detached: %s\n",
           strerror(error));
else if (error = pthread_create(&tid, &tattr, processfd, &fd))
   fprintf(stderr, "Failed to create thread: %s\n", strerror(error));

12.6.2 The thread stack

A thread has a stack whose location and size are user-settable, a useful property if the thread 
stack must be placed in a particular region of memory. To define the placement and size of the 
stack for a thread, you must first create an attribute object with the specified stack attributes. 
Then, call pthread_create with this attribute object.

The pthread_attr_getstack function examines the stack parameters, and the 
pthread_attr_setstack function sets the stack parameters of an attribute object. The attr 
parameter of each function is a pointer to the attribute object. The pthread_attr_setstack 
function takes the stack address and stack size as additional parameters. The 
pthread_attr_getstack takes pointers to these items.

SYNOPSIS

  #include <pthread.h>

  int pthread_attr_getstack(const pthread_attr_t *restrict attr,
           void **restrict stackaddr, size_t *restrict stacksize);
  int pthread_attr_setstack(pthread_attr_t *attr,
           void *stackaddr, size_t stacksize);
                                                            POSIX:THR,TSA,TSS

If successful, the pthread_attr_getstack and pthread_attr_setstack functions return 0. If 
unsuccessful, these functions return a nonzero error code. The pthread_attr_setstack 
function sets errno to EINVAL if stacksize is out of range.



POSIX also provides functions for examining or setting a guard for stack overflows if the 
stackaddr has not been set by the user. The pthread_attr_getguardsize function examines 
the guard parameters, and the pthread_attr_setguardsize function sets the guard 
parameters for controlling stack overflows in an attribute object. If the guardsize parameter is 
0, the stack is unguarded. For a nonzero guardsize, the implementation allocates additional 
memory of at least guardsize. An overflow into this extra memory causes an error and may 
generate a SIGSEGV signal for the thread.

SYNOPSIS

  #include <pthread.h>

  int pthread_attr_getguardsize(const pthread_attr_t *restrict attr,
                            size_t *restrict guardsize);
  int pthread_attr_setguardsize(pthread_attr_t *attr,
                            size_t guardsize);
                                                                 POSIX:THR,XSI

If successful, pthread_attr_getguardsize and pthread_attr_setguardsize return 0. If 
unsuccessful, these functions return a nonzero error code. They return EINVAL if the attr or 
guardsize parameter is invalid. Guards require the POSIX:THR Extension and the POSIX:XSI 
Extension.

12.6.3 Thread scheduling

The contention scope of an object controls whether the thread competes within the process or 
at the system level for scheduling resources. The pthread_attr_getscope examines the 
contention scope, and the pthread_attr_setscope sets the contention scope of an attribute 
object. The attr parameter is a pointer to the attribute object. The contentionscope 
parameter corresponds to the value to be set for pthread_attr_setscope and to a pointer to 
the value to be retrieved for pthread_attr_getscope. The possible values of the 
contentionscope parameter are PTHREAD_SCOPE_PROCESS and PTHREAD_SCOPE_SYSTEM.

SYNOPSIS

  #include <pthread.h>

  int pthread_attr_getscope(const pthread_attr_t *restrict attr,
                            int *restrict contentionscope);
  int pthread_attr_setscope(pthread_attr_t *attr, int contentionscope);
                                                                POSIX:THR,TPS

If successful, pthread_attr_getscope and pthread_attr_setscope return 0. If unsuccessful, 
these functions return a nonzero error code. No mandatory errors are defined for these 
functions.

Example 12.16 

The following code segment creates a thread that contends for kernel resources.



int error;
int fd;
pthread_attr_t tattr;
pthread_t tid;

if (error = pthread_attr_init(&tattr))
   fprintf(stderr, "Failed to create an attribute object:%s\n",
           strerror(error));
else if (error = pthread_attr_setscope(&tattr, PTHREAD_SCOPE_SYSTEM))
   fprintf(stderr, "Failed to set scope to system:%s\n",
           strerror(error));
else if (error = pthread_create(&tid, &tattr, processfd, &fd))
   fprintf(stderr, "Failed to create a thread:%s\n", strerror(error));

POSIX allows a thread to inherit a scheduling policy in different ways. The 
pthread_attr_getinheritsched function examines the scheduling inheritance policy, and the 
pthread_attr_setinheritsched function sets the scheduling inheritance policy of an attribute 
object.

The attr parameter is a pointer to the attribute object. The inheritsched parameter 
corresponds to the value to be set for pthread_attr_setinheritsched and to a pointer to the 
value to be retrieved for pthread_attr_getinheritsched. The two possible values of 
inheritsched are PTHREAD_INHERIT_SCHED and PTHREAD_EXPLICIT_SCHED. The value of 
inheritsched determines how the other scheduling attributes of a created thread are to be 
set. With PTHREAD_INHERIT_SCHED, the scheduling attributes are inherited from the creating 
thread and the other scheduling attributes are ignored. With PTHREAD_EXPLICIT_SCHED, the 
scheduling attributes of this attribute object are used.

SYNOPSIS

  #include <pthread.h>

  int pthread_attr_getinheritsched(const pthread_attr_t *restrict attr,
                            int *restrict inheritsched);
  int pthread_attr_setinheritsched(pthread_attr_t *attr,
                            int inheritsched);
                                                                POSIX:THR,TPS

If successful, these functions return 0. If unsuccessful, they return a nonzero error code. No 
mandatory errors are defined for these functions.

The pthread_attr_getschedparam function examines the scheduling parameters, and the 
pthread_attr_setschedparam sets the scheduling parameters of an attribute object. The attr 
parameter is a pointer to the attribute object. The param parameter is a pointer to the value to 
be set for pthread_attr_setschedparam and a pointer to the value to be retrieved for 
pthread_attr_getschedparam. Notice that unlike the other pthread_attr_set functions, the 
second parameter is a pointer because it corresponds to a structure rather than an integer. 
Passing a structure by value is inefficient.



SYNOPSIS

  #include <pthread.h>

  int pthread_attr_getschedparam(const pthread_attr_t *restrict attr,
                            struct sched_param *restrict param);
  int pthread_attr_setschedparam(pthread_attr_t *restrict attr,
                            const struct sched_param *restrict param);
                                                                   POSIX:THR

If successful, these functions return 0. If unsuccessful, they return a nonzero error code. No 
mandatory errors are defined for these functions.

The scheduling parameters depend on the scheduling policy. They are encapsulated in a 
struct sched_param structure defined in sched.h. The SCHED_FIFO and SCHED_RR scheduling 
policies require only the sched_priority member of struct sched_param. The 
sched_priority field holds an int priority value, with larger priority values corresponding to 
higher priorities. Implementations must support at least 32 priorities.

Program 12.10 shows a function that creates a thread attribute object with a specified priority. 
All the other attributes have their default values. Program 12.10 returns a pointer to the 
created attribute object or NULL if the function failed, in which case it sets errno. Program 
12.10 illustrates the general strategy for changing parameters—read the existing values first 
and change only the ones that you need to change.

Example 12.17 

The following code segment creates a dothis thread with the default attributes, except that the 
priority is HIGHPRIORITY.

#define HIGHPRIORITY 10

int fd;
pthread_attr_t *tattr;
pthread_t tid;
struct sched_param tparam;

if ((tattr = makepriority(HIGHPRIORITY))) {
   perror("Failed to create the attribute object");
else if (error = pthread_create(&tid, tattr, dothis, &fd))
   fprintf(stderr, "Failed to create dothis thread:%s\n", strerror(error));

Threads of the same priority compete for processor resources as specified by their scheduling 
policy. The sched.h header file defines SCHED_FIFO for first-in-first-out scheduling, SCHED_RR 
for round-robin scheduling and SCHED_OTHER for some other policy. One additional scheduling 
policy, SCHED_SPORADIC, is defined for implementations supporting the POSIX:SS Process 
Sporadic Server Extension and the POSIX:TSP Thread Sporadic Server Extension. 
Implementations may also define their own policies.

Program 12.10 makepriority.c



A function to create a thread attribute object with the specified priority.

#include <errno.h>
#include <pthread.h>
#include <stdlib.h>

pthread_attr_t *makepriority(int priority) {    /* create attribute object */
   pthread_attr_t *attr;
   int error;
   struct sched_param param;

   if ((attr = (pthread_attr_t *)malloc(sizeof(pthread_attr_t))) == NULL)
      return NULL;
   if (!(error = pthread_attr_init(attr)) &&
       !(error = pthread_attr_getschedparam(attr, &param))) {
       param.sched_priority = priority;
       error = pthread_attr_setschedparam(attr, &param);
   }
   if (error) {                      /* if failure, be sure to free memory */
      free(attr);
      errno = error;
      return NULL;
   }
   return attr;
}

First-in-first-out scheduling policies (e.g., SCHED_FIFO) use a queue for threads in the runnable 
state at a specified priority. Blocked threads that become runnable are put at the end of the 
queue corresponding to their priority, whereas running threads that have been preempted are 
put at the front of their queue.

Round-robin scheduling (e.g., SCHED_RR) behaves similarly to first-in-first-out except that when 
a running thread has been running for its quantum, it is put at the end of the queue for its 
priority. The sched_rr_get_interval function returns the quantum.

Sporadic scheduling, which is similar to first-in-first-out, uses two parameters (the 
replenishment period and the execution capacity) to control the number of threads running at a 
given priority level. The rules are reasonably complex, but the policy allows a program to more 
easily regulate the number of threads competing for the processor as a function of available 
resources.

Preemptive priority policy is the most common implementation of SCHED_OTHER. A POSIX-
compliant implementation can support any of these scheduling policies. The actual behavior of 
the policy in the implementation depends on the scheduling scope and other factors.

The pthread_attr_getschedpolicy function gets the scheduling policy, and the 
pthread_attr_setschedpolicy function sets the scheduling policy of an attribute object. The 
attr parameter is a pointer to the attribute object. For the function 
pthread_attr_setschedpolicy, the policy parameter is a pointer to the value to be set; for 
pthread_attr_getschedpolicy, it is a pointer to the value to be retrieved. The scheduling 
policy values are described above.



SYNOPSIS

  #include <pthread.h>

  int pthread_attr_getschedpolicy(const pthread_attr_t *restrict attr,
                                 int *restrict policy);
  int pthread_attr_setschedpolicy(pthread_attr_t *attr, int policy);
                                                                   POSIX:THR

If successful, these functions return 0. If unsuccessful, they return a nonzero error code. No 
mandatory errors are defined for these functions.
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12.7 Exercise: Parallel File Copy

This section develops a parallel file copy as an extension of the copier application of Program 
12.8. Be sure to use thread-safe calls in the implementation. The main program takes two 
command-line arguments that are directory names and copies everything from the first 
directory into the second directory. The copy program preserves subdirectory structure. The 
same filenames are used for source and destination. Implement the parallel file copy as follows.

1.  Write a function called copydirectory that has the following prototype.

void *copydirectory(void *arg)

The copydirectory function copies all the files from one directory to another directory. 
The directory names are passed in arg as two consecutive strings (separated by a null 
character). Assume that both source and destination directories exist when 
copydirectory is called. In this version, only ordinary files are copied and 
subdirectories are ignored. For each file to be copied, create a thread to run the 
copyfilepass function of Program 12.7. For this version, wait for each thread to 
complete before creating the next one.

2.  Write a main program that takes two command-line arguments for the source and 
destination directories. The main program creates a thread to run copydirectory and 
then does a pthread_join to wait for the copydirectory thread to complete. Use this 
program to test the first version of copydirectory.

3.  Modify the copydirectory function so that if the destination directory does not exist, 
copydirectory creates the directory. Test the new version.

4.  Modify copydirectory so that after it creates a thread to copy a file, it continues to 
create threads to copy the other files. Keep the thread ID and open file descriptors for 
each copyfilepass thread in a linked list with a node structure similar to the following.

typedef struct copy_struct {
   char *namestring;
   int sourcefd;
   int destinationfd;
   int bytescopied;
   pthread_t tid;
   struct copy_struct *next;
} copyinfo_t;
copyinfo_t *head = NULL;
copyinfo_t *tail = NULL;

After the copydirectory function creates threads to copy all the files in the directory, it 
does a pthread_join on each thread in its list and frees the copyinfo_t structure.
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5.  Modify the copyfilepass function of Program 12.7 so that its parameter is a pointer to 
a copyinfo_t structure. Test the new version of copyfilepass and copydirectory.

6.  Modify copydirectory so that if a file is a directory instead of an ordinary file, 
copydirectory creates a thread to run copydirectory instead of copyfilepass. Test 
the new function.

7.  Devise a method for performing timings to compare an ordinary copy with the threaded 
copy.

8.  If run on a large directory, the program may attempt to open more file descriptors or 
more threads than are allowed for a process. Devise a method for handling this situation.

9.  See whether there is a difference in running time if the threads have scope 
PTHREAD_SCOPE_SYSTEM instead of PTHREAD_SCOPE_PROCESS.

[ Team LiB ]   
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12.8 Additional Reading

A number of books on POSIX thread programming are available. They include Programming 
with POSIX(R) Threads by Butenhof [19], Pthreads Programming: A POSIX Standard for Better 
Multiprocessing by Nichols et al. [87], Multithreaded Programming with Pthreads by Lewis and 
Berg [72] and Thread Time: The Multithreaded Programming Guide by Norton and DiPasquale. 
All these books are based on the original POSIX standard. The book Distributed Operating 
Systems by Tanenbaum [121] presents an understandable general discussion of threads. 
Approaches to thread scheduling are discussed in [2, 12, 32, 78]. Finally, the POSIX standard 
[49, 51] is a surprisingly readable account of the conflicting issues and choices involved in 
implementing a usable threads package.
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file:///D|/Tutoriales%20&%20Programacion/Prep%20Finales/XxX/Prentice%20Hall%20-%20Unix%20Systems%20Programming%202nd%20Ed/NFO/lib.html
file:///D|/Tutoriales%20&%20Programacion/Prep%20Finales/XxX/Prentice%20Hall%20-%20Unix%20Systems%20Programming%202nd%20Ed/NFO/lib.html


[ Team LiB ]   

Chapter 13. Thread Synchronization

POSIX supports mutex locks for short-term locking and condition variables for waiting on 
events of unbounded duration. Signal handling in threaded programs presents additional 
complications that can be reduced if signal handlers are replaced with dedicated threads. This 
chapter illustrates these thread synchronization concepts by implementing controlled access to 
shared objects, reader-writer synchronization and barriers.

Objectives

●     Learn the basics of thread synchronization
●     Experiment with mutex locks and condition variables
●     Explore classic synchronization problems
●     Use threads with signals
●     Understand design tradeoffs for synchronization

[ Team LiB ]   
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13.1 POSIX Synchronization Functions

This chapter discusses mutex locks, conditions variables and read-write locks. Table 13.1 
summarizes the synchronization functions that are available in the POSIX:THR Extension. Each 
synchronization mechanism provides an initialization function and a function for destroying the 
object. The mutex locks and condition variables allow static initialization. All three types of 
synchronization have associated attribute objects, but we work only with synchronization 
objects that have the default attributes.

Table 13.1. Synchronization functions for POSIX:THR threads.

description POSIX function

mutex locks pthread_mutex_destroy

pthread_mutex_init

pthread_mutex_lock

pthread_mutex_trylock

pthread_mutex_unlock

condition variables pthread_cond_broadcast

pthread_cond_destroy

pthread_cond_init

pthread_cond_signal

pthread_cond_timedwait

pthread_cond_wait

read-write locks pthread_rwlock_destroy

pthread_rwlock_init

pthread_rwlock_rdlock

pthread_rwlock_timedrdlock

pthread_rwlock_timedwrlock

pthread_rwlock_tryrdlock

pthread_rwlock_trywrlock
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pthread_rwlock_wrlock
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13.2 Mutex Locks

A mutex is a special variable that can be either in the locked state or the unlocked state. If the 
mutex is locked, it has a distinguished thread that holds or owns the mutex. If no thread holds 
the mutex, we say the mutex is unlocked, free or available. The mutex also has a queue for the 
threads that are waiting to hold the mutex. The order in which the threads in the mutex queue 
obtain the mutex is determined by the thread-scheduling policy, but POSIX does not require 
that any particular policy be implemented.

When the mutex is free and a thread attempts to acquire the mutex, that thread obtains the 
mutex and is not blocked. It is convenient to think of this case as first causing the thread to 
enter the queue and then automatically removing it from the queue and giving it the mutex.

The mutex or mutex lock is the simplest and most efficient thread synchronization mechanism. 
Programs use mutex locks to preserve critical sections and to obtain exclusive access to 
resources. A mutex is meant to be held for short periods of time. Mutex functions are not thread 
cancellation points and are not interrupted by signals. A thread that waits for a mutex is not 
logically interruptible except by termination of the process, termination of a thread with 
pthread_exit (from a signal handler), or asynchronous cancellation (which is normally not 
used).

Mutex locks are ideal for making changes to data structures in which the state of the data 
structure is temporarily inconsistent, as when updating pointers in a shared linked list. These 
locks are designed to be held for a short time. Use condition variables to synchronize on events 
of indefinite duration such as waiting for input.

13.2.1 Creating and initializing a mutex

POSIX uses variables of type pthread_mutex_t to represent mutex locks. A program must 
always initialize pthread_mutex_t variables before using them for synchronization. For statically 
allocated pthread_mutex_t variables, simply assign PTHREAD_MUTEX_INITIALIZER to the 
variable. For mutex variables that are dynamically allocated or that don't have the default 
mutex attributes, call pthread_mutex_init to perform initialization.

The mutex parameter of pthread_mutex_init is a pointer to the mutex to be initialized. Pass 
NULL for the attr parameter of pthread_mutex_init to initialize a mutex with the default 
attributes. Otherwise, first create and initialize a mutex attribute object in a manner similar to 
that used for thread attribute objects.

SYNOPSIS

   #include <pthread.h>

   int pthread_mutex_init(pthread_mutex_t *restrict mutex,
                          const pthread_mutexattr_t *restrict attr);
   pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
                                                                     POSIX:THR
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If successful, pthread_mutex_init returns 0. If unsuccessful, pthread_mutex_init returns a 
nonzero error code. The following table lists the mandatory errors for pthread_mutex_init.

error cause

EAGAIN system lacks nonmemory resources needed to initialize *mutex

ENOMEM system lacks memory resources needed to initialize *mutex

EPERM caller does not have appropriate privileges

Example 13.1 

The following code segment initializes the mylock mutex with the default attributes, using the 
static initializer.

pthread_mutex_t mylock = PTHREAD_MUTEX_INITIALIZER;

The mylock variable must be allocated statically.

Static initializers are usually more efficient than pthread_mutex_init, and they are guaranteed 
to be performed exactly once before any thread begins execution.

Example 13.2 

The following code segment initializes the mylock mutex with the default attributes. The mylock 
variable must be accessible to all the threads that use it.

int error;
pthread_mutex_t mylock;

if (error = pthread_mutex_init(&mylock, NULL))
   fprintf(stderr, "Failed to initialize mylock:%s\n", strerror(error));

Example 13.2 uses the strerror function to output a message associated with error. 
Unfortunately, POSIX does not require strerror to be thread-safe (though many 
implementations have made it thread-safe). If multiple threads don't call strerror at the same 
time, you can still use it in threaded programs. For example, if all functions return error 
indications and only the main thread prints error messages, the main thread can safely call 
strerror. Section 13.7 gives a thread-safe and signal-safe implementation, strerror_r.

Exercise 13.3 

What happens if a thread tries to initialize a mutex that has already been initialized?

Answer:



POSIX explicitly states that the behavior is not defined, so avoid this situation in your programs.

13.2.2 Destroying a mutex

The pthread_mutex_destroy function destroys the mutex referenced by its parameter. The 
mutex parameter is a pointer to the mutex to be destroyed. A pthread_mutex_t variable that 
has been destroyed with pthread_mutex_destroy can be reinitialized with pthread_mutex_init.

SYNOPSIS

   #include <pthread.h>

   int pthread_mutex_destroy(pthread_mutex_t *mutex);
                                                           POSIX:THR

If successful, pthread_mutex_destroy returns 0. If unsuccessful, it returns a nonzero error 
code. No mandatory errors are defined for pthread_mutex_destroy.

Example 13.4 

The following code segment destroys a mutex.

pthread_mutex_t mylock;

if (error = pthread_mutex_destroy(&mylock))
   fprintf(stderr, "Failed to destroy mylock:%s\n", strerror(error));

Exercise 13.5 

What happens if a thread references a mutex after it has been destroyed? What happens if one 
thread calls pthread_mutex_destroy and another thread has the mutex locked?

Answer:

POSIX explicitly states that the behavior in both situations is not defined.

13.2.3 Locking and unlocking a mutex

POSIX has two functions, pthread_mutex_lock and pthread_mutex_trylock for acquiring a 
mutex. The pthread_mutex_lock function blocks until the mutex is available, while the 
pthread_mutex_trylock always returns immediately. The pthread_mutex_unlock function 
releases the specified mutex. All three functions take a single parameter, mutex, a pointer to a 
mutex.

SYNOPSIS



  #include <pthread.h>

  int pthread_mutex_lock(pthread_mutex_t *mutex);
  int pthread_mutex_trylock(pthread_mutex_t *mutex);
  int pthread_mutex_unlock(pthread_mutex_t *mutex);
                                                           POSIX:THR

If successful, these functions return 0. If unsuccessful, these functions return a nonzero error 
code. The following table lists the mandatory errors for the three functions.

error cause

EINVAL mutex has protocol attribute PTHREAD_PRIO_PROTECT and caller's priority is higher 
than mutex's current priority ceiling (pthread_mutex_lock or 
pthread_mutex_trylock)

EBUSY another thread holds the lock (pthread_mutex_trylock)

The PTHREAD_PRIO_PROTECT attribute prevents priority inversions of the sort described in 
Section 13.8.

Example 13.6 

The following code segment uses a mutex to protect a critical section.

pthread_mutex_t mylock = PTHREAD_MUTEX_INITIALIZER;

pthread_mutex_lock(&mylock);
    /*  critical section */
pthread_mutex_unlock(&mylock);

The code omits error checking for clarity.

Locking and unlocking are voluntary in the sense that a program achieves mutual exclusion only 
when its threads correctly acquire the appropriate mutex before entering their critical sections 
and release the mutex when finished. Nothing prevents an uncooperative thread from entering 
its critical section without acquiring the mutex. One way to ensure exclusive access to objects is 
to permit access only through well-defined functions and to put the locking calls in these 
functions. The locking mechanism is then transparent to the calling threads.

Program 13.1 shows an example of a thread-safe counter that might be used for reference 
counts in a threaded program. The locking mechanisms are hidden in the functions, and the 
calling program does not have to worry about using mutex variables. The count and countlock 
variables have the static attribute, so these variables can be referenced only from within 
counter.c. Following the pattern of the POSIX threads library, the functions in Program 13.1 
return 0 if successful or a nonzero error code if unsuccessful.



Exercise 13.7 

What can go wrong in a threaded program if the count variable of Program 13.1 is not 
protected with mutex locks?

Answer:

Without locking, it is possible to get an incorrect value for count, since incrementing and 
decrementing a variable are not atomic operations on most machines. (Typically, incrementing 
consists of three distinct steps: loading a memory location into a CPU register, adding 1 to the 
register, and storing the value back in memory.) Suppose a thread is in the middle of the 
increment when the process quantum expires. The thread scheduler may select another thread 
to run when the process runs again. If the newly selected thread also tries to increment or 
decrement count, the variable's value will be incorrect when the original thread completes its 
operation.

Program 13.1 counter.c

A counter that can be accessed by multiple threads.

#include <pthread.h>
static int count = 0;
static pthread_mutex_t  countlock = PTHREAD_MUTEX_INITIALIZER;

int increment(void) {                  /* increment the counter */
   int error;
   if (error = pthread_mutex_lock(&countlock))
      return error;
   count++;
   return pthread_mutex_unlock(&countlock);
}

int decrement(void) {                 /* decrement the counter */
    int error;
    if (error = pthread_mutex_lock(&countlock))
       return error;
    count--;
    return pthread_mutex_unlock(&countlock);
}

int getcount(int *countp) {           /* retrieve the counter */
    int error;
    if (error = pthread_mutex_lock(&countlock))
       return error;
    *countp = count;
    return pthread_mutex_unlock(&countlock);
}

13.2.4 Protecting unsafe library functions

A mutex can be used to protect an unsafe library function. The rand function from the C library 



takes no parameters and returns a pseudorandom integer in the range 0 to RAND_MAX. It is 
listed in the POSIX standard as being unsafe in multithreaded applications. The rand function 
can be used in a multithreaded environment if it is guaranteed that no two threads are 
concurrently calling it. Program 13.2 shows an implementation of the function randsafe that 
uses rand to produce a single per-process sequence of pseudorandom double values in the 
range from 0 to 1. Note that rand and therefore randsafe are not particularly good generators; 
avoid them in real applications.

Program 13.2 randsafe.c

A random number generator protected by a mutex.

#include <pthread.h>
#include <stdlib.h>

int randsafe(double *ranp) {
    static pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
    int error;

    if (error = pthread_mutex_lock(&lock))
       return error;
    *ranp = (rand() + 0.5)/(RAND_MAX + 1.0);
    return pthread_mutex_unlock(&lock);
}

13.2.5 Synchronizing flags and global values

Program 13.3 shows an implementation of a synchronized flag that is initially zero. The getdone 
function returns the value of the synchronized flag, and the setdone function changes the value 
of the synchronized flag to 1.

Program 13.3 doneflag.c

A synchronized flag that is 1 if setdone has been called at least once.

#include <pthread.h>
static int doneflag = 0;
static pthread_mutex_t donelock = PTHREAD_MUTEX_INITIALIZER;

int getdone(int *flag) {                   /* get the flag */
    int error;
    if (error = pthread_mutex_lock(&donelock))
       return error;
    *flag = doneflag;
    return pthread_mutex_unlock(&donelock);
}

int setdone(void) {                        /* set the flag */
    int error;
    if (error = pthread_mutex_lock(&donelock))
       return error;



    doneflag = 1;
    return pthread_mutex_unlock(&donelock);
}

Example 13.8 

The following code segment uses the synchronized flag of Program 13.3 to decide whether to 
process another command in a threaded program.

void docommand(void);

int error = 0;
int done = 0;

while(!done && !error) {
   docommand();
   error = getdone(&done);
}

Program 13.4 shows a synchronized implementation of a global error value. Functions from 
different files can call seterror with return values from various functions. The seterror 
function returns immediately if the error parameter is zero, indicating no error. Otherwise, 
seterror acquires the mutex and assigns error to globalerror if globalerror is zero. In this 
way, globalerror holds the error code of the first error that it is assigned. Notice that 
seterror returns the original error unless there was a problem acquiring or releasing the 
internal mutex. In this case, the global error value may not be meaningful and both seterror 
and geterror return the error code from the locking problem.

Program 13.4 globalerror.c

A shared global error flag.

#include <pthread.h>
static int globalerror = 0;
static pthread_mutex_t errorlock = PTHREAD_MUTEX_INITIALIZER;

int geterror(int *error) {                             /* get the error flag */
    int terror;
    if (terror = pthread_mutex_lock(&errorlock))
       return terror;
    *error = globalerror;
    return pthread_mutex_unlock(&errorlock);
}

int seterror(int error) {         /* globalerror set to error if first error */
    int terror;
    if (!error)            /* it wasn't an error, so don't change globalerror */
       return error;
    if (terror = pthread_mutex_lock(&errorlock))         /* couldn't get lock */
       return terror;
    if (!globalerror)



       globalerror = error;
    terror = pthread_mutex_unlock(&errorlock);
    return terror? terror: error;
}

Program 13.5 shows a synchronized implementation of a shared sum object that uses the global 
error flag of Program 13.4.

Program 13.5 sharedsum.c

A shared sum object that uses the global error flag of Program 13.4.

#include <pthread.h>
#include "globalerror.h"

static int count = 0;
static double sum = 0.0;
static pthread_mutex_t  sumlock = PTHREAD_MUTEX_INITIALIZER;

int add(double x) {                                          /* add x to sum */
    int error;
    if (error = pthread_mutex_lock(&sumlock))
       return seterror(error);
    sum += x;
    count++;
    error = pthread_mutex_unlock(&sumlock);
    return seterror(error);
}

int getsum(double *sump) {                                     /* return sum */
    int error;
    if (error = pthread_mutex_lock(&sumlock))
       return seterror(error);
    *sump = sum;
    error = pthread_mutex_unlock(&sumlock);
    return seterror(error);
}

int getcountandsum(int *countp, double *sump) {      /* return count and sum */
   int error;
   if (error = pthread_mutex_lock(&sumlock))
      return seterror(error);
   *countp = count;
   *sump = sum;
   error = pthread_mutex_unlock(&sumlock);
   return seterror(error);
}

Because mutex locks must be accessible to all the threads that need to synchronize, they often 
appear as global variables (internal or external linkage). Although C is not object oriented, an 
object organization is often useful. Internal linkage should be used for those objects that do not 
need to be accessed from outside a given file. Programs 13.1 through 13.5 illustrate methods of 
doing this. We now illustrate how to use these synchronized objects in a program.



Program 13.6 shows a function that can be called as a thread to do a simple calculation. The 
computethread calculates the sine of a random number between 0 and 1 in a loop, adding the 
result to the synchronized sum given by Program 13.5. The computethread sleeps for a short 
time after each calculation, allowing other threads to use the CPU. The computethread thread 
uses the doneflag of Program 13.3 to terminate when another thread sets the flag.

Program 13.6 computethread.c

A thread that computes sums of random sines.

#include <math.h>
#include <stdlib.h>
#include <time.h>
#include "doneflag.h"
#include "globalerror.h"
#include "randsafe.h"
#include "sharedsum.h"
#define TEN_MILLION 10000000L

/* ARGSUSED */
void *computethread(void *arg1) {             /* compute a random partial sum */
   int error;
   int localdone = 0;
   struct timespec sleeptime;
   double val;

   sleeptime.tv_sec = 0;
   sleeptime.tv_nsec = TEN_MILLION;                                  /* 10 ms */

   while (!localdone) {
       if (error = randsafe(&val)) /* get a random number between 0.0 and 1.0 */
           break;
       if (error = add(sin(val)))
           break;
       if (error = getdone(&localdone))
           break;
       nanosleep(&sleeptime, NULL);                   /* let other threads in */
   }
   seterror(error);
   return NULL;
}

Program 13.7 is a driver program that creates a number of computethread threads and allows 
them to compute for a given number of seconds before it sets a flag to end the calculations. The 
main program then calls the showresults function of Program 13.8 to retrieve the shared sum 
and number of the summed values. The showresults function computes the average from 
these values. It also calculates the theoretical average value of the sine function over the 
interval [0,1] and gives the total and percentage error of the average value.

The second command-line argument of computethreadmain is the number of seconds to sleep 
after creating the threads. After sleeping, computethreadmain calls setdone, causing the 
threads to terminate. The computethreadmain program then uses pthread_join to wait for the 



threads to finish and calls showresults. The showresults function uses geterror to check to 
see that all threads completed without reporting an error. If all is well, showresults displays 
the results.

Program 13.7 computethreadmain.c

A main program that creates a number of computethread threads and allows them to execute 
for a given number of seconds.

#include <math.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "computethread.h"
#include "doneflag.h"
#include "globalerror.h"
#include "sharedsum.h"

int showresults(void);

int main(int argc, char *argv[]) {
    int error;
    int i;
    int numthreads;
    int sleeptime;
    pthread_t *tids;

    if (argc != 3) {    /* pass number threads and sleeptime on command line */
        fprintf(stderr, "Usage: %s numthreads sleeptime\n", argv[0]);
        return 1;
    }

    numthreads = atoi(argv[1]);      /* allocate an array for the thread ids */
    sleeptime = atoi(argv[2]);
    if ((tids = (pthread_t *)calloc(numthreads, sizeof(pthread_t))) == NULL) {
        perror("Failed to allocate space for thread IDs");
        return 1;
    }
    for (i = 0; i < numthreads; i++)     /* create numthreads computethreads */
        if (error =  pthread_create(tids + i, NULL, computethread, NULL)) {
            fprintf(stderr, "Failed to start thread %d:%s\n", i, strerror(error));
            return 1;
        }
    sleep(sleeptime);                      /* give them some time to compute */
    if (error = setdone()) {  /* tell the computethreads to quit */
        fprintf(stderr, "Failed to set done:%s\n", strerror(error));
        return 1;
    }
    for (i = 0; i < numthreads; i++)     /* make sure that they are all done */
        if (error = pthread_join(tids[i], NULL)) {
            fprintf(stderr, "Failed to join thread %d:%s\n", i, strerror(error));
            return 1;
        }



    if (showresults())
        return 1;
    return 0;
}

Program 13.8 showresults.c

A function that displays the results of the computethread calculations.

#include <math.h>
#include <stdio.h>
#include <string.h>
#include "globalerror.h"
#include "sharedsum.h"

int showresults(void) {
   double average;
   double calculated;
   int count;
   double err;
   int error;
   int gerror;
   double perr;
   double sum;

   if (((error = getcountandsum(&count, &sum)) != 0) ||
       ((error = geterror(&gerror)) != 0)) {                  /* get results */
      fprintf(stderr, "Failed to get results: %s\n", strerror(error));
      return -1;
   }
   if (gerror) {          /* an error occurred in compute thread computation */
      fprintf(stderr, "Failed to compute sum: %s\n", strerror(gerror));
       return -1;
   }
   if (count == 0)
      printf("No values were summed.\n");
   else {
      calculated = 1.0 - cos(1.0);
      average = sum/count;
      err = average - calculated;
      perr = 100.0*err/calculated;
      printf("The sum is %f and the count is %d\n", sum, count);
      printf("The average is %f and error is %f or %f%%\n", average, err, perr);
   }
   return 0;
}

13.2.6 Making data structures thread-safe

Most shared data structures in a threaded program must be protected with synchronization 
mechanisms to ensure correct results. Program 13.9 illustrates how to use a single mutex to 
make the list object of Program 2.7 thread-safe. The listlib.c program should be included in 
the listlib_r.c file. All the functions in listlib.c should be qualified with the static 



attribute so that they are not accessible outside the file. The list object functions of Program 2.7 
return –1 and set errno to report an error. The implementation of Program 13.9 preserves this 
handling of the errors. Since each thread has its own errno, setting errno in the listlib_r 
functions is not a problem. The implementation just wraps each function in a pair of mutex calls. 
Most of the code is for properly handling errors that occur during the mutex calls.

Program 13.9 listlib_r.c

Wrapper functions to make the list object of Program 2.7 thread-safe.

#include <errno.h>
#include <pthread.h>
static pthread_mutex_t listlock = PTHREAD_MUTEX_INITIALIZER;

int accessdata_r(void) {  /* return nonnegative traversal key if successful */
   int error;
   int key;
   if (error = pthread_mutex_lock(&listlock)) {        /* no mutex, give up */
      errno = error;
      return -1;
   }
   key = accessdata();
   if (key == -1) {
      error = errno;
      pthread_mutex_unlock(&listlock);
      errno = error;
      return -1;
   }
   if (error = pthread_mutex_unlock(&listlock)) {
      errno = error;
      return -1;
   }
   return key;
}

int adddata_r(data_t data) {        /* allocate a node on list to hold data */
   int error;
   if (error = pthread_mutex_lock(&listlock)) {        /* no mutex, give up */
      errno = error;
      return -1;
   }
   if (adddata(data) == -1) {
      error = errno;
      pthread_mutex_unlock(&listlock);
      errno = error;
      return -1;
   }
   if (error = pthread_mutex_unlock(&listlock)) {
      errno = error;
      return -1;
   }
   return 0;
}



int getdata_r(int key, data_t *datap) {             /* retrieve node by key */
   int error;
   if (error = pthread_mutex_lock(&listlock)) {        /* no mutex, give up */
      errno = error;
      return -1;
   }
   if (getdata(key, datap) == -1) {
      error = errno;
      pthread_mutex_unlock(&listlock);
      errno = error;
      return -1;
   }
   if (error = pthread_mutex_unlock(&listlock)) {
      errno = error;
      return -1;
   }
   return 0;
}

int freekey_r(int key) {                                    /* free the key */
   int error;
   if (error = pthread_mutex_lock(&listlock)) {        /* no mutex, give up */
      errno = error;
      return -1;
   }
   if (freekey(key) == -1) {
      error = errno;
      pthread_mutex_unlock(&listlock);
      errno = error;
      return -1;
   }
   if (error = pthread_mutex_unlock(&listlock)) {
      errno = error;
      return -1;
   }
   return 0;
}

The implementation of Program 13.9 uses a straight locking strategy that allows only one 
thread at a time to proceed. Section 13.6 revisits this problem with an implementation that 
allows multiple threads to execute the getdata function at the same time by using reader-writer 
synchronization.
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13.3 At-Most-Once and At-Least-Once-Execution

If a mutex isn't statically initialized, the program must call pthread_mutex_init before using 
any of the other mutex functions. For programs that have a well-defined initialization phase 
before they create additional threads, the main thread can perform this initialization. Not all 
problems fit this structure. Care must be taken to call pthread_mutex_init before any thread 
accesses a mutex, but having each thread initialize the mutex doesn't work either. The effect of 
calling pthread_mutex_init for a mutex that has already been initialized is not defined.

The notion of single initialization is so important that POSIX provides the pthread_once 
function to ensure these semantics. The once_control parameter must be statically initialized 
with PTHREAD_ONCE_INIT. The init_routine is called the first time pthread_once is called with 
a given once_control, and init_routine is not called on subsequent calls. When a thread 
returns from pthread_once without error, the init_routine has been completed by some 
thread.

SYNOPSIS

  #include <pthread.h>

  int pthread_once(pthread_once_t *once_control,
                   void (*init_routine)(void));
  pthread_once_t once_control = PTHREAD_ONCE_INIT;
                                                               POSIX:THR

If successful, pthread_once returns 0. If unsuccessful, pthread_once returns a nonzero error 
code. No mandatory errors are defined for pthread_once.

Program 13.10 uses pthread_once to implement an initialization function printinitmutex. 
Notice that var isn't protected by a mutex because it will be changed only once by 
printinitonce, and that modification occurs before any caller returns from printinitonce.

Program 13.10 printinitonce.c

A function that uses pthread_once to initialize a variable and print a statement at most once.

#include <pthread.h>
#include <stdio.h>

static pthread_once_t initonce = PTHREAD_ONCE_INIT;
int var;

static void initialization(void) {
   var = 1;
   printf("The variable was initialized to %d\n", var);
}
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int printinitonce(void) {        /* call initialization at most once */
   return pthread_once(&initonce, initialization);
}

The initialization function of printinitonce has no parameters, making it hard to initialize 
var to something other than a fixed value. Program 13.11 shows an alternative implementation 
of at-most-once initialization that uses a statically initialized mutex. The printinitmutex 
function performs the initialization and printing at most once regardless of how many different 
variables or values are passed. If successful, printinitmutex returns 0. If unsuccessful, 
printinitmutex returns a nonzero error code. The mutex in printinitmutex is declared in the 
function so that it is accessible only inside the function. Giving the mutex static storage class 
guarantees that the same mutex is used every time the function is called.

Program 13.11 printinitmutex.c

A function that uses a statically initialized mutex to initialize a variable and print a statement at 
most once.

#include <pthread.h>
#include <stdio.h>

int printinitmutex(int *var, int value) {
   static int done = 0;
   static pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
   int error;
   if (error = pthread_mutex_lock(&lock))
      return error;
   if (!done) {
      *var = value;
      printf("The variable was initialized to %d\n", value);
      done = 1;
   }
   return pthread_mutex_unlock(&lock);
}

Example 13.9 

The following code segment initializes whichiteration to the index of the first loop iteration in 
which dostuff returns a nonzero value.

int whichiteration = -1;

void *thisthread(void *) {
   int i;
   for (i = 0; i < 100; i++)
      if (dostuff())
         printinitmutex(&whichiteration, i);
}

The whichiteration value is changed at most once, even if the program creates several 
threads running thisthread.



The testandsetonce function of Program 13.12 atomically sets an internal variable to 1 and 
returns the previous value of the internal variable in its ovalue parameter. The first call to 
testandsetonce initializes done to 0, sets *ovalue to 0 and sets done to 1. Subsequent calls 
set *ovalue to 1. The mutex ensures that no two threads have ovalue set to 0. If successful, 
testandsetonce returns 0. If unsuccessful, testandsetonce returns a nonzero error code.

Exercise 13.10 

What happens if you remove the static qualifier from the done and lock variables of 
testandsetonce of Program 13.12?

Answer:

The static qualifier for variables inside a block ensures that they remain in existence for 
subsequent executions of the block. Without the static qualifier, done and lock become 
automatic variables. In this case, each call to testandsetonce allocates new variables and each 
return deallocates them. The function no longer works.

Program 13.12 testandsetonce.c

A function that uses a mutex to set a variable to 1 at most once.

#include <pthread.h>

int testandsetonce(int *ovalue) {
   static int done = 0;
   static pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
   int error;
   if (error = pthread_mutex_lock(&lock))
      return error;
   *ovalue = done;
   done = 1;
   return pthread_mutex_unlock(&lock);
}

Exercise 13.11 

Does testandsetonce still work if you move the declarations of done and lock outside the 
testandsetonce function?

Answer:

Yes, testandsetonce still works. However, now done and lock are accessible to other functions 
defined in the same file. Keeping them inside the function is safer for enforcing at-most-once 
semantics.



Exercise 13.12 

Does the following use of testandsetonce of Program 13.12 ensure that the initialization of 
var and the printing of the message occur at most once?

int error;
int oflag;
int var;

error = testandsetonce(&oflag);
if (!error && !oflag) {
   var = 1;
   printf("The variable has been initialized to 1\n");
}
var++;

Answer:

No. Successive calls to testandsetonce of Program 13.12 can return before the variable has 
been initialized. Consider the following scenario in which var must be initialized before being 
incremented.

1.  Thread A calls testandsetonce.

2.  The testandsetonce returns in thread A.

3.  Thread A loses the CPU.

4.  Thread B calls testandsetonce.

5.  The executeonce returns to thread B without printing or initializing var.

6.  Thread B assumes that var has been initialized, and it increments the variable.

7.  Thread A gets the CPU again and initializes var to 1.

In this case, var should have the value 2 since it was initialized to 1 and incremented 
once. Unfortunately, it has the value 1.

The strategies discussed in this section guarantee at-most-once execution. They do not 
guarantee that code has been executed at least once. At-least-once semantics are important 
for initialization. For example, suppose that you choose to use pthread_mutex_init rather 
than the static initializer to initialize a mutex. You need both at-most-once and at-least-once 
semantics. In other words, you need to perform an operation such as initialization exactly once. 
Sometimes the structure of the program ensures that this is the case—a main thread performs 
all necessary initialization before creating any threads. In other situations, each thread must 
call initialization when it starts executing, or each function must call the initialization before 
accessing the mutex. In these cases, you will need to use at-most-once strategies in 



conjunction with the calls.
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13.4 Condition Variables

Consider the problem of having a thread wait until some arbitrary condition is satisfied. For 
concreteness, assume that two variables, x and y, are shared by multiple threads. We want a 
thread to wait until x and y are equal. A typical incorrect busy-waiting solution is

while (x != y) ;

Having a thread use busy waiting is particularly troublesome. Depending on how the threads 
are scheduled, the thread doing the busy waiting may prevent other threads from ever using 
the CPU, in which case x and y never change. Also, access to shared variables should always be 
protected.

Here is the correct strategy for non-busy waiting for the predicate x==y to become true.

1.  Lock a mutex.

2.  Test the condition x==y.

3.  If true, unlock the mutex and exit the loop.

4.  If false, suspend the thread and unlock the mutex.

The mutex must be held until a test determines whether to suspend the thread. Holding the 
mutex prevents the condition x==y from changing between the test and the suspension of the 
thread. The mutex needs to be unlocked while the thread is suspended so that other threads 
can access x and y. The strategy assumes that the code protects all other access to the shared 
variables x and y with the mutex.

Applications manipulate mutex queues through well-defined system library functions such as 
pthread_mutex_lock and pthread_mutex_unlock. These functions are not sufficient to 
implement (in a simple manner) the queue manipulations required here. We need a new data 
type, one associated with a queue of processes waiting for an arbitrary condition such as x==y 
to become true. Such a data type is called a condition variable.

A classical condition variable is associated with a particular condition. In contrast, POSIX 
condition variables provide an atomic waiting mechanism but are not associated with particular 
conditions.

The function pthread_cond_wait takes a condition variable and a mutex as parameters. It 
atomically suspends the calling thread and unlocks the mutex. It can be thought of as placing 
the thread in a queue of threads waiting to be notified of a change in a condition. The function 
returns with the mutex reacquired when the thread receives a notification. The thread must 
test the condition again before proceeding.
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Example 13.13 

The following code segment illustrates how to wait for the condition x==y, using a POSIX 
condition variable v and a mutex m.

pthread_mutex_lock(&m);
while (x != y)
   pthread_cond_wait(&v, &m);
/* modify x or y if necessary */
pthread_mutex_unlock(&m);

When the thread returns from pthread_cond_wait it owns m, so it can safely test the condition 
again. The code segment omits error checking for clarity.

The function pthread_cond_wait should be called only by a thread that owns the mutex, and 
the thread owns the mutex again when the function returns. The suspended thread has the 
illusion of uninterrupted mutex ownership because it owns the mutex before the call to 
pthread_cond_wait and owns the mutex when pthread_cond_wait returns. In reality, the 
mutex can be acquired by other threads during the suspension.

A thread that modifies x or y can call pthread_cond_signal to notify other threads of the 
change. The pthread_cond_signal function takes a condition variable as a parameter and 
attempts to wake up at least one of the threads waiting in the corresponding queue. Since the 
blocked thread cannot return from pthread_cond_wait without owning the mutex, 
pthread_cond_signal has the effect of moving the thread from the condition variable queue to 
the mutex queue.

Example 13.14 

The following code might be used by another thread in conjunction with Example 13.13 to 
notify the waiting thread that it has incremented x.

pthread_mutex_lock(&m);
x++;
pthread_cond_signal(&v);
pthread_mutex_unlock(&m);

The code segment omits error checking for clarity.

In Example 13.14, the caller holds the mutex while calling pthread_cond_signal. POSIX does 
not require this to be the case, and the caller could have unlocked the mutex before signaling. 
In programs that have threads of different priorities, holding the mutex while signaling can 
prevent lower priority threads from acquiring the mutex and executing before a higher-priority 
thread is awakened.

Several threads may use the same condition variables to wait on different predicates. The 
waiting threads must verify that the predicate is satisfied when they return from the wait. The 
threads that modify x or y do not need to know what conditions are being waited for; they just 
need to know which condition variable is being used.



Exercise 13.15 

Compare the use of condition variables with the use of sigsuspend as described in Example 
8.24 on page 275.

Answer:

The concepts are similar. Example 8.24 blocks the signal and tests the condition. Blocking the 
signal is analogous to locking the mutex since the signal handler cannot access the global 
variable sigreceived while the signal is blocked. The sigsuspend atomically unblocks the 
signal and suspends the process. When sigsuspend returns, the signal is blocked again. With 
condition variables, the thread locks the mutex to protect its critical section and tests the 
condition. The pthread_cond_wait atomically releases the mutex and suspends the process. 
When pthread_cond_wait returns, the thread owns the mutex again.

13.4.1 Creating and destroying condition variables

POSIX represents condition variables by variables of type pthread_cond_t. A program must 
always initialize pthread_cond_t variables before using them. For statically allocated 
pthread_cond_t variables with the default attributes, simply assign 
PTHREAD_COND_INITIALIZER to the variable. For variables that are dynamically allocated or 
don't have the default attributes, call pthread_cond_init to perform initialization. Pass NULL 
for the attr parameter of pthread_cond_init to initialize a condition variable with the default 
attributes. Otherwise, first create and initialize a condition variable attribute object in a manner 
similar to that used for thread attribute objects.

SYNOPSIS

  #include <pthread.h>

  int pthread_cond_init(pthread_cond_t *restrict cond,
                        const pthread_condattr_t *restrict attr);
  pthread_cont_t cond = PTHREAD_COND_INITIALIZER;
                                                                      POSIX:THR

If successful, pthread_cond_init returns 0. If unsuccessful, pthread_cond_init returns a 
nonzero error code. The following table lists the mandatory errors for pthread_cond_init.

error cause

EAGAIN system lacked nonmemory resources needed to initialize *cond

ENOMEM system lacked memory resources needed to initialize *cond



Example 13.16 

The following code segment initializes a condition variable.

pthread_cond_t barrier;
int error;

if (error = pthread_cond_init(&barrier, NULL));
   fprintf(stderr, "Failed to initialize barrier:%s\n", strerror(error));

The code assumes that strerror will not be called by multiple threads. Otherwise, strerror_r 
of Section 13.7 should be used.

Exercise 13.17 

What happens if a thread tries to initialize a condition variable that has already been initialized?

Answer:

The POSIX standard explicitly states that the results are not defined, so you should avoid doing 
this.

The pthread_cond_destroy function destroys the condition variable referenced by its cond 
parameter. A pthread_cond_t variable that has been destroyed with pthread_cond_destroy 
can be reinitialized with pthread_cond_init.

SYNOPSIS

  #include <pthread.h>

  int pthread_cond_destroy(pthread_cond_t *cond);
                                                          POSIX:THR

If successful, pthread_cond_destroy returns 0. If unsuccessful, it returns a nonzero error 
code. No mandatory errors are defined for pthread_cond_destroy.

Example 13.18 

The following code segment destroys the condition variable tcond.

pthread_cond_t tcond;

if (error = pthread_cond_destroy(&tcond))
   fprintf(stderr, "Failed to destroy tcond:%s\n", strerror(error));

Exercise 13.19 



What happens if a thread references a condition variable that has been destroyed?

Answer:

POSIX explicitly states that the results are not defined. The standard also does not define what 
happens when a thread attempts to destroy a condition variable on which other threads are 
blocked.

13.4.2 Waiting and signaling on condition variables

Condition variables derive their name from the fact that they are called in conjunction with 
testing a predicate or condition. Typically, a thread tests a predicate and calls 
pthread_cond_wait if the test fails. The pthread_cond_timedwait function can be used to wait 
for a limited time. The first parameter of these functions is cond, a pointer to the condition 
variable. The second parameter is mutex, a pointer to a mutex that the thread acquired before 
the call. The wait operation causes the thread to release this mutex when the thread is placed 
on the condition variable wait queue. The pthread_cond_timedwait function has a third 
parameter, a pointer to the time to return if a condition variable signal does not occur first. 
Notice that this value represents an absolute time, not a time interval.

SYNOPSIS

  #include <pthread.h>

  int pthread_cond_timedwait(pthread_cond_t *restrict cond,
                        pthread_mutex_t *restrict mutex,
                        const struct timespec *restrict abstime);
  int pthread_cond_wait(pthread_cond_t *restrict cond,
                        pthread_mutex_t *restrict mutex);
                                                                    POSIX:THR

If successful, pthread_cond_timedwait and pthread_cond_wait return 0. If unsuccessful, 
these functions return nonzero error code. The pthread_cond_timedwait function returns 
ETIMEDOUT if the time specified by abstime has expired. If a signal is delivered while a thread is 
waiting for a condition variable, these functions may resume waiting upon return from the 
signal handler, or they may return 0 because of a spurious wakeup.

Example 13.20 

The following code segment causes a thread to (nonbusy) wait until a is greater than or equal 
to b.

pthread_mutex_lock(&mutex);
while (a < b)
    pthread_cond_wait(&cond, &mutex);
pthread_mutex_unlock(&mutex);

The code omits error checking for clarity.



The calling thread should obtain a mutex before it tests the predicate or calls 
pthread_cond_wait. The implementation guarantees that pthread_cond_wait causes the 
thread to atomically release the mutex and block.

Exercise 13.21 

What happens if one thread executes the code of Example 13.20 by using mutex and another 
thread executes Example 13.20 by using mutexA?

Answer:

This is allowed as long as the two threads are not concurrent. The condition variable wait 
operations pthread_cond_wait and pthread_cond_timedwait effectively bind the condition 
variable to the specified mutex and release the binding on return. POSIX does not define what 
happens if threads use different mutex locks for concurrent wait operations on the same 
condition variable. The safest way to avoid this situation is to always use the same mutex with 
a given condition variable.

When another thread changes variables that might make the predicate true, it should awaken 
one or more threads that are waiting for the predicate to become true. The 
pthread_cond_signal function unblocks at least one of the threads that are blocked on the 
condition variable pointed to by cond. The pthread_cond_broadcast function unblocks all 
threads blocked on the condition variable pointed to by cond.

SYNOPSIS

  #include <pthread.h>

  int pthread_cond_broadcast(pthread_cond_t *cond);
  int pthread_cond_signal(pthread_cond_t *cond);
                                                           POSIX:THR

If successful, pthread_condition_broadcast and pthread_condition_signal return 0. If 
unsuccessful, these functions return a nonzero error code.

Example 13.22 

Suppose v is a condition variable and m is a mutex. The following is a proper use of the 
condition variable to access a resource if the predicate defined by test_condition() is true. 
This code omits error checking for clarity.

static pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t v = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&m);
while (!test_condition())                      /* get resource */
   pthread_cond_wait(&v, &m);
    /* do critical section, possibly changing test_condition() */
pthread_cond_signal(&v);          /* inform another thread */



pthread_mutex_unlock(&m);
                                      /* do other stuff */

When a thread executes the pthread_cond_wait in Example 13.22, it is holding the mutex m. It 
blocks atomically and releases the mutex, permitting another thread to acquire the mutex and 
modify the variables in the predicate. When a thread returns successfully from a 
pthread_cond_wait, it has acquired the mutex and can retest the predicate without explicitly 
reacquiring the mutex. Even if the program signals on a particular condition variable only when 
a certain predicate is true, waiting threads must still retest the predicate. The POSIX standard 
specifically allows pthread_cond_wait to return, even if no thread has called 
pthread_cond_signal or pthread_cond_broadcast.

Program 6.2 on page 187 implements a simple barrier by using a pipe. Program 13.13 
implements a thread-safe barrier by using condition variables. The limit variable specifies how 
many threads must arrive at the barrier (execute the waitbarrier) before the threads are 
released from the barrier. The count variable specifies how many threads are currently waiting 
at the barrier. Both variables are declared with the static attribute to force access through 
initbarrier and waitbarrier. If successful, the initbarrier and waitbarrier functions 
return 0. If unsuccessful, these functions return a nonzero error code.

Remember that condition variables are not linked to particular predicates and that 
pthread_cond_wait can return because of spurious wakeups. Here are some rules for using 
condition variables.

1.  Acquire the mutex before testing the predicate.

2.  Retest the predicate after returning from a pthread_cond_wait, since the return might 
have been caused by some unrelated event or by a pthread_cond_signal that did not 
cause the predicate to become true.

3.  Acquire the mutex before changing any of the variables appearing in the predicate.

4.  Hold the mutex only for a short period of time—usually while testing the predicate or 
modifying shared variables.

5.  Release the mutex either explicitly (with pthread_mutex_unlock) or implicitly (with 
pthread_cond_wait).

Program 13.13 tbarrier.c

Implementation of a thread-safe barrier.

#include <errno.h>
#include <pthread.h>

static pthread_cond_t bcond = PTHREAD_COND_INITIALIZER;
static pthread_mutex_t bmutex = PTHREAD_MUTEX_INITIALIZER;
static int count = 0;



static int limit = 0;

int initbarrier(int n) {              /* initialize the barrier to be size n */
   int error;

   if (error = pthread_mutex_lock(&bmutex))        /* couldn't lock, give up */
      return error;
   if (limit != 0) {                 /* barrier can only be initialized once */
      pthread_mutex_unlock(&bmutex);
      return EINVAL;
   }
   limit = n;
   return pthread_mutex_unlock(&bmutex);
}

int waitbarrier(void) {    /* wait at the barrier until all n threads arrive */
   int berror = 0;
   int error;

   if (error = pthread_mutex_lock(&bmutex))        /* couldn't lock, give up */
      return error;
   if (limit <=  0) {                       /* make sure barrier initialized */
      pthread_mutex_unlock(&bmutex);
      return EINVAL;
   }
   count++;
   while ((count < limit) && !berror)
      berror =  pthread_cond_wait(&bcond, &bmutex);
   if (!berror)
      berror = pthread_cond_broadcast(&bcond);           /* wake up everyone */
   error = pthread_mutex_unlock(&bmutex);
   if (berror)
      return berror;
   return error;
}
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file:///D|/Tutoriales%20&%20Programacion/Prep%20Finales/XxX/Prentice%20Hall%20-%20Unix%20Systems%20Programming%202nd%20Ed/NFO/lib.html


[ Team LiB ]   

13.5 Signal Handling and Threads

All threads in a process share the process signal handlers, but each thread has its own signal 
mask. The interaction of threads with signals involves several complications because threads 
can operate asynchronously with signals. Table 13.2 summarizes the three types of signals and 
their corresponding methods of delivery.

Table 13.2. Signal delivery in threads.

type delivery action

asynchronous delivered to some thread that has it unblocked

synchronous delivered to the thread that caused it

directed delivered to the identified thread (pthread_kill)

Signals such as SIGFPE (floating-point exception) are synchronous to the thread that caused 
them (i.e., they are always generated at the same point in the thread's execution). Other 
signals are asynchronous because they are not generated at a predictable time nor are they 
associated with a particular thread. If several threads have an asynchronous signal unblocked, 
the thread runtime system selects one of them to handle the signal. Signals can also be 
directed to a particular thread with pthread_kill.

13.5.1 Directing a signal to a particular thread

The pthread_kill function requests that signal number sig be generated and delivered to the 
thread specified by thread.

SYNOPSIS

  #include <signal.h>
  #include <pthread.h>

  int pthread_kill(pthread_t thread, int sig);
                                                        POSIX:THR

If successful, pthread_kill returns 0. If unsuccessful, pthread_kill returns a nonzero error 
code. In the latter case, no signal is sent. The following table lists the mandatory errors for 
pthread_kill.
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error cause

EINVAL sig is an invalid or unsupported signal number

ESRCH no thread corresponds to specified ID

Example 13.23 

The following code segment causes a thread to kill itself and the entire process.

if (pthread_kill(pthread_self(), SIGKILL))
   fprintf(stderr, "Failed to commit suicide\n");

Example 13.23 illustrates an important point regarding pthread_kill. Although pthread_kill 
delivers the signal to a particular thread, the action of handling it may affect the entire process. 
A common confusion is to assume that pthread_kill always causes process termination, but 
this is not the case. The pthread_kill just causes a signal to be generated for the thread. 
Example 13.23 causes process termination because the SIGKILL signal cannot be caught, 
blocked or ignored. The same result occurs for any signal whose default action is to terminate 
the process unless the process ignores, blocks or catches the signal. Table 8.1 lists the POSIX 
signals with their symbolic names and default actions.

13.5.2 Masking signals for threads

While signal handlers are process-wide, each thread has its own signal mask. A thread can 
examine or set its signal mask with the pthread_sigmask function, which is a generalization of 
sigprocmask to threaded programs. The sigprocmask function should not be used when the 
process has multiple threads, but it can be called by the main thread before additional threads 
are created. Recall that the signal mask specifies which signals are to be blocked (not 
delivered). The how and set parameters specify the way the signal mask is to be modified, as 
discussed below. If the oset parameter is not NULL, the pthread_sigmask function sets *oset 
to the thread's previous signal mask.

SYNOPSIS

  #include <pthread.h>
  #include <signal.h>

  int pthread_sigmask(int how, const sigset_t *restrict set,
                      sigset_t *restrict oset);
                                                                     POSIX:THR

If successful, pthread_sigmask returns 0. If unsuccessful, pthread_sigmask returns a nonzero 
error code. The pthread_sigmask function returns EINVAL if how is not valid.

A how value of SIG_SETMASK causes the thread's signal mask to be replaced by set. That is, the 
thread now blocks all signals in set but does not block any others. A how value of SIG_BLOCK 



causes the additional signals in set to be blocked by the thread (added to the thread's current 
signal mask). A how value of SIG_UNBLOCK causes any of the signals in set that are currently 
being blocked to be removed from the thread's current signal mask (no longer be blocked).

13.5.3 Dedicating threads for signal handling

Signal handlers are process-wide and are installed with calls to sigaction as in single-threaded 
processes. The distinction between process-wide signal handlers and thread-specific signal 
masks is important in threaded programs.

Recall from Chapter 8 that when a signal is caught, the signal that caused the event is 
automatically blocked on entry to the signal handler. With a multithreaded application, nothing 
prevents another signal of the same type from being delivered to another thread that has the 
signal unblocked. It is possible to have multiple threads executing within the same signal 
handler.

A recommended strategy for dealing with signals in multithreaded processes is to dedicate 
particular threads to signal handling. The main thread blocks all signals before creating the 
threads. The signal mask is inherited from the creating thread, so all threads have the signal 
blocked. The thread dedicated to handling the signal then executes sigwait on that signal. 
(See Section 8.5.) Alternatively, the thread can use pthread_sigmask to unblock the signal. 
The advantage of using sigwait is that the thread is not restricted to async-signal-safe 
functions.

Program 13.14 is an implementation of a dedicated thread that uses sigwait to handle a 
particular signal. A program calls signalthreadinit to block the signo signal and to create a 
dedicated signalthread that waits for this signal. When the signal corresponding to signo 
becomes pending, sigwait returns and the signalthread calls setdone of Program 13.3 and 
returns. You can replace the setdone with any thread-safe function. Program 13.14 has some 
informative messages, which would normally be removed.

Notice that the implementation of signalthreadinit uses a thread attribute object to create 
signalthread with higher priority than the default value. The program was tested on a system 
that used preemptive priority scheduling. When the program executes on this system without 
first increasing signalthread's priority, it still works correctly, but sometimes the program 
takes several seconds to react to the signal after it is generated. If a round-robin scheduling 
policy were available, all the threads could have the same priority.

The dedicated signal-handling thread, signalthread, displays its priority to confirm that the 
priority is set correctly and then calls sigwait. No signal handler is needed since sigwait 
removes the signal from those pending. The signal is always blocked, so the default action for 
signalnum is never taken.

Program 13.15 modifies computethreadmain of Program 13.7 by using the SIGUSR1 signal to 
set the done flag for the computethread object of Program 13.6. The main program no longer 
sleeps a specified number of seconds before calling setdone. Instead, the delivery of a SIGUSR1 
signal causes signalthread to call setdone.



Program 13.14 signalthread.c

A dedicated thread that sets a flag when a signal is received.

#include <errno.h>
#include <pthread.h>
#include <signal.h>
#include <stdio.h>
#include "doneflag.h"
#include "globalerror.h"

static int signalnum = 0;

/* ARGSUSED */
static void *signalthread(void *arg) {    /* dedicated to handling signalnum */
   int error;
   sigset_t intmask;
   struct sched_param param;
   int policy;
   int sig;

   if (error = pthread_getschedparam(pthread_self(), &policy, &param)) {
      seterror(error);
      return NULL;
   }
   fprintf(stderr, "Signal thread entered with policy %d and priority %d\n",
              policy,  param.sched_priority);
   if ((sigemptyset(&intmask) == -1) ||
       (sigaddset(&intmask, signalnum) == -1) ||
       (sigwait(&intmask, &sig) == -1))
      seterror(errno);
   else
      seterror(setdone());
   return NULL;
}

int signalthreadinit(int signo) {
   int error;
   pthread_attr_t highprio;
   struct sched_param param;
   int policy;
   sigset_t set;
   pthread_t sighandid;

   signalnum = signo;                                    /* block the signal */
   if ((sigemptyset(&set) == -1) || (sigaddset(&set, signalnum) == -1) ||
      (sigprocmask(SIG_BLOCK, &set, NULL) == -1))
      return errno;
   if ( (error = pthread_attr_init(&highprio)) ||    /* with higher priority */
        (error = pthread_attr_getschedparam(&highprio, &param)) ||
        (error = pthread_attr_getschedpolicy(&highprio, &policy)) )
      return error;
   if (param.sched_priority < sched_get_priority_max(policy)) {
      param.sched_priority++;
      if (error = pthread_attr_setschedparam(&highprio, &param))



         return error;
   } else
     fprintf(stderr, "Warning, cannot increase priority of signal thread.\n");
   if (error = pthread_create(&sighandid, &highprio, signalthread, NULL))
      return error;
   return 0;
}

Program 13.15 computethreadsig.c

A main program that uses signalthread with the SIGUSR1 signal to terminate the 
computethread computation of Program 13.6.

#include <math.h>
#include <pthread.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "computethread.h"
#include "globalerror.h"
#include "sharedsum.h"
#include "signalthread.h"

int showresults(void);

int main(int argc, char *argv[]) {
   int error;
   int i;
   int numthreads;
   pthread_t *tids;

   if (argc != 2) {                   /* pass number threads on command line */
      fprintf(stderr, "Usage: %s numthreads\n", argv[0]);
      return 1;
   }
   if (error = signalthreadinit(SIGUSR1)) {          /* set up signal thread */
      fprintf(stderr, "Failed to set up signal thread: %s\n", strerror(error));
      return 1;
   }
   numthreads = atoi(argv[1]);
   if ((tids = (pthread_t *)calloc(numthreads, sizeof(pthread_t))) == NULL) {
      perror("Failed to allocate space for thread IDs");
      return 1;
   }
   for (i = 0; i < numthreads; i++)      /* create numthreads computethreads */
      if (error =  pthread_create(tids+ i, NULL, computethread, NULL)) {
         fprintf(stderr, "Failed to start thread %d: %s\n", i,
                 strerror(error));
         return 1;
      }
   fprintf(stderr, "Send SIGUSR1(%d) signal to proc %ld to stop calculation\n",
                   SIGUSR1, (long)getpid());



   for (i = 0; i < numthreads; i++)    /* wait for computethreads to be done */
      if (error = pthread_join(tids[i], NULL)) {
         fprintf(stderr, "Failed to join thread %d: %s\n", i, strerror(error));
         return 1;
      }
   if (showresults())
      return 1;
   return 0;
}

The modular design of the signalthread object makes the object easy to modify. Chapter 16 
uses signalthread for some implementations of a bounded buffer.

Exercise 13.24 

Run computethreadsig of Program 13.15 from one command window. Send the SIGUSR1 signal 
from another command window, using the kill shell command. What is its effect?

Answer:

The dedicated signal thread calls setdone when the signal is pending, and the threads 
terminate normally.
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13.6 Readers and Writers

The reader-writer problem refers to a situation in which a resource allows two types of access 
(reading and writing). One type of access must be granted exclusively (e.g., writing), but the 
other type may be shared (e.g., reading). For example, any number of processes can read from 
the same file without difficulty, but only one process should modify the file at a time.

Two common strategies for handling reader-writer synchronization are called strong reader 
synchronization and strong writer synchronization. Strong reader synchronization always gives 
preference to readers, granting access to readers as long as a writer is not currently writing. 
Strong writer synchronization always gives preference to writers, delaying readers until all 
waiting or active writers complete. An airline reservation system would use strong writer 
preference, since readers need the most up-to-date information. On the other hand, a library 
reference database might want to give readers preference.

POSIX provides read-write locks that allow multiple readers to acquire a lock, provided that a 
writer does not hold the lock. POSIX states that it is up to the implementation whether to allow 
a reader to acquire a lock if writers are blocked on the lock.

POSIX read-write locks are represented by variables of type pthread_rwlock_t. Programs 
must initialize pthread_rwlock_t variables before using them for synchronization by calling 
pthread_rwlock_init. The rwlock parameter is a pointer to a read-write lock. Pass NULL for 
the attr parameter of pthread_rwlock_init to initialize a read-write lock with the default 
attributes. Otherwise, first create and initialize a read-write lock attribute object in a manner 
similar to that used for thread attribute objects.

SYNOPSIS

  #include <pthread.h>

  int pthread_rwlock_init(pthread_rwlock_t *restrict rwlock,
                        const pthread_rwlockattr_t *restrict attr);
                                                                  POSIX:THR

If successful, pthread_rwlock_init returns 0. If unsuccessful, it returns a nonzero error code. 
The following table lists the mandatory errors for pthread_rwlock_init.

error cause

EAGAIN system lacked nonmemory resources needed to initialize *rwlock

ENOMEM system lacked memory resources needed to initialize *rwlock

EPERM caller does not have appropriate privileges

Exercise 13.25 
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What happens when you try to initialize a read-write lock that has already been initialized?

Answer:

POSIX states that the behavior under these circumstances is not defined.

The pthread_rwlock_destroy function destroys the read-write lock referenced by its 
parameter. The rwlock parameter is a pointer to a read-write lock. A pthread_rwlock_t 
variable that has been destroyed with pthread_rwlock_destroy can be reinitialized with 
pthread_rwlock_init.

SYNOPSIS

  #include <pthread.h>

  int pthread_rwlock_destroy(pthread_rwlock_t *rwlock);
                                                             POSIX:THR

If successful, pthread_rwlock_destroy returns 0. If unsuccessful, it returns a nonzero error 
code. No mandatory errors are defined for pthread_rwlock_destroy.

Exercise 13.26 

What happens if you reference a read-write lock that has been destroyed?

Answer:

POSIX states that the behavior under these circumstances is not defined.

The pthread_rwlock_rdlock and pthread_rwlock_tryrdlock functions allow a thread to 
acquire a read-write lock for reading. The pthread_rwlock_wrlock and 
pthread_rwlock_trywrlock functions allow a thread to acquire a read-write lock for writing. 
The pthread_rwlock_rdlock and pthread_rwlock_wrlock functions block until the lock is 
available, whereas pthread_rwlock_tryrdlock and pthread_rwlock_trywrlock return 
immediately. The pthread_rwlock_unlock function causes the lock to be released. These 
functions require that a pointer to the lock be passed as a parameter.

SYNOPSIS

  #include <pthread.h>

  int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);
  int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);
  int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock);
  int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock);
  int pthread_rwlock_unlock(pthread_rwlock_t *rwlock);
                                                                    POSIX:THR



If successful, these functions return 0. If unsuccessful, these functions return a nonzero error 
code. The pthread_rwlock_tryrdlock and pthread_rwlock_trywrlock functions return EBUSY 
if the lock could not be acquired because it was already held.

Exercise 13.27 

What happens if a thread calls pthread_rwlock_rdlock on a lock that it has already acquired 
with pthread_rwlock_wrlock?

Answer:

POSIX states that a deadlock may occur. (Implementations are free to detect a deadlock and 
return an error, but they are not required to do so.)

Exercise 13.28 

What happens if a thread calls pthread_rwlock_rdlock on a lock that it has already acquired 
with pthread_rwlock_rdlock?

Answer:

A thread may hold multiple concurrent read locks on the same read-write lock. It should make 
sure to match the number of unlock calls with the number of lock calls to release the lock.

Program 13.16 uses read-write locks to implement a thread-safe wrapper for the list object of 
Program 2.7. The listlib.c module should be included in this file, and its functions should be 
qualified with the static attribute. Program 13.16 includes an initialize_r function to 
initialize the read-write lock, since no static initialization is available. This function uses 
pthread_once to make sure that the read-write lock is initialized only one time.

Exercise 13.29 

Compare Program 13.16 to the thread-safe implementation of Program 13.9 that uses mutex 
locks. What are the advantages/disadvantages of each?

Answer:

The mutex is a low-overhead synchronization mechanism. Since each of the functions in 
Program 13.9 holds the listlock only for a short period of time, Program 13.9 is relatively 
efficient. Because read-write locks have some overhead, their advantage comes when the 
actual read operations take a considerable amount of time (such as incurred by accessing a 
disk). In such a case, the strictly serial execution order would be inefficient.

Program 13.16 listlibrw_r.c

The list object of Program 2.7 synchronized with read-write locks.



#include <errno.h>
#include <pthread.h>

static pthread_rwlock_t listlock;
static int lockiniterror = 0;
static pthread_once_t lockisinitialized = PTHREAD_ONCE_INIT;

static void ilock(void) {
   lockiniterror = pthread_rwlock_init(&listlock, NULL);
}

int initialize_r(void) {    /* must be called at least once before using list */
   if (pthread_once(&lockisinitialized, ilock))
      lockiniterror = EINVAL;
   return lockiniterror;
}

int accessdata_r(void) {               /* get a nonnegative key if successful */
   int error;
   int errorkey = 0;
   int key;
   if (error = pthread_rwlock_wrlock(&listlock)) {  /* no write lock, give up */
      errno = error;
      return -1;
   }
   key = accessdata();
   if (key == -1) {
      errorkey = errno;
      pthread_rwlock_unlock(&listlock);
      errno = errorkey;
      return -1;
   }
   if (error = pthread_rwlock_unlock(&listlock)) {
      errno = error;
      return -1;
   }
   return key;
}

int adddata_r(data_t data) {          /* allocate a node on list to hold data */
   int error;
   if (error = pthread_rwlock_wrlock(&listlock)) { /* no writer lock, give up */
      errno = error;
      return -1;
   }
   if (adddata(data) == -1) {
      error = errno;
      pthread_rwlock_unlock(&listlock);
      errno = error;
      return -1;
   }
   if (error = pthread_rwlock_unlock(&listlock)) {
      errno = error;
      return -1;
   }



   return 0;
}

int getdata_r(int key, data_t *datap) {               /* retrieve node by key */
   int error;
   if (error = pthread_rwlock_rdlock(&listlock)) { /* no reader lock, give up */
      errno = error;
      return -1;
   }
   if (getdata(key, datap) == -1) {
      error = errno;
      pthread_rwlock_unlock(&listlock);
      errno = error;
      return -1;
   }
   if (error = pthread_rwlock_unlock(&listlock)) {
      errno = error;
      return -1;
   }
   return 0;
}

int freekey_r(int key) {                                      /* free the key */
   int error;
   if (error = pthread_rwlock_wrlock(&listlock)) {
      errno = error;
      return -1;
   }
   if (freekey(key) == -1) {
      error = errno;
      pthread_rwlock_unlock(&listlock);
      errno = error;
      return -1;
   }
   if (error = pthread_rwlock_unlock(&listlock)) {
      errno = error;
      return -1;
   }
   return 0;
}

Exercise 13.30 

The use of Program 13.16 requires a call to initialize_r at least once by some thread before 
any threads call other functions in this library. How could this be avoided?

Answer:

The function initialize_r can be given internal linkage by having the other functions in the 
library call it before accessing the lock.
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13.7 A strerror_r Implementation

Unfortunately, POSIX lists strerror as one of the few functions that are not thread-safe. Often, 
this is not a problem since often the main thread is the only thread that prints error messages. 
If you need to use strerror concurrently in a program, you will need to protect it with mutex 
locks. Neither perror nor strerror is async-signal safe. One way to solve both the thread-
safety and async-signal-safety problems is to encapsulate the synchronization in a wrapper, as 
shown in Program 13.17.

The perror_r and strerror_r functions are both thread-safe and async-signal safe. They use 
a mutex to prevent concurrent access to the static buffer used by strerror. The perror 
function is also protected by the same mutex to prevent concurrent execution of strerror and 
perror. All signals are blocked before the mutex is locked. If this were not done and a signal 
were caught with the mutex locked, a call to one of these from inside the signal handler would 
deadlock.

[ Team LiB ]   
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13.8 Deadlocks and Other Pesky Problems

Programs that use synchronization constructs have the potential for deadlocks that may not be 
detected by implementations of the POSIX base standard. For example, suppose that a thread 
executes pthread_mutex_lock on a mutex that it already holds (from a previously successful 
pthread_mutex_lock). The POSIX base standard states that pthread_mutex_lock may fail and 
return EDEADLK under such circumstances, but the standard does not require the function to do 
so. POSIX takes the position that implementations of the base standard are not required to 
sacrifice efficiency to protect programmers from their own bad programming. Several 
extensions to POSIX allow more extensive error checking and deadlock detection.

Another type of problem arises when a thread that holds a lock encounters an error. You must 
take care to release the lock before returning from the thread, or other threads might be 
blocked.

Threads with priorities can also complicate matters. A famous example occurred in the Mars 
Pathfinder mission. The Pathfinder executed a "flawless" Martian landing on July 4, 1997, and 
began gathering and transmitting large quantities of scientific data to Earth [34]. A few days 
after landing, the spacecraft started experiencing total system resets, each of which delayed 
data collection by a day. Several accounts of the underlying causes and the resolution of the 
problem have appeared, starting with a keynote address at the IEEE Real-Time Systems 
Symposium on Dec. 3, 1997, by David Wilner, Chief Technical Officer of Wind River [61].

Program 13.17 strerror_r.c

Async-signal-safe, thread-safe versions of strerror and perror.

#include <errno.h>
#include <pthread.h>
#include <signal.h>
#include <stdio.h>
#include <string.h>

static pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

int strerror_r(int errnum, char *strerrbuf, size_t buflen) {
   char *buf;
   int error1;
   int error2;
   int error3;
   sigset_t maskblock;
   sigset_t maskold;

   if ((sigfillset(&maskblock)== -1) ||
       (sigprocmask(SIG_SETMASK, &maskblock, &maskold) == -1))
      return errno;
   if (error1 = pthread_mutex_lock(&lock)) {
      (void)sigprocmask(SIG_SETMASK, &maskold, NULL);
      return error1;
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   }
   buf = strerror(errnum);
   if (strlen(buf) >= buflen)
      error1 = ERANGE;
   else
      (void *)strcpy(strerrbuf, buf);
   error2 = pthread_mutex_unlock(&lock);
   error3 = sigprocmask(SIG_SETMASK, &maskold, NULL);
   return error1 ? error1 : (error2 ? error2 : error3);
}

int perror_r(const char *s) {
   int error1;
   int error2;
   sigset_t maskblock;
   sigset_t maskold;

   if ((sigfillset(&maskblock) == -1) ||
       (sigprocmask(SIG_SETMASK, &maskblock, &maskold) == -1))
      return errno;
   if (error1 = pthread_mutex_lock(&lock)) {
      (void)sigprocmask(SIG_SETMASK, &maskold, NULL);
      return error1;
   }
   perror(s);
   error1 = pthread_mutex_unlock(&lock);
   error2 = sigprocmask(SIG_SETMASK, &maskold, NULL);
   return error1 ? error1 : error2;
}

The Mars Pathfinder flaw was found to be a priority inversion on a mutex [105]. A thread whose 
job was gathering meteorological data ran periodically at low priority. This thread would acquire 
the mutex for the data bus to publish its data. A periodic high-priority information thread also 
acquired the mutex, and occasionally it would block, waiting for the low-priority thread to 
release the mutex. Each of these threads needed the mutex only for a short time, so on the 
surface there could be no problem. Unfortunately, a long-running, medium-priority 
communication thread occasionally preempted the low-priority thread while the low-priority 
thread held the mutex, causing the high-priority thread to be delayed for a long time.

A second aspect of the problem was the system reaction to the error. The system expected the 
periodic high-priority thread to regularly use the data bus. A watchdog timer thread would 
notice if the data bus was not being used, assume that a serious problem had occurred, and 
initiate a system reboot. The high-priority thread should have been blocked only for a short 
time when the low-priority thread held the mutex. In this case, the high-priority thread was 
blocked for a long time because the low-priority thread held the mutex and the long-running, 
medium-priority thread had preempted it.

A third aspect was the test and debugging of the code. The Mars Pathfinder system had 
debugging code that could be turned on to run real-time diagnostics. The software team used 
an identical setup in the lab to run in debug mode (since they didn't want to debug on Mars). 
After 18 hours, the laboratory version reproduced the problem, and the engineers were able to 
devise a patch. Glenn Reeves [93], leader of the Mars Pathfinder software team, was quoted as 
saying "We strongly believe in the 'test what you fly and fly what you test' philosophy." The 
same ideas apply here on Earth too. At a minimum, you should always think about 
instrumenting code with test and debugging functions that can be turned on or off by 



conditional compilation. When possible, allow debugging functions to be turned on dynamically 
at runtime.

A final aspect of this story is timing. In some ways, the Mars Pathfinder was a victim of its own 
success. The software team did extensive testing within the parameters of the mission. They 
actually saw the system reset problem once or twice during testing, but did not track it down. 
The reset problem was exacerbated by high data rates that caused the medium-priority 
communication thread to run longer than expected. Prelaunch testing was limited to "best case" 
high data rates. In the words of Glenn Reeves, "We did not expect nor test the 'better than we 
could have ever imagined' case." Threaded programs should never rely on quirks of timing to 
work—they must work under all possible timings.
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13.9 Exercise: Multiple Barriers

Reimplement the barrier of Program 13.13 so that it supports multiple barriers. One possible 
approach is to use an array or a linked list of barriers. Explore different designs with respect to 
synchronization. Is it better to use a single bmutex lock and bcond condition variable to 
synchronize all the barriers, or should each barrier get its own synchronization? Why?
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13.10 Additional Reading

Most operating systems books spend some time on synchronization and use of standard 
synchronization mechanisms such as mutex locks, condition variables and read-write locks. The 
review article "Concepts and notations for concurrent programming," by Andrews and Schneider 
[3] gives an excellent overview of much of the classical work on synchronization. "Interrupts as 
threads" by Kleiman and Eykholt [63] discusses some interesting aspects of the interaction of 
threads and interrupts in the kernel. An extensive review of monitors can be found in "Monitor 
classification," by Buhr et al. [17]. The signal and wait operations of monitors are higher-level 
implementations of the mutex-conditional variable combination. The Solaris Multithreaded 
Programming Guide [109], while dealing primarily with Solaris threads, contains some 
interesting examples of synchronization. Finally, the article "Schedule-conscious 
synchronization" by Kontothanassis et al. [65] discusses implementation of mutex locks, read-
write locks and barriers in a multiprocessor environment.
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Chapter 14. Critical Sections and Semaphores

Programs that manage shared resources must execute portions of code called critical sections 
in a mutually exclusive manner. This chapter discusses how critical sections arise and how to 
protect their execution by means of semaphores. After presenting an overview of the 
semaphore abstraction, the chapter describes POSIX named and unnamed semaphores. The 
closing section outlines a license manager project based on semaphores.

Objectives

●     Learn about semaphores and their properties
●     Experiment with synchronization
●     Explore critical section behavior
●     Use POSIX named and unnamed semaphores
●     Understand semaphore management

[ Team LiB ]   
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14.1 Dealing with Critical Sections

Imagine a computer system in which all users share a single printer and can simultaneously 
print. How would the output appear? If lines of users' jobs were interspersed, the system would 
be unusable. Shared devices, such as printers, are called exclusive resources because they 
must be accessed by one process at a time. Processes must execute the code that accesses 
these shared resources in a mutually exclusive manner.

A critical section is a code segment that must be executed in a mutually exclusive manner, that 
is, only one thread of execution can be active in its boundaries. For example, code that modifies 
a shared variable is considered to be part of a critical section, if other threads of execution 
might possibly access the shared variable during the modification. The critical section problem 
refers to the problem of executing critical section code in a safe, fair and symmetric manner.

Program 14.1 contains a modification of Program 3.1 on page 67 to generate a process chain. 
It prints its message one character at a time. The program takes an extra command-line 
argument giving a delay after each character is output to make it more likely that the process 
quantum will expire in the output loop. The call to wait ensures that the original process does 
not terminate until all children have completed and prevents the shell prompt from appearing in 
the middle of the output of one of the children.

Exercise 14.1 

Explain why the marked section of code in Program 14.1 is a critical section.

Answer:

After falling out of the forking loop, each process outputs an informative message to standard 
error one character at a time. Since standard error is shared by all processes in the chain, that 
part of the code is a critical section and should be executed in a mutually exclusive manner. 
Unfortunately, the critical section of Program 14.1 is not protected, so output from different 
processes can interleave in a random manner, different for each run.

Exercise 14.2 

Run Program 14.1 with different values of the delay parameter. What happens?

Answer:

When the delay parameter is near 0, each process usually outputs its entire line without losing 
the CPU. Longer delays make it more likely that a process will lose the CPU before completing 
the entire message. For large enough values of the delay, each process outputs only one 
character before losing the CPU. Depending on the speed of the machine, you might need to 
use values of the delay in excess of 1 million for this last case.

Exercise 14.3 
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Program 3.1 on page 67 uses a single fprintf to standard error to produce the output. Does 
this have a critical section?

Answer:

Yes. Although the output is in a single C language statement, the compiled code is a sequence 
of assembly language instructions and the process can lose the CPU anywhere in this sequence. 
Although this might be less likely to happen in Program 3.1 than in Program 14.1, it is still 
possible.

Program 14.1 chaincritical.c

A program to generate a chain of processes that write to standard error.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/wait.h>
#include "restart.h"
#define BUFSIZE 1024

int main(int argc, char *argv[]) {
    char buffer[BUFSIZE];
    char *c;
    pid_t childpid = 0;
    int delay;
    volatile int dummy = 0;
    int i, n;

    if (argc != 3){   /* check for valid number of command-line arguments */
        fprintf (stderr, "Usage: %s processes delay\n", argv[0]);
        return 1;
    }
    n = atoi(argv[1]);
    delay = atoi(argv[2]);
    for (i = 1; i < n; i++)
        if (childpid = fork())
            break;
    snprintf(buffer, BUFSIZE,
             "i:%d  process ID:%ld  parent ID:%ld  child ID:%ld\n",
             i, (long)getpid(), (long)getppid(), (long)childpid);

    c = buffer;
   /********************** start of critical section **********************/
    while (*c != '\0') {
        fputc(*c, stderr);
        c++;
        for (i = 0; i < delay; i++)
            dummy++;
    }
   /********************** end of critical section ************************/
    if (r_wait(NULL) == -1)



        return 1;
    return 0;
}

Each process in Program 14.1 executes the statements in sequential order, but the statements 
(and hence the output) from the different processes can be arbitrarily interleaved. An analogy 
to this arbitrary interleaving comes from a deck of cards. Cut a deck of cards. Think of each 
section of the cut as representing one process. The individual cards in each section represent 
the statements in the order that the corresponding process executes them. Now shuffle the two 
sections by interleaving. There are many possibilities for a final ordering, depending on the 
shuffling mechanics. Similarly, there are many possible interleavings of the statements of two 
processes because the exact timing of processes relative to each other depends on outside 
factors (e.g., how many other processes are competing for the CPU or how much time each 
process spent in previous blocked states waiting for I/O). The challenge for programmers is to 
develop programs that work for all realizable interleavings of program statements.

