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Preface

UNIX Systems Programming: Communication, Concurrency and Threads is the second edition of
Practical UNIX Programming: A Guide to Communication, Concurrency and Multithreading,
which was published by Prentice Hall in 1995. We changed the title to better convey what the
book is about. Several things have changed, besides the title, since the last edition.

The Internet has become a dominant aspect of computing and of society. Our private
information is online; our software is under constant attack. Never has it been so important to
write correct code. In the new edition of the book, we tried to produce code that correctly
handles errors and special situations. We realized that saying handle all errors but giving code
examples with the error handling omitted was not effective. Unfortunately, error handling
makes code more complex. We have worked hard to make the code clear.

Another important development since the last edition is the adoption of a Single UNIX
Specification, which we refer to as POSIX in the book. We no longer have to decide which
vendor's version of a library function to use—there is an official version. We have done our best
to comply with the standard.

The exercises and projects make this book unique. In fact, the book began as a project
workbook developed as part of a National Science Foundation Grant. It became clear to us,
after preliminary development, that the material needed to do the projects was scattered in
many places—often found in reference books that provide many details but little conceptual
overview. The book has since evolved into a self-contained reference that relies on the latest
UNIX standards.

The book is organized into four parts, each of which contains topic chapters and project
chapters. A topic chapter covers the specified material in a work-along fashion. The topic
chapters have many examples and short exercises of the form "try this" or "what happens if."
The topic chapters close with one or more exercise sections. The book provides programming
exercises for many fundamental concepts in process management, concurrency and
communication. These programming exercises satisfy the same need as do laboratory
experiments in a traditional science course. You must use the concepts in practice to have real
understanding. Exercises are specified for step-by-step development, and many can be
implemented in under 100 lines of code.

The table below summarizes the organization of the book—twenty two chapters grouped into
four parts. The fifteen topic chapters do not rely on the eight project chapters. You can skip the
projects on the first pass through the book.

Part Topic Chapter # | Project Chapter H
Technology's Impact 1
Programs 2
Processes in UNIX 3
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Project chapters integrate material from several topic chapters by developing a more extensive
application. The projects work on two levels. In addition to illustrating the programming ideas,
the projects lead to understanding of an advanced topic related to the application. These
projects are designed in stages, and most full implementations are a few hundred lines long.
Since you don't have to write a large amount of code, you can concentrate on understanding
concepts rather than debugging. To simplify the programming, we make libraries available for
network communication and logging of output. For a professional programmer, the exercises at
the end of the topic chapters provide a minimal hands-on introduction to the material.
Typically, an instructor using this book in a course would select several exercises plus one of
the major projects for implementation during a semester course. Each project has a number of
variations, so the projects can be used in multiple semesters.

There are many paths through this book. The topic chapters in Part | are prerequisites for the
rest of the book. Readers can cover Parts Il through IV in any order after the topic chapters of



Part 1. The exception is the discussion at the end of later chapters about interactions (e.g., how
threads interact with signals).

We have assumed that you are a good C programmer though not necessarily a UNIX C
programmer. You should be familiar with C programming and basic data structures. Appendix A

covers the bare essentials of program development if you are new to UNIX.

This book includes synopsis boxes for the standard functions. The relevant standards that
specify the function appear in the lower-right corner of the synopsis box.

A book like this is never done, but we had to stop somewhere. We welcome your comments
and suggestions. You can send email to us at authors@usp.cs.utsa.edu. We have done our best
to produce an error-free book. However, should you be the first to report an error, we will
gratefully acknowledge you on the book web site. Information on the book is available on the
WWW site http://usp.cs.utsa.edu/usp. All of the code included in the book can be downloaded

from the WWW site.
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Chapter 1. Technology's Impact on Programs

This chapter introduces the ideas of communication, concurrency and asynchronous operation
at the operating system level and at the application level. Handling such program constructs
incorrectly can lead to failures with no apparent cause, even for input that previously seemed
to work perfectly. Besides their added complexity, many of today's applications run for weeks
or months, so they must properly release resources to avoid waste (so-called leaks of
resources). Applications must also cope with outrageously malicious user input, and they must
recover from errors and continue running. The Portable Operating System Interface (POSIX)
standard is an important step toward producing reliable applications. Programmers who write
for POSIX-compliant systems no longer need to contend with small but critical variations in the
behavior of library functions across platforms. Most popular UNIX versions (including Linux and
Mac OS X) are rapidly moving to support the base POSIX standard and various levels of its
extensions.

Objectives

« Learn how an operating system manages resources

« Experiment with buffer overflows

« Explore concurrency and asynchronous behavior

« Use basic operating systems terminology

« Understand the serious implications of incorrect code

[ Team LiB 1 [rreviovs]
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1.1 Terminology of Change

Computer power has increased exponentially for nearly fifty years [73] in many areas including
processor, memory and mass-storage capacity, circuit density, hardware reliability and 1/0
bandwidth. The growth has continued in the past decade, along with sophisticated instruction
pipelines on single CPUs, placement of multiple CPUs on the desktop and an explosion in
network connectivity.

The dramatic increases in communication and computing power have triggered fundamental
changes in commercial software.

. Large database and other business applications, which formerly executed on a
mainframe connected to terminals, are now distributed over smaller, less expensive
machines.

« Terminals have given way to desktop workstations with graphical user interfaces and
multimedia capabilities.

« At the other end of the spectrum, standalone personal computer applications have
evolved to use network communication. For example, a spreadsheet application is no
longer an isolated program supporting a single user because an update of the
spreadsheet may cause an automatic update of other linked applications. These could
graph the data or perform sales projections.

« Applications such as cooperative editing, conferencing and common whiteboards
facilitate group work and interactions.

« Computing applications are evolving through sophisticated data sharing, realtime
interaction, intelligent graphical user interfaces and complex data streams that include
audio and video as well as text.

These developments in technology rely on communication, concurrency and asynchronous
operation within software applications.

Asynchronous operation occurs because many computer system events happen at
unpredictable times and in an unpredictable order. For example, a programmer cannot predict
the exact time at which a printer attached to a system needs data or other attention. Similarly,
a program cannot anticipate the exact time that the user presses a key for input or interrupts
the program. As a result, a program must work correctly for all possible timings in order to be
correct. Unfortunately, timing errors are often hard to repeat and may only occur once every
million executions of a program.

Concurrency is the sharing of resources in the same time frame. When two programs execute
on the same system so that their execution is interleaved in time, they share processor
resources. Programs can also share data, code and devices. The concurrent entities can be
threads of execution within a single program or other abstract objects. Concurrency can occur
in a system with a single CPU, multiple CPUs sharing the same memory, or independent
systems running over a network. A major job of a modern operating system is to manage the
concurrent operations of a computer system and its running applications. However, concurrency
control has also become an integral part of applications. Concurrent and asynchronous
operations share the same problems—they cause bugs that are often hard to reproduce and
create unexpected side effects.

Communication is the conveying of information by one entity to another. Because of the World
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Wide Web and the dominance of network applications, many programs must deal with 1/0 over
the network as well as from local devices such as disks. Network communication introduces a

myriad of new problems resulting from unpredictable timings and the possibility of undetected
remote failures.

The remainder of this chapter describes simplified examples of asynchronous operation,
concurrency and communication. The buffer overflow problem illustrates how careless
programming and lack of error checking can cause serious problems and security breaches.
This chapter also provides a brief overview of how operating systems work and summarizes the
operating system standards that are used in the book.

[ Team LiB 1 [rreviovs]


file:///D|/Tutoriales%20&%20Programacion/Prep%20Finales/XxX/Prentice%20Hall%20-%20Unix%20Systems%20Programming%202nd%20Ed/0130424110_14051533.html
file:///D|/Tutoriales%20&%20Programacion/Prep%20Finales/XxX/Prentice%20Hall%20-%20Unix%20Systems%20Programming%202nd%20Ed/NFO/lib.html

[ Team LiB ] [« previous]
1.2 Time and Speed

Operating systems manage system resources: processors, memory and 1I/0 devices including
keyboards, monitors, printers, mouse devices, disks, tapes, CD-ROMs and network interfaces.
The convoluted way operating systems appear to work derives from the characteristics of
peripheral devices, particularly their speed relative to the CPU or processor. Table 1.1 lists
typical processor, memory and peripheral times in nanoseconds. The third column shows these
speeds slowed down by a factor of 2 billion to give the time scaled in human terms. The scaled
time of one operation per second is roughly the rate of the old mechanical calculators from fifty
years ago.

Table 1.1. Typical times for components of a computer system. One
nanosecond (ns) is 10-9 seconds, one microsecond (ns) is 106
seconds, and one millisecond (ms) is 10—3 seconds.

scaled time in human terms (2 billion
item time times slower)

processor cycle 0.5 ns | (2 GHz) 1 | second

cache access 1ns | (1 GHz) 2 | seconds

memory access 15 ns 30 | seconds

context switch 5,000 ns | (5 ps) 167 | minutes

disk access 7,000,000 ns | (7 ms) 162 | days

quantum 100,000,000 ns | (100 ms) 6.3 | years

Disk drives have improved, but their rotating mechanical nature limits their performance. Disk
access times have not decreased exponentially. The disparity between processor and disk
access times continues to grow; as of 2003 the ratio is roughly 1 to 14,000,000 for a 2-GHz
processor. The cited speeds are a moving target, but the trend is that processor speeds are
increasing exponentially, causing an increasing performance gap between processors and
peripherals.

The context-switch time is the time it takes to switch from executing one process to another.
The quantum is roughly the amount of CPU time allocated to a process before it has to let
another process run. In a sense, a user at a keyboard is a peripheral device. A fast typist can
type a keystroke every 100 milliseconds. This time is the same order of magnitude as the
process scheduling quantum, and it is no coincidence that these numbers are comparable for
interactive timesharing systems.

Exercise 1.1
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A modem is a device that permits a computer to communicate with another computer over a
phone line. A typical modem is rated at 57,600 bps, where bps means "bits per second."
Assuming it takes 8 bits to transmit a byte, estimate the time needed for a 57,600 bps modem
to fill a computer screen with 25 lines of 80 characters. Now consider a graphics display that
consists of an array of 1024 by 768 pixels. Each pixel has a color value that can be one of 256
possible colors. Assume such a pixel value can be transmitted by modem in 8 bits. What
compression ratio is necessary for a 768-kbps DSL line to fill a screen with graphics as fast as a
57,600-bps modem can fill a screen with text?

Answer:

Table 1.2 compares the times. The text display has 80 x 25 = 2000 characters so 16,000 bits

must be transmitted. The graphics display has 1024 x 768 = 786,432 pixels so 6,291,456 bits
must be transmitted. The estimates do not account for compression or for communication
protocol overhead. A compression ratio of about 29 is necessary!

Table 1.2. Comparison of time estimates for filling a screen.

time needed to display
modem type bits per second
text graphics
1979 telephone modem 300 1 minute 6 hours
1983 telephone modem 2,400 6 seconds 45 minutes
current telephone modem 57,600 0.28 seconds 109 seconds
current DSL modem 768,000 0.02 seconds 8 seconds
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1.3 Multiprogramming and Time Sharing

Observe from Table 1.1 that processes performing disk 1/0 do not use the CPU very efficiently:

0.5 nanoseconds versus 7 milliseconds, or in human terms, 1 second versus 162 days. Because
of the time disparity, most modern operating systems do multiprogramming. Multiprogramming
means that more than one process can be ready to execute. The operating system chooses one
of these ready processes for execution. When that process needs to wait for a resource (say, a
keystroke or a disk access), the operating system saves all the information needed to resume
that process where it left off and chooses another ready process to execute. It is simple to see
how multiprogramming might be implemented. A resource request (such as read orwite)

results in an operating system request (i.e., a system call). A system call is a request to the
operating system for service that causes the normal CPU cycle to be interrupted and control to
be given to the operating system. The operating system can then switch to another process.

Exercise 1.2

Explain how a disk 1/0 request might allow the operating system to run another process.

Answer:

Most devices are handled by the operating system rather than by applications. When an
application executes a disk read, the call issues a request for the operating system to actually
perform the operation. The operating system now has control. It can issue commands to the
disk controller to begin retrieving the disk blocks requested by the application. However, since
the disk retrieval does not complete for a long time (162 days in relative time), the operating
system puts the application’s process on a queue of processes that are waiting for 1/0 to
complete and starts another process that is ready to run. Eventually, the disk controller
interrupts the CPU instruction cycle when the results are available. At that time, the operating
system regains control and can choose whether to continue with the currently running process
or to allow the original process to run.

UNIX does timesharing as well as multiprogramming. Timesharing creates the illusion that
several processes execute simultaneously, even though there may be only one physical CPU.
On a single processor system, only one instruction from one process can be executing at any
particular time. Since the human time scale is billions of times slower than that of modern
computers, the operating system can rapidly switch between processes to give the appearance
of several processes executing at the same time.