Code with synchronized critical sections can be organized into distinct parts. The entry section 
contains code to request permission to modify a shared variable or other resource. You can 
think of the entry section as the gatekeeper—allowing only one thread of execution to pass 
through at a time. The critical section usually contains code to access a shared resource or to 
execute code that is nonreentrant. The explicit release of access provided in the exit section is 
necessary so that the gatekeeper knows it can allow the next thread of execution to enter the 
critical section. After releasing access, a thread may have other code to execute, which we 
separate into the remainder section to indicate that it should not influence decisions by the 
gatekeeper.

A good solution to the critical section problem requires fairness as well as exclusive access. 
Threads of execution that are trying to enter a critical section should not be postponed 
indefinitely. Threads should also make progress. If no thread is currently in the critical section, 
a waiting thread should be allowed to enter.

Critical sections commonly arise when two processes access a shared resource, such as the 
example of Program 14.1. Be aware that critical sections can arise in other ways. Code in a 
signal handler executes asynchronously with the rest of the program, so it can be thought of as 
logically executing in a separate thread of execution. Variables that are modified in the signal 
handler and used in the rest of the program must be treated as part of a critical section. In 
Program 8.6 on page 271, the signal handler and the results function compete for access to 
buf and buflen. The entry section or gatekeeper is the code in results to block SIGUSR1; the 
exit section is the code to unblock SIGUSR1 and to restore the original signal mask.

Program 2.3 on page 39 illustrates a related problem that can arise with recursive calls to 
nonreentrant functions such as strtok. Although this example is not strictly a critical section 
problem by the definition given above, it has the same characteristics because the single thread 
of execution changes its execution environment when a function call pushes a new activation 
record on the stack.
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14.2 Semaphores

In 1965, E. W. Dijkstra [30] proposed the semaphore abstraction for high-level management of 
mutual exclusion and synchronization. A semaphore is an integer variable with two atomic 
operations, wait and signal. Other names for wait are down, P and lock. Other names for 
signal are up, V, unlock and post.

If S is greater than zero, wait tests and decrements S in an atomic operation. If S is equal to 
zero, the wait tests S and blocks the caller in an atomic operation.

If threads are blocked on the semaphore, then S is equal to zero and signal unblocks one of 
these waiting threads. If no threads are blocked on the semaphore, signal increments S. In 
POSIX:SEM terminology, the wait and signal operations are called semaphore lock and 
semaphore unlock, respectively. We can think of a semaphore as an integer value and a list of 
processes waiting for a signal operation.

Example 14.4 

The following pseudocode shows a blocking implementation of semaphores.

void wait(semaphore_t *sp) {
   if (sp->value > 0)
      sp->value--;
   else {
      <Add this process to sp->list>
      <block>
   }
}

void signal(semaphore_t *sp) {
   if (sp->list != NULL)
      <remove a process from sp->list and put in ready state>
   else
      sp->value++;
}

The wait and signal operations must be atomic. An atomic operation is an operation that, 
once started, completes in a logically indivisible way (i.e., without any other related instructions 
interleaved). In this context, being atomic means that if a process calls wait, no other process 
can change the semaphore until the semaphore is decremented or the calling process is 
blocked. The signal operation is atomic in a similar way. Semaphore implementations use 
atomic operations of the underlying operating system to ensure correct execution.

Example 14.5 

The following pseudocode protects a critical section if the semaphore variable S is initially 1.
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wait(&S);                                /* entry section or gatekeeper */
<critical section>
signal(&S);                                             /* exit section */
<remainder section>

Processes using semaphores must cooperate to protect a critical section. The code of Example 
14.5 works, provided that all processes call wait(&S) before entering their critical sections and 
that they call signal(&S) when they leave. If any process fails to call wait(&S) because of a 
mistake or oversight, the processes may not execute the code of the critical section in a 
mutually exclusive manner. If a process fails to call signal(&S) when it finishes its critical 
section, other cooperative processes are blocked from entering their critical sections.

Exercise 14.6 

What happens if S is initially 0 in the previous example? What happens if S is initially 8? Under 
what circumstances might initialization to 8 prove useful?

Answer:

If S is initially 0, every wait(&S) blocks and a deadlock results unless some other process calls 
signal for this semaphore. If S is initially 8, at most eight processes execute concurrently in 
their critical sections. The initialization to 8 might be used when there are eight identical copies 
of the resource that can be accessed concurrently.

Example 14.7 

Suppose process 1 must execute statement a before process 2 executes statement b. The 
semaphore sync enforces the ordering in the following pseudocode, provided that sync is 
initially 0.

Process 1 executes:           Process 2 executes:
  a;                            wait(&sync);
  signal(&sync);                b;

Because sync is initially 0, process 2 blocks on its wait until process 1 calls signal.

Exercise 14.8 

What happens in the following pseudocode if the semaphores S and Q are both initially 1? What 
about other possible initializations?

Process 1 executes:           Process 2 executes:
   for( ; ; ) {                  for( ; ; ) {
      wait(&S);                     wait(&Q);
      a;                            b;
      signal(&Q);                   signal(&S);
   }                             }



Answer:

Either process might execute its wait statement first. The semaphores ensure that a given 
process is no more than one iteration ahead of the other. If one semaphore is initially 1 and the 
other 0, the processes proceed in strict alternation. If both semaphores are initially 0, a 
deadlock occurs.

Exercise 14.9 

What happens when S is initially 8 and Q is initially 0 in Exercise 14.8? Hint: Think of S as 
representing buffer slots and Q as representing items in a buffer.

Answer:

Process 1 is always between zero and eight iterations ahead of process 2. If the value of S 
represents empty slots and the value of Q represents items in the slots, process 1 acquires slots 
and produces items, and process 2 acquires items and produces empty slots. This 
generalization synchronizes access to a buffer with room for no more than eight items.

Exercise 14.10 

What happens in the following pseudocode if semaphores S and Q are both initialized to 1?

Process 1 executes:           Process 2 executes:
   for( ; ; ) {                  for( ; ; ) {
      wait(&Q);                     wait(&S);
      wait(&S);                     wait(&Q);
      a;                            b;
      signal(&S);               signal(&Q);
      signal(&Q);               signal(&S);
   }                             }

Answer:

The result depends on the order in which the processes get the CPU. It should work most of the 
time, but if process 1 loses the CPU after executing wait(&Q) and process 2 gets in, both 
processes block on their second wait call and a deadlock occurs.

A semaphore synchronizes processes by requiring that the value of the semaphore variable be 
nonnegative. More general forms of synchronization allow synchronization on arbitrary 
conditions and have mechanisms for combining synchronization conditions. OR synchronization 
refers to waiting until any condition in a specified set is satisfied. The use of select or poll to 
monitor multiple file descriptors for input is a form of OR synchronization. NOT synchronization 
refers to waiting until some condition in a set is not true. NOT synchronization can be used to 
enforce priority ordering [76]. AND synchronization refers to waiting until all the conditions in a 
specified set of conditions are satisfied. AND synchronization can be used for simultaneous 
control of multiple resources such as that needed for Exercise 14.10. POSIX:XSI semaphore 
sets described in Chapter 15 are capable of providing AND synchronization.
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14.3 POSIX:SEM Unnamed Semaphores

A POSIX:SEM semaphore is a variable of type sem_t with associated atomic operations for 
initializing, incrementing and decrementing its value. The POSIX:SEM Semaphore Extension 
defines two types of semaphores, named and unnamed. An implementation supports POSIX:
SEM semaphores if it defines _POSIX_SEMAPHORES in unistd.h. The difference between 
unnamed and named semaphores is analogous to the difference between ordinary pipes and 
named pipes (FIFOs). This section discusses unnamed semaphores. Named semaphores are 
discussed in Section 14.5.

Example 14.11 

The following code segment declares a semaphore variable called sem.

#include <semaphore.h>
sem_t sem;

The POSIX:SEM Extension does not specify the underlying type of sem_t. One possibility is that 
sem_t acts like a file descriptor and is an offset into a local table. The table values point to 
entries in a system table. A particular implementation may not use the file descriptor table 
model but instead may store information about the semaphore with the sem_t variable. The 
semaphore functions take a pointer to the semaphore variable as a parameter, so system 
implementers are free to use either model. You may not make a copy of a sem_t variable and 
use it in semaphore operations.

POSIX:SEM semaphores must be initialized before they are used. The sem_init function 
initializes the unnamed semaphore referenced by sem to value. The value parameter cannot be 
negative. Our examples use unnamed semaphores with pshared equal to 0, meaning that the 
semaphore can be used only by threads of the process that initializes the semaphore. If 
pshared is nonzero, any process that can access sem can use the semaphore. Be aware that 
simply forking a child after creating the semaphore does not provide access for the child. The 
child receives a copy of the semaphore, not the actual semaphore.

SYNOPSIS

  #include <semaphore.h>

  int sem_init(sem_t *sem, int pshared, unsigned value);
                                                                POSIX:SEM

If successful, sem_init initializes sem. Interestingly, POSIX does not specify the return value on 
success, but the rationale mentions that sem_init may be required to return 0 in a future 
specification. If unsuccessful, sem_init returns –1 and sets errno. The following table lists the 
mandatory errors for sem_init.
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errno cause

EINVAL value is greater than SEM_VALUE_MAX

ENOSPC initialization resource was exhausted, or number of semaphores exceeds 
SEM_NSEMS_MAX

EPERM caller does not have the appropriate privileges

Example 14.12 

The following code segment initializes an unnamed semaphore to be used by threads of the 
process.

sem_t semA;

if (sem_init(&semA, 0, 1) == -1)
   perror("Failed to initialize semaphore semA");

The sem_destroy function destroys a previously initialized unnamed semaphore referenced by 
the sem parameter.

SYNOPSIS

    #include <semaphore.h>

    int sem_destroy(sem_t *sem);
                                                POSIX:SEM

If successful, sem_destroy returns 0. If unsuccessful, sem_destroy returns –1 and sets errno. 
The sem_destroy function sets errno to EINVAL if *sem is not a valid semaphore.

Example 14.13 

The following code destroys semA.

sem_t semA;

if (sem_destroy(&semA) == -1)
   perror("Failed to destroy semA");

Exercise 14.14 

What happens if Example 14.13; executes after semA has already been destroyed? What 
happens if another thread or process is blocked on semA when the sem_destroy function is 
called?



Answer:

The POSIX standard states that the result of destroying a semaphore that has already been 
destroyed is undefined. The result of destroying a semaphore on which other threads are 
blocked is also undefined.

[ Team LiB ]   
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14.4 POSIX:SEM Semaphore Operations

The semaphore operations described in this section apply both to POSIX:SEM unnamed 
semaphores and to POSIX:SEM named semaphores described in Section 14.5.

The sem_post function implements classic semaphore signaling. If no threads are blocked on 
sem, then sem_post increments the semaphore value. If at least one thread is blocked on sem, 
then the semaphore value is zero. In this case, sem_post causes one of the threads blocked on 
sem to return from its sem_wait function, and the semaphore value remains at zero. The 
sem_post function is signal-safe and can be called from a signal handler.

SYNOPSIS

    #include <semaphore.h>

    int sem_post(sem_t *sem);
                                                  POSIX:SEM

If successful, sem_post returns 0. If unsuccessful, sem_post returns –1 and sets errno. The 
sem_post operation sets errno to EINVAL if *sem does not correspond to a valid semaphore.

The sem_wait function implements the classic semaphore wait operation. If the semaphore 
value is 0, the calling thread blocks until it is unblocked by a corresponding call to sem_post or 
until it is interrupted by a signal. The sem_trywait function is similar to sem_wait except that 
instead of blocking when attempting to decrement a zero-valued semaphore, it returns –1 and 
sets errno to EAGAIN.

SYNOPSIS

    #include <semaphore.h>

    int sem_trywait(sem_t *sem);
    int sem_wait(sem_t *sem);
                                                  POSIX:SEM

If successful, these functions return 0. If unsuccessful, these functions return –1 and set errno. 
These functions set errno to EINVAL if *sem does not correspond to a valid semaphore. The 
sem_trywait sets errno to EAGAIN if it would block on an ordinary sem_wait.

The sem_wait and sem_trywait functions may set errno to EINTR if they are interrupted by a 
signal. Any program that catches signals must take care when using semaphore operations, 
since the standard allows sem_wait and sem_trywait to return when a signal is caught and the 
signal handler returns. Program 14.2 restarts the sem_wait if it is interrupted by a signal.

Program 14.2 shows how to implement a shared variable that is protected by semaphores. The 
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initshared function initializes the value of the shared variable. It would normally be called 
only once. The getshared function returns the current value of the variable, and the incshared 
function atomically increments the variable. If successful, these functions return 0. If 
unsuccessful, these functions return –1 and set errno. The shared variable (shared) is static, 
so it can be accessed only through the functions of semshared.c. Although shared is a simple 
integer in Program 14.2, functions of the same form can be used to implement any type of 
shared variable or structure.

Program 14.2 semshared.c

A shared variable protected by semaphores.

#include <errno.h>
#include <semaphore.h>

static int shared = 0;
static sem_t sharedsem;

int initshared(int val) {
    if (sem_init(&sharedsem, 0, 1) == -1)
        return -1;
    shared = val;
    return 0;
}

int getshared(int *sval) {
    while (sem_wait(&sharedsem) == -1)
        if (errno != EINTR)
            return -1;
    *sval = shared;
    return sem_post(&sharedsem);
}

int incshared() {
    while (sem_wait(&sharedsem) == -1)
        if (errno != EINTR)
            return -1;
    shared++;
    return sem_post(&sharedsem);
}

Exercise 14.15 

Suppose a variable were to be incremented in the main program and also in a signal handler. 
Explain how Program 14.2 could be used to protect this variable.

Answer:

It could not be used without some additional work. If the signal were caught while a call to one 
of the functions in Program 14.2 had the semaphore locked, a call to one of these in the signal 
handler would cause a deadlock. The application should block the signals in the main program 



before calling getshared and incshared.

Programs 14.3 and 14.4 return to the original critical section problem of Program 14.1. The 
new version uses threads to illustrate the need to protect the critical section. The function in 
Program 14.3 is meant to be used as a thread. It outputs a message, one character at a time. 
To make it more likely to be interrupted in the middle of the message, the thread sleeps for 10 
ms after each character is output. Program 14.4 creates a number of threadout threads and 
waits for them to terminate.

Program 14.3 threadcritical.c

A thread with an unprotected critical section.

#include <pthread.h>
#include <stdio.h>
#include <unistd.h>
#define BUFSIZE 1024
#define TEN_MILLION 10000000L

/* ARGSUSED */
void *threadout(void *args) {
    char buffer[BUFSIZE];
    char *c;
    struct timespec sleeptime;

    sleeptime.tv_sec = 0;
    sleeptime.tv_nsec = TEN_MILLION;
    snprintf(buffer, BUFSIZE, "This is a thread from process %ld\n",
             (long)getpid());
    c = buffer;
   /*****************start of critical section ********************/
    while (*c != '\0') {
        fputc(*c, stderr);
        c++;
        nanosleep(&sleeptime, NULL);
    }
   /*******************end of critical section ********************/
    return NULL;
}

Exercise 14.16 

What would happen if Program 14.4 were run with four threads?

Answer:

Most likely each thread would print the first character of its message, and then each would print 
the second character of its message, etc. All four messages would appear on one line followed 
by four newline characters.

Exercise 14.17 



Why did we use nanosleep instead of a busy-waiting loop as in Program 14.1?

Answer:

Some thread-scheduling algorithms allow a busy-waiting thread to exclude other threads of the 
same process from executing.

Exercise 14.18 

Why didn't we have the thread in Program 14.3 print its thread ID?

Answer:

The thread ID is of type pthread_t. Although many systems implement this as an integral type 
that can be cast to an int and printed, the standard does not require that pthread_t be of 
integral type. It may be a structure.

Program 14.4 maincritical.c

A main program that creates a number of threads.

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void *threadout(void *args);

int main(int argc, char *argv[]) {
    int error;
    int i;
    int n;
    pthread_t *tids;

    if (argc != 2){   /* check for valid number of command-line arguments */
        fprintf (stderr, "Usage: %s numthreads\n", argv[0]);
        return 1;
    }
    n = atoi(argv[1]);
    tids = (pthread_t *)calloc(n, sizeof(pthread_t));
    if (tids == NULL) {
        perror("Failed to allocate memory for thread IDs");
        return 1;
    }
    for (i = 0; i < n; i++)
        if (error = pthread_create(tids+i, NULL, threadout, NULL)) {
            fprintf(stderr, "Failed to create thread:%s\n", strerror(error));
            return 1;
        }
    for (i = 0; i < n; i++)



        if (error = pthread_join(tids[i], NULL)) {
            fprintf(stderr, "Failed to join thread:%s\n", strerror(error));
            return 1;
        }
    return 0;
}

Program 14.5 is a version of Program 14.3 that protects its critical section by using a 
semaphore passed as its parameter. Although the main program does not use signals, this 
program restarts sem_wait if interrupted by a signal to demonstrate how to use semaphores 
with signals. Program 14.6 shows the corresponding main program. The main program 
initializes the semaphore to 1 before any of the threads are created.

Program 14.5 threadcriticalsem.c

A thread with a critical section protected by a semaphore passed as its parameter.

#include <errno.h>
#include <pthread.h>
#include <semaphore.h>
#include <stdio.h>
#include <unistd.h>
#define TEN_MILLION 10000000L
#define BUFSIZE 1024

void *threadout(void *args) {
    char buffer[BUFSIZE];
    char *c;
    sem_t *semlockp;
    struct timespec sleeptime;

    semlockp = (sem_t *)args;
    sleeptime.tv_sec = 0;
    sleeptime.tv_nsec = TEN_MILLION;
    snprintf(buffer, BUFSIZE, "This is a thread from process %ld\n",
             (long)getpid());
    c = buffer;
   /****************** entry section *******************************/
    while (sem_wait(semlockp) == -1)        /* Entry section */
        if(errno != EINTR) {
            fprintf(stderr, "Thread failed to lock semaphore\n");
            return NULL;
        }
   /****************** start of critical section *******************/
    while (*c != '\0') {
        fputc(*c, stderr);
        c++;
        nanosleep(&sleeptime, NULL);
    }
   /****************** exit section ********************************/
    if (sem_post(semlockp) == -1)         /* Exit section */
        fprintf(stderr, "Thread failed to unlock semaphore\n");
   /****************** remainder section ***************************/
    return NULL;



}

Exercise 14.19 

What happens if you replace the following line of Program 14.6

semlock = sem_init(*semlock, 0, 1)

with the following?

semlock = sem_init(*semlock, 0, 0)

Answer:

The original sem_init sets the initial value of semlock to 1, which allows the first process to 
successfully acquire the semaphore lock when it executes sem_wait. The replacement sets the 
initial value of semlock to 0, causing a deadlock. All of the processes block indefinitely on 
sem_wait.

Program 14.6 maincriticalsem.c

A main program that creates a semaphore and passes it to a number of threads.

#include <pthread.h>
#include <semaphore.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void *threadout(void *args);

int main(int argc, char *argv[]) {
    int error;
    int i;
    int n;
    sem_t semlock;
    pthread_t *tids;

    if (argc != 2){   /* check for valid number of command-line arguments */
        fprintf (stderr, "Usage: %s numthreads\n", argv[0]);
        return 1;
    }
    n = atoi(argv[1]);
    tids = (pthread_t *)calloc(n, sizeof(pthread_t));
    if (tids == NULL) {
        perror("Failed to allocate memory for thread IDs");
        return 1;
    }
    if (sem_init(&semlock, 0, 1) == -1) {
        perror("Failed to initialize semaphore");



        return 1;
    }
    for (i = 0; i < n; i++)
        if (error = pthread_create(tids + i, NULL, threadout, &semlock)) {
            fprintf(stderr, "Failed to create thread:%s\n", strerror(error));
            return 1;
        }
    for (i = 0; i < n; i++)
        if (error = pthread_join(tids[i], NULL)) {
            fprintf(stderr, "Failed to join thread:%s\n", strerror(error));
            return 1;
        }
    return 0;
}

Exercise 14.19 illustrates the importance of properly initializing the semaphore value. The 
sem_getvalue function allows a user to examine the value of either a named or unnamed 
semaphore. This function sets the integer referenced by sval to the value of the semaphore 
without affecting the state of the semaphore. Interpretation of sval is a little tricky: It holds 
the value that the semaphore had at some unspecified time during the call, but not necessarily 
the value at the time of return. If the semaphore is locked, sem_getvalue either sets sval to 
zero or to a negative value indicating the number of threads waiting for the semaphore at some 
unspecified time during the call.

SYNOPSIS

    #include <semaphore.h>

    int sem_getvalue(sem_t *restrict sem, int *restrict sval);
                                                                POSIX:SEM

If successful, sem_getvalue returns 0. If unsuccessful, sem_getvalue returns –1 and sets 
errno. The sem_getvalue function sets errno to EINVAL if *sem does not correspond to a valid 
semaphore.

[ Team LiB ]   
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14.5 POSIX:SEM Named Semaphores

POSIX:SEM named semaphores can synchronize processes that do not share memory. Named 
semaphores have a name, a user ID, a group ID and permissions just as files do. A semaphore 
name is a character string that conforms to the construction rules for a pathname. POSIX does 
not require that the name appear in the filesystem, nor does POSIX specify the consequences 
of having two processes refer to the same name unless the name begins with the slash 
character. If the name begins with a slash (/), then two processes (or threads) that open the 
semaphore with that name refer to the same semaphore. Consequently, always use names 
beginning with a / for POSIX:SEM named semaphores. Some operating systems impose other 
restrictions on semaphore names.

14.5.1 Creating and opening named semaphores

The sem_open function establishes the connection between a named semaphore and a sem_t 
value. The name parameter is a string that identifies the semaphore by name. This name may 
or may not correspond to an actual object in the file system. The oflag parameter determines 
whether the semaphore is created or just accessed by the function. If the O_CREAT bit of oflag 
is set, the sem_open requires two more parameters: a mode parameter of type mode_t giving 
the permissions and a value parameter of type unsigned giving the initial value of the 
semaphore. If both the O_CREAT and O_EXCL bits of oflag are set, the sem_open returns an 
error if the semaphore already exists. If the semaphore already exists and O_CREAT is set but 
O_EXCL is not set, the semaphore ignores O_CREAT and the additional parameters. POSIX:SEM 
does not provide a way to directly set the value of a named semaphore once it already exists.

SYNOPSIS

  #include <semaphore.h>

  sem_t *sem_open(const char *name, int oflag, ...);
                                                        POSIX:SEM

If successful, the sem_open function returns the address of the semaphore. If unsuccessful, 
sem_open returns SEM_FAILED and sets errno. The following table lists the mandatory errors for 
sem_open.

errno cause

EACCES permissions incorrect

EEXIST O_CREAT and O_EXCL are set and semaphore exists

EINTR sem_open was interrupted by a signal
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EINVAL name can't be opened as a semaphore, or tried to create semaphore with 
value greater than SEM_VALUE_MAX

EMFILE too many file descriptors or semaphores in use by process

ENAMETOOLONG name is longer than PATH_MAX, or it has a component that exceeds NAME_MAX

ENFILE too many semaphores open on the system

ENOENT O_CREAT is not set and the semaphore doesn't exist

ENOSPC not enough space to create the semaphore

Program 14.7 shows a getnamed function that creates a named semaphore if it doesn't already 
exist. The getnamed function can be called as an initialization function by multiple processes. 
The function first tries to create a new named semaphore. If the semaphore already exists, the 
function then tries to open it without the O_CREAT and O_EXCL bits of the oflag parameter set. 
If successful, getnamed returns 0. If unsuccessful, getnamed returns –1 and sets errno.

Program 14.7 getnamed.c

A function to access a named semaphore, creating it if it doesn't already exist.

#include <errno.h>
#include <fcntl.h>
#include <semaphore.h>
#include <sys/stat.h>
#define PERMS (mode_t)(S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH)
#define FLAGS (O_CREAT | O_EXCL)

int getnamed(char *name, sem_t **sem, int val) {
    while (((*sem = sem_open(name, FLAGS, PERMS, val)) == SEM_FAILED) &&
            (errno == EINTR)) ;
    if (*sem != SEM_FAILED)
        return 0;
    if (errno != EEXIST)
        return -1;
    while (((*sem = sem_open(name, 0)) == SEM_FAILED) && (errno == EINTR)) ;
    if (*sem != SEM_FAILED)
        return 0;
    return -1;
}

The first parameter of getnamed is the name of the semaphore and the last parameter is the 
value to use for initialization if the semaphore does not already exist. The second parameter is 
a pointer to a pointer to a semaphore. This double indirection is necessary because getnamed 
needs to change a pointer. Note that if the semaphore already exists, getnamed does not 
initialize the semaphore.

Program 14.8 shows a modification of Program 14.1 that uses named semaphores to protect 



the critical section. Program 14.8 takes three command-line arguments: the number of 
processes, the delay and the name of the semaphore to use. Each process calls the getnamed 
function of Program 14.7 to gain access to the semaphore. At most, one of these will create the 
semaphore. The others will gain access to it.

Exercise 14.20 

What happens if two copies of chainnamed, using the same named semaphore run 
simultaneously on the same machine?

Answer:

With the named semaphores, each line will be printed without interleaving.

Exercise 14.21 

What happens if you enter Ctrl-C while chainnamed is running and then try to run it again with 
the same named semaphore?

Answer:

Most likely the signal generated by Ctrl-C will be delivered while the semaphore has value 0. 
The next time the program is run, all processes will block and no output will result.

14.5.2 Closing and unlinking named semaphores

Like named pipes or FIFOs (Section 6.3), POSIX:SEM named semaphores have permanence 
beyond the execution of a single program. Individual programs can close named semaphores 
with the sem_close function, but doing so does not cause the semaphore to be removed from 
the system. The sem_close takes a single parameter, sem, specifying the semaphore to be 
closed.

SYNOPSIS

  #include <semaphore.h>

  int sem_close(sem_t *sem);
                                POSIX:SEM

If successful, sem_close returns 0. If unsuccessful, sem_close returns –1 and sets errno. The 
sem_close function sets errno to EINVAL if *sem is not a valid semaphore.

Program 14.8 chainnamed.c

A process chain with a critical section protected by a POSIX:SEM named semaphore.

#include <errno.h>



#include <semaphore.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>
#include "restart.h"
#define BUFSIZE 1024
int getnamed(char *name, sem_t **sem, int val);

int main  (int argc, char *argv[]) {
    char buffer[BUFSIZE];
    char *c;
    pid_t childpid = 0;
    int delay;
    volatile int dummy = 0;
    int i, n;
    sem_t *semlockp;

    if (argc != 4){       /* check for valid number of command-line arguments */
        fprintf (stderr, "Usage: %s processes delay semaphorename\n", argv[0]);
        return 1;
    }
    n = atoi(argv[1]);
    delay = atoi(argv[2]);
    for (i = 1; i < n; i++)
        if (childpid = fork())
            break;
    snprintf(buffer, BUFSIZE,
             "i:%d  process ID:%ld  parent ID:%ld  child ID:%ld\n",
             i, (long)getpid(), (long)getppid(), (long)childpid);
    c = buffer;
    if (getnamed(argv[3], &semlockp, 1) == -1) {
        perror("Failed to create named semaphore");
        return 1;
    }
    while (sem_wait(semlockp) == -1)                         /* entry section */
        if (errno != EINTR) {
            perror("Failed to lock semlock");
            return 1;
        }
    while (*c != '\0') {                                  /* critical section */
        fputc(*c, stderr);
        c++;
        for (i = 0; i < delay; i++)
            dummy++;
    }
    if (sem_post(semlockp) == -1) {                           /* exit section */
        perror("Failed to unlock semlock");
        return 1;
    }
    if (r_wait(NULL) == -1)                              /* remainder section */
        return 1;
    return 0;
}

The sem_unlink function, which is analogous to the unlink function for files or FIFOs, performs 



the removal of the named semaphore from the system after all processes have closed the 
named semaphore. A close operation occurs when the process explicitly calls sem_close, 
_exit, exit, exec or executes a return from main. The sem_unlink function has a single 
parameter, a pointer to the semaphore that is to be unlinked.

SYNOPSIS

  #include <semaphore.h>

  int sem_unlink(const char *name);
                                      POSIX:SEM

If successful, sem_unlink returns 0. If unsuccessful, sem_unlink returns –1 and sets errno. 
The following table lists the mandatory errors for sem_unlink.

errno cause

EACCES permissions incorrect

ENAMETOOLONG name is longer than PATH_MAX, or it has a component that exceeds NAME_MAX

ENOENT the semaphore doesn't exist

Calls to sem_open with the same name refer to a new semaphore after a sem_unlink, even if 
other processes still have the old semaphore open. The sem_unlink function always returns 
immediately, even if other processes have the semaphore open.

Exercise 14.22 

What happens if you call sem_close for an unnamed semaphore that was initialized by 
sem_init rather than sem_open?

Answer:

The POSIX standard states that the result of doing this is not defined.

Program 14.9 shows a function that closes and unlinks a named semaphore. The destroynamed 
calls the sem_unlink function, even if the sem_close function fails. If successful, destroynamed 
returns 0. If unsuccessful, destroynamed returns –1 and sets errno.

Remember that POSIX:SEM named semaphores are persistent. If you create one of these 
semaphores, it stays in the system and retains its value until destroyed, even after the process 
that created it and all processes that have access to it have terminated. POSIX:SEM does not 
provide a method for determining which named semaphores exist. They may or may not show 
up when you display the contents of a directory. They may or may not be destroyed when the 
system reboots.



Program 14.9 destroynamed.c

A function that closes and unlinks a named semaphore.

#include <errno.h>
#include <semaphore.h>

int destroynamed(char *name, sem_t *sem) {
    int error = 0;

    if (sem_close(sem) == -1)
        error = errno;
    if ((sem_unlink(name) != -1) && !error)
        return 0;
    if (error)        /* set errno to first error that occurred */
        errno = error;
    return -1;
}
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14.6 Exercise: License Manager

The exercises in this section are along the lines of the runsim program developed in the 
exercises of Section 3.9. In those exercises, runsim reads a command from standard input and 
forks a child that calls execvp to execute the command. That runsim program takes a single 
command-line argument specifying the number of child processes allowed to execute 
simultaneously. It also keeps a count of the children and uses wait to block when it reaches 
the limit.

In these exercises, runsim again reads a command from standard input and forks a child. The 
child in turn forks a grandchild that calls execvp. The child waits for the grandchild to complete 
and then exits. Figure 14.1 shows the structure of runsim when three such pairs are executing. 
This program uses semaphores to control the number of simultaneous executions.

Figure 14.1. The structure of runsim when the grandchildren, not the 
children, call execvp.

14.6.1 License object

Implement a license object based on a named semaphore generated from the pathname /tmp.
license.uid, where uid is the process user ID. The license should have the following public 
functions.

int getlicense(void);

blocks until a license is available.

int returnlicense(void);

increments the number of available licenses.
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int initlicense(void);

performs any needed initialization of the license object.

int addtolicense(int n);

adds a certain number of licenses to the number available.

int removelicenses(int n);

decrements the number of licenses by the specified number.

14.6.2 The runsim main program

Write a runsim program that runs up to n processes at a time. Start the runsim program by 
typing the following command.

runsim n

Implement runsim as follows.

1.  Check for the correct number of command-line arguments and output a usage message 
if incorrect.

2.  Perform the following in a loop until end-of-file on standard input.

a.  Read a command from standard input of up to MAX_CANON characters.

b.  Request a license from the license object.

c.  Fork a child that calls docommand and then exits. Pass the input string to 
docommand.

d.  Check to see if any of the children have finished (waitpid with the WNOHANG 
option).

The docommand function has the following prototype.

void docommand(char *cline);

Implement docommand as follows.

1.  Fork a child (a grandchild of the original). This grandchild calls makeargv on cline and 
calls execvp on the resulting argument array.



2.  Wait for this child and then return the license to the license object.

3.  Exit.

Test the program as in Section 3.9. Improve the error messages to make them more readable. 
Write a test program that takes two command-line arguments: the sleep time and the repeat 
factor. The test program simply repeats a loop for the specified number of times. In the loop, 
the test program sleeps and then outputs a message with its process ID to standard error. After 
completing the specified number of iterations, the program exits. Use runsim to run multiple 
copies of the test program.

Try executing several copies of runsim concurrently. Since they all use the same semaphore, 
the number of grandchildren processes should still be bounded by n.

14.6.3 Extensions to the license manager

Modify the license object so that it supports multiple types of licenses, each type identified by a 
numerical key. Test the program under conditions similar to those described in the previous 
section.

[ Team LiB ]   
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14.7 Additional Reading

Most books on operating systems [107, 122] discuss the classical semaphore abstraction. The 
book UNIX Systems for Modern Architectures: Symmetric Multiprocessing and Caching for 
Kernel Programmers by Schimmel [103] presents an advanced look at how these issues apply 
to design of multiprocessor kernels.

[ Team LiB ]   
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Chapter 15. POSIX IPC

The classical UNIX interprocess communication (IPC) mechanisms of shared memory, message 
queues and semaphore sets are standardized in the POSIX:XSI Extension. These mechanisms, 
which allow unrelated processes to exchange information in a reasonably efficient way, use a 
key to identify, create or access the corresponding entity. The entities may persist in the 
system beyond the lifetime of the process that creates them, but conveniently, POSIX:XSI also 
provides shell commands to list and remove them.

Objectives

●     Learn about classical interprocess communication
●     Experiment with synchronized shared memory
●     Explore semaphore implementations
●     Use message queues for interprocess logging
●     Understand the consequences of persistence

[ Team LiB ]   

file:///D|/Tutoriales%20&%20Programacion/Prep%20Finales/XxX/Prentice%20Hall%20-%20Unix%20Systems%20Programming%202nd%20Ed/NFO/lib.html
file:///D|/Tutoriales%20&%20Programacion/Prep%20Finales/XxX/Prentice%20Hall%20-%20Unix%20Systems%20Programming%202nd%20Ed/0130424110_14051533.html
file:///D|/Tutoriales%20&%20Programacion/Prep%20Finales/XxX/Prentice%20Hall%20-%20Unix%20Systems%20Programming%202nd%20Ed/NFO/lib.html


[ Team LiB ]   

15.1 POSIX:XSI Interprocess Communication

The POSIX interprocess communication (IPC) is part of the POSIX:XSI Extension and has its 
origin in UNIX System V interprocess communication. IPC, which includes message queues, 
semaphore sets and shared memory, provides mechanisms for sharing information among 
processes on the same system. These three communication mechanisms have a similar 
structure, and this chapter emphasizes the common elements of their use. Table 15.1 
summarizes the POSIX:XSI interprocess communication functions.

Table 15.1. POSIX:XSI interprocess communication functions.

mechanism POSIX function meaning

message queues msgctl control

 msgget create or access

 msgrcv receive message

 msgsnd send message

semaphores semctl control

 semget create or access

 semop execute operation (wait or post)

shared memory shmat attach memory to process

 shmctl control

 shmdt detach memory from process

 shmget create and initialize or access

15.1.1 Identifying and accessing IPC objects

POSIX:XSI identifies each IPC object by a unique integer that is greater than or equal to zero 
and is returned from the get function for the object in much the same way as the open function 
returns an integer representing a file descriptor. For example, msgget returns an integer 
identifier for message queue objects. Similarly, semget returns an integer identifier for a 
specified semaphore set, and shmget returns an integer identifier for a shared memory 
segment. These identifiers are associated with additional data structures that are defined in 
sys/msg.h, sys/sem.h or sys/shm.h, respectively. The integer identifiers within each IPC 
object type are unique, but you might well have an integer identifier 1 for two different types of 
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objects, say, a semaphore set and a message queue.

When creating or accessing an IPC object, you must specify a key to designate the particular 
object to be created or accessed. Pick a key in one of these three ways.

●     Let the system pick a key (IPC_PRIVATE).
●     Pick a key directly.
●     Ask the system to generate a key from a specified path by calling ftok.

The ftok function allows independent processes to derive the same key based on a known 
pathname. The file corresponding to the pathname must exist and be accessible to the 
processes that want to access an IPC object. The combination of path and id uniquely identifies 
the IPC object. The id parameter allows several IPC objects of the same type to be keyed from 
a single pathname.

SYNOPSIS

   #include <sys/ipc.h>

   key_t ftok(const char *path, int id);
                                                          POSIX:XSI

If successful, ftok returns a key. If unsuccessful, ftok returns (key_t)-1 and sets errno. The 
following table lists the mandatory errors for ftok.

errno cause

EACCES search permission on a path component denied

ELOOP a loop exists in resolution of path

ENAMETOOLONG length of path exceeds PATH_MAX, or length of a pathname component 
exceeds NAME_MAX

ENOENT a component of path is not a file or is empty

ENOTDIR a component of path's prefix is not a directory

Example 15.1 

The following code segment derives a key from the filename /tmp/trouble.c.

if ((thekey = ftok("tmp/trouble.c", 1)) == (key_t)-1))
   perror("Failed to derive key from /tmp/trouble.c");

15.1.2 Accessing POSIX:XSI IPC resources from the shell



The POSIX:XSI Extension for shells and utilities defines shell commands for examining and 
deleting IPC resources, a convenient feature that is missing for the POSIX:SEM semaphores.

The ipcs command displays information about POSIX:XSI interprocess communication 
resources. If you forget which ones you created, you can list them from the shell command line.

SYNOPSIS

  ipcs [-qms][-a | -bcopt]
                                        POSIX:XSI,Shell and Utilities

If no options are given, ipcs outputs, in an abbreviated format, information about message 
queues, shared memory segments and semaphore sets. You can restrict the display to specific 
types of IPC resources with the -q, -m and -s options for message queues, shared memory 
and semaphores, respectively. The -a option displays a long format giving all information 
available. The -bcopt options specify which components of the available information to print.

Example 15.2 

The following command displays all the available information about the semaphores currently 
allocated on the system.

ipcs -s -a

You can remove an individual resource by giving either an ID or a key. Use the ipcrm command 
to remove POSIX:XSI interprocess communication resources.

SYNOPSIS

  ipcrm [-q msgid | -Q msgkey | -s semid | -S semkey |
         -m shmid | -M shmkey] ....
                                        POSIX:XSI,Shell and Utilities

The lower case -q, -s and -m options use the object ID to specify the removal of a message 
queue, semaphore set or shared memory segment, respectively. The uppercase options use the 
original creation key.

[ Team LiB ]   
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15.2 POSIX:XSI Semaphore Sets

A POSIX:XSI semaphore consists of an array of semaphore elements. The semaphore elements 
are similar, but not identical, to the classical integer semaphores proposed by Dijsktra, as 
described in Chapter 14. A process can perform operations on the entire set in a single call. 
Thus, POSIX:XSI semaphores are capable of AND synchronization, as described in Section 14.2. 
We refer to POSIX:XSI semaphores as semaphore sets to distinguish them from the POSIX:
SEM semaphores described in Chapter 14.

Each semaphore element includes at least the following information.

●     A nonnegative integer representing the value of the semaphore element (semval)
●     The process ID of the last process to manipulate the semaphore element (sempid)
●     The number of processes waiting for the semaphore element value to increase (semncnt)
●     The number of processes waiting for the semaphore element value to equal 0 (semzcnt)

The major data structure for semaphores is semid_ds, which is defined in sys/sem.h and has 
the following members.

struct ipc_perm sem_perm; /* operation permission structure */
unsigned short sem_nsems; /* number of semaphores in the set */
time_t sem_otime;         /* time of last semop */
time_t sem_ctime;         /* time of last semctl */

Each semaphore element has two queues associated with it—a queue of processes waiting for 
the value to equal 0 and a queue of processes waiting for the value to increase. The semaphore 
element operations allow a process to block until a semaphore element value is 0 or until it 
increases to a specific value greater than zero.

15.2.1 Semaphore creation

The semget function returns the semaphore identifier associated with the key parameter. The 
semget function creates the identifier and its associated semaphore set if either the key is 
IPC_PRIVATE or semflg & IPC_CREAT is nonzero and no semaphore set or identifier is already 
associated with key. The nsems parameter specifies the number of semaphore elements in the 
set. The individual semaphore elements within a semaphore set are referenced by the integers 
0 through nsems - 1. Semaphores have permissions specified by the semflg argument of 
semget. Set permission values in the same way as described in Section 4.3 for files, and change 
the permissions by calling semctl. Semaphore elements should be initialized with semctl 
before they are used.

SYNOPSIS

  #include <sys/sem.h>

  int semget(key_t key, int nsems, int semflg);
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                                                          POSIX:XSI

If successful, semget returns a nonnegative integer corresponding to the semaphore identifier. 
If unsuccessful, the semget function returns –1 and sets errno. The following table lists the 
mandatory errors for semget.

errno cause

EACCES semaphore exists for key but permission not granted

EEXIST semaphore exists for key but ( (semflg & IPC_CREAT) && (semflg & 
IPC_EXCL) ) != 0

EINVAL nsems <= 0 or greater than system limit, or nsems doesn't agree with semaphore 
set size

ENOENT semaphore does not exist for key and (semflg & IPC_CREAT) == 0

ENOSPC systemwide limit on semaphores would be exceeded

If a process attempts to create a semaphore that already exists, it receives a handle to the 
existing semaphore unless the semflg value includes both IPC_CREAT and IPC_EXCL. In the 
latter case, semget fails and sets errno equal to EEXIST.

Example 15.3 

The following code segment creates a new semaphore set containing three semaphore 
elements.

#define PERMS (S_IRUSR | S_IWUSR)

int semid;
if ((semid = semget(IPC_PRIVATE, 3, PERMS)) == -1)
   perror("Failed to create new private semaphore");

This semaphore can only be read or written by the owner.

The IPC_PRIVATE key guarantees that semget creates a new semaphore. To get a new 
semaphore set from a made-up key or a key derived from a pathname, the process must 
specify by using the IPC_CREAT flag that it is creating a new semaphore. If both ICP_CREAT and 
IPC_EXCL are specified, semget returns an error if the semaphore already exists.

Example 15.4 

The following code segment accesses a semaphore set with a single element identified by the 
key value 99887.



#define PERMS (S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH)
#define KEY ((key_t)99887)

int semid;
if ((semid = semget(KEY, 1, PERMS | IPC_CREAT)) == -1)
   perror ("Failed to access semaphore with key 99887");

The IPC_CREAT flag ensures that if the semaphore set doesn't exist, semget creates it. The 
permissions allow all users to access the semaphore set.

Giving a specific key value allows cooperating processes to agree on a common semaphore set. 
If the semaphore already exists, semget returns a handle to the existing semaphore. If you 
replace the semflg argument of semget with PERMS | IPC_CREAT | IPC_EXCL, semget returns 
an error when the semaphore already exists.

Program 15.1 demonstrates how to identify a semaphore set by using a key generated from a 
pathname and an ID, which are passed as command-line arguments. If semfrompath executes 
successfully, the semaphores will exist after the program exits. You will need to call the ipcrm 
command to get rid of them.

Program 15.1 semfrompath.c

A program that creates a semaphore from a pathname key.

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/sem.h>
#include <sys/stat.h>
#define PERMS (S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH)
#define SET_SIZE 2

int main(int argc, char *argv[]) {
   key_t mykey;
   int semid;

   if (argc != 3) {
      fprintf(stderr, "Usage: %s pathname id\n", argv[0]);
      return 1;
   }
   if ((mykey = ftok(argv[1], atoi(argv[2]))) == (key_t)-1) {
      fprintf(stderr, "Failed to derive key from filename %s:%s\n",
             argv[1], strerror(errno));
      return 1;
   }
   if ((semid = semget(mykey, SET_SIZE, PERMS | IPC_CREAT)) == -1) {
      fprintf(stderr, "Failed to create semaphore with key %d:%s\n",
             (int)mykey, strerror(errno));
      return 1;
   }
   printf("semid = %d\n", semid);



   return 0;
}

15.2.2 Semaphore control

Each element of a semaphore set must be initialized with semctl before it is used. The semctl 
function provides control operations in element semnum for the semaphore set semid. The cmd 
parameter specifies the type of operation. The optional fourth parameter, arg, depends on the 
value of cmd.

SYNOPSIS

  #include <sys/sem.h>

  int semctl(int semid, int semnum, int cmd, ...);

                                                POSIX:XSI

If successful, semctl returns a nonnegative value whose interpretation depends on cmd. The 
GETVAL, GETPID, GETNCNT and GETZCNT values of cmd cause semctl to return the value 
associated with cmd. All other values of cmd cause semctl to return 0 if successful. If 
unsuccessful, semctl returns –1 and sets errno. The following table lists the mandatory errors 
for semctl.

errno cause

EACCES operation is denied to the caller

EINVAL value of semid or of cmd is invalid, or value of semnum is negative or too large

EPERM value of cmd is IPC_RMID or IPC_SET and caller does not have required privileges

ERANGE cmd is SETVAL or SETALL and value to be set is out of range

Table 15.2 gives the POSIX:XSI values for the cmd parameter of semctl.

Table 15.2. POSIX:XSI values for the cmd parameter of semctl.

cmd description

GETALL return values of the semaphore set in arg.array

GETVAL return value of a specific semaphore element



GETPID return process ID of last process to manipulate element

GETNCNT return number of processes waiting for element to increment

GETZCNT return number of processes waiting for element to become 0

IPC_RMID remove semaphore set identified by semid

IPC_SET set permissions of the semaphore set from arg.buf

IPC_STAT copy members of semid_ds of semaphore set semid into arg.buf

SETALL set values of semaphore set from arg.array

SETVAL set value of a specific semaphore element to arg.val

Several of these commands, such as GETALL and SETALL, require an arg parameter to read or 
store results. The arg parameter is of type union semun, which must be defined in programs 
that use it, as follows.

union semun {
   int val;
   struct semid_ds *buf;
   unsigned short *array;
} arg;

Example 15.5 initelement.c

The initelement function sets the value of the specified semaphore element to semvalue.

#include <sys/sem.h>

int initelement(int semid, int semnum, int semvalue) {
   union semun {
      int val;
      struct semid_ds *buf;
      unsigned short *array;
   } arg;
   arg.val = semvalue;
   return semctl(semid, semnum, SETVAL, arg);
 }

The semid and semnum parameters identify the semaphore set and the element within the set 
whose value is to be set to semvalue.

If successful, initelement returns 0. If unsuccessful, initelement returns –1 with errno set 
(since semctl sets errno).

Example 15.6 removesem.c



The removesem function deletes the semaphore specified by semid.

#include <sys/sem.h>

int removesem(int semid) {
   return semctl(semid, 0, IPC_RMID);
 }

If successful, removesem returns 0. If unsuccessful, removesem returns –1 with errno set (since 
semctl sets errno).

15.2.3 POSIX semaphore set operations

The semop function atomically performs a user-defined collection of semaphore operations on 
the semaphore set associated with identifier semid. The sops parameter points to an array of 
element operations, and the nsops parameter specifies the number of element operations in 
the sops array.

SYNOPSIS
  #include <sys/sem.h>

  int semop(int semid, struct sembuf *sops, size_t nsops);

                                                 POSIX:XSI

If successful, semop returns 0. If unsuccessful, semop returns –1 and sets errno. The following 
table lists the mandatory errors for semop.

errno cause

E2BIG value of nsops is too big

EACCES operation is denied to the caller

EAGAIN operation would block the process but (sem_flg & IPC_NOWAIT) != 0

EFBIG value of sem_num for one of the sops entries is less than 0 or greater than the 
number elements in the semaphore set

EIDRM semaphore identifier semid has been removed from the system

EINTR semop was interrupted by a signal

EINVAL value of semid is invalid, or number of individual semaphores for a SEM_UNDO has 
exceeded limit

ENOSPC limit on processes requesting SEM_UNDO has been exceeded



ERANGE operation would cause an overflow of a semval or semadj value

The semop function performs all the operations specified in sops array atomically on a single 
semaphore set. If any of the individual element operations would cause the process to block, 
the process blocks and none of the operations are performed.

The struct sembuf structure, which specifies a semaphore element operation, includes the 
following members.

short sem_num number of the semaphore element

short sem_op particular element operation to be performed

short sem_flg flags to specify options for the operation

The sem_op element operations are values specifying the amount by which the semaphore 
value is to be changed.

●     If sem_op is an integer greater than zero, semop adds the value to the corresponding 
semaphore element value and awakens all processes that are waiting for the element to 
increase.

●     If sem_op is 0 and the semaphore element value is not 0, semop blocks the calling 
process (waiting for 0) and increments the count of processes waiting for a zero value of 
that element.

●     If sem_op is a negative number, semop adds the sem_op value to the corresponding 
semaphore element value provided that the result would not be negative. If the 
operation would make the element value negative, semop blocks the process on the 
event that the semaphore element value increases. If the resulting value is 0, semop 
wakes the processes waiting for 0.

The description of semop assumes that sem_flg is 0 for all the element operations. If sem_flg 
& IPC_NOWAIT is true, the element operation never causes the semop call to block. If a semop 
returns because it would have blocked on that element operation, it returns –1 with errno set 
to EAGAIN. If sem_flg & SEM_UNDO is true, the function also modifies the semaphore 
adjustment value for the process. This adjustment value allows the process to undo its effect 
on the semaphore when it exits. You should read the man page carefully regarding the 
interaction of semop with various settings of the flags.

Example 15.7 

What is wrong with the following code to declare myopbuf and initialize it so that sem_num is 1, 
sem_op is 1, and sem_flg is 0?

struct sembuf myopbuf = {1, -1, 0};

Answer:



The direct assignment assumes that the members of struct sembuf appear in the order 
sem_num, sem_op and sem_flg. You may see this type of initialization in legacy code and it 
may work on your system, but try to avoid it. Although the POSIX:XSI Extension specifies that 
the struct sembuf structure has sem_num, sem_op and sem_flg members, the standard does 
not specify the order in which these members appear in the definition nor does the standard 
restrict struct sembuf to contain only these members.

Example 15.8 setsembuf.c

The function setsembuf initializes the struct sembuf structure members sem_num, sem_op 
and sem_flg in an implementation-independent manner.

#include <sys/sem.h>

void setsembuf(struct sembuf *s, int num, int op, int flg) {
   s->sem_num = (short)num;
   s->sem_op = (short)op;
   s->sem_flg = (short)flg;
   return;
}

Example 15.9 

The following code segment atomically increments element zero of semid by 1 and element one 
of semid by 2, using setsembuf of Example 15.8.

struct sembuf myop[2];

setsembuf(myop, 0, 1, 0);
setsembuf(myop + 1, 1, 2, 0);
if (semop(semid, myop, 2) == -1)
   perror("Failed to perform semaphore operation");

Example 15.10 

Suppose a two-element semaphore set, S, represents a tape drive system in which Process 1 
uses Tape A, Process 2 uses Tape A and B, and Process 3 uses Tape B. The following 
pseudocode segment defines semaphore operations that allow the processes to access one or 
both tape drives in a mutually exclusive manner.

struct sembuf get_tapes[2];
struct sembuf release_tapes[2];

setsembuf(&(get_tapes[0]), 0, -1, 0);
setsembuf(&(get_tapes[1]), 1, -1, 0);
setsembuf(&(release_tapes[0]), 0, 1, 0);
setsembuf(&(release_tapes[1]), 1, 1, 0);

Process 1:     semop(S, get_tapes, 1);
           <use tape A>



           semop(S, release_tapes, 1);

Process 2: semop(S, get_tapes, 2);
           <use tapes A and B>
           semop(S, release_tapes, 2);

Process 3: semop(S, get_tapes + 1, 1);
           <use tape B>
           semop(S, release_tapes + 1, 1);

S[0] represents tape A, and S[1] represents tape B. We assume that both elements of S have 
been initialized to 1.

If semop is interrupted by a signal, it returns –1 and sets errno to EINTR. Program 15.2 shows 
a function that restarts semop if it is interrupted by a signal.

Program 15.2 r_semop.c

A function that restarts semop after a signal.

#include <errno.h>
#include <sys/sem.h>

int r_semop(int semid, struct sembuf *sops, int nsops) {
   while (semop(semid, sops, nsops) == -1)
      if (errno != EINTR)
         return -1;
   return 0;
}

Program 15.3 modifies Program 14.1 to use POSIX:XSI semaphore sets to protect a critical 
section. Program 15.3 calls setsembuf (Example 15.8) and removesem (Example 15.6). It 
restarts semop operations if interrupted by a signal, even though the program does not catch 
any signals. You should get into the habit of restarting functions that can set errno equal to 
EINTR.

Once the semaphore of Program 15.3 is created, it persists until it is removed. If a child 
process generates an error, it just exits. If the parent generates an error, it falls through to the 
wait call and then removes the semaphore. A program that creates a semaphore for its own 
use should be sure to remove the semaphore before the program terminates. Be careful to 
remove the semaphore exactly once.

Program 15.3 chainsemset.c

A modification of Program 14.1 that uses semaphore sets to protect the critical section.

#include <errno.h>
#include <limits.h>
#include <stdio.h>



#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/sem.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include "restart.h"
#define BUFSIZE 1024
#define PERMS (S_IRUSR | S_IWUSR)

int initelement(int semid, int semnum, int semvalue);
int r_semop(int semid, struct sembuf *sops, int nsops);
int removesem(int semid);
void setsembuf(struct sembuf *s, int num, int op, int flg);

void printerror(char *msg, int error) {
   fprintf(stderr, "[%ld] %s: %s\n", (long)getpid(), msg, strerror(error));
}

int main (int argc, char *argv[]) {
   char buffer[MAX_CANON];
   char *c;
   pid_t childpid;
   int delay;
   int error;
   int i, j, n;
   int semid;
   struct sembuf semsignal[1];
   struct sembuf semwait[1];

   if ((argc != 3) || ((n = atoi(argv[1])) <= 0) ||
        ((delay = atoi(argv[2])) < 0))  {
      fprintf (stderr, "Usage: %s processes delay\n", argv[0]);
      return 1;
   }
                        /* create a semaphore containing a single element */
   if ((semid = semget(IPC_PRIVATE, 1, PERMS)) == -1) {
      perror("Failed to create a private semaphore");
      return 1;
   }
   setsembuf(semwait, 0, -1, 0);                   /* decrement element 0 */
   setsembuf(semsignal, 0, 1, 0);                  /* increment element 0 */
   if (initelement(semid, 0, 1) == -1) {
      perror("Failed to initialize semaphore element to 1");
      if (removesem(semid) == -1)
         perror("Failed to remove failed semaphore");
      return 1;
   }
   for (i = 1; i < n; i++)
      if (childpid = fork())
         break;
   snprintf(buffer, BUFSIZE, "i:%d PID:%ld  parent PID:%ld  child PID:%ld\n",
           i, (long)getpid(), (long)getppid(), (long)childpid);
   c = buffer;
   /******************** entry section ************************************/
   if (((error = r_semop(semid, semwait, 1)) == -1) && (i > 1)) {
      printerror("Child failed to lock semid", error);



      return 1;
   }
   else if (!error) {
      /***************** start of critical section ************************/
      while (*c != '\0') {
         fputc(*c, stderr);
         c++;
         for (j = 0; j < delay; j++) ;
       }
      /***************** exit section ************************************/
      if ((error = r_semop(semid, semsignal, 1)) == -1)
         printerror("Failed to unlock semid", error);
   }
   /******************** remainder section *******************************/
   if ((r_wait(NULL) == -1) && (errno != ECHILD))
      printerror("Failed to wait", errno);
   if ((i == 1) && ((error = removesem(semid)) == -1)) {
      printerror("Failed to clean up", error);
      return 1;
   }
   return 0;
}

A program calls semget to create or access a semaphore set and calls semctl to initialize it. If 
one process creates and initializes a semaphore and another process calls semop between the 
creation and initialization, the results of the execution are unpredictable. This unpredictability is 
an example of a race condition because the occurrence of the error depends on the precise 
timing between instructions in different processes. Program 15.3 does not have a race condition 
because the original parent creates and initializes the semaphore before doing a fork. The 
program avoids a race condition because only the original process can access the semaphore at 
the time of creation. One of the major problems with semaphore sets is that the creation and 
initialization are separate operations and therefore not atomic. Recall that POSIX:SEM named 
and unnamed semaphores are initialized at the time of creation and do not have this problem.

Program 15.4 can be used to create or access a semaphore set containing a single semaphore 
element. It takes three parameters, a semaphore key, an initial value and a pointer to a 
variable of type sig_atomic_t that is initialized to 0 and shared among all processes and 
threads that call this function. If this function is used among threads of a single process, the 
sig_atomic_t variable could be defined outside a block and statically initialized. Using 
initsemset among processes requires shared memory. We use Program 15.4 later in the 
chapter to protect a shared memory segment. The busy-waiting used in initsemset is not as 
inefficient as it may seem, since it is only used when the thread that creates the semaphore set 
loses the CPU before it can initialize it.

Program 15.4 initsemset.c

A function that creates and initializes a semaphore set containing a single semaphore.

#include <errno.h>
#include <signal.h>
#include <stdio.h>
#include <time.h>



#include <sys/sem.h>
#include <sys/stat.h>
#define PERMS (S_IRUSR | S_IWUSR)
#define TEN_MILLION 10000000L
int initelement(int semid, int semnum, int semvalue);

int initsemset(key_t mykey, int value, sig_atomic_t *readyp) {
   int semid;
   struct timespec sleeptime;

   sleeptime.tv_sec = 0;
   sleeptime.tv_nsec = TEN_MILLION;
   semid = semget(mykey, 2, PERMS | IPC_CREAT | IPC_EXCL);
   if ((semid == -1) && (errno != EEXIST))         /* real error, so return */
      return -1;
   if (semid >= 0) {          /* we created the semaphore, so initialize it */
      if (initelement(semid, 0, value) == -1)
         return -1;
      *readyp = 1;
      return semid;
   }
   if ((semid = semget(mykey, 2, PERMS)) == -1)           /* just access it */
      return -1;
   while (*readyp == 0)                            /* wait for initialization */
      nanosleep(&sleeptime, NULL);
   return semid;
}

[ Team LiB ]   
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15.3 POSIX:XSI Shared Memory

Shared memory allows processes to read and write from the same memory segment. The sys/
shm.h header file defines the data structures for shared memory, including shmid_ds, which 
has the following members.

struct ipc_perm shm_perm; /* operation permission structure */
size_t shm_segsz;         /* size of segment in bytes */
pid_t shm_lpid;           /* process ID of last operation */
pid_t shm_cpid;           /* process ID of creator */
shmatt_t shm_nattch;      /* number of current attaches */
time_t shm_atime;         /* time of last shmat */
time_t shm_dtime;         /* time of last shmdt */
time_t shm_ctime;         /* time of last shctl */

The shmatt_t data type is an unsigned integer data type used to hold the number of times the 
memory segment is attached. This type must be at least as large as an unsigned short.

15.3.1 Accessing a shared memory segment

The shmget function returns an identifier for the shared memory segment associated with the 
key parameter. It creates the segment if either the key is IPC_PRIVATE or shmflg & 
IPC_CREAT is nonzero and no shared memory segment or identifier is already associated with 
key. Shared memory segments are initialized to zero.

SYNOPSIS

  #include <sys/shm.h>

  int shmget(key_t key, size_t size, int shmflg);
                                                    POSIX:XSI

If successful, shmget returns a nonnegative integer corresponding to the shared memory 
segment identifier. If unsuccessful, shmget returns –1 and sets errno. The following table lists 
the mandatory errors for shmget.

errno cause

EACCES shared memory identifier exists for key but permissions are not granted

EEXIST shared memory identifier exists for key but ((shmflg & IPC_CREAT) && (shmflg 
& IPC_EXCL)) != 0 

EINVAL shared memory segment is to be created but size is invalid
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EINVAL no shared memory segment is to be created but size is inconsistent with system-
imposed limits or with the segment size of key

ENOENT shared memory identifier does not exist for key but (shmflg & IPC_CREAT) == 0

ENOMEM not enough memory to create the specified shared memory segment

ENOSPC systemwide limit on shared memory identifiers would be exceeded

15.3.2 Attaching and detaching a shared memory segment

The shmat function attaches the shared memory segment specified by shmid to the address 
space of the calling process and increments the value of shm_nattch for shmid. The shmat 
function returns a void * pointer, so a program can use the return value like an ordinary 
memory pointer obtained from malloc. Use a shmaddr value of NULL. On some systems it may 
be necessary to set shmflg so that the memory segment is properly aligned.

SYNOPSIS

  #include <sys/shm.h>

  void *shmat(int shmid, const void *shmaddr, int shmflg);
                                                        POSIX:XSI

If successful, shmat returns the starting address of the segment. If unsuccessful, shmat returns 
–1 and sets errno. The following table lists the mandatory errors for shmat.

errno cause

EACCES operation permission denied to caller

EINVAL value of shmid or shmaddr is invalid

EMFILE number of shared memory segments attached to process would exceed limit

ENOMEM process data space is not large enough to accommodate the shared memory 
segment

When finished with a shared memory segment, a program calls shmdt to detach the shared 
memory segment and to decrement shm_nattch. The shmaddr parameter is the starting 
address of the shared memory segment.

SYNOPSIS

  #include <sys/shm.h>

  int shmdt(const void *shmaddr);



                                                 POSIX:XSI

If successful, shmdt returns 0. If unsuccessful, shmdt returns –1 and sets errno. The shmdt 
function sets errno to EINVAL when shmaddr does not correspond to the starting address of a 
shared memory segment.

The last process to detach the segment should deallocate the shared memory segment by 
calling shmctl.

15.3.3 Controlling shared memory

The shmctl function provides a variety of control operations on the shared memory segment 
shmid as specified by the cmd parameter. The interpretation of the buf parameter depends on 
the value of cmd, as described below.

SYNOPSIS

  #include <sys/shm.h>

  int shmctl(int shmid, int cmd, struct shmid_ds *buf);
                                                 POSIX:XSI

If successful, shmctl returns 0. If unsuccessful, shmctl returns –1 and sets errno. The 
following table lists the mandatory errors for shmctl.

errno cause

EACCES cmd is IPC_STAT and caller does not have read permission

EINVAL value of shmid or cmd is invalid

EPERM cmd is IPC_RMID or IPC_SET and caller does not have correct permissions

Table 15.3 gives the POSIX:XSI values of cmd for shmctl.

Table 15.3. POSIX:XSI values of cmd for shmctl.

cmd description

IPC_RMID remove shared memory segment shmid and destroy corresponding shmid_ds

IPC_SET set values of fields for shared memory segment shmid from values found in buf



IPC_STAT copy current values for shared memory segment shmid into buf 

Example 15.11 detachandremove.c

The detachandremove function detaches the shared memory segment shmaddr and then 
removes the shared memory segment specified by semid.

#include <stdio.h>
#include <errno.h>
#include <sys/shm.h>

int detachandremove(int shmid, void *shmaddr) {
   int error = 0;

   if (shmdt(shmaddr) == -1)
      error = errno;
   if ((shmctl(shmid, IPC_RMID, NULL) == -1) && !error)
      error = errno;
   if (!error)
      return 0;
   errno = error;
   return -1;
}

15.3.4 Shared memory examples

Program 4.11 on page 108 monitors two file descriptors by using a parent and a child. Each 
process echoes the contents of the files to standard output and then writes to standard error 
the total number of bytes received. There is no simple way for this program to report the total 
number of bytes received by the two processes without using a communication mechanism 
such as a pipe.

Program 15.5 modifies Program 4.11 so that the parent and child share a small memory 
segment. The child stores its byte count in the shared memory. The parent waits for the child 
to finish and then outputs the number of bytes received by each process along with the sum of 
these values. The parent creates the shared memory segment by using the key IPC_PRIVATE, 
which allows the memory to be shared among its children. The synchronization of the shared 
memory is provided by the wait function. The parent does not access the shared memory until 
it has detected the termination of the child. Program 15.5 calls detachandremove of Example 
15.11 when it must both detach and remove the shared memory segment.

Program 15.5 monitorshared.c

A program to monitor two file descriptors and keep information in shared memory. The parent 
waits for the child, to ensure mutual exclusion.

#include <errno.h>
#include <fcntl.h>
#include <stdio.h>



#include <string.h>
#include <unistd.h>
#include <sys/shm.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include "restart.h"
#define PERM (S_IRUSR | S_IWUSR)

int detachandremove(int shmid, void *shmaddr);

int main(int argc, char *argv[]) {
   int bytesread;
   int childpid;
   int fd, fd1, fd2;
   int id;
   int *sharedtotal;
   int totalbytes = 0;

   if (argc != 3) {
      fprintf(stderr, "Usage: %s file1 file2\n", argv[0]);
      return 1;
   }
   if (((fd1 = open(argv[1], O_RDONLY)) == -1) ||
       ((fd2 = open(argv[2], O_RDONLY)) == -1)) {
      perror("Failed to open file");
      return 1;
   }
   if ((id = shmget(IPC_PRIVATE, sizeof(int), PERM)) == -1) {
      perror("Failed to create shared memory segment");
      return 1;
   }
   if ((sharedtotal = (int *)shmat(id, NULL, 0)) == (void *)-1) {
      perror("Failed to attach shared memory segment");
      if (shmctl(id, IPC_RMID, NULL) == -1)
         perror("Failed to  remove memory segment");
      return 1;
   }
   if ((childpid = fork()) == -1) {
      perror("Failed to create child process");
      if (detachandremove(id, sharedtotal) == -1)
         perror("Failed to destroy shared memory segment");
      return 1;
   }
   if (childpid > 0)                                         /* parent code */
      fd = fd1;
   else
      fd = fd2;
   while ((bytesread = readwrite(fd, STDOUT_FILENO)) > 0)
      totalbytes += bytesread;
   if (childpid == 0) {                                      /* child code */
      *sharedtotal = totalbytes;
      return 0;
   }
   if (r_wait(NULL) == -1)
      perror("Failed to wait for child");
   else {
      fprintf(stderr, "Bytes copied: %8d by parent\n", totalbytes);



      fprintf(stderr, "              %8d by child\n", *sharedtotal);
      fprintf(stderr, "              %8d total\n", totalbytes + *sharedtotal);
   }
   if (detachandremove(id, sharedtotal) == -1) {
      perror("Failed to destroy shared memory segment");
      return 1;
   }
   return 0;
}

Using shared memory between processes that do not have a common ancestor requires the 
processes to agree on a key, either directly or with ftok and a pathname.

Program 13.5 on page 456 used mutex locks to keep a sum and count for threads of a given 
process. This was particularly simple because the threads automatically share the mutex and 
the mutex could be initialized statically. Implementing synchronized shared memory for 
independent processes is more difficult because you must set up the sharing of the 
synchronization mechanism as well as the memory for the sum and the count.

Program 15.6 uses a semaphore and a small shared memory segment to keep a sum and 
count. Each process must first call the initshared function with an agreed-on key. This 
function first tries to create a shared memory segment with the given key. If successful, 
initshared initializes the sum and count. Otherwise, initshared just accesses the shared 
memory segment. In either case, initshared calls initsemset with the ready flag in shared 
memory to access a semaphore set containing a single semaphore initialized to 1. This 
semaphore element protects the shared memory segment. The add and getcountandsum 
functions behave as in Program 13.5, this time using the semaphore, rather than a mutex, for 
protection.

Program 15.6 sharedmemsum.c

A function that keeps a synchronized sum and count in shared memory.

#include <errno.h>
#include <signal.h>
#include <stdio.h>
#include <sys/sem.h>
#include <sys/shm.h>
#include <sys/stat.h>
#define PERM (S_IRUSR | S_IWUSR)

int initsemset(key_t mykey, int value, sig_atomic_t *readyp);
void setsembuf(struct sembuf *s, int num, int op, int flg);

typedef struct {
   int count;
   double sum;
   sig_atomic_t ready;
} shared_sum_t;

static int semid;
static struct sembuf semlock;



static struct sembuf semunlock;
static shared_sum_t *sharedsum;

int initshared(int key) {              /* initialize shared memory segment */
   int shid;

   setsembuf(&semlock, 0, -1, 0);         /* setting for locking semaphore */
   setsembuf(&semunlock, 0, 1, 0);      /* setting for unlocking semaphore */
                          /* get attached memory, creating it if necessary */
   shid = shmget(key, sizeof(shared_sum_t), PERM | IPC_CREAT | IPC_EXCL);
   if ((shid == -1) && (errno != EEXIST))                    /* real error */
      return -1;
   if (shid == -1) {              /* already created, access and attach it */
      if (((shid = shmget(key, sizeof(shared_sum_t), PERM)) == -1) ||
          ((sharedsum = (shared_sum_t *)shmat(shid, NULL, 0)) == (void *)-1) )
         return -1;
   }
   else {    /* successfully created, must attach and initialize variables */
      sharedsum = (shared_sum_t *)shmat(shid, NULL, 0);
      if (sharedsum == (void *)-1)
         return -1;
      sharedsum -> count = 0;
      sharedsum -> sum = 0.0;
   }
   semid = initsemset(key, 1, &sharedsum->ready);
   if (semid == -1)
      return -1;
   return 0;
}

int add(double x) {                                       /* add x to sum */
   if (semop(semid, &semlock, 1) == -1)
      return -1;
   sharedsum -> sum += x;
   sharedsum -> count++;
   if (semop(semid, &semunlock, 1) == -1)
      return -1;
   return 0;
}

int getcountandsum(int *countp, double *sum) {    /* return sum and count */
   if (semop(semid, &semlock, 1) == -1)
      return -1;
   *countp = sharedsum -> count;
   *sum = sharedsum -> sum;
   if (semop(semid, &semunlock, 1) == -1)
      return -1;
   return 0;
}

Each process must call initshared at least once before calling add or getcountandsum. A 
process may call initshared more than once, but one thread of the process should not call 
initshared while another thread of the same process is calling add or getcountandsum.

Example 15.12 



In Program 15.6, the three fields of the shared memory segment are treated differently. The 
sum and count are explicitly initialized to 0 whereas the function relies on the fact that ready is 
initialized to 0 when the shared memory segment is created. Why is it done this way?

Answer:

All three fields are initialized to 0 when the shared memory segment is created, so in this case 
the explicit initialization is not necessary. The program relies on the atomic nature of the 
creation and initialization of ready to 0, but sum and count can be initialized to any values.

Program 15.7 displays the shared count and sum when it receives a SIGUSR1 signal. The signal 
handler is allowed to use fprintf for output, even though it might not be async-signal safe, 
since no output is done by the main program after the signal handler is set up and the signal is 
unblocked.

Program 15.8 modifies Program 15.5 by copying information from a single file to standard 
output and saving the number of bytes copied in a shared sum implemented by Program 15.6. 
Program 15.8 has two command-line arguments: the name of the file; and the key identifying 
the shared memory and its protecting semaphore. You can run multiple copies of Program 15.8 
simultaneously with different filenames and the same key. The common shared memory stores 
the total number of bytes copied.

Program 15.7 showshared.c

A program to display the shared count and sum when it receives a SIGUSR1 signal.

#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int getcountandsum(int *countp, double *sump);
int initshared(int key);

/* ARGSUSED */
static void showit(int signo) {
   int count;
   double sum;
   if (getcountandsum(&count, &sum) == -1)
      printf("Failed to get count and sum\n");
   else
      printf("Sum is %f and count is %d\n", sum, count);
}

int main(int argc, char *argv[]) {
   struct sigaction act;
   int key;
   sigset_t mask, oldmask;

   if (argc != 2) {



      fprintf(stderr, "Usage: %s key\n", argv[0]);
      return 1;
   }
   key = atoi(argv[1]);
   if (initshared(key) == -1) {
      perror("Failed to initialize shared memory");
      return 1;
   }
   if ((sigfillset(&mask) == -1) ||
       (sigprocmask(SIG_SETMASK, &mask, &oldmask) == -1)) {
      perror("Failed to block signals to set up handlers");
      return 1;
   }
   printf("This is process %ld waiting for SIGUSR1 (%d)\n",
           (long)getpid(), SIGUSR1);

   act.sa_handler = showit;
   act.sa_flags = 0;
   if ((sigemptyset(&act.sa_mask) == -1) ||
       (sigaction(SIGUSR1, &act, NULL) == -1)) {
      perror("Failed to set up signal handler");
      return 1;
   }
   if (sigprocmask(SIG_SETMASK, &oldmask, NULL) == -1) {
      perror("Failed to unblock signals");
      return 1;
   }
   for ( ; ; )
      pause();
}

Program 15.8 monitoroneshared.c

A program to monitor one file and send the output to standard output. It keeps track of the 
number of bytes received by calling add from Program 15.6.

#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include "restart.h"

int add(double x);
int initshared(int key);

int main(int argc, char *argv[]) {
    int bytesread;
    int fd;
    int key;

    if (argc != 3) {
        fprintf(stderr,"Usage: %s file key\n",argv[0]);
        return 1;
    }
    if ((fd = open(argv[1],O_RDONLY)) == -1) {



        perror("Failed to open file");
        return 1;
    }
    key = atoi(argv[2]);
    if (initshared(key) == -1) {
        perror("Failed to initialize shared sum");
        return 1;
    }
    while ((bytesread = readwrite(fd, STDOUT_FILENO)) > 0)
        if (add((double)bytesread) == -1) {
            perror("Failed to add to count");
            return 1;
        }
    return 0;
}

Example 15.13 

Start Program 15.7 in one window, using key 12345, with the following command.

showshared 12345

Create a few named pipes, say, pipe1 and pipe2. Start copies of monitoroneshared in 
different windows with the following commands.

monitoroneshared pipe1 12345
monitoroneshared pipe2 12345

In other windows, send characters to the pipes (e.g., cat > pipe1). Periodically send SIGUSR1 
signals to showshared to monitor the progress.
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15.4 POSIX:XSI Message Queues

The message queue is a POSIX:XSI interprocess communication mechanism that allows a 
process to send and receive messages from other processes. The data structures for message 
queues are defined in sys/msg.h. The major data structure for message queues is msqid_ds, 
which has the following members.

struct ipc_perm msg_perm; /* operation permission structure */
msgqnum_t msg_qnum;       /* number of messages currently in queue */
msglen_t msg_qbytes;      /* maximum bytes allowed in queue */
pid_t msg_lspid;          /* process ID of msgsnd */
pid_t msg_lrpid;          /* process ID of msgrcv */
time_t msg_stime;         /* time of last msgsnd */
time_t msg_rtime;         /* time of last msgrcv */
time_t msg_ctime;         /* time of last msgctl */

The msgqnum_t data type holds the number of messages in the message queue; the msglen_t 
type holds the number of bytes allowed in a message queue. Both types must be at least as 
large as an unsigned short.

15.4.1 Accessing a message queue

The msgget function returns the message queue identifier associated with the key parameter. It 
creates the identifier if either the key is IPC_PRIVATE or msgflg & IPC_CREAT is nonzero and 
no message queue or identifier is already associated with key.

SYNOPSIS

    #include <sys/msg.h>

    int msgget(key_t key, int msgflg);
                                                POSIX:XSI

If successful, msgget returns a nonnegative integer corresponding to the message queue 
identifier. If unsuccessful, msgget returns –1 and sets errno. The following table lists the 
mandatory errors for msgget.

errno cause

EACCES message queue exists for key, but permission denied

EEXIST message queue exists for key, but ((msgflg & IPC_CREAT) && (msgflg & 
IPC_EXCL)) != 0

ENOENT message queue does not exist for key, but (msgflg & IPC_CREAT) == 0
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ENOSPC systemwide limit on message queues would be exceeded

Example 15.14 

Create a new message queue.

#define PERMS (S_IRUSR | S_IWUSR)

int msqid;
if ((msqid = msgget(IPC_PRIVATE, PERMS)) == -1)
   perror("Failed to create new private message queue");

After obtaining access to a message queue with msgget, a program inserts messages into the 
queue with msgsnd. The msqid parameter identifies the message queue, and the msgp 
parameter points to a user-defined buffer that contains the message to be sent, as described 
below. The msgsz parameter specifies the actual size of the message text. The msgflg 
parameter specifies actions to be taken under various conditions.

SYNOPSIS

   #include <sys/msg.h>

   int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg);
                                                          POSIX:XSI

If successful, msgsnd returns 0. If unsuccessful, msgsnd returns –1 and sets errno. The 
following table lists the mandatory errors for msgsnd.

errno cause

EACCES operation is denied to the caller

EAGAIN operation would block the process, but (msgflg & IPC_NOWAIT) != 0

EIDRM msqid has been removed from the system

EINTR msgsnd was interrupted by a signal

EINVAL msqid is invalid, the message type is < 1, or msgsz is out of range

The msgp parameter points to a user-defined buffer whose first member must be a long 
specifying the type of message, followed by space for the text of the message. The structure 
might be defined as follows.

struct mymsg{
   long mtype;    /* message type */
   char mtext[1]; /* message text */



} mymsg_t;

The message type must be greater than 0. The user can assign message types in any way 
appropriate to the application.

Here are the steps needed to send the string mymessage to a message queue.

1.  Allocate a buffer, mbuf, which is of type mymsg_t and size

sizeof(mymsg_t) + strlen(mymessage).

2.  Copy mymessage into the mbuf->mtext member.

3.  Set the message type in the mbuf->mtype member.

4.  Send the message.

5.  Free mbuf.

Remember to check for errors and to free mbuf if an error occurs. Code for this is provided in 
Program 15.9, discussed later.

A program can remove a message from a message queue with msgrcv. The msqid parameter 
identifies the message queue, and the msgp parameter points to a user-defined buffer for 
holding the message to be retrieved. The format of msgp is as described above for msgsnd. The 
msgsz parameter specifies the actual size of the message text. The msgtyp parameter can be 
used by the receiver for message selection. The msgflg specifies actions to be taken under 
various conditions.

SYNOPSIS

   #include <sys/msg.h>

   ssize_t msgrcv(int msqid, void *msgp, size_t msgsz,
                  long msgtyp, int msgflg);
                                                    POSIX:XSI

If successful, msgrcv returns the number of bytes in the text of the message. If unsuccessful, 
msgrcv returns (ssize_t) –1 and sets errno. The following table lists the mandatory errors for 
msgrcv.

errno cause

E2BIG value of the mtext member of msgp is greater than msgsize and (msgflg & 
MSG_NOERROR) == 0



EACCES operation is denied to the caller

EIDRM msqid has been removed from the system

EINTR msgrcv was interrupted by a signal

EINVAL value of msqid is invalid

ENOMSG queue does not contain a message of requested type and (msgflg & 
IPC_NOWAIT) != 0

Table 15.4 shows how msgrcv uses the msgtyp parameter to determine the order in which it 
removes messages from the queue.

Use msgctl to deallocate or change permissions for the message queue identified by msqid. 
The cmd parameter specifies the action to be taken as listed in Table 15.5. The msgctl function 
uses its buf parameter to write or read state information, depending on cmd.

Table 15.4. The POSIX:XSI values for the msgtyp parameter determine 
the order in which msgrcv removes messages from the queue.

msgtyp action

0 remove first message from queue

> 0 remove first message of type msgtyp from the queue

< 0 remove first message of lowest type that is less than or equal to the absolute value 
of msgtyp

Table 15.5. POSIX:XSI values for the cmd parameter of msgctl.

cmd description

IPC_RMID remove the message queue msqid and destroy the corresponding msqid_ds

IPC_SET set members of the msqid_ds data structure from buf

IPC_STAT copy members of the msqid_ds data structure into buf

SYNOPSIS



    #include <sys/msg.h>

    int msgctl(int msqid, int cmd, struct msqid_ds *buf);
                                                         POSIX:XSI

If successful, msgctl returns 0. If unsuccessful, msgctl returns –1 and sets errno. The 
following table lists the mandatory errors for msgctl.

errno cause

EACCES cmd is IPC_STAT and the caller does not have read permission

EINVAL msqid or cmd is invalid

EPERM cmd is IPC_RMID or IPC_SET and caller does not have privileges

Program 15.9 contains utilities for accessing a message queue similar to that of Program 15.6, 
but simpler because no initialization or synchronization is needed. Each process should call the 
initqueue function before accessing the message queue. The msgprintf function has syntax 
similar to printf for putting formatted messages in the queue. The msgwrite function is for 
unformatted messages. Both msgprintf and msgwrite allocate memory for each message and 
free this memory after calling msgsnd. The removequeue function removes the message queue 
and its associated data structures. The msgqueuelog.h header file contains the prototypes for 
these functions. If successful, these functions return 0. If unsuccessful, these functions return –
1 and set errno.

Program 15.9 msgqueuelog.c

Utility functions that access and output to a message queue.

#include <errno.h>
#include <stdio.h>
#include <stdarg.h>
#include <stdlib.h>
#include <string.h>
#include <sys/msg.h>
#include <sys/stat.h>
#include "msgqueuelog.h"
#define PERM (S_IRUSR | S_IWUSR)

typedef struct {
   long mtype;
   char mtext[1];
} mymsg_t;
static int queueid;

int initqueue(int key) {                    /* initialize the message queue */
   queueid = msgget(key, PERM | IPC_CREAT);
   if (queueid == -1)



      return -1;
   return 0;
}

int msgprintf(char *fmt, ...) {               /* output a formatted message */
   va_list ap;
   char ch;
   int error = 0;
   int len;
   mymsg_t *mymsg;

   va_start(ap, fmt);                       /* set up the format for output */
   len = vsnprintf(&ch, 1, fmt, ap);              /* how long would it be ? */
   if ((mymsg = (mymsg_t *)malloc(sizeof(mymsg_t) + len)) == NULL)
      return -1;
   vsprintf(mymsg->mtext, fmt, ap);                 /* copy into the buffer */
   mymsg->mtype = 1;                            /* message type is always 1 */
   if (msgsnd(queueid, mymsg, len + 1, 0) == -1)
      error = errno;
   free(mymsg);
   if (error) {
      errno = error;
      return -1;
   }
   return 0;
}

int msgwrite(void *buf, int len) {     /* output buffer of specified length */
   int error = 0;
   mymsg_t *mymsg;

   if ((mymsg = (mymsg_t *)malloc(sizeof(mymsg_t) + len - 1)) == NULL)
      return -1;
   memcpy(mymsg->mtext, buf, len);
   mymsg->mtype = 1;                            /* message type is always 1 */
   if (msgsnd(queueid, mymsg, len, 0) == -1)
      error = errno;
   free(mymsg);
   if (error) {
      errno = error;
      return -1;
   }
   return 0;
}

int remmsgqueue(void) {
   return msgctl(queueid, IPC_RMID, NULL);
}

Example 15.15 

Why does the msgprintf function of Program 15.9 use len in malloc and len+1 in msgsnd?

Answer:



The vsnprintf function returns the number of bytes to be formatted, not including the string 
terminator, so len is the string length. We need one extra byte for the string terminator. One 
byte is already included in mymsg_t.

Program 15.10, which outputs the contents of a message queue to standard output, can save 
the contents of a message queue to a file through redirection. The msgqueuesave program 
takes a key that identifies the message queue as a command-line argument and calls the 
initqueue function of Program 15.9 to access the queue. The program then outputs the 
contents of the queue to standard output until an error occurs. Program 15.10 does not 
deallocate the message queue when it completes.

Program 15.11 reads lines from standard input and sends each to the message queue. The 
program takes a key as a command-line argument and calls initqueue to access the 
corresponding message queue. Program 15.11 sends an informative message containing its 
process ID before starting to copy from standard input.

You should be able to run multiple copies of Program 15.11 along with a single copy of Program 
15.10. Since none of the programs call removequeue, be sure to execute the ipcrm command 
when you finish.

Example 15.16 

Why does Program 15.10 use r_write from the restart library even though the program does 
not catch any signals?

Answer:

In addition to restarting when interrupted by a signal (which is not necessary here), r_write 
continues writing if write did not output all of the requested bytes.

Example 15.17 

How would you modify these programs so that messages from different processes could be 
distinguished?

Answer:

Modify the functions in Program 15.9 to send the process ID as the message type. Modify 
Program Program 15.10 to output the message type along with the message.

Program 15.10 msgqueuesave.c

A program that copies messages from a message queue to standard output.

#include <stdio.h>
#include <stdlib.h>



#include <unistd.h>
#include <sys/msg.h>
#include "msgqueuelog.h"
#include "restart.h"
#define MAXSIZE 4096
typedef struct {
   long mtype;
   char mtext[MAXSIZE];
} mymsg_t;

int main(int argc, char *argv[]) {
   int id;
   int key;
   mymsg_t mymsg;
   int size;

   if (argc != 2) {
      fprintf(stderr, "Usage: %s key\n", argv[0]);
      return 1;
   }
   key = atoi(argv[1]);
   if ((id = initqueue(key)) == -1) {
      perror("Failed to initialize message queue");
      return 1;
   }
   for ( ; ; ) {
      if ((size = msgrcv(id, &mymsg, MAXSIZE, 0, 0)) == -1) {
         perror("Failed to read message queue");
         break;
      }
      if (r_write(STDOUT_FILENO, mymsg.mtext, size) == -1) {
         perror("Failed to write to standard output");
         break;
      }
   }
   return 1;
}

Program 15.11 msgqueuein.c

A program that sends standard input to a message queue.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/msg.h>
#include <unistd.h>
#include "msgqueuelog.h"
#include "restart.h"
#define MAXLINE 1024

int main(int argc, char *argv[]) {
   char buf[MAXLINE];
   int key;
   int size;



   if (argc != 2) {
      fprintf(stderr, "Usage: %s key\n", argv[0]);
      return 1;
   }
   key = atoi(argv[1]);
   if (initqueue(key) == -1) {
      perror("Failed to initialize message queue");
      return 1;
   }
   if (msgprintf("This is process %ld\n", (long)getpid()) == -1) {
      perror("Failed to write header to message queue");
      return 1;
   }
   for ( ; ; ) {
      if ((size = readline(STDIN_FILENO, buf, MAXLINE)) == -1) {
         perror("Failed to read from standard input");
         break;
      }
      if (msgwrite(buf, size) == -1) {
         perror("Failed to write message to standard output");
         break;
      }
   }
   return 0;
}
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15.5 Exercise: POSIX Unnamed Semaphores

This exercise describes an implementation of POSIX:SEM-like unnamed semaphores in terms of 
semaphore sets. Represent the unnamed semaphore by a data structure of type mysem_t, 
which for this exercise is simply an int. The mysem.h header file should contain the definition of 
mysem_t and the prototypes for the semaphore functions.

int mysem_init(mysem_t *sem, int pshared, unsigned int value);
int mysem_destroy(mysem_t *sem);
int mysem_wait(mysem_t *sem);
int mysem_post(mysem_t *sem);

All these functions return 0 if successful. On error, they return –1 and set errno appropriately. 
Actually, the last point is a little subtle. It will probably turn out that the only statements that 
can cause an error are the semaphore set calls and they set errno. If that is the case, the 
functions return the correct errno value as long as there are no intervening functions that 
might set errno.

Assume that applications call mysem_init before creating any threads. The mysem_t value is the 
semaphore ID of a semaphore set. Ignore the value of pshared, since semaphore sets are 
sharable among processes. Use a key of IPC_PRIVATE.

Implement the mysem_wait and mysem_post directly with calls to semop. The details will depend 
on how sem_init initializes the semaphore. Implement mysem_destroy with a call to semctl.

Test your implementation with Programs 14.5 and 14.6 to see that it enforces mutual exclusion.

Before logging out, use ipcs -s from the command line. If semaphores still exist (because of a 
program bug), delete each of them, using the following command.

ipcrm -s n

This command deletes the semaphore with ID n. The semaphore should be created only once 
by the test program. It should also be deleted only once, not by all the children in the process 
chain.

[ Team LiB ]   

file:///D|/Tutoriales%20&%20Programacion/Prep%20Finales/XxX/Prentice%20Hall%20-%20Unix%20Systems%20Programming%202nd%20Ed/NFO/lib.html
file:///D|/Tutoriales%20&%20Programacion/Prep%20Finales/XxX/Prentice%20Hall%20-%20Unix%20Systems%20Programming%202nd%20Ed/0130424110_14051533.html
file:///D|/Tutoriales%20&%20Programacion/Prep%20Finales/XxX/Prentice%20Hall%20-%20Unix%20Systems%20Programming%202nd%20Ed/NFO/lib.html


[ Team LiB ]   

15.6 Exercise: POSIX Named Semaphores

This exercise describes an implementation of POSIX:SEM-like named semaphores in terms of 
semaphores sets. Represent the named semaphore by a structure of type mysem_t. The mysemn.
h file should include the definition of mysem_t and the prototypes of the following functions.

mysem_t *mysem_open(const char *name, int oflag, mode_t mode,
                     unsigned int value);
int mysem_close(mysem_t *sem);
int mysem_unlink(const char *name);
int mysem_wait(mysem_t *sem);
int mysem_post(mysem_t *sem);

The mysem_open function returns NULL and sets errno when there is an error. All the other 
functions return –1 and set errno when there is an error. To simplify the interface, always call 
mysem_open with four parameters.

Represent the named semaphore by an ordinary file that contains the semaphore ID of the 
semaphore set used to implement the POSIX semaphore. First try to open the file with open, 
using O_CREAT | O_EXCL. If you created the file, use fdopen to get a FILE pointer for the file. 
Allocate the semaphore set and store the ID in the file. If the file already exists, open the file 
for reading with fopen. In either case, return the file pointer. The mysem_t data type will just be 
the type FILE.

The mysem_close function makes the semaphore inaccessible to the caller by closing the file. 
The mysem_unlink function deletes the semaphore and its corresponding file. The mysem_wait 
function decrements the semaphore, and the mysem_post function increments the semaphore. 
Each function reads the semaphore ID from the file by first calling rewind and then reading an 
integer. It is possible to get an end-of-file if the process that created the semaphore has not 
yet written to the file. In this case, try again.

Put all the semaphore functions in a separate library and treat this as an object in which the 
only items with external linkage are the five functions listed above. Do not worry about race 
conditions in using mysem_open to create the file until a rudimentary version of the test 
program works. Devise a mechanism that frees the semaphore set after the last mysem_unlink 
but only after the last process closes this semaphore. The mysem_unlink cannot directly do the 
freeing because other processes may still have the semaphore open. One possibility is to have 
mysem_close check the link count in the inode and free the semaphore set if the link count 
becomes 0.

Try to handle the various race conditions by using an additional semaphore set to protect the 
critical sections for semaphore initialization and access. What happens when two threads try to 
access the semaphore concurrently? Use the same semaphore for all copies of your library to 
protect against interaction between unrelated processes. Refer to this semaphore by a 
filename, which you can convert to a key with ftok.
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15.7 Exercise: Implementing Pipes with Shared Memory

This section develops a specification for a software pipe consisting of a semaphore set to 
protect access to the pipe and a shared memory segment to hold the pipe data and state 
information. The pipe state information includes the number of bytes of data in the pipe, the 
position of next byte to be read and status information. The pipe can hold at most one message 
of maximum size _POSIX_PIPE_BUF. Represent the pipe by the following pipe_t structure 
allocated in shared memory.

typedef struct pipe {
   int semid;                    /* ID of protecting semaphore set */
   int shmid;                   /* ID of the shared memory segment */
   char data[_POSIX_PIPE_BUF];         /* buffer for the pipe data */
   int data_size;                   /* bytes currently in the pipe */
   void *current_start;        /* pointer to current start of data */
   int end_of_file;          /* true after pipe closed for writing */
} pipe_t;

A program creates and references the pipe by using a pointer to pipe_t as a handle. For 
simplicity, assume that only one process can read from the pipe and one process can write to 
the pipe. The reader must clean up the pipe when it closes the pipe. When the writer closes the 
pipe, it sets the end_of_file member of pipe_t so that the reader can detect end-of-file.

The semaphore set protects the pipe_t data structure during shared access by the reader and 
the writer. Element zero of the semaphore set controls exclusive access to data. It is initially 1. 
Readers and writers acquire access to the pipe by decrementing this semaphore element, and 
they release access by incrementing it. Element one of the semaphore set controls 
synchronization of writes so that data contains only one message, that is, the output of a single 
write operation. When this semaphore element is 1, the pipe is empty. When it is 0, the pipe 
has data or an end-of-file has been encountered. Initially, element one is 1. The writer 
decrements element one before writing any data. The reader waits until element one is 0 before 
reading. When it has read all the data from the pipe, the reader increments element one to 
indicate that the pipe is now available for writing. Write the following functions.

pipe_t *pipe_open(void);

creates a software pipe and returns a pointer of type pipe_t * to be used as a 
handle in the other calls. The algorithm for pipe_open is as follows.

1.  Create a shared memory segment to hold a pipe_t data structure by calling shmget. 
Use a key of IPC_PRIVATE and owner read/write permissions.

2.  Attach the segment by calling shmat. Cast the return value of shmat to a pipe_t * and 
assign it to a local variable p.

3.  Set p->shmid to the ID of the shared memory segment returned by the shmget.
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4.  Set p->data_size and p->end_of_file to 0.

5.  Create a semaphore set containing two elements by calling semget with IPC_PRIVATE 
key and owner read, write, execute permissions.

6.  Initialize both semaphore elements to 1, and put the resulting semaphore ID value in p-
>semid.

7.  If all the calls were successful, return p.

8.  If an error occurs, deallocate all resources, set errno, and return a NULL pointer.

int pipe_read(pipe_t *p, char *buf, int bytes);

behaves like an ordinary blocking read function. The algorithm for pipe_read is 
as follows.

1.  Perform semop on p->semid to atomically decrement semaphore element zero, and test 
semaphore element one for 0. Element zero provides mutual exclusion. Element one is 
only 0 if there is something in the buffer.

2.  If p->data_size is greater than 0 do the following.

a.  Copy at most bytes bytes of information starting at position p->current_start 
of the software pipe into buf. Take into account the number of bytes in the pipe.

b.  Update the p->current_start and p->data_size members of the pipe data 
structure.

c.  If successful, set the return value to the number of bytes actually read.

3.  Otherwise, if p->data_size is 0 and p->end_of_file is true, set the return value to 0 
to indicate end-of-file.

4.  Perform another semop operation to release access to the pipe. Increment element zero. 
If no more data is in the pipe, also increment element one unless p->end_of_file is 
true. Perform these operations atomically by a single semop call.

5.  If an error occurs, return –1 with errno set.

int pipe_write(pipe_t *p, char *buf, int bytes);

behaves like an ordinary blocking write function. The algorithm for pipe_write is as follows.

1.  Perform a semop on p->semid to atomically decrement both semaphore elements zero 



and one.

2.  Copy at most _POSIX_PIPE_BUF bytes from buf into the pipe buffer.

3.  Set p->data_size to the number of bytes actually copied, and set p->current_start to 
0.

4.  Perform another semop call to atomically increment semaphore element zero of the 
semaphore set.

5.  If successful, return the number of bytes copied.

6.  If an error occurs, return –1 with errno set.

int pipe_close(pipe_t *p, int how);

closes the pipe. The how parameter determines whether the pipe is closed for 
reading or writing. Its possible values are O_RDONLY and O_WRONLY. The 
algorithm for pipe_close is as follows.

1.  Use the semop function to atomically decrement element zero of p->semid. If the semop 
fails, return –1 with errno set.

2.  If how & O_WRONLY is true, do the following.

a.  Set p->end_of_file to true.

b.  Perform a semctl to set element one of p->semid to 0.

c.  Copy p->semid into a local variable, semid_temp.

d.  Perform a shmdt to detach p.

e.  Perform a semop to atomically increment element zero of semid_temp.

If any of the semop, semctl, or shmdt calls fail, return –1 immediately with errno set.

3.  If how & O_RDONLY is true, do the following.

a.  Perform a semctl to remove the semaphore p->semid. (If the writer is waiting 
on the semaphore set, its semop returns an error when this happens.)

b.  Copy p->shmid into a local variable, shmid_temp.



c.  Call shmdt to detach p.

d.  Call shmctl to deallocate the shared memory segment identified by shmid_temp.

If any of the semctl, shmdt, or shmctl calls fail, return –1 immediately with errno set.

Test the software pipe by writing a main program that is similar to Program 6.4. The program 
creates a software pipe and then forks a child. The child reads from standard input and writes 
to the pipe. The parent reads what the child has written to the pipe and outputs it to standard 
output. When the child detects end-of-file on standard input, it closes the pipe for writing. The 
parent then detects end-of-file on the pipe, closes the pipe for reading (which destroys the 
pipe), and exits. Execute the ipcs command to check that everything was properly destroyed.

The above specification describes blocking versions of the functions pipe_read and 
pipe_write. Modify and test a nonblocking version also.
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15.8 Exercise: Implementing Pipes with Message Queues

Formulate a specification of a software pipe implementation in terms of message queues. 
Implement the following functions.

pipe_t *pipe_open(void);
int pipe_read(pipe_t *p, char *buf, int chars);
int pipe_write(pipe_t *p, char *buf, int chars);
int pipe_close(pipe_t *p);

Design a pipe_t structure to fit the implementation. Test the implementation as described in 
Section 15.7.
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15.9 Additional Reading

Most books on operating systems [107, 122] discuss the classical semaphore abstraction. UNIX 
Network Programming by Stevens [116] has an extensive discussion on System V Interprocess 
Communication including semaphores, shared memory and message queues.
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Chapter 16. Project: Producer Consumer Synchronization

This chapter focuses on variations of producer-consumer synchronization using mutex locks, 
semaphores, condition variables and signals. Implementations for different types of stopping 
conditions are developed with careful attention to error handling and shutdown. The chapter 
describes two projects, a parallel file copy and a print server. The parallel file copy uses 
bounded buffers; the print server uses unbounded buffers.

Objectives

●     Learn about producer-consumer synchronization
●     Experiment with complex synchronization problems
●     Explore how ending conditions affect synchronization
●     Use a large number of threads in a realistic application
●     Understand thread interaction and synchronization
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16.1 The Producer-Consumer Problem

Producer-consumer problems involve three types of participants—producers, consumers and 
temporary holding areas called buffer slots. A buffer is a collection of buffer slots. Producers 
create items and place them in buffer slots. Consumers remove items from buffer slots and use 
the items in some specified way so that they are no longer available.

Producer-consumer synchronization is required because producers and consumers do not 
operate at exactly the same speed, hence the holding areas are needed. For example, many 
fast food restaurants precook food and place it under lights in a warming area to get ahead of 
the mealtime rush. The cooks are the producers, and the customers are the consumers. The 
buffer is the area that holds the cooked food before it is given to the customer. Similarly, 
airplanes line up on a holding runway before being authorized to take off. Here the control 
tower or the airline terminals (depending on your view) produce airplanes. The take-off 
runways consume them.

Producer-consumer problems are ubiquitous in computer systems because of the asynchronous 
nature of most interactions. Network routers, printer queues and disk controllers follow the 
producer-consumer pattern. Because buffers in computer systems have finite capacity, 
producer-consumer problems are sometimes called bounded buffer problems, but producer-
consumer problems also occur with unbounded buffers.

Chapter 13 introduced reader-writer synchronization. Both reader-writer and producer-
consumer synchronization involve two distinguished parties. In reader-writer synchronization, a 
writer may create new resources or modify existing ones. A reader, however, does not change 
a resource by accessing it. In producer-consumer synchronization, a producer creates a 
resource. In contrast to readers, consumers remove or destroy the resource by accessing it. 
Shared data structures that do not act as buffers generally should use reader-writer 
synchronization or simple mutex locks rather than producer-consumer synchronization.

Figure 16.1 shows a schematic of the producer-consumer problem. Producer and consumer 
threads share a buffer and must synchronize when inserting or removing items. 
Implementations must avoid the following synchronization errors.

Figure 16.1. Schematic of the producer-consumer problem.

●     A consumer removes an item that a producer is in the process of inserting in the buffer.
●     A consumer removes an item that is not there at all.
●     A consumer removes an item that has already been removed.
●     A producer inserts an item in the buffer when there is no free slot (bounded buffer only).
●     A producer overwrites an item that has not been removed.
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Two distinct time scales occur in synchronization problems—the short, bounded duration 
holding of resources, and the unbounded duration waiting until some event occurs. Producers 
should acquire a lock on the buffer only when a buffer slot is available and they have an item to 
insert. They should hold the lock only during the insertion period. Similarly, consumers should 
lock the buffer only while removing an item and release the lock before processing the removed 
item. Both of these locking actions are of short, bounded duration (in virtual time), and mutex 
locks are ideal for these.

When the buffer is empty (no buffer slots are filled), consumer threads should wait until there 
are items to remove. In addition, if the buffer has fixed size (an upper bound for the number of 
slots), producers should wait for room to become available before producing more data. These 
actions are not of bounded duration, and you must take care that your producers and 
consumers do not hold locks when waiting for such events. Semaphores or condition variables 
can be used for waiting of this type.

More complicated producer-consumer flow control might include high-water and low-water 
marks. When a buffer reaches a certain size (the high-water mark), producers block until the 
buffer empties to the low-water mark. Condition variables and semaphores can be used to 
control these aspects of the producer-consumer problem.

This chapter explores different aspects of the producer-consumer problem, using a simple 
mathematical calculation. We begin by demonstrating that mutex locks are not sufficient for an 
efficient implementation, motivating the need for condition variables (Section 13.4) and 
semaphores (Section 14.3). The chapter then specifies two projects that have a producer-
consumer structure. A parallel file copier project based on the program of Section 12.3.5 uses 
the bounded buffers developed in this chapter. A threaded print server project uses unbounded 
buffers.
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16.2 Bounded Buffer Protected by Mutex Locks

Figure 16.2 shows a diagram of a circular buffer with eight slots that might be used as a 
holding area between producers and consumers. The buffer has three data items, and the 
remaining five slots are free. The bufout variable has the slot number of the next data item to 
be removed, and the bufin variable has the number of the next slot to be filled.

Figure 16.2. Circular buffer.

Program 16.1 is an initial version of a circular buffer implemented as a shared object. The data 
structures for the buffer have internal linkage because the static qualifier limits their scope. 
(See Appendix A.5 for a discussion of the two meanings of the static qualifier in C.) The code 
is in a separate file so that the program can access the buffer only through getitem and 
putitem. The header file, buffer.h, contains the definitions of BUFSIZE and buffer_t. The 
functions of Program 16.1 follow the preferred POSIX error-handling semantics and return 0 if 
successful or a nonzero error code if unsuccessful.

Program 16.1 bufferbad.c

A flawed circular buffer protected by mutex locks.

#include <pthread.h>
#include "buffer.h"
static buffer_t buffer[BUFSIZE];
static pthread_mutex_t  bufferlock = PTHREAD_MUTEX_INITIALIZER;
static int bufin = 0;
static int bufout = 0;
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int getitem(buffer_t *itemp) {  /* remove item from buffer and put in *itemp */
   int error;
   if (error = pthread_mutex_lock(&bufferlock))         /* no mutex, give up */
      return error;
   *itemp = buffer[bufout];
   bufout = (bufout + 1) % BUFSIZE;
   return pthread_mutex_unlock(&bufferlock);
}

int putitem(buffer_t item) {                    /* insert item in the buffer */
   int error;
   if (error = pthread_mutex_lock(&bufferlock))         /* no mutex, give up */
      return error;
   buffer[bufin] = item;
   bufin = (bufin + 1) % BUFSIZE;
   return pthread_mutex_unlock(&bufferlock);
}

Exercise 16.1 

The following code segment uses the circular buffer defined in Program 16.1. What happens 
when it executes?

int myitem;
if (getitem(&myitem) == 0)
   printf("retrieved %d from the buffer\n", myitem);

Answer:

The result cannot be predicted. The getitem returns an error only when the locking fails, but it 
does not keep track of the number of items in the buffer. If a consumer executes this code 
before a producer calls putitem, the value retrieved for myitem will not be meaningful.

Exercise 16.2 

The following code segment uses the circular buffer defined in Program 16.1. What happens 
when it executes?

int i;
for (i = 0; i < 10; i++)
   if (putitem(i))
      break;

Answer:

The buffer has only 8 slots, but this code segment calls putitem 10 times. The putitem does 
not keep track of how many empty slots are available, so it does not report an error if full slots 
are overwritten. If a consumer does not call getitem, the code overwrites the first items in the 
buffer.



Program 16.1 is flawed because the code does not protect the buffer from overflows or 
underflows. Program 16.2 is a revised implementation that keeps track of the number of items 
actually in the buffer. If successful, getitem and putitem return 0. If unsuccessful, these 
functions return a nonzero error code. In particular, getitem returns EAGAIN if the buffer is 
empty, and putitem returns EAGAIN if the buffer is full.

Example 16.3 

The following code segment attempts to retrieve at most 10 items from the buffer of Program 
16.2.

int error;
int i;
int item;

for (i = 0; i < 10; i++) {
   while((error = getitem(&item)) && (error == EAGAIN)) ;
   if (error)                      /* real error occurred */
      break;
   printf("Retrieved item %d: %d\n", i, item);
}

Program 16.2 buffer.c

A circular buffer implementation that does not allow overwriting of full slots or retrieval of 
empty slots.

#include <errno.h>
#include <pthread.h>
#include "buffer.h"
static buffer_t buffer[BUFSIZE];
static pthread_mutex_t  bufferlock = PTHREAD_MUTEX_INITIALIZER;
static int bufin = 0;
static int bufout = 0;
static int totalitems = 0;

int getitem(buffer_t *itemp) {  /* remove item from buffer and put in *itemp */
   int error;
   int erroritem = 0;
   if (error = pthread_mutex_lock(&bufferlock))         /* no mutex, give up */
      return error;
   if (totalitems > 0) {                   /* buffer has something to remove */
      *itemp = buffer[bufout];
       bufout = (bufout + 1) % BUFSIZE;
       totalitems--;
   } else
       erroritem = EAGAIN;
   if (error = pthread_mutex_unlock(&bufferlock))
      return error;                /* unlock error more serious than no item */
   return erroritem;
}



int putitem(buffer_t item) {                    /* insert item in the buffer */
   int error;
   int erroritem = 0;
   if (error = pthread_mutex_lock(&bufferlock))         /* no mutex, give up */
      return error;
   if (totalitems < BUFSIZE) {           /* buffer has room for another item */
      buffer[bufin] = item;
      bufin = (bufin + 1) % BUFSIZE;
      totalitems++;
   } else
      erroritem = EAGAIN;
   if (error = pthread_mutex_unlock(&bufferlock))
      return error;                /* unlock error more serious than no slot */
   return erroritem;
}

The while loop of Example 16.3 uses busy waiting. The implementation is worse than you 
might imagine. Not only does busy waiting waste CPU time, but consumers executing this code 
segment block the producers, resulting in even more delay. Depending on the thread-
scheduling algorithm, a busy-waiting consumer could prevent a producer from ever obtaining 
the CPU.
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16.3 Buffer Implementation with Semaphores

A more efficient implementation uses POSIX:SEM semaphores (introduced in Section 14.3). 
Recall that POSIX:SEM semaphores are not part of the POSIX:THR Extension but can be used 
with threads. Semaphores differ in several operational respects from the POSIX thread 
functions. If unsuccessful, the semaphore functions return –1 and set errno. In contrast, the 
POSIX:THR thread functions return a nonzero error code. The blocking semaphore functions 
can be interrupted by a signal and are cancellation points for thread cancellation, so you must 
be careful to handle the effects of signals and cancellation when using semaphores.

The traditional semaphore solution to the producer-consumer problem uses two counting 
semaphores to represent the number of items in the buffer and the number of free slots, 
respectively. When a thread needs a resource of a particular type, it decrements the 
corresponding semaphore by calling sem_wait. Similarly when the thread releases a resource, it 
increments the appropriate semaphore by calling sem_post. Since the semaphore variable 
never falls below zero, threads cannot use resources that are not there. Always initialize a 
counting semaphore to the number of resources initially available.

Program 16.3 shows a bounded buffer that synchronizes its access with semaphores. The 
semslots semaphore, which is initialized to BUFSIZE, represents the number of free slots 
available. This semaphore is decremented by producers and incremented by consumers through 
the sem_wait and sem_post calls, respectively. Similarly, the semitems semaphore, which is 
initialized to 0, represents the number of items in the buffer. This semaphore is decremented 
by consumers and incremented by producers through the sem_wait and sem_post calls, 
respectively.

POSIX:SEM semaphores do not have a static initializer and must be explicitly initialized before 
they are referenced. The implementation assumes that the bufferinit function will be called 
exactly once before any threads access the buffer. Program 16.4 and Program 16.5 give 
alternative implementations of bufferinit that do not make these assumptions.

Program 16.3 illustrates several differences between semaphores and mutex locks. The 
sem_wait function is a cancellation point, so a thread that is blocked on a semaphore can be 
terminated. The getitem and putitem functions have no other cancellation points, so the 
threads cannot be interrupted while the buffer data structure is being modified. Since the 
mutex is not held very long, a canceled thread quickly hits another cancellation point. The 
semaphore operations, unlike the mutex operations, can also be interrupted by a signal. If we 
want to use Program 16.3 with a program that catches signals, we need to restart the functions 
that can return an error with errno set to EINTR. Because semaphore functions return –1 and 
set errno rather than returning the error directly, the error handling must be modified.

Program 16.3 bufferseminit.c

A bounded buffer synchronized by semaphores. Threads using these functions may be canceled 
with deferred cancellation without corrupting the buffer.

#include <errno.h>
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#include <pthread.h>
#include <semaphore.h>
#include "buffer.h"
static buffer_t buffer[BUFSIZE];
static pthread_mutex_t  bufferlock = PTHREAD_MUTEX_INITIALIZER;
static int bufin = 0;
static int bufout = 0;
static sem_t semitems;
static sem_t semslots;

int bufferinit(void) { /* call this exactly once BEFORE getitem and putitem  */
   int error;
   if (sem_init(&semitems, 0, 0))
      return errno;
   if (sem_init(&semslots, 0, BUFSIZE)) {
      error = errno;
      sem_destroy(&semitems);                    /* free the other semaphore */
      return error;
   }
   return 0;
}

int getitem(buffer_t *itemp) {  /* remove item from buffer and put in *itemp */
   int error;
   while (((error = sem_wait(&semitems)) == -1) && (errno == EINTR)) ;
   if (error)
      return errno;
   if (error = pthread_mutex_lock(&bufferlock))
      return error;
   *itemp = buffer[bufout];
   bufout = (bufout + 1) % BUFSIZE;
   if (error = pthread_mutex_unlock(&bufferlock))
      return error;
   if (sem_post(&semslots) == -1)
      return errno;
   return 0;
}

int putitem(buffer_t item) {                    /* insert item in the buffer */
   int error;
   while (((error = sem_wait(&semslots)) == -1) && (errno == EINTR)) ;
   if (error)
      return errno;
   if (error = pthread_mutex_lock(&bufferlock))
      return error;
   buffer[bufin] = item;
   bufin = (bufin + 1) % BUFSIZE;
   if (error = pthread_mutex_unlock(&bufferlock))
      return error;
   if (sem_post(&semitems) == -1)
      return errno;
   return 0;
}

Program 16.3 assumes that programs call bufferinit exactly once before referencing the 
buffer. Program 16.4 shows an alternative implementation that does not make these 



assumptions. The code assumes that programs call bufferinitmutex at least once before any 
thread accesses the buffer. The bufferinitmutex function can be called by each thread when 
the thread starts execution. The static initializer for the mutex ensures that smutex is initialized 
before any call. The bufferinitmutex can be called any number of times but initializes the 
semaphores only once.

Program 16.4 bufferinitmutex.c

An initialization function for bufferseminit.c that can be called more than once.

#include <pthread.h>
static int seminit = 0;
static pthread_mutex_t smutex = PTHREAD_MUTEX_INITIALIZER;

int bufferinit(void);

int bufferinitmutex(void) {                /* initialize buffer at most once */
   int error = 0;
   int errorinit = 0;
   if (error = pthread_mutex_lock(&smutex))
       return error;
   if (!seminit && !(errorinit = bufferinit()))
       seminit = 1;
   error = pthread_mutex_unlock(&smutex);
   if (errorinit)              /* buffer initialization error occurred first */
      return errorinit;
   return error;
}

Exercise 16.4 

How can we make the initialization of the semaphores completely transparent to the calling 
program?

Answer:

Make bufferinitmutex have internal linkage by adding the static qualifier. Now getitem and 
putitem should call bufferinitmutex before calling sem_wait. The initialization is now 
transparent, but we pay a price in efficiency.

Program 16.5 shows an alternative to bufferinitmutex for providing at-most-once 
initialization of the buffer in Program 16.3. The implementation uses pthread_once. Notice that 
initerror isn't protected by a mutex lock, because it will only be changed once and that 
modification occurs before any call to bufferinitonce returns. Call the bufferinitonce 
function from each thread when it is created, or just from the main thread before it creates the 
producer and consumer threads. You can make initialization transparent by calling 
bufferinitonce at the start of getitem and putitem.

Program 16.5 bufferinitonce.c



An initialization function for bufferseminit.c that uses pthread_once to ensure that 
initialization is performed only once.

#include <pthread.h>
static int initerror = 0;
static pthread_once_t initonce = PTHREAD_ONCE_INIT;

int bufferinit(void);

static void initialization(void) {
   initerror = bufferinit();
   return;
}

int bufferinitonce(void) {                 /* initialize buffer at most once */
   int error;
   if (error = pthread_once(&initonce, initialization))
      return error;
   return initerror;
}

Program 16.6 shows an alternative way of making the buffer initialization transparent without 
the overhead of calling the initialization routine from each putitem and getitem. The initdone 
variable is declared to be of type volatile sig_atomic_t. The volatile qualifier indicates 
that the value may change asynchronously to the running thread. The sig_atomic_t type is 
one that can be accessed atomically.

Program 16.6 buffersem.c

A semaphore buffer implementation that does not require explicit initialization and has low 
initialization overhead.

#include <errno.h>
#include <pthread.h>
#include <semaphore.h>
#include <signal.h>
#include "buffer.h"
static buffer_t buffer[BUFSIZE];
static pthread_mutex_t  bufferlock = PTHREAD_MUTEX_INITIALIZER;
static int bufin = 0;
static int bufout = 0;
static volatile sig_atomic_t initdone = 0;
static int initerror = 0;
static pthread_once_t initonce = PTHREAD_ONCE_INIT;
static sem_t semitems;
static sem_t semslots;

static int bufferinit(void) { /* called exactly once by getitem and putitem  */
   int error;
   if (sem_init(&semitems, 0, 0))
      return errno;
   if (sem_init(&semslots, 0, BUFSIZE)) {



      error = errno;
      sem_destroy(&semitems);                    /* free the other semaphore */
      return error;
   }
   return 0;
}

static void initialization(void) {
   initerror = bufferinit();
   if (!initerror)
      initdone = 1;
}

static int bufferinitonce(void) {          /* initialize buffer at most once */
   int error;
   if (error = pthread_once(&initonce, initialization))
      return error;
   return initerror;
}

int getitem(buffer_t *itemp) {  /* remove item from buffer and put in *itemp */
   int error;
   if (!initdone)
      bufferinitonce();
   while (((error = sem_wait(&semitems)) == -1) && (errno == EINTR)) ;
   if (error)
      return errno;
   if (error = pthread_mutex_lock(&bufferlock))
      return error;
   *itemp = buffer[bufout];
   bufout = (bufout + 1) % BUFSIZE;
   if (error = pthread_mutex_unlock(&bufferlock))
      return error;
   if (sem_post(&semslots) == -1)
      return errno;
   return 0;
}

int putitem(buffer_t item) {                    /* insert item in the buffer */
   int error;
   if (!initdone)
      bufferinitonce();
   while (((error = sem_wait(&semslots)) == -1) && (errno == EINTR)) ;
   if (error)
      return errno;
   if (error = pthread_mutex_lock(&bufferlock))
      return error;
   buffer[bufin] = item;
   bufin = (bufin + 1) % BUFSIZE;
   if (error = pthread_mutex_unlock(&bufferlock))
      return error;
   if (sem_post(&semitems) == -1)
      return errno;
   return 0;
}



The initdone variable is statically initialized to 0. Its value changes only when the initialization 
has completed and the value is changed to 1. If the value of initdone is nonzero, we may 
assume that the initialization has completed successfully. If the value is 0, the initialization may 
have been done, so we use the bufferinitonce as in Program 16.5. Using initdone lowers 
the overhead of checking for the initialization once the initialization has completed. It does not 
require additional function calls once the initialization is complete.

The bounded buffer implementation of this section has no mechanism for termination. It 
assumes that producers and consumers that access the buffer run forever. The semaphores are 
not deleted unless an initialization error occurs.
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16.4 Introduction to a Simple Producer-Consumer Problem

This section introduces a simple producer-consumer problem to test the buffer 
implementations; the problem is based on Programs 13.6 and 13.7 in Section 13.2.3. The 
programs approximate the average value of sin(x) on the interval from 0 to 1, using a 
probabilistic algorithm. The producers calculate random numbers between 0 and 1 and put 
them in a buffer. Each consumer removes a value x from the buffer and adds the value of sin
(x) to a running sum, keeping track of the number of entries summed. At any time, the sum 
divided by the count gives an estimate of the average value. Simple calculus shows that the 
exact average value is 1 – cos(1) or about 0.4597. Using bounded buffers is not a particularly 
efficient way of solving this problem, but it illustrates many of the relevant ideas needed to 
solve more interesting problems.

Program 16.7 shows a threaded producer object that uses the bounded buffer defined by 
Program 16.6. Each producer of Program 16.7 generates random double values and places 
them in the buffer. The implementation uses the globalerror object of Program 13.4 on page 
455 to keep the number of the first error that occurs and uses the thread-safe randsafe of 
Program 13.2 on page 454 to generate random numbers. The initproducer function, which 
creates a producer thread, can be called multiple times if multiple producers are needed.

Program 16.8 shows an implementation of a consumer object. The publicly accessible 
initconsumer function allows an application to create as many consumer threads as desired. In 
case of an error, the offending thread sets the global error and returns. The other threads 
continue unless they also detect that an error occurred.

Program 16.9 is a main program that can be used with the producer (Program 16.7) and 
consumer (Program 16.8) threads as well as the buffersem buffer implementation (Program 
16.6). The implementation assumes that no explicit buffer initialization is required. Program 
16.9 takes three command-line arguments; a sleeptime in seconds, the number of producer 
threads and the number of consumer threads. The main program starts the threads, sleeps for 
the indicated time, and displays the results so far. After sleeping again, the main program 
displays the results and returns, terminating all the threads. This application illustrates the 
producer-consumer problem when the threads run forever or until main terminates.

The main program of Program 16.9 can display errors by using strerror rather than 
strerror_r because it is the only thread making this call. Program 16.9 calls the showresults 
function of Program 13.8 on page 459 to display the statistics.

Program 16.7 randproducer.c

An implementation of a producer that generates random numbers and places them in a 
synchronized buffer, such as the one shown in Program 16.6.

#include <pthread.h>
#include "buffer.h"
#include "globalerror.h"
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#include "randsafe.h"

/* ARGSUSED */
static void *producer(void *arg1) {        /* generate pseudorandom numbers */
   int error;
   buffer_t item;

   for (  ;  ;  ) {
      if (error = randsafe(&item))
         break;
      if (error = putitem(item))
         break;
   }
   seterror(error);
   return NULL;
}

/* --------------- Public functions ---------------------------------------- */
int initproducer(pthread_t *tproducer) {                       /* initialize */
   int error;

   error = pthread_create(tproducer, NULL, producer, NULL);
   return (seterror(error));
}

Exercise 16.5 

What happens to the semaphores when Program 16.9 terminates?

Answer:

Since we are using POSIX:SEM unnamed semaphores with pshared equal to 0, the resources of 
the semaphores are released when the process terminates. If we had been using named 
semaphores or POSIX:XSI semaphores, they would still exist after the process terminated.

Program 16.8 randconsumer.c

An implementation of a consumer that calculates the sine of double values removed from a 
shared buffer and adds them to a running sum.

#include <math.h>
#include <pthread.h>
#include "buffer.h"
#include "globalerror.h"
#include "sharedsum.h"

/* ARGSUSED */
static void *consumer(void *arg) {                   /* compute partial sums */
   int error;
   buffer_t nextitem;
   double value;



   for (  ;  ;  )  {
      if (error = getitem(&nextitem))              /* retrieve the next item */
         break;
      value = sin(nextitem);
      if (error = add(value))
         break;
   }
   seterror(error);
   return NULL;
}

/* --------------- Public functions ---------------------------------------- */
int initconsumer(pthread_t *tconsumer) {                       /* initialize */
   int error;

   error = pthread_create(tconsumer, NULL, consumer, NULL);
   return (seterror(error));
}

Exercise 16.6 

Suppose Program 16.9 runs on a machine with a single processor under preemptive priority 
scheduling. In what order are the items processed if BUFSIZE is 8 and one of the producers 
starts first?

Answer:

For preemptive priority scheduling, a thread with greater priority than the currently running 
thread preempts it. If the producer and consumers have the same priority, as in Program 16.9, 
a producer deposits eight items in the buffer and then blocks. The first consumer then retrieves 
the first eight items. One of the producers then produces the next 8 items, and so on. This 
alternation of blocks occurs because the producers and consumers are of equal priority. On the 
other hand, if the consumers have a higher priority, a consumer preempts the producer after 
the producer deposits a single item, so the producer and the consumers alternately process 
individual items. If the producer has higher priority, it fills the buffer with 8 items and then 
preempts the consumers after each slot becomes available.

Program 16.9 randpcforever.c

A main program that creates any number of producer and consumer threads.

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "buffer.h"
#include "globalerror.h"
#include "sharedsum.h"

int initconsumer(pthread_t *tid);
int initproducer(pthread_t *tid);



int showresults(void);

int main(int argc, char *argv[]) {
   int error;
   int i;
   int numberconsumers;
   int numberproducers;
   int sleeptime;
   pthread_t tid;

   if (argc != 4) {
      fprintf(stderr, "Usage: %s sleeptime producers consumers\n", argv[0]);
      return 1;
   }

   sleeptime = atoi(argv[1]);
   numberproducers = atoi(argv[2]);
   numberconsumers = atoi(argv[3]);
   for (i = 0; i < numberconsumers; i++)             /* initialize consumers */
      if (error = initconsumer(&tid)) {
         fprintf(stderr, "Failed to create consumer %d:%s\n",
                          i, strerror(error));
         return 1;
      }
   for (i = 0; i < numberproducers; i++)             /* initialize producers */
      if (error = initproducer(&tid)) {
         fprintf(stderr, "Failed to create producer %d:%s\n",
                          i, strerror(error));
         return 1;
      }

   sleep(sleeptime);                          /* wait to get the partial sum */
   if (showresults())
      return 1;
   sleep(sleeptime);                        /* wait again before terminating */
   if (showresults())
      return 1;
   return 0;
}
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16.5 Bounded Buffer Implementation Using Condition Variables

Program 16.10 gives a condition variable implementation of a bounded buffer that is similar to 
the semaphore implementation of Program 16.6.

Program 16.10 buffercond.c

Condition variable implementation of a bounded buffer.

#include <pthread.h>
#include "buffer.h"
static buffer_t buffer[BUFSIZE];
static pthread_mutex_t bufferlock = PTHREAD_MUTEX_INITIALIZER;
static int bufin = 0;
static int bufout = 0;
static pthread_cond_t items = PTHREAD_COND_INITIALIZER;
static pthread_cond_t slots = PTHREAD_COND_INITIALIZER;
static int totalitems = 0;

int getitem(buffer_t *itemp) { /* remove an item from buffer and put in itemp */
   int error;
   if (error = pthread_mutex_lock(&bufferlock))
      return error;
   while ((totalitems <= 0) && !error)
      error = pthread_cond_wait (&items, &bufferlock);
   if (error) {
      pthread_mutex_unlock(&bufferlock);
      return error;
   }
   *itemp = buffer[bufout];
   bufout = (bufout + 1) % BUFSIZE;
   totalitems--;
   if (error = pthread_cond_signal(&slots)) {
      pthread_mutex_unlock(&bufferlock);
      return error;
   }
   return pthread_mutex_unlock(&bufferlock);
}

int putitem(buffer_t item) {                  /* insert an item in the buffer */
   int error;
   if (error = pthread_mutex_lock(&bufferlock))
      return error;
   while ((totalitems >= BUFSIZE) && !error)
      error = pthread_cond_wait (&slots, &bufferlock);
   if (error) {
      pthread_mutex_unlock(&bufferlock);
      return error;
   }
   buffer[bufin] = item;
   bufin = (bufin + 1) % BUFSIZE;
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   totalitems++;
   if (error = pthread_cond_signal(&items)) {
      pthread_mutex_unlock(&bufferlock);
      return error;
   }
   return pthread_mutex_unlock(&bufferlock);
}

Program 16.10 is simpler than the semaphore implementation because condition variables have 
static initializers. Test Program 16.10 on a producer-consumer problem by linking it with 
Programs 16.7, 16.8 and 16.9. It also needs Program 13.4 (globalerror), Program 13.2 
(randsafe) and Program 13.5 (sharedsum).
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16.6 Buffers with Done Conditions

The bounded buffer implementations of Section 16.3 and Section 16.5 do not have any 
mechanism for indicating that no more items will be deposited in the buffer. Unending producer-
consumer problems occur frequently at the system level. For example, every network router 
has a buffer between incoming and outgoing packets. The producers are the processes that 
handle the incoming lines, and the consumers are the processes handling the outgoing lines. A 
web server is another example of an unending producer-consumer. The web server clients 
(browsers) are producers of requests. The web server acts as a consumer in handling these 
requests.

Things are not so simple when the producers or consumers are controlled by more complicated 
exit conditions. In a producer-driven variation on the producer-consumer problem, there is one 
producer and an arbitrary number of consumers. The producer puts an unspecified number of 
items in the buffer and then exits. The consumers continue until all items have been consumed 
and the producer has exited.

A possible approach is for the producer to set a flag signifying that it has completed its 
operation. However, this approach is not straightforward, as illustrated by the next exercise.

Exercise 16.7 

Consider the following proposed solution to a producer-driven problem. The producer thread 
produces only numitem values, calls setdone of Program 13.3 on page 454, and exits. The 
consumer calls getdone on each iteration of the loop to discover whether the producer has 
completed. What can go wrong?

Answer:

If the producer calls setdone while consumer is blocked on getitem with an empty buffer, the 
consumer never receives notification and it deadlocks, waiting for an item to be produced. Also, 
when consumer detects that producer has called setdone, it has no way of determining 
whether there are items left in the buffer to be processed without blocking.

Both the semaphore implementation of the bounded buffer in Program 16.6 and the condition 
variable implementation of the bounded buffer in Program 16.10 have no way of unblocking 
getitem after setdone is called. Program 16.11 shows an implementation that moves the 
doneflag into the buffer object. The setdone function not only sets the doneflag but also 
wakes up all threads that are waiting on condition variables. If getitem is called with an empty 
buffer after the producer has finished, getitem returns the error ECANCELED. The consumer 
then terminates when it tries to retrieve the next item.

Program 16.11 bufferconddone.c

A buffer that uses condition variables to detect completion.
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#include <errno.h>
#include <pthread.h>
#include "buffer.h"
static buffer_t buffer[BUFSIZE];
static pthread_mutex_t  bufferlock = PTHREAD_MUTEX_INITIALIZER;
static int bufin = 0;
static int bufout = 0;
static int doneflag = 0;
static pthread_cond_t items = PTHREAD_COND_INITIALIZER;
static pthread_cond_t slots = PTHREAD_COND_INITIALIZER;
static int totalitems = 0;

int getitem(buffer_t *itemp) {/* remove an item from buffer and put in itemp */
   int error;
   if (error = pthread_mutex_lock(&bufferlock))
      return error;
   while ((totalitems <= 0) && !error && !doneflag)
      error = pthread_cond_wait (&items, &bufferlock);
   if (error) {
      pthread_mutex_unlock(&bufferlock);
      return error;
   }
   if (doneflag && (totalitems <= 0)) {
      pthread_mutex_unlock(&bufferlock);
      return ECANCELED;
   }
   *itemp = buffer[bufout];
   bufout = (bufout + 1) % BUFSIZE;
   totalitems--;
   if (error = pthread_cond_signal(&slots)) {
      pthread_mutex_unlock(&bufferlock);
      return error;
   }
   return pthread_mutex_unlock(&bufferlock);
}

int putitem(buffer_t item) {                 /* insert an item in the buffer */
   int error;
   if (error = pthread_mutex_lock(&bufferlock))
      return error;
   while ((totalitems >= BUFSIZE) && !error && !doneflag)
      error = pthread_cond_wait (&slots, &bufferlock);
   if (error) {
      pthread_mutex_unlock(&bufferlock);
      return error;
   }
   if (doneflag) {               /* consumers may be gone, don't put item in */
      pthread_mutex_unlock(&bufferlock);
      return ECANCELED;
   }
   buffer[bufin] = item;
   bufin = (bufin + 1) % BUFSIZE;
   totalitems++;
   if (error = pthread_cond_signal(&items)) {
      pthread_mutex_unlock(&bufferlock);
      return error;
   }



   return pthread_mutex_unlock(&bufferlock);
}

int getdone(int *flag) {                                     /* get the flag */
   int error;
   if (error = pthread_mutex_lock(&bufferlock))
      return error;
   *flag = doneflag;
   return pthread_mutex_unlock(&bufferlock);
}

int setdone(void) {       /* set the doneflag and inform all waiting threads */
   int error1;
   int error2;
   int error3;

   if (error1 = pthread_mutex_lock(&bufferlock))
      return error1;
   doneflag = 1;
   error1 = pthread_cond_broadcast(&items);              /* wake up everyone */
   error2 = pthread_cond_broadcast(&slots);
   error3 = pthread_mutex_unlock(&bufferlock);
   if (error1)
      return error1;
   if (error2)
      return error2;
   if (error3)
      return error3;
   return 0;
}

Exercise 16.8 

Why did we use the same mutex to protect doneflag in getdone and setdone as we used to 
protect the buffer in getitem and putitem?

Answer:

The getitem function needs to access doneflag at a time when it owns the bufferlock mutex. 
Using the same mutex simplifies the program.

Exercise 16.9 

Can the mutex calls in getdone and setdone be eliminated?

Answer:

The lock around doneflag in getdone could be eliminated if we knew that access to an int was 
atomic. We can guarantee that accesses to doneflag are atomic by declaring it to have type 
sig_atomic_t. In setdone, it is best to do the condition variable broadcasts while owning the 
lock, and we need to make sure that the threads see that doneflag has been set to 1 when 



they wake up.

Program 16.12 and Program 16.13 show modifications of producer of Program 16.7 and 
consumer of Program 16.8 to account for termination. They are linked with Program 16.11, 
which provides setdone. They handle the error ECANCELED by terminating without calling 
seterror.

Program 16.12 randproducerdone.c

A producer that detects whether processing should end.

#include <errno.h>
#include <pthread.h>
#include "buffer.h"
#include "globalerror.h"
#include "randsafe.h"

int getdone(int *flag);

/* ARGSUSED */
static void *producer(void *arg1) {        /* generate pseudorandom numbers */
   int error;
   buffer_t item;
   int localdone = 0;

   while (!localdone) {
      if (error = randsafe(&item))
         break;
      if (error = putitem(item))
         break;
      if (error = getdone(&localdone))
         break;
   }
   if (error != ECANCELED)
      seterror(error);
   return NULL;
}

/* --------------- Public functions ---------------------------------------- */
int initproducer(pthread_t *tproducer) {                       /* initialize */
   int error;

   error = pthread_create(tproducer, NULL, producer, NULL);
   return (seterror(error));
}

Program 16.13 randconsumerdone.c

A consumer that detects whether the buffer has finished.

#include <errno.h>
#include <math.h>



#include <pthread.h>
#include "buffer.h"
#include "globalerror.h"
#include "sharedsum.h"

/* ARGSUSED */
static void *consumer(void *arg) {                   /* compute partial sums */
   int error;
   buffer_t nextitem;
   double value;

   for (  ;  ;  )  {
      if (error = getitem(&nextitem))              /* retrieve the next item */
         break;
      value = sin(nextitem);
      if (error = add(value))
         break;
   }
   if (error != ECANCELED)
      seterror(error);
   return NULL;
}

/* --------------- Public functions ---------------------------------------- */
int initconsumer(pthread_t *tconsumer) {                       /* initialize */
   int error;

   error = pthread_create(tconsumer, NULL, consumer, NULL);
   return (seterror(error));
}

Program 16.14 shows a main program that creates a specified number of the producer threads 
(Program 16.12) and consumer threads (Program 16.13). After creating the threads, main 
sleeps for a specified amount of time and then calls the setdone function of Program 16.11. 
The program joins with all the threads to make sure that they have finished their computations 
before calling showresults of Program 13.8 on page 459 to display the results.

Exercise 16.10 

What would happen if randconsumerdone of Program 16.13 called seterror when getitem 
returned ECANCELED?

Answer:

The results of the calculation would not be displayed. The showresults function only prints an 
error message if geterror returns a nonzero value.

Program 16.14 randpcdone.c

A main program that creates producer threads of Program 16.12 and consumer threads of 
Program 16.13. After sleeping, it calls setdone. The program should use the buffer of Program 



16.11.

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "buffer.h"
#include "doneflag.h"
#include "globalerror.h"

int initconsumer(pthread_t *tid);
int initproducer(pthread_t *tid);
int showresults(void);

int main(int argc, char *argv[]) {
   int error;
   int i;
   int numberconsumers;
   int numberproducers;
   int sleeptime;
   pthread_t *tidc;
   pthread_t *tidp;

   if (argc != 4) {
      fprintf(stderr, "Usage: %s sleeptime producers consumers\n", argv[0]);
      return 1;
   }
   sleeptime = atoi(argv[1]);
   numberproducers = atoi(argv[2]);
   numberconsumers = atoi(argv[3]);
   tidp = (pthread_t *)calloc(numberproducers, sizeof(pthread_t));
   if (tidp == NULL) {
      perror("Failed to allocate space for producer IDs");
      return 1;
   }
   tidc = (pthread_t *)calloc(numberconsumers, sizeof(pthread_t));
   if (tidc == NULL) {
      perror("Failed to allocate space for consumer IDs");
      return 1;
   }
   for (i = 0; i < numberconsumers; i++)             /* initialize consumers */
      if (error = initconsumer(tidc+i)) {
         fprintf(stderr, "Failed to create consumer %d:%s\n",
                          i, strerror(error));
         return 1;
      }
   for (i = 0; i < numberproducers; i++)             /* initialize producers */
      if (error = initproducer(tidp+i)) {
         fprintf(stderr, "Failed to create producer %d:%s\n",
                          i, strerror(error));
         return 1;
      }

   sleep(sleeptime);                  /* wait a while to get the partial sum */
   if (error = setdone()) {



      fprintf(stderr, "Failed to set done indicator:%s\n", strerror(error));
      return 1;
   }
   for (i = 0; i < numberproducers; i++)               /* wait for producers */
      if (error = pthread_join(tidp[i], NULL)) {
         fprintf(stderr, "Failed producer %d join:%s\n", i, strerror(error));
         return 1;
      }
   for (i = 0; i < numberconsumers; i++)               /* wait for consumers */
      if (error = pthread_join(tidc[i], NULL)) {
         fprintf(stderr, "Failed consumer %d join:%s\n", i, strerror(error));
         return 1;
      }
   if (showresults())
      return 1;
   return 0;
}

Program 16.15 shows a second version of main that creates a signal thread of Program 13.14 
on page 476 to wait on SIGUSR1. Program 13.14 should be linked to bufferconddone.c rather 
than doneflag.c so that it calls the correct setdone. As before, main creates a specified 
number of the producer and consumer threads of Program 16.12 and Program 16.13. After 
creating the threads, main waits for the threads to complete by executing pthread_join before 
displaying the results. The threads continue to compute until the user sends a SIGUSR1 signal 
from the command line. At this point, the signalthread calls setdone, causing the producers 
and consumers to terminate.

Program 16.15 randpcsig.c

A main program that creates producer threads of Program 16.12 and consumer threads of 
Program 16.13. The threads detect done when the user enters SIGUSR1.

#include <pthread.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "buffer.h"
#include "globalerror.h"
#include "sharedsum.h"
#include "signalthread.h"

int initconsumer(pthread_t *tid);
int initproducer(pthread_t *tid);
int showresults(void);

int main(int argc, char *argv[]) {
   int error;
   int i;
   int numberconsumers;
   int numberproducers;
   pthread_t *tidc;



   pthread_t *tidp;

   if (argc != 3) {
      fprintf(stderr, "Usage: %s producers consumers\n", argv[0]);
      return 1;
   }
   numberproducers = atoi(argv[1]);
   numberconsumers = atoi(argv[2]);
   if (error = signalthreadinit(SIGUSR1)) {
      perror("Failed to start signalthread");
      return 1;
   }
   fprintf(stderr,"Process %ld will run until SIGUSR1 (%d) signal.\n",
                   (long)getpid(), SIGUSR1);
   tidp = (pthread_t *)calloc(numberproducers, sizeof(pthread_t));
   if (tidp == NULL) {
      perror("malloc producer IDs");
      return 1;
   }
   tidc = (pthread_t *)calloc(numberconsumers, sizeof(pthread_t));
   if (tidc == NULL) {
      perror("malloc consumer IDs");
      return 1;
   }
   for (i = 0; i < numberconsumers; i++)             /* initialize consumers */
      if (error = initconsumer(tidc + i)) {
         fprintf(stderr, "Failed to create consumer %d:%s\n",
                          i, strerror(error));
         return 1;
      }
   for (i = 0; i < numberproducers; i++)             /* initialize producers */
      if (error = initproducer(tidp + i)) {
         fprintf(stderr, "Failed to create producer %d:%s\n",
                          i, strerror(error));
         return 1;
      }
   for (i = 0; i < numberproducers; i++)               /* wait for producers */
      if (error = pthread_join(tidp[i], NULL)) {
         fprintf(stderr, "Failed producer %d join:%s\n", i, strerror(error));
         return 1;
      }
   for (i = 0; i < numberconsumers; i++)               /* wait for consumers */
      if (error = pthread_join(tidc[i], NULL)) {
         fprintf(stderr, "Failed consumer %d join:%s\n", i, strerror(error));
         return 1;
      }
   if (showresults())
      return 1;
   return 0;
}
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16.7 Parallel File Copy

This section revisits the parallel file copy of Program 12.8 on page 427. The straightforward 
implementation of the parallel file copy creates a new thread to copy each file and each 
directory. When called with a large directory tree, this implementation quickly exceeds system 
resources. This section outlines a worker pool implementation that regulates how many threads 
are active at any time. In a worker pool implementation, a fixed number of threads are 
available to handle the load. The workers block on a synchronization point (in this case, an 
empty buffer) and one worker unblocks when a request comes in (an item is put in the buffer). 
Chapter 22 compares the performance of worker pools to other server threading strategies.

16.7.1 Parallel file copy producer

Begin by creating a producer thread function that takes as a parameter an array of size 2 
containing the pathnames of two directories. For each regular file in the first directory, the 
producer opens the file for reading and opens a file of the same name in the second directory 
for writing. If a file already exists in the destination directory with the same name, that file 
should be opened and truncated. If an error occurs in opening either file, both files are closed 
and an informative message is sent to standard output. The two open file descriptors and the 
name of the file are put into the buffer. Use the bufferconddone implementation so that the 
threads can be terminated gracefully. The buffer.h file contains the definition of buffer_t, the 
type of a buffer entry. Use the following definition for this project.

typedef struct {
   int infd;
   int outfd;
   char filename[PATH_MAX];
} buffer_t;

Only ordinary files will be copied for this version of the program. The filename member should 
contain the name of the file only, without a path specification. Use the opendir and readdir 
functions described in Section 5.2 on page 152 to access the source directory. These functions 
are not thread-safe, but there will be only one producer thread and only this thread will call 
these functions. Use the lstat function described in Section 5.2.1 on page 155 to determine if 
the file is a regular file. The file is a regular file if the S_ISREG macro returns true when applied 
to the st_mode field of the stat structure. Program 16.16 shows a function that returns true if 
filename represents a regular file and false otherwise.

This is a producer-driven bounded buffer problem. When the producer is finished filling the 
buffer with filenames from the given directory, it calls setdone in Program 16.11 and exits.

Program 16.16 isregular.c

A function that returns true if the filename parameter is a regular file.

#include <sys/stat.h>
#include <sys/types.h>
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int isregular(const char *filename) {
   struct stat buf;

   if (lstat(filename, buf) == -1)
      return 0;
   return S_ISREG(buf.st_mode);
}

16.7.2 Parallel file copy consumer

Each consumer thread reads an item from the buffer, copies the file from the source file 
descriptor to the destination file descriptor, closes the files, and writes a message to standard 
output giving the file name and the completion status of the copy.

Note that the producer and multiple consumers are writing to standard output and that this is a 
critical section that must be protected. Devise a method for writing these messages atomically.

The consumers should terminate when they detect that a done flag has been set and no more 
entries remain in the buffer, as in Program 16.13.

16.7.3 Parallel file copy main program

The main program should take the number of consumers and the source and destination 
directories as command-line arguments. The application always has exactly one producer 
thread.

The main program should start the threads and use pthread_join to wait for the threads to 
complete, as in Program 16.15. Use gettimeofday to get the time before the first thread is 
created and after the last join. Display the total time to copy the files in the directory.

Experiment with different buffer sizes and different numbers of consumer threads. Which 
combinations produce the best results? Be careful not to exceed the per-process limit on the 
number of open file descriptors. The number of open file descriptors is determined by the size 
of the buffer and the number of consumers. Make sure that the consumers close the file 
descriptors after copying a file and before removing another item from the buffer.

16.7.4 Parallel file copy enhancements

After the programs described above are working correctly, add the following enhancements.

1.  Copy subdirectories as well as ordinary files, but do not (at this time) copy the contents 
of the subdirectories. (Just create a subdirectory in the destination directory for each 
subdirectory in the source directory.) You can either have the producer do this (and not 
put a new entry into the buffer) or add a field in buffer_t giving the type of file to be 
copied. Read item 3 below before deciding which method to use.

2.  Copy FIFOs. For each FIFO in the source directory, make a FIFO with the same name in 
the destination directory. You can handle this as in item 1.



3.  Recursively copy subdirectories. This part should just require modifying the producer if 
the producer creates the subdirectory. If the consumers create the subdirectories, you 
need to figure out how to avoid having the producer try to open a destination file before 
its directory has been created. Store the path of the file relative to the source directory 
in the buffer slots so that the consumers can print relevant messages.

4.  Keep statistics about the number and types of files copied. Keep track of the total 
number of bytes copied. Keep track of the shortest and longest copy times.

5.  Add a signal thread that outputs the statistics accumulated so far when the process 
receives a SIGUSR1 signal. Make sure that the handler output is atomic with respect to 
the output generated by the producer and the consumers.
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16.8 Threaded Print Server

This section develops a project based on producer-consumer synchronization that uses an 
unbounded buffer rather than a buffer of fixed size.

The lp command on most systems does not send a file directly to the specified printer. Instead, 
lp sends the request to a process called a print server or a printer daemon. The print server 
places the request in a queue and makes an identification number available to the user in case 
the user decides to cancel the print job. When a printer becomes free, the print server begins 
copying the file to the printer device. The file to be printed may not be copied to a temporary 
spool device unless the user explicitly specifies that it should be. Many implementations of lp 
try to create a hard link to the file while it is waiting to be printed, to prevent the file from 
being removed completely. It is not always possible for the lp command to link to the file, and 
the man page warns the user not to change the file until after it is printed.

Example 16.11 

The following UNIX lp command outputs the file myfile.ps to the printer designated as nps.

lp -d nps myfile.ps

The lp command might respond with a request number similar to the following.

Request nps-358 queued

Use the nps-358 in a cancel command to delete the print job.

Printers are slow devices relative to process execution times, and one print server process can 
handle many printers. Like the problem of handling input from multiple descriptors, the 
problems of print serving are natural for multithreading. Figure 16.3 shows a schematic 
organization of a threaded print server. The server uses a dedicated thread to read user 
requests from an input source. The request thread allocates space for the request and adds it 
to the request buffer.

Figure 16.3. Schematic of a threaded print server.
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The print server of Figure 16.3 has dedicated threads for handling its printers. Each printer 
thread removes a request from the request buffer and copies the file specified in the request to 
the printer. When the copying is complete, the printer thread frees the request and handles 
another request.

The threads within the print server require producer-consumer synchronization with a single 
producer (the request thread) and multiple consumers (the printer threads). The buffer itself 
must be protected so that items are removed and added in a consistent manner. The 
consumers must synchronize on the requests available in the buffer so that they do not attempt 
to remove nonexistent requests. The request buffer is not bounded because the request thread 
dynamically allocates space for requests as they come in. The request thread could also use a 
high-water mark to limit the number of requests that it buffers before blocking. In this more 
complicated situation, the request thread synchronizes on a predicate involving the size of the 
buffer.

Several aspects of the print server are simplified for this exercise. A real server may accept 
input from a network port or by remote procedure call. There is no requirement for printers to 
be identical, and realistic print requests allow a variety of options for users to specify how the 
printing is to be done. The system administrator can install default filters that act on files of 
particular types. The print server can analyze request types and direct requests to the best 
printer for the job. Printer requests may have priorities or other characteristics that affect the 
way in which they are printed. The individual printer threads should respond to error conditions 
and status reports from the printer device drivers.

This exercise describes the print server represented schematically in Figure 16.3. Keep pending 
requests in a request buffer. Synchronize the number of pending requests with a condition 
variable, called items, in a manner similar to the standard producer-consumer problem. This 
exercise does not require a condition variable for slots, since the request buffer can grow 
arbitrarily large. Represent print requests by a string consisting of an integer followed by a 



blank and a string specifying the full pathname of the file to be printed.

16.8.1 The request buffer

Represent the request buffer by a linked list of nodes of type prcmd_t. The following is a 
sample definition.

typedef struct pr_struct {
    int owner;
    char filename[PATH_MAX];
    struct pr_struct *nextprcmd;
}  prcmd_t;
static prcmd_t *prhead = NULL;
static prcmd_t *prtail = NULL;
static int pending = 0;
static pthread_mutex_t prmutex = PTHREAD_MUTEX_INITIALIZER;

Put the request buffer data structure in a separate file and access it only through the following 
functions.

int add(prcmd_t *node);

adds a node to the request buffer. The add function increments pending and 
inserts node at the end of the request buffer. If successful, add returns 0. If 
unsuccessful, add returns –1 and sets errno.

int remove(prcmd_t **node);

removes a node from the request buffer. The remove function blocks if the buffer 
is empty. If the buffer is not empty, the remove function decrements pending 
and removes the first node from the request buffer. It sets *node to point to the 
removed node. If remove successfully removes a node, it returns 0. If 
unsuccessful, remove returns –1 and sets errno.

int getnumber(void);

returns the size of the request buffer, which is the value of pending.

Use the synchronization strategy of Program 16.11, but eliminate the conditions for controlling 
the number of slots.

16.8.2 The producer thread

The producer thread, getrequests, inserts input requests in the buffer.

void *getrequests(void *arg);



The parameter arg points to an open file descriptor specifying the location where the requests 
are read. The getrequests function reads the user ID and the pathname of the file to be 
printed, creates a prcmd_t node to hold the information, and calls add to add the request to the 
printer request list. If getrequests fails to allocate space for prcmd_t or if it detects end-of-file, 
it returns after setting a global error flag. Otherwise, it continues to monitor the open file 
descriptor for the next request.

Write a main program to test getrequests. The main program creates the getrequests thread 
with STDIN_FILENO as the input file. It then goes into a loop in which it waits for pending to 
become nonzero. The main thread removes the next request from the buffer and writes the 
user ID and the filename to standard output. Run the program with input requests typed from 
the keyboard. Test the program with standard input redirected from a file.

16.8.3 The consumer threads

Each consumer thread, printer, removes a request from the printer request buffer and "prints" 
it. The prototype for printer is the following.

void *printer(void *arg);

The parameter arg points to an open file descriptor to which printer outputs the file to be 
printed. The printer function waits for the counter pending to become nonzero in a manner 
similar to consumer in Program 16.13. When a request is available, remove the request from 
the buffer, open the file specified by the filename member for reading, and copy the contents 
of the file to the output file. Then close the input file, free the space occupied by the request 
node, and resume waiting for more requests. If a consumer thread encounters an error when 
reading the input file, write an appropriate error message, close the input file, and resume 
waiting for more requests. Since the output file plays the role of the printer in this exercise, an 
output file error corresponds to a printer failure. If printer encounters an error on output, 
close the output file, write an appropriate error message, set a global error flag, and return.

16.8.4 The print server

Write a new main program to implement the print server. The server supports a maximum of 
MAX_PRINT printers. (Five should suffice for testing.) The main program takes two command-
line arguments: the output file basename and the number of printers. The input requests are 
taken from standard input, which may be redirected to take requests from a file. The output for 
each printer goes to a separate file whose filename starts with the output file basename. For 
example, if the basename is printer.out, the output files are printer.out.1, printer.
out.2, and so on. The main program creates a thread to run get_requests and a printer 
thread for each printer to be supported. It then waits for all the threads to exit before exiting 
itself. The main program should not exit just because an error occurred in one of the printer 
threads. Thoroughly test the print server.

16.8.5 Other enhancements

Add facilities so that each printer thread keeps track of statistics such as total number of files 
printed and total number of bytes printed. When the server receives a SIGUSR1 signal, it writes 



the statistics for all the printers to standard error.

Add facilities so that the input now includes a command as well as a user ID and filename. The 
commands are as follows.

lp: Add the request to the buffer and echo a request ID to standard output.

cancel: Remove the request from the buffer if it is there.

lpstat: Write to standard output a summary of all pending requests and requests currently 
being printed on each printer.

Modify the synchronization mechanism of the buffer to use highmark and lowmark to control 
the size of the request buffer. Once the number of requests reaches the highmark value, 
getrequests blocks until the size of the request buffer is less than lowmark.
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16.9 Additional Reading

Most classical books on operating systems discuss some variation of the producer-consumer 
problem. See, for example, [107, 122]. Unfortunately, in most classic treatments, producers 
and consumers loop forever, uninterrupted by signals or other complications that arise from a 
finite universe. "Experimentation with bounded buffer synchronization," by S. Robbins [96] 
introduces some simple models for estimating how long it takes for an error to show in an 
incorrectly synchronized bounded buffer program. An online simulator is available for 
experimentation.
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Chapter 17. Project: The Not Too Parallel Virtual Machine

PVM (Parallel Virtual Machine) provides a high-level, but not transparent, system for a user to 
coordinate tasks spread across workstations on a network. This project describes a threaded 
implementation of the Not Too Parallel Virtual Machine (NTPVM) dispatcher, a simplified PVM 
system. The multithreaded implementation illustrates the interaction between threads and fork, 
providing a semirealistic application in which to explore complex thread interactions.

Objectives

●     Learn about distributed processing
●     Experiment with threads and I/O
●     Explore the interaction of threads with fork
●     Use threads to solve a real problem
●     Understand the use of objects in thread design

[ Team LiB ]   
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17.1 PVM History, Terminology, and Architecture

Grace Murray Hopper, a vocal early advocate of parallel computing, was fond of reminding her 
audiences that the way to pull a heavier load was not to grow a bigger ox but to hitch more 
oxen to the load. Seymour Cray, a pioneer in computer architecture, is reported to have later 
countered, "If you were plowing a field, which would you rather use, two strong oxen or 1024 
chickens?" The chickens versus oxen debate continues to rage. IBM's Blue Gene Project 
involves the building of a 64,000-processor machine with petaflop capabilities (a thousand 
trillion operations per second) based on relatively low-powered, embedded PowerPC chips [14]. 
On the other hand, the NEC Earth-Simulator, which was rated as the world's fastest computer 
in 2002, uses only 640 nodes. Each "NEC oxen node" consists of 8 tightly coupled vector 
processors [135].

Another important development in the parallel/distributed computing arena is the move to 
harness cheap workstations to solve large problems. Programming libraries, such as PVM 
(Parallel Virtual Machine) [118] and MPI (Message Passing Interface) [43], allow groups of 
heterogeneous, interconnected machines to provide a transparent parallel-computing 
environment by providing a cross-platform message-passing facility with higher-level services 
built on top. These systems allow users to solve large problems on networks of workstations by 
providing the illusion of a single parallel machine. PVM operates at the task level and presents a 
message-passing abstraction that hides the details of the network and individual machines that 
make up the virtual machine. PVM/MPI libraries have become the mainstay of distributed 
scientific computing because they allow researchers to develop platform-independent software. 
However, programs based on this paradigm are hard for nonexperts to debug and optimize.

A new notion of "computing as a utility" has recently emerged in the form of grid computing 
[38]. The Open Grid Services Architecture provides a higher-level layer of services built over 
message-passing libraries and native host runtime systems. These higher-level abstractions are 
quickly bringing distributed computing into the mainstream.

This chapter project develops a PVM-like library for managing tasks. We begin by introducing 
PVM terminology and providing an overview of the PVM architecture.

The basic unit of computation in PVM is called a task and is analogous to a UNIX process. A 
PVM program calls PVM library functions to create and coordinate tasks. The tasks can 
communicate by passing messages to other tasks through calls to PVM library functions. Tasks 
that cooperate, either through communication or synchronization, are organized into groups 
called computations. PVM supports direct communication, broadcast and barriers within a 
computation.

Figure 17.1 shows a logical view of a typical PVM system. A PVM application generally starts 
with an input and partitioning task that controls the problem solution. The user specifies in this 
task how other tasks cooperate to solve the problem. The input and partitioning task creates 
several computations. Tasks within each computation share data and communicate with each 
other. The PVM application also has a dedicated task to handle output and user display. The 
other tasks in the PVM application forward their output to this task for display on the 
application's console.

Figure 17.1. Logical view of an application running on a PVM virtual 
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machine.

To run a PVM application, a user first designates the pool of machines or hosts that make up 
the virtual machine and then starts the PVM control daemon, pvmd, on each of these hosts. The 
control daemon communicates with the user's console and handles communication and controls 
tasks on its machine. To send input to a particular task, PVM sends the data to the pvmd 
daemon on the destination host, which then forwards it to the appropriate task. Similarly, a 
task outputs by sending a message to its pvmd, which in turn forwards it to the console's pvmd 
and on to the application's output task. The underlying message passing is transparent, so the 
user sees only that a particular task has sent a message to the console.

Figure 17.2 shows how an application might be mapped onto the virtual machine. The tasks 
that make up a logical computation are not necessarily mapped to the same host but might be 
spread across all the hosts on the virtual machine. Host 1 of Figure 17.2 has three 
computations, one containing a single task, one with two tasks and one that is part of a 
computation that also has tasks on host 2.

Figure 17.2. Schematic of a PVM.
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17.2 The Not Too Parallel Virtual Machine

The Not Too Parallel Virtual Machine (NTPVM) is a dispatcher that shares many characteristics 
of a PVM control daemon, pvmd. The NTPVM dispatcher is responsible for creating and managing 
tasks on a single host, as shown schematically in Figure 17.3. The dispatcher receives requests 
through its standard input and responds through its standard output. (Later, standard input and 
standard output can be redirected to network communication ports.) The dispatcher might 
receive a request to create a task or to forward data to a task under its control.

Figure 17.3. Schematic of the NTPVM dispatcher.

A task is just a process that executes a specified program. Each task is identified by a 
computation ID and a task ID. When the dispatcher receives a request to create a task with a 
particular computation ID and task ID, it creates a pair of pipes and forks a child to execute the 
task. Figure 17.4 shows the communication layout between a task and its dispatcher. The pipe 
that carries communication from the dispatcher to the child task is labeled writefd on the 
dispatcher end. The child redirects its standard input to this pipe. Similarly, the pipe that 
carries communication from the child to the dispatcher is labeled readfd on the dispatcher end. 
The child redirects its standard output to this pipe.
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Figure 17.4. NTPVM dispatcher communicates with its children through 
pipes.

The dispatcher supports delivery of input data to the tasks, delivery of output from the tasks 
and broadcast of data to tasks that have the same computation ID. The dispatcher also 
supports numbered barriers and cancellation for tasks with the same computation ID. NTPVM is 
simpler than the real PVM in several respects. PVM has in-order message delivery and allows 
any task to communicate with other tasks in its computation. It has a buffering mechanism for 
holding messages. PVM also provides sophisticated computation monitoring tools. NTPVM 
delivers messages whenever it gets them, does not support point-to-point task communication, 
and has primitive monitoring capabilities.
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17.3 NTPVM Project Overview

The tasks in NTPVM are independent processes grouped into units called computations. The 
dispatcher is responsible for creating and managing tasks. In general, the tasks of a 
computation do not have to reside on the same machine, and the specification of the project is 
designed with this extension in mind. However, a single dispatcher controls all the 
computations for the project described in this chapter.

The dispatcher communicates with the outside world by reading packets from its standard input 
and writing packets to its standard output. The dispatcher might receive a packet requesting 
that it create a new task, or it might receive a data packet intended for a task under its control. 
The dispatcher forwards output generated by the tasks under its control to its own standard 
output in the form of packets. For the first four parts of the project, the tasks send ASCII data 
and the dispatcher wraps the data in a packet. Later, the tasks generate the packets 
themselves.

Program 17.1 shows the ntpvm.h header file that contains the relevant type definitions for the 
dispatcher. Include this file in all the programs in this project.

The dispatcher packets include a computation ID, a task ID, a packet type, a packet length and 
the packet information. The first four items make up a fixed-length packet header that is stored 
in a structure of type taskpacket_t. Assume that the information portion of the packet 
contains no more than MAX_PACK_SIZE bytes.

The dispatcher keeps information about each active task in a global tasks array of type 
ntpvm_task_t, which should be implemented as an object with appropriate functions for 
accessing and modifying it. When the description refers to "modifying" or "accessing" 
information in the tasks object, it means calling a public function in the file to perform the 
action. Do not allow the dispatcher to execute more than MAX_TASKS simultaneous tasks. 
Initially, set the compid member of each element of the tasks array to –1 to indicate that the 
slot is empty.

Program 17.1 ntpvm.h

The ntpvm.h header file.

#include <pthread.h>
#include <sys/types.h>
#define MAX_PACK_SIZE 1024
#define MAX_TASKS 10
#define NUMTYPES 6

typedef enum ptype {NEWTASK, DATA, BROADCAST, DONE,
                    TERMINATE, BARRIER} packet_t;

typedef struct {
     int compid;
     int taskid;
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     packet_t type;
     int length;
} taskpacket_t;

typedef struct {
     int compid;                            /* computation ID for task */
     int taskid;                               /* task ID for the task */
     int writefd;                        /* holds dispatcher->child fd */
     int readfd;                         /* holds child->dispatcher fd */
     int recvbytes;
     int recvpacksets;
     int sentbytes;
     int sentpackets;
     pid_t taskpid;                   /* process ID of the forked task */
     pthread_t tasktid;             /* thread ID of task output thread */
     int barrier;         /* -1 if not at barrier, else barrier number */
     pthread_mutex_t mlock;                  /* mutex lock for element */
     int endinput;                   /* true if no more input for task */
} ntpvm_task_t;

There are six types of dispatcher packets in all: NEWTASK, DATA, BROADCAST, DONE, TERMINATE 
and BARRIER. A packet consists of a header structure of type taskpacket_t followed by a data 
field that is an array whose size is specified by the length field of the header. The maximum 
value of length is MAX_PACK_SIZE. The dispatcher interprets the packet types as follows.

1.  When the dispatcher receives a NEWTASK packet on standard input, it initiates a new 
task. The information portion of this packet gives the command line to be executed by 
the forked child task. The dispatcher creates two pipes and forks a child that calls 
execvp for the specified command.

2.  The dispatcher treats the DATA packets that it receives on standard input as input data 
for the task identified by the computation ID and task ID members of the packet 
header. For the first four parts of the project, the dispatcher strips off the packet header 
and writes the actual packet data to writefd of the appropriate task.

3.  When a task writes data to its standard output, the dispatcher forwards the data to 
standard output. The first four parts of this project run standard UNIX utilities as the 
tasks. Since these commands produce just ASCII text as output, the dispatcher 
packages the data into DATA packets before sending to standard output. Starting with 
part five, the tasks send DATA packets.

4.  When the dispatcher receives a DONE packet on standard input, it closes the writefd file 
descriptor for the task identified by the computation ID and task ID members of the 
packet header. The corresponding task then detects end-of-file on its standard input.

5.  When the dispatcher detects end-of-file on the readfd descriptor of a task, it performs 
the appropriate cleanup and sends a DONE packet on standard output to signify that the 
task has completed.

6.  The dispatcher forwards any BROADCAST packets from standard input to all tasks in the 
specified computation.



7.  If a task sends a BROADCAST packet to the dispatcher, the dispatcher forwards the 
request to all tasks in the same computation and also forwards the request on its 
standard output. In this way, all the tasks within a computation receive the message.

8.  If the dispatcher receives a TERMINATE packet on its standard input, it kills the task 
identified by the packet's computation ID and task ID. If task ID is –1, the dispatcher 
kills all tasks in the specified computation. The dispatcher handles a TERMINATE packet 
received from readfd in a similar way. However, if no task ID matches the packet or if 
task ID is –1, the dispatcher also writes the TERMINATE packet to standard output.

9.  The BARRIER packets synchronize tasks of a computation at a particular point in their 
execution.

The NTPVM project has the following parts:

Part I: Setup of I/O and testing [Section 17.4].

Part II: Single task with no input (handle NEWTASK and outgoing data) [Section 17.5].

Part III: One task at a time (handle NEWTASK, DATA and DONE packets) [Section 17.6].

Part IV: Multiple tasks and computations (handle NEWTASK, DATA and DONE packets) [Section 
17.7].

Part V: Task synchronization (handle BROADCAST and BARRIER packets) [Section 17.8].

Part VI: Cleanup (handle TERMINATION packets and signals) [Section 17.9].

Part VII: Ordered message delivery [Section 17.10].

In the first four parts of the project, the child tasks do not communicate by using packets, and 
the dispatcher strips off the packet headers before writing to writefd. This format allows the 
dispatcher to run ordinary UNIX utilities such as cat or ls as tasks. In Part V, the tasks 
communicate with the dispatcher by using packets. At that point, the project requires specific 
task programs for NTPVM testing. The remainder of this section gives examples of different 
types of packets and methods the dispatcher uses to handle them.

17.3.1 NEWTASK packets

The dispatcher waits for a NEWTASK packet from standard input. Such a packet includes a 
computation ID, a task ID and a command-line string.

Example 17.1 

The following NEWTASK packet requests that task 2 in computation 3 be created to execute ls -
l.



Computation ID: 3

Task ID: 2

Packet Type: NEWTASK

Packet Data Length: 5

Packet Information: ls -l

The data in the packet of Example 17.1 is not null-terminated. The dispatcher must convert the 
data to such a string before handing it to makeargv or execvp.

The dispatcher asks the tasks array to find a free entry and to store the information about the 
new task. The dispatcher discards the packet and reports an error if it detects that a task with 
the same computation and task IDs is already in the tasks array. The new entry has 
sentpackets, sentbytes, recvpackets, recvbytes and endinput members of the tasks array 
entry set to 0 and the barrier member set to –1 to signify that the task is not waiting at a 
barrier.

The dispatcher then creates two pipes and uses two of the four resulting pipe file descriptors for 
communication with the child task. These descriptors are stored in the readfd and writefd 
members of the tasks array entry. The dispatcher forks a child and stores the child process ID 
in the taskpid member of the tasks entry. The dispatcher closes unused pipe file descriptors 
and then waits for I/O either from its standard input or from the readfd descriptors of its tasks.

The child task forked by the dispatcher redirects its standard input and output to the pipes and 
closes the unused file descriptors. The child then calls execvp to execute the command string. 
Use the makeargv function of Program 2.2 on page 37 to create an argument array for input to 
execvp.

17.3.2 DATA packets

When the dispatcher reads a DATA packet from standard input, it asks the tasks object to 
determine whether the packet's task ID and computation ID match those of any entry in the 
tasks array. The dispatcher discards the packet if no entry matches. Otherwise, the dispatcher 
updates the recvpackets and recvbytes members of the task's entry in the tasks array.

For the first four parts of the project, the tasks are standard UNIX utilities that accept ASCII 
input. The dispatcher forwards the information portion of the packet to the task on the task's 
writefd descriptor. In Parts V, VI and VII the tasks receive the full data packets directly.

Example 17.2 

After receiving the following DATA packet, the dispatcher sends the words This is my data to 
task 2 in computation 3.



Computation ID: 3

Task ID: 2

Packet Type: DATA

Packet Data Length: 15

Packet Data: This is my data

The dispatcher also forwards data received from individual tasks to its standard output in the 
form of DATA packets. For the first four parts of the project, the dispatcher interprets input from 
readfd as raw output from the task. It creates a DATA packet with the task's computation ID 
and task ID and uses the information read from readfd as the information portion of the 
packet. The dispatcher then writes the DATA packet to its standard output. Starting with Section 
17.8, each task reads and writes its data in packet format. In these sections, the dispatcher 
copies the DATA packets to its standard output.

17.3.3 DONE packets

When the dispatcher receives a DONE packet on standard input, it sets the corresponding task's 
endinput member in the tasks array and closes the writefd descriptor for the task. The 
dispatcher discards any subsequent DONE or DATA packets that arrive for the task.

Example 17.3 

The following DONE packet specifies that there is no more input data for task 2 in computation 3.

Computation ID: 3

Task ID: 2

Packet Type: DONE

Packet Data Length: 0

Packet Data:  

When the dispatcher receives an end-of-file indication on a readfd descriptor, it closes that 
descriptor and forwards a DONE packet on its standard output. If the writefd descriptor for the 
task is still open, the dispatcher closes it. The dispatcher must eventually call wait on the child 
task process and set the compid member of the tasks array entry to –1 so that the array entry 
can be reused.

If the dispatcher receives an end-of-file indication on its own standard input, it closes the 
writefd descriptors of all active tasks and sets the endinput member of the tasks array entry 
for each active task to 1. When it has received an end-of-file indication on the readfd 
descriptors for all active tasks, the dispatcher waits for each task and exits. The dispatcher 
should also periodically wait for all its completed children.
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17.4 I/O and Testing of Dispatcher

This section develops dispatcher I/O functions and debugging layout. The dispatcher receives 
input data from standard input by calling getpacket and sends output data on standard output 
by calling putpacket, as shown in Figure 17.5. The data is always transferred in two parts. 
First, the dispatcher reads or writes a header of type taskpacket_t. Second, it uses the length 
member in the header to determine how many bytes of packet data to read or to write. Finally, 
it reads or writes the data portion of the packet. Assume that the packet data field contains no 
more than MAX_PACK_SIZE bytes so that the dispatcher can use a fixed-length buffer of 
MAX_PACK_SIZE bytes to hold the packet data during input and output.

Figure 17.5. Basic dispatcher I/O.

The getpacket function has the following prototype.

int getpacket(int fd, int *compidp, int *taskidp,
               packet_t *typep, int *lenp, unsigned char *buf);

The getpacket function reads a taskpacket_t header from fd and then reads into buf the 
number of bytes specified by the length member. If successful, getpacket returns 0. If 
unsuccessful, getpacket returns –1 and sets errno. The getpacket function sets *compidp, 
*taskidp, *typep and *lenp from the compid, taskid, type and length members of the 
packet header, respectively. If getpacket receives an end-of-file while trying to read a packet, 
it returns –1 and sets errno. Since errno will not automatically be set, you must pick an 
appropriate value. There is no standard error number to represent end-of-file. One possibility is 
to use EINVAL.

The putpacket function has the following prototype.

int putpacket(int fd, int compid, int taskid,
               packet_t type, int len, unsigned char *buf);

The putpacket function assembles a taskpacket_t header from compid, taskid, type and 
len. It then writes the packet header to fd followed by len bytes from buf. If successful, 
putpacket returns 0. If unsuccessful, putpacket returns –1 and sets errno.
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Example 17.4 

The following program uses getpacket and putpacket to copy packets from standard input to 
standard output.

#include <unistd.h>
#include "ntpvm.h"

int getpacket(int, int *, int *, packet_t *, int *, unsigned char *);
int putpacket(int, int, int, packet_t, int, unsigned char *);

int main(void) {
   unsigned char buf[MAX_PACK_SIZE];
   int compid;
   int taskid;
   int tdatalen;
   int tin, tout;
   packet_t type;

   tin = STDIN_FILENO;
   tout = STDOUT_FILENO;
   while (getpacket(tin, &compid, &taskid, &type, &tdatalen, buf) != -1) {
      if (putpacket(tout, compid, taskid, type, tdatalen, buf) == -1)
         break;
   }
   return 0;
}

The specification for Part I of the project is as follows.

1.  Write the getpacket and putpacket functions.

2.  Compile and run lint on the program to make sure that there are no syntax errors.

3.  Test the program, using one of the methods described below.

4.  Add debugging messages to the loop of the main program to show what values are 
being read and written. All debugging messages should go to standard error.

The hardest part of the NTPVM project is the testing of the dispatcher. The dispatcher 
communicates with standard input and standard output, using packets that have non-ASCII 
components. During debugging, the dispatcher should producemessages on standard error 
reporting its progress. A small amount of work is needed to isolate the dispatcher output and 
input from the informative messages by directing the three types of I/O to appear in ASCII 
format on different screens.

Program 17.2 shows the a2ts filter that reads ASCII characters from standard input, constructs 
a task packet, and writes it to standard output. The a2ts program writes all prompt messages 
to standard error, so it can be run either with interactive prompts or with standard input 
redirected from a file. For interactive use, a2ts prompts for the required information, sending 



the prompts to standard error.

Program 17.2 a2ts.c

The filter a2ts prompts for information and writes a task packet to standard output. Some error 
checking is omitted.

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include "restart.h"
#include "ntpvm.h"
#define MAX_LINE_SIZE 100
#define TERMINATE_STRING "!!!!!\n"

static char *typename[] = {"Start Task", "Data", "Broadcast", "Done",
                         "Terminate", "Barrier"};

int main(void)  {
   char buf[MAX_PACK_SIZE + MAX_LINE_SIZE];
   char *bufptr;
   int i;
   int linelen;
   taskpacket_t pack;
   int tasktype;
   int wsize;

   wsize = sizeof(taskpacket_t);
   fprintf(stderr, "Ready for first packet\n");
   for( ; ; ) {                       /* loop with menu for interactive input */
      fprintf(stderr, "Enter compid:");
      if (scanf("%d", &pack.compid) == EOF)
         break;
      fprintf(stderr, "Enter taskid:");
      scanf("%d", &pack.taskid);
      fprintf(stderr, "Enter task type:\n");
      for (i=0; i< NUMTYPES; i++)
         fprintf(stderr, "   %d = %s\n", i, typename[i]);
      scanf("%d", &tasktype);
      pack.type = tasktype;
      pack.length = 0;
      bufptr = buf;
      *bufptr = 0;
      fprintf(stderr, "Enter first line of data (%.*s to end):\n",
         strlen(TERMINATE_STRING) - 1, TERMINATE_STRING);

      while ((linelen = readline(STDIN_FILENO, bufptr, MAX_LINE_SIZE)) != -1) {
         if (linelen == 0)
            break;
         if (strcmp(TERMINATE_STRING, bufptr) == 0)
            break;
         bufptr = bufptr + linelen;
         pack.length = pack.length + linelen;
         if (pack.length >= MAX_PACK_SIZE) {



            fprintf(stderr, "**** Maximum packet size exceeded\n");
            return 1;
         }
         fprintf(stderr, "Received %d, total=%d, Enter line (%.*s to end):\n",
             linelen, pack.length, strlen(TERMINATE_STRING) - 1,
             TERMINATE_STRING);
      }
      fprintf(stderr, "Writing packet header: %d %d %d %d\n",
          pack.compid, pack.taskid, (int)pack.type, pack.length);
      if (write(STDOUT_FILENO, &pack, wsize) != wsize) {
         fprintf(stderr, "Error writing packet\n");
         return 1;
      }
      fprintf(stderr, "Writing %d bytes\n", pack.length);
      if (write(STDOUT_FILENO, buf, pack.length) != pack.length) {
         fprintf(stderr,"Error writing packet\n");
         return 1;
      }
      fprintf(stderr, "Ready for next packet\n");
   }
   fprintf(stderr, "a2ts exiting normally\n");
   return 0;
}

The ts2a filter of Program 17.3 reads a task packet from standard input and writes the 
contents of the packet to standard output in ASCII format. For this project, assume that the 
data portion of a task packet always contains ASCII information.