Consider the following analogy. Suppose a grocery store has several checkout counters (the
processes) but only one checker (the CPU). The checker checks one item from a customer (the
instruction) and then does the next item for that same customer. Checking continues until a
price check (a resource request) is needed. Instead of waiting for the price check and doing
nothing, the checker moves to another checkout counter and checks items from another
customer. The checker (CPU) is always busy as long as there are customers (processes) ready
to check out. This is multiprogramming. The checker is efficient, but customers probably would
not want to shop at such a store because of the long wait when someone has a large order with
no price checks (a CPU-bound process).

Now suppose that the checker starts a 10-second timer and processes items for one customer
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for a maximum of 10 seconds (the quantum). If the timer expires, the checker moves to
another customer even if no price check is needed. This is timesharing. If the checker is
sufficiently fast, the situation is almost equivalent to having one slower checker at each
checkout stand. Consider making a video of such a checkout stand and playing it back at 100
times its normal speed. It would look as if the checker were handling several customers
simultaneously.

Exercise 1.3

Suppose that the checker can check one item per second (a one-second processor cycle time in
Table 1.1). According to this table, what would be the maximum time the checker would spend

with one customer before moving to a waiting customer?
Answer:

The time is the quantum that is scaled in the table to 6.3 years. A program may execute billions
of instructions in a quantum—a bit more than the number of grocery items purchased by the
average customer.

If the time to move from one customer to another (the context-switch time) is small compared
with the time between switches (the CPU burst time), the checker handles customers
efficiently. Timesharing wastes processing cycles by switching between customers, but it has
the advantage of not wasting the checker resources during a price check. Furthermore,
customers with small orders are not held in abeyance for long periods while waiting for
customers with large orders.

The analogy would be more realistic if instead of several checkout counters, there were only
one, with the customers crowded around the checker. To switch from customer A to customer
B, the checker saves the contents of the register tape (the context) and restores it to what it
was when it last processed customer B. The context-switch time can be reduced if the cash
register has several tapes and can hold the contents of several customers' orders
simultaneously. In fact, some computer systems have special hardware to hold many contexts
at the same time.

Multiprocessor systems have several processors accessing a shared memory. In the checkout
analogy for a multiprocessor system, each customer has an individual register tape and
multiple checkers rove the checkout stands working on the orders for unserved customers.
Many grocery stores have packers who do this.
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1.4 Concurrency at the Applications Level

Concurrency occurs at the hardware level because multiple devices operate at the same time.
Processors have internal parallelism and work on several instructions simultaneously, systems
have multiple processors, and systems interact through network communication. Concurrency
is visible at the applications level in signal handling, in the overlap of 1/0 and processing, in
communication, and in the sharing of resources between processes or among threads in the
same process. This section provides an overview of concurrency and asynchronous operation.

1.4.1 Interrupts

The execution of a single instruction in a program at the conventional machine level is the
result of the processor instruction cycle. During normal execution of its instruction cycle, a
processor retrieves an address from the program counter and executes the instruction at that
address. (Modern processors have internal parallelism such as pipelines to reduce execution
time, but this discussion does not consider that complication.) Concurrency arises at the
conventional machine level because a peripheral device can generate an electrical signal, called
an interrupt, to set a hardware flag within the processor. The detection of an interrupt is part of
the instruction cycle itself. On each instruction cycle, the processor checks hardware flags to
see if any peripheral devices need attention. If the processor detects that an interrupt has
occurred, it saves the current value of the program counter and loads a new value that is the
address of a special function called an interrupt service routine or interrupt handler. After
finishing the interrupt service routine, the processor must be able to resume execution of the
previous instruction where it left off.

An event is asynchronous to an entity if the time at which it occurs is not determined by that
entity. The interrupts generated by external hardware devices are generally asynchronous to
programs executing on the system. The interrupts do not always occur at the same point in a
program’s execution, but a program should give a correct result regardless of where it is
interrupted. In contrast, an error event such as division by zero is synchronous in the sense
that it always occurs during the execution of a particular instruction if the same data is
presented to the instruction.

Although the interrupt service routine may be part of the program that is interrupted, the
processing of an interrupt service routine is a distinct entity with respect to concurrency.
Operating-system routines called device drivers usually handle the interrupts generated by
peripheral devices. These drivers then notify the relevant processes, through a software
mechanism such as a signal, that an event has occurred.

Operating systems also use interrupts to implement timesharing. Most machines have a device
called a timer that can generate an interrupt after a specified interval of time. To execute a
user program, the operating system starts the timer before setting the program counter. When
the timer expires, it generates an interrupt that causes the CPU to execute the timer interrupt
service routine. The interrupt service routine writes the address of the operating system code
into the program counter, and the operating system is back in control. When a process loses
the CPU in the manner just described, its quantum is said to have expired. The operating
system puts the process in a queue of processes that are ready to run. The process waits there
for another turn to execute.

1.4.2 Signals
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A signal is a software notification of an event. Often, a signal is a response of the operating
system to an interrupt (a hardware event). For example, a keystroke such as Ctrl-C generates
an interrupt for the device driver handling the keyboard. The driver recognizes the character as
the interrupt character and notifies the processes that are associated with this terminal by
sending a signal. The operating system may also send a signal to a process to notify it of a
completed 1/0 operation or an error.

A signal is generated when the event that causes the signal occurs. Signals can be generated
either synchronously or asynchronously. A signal is generated synchronously if it is generated
by the process or thread that receives it. The execution of an illegal instruction or a divide-by-
zero may generate a synchronous signal. A Ctrl-C on the keyboard generates an asynchronous
signal. Signals (Chapter 8) can be used for timers (Chapter 10), terminating programs (Section

8.2), job control (Section 11.7) or asynchronous 1I/0 (Section 8.8).

A process catches a signal when it executes a handler for the signal. A program that catches a
signal has at least two concurrent parts, the main program and the signal handler. Potential
concurrency restricts what can be done inside a signal handler (Section 8.6). If the signal
handler modifies external variables that the program can modify elsewhere, then proper
execution may require that those variables be protected.

1.4.3 Input and output

A challenge for operating systems is to coordinate resources that have greatly differing
characteristic access times. The processor can perform millions of operations on behalf of other
processes while a program waits for a disk access to complete. Alternatively, the process can
avoid blocking by using asynchronous 1/0 or dedicated threads instead of ordinary blocking 1/0.
The tradeoff is between the additional performance and the extra programming overhead in
using these mechanisms.