Exercise 17.5 

The ts2a program assumes that header and data will each be read with a single call to read. 
How would you make this more robust?

Answer:

Use the readblock function from the restart library described in Appendix B.

Program 17.3 ts2a.c

The ts2a filter reads a packet from standard input and writes the header and data to standard 
output in ASCII format. Some error checking is omitted.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include "ntpvm.h"
#define MAX_LINE_SIZE 100

static char *typename[] = {"Start Task", "Data", "Broadcast", "Done",
                         "Terminate", "Barrier"};

int main(void) {



   char buf[MAX_PACK_SIZE + MAX_LINE_SIZE];
   int bytesread;
   taskpacket_t pack;
   int wsize;

   wsize = sizeof(taskpacket_t);
   fprintf(stderr, "***** Waiting for first packet\n");
   for( ; ; ) {
      bytesread =  read(STDIN_FILENO, &pack, wsize);
      if (bytesread == 0) {
         fprintf(stderr, "End-of-file received\n");
         break;
      }
      if (bytesread != wsize) {
         fprintf(stderr, "Error reading packet header\n");
         return 1;
      }
      if ( (pack.type < 0) || (pack.type >= NUMTYPES) ) {
         fprintf(stderr, "Got invalid packet\n");
         return 1;
      }
      printf("Received packet header of type %s\n",typename[pack.type]);
      printf("   compid = %d, taskid = %d, length = %d\n",
             pack.compid, pack.taskid, pack.length);
      fflush(stdout);
      if (pack.length > MAX_PACK_SIZE) {
         fprintf(stderr, "Task data is too long\n");
         return 1;
      }
      if (read(STDIN_FILENO, buf, pack.length) != pack.length) {
         fprintf(stderr, "Error reading packet data\n");
         return 1;
      }
      write(STDOUT_FILENO, buf, pack.length);
      fprintf(stderr, "***** Waiting for next packet\n");
   }
   return 0;
}

Example 17.6 

The following command prompts for the fields of a packet. It then echoes the packet to 
standard output in ASCII format.

a2ts | ts2a

The a2ts program of Example 17.6 interactively prompts for packet information and writes the 
information as a binary packet to its standard output. The standard output of a2ts is piped into 
standard input of ts2a. The ts2a program reads binary packets from its standard input and 
outputs them in ASCII format to its standard output. Input entered to a2ts will be interleaved 
with output from ts2a, but this should not be a problem since ts2a will not produce any output 
until a2ts has received an entire packet.



Example 17.7 

The following command shows a possible method of testing the dispatcher interactively. For 
now, use the testpacket program of Example 17.4 instead of the dispatcher.

a2ts | dispatcher | ts2a

Example 17.7 pipes standard output of a2ts into standard input of the dispatcher and standard 
output of the dispatcher into ts2a. The command line of Example 17.7 allows a user to enter 
ASCII data and to display the task packet output in ASCII. Unfortunately, real tests produce too 
much data from different sources, making it difficult to distinguish information from different 
programs. Input to a2ts and output from ts2a will be interleaved with error messages sent to 
standard error. The next two subsections propose two different methods for handling this 
problem.

17.4.1 Testing with multiple windows

The first strategy for improving the usability of a2ts and ts2a in testing the dispatcher is to use 
separate windows, as shown in Figure 17.6. The dispatcher, which runs in the dispatcher 
window, redirects its standard input to the named pipe inpipe and its standard output to the 
named pipe outpipe. The output from the dispatcher's standard error still appears in the 
dispatcher window. The a2ts program reads from standard input in the input window and 
writes to its standard output, which is redirected to the named pipe inpipe. Enter packets in 
ASCII format in this window. The ts2a program redirects its standard input to the named pipe 
outpipe. As the dispatcher runs, ts2a displays dispatcher output in the output window.

Figure 17.6 shows the setup for the three windows. Be sure to use the same working directory 
for all three windows. The procedure for running the dispatcher is as follows.

Figure 17.6. Use three windows to debug the NTPVM dispatcher.



1.  Create two named pipes in the dispatcher window by executing the following commands.

mkfifo outpipe
mkfifo inpipe

2.  Start the dispatcher in the dispatcher window by executing the following command.

dispatcher < inpipe > outpipe

This window displays only the messages that the dispatcher sends to standard error, 
since both standard input and standard output are redirected.

3.  In the output window, execute the following command.

ts2a < outpipe

This window displays the packets coming from the standard output of the dispatcher.

4.  In the input window, execute the following command.

a2ts > inpipe



This window displays the prompts for the user to enter packets. The a2ts program 
converts the entered information from ASCII to packet format and writes it to the 
standard input of the dispatcher.

Figure 17.7 shows the layout of the windows for the debugging. If you do not have a 
workstation that supports multiple windows, try to persuade your system administrator to 
install a program such as screen, which supports multiple screens on an ASCII terminal.

Figure 17.7. Logical process layout for debugging the dispatcher.

17.4.2 Testing with remote logging

The second strategy for testing the dispatcher uses the remote logging facility discussed in 
Section 10.3.4 and in Appendix D. Replace the ts2a program with the ts2log program of 
Program 17.4. The ts2log program uses the r_readblock function of the restart library 
described in Appendix B.

Example 17.8 

The following command shows how to test the dispatcher by using remote logging.

a2ts | dispatcher | ts2log

The dispatcher should also log events. It could send the packets to standard output and have 
the ts2log program receive them through redirection. Alternatively, the dispatcher could log 
them directly.

Program 17.4 ts2log.c

A program that logs packets using the remote logging utilities. Some error checking is omitted.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include "ntpvm.h"
#include "restart.h"
#include "rlogging.h"
#define MAX_LINE_SIZE 100



static char *typename[] = {"Start Task", "Data", "Broadcast", "Done",
                         "Terminate", "Barrier"};

int main(void) {
   char buf[MAX_PACK_SIZE + MAX_LINE_SIZE];
   int bytesread;
   LFILE *lf;
   taskpacket_t pack;
   int wsize;

   wsize = sizeof(taskpacket_t);
   lf = lopen(NULL,0);
   if (lf == NULL)
      fprintf(stderr, "Failed to open remote logger.\n");
   for( ; ; ) {
      bytesread =  readblock(STDIN_FILENO, &pack, wsize);
      if (bytesread == 0) {
         lprintf(lf, "End-of-file received\n");
         break;
      }
      if (bytesread != wsize) {
         lprintf(lf, "Error reading packet header\n");
         return 1;
      }
      if ( (pack.type < 0) || (pack.type >= NUMTYPES) ) {
         fprintf(stderr, "Got invalid packet\n");
         return 1;
      }
      lprintf(lf, "%s %s\n   compid = %d\n   taskid = %d\n   length = %d\n",
             "Received packet header of type",
             typename[pack.type], pack.compid, pack.taskid, pack.length);
      if (pack.length > MAX_PACK_SIZE) {
         lprintf(lf, "Task data is too long\n");
         return 1;
      }
      if (readblock(STDIN_FILENO, buf, pack.length) != pack.length) {
         lprintf(lf, "Error reading packet data\n");
         return 1;
      }
      lprintf(lf, buf, pack.length);
   }
   return 0;
}
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17.5 Single Task with No Input

This part of the project uses a single task that has no input to allow testing of the code to 
create the task and the pipes for communication without the added complication of monitoring 
multiple file descriptors for input. The task outputs ASCII text rather than packets.

The dispatcher reads a single NEWTASK packet from standard input, creates the appropriate 
pipes, and forks the child that executes the task. The dispatcher then monitors the readfd pipe 
file descriptor for output from the task and forwards what it reads as DATA packets on standard 
output. When the dispatcher encounters an end-of-file on readfd, it waits for the child task to 
exit and then exits.

Implement the NTPVM dispatcher as described above. The dispatcher does the following.

1.  Read a packet from standard input, using getpacket. If the packet is not a NEWTASK 
packet, then exit after outputting an error message.

2.  Create a pipe for communication with a child task.

3.  Fork a child to execute the command given in the NEWTASK packet of step 1. The child 
should redirect standard input and output to the pipe and close all pipe file descriptors 
before executing the command. Use the makeargv function of Program 2.2 on page 37 
to construct the argument array in the child. If an error occurs, the child just exits after 
printing an informative message.

4.  Have the parent close all unneeded pipe descriptors so that the parent can detect end-
of-file on readfd.

5.  Wait for output from the child on readfd. For this part of the assignment, the child will 
be executing standard UNIX commands. Assume that the child outputs only text. The 
dispatcher reads the child task's output from readfd, wraps this output in a DATA 
packet, and sends the packet to standard output by calling putpacket.

6.  If getpacket returns an error, assume that this is an end-of-file. Close the readfd and 
writefd descriptors for the task. Send a DONE packet to standard output identifying the 
task and exit.

The dispatcher should liberally use standard error or the remote logging facility to display 
informative messages about what it is doing. For example, when it receives something from 
readfd, the dispatcher should display information about the source task, the number of bytes 
read and the message read. It is worthwhile to invest time in designing a readable layout for 
the informative messages so that all the relevant information is available at a glance.

Test the program by using ls -l as the command to be executed.
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17.6 Sequential Tasks

This section describes the behavior of the dispatcher when the child task has both input and 
output. Although the dispatcher handles only one task at a time, it must monitor two input file 
descriptors. Complete Section 17.5 before starting this part.

The dispatcher keeps information about the child task in the tasks array. For simplicity, the 
discussion refers to members of the ntpvm_task_t array such as readfd without their 
qualifying structure. Implement the tasks array as an object with appropriate access functions. 
The tasks array and its access functions should be in a file separate from the dispatcher main 
program. The array and its access functions are referred to as the tasks object, and an 
individual element of the tasks array is referred to as an entry of the tasks object. For this 
part, we only allow one task at a time, so the tasks object does not need an array of tasks.

Figure 17.8 suggests the structure of threaded NTPVM dispatcher. An input thread monitors 
standard input and processes the incoming packets. An output thread monitors the readfd 
descriptor for input from the child task and writes this information to standard output.

Figure 17.8. Schematic of a threaded NTPVM dispatcher for a single 
task.
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The input and output threads share the tasks object and must synchronize their access to this 
structure. One possible approach for synchronizing threads is to use a mutex lock to protect the 
entire tasks object. This choice cuts down on the potential parallelism because only one thread 
at a time can access the tasks object. Since mutex locks are low cost, we use a mutex lock for 
each element of the tasks array.

17.6.1 The input thread

The input thread monitors standard input and takes action according to the input it receives. 
Write an input function that executes the following steps in a loop until it encounters an end-of-
file on standard input.

1.  Read a packet from standard input by using getpacket.

2.  Process the packet.

After falling through the loop, close writefd and call pthread_exit.

Processing a packet depends on the packet type.



NEWTASK

1.  If a child task is already executing, discard the packet and output an error message.

2.  Otherwise, if no child task exists, create two pipes to handle the task's input and output.

3.  Update the tasks object, and fork a child. The child should redirect its standard input 
and output to the pipes and use the makeargv function of Program 2.2 to construct the 
argument array before calling execvp to execute the command given in the packet.

4.  Create a detached output thread by calling pthread_create. Pass a key for the tasks 
entry of this task as an argument to the output thread. The key is just the index of the 
appropriate tasks array entry.

DATA

1.  If the packet's communication and task IDs don't match those of the executing task or if 
the task's endinput is true, output an error message and discard the packet.

2.  Otherwise, copy the data portion to writefd.

3.  Update the recvpackets and recvbytes members of the appropriate task entry of the 
tasks object.

DONE

1.  If the packet's computation and task IDs do not match those of the executing task, 
output an error message and discard the packet.

2.  Otherwise, close the writefd descriptor if it is still open.

3.  Set the endinput member for this task entry.

BROADCAST, BARRIER or TERMINATE

1.  Output an error message.

2.  Discard the packet.

Exercise 17.9 

When a process that contains multiple threads creates a child by calling fork, how many 
threads exist in the child?



Answer:

Although fork creates a copy of the process, the child does not inherit the threads of the 
parent. POSIX specifies that the child has only one thread of execution—the thread that called 
fork.

17.6.2 The output thread

The output thread handles input from the readfd descriptor of a particular task. The output 
thread receives a tasks object key to the task it monitors as a parameter. Write an output 
function that executes the following steps in a loop until it encounters an end-of-file on readfd.

1.  Read data from readfd.

2.  Call putpacket to construct a DATA packet and send it to standard output.

3.  Update the sentpackets and sentbytes members of the appropriate task entry in the 
tasks object.

After falling through the loop because of an end-of-file or an error on readfd, the output thread 
does the following.

1.  Close the readfd and writefd descriptors for the task.

2.  Execute wait for the child task.

3.  Send a DONE packet with the appropriate computation and task IDs to standard output.

4.  Output information about the finished task to standard error or to the remote logger. 
Include the computation ID, the task ID, the total bytes sent by the task, the total 
packets sent by the task, the total bytes received by the task and the total packets 
received by the task.

5.  Deactivate the task entry by setting the computation ID to –

6.  Call pthread_exit.

Test the program by starting tasks to execute various cat and ls -l commands. Try other 
filters such as sort to test the command-line parsing. For this part you should not enter a new 
command until the previous command has completed.
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file:///D|/Tutoriales%20&%20Programacion/Prep%20Finales/XxX/Prentice%20Hall%20-%20Unix%20Systems%20Programming%202nd%20Ed/0130424110_14051533.html
file:///D|/Tutoriales%20&%20Programacion/Prep%20Finales/XxX/Prentice%20Hall%20-%20Unix%20Systems%20Programming%202nd%20Ed/NFO/lib.html


[ Team LiB ]   

17.7 Concurrent Tasks

Modify the program to allow multiple computations and tasks. Use a MAX_TASKS value of 10 for 
this part. A new NEWTASK packet may come in before the data from previous tasks has been 
completely transmitted.

When a new NEWTASK packet comes in, find an available slot in the tasks object, create a new 
set of pipes, and fork a new child to execute the command. Don't enter any duplicates in the 
tasks array.

Figure 17.9 shows a schematic of a threaded NTPVM dispatcher that supports multiple 
simultaneous tasks. When another request comes in, the input thread creates a new output 
thread. Since multiple output threads write to standard output, define an additional mutex lock 
to synchronize output on the dispatcher's standard output.

Figure 17.9. Schematic of a threaded NTPVM dispatcher.
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17.8 Packet Communication, Broadcast and Barriers

Once the dispatcher handles multiple simultaneous tasks, implement the handling of the 
BROADCAST and BARRIER packets. The child tasks now have to communicate with the dispatcher 
in packet format so that the dispatcher and its tasks can distinguish control information 
(broadcast or barrier) from data information.

When the dispatcher receives a BROADCAST request from standard input, it forwards the packet 
on the writefd descriptors for each task whose computation ID matches that of the BROADCAST 
packet. If the dispatcher receives a BROADCAST request from one of the readfd descriptors, it 
forwards the packet on the writefd descriptors for each task whose computation ID matches 
that in the BROADCAST packet. Since, in a future extension, tasks from the computation may 
reside on other hosts, the dispatcher also forwards the packet on its standard output.

When the dispatcher receives a BARRIER packet from a task, it sets the barrier member for 
that task to the barrier number specified by the packet data. When all the tasks in a 
computation have reported that they are waiting for the barrier, the dispatcher sends a 
BARRIER message on standard output.

When the dispatcher reads a BARRIER packet for that barrier number from standard input, it 
resets the barrier member to –1 and sends a SIGUSR1 signal to all the tasks in the 
computation. The BARRIER packet from standard input signifies that all tasks in the computation 
are waiting at the designated barrier and that they can be released. Assume that the dispatcher 
never receives a second BARRIER packet from standard input before it has forwarded a 
corresponding BARRIER packet on standard output.

Implement the barrier on the task side by blocking the SIGUSR1 signal, writing a BARRIER 
packet to standard output, and then executing sigsuspend in a loop until the SIGUSR1 signal 
arrives. Example 8.26 shows how this is done.

Write a dummy task program to generate appropriate broadcast and barrier messages.

Exercise 17.10 

What complications do BROADCAST packets present from a synchronization point of view?

Answer:

Since BROADCAST packets may have to be forwarded to other tasks, the input and output 
threads now share the writefd descriptor associated with those tasks.
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17.9 Termination and Signals

Implement signal handling so that the dispatcher shuts down gracefully when it receives Ctrl-C. 
Also add code to handle TERMINATE packets.
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17.10 Ordered Message Delivery

Add a sequence number to the packet format and implement in-order delivery of packets from 
each source-destination pair.
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17.11 Additional Reading

The PVM system was developed by Oak Ridge National Laboratory and Emory University. The 
paper "PVM: A framework for parallel distributed computing" by V. S. Sunderam [118] provides 
an overview of the development and implementation of the PVM system. Other articles of 
interest include "Visualization and debugging in a heterogeneous environment" by Beguelin et 
al. [10] and "Experiences with network-based concurrent computing on the PVM system" by 
Geist and Sunderam [41]. The PVM distribution is available electronically from www.csm.ornl.
gov/pvm.
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Part IV: Communication

Chapter 18.  Connection-Oriented Communication

Chapter 19.  Project: WWW Redirection

Chapter 20.  Connectionless Communication and Multicast

Chapter 21.  Project: Internet Radio

Chapter 22.  Project: Server Performance
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Chapter 18. Connection-Oriented Communication

Most local-area networks have file servers that manage common disk space, making it easier to 
share files and perform backups for user clients. Standard UNIX network services such as mail 
and file transfer also use the client-server paradigm. This chapter discusses several common 
client-server models for providing services over existing network infrastructure. The models are 
implemented with the Universal Internet Communication Interface (UICI), a simplified API for 
connection-oriented communication that is freely available from the book web site. The UICI 
interface is then implemented in terms of stream sockets and TCP.

Objectives

●     Learn about connection-oriented communication
●     Experiment with sockets and TCP
●     Explore different server designs
●     Use the client-server model in applications
●     Understand thread-safe communication

[ Team LiB ]   
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18.1 The Client-Server Model

Many network applications and services such as web browsing, mail, file transfer (ftp), 
authentication (Kerberos), remote login (telnet) and access to remote file systems (NFS) use 
the client-server paradigm. In each of these applications, a client sends a request for service to 
a server. A service is an action, such as changing the status of a remote file, that the server 
performs on behalf of the client. Often the service includes a response or returns information, 
for example by retrieving a remote file or web page.

The client-server model appears at many levels in computer systems. For example, an object 
that calls a method of another object in an object-oriented program is said to be a client of the 
object. At the system level, daemons that manage resources such as printers are servers for 
system user clients. On the Internet, browsers are client processes that request resources from 
web servers. The key elements of the client-server model are as follows.

●     The client, not the service provider, initiates the action.
●     The server waits passively for requests from clients.
●     The client and server are connected by a communication channel that they access 

through communication endpoints.

Servers should robustly handle multiple simultaneous client requests in the face of unexpected 
client behavior. This chapter especially emphasizes the importance of catching errors and 
taking appropriate action during client-server interactions. You wouldn't want a web server to 
exit when a user mistypes a URL in the browser. Servers are long-running and must release all 
the resources allocated for individual client requests.

Although most current computer system services are based on the client-server model, other 
models such as event notification [4, 36] or peer-to-peer computing [90] may become more 
important in the future.
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18.2 Communication Channels

A communication channel is a logical pathway for information that is accessed by participants 
through communication endpoints. The characteristics of the channel constrain the types of 
interaction allowed between sender and receiver. Channels can be shared or private, one-way 
or two-way. Two-way channels can be symmetric or asymmetric. Channels are distinguished 
from the underlying physical conduit, which may support many types of channels.

In object-orient programming, clients communicate with an object by calling a method. In this 
context, client and server share an address space, and the communication channel is the 
activation record that is created on the process stack for the call. The request consists of the 
parameter values that are pushed on the stack as part of the call, and the optional reply is the 
method's return value. Thus, the activation record is a private, asymmetric two-way 
communication channel. The method call mechanism of the object-oriented programming 
language establishes the communication endpoints. The system infrastructure for managing the 
process stack furnishes the underlying conduit for communication.

Many system services in UNIX are provided by server processes running on the same machine 
as their clients. These processes can share memory or a file system, and clients make requests 
by writing to such a shared resource.

Programs 6.7 and 6.8 of Chapter 6 use a named pipe as a communication channel for client 
requests. The named pipe is used as a shared one-way communication channel that can handle 
requests from any number of clients. Named pipes have an associated pathname, and the 
system creates an entry in the file system directory corresponding to this pathname when 
mkfifo executes. The file system provides the underlying conduit. A process creates 
communication endpoints by calling open and accesses these endpoints through file descriptors. 
Figure 18.1 shows a schematic of the communication supported in this example.

Figure 18.1. Multiple clients write requests to a shared one-way 
communication channel.
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Named pipes can be used for short client requests, since a write of PIPE_BUF bytes or less is 
not interleaved with other writes to the same pipe. Unfortunately, named pipes present several 
difficulties when the requests are long or the server must respond. If the server simply opens 
another named pipe for responses, individual clients have no guarantee that they will read the 
response meant for them. If the server opens a unique pipe for each response, the clients and 
server must agree in advance on a naming convention. Furthermore, named pipes are 
persistent. They remain in existence unless their owners explicitly unlink them. A general 
mechanism for communication should release its resources when the interacting parties no 
longer exist.

Transmission Control Protocol (TCP) is a connection-oriented protocol that provides a reliable 
channel for communication, using a conduit that may be unreliable. Connection-oriented means 
that the initiator (the client) first establishes a connection with the destination (the server), 
after which both of them can send and receive information. TCP implements the connection 
through an exchange of messages, called a three-way handshake, between initiator and 
destination. TCP achieves reliability by using receiver acknowledgments and retransmissions. 
TCP also provides flow control so that senders don't overwhelm receivers with a flood of 
information. Fortunately, the operating system network subsystem implements TCP, so the 
details of the protocol exchanges are not visible at the process level. If the network fails, the 
process detects an error on the communication endpoint. The process should never receive 
incorrect or out-of-order information when using TCP.



Figure 18.2 illustrates the setup for connection-oriented communication. The server monitors a 
passive communication endpoint whose address is known to clients. Unlike other endpoints, 
passive or listening endpoints have resources for queuing client connection requests and 
establishing client connections. The action of accepting a client request creates a new 
communication endpoint for private, two-way symmetric communication with that client. The 
client and server then communicate by using handles (file descriptors) and do not explicitly 
include addresses in their messages. When finished, the client and server close their file 
descriptors, and the system releases the resources associated with the connection. Connection-
oriented protocols have an initial setup overhead, but they allow transparent management of 
errors when the underlying conduits are not error-free.

Figure 18.2. Schematic of connection-oriented client-server 
communication.

Exercise 18.1 

Figure 18.3 illustrates a situation in which two clients have established connections with a 
server. What strategies are available to the server for managing the resulting private 
communication channels (each with its own file descriptor)?

Answer:

The server cannot make any assumptions about the order in which information will arrive on 
the file descriptors associated with the clients' private communication channels. Therefore, a 
solution to alternately read from one descriptor and then the other is incorrect. Section 12.1 
outlines the available approaches for monitoring multiple file descriptors. The server could use 
select or poll, but the server would not be able to accept any additional connection requests 
while blocking on these calls. Simple polling wastes CPU cycles. Asynchronous I/O is efficient, 
but complex to program. Alternatively, the server can fork a child process or create a separate 
thread to handle the client communication.



Figure 18.3. Many clients can request connections to the same 
communication endpoint.

Both connectionless and connection-oriented protocols are considered to be low-level in the 
sense that the request for service involves visible communication. The programmer is explicitly 
aware of the server's location and must explicitly name the particular server to be accessed.

The naming of servers and services in a network environment is a difficult problem. An obvious 
method for designating a server is by its process ID and a host ID. However, the operating 
system assigns process IDs chronologically by process creation time, so the client cannot know 
in advance the process ID of a particular server process on a host.

The most commonly used method for specifying a service is by the address of the host machine 
(the IP address) and an integer called a port number. Under this scheme, a server monitors 
one or more communication channels associated with port numbers that have been designated 
in advance for a particular service. Web servers use port 80 by default, whereas ftp servers 



use port 21. The client explicitly specifies a host address and a port number for the 
communication. Section 18.8 discusses library calls for accessing IP addresses by using host 
names.

This chapter focuses on connection-oriented communication using TCP/IP and stream sockets 
with servers specified by host addresses and port numbers. More sophisticated methods of 
naming and locating services are available through object registries [44], directory services 
[129], discovery mechanisms [4] or middleware such as CORBA [104]. Implementations of 
these approaches are not universally available, nor are they particularly associated with UNIX.
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18.3 Connection-Oriented Server Strategies

Once a server receives a request, it can use a number of different strategies for handling the 
request. The serial server depicted in Figure 18.2 completely handles one request before 
accepting additional requests.

Example 18.2 

The following pseudocode illustrates the serial-server strategy.

for ( ; ; ) {
   wait for a client request on the listening file descriptor
   create a private two-way communication channel to the client
   while (no error on the private communication channel)
      read from the client
      process the request
      respond to the client
   close the file descriptor for the private communication channel
}

A busy server handling long-lived requests such as file transfers cannot use a serial-server 
strategy that processes only one request at a time. A parent server forks a child process to 
handle the actual service to the client, freeing the server to listen for additional requests. Figure 
18.4 depicts the parent-server strategy. The strategy is ideal for services such as file transfers, 
which take a relatively long time and involve a lot of blocking.

Figure 18.4. A parent server forks a child to handle the client request.
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Example 18.3 

The following pseudocode illustrates the parent-server strategy.

for( ; ; ) {
   wait for a client request on the listening file descriptor
   create a private two-way communication channel to the client
   fork a child to handle the client
   close file descriptor for the private communication channel
   clean up zombie children
}

The child process does the following.

close the listening file descriptor
handle the client
close the communication for the private channel
exit

Since the server's child handles the actual service in the parent-server strategy, the server can 
accept multiple client requests in rapid succession. The strategy is analogous to the old-
fashioned switchboard at some hotels. A client calls the main number at the hotel (the 
connection request). The switchboard operator (server) answers the call, patches the 
connection to the appropriate room (the server child), steps out of the conversation, and 
resumes listening for additional calls.

Exercise 18.4 

What happens in Example 18.3 if the parent does not close the file descriptor corresponding to 



the private communication channel?

Answer:

In this case, both the server parent and the server child have open file descriptors to the 
private communication channel. When the server child closes the communication channel, the 
client will not be able to detect end-of-file because a remote process (the server parent) still 
has it open. Also, if the server runs for a long time with many client requests, it will eventually 
run out of file descriptors.

Exercise 18.5 

What is a zombie child? What happens in Example 18.3 if the server parent does not 
periodically wait for its zombie children?

Answer:

A zombie is a process that has completed execution but has not been waited for by its parent. 
Zombie processes do not release all their resources, so eventually the system may run out of 
some critical resource such as memory or process IDs.

The threaded server depicted in Figure 18.5 is a low-overhead alternative to the parent server. 
Instead of forking a child to handle the request, the server creates a thread in its own process 
space. Threaded servers can be very efficient, particularly for small or I/O intensive requests. A 
drawback of the threaded-server strategy is possible interference among multiple requests due 
to the shared address space. For computationally intensive services, the additional threads may 
reduce the efficiency of or block the main server thread. Per-process limits on the number of 
open file descriptors may also restrict the number of simultaneous client requests that can be 
handled by the server.

Figure 18.5. A threaded server creates threads to handle client 
requests.



Example 18.6 

The following pseudocode illustrates the threaded-server strategy.

for ( ; ; ) {
    wait for a client request on the listening file descriptor
    create a private two-way communication channel to the client
    create a detached thread to handle the client
}

Exercise 18.7 

What is the purpose of creating a detached (as opposed to attached) thread in Example 18.6?

Answer:

Detached threads release all their resources when they exit, hence the main thread doesn't 
have to wait for them. The waitpid function with the NOHANG option allows a process to wait for 
completed children without blocking. There is no similar option for the pthread_join function.

Exercise 18.8 

What would happen if the main thread closed the communication file descriptor after creating 
the thread to handle the communication?

Answer:

The main thread and child threads execute in the same process environment and share the 
same file descriptors. If the main thread closes the communication file descriptor, the newly 
created thread cannot access it. Compare this situation to that encountered in the parent 



server of Example 18.3, in which the child process receives a copy of the file descriptor table 
and executes in a different address space.

Other strategies are possible. For example, the server could create a fixed number of child 
processes when it starts and each child could wait for a connection request. This approach 
allows a fixed number of simultaneous parallel connections and saves the overhead of creating 
a new process each time a connection request arrives. Similarly, another threading strategy has 
a main thread that creates a pool of worker threads that each wait for connection requests. 
Alternatively, the main thread can wait for connection requests and distribute communication 
file descriptors to free worker threads. Chapter 22 outlines a project to compare the 
performance of different server strategies.
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18.4 Universal Internet Communication Interface (UICI)

The Universal Internet Communication Interface (UICI) library, summarized in Table 18.1, 
provides a simplified interface to connection-oriented communication in UNIX. UICI is not part 
of any UNIX standard. The interface was designed by the authors to abstract the essentials of 
network communication while hiding the details of the underlying network protocols. UICI has 
been placed in the public domain and is available on the book web site. Programs that use UICI 
should include the uici.h header file.

This section introduces the UICI library. The next two sections implement several client-server 
strategies in terms of UICI. Section 18.7 discusses the implementation of UICI using sockets, 
and Appendix C provides a complete UICI implementation.

When using sockets, a server creates a communication endpoint (a socket) and associates it 
with a well-known port (binds the socket to the port). Before waiting for client requests, the 
server sets the socket to be passive so that it can accept client requests (sets the socket to 
listen). Upon detection of a client connection request on this endpoint, the server generates a 
new communication endpoint for private two-way communication with the client. The client and 
server access their communication endpoints by using file descriptors to read and write. When 
finished, both parties close the file descriptors, releasing the resources associated with the 
communication channel.

Table 18.1. The UICI API. If unsuccessful, UICI functions return –1 and 
set errno.

UICI prototype description (assuming no errors)

int u_open(u_port_t port) creates a TCP socket bound to port and sets the socket to 
be passive returns a file descriptor for the socket

int u_accept(int fd,
          char *hostn,
          int hostnsize)

waits for connection request on fd; on return, hostn has 
first hostname-1 characters of the client's host name 
returns a communication file descriptor

int u_connect(u_port_t port,
          char *hostn)

initiates a connection to server on port port and host 
hostn. returns a communication file descriptor

Figure 18.6 depicts a typical sequence of UICI calls used in client-server communication. The 
server creates a communication endpoint (u_open) and waits for a client to send a request 
(u_accept). The u_accept function returns a private communication file descriptor. The client 
creates a communication endpoint for communicating with the server (u_connect).
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Figure 18.6. A typical interaction of a UICI client and server.

Once they have established a connection, a client and server can communicate over the 
network by using the ordinary read and write functions. Alternatively, they can use the more 
robust r_read and r_write from the restart library of Appendix B. Either side can terminate 
communication by calling close or r_close. After close, the remote end detects end-of-file 
when reading or an error when writing. The diagram in Figure 18.6 shows a single request 
followed by a response, but more complicated interactions might involve several exchanges 
followed by close.

In summary, UICI servers follow these steps.

1.  Open a well-known listening port (u_open). The u_open functions returns a listening file 
descriptor.

2.  Wait for a connection request on the listening file descriptor (u_accept). The u_accept 
function blocks until a client requests a connection and then returns a communication 
file descriptor to use as a handle for private, two-way client-server communication.



3.  Communicate with the client by using the communication file descriptor (read and 
write).

4.  Close the communication file descriptor (close).

UICI clients follow these steps.

1.  Connect to a specified host and port (u_connect). The connection request returns the 
communication file descriptor used for two-way communication with the server.

2.  Communicate with the server by using the communication file descriptor (read and 
write).

3.  Close the communication file descriptor (close).

18.4.1 Handling errors

A major design issue for UICI was how to handle errors. UNIX library functions generally report 
errors by returning –1 and setting errno. To keep the UICI interface simple and familiar, UICI 
functions also return –1 and set errno. None of the UICI functions display error messages. 
Applications using UICI should test for errors and display error messages as appropriate. Since 
UICI functions always set errno when a UICI function returns an error, applications can use 
perror to display the error message. POSIX does not specify an error code corresponding to 
the inability to resolve a host name. The u_connect function returns –1 and sets errno to 
EINVAL, indicating an invalid parameter when it cannot resolve the host name.

18.4.2 Reading and writing

Once they have obtained an open file descriptor from u_connect or u_accept, UICI clients and 
servers can use the ordinary read and write functions to communicate. We use the functions 
from the restart library since they are more robust and simplify the code.

Recall that r_read and r_write both restart themselves after being interrupted by a signal. 
Like read, r_read returns the number of bytes read or 0 if it encounters end-of-file. If 
unsuccessful, r_read returns –1 and sets errno. If successful, r_write returns the number of 
bytes requested to write. The r_write function returns –1 and sets errno if an error occurred 
or if it could not write all the requested bytes without error. The r_write function restarts itself 
if not all the requested bytes have been written. This chapter also uses the copyfile function 
from the restart library, introduced in Program 4.6 on page 100 and copy2files introduced in 
Program 4.13 on page 111.

The restart library supports only blocking I/O. That is, r_read or r_write may cause the caller 
to block. An r_read call blocks until some information is available to be read. The meaning of 
blocking for r_write is less obvious. In the present context, blocking means that r_write 
returns when the output has been transferred to a buffer used by the transport mechanism. 
Returning does not imply that the message has actually been delivered to the destination. 



Writes may also block if message delivery problems arise in the lower protocol layers or if all 
the buffers for the network protocols are full. Fortunately, the issues of blocking and buffering 
are transparent for most applications.
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18.5 UICI Implementations of Different Server Strategies

Program 18.1 shows a serial-server program that copies information from a client to standard 
output, using the UICI library. The server takes a single command-line argument specifying the 
number of the well-known port on which it listens. The server obtains a listening file descriptor 
for the port with u_open and then displays its process ID. It calls u_accept to block while 
waiting for a client request. The u_accept function returns a communication file descriptor for 
the client communication. The server displays the name of the client and uses copyfile of 
Program 4.6 on page 100 to perform the actual copying. Once it has finished the copying, the 
server closes the communication file descriptor, displays the number of bytes copied, and 
resumes listening.

Program 18.1 server.c

A serial server implemented using UICI.

#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include "restart.h"
#include "uici.h"

int main(int argc, char *argv[]) {
   int bytescopied;
   char client[MAX_CANON];
   int communfd;
   int listenfd;
   u_port_t portnumber;

   if (argc != 2) {
      fprintf(stderr, "Usage: %s port\n", argv[0]);
      return 1;
   }
   portnumber = (u_port_t) atoi(argv[1]);
   if ((listenfd = u_open(portnumber)) == -1) {
      perror("Failed to create listening endpoint");
      return 1;
   }
   fprintf(stderr, "[%ld]:waiting for the first connection on port %d\n",
                    (long)getpid(), (int)portnumber);
   for ( ; ; ) {
      if ((communfd = u_accept(listenfd, client, MAX_CANON)) == -1) {
         perror("Failed to accept connection");
         continue;
      }
      fprintf(stderr, "[%ld]:connected to %s\n", (long)getpid(), client);
      bytescopied = copyfile(communfd, STDOUT_FILENO);
      fprintf(stderr, "[%ld]:received %d bytes\n", (long)getpid(), bytescopied);
      if (r_close(communfd) == -1)
         perror("Failed to close communfd\n");
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   }
}

Exercise 18.9 

Under what circumstances does a client cause the server in Program 18.1 to terminate?

Answer:

The server executes the first return statement if it is not started with a single command-line 
argument. The u_open function creates a communication endpoint associated with a port 
number. The u_open function fails if the port is invalid, if the port is in use, or if system 
resources are not available to support the request. At this point, no clients are involved. Once 
the server has reached u_accept, it does not terminate unless it receives a signal. A client on a 
remote machine cannot cause the server to terminate. A failure of u_accept causes the server 
to loop and try again. Notice that I/O errors cause copyfile to return, but these errors do not 
cause server termination.

Program 18.2 implements the parent-server strategy. The parent accepts client connections 
and forks a child to call copyfile so that the parent can resume waiting for connections. 
Because the child receives a copy of the parent's environment at the time of the fork, it has 
access to the private communication channel represented by communfd.

Exercise 18.10 

What happens if the client name does not fit in the buffer passed to u_accept?

Answer:

The implementation of u_accept does not permit the name to overflow the buffer. Instead, 
u_accept truncates the client name. (See Section 18.7.6.)

Exercise 18.11 

What happens if after the connection is made, you enter text at standard input of the server?

Answer:

The server program never reads from standard input, and what you type at standard input is 
not sent to the remote machine.

Exercise 18.12 

Program 18.2 uses r_close and r_waitpid from the restart library. How does this affect the 
behavior of the program?



Answer:

Functions in the restart library restart the corresponding function when the return value is –1 
and errno is EINTR. This return condition occurs when the signal handler of a caught signal 
returns. Program 18.2 does not catch any signals, so using the restarted versions is not 
necessary. We use the functions from the restart library to make it easier to add signal 
handling capability to the programs.

Program 18.2 serverp.c

A server program that forks a child to handle communication.

#include <errno.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
#include "restart.h"
#include "uici.h"

int main(int argc, char *argv[]) {
   int bytescopied;
   pid_t child;
   char client[MAX_CANON];
   int communfd;
   int listenfd;
   u_port_t portnumber;

   if (argc != 2) {
      fprintf(stderr, "Usage: %s port\n", argv[0]);
      return 1;
   }
   portnumber = (u_port_t) atoi(argv[1]);
   if ((listenfd = u_open(portnumber)) == -1) {
      perror("Failed to create listening endpoint");
      return 1;
   }
   fprintf(stderr, "[%ld]: Waiting for connection on port %d\n",
                    (long)getpid(), (int)portnumber);
   for ( ; ; ) {
      if ((communfd = u_accept(listenfd, client, MAX_CANON)) == -1) {
         perror("Failed to accept connection");
         continue;
      }
      fprintf(stderr, "[%ld]:connected to %s\n", (long)getpid(), client);
      if ((child = fork()) == -1) {
         perror("Failed to fork a child");
         continue;
      }
      if (child == 0) {                                         /* child code */
         if (r_close(listenfd) == -1) {



            fprintf(stderr, "[%ld]:failed to close listenfd: %s\n",
                             (long)getpid(), strerror(errno));
            return 1;
         }
         bytescopied = copyfile(communfd, STDOUT_FILENO);
         fprintf(stderr, "[%ld]:received %d bytes\n",
                          (long)getpid(), bytescopied);
         return 0;
      }
      if (r_close(communfd) == -1)                             /* parent code */
         fprintf(stderr, "[%ld]:failed to close communfd: %s\n",
                          (long)getpid(), strerror(errno));
      while (r_waitpid(-1, NULL, WNOHANG) > 0)  ;         /* clean up zombies */
   }
}
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18.6 UICI Clients

Program 18.3 shows the client side of the file copy. The client connects to the desired port on a 
specified host by calling u_connect. The u_connect function returns the communication file 
descriptor. The client reads the information from standard input and copies it to the server. The 
client exits when it receives end-of-file from standard input or if it encounters an error while 
writing to the server.

Program 18.3 client.c

A client that uses UICI for communication.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include "restart.h"
#include "uici.h"

int main(int argc, char *argv[]) {
   int bytescopied;
   int communfd;
   u_port_t portnumber;

   if (argc != 3) {
      fprintf(stderr, "Usage: %s host port\n", argv[0]);
      return 1;
   }
   portnumber = (u_port_t)atoi(argv[2]);
   if ((communfd = u_connect(portnumber, argv[1])) == -1) {
      perror("Failed to make connection");
      return 1;
   }
   fprintf(stderr, "[%ld]:connected %s\n", (long)getpid(), argv[1]);
   bytescopied = copyfile(STDIN_FILENO, communfd);
   fprintf(stderr, "[%ld]:sent %d bytes\n", (long)getpid(), bytescopied);
   return 0;
}

Exercise 18.13 

How would you use Programs 18.1 and 18.3 to transfer information from one machine to 
another?

Answer:

Compile the server of Program 18.1 as server. First, start the server listening on a port (say 
8652) by executing the following command.
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server 8652

Compile Program 18.3 as client. If the server is running on usp.cs.utsa.edu, start the client 
on another machine with the following command.

client usp.cs.utsa.edu 8652

Once the client and server have established a connection, enter text on the standard input of 
the client and observe the server output. Enter the end-of-file character (usually Ctrl-D). The 
client terminates, and both client and server print the number of bytes transferred. Be sure to 
replace usp.cs.utsa.edu with the host name of your server.

Exercise 18.14 

How would you use Programs 18.1 and 18.3 to transfer the file t.in on one machine to the file 
t.out on another? Will t.out be identical to t.in? What happens to the messages displayed by 
the client and server?

Answer:

Use I/O redirection. Start the server of Program 18.1 on the destination machine (say, usp.cs.
utsa.edu) by executing the following command.

server 8652 > t.out

Start the client of Program 18.3 on the source machine by executing the following command.

client usp.cs.utsa.edu 8652 < t.in

Be sure to substitute your server's host name for usp.cs.utsa.edu. The source and destination 
files should have identical content. Since the messages are sent to standard error, which is not 
redirected, these messages still appear in the usual place on the two machines.

The client and server programs presented so far support communication only from the client to 
the server. In many client-server applications, the client sends a request to the server and then 
waits for a response.

Exercise 18.15 

How would you modify the server of Program 18.1 to produce a server called reflectserver 
that echoes its response back to the client, rather than to standard output?

Answer:

The only modification needed would be to replace the reference to STDOUT_FILENO with 
communfd.



Program 18.4 is a client program that can be used with the server of Exercise 18.15. The 
reflectclient.c sends a fixed-length message to a server and expects that message to be 
echoed back. Program 18.4 checks to see that it receives exactly the same message that it 
sends.

Program 18.4 reflectclient.c

A client that sends a fixed-length test message to a server and checks that the reply is identical 
to the message sent.

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "restart.h"
#include "uici.h"
#define BUFSIZE 1000

int main(int argc, char *argv[]) {
   char bufrecv[BUFSIZE];
   char bufsend[BUFSIZE];
   int bytesrecvd;
   int communfd;
   int i;
   u_port_t portnumber;
   int totalrecvd;

   if (argc != 3) {
      fprintf(stderr, "Usage: %s host port\n", argv[0]);
      return 1;
   }
   for (i = 0; i < BUFSIZE; i++)                    /* set up a test message */
      bufsend[i] = (char)(i%26 + 'A');
   portnumber = (u_port_t)atoi(argv[2]);
   if ((communfd = u_connect(portnumber, argv[1])) == -1) {
      perror("Failed to establish connection");
      return 1;
   }
   if (r_write(communfd, bufsend, BUFSIZE) != BUFSIZE) {
      perror("Failed to write test message");
      return 1;
   }
   totalrecvd = 0;
   while (totalrecvd < BUFSIZE) {
      bytesrecvd = r_read(communfd, bufrecv + totalrecvd, BUFSIZE - totalrecvd);
      if (bytesrecvd <= 0) {
         perror("Failed to read response message");
         return 1;
      }
      totalrecvd += bytesrecvd;
   }
   for (i = 0; i < BUFSIZE; i++)
      if (bufsend[i] != bufrecv[i])



         fprintf(stderr, "Byte %d read does not agree with byte written\n", i);
   return 0;
}

Many client-server applications require symmetric bidirectional communication between client 
and server. The simplest way to incorporate bidirectionality is for the client and the server to 
each fork a child to handle the communication in the opposite direction.

Example 18.16 

To make the client in Program 18.3 bidirectional, declare an integer variable, child, and 
replace the line

bytescopied = copyfile(STDIN_FILENO, communfd);

with the following code segment.

if ((child = fork()) == -1) {
   perror("Failed to fork a child");
   return 1;
}
if (child == 0)                                           /* child code */
   bytescopied = copyfile(STDIN_FILENO, communfd);
else                                                     /* parent code */
   bytescopied = copyfile(communfd, STDOUT_FILENO);

Exercise 18.17 

Suppose we try to make a bidirectional serial server from Program 18.1 by declaring an integer 
variable called child and replacing the following line with the replacement code of Example 
18.16.

bytescopied = copyfile(communfd, STDOUT_FILENO);

What happens?

Answer:

This approach has several flaws. Both the parent and child return to the u_accept loop after 
completing the transfer. While copying still works correctly, the number of processes grows 
each time a connection is made. After the first connection completes, two server processes 
accept client connections. If two server connections are active, characters entered at standard 
input of the server go to one of the two connections. The code also causes the process to exit if 
fork fails. Normally, the server should not exit on account of a possibly temporary problem.

Example 18.18 

To produce a bidirectional serial server, replace the copyfile line in Program 18.1 with the 



following code.

int child;

child = fork();
if ((child = fork()) == -1)
   perror("Failed to fork second child");
else if (child == 0) {                                        /* child code */
   bytescopied = copyfile(STDIN_FILENO, communfd);
   fprintf(stderr, "[%ld]:sent %d bytes\n", (long)getpid(), bytes_copied);
   return 0;
}
bytescopied = copyfile(communfd, STDOUT_FILENO);              /* parent code */
fprintf(stderr, "[%ld]:received %d bytes\n", (long)getpid(), bytescopied);
r_wait(NULL);

The child process exits after printing its message. The original process waits for the child to 
complete before continuing and does not accept a new connection until both ends of the 
transmission complete. If the fork fails, only the parent communicates.

Exercise 18.19 

The modified server suggested in Example 18.18 prints out the number of bytes transferred in 
each direction. How would you modify the code to print a single number giving the total 
number of bytes transferred in both directions?

Answer:

This modification would not be simple because the values for transfer in each direction are 
stored in different processes. You can establish communication by inserting code to create a 
pipe before forking the child. After it completes, the child could write to the pipe the total 
number of bytes transferred to the parent.

Exercise 18.20 

Suppose that the child of Example 18.18 returns the number of bytes transferred and the 
parent uses the return value from the status code to accumulate the total number of bytes 
transferred. Does this approach solve the problem posed in Exercise 18.19?

Answer:

No. Only 8 bits are typically available for the child's return value, which is not large enough to 
hold the number of bytes transferred.

Another way to do bidirectional transfer is to use select or poll as shown in Program 4.13 on 
page 111. The copy2files program copies bytes from fromfd1 to tofd1 and from fromfd2 to 
tofd2, respectively, without making any assumptions about the order in which the bytes 
become available in the two directions. You can use copy2files by replacing the copyfile line 
in both server and client with the following code.



bytescopied = copy2files(communfd, STDOUT_FILENO, STDIN_FILENO, communfd);

Program 18.5 shows the bidirectional client.

Exercise 18.21 

How does using copy2files differ from forking a child to handle communication in the opposite 
direction?

Answer:

The copy2files function of Program 4.13 terminates both directions of communication if either 
receives an end-of-file from standard input or if there is an error in the network 
communication. The child method allows communication to continue in the other direction after 
one side is closed. You can modify copy2files to keep a flag for each file descriptor indicating 
whether the descriptor has encountered an error or end-of-file. Only active descriptors would 
be included in each iteration of select.

Program 18.5 client2.c

A bidirectional client.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include "uici.h"
#include "restart.h"

int main(int argc, char *argv[]) {
   int bytescopied;
   int communfd;
   u_port_t portnumber;

   if (argc != 3) {
      fprintf(stderr, "Usage: %s host port\n", argv[0]);
      return 1;
   }
   portnumber = (u_port_t)atoi(argv[2]);
   if ((communfd = u_connect(portnumber, argv[1])) == -1) {
      perror("Failed to establish connection");
      return 1;
   }
   fprintf(stderr, "[%ld]:connection made to %s\n", (long)getpid(), argv[1]);
   bytescopied = copy2files(communfd, STDOUT_FILENO, STDIN_FILENO, communfd);
   fprintf(stderr, "[%ld]:transferred %d bytes\n", (long)getpid(), bytescopied);
   return 0;
}

[ Team LiB ]   
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18.7 Socket Implementation of UICI

The first socket interface originated with 4.1cBSD UNIX in the early 1980s. In 2001, POSIX 
incorporated 4.3BSD sockets and an alternative, XTI. XTI (X/Open Transport Interface) also 
provides a connection-oriented interface that uses TCP. XTI's lineage can be traced back to 
AT&T UNIX System V TLI (Transport Layer Interface). This book focuses on socket 
implementations. (See Stevens [115] for an in-depth discussion of XTI.)

This section introduces the main socket library functions and then implements the UICI 
functions in terms of sockets. Section 18.9 discusses a thread-safe version of UICI. Appendix C 
gives a complete unthreaded socket implementation of UICI as well as four alternative thread-
safe versions. The implementations of this chapter use IPv4 (Internet Protocol version 4). The 
names of the libraries needed to compile the socket functions are not yet standard. Sun Solaris 
requires the library options -lsocket and -lnsl. Linux just needs -lnsl, and Mac OS X does 
not require that any extra libraries be specified. The man page for the socket functions should 
indicate the names of the required libraries on a particular system. If unsuccessful, the socket 
functions return –1 and set errno.

Table 18.2. Overview of UICI API implementation using sockets with 
TCP.

UICI socket functions action

u_open socket

bind

listen

create communication endpoint

associate endpoint with specific port

make endpoint passive listener

u_accept accept accept connection request from client

u_connect socket

connect

create communication endpoint

request connection from server

Table 18.2 shows the socket functions used to implement each of the UICI functions. The 
server creates a handle (socket), associates it with a physical location on the network (bind), 
and sets up the queue size for pending requests (listen). The UICI u_open function, which 
encapsulates these three functions, returns a file descriptor corresponding to a passive or 
listening socket. The server then listens for client requests (accept).

The client also creates a handle (socket) and associates this handle with the network location 
of the server (connect). The UICI u_connect function encapsulates these two functions. The 
server and client handles, sometimes called communication or transmission endpoints, are file 
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descriptors. Once the client and server have established a connection, they can communicate 
by ordinary read and write calls.

18.7.1 The socket function

The socket function creates a communication endpoint and returns a file descriptor. The 
domain parameter selects the protocol family to be used. We use AF_INET, indicating IPv4. A 
type value of SOCK_STREAM specifies sequenced, reliable, two-way, connection-oriented byte 
streams and is typically implemented with TCP. A type value of SOCK_DGRAM provides 
connectionless communication by using unreliable messages of a fixed length and is typically 
implemented with UDP. (See Chapter 20.) The protocol parameter specifies the protocol to be 
used for a particular communication type. In most implementations, each type parameter has 
only one protocol available (e.g., TCP for SOCK_STREAM and UDP for SOCK_DGRAM), so protocol 
is usually 0.

SYNOPSIS

  #include <sys/socket.h>

  int socket(int domain, int type, int protocol);
                                                                  POSIX

If successful, socket returns a nonnegative integer corresponding to a socket file descriptor. If 
unsuccessful, socket returns –1 and sets errno. The following table lists the mandatory errors 
for socket.

errno cause

EAFNOSUPPORT implementation does not support specified address family

EMFILE no more file descriptors available for process

ENFILE no more file descriptors available for system

EPROTONOSUPPORT protocol not supported by address family or by implementation

EPROTOTYPE socket type not supported by protocol

Example 18.22 

The following code segment sets up a socket communication endpoint for Internet 
communication, using a connection-oriented protocol.

int sock;

if ((sock = socket(AF_INET, SOCK_STREAM, 0)) == -1)
   perror("Failed to create socket");



18.7.2 The bind function

The bind function associates the handle for a socket communication endpoint with a specific 
logical network connection. Internet domain protocols specify the logical connection by a port 
number. The first parameter to bind, socket, is the file descriptor returned by a previous call 
to the socket function. The *address structure contains a family name and protocol-specific 
information. The address_len parameter is the number of bytes in the *address structure.

SYNOPSIS

  #include <sys/socket.h>

  int bind(int socket, const struct sockaddr *address,
           socklen_t address_len);
                                                                POSIX

If successful, bind returns 0. If unsuccessful, bind returns –1 and sets errno. The following 
table lists the mandatory errors for bind that are applicable to all address families.

errno cause

EADDRINUSE specified address is in use

EADDRNOTAVAIL specified address not available from local machine

EAFNOSUPPORT invalid address for address family of specified socket

EBADF socket parameter is not a valid file descriptor

EINVAL socket already bound to an address, protocol does not support binding to 
new address, or socket has been shut down

ENOTSOCK socket parameter does not refer to a socket

EOPNOTSUPP socket type does not support binding to address

The Internet domain uses struct sockaddr_in for struct sockaddr. POSIX states that 
applications should cast struct sockaddr_in to struct sockaddr for use with socket 
functions. The struct sockaddr_in structure, which is defined in netinet/in.h, has at least 
the following members expressed in network byte order.

sa_family_t     sin_family;   /* AF_NET */
in_port_t       sin_port;     /* port number */
struct in_addr  sin_addr;     /* IP address */

For Internet communication, sin_family is AF_INET and sin_port is the port number. The 
struct in_addr structure has a member, called s_addr, of type in_addr_t that holds the 
numeric value of an Internet address. A server can set the sin_addr.s_addr field to 



INADDR_ANY, meaning that the socket should accept connection requests on any of the host's 
network interfaces. Clients set the sin_addr.s_addr field to the IP address of the server host.

Example 18.23 

The following code segment associates the port 8652 with a socket corresponding to the open 
file descriptor sock.

struct sockaddr_in server;
int sock;

server.sin_family = AF_INET;
server.sin_addr.s_addr = htonl(INADDR_ANY);
server.sin_port = htons((short)8652);
if (bind(sock, (struct sockaddr *)&server, sizeof(server)) == -1)
   perror("Failed to bind the socket to port");

Example 18.23 uses htonl and htons to reorder the bytes of INADDR_ANY and 8652 to be in 
network byte order. Big-endian computers store the most significant byte first; little-endian 
computers store the least significant byte first. Byte ordering of integers presents a problem 
when machines with different endian architectures communicate, since they may misinterpret 
protocol information such as port numbers. Unfortunately, both architectures are common—the 
SPARC architecture (developed by Sun Microsystems) uses big-endian, whereas Intel 
architectures use little-endian. The Internet protocols specify that big-endian should be used for 
network byte order, and POSIX requires that certain socket address fields be given in network 
byte order. The htonl function reorders a long from the host's internal order to network byte 
order. Similarly, htons reorders a short to network byte order. The mirror functions ntohl and 
ntohs reorder integers from network byte order to host order.

18.7.3 The listen function

The socket function creates a communication endpoint, and bind associates this endpoint with 
a particular network address. At this point, a client can use the socket to connect to a server. 
To use the socket to accept incoming requests, an application must put the socket into the 
passive state by calling the listen function.

The listen function causes the underlying system network infrastructure to allocate queues to 
hold pending requests. When a client makes a connection request, the client and server 
network subsystems exchange messages (the TCP three-way handshake) to establish the 
connection. Since the server process may be busy, the host network subsystem queues the 
client connection requests until the server is ready to accept them. The client receives an 
ECONNREFUSED error if the server host refuses its connection request. The socket value is the 
descriptor returned by a previous call to socket, and the backlog parameter suggests a value 
for the maximum allowed number of pending client requests.

SYNOPSIS

  #include <sys/socket.h>

  int listen(int socket, int backlog);



                                                 POSIX

If successful, listen returns 0. If unsuccessful, listen returns –1 and sets errno. The 
following table lists the mandatory errors for listen.

errno cause

EBADF socket is not a valid file descriptor

EDESTADDRREQ socket is not bound to a local address and protocol does not allow listening 
on an unbound socket

EINVAL socket is already connected

ENOTSOCK socket parameter does not refer to a socket

EOPNOTSUPP socket protocol does not support listen

Traditionally, the backlog parameter has been given as 5. However, studies have shown [115] 
that the backlog parameter should be larger. Some systems incorporate a fudge factor in 
allocating queue sizes so that the actual queue size is larger than backlog. Exercise 22.14 
explores the effect of backlog size on server performance.

18.7.4 Implementation of u_open

The combination of socket, bind and listen establishes a handle for the server to monitor 
communication requests from a well-known port. Program 18.6 shows the implementation of 
u_open in terms of these socket functions.

Program 18.6 u_open.c

A socket implementation of the UICI u_open.

#include <errno.h>
#include <netdb.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/socket.h>
#include <sys/types.h>
#include "uici.h"

#define MAXBACKLOG 50

int u_ignore_sigpipe(void);

int u_open(u_port_t port) {
   int error;



   struct sockaddr_in server;
   int sock;
   int true = 1;

   if ((u_ignore_sigpipe() == -1) ||
        ((sock = socket(AF_INET, SOCK_STREAM, 0)) == -1))
      return -1;

   if (setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, (char *)&true,
                  sizeof(true)) == -1) {
      error = errno;
      while ((close(sock) == -1) && (errno == EINTR));
      errno = error;
      return -1;
   }

   server.sin_family = AF_INET;
   server.sin_addr.s_addr = htonl(INADDR_ANY);
   server.sin_port = htons((short)port);
   if ((bind(sock, (struct sockaddr *)&server, sizeof(server)) == -1) ||
        (listen(sock, MAXBACKLOG) == -1)) {
      error = errno;
      while ((close(sock) == -1) && (errno == EINTR));
      errno = error;
      return -1;
   }
   return sock;
}

If an attempt is made to write to a pipe or socket that no process has open for reading, write 
generates a SIGPIPE signal in addition to returning an error and setting errno to EPIPE. As 
with most signals, the default action of SIGPIPE terminates the process. Under no 
circumstances should the action of a client cause a server to terminate. Even if the server 
creates a child to handle the communication, the signal can prevent a graceful termination of 
the child when the remote host closes the connection. The socket implementation of UICI 
handles this problem by calling u_ignore_sigpipe to ignore the SIGPIPE signal if the default 
action of this signal is in effect.

The htonl and htons functions convert the address and port number fields to network byte 
order. The setsockopt call with SO_REUSEADDR permits the server to be restarted immediately, 
using the same port. This call should be made before bind.

If setsockopt, bind or listen produces an error, u_open saves the value of errno, closes the 
socket file descriptor, and restores the value of errno. Even if close changes errno, we still 
want to return with errno reporting the error that originally caused the return.

18.7.5 The accept function

After setting up a passive listening socket (socket, bind and listen), the server handles 
incoming client connections by calling accept. The parameters of accept are similar to those of 
bind. However, bind expects *address to be filled in before the call, so that it knows the port 



and interface on which the server will accept connection requests. In contrast, accept uses 
*address to return information about the client making the connection. In particular, the 
sin_addr member of the struct sockaddr_in structure contains a member, s_addr, that 
holds the Internet address of the client. The value of the *address_len parameter of accept 
specifies the size of the buffer pointed to by address. Before the call, fill this with the size of 
the *address structure. After the call, *address_len contains the number of bytes of the buffer 
actually filled in by the accept call.

SYNOPSIS

  #include <sys/socket.h>

  int accept(int socket, struct sockaddr *restrict address,
             socklen_t *restrict address_len);
                                                                   POSIX

If successful, accept returns the nonnegative file descriptor corresponding to the accepted 
socket. If unsuccessful, accept returns –1 and sets errno. The following table lists the 
mandatory errors for accept.

errno cause

EAGAIN or EWOULDBLOCK O_NONBLOCK is set for socket file descriptor and no connections are 
present to be accepted

EBADF socket parameter is not a valid file descriptor

ECONNABORTED connection has been aborted

EINTR accept interrupted by a signal that was caught before a valid connection 
arrived

EINVAL socket is not accepting connections

EMFILE OPEN_MAX file descriptors are currently open in calling process

ENFILE maximum number of file descriptors in system are already open

ENOTSOCK socket does not refer to a socket

EOPNOTSUPP socket type of specified socket does not support the accepting of 
connections

Example 18.24 

The following code segment illustrates how to restart accept if it is interrupted by a signal.

int len = sizeof(struct sockaddr);
int listenfd;



struct sockaddr_in netclient;
int retval;

while (((retval =
       accept(listenfd, (struct sockaddr *)(&netclient), &len)) == -1) &&
      (errno == EINTR))
   ;
if (retval == -1)
   perror("Failed to accept connection");

18.7.6 Implementation of u_accept

The u_accept function waits for a connection request from a client and returns a file descriptor 
that can be used to communicate with that client. It also fills in the name of the client host in a 
user-supplied buffer. The socket accept function returns information about the client in a 
struct sockaddr_in structure. The client's address is contained in this structure. The socket 
library does not have a facility to convert this binary address to a host name. UICI calls the 
addr2name function to do this conversion. This function takes as parameters a struct in_addr 
from a struct sockaddr_in, a buffer and the size of the buffer. It fills this buffer with the 
name of the host corresponding to the address given. The implementation of this function is 
discussed in Section 18.8.

Program 18.7 implements the UICI u_accept function. The socket accept call waits for a 
connection request and returns a communication file descriptor. If accept is interrupted by a 
signal, it returns –1 with errno set to EINTR. The UICI u_accept function reinitiates accept in 
this case. If accept is successful and the caller has furnished a hostn buffer, then u_accept 
calls addr2name to convert the address returned by accept to an ASCII host name.

Program 18.7 u_accept.c

A socket implementation of the UICI u_accept function.

#include <errno.h>
#include <netdb.h>
#include <string.h>
#include <arpa/inet.h>
#include <sys/socket.h>
#include <sys/types.h>
#include "uiciname.h"

int u_accept(int fd, char *hostn, int hostnsize) {
   int len = sizeof(struct sockaddr);
   struct sockaddr_in netclient;
   int retval;

   while (((retval =
           accept(fd, (struct sockaddr *)(&netclient), &len)) == -1) &&
          (errno == EINTR))
      ;
   if ((retval == -1) || (hostn == NULL) || (hostnsize <= 0))
      return retval;



   addr2name(netclient.sin_addr, hostn, hostnsize);
   return retval;
}

Exercise 18.25 

Under what circumstances does u_accept return an error caused by client behavior?

Answer:

The conditions for u_accept to return an error are the same as for accept to return an error 
except for interruption by a signal. The u_accept function restarts accept when it is 
interrupted by a signal (e.g., errno is EINTR). The accept function may return an error for 
various system-dependent reasons related to insufficient resources. The accept function may 
also return an error if the client disconnects after the completion of the three-way handshake. A 
server that uses accept or u_accept should be careful not to simply exit on such an error. 
Even an error due to insufficient resources should not necessarily cause the server to exit, since 
the problem might be temporary.

18.7.7 The connect function

The client calls socket to set up a transmission endpoint and then uses connect to establish a 
link to the well-known port of the remote server. Fill the struct sockaddr structure as with 
bind.

SYNOPSIS

  #include <sys/socket.h>

  int connect(int socket, const struct sockaddr *address,
             socklen_t address_len);
                                                                   POSIX

If successful, connect returns 0. If unsuccessful, connect returns –1 and sets errno. The 
following table lists the mandatory errors for connect that are applicable to all address families.

errno cause

EADDRNOTAVAIL specified address is not available from local machine

EAFNOSUPPORT specified address is not a valid address for address family of specified 
socket

EALREADY connection request already in progress on socket

EBADF socket parameter not a valid file descriptor



ECONNREFUSED target was not listening for connections or refused connection

EINPROGRSS O_NONBLOCK set for file descriptor of the socket and connection cannot be 
immediately established, so connection shall be established asynchronously

EINTR attempt to establish connection was interrupted by delivery of a signal that 
was caught, so connection shall be established asynchronously

EISCONN specified socket is connection mode and already connected

ENETUNREACH no route to network is present

ENOTSOCK socket parameter does not refer to a socket

EPROTOTYPE specified address has different type than socket bound to specified peer 
address

ETIMEDOUT attempt to connect timed out before connection made

18.7.8 Implementation of u_connect

Program 18.8 shows u_connect, a function that initiates a connection request to a server. The 
u_connect function has two parameters, a port number (port) and a host name (hostn), which 
together specify the server to connect to.

Program 18.8 u_connect.c

A socket implementation of the UICI u_connect function.

#include <ctype.h>
#include <errno.h>
#include <netdb.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <sys/select.h>
#include <sys/socket.h>
#include <sys/types.h>
#include "uiciname.h"
#include "uici.h"

int u_ignore_sigpipe(void);

int u_connect(u_port_t port, char *hostn) {
   int error;
   int retval;
   struct sockaddr_in server;
   int sock;
   fd_set sockset;

   if (name2addr(hostn,&(server.sin_addr.s_addr)) == -1) {



      errno = EINVAL;
      return -1;
   }
   server.sin_port = htons((short)port);
   server.sin_family = AF_INET;

   if ((u_ignore_sigpipe() == -1) ||
        ((sock = socket(AF_INET, SOCK_STREAM, 0)) == -1))
      return -1;

   if (((retval =
       connect(sock, (struct sockaddr *)&server, sizeof(server))) == -1) &&
       ((errno == EINTR) || (errno == EALREADY))) {          /* asynchronous */
       FD_ZERO(&sockset);
       FD_SET(sock, &sockset);
       while (((retval = select(sock+1, NULL, &sockset, NULL, NULL)) == -1)
           && (errno == EINTR)) {
          FD_ZERO(&sockset);
          FD_SET(sock, &sockset);
       }
   }
   if (retval == -1) {
        error = errno;
        while ((close(sock) == -1) && (errno == EINTR));
        errno = error;
        return -1;
   }
   return sock;
}

The first step is to verify that hostn is a valid host name and to find the corresponding IP 
address using name2addr. The u_connect function stores this address in a struct 
sockaddr_in structure. The name2addr function, which takes a string and a pointer to 
in_addr_t as parameters, converts the host name stored in the string parameter into a binary 
address and stores this address in the location corresponding to its second parameter. Section 
18.8 discusses the implementation of name2addr.

If the SIGPIPE signal has the default signal handler, u_ignore_sigpipe sets SIGPIPE to be 
ignored. (Otherwise, the client terminates when it tries to write after the remote end has been 
closed.) The u_connect function then creates a SOCK_STREAM socket. If any of these steps fails, 
u_connect returns an error.

The connect call can be interrupted by a signal. However, unlike other library functions that set 
errno to EINTR, connect should not be restarted, because the network subsystem has already 
initiated the TCP 3-way handshake. In this case, the connection request completes 
asynchronously to program execution. The application must call select or poll to detect that 
the descriptor is ready for writing. The UICI implementation of u_connect uses select and 
restarts it if interrupted by a signal.

Exercise 18.26 



How would the behavior of u_connect change if

if ((u_ignore_sigpipe() != 0) ||
     ((sock = socket(AF_INET, SOCK_STREAM, 0)) == -1))
    return -1;

were replaced by the following?

if (((sock = socket(AF_INET, SOCK_STREAM, 0)) == -1) ||
   (u_ignore_sigpipe() != 0) )
   return -1;

Answer:

If u_ignore_sigpipe() fails, u_connect returns with an open file descriptor in sock. Since the 
calling program does not have the value of sock, this file descriptor could not be closed.

Exercise 18.27 

Does u_connect ever return an error if interrupted by a signal?

Answer:

To determine the overall behavior of u_connect, we must analyze the response of each call 
within u_connect to a signal. The u_ignore_sigpipe code of Appendix C only contains a 
sigaction call, which does not return an error when interrupted by a signal. The socket call 
does not return an EINTR error, implying that it either restarts itself or blocks signals. Also, 
name2addr does not return EINTR. An arriving signal is handled, ignored or blocked and the 
program continues (unless of course a handler terminates the program). The connect call can 
return if interrupted by a signal, but the implementation then calls select to wait for 
asynchronous completion. The u_connect function also restarts select if it is interrupted by a 
signal. Thus, u_connect should never return because of interruption by a signal.
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18.8 Host Names and IP Addresses

Throughout this book we refer to hosts by name (e.g., usp.cs.utsa.edu) rather than by a 
numeric identifier. Host names must be mapped into numeric network addresses for most of 
the network library calls. As part of system setup, system administrators define the mechanism 
by which names are translated into network addresses. The mechanism might include local 
table lookup, followed by inquiry to domain name servers if necessary. The Domain Name 
Service (DNS) is the glue that integrates naming on the Internet [81, 82].

In general, a host machine can be specified either by its name or by its address. Host names in 
programs are usually represented by ASCII strings. IPv4 addresses are specified either in 
binary (in network byte order as in the s_addr field of struct in_addr) or in a human 
readable form, called the dotted-decimal notation or Internet address dot notation. The dotted 
form of an address is a string with the values of the four bytes in decimal, separated by decimal 
points. For example, 129.115.30.129 might be the address of the host with name usp.cs.utsa.
edu. The binary form of an IPv4 address is 4 bytes long. Since 4-byte addresses do not provide 
enough room for future Internet expansion, a newer version of the protocol, IPv6, uses 16-byte 
addresses.

The inet_addr and inet_ntoa functions convert between dotted-decimal notation and the 
binary network byte order form used in the struct in_addr field of a struct sockaddr_in.

The inet_addr function converts a dotted-decimal notation address to binary in network byte 
order. The value can be stored directly in the sin_addr.s_addr field of a struct sockaddr_in.

SYNOPSIS

  #include <arpa/inet.h>

  in_addr_t inet_addr(const char *cp);
                                           POSIX

If successful, inet_addr returns the Internet address. If unsuccessful, inet_addr returns 
(in_addr_t)–1. No errors are defined for inet_addr.

The inet_ntoa function takes a struct in_addr structure containing a binary address in 
network byte order and returns the corresponding string in dotted-decimal notation. The binary 
address can come from the sin_addr field of a struct sockaddr_in structure. The returned 
string is statically allocated, so inet_ntoa may not be safe to use in threaded applications. 
Copy the returned string to a different location before calling inet_ntoa again. Check the man 
page for inet_ntoa on your system to see if it is thread-safe.

SYNOPSIS

  #include <arpa/inet.h>

  char *inet_ntoa(const struct in_addr in);
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                                                    POSIX

The inet_ntoa function returns a pointer to the network address in Internet standard dot 
notation. No errors are defined for inet_ntoa.

The different data types used for the binary form of an address often cause confusion. The 
inet_ntoa function, takes a struct in_addr structure as a parameter; the inet_addr returns 
data of type in_addr_t, a field of a struct in_addr structure. POSIX states that a struct 
in_addr structure must contain a field called s_addr of type in_addr_t. It is implied that the 
binary address is stored in s_addr and that a struct in_addr structure may contain other 
fields, although none are specified. It seems that in most current implementations, the struct 
in_addr structure contains only the s_addr field, so pointers to sin_addr and sin_addr.
s_addr are identical. To maintain future code portability, however, be sure to preserve the 
distinction between these two structures.

At least three collections of library functions convert between ASCII host names and binary 
addresses. None of these collections report errors in the way UNIX functions do by returning –1 
and setting errno. Each collection has advantages and disadvantages, and at the current time 
none of them stands out as the best method.

UICI introduces the addr2name and name2addr functions to abstract the conversion between 
strings and binary addresses and allow for easy porting between implementations. The 
uiciname.h header file shown in Program C.3 contains the following prototypes for addr2name 
and name2addr.

int name2addr(const char *name, in_addr_t *addrp);
void addr2name(struct in_addr addr, char *name, int namelen);

Link uiciname.c with any program that uses UICI.

The name2addr function behaves like inet_addr except that its parameter can be either a host 
name or an address in dotted-decimal format. Instead of returning the address, name2addr 
stores the address in the location pointed to by addrp to allow the return value to report an 
error. If successful, name2addr returns 0. If unsuccessful, name2addr returns –1. An error 
occurs if the system cannot determine the address corresponding to the given name. The 
name2addr function does not set errno. We suggest that when name2addr is called by a 
function that must return with errno set, the value EINVAL be used to indicate failure.

The addr2name function takes a struct in_addr structure as its first parameter and writes the 
corresponding name to the supplied buffer, name. The namelen value specifies the size of the 
name buffer. If the host name does not fit in name, addr2name copies the first namelen - 1 
characters of the host name followed by a string terminator. This function never produces an 
error. If the host name cannot be found, addr2name converts the host address to dotted-
decimal notation.

We next discuss two possible strategies for implementing name2addr and addr2name. Section 
18.9 discusses two additional implementations. Appendix C presents complete implementations 



using all four approaches. Setting the constant REENTRANCY in uiciname.c picks out a particular 
implementation. We first describe the default implementation that uses gethostbyname and 
gethostbyaddr.

A traditional way of converting a host name to a binary address is with the gethostbyname 
function. The gethostbyname function takes a host name string as a parameter and returns a 
pointer to a struct hostent structure containing information about the names and addresses 
of the corresponding host.

SYNOPSIS

  #include <netdb.h>

  struct hostent {
     char    *h_name;         /* canonical name of host */
     char    **h_aliases;     /* alias list */
     int     h_addrtype;      /* host address type */
     int     h_length;        /* length of address */
     char    **h_addr_list;   /* list of addresses */
  };

  struct hostent *gethostbyname(const char *name);
                                                             POSIX:OB

If successful, gethostbyname returns a pointer to a struct hostent. If unsuccessful, 
gethostbyname returns a NULL pointer and sets h_errno. Macros are available to produce an 
error message from an h_errno value. The following table lists the mandatory errors for 
gethostbyname.

h_errno cause

HOST_NOT_FOUND no such host

NO_DATA server recognized request and name but has no address

NO_RECOVERY unexpected server failure that cannot be recovered

TRY_AGAIN temporary or transient error

The struct hostent structure includes two members of interest that are filled in by 
gethostbyname. The h_addr_list field is an array of pointers to network addresses used by 
this host. These addresses are in network byte order, so they can be used directly in the 
address structures required by the socket calls. Usually, we use only the first entry, 
h_addr_list[0]. The integer member h_length is filled with the number of bytes in the 
address. For IPv4, h_length should always be 4.

Example 18.28 



The following code segment translates a host name into an IP address for the s_addr member 
of a struct sockaddr_in.

char *hostn = "usp.cs.utsa.edu";
struct hostent *hp;
struct sockaddr_in server;

if ((hp = gethostbyname(hostn)) == NULL)
   fprintf(stderr, "Failed to resolve host name\n");
else
   memcpy((char *)&server.sin_addr.s_addr, hp->h_addr_list[0], hp->h_length);

Often, a host has multiple names associated with it. For example, because usp.cs.utsa.edu is 
a web server for this book, the system also responds to the alias www.usp.cs.utsa.edu.

Exercise 18.29 

Use the struct hostent structure returned in Example 18.28 to output a list of aliases for usp.
cs.utsa.edu.

Answer:

char **q;
struct hostent *hp;

for (q = hp->h_aliases; *q != NULL; q++)
   (void) printf("%s\n", *q);

Exercise 18.30 

Use the struct hostent structure returned in Example 18.28 to find out how many IP 
addresses are associated with usp.cs.utsa.edu.

Answer:

int addresscount = 0;
struct hostent *hp;
char **q;

for (q = hp->h_addr_list; *q != NULL; q++)
   addresscount++;
printf("Host %s has %d IP addresses\n", hp->h_name, addresscount);

Program 18.9 is one implementation of name2addr. The name2addr function first checks to see 
if name begins with a digit. If so, name2addr assumes that name is a dotted-decimal address and 
uses inet_addr to convert it to in_addr_t. Otherwise, name2addr uses gethostbyname.

Program 18.9 name2addr_gethostbyname.c



An implementation of name2addr using gethostbyname.

#include <ctype.h>
#include <netdb.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <sys/types.h>

int name2addr(char *name, in_addr_t *addrp) {
    struct hostent *hp;

    if (isdigit((int)(*name)))
        *addrp = inet_addr(name);
    else {
        hp = gethostbyname(name);
        if (hp == NULL)
            return -1;
        memcpy((char *)addrp, hp->h_addr_list[0], hp->h_length);
    }
    return 0;
}

The conversion from address to name can be done with gethostbyaddr. For IPv4, the type 
should be AF_INET and the len value should be 4 bytes. The addr parameter should point to a 
struct in_addr structure.

SYNOPSIS

  #include <netdb.h>

  struct hostent *gethostbyaddr(const void *addr,
                                socklen_t len, int type);
                                                                POSIX:OB

If successful, gethostbyaddr returns a pointer to a struct hostent structure. If unsuccessful, 
gethostbyaddr returns a NULL pointer and sets h_error. The mandatory errors for 
gethostbyaddr are the same as those for gethostbyname.

Example 18.31 

The following code segment prints the host name from a previously set struct sockaddr_in 
structure.

struct hostent *hp;
struct sockaddr_in net;
int sock;



if (( hp = gethostbyaddr(&net.sin_addr, 4, AF_INET))
   printf("Host name is %s\n", hp->h_name);

Program 18.10 is an implementation of the addr2name function that uses the gethostbyaddr 
function. If gethostbyaddr returns an error, then addr2name uses inet_ntoa to convert the 
address to dotted-decimal notation. The addr2name function copies at most namelen-1 bytes, 
allowing space for the string terminator.

Program 18.10 addr2name_gethostbyaddr.c

An implementation of addr2name using gethostbyaddr.

#include <ctype.h>
#include <netdb.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <sys/types.h>

void addr2name(struct in_addr addr, char *name, int namelen) {
    struct hostent *hostptr;
    hostptr = gethostbyaddr((char *)&addr, 4, AF_INET);
    if (hostptr == NULL)
        strncpy(name, inet_ntoa(addr), namelen-1);
    else
        strncpy(name, hostptr->h_name, namelen-1);
    name[namelen-1] = 0;
}

When an error occurs, gethostbyname and gethostbyaddr return NULL and set h_errno to 
indicate an error. Thus, errno and perror cannot be used to display the correct error message. 
Also, gethostbyname and gethostbyaddr are not thread-safe because they use static data for 
storing the returned struct hostent. They should not be used in threaded programs without 
appropriate precautions being taken. (See Section 18.9.) A given implementation might use the 
same static data for both of these, so be careful to copy the result before it is modified.

A second method for converting between host names and addresses, getnameinfo and 
getaddrinfo, first entered an approved POSIX standard in 2001. These general functions, 
which can be used with both IPv4 and IPv6, are preferable to gethostbyname and 
gethostbyaddr because they do not use static data. Instead, getnameinfo stores the name in 
a user-supplied buffer, and getaddrinfo dynamically allocates a buffer to return with the 
address information. The user can free this buffer with freeaddrinfo. These functions are safe 
to use in a threaded environment. The only drawback in using these functions, other than the 
complication of the new structures used, is that they are not yet available on many systems.

SYNOPSIS

     #include <sys/socket.h>



     #include <netdb.h>

     void freeaddrinfo(struct addrinfo *ai);
     int getaddrinfo(const char *restrict nodename,
                     const char *restrict servname,
                     const struct addrinfo *restrict hints,
                     struct addrinfo **restrict res);
     int getnameinfo(const struct sockaddr *restrict sa,
                     socklen_t salen, char *restrict node,
                     socklen_t nodelen, char *restrict service,
                     socklen_t servicelen, unsigned flags);
                                                                       POSIX

If successful, getaddrinfo and getnameinfo return 0. If unsuccessful, these functions return 
an error code. The following table lists themandatory error codes for getaddrinfo and 
getnameinfo.

error cause

EAI_AGAIN name cannot be resolved at this time

EAI_BADFLAGS flags had an invalid value

EAI_FAIL unrecoverable error

EAI_FAMILY address family was not recognized or address length invalid for specified 
family

EAI_MEMORY memory allocation failure

EAI_NONAME name does not resolve for supplied parameters

EAI_SERVICE service passed not recognized for socket (getaddrinfo)

EAI_SOCKTYPE intended socket type not recognized (getaddrinfo)

EAI_SYSTEM a system error occurred and error code can be found in errno

EAI_OVERFLOW argument buffer overflow (getaddrinfo)

The struct addrinfo structure contains at least the following members.

int              ai_flags;       /* input flags */
int              ai_family;      /* address family */
int              ai_socktype;    /* socket type */
int              ai_protocol;    /* protocol of socket */
socklen_t        ai_addrlen;     /* length of socket address */
struct sockaddr  *ai_addr;       /* socket address */
char             *ai_canonname;  /* canonical service name */
struct addrinfo  *ai_next;       /* pointer to next entry */



The user passes the name of the host in the nodename parameter of getaddrinfo. The 
servname parameter can contain a service name (in IPv6) or a port number. For our purposes, 
the nodename determines the address, and the servname parameter can be a NULL pointer. The 
hints parameter tells getaddrinfo what type of addresses the caller is interested in. For IPv4, 
we set ai_flags to 0. In this case, ai_family, ai_socktype and ai_protocol are the same 
as in socket. The ai_addrlen parameter can be set to 0, and the remaining pointers can be 
set to NULL. The getaddrinfo function, using the res parameter, returns a linked list of 
struct addrinfo nodes that it dynamically allocates to contain the address information. When 
finished using this linked list, call freeaddrinfo to free the nodes.

Program 18.11 shows an implementation of name2addr that uses getaddrinfo. After calling 
getaddrinfo, the function copies the address and frees the memory that was allocated.

Program 18.11 name2addr_getaddrinfo.c

An implementation of name2addr using getaddrinfo.

#include <ctype.h>
#include <netdb.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <sys/types.h>

int name2addr(char *name, in_addr_t *addrp) {
    struct addrinfo hints;
    struct addrinfo *res;
    struct sockaddr_in *saddrp;

    hints.ai_flags = 0;
    hints.ai_family = PF_INET;
    hints.ai_socktype = SOCK_STREAM;
    hints.ai_protocol = 0;
    hints.ai_addrlen = 0;
    hints.ai_canonname = NULL;
    hints.ai_addr = NULL;
    hints.ai_next = NULL;

    if (getaddrinfo(name,NULL,&hints,&res) != 0)
        return -1;

    saddrp = (struct sockaddr_in *)(res->ai_addr);
    memcpy(addrp, &saddrp->sin_addr.s_addr, 4);
    freeaddrinfo(res);
    return 0;
}

To use getnameinfo to convert an address to a name, pass a pointer to a sockaddr_in 
structure in the first parameter and its length in the second parameter. Supply a buffer to hold 



the name of the host as the third parameter and the size of that buffer as the fourth 
parameter. Since we are not interested in the service name, the fifth parameter can be NULL 
and the sixth parameter can be 0. The last parameter is for flags, and it can be 0, causing the 
fully qualified domain name to be returned. The sin_family field of the sockaddr_in should be 
AF_INET, and the sin_addr field contains the addresses. If the name cannot be determined, 
the numeric form of the host name is returned, that is, the dotted-decimal form of the address.

Program 18.12 shows an implementation of addr2name. The addr2name function never returns 
an error. Instead, it calls inet_ntoa if getnameinfo produces an error.

Program 18.12 addr2name_getnameinfo.c

An implementation of addr2name using getnameinfo.

#include <ctype.h>
#include <netdb.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <sys/types.h>

void addr2name(struct in_addr addr, char *name, int namelen) {
    struct sockaddr_in saddr;
    saddr.sin_family = AF_INET;
    saddr.sin_port = 0;
    saddr.sin_addr = addr;
    if (getnameinfo((struct sockaddr *)&saddr, sizeof(saddr), name, namelen,
                    NULL, 0, 0) != 0) {
        strncpy(name, inet_ntoa(addr), namelen-1);
        name[namelen-1] = 0;
    }
}
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18.9 Thread-Safe UICI

The UNIX functions that use errno were originally unsafe for threads. When errno was an 
external integer shared by all threads, one thread could set errno and have another thread 
change it before the first thread used the value. Multithreaded systems solve this problem by 
using thread-specific data for errno, thus preserving the syntax for the standard UNIX library 
functions. This same problem exists with any function that returns values in variables with 
static storage class.

The TCP socket implementation of UICI in Section 18.7 is thread-safe provided that the 
underlying implementations of socket, bind, listen, accept, connect, read, write and close 
are thread-safe and that the name resolution is thread-safe. The POSIX standard states that all 
functions defined by POSIX and the C standard are thread-safe, except the ones shown in Table 
12.2 on page 432. The list is short and mainly includes functions, such as strtok and ctime, 
that require the use of static data.

The gethostbyname, gethostbyaddr and inet_ntoa functions, which are used in some versions 
of UICI name resolution, appear on the POSIX list of functions that might not be thread-safe. 
Some implementations of inet_ntoa (such as that of Sun Solaris) are thread-safe because they 
use thread-specific data. These possibly unsafe functions are used only in name2addr and 
addr2name, so the issue of thread safety of UICI is reduced to whether these functions are 
thread-safe.

Since getnameinfo and getaddrinfo are thread-safe, then if inet_ntoa is threadsafe, the 
implementations of name2addr and addr2name that use these are also threadsafe. 
Unfortunately, as stated earlier, getnameinfo and getaddrinfo are not yet available on many 
systems.

On some systems, thread-safe versions of gethostbyname and gethostbyaddr, called 
gethostbyname_r and gethostbyaddr_r, are available.

SYNOPSIS

  #include <netdb.h>

  struct hostent *gethostbyname_r(const char *name,
       struct hostent *result, char *buffer, int buflen,
       int *h_errnop);
  struct hostent *gethostbyaddr_r(const char *addr,
       int length, int type, struct hostent *result,
       char *buffer, int buflen, int *h_errnop);

These functions perform the same tasks as their unsafe counterparts but do not use static 
storage. The user supplies a pointer to a struct hostent in the result parameter. Pointers in 
this structure point into the user-supplied buffer, which has length buflen. The supplied 
buffer array must be large enough for the generated data. When the gethostbyname_r and 
gethostbyaddr_r functions return NULL, they supply an error code in the integer pointed to by 
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*h_errnop. Program 18.13 shows a threadsafe implementation of addr2name, assuming that 
inet_ntoa is thread-safe. Section C.2.2 contains a complete implementation of UICI, using 
gethostbyname_r and gethostbyaddress_r.

Unfortunately, gethostbyname_r and gethostbyaddress_r were part of the X/OPEN standard, 
but when this standard was merged with POSIX, these functions were omitted. Another 
problem associated with Program 18.13 is that it does not specify how large the user-supplied 
buffer should be. Stevens [115] suggests 8192 for this value, since that is what is commonly 
used in the implementations of the traditional forms.

An alternative for enforcing thread safety is to protect the sections that use static storage with 
mutual exclusion. POSIX:THR mutex locks provide a simple method of doing this. Program 
18.14 is an implementation of addr2name that uses mutex locks. Section C.2.3 contains a 
complete implementation of UICI using mutex locks. This implementation does not require 
inet_ntoa to be thread-safe, since its static storage is protected also.

Program 18.13 addr2name_gethostbyaddr_r.c

A version of addr2name using gethostbyaddr_r.

#include <ctype.h>
#include <netdb.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <sys/types.h>
#define GETHOST_BUFSIZE 8192

void addr2name(struct in_addr addr, char *name, int namelen) {
    char buf[GETHOST_BUFSIZE];
    int h_error;
    struct hostent *hp;
    struct hostent result;

    hp = gethostbyaddr_r((char *)&addr, 4, AF_INET, &result, buf,
                         GETHOST_BUFSIZE, &h_error);
    if (hp == NULL)
        strncpy(name, inet_ntoa(addr), namelen-1);
    else
        strncpy(name, hp->h_name, namelen-1);
    name[namelen-1] = 0;
}

Program 18.14 addr2name_mutex.c

A thread-safe version of addr2name using POSIX mutex locks.

#include <ctype.h>



#include <netdb.h>
#include <pthread.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <sys/types.h>

static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

void addr2name(struct in_addr addr, char *name, int namelen) {
    struct hostent *hostptr;

    pthread_mutex_lock(&mutex);
    hostptr = gethostbyaddr((char *)&addr, 4, AF_INET);
    if (hostptr == NULL)
        strncpy(name, inet_ntoa(addr), namelen-1);
    else
        strncpy(name, hostptr->h_name, namelen-1);
    pthread_mutex_unlock(&mutex);
    name[namelen-1] = 0;
}
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18.10 Exercise: Ping Server

The ping command can be used to elicit a response from a remote host. The default for some 
systems is to just display a message signifying that the host responded. On other systems the 
default is to indicate how long it took for a reply to be received.

Example 18.32 

The following command queries the usp.cs.utsa.edu host.

ping usp.cs.utsa.edu

The command might output the following message to mean that the host usp.cs.utsa.edu is 
responding to network communication.

usp.cs.utsa.edu is alive

This section describes an exercise that uses UICI to implement myping, a slightly fancier 
version of the ping service. The myping function responds with a message such as the following.

usp.cs.utsa.edu: 5:45am up 12:11, 2 users, load average: 0.14, 0.08, 0.07

The myping program is a client-server application. A myping server running on the host listens 
at a well-known port for client requests. The server forks a child to respond to the request. The 
original server process continues listening. Assume that the myping well-known port number is 
defined by the constant MYPINGPORT.

Write the code for the myping client. The client takes the host name as a command-line 
argument, makes a connection to the port specified by MYPINGPORT, reads what comes in on 
the connection and echoes it to standard output until end-of-file, closes the connection, and 
exits. Assume that if the connection attempt to the host fails, the client sleeps for SLEEPTIME 
seconds and then retries. After the number of failed connection attempts exceeds RETRIES, the 
client outputs the message that the host is not available and exits. Test the program by using 
the bidirectional server discussed in Example 18.18.

Implement the myping server. The server listens for connections on MYPINGPORT. If a client 
makes a connection, the server forks a child to handle the request and the original process 
resumes listening at MYPINGPORT. The child closes the listening file descriptor, calls the 
process_ping function, closes the communication file descriptor, and exits.

Write a process_ping function with the following prototype.

int process_ping(int communfd);
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For initial testing, process_ping can just output an error message to the communication file 
descriptor. For the final implementation, process_ping should construct a message consisting 
of the host name and the output of the uptime command. An example message is as follows.

usp.cs.utsa.edu: 5:45am up 13:11, 2 users, load average: 0.14, 0.08, 0.07

Use uname to get the host name.

SYNOPSIS

  #include <sys/utsname.h>

  int uname(struct utsname *name);
                                          POSIX

If successful, uname returns a nonnegative value. If unsuccessful, uname returns –1 and sets 
errno. No mandatory errors are defined for uname.

The struct utsname structure, which is defined in sys/utsname.h, has at least the following 
members.

char sysname[];    /* name of this OS implementation */
char nodenamep[];  /* name of this node within communication network */
char release[];    /* current release level of this implementation */
char version[];    /* current version level of this release */
char machine[];    /* name of hardware type on which system is running */
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file:///D|/Tutoriales%20&%20Programacion/Prep%20Finales/XxX/Prentice%20Hall%20-%20Unix%20Systems%20Programming%202nd%20Ed/0130424110_14051533.html
file:///D|/Tutoriales%20&%20Programacion/Prep%20Finales/XxX/Prentice%20Hall%20-%20Unix%20Systems%20Programming%202nd%20Ed/NFO/lib.html


[ Team LiB ]   

18.11 Exercise: Transmission of Audio

This section extends the UICI server and client of Program 18.1 and Program 18.3 to send 
audio information from the client to the server. These programs can be used to implement a 
network intercom, network telephone service, or network radio broadcasts, as described in 
Chapter 21.

Start by incorporating audio into the UICI server and client as follows.

●     Run Programs 18.1 and 18.3 with redirected input and output to transfer files from 
client to server, and vice versa. Use diff to verify that each transfer completes 
correctly.

●     Redirect the input to the client to come from the audio device (microphone) and redirect 
the output on the server to go to the audio device (speakers). You should be able to 
send audio across the network. (See Section 6.6 for information on how to do this.)

●     Modify the bidirectional server and client to call the audio functions developed in Section 
6.6 and Section 6.7 to transmit audio from the microphone of the client to the speaker 
of the server. Test your program for two-way communication.

The program sends even if no one is talking because once the program opens the audio device, 
the underlying device driver and interface card sample the audio input at a fixed rate until the 
program closes the file. The continuous sampling produces a prohibitive amount of data for 
transmission across the network. Use a filter to detect whether a packet contains voice, and 
throw away audio packets that contain no voice. A simple method of filtering is to convert the u-
law (µ-law) data to a linear scale and reject packets that fall below a threshold. Program 18.15 
shows an implementation of this filter for Solaris. The hasvoice function returns 1 if the packet 
contains voice and 0 if it should be thrown away. Incorporate hasvoice or another filter so that 
the client does not transmit silence.

Program 18.15 hasvoice.c

A simple threshold function for filtering data with no voice.

#include <stdio.h>
#include <stdlib.h>
#include "/usr/demo/SOUND/include/multimedia/audio_encode.h"
#define THRESHOLD 20   /* amplitude of ambient room noise, linear PCM */

               /* return 1 if anything in audiobuf is above THRESHOLD */
int hasvoice(char *audiobuf, int length) {
    int i;

    for (i = 0; i < length; i++)
        if (abs(audio_u2c(audiobuf[i])) > THRESHOLD)
            return 1;
    return 0;
}
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Write the following enhancements to the basic audio transmission service.

1.  Develop a calibration function that allows the threshold for voice detection to be 
adjusted according to the current value of the ambient room noise.

2.  Use more sophisticated filtering algorithms in place of simple thresholds.

3.  Keep track of the total number of packets and the actual number of those that contain 
voice data. Display the information on standard error when the client receives a SIGUSR1 
signal.

4.  Add volume control options on both client and server sides.

5.  Design an interface for accepting or rejecting connections in accordance with sender 
information.

6.  Devise protocols analogous to caller ID and call-waiting.

7.  Add an option on the server side to record the incoming audio to a file for later 
playback. Recording is easy if the client is sending all the packets. However, since the 
client is sending only packets with voice, straight recording does not sound right on 
playback because all silences are compressed. Keep timing information as well as the 
audio information in the recorded data.
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18.12 Additional Reading

Computer Networks, 4th ed. by Tanenbaum [123] is a standard reference on computer 
networks. The three-volume set TCP/IP Illustrated by Stevens and Wright [113, 134, 114] 
provides details of the TCP/IP protocol and its implementation. The two volumes of UNIX 
Network Programming by Stevens [115, 116] are the most comprehensive references on UNIX 
network programming. UNIX System V Network Programming by Rago [92] is an excellent 
reference book on network programming under System V. The standard for network services 
was incorporated into POSIX in 2001 [49].
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Chapter 19. Project: WWW Redirection

The World Wide Web has a client-server architecture based on a resource identification scheme 
(URI), a communication protocol (HTTP) and a document format (HTML), which together allow 
easy access and exchange of information. The decentralized nature of the Web and its 
effectiveness in making information accessible have led to fundamental social and cultural 
change. Every product, from breakfast cereal to cars, has a presence on the Web. Businesses 
and other institutions have come to regard the Web as an interface, even the primary interface, 
with their customers. By providing ubiquitous access to information, the Web has reduced 
barriers erected by geographic and political borders in a profound way.

Objectives

●     Learn the basic operation of the HTTP protocol
●     Experiment with a ubiquitous distributed system
●     Explore the operation of the World Wide Web
●     Use client-server communication
●     Understand the roles of tunnels, proxies and gateways

[ Team LiB ]   
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19.1 The World Wide Web

Electronic hypertext contains links to expanded or related information embedded at relevant 
points in a document. The links are analogous to footnotes in a traditional paper document, but 
the electronic nature of these documents allows easier physical access to the links. As early as 
1945, Vannevar Bush proposed linked systems for documents on microfiche [18], but electronic 
hypertext systems did not take hold until the 1960s and 1970s.

In 1980, Tim Berners-Lee wrote a notebook program for CERN called ENQUIRE that had 
bidirectional links between nodes representing information. In 1989, he proposed a system for 
browsing the CERN Computer Center's documentation and help service. Tim Berners-Lee and 
Robert Cailliau developed a prototype GUI browser-editor for the system in 1990 and coined 
the name "World Wide Web." The initial system was released in 1991. At the beginning of 1993 
there were 50 known web servers, a number that grew to 500 by the end of 1993 and to 
650,000 by 1997. Today, web browsers have become an integral interface to information, and 
the Internet has millions of web servers.

The World Wide Web is a collection of clients and servers that have agreed to interact and 
exchange information in a certain format. The client (an application such as a browser) first 
establishes a connection with a server (an application that accepts connections and responds). 
Once it has established a connection, the client sends an initial request asking for service. The 
server responds with the requested information or an error.

As described so far, the World Wide Web is a simple client-server architecture, no different from 
many others. Its attractiveness lies in the simplicity of the rules for locating resources (URIs), 
communicating (HTTP) and presenting information (HTML). The next section describes URLs, 
the most common format for resource location on the Web. Section 19.3 gives an overview of 
HTTP, the web communication protocol. HTML, the actual format for web pages, is not within 
the scope of this book. Section 19.4 discusses tunnels, gateways and caching. The chapter 
project explores various aspects of tunnels, proxies and gateways. Sections 19.5 and 19.6 
guide you through the implementation of a tunnel that might be used in a firewall. Section 19.7 
describes a driver for testing the programs. Section 19.8 discusses the HTTP parsing needed for 
the proxy servers. Sections 19.9 and 19.10 describe a proxy server that monitors the traffic 
generated by the browsers that use it. Sections 19.12 and 19.13 explore the use of gateways 
for firewalls and load balancing, respectively.
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19.2 Uniform Resource Locators (URLs)

A Uniform Resource Locator (URL) has the form scheme : location. The scheme refers to the 
method used to access the resource (e.g., HTTP), and the location specifies where the resource 
resides.

Example 19.1 

The URL http://www.usp.cs.utsa.edu/usp/simple.html specifies that the resource is to be 
accessed with the HTTP protocol. This particular resource, usp/simple.html, is located on the 
server www.usp.cs.utsa.edu.

While http is not the only valid URL scheme, it is certainly the most common one. Other 
schemes include ftp for file transfer, mailto for mail through a browser or other web client, 
and telnet for remote shell services. The syntax for http URLs is as follows.

http_URL = "http:"  "//" host [ ":" port ] [abs_path [ "?" query]]

The optional fields are enclosed in brackets. The host field should be the human-readable name 
of a host rather than a binary IP address (Section 18.8). The client (often a browser) 
determines the server location by obtaining the IP address of the specified host. If the URL 
does not specify a port, the client assumes port 80. The abs_path field refers to a path that is 
relative to the web root directory of the server. The optional query is not discussed here.

Example 19.2 

The URL http://www.usp.cs.utsa.edu:8080/usp/simple.html specifies that the server for 
the resource is listening on port 8080 rather than default port 80. The URL's absolute path is /
usp/simple.html.

When a user opens a URL through a browser, the browser parses the server's host name and 
makes a TCP connection to that host on the specified port. The browser then sends a request to 
the server for the resource, as designated by the URL's absolute path using the HTTP protocol 
described in the next section.

Example 19.3 

Figure 19.1 shows the location of a typical web server root directory (web) in the host file 
system. Only the part of the file system below the web directory root is visible and accessible 
through the web server. If the host name is www.usp.cs.utsa.edu, the image title.gif has 
the URL http://www.usp.cs.utsa.edu/usp/images/title.gif.

Figure 19.1. The root directory for the web server running on this host 
is /web. Only the boxed subtree is accessible through the Web.
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The specification of a resource location with a URL ties it to a particular server. If the resource 
moves, web pages that refer to the resource are left with bad links. The Uniform Resource 
Name (URN) gives more permanence to resource names than does the URL alone. The owner of 
a resource registers its URN and the location of the resource with a service. If the resource 
moves, the owner just updates the entry with the registration service. URNs are not in wide use 
at this time. Both URLs and URNs are examples of Uniform Resource Identifiers (URIs). Uniform 
Resource Identifiers are formatted strings that identify a resource by name, location or other 
characteristics.

[ Team LiB ]   

file:///D|/Tutoriales%20&%20Programacion/Prep%20Finales/XxX/Prentice%20Hall%20-%20Unix%20Systems%20Programming%202nd%20Ed/NFO/lib.html


[ Team LiB ]   

19.3 HTTP Primer

Clients and web servers have a specific set of rules, or protocol, for exchanging information 
called Hyper Text Transfer Protocol (HTTP). HTTP is a request-reply protocol that assumes that 
messages are delivered reliably. For this reason, HTTP communication usually uses TCP, and 
that is what we assume in this discussion. We also restrict our initial discussion to HTTP 1.0 
[53].

Figure 19.2 presents a schematic of a simple HTTP transaction. The client sends a request (e.
g., a message that starts with the word GET). The server parses the message and responds 
with the status and possibly a copy of the requested resource.

Figure 19.2. Schematic of an HTTP 1.0 transaction.

19.3.1 Client requests

HTTP client requests begin with an initial line that specifies the kind of request being made, the 
location of the resource and the version of HTTP being used. The initial line ends with a carriage 
return followed by a line feed. In the following, <CRLF> denotes a carriage return followed by a 
line feed, and <SP> represents a white space character. A white space character is either a 
blank or tab.

Example 19.4 

The following HTTP 1.0 client request asks a server for the resource /usp/simple.html.
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GET <SP> /usp/simple.html <SP> HTTP/1.0 <CRLF>
User-Agent:uiciclient <CRLF>
<CRLF>

The first or initial line of HTTP client requests has the following format.

Method <SP> Request-URI <SP> HTTP-Version <CRLF>

Method is usually GET, but other client methods include POST and HEAD.

The second line of the request in Example 19.4 is an example of a header line or header field. 
These lines convey additional information to the server about the request. Header lines are of 
the following form.

Field-Name:Field-Value <CRLF>

The last line of the request is empty. That is, the last header line just contains a carriage return 
and a line feed, telling the server that the request is complete. Notice that the HTTP request of 
Example 19.4 does not explicitly contain a server host name. The request of Example 19.4 
might have been generated by a user opening the URL http://www.usp.cs.utsa.edu/usp/
simple.html in a browser. The browser parses the URL into a server location www.usp.cs.
utsa.edu and a location within that server /usp/simple.html. The browser then opens a TCP 
connection to port 80 of the server www.usp.cs.utsa.edu and sends the message of Example 
19.4.

19.3.2 Server response

A web server responds to a client HTTP request by sending a status line, followed by any 
number of optional header lines, followed by an empty line containing just <CRLF>. The server 
then may send a resource. The status line has the following format.

HTTP-Version <SP> Status-Code <SP> Reason-Phrase <CRLF>

Table 19.1 summarizes the status codes, which are organized into groups by the first digit.

Table 19.1. Common status codes returned by HTTP servers.

code category description

1xx informational reserved for future use

2xx success successful request



3xx redirection additional action must be taken (e.g., object has moved)

4xx client error bad syntax or other request error

5xx server error server failed to satisfy apparently valid request

Example 19.5 

When the request of Example 19.4 is sent to www.usp.cs.utsa.edu, the web server running on 
port 80 might respond with the following status line.

HTTP/1.0 <SP> 200 <SP> OK <CRLF>

After sending any additional header lines and an empty line to mark the end of the header, the 
server sends the contents of the requested file.

19.3.3 HTTP message exchange

HTTP presumes reliable transport of messages (in order, error-free), usually achieved by the 
use of TCP. Figure 19.3 shows the steps for the exchange between client and server, using a 
TCP connection. The server listens on a well-known port (e.g., 80) for a connection request. 
The client establishes a connection and sends a GET request. The server responds and closes 
the connection. HTTP 1.0 allows only a single request on a connection, so the client can detect 
the end of the sending of the resource by the remote closing of the connection. HTTP 1.1 allows 
the client to pipeline multiple requests on a single connection, requiring the server to send 
resource length information as part of the response.

Figure 19.3. Sequence of steps in HTTP 1.0 communication.



Exercise 19.6 

How could you use Program 18.5 (client2) on page 629 to access the web server that is 
running on www.usp.cs.utsa.edu?

Answer:

Start client2 with the following command.

client2 www.usp.cs.utsa.edu 80

Type the HTTP request of Example 19.4 at the keyboard. The third line of the request is just an 
empty line. The host www.usp.cs.utsa.edu runs a web server that listens on port 80. The 
server interprets the message as an HTTP request and responds. The server then closes the 
connection.

Exercise 19.7 



What message does client2 send to the host when you enter an empty line?

Answer:

The client2 program sends a single byte, the line feed character with ASCII code 10 (the 
newline character).

Exercise 19.8 

Why does the web server still respond if you enter only a line feed and not a <CRLF> for the 
empty line?

Answer:

Although the HTTP specification [53] says that request lines should be terminated by <CRLF>, it 
also recommends that applications (clients and servers) be tolerant in parsing. Specifically, 
HTTP parsers should recognize a simple line feed as a line terminator and ignore the leading 
carriage return. It also recommends that parsers allow any number of space or tab characters 
between fields. Almost all web servers and browsers follow these guidelines.

Exercise 19.9 

Run Program 18.5 in the same way as in Exercise 19.6, but enter the following.

GET <SP> /usp/badref.html <SP> HTTP/1.0 <CRLF>
<CRLF>

What happens?

Answer:

The server responds with the following initial line.

HTTP/1.1 <SP> 404 <SP> Not <SP> Found <CRLF>

The server response may contain additional header lines before the blank line marking the end 
of the header. After sending the header, the server closes the connection. Note that the server 
is using HTTP version 1.1, but it sends a response that can be understood by the client, which 
is using HTTP version 1.0.

Exercise 19.10 

Run Program 18.5, using the following command to redirect the client's standard output to t.
out.

client2 www.usp.cs.utsa.edu 80 > t.out



Enter the following at standard input of the client. What will t.out contain?

GET <SP> /usp/images/title.gif <SP> HTTP/1.0 <CRLF>
<CRLF>

Answer:

The t.out contains the server response, which consists of an ASCII header followed by a binary 
file representing an image. You can view the file by first removing the header and then opening 
the result in your browser. Use the UNIX more command to see how many header lines are 
there. If the file has 10 lines, use the following command to save the resources.

tail +11 t.out > t.gif

You can then use your web browser to display the result.

To summarize, an HTTP transaction consists of the following components.

●     An initial line (GET, HEAD or POST for clients and a status line for servers).
●     Zero or more header lines (giving additional information).
●     A blank line (contains only <CRLF>).
●     An optional message body. For the server response, the message body is the requested 

item, which could be binary.

The initial and header lines are tokenized ASCII separated by linear white space (tabs and 
spaces).
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19.4 Web Communication Patterns

According to HTTP terminology [133], a client is an application that establishes a connection, 
and a server is an application that accepts connections and responds. A user agent is a client 
that initiates a request for service. Your browser is both a client and a user agent according to 
this terminology.

The origin server is the server that has the resource. Figure 19.2 on page 661 shows 
communication between a client and an origin server. In the current incarnation of the World 
Wide Web, firewalls, proxy servers and content distribution networks have changed the 
topology of client-server interaction. Communication between the user agent and the origin 
server often takes place through one or more intermediaries. This section covers four 
fundamental building blocks of this more complex topology: tunnels, proxies, caches and 
gateways.

19.4.1 Tunnels

A tunnel is an intermediary that acts as a blind relay. Tunnels do not parse HTTP, but forward it 
to the server. Figure 19.4 shows communication between a user agent and an origin server 
with an intermediate tunnel.

Figure 19.4. Communication between a user agent and an origin server 
through a tunnel.

The tunnel of Figure 19.4 accepts an HTTP connection from a client and establishes a 
connection to the server. In this scenario, the tunnel acts both as a client and as a server 
according to the HTTP definition, although it is neither a user agent nor an origin server. The 
tunnel forwards the information from the client to the server. When the server responds, the 
tunnel forwards the response to the client. The tunnel detects closing of connections by either 
the client or server and closes the other end. After closing both ends, the tunnel ceases to 
exist. The tunnel of Figure 19.4 always connects to the web server running on the host www.
usp.cs.utsa.edu.
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Sometimes a tunnel does not establish its own connections but is created by another entity 
such as a firewall or gateway after the connections are established. Figure 19.5 illustrates one 
such situation in which a client connects to www.usp.cs.utsa.edu, a host running outside of a 
firewall. The firewall software creates a tunnel for the connection to a machine usp.cs.utsa.
edu that is behind the firewall. Clients behind the firewall connect directly to usp.cs.utsa.edu, 
but usp is not visible outside of the firewall. As far as the client is concerned, the content is on 
the machine www.usp.cs.utsa.edu. The client knows nothing of usp.cs.utsa.edu.

Figure 19.5. Tunnels provide a controlled portal through a firewall.

19.4.2 Proxies

A proxy is an intermediary between clients and servers that makes requests on behalf of its 
clients. Proxies are addressed by a special form of the GET request and must parse HTTP. Like 
tunnels, proxies act both as clients and servers. However, a proxy is generally long-lived and 
often acts as an intermediary for many clients. Figure 19.6 shows an example in which a 
browser has set its proxy to org.proxy.net. The HTTP client (e.g., a browser) makes a 
connection to the HTTP proxy (e.g., org.proxy.net) and writes its HTTP request. The HTTP 
proxy parses the request and makes a separate connection to the HTTP origin server (e.g., www.
usp.cs.utsa.edu). When the origin server responds, the HTTP proxy copies the response on 
the channel connected to the HTTP client.

Figure 19.6. A proxy accesses any server on behalf of a client.



The GET request of Example 19.4 uses an absolute path to specify the resource location. Clients 
use an alternative form, the absolute URI, when directing requests to a proxy. The absolute URI 
contains the full HTTP address of the destination server. In Figure 19.6, the http://www.usp.
cs.utsa.edu/usp/simple.html is an absolute URI; /usp/simple.html is an absolute path.

Example 19.11 

This HTTP request contains an absolute URI rather than an absolute path.

GET <SP> http://www.usp.cs.utsa.edu/usp/simple.html <SP> HTTP/1.0 <CRLF>
User-Agent:uiciclient <CRLF>
<CRLF>

The proxy server parses the GET line and initiates an HTTP request to www.usp.cs.utsa.edu for 
the resource /usp/simple.html.

When directing a request through a proxy, user agents use the absolute URI form of the GET 
request and connect to the proxy rather than directly to the origin server. When a server 
receives a GET request containing an absolute URI, it knows that it should act as a proxy rather 
than as the origin server. The proxy reconstructs the GET line so that it contains an absolute 
path, such as the one shown in Example 19.4, and makes the connection to the origin server. 
Often, the proxy adds additional header lines to the request. The proxy itself can use another 
proxy, in which case it forwards the original GET to its designated proxy. Most browsers allow a 
user option of setting a proxy rather than connecting directly to the origin server. Once set up, 
the browser's operation with a proxy is transparent to the user, other than a performance 
improvement or degradation.

19.4.3 Caching and Transparency

A transparent proxy is one that does not modify requests or responses beyond what is needed 
for proxy identification and authentication. Nontransparent proxies may perform many other 
types of services on behalf of their clients (e.g., annotation, anonymity filtering, content 
filtering, censorship, media conversion). Proxies may keep statistics and other information 



about their clients. Search engines such as Google are proxies of a different sort, caching 
information about the content of pages along with the URLs. Users access the cached 
information by keywords or phrases. Clients that use proxies assume that the proxies are 
correct and trustworthy.

The most important service that proxies perform on behalf of clients is caching. A cache is a 
local store of response messages. Browsers usually cache recent response messages on disk. 
When a user opens a URL, the browser checks first to see if the resource can be found on disk 
and only initiates a network request if it didn't find the object locally.

Exercise 19.12 

Examine the current settings and contents of the cache on your browser. Different browsers 
allow access to this information in different ways. The local cache and proxies are accessible 
under the Advanced option of the Preferences submenu on the Edit menu in Netscape 6. In 
Internet Explorer 6, you can access the information from the Internet Options submenu under 
the Tools menu. The cache is designated under Temporary Internet Files on the General menu. 
Proxies are designed under LAN Settings on the Connections submenu of Internet Options. Look 
at the files in the directory that holds your local browser cache. Your browser should offer an 
option for clearing the local cache. Use the option to clear your local cache, and examine the 
directory again. What is the effect? Why does the browser keep a local cache and how does the 
browser use this cache?

Answer:

Clearing the cache should remove the contents of the local cache directory. When the user 
opens a page in the browser, the browser first checks the local disk for the requested object. If 
the requested object is in the local cache, the browser can retrieve it locally and avoid a 
network transfer. Browsers use local caches to speed access and reduce network traffic.

A proxy cache stores resources that it fetches in order to more effectively service future 
requests for those resources. When the proxy cache receives a request for an object from a 
client, it first checks its local store of objects. If the object is found in the proxy's local cache 
(Figure 19.7), the proxy can retrieve the object locally rather than by transferring it from the 
origin server.

Figure 19.7. If possible, a proxy cache retrieves requested resources 
from its local store.



If the proxy cache does not find an object in its local store (Figure 19.8), it retrieves the object 
from the origin server and decides whether to save it locally. Some objects contain headers 
indicating they cannot be cached. The proxy may also decide not to cache an object for other 
reasons, for example, because the object is too large to cache or because the proxy does not 
want to remove other, frequently accessed, objects from its cache.

Figure 19.8. When a proxy cannot locate a requested resource locally, 
it requests the object from the origin server and may elect to add the 

object to its local cache.

Often, proxy caches are installed at the gateways to local area networks. Clients on the local 
network direct all their requests through the proxy. The objects in the proxy cache's local store 
are responses to requests from many different users. If someone else has already requested 
the object and the proxy has cached the object, the response to the current request will be 
much faster.

You are probably wondering what happens if the object has changed since the cache stored the 
object. In this case, the proxy may return an object that is out-of-date, or stale, a situation 
that can be mitigated by expiration strategies. Origin servers often provide an expiration time 



as part of the response header. Proxy caches also use expiration policies to keep old objects 
from being cached indefinitely. Finally, the proxy (or any client) can execute a conditional GET 
by including an If-Modified-Since field as a header line. The server only returns objects that 
have changed since the specified modification date. Otherwise, the server returns a 304 Not 
Modified response, and the proxy can use the copy from its cache.

19.4.4 Gateways

While a proxy can be viewed as a client-side intermediary, a gateway is a server-side 
mechanism. A gateway receives requests as though it is an origin server. A gateway may be 
located at the boundary router for a local area network or outside a firewall protecting an 
intranet. Gateways provide a variety of services such as security, translation and load 
balancing. A gateway might be used as the common interface to a cluster of web servers for an 
organization or as a front-end portal to a web server that is behind a firewall.

Figure 19.9 shows an example of how a gateway might be configured to provide a common 
access point to resources inside and outside a firewall. The server www.usp.cs.utsa.edu acts 
as a gateway for usp.cs.utsa.edu, a server that is behind the firewall. If a GET request 
accesses a resource in the usp directory, the gateway creates a tunnel to usp.cs.utsa.edu. 
For other resources, the gateway creates a tunnel to the www.cs.utsa.edu server outside the 
firewall.

Figure 19.9. The server www.usp.cs.utsa.edu acts as a gateway for servers 
inside and outside the firewall.



Exercise 19.13 

How does a gateway differ from a tunnel?

Answer:

A tunnel is a conduit that passes information from one point to another without change. A 
gateway acts as a front end for a resource, perhaps a cluster of servers.

This chapter explores various aspects of tunnels, proxies and gateways. Sections 19.5 and 19.6 
guide you through the implementation of a tunnel that might be used in a firewall. Section 19.7 
describes a driver for testing the programs. Section 19.8 discusses the HTTP parsing needed for 
the proxy servers. Sections 19.9 and 19.10 describe a proxy server that monitors the traffic 
generated by the browsers that use it. Sections 19.12 and 19.13 explore the use of gateways 
for firewalls and load balancing, respectively.

[ Team LiB ]   
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19.5 Pass-through Monitoring of Single Connections

This section describes an implementation of a simple pass-through monitor, passmonitor, 
similar to the tunnel illustrated in Figure 19.4. The passmonitor program takes its listening 
port number, the destination web server host name and an optional destination web server port 
number as command-line arguments. If the last argument is omitted, passmonitor assumes 
that the destination web server uses port 80. The monitor listens at the specified port for TCP 
connection requests (using the UICI u_accept function). When it accepts a client connection, 
passmonitor initiates a TCP connection to the destination server (using u_connect) and calls 
the tunnel function described below. After control returns from tunnel, passmonitor resumes 
listening for another client connection request.

The tunnel function, which handles one session between a client and the origin server, has the 
following prototype.

int tunnel(int clientfd, int serverfd);

Here, clientfd is the open file descriptor returned after acceptance of the client's connection 
request. The serverfd parameter is an open file descriptor for a TCP connection between the 
monitor and the destination server. The tunnel function forwards all messages received from 
clientfd to serverfd, and vice versa. If either the client or the destination server closes a 
connection (clientfd or serverfd, respectively), tunnel closes its connections and returns the 
total number of bytes that were forwarded in both directions.

After control returns from tunnel, passmonitor writes status information to standard error, 
reporting the total number of bytes written for this communication and the time the 
communication took. The monitor then resumes listening for another client connection request.

To correctly implement passmonitor, you cannot assume that the client and the server strictly 
alternate responses. The passmonitor program reads from two sources (the client and the 
server) and must allow for the possibility that either could send next. Use select or poll as in 
Program 4.13 to monitor the two file descriptors. A simple implementation of tunnel is given in 
Example 19.14. Be sure to handle all errors returned by library functions. Under what 
circumstances should passmonitor exit? What other strategies should passmonitor use when 
errors occur?

Example 19.14 

The tunnel function can easily be implemented in terms of the copy2files function of Program 
4.13 on page 111.

int tunnel(int fd1, int fd2) {
   int bytescopied;

   bytescopied = copy2files(fd1, fd2, fd2, fd1);
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   close(fd1);
   close(fd2);
   return bytescopied;
}

Recall that copy2files returns if either side closes a file descriptor.

Exercise 19.15 

Use Program 18.5 on page 629 to test passmonitor by having it connect to web servers 
through passmonitor. Why doesn't passmonitor have to parse the client's request before 
forwarding it to the destination server?

Answer:

The passmonitor program uses only the destination server that is passed to it on the command 
line.

Exercise 19.16 

Suppose you start passmonitor on machine os1.cs.utsa.edu with the following command.

passmonitor 15000 www.usp.cs.utsa.edu

Start client2 on another machine with the following command.

client2 os1.cs.utsa.edu 15000

If you then enter the following request (on client2), the passmonitor sends the request to 
port 80 of www.usp.cs.utsa.edu.

GET <SP> /usp/simple.html <SP> HTTP/1.0 <CRLF>
User-Agent:uiciclient <CRLF>
<CRLF>

How does the reply differ from the one received by having client2 connect directly as in 
Example 19.4?

Answer:

The replies should be the same in the two cases if passmonitor is correct.

Exercise 19.17 

Test passmonitor by using a web browser as the client. Start passmonitor as in Exercise 
19.16. To access /usp/simple.html, open the URL as follows.



http://os1.cs.utsa.edu:15000/usp/simple.html

Notice that the browser treats the host on which passmonitor is running as the origin server 
with port number 15000. What happens when you don't specify a port number in the URL?

Answer:

The browser makes the connection to port 80 of the host running passmonitor.

Exercise 19.18 

Suppose that you are using a browser and have started passmonitor as in Exercise 19.16. 
What series of connections are initiated when you open the URL as specified in Exercise 19.17?

Answer:

Your browser makes a connection to port 15000 on os1.cs.utsa.edu and sends a request 
similar to the one in Example 19.4 on page 660. The passmonitor program receives the 
request, establishes a connection to port 80 on www.usp.cs.utsa.edu, and forwards the 
browser's request. The passmonitor program returns www.usp.cs.utsa.edu's response to the 
browser and closes the connections.

[ Team LiB ]   
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19.6 Tunnel Server Implementation

A tunnel is a blind relay that ceases to exist when both ends of a connection are closed. The 
passmonitor program of Section 19.5 is technically not a tunnel because it resumes listening 
for another connection request after closing its connections to the client and the destination 
server. It acts as a server for the tunnel function. One limitation of passmonitor is that it 
handles only one communication at a time.

Modify the passmonitor program of Section 19.5 to fork a child to handle the communication. 
The child should call the tunnel function and print to standard output a message containing the 
total number of bytes written. Call the new program tunnelserver.

The parent, which you can base on Program 18.2 on page 623, should clean up zombies by 
calling waitpid with the WNOHANG option and resume listening for additional requests.

Exercise 19.19 

How would you start tunnelserver on port 15002 to service the web server www.usp.cs.utsa.
edu running on port 8080 instead of port 80?

Answer:

tunnelserver 15002 www.usp.cs.utsa.edu 8080

Exercise 19.20 

Why can't the child process of tunnelserver return the total number of bytes processed to the 
parent process in its return value?

Answer:

Only 8 bits of the process return value can be stored in the status value from wait.

[ Team LiB ]   
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19.7 Server Driver for Testing

Modify Program 18.3 (client) on page 624 to create a test program for the tunnelserver 
program and call it servertester. The test program should take four command-line 
arguments: the tunnel server host name, the tunnel server port number, the number of 
children to fork and the number of requests each child should make. The parent process forks 
the specified number of children and then waits for them to exit. Wait for the children by calling 
wait(NULL) a number of times equal to the number of children created. (See, for example, 
Example 3.15 on page 73.) Each child executes the testhttp function described below and 
examines its return value. The testhttp function has the following prototype.

int testhttp(char *host, int port, int numTimes);

The testhttp function executes the following in a loop for numTimes times.

1.  Make a connection to host on port (e.g., u_connect).

2.  Write the REQUEST string to the connection. REQUEST is a string constant containing the 
three lines of a GET request similar to that of Example 19.4 on page 660. Use a REQUEST 
string appropriate for the host you plan to connect to.

3.  Read from the connection until the remote end closes the connection or until an error 
occurs. Keep track of the total number of bytes read from this connection.

4.  Close the connection.

5.  Add the number of bytes to the overall total.

If successful, testhttp returns the total number of bytes read from the network. If 
unsuccessful, testhttp returns –1 and sets errno.

Begin by writing a simple version of servertester that calls testhttp with numTimes equal to 
1 and saves and prints the number of bytes corresponding to one request.

After you have debugged the single request case, modify servertester to fork children after 
the first call to testhttp. Each child calls testhttp and displays an error message if the 
number of bytes returned is not numTimes times the number returned by the call made by the 
original parent process.

Add statements in the main program to read the time before the first fork and after the last 
child has been waited for. Output the difference in these times. Make sure there is no output to 
the screen between the two statements that read the time. Use conditional compilation to 
include or not include the print statements of tunnelserver. The tunnelserver program 
should not produce any output after its initial startup unless an error occurs.
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Start testing servertester by directly accessing a web server. For example, access www.usp.
cs.utsa.edu, using the following command to estimate how long it takes to directly access the 
web server.

servertester www.usp.cs.utsa.edu 80 10 20

Then, do some production runs of tunnelserver and compare the times. You can also run 
servertester on multiple machines to generate a heavier load.

Exercise 19.21 

Suppose, as in Exercise 19.19, that tunnelserver was started on port 15002 of host os1.cs.
utsa.edu to service the web server www.usp.cs.utsa.edu on port 8080. How would you start 
servertester to make 20 requests from each of 10 children?

Answer:

servertester os1.cs.utsa.edu 15002 10 20

Exercise 19.22 

How do you expect the elapsed time for servertester to complete in Exercise 19.21 to 
compare with that of directly accessing the origin server?

Answer:

If both programs are run under the same conditions, Exercise 19.21 should take longer. The 
difference in time is an indication of the overhead incurred by going through the tunnel.

[ Team LiB ]   
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19.8 HTTP Header Parsing

In contrast to tunnels, proxies and gateways are party to the HTTP communication and must 
parse at least the initial line of the client request. This section discusses a parse function that 
parses the initial request line. The parse function has the following prototype.

int parse(char *inlin, char **commandp, char **serverp,
                 char **pathp, char **protocolp, char **portp);

The inlin parameter should contain the initial line represented as an array terminated by a line 
feed. Do not assume in your implementation of parse that inlin is a string, because it may not 
have a string terminator. The parse function parses inlin in place so that no additional 
memory needs to be allocated or freed.

The parse function returns 1 if the initial line contains exactly three tokens, or 0 otherwise. On 
a return of 1, parse sets the last five parameters to strings representing the command, server, 
path, protocol and port, respectively. These strings should not contain any blanks, tabs, 
carriage returns or line feeds.

The server and port pointers may be NULL. If an absolute path rather than an absolute URI is 
given, the server pointer is NULL. If the optional port number is not given, the port pointer is 
NULL. Allow any number of blanks or tabs at the start of inlin, between tokens, or after the 
last token. The inlin buffer may have an optional carriage return right before the line feed.

Example 19.23 

Figure 19.10 shows the result of calling parse on a line containing an absolute path form of the 
URI. The line has two blanks after GET and two blanks after the path. The carriage return and 
line feed directly follow the protocol. The parse function sets the first blank after GET and the 
first blank after the path to the null character (i.e., '\0'). The parse function also replaces the 
carriage return by the null character. The NULL value of the *serverp parameter signifies that 
no host name was present in the initial inlin, and the NULL value of *portp signifies that no 
port number was specified.

Figure 19.10. The parse function parses an absolute path form of the 
initial line in place.
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Example 19.24 

Figure 19.11 shows the result of parse for a line that contains an absolute URI distinguished by 
the leading http:// after GET. Notice that parse moves the host name one character to the left 
so that it can insert a null character between the host name and the path. There is always room 
to do this, since the leading http:// is no longer needed.

Figure 19.11. The parse function parses the absolute URI form of the 
initial line by moving the server name to the left.



Implement parse in stages. Start by skipping the leading blanks and tabs, and check that there 
are exactly three tokens before the first line feed. If inlin does not have exactly three tokens, 
return 0. Then break these tokens into three strings, setting the command, path and protocol 
pointers. Consider the second token to be an absolute URI if it starts with http:// and contains 
at least one additional / character. The server and port pointers should be set to NULL. After 
successful testing, handle the server pointer. When this is working, check for the port number.

You should write the code to break the input line into strings yourself. Do not use strtok, since 
it is not thread-safe. Be careful not to assume that the input line is terminated by a string 
terminator. Do not modify any memory before or after the input line. Test parse by writing a 
simple driver program. Remember not to assume that the first parameter to parse is a string.

[ Team LiB ]   
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19.9 Simple Proxy Server

This section describes a modification of the tunnelserver program of Section 19.6 so that it 
acts like a proxy rather than a tunnel. A proxy must parse the initial request line (unless the 
proxy happens to be using a proxy, too).

Example 19.25 

When a proxy server receives the following GET line, it knows that it is to act as a proxy 
because the absolute URI form of the request is given.

GET http://www.usp.cs.utsa.edu/usp/simple.html HTTP/1.0

The proxy knows that the origin server is www.usp.cs.utsa.edu and replaces the initial line 
with the following initial line.

GET /usp/simple.html HTTP/1.0

The proxy then makes a connection to port 80 of www.usp.cs.utsa.edu.

Make a new directory with a copy of the files for tunnelserver of Section 19.6. Rename 
tunnelserver to proxyserver. The proxyserver program takes a single command-line 
argument, the port number at which it listens for requests. The proxyserver program does not 
need the destination web server as a command-line argument because it parses the initial HTTP 
request from the client, as in Example 19.25. Write a processproxy function that has the 
following prototype.

int processproxy(int clientfd);

The clientfd parameter is the file descriptor returned when the server accepts the client's 
connection request.

The processproxy function reads in the first line from clientfd and calls parse to parse the 
initial request. If parse is successful and the line contains an absolute URI (the server pointer is 
not NULL), processproxy establishes a connection to the destination server. Then 
processproxy writes to the destination server an initial line containing a command with an 
absolute path and calls the tunnel function to continue the communication. If the port 
parameter of parse is not NULL, use the indicated port. Otherwise use port 80.

If successful, processproxy returns the total number of bytes transferred, which is the return 
value from tunnel plus the length of the initial line read from the client and the corresponding 
line sent to the server. If unsuccessful, processproxy returns –1 and sets errno.

Assume a maximum line length of 4096 bytes for the initial command from the client so that 
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you need not do dynamic memory allocation. This means that a longer request is considered 
invalid, but you must not let a long request overflow the buffer. To read the first line from the 
client, you must read one byte at a time until you get a newline.

If parse returns an error, processproxy should treat the connection request as an error. In this 
case, processproxy writes the following message on clientfd, closes the connection, and 
returns –1 with errno set.

HTTP/1.0 <SP> 400 <SP> Bad <SP> Request <CRLF>
<CRLF>

The proxyserver program listens for connection requests on the given port, and for each 
request it forks a child that calls processproxy and prints the number of bytes transferred.

Copy your servertester.c into proxytester.c and modify the request to contain an absolute 
URI instead of an absolute path. Use proxytester to test proxyserver.

Exercise 19.26 

How would you test proxyserver through your browser?

Answer:

Set your browser to use proxyserver as its proxy. Suppose that proxyserver is running on 
machine os1.cs.utsa.edu using port 15000. Set your browser proxy to be os1.cs.utsa.edu 
on port number 15000. You should be able to use your browser with no noticeable difference.

[ Team LiB ]   
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19.10 Proxy Monitor

Make a copy of proxyserver from Section 19.9 and call it proxymonitor. Modify proxymonitor 
to take an optional command-line argument, pathname, giving the name of a log file. All header 
traffic and additional information should be dumped to this file in a useful format. Modify 
processproxy to take an additional parameter, the name of the log file. Do no logging if this 
additional parameter is NULL. Log the following information.

1.  Client host name and destination host name

2.  Process ID of the process running processproxy

3.  Initial request line from the client to the proxy

4.  Initial request line sent by the proxy to the server

5.  All additional header lines from the client

6.  All additional header lines from the server

7.  The following byte counts

a.  Length of the initial request from the client

b.  Length of the initial request from the proxy

c.  Length of the additional header lines from the client

d.  Length of the additional header lines from the server

e.  Number of additional bytes sent by the server

f.  Number of additional bytes sent by the client

g.  Total number of bytes sent from the client to the proxy

h.  Total number of bytes sent from the proxy to the server

i.  Total number of bytes sent from the server to the proxy

All this information should be stored in a convenient readable format. All header lines should be 
labeled to indicate their source. Logging must be done atomically so that the log produced by 
one child running processproxy is not interleaved with another. You can do this by opening the 
log file with the O_APPEND flag and doing all logging with a single call to write. A simpler way 
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would be to use the atomic logging facility described in Section 4.9. Section D.1 provides the 
complete code for this facility.

You will not be able to use tunnel for your implementation because sometimes proxymonitor 
reads lines and sometimes it reads binary content that is not line oriented. After sending the 
initial request to the host, as in the proxyserver, the client sends line-oriented data that the 
proxy logs until the client sends a blank line. The client may then send arbitrary data until the 
connection is closed. The proxymonitor needs to log only the number of bytes of this additional 
data. Similarly, the server sends line-oriented header information that proxymonitor logs until 
the server sends a blank line. The server may then send arbitrary data until the connection is 
closed, but the proxymonitor logs only the number of bytes the server sent for this portion.

Exercise 19.27 

What is wrong with the following strategy for implementing proxymonitor?

●     Read the initial header line from the client and send the corresponding line to the server 
(as in the proxyserver).

●     Read, log and send client header lines until encountering a blank line.
●     Read, log and send server header lines until encountering a blank line.
●     Handle binary data between the client and the server as in tunnel, keeping track of the 

number of bytes sent in each direction for logging.

Answer:

This should work for GET and HEAD, but it will fail for POST. For a POST command, the client 
sends its content before the server sends back a header, so the process blocks while waiting for 
the server header when in fact it should be reading the client content.

One method of implementing proxymonitor is to keep track of the states of the client and 
server. Each sends headers until a blank line and then sends content. Use select to determine 
which descriptor is ready and then process either a header line or content, depending on the 
state of the source. If proxymonitor encounters a blank header line, it changes the state of the 
respective client or server from header to content.

Exercise 19.28 

What happens if several copies of proxymonitor run concurrently using the same log file?

Answer:

As long as the different copies run on different ports, there should not be a problem, provided 
that logging is atomic. In this case, you might also want to log the port number with each 
transaction.

Exercise 19.29 



Why don't we log the total number of bytes sent from the proxy to the client?

Answer:

This should be the same as the total number of bytes sent from the server to the proxy.

Exercise 19.30 

The last three numbers logged are the byte totals for a given transaction. How would you keep 
track of and log the total number of bytes for each of these items for all transactions processed 
by proxymonitor?

Answer:

This requires some work, since the different transactions are handled by different processes. 
One possibility is to convert the program to use threads rather than children. The total could 
then be kept in global variables and updated by each thread. The routines to update these 
totals would have to be protected by a synchronization construct such as a semaphore or a 
mutex lock.

To do this without using threads, proxymonitor could create an additional child process to keep 
track of the totals. This process could communicate with the children by running processproxy 
with two pipes, one to send the new values to this process and one to receive the new totals 
from this process. Create the two pipes and this child before doing any other processing. The 
server processes can store the integers in a structure and output them to the pipe in raw form 
with a single write operation. You need not worry about byte ordering, since the 
communication is on the same machine. You still need to worry about synchronization to 
guarantee that the totals received by the children include the values of the current transaction.

Exercise 19.31 

Explain the last sentence of the answer to the previous exercise.

Answer:

Suppose we keep track of only one number. The child running processproxy sends the number 
corresponding to a transaction on one pipe and then reads the new total on the other pipe. 
Consider the case in which the proxy has just started up and so the current total is 1000. Child 
A is running a small transaction of 100 bytes, and child B is running a larger transaction of 
100,000 bytes. Child A sends 100 on the first pipe and reads the new total on the second pipe. 
Child B sends 100,000 on the first pipe and reads the new total on the second pipe. If the 
sending and receiving for each process is not done atomically, The following ordering is possible.

●     Child A sends 100 on the first pipe.
●     1100 (the new total) is written to the second pipe.
●     Child B sends 100,000 on the first pipe.
●     101,100 (the new total) is written to the second pipe.
●     Child B reads 1100 from the second pipe.
●     Child A reads 101,100 from the second pipe.



At this pipe, Child B will have completed a transaction of 100,000 bytes and report that the 
total so far (including this transaction) is 1100 bytes. To fix this problem, make the writing to 
the first pipe and the reading from the second pipe be atomic. You can do this by using a 
POSIX:XSI semaphore set shared by all the child processes.
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19.11 Proxy Cache

Proxy caches save resources in local storage so that requests can be satisfied locally. The cache 
can be in memory or on disk.

Starting with the proxymonitor of Section 19.10, write a program called proxycache that 
stores all the resources from the remote hosts on disk. Each unique resource must be stored in 
a unique file. One way to do this is to use sequential file names like cache00001, cache00002, 
etc., and keep a list containing host name, resource name and filename. Most proxy 
implementations use some type of hashing or digest mechanism to efficiently represent and 
search the contents of the cache for a particular resource.

Start by just storing the resources without modifying the communication. If the same resource 
is requested again, update the stored value rather than create a new entry. Keep track of the 
number of hits on each resource.

The child processes must coordinate their access to the list of resources, and they must 
coordinate the generation of unique file names. Consider using threads, shared memory or 
message passing to implement the coordination.

Once you have the coordination working, implement the code to satisfy requests for cached 
items locally. Keep track of the total number of bytes transferred from client to proxy, proxy to 
server, server to proxy and proxy to client. Now the last two of these should be different. 
Remember that when you are testing with a browser, the browser also does caching, so some 
requests will not even go to the proxy server. Either turn off the browser's caching or force a 
remote access in the browser (usually by holding down the SHIFT key and pressing reload or 
refresh).

Real proxy caches need to contend with a number of issues.

●     Real caches are not infinite.
●     Caches should not store items above a certain size. The optimal size may vary 

dynamically with cache content.
●     The cache should have an expiration policy so that resources do not stay in the cache 

forever.
●     The cache should respect directives from the server stating that certain items should not 

be cached.
●     The cache should check whether an item has been modified before using a local copy.

How many of the above issues can you resolve in your implementation? What else could be 
added to this list?
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19.12 Gateways as Portals

A gateway receives requests as though it were the origin server and acts as an intermediary for 
other servers. This section discusses a server program, gatewayportal, which implements a 
gateway as shown in Figure 19.9. In this configuration, gatewayportal directs certain requests 
to a web server that is inside a firewall and directs the remaining requests to a server outside 
the firewall. The gatewayportal program has three command-line arguments: the port number 
that it listens on, the default server host name and the default server port number. Start by 
copying proxyserver.c of Section 19.9 to gatewayportal.c. The gatewayportal program 
parses the initial line. If the line contains an absolute URI, gatewayportal returns an HTTP 
error response to the client. If the absolute path of the initial line is for a resource that starts 
with /usp, then gatewayportal creates a tunnel to www.usp.cs.utsa.edu. The gatewayportal 
program directs all other requests to the default server through another tunnel.
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19.13 Gateway for Load Balancing

This section describes a gateway, called gatewaymonitor, used for load balancing. Start with 
tunnelserver of Section 19.6. The gatewaymonitor program takes two ports as command-line 
arguments: a listening port for client requests and a listening port for server registration 
requests. The gatewaymonitor program acts like tunnelserver of Section 19.6 except that 
instead of directing all requests to a particular server, it maintains a list of servers with identical 
resources and can direct the request to any of those servers. The gatewaymonitor program 
keeps track of how many requests it has directed to each of the servers. If a connection 
request to a particular server fails, gatewaymonitor outputs an error message to standard 
error, reporting which server failed and providing usage statistics for that server. The 
gatewaymonitor program removes the failed server from its list and sends the request to 
another server. If the server list is empty, gatewaymonitor sends an HTTP error message back 
to the client.

A server can add itself to gatewaymonitor's list of servers by making a connection request to 
the server listening port of gatewaymonitor. The server then registers itself by sending its host 
name and its request listening port number. The gatewaymonitor program monitors the client 
listening port as before but also monitors the server request listening port. (Use select here.) 
If a request comes in on the server listening port, gatewaymonitor accepts the connection, 
reads the port information from the server, adds the host and port number to the server list, 
and closes the connection. The server should send the port number as a string to avoid byte-
ordering problems.

Write a server program called registerserver that registers a server with gatewaymonitor as 
described above. The registerserver takes three or four command-line arguments. The first 
two arguments are the host name and server registration port number of the gatewaymonitor. 
The third parameter is the port number that the registered server will listen on for client 
requests. The optional fourth command-line argument is the name of a host to register. When 
called with four command-line arguments, registerserver exits after registering the specified 
host. The four-argument version of registerserver can be used to register an existing web 
server. If only three command-line arguments are given, registerserver registers itself and 
waits for requests.

The registerserver should have a canned HTTP response (with a resource) to send in 
response to all requests. The host name and process ID should be embedded in the resource so 
that you can tell how the request to the gateway monitor was serviced. Test your program by 
using a browser with as many as five servers registering with the gateway. Kill various servers 
and make sure that gatewaymonitor responds correctly.
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19.14 Postmortem

This section describes common pitfalls and mistakes that we have observed in student 
implementations of the servers described in this chapter.

19.14.1 Threading and timing errors

Most timing errors for this type of program result from an incorrect understanding of TCP. Do 
not assume that an entire request can be read in a single read, even if you provide a large 
enough buffer. TCP provides an abstraction of a stream of bytes without packet or message 
boundaries. You have no control over how much will be delivered in a single read operation 
because the amount depends on how the message was encapsulated into packets and how 
those packets were delivered through an unreliable channel. Unfortunately, a program that 
makes this assumption works most of the time when tested on a fast local area network.

Whether writing a tunnel, proxy or gateway, do not assume that a client first sends its entire 
request and then the server responds. A program that reads from the client until it detects the 
end of the HTTP request does not follow the specification. Your program should simultaneously 
monitor the incoming file descriptors for both the client and the origin server. (See Sections 
12.1 and 12.2 for approaches to do this.)

According to the specification, passmonitor should measure the time it takes to process each 
client request. How you approach this depends, to some extent, on your method of handling 
multiple file descriptors. In any case, do not measure the start time before the accept call 
because doing so incorporates an indefinite client "think" time. Do not measure the end time 
right after the fork call if you are using multiple processes, right after pthread_create if you 
are using multiple threads, or right after select if you are monitoring multiple descriptors in a 
single thread of execution. Why not?

Be sure that the time values you measure are reasonable. Most time-related library functions 
return seconds and milliseconds, seconds and microseconds, or seconds and nanoseconds. A 
common mistake is to confuse the units of the second element. Another common mistake is to 
subtract the start and end times without allowing for wrap-around. If you come out with a time 
value in days or months, you know that you made a mistake.

Do not use sleep to "cover up" incorrectly synchronized code. These programs should not need 
sleep to work correctly, and the presence of a sleep call in the code is a tip-off that something 
is seriously wrong.

Logging of headers also presents a timing problem. If you write one header line at a time to the 
log file, it is possible that headers for responses and requests will be interleaved. Accumulate 
each header in a buffer and write it by using a single write function when your program 
detects that the header is complete.

Do not connect to the destination web server in the tunnel programs before accepting a client 
connection. If you type fast enough during testing, you might not detect a problem. However, 
most web servers disconnect after a fairly short time when no incoming request appears.
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19.14.2 Uncaught errors and bad exits

If you did not seriously or correctly address how your servers react to errors and when they 
should exit, your running programs may represent a system threat, particularly if they run with 
heightened privileges.

A server usually should run until the system reboots, so think about exit strategies. Do not exit 
from any functions except the main function. In general, other functions should either handle 
the error or return an error code to the caller. Do not exit if the proxy fails to connect to the 
destination web server—the problem may be temporary or may just be for that particular 
server. In general, a client should not be able to cause a server to exit. The server should exit 
only if there is an unrecoverable error due to lack of resources (memory, descriptors, etc.) that 
would jeopardize future correct execution. Remember the Mars Pathfinder (see page 483)! For 
these programs, a server should exit only when it fails to create a socket for listening to client 
requests. You should think about what actions to take in other situations.

Programs in C continue to execute even when a library function returns an error, possibly 
causing a fatal and virtually untrackable error later in the execution. To avoid this type of 
problem, check the return value for every library function that can return an error.

Releasing resources is always important. In servers, it is critical. Close all appropriate file 
descriptors when the client communication is finished. If a function allocates buffers, be sure to 
free them somewhere. Check to see that resources are freed on all paths through each 
function, paying particular attention to what happens when an error occurs.

Decide when a function should output an error message as well as return an error code. Use 
conditional compilation to leave informational messages in the source without having them 
appear in the released application. Remember that in the real world those messages have to go 
somewhere—probably to some unfortunate console log. Write messages to standard error, not 
to standard output. Usually, standard error is redirected to a console log—where someone 
might actually read the message. Also, the system does not buffer standard error, so the 
message appears when the error occurs.

19.14.3 Writing style and presentation

Most significant projects have an accompanying report or auxiliary documentation. Here are 
some things to think about in producing such a report.

Clean up the spelling and grammar. No one is going to believe that the code is debugged if the 
report isn't. Using (and paying attention to) a grammar checker won't make you a great writer, 
but it will help you avoid truly awful writing. Be consistent in your style, typeface, numbering 
scheme and use of bullets. Not only does this attention to detail result in a more visually 
pleasing report, but it helps readers who may use style as a cue to meaning. Put some thought 
into the layout and organization of your report. Use section titles and subsection titles to make 
the organization of the report clear. Use paragraph divisions that are consistent with meaning. 
If your report contains single-spaced paragraphs that are a third of a page or longer, you 
probably need more paragraphs or more conciseness. Avoid excessive use of code in the 
report. Use outlines, pseudocode or block diagrams to convey implementation details. If 
readers want to see code, they can look at the programs.

Pay attention to the introduction. Be sure that it has enough information for readers to 



understand the project. However, irrelevant information is sometimes worse than no 
information at all.

Diagrams are useful and can greatly improve the clarity of the presentation, but a diagram that 
conveys the wrong idea is worse than no diagram. Ask yourself what information you are trying 
to convey by the diagram, and distinguish that information with carefully chosen and consistent 
symbols. For example, don't use the same style box to represent both a process and a port, or 
the same type of arrow to represent a connection request and a thread.

Use architectural diagrams to convey overall structure and differences in design. For example, if 
contrasting the implementations of the tunnel and the proxy, give separate architectural 
diagrams for each that are clearly distinct. Alternatively, you could give one diagram for both 
(not two copies of the same diagrams) and emphasize that the two implementations have the 
same communication structure but differ in other ways.

On your final pass, verify that the report agrees with the implementation. For example, you 
might describe a resource-naming scheme in the report and then modify it in the program 
during testing. It is easy to forget to change the documentation to reflect the modifications. 
Section 22.12 gives some additional discussion about technical reports.

19.14.4 Poor testing and presentation of results

Each of the tunnel and proxy programs should be tested in a controlled environment before 
being tested with browsers and web servers. Otherwise, you are contending with three linked 
systems, each with unknown behavior. This configuration is impossible to test in a meaningful 
way.

A good way to start is to test the tunnel programs with simple copying programs such as 
Programs 18.1 and 18.3 to be sure that tunnel correctly transfers all of the information. Be 
sure that ordinary and binary files are correctly transmitted for all versions. Testing that the 
program transmitted data is not the same as testing to see that it transmitted correctly. Use 
diff or other utilities to make sure that files were exactly transmitted.

Avoid random test syndrome by organizing the test cases before writing the programs. Think 
about what factors might affect program behavior—different types of web pages, different types 
of servers, different network connections, different times of day, etc., and clearly organize the 
tests.

State clearly in the report what tests were performed, what the results were, and what aspect 
of the program these tests were designed to exercise. The typical beginner's approach to test 
reporting is to write a short paragraph saying the program worked and then append a large log 
file of test results to the report. A better approach might be to organize the test results into a 
table with annotations of the outcomes and a column with page numbers in the output so that 
the reader can actually find the tests.

Always record and state the conditions under which tests or performance experiments were run 
(machines, times of day, etc.). These factors may not appear to be important at the time, but 
you usually can't go back later and reconstruct these details accurately. Include in your report 
an analysis of what you expected to happen and what actually did happen.

19.14.5 Programming errors and bad style



Well-written programs are always easier to debug and modify. If you try to produce clean code 
from the initial design, you will usually spend less time debugging.

Avoid large or inconsistent indentation—it generally makes complicated code difficult to follow. 
Also avoid big loops—use functions to reduce complexity. For example, parsing the GET line of 
an HTTP request should be done in a function and tested separately.

Don't reinvent the wheel. Use libraries if available. Consolidate common code. For example, in 
the proxy, call the same function for each direction once the GET line is parsed. Do not assume 
that a header or other data will never exceed some arbitrary, predetermined size. It is best to 
include code to resize arrays (by realloc) when necessary. Be careful of memory leaks. 
Alternatively, you could use a fixed-size buffer and report longer requests as invalid. Be sure 
your buffer size is large enough. In no circumstance should you write past the end of an array. 
However, be cognizant of when a badly behaved program (e.g., a client that tries to write an 
infinitely long HTTP request) might cause trouble and be prepared to take appropriate action.

Always free allocated resources such as buffers, but don't free them more than once because 
this can cause later allocations to fail. Good programming practice suggests setting the pointer 
argument of free to NULL after the call, since the free function ignores NULL pointers. Often, a 
function will correctly free a buffer or other resource when successful but will miss freeing it 
when certain error conditions occur.

Do not use numeric values for buffer sizes and other parameters within the program. Use 
predefined constants for default and initial values so that you know what they mean and only 
have to modify them in one place. Be careful about when to use a default value and when not 
to. Mistakes here can be difficult to detect during testing. For example, the absolute URL 
contains an optional port number. You should not assume port 80 if this optional number is 
present. Be sure that all command-line arguments meet their specifications.

Parsing the HTTP headers is quite difficult. If you implement robust parsing, you need to 
assume that lines can end in a carriage return followed by a line feed, by just a line feed, or by 
just a carriage return. The line feed is the same as the newline character. If you did this parsing 
inline in the main loop, you probably didn't test parsing very well—how could you?

Headers in HTTP are in ASCII format, but resources may be in binary format. You will need to 
switch strategies in the middle of handling input.
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19.15 Additional Reading

You can obtain more information about current developments on the World Wide Web by 
visiting the web site of the World Wide Web Consortium (W3C) [132], an organization that 
serves as a forum for development of new standards and protocols for the Web. The Internet 
Engineering Task Force (IETF) [55] is an open community of researchers, engineers and 
network operators concerned with the evolution and smooth operation of the Internet. Many 
important architectural developments and network designs appear in some form as IETF RFCs 
(Request for Comments). The specifications of HTTP/1.0 [53] and HTTP/1.1 [54] are of 
particular interest for this project. Both W3C and IETF maintain extensive web sites with much 
technical documentation. An excellent general reference on networking and the Internet can be 
found in Computer Networking: A Top-Down Approach Featuring the Internet by Kurose and 
Ross [68]. Web Protocols and Practice: HTTP/1.1, Networking Protocols, Caching, and Traffic 
Measurement [66] gives a more technical discussion of web performance and HTTP/1.1. "The 
state of the art in locally distributed web-server systems," by Cardellini et al. [21] reviews 
different architectures for web server clusters.
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Chapter 20. Connectionless Communication and Multicast

In unreliable connectionless communication, single messages are transmitted between sender 
and receiver. A message may or may not arrive correctly at its destination. While such 
communication has low overhead, it requires that the application manage errors. This chapter 
expands the UICI library to include facilities for connectionless communication with timeouts 
and error checking. The chapter develops applications of the simple-request and request-reply 
protocols based on the connectionless interface. The UICI connectionless interface is then 
implemented with sockets, using UDP. UICI UDP also includes functions for multicast 
communication.

Objectives

●     Learn about connectionless communication
●     Experiment with sockets and UDP
●     Explore simple-request and request-reply protocols
●     Use timeouts in an application
●     Understand invocation semantics
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20.1 Introduction to Connectionless Communication

Connectionless communication is an abstraction based on transmission of single messages or 
datagrams between sender and receiver. A datagram is a unit of data transferred from one 
endpoint to another. Connectionless communication makes no association between the 
endpoints, and a process can use a single connectionless endpoint to send messages to or 
receive messages from many other endpoints.

Figure 20.1 illustrates connectionless communication among four processes running on different 
hosts. Process A receives messages from several different sources on the same communication 
endpoint. Process A uses this communication endpoint both to reply to the message from C and 
to send a message to D. Process C uses its connectionless communication endpoint to send 
messages to both A and D. Since each message includes the sender's return address, the 
receiver knows where to send the response.

Figure 20.1. Four processes with connectionless communication 
endpoints.
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This chapter develops a model for connectionless communication based on UDP, the User 
Datagram Protocol. UDP is used in many common Internet applications and protocols, including 
DNS (name service), NFS (distributed file system), NTP (time protocol), RTP (realtime transfer 
protocol) and SNMP (network management).

A UDP communication endpoint is identified by host IP address and port number. The receiver 
can extract the address of the sender's communication endpoint and use the information as a 
return address in replying to the message. Because no connection is involved, connectionless 
communication might not follow the client-server model. However, the client-server 
communication pattern holds for many applications, with clients sending request messages to 
servers on well-known ports (e.g., NFS servers use port 2049).

While the connection-oriented TCP protocol provides an error-free byte stream, UDP is 
unreliable. A UDP datagram might not arrive at its destination, or it might arrive before a 
message that was sent earlier. The sender has no information about the success or failure of 
the transmission. Even if the datagram arrives at the destination host, the network subsystem 
might drop the message before delivering it to the application because the endpoint buffers are 
full. Thus, while UDP has very low overhead, the application must handle considerably more 
complex errors than with TCP.



UDP datagrams are transmitted atomically, that is, a given datagram either arrives in its 
entirety at the destination endpoint or it does not arrive at all. To achieve this, modern network 
subsystems assemble UDP datagrams and verify UDP checksums. If a checksum is not correct, 
the subsystem discards the packet. Unfortunately, the computation of UDP checksums in IPv4 
is optional, and some older systems disable checking by default. The UDP checksum guards 
against transmission errors, but not against malicious attackers. Such an attacker could modify 
both the data and the checksum in a consistent way. UDP does not authenticate what was sent 
and so has no way of detecting that an attack has occurred. Authentication must take place in a 
higher-level layer or in the application itself.

As with connection-oriented protocols, we introduce a simplified interface for connectionless 
communication, based on a socket implementation with UDP. Section 20.2 describes the UICI 
UDP interface. Sections 20.3 and 20.4 use this interface to implement the simple-request and 
the request-reply protocols, respectively. Section 20.5 adds timeouts and retries to the request-
reply protocol. Section 20.6 outlines the implementation of request-reply-acknowledge 
protocols. Section 20.7 describes the implementation of each function in the UICI UDP interface 
in terms of sockets and UDP. Section 20.8 compares the UDP and TCP protocols. Section 20.9 
discusses multicast communication and adds two functions to UICI UDP to support multicast 
communication.
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20.2 Simplified Interface for Connectionless Communication

Connectionless communication using UDP is based on the sendto and recvfrom functions. The 
UICI UDP connectionless communication interface has u_sendto, u_sendtohost, u_recvfrom 
and u_recvfromtimed that provide the same functionality, but with simpler parameters. Also, 
unlike the underlying UDP functions, the UICI UDP functions restart themselves after being 
interrupted by signals. Table 20.1 summarizes the UICI UDP interface to connectionless 
communication. To use these functions, you must compile your programs with both the UICI 
name and the UICI UDP libraries. Include both uiciname.h and uiciudp.h in your source files. 
Section 20.2.2 discusses error handling with the UICI UDP functions.

Table 20.1. Summary of UICI UDP calls.

UICI UDP description

int u_openudp(u_port_t port) creates a UDP socket and if port > 0, binds 
socket to port returns the socket file descriptor

ssize_t u_recvfrom(int fd,
       void *buf, size_t nbytes,
       u_buf_t *ubufp)

waits for up to nbytes from socket fd returns 
number of bytes received on return buf has 
received bytes and ubufp points to sender address

ssize_t u_recvfromtimed(int fd,
       void *buf, size_t nbytes,
       u_buf_t *ubufp, double time)

waits at most time seconds for up to nbytes from 
socket fd returns the number of bytes received on 
return buf has received bytes and ubufp points to 
sender address

ssize_t u_sendto(int fd, void *buf,
       size_t nbytes,
       u_buf_t *ubufp)

sends nbytes of buf on socket fd to the receiver 
specified by ubufp returns number of bytes 
actually sent

ssize_t u_sendtohost(int fd,
       void *buf, size_t nbytes,
       char *hostn, u_port_t port)

sends nbytes of buf on socket fd to receiver 
specified by hostn and port returns number of 
bytes actually sent

void u_gethostname(u_buf_t *ubufp,
       char *hostn, int hostnsize)

copies host name specified by ubufp into buffer 
hostn of size hostnsize

void u_gethostinfo(u_buf_t *ubufp,
       char *info, inf infosize)

copies printable string containing host name and 
port specified by ubufp into user-supplied buffer 
info of size infosize.
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int u_comparehost(u_buf_t *ubufp,
       char *hostn, u_port_t port)

returns 1 if host and port specified by ubufp 
match given host name and port number, or else 
returns 0

The u_openudp function returns a file descriptor that is a handle to a UDP socket. This function 
takes a single integer parameter, port, specifying the port number to bind to. If port is zero, 
the socket does not bind to a port. Typically, a server binds to a port and a client does not.

The u_recvfrom function reads up to nbytes from the file descriptor fd into the user-provided 
buffer buf and returns the number of bytes read. The u_recvfrom function fills in the user-
supplied u_buf_t structure pointed to by ubufp with the address of the sender.

The u_recvfromtimed function is similar to u_recvfrom, but it takes an additional time 
parameter that specifies the number of seconds that u_recvfromtimed should wait for a 
message before returning with an error. The time parameter is a double, allowing fine-grained 
time values. Because messages may be lost, robust receivers call u_recvfromtimed to avoid 
blocking indefinitely.

The u_sendto function transmits nbytes from buf through the socket fd to the destination 
pointed to by ubufp. The u_sendto function requires a destination parameter because the 
communication endpoint is capable of sending to any host or receiving from any host. Use a 
u_buf_t value set by u_recvfrom to respond to a particular sender.

The u_sendtohost function is similar to u_sendto, but it requires a host name and port number 
rather than a pointer to a u_buf_t structure to specify the destination. Clients use 
u_sendtohost to initiate a communication with a server on a well-known port.

20.2.1 Host names and the u_buf_t structure

To be implementation-independent, applications that use UICI UDP should treat u_buf_t 
objects as opaque and use them in u_sendto without parsing. Appendix C provides an 
implementation of UICI UDP with IPv4, but it is also possible to implement UICI UDP with IPv6. 
The u_buf_t structure would be different for the two implementations. Three UICI UDP 
functions provide access to the information in the u_buf_t structure in an implementation-
independent way. The u_gethostname function returns the host name encoded in a u_buf_t 
structure. The u_gethostinfo function returns a printable string containing a u_buf_t 
structure's information about host name and port number and can be used for debugging. The 
u_comparehost function returns 1 if the information in u_buf_t matches the specified host 
name and port number. Use u_comparehost to verify the identity of a sender.

20.2.2 UICI UDP return errors

The u_gethostname and u_gethostinfo functions return information in user-supplied buffers 
and cannot return an error code. The u_comparehost function returns 1 (true) if the hosts and 
ports match and 0 (false) if they do not. The other UICI UDP functions return –1 on error and 



set errno. If u_recvfromtimed times out, it sets errno to ETIME. If u_sendtohost cannot 
resolve the host name, it sets errno to EINVAL. Other errno settings match the underlying 
socket settings, as explained in Section 20.7. When a UICI UDP function returns an error and 
sets errno, you can use perror or strerror to display an appropriate error message, as long 
as you take into account these functions' lack of thread-safety.

20.2.3 UDP buffer size and UICI UDP

Messages sent under UDP are received atomically, meaning that a message sent with u_sendto 
or u_sendtohost is either transmitted entirely or not at all. A given implementation of UDP has 
a maximum message size. If you attempt to send a message that is too large, u_sendto or 
u_sendtohost returns –1 and sets errno to EMSGSIZE.

The u_recvfrom function reads exactly one message. If the message is smaller than nbytes, 
u_recvfrom returns the number of bytes actually read and its buf contains the entire message. 
If the message is larger than nbytes, u_recvfrom fills buf and truncates the message. In this 
case, u_recvfrom does not generate an error and returns the number of bytes put in the buffer 
(e.g., the size of the buffer).

Care must be taken to ensure that the receive buffer is large enough for the message, since 
UICI UDP truncates the message rather than generating an error when the buffer is too small. 
One way to handle this is to make the buffer one byte larger than the size expected and have 
the calling program generate an error if the buffer is completely filled.

Each UDP datagram is passed to the lower layers of the network protocol and encapsulated as a 
packet (header + data) in an IP datagram for transmission on the network. The network also 
imposes size limitations that affect transmission of datagrams. Each link in a path on the 
network has an MTU (maximum transmission unit), the largest chunk of information that a link 
can transmit. A datagram may be broken up into pieces (fragments) so that it can be physically 
transmitted along a link. These fragments are reassembled only when they reach the 
destination host. If any fragment is missing, the entire datagram is lost. While most UDP 
implementations allow datagrams of 8192 bytes, the typical network link has an MTU 
considerably smaller (e.g., 1500 bytes for Ethernet). As of this writing, most hosts and routers 
on the Internet use the IPv4 protocol for exchanging information. Under IPv4, hosts are not 
required to receive IP datagrams larger than 576 bytes, so many applications that use UDP 
limit their message size to fit in a datagram of this size, i.e., 576 – 20(IP header) – 8(UDP 
header) = 548 bytes.

Exercise 20.1 

How would you modify u_recvfrom so that it detects messages that are too large for the buffer?

Answer:

Use malloc to modify u_recvfrom to accommodate a buffer size one byte larger than the buffer 
passed in. Receive the message into this larger buffer. If the number of bytes received is equal 
to this buffer size, u_recvfrom should return –1 and set errno to an appropriate value. One 
possible value to use is EMSGSIZE. Otherwise, u_recvfrom should copy the message into buf, 
the buffer that was passed as a parameter by the caller. In either case, u_recvfrom must free 



the temporary buffer.
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20.3 Simple-Request Protocols

A protocol is a set of rules that endpoints follow when they communicate. Simple request [110] 
is a client-server protocol in which a client sends a request to the server but expects no reply. 
Figure 20.2 shows a schematic of the steps involved in implementing a simple-request protocol 
using UICI UDP.

Figure 20.2. Interaction of a UICI UDP client and server using a simple-
request protocol.

Programs 20.1 and 20.2 illustrate the simple-request protocol. The server creates a UDP socket 
associated with a well-known port (u_openudp) and then waits for a request from any sender 
(u_recvfrom). The server blocks on u_recvfrom until receiving a message. The server responds 
by writing the remote host name and received message to standard output and then waits in a 
loop for another message.

Exercise 20.2 

Under what conditions does the server of Program 20.1 exit?

Answer:

The server exits if it is given the wrong number of command-line arguments or if u_openudp 
fails. After that, the server will not exit unless it receives a signal. No transmission by a client 
can cause the server to exit.
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Program 20.1 server_udp.c

A server program writes sender information and the received message to its standard output.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "restart.h"
#include "uiciudp.h"
#define BUFSIZE 1024

int main(int argc, char *argv[]) {
   char buf[BUFSIZE];
   ssize_t bytesread;
   char hostinfo[BUFSIZE];
   u_port_t port;
   int requestfd;
   u_buf_t senderinfo;

   if (argc != 2) {
      fprintf(stderr, "Usage: %s port\n", argv[0]);
      return 1;
   }
   port = (u_port_t) atoi(argv[1]);        /* create communication endpoint */
   if ((requestfd = u_openudp(port)) == -1) {
      perror("Failed to create UDP endpoint");
      return 1;
   }
   for ( ; ; ) {                                 /* process client requests */
      bytesread = u_recvfrom(requestfd, buf, BUFSIZE, &senderinfo);
      if (bytesread < 0) {
         perror("Failed to receive request");
         continue;
      }
      u_gethostinfo(&senderinfo, hostinfo, BUFSIZE);
      if ((r_write(STDOUT_FILENO, hostinfo, strlen(hostinfo)) == -1) ||
          (r_write(STDOUT_FILENO, buf, bytesread) == -1)) {
         perror("Failed to echo reply to standard output");
      }
   }
}

The client of Program 20.2 creates a UDP socket by calling u_openudp with a parameter of 0. In 
this case, u_openudp does not bind the socket to a port. The client initiates a request by calling 
u_sendtohost, specifying the host name and the well-known port of the server. Since the client 
has not bound its socket to a port, the first send on the socket causes the network subsystem 
to assign a private port number, called an ephemeral port, to the socket. The client of Program 
20.2 sends a single request and then calls r_close to release the resources associated with the 
communication endpoint. Notice that the server does not detect an error or end-of-file when 
the client closes its socket, because there is no connection between the endpoints in the two 
applications.



Program 20.2 client_udp.c

A client program that sends a request containing its process ID.

#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "restart.h"
#include "uiciudp.h"
#define BUFSIZE 1024

int main(int argc, char *argv[]) {
   ssize_t byteswritten;
   char request[BUFSIZE];
   int requestfd;
   int rlen;
   u_port_t serverport;

   if (argc != 3) {
      fprintf(stderr, "Usage: %s servername serverport\n", argv[0]);
      return 1;
   }
   serverport = (u_port_t) atoi(argv[2]);
   if ((requestfd = u_openudp(0)) == -1) {     /* create unbound UDP endpoint */
      perror("Failed to create UDP endpoint");
      return 1;
   }
   sprintf(request, "[%ld]\n", (long)getpid());           /* create a request */
   rlen = strlen(request);
    /* use  simple-request protocol to send a request to (server, serverport) */
   byteswritten = u_sendtohost(requestfd, request, rlen, argv[1], serverport);
   if (byteswritten == -1)
      perror("Failed to send");
   if (r_close(requestfd) == -1 || byteswritten == -1)
      return 1;
   return 0;
}

Exercise 20.3 

Compile Programs 20.1 and 20.2. Start the server on one machine (say, yourhost) with the 
following command.

server_udp 20001

Run clients on different hosts by executing the following on several machines.

client_udp yourhost 20001

Observe the assignment of ephemeral port numbers. What output does the server produce? 



How about the clients?

Answer:

Ephemeral ports are assigned in a system-dependent way. If all goes well, the clients do not 
produce output. For each message sent by a client, the server produces a line of output. If a 
client with process ID 2345 runs on machine myhost and uses ephemeral port 56525, the 
following message appears on standard output of the server.

port number is 56525 on host myhost[2345]

Figure 20.3 uses a time line to depict a sequence of events produced by the simple-request 
protocol. The diagram assumes that the client and the server have created their communication 
endpoints before the time line starts. Black dots represent event times relative to the same 
clock. For functions, the dots indicate the times at which the function returns to the caller. 
Remember that the clock times observed by the client and server are usually not synchronized 
unless the client and server are on the same machine.

Figure 20.3. Time line illustrating the sequence of events for the simple-
request protocol.

The u_sendtohost function is nonblocking in the sense that it returns after copying the 
message to the network subsystem of the local machine. The u_recvfrom function blocks until 
it receives a message or an error occurs. The u_recvfrom function restarts itself after receiving 
a signal, in contrast to the underlying library function recvfrom, as explained in Section 20.7.

Exercise 20.4 



Run Program 20.2 without starting the corresponding server. What happens?

Answer:

UDP does not determine whether the receiver host and its server program exist, so the client 
cannot detect whether the server has errors. A client generates an error only if it cannot 
resolve the server host name.

Exercise 20.5 

Figure 20.3 assumes that the server has been started before the client and is ready to receive 
when the message arrives. What happens if the client's message arrives before the server has 
created its communication endpoint? What happens if the client's message arrives after the 
server has created its endpoint but before it has called u_recvfrom?

Answer:

If the client's message arrives before the server has created its endpoint, the message is lost. 
In the second case, the result depends on how much buffer space has been allocated for the 
endpoint and how many messages have already arrived for that endpoint. If the endpoint's 
buffer has room, the network subsystem of the server host stores the message in the 
endpoint's buffer. The server calls u_recvfrom to remove the message. Communication is an 
asynchronous process, and a major role of the communication endpoint is for the network and I/
O subsystems to provide buffering for incoming messages until user processes are ready for 
them.

Exercise 20.6 

Modify the client in Program 20.2 to send 1000 requests, and modify the server in Program 
20.1 to sleep for 10 seconds between the u_openudp call and the while loop. Start the server 
and immediately start the client. How many messages are received by the server?

Answer:

The answer depends on the size of the endpoint buffers. You might see about 100 messages 
delivered. If all of the messages are delivered, try increasing the number of messages sent by 
the client to 10,000.

Figure 20.3 illustrates the ideal scenario, in which the client's message successfully arrives at 
the server and is processed. In reality, today's network infrastructure provides no guarantee 
that all messages actually arrive. Figure 20.4 illustrates a scenario in which the message is lost 
because of a network error. The server has no knowledge of the message's existence.

Figure 20.4. Time line illustrating a lost request for the simple-request 
protocol.



Exercise 20.7 

Draw a timing diagram similar to those of Figures 20.3 and 20.4 that illustrates a scenario in 
which the server receives a client request and then crashes before processing the request.

Answer:

Relabel the second event dot on the server's time line in Figure 20.3 as a crash event.
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20.4 Request-Reply Protocols

In the simple-request protocol, the client cannot distinguish the scenario of Figure 20.3 from 
those of Figure 20.4 and Exercise 20.7 because it does not receive an acknowledgment of its 
request or any results produced by the request. A request-reply protocol handles this problem 
by requiring that the server respond to the client. Figure 20.5 shows a sequence of steps, using 
UICI UDP, to implement a simplified request-reply protocol. If no errors occur, the server's 
reply message notifies the client that the transmission was successful. The server reply 
message can contain actual results or just a flag reporting the status of the request.

Figure 20.5. Sequence of steps in an error-free request-reply protocol.

Program 20.3 shows the server-side implementation of the request-reply protocol of Figure 
20.5. The server receives a request and uses u_gethostinfo to extract the identity of the 
client. After printing the client's name and request to STDOUT_FILENO, the server uses u_sendto 
with the u_buf_t structure (senderinfo) returned from u_recvfrom to respond to that client. 
The UICI UDP u_sendto function uses the u_buf_t structure as the destination address to 
ensure that the reply is directed to the correct client. The server shown here replies with a copy 
of the request it received.

Exercise 20.8 

An important consideration in writing a server is to decide which conditions should cause the 
server to exit, which conditions should be ignored, which conditions should be logged and which 
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conditions should trigger a recovery procedure. The server of Program 20.3 never exits on its 
own once its port is bound to the socket. You can terminate the server by sending it a signal. 
Under what conditions would it be reasonable for a server such as an ftp server to exit?

Answer:

You could argue that an ftp server should never exit because it should be running at all times. 
Certainly, an error caused by a client should not terminate the server. Even if system resources 
are not available to handle a connection, the problem might be temporary and the server would 
continue to work after the problem is resolved. Errors should be logged so the administrator 
has a record of any problems.

Program 20.3 server_udp_request_reply.c

A server program that implements a request-reply protocol.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "restart.h"
#include "uiciudp.h"
#define BUFSIZE 1024

int main(int argc, char *argv[]) {
   char buf[BUFSIZE];
   ssize_t bytesread;
   char hostinfo[BUFSIZE];
   u_port_t port;
   int requestfd;
   u_buf_t senderinfo;

   if (argc != 2) {
      fprintf(stderr, "Usage: %s port\n", argv[0]);
      return 1;
   }
   port = (u_port_t) atoi(argv[1]);         /* create UDP endpoint for port */
   if ((requestfd = u_openudp(port)) == -1) {
      perror("Failed to create UDP endpoint");
      return 1;
   }
   for ( ; ; ) {                /* process client requests and send replies */
      bytesread = u_recvfrom(requestfd, buf, BUFSIZE, &senderinfo);
      if (bytesread == -1) {
         perror("Failed to receive client request");
         continue;
      }
      u_gethostinfo(&senderinfo, hostinfo, BUFSIZE);
      if ((r_write(STDOUT_FILENO, hostinfo, strlen(hostinfo)) == -1) ||
          (r_write(STDOUT_FILENO, buf, bytesread) == -1)) {
         perror("Failed to echo client request to standard output");
      }
      if (u_sendto(requestfd, buf, bytesread, &senderinfo) == -1) {
         perror("Failed to send the reply to the client");



      }
   }
}

Program 20.4 shows a client that uses the request-reply protocol of Figure 20.5. The request is 
just a string containing the process ID of the requesting process. The protocol is implemented 
in the request_reply function shown in Program 20.5. The client sends the initial request and 
then waits for the reply. Since anyone can send a message to an open port, the client checks 
the host/port information against the sender information supplied in senderinfo to make sure 
that it received the reply from the same host that it sent to.

Program 20.4 client_udp_request_reply.c

A client program that sends a request containing its process ID and reads the reply.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "restart.h"
#include "uiciudp.h"
#define BUFSIZE 1024

int request_reply(int requestfd, void* request, int reqlen,
                  char* server, int serverport, void *reply, int replen);

int main(int argc, char *argv[]) {
   ssize_t bytesread, byteswritten;
   char reply[BUFSIZE];
   char request[BUFSIZE];
   int requestfd;
   u_port_t serverport;

   if (argc != 3) {
      fprintf(stderr, "Usage: %s servername serverport\n", argv[0]);
      return 1;
   }
   serverport = (u_port_t) atoi(argv[2]);
   if ((requestfd = u_openudp(0)) == -1) {     /* create unbound UDP endpoint */
      perror("Failed to create UDP endpoint");
      return 1;
   }
   sprintf(request, "[%ld]\n", (long)getpid());           /* create a request */
                              /* use request-reply protocol to send a message */
   bytesread = request_reply(requestfd,  request, strlen(request)+1,
                         argv[1], serverport, reply, BUFSIZE);
   if (bytesread == -1)
      perror("Failed to do request_reply");
   else {
      byteswritten = r_write(STDOUT_FILENO, reply, bytesread);
      if (byteswritten == -1)
         perror("Failed to echo server reply");
   }
   if ((r_close(requestfd) == -1) || (bytesread  == -1) || (byteswritten == -1))



      return 1;
   return 0;
}

Exercise 20.9 

What happens when the scenario of Figure 20.4 occurs for the request-reply protocol of Figure 
20.5?