A similar problem occurs when an application monitors two or more input channels such as
input from different sources on a network. If standard blocking 1/0 is used, an application that
is blocked waiting for input from one source is not able to respond if input from another source
becomes available.

1.4.4 Processes, threads and the sharing of resources

A traditional method for achieving concurrent execution in UNIX is for the user to create
multiple processes by calling the f or k function. The processes usually need to coordinate their

operation in some way. In the simplest instance they may only need to coordinate their
termination. Even the termination problem is more difficult than it might seem. Chapter 3

addresses process structure and management and introduces the UNIX f ork, exec and wai t
system calls.

Processes that have a common ancestor can communicate through pipes (Chapter 6).
Processes without a common ancestor can communicate by signals (Chapter 8), FIFOs (Section
6.3), semaphores (Sections 14.2 and 15.2), shared address space (Section 15.3) or messages
(Section 15.4 and Chapter 18).

Multiple threads of execution can provide concurrency within a process. When a program



executes, the CPU uses the program counter to determine which instruction to execute next.
The resulting stream of instructions is called the program's thread of execution. It is the flow of
control for the process. If two distinct threads of execution share a resource within a time
frame, care must be taken that these threads do not interfere with each other. Multiprocessor
systems expand the opportunity for concurrency and sharing among applications and within
applications. When a multithreaded application has more than one thread of execution
concurrently active on a multiprocessor system, multiple instructions from the same process
may be executed at the same time.

Until recently there has not been a standard for using threads, and each vendor's thread
package behaved differently. A thread standard has now been incorporated into the POSIX
standard. Chapters 12 and 13 discuss this new standard.

1.4.5 Multiple processors with shared memory

How many CPUs does a typical home computer have? If you think the answer is one, think
again. In early machines, the main CPU handled most of the decision making. As machine
design evolved, 1/0 became more complicated and placed more demands on the CPU. One way
of enhancing the performance of a system is to determine which components are the
bottlenecks and then improve or replicate these components. The main 1/0 controllers such as
the video controller and disk controller took over some of the processing related to these
peripherals, relieving the CPU of this burden. In modern machines, these controllers and other
1/0 controllers have their own special purpose CPUs.

What if after all this auxiliary processing has been offloaded, the CPU is still the bottleneck?
There are two approaches to improving the performance. Admiral Grace Murray Hopper, a
pioneer in computer software, often compared computing to the way fields were plowed in the
pioneer days: "If one ox could not do the job, they did not try to grow a bigger ox, but used
two oxen." It was usually cheaper to add another processor or two than to increase the speed
of a single processor. Some problems do not lend themselves to just increasing the number of
processors indefinitely. Seymour Cray, a pioneer in computer hardware, is reported to have
said, "If you were plowing a field, which would you rather use? Two strong oxen or 1024
chickens?"

The optimal tradeoff between more CPUs and better CPUs depends on several factors, including
the type of problem to be solved and the cost of each solution. Machines with multiple CPUs
have already migrated to the desktop and are likely to become more common as prices drop.
Concurrency issues at the application level are slightly different when there are multiple
processors, but the methods discussed in this book are equally applicable in a multiprocessor
environment.

1.4.6 The network as the computer

Another important trend is the distribution of computation over a network. Concurrency and
communication meet to form new applications. The most widely used model of distributed
computation is the client-server model. The basic entities in this model are server processes
that manage resources, and client processes that require access to shared resources. (A
process can be both a server and a client.) A client process shares a resource by sending a
request to a server. The server performs the request on behalf of the client and sends a reply
to the client. Examples of applications based on the client-server model include file transfer
(ft p), electronic mail, file servers and the World Wide Web. Development of client-server

applications requires an understanding of concurrency and communication.



The object-based model is another model for distributed computation. Each resource in the
system is viewed as an object with a message-handling interface, allowing all resources to be
accessed in a uniform way. The object-based model allows for controlled incremental
development and code reuse. Object frameworks define interactions between code modules,
and the object model naturally expresses notions of protection. Many of the experimental
distributed operating systems such as Argus [74], Amoeba [124], Mach [1], Arjuna [106],

Clouds [29] and Emerald [11] are object based. Object-based models require object managers
to track the location of the objects in the system.

An alternative to a truly distributed operating system is to provide application layers that run
on top of common operating systems to exploit parallelism on the network. The Parallel Virtual
Machine (PVM) and its successor, Message Passing Interface (MPI), are software libraries [10,
43] that allow a collection of heterogeneous workstations to function as a parallel computer for
solving large computational problems. PVYM manages and monitors tasks that are distributed on
workstations across the network. Chapter 17 develops a dispatcher for a simplified version of
PVM. CORBA (Common Object Request Broker Architecture) is another type of software layer
that provides an object-oriented interface to a set of generic services in a heterogeneous
distributed environment [104].
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1.5 Security and Fault Tolerance

The 1950s and early 1960s brought batch processing, and the mid-to-late 1960s saw
deployment of operating systems that supported multiprogramming. Time-sharing and real-
time programming gained popularity in the 1970s. During the 1980s, parallel processing moved
from the supercomputer arena to the desktop. The 1990s was the decade of the network—with
the widespread use of distributed processing, email and the World Wide Web. The 2000s
appears to be the decade of security and fault-tolerance. The rapid computerization and the
distribution of critical infrastructure (banking, transportation, communication, medicine and
government) over networks has exposed enormous vulnerabilities. We have come to rely on
programs that were not adequately designed or tested for a concurrent environment, written by
programmers who may not have understood the implications of incorrectly working programs.
The liability disclaimers distributed with most software attempts to absolve the manufacturers
of responsibility for damage—software is distributed as is.

But, lives now depend on software, and each of us has a responsibility to become attuned to
the implications of bad software. With current technology, it is almost impossible to write
completely error-free code, but we believe that programmer awareness can greatly reduce the
scope of the problem. Unfortunately, most people learn to program for an environment in which
programs are presented with correct or almost correct input. Their ideal users behave
graciously, and programs are allowed to exit when they encounter an error.

Real-world programs, especially systems programs, are often long-running and are expected to
continue running after an error (no blue-screen of death or reboot allowed). Long-running
programs must release resources, such as memory, when these resources are no longer
needed. Often, programmers release resources such as buffers in the obvious places but forget
to release them if an error occurs.