Answer:

The client hangs indefinitely on the blocking u_recvfrom call.

Program 20.5 request_reply.c

Request-reply implementation A—assumes error-free delivery.

#include <sys/types.h>
#include "uiciudp.h"

int request_reply(int requestfd, void* request, int reqlen,
                  char* server, int serverport, void *reply, int replen) {
   ssize_t nbytes;
   u_buf_t senderinfo;
                                                         /* send the request */
   nbytes = u_sendtohost(requestfd, request, reqlen, server, serverport);
   if (nbytes == -1)
      return (int)nbytes;
                        /* wait for a response, restart if from wrong server */
   while ((nbytes = u_recvfrom(requestfd, reply, replen, &senderinfo)) >= 0 )
      if (u_comparehost(&senderinfo, server, serverport))    /* sender match */
         break;
   return (int)nbytes;
}

Exercise 20.10 

Compile Programs 20.3 and 20.4. Start the server on one machine (say, yourhost) with the 
following command.

server_udp_request_reply 20001

Run clients on different hosts by executing the following on several machines.

client_udp_request_reply yourhost 20001

Put timing statements in Program 20.4 to measure how long it takes for the client to send a 
request and receive a response. (See Example 9.8.) Run the client program several times. Do 
any of the instances hang? Under what circumstances would you expect the client to hang?



Answer:

The client blocks indefinitely on u_recvfrom if it does not receive the reply from the server. 
Modern networks have become so reliable that if the client and server are running on the same 
local area network (LAN), it is unlikely that either the request or the reply messages will be lost 
because of errors along particular wires. In high-congestion situations, packets may be dropped 
at LAN switches. If many clients are making simultaneous requests, the network subsystem of 
the server host might discard some packets because the communication endpoint's buffers are 
full. Messages from clients and servers on different LANs generally follow paths consisting of 
many links connected by routers. Congested routers drop messages that they can't handle, 
increasing the likelihood that a message is not delivered.

Exercise 20.11 

Figure 20.6 illustrates the timing for the request-reply protocol when there are no errors. When 
errors are possible, the nine events listed in the following table can occur in various orders.

event description

A client sends request message

B server receives request message

C server processes request

D server sends reply message

E client receives reply message

F request message is lost

G reply message is lost

H client crashes

I server crashes

The event sequence ABCDE represents the scenario of Figure 20.6. For the five event 
sequences listed below, state whether each represents a physically realizable scenario. If the 
scenario is realizable, explain the outcome and draw a timing diagram similar to that shown in 
Figure 20.6. If the scenario is not realizable, explain why.

1.  ABCED

2.  ABCDG

3.  ABCI



4.  ABCGD

5.  ABCDIE

What other event sequences represent possible scenarios for request-reply?

Answer:

1.  ABCED is not realizable, since the client cannot receive a message before the server 
sends it. This assumes that no other process on the server host has guessed the 
ephemeral port number used by the client and sent a bogus reply. It also assumes that 
another host has not spoofed the IP address of the server. We do not consider these 
scenarios here.

2.  ABCDG is realizable and represents a situation in which the client does not receive a 
response even though the server has processed the request.

3.  ABCI is realizable and represents a situation in which the server receives the request 
and processes it but crashes before it sends the response.

4.  ABCGD is not realizable, since a message cannot be lost before it is sent.

5.  ABCDIE is possible. If the server crashes after it sends the reply, the reply can still be 
received.

Many other event sequences represent realizable scenarios.

Figure 20.6. Timing diagram of the request-reply protocol.
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20.5 Request-Reply with Timeouts and Retries

The client of Program 20.4 can hang indefinitely if either the request message or the reply 
message is lost or if the server crashes. The client can use timeouts to handle these potential 
deadlocks. Before making a blocking call, the process sets a timer that generates a signal to 
interrupt the call after a certain length of time. If the interrupt occurs, the process can try again 
or use a different strategy.

You can implement a timeout directly by setting a software timer or by using timeout facilities 
included as options to calls such as select. Sockets themselves have some options for setting 
timeouts. Section 20.7 discusses the pros and cons of different timeout strategies.

The u_recvfromtimed function of UICI UDP provides a simple interface to these timeout 
facilities. The u_recvfromtimed function is similar to u_recvfrom, but it takes an additional 
double parameter, time, indicating the number of seconds to block, waiting for a response. 
After blocking for time seconds without receiving a response on the specified endpoint, 
u_recvfromtimed returns –1 and sets errno to ETIME. For other errors, u_recvfromtimed 
returns –1 and sets the errno as u_recvfrom does.

Program 20.6 modifies Program 20.4 to call the function request_reply_timeout, shown in 
Program 20.7, instead of calling request_reply. A third command-line argument to this 
program specifies the number of seconds to wait before timing out.

Program 20.6 client_udp_request_reply_timeout.c

A client program that uses timeouts with request-reply.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "restart.h"
#include "uiciudp.h"
#define BUFSIZE 1024

int request_reply_timeout(int requestfd, void* request, int reqlen,
                  char* server, int serverport, void *reply, int replen,
                  double timeout);

int main(int argc, char *argv[]) {
   ssize_t bytesread, byteswritten;
   char reply[BUFSIZE];
   char request[BUFSIZE];
   int requestfd;
   u_port_t serverport;
   double timeout;

   if (argc != 4) {
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      fprintf(stderr, "Usage: %s servername serverport timeout\n", argv[0]);
      return 1;
   }
   serverport = (u_port_t) atoi(argv[2]);
   timeout = atof(argv[3]);
   if ((requestfd = u_openudp(0)) == -1) {     /* create unbound UDP endpoint */
      perror("Failed to create UDP endpoint");
      return 1;
   }
   sprintf(request, "[%ld]\n", (long)getpid());    /* create a request string */
                 /* use request-reply protocol with timeout to send a message */
   bytesread = request_reply_timeout(requestfd, request, strlen(request) + 1,
                        argv[1], serverport, reply, BUFSIZE, timeout);
   if (bytesread == -1)
      perror("Failed to complete request_reply_timeout");
   else {
      byteswritten = r_write(STDOUT_FILENO, reply, bytesread);
      if (byteswritten == -1)
         perror("Failed to echo server reply");
   }
   if ((r_close(requestfd) == -1) || (bytesread == -1) || (byteswritten == -1))
      return 1;
   return 0;
}

Program 20.7 request_reply_timeout.c

Request-reply implementation with timeout.

#include <sys/types.h>
#include "uiciudp.h"

int request_reply_timeout(int requestfd, void* request, int reqlen,
                  char* server, int serverport, void *reply, int replen,
                  double timeout) {
   ssize_t nbytes;
   u_buf_t senderinfo;

                                                        /* send the request */
   nbytes = u_sendtohost(requestfd, request, reqlen, server, serverport);
   if (nbytes == -1)
      return -1;
       /* wait timeout seconds for a response, restart if from wrong server */
   while ((nbytes = u_recvfromtimed(requestfd, reply, replen,
                                         &senderinfo, timeout)) >= 0 &&
                (u_comparehost(&senderinfo, server, serverport) == 0)) ;
   return (int)nbytes;
}

Figure 20.7 shows a state diagram for the request-reply logic of Program 20.7. The circles 
represent functions calls that implement the major steps in the protocol, and the arrows 
indicate outcomes.

Figure 20.7. State diagram of the client for request-reply with simple 



timeout.

The request_reply_timeout function of Program 20.7 returns an error if the server does not 
respond after an interval of time. Either the request was not serviced or it was serviced and the 
reply was lost or never sent. The client cannot distinguish between a lost message and a server 
crash.

Another potential problem is that Program 20.7 resets the timeout each time it encounters an 
incorrect responder. In a denial-of-service attack, offenders continually send spurious packets 
to ports on the attacked machine. Program 20.7 should limit the number of retries before 
taking some alternative action such as informing the user of a potential problem.

Exercise 20.12 

Request-reply protocols can also be implemented over TCP. Why are these implementations 
usually simpler than UDP implementations? Are there disadvantages to a TCP implementation?

Answer:

Since TCP provides an error-free stream of bytes, the application can use the error-free request-



reply protocol shown in Figure 20.5. Another advantage of TCP implementations is that the 
client has a connection to the server and can signal that it is finished by closing this connection. 
The server can then release resources that it has allocated to servicing that client's requests. 
The client can also detect a server crash while it is waiting for a reply. On the downside, TCP 
implementations incur overhead in setting up the connection.

Usually, implementations of request-reply with timeout have a mechanism for retrying the 
request a certain number of times before giving up. The state diagram of Figure 20.8 
summarizes this approach. The user specifies a maximum number of retries. The application 
retries the entire request-reply sequence each time a timeout occurs until the number of retries 
exceeds the specified maximum.

Figure 20.8. Request-reply with timeouts.

Program 20.8 implements the request-reply protocol of Figure 20.8 for use in a client similar to 
Program 20.6.

Exercise 20.13 

How would the client in Program 20.6 need to be modified to use the protocol in Program 20.8?



Answer:

The client would have to take an extra command-line argument for the number of retries and 
call request_reply_timeout_retry instead of request_reply_timeout.

Exercise 20.14 

Propose a more sophisticated method of handling timeouts than that of Program 20.8. How 
might a potential infinite loop due to wrong host be handled?

Answer:

The selection of a timeout value is somewhat arbitrary. If the timeout value is large, the 
application may wait too long before recognizing a problem. However, timeout values that are 
too short do not account for natural delays that occur in transit over a network. A more 
sophisticated timeout strategy would lengthen the timeout value on successive retries and 
perhaps keep statistics about response times to use in setting future timeout values. Often, the 
timeout value is doubled for each successive timeout. The potential infinite loop for the wrong 
host might be handled by incorporating a counter for the wrong host condition and returning an 
error if this condition occurs more than a certain number of times.

Program 20.8 request_reply_timeout_retry.c

Request-reply implementation with timeout and retries.

#include <stdio.h>
#include <errno.h>
#include "uiciudp.h"

int request_reply_timeout_retry(int requestfd, void* request, int reqlen,
                  char* server, int serverport, void *reply, int replen,
                  double timeout, int maxretries) {
   ssize_t nbytes;
   int retries;
   u_buf_t senderinfo;

   retries = 0;
   while (retries < maxretries) {
                                   /* send process ID to (server, serverport) */
       nbytes = u_sendtohost(requestfd, request, reqlen, server, serverport);
       if (nbytes == -1)
          return -1;                                         /* error on send */
         /* wait timeout seconds for a response, restart if from wrong server */
       while (((nbytes = u_recvfromtimed(requestfd, reply, replen,
                                            &senderinfo, timeout)) >= 0) &&
              (u_comparehost(&senderinfo, server, serverport) == 0)) ;
       if (nbytes >= 0)
          break;
       retries++;
   }
   if (retries >= maxretries) {



      errno = ETIME;
      return -1;
   }
   return (int)nbytes;
}

With the request-reply with timeouts and retries of Program 20.8, the server may execute the 
same client request multiple times, with multiple repeats being reflected in the logs produced 
by the server of Program 20.3. Sometimes reexecution of a request produces invalid results, for 
example, in banking when a client request to credit an account should not be performed 
multiple times. On the other hand, a client request for information from a static database can 
be repeated without ill effect. Operations that can be performed multiple times with the same 
effect are called idempotent operations. The next section introduces a strategy for handling 
nonidempotent operations.
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20.6 Request-Reply-Acknowledge Protocols

The invocation semantics describe the behavior of a request protocol. The request_reply 
function of Program 20.5 implements maybe semantics. The request may or may not be 
executed. In the limit as the maximum number of allowed retries becomes large, Program 20.8 
approximates at-least-once semantics. Unless the request represents an idempotent operation, 
at-least-once semantics may result in incorrect behavior if a particular request is executed 
more than once.

An alternative is at-most-once semantics, which can be implemented by having the server save 
the results of previous requests. If a duplicate request comes, the server retransmits the reply 
without reexecuting the request. To recognize that a request is a duplicate, the client and 
server must agree on a format for uniquely identifying requests. The server also must save all 
replies from all requests until it is sure that the respective clients have received the replies. In 
the request-reply-acknowledge protocol of Figure 20.9, the client sends an acknowledgment to 
the server after receiving a reply. The server can safely discard the reply after receiving the 
acknowledgment.

Figure 20.9. State diagram of the client side of a request-reply-
acknowledge protocol.

Exercise 20.15 
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Devise a format for a message containing a process ID that could be used in the request-reply-
acknowledge protocol of Figure 20.9.

Answer:

One possibility is to use a structure containing the process ID and a sequence number. The 
client initializes the sequence number to 1 and increments it for each new request. This 
approach works as long as the sequence numbers and process IDs do not wrap around. Since 
we are sending the process ID as a string rather than in raw binary form, we can send the 
sequence number in the same way. The string sent consists of the sequence number followed 
by a blank followed by the process ID. The server parses this string to separate the two values. 
If data is sent in raw form rather than as a string, care must be taken to handle differences in 
byte ordering (big-endian vs. little-endian) between the client and server if the values are used 
for anything other than uniqueness.

The server side of the request-reply-acknowledge protocol is more complicated. The server 
must keep a copy of each reply until it receives the corresponding acknowledgment. If the 
client fails to send an acknowledgment, say, because of a crash, the server may keep the 
information forever. Connection-oriented communication is more suitable for this type of 
communication. TCP implements reliable communication by using a request-reply-acknowledge 
protocol, including negative acknowledgments and flow control, that is optimized for good 
performance.
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20.7 Implementation of UICI UDP

UICI UDP functions use the same name resolution functions, addr2name and name2addr, as the 
UICI TCP functions. Program C.4 shows implementations of these functions. Compile your 
source with uiciname.c when using UICI UDP.

20.7.1 Implementation of u_openudp

The UICI UDP function u_openudp takes a port number as its parameter and creates a 
connectionless socket for communication using UDP. The u_openudp function returns a file 
descriptor if the communication endpoint was successfully created. Servers call u_openudp with 
their well-known port as a parameter. Clients generally call u_openudp with a parameter of 0, 
meaning that they will allow the system to choose an ephemeral port when it becomes 
necessary. The u_openudp function returns –1 and sets errno if an error occurs.

Program 20.9 implements u_openudp. The u_openudp function uses the socket function 
discussed on page 631 to create the communication endpoint. As in the case of TCP, the 
domain is AF_INET and the protocol is 0. The type is SOCK_DGRAM rather than SOCK_STREAM.

If the port number parameter is greater than 0, u_openudp associates the newly created socket 
with this port number by calling bind, a library function described on page 631.

Program 20.9 u_openudp.c

An implementation of u_openudp.

#include <errno.h>
#include <unistd.h>
#include <sys/socket.h>
#include "restart.h"
#include "uiciudp.h"

int u_openudp(u_port_t port) {
   int error;
   int one = 1;
   struct sockaddr_in server;
   int sock;

   if ((sock = socket(AF_INET, SOCK_DGRAM, 0)) == -1)
      return -1;
   if (setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)) == -1) {
      error = errno;
      r_close(sock);
      errno = error;
      return -1;
   }
   if (port > 0) {
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      server.sin_family = AF_INET;
      server.sin_addr.s_addr = htonl(INADDR_ANY);
      server.sin_port = htons((short)port);
      if (bind(sock, (struct sockaddr *)&server, sizeof(server)) == -1) {
         error = errno;
         r_close(sock);
         errno = error;
         return -1;
      }
   }
   return sock;
}

Comparing u_openudp with u_open on page 634, we see that bind is called only when the port 
number is greater than 0. Only a server needs to bind the socket to a particular port. Also, it is 
not necessary to worry about SIGPIPE. A write to a pipe (or a TCP socket) generates a SIGPIPE 
signal when there are no active readers. In contrast, UDP provides no information about active 
receivers. A UDP datagram is considered to be sent correctly when it is successfully copied into 
the buffers of the network subsystem. UDP does not detect an error when an application sends 
a datagram to a destination that is not waiting to receive it, so sending does not generate a 
SIGPIPE.

20.7.2 The sendto function

The POSIX sendto function transmits data as a single datagram and returns the number of 
transmitted bytes if successful. However, sendto checks only local errors, and success does not 
mean that the receiver actually got the data.

The first three parameters for sendto have the same meaning as for read and write. The 
socket parameter holds a file descriptor previously opened by a call to socket. The message 
parameter has the data to be sent, and length is the number of bytes to send. The flags 
parameter allows special options that we do not use, so this value is always zero. The 
dest_addr parameter points to a structure filled with information about the destination, 
including the remote host address and the remote port number. Since we are using the Internet 
domain, *dest_addr is a struct sockaddr_in structure. The dest_len is the size of the 
struct sockaddr_in structure.

SYNOPSIS

   #include <sys/socket.h>

   ssize_t sendto(int socket, const void *message, size_t length,
                  int flags, const struct sockaddr *dest_addr,
                  socklen_t dest_len);
                                                                POSIX

If successful, sendto returns the number of bytes sent. If unsuccessful, sendto returns –1 and 
sets errno. The following table lists the mandatory errors for sendto with unconnected sockets.



errno cause

EAFNOSUPPORT address family cannot be used with this socket

EAGAIN or EWOULDBLOCK O_NONBLOCK is set and operation would block

EBADF socket parameter is not a valid file descriptor

EINTR sendto interrupted before any data was transmitted

EMSGSIZE message too large to be sent all at once as required by socket

ENOTSOCK socket does not refer to a socket

EOPNOTSUPP specified flags not supported for this type of socket

The sendto function can be used with sockets connected to a particular destination host and 
port. However, sendto still determines the destination host and port number by the information 
in the *dest_addr structure, independently of this connection.

If sendto is used on a socket that is not yet bound to a source port, the network subsystem 
assigns an unused ephemeral port to bind with the socket. Datagrams originating from this 
socket include the port number and the source host address along with the data so that the 
remote host can reply.

20.7.3 Implementation of u_sendto and u_sendtohost

The UICI UDP library provides two functions for sending messages, u_sendto and 
u_sendtohost, shown in Program 20.10. The u_sendtohost takes the destination host name 
and port number as parameters. It is meant to be used when initiating a communication with a 
remote host. The u_sendto function uses a u_buf_t structure that was filled by a previous call 
to u_recvfrom. The u_buf_t structure is meant to be used in a reply.

Program 20.10 u_sendto.c

An implementation of u_sendto and u_sendtohost.

#include <errno.h>
#include <sys/socket.h>
#include "uiciname.h"
#include "uiciudp.h"

ssize_t u_sendto(int fd, void *buf, size_t nbytes, u_buf_t *ubufp) {
   int len;
   struct sockaddr *remotep;
   int retval;

   len = sizeof(struct sockaddr_in);



   remotep = (struct sockaddr *)ubufp;
   while (((retval = sendto(fd, buf, nbytes, 0, remotep, len)) == -1) &&
           (errno == EINTR)) ;
   return retval;
}

ssize_t u_sendtohost(int fd, void *buf, size_t nbytes, char *hostn,
                     u_port_t port) {
   struct sockaddr_in remote;

   if (name2addr(hostn, &(remote.sin_addr.s_addr)) == -1) {
      errno = EINVAL;
      return -1;
   }
   remote.sin_port = htons((short)port);
   remote.sin_family = AF_INET;
   return u_sendto(fd, buf, nbytes, &remote);
}

The u_sendto function is almost identical to sendto except that u_sendto restarts if interrupted 
by a signal. The u_buf_t data type is defined in uiciudp.h by a typedef that sets it to be 
equivalent to struct sockaddr_in. This allows a u_buf_t pointer to be cast to a struct 
sockaddr pointer in the implementation of u_sendto. The user does not need to know anything 
about the internal representation of the u_buf_t structure, provided that its value was set by 
u_recvfrom or u_recvfromtimed.

The u_sendtohost function uses name2addr from uiciname.c to convert the host name to an 
address. If the host name begins with a digit, name2addr assumes that it is an IP address in 
dotted form and calls inet_addr to decode it. Otherwise, name2addr resolves the host name 
and fills struct sockaddr_in with the remote host address. The u_sendtohost function fills in 
the port number and address family and calls u_sendto. Since name2addr does not set errno 
when an error occurs, the u_sendtohost sets errno to EINVAL when name2addr returns an 
error.

20.7.4 The recvfrom function

The POSIX recvfrom function blocks until a datagram becomes available on file descriptor 
representing an open socket. While it is possible to use recvfrom with TCP sockets, we consider 
only UDP SOCK_DGRAM sockets. Be sure to associate socket with a port, either by explicitly 
calling bind or by calling sendto, which forces a binding to an ephemeral port. A call to 
recvfrom on a socket that has not been bound to a port may hang indefinitely.

The buffer parameter of recvfrom points to a user-provided buffer of length bytes that 
receives the datagram data. The amount of data received is limited by the length parameter. If 
the datagram is larger than length, recvfrom truncates the message to size length and drops 
the rest of the datagram. In either case, recvfrom returns the number of bytes of data placed 
in buffer.

The *address structure is a user-provided struct sockaddr structure that recvfrom fills in 



with the address of the sender. If address is NULL, recvfrom does not return sender 
information. The address_len parameter is a pointer to a value-result parameter. Set 
*address_len to the length of address before calling recvfrom. On return, recvfrom sets 
*address_len to the actual length of *address. The address_len parameter prevents buffer 
overflows because recvfrom truncates the sender information to fit in *address. It is not 
considered an error if the information put in *address is truncated, so be sure to make the 
buffer is large enough. For our purposes, the buffer should be able to hold a struct 
sockaddr_in structure.

SYNOPSIS

   #include <sys/socket.h>

    ssize_t recvfrom(int socket, void *restrict buffer, size_t length,
                     int flags, struct sockaddr *restrict address,
                     socklen_t *restrict address_len);
                                                                POSIX

If successful, recvfrom returns the number of bytes that were received. If unsuccessful, 
recvfrom returns –1 and sets errno. The following table lists the mandatory errors for 
recvfrom with an unconnected socket.

errno cause

EAGAIN or EWOULDBLOCK O_NONBLOCK is set and no data is waiting to be received, or 
MSG_OOB is set and no out-of-band data is available and either 
O_NONBLOCK is set or socket does not support blocking with out-of-
band data

EBADF socket is not a valid file descriptor

EINTR recvfrom interrupted by a signal before any data was available

EINVAL MSG_OOB is set and no out-of-band data is available

ENOTSOCK socket does not refer to a socket

EOPNOTSUPP specified flags not supported for this type of socket

20.7.5 Implementation of u_recvfrom and u_recvfromtimed

Program 20.11 implements u_recvfrom. It is similar to recvfrom except that it restarts 
recvfrom if interrupted by a signal. The returned sender information is encapsulated in the 
u_buf_t parameter, which is used as an opaque object for a reply, using u_sendto, to the 
sender. If successful, u_recvfrom returns the number of bytes received. If unsuccessful, 
u_recvfrom returns –1 and sets errno. Since UDP datagrams of length 0 are valid, a return 
value of 0 indicates a datagram of length 0 and should not be interpreted as end-of-file.



Program 20.11 u_recvfrom.c

An implementation of u_recvfrom.

#include <errno.h>
#include <sys/socket.h>
#include "uiciudp.h"

ssize_t u_recvfrom(int fd, void *buf, size_t nbytes, u_buf_t *ubufp) {
   int len;
   struct sockaddr *remote;
   int retval;

   len = sizeof (struct sockaddr_in);
   remote = (struct sockaddr *)ubufp;
   while (((retval = recvfrom(fd, buf, nbytes, 0, remote, &len)) == -1) &&
           (errno == EINTR)) ;
   return retval;
}

Since UDP is not reliable, a datagram can be lost without generating an error for either the 
sender or the receiver. More reliable protocols based on UDP use some form of request-reply or 
request-reply-acknowledge protocol discussed in Sections 20.4 through 20.6. These protocols 
require that the receiver not block indefinitely waiting for messages or replies. The 
u_recvfromtimed function returns after a specified time if it does not receive a datagram. If 
successful, u_recvfromtimed returns the number of bytes written in *buf. If a timeout occurs, 
u_recvfromtimed returns –1 and sets errno to ETIME. For other errors, u_recvfromtimed 
returns –1 and sets errno to the same values as u_recvfrom does.

Strategies for implementing timeouts include socket options for timeout, signals or select. 
Unfortunately, the socket options supporting timeouts are not universally available. The signal 
strategy uses a timer to generate a signal after a specified time. When a signal is caught, 
recvfrom returns with the error EINTR. The use of signals may interfere with other timers that 
a program might be using.

Program 20.12 implements u_recvfromtimed with the waitfdtimed function from the restart 
library. The implementation of waitfdtimed using select is shown in Program 4.15 on page 
114. The waitfdtimed function takes two parameters: a file descriptor and an ending time. The 
add2currenttime function from the restart library converts the timeout interval into an ending 
time. Using the ending time rather than directly using the time interval allows waitfdtimed to 
restart if interrupted by a signal and still retain the same ending time for the timeout.

Program 20.12 u_recvfromtimed.c

An implementation of u_recvfromtimed.

#include <errno.h>
#include <sys/socket.h>
#include <sys/time.h>



#include "restart.h"
#include "uiciudp.h"

ssize_t u_recvfromtimed(int fd, void *buf, size_t nbytes, u_buf_t *ubufp,
                         double seconds) {
   int len;
   struct sockaddr *remote;
   int retval;
   struct timeval timedone;

   timedone = add2currenttime(seconds);
   if (waitfdtimed(fd, timedone) == -1)
      return (ssize_t)(-1);
   len = sizeof (struct sockaddr_in);
   remote = (struct sockaddr *)ubufp;
   while (((retval = recvfrom(fd, buf, nbytes, 0, remote, &len)) == -1) &&
           (errno == EINTR)) ;
   return retval;
}

Exercise 20.16 

Suppose you call u_recvfromtimed with a timeout of 2 seconds and 10 signals come in 1 
second apart. When does u_recvfromtimed time out if no data arrives?

Answer:

It still times out 2 seconds after it is called. The reason is that waitfdtimed times out at a 
given ending time, independently of the number of times it needs to restart.

20.7.6 Host names and u_buf_t

The UICI UDP library also provides three functions for examining receiver host information. The 
u_gethostname function, which can be called after u_recvfrom or u_recvfromtimed, creates a 
string that corresponds to the name of a host. The first parameter of u_gethostname is a 
u_buf_t structure previously set, for example, by u_recvfrom. The u_gethostname function 
returns a null-terminated string containing the name of the host in the user-supplied buffer 
hostn. The third parameter of u_gethostname is the length of hostn. The u_gethostname 
function truncates the host name so that it fits.

The implementation of u_gethostname in Program 20.13 just calls addr2name and sets its 
*hostn buffer to the result. Recall that if addr2name cannot convert the address to a host 
name, it sets *hostn to the dotted-decimal representation of the host address. The addr2name 
function never returns an error.

Program 20.13 u_gethostname.c

An implementation of u_gethostname.



#include "uiciname.h"
#include "uiciudp.h"

void u_gethostname(u_buf_t *ubufp, char *hostn, int hostnsize) {
   struct sockaddr_in *remotep;

   remotep = (struct sockaddr_in *)ubufp;
   addr2name(remotep->sin_addr, hostn, hostnsize);
}

The u_gethostinfo function is similar to u_gethostname but is meant primarily for debugging. 
The u_gethostinfo function fills in a printable string with both the host name and port number 
corresponding to a u_buf_t structure. Program 20.14 implements u_gethostinfo.

Program 20.14 u_gethostinfo.c

An implementation of u_gethostinfo.

#include <stdio.h>
#include "uiciudp.h"
#define BUFSIZE 1024

void u_gethostinfo(u_buf_t *ubufp, char *info, int infosize) {
   int len;
   int portnumber;

   portnumber = ntohs(ubufp->sin_port);
   len = snprintf(info, infosize, "port number is %d on host ", portnumber);
   info[infosize-1] = 0;                         /* in case name did not fit */
   if (len >= infosize) return;
   u_gethostname(ubufp, info+len, infosize-len);
}

The function u_comparehost returns 1 if the given host name and port number match the 
information given in a u_buf_t structure, *ubufp, and 0 otherwise. The u_comparehost 
function first checks that the port numbers agree and returns 0 if they do not. Otherwise, 
u_comparehost calls name2addr to convert the host name to an address and compares the 
result to the address stored in ubufp. Program 20.15 implements u_comparehost.

Program 20.15 u_comparehost.c

An implementation of u_comparehost.

#include <string.h>
#include <sys/socket.h>
#include "uiciname.h"
#include "uiciudp.h"

int u_comparehost(u_buf_t *ubufp, char *hostn, u_port_t port) {
   in_addr_t addr;



   struct sockaddr_in *remotep;

   remotep = (struct sockaddr_in *)ubufp;
   if ((port != ntohs(remotep->sin_port)) ||
       (name2addr(hostn, &addr) == -1) ||
       (memcmp(&(remotep->sin_addr.s_addr), &addr, sizeof(in_addr_t)) != 0))
      return 0;
   return 1;
}
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20.8 Comparison of UDP and TCP

Both UDP and TCP are standard protocols used by applications to send information over a 
network. The choice of which to use for a given application depends on the design goals of the 
application. This section summarizes the main differences between UDP and TCP from the 
viewpoint of the application.

1.  TCP is connection-oriented and UDP is not. To send over a TCP communication endpoint, 
a client first makes a connection request and the server accepts it. Once the client and 
server have established the connection, they can enjoy symmetric bidirectional 
communication with standard read and write functions. The endpoints are associated 
with the client and server pair. Either side can close the connection, in which case the 
other side finds out about it when it tries to read or write. Thus, applications 
communicating with TCP can tell when the other side is done. In contrast, an application 
can use a UDP communication endpoint to send to or receive from anyone. Each 
message must include the destination address (usually an IP address and port number). 
UDP does not provide an application with knowledge about the status of the remote end.

2.  UDP is based on messages, and TCP is based on byte streams. If an application sends a 
UDP message with a single sendto, then (if the buffer is large enough) a call to 
recvfrom on the destination endpoint either retrieves the entire message or nothing at 
all. (Remember that we only consider unconnected UDP sockets.) In contrast, an 
application that sends a block of data with a single TCP write has no guarantee that the 
receiver retrieves the entire block in a single read. A single read retrieves a contiguous 
sequence of bytes in the stream. This sequence may contain all or part of the block or 
may extend over several blocks.

3.  TCP delivers streams of bytes in the same order in which they were sent. UDP can 
deliver messages out of order, even if no errors occur anywhere in the network. UDP 
delivers messages to the application in the order they are received. Since individual UDP 
packets may travel different routes on the Internet, they may not arrive in the order 
they were sent. In contrast, the network subsystem of the receiving host buffers TCP 
packets and uses sequence numbers to deliver bytes to the application in the order they 
were sent.

4.  TCP is reliable and UDP is unreliable. If TCP cannot deliver data to the remote host, it 
eventually reports the failure by returning an error. UDP is unreliable. The network 
might drop UDP packets and never deliver them to the remote host. UDP does not notify 
either the sender or the receiver that an error has occurred.

5.  The UDP sendto and the TCP write functions return after successfully copying their 
message into a buffer of the network subsystem. The point of return for UDP does not 
depend in any way on the status of the receiver. For TCP, the point of return depends 
indirectly on the status of the receiver and the network. The TCP network subsystem 
may hold outgoing data in its buffers because the receiving host has no available 
buffers, the receiver has not acknowledged packets, or the network is congested. The 
held data may cause subsequent TCP write calls to block. Although TCP has flow 
control, you should not interpret a return from a TCP write call as an indication that 
data has arrived at the destination host.
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20.9 Multicast

The connectionless protocols that we have been discussing thus far are unicast or point-to-
point, meaning that each message is sent to a single communication endpoint. In multicast, by 
contrast, a single send call can cause the delivery of a message to multiple communication 
endpoints.

Multicasting, which is usually implemented over an existing network structure, supports the 
abstraction of a group of processes that receive the same messages. Reliable multicast delivers 
messages exactly once to the members of the group. Ordered multicast delivers messages to 
each group member in the same order.

This section focuses on low-level IP multicasting available to applications through UDP sockets. 
Unlike unicast operations, several processes on the same host can receive messages on 
communication endpoints bound to the same multicast port.

IP multicast groups are identified by a particular IP address. A process joins a multicast group 
by binding a UDP socket (SOCK_DGRAM) to its multicast address and by setting appropriate 
socket options. The socket options inform the network interface that incoming messages for the 
indicated multicast address should be forwarded to the socket. If several processes on the 
same machine have joined a multicast group, the network interface duplicates each incoming 
message for all group members. The socket options also cause the host to inform LAN routers 
that processes on this host have joined the group. If a multicast message arrives at a LAN 
router, the router forwards the message on all LANs that have at least one host with a member 
process.

20.9.1 Multicast Addressing

This book discusses only IPv4 multicast. IPv4 multicast addresses are in the range 224.0.0.0 
through 239.255.255.255. IPv4 hosts and routers are not required to support multicasting. 
Hosts that support multicasting must join the all-hosts group 224.0.0.1. Routers that support 
multicasting must join the all-routers group 224.0.0.2. The addresses used to specify multicast 
groups are divided into four groups according to the scope of the group. The multicast scope 
refers to how far from the source multicast messages should be distributed.

Link-local multicast addresses are in the range 224.0.0.0 through 224.0.0.255. Link-local 
addresses are only for machines connected at the lowest level of topology of the network. 
Multicast messages with these addresses are not forwarded by a multicast router.

Global multicast addresses are in the range 224.0.1.0 to 238.255.255.255. Global addresses 
should be forwarded by all multicast routers. Currently, multicast is not truly global because 
some routers do not support multicast and many router administrators have disabled global 
multicast for security reasons. Also, there is no political mechanism for reserving a global 
multicast address and port.

Addresses in the rest of the range, 239.0.0.0 to 239.255.255.255, are called administratively 
scoped multicast addresses. These addresses are meant to be used inside an organization. 
They should not be forwarded outside the administrative control of the organization, since they 
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are not guaranteed to be unique.

Table 20.2 gives the prototypes of the two UICI UDP functions needed to support multicast 
communication. The u_join function creates a UDP socket and calls the socket options needed 
for the socket to join a particular multicast group. The u_leave function calls a socket option to 
leave the multicast group. After u_leave returns, the socket is still open and bound to the same 
port, but it can no longer receive multicast messages.

Table 20.2. Summary of UICI UDP multicast calls.

UICI UDP description

int u_join(char *IP_address,
       u_port_t port,
       u_buf_t *mcast_info)

creates UDP socket for multicast and binds 
socket to port returns the socket file 
descriptor

int u_leave(int fd, u_buf_t *mcast_info) leaves multicast group

The IP_address parameter of u_join holds a string representing the multicast address in 
dotted form. The port parameter is the multicast port number. The mcast_info parameter 
points to a user-supplied u_buf_t structure. If successful, u_join returns the file descriptor of 
the newly created socket and fills in the user-supplied u_buf_t structure with the multicast 
address for later use with u_sendto or u_leave. If successful, u_leave returns 0. If 
unsuccessful, u_join and u_leave return –1 and set errno.

The u_join function sets up a socket that can both send to and receive from the multicast 
group, but a socket does not have to belong to a multicast group to send to it. The simple UDP 
client in Program 20.2 can be used for sending. All that is necessary is for sendto to use a valid 
multicast destination address.

Program 20.16 shows a program that receives multicast messages. It takes two command-line 
arguments: the multicast IP address in dotted form and the multicast port number. The 
program first joins the multicast group with u_join and then echoes what it receives to 
standard output along with the name of the sending host.

Program 20.16 multicast_receiver.c

A multicast receiver that echoes what it receives to standard output.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>



#include "restart.h"
#include "uiciudp.h"
#define BUFSIZE 1024

int main(int argc, char *argv[]) {
   char buf[BUFSIZE];
   ssize_t bytesread;
   char hostinfo[BUFSIZE];
   int mcastfd;
   u_buf_t mcastinfo;
   u_port_t mcastport;
   u_buf_t senderinfo;

   if (argc != 3) {
      fprintf(stderr, "Usage: %s multicast-address multicast-port\n", argv[0]);
      return 1;
   }

   mcastport = (u_port_t)atoi(argv[2]);          /* join the multicast group */
   if ((mcastfd = u_join(argv[1], mcastport, &mcastinfo)) == -1) {
      perror("Failed to join multicast group");
      return 1;
   }

   u_gethostinfo(&mcastinfo, buf, BUFSIZE);
   fprintf(stderr, "Info: %s\n", buf);
   fprintf(stderr, "mcastfd is %d\n", mcastfd);

                 /* read information from multicast, send to standard output */
   while ((bytesread = u_recvfrom(mcastfd, buf, BUFSIZE, &senderinfo)) > 0) {
      u_gethostinfo(&senderinfo, hostinfo, BUFSIZE);
      if ((r_write(STDOUT_FILENO, hostinfo, strlen(hostinfo)) == -1) ||
          (r_write(STDOUT_FILENO, buf, bytesread) == -1)) {
         perror("Failed to echo message received to standard output");
         break;
      }
   }
   return 0;
}

20.9.2 Implementation of u_join

Program 20.17 implements the u_join function. The application first creates a UDP socket. 
Next, the application joins the multicast group by using setsockopt with level IPPROTO_IP, 
option name IP_ADD_MEMBERSHIP, and an option value specifying the multicast address. These 
options instruct the link layer of the host's network subsystem to forward multicast packets 
from that address to the application. The application can then use u_sendto and u_recvfrom 
(and the underlying sendto and recvfrom) as before.

Program 20.17 u_join.c

An implementation of u_join.



#include <arpa/inet.h>
#include <sys/socket.h>
#include "uiciudp.h"

int u_join(char *IP_address, u_port_t port, u_buf_t *ubufp) {
   int mcastfd;
   struct ip_mreq tempaddress;

   if ((mcastfd = u_openudp(port)) == -1)
      return mcastfd;

   tempaddress.imr_multiaddr.s_addr = inet_addr(IP_address);
   tempaddress.imr_interface.s_addr = htonl(INADDR_ANY);

        /* join the multicast group; let kernel choose the interface */
   if (setsockopt(mcastfd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
                   &tempaddress, sizeof(tempaddress)) == -1)
      return -1;

   ubufp->sin_family = AF_INET;
   ubufp->sin_addr.s_addr = inet_addr(IP_address);
   ubufp->sin_port = htons((short)port);
   return mcastfd;
}

20.9.3 Implementation of u_leave

Program 20.18 implements the u_leave function. The u_leave function informs the network 
subsystem that the application is no longer participating in the multicast group by calling by 
setsockopt with the IP_DROP_MEMBERSHIP option. Since u_leave does not close it, the mcast 
socket can still send multicast messages and receive non-multicast messages.

Program 20.18 u_leave.c

An implementation of u_leave.

#include <string.h>
#include <sys/socket.h>
#include "uiciudp.h"

int u_leave(int mcastfd, u_buf_t *ubufp) {
   struct ip_mreq tempaddress;

   memcpy(&(tempaddress.imr_multiaddr),
         &(ubufp->sin_addr), sizeof(struct in_addr));
   tempaddress.imr_interface.s_addr = htonl(INADDR_ANY);
   return setsockopt(mcastfd, IPPROTO_IP, IP_DROP_MEMBERSHIP,
                   &tempaddress, sizeof(tempaddress));
}
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20.10 Exercise: UDP Port Server

This exercise describes a server that uses UDP to provide information about the services that 
are available on the host on which it is running. Start by reading the man page for 
getservbyname if this function is available on your system. Also, get a copy of the netdb.h 
header file. If your system does not support getservbyname, your server should use a table of 
your own construction.

Design a "service server" that allows clients to find out which services are available on a host. 
The client sends a UDP request containing the following.

●     Sequence number (an integer in network byte order)
●     Protocol name (a null-terminated string)
●     Name of the service (a null-terminated string)

The server returns a response containing the following information.

●     Same sequence number as in the request
●     Integer port number (in network byte order)
●     Set of null-terminated strings giving aliases of the service

If the host does not support the service, the server should return –1 for the port number. For 
simplicity, use the following structure for both the request and the response.

#define NAMESIZE 256
struct service {
    int sequence;
    int port;
    char names[NAMESIZE];
} hostsev;

Write a UDP test client that prompts the user for host information, protocol and service name. 
The client chooses a sequence number at random, marshals the request (puts it in the form of 
the preceding structure), and sends it to the server.

The UDP client should take three command-line arguments: the name of the host running the 
service server, the UDP port number for this service and the timeout value by the client. The 
client either waits until it receives a response from the server or times out before prompting the 
user for another request. If the sequence number of a received response does not match the 
sequence number of the most recent request, the client should print the response, noting the 
mismatch, and resume waiting for the server to respond. As part of your testing, set a very 
short timeout in the client and insert a delay in the server between the receipt of the request 
and the response. The delay will cause a previous packet to be received on the next request. 
During testing, run several servers on different machines and have multiple clients accessing 
different servers in turn.
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20.11 Exercise: Stateless File Server

This exercise describes the implementation of a simple stateless file server based on UDP. A 
stateless server is one for which client requests are completely self-contained and leave no 
residual state information on the server. Not all problems can be cast in stateless form, but 
there are some well-known examples of stateless servers. Sun NFS (Network File System) is 
implemented as a stateless client-server system based on unreliable remote procedure calls 
(RPCs).

Program 20.19 shows a putblock function that writes a block of data to a specified file. 
Although the normal write function assumes an open file descriptor and manipulates a file 
pointer, the putblock function is stateless. The stateless form of file access does not assume 
that a file descriptor has been previously opened and does not leave file descriptors open after 
servicing the request.

Exercise 20.17 

An idempotent operation is an operation that can be performed multiple times with the same 
effect. Is the putblock operation of Program 20.19 idempotent?

Answer:

Although the contents of the file will not change if putblock is called multiple times with the 
same parameters, putblock is not strictly idempotent because the modification date changes.

Exercise 20.18 

Write a getblock function that is similar to putblock. Is getblock idempotent?

Answer:

POSIX specifies that the struct stat structure have a time_t st_atime field giving the time 
that a file was last accessed. Thus, getblock is not strictly idempotent.

Program 20.19 putblock.c

Implementation of a stateless write to a file.

#include <errno.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/stat.h>
#include "restart.h"
#define BLKSIZE 8192
#define PUTBLOCK_PERMS (S_IRUSR | S_IWUSR)
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int putblock(char *fname, int blknum, char *data) {
  int error = 0;
  int file;

  if ((file = open(fname, O_WRONLY|O_CREAT, PUTBLOCK_PERMS)) == -1)
     return -1;
  if (lseek(file, blknum*BLKSIZE, SEEK_SET) == -1)
     error = errno;
  else if (r_write(file, data, BLKSIZE) == -1)
     error = errno;
  if ((r_close(file) == -1) && !error)
     error = errno;
  if (!error)
     return 0;
  errno = error;
  return -1;
}

20.11.1 Remote File Services

A simple remote file service can be built from the getblock of Exercise 20.18 and putblock of 
Program 20.19. A server running on the machine containing the file system listens for client 
requests. Clients can send a request to read or write a block from a file. The server executes 
getblock or putblock on their behalf and returns the results. The client software translates 
user requests for reading and writing a file into requests to read and write specific blocks and 
makes the requests to the server.

This is a simplification of the strategy pursued by remote file services such as NFS. Real 
systems have caching at both ends—the client and the server keep blocks for files that have 
been accessed recently in memory, to give better performance. File servers often bypass the 
file system table and use low-level device operations to read from and write to the disk. Of 
course, both sides must worry about authorization and credentials for making such requests.

A typical file service might provide the following services.

1.  Read a particular block from a specified remote file.

2.  Write a particular block to a specified remote file.

3.  Create or delete a new remote file.

4.  Create or delete a special remote file such as a directory.

5.  Get the struct stat equivalent for a specified remote file.

6.  Access or modify the permissions for a specified file.

Based on the file services that you might want to implement, devise a format for the client 
request and the server response. Discuss your strategy for handling errors and for dealing with 



network byte order.

Implement and test the portion of the remote file service for getting and putting single file 
blocks, using UDP with a request-reply-acknowledge for the client side. Discuss how you would 
implement client-side libraries that would allow reading and writing a stream of bytes based on 
these single-block functions.
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20.12 Additional Reading

UNIX Network Programming Networking APIs: Sockets and XTI by Stevens [115] has an in-
depth discussion of programming with UDP. TCP/IP Illustrated:The Protocols, Volume 1 by 
Stevens explains the inner workings of the UDP protocol.
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Chapter 21. Project: Internet Radio

Broadcast, telephone and network technologies are converging rapidly, blurring the distinction 
between telephone and television. Software for video and telephone conferencing on the 
Internet is widely available, and most cable companies now offer high-speed Internet 
connections. Telephone companies have entered the entertainment business with video-on-
demand and content services. The final resolution of these competing forces will probably be 
determined by politics and regulatory decisions as well as by technical merit. Whatever the 
outcome, more computers will handle voice, audio and video streams in addition to data. This 
chapter explores how well network communication protocols such as UDP, multicast and TCP 
support streaming media applications. The chapter outlines a project to send audio streams 
over a network under various conditions. The project explores timing, buffering and packet 
loss, as well as synchronization and a dynamic number of receivers.

Objectives

●     Learn about streaming media
●     Experiment with UDP, multicast and TCP
●     Explore timing strategies for multimedia
●     Use audio in a real application
●     Understand synchronization with multiple receivers

[ Team LiB ]   
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21.1 Project Overview

Historically, Internet Talk Radio was an outgrowth of the rapid expansion of multimedia 
facilities on the Internet. Professionally produced audio broadcasts of interest to travelers on 
the Information Highway were encoded in Sun .au format and spooled to regional servers. 
Once a show was distributed to regional spool sites, users could listen to the show through a 
multicast program called radio.

The first Internet Talk Radio program was Geek of the Week, in which leading "network 
researchers, engineers, implementers, and a wide variety of other troublemakers" were 
interviewed in 1993 and 1994. Geek of the Week broadcasts have been archived and are 
available on the Internet for download [40]. A decade later over 3000 radio stations broadcast 
over the Internet. Some radio stations broadcast the same programming as they do over 
traditional airwaves; others broadcast solely on the Internet. Most of the Internet-only stations 
broadcast music, and the survival of these will depend on how royalties are assessed.

This chapter develops both point-to-point and multicast systems for distributing audio to 
multiple destinations based on the concept of streaming audio. In streaming audio (or video), 
the receiver plays the data as it receives the information, rather than waiting for the entire 
broadcast. Both audio and video data must be played at a fixed rate that is independent of 
network traffic. To compensate for the uneven flow through the network, streaming media 
receivers buffer a small amount of data, corresponding to a few seconds of a broadcast. Video 
streams require a much higher data rate than audio streams and generally require more CPU 
power for decompression. Video streams can also tolerate greater loss before the user 
perceives a degradation.

As an alternative to streaming, the receiver can save the entire broadcast and play it back 
later. A 30-minute audio program might contain several megabytes of data. A video program 
might require several gigabytes, even in a highly compressed format.

The main strategies for handling streaming data to multiple receivers are either to have an 
independent sending source for each receiver or to have one sending source with receivers that 
join a program in progress. Live Internet radio broadcasts sometimes use the latter strategy; 
audio archives use the first strategy.

This chapter compares implementations of streaming Internet audio broadcasts using UDP, 
multicast and TCP. We examine the need for buffering in the sender and receiver in addition to 
the buffering that occurs in the network and I/O subsystems.

This chapter assumes that the audio files and the audio device use 8K bytes per second of 
audio. If this is not the case for your system, you will need to modify various buffer and timing 
parameters. Section 21.2 shows how to do this project without an audio device. We evaluate 
the designs from this chapter, using the following tests to compare how the solutions behave.

Test Case 1: Start one receiver and then suspend the receiver process in the middle of the 
transmission by entering Ctrl-Z in the console window of the receiver. After a few seconds, 
resume the process by executing fg. Is any of the transmission lost?

Test Case 2: Start one receiver and direct the output to a file rather than to the audio device. 
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Is the received file identical to the input file? Does it take less time for the transmission than it 
did when outputting to the audio device?

Test Case 3: Start two receivers and suspend one receiver in the middle of the transmission by 
entering Ctrl-Z in the console window of that receiver. Does the suspension affect the other 
receiver?

Test Case 4: Start two receivers and direct the output from one receiver to a file rather than 
to the audio device. Is the received file identical to the input file? Does this affect what the 
other receiver gets?

This chapter specifies several progressive variations of the sender and the receiver, which are 
summarized in Table 21.1. Most of the programs are created by modification of previous 
variations of the sender or receiver as specified in the "start from" column of the table.
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21.2 Audio Device Simulation

If you do not have access to an audio device on your machine, you can send ordinary text to a 
simulated audio device. The simulated audio device consists of a named pipe that replaces the /
dev/audio device and a program, slowreader, that reads from the pipe at a fixed rate. In this 
project replace all references to /dev/audio with your named pipe and run the slowreader 
program with input redirected to the pipe.

The slowreader program is a filter. Eight times a second it reads a 1000-byte block from 
standard input and writes it to standard output. Use a timer that generates a signal 8 times a 
second. To see what happens when no data is available, set standard input to nonblocking. 
Attempt to read 1000 bytes. Output the bytes read. If fewer than 1000 bytes were available, 
output a message reporting how many bytes were missing.
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21.3 UDP Implementation with One Program and One Receiver

This section discusses an Internet Radio implementation using UDP. UDP is an unreliable 
protocol in which messages may be delivered out of order. Start by assuming that the protocol 
is reliable with in-order delivery (UDP approximately satisfies these assumptions on a LAN) and 
then modify the programs to take into account the behavior of UDP on the Internet.

Table 21.1. Summary of Internet Radio project variations.

program name text section start from description

server_udp 20.3  basic UDP server

client_udp 20.3  basic UDP client

UDPSend 21.3.1 server_udp simple sender of messages

UDPRecv 21.3.1 client_udp simple receiver of messages

UDPSendEnd 21.3.2 UDPSend sender transmits end marker

UDPRecvEnd 21.3.2 UDPRecv receiver detects transmission end

UDPRecvSelect 21.3.3 UDPRecvEnd buffer with read/write select

UDPRecvThread 21.3.3 UDPRecvEnd buffer with read/write threads

UDPRecvShared 21.3.3 UDPRecvEnd shared buffer with child

UDPSendSeq 21.3.4 UDPSendEnd messages with sequence numbers

UDPSendSeqTest 21.3.4 UDPSendSeq out-of-order sequence numbers

UDPRecvSeq 21.3.4 UDPRecvSelect receive messages with sequence numbers

  UDPRecvThread  

  UDPRecvShared  

UDPSendProg 21.4.1 UDPSendSeq send a program listing on request

UDPRecvProg 21.4.1 UDPRecvSeq handle a program listing

UDPSendMult 21.4.2 UDPSendProg send to multiple receivers

UDPSendBcast 21.5 UDPSendSeq broadcast in progress
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UDPRecvBcast 21.5 UDPRecvSeq join broadcast in progress

UDPSendMcast 21.6 UDPSendBcast multicast in progress

UDPRecvMcast 21.6 UDPRecvBcast join multicast in progress

TCPSend 21.7.1 serverp.c parent-server transmission

TCPRecv 21.7.1 client.c simple transmission receiver

TCPSendProg 21.7.2 TCPSend send a program listing

TCPRecvProg 21.7.2 TCPRecv get a program listing

TCPSendBcast 21.7.3 TCPSend send to multiple receivers

TCPRecvMime 21.8.1 TCPRecv receive stream through a browser

21.3.1 Simple implementation

Copy Program 20.2, (client_udp.c) on page 699 into UDPRecv.c and compile it as UDPRecv. 
UDPRecv sends a message to a server and reads a response. Modify UDPRecv to receive 
messages of at most 1000 bytes after sending the initial message. The program should take an 
optional third command-line argument, the name of a file. If called with three command-line 
arguments, UDPRecv writes the received information to the specified file. Otherwise, UDPRecv 
writes the received information to /dev/audio.

Copy Program 20.1 (server_udp) on page 698 into UDPSend.c and compile it as UDPSend. 
Modify UDPSend to take two command-line arguments: a port number and a file name. The 
UDPSend listens on the specified port for client requests. When UDPSend receives a request (any 
message), it opens the file and copies the file contents to the requesting host in 1000-byte 
messages. Since the Internet Radio application sends 8000 byte/second audio, UDPSend should 
sleep for one second after sending each eight messages. After sending the entire file, UDPSend 
waits for another request. For each of these programs remember to change the value of 
BUFSIZE from 1024 to 1000.

Exercise 21.1 

How would the message size, number of messages per block and sleep time between blocks 
change for a file containing CD-quality audio rather than voice-quality audio?

Answer:

CD-quality audio consists of two channels of 16-bit values played at a rate of 44.1 kHz, which 
translates to a throughput of 176,400 bytes/sec or 1.4112 Mbps. With a 1000-byte message 
size, the sender must write an average of 176.4 packets per second. Sending 176 packets per 
second can result in underflow for long transmissions, whereas sending 177 packets per second 
can result in receiver buffer overflow. A packet size of 1225 bytes evenly divides the data rate 
and still fits within a typical Ethernet packet. In this case, the sender should send 144 packets 



per second.

Exercise 21.2 

How does UDPRecv open the output file?

Answer:

The UDPRecv function opens the file by calling open with three parameters: the pathname, flags 
and permissions. The flags are O_WRONLY, O_CREAT and O_TRUNC. Set the permissions 
appropriately.

Exercise 21.3 

How can you use UDPSend to send the file myaudio.au to remote receivers?

Answer:

Decide on a port number to use, say, 16001, and start the program with the following 
command.

UDPSend 16001 myaudio.au

Exercise 21.4 

Suppose the program from Exercise 21.3 is running on os1.cs.utsa.edu. How should you start 
UDPRecv to receive the transmission?

Answer:

UDPRecv os1.cs.utsa.edu 16001

Exercise 21.5 

What happens if you omit the call to sleep from UDPSend?

Answer:

The program sends the file as fast as it can, limited by the speed of the network, the speed of 
disk access and the size of the network buffers. A client like UDPRecv does not buffer its input 
and the audio device can only handle eight messages a second. Once the buffers of the audio 
device are full, UDPRecv blocks while outputting to the audio device and may miss some of the 
transmission from the server.

Exercise 21.6 



Suppose that as in Exercise 21.5 the input file contains a 30-minute radio program. How many 
bytes of buffer space does the receiver need to fully buffer the transmission?

Answer:

For 8000 byte per second audio, the receiver needs 30*60*8K = 14 megabytes.

Exercise 21.7 

Modify UDPSend so that it sleeps for one second after every nine messages instead of eight. 
What does the output of UDPRecv sound like? What if it sleeps after every seven messages? 
Which is more annoying?

Answer:

If UDPSend sleeps after nine messages, it sends about nine messages a second. Since the 
receiver can only process eight messages a second, it misses about 1/8-second of sound every 
second over a long transmission, causing jumps in the audio. If UDPSend sleeps after only seven 
messages, the receiver sometimes blocks while waiting for input from the network and cannot 
keep the local audio buffer full. There would be pauses in the audio, sometimes in the middle of 
a word. The loss of 1/8 second of audio every second is annoying, but understandable for 
spoken audio. The brief pauses caused by sending the audio too slowly is sometimes more 
annoying. Of course, this judgment is subjective and you may judge differently.

Exercise 21.8 

What drawbacks does sleeping for 1 second after every eight messages have in controlling flow?

Answer:

This sleep strategy does not take into account the overhead in transmitting the messages or 
the scheduling delays caused by other processes in the system. For example, if these delays 
average 100 ms for every eight messages, the server sends 1 second of audio every 1.1 
seconds, causing slight pauses in the audio at the receiver. The POSIX description of sleep 
states that the suspension time may be longer than requested because of scheduling or other 
activity by the system.

Exercise 21.9 

How could you fix the problem of an inaccurate data rate because of the inaccuracy of sleep?

Answer:

Use a timer that generates an interrupt every second. Each time the interrupt occurs, send the 
required messages. You should avoid sending the information from the interrupt service 
routine. Have the interrupt server routine set a flag, and use sigsuspend to wait for the 
interrupt, as in Example 8.26. Consider using absolute time as discussed in Section 9.6.



Exercise 21.10 

How would the original implementation behave under Test Case 1 and Test Case 2?

Answer:

Under Test Case 1, the receiver loses some of the transmission if it is delayed long enough. The 
amount lost depends on the amount of time the process is suspended, the size of the receiver 
buffers and the size of the network subsystem buffers on the receiver host. Under Test Case 2, 
the output file at the receiver is usually identical to the input file for senders and receivers on 
the same uncongested local area network. It takes the same time to write the data to a file as 
to the audio device because the sender limits the rate at which it transmits the data.

21.3.2 Termination of the receiver

Connectionless communication protocols such as UDP do not indicate when the transmission is 
complete, so the receiver does not know when to terminate. There are several ways to handle 
the termination problem.

The sender can transmit a special message reporting that it has sent all of the data. The special 
message must be distinguishable from audio data. Since in most audio formats, any data is 
possible, the special message might be embedded in the audio data.

Alternatively, the receiver can use the timeout capability of UICI. If it receives no data in a 
certain length of time, say, 5 seconds, the receiver assumes that the transmission has ended 
and terminates. Receivers using this approach could terminate prematurely unless they use a 
very large timeout value.

Another method relies on the atomic nature of UDP messages—a UDP message is either 
received in its entirety or is not received at all. The receiver assumes that all messages except 
the last one are exactly 1000 bytes. If the size of the file is not a multiple of 1000 bytes, the 
last message has fewer than 1000 bytes and the receiver knows that this is the last message. If 
the file is a multiple of 1000 bytes, the sender transmits a message of length 0 after the last 
message.

Copy UDPSend.c into UDPSendEnd.c, and copy UDPRecv.c into UDPRecvEnd.c. Modify these 
programs to transmit a zero-length message to signify the end of the transmission.

Exercise 21.11 

Propose another method of termination that uses the atomicity of UDP messages.

Answer:

The receiver uses a receive buffer of size 1001 instead of 1000. The sender transmits a 
message of size 1001 after the last message containing data. If the receiver reads a message 
of size 1001, it knows that the transmission has completed.



Exercise 21.12 

Under what circumstances does the solution proposed in Exercise 21.11 cause the receiver to 
not terminate? How can you fix this?

Answer:

UDP is an unreliable protocol, so the receiver never terminates if the last message never 
arrives. You can handle this problem by using u_recvfrom_timed with a very long value of the 
timeout, say, 30 seconds.

21.3.3 Buffering by the receiver to handle network latency

One of the problems with streaming audio (or video) is that the transmission time may not be 
constant. Periods of heavy network traffic cause messages to be delayed or lost. For now we 
assume that the messages are received in order and never lost, but there may be short periods 
(equivalent to the time to play a few messages) in which no messages are received. The 
receiver can compensate for this uneven transmission by allocating buffers and filling many of 
the buffers before starting to play the first message. The receiver must fill the buffers from 
incoming network messages concurrently with the emptying and playing of the buffers.

Exercise 21.13 

A naive approach to handling the buffers is for the receiver to alternate between reading from 
the network and writing to the audio device. What is wrong with this idea?

Answer:

Depending on the rate at which messages arrive, there may be times when a network message 
is available but the receiver blocks while waiting to write to the audio device. At other times, 
the audio device buffers may be empty and the receiver blocks while waiting for input from the 
network, even though there are process buffers containing data for the audio device.

Exercise 21.14 

How would you implement a solution in which the receiver forks a child process that reads only 
from the network, filling the process buffers. The parent receiver process empties the process 
buffers, sending to the audio device.

Answer:

The process buffers must reside in shared memory, and the receiver parent and child must use 
interprocess synchronization mechanisms to access the shared memory.

The receiver buffer problem is a standard producer-consumer problem involving two file 
descriptors that must be monitored concurrently. We discuss three possible solutions to this 
problem—select, multiple threads and parent-child processes.



In the first solution, the receiver calls select to determine which file descriptor is ready. The 
receiver has one descriptor for reading and one for writing in contrast to Program 4.12, which 
monitors two file descriptors for reading.

Copy UDPRecvEnd.c into UDPRecvSelect.c and compile it as UDPRecvSelect. Modify the 
program to call select to monitor the two file descriptors. Preallocate NUMBUF buffers. Use a 
value of NUMBUF that corresponds to about 10 seconds of audio, and do not start sending 
anything to the audio device until at least half the process buffers are filled.

Exercise 21.15 

What is a buffer overflow and what is a buffer underflow? How would you handle these 
conditions?

Answer:

A buffer overflow means that the network has available data but the receiver does not have a 
free buffer. Overflows occur when the sender produces data faster than the receiver uses it. A 
buffer underflow means that the audio device requires data but the receiver does not have any 
filled buffers. Underflows occur when the audio device uses data faster than the sender 
transmits it or when the network incurs heavy packet loss.

When select reports that data is available from the network but no buffer is free, the receiver 
should block on writing to the audio device until a buffer can be freed. If this does not happen 
soon enough, the network subsystem may drop messages because its buffers are full. Similarly, 
when select reports that a write to the audio device would not block but there is no data to 
write, the receiver should block while waiting for data from the network.

Since only a single process accesses the process buffers, the receiver does not have a critical 
section in the select implementation. However, the programming is still tricky, since the 
program can be in one of three states: only reading from the network (initially and when the 
buffers are empty), only writing to the audio device (when the buffers are full), and using 
select.

The threaded solution uses a producer thread responsible for reading from the network and a 
consumer thread responsible for outputting to the audio device. Each thread just blocks when 
its input or output is not ready. Use Program 16.14 and Program 16.11 as models for your 
solution. Take care that the producer thread does not obtain exclusive access to the buffer 
before blocking for network input. Similarly, the consumer thread should not hold exclusive 
access to the buffer before waiting for audio output to return from its previous write. Copy 
UDPRecvEnd.c into UDPRecvThread.c and compile it as UDPRecvThread. Modify UDPRecvThread 
so that it implements the threaded solution.

A third solution uses a child process to output to the audio device while the parent reads from 
the network. The process buffers can be implemented with shared memory, as described in 
Section 15.3. As in the threaded implementation, the critical sections that access the shared 
buffer must be protected. Copy UDPRecvEnd.c into UDPRecvShared.c and compile it as 
UDPRecvShared. Modify UDPRecvShared so that it implements the parent-child solution. The 
child process terminates when it has finished reading from the network. The parent terminates 
when the process buffers are empty and the child has terminated.



Exercise 21.16 

How can the parent determine whether the child process has terminated?

Answer:

The parent checks to see if the child has terminated only when the process buffers are empty. 
A simple wait call blocks until the child finishes, leading to a deadlock when the buffers fill. Use 
waitpid with the NOHANG option, or catch the SIGCHLD signal and set a flag when the child 
terminates.

Exercise 21.17 

What happens when the process that is sending to the audio device terminates while the audio 
device still has data in its buffer?

Answer:

The outcome depends on the system you are using. On some systems, if you exit while the 
audio buffer contains data, the audio stops. An explicit call to close on the audio device may 
block until the audio device buffers are empty.

Exercise 21.18 

How would the three implementations of the buffered receiver behave under Test Case 1 and 
Test Case 2?

Answer:

All three implementations behave similarly under Test Case 1 and Test Case 2. Under Test Case 
1, the receiver loses some of the transmission if it is delayed long enough; however, the 
amount lost would be decreased by the amount stored in the input buffer. Under Test Case 2, 
the output file should usually be identical to the input file if run on a local area network that 
was not too busy. Because the rate is determined by the sender, it takes about the same time 
to save the data to a file as to write it to the audio device.

21.3.4 Buffering by the receiver to handle out-of-order delivery

The UDP protocol does not force in-order delivery of packets. Out-of-order packets are seldom 
observed on a LAN in which there is only one path between sender and receiver, but UDP 
packets are often delivered out of order on the Internet.

The usual way to handle out-of-order transmission is with sequence numbers. Each message 
starts with a header containing a sequence number that is incremented by the sender for each 
message sent. For this part of the project, we assume that a 32-bit sequence number is 
sufficient.



Exercise 21.19 

Suppose an 8000 byte per second audio stream uses 1000-byte messages. How long does it 
take for the audio stream to overflow a 32-bit sequence number?

Answer:

A 32-bit unsigned sequence number representation has 232 possible values. Since the audio 
stream sends one message every 1/8 second, it takes 229 seconds (approximately 17 years) to 
wrap around.

Exercise 21.20 

Suppose a 2-gigabyte per hour stream of video uses 1000-byte messages. How long does it 
take for the video stream to overflow a 32-bit sequence number?

Answer:

Using unsigned 32-bit integers, the video stream takes about 2100 hours (about 3 months) to 
overflow its sequence number.

Exercise 21.21 

How would you design a message to contain a sequence number and 1000 bytes of audio?

Answer:

Prepend a 4-byte header to the message body so that messages are now 1004 bytes. The 
header represents the message sequence number in network byte order.

Exercise 21.22 

The code segment below reads 1000 bytes of audio from the open file descriptor filefd and 
sends it along with a 32-bit sequence number to a remote host as a single UDP message. Aside 
from the lack of error checking, what is wrong with this implementation?

#define BUFSIZE 1000
char buf[BUFSIZE+4];
uint32_t seq;

r_read(filefd, buf+4, BUFSIZE);
*(uint32_t *)buf = htonl(seq++);
u_sendtohost(sendfd, buf, BUFSIZE+4, hostn, port);

Answer:

Some systems force integers to be aligned on word boundaries, and the declaration of buf does 



not guarantee word alignment. You can fix the alignment problem by using memcpy rather than 
statement assignment, as illustrated by the following code.

uint32_t seqn;
seqn = htonl(seq++);
memcpy(buf, &seqn, 4);

Exercise 21.23 

What happens if the sequence number is sent in one 4-byte message followed immediately by a 
1000-byte message containing the audio data?

Answer:

This approach does not solve the out-of-order delivery problem. Even assuming the receiver 
reads a 4-byte message followed by a 1000-byte message, the sequence number in the first 
message might not correspond to the audio data in the second message.

Exercise 21.24 

Design a buffer scheme for a receiver to store messages that might arrive out of order.

Answer:

A receiver with NUMBUF buffers places message number n into buffer slot n % NUMBUF. Each 
buffer slot has a flag, filled, that specifies whether the corresponding buffer slot contains 
unsent audio data. The receiver must prevent the following errors.

●     Insert an item into a filled buffer slot.
●     Remove an item from an empty or previously consumed buffer slot.

Exercise 21.25 

How should you modify the synchronization of a threaded implementation to support the buffer 
scheme described in Exercise 21.24?

Answer:

A typical threaded implementation based on Program 16.11 blocks the producer if no buffer 
slots are available. Modify this code so that the producer blocks after reading an item from the 
network if the corresponding buffer is not available. The consumer no longer blocks when 
totalitems is 0, but instead blocks if the next buffer slot is empty.

Exercise 21.26 

The solution described in Exercise 21.25 has a potential deadlock. How could this deadlock 
happen and how could it be avoided?



Answer:

Suppose there are eight buffers. Sequence numbers 0 and 1 have been processed by the 
producer and the consumer . The producer receives messages with sequence numbers 3, 4, 5, 
6, 7, 8, 9, and 11, missing both 2 and 10. The consumer blocks while waiting for message 
number 2 from slot 2 to be filled. The producer blocks while waiting for slot 3 to be emptied so 
that it can insert sequence number 11. The consumer should time out and move on to the next 
slot if the current item is not available when it is time to send the next packet to the audio 
device. For the scenario described in this exercise, the consumer removes message number 3, 
allowing the writer to put message 11 in the buffer.

Copy UDPSendEnd.c into UDPSendSeq.c and compile it as UDPSendSeq. Modify UDPSendSeq to 
send 1004-byte messages with sequence numbers. Copy one of your implementations from 
Section 21.3.3 into UDPRecvSeq and compile it as UDPRecvSeq. Modify UDPRecvSeq to handle 
out-of-order delivery of messages. Test these together.

Exercise 21.27 

How does the termination criterion change when sequence numbers are used?

Answer:

The receiver knows that the last message has been received if the message length is not 1004. 
A message of length 4 specifies the end, with no audio data in the message. The receiver 
terminates after reading this message once the buffer is empty. The receiver should also 
terminate under a long timeout condition when the buffers are empty.

Exercise 21.28 

How does the synchronization in the threaded implementation of the receiver change when 
messages can be received out of order?

Answer:

The synchronization of the consumer is almost the same. The consumer now blocks when the 
filled flag of the next slot is clear rather than when nitems is 0. The producer does not know 
which slot is needed until it reads the message. One solution is to have the producer read a 
message into a local buffer, check the sequence number, and block if the corresponding slot is 
not available. Be sure to implement producer and consumer blocking in a loop that checks 
whether the blocking condition has changed.

Testing the out-of-order receiver on a LAN is difficult since programs rarely receive out-of-order 
UDP messages. To test receiver handling of out-of-order messages usually requires that the 
messages actually be sent out of order. Copy UDPSendSeq.c into UDPSendSeqTest.c and 
compile it as UDPSendSeqTest.

Modify UDPSendSeqTest to occasionally delay a message for 1, 2 or 3 messages. Use a separate 
buffer for a delayed message and an integer counter specifying how long to delay. You should 



also pick a threshold value between 0 and 1. If the threshold is 0, the sender transmits packets 
in order. For thresholds greater than 0, the sender transmits a greater fraction of the packets 
out of order. The sender sets the counter to 0 when it starts and checks the counter each time 
it is ready to send a message. A nonzero counter indicates that a delayed message exists. If 
the counter is greater than 1, the sender decrements it and sends the current message. If the 
counter is equal to 1, the sender decrements it and sends the current message followed by the 
delayed message in the buffer. If the counter is 0, the sender picks a pseudorandom number 
between 0 and 1. If the value is not below the threshold, the sender transmits the current 
message. If the value is less than the threshold, the sender places the message in the buffer 
and sets the counter to 1, 2 or 3 (at random).
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21.4 UDP Implementation with Multiple Programs and Receivers

This section describes an implementation that allows both multiple programs and multiple 
receivers.

21.4.1 Multiple programs and one receiver

Copy UDPSendSeq.c into UDPSendProg.c and compile it as UDPSendProg. Modify UDPSendProg 
to interpret the filename command-line argument as a program listing of available audio files. 
Each line of the program listing has the name of an audio file and a description. When the 
sender receives a request message consisting of a 0 byte, the sender transmits the contents of 
the program listing file to the receiver as a single message. (Assume that the listing file is small 
enough to be sent as a single UDP message.) When the sender receives a message containing a 
single nonzero integer in network byte order, the sender begins to transmit the audio file 
identified by that integer. A value of 1 represents the first file in the program listing. Any value 
out of range causes the sender to ignore the request message and resume listening for another 
request.

Copy UDPRecvSeq.c into UDPRecvProg.c and compile it as UDPRecvProg. UDPRecvProg begins 
by sending a single 0 byte to the sender and reading the program listing. UDPRecvProg 
presents the listing to the user and prompts for the user's selection. UDPRecvProg then sends 
the request number to the sender and plays the audio file as before.

Exercise 21.29 

What happens if UDPRecvProg's initial 0 byte is lost? How can you modify UDPRecvProg to deal 
with the possibility of such a loss? What other types of loss are possible?

Answer:

If the initial 0 byte is lost (or the program listing returned by the sender is lost), UDPRecvProg 
hangs while waiting for the sender's reply. You can modify UDPRecvProg to time out and retry 
the initial byte a specified number of times before giving up. Similarly, the request number may 
be lost. Again, UDPRecvProg should time out and retry a specified number of times. 
UDPRecvProg should ignore loss of individual audio packets. However, if UDPRecvProg detects 
that the audio packet loss rate is too high, it should probably inform the user of a problem.

21.4.2 Multiple programs and multiple receivers

Copy UDPSendProg.c into UDPSendMult.c and compile it as UDPSendMult. Modify the program 
to work with multiple copies of the receiver. This modification is similar to changing a serial 
server into a parallel server.

Exercise 21.30 
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How does UDPSendMult behave under Test Case 3 and Test Case 4?

Answer:

In this implementation the receivers are independent and receive independently generated data 
streams. One receiver does not affect another.
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21.5 UDP Implementation of Radio Broadcasts

The simplest strategy for handling multiple receivers of the same audio program is to treat 
them as completely independent, as described in Section 21.4.2. An alternative strategy, used 
by some radio stations on the Internet, is to multicast the program in a single stream. Listeners 
"tune in" at any time and receive the program as it is being broadcast on the air. A third 
strategy, used by video-on-demand (VOD) providers, broadcasts multiple copies of the same 
stream (a movie). Each copy starts a few minutes later than the previous one. Customers tune 
in to the stream that starts next so that they don't miss anything.

Copy UDPSendSeq.c into UDPSendBcast.c and compile it as UDPSendBcast. Modify 
UDPSendBcast to begin "sending" the file when it starts up. At first the sender has no receivers, 
so it just reads from the file and sleeps after reading each eight blocks. If the sender has 
receivers, it sends each message to every receiver. As receiver requests come in, the sender 
adds these receivers to its list. When a receiver requests the broadcast, the sender responds 
with a message containing a description of the audio broadcast (in this case, just the name of 
the file) and the elapsed time (in minutes and seconds) since program transmission started.

Logically, the sender consists of two distinct operations. One operation accepts new requests, 
and the other transmits the audio program. A possible implementation of both operations with 
a single process (or thread) generates a signal once per second. The signal handler sends eight 
messages to all of the receiving hosts, and the main program handles new receivers. The main 
program and the signal handler share the list of receiving hosts. A correct implementation with 
signals is only possible if the socket calls and name resolution calls that UICI uses are async-
signal-safe or if the main program blocks signals at appropriate points.

Exercise 21.31 

Describe an appropriate data structure for the list of receivers.

Answer:

The data type of a receiver could be a u_buf_t structure that holds all the information needed 
to describe a receiver of a UDP message. (See Section 20.2 for a description.) If the sender 
sets a maximum number of receivers, it can use an array. Otherwise, the sender can use a 
linked list of u_buf_t items.

An implementation that does not require the async-signal safety of the UICI calls and that does 
not use threads has a parent process receiving connection requests and a child process sending 
the audio stream to a list of remote hosts. The parent process could send u_buf_t messages 
through a pipe to its child to keep it informed about receivers. The child can set the pipe for 
nonblocking reads and could attempt to read new receivers from the pipe each time it is 
awakened by the periodic signals for transmitting messages. The algorithm is as follows.

1.  While the pipe is not empty, do a nonblocking read of a u_buf_t item and update the 
list of receivers.
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2.  Read eight blocks from the audio file and send them to all receivers.

3.  Suspend until the next signal.

Exercise 21.32 

How can the parent process determine how far along the child's transmission is so that it can 
send the information to the requesting receiver?

Answer:

The sender can record the time it starts and calculate the difference between the current time 
and the start time of the broadcast.

Copy UDPRecvSeq into UDPRecvBcast.c and compile it as UDPRecvBcast. Modify UDPRecvBcast 
to receive audio from UDPSendBcast. The UDPRecvBcast program displays the initial message 
from the sender (rather than sending the message to the audio device) and adjusts its state to 
start in the middle of a broadcast.

Exercise 21.33 

Describe a strategy for initially partially filling the receive buffer before sending audio.

Answer:

Care must be taken so that the receiver does not wait for a message that has previously been 
sent. Since messages can be received out of order, the message after the one with the lowest 
sequence number may never arrive. Record the first sequence number that comes in and start 
filling the receive buffer according to the sequence numbers until a message comes in that 
would overflow the buffer. Then throw away the earliest half of the receive buffer. This should 
make room for the message just received.

Exercise 21.34 

What happens if the sender's first message giving the description of the broadcast is lost?

Answer:

The first message received contains binary audio data. The result of the receiver outputting this 
type of information to a terminal is unpredictable. The receiver should do a sanity check on the 
first message and display the message only if it consists of printing characters.

Exercise 21.35 

How does the UDP implementation of the radio broadcast behave under the four basic test 
cases?



Answer:

UDPRecvBcast behaves similarly to the other implementations. The receiver loses data if it is 
suspended long enough, and the receivers are independent.
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21.6 Multicast Implementation of Radio Broadcasts

Copy UDPSendBcast.c into UDPSendMcast.c and compile it as UDPSendMcast. Modify 
UDPSendMcast to take a multicast address as an additional command-line argument. The port 
argument is now the multicast port for sending. The sender does not need to know anything 
about the receivers and does not have any direct contact with them. The sender's only 
responsibility is to send.

Copy UDPRecvBcast.c into UDPRecvMcast.c and compile it as UDPRecvMcast. Modify 
UDPRecvMcast to receive audio from UDPSendMcast. The first command-line argument of 
UDPRecvMcast is a multicast address, and the second command-line argument is a multicast 
port. The UDPRecvMcast program now only receives messages and does not send anything over 
the network.

Exercise 21.36 

How would you incorporate into the receiver the ability to display a message indicating how far 
along the audio transmission is when it joins?

Answer:

The receiver can estimate the time from first sequence number of the first audio packet that it 
receives, given that eight sequence numbers corresponds to one second of audio.

Exercise 21.37 

How does UDPRecvMcast behave under the four basic test cases?

Answer:

UDPRecvMcast behaves as the other UDP implementations did. The receiver loses data if it is 
suspended long enough, and the receivers are independent.
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21.7 TCP Implementation Differences

All the differences between UDP and TCP discussed in Section 20.8 factor into the 
implementation of Internet Radio. The main drawback of the UDP implementation is its 
unreliability. Messages can be lost or delivered out of order. While the problem of out-of-order 
receipt of messages can be solved simply by buffering at the receiver end, message loss is 
more difficult to handle with UDP. TCP handles this automatically.

The case of a single sender and a single receiver is simpler in TCP because TCP already ensures 
that information will be received in order. Sequence numbers are not needed. Since the 
receiver can send information to the audio device no faster than 8000 bytes/second on 
average, the receiver cannot read faster than this rate on average. Because TCP has flow 
control, the sender's network subsystem automatically forces the sender to slow down if it tries 
to send too quickly. The sender, therefore, does not have to sleep to limit the rate at which it 
sends, as in Section 21.3.1. Also, because of the connection-oriented nature of TCP, the sender 
can close the connection when finished, and the receiver can detect this. The issues discussed 
in Sections 21.3.2–21.3.4 are all either irrelevant or are easily handled with TCP, though the 
receiver may still want to buffer the data to handle variation in network latency.

Multiple programs with a single receiver can be handled in a simple way, as in Section 21.4.2, 
with the server sending the list of programs to the receiver. However, because TCP provides 
byte streams rather than messages or datagrams, the receiver may not receive the entire list 
with a single read, even if the buffer is large enough and the sender sends the list with a single 
write. The information must contain a well-defined terminator, such as a blank line. The 
receiver must keep reading until it receives this terminator. Once the sender and receiver agree 
on an audio file to transmit, the implementation reduces to the single-program case.

With multiple receivers and multiple audio files, the transmissions can be considered 
independent and can be done by separate processes or threads.

Implementing the capacity to tune in while the transmission is in progress, as in Section 21.5, 
makes TCP more complicated to use, even with a single program and multiple receivers. With 
UDP, the sender just sends to all the receivers, one after another. This works because a 
problem with the network connection to a given receiver does not affect the sender's ability to 
send to other receivers. With TCP, if a server is sending audio to more than one host, network 
congestion or a busy receiver can cause write to block, delaying transmission to subsequent 
receivers. To handle this, use select, multiple processes, or multiple threads. In any of these 
cases, different receivers might be receiving at a temporarily different rate, and so the audio 
data must be buffered at the sender. Sender buffering is different from the buffering done by a 
receiver to account for network latency or out-of-order receipt. The following sections discuss 
these issues in more detail.

21.7.1 TCP implementation of one program and one receiver

Copy serverp.c from Program 18.2 on page 623 to TCPSend.c and compile it as TCPSend. 
Modify TCPSend to take a second command-line argument, the name of an audio file. After the 
sender accepts a network connection, it forks a child that opens the audio file and transmits its 
contents to the remote host. Since the child transmits the file and the parent resumes waiting 
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for another request, TCPSend can handle multiple receiver requests for the same file. Note that 
the original program transfers data from the network to standard output, whereas this program 
transfers information from a file to the network.

Copy client.c from Program 18.3 on page 624 into TCPRecv.c and compile it as TCPRecv. 
Modify TCPRecv to take an optional third command-line argument. When called with two 
command-line arguments, TCPRecv copies data from the network to the audio device. When 
called with three command-line arguments, TCPRecv copies data from the network to the file 
named by the third argument. Open the output file as in Exercise 21.2.

TCPSend and TCPRecv can be used together to transfer audio from the sender machine to the 
receiver machine.

Exercise 21.38 

How does TCPRecv behave under Test Case 1 and Test Case 2?

Answer:

If the receiver is suspended, the sender eventually blocks. No data is lost. If the receiver writes 
the data to a file, the file should be identical to the input audio file. If the network and the disk 
drive are faster than the audio device (a likely occurrence), transmission to a file completes 
much more rapidly than transmission to an audio device.

Exercise 21.39 

What happens if the parent of TCPSend opens the audio file before forking any children?

Answer:

In this case, all children share the same file descriptor and have the same offset into the file for 
reading. The children would transmit mutually disjoint pieces of the audio file rather than each 
transmitting the complete file.

21.7.2 TCP implementation of multiple programs with one receiver

Copy TCPSend.c into TCPSendProg.c and compile it as TCPSendProg. Modify TCPSendProg to 
send multiple audio files. Now, as in UDPSendProg, the file command-line argument specifies 
the name of a file containing the program listing. Each line of the program listing has the name 
of an audio file and a description of the file. When the sender accepts a connection from the 
receiver, it sends the program listing to the receiver, followed by an empty line. The sender 
waits for another message from the receiver containing the number of the audio file in network 
byte order. The value 1 represents the first file. Any value out of range causes the sender to 
close the connection.

Copy TCPRecv.c into TCPRecvProg.c and compile it as TCPRecevProg. Modify TCPRecvProg to 
be used with TCPSendProg. After reading the list of audio files from the sender, TCPRecvProg 



presents the information to the user as a numbered list and prompts the user to make a 
selection by entering a number. TCPRecvProg sends the user's selection to the sender and plays 
the audio file as before. The sender terminates its initial message by an empty line. Do not 
assume that the receiver can receive the entire list with a single read.

Exercise 21.40 

How can you test that TCPRecvProg correctly handles the initial message?

Answer:

Temporarily modify the sender so that it sends the initial message in two pieces with a sleep in 
between.

21.7.3 TCP implementation of radio broadcasts

With TCP and a single receiver per process, the sender can rely on TCP flow control to regulate 
the rate at which it sends data. A receiver that malfunctions and cannot read from the network 
does not delay the other receivers. Similarly, a receiver that just throws away data rather than 
writing to the audio device can still receive data at the rate of the network, which may be much 
faster than the audio devices of other receivers. In this case, too, the faulty receiver does not 
affect the other receivers because the sending to different receivers is independent.

When broadcasts can be joined in progress, only one process or thread is reading from the 
audio file and the data must be sent to all receivers. Different receivers may be able to handle 
the data at slightly different rates, at least over short time intervals. The sender can handle the 
uneven rates by using a shared buffer that contains blocks of the file. In a threaded 
implementation, the sender's writer fills the buffer at the rate of the audio device and the 
various reader threads access the buffer to transmit audio. If a reader thread reads too quickly, 
it must wait for the buffer to be filled. If a reader thread reads too slowly, then buffer slots are 
overwritten before being read by that reader thread.

Copy TCPSend.c into TCPSendBcast.c and compile it as TCPSendBcast. Modify TCPSendBcast 
to use multiple threads. The main thread starts by creating a writer thread to handle the filling 
of the buffer. The main thread is responsible for accepting connections. For each connection, 
the main thread creates a reader thread that is responsible for sending the data from the buffer 
to a particular remote host. The writer fills the buffer at a rate corresponding to the audio 
device. Use a timer that generates a signal at a given rate compensated for timer drift (Section 
9.6). The simplest implementation has all threads blocking the signal while the writer uses 
sigwait to wait for the particular signal. No signal handler is necessary for this implementation. 
If no buffer slots are available, the writer writes over the oldest buffer slot.

Reader threads do not remove items from the buffer since each reader should be able to read 
all of the data. Each reader thread attempts to send data as fast as possible, blocking only on 
the write to the network and after it has accessed all items currently in the buffer.

Exercise 21.41 

What type of synchronization should TCPSendBcast use to protect its buffer?



Answer:

Since audio is time critical, writers should have priority. Each buffer slot should have reader/
writer synchronization with strong writer preference.

Exercise 21.42 

How can the individual readers keep track of which packets they have already accessed?

Answer:

It is not sufficient to just keep track of which slots have been accessed, since the writer writes 
new items over existing ones. Each buffer slot keeps the sequence number of the packet it 
currently holds. Each reader keeps track of the sequence number of the last packet it sent and 
blocks if the sequence number in the next buffer slot is not greater than this value. 
TCPSendBcast does not need to send the sequence numbers to remote receivers. TCP handles 
missing packets and out-of-order delivery on transmission, and the sender controls the rate of 
play.

Exercise 21.43 

Which buffer entry should a new reader thread send when it starts?

Answer:

If the reader thread sends the item with the lowest sequence number, it may have some of the 
next buffers overwritten before it can access them. If the newly created reader thread starts 
eight items later, it is guaranteed that the writer will sleep for at least one second before 
overwriting any of the next buffers. Assuming a buffer size of at least 16, starting halfway 
through the buffers would be a reasonable choice.