Most UNIX library functions indicate an error by a return value. However, C makes no
requirement that return values be checked. If a program doesn't check a return value,
execution can continue well beyond the point at which a critical error occurs. The consequence
of the function error may not be apparent until much later in the execution. C also allows
programs to write out of the bounds of variables. For example, the C runtime system does not
complain if you modify a nonexistent array element—it writes values into that memory (which
probably corresponds to some other variable). Your program may not detect the problem at the
time it happened, but the overwritten variable may present a problem later. Because
overwritten variables are so difficult to detect and so dangerous, newer programming
languages, such as Java, have runtime checks on array bounds.

Even software that has been in distribution for years and has received heavy scrutiny is riddled
with bugs. For example, an interesting study by Chou et al. [23] used a modified compiler to

look for 12 types of bugs in Linux and OpenBSD source code. They examined 21 snapshots of
Linux spanning seven years and one snapshot of OpenBSD. They found 1025 bugs in the code
by using automatic scanning techniques. One of the most common bugs was the failure to
check for a NULL return on functions that return pointers. If the code later uses the returned

pointer, a core dump occurs.

Commercial software is also prone to bugs. Software problems with the Therac-25 [71], a
medical linear accelerator used to destroy tumors, resulted in serious accidents.


file:///D|/Tutoriales%20&%20Programacion/Prep%20Finales/XxX/Prentice%20Hall%20-%20Unix%20Systems%20Programming%202nd%20Ed/NFO/lib.html

Another problem is the exponential growth in the number of truly malicious users who launch

concerted attacks on servers and user computers. The next section describes one common type
of attack, the buffer overflow.
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1.6 Buffer Overflows for Breaking and Entering

This section presents a simplified explanation of buffer overflows and how they might be used
to attack a computer system. A buffer overflow occurs when a program copies data into a
variable for which it has not allocated enough space.

Example 1.4 shows a code segment that may have a buffer overflow. A user types a name in
response to the prompt. The program stores the input in a char array called buf . If the user

enters more than 79 bytes, the resulting string and string terminator do not fit in the allocated
variable.

Example 1.4

The following code segment has the possibility of a buffer overflow.

char buf[80];

printf("Enter your first name:");
scanf ("%", buf);

Your first thought in fixing this potential overflow might be to make buf bigger, say, 1000

bytes. What user's first name could be that long? Even if a user decides to type in a very long
string of characters, 1000 bytes should be large enough to handle all but the most persistent
user. However, regardless of the ultimate size that you choose, the code segment is still
susceptible to a buffer overflow. The user simply needs to redirect standard input to come from
an arbitrarily large file.

Example 1.5 shows a simple way to fix this problem. The format specification limits the input

string to one less than the size of the variable, allowing room for the string terminator. The
program reads at most 79 characters into buf but stops when it encounters a white space

character. If the user enters more than 79 characters, the program reads the additional
characters in subsequent input statements.

Example 1.5

The following code segment does not have a buffer overflow.

char buf[80];

printf("Enter your first name:");
scanf ("% 9s", buf);

1.6.1 Consequences of buffer overflows

To understand what happens when a buffer overflow occurs, you need to understand how
programs are laid out in memory. Most program code is executed in functions with local
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variables that are automatic. While the details differ from machine to machine, programs
generally allocate automatic variables on the program stack.

In a typical system, the stack grows from high memory to low memory. When a function is
called, the lower part of the stack contains the passed parameters and the return address.
Higher up on the stack (lower memory addresses) are the local automatic variables. The stack
may store other values and have gaps that are not used by the program at all. One important
fact is that the return address for each function call is usually stored in memory after (with
larger address than) the automatic variables.

When a program writes beyond the limits of a variable on the stack, a buffer overflow occurs.
The extra bytes may write over unused space, other variables, the return address or other
memory not legally accessible to your program. The consequences can range from none, to a
program crash and a core dump, to unpredictable behavior.

Program 1.1 shows a function that can have a buffer overflow. The checkpass function checks
whether the entered string matches " nypass" and returns 1 if they match, and O otherwise.

Program 1.1 checkpass. c

A function that checks a password. This function is susceptible to buffer overflow.

#i ncl ude <stdi o. h>
#i ncl ude <string. h>

i nt checkpass(void){
int x;
char a[9];
x = 0;
fprintf(stderr,"a at % and\nx at %\n", (void *)a, (void *)&x);
printf("Enter a short word: ");
scanf ("%", a);
if (strcnp(a, "nypass") == 0)
X = 1;
return x;

Figure 1.1 shows a possible organization of the stack for a call to checkpass. The diagram

assumes that integers and pointers are 4 bytes. Note that the compiler allocates 12 bytes for
array a, even though the program specifies only 9 bytes, so that the system can maintain a

stack pointer that is aligned on a word boundary.

Figure 1.1. Possible stack layout for the checkpass function of Program
1.1.
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If the character array a is stored on the stack in lower memory than the integer x, a buffer
overflow of a may change the value of x. If the user enters a word that is slightly longer than
the array a, the overflow changes the value of x, but there is no other effect. Exactly how long

the entered string needs to be to cause a problem depends on the system. With the memory
organization of Figure 1.1, if the user enters 12 characters, the string terminator overwrites

one byte of x without changing its value. If the user enters more than 12 characters, some of
them overwrite x, changing its value. If the user enters 13 characters, x changes to a nonzero
value and the function returns 1, no matter what characters are entered.

If the user enters a long password, the return address is overwritten, and most likely the
function will try to return to a location outside the address space of the program, generating a
segmentation fault and core dump. Buffer overflows that cause an application program to exit
with a segmentation fault can be annoying and can cause the program to lose unsaved data.
The same type of overflow in an operating system function can cause the operating system to
crash.

Buffer overflows in dynamically allocated buffers or buffers with static storage can also behave
unpredictably. One of our students wrote a program that appeared to show an error in the C
library. He traced a segmentation fault to a call to mal | oc and was able to show that the

program was working until the call to mal | oc. The program had a segmentation fault before the
call to mal | oc returned. He eventually traced the problem to a type of buffer overflow in which
the byte before a buffer dynamically allocated by a previous nal | oc call was overwritten. (This

can easily happen if a buffer is being filled from the back and a count is off by one.) Overwriting
control information stored in the heap caused the next call to mal | oc to crash the program.

1.6.2 Buffer overflows and security



Security problems related to buffer overflows have been known for over a decade. They first
acquired national attention when on November 2, 1988, Robert Morris released a worm on the
Internet. A worm is a self-replicating, self-propagating program. This program forced many
system administrators to disconnect their sites from the Internet so that they would not be
continually reinfected. It took several days for the Internet to return to normal. One of the
methods used by the Morris worm was to exploit a buffer overflow in the fi nger daemon. This

daemon ran on most UNIX machines to allow the display of information about users.

In response to this worm, CERT, the Computer Emergency Response Team, was created [24].

The CERT Coordination Center is a federally funded center of Internet security expertise that
regularly publishes computer security alerts.

Programs that are susceptible to buffer overflow are still being written, in spite of past
experiences. The first six CERT advisories in 2002 describe buffer overflow flaws in various
computer systems, including Common Desktop Environment for the Sun Solaris operating
environment (a windowing system), ICQ from AOL (an instant messaging program used by
over 100 million users), Simple Network Management Protocol (a network management
protocol used by many vendors), and Microsoft Internet Explorer. In 1999 Steve Ballmer, the
CEO of Microsoft, was quoted as saying, "You would think we could figure out how to fix buffer
overflows by now." The problem is not that we do not know how to write correct code, the
problem is that writing correct code takes more care than writing sloppy code. As long as
priorities are to produce code quickly, sloppy code will be produced. The effects of poor coding
are exacerbated by compilers and runtime systems that don't enforce range checking.

There are many ways in which buffer overflows have been used to compromise a system. Here
is a possible scenario. The t el net program allows a user to remotely log in to a machine. It

communicates over the network with at el net daemon running on the remote machine. One of
the functions of the t el net daemon is to query for a user name and password and then to
create a shell for the user if the password is correct.

Suppose the function in the t el net daemon that requests and checks a password returns 1 if
the password is correct and O otherwise, similar to the checkpass function of Program 1.1.

Suppose the function allocates a buffer of size 100 for the password. This might seem
reasonable, since passwords in UNIX are at most 8 bytes long. If the program does not check
the length of the input, it might be possible to have input that writes over the return value (x in

Program 1.1), causing a shell to be created even if the password is incorrect.

Any application that runs with root privileges and is susceptible to a buffer overflow might be
used to create a shell with root privileges. The implementation is technical and depends on the
system, but the idea is relatively simple. First, the user compiles code to create a shell,
something like the following code.

execvl ("/bin/sh", "/bin/sh", NULL);
exit(0);

The user then edits the compiled code file so that the compiled code appears at exactly the
correct relative position in the file. When the user redirects standard input to this file, the
contents of the file overwrite the return address. If the bytes that overwrite the return address
happen to correspond to the address of the execvl code, the function return creates a new

user shell. Since the program is already running with the user ID of root, the new shell also



runs with this user ID, and the ordinary user now has root privileges. The vulnerability depends
on getting the bytes in the input file exactly right. Finding the address of the execvl is not as

difficult as it might first appear, because most processor instruction sets support a relative
addressing mode.
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1.7 UNIX Standards

Not too long ago, two distinct and somewhat incompatible "flavors” of UNIX, System V from
AT&T and BSD from Berkeley coexisted. Because no official standard existed, there were major
and minor differences between the versions from different vendors, even within the same
flavor. Consequently, programs written for one type of UNIX would not run correctly or
sometimes would not even compile under a UNIX from another vendor.

The IEEE (Institute of Electronic and Electrical Engineers) decided to develop a standard for the
UNIX libraries in an initiative called POSIX. POSIX stands for Portable Operating System
Interface and is pronounced pahz-icks, as stated explicitly by the standard. IEEE's first attempt,
called POSIX.1, was published in 1988. When this standard was adopted, there was no known
historical implementation of UNIX that would not have to change to meet the standard. The
original standard covered only a small subset of UNIX. In 1994, the X/Open Foundation
published a more comprehensive standard called Spec 1170, based on System V.
Unfortunately, inconsistencies between Spec 1170 and POSIX made it difficult for vendors and
application developers to adhere to both standards.

In 1998, after another version of the X/Open standard, many additions to the POSIX standard,
and the threat of world-domination by Microsoft, the Austin Group was formed. This group
included members from The Open Group (a new name for the X/Open Foundation), IEEE POSIX
and the ISO/IEC Joint Technical Committee. The purpose of the group was to revise, combine
and update the standards. Finally, at the end of 2001, a joint document was approved by the
IEEE and The Open Group. The ISO/IEC approved this document in November of 2002. This
specification is referred to as the Single UNIX Specification, Version 3, or IEEE Std. 1003.1-
2001, POSIX. In this book we refer to this standard merely as POSIX.

Each of the standards organizations publishes copies of the standard. Print and electronic
versions of the standard are available from IEEE and ISO/IEC. The Open Group publishes the
standard on CD-ROM. It is also freely available on their web site [89]. The copy of the standard

published by the IEEE is in four volumes: Base Definitions [50], Shell and Utilities [52], System
Interfaces [49] and Rationale [51] and is over 3600 pages in length.

The code for this book was tested on three systems: Solaris 9, Redhat Linux 8 and Mac OS
10.2. Table 1.3 lists the extensions of POSIX discussed in the book and the status of

implementation of each on the tested systems. This indication is based on the man pages and
on running the programs from the book, not on any official statement of compliance.

Table 1.3. POSIX extensions supported by our test systems.

code extension Solaris 9 Redhat 8 Mac OS 10.2

AlO asynchronous input and output | yes yes no

CX extension to the ISO C standard | yes yes yes
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FSC | file synchronization yes yes yes

RTS realtime signals extension yes yes no

SEM | semaphores yes unnamed only | named only
THR | threads yes almost yes

TMR | timers yes yes no

TPS thread execution scheduling yes yes yes

TSA | thread stack address attribute no no no

TSF thread-safe functions yes strtok_r only | yes

XSl XSI extension yes yes timers, getsi d, ftok,

no IPC
_PGsI X_VERSI ON 199506 199506 198808

A POSIX-compliant implementation must support the POSIX base standard. Many of the
interesting aspects of POSIX are not part of the base standard but rather are defined as
extensions to the base standard. Table E.1 of Appendix E gives a complete list of the extensions
in the 2001 version of POSIX. Appendix E applies only to implementations that claim
compliance with the 2001 version base standard. These implementations set the symbol

_PCsI X_VERSI ON defined in uni std. h to 200112L. As of the writing of this book, none of the

systems we tested used this value. Systems that support the previous version of POSIX have a
value of 199506L. Differences between the 1995 and 2001 standards for features supported by
both are minor.