Exercise 21.44 

How should you modify TCPRecv to work with TCPSendBcast?

Answer:

TCPRecv works without modification. Since sequence numbers are not attached to the data, the 
receiver does not care that it is receiving from the middle of the broadcast.

Exercise 21.45 

What is wrong with the following scheme for having a reader thread of the sender protect the 
buffers?

1.  Obtain a read lock for the slot buffer.



2.  Copy the data from the appropriate buffer slot to the network.

3.  Unlock the buffer slot.

Answer:

With TCP, writing to the network can block if the remote receiver is slow in processing the data. 
The reader's lock would prevent the writer from accessing the shared buffer.

Exercise 21.46 

A correct method for the reader thread to access the shared buffer is as follows.

1.  Obtain a read lock for the buffer slot.

2.  Copy the data from the appropriate buffer into a local memory.

3.  Unlock the buffer slot.

4.  Write the data from the local memory to the network.

This implementation ensures that the buffers will only be locked for a short time and that a 
remote receiver cannot affect access to the buffer by the writer thread.

Exercise 21.47 

Suppose each buffer slot holds 1000 bytes and that it takes 10 ns to copy a byte from one 
memory location to another. Estimate the maximum time that a reader would have the buffer 
locked for a single transfer.

Answer:

The nominal answer is 10 microseconds plus the time for locking and unlocking. However, since 
the thread may lose the CPU during the transfer, the actual time may be longer.

Exercise 21.48 

How does TCPRecv behave under the four test conditions of Section 21.1?

Answer:

The maximum rate of output is independent of whether the result goes to a file or to the audio 
device since the rate is controlled by the sender. Suspending a receiver may cause the reader 
thread for this receiver to skip packets, but the suspension should not affect the other receivers 
if the synchronization at the sender is correct.
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21.8 Receiving Streaming Audio Through a Browser

This section discusses how to run the Internet Radio programs from a browser. Create a web 
page containing a list of links to the broadcasts that are available. When a user clicks on a link, 
the browser launches a receiver helper program to receive and play the audio program.

21.8.1 Using browser helper applications

You may have noticed that when you click on certain links, the corresponding file does not 
appear in your browser window, but rather the browser launches a separate program, called a 
helper application, to handle the data sent by the server. For example, if you have a Real Audio 
Player installed on your machine and have set your browser to use this application, clicking on 
a link for a file with extension ram causes the browser to store the corresponding file as a 
temporary file on the local machine. The browser then launches the Real Audio Player 
application, passing the temporary file name to the application as a command-line argument. 
The file contains the information the Real Audio Player needs to locate the audio program.

Browsers use one of two methods to identify the type of resource being sent and the 
application that should handle this resource. Some browsers use the file extension to determine 
the type of resource; others rely on a Content-Type header line in the server response. 
Browsers that use file extensions store the correspondence between resource types and 
filename extensions in a file, typically named mime.types. The word MIME is an acronym for 
Multipurpose Internet Mail Extensions and was originally intended for mail attachments. 
Applications now interpret mime types more generally to associate an application type with a 
file extension. Web server responses often include a header line that describes the type of 
resource being sent.

Exercise 21.49 

For an ordinary text document in HTML format, a server might send the following header line.

Content-Type: text/html

For a file with the ram extension, the server might send the following.

Content-Type: audio/x-pn-realaudio

When the browser receives this header line, it checks to see if a helper application has been set 
up with type audio/x-pn-realaudio, and if so, it puts the resource sent by the web server in a 
temporary file and calls that application with the name of the temporary file as a command-line 
argument.

When classifying resources on the basis of file extensions, the browser looks for an entry in its 
mime.types file corresponding to the ram extension such as the following.

audio/x-pn-realaudio   ram rm
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The preceding command specifies that both the ram and rm extensions should be associated 
with audio applications of type x-pn-realaudio.

Start with one of your receiver programs, say, TCPRecv.c from Section 21.7.1 and copy it into 
TCPRecvMime.c. Modify TCPRecvMime to take one command-line argument, the name of a file 
containing the host name and port number of the sender.

Exercise 21.50 

Suppose TCPRecvMime uses the following to read the host name and port tokens from the file 
specified on its command line.

scanf("%s %d", hostname, &port);

What problems might occur, assuming that hostname is an array of char and that port is an 
integer?

Answer:

The TCPRecvMime program has no way of telling in advance how long the host name is. 
Although valid host names cannot be too long, anything can appear in the resource file 
referenced on a web page. A bad resource file could generate a buffer overflow with potentially 
serious security implications. One solution is to allocate a buffer of prespecified size, say, 80 
bytes, for the host name and use the following line.

scanf("%79s %d", hostname, &port);

The numerical qualifier on %s prevents scanf from filling hostname with more than 79 
characters and the string terminator.

Test TCPRecvMime with TCPSend by creating a file containing the host and port number. Setting 
TCPRecvMime to be launched through a browser requires the following three steps that are 
described in the subsections below.

1.  Set the web server to handle a new mime type and send the appropriate Content-Type 
line. (This step needs a system administrator and is necessary for browsers that use this 
line to determine the application type.)

2.  Set your browser to handle the new mime type by launching TCPRecvMime when it 
receives a resource of the appropriate type.

3.  Create a web page for testing.

21.8.2 Setting a new mime type in your web server

Setting up your web server to handle a new mime type requires that you have administrative 



access to the web server. If you do not have administrative access, ask your system 
administrator to do this step for you. Alternatively, you can use one of the mime types already 
set up for your browser. We discuss this option in Section 21.8.5.

Depending on your web server, you can set a new server mime type by modifying a file of 
mime types or by modifying the configuration file. For example, if your web server 
configuration directory has a file with a name similar to mime.types, add the following line to 
this file.

application/uspir      uspir

The preceding line allows the web server to associate an application type called application/
uspir with the file extension .uspir. Alternatively, you might be able to just add the following 
line to the web server configuration file, possibly a file called httpd.conf.

AddType application/uspir      uspir

You must restart the web server after changing this file.

You can use the client2 program from Program 18.5 on page 629 to verify that your web 
server is set correctly for this mime type. Create a small file called test.uspir in a directory 
accessible to the web server. If the web server is running on host webhost and this file is in the 
directory mydir relative to the web root directory, start client2 with the following command.

client2 webhost 80

Type the following line terminated by an empty line.

GET /mydir/test.uspir HTTP/1.0

You should see the file after a few header lines. A correct response should have a header line 
similar to the following.

Content-Type: application/uspir

21.8.3 Setting your browser to handle a new mime type

The method for setting a new mime type for a browser depends on which browser you are 
using. For Netscape 6 or 7, go to Edit  Preferences  Navigator  Helper 
Applications. Click on New Type and fill in the information requested. The Description can be 
any phrase. The File extension should be uspir and the MIME type should be application/
uspir. For the application, put the full pathname for your TCPRecvMime program.

21.8.4 Creating a web page

Create a file with extension .uspir containing the host name and port number of your TCPSend 



program. The values should specify a server that is distinct from the web server. Make the file 
accessible to your web server and create a web link to the file. Start TCPSend. When you click 
on the link, you should start hearing the audio program.

21.8.5 Using a predefined mime type

If you cannot add a new mime type to your web server, you can use one of the predefined 
types that your browser is not using or does not use often. Some suggested extensions to try 
are ez, hqx, cpt, oda, smi and mif. You can test these by creating a file with the appropriate 
extension in a place accessible to your web server and issuing the appropriate GET command 
from client2. You should get back a Content-Type line giving the corresponding application 
type.

Set your browser to call your TCPRecvMime program for this application type. Follow the 
procedure in Section 21.8.3. If the application type is already defined for your web browser, 
click EDIT and modify the values.
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21.9 Additional Reading

Many radio and television stations now support streaming archives of their programming. A 
favorite of ours is the National Public Radio Archive that can be accessed at www.npr.org. The 
Web page of Internet Talk Radio is http://town.hall.org/radio. We often use the Geek of the 
Week programs to test our projects. Historical streaming media are freely available in many 
areas. For example, the Oyez Project of Northwestern University maintains the US Supreme 
Court Multimedia Database at http://oyez.nwu.edu. The site archives original recordings of 
famous cases as well oral arguments and oral opinions in streaming audio format.

Understanding networked multimedia applications and technology by Fluckiger [37] is dated but 
gives a good overview of terminology and applicable standards. The Technology of Video and 
Audio Streaming by Austerberry and Starks [8] and Streaming Media Bible by Mack [75] are 
newer guides to actually using streaming media with current products. For a technical guide to 
multicast and multicast applications, see Multicast Communication: Protocols, Programming, 
and Applications by Wittmann and Zitterbart [131].

Many of the current streaming media tools use RTSP (Realtime Streaming Protocol) built over 
RTP (Realtime Transport Protocol). You can find a good overview of RTP and its enhancements 
in the article "Timer reconsideration for enhanced RTP scalability," by Rosenberg and 
Schulzrinne [100]. The Multiparty Multimedia Session Control (mmusic) Working Group [84] of 
the IETF (Internet Engineering Task Force) [55] is in charge of maintaining and revising the 
RTSP and RTP specifications. This working group also oversees the development of the Session 
Initiation Protocol (SIP) for supporting voice over IP (VOIP) applications.
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Chapter 22. Project: Server Performance

Large-scale client-server architecture is ubiquitous on the Internet. Web sites may service 
thousands of simultaneous clients, with individual servers processing hundreds of clients. 
Parallelism can be achieved by multiple processes, by multiple threads within a process, by 
asynchronous I/O and events within a single process thread or by combinations of these 
approaches. This chapter explores the interaction of threading, forking, network communication 
and disk I/O on the performance of servers.

Objectives

●     Learn to measure times and control timing errors
●     Experiment with server disk I/O performance
●     Explore tradeoffs between threads and processes
●     Use the POSIX thread libraries
●     Understand different threaded-server architectures
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22.1 Server Performance Costs

Effective deployment of high-performance web servers has become an increasingly important 
commercial enterprise. Nearly every organization has a web site that serves as an important 
access point for customers or members. Commercial sites are particularly concerned with 
handling peak loads and with fault tolerance.

The administrator of a single web server must decide how to distribute data across available 
disks as well as how many separate processes and separate threads within server processes to 
create. The effectiveness of different strategies depends on processor and system architecture 
as well as on the offered load.

Early web servers created a new process to handle each HTTP request. Later web servers, such 
as Squid [130] and Zeus [137], used a single-process approach to reduce context-switch and 
synchronization costs. Process creation costs considerably more than thread creation, but 
thread creation also has some associated costs. Kernel-level thread creation usually costs more 
than user-level thread creation, but user-level threads must share the kernel resources 
allocated for a single process.

Creation costs can be offset by preliminary creation of either processes or threads and causing 
them to wait at a synchronization point until activated. When the process or thread completes 
its task, it executes another blocking call and resumes waiting. Overhead with this approach 
depends on the efficiency and scalability of the blocking calls.

Synchronization costs also factor into the efficiency of cache and disk accesses. A single 
process/single thread architecture that uses asynchronous I/O can be more effective than 
multiple threads for certain types of cached workloads. Remember that user threads are 
implemented by a software layer that uses jackets around system calls and manages 
asynchronous I/O. Sometimes the overhead for this layer is greater than a carefully optimized 
implementation that directly uses asynchronous I/O. However, event-driven asynchronous I/O 
is usually more complex to program.

Context-switch costs are another factor in server performance. A switch between user threads 
within the same process does not incur the overhead of a kernel context switch and can 
therefore be done quite efficiently. Context switches and synchronization are generally more 
expensive at the process level than at the thread level.
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22.2 Server Architectures

Chapter 18 introduced three models of client-server communication: the serial-server (Example 
18.2), the parent-server (Example 18.3), and the threaded-server (Example 18.6), 
respectively. Because the parent-server strategy creates a new child process to handle each 
client request, it is sometimes called process-per-request. Similarly, the threaded-server 
strategy creates a separate thread to handle each incoming request, so it is often called the 
thread-per-request strategy.

An alternative strategy is to create processes or threads to form a worker pool before accepting 
requests. The workers block at a synchronization point, waiting for requests to arrive. An 
arriving request activates one thread or process while the rest remain blocked. Worker pools 
eliminate creation overhead, but may incur extra synchronization costs. Also, performance is 
critically tied to the size of the pool. Flexible implementations may dynamically adjust the 
number of threads or processes in the pool to maintain system balance.

Example 22.1 

In the simplest worker-pool implementation, each worker thread or process blocks on the 
accept function, similar to a simple serial server.

for (  ;  ; )   {
   accept request
   process request
}

Although POSIX specifies that accept be thread-safe, not all operating systems currently 
support thread safety. Alternatively, workers can block on a lock that provides exclusive access 
to accept, as the next example shows.

Example 22.2 

The following worker-pool implementation places the accept function in a protected critical 
section so that only one worker thread or process blocks on accept at a time. The remaining 
workers block at the lock or are processing a request.

for (  ;  ; )  {
   obtain lock (semaphore or mutex)
      accept request
   release lock
   process request
}

POSIX provides semaphores for interprocess synchronization and mutex locks for 
synchronization within a process.

Exercise 22.3 
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If a server uses N workers, how many simultaneous requests can it process? What is the 
maximum number of simultaneous client connections?

Answer:

The server can process N requests simultaneously. However, additional client connections can 
be queued by the network subsystem. The backlog parameter of the listen function provides 
a hint to the network subsystem on the maximum number of client requests to queue. Some 
systems multiply this hint by a fudge factor. If the network subsystem sets its maximum 
backlog value to B, a maximum of N + B clients can be connected to the server at any one 
time, although only N clients may be processed at any one time.

Another worker-pool approach for threaded servers uses a standard producer-consumer 
configuration in which the workers block on a bounded buffer. A master thread blocks on 
accept while waiting for a connection. The accept function returns a communication file 
descriptor. Acting as the producer, the master thread places the communication file descriptor 
for the client connection in the bounded buffer. The worker threads are consumers that remove 
file descriptors and complete the client communication.

The buffer implementation of the worker pool introduces some interesting measurement issues 
and additional parameters. If connection requests come in bursts and service time is short, 
buffering can smooth out responses by accepting more connections ahead than would be 
provided by the underlying network subsystem. On the other hand, if service time is long, 
accepted connections languish in the buffer, possibly triggering timeouts at the clients. The 
number of additional connections that can be accepted ahead depends on the buffer size and 
the order of the statements synchronizing communication between the master producer and 
the worker consumers.

Exercise 22.4 

How many connections ahead can be accepted for a buffer of size M with a master and N 
workers organized as follows?

Master:
   for (  ;  ;  ) {
      obtain a slot
      accept connection
      copy the file descriptor to slot
      signal item
    }

Worker:
   for (  ;  : ) {
      obtain an item (the file descriptor)
      process the communication
      signal slot
   }

Answer:



If N  M, then each worker holds a slot while processing the request, and the master cannot 
accept any connections ahead. For N < M the master can process M – N connections ahead.

Exercise 22.5 

How does the following strategy differ from that of Exercise 22.4? How many connections 
ahead can be accepted for a buffer of size M with a master and N workers organized as follows?

Master:
   for (  ;  ;  ) {
      accept connection
      obtain a slot
      copy the file descriptor to slot
      signal item
   }

Worker:
   for (  ;  ;  ) {
      obtain an item (a file descriptor)
      signal slot
      process the communication
   }

Answer:

The strategy here differs from that of Exercise 22.4 in two respects. First, the master accepts a 
connection before getting a slot. Second, each worker thread immediately releases the slot 
(signal slot) after copying the communication file descriptor. In this case, the master can accept 
up to M+1 connections ahead.

Exercise 22.6 

In what way do system parameters affect the number of connections that are made before the 
server accepts them?

Answer:

The backlog parameter set by listen determines how many connections the network 
subsystem queues. The TCP flow control mechanisms limit the amount that the client can send 
before the server calls accept for that connection. The backlog parameter is typically set to 
100 or more for a busy server, in contrast to the old default value of 5 [115].

Exercise 22.7 

What a priori advantages and disadvantages do worker-pool implementations have over thread-
per-request implementations?

Answer:



For short requests, the overhead of thread creation and buffer allocation can be significant in 
thread-per-request implementations. Also, these implementations do not degrade gracefully 
when the number of simultaneous connections exceeds system capacity—these 
implementations usually just keep accepting additional connections, which can result in system 
failure or thrashing. Worker-pool implementations save the overhead of thread creation. By 
setting the worker-pool size appropriately, a system administrator can prevent thrashing and 
crashing that might occur during busy times or during a denial-of-service attack. Unfortunately, 
if the worker-pool size is too low, the server will not run to full capacity. Hence, good worker-
pool deployments need the support of performance measurements.

Exercise 22.8 

Can the buffer-pool approach be implemented with a pool of child processes?

Answer:

The communication file descriptors are small integer values that specify position in the file 
descriptor table. These integers only have meaning in the context of the same process, so a 
buffer-pool implementation with child processes would not be possible.

In thread-per-request architectures, the master thread blocks on accept and creates a thread 
to handle each request. While the size of the pool limits the number of concurrent threads 
competing for resources in worker pool approaches, thread-per-request designs are prone to 
overallocation if not carefully monitored.

Exercise 22.9 

What is a process-per-request strategy and how might it be implemented?

Answer:

A process-per-request strategy is analogous to a thread-per-request strategy. The server 
accepts a request and forks a child (rather than creating a thread) to handle it. Since the main 
thread does not fork a child to handle the communication until the communication file 
descriptor is available, the child inherits a copy of the file descriptor table in which the 
communication file descriptor is valid.

The designs thus far have focused on the communication file descriptor as the principal 
resource. However, heavily used web servers are often limited by their disks, I/O subsystems 
and memory caches. Once a thread receives a communication file descriptor and is charged 
with handling the request, it must locate the resource on disk. This process may require a chain 
of disk accesses.

Example 22.10 

The client request to retrieve /usp/exercises/home.html may require several disk accesses by 
the OS file subsystem. First, the file subsystem locates the inode corresponding to usp by 
reading the contents of the web server's root directory and parsing the information to find usp. 



Once the file subsystem has retrieved the inode for usp, it reads and parses data blocks from 
usp to locate exercises. The process continues until the file subsystem has retrieved the 
actual data for home.html. To eliminate some of these disk accesses, the operating system may 
cache inodes indexed by pathname.

To avoid extensive disk accesses to locate a resource, servers often cache the inode numbers of 
the most popular resources. Such a cache might be effectively managed by a single thread or 
be controlled by a monitor.

Disk accesses are usually performed through the I/O subsystem of the operating system. The 
operating system provides caching and prefetching of blocks. To eliminate the inefficiency of 
extra copying and blocking through the I/O subsystem, web servers sometimes cache their 
most popular pages in memory or in a disk area that bypasses the operating system file 
subsystem.
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22.3 Project Overview

This project explores the performance tradeoffs of several server designs and examines the 
interaction of the implementations during disk I/O and cache access. Section 22.4 describes a 
test client that standardizes the offered load for different test architectures. Section 22.5 
explores the use of multiple client drivers to load a single server. Sections 22.6-22.9 outline a 
project to compare efficiency of thread-per-request versus process-per-request 
implementations for different offered loads. Section 22.10 looks at the effect of disk I/O. Later 
sections discuss how to design experiments and how to write up the results.

[ Team LiB ]   
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22.4 Single-Client Driver

This section describes a singleclientdriver program that can be used to present controlled 
offered loads to servers and to gather statistics. The singleclientdriver program forks a 
specified number of processes, each of which makes a specified number of connections to a 
server that is listening on a specified host and port. The singleclientdriver program takes 
the following command-line arguments.

1.  Hostname of the server

2.  Port number of the server

3.  Number of processes to fork

4.  Number of connections per process

5.  Number of requests per connection

6.  Smallest response size in bytes

7.  Largest response size in bytes

Each process of singleclientdriver sequentially creates a connection, performs the specified 
communication, and then closes the connection. The communication consists of a specified 
number of request-response pairs. The process sends a request specifying the size of the 
desired response and then does a blocking read to wait for that response. The process picks a 
desired response size that is a random integer between the smallest and largest response size.

22.4.1 Processing a connection

The client driver algorithm for processing a connection consists of the following.

1.  Get the time.

2.  Connect to the specified server.

3.  For the number of requests per connection do the following.

a.  Get the time.

b.  Send a request (that includes the desired length of the response).

c.  Read the response.
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4.  Get the time.

5.  Close the connection.

6.  Update and save the statistics.

Each request message from a client process consists of a 4-byte message containing the length 
of the response in network byte order. Each time a client process sends a request, it increments 
its client message number. After closing a connection, the client increments its connection 
count and resets the request count to zero. Write your program so that it allows the saving of 
different levels of detail depending on a loglevel flag. The level can range from only keeping 
statistics (as described below) to full logging that includes saving the response header 
information. Take care not to do any output or string processing (e.g., sprintf) between the 
starting and ending timing statements, since these operations may be comparable in time to 
the operations that you are timing.

The algorithm glosses over the possibility of a failed connection attempt, which may occur if the 
server or network experiences congestion. The client should keep track of the number of failed 
connections. You can handle failed connections by retrying, by continuing, or by aborting the 
client. Each of these approaches introduces subtle problems for keeping correct statistics. Be 
sure to think carefully about this issue and devise and document a strategy.

22.4.2 Programming the response

Write a test server program that waits for connection requests from the client driver. After 
accepting a connection, the test server calls a handleresponse function that takes the 
communication file descriptor returned from accept as a parameter. The function reads 
requests from the socket designated by the communication file descriptor and sends response 
messages. When the function detects that the remote end has closed the socket, it closes the 
socket and returns. The response message consists of a response identification followed by 
response data of the specified length. The response identification contains the following three 
32-bit integers in network byte order.

1.  Process ID of server process.

2.  Thread number of the thread that processes the message (or 0 for an unthreaded 
implementation). The thread number is a value that is unique for each thread of the 
process. The main thread passes this unique identifier to each thread on creation.

3.  Message number. (Messages processed by a particular thread or process are numbered 
consecutively.)

This simple test server avoids disk accesses by using a previously created buffer with a dummy 
message to send as a response. The server may need to send the dummy message multiple 
times to fulfill the length requirement of the request. Think about how large a buffer the server 
requires and how this might affect the timing of the result. You can pass the address and size 
of the buffer to the handleresponse function.

22.4.3 Gathering statistics



Your singleclientdriver program should gather statistics about mean, standard deviation 

and median of both the connection times and the response times. The sample mean  for a 
sample of size n is given by the following formula.

The sample standard deviation is given by the following formula.

For evaluation, combine the statistics of the processes. Calculating combined statistics for the 
mean and standard deviation is straightforward—just accumulate the number of values, the 
sum of the values, and the total of the squares of the values.

The median of a distribution is the value in the middle position of the sorted distribution values. 
(For distributions with an even number of values, the median is the mean of the middle two 
values.) When distributions are skewed, median times often better reflect behavior than do 
mean times. Finding the median of combined distributions typically requires that all the values 
be kept and sorted.

An alternative method of estimating the median of a combined distribution is to keep a 
histogram of the values for each distribution and then combine the histograms and estimate the 
median from these. A histogram is an array of counts of the number of times a value falls in a 
given interval. For unbounded distributions, the last histogram entry accumulates the number 
of values larger than a specified value. Combine histograms by adding corresponding entries. 
Estimate the median by accumulating the counts in the bins, starting with the bin representing 

the smallest value, until the sum reaches , where n is the number of values in the 
distribution. The median can be estimated as the midpoint of the range of values corresponding 
to the bin. You can also use linear interpolation on the range of values counted by the bin 
containing the median value. You may wish to use histogram approximation for calculating the 
median in the short form of logging.

22.4.4 Testing the client

Test the singleclientdriver for different values of the command-line arguments. You should 
devise tests in which 5, 10 and 20 simultaneous connections are maintained for a reasonable 
length of time.

Exercise 22.11 



What parameters determine the number of simultaneous connections that singleclientdriver 
offers to the test server?

Answer:

The nominal number of simultaneous connections is the same as the number of child processes. 
However, during the initial setup period when processes are forked and during the final 
shutdown period when processes are completing and exiting, the number of connections is 
unstable. Hence, the individual processes of singleclientdriver should be active long enough 
to offset these unstable phases. Also, if the number of requests per connection multiplied by 
the number of bytes per request is too small, each connection will be of short duration and 
client processes will spend most of their time trying to establish connections rather than 
communicating. Finally, a given host can only effectively support a limited number of processes 
performing these activities. To effectively load a server under test conditions, you should run 
singleclientdriver programs on several hosts at the same time.

Exercise 22.12 

What parameters describe the offered load?

Answer:

The offered load is determined by the rate of connection attempts, the duration of each 
connection once established and the amount of I/O required to service the request.

Exercise 22.13 

What external factors might influence the presentation of offered load?

Answer:

Network traffic, processor load and disk load from sources external to the web server and client 
drivers could have a significant impact on the results.

[ Team LiB ]   
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22.5 Multiple-Client Driver

A single host, even though it is running multiple threads or processes, may not be able to offer 
a large enough load to a web server to measure its capacity. Your implementation should have 
the following features to support running multiple loading clients.

●     Be able to coordinate the clients to send at the same time.
●     Be able to collect and analyze combined statistics from all clients.
●     Be sure that the traffic generated by the clients for synchronization and statistics does 

not interfere with the traffic being measured.

This section discusses a client-driver design that can be used to put a coordinated load on a 
server and gather statistics with minimal interference with the measurements.

The design involves two programs: a control driver and a client driver. The control driver 
controls multiple copies of the client driver and gathers and analyzes statistics from them. The 
client driver takes an optional port number in addition to the command-line arguments 
specified in Section 22.4. Without the optional port number, the multiple-client driver behaves 
like the single-client driver. If the optional port is given, the client communicates with the 
control driver through this port. The client starts by listening for a connection request on the 
optional port before loading the server and sends statistical data back over the connection. A 
synchronization mechanism is set up so that all clients start almost simultaneously and do not 
send their statistics over the network until all other clients have completed communication with 
the server.

Copy your singleclientdriver.c into multipleclientdriver.c and compile it as 
multipleclientdriver. Modify multipleclientdriver to take an additional optional control 
port number as a command-line argument. If this optional argument is present, 
multipleclientdriver does the following.

1.  Wait for a connection request from the control host on the control port.

2.  When this request arrives, send the number of child processes to the control host as a 
32-bit integer in network byte order.

3.  Create the child processes to load the host.

4.  When loading completes, send a single byte to the control host and wait for a 1-byte 
response.

5.  When a response from the control host arrives, forward data to the control host in an 
appropriate format and exit. A format for the data is given below; it includes a special 
record to indicate that all the data has been sent.

Notice that multipleclientdriver acts as both a client of the server being tested and a server 
for the control host.
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Write a program called controldriver.c to control multipleclientdriver. The first 
command-line argument of controldriver specifies the port number for communicating with 
multipleclientdriver. This is followed by one or more command-line arguments specifying 
the names of the hosts running multipleclientdriver.

The controldriver program does the following.

1.  Establish a connection to each of the hosts specified on the command line, using the 
given port number. Keep the file descriptors for these connections in an array.

2.  Read a 4-byte integer in network byte order from each connection. Each integer 
specifies the number of child processes on the corresponding host. Save the integers in 
an array.

3.  For each connection, read a byte for each process corresponding to that connection. 
(When all the bytes have been read, all the processes have finished loading the server.)

4.  After receiving all the bytes from all connections, do the following for each process on 
each connection,

a.  Send a single byte. (This tells a process to start sending its data.)

b.  Read data until no more data is available from that process. The event type 
EVENT_TYPE_DATA_END can be used to signify the end of data from a single 
process.

5.  After receiving all data, analyze and report the results.

One of the important design decisions is the format for the data that multipleclientdriver 
sends to controldriver. If multipleclientdriver sends raw data, then controldriver can 
dump the data to a single file for later processing or it can perform analysis itself.

Since controldriver does not necessarily know how much information will be sent from each 
process, it is simplest if the data is sent in fixed-length records. The controldriver program 
can store these in a linked list as they come in or write the data to a file. A possible format for 
a data record is the following.

typedef struct {
   int_32 time_sec;
   int_32 time_nsec;
   int_32 con;
   int_32 req;
   int_32 pid;
   int_32 serv_pid;
   int_32 serv_tid;
   int_32 serv_msgnum;
   int_32 event;
} con_time_t;



All the values in this structure are 4-byte integers in network byte order. Each record 
represents an event that occurred at one of the multipleclientdriver processes. The first 
two fields represent the time at which the event took place. These values represent wall clock 
times on the individual multipleclientdriver hosts, and only differences are relevant since 
the clocks on these hosts are not assumed to be synchronized. The con and req fields 
represent the connection number and request number for a given process of 
multipleclientdriver. Different processes are distinguished by the pid field, which gives the 
process ID of the process generating the data. The value here is important only in 
distinguishing data from different processes, since all the processes of a given 
multipleclientdriver send concurrently. The next three fields are the values returned to the 
multipleclientdriver from the server being tested. The last field is an indicator of the event. 
Some possible types include the following.

#define EVENT_TYPE_PROCESS_START 0
#define EVENT_TYPE_CONNECTION_START 1
#define EVENT_TYPE_CONNECTION_END 2
#define EVENT_TYPE_SERVER_LOAD_DONE 3
#define EVENT_TYPE_CLIENT_ALL_DONE 4
#define EVENT_TYPE_CLIENT_FIRST_DATA_SENT 5
#define EVENT_TYPE_CLIENT_LAST_DATA_SENT 6
#define EVENT_TYPE_SERVER_DATA_REQUEST_START 7
#define EVENT_TYPE_SERVER_DATA_REQUEST_END 8
#define EVENT_TYPE_DATA_END 9

The controldriver process can either keep a linked list of events for each 
multipleclientdriver process or it can store information about which connection the data 
came from in a single linked list.

22.5.1 Alternative multiple-client design

An alternative design puts all the parameters in the control program. The 
multipleclientdriver program takes a single command-line argument: the port number for 
communicating with the control driver. After establishing the connections, the control driver 
sends its command-line arguments to each multipleclientdriver. Since both string 
(hostname) and numeric data (everything else) are to be communicated, a format for this 
information would need to be specified. If all machines were ASCII-character based, a string 
that the client would read one character at a time could be sent. An alternative would be to 
send all data in numeric form (network-byte-ordered integers) by sending the IP address of the 
server rather than its name.

Since the control driver knows the number of processes on each client, the client driver does 
not need to send any information back to the control driver until it is ready to send statistics.

The control driver would need more command-line arguments or a configuration file containing 
the name and port number of the server as well as the number of processes, connections, 
requests and request size. A configuration file could have one line for each client driver, 
specifying the name and port number of the client driver as well as the number of processes, 
connections, requests and connection size. The control program takes the server name, port 
and configuration file name as command-line arguments. The same configuration file can be 
used to put loads on different servers.

file:///D|/Tutoriales%20&%20Programacion/Prep%20Finales/XxX/Prentice%20Hall%20-%20Unix%20Systems%20Programming%202nd%20Ed/0130424110_14051533.html


[ Team LiB ]   

file:///D|/Tutoriales%20&%20Programacion/Prep%20Finales/XxX/Prentice%20Hall%20-%20Unix%20Systems%20Programming%202nd%20Ed/NFO/lib.html


[ Team LiB ]   

22.6 Thread-per-request and Process-per-request Implementations

This section specifies programs to compare the performance of thread-per-request and process-
per-request server implementations when disk I/O is not a factor. Write two server programs, 
thread_per_request and process_per_request, that are to be tested under the same offered 
load.

The thread_per_request server takes the port number on which to accept connections as a 
command-line argument. The main thread listens for connection requests and creates a 
detached thread to handle the communication. The detached thread is passed an array 
containing the communication file descriptor and a thread number. The thread calls 
handle_request of Section 22.4.2 and then exits.

Implement a program that uses child processes instead of threads to handle the requests. The 
process_per_request program is similar to thread_per_request except that the main 
program waits for completed children (e.g., Example 3.13). Be sure to use the WNOHANG option 
when waiting so that the server can process concurrent children. Compare the performance of 
these two approaches as a function of the offered load. Present your results with graphics and a 
written discussion.

[ Team LiB ]   
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22.7 Thread-worker-pool Strategy

A thread-worker-pool strategy creates a fixed number of workers at the beginning of execution 
instead of creating a new thread each time a connection is made. Thread-worker-pool 
implementations have several advantages over thread-per-request implementations.

●     The cost of creating worker threads is incurred only at startup and does not grow with 
the number of requests serviced.

●     Thread-per-request implementations do not limit the number of simultaneous active 
requests, and the server could run out of file descriptors if requests come in rapid 
succession. Thread-worker-pool implementations limit the number of open file 
descriptors based on the number of workers.

●     Because thread-worker-pool implementations impose natural limits on the number of 
simultaneous active requests, they are less likely to overload the server when a large 
number of requests come in.

Write a thread_worker_pool server that takes the listening port number and the number of 
worker threads as command-line arguments. Create the specified number of worker threads 
before accepting any connections. Each worker thread calls u_accept and handles the 
connection directly.

Although POSIX specifies that accept be thread-safe, some systems have not yet complied with 
this requirement. One way to handle this problem is to do your own synchronization. Use a 
single statically initialized mutex to protect the call to u_accept. Each thread locks the mutex 
before calling u_accept and unlocks it when u_accept returns. In this way, at most one thread 
at a time can be waiting for a connection request. As soon as a request comes in, the worker 
thread unlocks the mutex, and another thread can begin waiting.

[ Team LiB ]   
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22.8 Thread-worker Pool with Bounded Buffer

This section describes an implementation of a thread-worker pool that synchronizes on a 
bounded buffer containing client communication file descriptors. (See, for example, Section 
16.5.) The server is a producer that places communication file descriptors in a circular buffer. 
The worker threads are consumers that wait for the communication file descriptors to become 
available in the buffer.

Write a worker_pool_buffer server that takes three command-line arguments: the listening 
port number, the size of the bounded buffer and the number of worker threads in the pool. The 
threads call the handle_request function to process the communication. Design and run 
experiments to answer the following questions.

1.  How does the connection time depend on the size of the bounded buffer? What factors 
influence the result?

2.  How does the number of worker threads influence the server response byte rate?

3.  How sensitive is overall performance to the number of worker threads?

4.  When does worker pool perform better than thread-per-request?

Before running the experiments, write a discussion of how different experimental parameters 
might influence the results in each case.
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file:///D|/Tutoriales%20&%20Programacion/Prep%20Finales/XxX/Prentice%20Hall%20-%20Unix%20Systems%20Programming%202nd%20Ed/NFO/lib.html
file:///D|/Tutoriales%20&%20Programacion/Prep%20Finales/XxX/Prentice%20Hall%20-%20Unix%20Systems%20Programming%202nd%20Ed/NFO/lib.html


[ Team LiB ]   

22.9 Process-worker Pool

Implement a process-worker pool, whereby each worker process blocks on accept. The server 
takes two command-line arguments: the listening port number and the number of worker 
processes to fork.

Compare connection times for the process-worker pool with those for the thread pool of Section 
22.7. Explore performance as a function of offered load. Explore hybrid designs in which a pool 
of threaded process workers blocks on accept. Each threaded process maintains a pool of 
worker threads as in Section 22.7.

Exercise 22.14 

How would you determine whether the backlog value set by listen affects server performance?

Answer:

The backlog is set in UICI to the value of the MAXBACKLOG constant defined near the top of uici.
c in Program C.2. Pick parameters that put a moderate load on the server and recompile with 
different values of the backlog. UICI uses the default value of 50 if MAXBACKLOG is not defined. 
You can use the -D option on the compile line to define MAXBACKLOG. Start with this value and 
then modify it and see if smaller or larger values affect the performance of the server.
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22.10 Influence of Disk I/O

Disk accesses can be a million times slower than memory accesses. This section explores the 
effect of disk I/O on server performance.

To measure this performance, modify the various servers to access the disk rather than a 
memory buffer to satisfy requests. If your server selects from a small number of request files, 
your measurements may not be accurate because the operating system buffers file I/O and 
most of the requests may be satisfied from memory rather than from disk.

One possibility is to create a large number of files whose names are numeric, say, 00000, 
00001, 00002, etc. When a request comes in, the server could pick one of these files at random 
and access it to satisfy the request. Some users might not have enough free disk space to 
implement this solution.

Another possibility is to use the system files that already exist. The idea is to create a list of the 
files on the server for which the user has read access. When a request comes in, the server 
randomly selects one of the files that is large enough to satisfy that request. Care must be 
taken to ensure that the process of selecting the file does not significantly burden the server.

Program 22.1 illustrates one method of ensuring careful file selection. To enable easy access, 
the program creates lists of files of different sizes by organizing entries according to the 
logarithm of their sizes. Each list consists of records that each contain the full pathname and 
size of a file that is of at least a given size but less than 10 times the given size. The first list 
contains files of at least 10 bytes, the second has files of at least 100 bytes, etc. Each list 
contains files 10 times the size of the previous list. If a server receives a request for a resource 
of size 1234 bytes, it should select at random one of the files from the list of files containing at 
least 10,000 bytes and transmit the required number of bytes from the selected file. Since each 
list is an array rather than a linked list, the server uses a random index to directly access the 
name of the file.

Program 22.1 creates NUMRANGES lists. For NUMRANGES equal to 5, the lists contain files of sizes 
at least 10, 100, 1000, 10,000 and 100,000 bytes, so makefileinfo can satisfy access 
requests of up to 100,000 bytes. The makefileinfo program stores the full pathname and size 
of each file in a record of type fileinfo. Only files whose full pathname is of size at most 
MAXPATH are inserted in the list. A value of 100 for MAXPATH picks up almost all files on most 
systems. We avoid using the system value PATH_MAX, which may be 1024 or greater, because 
this choice takes too much space.

Program 22.1 takes two command-line arguments, the first specifying the base path of the 
directory tree under which to search for files and the second specifying the number of files to 
find for each list. The program uses the nftw system function to step through the file system. 
Each time makefileinfo visits a file, it calls insertfile with the full pathname and other 
parameters that give information about the file. This function keeps track of how many of the 
lists are full and returns 1 when all are full. The function nftw stops stepping through the 
directory tree when insertfile returns a nonzero value.
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The function insertfile first checks that it was passed a file rather than a directory by 
checking the info parameter against FTW_F. It also verifies that the path fits in the list and 
uses the stat information to make sure that the file is a regular file. If all these conditions are 
satisfied, insertfile attempts a nonblocking open of the file for reading to make sure that the 
current process has read access to that file. A nonblocking open guarantees that the attempt 
does not block. If all these operations are successful, insertfile calls whichlist to determine 
which list the file should go into. The size of each list is kept in the array filecounts, and the 
function keeps track of the number of these entries that are equal to the maximum size of the 
list.

After the list is created, makefileinfo displays a list of counts and then calls showfiles to 
display the sizes and names of the files in each list. Comment out the call to showfiles after 
you are convinced that the program is working.

Modify Program 22.1 to make it usable by your servers. Replace the main function with a 
create_lists function that takes two parameters—the same values as the two command-line 
arguments of Program 22.1. This function creates the lists. Write an additional function, 
openfile, that takes a size as a parameter. The openfile function chooses one of the files that 
is at least as large as the size parameter, opens the file for reading, and returns the open file 
descriptor. If an error occurs, openfile returns –1 with errno set.

Modify one of the servers from Section 22.6, 22.7, 22.8 or 22.9 so that it satisfies requests 
from the disk rather than from a memory buffer. The server now takes two additional 
command-line arguments like those of Program 22.1 and creates the lists before accepting any 
connection requests. The server should display a message after creating the lists so that you 
can tell when to start your clients. Compare the results with those of the corresponding server 
that did not access the disk.

Program 22.1 makefileinfo.c

A program that creates a list of files by walking through a directory tree.

#include <fcntl.h>
#include <ftw.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "restart.h"
#define MAXPATH 100
#define NUMRANGES 5

typedef struct {
   off_t filesize;
   char path[MAXPATH+1];
} fileinfo;

static int filecounts[NUMRANGES];
static fileinfo *files[NUMRANGES];
static int maxnum;



static int whichlist(off_t size) {
   int base = 10;
   int limit;
   int lnum;

   if (size < base)
      return -1;
   for (lnum = 0, limit = base*base;
        lnum < NUMRANGES - 1;
        lnum++, limit *= 10)
      if (size < limit)
         break;
   return lnum;
}

static int insertfile(const char *path, const struct stat *statbuf,
           int info, struct FTW *ftwinfo) {
   int fd;
   int lnum;
   static int numfull = 0;

   if (info != FTW_F)
      return 0;
   if (strlen(path) > MAXPATH)
      return 0;
   if ((statbuf->st_mode & S_IFREG) == 0)
      return 0;
   if ((fd = open(path, O_RDONLY | O_NONBLOCK)) == -1)
      return 0;
   if (r_close(fd) == -1)
      return 0;
   lnum = whichlist(statbuf->st_size);
   if (lnum < 0)
      return 0;
   if (filecounts[lnum] == maxnum)
      return 0;
   strcpy(files[lnum][filecounts[lnum]].path, path);
   files[lnum][filecounts[lnum]].filesize = statbuf->st_size;
   filecounts[lnum]++;
   if (filecounts[lnum] == maxnum) numfull++;
   if (numfull == NUMRANGES)
      return 1;
   return 0;
}

void showfiles(int which) {
   int i;
   fprintf(stderr, "List %d contains %d entries\n", which, filecounts[which]);
   for (i = 0; i < filecounts[which]; i++)
      fprintf(stderr, "%*d: %s\n",which + 6,files[which][i].filesize,
                      files[which][i].path);
}

int main(int argc, char *argv[]) {
   int depth = 10;
   int ftwflags = FTW_PHYS;



   int i;

   if (argc != 3) {
      fprintf(stderr, "Usage: %s directory maxnum\n", argv[0]);
      return 1;
   }
   maxnum = atoi(argv[2]);
   for (i = 0; i < NUMRANGES; i++) {
      filecounts[i] = 0;
      files[i] = (fileinfo *)calloc(maxnum, sizeof(fileinfo));
      if (files[i] == NULL) {
         fprintf(stderr,"Failed to allocate memory for list %d\n", i);
         return 1;
      }
   }
   fprintf(stderr, "Max number for each range is %d\n", maxnum);
   if (nftw(argv[1], insertfile, depth, ftwflags) == -1) {
      perror("Failed to execute nftw");
      return 1;
   }
   fprintf(stderr, "**** nftw is done\n");
   fprintf(stderr, "Counts are as follows with sizes at most %d\n", maxnum);
   for (i = 0; i < NUMRANGES; i++)
      fprintf(stderr, "%d:%d\n", i, filecounts[i]);
   for (i = 0; i < NUMRANGES; i++)
      showfiles(i);
   return 0;
}

[ Team LiB ]   
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22.11 Performance Studies

This section provides guidelines for doing a performance study and points out common pitfalls. 
We focus on the problem of comparing the performance of thread-per-request and worker-pool 
implementations for servers that do no disk I/O. You are asked to evaluate connection time and 
response times for the two approaches and to assess the influence of message size on the 
results. While this book is about UNIX, not performance evaluation, performance-based tuning 
is often necessary in such systems. In our experience, many excellent programmers do not 
have a good sense of what to measure, how to measure it, and what they have actually 
measured after doing the performance study.

22.11.1 Baseline measurements

All real computer performance studies face the same problem—a large number of hard-to-
control variables whose influence on the result is highly nonlinear. Therefore, it is essential to 
understand the factors that might affect the results before starting to measure.

The first rule of performance measurement is to establish a baseline before varying any 
parameters. Do you expect the results to be on the order of seconds? Milliseconds? 
Microseconds? How much will the results vary from measurement to measurement? What 
influences variability besides the experimental parameters that you are explicitly varying?

Since you are trying to measure the difference in performance between two different strategies, 
a natural baseline is the time for exchanging a single message stream of the same type as will 
be used in testing the threaded servers. For example, you might take the reflectclient.c of 
Program 18.4 and the reflectserver.c of Exercise 18.15 as a starting point for your 
preliminary measurements. Measure the connection times and times to send and receive 
messages of different sizes in order to establish the baseline or control for comparing threaded 
servers. These measurements give a lower bound on the times and the variability of the 
measurements in the environment that you are working in. Establishing the baseline is an 
important step in understanding your measurements.

Exercise 22.15 

We modified the reflecting client of Program 18.4 to measure the time to establish a connection 
to the reflection server of Exercise 18.15 and to send and receive a 1K message. The client and 
server were running on two Sun Microsystems Ultra-10 machines with 440 MHz processors that 
were connected by 100 Mbit/sec Ethernet through a switch. The first run gave a connect time of 
120 ms and a round trip response time of 152 ms. Subsequent runs gave connect times of 
around 3 ms and round trip times of about 1 ms. Can you explain these results?

Answer:

A quick look at u_connect and u_accept suggested that DNS lookup was probably the culprit in 
the long first initial times. The u_connect function calls name2addr before calling connect. After 
return from accept, u_accept also contacts DNS to obtain the hostname of the client. Once the 
names are in the local DNS cache, retrieval is much faster. These results suggest that UICI 
should probably be modified for measuring timing.
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22.11.2 Sources of variability

Clearly, the underlying system variability that you observe in single-threaded measurements 
confounds your ability to distinguish performance differences between the two threading 
approaches. You can reduce variability by carefully selecting the conditions under which you 
take measurements. If you have control over the machines in question, you can make sure that 
no one else is using those machines during your measurements. In many situations, however, 
you do not have sufficient control of the resources to restrict access. Two other steps are 
essential in obtaining meaningful answers. First, you should record the conditions under which 
you performed the measurements and make sure that they did not change significantly over 
the course of the experiments. Second, when the confounding factors vary significantly over 
time or you can't quantify how much they are varying, you need to take many more 
measurements over extended periods to be sure that your numbers are valid.

Exercise 22.16 

How might system load contribute to the variability of single-threaded client server 
communication?

Answer:

Relevant system load parameters are CPU usage, memory usage and network subsystem 
usage. If the virtual memory system does not have enough pages to accommodate the working 
sets of the processes running on the system, the system will spend a lot of time swapping disk 
pages in and out. All network communication on a host passes through the same subsystems, 
so other processes that are doing network I/O or disk I/O compete for subsystem resources.

Exercise 22.17 

Investigate the tools for measuring system load on your system. How can you use these tools 
to characterize the environment for your measurements?

Answer:

System load is hard to control unless you have control over the machines on which the clients 
and server are running. At a minimum, you should record the system loads immediately before 
and after your measurements. For long-running measurements, you should periodically record 
the system load during the run. The UNIX uptime command supplies information about system 
load. You might also investigate vendor-specific tools such as Sun Microsystems' perfmeter. 
The rstatd(1M) service allows remote access to system performance information.

22.11.3 Measurement errors

Measurement errors result from side effects whose times are significant compared with the 
event times that are to be measured (e.g., printing in the timing loop).

Exercise 22.18 



We measured the time to execute a single

fprintf(stderr, "this is a test");

displaying to the screen in unbuffered form on the system described in Exercise 22.15. The 
single fprintf took about .25 ms, while an fprintf that outputted five double values took 
about .4 ms. However, we found that the time for 10,000 executions of the first print statement 
was highly variable, ranging from 1 to 10 seconds. Give possible explanations for the variability.

Answer:

Although standard error is not buffered from the user perspective, the actual screen device 
driver buffers output to match the speed of the output device, as the buffer fills up and 
empties, the time to return from fprintf varies significantly.

Given that the request-response cycle for a 1K packet is about 1 ms for the system and that we 
are trying to measure additional overhead incurred by threading, the time to execute 
extraneous print statements can be significant. The sprintf statements may also incur 
significant overhead for formatting strings. To do careful measurements, you should avoid all 
printing in timing loops. The next two examples show two common timing-loop errors.

Exercise 22.19 

What timing errors occur in the following pseudocode for measuring the connection and 
response times of a server? What happens if you omit the last assignment statement?

get time1
connect to the server
get time 2
output time2 - time1
loop
   write request to the server
   read response from the server
   get time3
   output time3 - time2
   time2 = time3

Answer:

The output of time3 - time2 occurs between the measurement of two successive time3 
values, hence this statement is in the timing loop. The program should also not output time2 - 
time1 between the connect and the first write. A better approach would be to save the times in 
an array and output them after the measurements are complete. If you omit the time2 = 
time3 statement, all times are measured from the beginning of the session. The estimates for 
the request-response cycle won't mean anything. If you want to measure the time for the total 
response, move the statement to get the ending time outside the loop.

Exercise 22.20 



Would outputting to disk during the timing be better or worse than outputting to screen?

Answer:

The outcome is a little hard to predict, but either way it cannot be good. Disk access times are 
on the order of 10 ms. However, a disk write does not actually go directly to the disk but is 
usually buffered or cached. If the disk is not local but mounted through NFS, the output 
introduces network traffic as well as delay. For I/O that must be done during the measurements 
in such an environment, it is better to use /tmp, which is likely to be located on a local disk.

Exercise 22.21 

What is wrong with measuring the sending of the request and the receiving of the response 
individually, such as in the following?

get time1
write request
get time2
read response
get time3
sendtime = time2 - time1
receivetime = time3 - time2

Answer:

The sendtime is not the time for the message to reach its destination, but the time to copy the 
information from the user's variable to system buffers so that the network subsystem can send 
it. This copying time is usually not meaningful in the context of client-server performance.

Printing inside the timing loop can also occur in the server, as illustrated by the pseudocode in 
the next example. Direct screen output by the threads has the effect of synchronizing all the 
threads (the effect gets worse when there are a lot of threads) on each request-response, 
eliminating parallelism. Use flags and conditional compilation to handle debugging statements.

Exercise 22.22 

Why does the following pseudocode for a server thread using thread-per-request present a 
problem for timing measurements?

loop until error:
   read request
   write response
   output a message summarizing the response
close connection

Answer:

The output statement, although executed by the server, is effectively in the client's timing loop. 
Print statements on the server side have the added problem of implicitly synchronizing the 
threads on a shared device.



Another inefficiency that can affect timing is the use of an unnecessary select statement in the 
worker threads. You do not need to use select for request-response situations unless you 
must control timeouts.

Exercise 22.23 

What is wrong with the following code segment for writing a block of size BLKSIZE followed by 
reading a block of the same size?

if (r_write(communfd, buf, BLKSIZE)) < 0)
    perror("Failed to write");
else if (r_read(communfd, buf, BLKSIZE) < 0)
    perror("Failed to read");

Answer:

The r_write function calls write in a loop until the entire BLKSIZE buffer is written. The 
r_read function only executes one successful read, so the entire BLKSIZE response may not be 
read. Thus, a client driver that uses a single r_read call may not correctly time this request-
response, particularly for large packets on a wide area network. Worse, the next time the client 
times a request-response for the connection, it will read the response from the previous 
request.

22.11.4 Synchronization

The thread-per-request server does not require explicit synchronization, so in theory 
synchronization isn't an issue for this server. However, implicit synchronization can occur even 
for thread-per-request whenever threads share a common resource, such as the screen. Avoid 
print statements in your server except for debugging or for warning of a serious error condition. 
Debugging statements should always be enclosed in a conditional compilation clause.

Example 22.24 

The following statement is compiled in the program because DEBUG has been defined.

#define DEBUG 1

#ifdef DEBUG
   fprintf(stderr, "Sending the message....\n");
#endif

To eliminate fprintf, comment out the #define statement or remove it entirely. In the latter 
case, you can redefine DEBUG by using the -D option on compilation.

The synchronization issues for the worker pool are more complex. The three common 
implementations for the worker-pool model have different synchronization characteristics. In 
the most straightforward implementation, each worker thread blocks on accept. This 



mechanism relies on the availability of a thread-safe accept function with synchronization 
handled by the library function itself. POSIX specifies that accept should be thread-safe, but 
not all OS implementations provide a reliable thread-safe accept. A second implementation of 
worker pool protects accept with a mutex lock, as illustrated schematically in Example 22.25.

Example 22.25 

In the following pseudocode for a worker-pool implementation, the mutex lock effectively forms 
a barrier allowing one thread at a time to pass through and block on accept.

loop
  mutex lock (if error, output message to log, clean up and exit)
  accept (if error, release lock and continue)
  mutex unlock (if error, output message to log, clean up and exit)
  process request (if error, output message to log, clean up and continue)

The pseudocode of Example 22.25 indicates what to do in case of error. A common problem 
occurs in not releasing the lock properly if an error occurs on accept. In this case, the system 
deadlocks because no other worker can acquire the mutex lock.

The buffer implementation of the worker pool is prone to other performance bottlenecks. For 
example, if the master producer thread executes pthread_cond_broadcast rather than 
pthread_cond_signal when it puts an item in the buffer, all waiting threads will be awakened 
and have to contend for the mutex that controls the items. This implementation puts a 
significant synchronization load on the server, even for moderate numbers of workers. 
Producers should avoid broadcasting on slots, and consumers should avoid broadcasting on 
items.

22.11.5 Just plain errors

You can't rely on timing results from a program that doesn't work correctly. It is important to 
catch return values on all library functions, including thread calls. Use the lint utility on your 
source and pay attention to the output. In particular, do not ignore the implicitly assumed to 
return int message, suggesting that you are missing header files.

Because the threads are executing in the environment of their parent, threaded servers are 
prone to memory leaks that are not a problem for servers that fork children. If a thread calls 
pthread_exit without freeing buffers or closing its communication file descriptor, the server 
will be saddled with the remnants for the remainder of its lifetime.

Exercise 22.26 

What memory leaks are possible in the following code?

loop
   malloc space for communfd
   if malloc fails
      quit
   accept a client connection



   if accept fails
      continue
   create a thread to handle the communication
   if the thread create fails,
      continue

Answer:

If accept fails, the space for the communication file descriptor leaks. If the thread create fails, 
the server leaves an open file descriptor as well as allocated memory.

Exercise 22.27 

What assumptions does the following code make in casting communfd?

int communfd
if ((communfd = u_accept(listenfd, client, MAX_CANON)) == -1)
   return -1;
if (pthread_create(&tid, null, process_request, (void *)communfd))
   return -1;

Answer:

The code implicitly assumes that an int can be correctly cast to void *, an assumption that 
may not be true for all machines.

Memory leaks for threaded servers can occur if any path of execution doesn't free resources. 
The thread-per-request threads must free any space that they allocated or that was allocated 
on their behalf by their parent thread before creation. In addition, they must close the 
communication file descriptor even if an error occurred.

The worker-pool implementations do not need to allocate memory space for the communication 
file descriptors, and often they allocate buffers only once. However, the explicit synchronization 
introduces its own quagmire of error possibilities. Using a single mutex lock for mutual 
exclusion on the buffer and for tracking items and slots can result in incorrect or extremely 
delayed synchronization. Failure to synchronize empty slots can result in the server overwriting 
file descriptors before they are consumed.

Another resource management problem can occur in thread-per-request. When a thread exits, 
it leaves state and must be waited for unless it is a detached thread. These "zombie" threads 
are a leak for a long-running server. Finally, you should think seriously about the legitimate 
causes for a server to exit. In general, a client should not be able to cause a server to exit. The 
server should only exit if an irrecoverable error due to resources (memory, descriptors, etc.) 
would jeopardize future correct execution. Remember the Mars Pathfinder!

22.11.6 What to measure?

In most computer performance studies there are too many parameters to vary simultaneously—
so usually you can't run exhaustive tests. If you could, the results would be hard to handle and 
make sense of. The specific problem that we are considering here has relatively few variables 



for a performance problem, but even it is complex. Random testing of such a problem generally 
does not produce insight, and you should avoid it except for debugging. As a first step in 
formulating testable hypotheses, you should write down the factors that might influence the 
performance, their probable effect, plausible limits for their sizes, and how these tests should 
compare with baseline tests.

Example 22.28 

The performance of the thread-per-request server without disk I/O depends on the number of 
simultaneous requests, the duration of these requests, and the I/O that must be performed 
during the processing of the request and the response. While the I/O costs probably depend on 
both the number of messages that are exchanged and their sizes, to first order the total 
number of bytes exchanged is probably the most important cost. Plausible limits are just that—
guesses. One might guess that a server should be able to handle 10 simultaneous streams 
without a problem. Whether it could handle 100 or a 1000 simultaneous streams is anyone's 
guess, but these ranges give a starting point for the measurements.

Exercise 22.29 

Give performance factors for the worker pool implemented with a mutex lock protecting accept.

Answer:

The factors specified in Example 22.28 are relevant. In addition, the number of threads in the 
worker pool relative to the number of simultaneous connections should also be important.

The preceding examples and exercises suggest that the most important control variable is the 
number of simultaneous connections that a server can handle. To measure the server capacity, 
you will need to be able to control the number of simultaneous connections offered by your 
driver programs. The client-driver program of Section 22.4 offers parallel loads. Such a client 
driver running on a single machine might reasonably offer 5 or 10 parallel streams, but is 
unlikely to sustain 100 parallel streams. Suppose you want to test your server with 10 and 100 
parallel streams. A reasonable approach to generating the 100 parallel streams might be to 
have 10 different hosts generate 10 streams each.

Exercise 22.30 

Describe the load offered by the client-driver program of Section 22.4 if it forks 10 children that 
each make 10 connections. Suppose each connection consists of 10 request/response pairs of 
100 bytes each.

Answer:

The number of connections per child is far too low to offer a sustained load of 10 simultaneous 
streams. Forking the 10 children takes sufficiently long and the request streams are sufficiently 
short that some of the first children will finish or nearly finish before the later children start 
execution.

Many beginning analysts typically do not take enough measurements to make their studies 
meaningful and do not account for transient behavior. One approach to eliminating transients is 



for the loading programs to sustain the load longer than needed and discard the beginning and 
the end of the record. You can decrease or eliminate the amount that needs to be discarded by 
synchronizing the children before starting. Children of a single parent can call sigsuspend. The 
parent can then send a wake-up signal to the process group. For clusters of driver processes 
running on different machines, the parents can listen for a synchronization server, whose sole 
job is to initiate connections to the parent drivers. Section 22.5 describes the approach in detail.

To pick parameter values that make sense, you must understand the relationship of the 
processes/connections/messages values. The number of processes roughly corresponds to the 
number of parallel connections that are established. However, this assumes steady state. If 
each client process makes only two connections and sends two messages on each connection, 
some client processes will probably complete before the client finishes forking all the child 
processes. The actual length of a run needed to accurately estimate performance is a statistical 
question beyond the scope of this text. Roughly, the larger the variability in the values, the 
more measurements you need.

Generally, if the number of threads in the worker pool is greater than the number of request 
streams, you would expect a worker pool to consistently outperform thread-per-request 
because it should have less overhead. If the number of request streams exceeds the number of 
workers, thread-per-request might do better, provided that the system has enough resources. 
Therefore, if the main variable is offered load, be sure to vary the number of simultaneous 
request streams from 1 to a value well beyond the number of worker-pool threads. Look, too, 
for discontinuities in behavior as the number of request streams approaches and exceeds the 
number of worker-pool threads.

For parameters that influence the system in a highly nonlinear way, it is often useful to 
measure a few widely separated values. For example, to understand the influence of message 
size on the performance, you might decide to measure the response as a function of offered 
load for two different message sizes. Choosing message sizes of 32 bytes and 64 bytes to 
compare does not give meaningful results because each of these messages always fits into a 
single physical packet. Although one message is twice as big as the other, the messages are 
essentially the same size as far as the network is concerned. The network headers on these 
messages might be comparable to the data in size. You would get more useful information by 
picking message sizes of 512 bytes and 20 kilobytes, typical sizes for a simple web page and an 
image, respectively. In addition to being physically meaningful, these sizes exercise different 
characteristics of the underlying network protocols. A 512-byte message should traverse the 
network in a single packet even on a wide area network. The 20K message is larger than the 
typical 8K slow-start limit for TCP, so its transmission should experience some congestion 
control, at least on a wide area network.

22.11.7 Data analysis and presentation

Simple statistical measures such as the mean, median and standard deviation are useful 
characterizations of behavior. The median is less sensitive to outliers and is often used in 
network measurements. In general, medians should be smaller and more stable than means for 
these distributions. If your medians don't reflect this, you probably are not computing the 
statistics correctly. If your medians and means are consistently different by an order of 
magnitude, you should worry! Also, when combining results from multiple clients, don't take 
the median of the medians and present that as the median.

Think about how to analyze the data before designing an output format. If you plan to import 
the data into a spreadsheet, your output format should be spreadsheet-friendly so that you 
don't have to manually edit the data before analysis. You may want to output the results in 



multiple formats, for example, as tables without intermediate text so that the values fall into 
columns. Combine the numbers from all the client processes for final analysis. Standard 
deviation or quartiles are good indications of data variability.

You should also consider whether a table of results conveys the message better than a graph. 
Tables work well when the test consists of a few measurements or if some results are close 
together while others vary significantly, You can present more than one version if the results 
are meaningful.

[ Team LiB ]   
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22.12 Report Writing

Performance studies are often presented in a technical report. This section describes the key 
elements of a good technical report and mentions common mistakes. Poor presentation 
undermines your work, so it pays to put some effort into this aspect of a project. It goes 
without saying that you should use spelling- and grammar-checking tools. You should also pay 
attention to the typography and layout, separating sections with subtitles and consistent 
spacing. No one will have confidence that you have done the technical work correctly if your 
report is riddled with errors.

Technical reports generally have an abstract that gives an overview of the work and 
summarizes the principal results. More extensive reports may have a table of contents, a list of 
figures and an index. Most technical reports include a list of references at the end. Typically, 
the body of a technical report has an introduction followed by sections describing the design or 
system architecture, the implementation, the testing or experiments, the results and the 
conclusions.

22.12.1 Introduction

The introduction should provide an overview of the topic, without becoming mired in irrelevant 
detail. You should describe the particular problem being addressed and why it is important. The 
introduction should also present terminology and background material needed to understand 
the rest of the report. For example, if you are asked to write a report comparing server 
performance using thread-per-request and worker-pool implementations, your introduction 
should explain thread-per-request and worker-pool architectures, but should probably not 
provide an extensive description of the POSIX thread libraries. After all, the report is about 
these server strategies, not about POSIX threads. To emphasize the relevance of the topic, you 
might name well-known software that uses one strategy or the other.

Sometimes a technical report's introduction includes a review of other work on the topic, 
comparing results or approaches with those done by others. Other technical papers discuss 
related works in a separate section after the introduction or after the results, depending on the 
emphasis of the paper. The introduction usually ends with a paragraph describing the 
organization of the rest of the report.

22.12.2 Design, implementation and testing

The design section of your report should review the implementation of the various parts of the 
project. Architectural diagrams convey fundamental structure, but badly done diagrams 
introduce more confusion than clarity. If the architectures are different, the diagrams should 
not look exactly the same. Use consistent symbols in each diagram and across diagrams in the 
report. For example, use the same symbol for a thread in each diagram. Don't use a circle to 
represent a process in one diagram and a rectangle in another (or, worse, in the same 
diagram). Don't use the same symbol to represent a process and a library function. Eliminate 
unnecessary detail and be sure to provide a legend identifying the symbols.

An implementation details section should not include code—if code is necessary, put it in an 
appendix. You might include pseudocode or algorithms, if relevant. For example, for a worker-
pool implementation using a circular buffer, the placement of the synchronization influences the 
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behavior of the program, so it should be documented in the report.

The testing section should present a detailed description of how you tested the program. (No, "I 
tested the program and it works" is not an acceptable testing section!) A table of tests keyed to 
sample output in an appendix makes testing clearer and more convincing. Detail unusual 
behavior or other problems that you encountered during the development of the program. 
Explain known bugs that your program has. If you encountered unexpected problems during 
development, describe these here.

For a technical report that emphasizes performance rather than the development of a system, 
the description of the design, implementation and testing are often combined into a single 
section.

22.12.3 Experiments

Performance studies often have a separate section detailing the procedures used to conduct the 
performance measurements. The section details the specific conditions under which the 
program was tested, including the characteristics of the test machines, such as machine 
architecture, operating system version, type of network, etc. The section should explain the 
setup for the experiment and the ambient conditions such as the time of day and the network 
and machine loads. The procedures section should report how the load was established and 
sustained for the different experiments. The section might also describe how you assembled the 
measurement data during the computation.

22.12.4 Results and analysis

The presentation of the results is the centerpiece of a performance study. Present a clear 
description of what happened and what was expected to happen. Use graphs and bar charts to 
compare results from different experiments. For example, if you are comparing thread-per-
request and worker-pool implementations, you should plot the corresponding response times 
for the two architectures on the same graph. Your figures should be labeled, captioned and 
referred to by number in the text discussion. You should give enough details in your report that 
someone else could reproduce your results.

Use meaningful units to plot the results. For the server comparison, milliseconds would be 
good. Don't use nanoseconds (huge numbers) or seconds (tiny numbers) just because the 
timer call you happened to use produced those units. Plot consecutive graphs with the same 
units. Avoid axis labels that contain a large number of digits—change the units. Avoid labeling 
every tightly spaced tick mark, and use consistent labeling of tick marks. Also plot your graphs 
in units that are understandable. If you are plotting several curves on the same graph, make 
sure that the symbols used for the different graphs are clearly distinguishable. Avoid using 
color if your report will not be printed or viewed in color unless the curves can still be 
distinguished if reproduced in greyscale. Use legends and in-graph labels to identify the curves 
and important features.

For this project, plotting response time or connection time versus presented load would be a 
good starting point for a performance comparison. Plotting response time versus process ID or 
thread ID displays the variability of the data, but these plots do not show a performance 
relationship. Variability might be better characterized by the standard deviation.

22.12.5 Conclusion



Often, authors run out of gas before the conclusion section. However, after the abstract, this is 
the section that many people read first and most carefully. Summarize the overall results of the 
project, including the principal performance findings. Discuss the strengths and weaknesses of 
your implementation and experiments. Point out problems that you encountered but did not 
address, and suggest how this project might be expanded or used in other situations. For 
course reports, explain what you learned and what you are still confused about. Do not 
overstate your achievements in the conclusion—let your work stand on its merits. Readers will 
ascribe more credibility to your conclusions if you are straightforward about the strengths and 
weaknesses of the study.

22.12.6 Bibliography

The bibliography lists the references that you used. Specify them in a consistent format. You 
should explicitly reference all the items that appear in the text of the report. The IEEE, the ACM 
and other professional societies have style files available for most word processors. Pick one of 
the standard styles.
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22.13 Additional Reading

A classic text in the field of performance analysis is The Art of Computer Systems Performance 
Analysis: Techniques for Experimental Design, Measurement, Simulation, and Modeling by Jain 
[59]. Another excellent book is The Practical Performance Analyst by Gunther [45]. 
Performance Evaluation and Benchmarking with Realistic Applications by Eigenmann [35] 
emphasizes the collection and analysis of data from standard benchmarks. Web Protocols and 
Practice by Krishnamurthy and Rexford [66] has some excellent performance case studies 
characterizing web traffic and web server workload. Capacity Planning for Web Services: 
Metrics, Models and Methods by Menasce and Almeida devotes an entire book to web server 
modeling and performance analysis. Finally, Probability and Statistics with Reliability, Queuing 
and Computer Science Applications, 2nd ed. by Trivedi [126] is an invaluable statistical 
reference if you plan to go beyond mean and standard deviation in your analysis. For current 
examples of excellent work in performance evaluation, look at recent proceedings of the ACM 
Sigmetrics Conferences or the IEEE/ACM Transactions on Networking. "Performance issues of 
enterprise level web proxies," by Maltzahn et al. [77] and "Performance issues in WWW 
servers," by Nahum et al. [85] are examples of recent articles.
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Appendices

Appendix A.  UNIX Fundamentals

Appendix B.  Restart Library

Appendix C.  UICI Implementation

Appendix D.  Logging Functions

Appendix E.  POSIX Extensions
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Appendix A. UNIX Fundamentals

Section A.1.  Manual Pages

Section A.2.  Compilation

Section A.3.  Makefiles

Section A.4.  Debugging Aids

Section A.5.  Identifiers, Storage Classes and Linkage Classes

Section A.6.  Additional Reading
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A.1 Manual Pages

The programs in this book are based on the Single UNIX Specification, Version 3. We refer to 
this specification by its IEEE name, POSIX. Essentially identical documents have been published 
by three standards organizations, the IEEE [49, 50, 51, 52], ISO/IEC [57], and the Open Group 
[89]. The IEEE and ISO/IEC publish print and electronic versions of the standard that are 
available for a fee. The Open Group publishes the standard on CD-ROM, but this organization 
also makes the standard freely available on their web site, http://www.UNIX-systems.org/
single_unix_specification/. You must register the first time you enter the web site, but it is open 
to the public at no charge. The standard is organized into the following four parts.

1.  Base Definitions: general terms and concepts, header files

2.  System Interfaces: definitions of functions

3.  Shell and Utilities: definitions of commands

4.  Rationale: discussion of historical information and why features were or were not 
included in the standard

Use section 2 of the standard to find out about system calls and library functions such as pipe 
and socket. Look in section 3 for information about commands, such as ls and cat, that can 
be executed from the shell.

Most UNIX systems have online documentation called the man pages. Here, "man" stands for 
"manual" as in system manual. The man utility displays these pages of online documentation in 
a readable format.

SYNOPSIS

   man [-k] name
                                    POSIX:Shell and Utilities

Unfortunately, the standard does not require much functionality from the manual facility. If 
name is a standard utility, the standard requires only that a message describing its syntax, 
options and operands be displayed. The -k option lists the summaries of manual entries that 
contain name.

Most UNIX implementations divide the manual pages into sections, with typical section numbers 
shown in Table A.1. The first three sections are of most interest to us. Most implementations of 
man display only the information about the first occurrence of an entry. For example, write of 
section 1 is a command that can be executed from the shell to send a message to a terminal of 
another user. Users of this book would probably be more interested in the write description of 
section 2, which is the library function described in Section 4.2. Most implementations of man 
provide an option called -a to display all manual entries and an option called -s or -S to display 
only entries from a given section for the manual.
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Table A.1. Typical sections numbers for UNIX man pages.

section contents

1 user commands

2 system calls

3 C library functions

4 devices and network interfaces

5 file formats

6 games and demos

7 environments, tables and troff macros

8 system maintenance

Example A.1 

The following command can be used under Solaris to display the manual entry for write from 
section 2.

man -s 2 write

Under Linux or Mac OS X the corresponding command is the following.

man -S 2 write

Figure A.1 shows the typical output of the man utility when the man tee command executes. 
The first line or header line of the man page gives the name of the command followed in 
parentheses by the man page section number. The tee(1) in Figure A.1 refers to the tee 
command described in section 1 of the man pages. Do not try to execute tee(1). The (1) suffix 
is not part of the command name, rather it is a man page section indicator.

Figure A.1 Typical man page listing for the tee command.

tee(1)                    User Commands                   tee(1)

NAME
     tee - duplicate standard output

SYNOPSIS
     tee [ -ai ] [ file ... ]



DESCRIPTION
     The tee utility shall copy standard input to standard
     output, making a copy in zero or more files. The tee utility
     shall not buffer output. The options determine if the
     specified files are overwritten or appended to.

OPTIONS
     The following options shall be supported.

     -a Append the output to the files rather than overwriting them.

     -i Ignore the SIGINT signal.

OPERANDS
     The following operands are supported:

     file  A pathname of an output file. Processing of at least
           13 file operands shall be supported.

ENVIRONMENT VARIABLES
     ...

EXIT STATUS
     The following exit values are returned:

     0     The standard input was successfully copied to all output files.

     >0 The number of files that could not be opened or whose
           status could not be obtained.

APPLICATION USAGE
     The tee utility is usually used in a pipeline, to make a
     copy of the output of some utility.

     The file operand is technically optional, but tee is no more
     useful than cat when none is specified.

EXAMPLES
     Save an unsorted intermediate form of the data in a pipeline:
     ... | tee unsorted | sort > sorted

SEE ALSO
     cat(1), attributes(5), environ(5)

Each man page covers some aspect of UNIX (e.g., a command, a utility, a library call). The 
individual man pages are organized into sections like the tee man page of Figure A.1. Some 
common section titles are given in Table A.2.

Table A.2. Typical sections of a UNIX man page.



section title contents

HEADER title for the individual man page

NAME one-line summary

SYNOPSIS description of usage

EXIT STATUS values returned on exit from a command

DESCRIPTION discussion of what the command or function does

RETURN VALUES possible return values

ERRORS summary of errno values and conditions for errors

FILES list of the system files that the command or function uses

SEE ALSO list of related commands or additional sections of the manual

ENVIRONMENT list of relevant environment variables

NOTES information on unusual usage or implementation features

BUGS list of known bugs and caveats

The name section of a man page lists the names of the items described on that man page. The 
man pages contain information about many types of items. The man page on write(1) 
describes a command, and the man page on write(2) describes a library function. The two 
write entries have completely different purposes. Look at the synopsis section to determine 
which write you want. The synopsis summarizes how a command or function is invoked. The 
synopsis for a library function has function prototypes along with the required header files. The 
write(2) function is called from a C program. In contrast, write(1) is executed from the 
command prompt or from a shell script.

In addition to the standard documents and manual pages, many UNIX vendors make detailed 
documentation accessible through the Web. Sun provides documentation at http://docs.sun.
com. The Linux Documentation Project web page, http://tldp.org/, has the Linux manual pages, 
HOWTO guides and other information. Apple provides documentation for Mac OS X on their 
developer's web site, http://developer.apple.com.
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A.2 Compilation

The C compiler, cc, translates a collection of C source programs and object files into either an 
executable file or an object file. On your system, the compiler may have another name, such as 
gcc. The cc command may be a symbolic link to another executable.

Compilation proceeds in stages. In the first stage, a preprocessor expands macros and includes 
header files. The compiler then makes several passes to translate the code, first to the 
assembly language of the target machine and then into machine code. The result is an object 
module, which has machine code and tables of unresolved references. The final stage of 
compilation links a collection of object modules together to form the executable module with all 
references resolved. An executable file is ready to be loaded and run. The executable contains 
exactly one main function.

Example A.2 

The following command compiles mine.c and produces the executable mine.

cc -o mine mine.c

If the -o mine option is omitted, the C compiler produces an executable called a.out. Use the -
o option to avoid the noninformative default name.

Example A.3 

The following mine.c source file contains an undefined reference to the serr function.

void serr(char *msg);

int main(void) {
   serr("This program does not do much\n");
   return 0;
}

When mine.c of Example A.3 is compiled as in Example A.2, the C compiler displays a message 
indicating that serr is an unresolved reference and does not produce an executable.

Programs are usually organized into multiple source files that must be linked together. You can 
compile all the source files with a single cc command. Alternatively, you can compile the source 
into separate object modules and link these object modules to form an executable module in a 
separate step.

Example A.4 

Suppose that the serr function is contained in the source file minelib.c. The following 
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command compiles the mine.c source file of Example A.3 with minelib.c to produce an 
executable module called mine.

cc -o mine mine.c minelib.c

The -c option of cc causes the C compiler to produce an object module rather than an 
executable. An object module cannot be loaded into memory or executed until it is linked to 
libraries and other modules to resolve references. The C compiler does not complain about 
unresolved references in object modules. A misspelled variable or missing library function might 
not be detected until that object module is linked into an executable.

Example A.5 

The following command produces the object module mine.o.

cc -c mine.c

When the -c option is used, the C compiler produces an object module named with the .o 
extension. The mine.o produced by the cc command of Example A.5 can later be linked with 
another object file (e.g., minelib.o) to produce an executable.

Example A.6 

The following command links the object modules mine.o and minelib.o to produce the 
executable mine.

cc -o mine mine.o minelib.o

A.2.1 Header files

Before a function such as serr in Example A.3 is referenced, it should either be defined or have 
a prototype. Often, prototypes are contained in header files.

Before compilation, the C preprocessor copies the header files specified by #include 
statements into the source. By convention, header files have a .h extension. Put declarations of 
constants, types and functions in header files. Do not put variable declarations in header files, 
because this can result in multiply-defined variables. The next exercise illustrates the difficulties 
caused by placing variable declarations in header files.

Exercise A.7 

What happens if you execute the following commands?

cc -o mystuff my.c mylib.c
mystuff



The file myinc.h contains the following segment.

#include <stdio.h>
static int num;
void changenum(void);

The file my.c contains the following main program.

#include "myinc.h"
int main (void) {
   num = 10;
   changenum();
   printf("num is %d\n", num);
   return 0;
}

The file mylib.c contains the following function.

#include "myinc.h"
void changenum(void) {
   num = 20;
}

Answer:

Both my.c and mylib.c contain a num variable because its definition appears in myinc.h. The 
call by the main program to changenum does not affect the value of the variable num defined in 
my.c. The mystuff program outputs 10 rather than 20.

Enclose system-defined header files in angle brackets (as in #include <stdio.h>) since the 
compiler then looks in the standard place for the file. The standard place depends on the 
system, but the man page for cc usually describes how the standard search occurs. The /usr/
include directory holds many of the standard header files. The files in this directory often 
include other .h files from subdirectories beneath /usr/include. The /usr/include/sys 
directory is a standard location for many of the .h files needed for this book. Be sure to include 
the header files specified by the man page synopsis when using a library function. Enclose 
personal header filenames in double quotes as follows.

#include "myinc.h"

The quotes tells the compiler to look for the header file in the directory containing the source 
file before looking in the standard place.

Exercise A.8 

A program uses the error symbol EAGAIN in conjunction with a call to write. The compiler 
complains that EAGAIN is not defined. Now what?



Answer:

Try the following steps to solve the problem.

●     Make sure to include all the header files mentioned in the synopsis for write. The man 
page specifies the header file <unistd.h>.

●     Buried somewhere in the man pages is a statement mentioning that errno.h must be 
included in programs that refer to error symbols. If the program includes errno.h, the 
problem is solved.

●     If the errno.h statement in the man page escapes your notice, look for the symbol 
EAGAIN directly in the system header files by using

cd /usr/include
grep EAGAIN *

The grep command searches for the string EAGAIN in all of the files in the directory /
usr/include. Unfortunately, the EAGAIN symbol is not in any of the files in /usr/
include.

●     Change to the /usr/include/sys directory and try grep again. The following is a typical 
response to grep.

errno.h:#define EAGAIN 11
errno.h:#define EWOULDBLOCK        EAGAIN

It might be tempting to eliminate the problem by including the file sys/errno.h in the 
source, but what the compiler really wants is errno.h. Using errno.h directly is better 
because it includes sys/errno.h and also contains additional definitions.

A.2.2 Linking and libraries

Just because a program has the right header files does not mean that your troubles are over. A 
header file gives symbol declarations and function prototypes, but it does not supply the actual 
code for the function call.

Exercise A.9 

The mylog.c source file calculates the logarithm of a value. After including math.h in that 
source file, the user compiles the program and receives an error message that the log function 
could not be found. Why not?

Answer:

The math.h header file just tells the C compiler what the form (prototype) of the log function 
is. It does not actually supply the function.

Compilation takes place in two distinct phases. In the first phase, the compiler translates each 
C source file into object code. The cc -c option stops at this point. Object code is not ready to 



execute because the program may reference outside items that have not been located. To 
produce an executable module, the compile must find all the undefined symbols (unresolved 
external references). The cc compiler calls the link editor, ld, to accomplish this task.

Example A.10 

The following command compiles the mylog.c source file with the system math library to 
produce an executable called mylog.

cc -o mylog mylog.c -lm

To use C mathematics library functions, put #include <math.h> in the source file and also 
specify that the program should be linked with the math library (-lm) when it is compiled.

The names of libraries are specified by the -l option. The object files are processed in the order 
in which they appear on the cc command line, so the location of -l on the cc line is significant. 
It should come after the object files because only those entries that match unresolved 
references are loaded. By default, the link editor automatically searches the standard C library.

Exercise A.11 

What happens if the math library in Example A.10 is linked, but the header file math.h is not 
included in the source?

Answer:

The compiler assumes that log has a return value of type int rather than double. If the 
program calls the log function, the calculation produces an incorrect numerical result. The 
compiler may not produce an error or warning message. However, lint (Section A.4) reports 
that log has been implicitly declared to return int.

Example 1.12 

The following linking command processes the object files in the order my.o, the math library, 
and then mylib.o.

cc -o my my.o -lm mylib.o

The link editor includes only those objects in the library that correspond to unresolved 
references. Thus, if mylib.o contains a reference to the math library, that reference is not 
resolved by this command.

The -lx option is short for either libx.a (a library archive) or libx.so (a shared library). 
Which is the default depends on how the system is set up. Many compilers allow you to specify -
Bstatic -lx in the cc command for a library archive and -Bdynamic -lx for a shared library. 
The compiler scans the shared libraries for references, but it does not actually put the functions 



in the executable output file. Instead, the runtime system loads them by dynamic loading and 
binding.

Several versions of a particular library may coexist on a system—at least one for each version 
of the C compiler. A typical search order for libraries is the following.

●     -L directories specified on the cc line
●     Directories in the LD_LIBRARY_PATH environment variable
●     Standard library directories (e.g., /usr/lib)

The -L option of cc explicitly specifies pathnames for directories to be searched for libraries. 
The LD_LIBRARY_PATH environment variable specifies default pathnames for searching for load 
libraries. Generally, LD_LIBRARY_PATH includes pathnames for the directories in which the 
compilers are installed, as well as directories such as /usr/local/lib. Your system 
administrator has probably set up the LD_LIBRARY_PATH variable for using the standard 
compilers.

A.2.3 Macros and conditional compilation

Before the Single UNIX Specification, there were several incompatible UNIX standards, and 
vendors would use conditional compilation to adjust for these differences. The preprocessor can 
produce different code for the compiler from a single source file through the use of the #if, 
#ifdef and #ifndef preprocessor statements. Such conditional compilation can be used to 
allow a program to be compiled under different implementations or in different environments.

Example A.13 

The UICI restart library sets errno to ETIME when the function waitfdtimed times out. Some 
systems do not define ETIME but instead use the error ETIMEDOUT. The file restart.h solves 
this problem with the following.

#ifndef ETIME
#define ETIME ETIMEDOUT
#endif

If ETIME is not already defined, it is defined as ETIMEDOUT.

ETIME and ETIMEDOUT are examples of simple macros specified by a #define statement. The 
preprocessor replaces these defined constants with their values before passing the code to the 
C compiler.

Most C compilers have a -D option that allows the setting of macros at compile time.

Example A.14 

The Linux header files provide a number of options to support different standards and 
implementations. Linux uses the constant _GNU_SOURCE for many of the features that are now 



part of the Single UNIX Specification. If this constant is defined, then these features are turned 
on. Some of the programs in this book require this constant to be defined when the programs 
are compiled under Linux. To compile the program myprog.c with this constant defined, use the 
following command.

cc -D_GNU_SOURCE -o myprog myprog.c

This causes the constant _GNU_SOURCE to be defined with the default value of 1, as if the 
following statement appeared as the first line of the source file.

#define _GNU_SOURCE 1

Example A.15 

The UICI name library in Section C.2 gives four implementations of the function addr2name and 
name2addr, using conditional compilation to choose one of the implementations. The general 
format of the code is as follows.

#ifndef REENTRANCY
#define REENTRANCY_NONE
#endif

#if REENTRANCY==REENTRANT_NONE
   /* default code using gethostbyname and gethostbyaddr */
#elif REENTRANCY==REENTRANT_R
   /* code using gethostbyname_r and gethostbyaddr_r */
#elif REENTRANCY==REENTRANT_MUTEX
   /* code using mutex locks */
#elfi REENTRANCY==REENTRANT_POSIX
   /* code using getnameinfo and getaddrinfo */
#endif

The first three lines guarantee that REENTRANCY has its default value if it is not otherwise 
defined.

Example A.16 

Execute the following command to compile the program client.c with the restart library, the 
UICI library, and the UICI name library. Use the getnameinfo and getaddrinfo functions.

cc -DREENTRANCY=REENTRANT_POSIX -o client client.c restart.c uiciname.c uici.c

Additional libraries may be needed on your system.
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A.3 Makefiles

The make utility, which allows users to incrementally recompile a collection of program modules, 
is convenient and helps avoid mistakes. To use make, you must specify dependencies among 
modules in a description file. The make utility uses the description file to see if anything needs 
updating.

The description file specifies dependency relationships that exist between targets and other 
components. Lines starting with # are comments. The dependencies in the description file have 
the following form.

target:          components
TAB              rule

The first line is called a dependency, and the second line is called a rule. The first character on 
a rule line in a description file must be the TAB character. A dependency may be followed by 
one or more rule lines.

The default description filenames are makefile and Makefile. When the user types make with 
no additional arguments, the make utility looks for makefile or Makefile in the current 
directory to use as its description file.

Example A.17 

In Example A.6, the executable mine depends on the object files mine.o and minelib.o. The 
following description specifies that dependency relationship.

mine:   mine.o minelib.o
        cc -o mine mine.o minelib.o

The dependency relationship specifies that the target mine should be updated by executing the 
rule cc -o mine mine.o minelib.o if either mine.o or minelib.o has been modified since 
mine was last changed,

Figure A.2. A dependency graph for the makefile of Example A.18.
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Example A.18 

A makefile target may depend on components that are themselves targets. The following 
makefile description file has three targets.

my:     my.o mylib.o
        cc -o my my.o mylib.o

my.o:   my.c myinc.h
        cc -c my.c

mylib.o:  mylib.c myinc.h
        cc -c mylib.c

The target my depends on the targets my.o and mylib.o. Just type make to do the required 
updates.

Sometimes it is helpful to visualize the dependencies of a description file by a directed graph. 
Use graph nodes (with no duplicates) to represent the targets and components. Draw a 
directed arc from node A to node B if target A depends on B. A proper description file's graph 
should have no cycles. Figure A.2 shows the dependency graph for the description file of 
Example A.18.

Description files can also contain macro definitions of the following form.

NAME = value



Whenever $(NAME) appears in the description file, make substitutes value before processing. Do 
not use tabs in macros.

Example A.19 

The following description file uses a macro to represent the compiler options. With this 
definition, the compiler options need only be changed in a single place rather than in the entire 
file.