The new POSIX standard also incorporates the ISO/IEC International Standard 9899, also
referred to as ISO C. In the past, minor differences between the POSIX and ISO C standards
have caused confusion. Often, these differences were unintentional, but differences in published
standards required developers to choose between them. The current POSIX standard makes it
clear that any differences between the published POSIX standard and the ISO C standard are
unintentional. If any discrepancies occur, the ISO C standard takes precedence.
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1.8 Additional Reading

Most general operating systems books present an overview and history of operating systems.
Recommended introductions include Chapter 1 of Modern Operating Systems by Tanenbaum
[122] or Chapters 1 to 3 of Operating Systems Concepts by Silberschatz et al. [107]. Chapters
1 and 2 of Distributed Systems: Concepts and Design by Coulouris et al. discuss design issues
for distributed systems [26]. Distributed Operating Systems by Tanenbaum [121] also has a
good overview of distributed systems issues, but it provides fewer details about specific
distributed systems than does [26]. See also Distributed Systems: Principles and Paradigms by
Van Steen and Tanenbaum [127].

Advanced Programming in the UNIX Environment by Stevens [112] is a key technical reference
on the UNIX interface to use in conjunction with this book. Serious systems programmers
should acquire the POSIX Std. 1003.1 from the IEEE [50] or the Open Group web site [89]. The
standard is surprisingly readable and thorough. The rationale sections included with each
function provide a great deal of insight into the considerations that went into the standard. The
final arbiter of C questions is the I1SO C standard [56].

The CERT web site [24] is a good source for current information on recently discovered bugs,

ongoing attacks and vulnerabilities. The book Know Your Enemy: Revealing the Security Tools,
Tactics, and Motives of the Blackhat Community edited by members of the Honeynet Project
[48] is an interesting glimpse into the realm of the malicious.
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Chapter 2. Programs, Processes and Threads

One popular definition of a process is an instance of a program whose execution has started but
has not yet terminated. This chapter discusses the differences between programs and
processes and the ways in which the former are transformed into the latter. The chapter
addresses issues of program layout, command-line arguments, program environment and exit
handlers.

Objectives

o Learn about programs, processes and threads

o Experiment with memory allocation and manipulation
« Explore implications of static objects

« Use environment variables for context

« Understand program structure and layout
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2.1 How a Program Becomes a Process

A program is a prepared sequence of instructions to accomplish a defined task. To write a C
source program, a programmer creates disk files containing C statements that are organized
into functions. An individual C source file may also contain variable and function declarations,
type and macro definitions (e.g., t ypedef ) and preprocessor commands (e.g., #i f def,

#i ncl ude, #def i ne). The source program contains exactly one mai n function.

Traditionally, C source filenames have a . ¢ extension, and header filenames have a . h

extension. Header files usually only contain macro and type definitions, defined constants and
function declarations. Use the #i ncl ude preprocessor command to insert the contents of a

header file into the source.

The C compiler translates each source file into an object file. The compiler then links the
individual object files with the necessary libraries to produce an executable module. When a
program is run or executed, the operating system copies the executable module into a program
image in main memory.

A process is an instance of a program that is executing. Each instance has its own address
space and execution state. When does a program become a process? The operating system
reads the program into memory. The allocation of memory for the program image is not
enough to make the program a process. The process must have an ID (the process ID) so that
the operating system can distinguish among individual processes. The process state indicates
the execution status of an individual process. The operating system keeps track of the process
IDs and corresponding process states and uses the information to allocate and manage
resources for the system. The operating system also manages the memory occupied by the
processes and the memory available for allocation.

When the operating system has added the appropriate information in the kernel data structures
and has allocated the necessary resources to run the program code, the program has become a
process. A process has an address space (memory it can access) and at least one flow of
control called a thread. The variables of a process can either remain in existence for the life of
the process (static storage) or be automatically allocated when execution enters a block and
deallocated when execution leaves the block (automatic storage). Appendix A.5 discusses C

storage classes in detail.

A process starts with a single flow of control that executes a sequence of instructions. The
processor program counter keeps track of the next instruction to be executed by that processor
(CPU). The CPU increments the program counter after fetching an instruction and may further
modify it during the execution of the instruction, for example, when a branch occurs. Multiple
processes may reside in memory and execute concurrently, almost independently of each
other. For processes to communicate or cooperate, they must explicitly interact through
operating system constructs such as the filesystem (Section 5.1), pipes (Section 6.1), shared

memory (Section 15.3) or a network (Chapters 18-22).

[ Team Lig 1 [rrevios



file:///D|/Tutoriales%20&%20Programacion/Prep%20Finales/XxX/Prentice%20Hall%20-%20Unix%20Systems%20Programming%202nd%20Ed/NFO/lib.html
file:///D|/Tutoriales%20&%20Programacion/Prep%20Finales/XxX/Prentice%20Hall%20-%20Unix%20Systems%20Programming%202nd%20Ed/NFO/lib.html

[ Team Lie ] [ rreviovs)

2.2 Threads and Thread of Execution

When a program executes, the value of the process program counter determines which process
instruction is executed next. The resulting stream of instructions, called a thread of execution,
can be represented by the sequence of instruction addresses assigned to the program counter
during the execution of the program's code.

Example 2.1

Process 1 executes statements 245, 246 and 247 in a loop. Its thread of execution can be
represented as 245,, 2464, 247,, 245,, 2464, 247, 2454, 246,, 2474 . . . , where the

subscripts identify the thread of execution as belonging to process 1.

The sequence of instructions in a thread of execution appears to the process as an
uninterrupted stream of addresses. From the point of view of the processor, however, the
threads of execution from different processes are intermixed. The point at which execution
switches from one process to another is called a context switch.

Example 2.2

Process 1 executes its statements 245, 246 and 247 in a loop as in Example 2.1, and process 2

executes its statements 10, 11, 12 . . . . The CPU executes instructions in the order 245,, 2464,
247,, 245,, 2464, [context-switch instructions], 105, 11,, 12,5, 135, [context-switch
instructions], 247,, 2454, 246,, 247, . . . . Context switches occur between 246, and 10, and

between 13, and 247,. The processor sees the threads of execution interleaved, whereas the
individual processes see uninterrupted sequences.

A natural extension of the process model allows multiple threads to execute within the same
process. Multiple threads avoid context switches and allow sharing of code and data. The
approach may improve program performance on machines with multiple processors. Programs
with natural parallelism in the form of independent tasks operating on shared data can take
advantage of added execution power on these multiple-processor machines. Operating systems
have significant natural parallelism and perform better by having multiple, simultaneous
threads of execution. Vendors advertise symmetric multiprocessing support in which the
operating system and applications have multiple undistinguished threads of execution that take
advantage of parallel hardware.