OPTS = -g

my:     my.c  my.h
        cc $(OPTS) -o my my.c

The make command also allows the name of a target to be specified on the command line. In 
this case, make updates only the specified target. When developing multiple targets in the same 
directory (e.g., send and receive programs), use this feature to debug one target at a time. If 
no targets are explicitly specified on the command line, make checks only the first target in the 
description file. Often, a description file has a first target called all that depends on all the 
other targets.

Example A.20 

The following command causes make to update only the target my.

make my

The command of Example A.20 does not interpret my as a description file but as a target within 
the default description file (either makefile or Makefile in the current directory).

Use the -f option with make for description files with names other than makefile or Makefile.

Example A.21 

The following command updates target1 from the description file mymake.

make -f mymake target1
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A.4 Debugging Aids

This section discusses the lint utility, debuggers, the truss utility and profiling.

A.4.1 The lint utility

The lint utility finds errors and inconsistencies in C source files. The lint program performs 
type checking, tries to detect unreachable statements, and points out code that might be 
wasteful or nonportable; lint also detects a variety of common errors, such as using = instead 
of == or omitting & in arguments of scanf. You should call lint for all programs. Pay attention 
to the resulting warning messages, since lint is pickier than the C compiler in many areas. The 
C compiler presumes that programs have already been linted and is usually implemented to be 
fast rather than fussy.

Exercise A.22 

Add the following lines to the description file of Example A.18 to lint the sources.

lintall:
           lint my.c mylib.c > my.lint

Type make lintall to lint the programs. The output of lint is in my.lint.

Exercise A.23 

How should the following lint message be interpreted?

implicitly declared to return int:
    (14) strtok

Answer:

This lint message warns that the program did not include the string.h header file associated 
with strtok appearing on line 14 of the source file. Lacking information to the contrary, the 
compiler assumes that strtok returns int. Unfortunately, strtok returns char*. The lack of 
header can lead to disastrous results at execution time.

Exercise A.24 

How should the following lint message be interpreted?

(5) warning: variable may be used before set: p
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Answer:

This message usually appears when the program uses a pointer before setting its value, as in 
the following code segment.

char *p;
scanf("%s", p);

The pointer p is not pointing to an appropriate character buffer. The code may compile, but the 
program will probably produce a segmentation error when executed.

A.4.2 Debuggers

Debuggers are runtime programs that monitor and control the execution of other programs. 
Common debuggers found in UNIX environments are dbx, adb, sdb and debug. Debuggers allow 
a user to single-step through a program and monitor changes to specified variables. To use a 
debugger, compile the program with the -g option.

Exercise A.25 

Compile the program my.c with the -g option as follows to instrument the executable for 
debugger control.

cc -g -o my my.c

Run my under the dbx debugger by typing the following command.

dbx my

The debugger responds with the following prompt.

(dbx)

Respond with help for a list of commands or run to run the program. Set a stopping point with 
stop, or turn on tracing when a variable changes, by typing trace before typing run.

Many programmers, especially beginning programmers, find debuggers useful for pointer 
problems. Some debuggers have graphical user interfaces that make them easier to use. 
Standard debuggers are less useful in a concurrent environment, in which processes interact or 
timing can change the behavior of a program. Thread debuggers are also available on a limited 
basis. Debuggers may help you find a particular execution error, but using a debugger is no 
substitute for having a program test plan. Good error trapping for function calls is probably the 
most valuable debugging strategy to follow.

A.4.3 The truss utility

For runtime debugging, the truss command is useful if it is available. The truss command 



produces a trace of system calls that are made and the signals delivered while a particular 
process is running. Use the -f option with truss to trace the calls of all children of the process. 
The truss command is not part of POSIX and is not available on all systems.

Exercise A.26 

Suppose that a program called dvips is installed on a system and that this program accesses 
the psfonts.map file. You have placed a copy of psfonts.map in the bin subdirectory of your 
home directory. When you run the program, you receive the following error message.

unable to open file

How can you figure out how to correct the problem?

Answer:

Try executing the following command (from a C shell).

truss dvips -f t.dvi |& grep psfonts.map

The truss program runs the command dvips -f t.dvi, and grep displays the output lines 
containing psfonts.map. The |& argument causes both the standard output and the standard 
error of truss to be piped to the standard input of grep. The output might appear as follows.

open("./psfonts.map", O_RDONLY, 0666)         Err#2 ENOENT
open("/usr/local/tex/dvips/psfonts.map", O_RDONLY, 0666) Err#2 ENOENT

The output reports that the program first looked for psfonts.map in the current directory and 
then in the directory /usr/local/tex/dvips. Copy the psfonts.map to /usr/local/tex/dvips 
and everything should be ready to go!

A.4.4 Profilers

Most C compilers have options for profiling programs. Profilers accumulate statistical 
information such as execution times for basic blocks and frequency of calls. Consult the man 
pages for prof, gprof, monitor, profil and tcov as well as for cc to obtain additional 
information about profiling.
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A.5 Identifiers, Storage Classes and Linkage Classes

Programmers are often confused about the meaning of the keyword static, in part because C 
uses the word two different ways. The main points to remember are the following.

1.  If static is applied to a function, that function can only be called from the file in which 
it is defined.

2.  If a variable definition appears outside any block, the variable exists for the duration of 
the program. If static is applied, the variable can only be accessed from within the file 
containing the definition. Otherwise, the variable can be accessed anywhere in the 
program.

3.  If a variable is defined inside a block, it can only be accessed within the block. If static 
is applied, the variable exists for the duration of the program and it retains its value 
when execution leaves the block. Otherwise, the variable is created when the block is 
entered, and it is destroyed when execution leaves the block. Such a variable needs to 
be explicitly initialized before it can be used.

These rules are based on C's notion of scope of an identifier and linkage, which we now discuss.

According to the ISO C standard, "An identifier can denote an object; a function; a tag or 
member of a structure, union, or enumeration; a typedef name; a label name; a macro name; 
or a macro parameter." [56, section 6.2.1] Here, we mainly discuss identifiers that are 
associated with variables and functions.

An identifier can be used only in a region of program text called its scope. If two different 
entities are designated by the same identifier, their scopes must be disjoint, or one scope must 
be completely contained in the other. In the inner scope, the other entity is hidden and cannot 
be referenced by that identifier.

The scope begins at the identifier declaration. If the declaration occurs inside a block, the 
identifier has block scope and the scope ends at the end of the block. If the declaration occurs 
outside any block, the identifier has file scope, and the scope ends at the end of the file in 
which it is declared.

Identifiers declared more than once may refer to the same object because of linkage. Each 
identifier has a linkage class of external, internal or none. Declarations in a program of a 
particular identifier with external linkage refer to the same entity. Declarations in a file of a 
particular identifier with internal linkage represent the same entity. Each declaration of an 
identifier with no linkage represents a unique entity.

An identifier representing a function has external linkage by default. This means that it can be 
referenced in any file of the program. Referencing it in a file other than the one in which it is 
defined requires a function prototype. You can hide a function from other files by giving it 
internal linkage, using the static qualifier.
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An identifier representing an object (such as a variable) has a linkage class related to its 
storage class, also called storage duration. The storage duration determines the lifetime of the 
object, the portion of the program execution for which storage is guaranteed to be reserved for 
the object. There are three storage durations: static, automatic and allocated. Allocated objects 
have a lifetime that begins with a successful malloc or related function and ends when the 
object is explicitly freed or the program terminates. The lifetimes of other objects are 
determined by the declaration of the corresponding identifier.

An identifier of an object declared outside any block has static storage class. Objects with static 
storage class have a lifetime that is the duration of the program. They are initialized once and 
retain their last stored value. If no explicit initialization is given in the declaration, they are 
initialized to 0. As with functions, these identifiers have external linkage by default but can be 
given internal linkage by means of the static qualifier.

An identifier of an object declared inside a block has no linkage. Each identifier denotes a 
unique object. These identifiers have automatic storage duration by default. Objects with 
automatic storage class have a lifetime that begins when execution enters the block and ends 
when execution exits the block. These objects are not initialized by default and do not 
necessarily retain their last stored value after execution exits the block. If the block is entered 
through recursion or with multiple threads, each entry into the block creates a distinct object. A 
variable with automatic storage class is called an automatic variable.

An identifier of an object declared inside a block can be given static storage duration with the 
static qualifier. The object then has a lifetime that is the duration of the program and retains 
its last stored value. If the block is entered through recursion or multiple threads, the same 
object is used.

Objects with identifiers having static storage duration are often called static variables; those 
with identifiers having automatic storage duration are called automatic variables.

As described above, the static qualifier can affect either the storage class or linkage class of 
an object depending on the context. When static is applied to a function, it always changes its 
linkage class from the default of external to internal. Functions do not have a storage duration. 
For objects declared inside a block, the linkage class is always none and static changes the 
storage class from automatic to static. For objects declared outside any block, the storage class 
is always static and the static specifier changes the linkage class from external to internal. 
These rules are summarized in Table A.3.

Table A.3. Effect of using the static keyword modifier on an object in a 
C program.

where declared static modifies static applied? storage class linkage class

inside a block storage class yes static none

inside a block storage class no automatic none



outside any block linkage class yes static internal

outside any block linkage class no static external
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A.6 Additional Reading

UNIX SYSTEM V: A Practical Guide, 3rd ed., by Sobell [108] is an up-to-date reference on using 
the UNIX utilities. UNIX System Administration Handbook, 3rd ed., by Nemeth et al. [86] is an 
excellent and readable introduction to many of the configuration issues involved in setting up 
UNIX systems. O'Reilly Press has individual books on many of the topics in this appendix 
including emacs [20], the libraries [27], lint [28], make [120], and vi [69].
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Appendix B. Restart Library

The restart library is a collection of functions that restart themselves when they have not 
completed because of a possibly temporary event. We use functions from the restart library 
throughout the book to simplify programs that must deal with the effects of signals and 
incomplete I/O. The source code for the restart library is available on the book web site. We 
have included only those functions that are needed in the book. You can easily add other 
functions, if necessary.

The restart library addresses two main types of events: interruption by a signal and incomplete 
I/O. For example, many library functions, including read and write, return –1 and set errno to 
EINTR when interrupted by a signal before any I/O takes place. This interruption is not a real 
error but a natural event that occurs when the program handles a signal in the presence of 
blocking I/O. The library functions restart when the function they wrap returns –1 with errno 
set to EINTR.

Some functions such write might return before a full request is satisfied. When a request is 
made to write n bytes, the write call is considered successful when any number of bytes 
greater than zero has been written. A write function could return a positive value less than n if 
a signal is caught before the requested amount has been written or if an I/O buffer is full, such 
as when writing to a pipe or network connection. Typically, the program must handle this case 
and write the remaining bytes. The functions in the restart library simplify the user code by 
writing the remaining bytes. Table B.1 gives a complete list of the functions in the restart 
library.

The restart library includes two types of functions. The functions whose names start with r_ are 
restarted versions of traditional library functions. These functions have the same prototypes as 
the corresponding traditional functions. For example, the r_read function takes the same 
parameters as read, but restarts read if the read function returns –1 with errno set to EINTR. 
For these functions, the table describes only the differences between the function and its 
traditional counterpart.

Table B.1. The functions in the restart library. The first part of the table 
shows the functions that correspond to traditional functions. All 

functions in the restart library restart when interrupted by a signal. 
None of these functions return –1 with errno set to EINTR.

prototype description

int r_close(int fildes) similar to close
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int r_dup2(int fildes,
     int fildes2)

similar to dup2

int r_open2(const char *path,
     int oflag)

similar to open called with two parameters

int r_open3(const char *path,
     int oflag, mode_t mode)

similar to open called with three parameters

int r_read(int fd, void *buf,
     size_t size)

similar to read

pid_t r_wait(int *stat_loc) similar to wait

pid_t r_waitpid(pid_t pid,
     int *stat_loc, int options)

similar to waitpid

int r_write(int fd, void *buf,
     size_t size)

similar to write but restarts if fewer than size bytes 
are written (The only possible return values are size 
and –1.)

struct timeval
     add2currenttime(
     double seconds)

returns a struct timeval structure corresponding to 
the current time plus seconds seconds

int copyfile(int fromfd,
     int tofd)

copies bytes from one open file descriptor to another 
until the end of the file or an error

int readblock(int fd,
     void *buf, size_t size)

reads exactly size bytes into the buffer or returns an 
error

int readline(int fd,
     char *buf, int nbytes)

reads a line into buf, which has size nbytes

int readwrite(int fromfd,
     int tofd)

copies at most PIPE_BUF bytes from one open file 
descriptor to another

int readwriteblock(int fromfd,
     int tofd, char *buf,
     int size)

copies exactly size bytes from one open file 
descriptor to another, using the given buffer and size



int waitfdtimed(int fd,
     struct timeval end)

waits for data to be available on given file descriptor 
or until time end

The functions shown in the second part of Table B.1 do not correspond to any traditional library 
functions. For example, readline handles restarting when a signal occurs and continues 
reading until the end of a line or the end of the buffer. The readblock function restarts when 
the requested number of bytes has not yet been read.

The following is a more complete description of the functions in the restart library.

struct timeval add2currenttime(double seconds);

returns a struct timeval corresponding to the current time plus seconds 
seconds. The implementation calls gettimeofday to get the current time, 
converts the seconds parameter to integer values representing seconds and 
microseconds, and adds these values to the current time.

int copyfile(int fromfd, int tofd);

copies bytes from open file descriptor fromfd to open file descriptor tofd until 
either end-of-file or an error occurs. If successful, copyfile returns the number 
of bytes copied. If unsuccessful, copyfile returns –1 and sets errno. The 
copyfile function does not return an error if any bytes are successfully copied, 
even if an error occurs on a subsequent write that follows a successful read.

int r_close(int fildes);

closes fildes. If successful, r_close returns 0. If unsuccessful, r_close returns 
–1 and sets errno. The implementation calls close in a loop, restarting if close 
returns –1 with errno set to EINTR.

int r_dup2(int fildes, int fildes2);

closes fildes2 if it was open and causes fildes2 to refer to the same file as 
fildes. If successful, r_dup2 returns fildes2. If unsuccessful, r_dup2 returns –
1 and sets errno. The implementation calls dup2 in a loop, restarting if dup2 
returns –1 with errno set to EINTR.

int r_open2(const char *path, int oflag);

opens a file descriptor for path. The oflag should not have the O_CREAT bit set. 
If successful, r_open2 returns an open file descriptor. If unsuccessful, r_open2 
returns –1 and sets errno. The implementation calls open in a loop, restarting if 
open returns –1 with errno set to EINTR.



int r_open3(const char *path, int oflag, mode_t mode);

opens a file descriptor for path. The oflag should have the O_CREAT bit set. If 
successful, r_open3 returns an open file descriptor. If unsuccessful, r_open3 
returns –1 and sets errno. The implementation calls open in a loop, restarting if 
open returns –1 with errno set to EINTR.

ssize_t r_read(int fd, void *buf, size_t size);

reads at most size bytes from the open file descriptor fd into buf. If successful, 
r_read returns the number of bytes read. If unsuccessful, r_read returns –1 and 
sets errno. The implementation calls read in a loop, restarting if read returns –1 
with errno set to EINTR.

pid_t r_wait(int *stat_loc);

suspends execution of the calling thread until status information for one of its 
terminated children is available. If successful, r_wait returns the process ID of a 
terminated child process. If unsuccessful, r_wait returns –1 and sets errno. The 
implementation calls wait in a loop, restarting if wait returns –1 with errno set 
to EINTR.

pid_t r_waitpid(pid_t pid, int *stat_loc, int options);

suspends execution of the calling thread until status information is available for a 
specified child process. If successful, r_waitpid returns the process ID of a child 
process. If unsuccessful, r_waitpid returns –1 and sets errno. The 
implementation calls waitpid in a loop, restarting if waitpid returns –1 with 
errno set to EINTR.

ssize_t r_write(int fd, void *buf, size_t size);

attempts to write exactly size bytes from buf to the open file descriptor fd. If 
successful, r_write returns size. If unsuccessful, r_write returns –1 and sets 
errno. The only possible return values are size and –1. The implementation 
calls write in a loop, restarting if write returns –1 with errno set to EINTR. If 
write does not output all the requested bytes, r_write continues to call write 
until all the bytes have been written or an error occurs.

ssize_t readblock(int fd, void *buf, size_t size);

attempts to read exactly size bytes from the open file descriptor fd into the 
buf. If readblock reaches end-of-file before reading any bytes, it returns 0. If 
exactly size bytes are read, readblock returns size. If unsuccessful, readblock 
returns –1 and sets errno. If readblock encounters end-of-file after some but 
not all of the needed bytes, the function returns –1 and sets errno to EINVAL.



int readline(int fd, void *buf, size_t size);

attempts to read a line from the open file descriptor fd into buf, a buffer of size 
size. If readline reaches end-of-file before reading any bytes, it returns 0. If 
successful, buf contains a string ending with a newline. The readline function 
returns the length of the string. If unsuccessful, readline returns –1 and sets 
errno. Two errors are possible other than an error reading from fd: end-of-file 
before newline or size-1 bytes read before newline. Both errors cause readline 
to set errno to EINVAL.

ssize_t readtimed(int fd, void *buf, size_t nbyte,
                   double seconds);

attempts to read at most nbyte bytes from the open file descriptor fd into the 
buffer buf. The readtimed function behaves the same as r_read unless no bytes 
are available in a number of seconds given by seconds. If no bytes are available 
within the timeout period, readtimed returns –1 and sets errno to ETIME. If 
interrupted by a signal, readtimed restarts but maintains the original ending 
timeout.

int readwrite(int fromfd, int tofd);

reads at most PIPE_BUF bytes from open file descriptor fromfd and writes the 
bytes read to the open file descriptor tofd. If successful, readwrite returns the 
number of bytes copied. If readwrite reaches end-of-file on fromfd, it returns 
0. If unsuccessful, readwrite returns –1 and sets errno.

int readwriteblock(int fromfd, int tofd, char *buf, int size);

reads exactly size bytes from the open file descriptor fromfd and writes them to 
the open file descriptor tofd. The buf parameter is a buffer of size size. If 
successful, readwriteblock returns size and the bytes read are in buf. If 
readwriteblock reaches end-of-file on fromfd before any bytes are read, it 
returns 0. If unsuccessful, readwriteblock returns –1 and sets errno.

int waitfdtimed(int fd, struct timeval end);

waits until data is available to be read from file descriptor fd or until the current 
time is later than the time in end. If a read on fd will not block, waitfdtimed 
returns 0. If unsuccessful, waitfdtimed returns –1 and sets errno. If fd will still 
block when time end occurs, waitfdtimed sets errno to ETIME. If fd is negative 
or greater than or equal to FD_SETSIZE, waitfdtimed sets errno to EINVAL.

Program B.1 is the header file containing the prototype for these functions. Program B.2 gives 
the complete code for the restart library.



Program B.1 restart.h

The header file containing the prototypes for the restart library.

#include <fcntl.h>
#include <unistd.h>
#include <sys/time.h>
#include <sys/types.h>

#ifndef ETIME
#define ETIME ETIMEDOUT
#endif

struct timeval add2currenttime(double seconds);
int copyfile(int fromfd, int tofd);
int r_close(int fildes);
int r_dup2(int fildes, int fildes2);
int r_open2(const char *path, int oflag);
int r_open3(const char *path, int oflag, mode_t mode);
ssize_t r_read(int fd, void *buf, size_t size);
pid_t r_wait(int *stat_loc);
pid_t r_waitpid(pid_t pid, int *stat_loc, int options);
ssize_t r_write(int fd, void *buf, size_t size);
ssize_t readblock(int fd, void *buf, size_t size);
int readline(int fd, char *buf, int nbytes);
ssize_t readtimed(int fd, void *buf, size_t nbyte, double seconds);
int readwrite(int fromfd, int tofd);
int readwriteblock(int fromfd, int tofd, char *buf, int size);
int waitfdtimed(int fd, struct timeval end);

Program B.2 restart.c

The restart library.

#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <string.h>
#include <sys/select.h>
#include <sys/time.h>
#include <sys/wait.h>
#include "restart.h"
#define BLKSIZE PIPE_BUF
#define MILLION 1000000L
#define D_MILLION 1000000.0

/* Private functions */

static int gettimeout(struct timeval end,
                               struct timeval *timeoutp) {
   gettimeofday(timeoutp, NULL);
   timeoutp->tv_sec = end.tv_sec - timeoutp->tv_sec;
   timeoutp->tv_usec = end.tv_usec - timeoutp->tv_usec;



   if (timeoutp->tv_usec >= MILLION) {
      timeoutp->tv_sec++;
      timeoutp->tv_usec -= MILLION;
   }
   if (timeoutp->tv_usec < 0) {
      timeoutp->tv_sec--;
      timeoutp->tv_usec += MILLION;
   }
   if ((timeoutp->tv_sec < 0) ||
       ((timeoutp->tv_sec == 0) && (timeoutp->tv_usec == 0))) {
      errno = ETIME;
      return -1;
   }
   return 0;
}

/* Restart versions of traditional functions */

int r_close(int fildes) {
   int retval;
   while (retval = close(fildes), retval == -1 && errno == EINTR) ;
   return retval;
}

int r_dup2(int fildes, int fildes2) {
   int retval;
   while (retval = dup2(fildes, fildes2), retval == -1 && errno == EINTR) ;
   return retval;
}

int r_open2(const char *path, int oflag) {
   int retval;
   while (retval = open(path, oflag), retval == -1 && errno == EINTR) ;
   return retval;
}

int r_open3(const char *path, int oflag, mode_t mode) {
   int retval;
   while (retval = open(path, oflag, mode), retval == -1 && errno == EINTR) ;
   return retval;
}

ssize_t r_read(int fd, void *buf, size_t size) {
   ssize_t retval;
   while (retval = read(fd, buf, size), retval == -1 && errno == EINTR) ;
   return retval;
}

pid_t r_wait(int *stat_loc) {
   pid_t retval;
   while (((retval = wait(stat_loc)) == -1) && (errno == EINTR)) ;
   return retval;
}

pid_t r_waitpid(pid_t pid, int *stat_loc, int options) {
   pid_t retval;



   while (((retval = waitpid(pid, stat_loc, options)) == -1) &&
           (errno == EINTR)) ;
   return retval;
}

ssize_t r_write(int fd, void *buf, size_t size) {
   char *bufp;
   size_t bytestowrite;
   ssize_t byteswritten;
   size_t totalbytes;

   for (bufp = buf, bytestowrite = size, totalbytes = 0;
        bytestowrite > 0;
        bufp += byteswritten, bytestowrite -= byteswritten) {
      byteswritten = write(fd, bufp, bytestowrite);
      if ((byteswritten) == -1 && (errno != EINTR))
         return -1;
      if (byteswritten == -1)
         byteswritten = 0;
      totalbytes += byteswritten;
   }
   return totalbytes;
}

/* Utility functions */

struct timeval add2currenttime(double seconds) {
   struct timeval newtime;

   gettimeofday(&newtime, NULL);
   newtime.tv_sec += (int)seconds;
   newtime.tv_usec += (int)((seconds - (int)seconds)*D_MILLION + 0.5);
   if (newtime.tv_usec >= MILLION) {
      newtime.tv_sec++;
      newtime.tv_usec -= MILLION;
   }
   return newtime;
}

int copyfile(int fromfd, int tofd) {
   int bytesread;
   int totalbytes = 0;

   while ((bytesread = readwrite(fromfd, tofd)) > 0)
      totalbytes += bytesread;
   return totalbytes;
}

ssize_t readblock(int fd, void *buf, size_t size) {
   char *bufp;
   ssize_t bytesread;
   size_t bytestoread;
   size_t totalbytes;

   for (bufp = buf, bytestoread = size, totalbytes = 0;
        bytestoread > 0;
        bufp += bytesread, bytestoread -= bytesread) {



      bytesread = read(fd, bufp, bytestoread);
      if ((bytesread == 0) && (totalbytes == 0))
         return 0;
      if (bytesread == 0) {
         errno = EINVAL;
         return -1;
      }
      if ((bytesread) == -1 && (errno != EINTR))
         return -1;
      if (bytesread == -1)
         bytesread = 0;
      totalbytes += bytesread;
   }
   return totalbytes;
}

int readline(int fd, char *buf, int nbytes) {
   int numread = 0;
   int returnval;

   while (numread < nbytes - 1) {
      returnval = read(fd, buf + numread, 1);
      if ((returnval == -1) && (errno == EINTR))
         continue;
      if ((returnval == 0) && (numread == 0))
         return 0;
      if (returnval == 0)
         break;
      if (returnval == -1)
         return -1;
      numread++;
      if (buf[numread-1] == '\n') {
         buf[numread] = '\0';
         return numread;
      }
   }
   errno = EINVAL;
   return -1;
}

ssize_t readtimed(int fd, void *buf, size_t nbyte, double seconds) {
   struct timeval timedone;

   timedone = add2currenttime(seconds);
   if (waitfdtimed(fd, timedone) == -1)
      return (ssize_t)(-1);
   return r_read(fd, buf, nbyte);
}

int readwrite(int fromfd, int tofd) {
   char buf[BLKSIZE];
   int bytesread;

   if ((bytesread = r_read(fromfd, buf, BLKSIZE)) < 0)
      return -1;
   if (bytesread == 0)
      return 0;



   if (r_write(tofd, buf, bytesread) < 0)
      return -1;
   return bytesread;
}

int readwriteblock(int fromfd, int tofd, char *buf, int size) {
   int bytesread;

   bytesread = readblock(fromfd, buf, size);
   if (bytesread != size)         /* can only be 0 or -1 */
      return bytesread;
   return r_write(tofd, buf, size);
}

int waitfdtimed(int fd, struct timeval end) {
   fd_set readset;
   int retval;
   struct timeval timeout;

   if ((fd < 0) || (fd >= FD_SETSIZE)) {
      errno = EINVAL;
      return -1;
   }
   FD_ZERO(&readset);
   FD_SET(fd, &readset);
   if (gettimeout(end, &timeout) == -1)
      return -1;
   while (((retval = select(fd+1, &readset, NULL, NULL, &timeout)) == -1)
           && (errno == EINTR)) {
      if (gettimeout(end, &timeout) == -1)
         return -1;
      FD_ZERO(&readset);
      FD_SET(fd, &readset);
   }
   if (retval == 0) {
      errno = ETIME;
      return -1;
   }
   if (retval == -1)
      return -1;
   return 0;
}
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Appendix C. UICI Implementation

This appendix contains source code for the UICI implementation. UICI has three parts: TCP, 
UDP and name resolution. The TCP and UDP UICI are implemented with sockets. Several 
different implementations of the name resolution functions are given. The name resolution 
functions are used by both UICI TCP and UICI UDP, but UICI TCP and UICI UDP are 
independent of each other. Section C.1 gives the UICI TCP implementation, Section C.2 gives 
the name resolution implementations, and Section C.3 gives the UICI UDP implementation.
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C.1 Connection-Oriented UICI TCP Implementation

This section gives a complete implementation of the UICI TCP functions in terms of sockets.

Program C.1 shows the header file containing the prototypes for the UICI TCP functions. This 
file should be included in all application code that calls any of the public UICI functions.

Program C.1 uici.h

The header file containing prototypes of the UICI functions.

/*********************************** uici.h **************************/
/*   Prototypes for the three public UICI functions                  */
/*********************************************************************/
#define UPORT
typedef unsigned short u_port_t;
int u_open(u_port_t port);
int u_accept(int fd, char *hostn, int hostnsize);
int u_connect(u_port_t port, char *hostn);

The u_accept and u_connect functions call the name resolution functions addr2name and 
name2addr, respectively. Several implementations of these name resolution functions are 
discussed in Section C.2.1, Section C.2.2 and Section C.2.3.

Writing to a network socket that has no readers generates a SIGPIPE signal. If an application 
does not handle this signal, the remote host can cause the application to terminate by 
prematurely closing the connection. Both u_open and u_connect call u_ignore_sigpipe, which 
ignores the SIGPIPE signal if the default action for SIGPIPE (termination of the process) is in 
effect.

The u_open function also sets the SO_REUSEADDR option of the socket so that a server can 
immediately reuse a port number when it is not in use. This option is useful during debugging, 
for otherwise after terminating a server, you must wait (possibly several minutes) before 
starting the server listening again on the same port. The maximum backlog is set to 50 by 
default, but you can change this value either by modifying the uici.c file or by setting a 
compiler option (usually -D).

The u_accept function calls addr2name with three parameters. The first parameter is an 
address of type struct in_addr, which is converted to an ASCII string. The second parameter 
is a pointer to a buffer for storing the string, and the third parameter is the length of the buffer. 
If the buffer is not long enough to contain the host name string, addr2name silently truncates 
the string without producing an error. If name2addr cannot determine the host name, it uses 
the dotted-decimal notation address.

The u_connect function calls name2addr to convert an ASCII host name to an Internet address. 
If the name2addr call is not successful, u_connect returns –1 with errno set to EINVAL. The 
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ASCII host name can be either a traditional name or an address in dotted-decimal notation. In 
the latter case, all the implementations of name2addr use inet_addr to convert the name to an 
address. The u_connect function must be handled in a special way when it is interrupted by a 
signal. If interrupted by a signal, u_connect continues to establish the connection 
asynchronously and it should not be called again. Instead, u_connect calls select to wait until 
the socket is available for writing. At this point the connection is established.

Program C.2 uici.c

The complete uici library.

/* uici.c  sockets implementation */

#include <errno.h>
#include <signal.h>
#include <string.h>
#include <unistd.h>
#include <sys/select.h>
#include <sys/socket.h>
#include "uici.h"
#include "uiciname.h"

#ifndef MAXBACKLOG
#define MAXBACKLOG 50
#endif

/*
 *                           u_igniore_sigpipe
 * Ignore SIGPIPE if the default action is in effect.
 *
 * returns: 0 if successful
 *          -1 on error and sets errno
 */
static int u_ignore_sigpipe() {
   struct sigaction act;

   if (sigaction(SIGPIPE, (struct sigaction *)NULL, &act) == -1)
      return -1;
   if (act.sa_handler == SIG_DFL) {
      act.sa_handler = SIG_IGN;
      if (sigaction(SIGPIPE, &act, (struct sigaction *)NULL) == -1)
         return -1;
   }
   return 0;
}

/*
 *                           u_open
 * Return a file descriptor, which is bound to the given port.
 *
 * parameter:
 *        s = number of port to bind to
 * returns:  file descriptor if successful
 *           -1 on error and sets errno



 */
int u_open(u_port_t port) {
   int error;
   struct sockaddr_in server;
   int sock;
   int true = 1;

   if ((u_ignore_sigpipe() == -1) ||
        ((sock = socket(AF_INET, SOCK_STREAM, 0)) == -1))
      return -1;

   if (setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, (char *)&true,
                  sizeof(true)) == -1) {
      error = errno;
      while ((close(sock) == -1) && (errno == EINTR));
      errno = error;
      return -1;
   }

   server.sin_family = AF_INET;
   server.sin_addr.s_addr = htonl(INADDR_ANY);
   server.sin_port = htons((short)port);
   if ((bind(sock, (struct sockaddr *)&server, sizeof(server)) == -1) ||
        (listen(sock, MAXBACKLOG) == -1)) {
      error = errno;
      while ((close(sock) == -1) && (errno == EINTR));
      errno = error;
      return -1;
   }
   return sock;
}

/*
 *                           u_accept
 * Wait for a connection request from a host on a specified port.
 *
 * parameters:
 *      fd = file descriptor previously bound to listening port
 *      hostn = a buffer that will hold the name of the remote host
 *      hostnsize = size of hostn buffer
 * returns:  a communication file descriptor on success
 *              hostn is filled with the name of the remote host.
 *           -1 on error with errno set
 *
 * comments: This function is used by the server to wait for a
 * communication.  It blocks until a remote request is received
 * from the port bound to the given file descriptor.
 * hostn is filled with an ASCII string containing the remote
 * host name.  It must point to a buffer of size at least hostnsize.
 * If the name does not fit, as much of the name as is possible is put
 * into the buffer.
 * If hostn is NULL or hostnsize <= 0, no hostname is copied.
 */
int u_accept(int fd, char *hostn, int hostnsize) {
   int len = sizeof(struct sockaddr);
   struct sockaddr_in netclient;
   int retval;



   while (((retval =
           accept(fd, (struct sockaddr *)(&netclient), &len)) == -1) &&
          (errno == EINTR))
      ;
   if ((retval == -1) || (hostn == NULL) || (hostnsize <= 0))
      return retval;
   addr2name(netclient.sin_addr, hostn, hostnsize);
   return retval;
}

/*
 *                           u_connect
 * Initiate communication with a remote server.
 *
 * parameters:
 *     port  = well-known port on remote server
 *     hostn = character string giving the Internet name of remote host
 * returns:  a communication file descriptor if successful
 *           -1 on error with errno set
 */
int u_connect(u_port_t port, char *hostn) {
   int error;
   int retval;
   struct sockaddr_in server;
   int sock;
   fd_set sockset;

   if (name2addr(hostn,&(server.sin_addr.s_addr)) == -1) {
      errno = EINVAL;
      return -1;
   }
   server.sin_port = htons((short)port);
   server.sin_family = AF_INET;

   if ((u_ignore_sigpipe() == -1) ||
        ((sock = socket(AF_INET, SOCK_STREAM, 0)) == -1))
      return -1;

   if (((retval =
       connect(sock, (struct sockaddr *)&server, sizeof(server))) == -1) &&
       ((errno == EINTR) || (errno == EALREADY))) {
       FD_ZERO(&sockset);
       FD_SET(sock, &sockset);
       while ( ((retval = select(sock+1, NULL, &sockset, NULL, NULL)) == -1) &&
               (errno == EINTR) ) {
          FD_ZERO(&sockset);
          FD_SET(sock, &sockset);
       }
   }
   if (retval == -1) {
        error = errno;
        while ((close(sock) == -1) && (errno == EINTR));
        errno = error;
        return -1;
   }
   return sock;



}
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C.2 Name Resolution Implementations

The socket functions are both standardized and generally available. Unfortunately, several 
options are available for converting between host name and address, and none is optimal for all 
situations. The functions that are robust and thread-safe are not yet readily available on all 
systems. We offer several options controlled by compile-time definitions. The two UICI name 
resolution functions are addr2name and name2addr. Prototypes for these are in uiciname.h, 
shown in Program C.3.

Program C.3 uiciname.h

The header file for the UICI name resolution functions.

/* uiciname.h name resolution functions */

#include <netinet/in.h>
#define REENTRANT_NONE 0
#define REENTRANT_R 1
#define REENTRANT_MUTEX 2
#define REENTRANT_POSIX 3

int name2addr(char *name, in_addr_t *addrp);
void addr2name(struct in_addr addr, char *name, int namelen);

The addr2name function never returns an error. If the name cannot be resolved, the address is 
converted to a dotted-decimal notation format. The name2addr function returns 0 on success 
and –1 on failure. The UICI TCP and UDP functions that call the name resolution functions 
handle this error by returning –1 and setting errno to EINVAL.

Program C.4 contains four implementations of the name resolution functions addr2name and 
name2addr. Conditional compilation enables the constant REENTRANCY to determine which 
implementation is picked. If this constant is not defined, the default value of REENTRANT_NONE is 
used, giving an implementation with gethostbyname and gethostbyaddr. The value of 
REENTRANCY can be set either by adding a #define in the uiciname.h file or with a compile-
time option.

C.2.1 Implementation with gethostbyaddr and gethostbyname

The first implementation of name resolution presented here uses gethostbyname and 
gethostbyaddr. These functions should be available on all UNIX implementations. Their main 
drawback is that they are not thread-safe, so they cannot be directly used by more than one 
thread. These implementations are used by default or when the constant REENTRANCY is set to 
REENTRANT_NONE.

C.2.2 Reentrant versions of name resolution functions
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If REENTRANCY is equal to REENTRANT_R, the implementations use gethostbyaddr_r and 
gethostbyname_r. These functions were part of the X/OPEN standard, but when this standard 
was merged with POSIX, these functions were omitted. However, they are still available on 
some systems. These functions require a user-supplied buffer, but the documentation does not 
specify how large this buffer should be. Stevens [115] suggests 8192 for this value, since that 
is what is commonly used in the implementations of the non-thread-safe forms.

If REENTRANCY is equal to REENTRANT_POSIX, then the implementation uses the newer 
getnameinfo and getaddrinfo functions. These thread-safe functions can also be used with 
IPv6. Unfortunately, they are not yet available on many systems. Section 18.8 describes 
getnameinfo and getaddrinfo.

C.2.3 Reentrant name resolution with mutex locks

If neither group of reentrant name resolution functions is available, you can use gethostbyname 
and gethostbyaddr by protecting them with mutex locks. Set REENTRANCY to REENTRANT_MUTEX 
to use this implementation. The implementation uses a single mutex lock to protect calls to 
gethostbyname and gethostbyaddr.

Program C.4 uiciname.c

Four implementations of the UICI name resolution functions.

/* uiciname.c  name resolution functions */

#include <ctype.h>
#include <netdb.h>
#include <string.h>
#include <arpa/inet.h>
#include <sys/socket.h>
#include "uiciname.h"

#ifndef REENTRANCY
#define REENTRANCY REENTRANT_NONE
#endif

#if REENTRANCY==REENTRANT_MUTEX
#include <pthread.h>
static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
#endif

#if REENTRANCY==REENTRANT_NONE
/* Convert struct in_addr to a host name */
void addr2name(struct in_addr addr, char *name, int namelen) {
   struct hostent *hostptr;
   hostptr = gethostbyaddr((char *)&addr, 4, AF_INET);
   if (hostptr == NULL)
      strncpy(name, inet_ntoa(addr), namelen-1);
   else
      strncpy(name, hostptr->h_name, namelen-1);
   name[namelen-1] = 0;



}

/* Return -1 on error, 0 on success */
int name2addr(char *name, in_addr_t *addrp) {
   struct hostent *hp;

   if (isdigit((int)(*name)))
      *addrp = inet_addr(name);
   else {
      hp = gethostbyname(name);
      if (hp == NULL)
         return -1;
      memcpy((char *)addrp, hp->h_addr_list[0], hp->h_length);
   }
   return 0;
}
#elif REENTRANCY==REENTRANT_R
#define GETHOST_BUFSIZE 8192
void addr2name(struct in_addr addr, char *name, int namelen) {
   char buf[GETHOST_BUFSIZE];
   int h_error;
   struct hostent *hp;
   struct hostent result;

   hp = gethostbyaddr_r((char *)&addr, 4, AF_INET, &result, buf,
                         GETHOST_BUFSIZE, &h_error);
   if (hp == NULL)
      strncpy(name, inet_ntoa(addr), namelen-1);
   else
      strncpy(name, hp->h_name, namelen-1);
   name[namelen-1] = 0;
}

/* Return -1 on error, 0 on success */
int name2addr(char *name, in_addr_t *addrp) {
   char buf[GETHOST_BUFSIZE];
   int h_error;
   struct hostent *hp;
   struct hostent result;

   if (isdigit((int)(*name)))
      *addrp = inet_addr(name);
   else {
      hp = gethostbyname_r(name, &result, buf, GETHOST_BUFSIZE, &h_error);
      if (hp == NULL)
         return -1;
      memcpy((char *)addrp, hp->h_addr_list[0], hp->h_length);
   }
   return 0;
}
#elif REENTRANCY==REENTRANT_MUTEX
/* Convert struct in_addr to a host name */
void addr2name(struct in_addr addr, char *name, int namelen) {
   struct hostent *hostptr;

   if (pthread_mutex_lock(&mutex) == -1) {
      strncpy(name, inet_ntoa(addr), namelen-1);



      name[namelen-1] = 0;
      return;
   }
   hostptr = gethostbyaddr((char *)&addr, 4, AF_INET);
   if (hostptr == NULL)
      strncpy(name, inet_ntoa(addr), namelen-1);
   else
      strncpy(name, hostptr->h_name, namelen-1);
   pthread_mutex_unlock(&mutex);
   name[namelen-1] = 0;
}

/* Return -1 on error, 0 on success */
int name2addr(char *name, in_addr_t *addrp) {
   struct hostent *hp;

   if (isdigit((int)(*name)))
      *addrp = inet_addr(name);
   else {
      if (pthread_mutex_lock(&mutex) == -1)
         return -1;
      hp = gethostbyname(name);
      if (hp == NULL) {
         pthread_mutex_unlock(&mutex);
         return -1;
      }
      memcpy((char *)addrp, hp->h_addr_list[0], hp->h_length);
      pthread_mutex_unlock(&mutex);
   }
   return 0;
}
#elif REENTRANCY==REENTRANT_POSIX
/* Convert struct in_addr to a host name */
void addr2name(struct in_addr addr, char *name, int namelen) {
   struct sockaddr_in saddr;
   saddr.sin_family = AF_INET;
   saddr.sin_port = 0;
   saddr.sin_addr = addr;
   if (getnameinfo((struct sockaddr *)&saddr, sizeof(saddr), name, namelen,
         NULL, 0, 0) != 0) {
      strncpy(name, inet_ntoa(addr), namelen-1);
      name[namelen-1] = 0;
   }
}

/* Return -1 on error, 0 on success */
int name2addr(char *name, in_addr_t *addrp) {
   struct addrinfo hints;
   struct addrinfo *res;
   struct sockaddr_in *saddrp;

   hints.ai_flags = AI_PASSIVE;
   hints.ai_family = PF_INET;
   hints.ai_socktype = SOCK_STREAM;
   hints.ai_protocol = 0;
   hints.ai_addrlen = 0;
   hints.ai_canonname = NULL;



   hints.ai_addr = NULL;
   hints.ai_next = NULL;

   if (getaddrinfo(name, NULL, &hints, &res) != 0)
      return -1;
   saddrp = (struct sockaddr_in *)(res->ai_addr);
   memcpy(addrp, &saddrp->sin_addr.s_addr, 4);
   freeaddrinfo(res);
   return 0;
}

#endif
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C.3 Connectionless UICI UDP Implementation

Program C.5 shows the header file containing the prototypes for the UICI UDP functions. This 
file should be included in all applications that call any of these public functions. The details of 
the implementation have already been given in Section 20.7, so we just present the complete 
code in Program C.6.

Program C.5 uiciudp.h

The header file for the UICI UDP functions.

#include <netinet/in.h>

#ifndef UPORT
typedef unsigned short u_port_t;
#endif
#define UPORT

#ifndef ETIME
#define ETIME ETIMEDOUT
#endif

typedef struct sockaddr_in u_buf_t;
int u_openudp(u_port_t port);
void u_gethostname(u_buf_t *ubufp, char *hostn, int hostnsize);
void u_gethostinfo(u_buf_t *ubufp, char *info, int infosize);
int u_comparehost(u_buf_t *ubufp, char *hostn, u_port_t port);
ssize_t u_sendtohost(int fd, void *buf, size_t nbyte, char *hostn,
                     u_port_t port);
ssize_t u_sendto(int fd, void *buf, size_t nbyte, u_buf_t *ubufp);
ssize_t u_recvfrom(int fd, void *buf, size_t nbyte, u_buf_t *ubufp);
ssize_t u_recvfromtimed(int fd, void *buf, size_t nbyte, u_buf_t *ubufp,
                         double time);
int u_join(char *IP_address, u_port_t port, u_buf_t *ubufp);
int u_leave(int mcastfd, u_buf_t *ubufp);

Program C.6 uiciudp.c

An implementation of UICI UDP using sockets.

/* uiciudp.c udp sockets implementation */

#include <errno.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <arpa/inet.h>
#include <sys/socket.h>
#include <sys/time.h>
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#include "restart.h"
#include "uiciname.h"
#include "uiciudp.h"

/*
 *                           u_openudp
 * Return a file descriptor.
 *  It is bound to the given port if the port is positive.
 *
 * parameter:
 *        port = number of port to bind to
 * returns:  file descriptor if successful
 *           -1 on error and sets errno
 */
int u_openudp(u_port_t port) {
   int error;
   int one = 1;
   struct sockaddr_in server;
   int sock;

   if ((sock = socket(AF_INET, SOCK_DGRAM, 0)) == -1)
      return -1;

   if (setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)) == -1) {
      error = errno;
      r_close(sock);
      errno = error;
      return -1;
   }

   if (port > 0) {
      server.sin_family = AF_INET;
      server.sin_addr.s_addr = htonl(INADDR_ANY);
      server.sin_port = htons((short)port);

      if (bind(sock, (struct sockaddr *)&server, sizeof(server)) == -1) {
         error = errno;
         r_close(sock);
         errno = error;
         return -1;
      }
   }
   return sock;
}

/*
 *                           u_recvfrom
 *
 * Retrieve information from a file descriptor.
 *
 * parameters:
 *       fd = socket file descriptor
 *       buf = buffer that receives the data
 *       nbytes = number of bytes to retrieve
 *       ubufp = a pointer to a buffer of type u_buf_t
 * returns:
 *      the number of bytes read if successful.



 *         ubufp is filled with information about the sending host and port
 *      -1 on error and sets errno
 */

ssize_t u_recvfrom(int fd, void *buf, size_t nbytes, u_buf_t *ubufp) {
   int len;
   struct sockaddr *remote;
   int retval;

   len = sizeof (struct sockaddr_in);
   remote = (struct sockaddr *)ubufp;
   while (((retval = recvfrom(fd, buf, nbytes, 0, remote, &len)) == -1) &&
           (errno == EINTR)) ;
   return retval;
}

/*
 *                           u_recvfromtimed
 *
 * Retrieve information from a file descriptor with a timeout.
 *
 * parameters:
 *       fd = socket file descriptor
 *       buf = buffer to receive the data
 *       nbytes = number of bytes to retrieve
 *       ubufp = a pointer to a buffer of type u_buf_t
 *       seconds = timeout in seconds
 * returns:
 *      number of bytes received if successful
 *      -1 on error and sets errno
 */

ssize_t u_recvfromtimed(int fd, void *buf, size_t nbytes, u_buf_t *ubufp,
                         double seconds) {
   int len;
   struct sockaddr *remote;
   int retval;
   struct timeval timedone;

   timedone = add2currenttime(seconds);
   if (waitfdtimed(fd, timedone) == -1)
      return (ssize_t)(-1);
   len = sizeof (struct sockaddr_in);
   remote = (struct sockaddr *)ubufp;
   while (((retval = recvfrom(fd, buf, nbytes, 0, remote, &len)) == -1) &&
           (errno == EINTR)) ;
   return retval;
}

/*
 *                           u_gethostname
 *
 * Get the host name from a buffer of type u_buf_t
 *
 * parameters:
 *       ubufp = a pointer to a buffer of type u_buf_t that was
 *          filled by u_recvfrom



 *       hostn = a buffer of size hostnsize
 *       hostsize = the size of the hostn buffer
 * returns:
 *      hostn is filled with the name of the host, possibly truncated.
 */

void u_gethostname(u_buf_t *ubufp, char *hostn, int hostnsize) {
   struct sockaddr_in *remotep;

   remotep = (struct sockaddr_in *)ubufp;
   addr2name(remotep->sin_addr, hostn, hostnsize);
}

/*
 *                           u_gethostinfo
 *
 * Get a printable string containing the host name and port
 *
 * parameters:
 *       ubufp = a pointer to a buffer of type u_buf_t that was
 *          filled by u_recvfrom
 *       info = a buffer to hold the returned string
 *       infosize = the size of the info buffer
 * returns:
 *      a string is put in info, possibly truncated
 */
void u_gethostinfo(u_buf_t *ubufp, char *info, int infosize) {
   int len;
   int portnumber;

   portnumber = ntohs(ubufp->sin_port);
   len = snprintf(info, infosize, "port number is %d on host ", portnumber);
   info[infosize-1] = 0;                              /* in case name not fit */
   if (len >= infosize) return;
   u_gethostname(ubufp, info+len, infosize-len);
}

/*
 *                           u_comparehost
 *
 * Compare the given host and port with the info in a u_buf_t structure
 *
 * parameters:
 *       ubufp = a pointer to a buffer of type u_buf_t that was
 *          filled by u_recvfrom
 *       hostn = a string representing the host name
 *       port  = a port number
 * returns:
 *      1 if match
 *      0 if no match
 */

int u_comparehost(u_buf_t *ubufp, char *hostn, u_port_t port) {
   in_addr_t addr;
   struct sockaddr_in *remotep;



   remotep = (struct sockaddr_in *)ubufp;
   if ((port != ntohs(remotep->sin_port)) ||
       (name2addr(hostn, &addr) == -1) ||
       (memcmp(&(remotep->sin_addr.s_addr), &addr, sizeof(in_addr_t)) != 0))
      return 0;
   return 1;
}

/*
 *                           u_sendto
 *
 * Send information atomically to a remote host, using the buffer filled in
 * by recvfrom
 *
 * This is almost the same as sendto except that
 *   it retries if interrupted by a signal and
 *   the length of the buffer indicating the destination is not passed
 *
 * parameters:
 *       fd = file descriptor
 *       buf = buffer to be output
 *       nbytes = number of bytes to send
 *       ubufp = a pointer to a buffer of type u_buf_t that was
 *          filled by u_recvfrom
 * returns:
 *      the number of bytes that were sent (may not have been received)
 *      -1 on error and sets errno
 */

ssize_t u_sendto(int fd, void *buf, size_t nbytes, u_buf_t *ubufp) {
   int len;
   struct sockaddr *remotep;
   int retval;

   len = sizeof(struct sockaddr_in);
   remotep = (struct sockaddr *)ubufp;
   while (((retval = sendto(fd, buf, nbytes, 0, remotep, len)) == -1) &&
           (errno == EINTR)) ;
   return retval;
}

/*
 *                           u_sendtohost
 *
 * Send information atomically to a remote host given the host name and port
 *
 * parameters:
 *       fd = file descriptor
 *       buf = buffer to be output
 *       nbyte = number of bytes to send
 *       port = the port number to send to
 *       hostn = a string containing the name of the destination host
 * returns:
 *      the number of bytes that were sent (may not have been received)
 *      -1 on error and sets errno



 */

ssize_t u_sendtohost(int fd, void *buf, size_t nbytes, char *hostn,
                     u_port_t port) {
   struct sockaddr_in remote;

   if (name2addr(hostn, &(remote.sin_addr.s_addr)) == -1) {
      errno = EINVAL;
      return -1;
   }
   remote.sin_port = htons((short)port);
   remote.sin_family = AF_INET;
   return u_sendto(fd, buf, nbytes, &remote);
}

/*
 *                           u_join
 *
 * Join a multicast group
 *
 * parameters:
 *       IP_address = string representing the IP address of the group
 *       port = port number of multicast group
 *       ubufp = buffer to be filled in u_join
 * returns:
 *      a file descriptor on success
 *      -1 on error and sets errno
*/
int u_join(char *IP_address, u_port_t port, u_buf_t *ubufp) {
   int mcastfd;
   struct ip_mreq tempaddress;

   if ((mcastfd = u_openudp(port)) == -1)
      return mcastfd;

   tempaddress.imr_multiaddr.s_addr = inet_addr(IP_address);
   tempaddress.imr_interface.s_addr = htonl(INADDR_ANY);

        /* Join the multicast group. Let kernel choose the interface */
   if (setsockopt(mcastfd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
                   &tempaddress, sizeof(tempaddress)) == -1)
      return -1;
   ubufp->sin_family = AF_INET;
   ubufp->sin_addr.s_addr = inet_addr(IP_address);
   ubufp->sin_port = htons((short)port);
   return mcastfd;
}

/* This version leaves the group but keeps the file descriptor open and
   still bound to the same port.  It can still receive messages on the port,
   but only those addressed directly to the given host.
*/
/*
 *                           u_leave
 *
 * Leave a multicast group.  Messages can still be received on the port
 * if they are directly addressed to the host.



 *
 * parameters:
 *       mcastfd = previously opened file descriptor returned by u_join
 *       ubufp = buffer filled in by previous u_join
 * returns:
 *      0 on success
 *      -1 on error with errno set
*/
int u_leave(int mcastfd, u_buf_t *ubufp) {
   struct ip_mreq tempaddress;

   memcpy(&(tempaddress.imr_multiaddr),
         &(ubufp->sin_addr), sizeof(struct in_addr));
   tempaddress.imr_interface.s_addr = htonl(INADDR_ANY);
   return setsockopt(mcastfd, IPPROTO_IP, IP_DROP_MEMBERSHIP,
                   &tempaddress, sizeof(tempaddress));
}

[ Team LiB ]   
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Appendix D. Logging Functions

Section D.1.  Local Atomic Logging

Section D.2.  Remote Logging

[ Team LiB ]   
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D.1 Local Atomic Logging

The local atomic logging library is described in Section 4.9.1. This library allows messages to be 
atomically written to a file descriptor. A message may be made up of pieces, which are 
assembled by the logging library and sent atomically. There are no a priori limits to the sizes of 
the pieces, the number of pieces, or the total size of the message. However, the logger reports 
an error if the total amount to be logged with a single call to atomic_log_send cannot be 
written with a single call to write. Multiple processes may concurrently log data to the same 
file or different files. The library uses static data and should not be used by concurrent threads.

Programs that use this library include the atomic_logger.h file shown in Program D.1 and are 
linked with atomic_logger.c shown in Program D.2. All the public functions in the library 
return 0 if successful or –1 on error. A program uses the logging facility as follows.

1.  Call atomic_log_open with the name of the log file as the parameter.

2.  Call any of the functions atomic_log_array, atomic_log_printf and 
atomic_log_string to create pieces of the message.

3.  Call atomic_log_send to log the message. This logging deletes the pieces of the 
message that have been saved in the logger.

4.  Repeat steps 2 and 3 as often as you like.

5.  The program can use the atomic_log_clear function to discard the pieces of the 
message generated so far without sending them.

6.  Call atomic_log_close when logging to this file is complete.

Each piece that is logged is put in a linked list. The function atomic_log_send allocates a 
contiguous block large enough to hold all the pieces, copies the pieces into this block, and 
sends them to the log file with a single call to write. The atomic_log_send function returns 0 
only if write actually writes all the requested bytes.

When strings are logged with atomic_log_printf or atomic_log_string, the facility saves the 
string terminator with each piece. These functions call the insert_new_entry function with 
extra equal to 1. The logger allocates space for the string terminator but does not count the 
terminator in the length field and does not send the terminator to the log file.

Program D.1 atomic_logger.h

The header file for the atomic logging module.

int atomic_log_array(char *s, int len);
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int atomic_log_clear();
int atomic_log_close();
int atomic_log_open(char *fn);
int atomic_log_printf(char *fmt, ...);
int atomic_log_send();
int atomic_log_string(char *s);

Program D.2 atomic_logger.c

An implementation of the atomic logging module.

#include <errno.h>
#include <fcntl.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/stat.h>

#define FILE_PERMS (S_IRUSR | S_IWUSR| S_IRGRP | S_IROTH)
#define OPEN_FLAGS (O_WRONLY|O_APPEND|O_CREAT)
typedef struct list {
   char *entry;
   int len;
   struct list *next;
} list;

static int fd = -1;
static list *first = NULL;
static list *last = NULL;

/* -----------------------------------------------------------------
   Private Functions
*/

/* This is the same as write, but restarts if interrupted by a signal */
static ssize_t my_write(int fd, void *buf, size_t size) {
   ssize_t bytes;

   while (((bytes = write(fd, buf, size)) == -1) && (errno == EINTR));
   return bytes;
}

/* Insert an entry with the given len field, but allocate extra bytes.*/
/* Return a pointer to the new entry on success or NULL on failure.   */
static list *insert_new_entry(int len, int extra) {
   char *new_str;
   list *new_entry;

   new_entry = (list *)malloc(sizeof(list)+len+extra);
   if (new_entry == NULL)
      return NULL;
   new_str = (char *)new_entry+sizeof(list);



   new_entry->entry = new_str;
   new_entry->next = NULL;
   new_entry->len = len;
   if (last == NULL)
      first = new_entry;
   else
      last->next = new_entry;
   last = new_entry;
   return new_entry;
}

/* Return the sum of the lengths of all the entries.                  */
static int get_length() {
   int len = 0;
   list *current;

   current = first;
   while (current != NULL) {
      len += current->len;
      current = current->next;
   }
   return len;
}

/* Clear the list and free all the space.                             */
static void clear() {
   list *current;
   list *free_entry;

   current = first;
   while (current != NULL) {
      free_entry = current;
      current = current->next;
      free(free_entry);
   }
   first = NULL;
   last = NULL;
}

/* -----------------------------------------------------------------
   Public Functions
*/

/* Open the given file for logging.                                   */
/* If successful, return 0.  Otherwise, return -1 with errno set.     */
int atomic_log_open(char *fn) {
   while (fd = open(fn, OPEN_FLAGS, FILE_PERMS), fd == -1 && errno == EINTR);
   if (fd < 0)
      return -1;
   return 0;
}

/* Insert the given array with given size in the list.                */
/* If successful, return 0.  Otherwise, return -1 with errno set.     */
int atomic_log_array(char *s, int len) {
   list *new_entry;



   if (fd < 0) {
      errno = EINVAL;
      return -1;
   }
   new_entry = insert_new_entry(len, 0);
   if (new_entry == NULL)
      return -1;
   (void)memcpy(new_entry->entry, s, len);
   return 0;
}

/* Insert the given string in the list.                               */
/* Do not include the string terminator.                              */
/* If successful, return 0.  Otherwise, return -1 with errno set.     */
int atomic_log_string(char *s) {
   return atomic_log_array(s, strlen(s));
}

/* Insert an entry in the list.                                       */
/* The syntax is similar to printf.                                   */
/* Include the string terminator but do not count it in the length.   */
/* If successful, return 0.  Otherwise, return -1 with errno set.     */
int atomic_log_printf(char *fmt, ...) {
   va_list ap;
   char ch;
   int len;
   list *new_entry;

   if (fd < 0) {
      errno = EINVAL;
      return -1;
   }
   va_start(ap, fmt);
   len = vsnprintf(&ch, 1, fmt, ap);
   new_entry = insert_new_entry(len, 1);
   if (new_entry == NULL)
      return -1;
   vsprintf(new_entry->entry, fmt, ap);
   return 0;
}

/* Attempt to log the entire list with a single write.                */
/* Clear the list if successful.                                      */
/* If successful, return 0.  Otherwise, return -1 with errno set.     */
/* If the entire list cannot be logged with a single write, this is   */
/*   considered a failure.                                            */
int atomic_log_send() {
   char *buf;
   list *current;
   int len;

   if (fd < 0) {
      errno = EINVAL;
      return -1;
   }
   len = get_length();
   if (len == 0)



      return 0;
   buf = (char *)malloc(len);
   if (buf == NULL)
      return -1;
   current = first;
   len = 0;
   while (current != NULL) {
      (void)memcpy(buf+len, current->entry, current->len);
      len += current->len;
      current = current->next;
   }
   if (my_write(fd, buf, len) != len) {
      free(buf);
      errno = EAGAIN;
      return -1;
   }
   free(buf);
   clear();
   return 0;
}

/* Clear the list and free all the space without logging anything.    */
int atomic_log_clear() {
   clear();
   return 0;
}

/* Close the log file.  Any data not yet logged is lost.              */
int atomic_log_close() {
   int retval;
   clear();
   while (retval = close(fd), retval == -1 && errno == EINTR) ;
   return retval;
}

[ Team LiB ]   
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D.2 Remote Logging

The local logging facility discussed in Section D.1 is useful when the message to be logged is 
created in pieces that need to be logged together. However, the local logging facility can be 
used only by collections of single-threaded processes on the same host. The remote logging 
facility is meant to be used in a multithreaded environment or one in which processes on 
multiple machines are cooperating or communicating.

Programs that depend on concurrency (primarily those that fork children, create multiple 
threads, or that depend on communicating processes) are often difficult to understand and 
debug. Debuggers for multithreaded programs are not generally available, let alone ones that 
can unify the debugging of communicating processes running on different machines, possibly 
on incompatible hardware.

The logging facility described here allows for instrumenting code in a simple way to log events. 
The logged events are sent to a possibly remote machine and gathered for analysis. Events are 
timestamped according to when they arrive at the receiving machine. If the variance of network 
delays are small compared with the granularity of the logging, these times acceptably indicate 
the sequence of events that occur in logged programs. Optionally, messages can be 
timestamped with the time they were generated. This is useful if all messages are logged from 
the same host or from hosts with synchronized clocks.

The underlying philosophy of the logging facility is to provide a simple, familiar C-language-
based interface that can be mastered in a few minutes. Most of the complication is moved to 
the receiving end, which has a GUI for ease of use.

The facility is thus broken into two independent parts, the C language interface which runs in a 
UNIX environment, and a Java-based GUI receiving module that can be run on any system 
having a Java runtime environment.

The C language interface is modeled on the C language FILE pointer I/O interface and has 
functions corresponding to fopen, fclose and fprintf. These are called lopen, lclose and 
lprintf, respectively. Three other functions, lprintfg, lgenerator and lsendtime, allow 
more control over how the logged data is labeled.

The logging functions return NULL (lopen) or –1 (all others) on error. Do not use errno with 
any of the functions in the library. By default, these functions do not print error messages. To 
simplify debugging, they send error messages to standard error if in debugging mode. You can 
enter debugging mode by calling ldebug(1) and exit debugging mode by calling ldebug(0). 
Alternatively, you can turn on debugging by compiling with LDEBUGGING defined.

To use the logging facility, include rlogging.h, shown in Program D.3, and compile with 
rlogging.c, shown in Program D.4. The former file contains the typedefs and prototypes, and 
the latter contains the code. The program must also be linked with restart.c, described in 
Appendix B, and with uici.c and uiciname.c, described in Appendix C. If the program is used 
in a multithreaded environment, the constant LUSETHREAD should be defined. The simplest way 
to do this is with a compiler option. Many compilers support the use of -DLUSETHREAD option to 
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define LUSETHREAD at compile time.

Program D.3 rlogging.h

The header file for the remote logging module.

#define LFILE_GENLENGTH 16
typedef struct LFILE {
   int id;
   int fd;
   int tmode;
   char gen[LFILE_GENLENGTH];
} LFILE;

LFILE *lopen(char *host, int port);
int lclose(LFILE *mf);                    /* not thread safe */
void ldebug(int debug);
int lprintf(LFILE *mf, char *fmt, ...);
int lprintfg(LFILE *mf, char *gen, char *fmt, ...);
int lgenerator(LFILE *mf, char *gen);
int lsendtime(LFILE *mf);

Program D.4 rlogging.c

C source for the logging module.

#include <errno.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include <sys/time.h>
#ifdef LUSETHREAD
#include <pthread.h>
#endif
#include "restart.h"
#include "rlogging.h"
#include "uici.h"

#define DEFAULT_HOST "localhost"
#define DEFAULT_PORT 20100

#define LOGGING_BUFSIZE PIPE_BUF
#define LOGGING_GENMAX 50

/* Note: LOGGING_BUFSIZE must be at most PIPE_BUF */

static int nextID = 0;
#ifdef LDEBUGGING
static int ldebug_flag = 1;



#else
static int ldebug_flag = 0;
#endif

#ifdef LUSETHREAD
static pthread_mutex_t ctime_mutex = PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t generator_mutex = PTHREAD_MUTEX_INITIALIZER;
static pthread_mutex_t ID_mutex = PTHREAD_MUTEX_INITIALIZER;
#endif

/* Turn on debugging if debug = 1                                     */
void ldebug(int debug) {
   ldebug_flag = debug;
}

static long get_threadid() {
#ifdef NOTHREADID
   return 0L;
#else
#ifdef LUSETHREAD
   return (long)pthread_self();
#else
   return 1L;
#endif
#endif
}

/* Expand the generator, gen_fmt, into the buffer gen that has size gensize.
 * return 0 if fits, 1 if it does not.
 * %p is converted to process ID.
 * %t is converted to thread ID.
 * if (gen_fmt[0] == 0) then just then pid.tid is used.
 * at most one %p and one %t are allowed.
*/
static int expand_gen(const char *gen_fmt, char *gen, int gensize) {
   int needed;
   char *pp;
   char *pt;
   pp = strstr(gen_fmt, "%p");
   pt = strstr(gen_fmt, "%t");
   if (gen_fmt[0] == 0) {                           /* Use default generator */
#ifdef NOTHREADID
      needed = snprintf(gen, gensize, "%ld", (long)getpid());
#else
#ifdef LUSETHREAD
      needed = snprintf(gen, gensize, "%ld.%ld", (long)getpid(),
                        get_threadid());
#else
      needed = snprintf(gen, gensize, "%ld", (long)getpid());
#endif
#endif
   }
   else if ((pt == NULL) && (pp == NULL))
      needed = snprintf(gen, gensize, "%s", gen_fmt);
   else if (pt == NULL)
      needed = snprintf(gen, gensize, "%.*s%ld%s", (int)(pp-gen_fmt), gen_fmt,
                        (long)getpid(), pp+2);



   else if (pp == NULL) {
      needed = snprintf(gen, gensize, "%.*s%ld%s", (int)(pt-gen_fmt), gen_fmt,
                        get_threadid(), pt+2);
      }
   else if (pp < pt) {
      needed = snprintf(gen, gensize, "%.*s%ld%.*s%ld%s",
                       (int)(pp-gen_fmt), gen_fmt, (long)getpid(),
                       (int)(pt-pp-2), pp+2, get_threadid(), pt+2);
   }
   else {
      needed = snprintf(gen, gensize, "%.*s%ld%.*s%ld%s", (int)(pt-gen_fmt),
                     gen_fmt, get_threadid(), (int)(pp-pt-2), pt+2,
                     (long)getpid(), pp+2);
   }
   if (needed >= gensize)
      return 1;
   return 0;
}

#define RWBUFSIZE PIPE_BUF
/* Read from infd and write to outfd until an error or end-of-file occurs */
static void readwriteall(int infd, int outfd) {
   char buf[RWBUFSIZE];
   int bytes_read;

   while ((bytes_read = r_read(infd, buf, RWBUFSIZE)) > 0) {
      if (r_write(outfd, buf, bytes_read) != bytes_read) {
         if (ldebug_flag)
            fprintf(stderr, "Pipe write error\n");
         close(infd);
         close(outfd);
         return;
      }
   }
   if (bytes_read < 0) {
      if (ldebug_flag)
         fprintf(stderr, "Pipe read error\n");
   }
   close(infd);
   close(outfd);
}

/* Create a pipe and a child process.
 * All output is sent to the pipe.
 * The child process reads from the pipe and outputs to the network.
*/
static void go_through_pipe(LFILE *mf) {
   int childpid;
   int fds[2];

   if (pipe(fds) < 0) {
      if (ldebug_flag)
         fprintf(stderr, "Pipe creation failed\n");
      return;
   }
   childpid = fork();
   if (childpid < 0) {



      if (ldebug_flag)
         fprintf(stderr, "Fork failed\n");
      close(fds[0]);
      close(fds[1]);
      return;
   }
   if (childpid == 0) {                                        /* child code */
      close(fds[1]);
      readwriteall(fds[0], mf->fd);
      exit(0);
   }
   close(fds[0]);
   close(mf->fd);
   mf->fd = fds[1];
}

/* Set the parameters to the current time
 * return 0 on success and 1 on failure.
*/
static int set_times(unsigned long *secp, unsigned long *usecp) {
   struct timeval tp;

   if (gettimeofday(&tp, NULL))
      return 1;
   *secp = (unsigned long)tp.tv_sec;
   *usecp = (unsigned long)tp.tv_usec;
   return 0;
}

/* Create a string representing the time given by sec and usec in the
 *    buffer buf.  This assumes that buf is large enough.
 * Return 0 on success and 1 on failure.
*/
static int make_time_string(char *buf, unsigned long sec, unsigned long usec) {
   time_t clock;
   double fract;
   char *tm;

   clock = (time_t)sec;
   fract = usec/1000000.0;
   sprintf(buf+7, "%5.3f", fract);
#ifdef LUSETHREAD
   if (pthread_mutex_lock(&ctime_mutex))
      return 1;
#endif
   tm = ctime(&clock);
   strncpy(buf,tm+11,8);
#ifdef LUSETHREAD
   if (pthread_mutex_unlock(&ctime_mutex))
      return 1;
#endif
   return 0;
}

/* Log the string given by the last two parameters.
 * Use the given generator.
 * Return 0 on success and -1 on failure.



*/
static int lprintfgen(LFILE *mf, char *gen, char *fmt, va_list ap) {

   int blen;                                          /* size of data buffer */
   char buf[LOGGING_BUFSIZE];
   char buftemp[LOGGING_BUFSIZE];
   char genbuf[LOGGING_GENMAX];
   int ret;
   unsigned long sec;
   char timebuf[13];
   char *timep;
   char timesbuf[20];                      /* holds seconds and microseconds */
   unsigned long usec;
   int written;

   if (mf==NULL) {
      if (ldebug_flag)
         fprintf(stderr, "lprintf called with NULL first parameter\n");
      return -1;
   }
   if ( (mf->tmode) || (strstr(fmt, "%t") != NULL) )
      if (set_times(&sec, &usec) != 0) {
         if (ldebug_flag)
            fprintf(stderr, "Error getting current time\n");
         return -1;
      }
   if (mf->tmode)
      sprintf(timesbuf, "%lu;%lu;", sec, usec);
   else
      timesbuf[0] = 0;
   timep = strstr(fmt, "%t");
   if (timep != NULL) {
      if (make_time_string(timebuf, sec, usec) != 0) {
         if (ldebug_flag)
            fprintf(stderr, "Error making time string in lprintf\n");
         return -1;
      }
      if (strlen(fmt) + 13 >= LOGGING_BUFSIZE) {
            fprintf(stderr, "Format string is too long\n");
         return -1;
      }
      sprintf(buf, "%.*s%s%s", (int)(timep-fmt), fmt, timebuf, timep+2);
      ret = vsnprintf(buftemp, LOGGING_BUFSIZE, buf, ap);
   }
   else
      ret = vsnprintf(buftemp, LOGGING_BUFSIZE, fmt, ap);
   if ((ret < 0) || (ret >= LOGGING_BUFSIZE)) {
       if (ldebug_flag)
          fprintf(stderr, "Error in lprintf format string\n");
       return -1;
   }
   if (expand_gen(gen, genbuf, LOGGING_GENMAX) != 0) {
       if (ldebug_flag)
          fprintf(stderr, "Generator info does not fit\n");
   }
   blen = strlen(buftemp) + strlen(genbuf) + strlen(timesbuf);



   ret = snprintf(buf, LOGGING_BUFSIZE, "%d:%s%s;%s", blen+1,
                  timesbuf, genbuf, buftemp);
   if (ret >= LOGGING_BUFSIZE) {
       if (ldebug_flag)
          fprintf(stderr, "Error in lprintf: size too large to fit\n");
       return -1;
   }
   while (written = write(mf->fd, buf, ret), written == -1 && errno == EINTR) ;
   if (written != ret) {
      if (ldebug_flag)
         fprintf(stderr, "lprintf error writing to pipe\n");
      return -1;
   }
   return 0;
}

/* Open a connection to the given host and port for logging.
 * If host is NULL, use the environment variable LOGGINGHOST if it is set;
 *    otherwise, use the host "localhost".
 * If port is 0, use the environment variable LOGGINGPORT if it is set;
 *    otherwise, use the default port DEFAULT_PORT.
 * Return a pointer to an LFILE if successful, or NULL if unsuccessful.
*/
LFILE *lopen(char *host, int port) {
   int fd;
   LFILE *mf;
   char *portstr;

   if (host == NULL) {
      host = getenv("LOGGINGHOST");
      if (host == NULL)
         host = DEFAULT_HOST;
   }
   if (port <= 0) {
      portstr = getenv("LOGGINGPORT");
      if (portstr == NULL)
         port = DEFAULT_PORT;
      else
         port = atoi(portstr);
   }
   fd = u_connect(port, host);
   if (fd < 0) {
      if (ldebug_flag)
         fprintf(stderr, "Connection failed to host %s on port %d\n",
                 host,port);
      return NULL;
   }
   mf = (LFILE *)malloc(sizeof(LFILE));
   if (mf == NULL) {
      if (ldebug_flag)
         fprintf(stderr, "Memory allocation error for lopen\n");
      return NULL;
   }
#ifdef LUSETHREAD
   if (pthread_mutex_lock(&ID_mutex))
      return NULL;
#endif



   mf->id = nextID++;
#ifdef LUSETHREAD
   if (pthread_mutex_unlock(&ID_mutex))
      return NULL;
#endif
   mf->fd = fd;
   mf->tmode = 0;
   mf->gen[0] = 0;
   go_through_pipe(mf);
#ifdef LSENDTIME
   lsendtime(mf);
#endif
   return mf;
}

/* Close the connection corresponding to mf.
 * Return 0 on success and -1 on failure.
*/
int lclose(LFILE *mf) {

   if (mf == NULL) {
      if (ldebug_flag)
         fprintf(stderr, "lclose called with NULL parameter\n");
      return -1;
   }
   if (close(mf->fd) == -1) {
      if (ldebug_flag)
         fprintf(stderr, "lclose failed to close the connection\n");
   }
   free(mf);
   return 0;
}

/* Log the given string, using the default generator.
 * The parameters are similar to those of printf.
 * Return 0 on success and -1 on failure.
*/
int lprintf(LFILE *mf, char *fmt, ...) {
   char genbuf[LFILE_GENLENGTH];
   va_list ap;

   if (mf==NULL) {
      if (ldebug_flag)
         fprintf(stderr, "lprintf called with NULL first parameter\n");
      return -1;
   }
   va_start(ap, fmt);
#ifdef LUSETHREAD
   if (pthread_mutex_lock(&generator_mutex))
      return -1;
#endif
   strcpy(genbuf, mf->gen);
#ifdef LUSETHREAD
   if (pthread_mutex_unlock(&generator_mutex))
      return -1;
#endif
   return lprintfgen(mf, genbuf, fmt, ap);



}

/* Log the given string, using the given generator.
 * The parameters are similar to those of printf.
 * Return 0 on success and -1 on failure.
*/
int lprintfg(LFILE *mf, char *gen, char *fmt, ...) {
   va_list ap;
   if (mf==NULL) {
      if (ldebug_flag)
         fprintf(stderr, "lprintf called with NULL first parameter\n");
      return -1;
   }
   va_start(ap, fmt);
   return lprintfgen(mf, gen, fmt, ap);
}

/* Set the default generator to the given one.
 * Return 0 on success and -1 on failure.
*/
int lgenerator(LFILE *mf, char *gen) {
   if (mf == NULL)
      return -1;
   if (gen == NULL)
      mf->gen[0] = 0;
   if (strlen(gen) >= LFILE_GENLENGTH)
      return -1;
#ifdef LUSETHREAD
   if (pthread_mutex_lock(&generator_mutex))
      return -1;
#endif
   strcpy(mf->gen,gen);
#ifdef LUSETHREAD
   if (pthread_mutex_unlock(&generator_mutex))
      return -1;
#endif
   return 0;
}

/* Send the local time with each logged message.
 * Return 0 on success and -1 on failure.
*/
int lsendtime(LFILE *mf) {
   if (mf == NULL)
      return -1;
   mf->tmode = 1;
   if (r_write(mf->fd, "-", 1) < 0) {
      if (ldebug_flag)
         fprintf(stderr, "Pipe write error\n");
      return -1;
   }
   return 0;
}

D.2.1 Use of the remote logging facility



This section briefly describes how to use the remote logging facility. For a more detailed 
discussion, see [98]. A complete user's guide and all the programs are available online [99].

The logging GUI must be started first. It can be run on any host with a Java runtime 
environment. The GUI listens for connections using TCP. If no port number is specified on the 
command line, the GUI takes the port number from the environment variable LOGGINGPORT or 
uses a default port number if this environment variable is not defined.

The program that is being logged must be linked with the restart library, the UICI library, the 
UICI name resolution library and the logging library. The only functions that need to be directly 
accessed are given in Program D.3.

First, make a connection to the GUI by using lopen. The parameters are a host name and a 
port number. If the host name is NULL or the port number is less than or equal to zero, lopen 
uses the values of the environment variables (LOGGINGPORT and LOGGINGHOST). If these 
environment variables are undefined, lopen uses default values. The lopen function returns a 
pointer of type LFILE that is used as a parameter to the other logging functions. You can then 
set optional behavior with the lsendtime and lgenerator functions. Logging is done with the 
lprintf and lprintfg functions, which have syntax similar to that of fprintf.

The implementation assumes that the thread ID can be cast to a long in a meaningful way. If 
this is not the case, the function get_threadid might have to be changed. Alternatively, when 
using the remote logger with threads, compile with NOTHREADID defined, and the thread ID will 
not be used as part of the generator.

Details of these functions are given below.

LFILE *lopen(char *host, int port);

open a connection to the logging GUI. The host parameter is the name of the 
host on which the GUI is running, and port is the port number that the GUI is 
using. If host is NULL, lopen takes the host name from the environment variable 
LOGGINGHOST. If LOGGINGHOST is not set, lopen uses the default host name 
localhost. If port is less than or equal to 0, lopen takes the port number from 
the environment variable LOGGINGPORT. If LOGGINGPORT is not set, lopen uses a 
default port number of 20100. The GUI uses the same default port number. If 
successful, lopen returns a pointer of type LFILE that is used by other logging 
functions. If unsuccessful, lopen returns NULL.

int lclose(LFILE *mf);

close the connection to the GUI. If successful, lclose returns 0. If unsuccessful, 
lclose returns –1. The lclose function is not thread-safe. Do not close the 
connection while other threads can send messages to the GUI. Making this 
function thread-safe would add considerable overhead to the logging functions 
and it was decided that thread safety was not necessary.



int lsendtime(LFILE *mf);

automatically send the local time with each message. The time is sent as two 
integer values giving the number of seconds since the Epoch and an additional 
number of microseconds. If successful, lsendtime returns 0. If unsuccessful, 
lsendtime returns –1. The design of lsendtime allows the GUI to optionally 
display the time that the message was sent rather than the time it was received. 
Call lsendtime before sending any messages to the GUI. When the GUI is set to 
display send times rather than receive times, messages sent before this call are 
displayed without a time. Displaying send times is useful when all messages are 
sent from the same host or from hosts with synchronized clocks. Otherwise, the 
receive times are more useful. The lsendtime function returns 0 if successful 
and –1 if unsuccessful. The lsendtime function is not thread-safe. Do not call 
lsendtime while other threads of the same process are concurrently logging.

int lgenerator(LFILE *mf, char *gen);

set the generator string to be gen. The generator string appears in the gen 
column of the GUI to identify the output. If successful, lgenerator returns 0. If 
unsuccessful, lgenerator returns –1. Failure can occur only if the gen string is 
longer than LFILE_GENLENGTH or if mutex locking fails in a threaded 
environment. The generator string follows a format specification. The gen 
parameter is a string that will be the new generator. The generator string 
specifies a format for the generator sent to the remote GUI. The first occurrence 
of %p in the generator string is replaced with the process ID of the process 
sending the message. In a threaded environment, the first occurrence of %t is 
also replaced by the thread ID. If LUSETHREAD is defined, compiling with 
NOTHREADID defined causes %t to be replaced by 0. The specified generator 
overrides the default generator that is equivalent to %p in a nonthreaded 
environment and to %p.%t in a threaded environment (LUSETHREAD defined). The 
default generator can be restored by a call to lgenerator with a NULL value of 
the gen parameter.

int lprintf(LFILE *mf, char *fmt, ...);
int lprintfg(LFILE *mf, char *gen, char *fmt, ...);

output a string to the logger. The lprintf and lprintfg functions are identical 
with one exception: the latter uses gen for the generator of this message only 
and the former uses the default generator. If successful, these functions return 
0. If unsuccessful, these functions return –1. The syntax and parameters are 
similar to fprintf. The fmt parameter specifies a format string, and the 
remaining parameters are values to be included in the message. These functions 
allow one additional format specification, %t, which is replaced by the current 
time with a precision of milliseconds. If the message automatically includes the 
time (because of a previous call to lsendtime), the same time is used for both.

D.2.2 Implementation details



The logging facility can be used in a threaded or nonthreaded environment. The additional code 
for threaded operation is included if the constant LUSETHREAD is defined. The program uses 
mutex locks for synchronization. When LUSETHREAD is defined, all the functions are thread-safe 
except for lclose and lsendtime. Making these thread-safe would require additional 
synchronization every time the LFILE structure is accessed, adding considerable overhead and 
serializing much of the program being logged. The intention is that lopen and lsendtime be 
called before the threads are created and that lclose be called only when all logging has been 
completed. Optionally, you can avoid lclose completely by allowing the process exit to close 
the connection. Compiling with LSENDTIME defined causes the sending of the time to be the 
default.

To allow for maximum concurrency, separate mutexes are used to protect calls to the ctime 
function, calls to the lgenerator function, and access to the nextID variable.

Each connection to the GUI has an associated pipe. A call to lopen reserves three file 
descriptors: one for the connection to the GUI and two for the pipe. A new process is created to 
transfer anything written to the pipe to the GUI. This is done with a forked process rather than 
a thread so that the facility can be used in a nonthreaded environment. Also, some thread-
scheduling mechanisms might not give sufficient priority to this thread when it is used with 
other CPU-bound threads.

The maximum-size message (including the message header) that can be sent is given by 
PIPE_BUF. This choice allows all messages sent through one connection to be passed atomically 
to the GUI by having them go through a single pipe shared by processes or threads. Messages 
sent through different connections are sorted by the GUI. POSIX specifies that PIPE_BUF must 
be at least _POSIX_PIPE_BUF, which has the value of 512. Typical values of PIPE_BUF may be 
10 times this value, but even the minimum is suitable for logging simple error or status 
information.
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Appendix E. POSIX Extensions

The programs in the book are based on the combined UNIX standard (POSIX) as published by 
the IEEE in 2001 [50]. The POSIX standard consists of a base specification containing 
mandatory requirements and several optional extensions. Implementations that comply with 
this standard have the symbol _POSIX_VERSION defined in unistd.h as 200112L.

At the time this book was written, none of our test systems claimed to be fully compliant with 
even the base of this version of this POSIX standard. Table 1.3 on page 19 shows the POSIX 
extensions that seem to be supported by our test systems. That is, the documentation agrees 
with the POSIX standard and the programs from the book behave correctly. Until these systems 
claim compliance, we must take this on faith.

An implementation that defines _POSIX_VERSION as 200112L must support the base standard. 
These systems support a particular extension if the corresponding symbol is defined in that 
implementation's unistd.h header file. Table E.1 lists the different extensions. The first column 
gives the code used by the POSIX manuals when describing a feature of an extension. The code 
appears in the margin of the manual. The second column gives the relevant symbol in unistd.
h, when appropriate. If this symbol is defined and is not equal to –1, then the corresponding 
extension is supported. The last column of the table describes the extension.

The proper way to check the values of these symbols is to use the sysconf function described 
in Section 5.1. Call sysconf with a name derived from the symbol by replacing POSIX with SC. 
For example, to test the value of _POSIX_THREADS, call sysconf with parameter _SC_THREADS.

Table E.1. POSIX extensions. If the symbol is defined in unistd.h, the 
system supports the corresponding POSIX extension.

POSIX code symbol extension description

ADV _POSIX_ADVISORY_INFO advisory information

AIO _POSIX_ASYNCHRONOUS_IO asynchronous input and output

BAR _POSIX_BARRIERS barriers

BE _POSIX2_PBS batch environment services and utilities

CD _POSIX2_C_DEV C-language development utilities

CPT _POSIX_CPUTIME process CPU-time clocks

CS _POSIX_CLOCK_SELECTION clock selection
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CX extension to the ISO C standard 
(required)

FD _POSIX2_FORT_DEV FORTRAN development utilities

FR _POSIX2_FORT_RUN FORTRAN runtime utilities

FSC _POSIX_FSYNC file synchronization

IP6 IPV6

MC1 shorthand for ADV and either MF or SHM

MC2 shorthand for MF, SHM or MPR

_POSIX_JOB_CONTROL job control (required)

MF _POSIX_MAPPED_FILES memory mapped files

ML _POSIX_MEMLOCK process memory locking

MLR _POSIX_MEMLOCK_RANGE range memory locking

MON _POSIX_MONOTONIC_CLOCK monotonic clock

MPR _POSIX_MEMORY_PROTECTION memory protection

MSG _POSIX_MESSAGE_PASSING message passing

MX IEC 60559 floating-point option

OB obsolescent

OF output format incompletely specified

OH optional header

PIO _POSIX_PRIORITIZED_IO prioritized input and output

PS _POSIX_PRIORITY_SCHEDULING processing scheduling

RTS _POSIX_REALTIME_SIGNALS realtime signals

SD _POSIX2_SW_DEV software development utilities

_POSIX_SAVED_IDS process has saved set-user-ID (required)

SEM _POSIX_SEMAPHORES semaphores

SHM _POSIX_SHARED_MEMORY_OBJECTS shared memory objects

SIO _POSIX_SYNCHRONIZED_IO synchronized input and output

SPI _POSIX_SPIN_LOCKS spin locks

SPN _POSIX_SPAWN spawn

SS _POSIX_SPORADIC_SERVER process sporadic server



TCT _POSIX_THREAD_CPUTIME thread CPU-time clocks

TEF _POSIX_TRACE_EVENT_FILTER trace event filter

THR _POSIX_THREADS threads

TMO _POSIX_TIMEOUTS timeouts

TMR _POSIX_TIMERS timers

TPI _POSIX_PRIO_INHERIT thread priority inheritance

TPP _POSIX_PRIO_PROTECT thread priority protection

TPS _POSIX_PRIORITY_SCHEDULING thread execution scheduling

TRC _POSIX_TRACE trace

TRI _POSIX_TRACE_INHERIT trace inherit

TRL _POSIX_TRACE_LOG trace log

TSA _POSIX_THREAD_ATTR_STACKADDR thread stack address attribute

TSF _POSIX_THREAD_SAFE_FUNCTIONS thread-safe functions

TSH _POSIX_THREAD_PROCESS_SHARED thread process-shared synchronization

TSP _POSIX_THREAD_SPORADIC_SERVER thread sporadic server

TSS _POSIX_THREAD_ATTR_STACKSIZE thread stack address size

TYM _POSIX_TYPED_MEMORY_OBJECTS typed memory objects

UP _POSIX2_UPE user portability utilities

XSI _XOPEN_UNIX XSI

XSR _XOPEN_STREAMS XSR streams
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