A thread is an abstract data type that represents a thread of execution within a process. A
thread has its own execution stack, program counter value, register set and state. By declaring
many threads within the confines of a single process, a programmer can write programs that
achieve parallelism with low overhead. While these threads provide low-overhead parallelism,
they may require additional synchronization because they reside in the same process address
space and therefore share process resources. Some people call processes heavyweight because
of the work needed to start them. In contrast, threads are sometimes called lightweight
processes.
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2.3 Layout of a Program Image

After loading, the program executable appears to occupy a contiguous block of memory called a
program image. Figure 2.1 shows a sample layout of a program image in its logical address

space [112]. The program image has several distinct sections. The program text or code is

shown in low-order memory. The initialized and uninitialized static variables have their own
sections in the image. Other sections include the heap, stack and environment.

Figure 2.1. Sample layout for a program image in main memory.

high command-line arguments | - arge, argv, environment
address | ynd environment variables

=— activation records for function calls

stack
(return address, parameters,
saved registers, automatic variables)
v
i
heap =— allocations from malloc family

uninitialized static data
intiahzed static data

low program text
address

An activation record is a block of memory allocated on the top of the process stack to hold the
execution context of a function during a call. Each function call creates a new activation record
on the stack. The activation record is removed from the stack when the function returns,
providing the last-called-first-returned order for nested function calls.

The activation record contains the return address, the parameters (whose values are copied
from the corresponding arguments), status information and a copy of some of the CPU register
values at the time of the call. The process restores the register values on return from the call
represented by the record. The activation record also contains automatic variables that are
allocated within the function while it is executing. The particular format for an activation record
depends on the hardware and on the programming language.

In addition to the static and automatic variables, the program image contains space for ar gc
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and ar gv and for allocations by rmal | oc. The mal | oc family of functions allocates storage from a

free memory pool called the heap. Storage allocated on the heap persists until it is freed or
until the program exits. If a function calls mal | oc, the storage remains allocated after the

function returns. The program cannot access the storage after the return unless it has a pointer
to the storage that is accessible after the function returns.

Static variables that are not explicitly initialized in their declarations are initialized to O at run
time. Notice that the initialized static variables and the uninitialized static variables occupy
different sections in the program image. Typically, the initialized static variables are part of the
executable module on disk, but the uninitialized static variables are not. Of course, the
automatic variables are not part of the executable module because they are only allocated
when their defining block is called. The initial values of automatic variables are undetermined
unless the program explicitly initializes them.

Exercise 2.3

Use | s -1 to compare the sizes of the executable modules for the following two C programs.
Explain the results.

Version 1: | argearrayinit.c

int nyarray[50000] = {1, 2, 3, 4};
int main(void) {

myarray[ 0] = 3;
return O;

Version 2: | argearray. c

i nt nmyarray[ 50000];

int main(void) {

myar ray| 0] 3;
return O;

}

Answer:

The executable module for Version 1 should be about 200,000 bytes larger than that of Version
2 because the nyarray of Version 1 is initialized static data and is therefore part of the

executable module. The nyarray of Version 2 is not allocated until the program is loaded in
memory, and the array elements are initialized to O at that time.

Static variables can make a program unsafe for threaded execution. For example, the C library
function r eaddi r and its relatives described in Section 5.2 use static variables to hold return
values. The function strt ok discussed in Section 2.6 uses a static variable to keep track of its
progress between calls. Neither of these functions can be safely called by multiple threads
within a program. In other words, they are not thread-safe. External static variables also make
code more difficult to debug because successive invocations of a function that references a



static variable may behave in unexpected ways. For these reasons, avoid using static variables
except under controlled circumstances. Section 2.9 presents an example of when to use

variables with static storage class.

Although the program image appears to occupy a contiguous block of memory, in practice, the
operating system maps the program image into noncontiguous blocks of physical memory. A
common mapping divides the program image into equal-sized pieces, called pages. The
operating system loads the individual pages into memory and looks up the location of the page
in a table when the processor references memory on that page. This mapping allows a large
logical address space for the stack and heap without actually using physical memory unless it is
needed. The operating system hides the existence of such an underlying mapping, so the
programmer can view the program image as logically contiguous even when some of the pages
do not actually reside in memory.
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2.4 Library Function Calls

We introduce most library functions by a condensed version of its specification, and you should
always refer to the man pages for more complete information.

The summary starts with a brief description of the function and its parameters, followed by a
SYNOPSIS box giving the required header files and the function prototype. (Unfortunately,
some compilers do not give warning messages if the header files are missing, so be sure to use
| i nt as described in Appendix A to detect these problems.) The SYNOPSIS box also names the

POSIX standard that specifies the function. A description of the function return values and a
discussion of how the function reports errors follows the SYNOPSIS box. Here is a typical
summary.

The cl ose function deallocates the file descriptor specified by fi | des.

SYNOPSI S

#i ncl ude <uni std. h>

int close(int fildes);
PCSI X

If successful, cl ose returns 0. If unsuccessful, cl ose returns —1 and sets er r no. The following
table lists the mandatory errors for cl ose.

errno cause
EBADF fil des is not valid
EINTR cl ose was interrupted by a signal

This book's summary descriptions generally include the mandatory errors. These are the errors
that the standard requires that every implementation detect. We include these particular errors
because they are a good indication of the major points of failure. You must handle all errors,
not just the mandatory ones. POSIX often defines many other types of optional errors. If an
implementation chooses to treat the specified condition as an error, then it should use the
specified error value. Implementations are free to define other errors as well. When there is
only one mandatory error, we describe it in a sentence. When the function has more than one
mandatory error, we use a table like the one for cl ose.

Traditional UNIX functions usually return —1 (or sometimes NULL) and set er r no to indicate the
error. The POSIX standards committee decided that all new functions would not use errno and

would instead directly return an error number as a function return value. We illustrate both
ways of handling errors in examples throughout the text.


file:///D|/Tutoriales%20&%20Programacion/Prep%20Finales/XxX/Prentice%20Hall%20-%20Unix%20Systems%20Programming%202nd%20Ed/NFO/lib.html

Example 2.4
The following code segment demonstrates how to call the cl ose function.

int fildes;

if (close(fildes) == -1)
perror("Failed to close the file");

The code assumes that the uni st d. h header file has been included in the source. In general,
we do not show the header files for code segments.

The perror function outputs to standard error a message corresponding to the current value of
errno. If s is not NULL, perror outputs the string (an array of characters terminated by a null
character) pointed to by s and followed by a colon and a space. Then, perror outputs an error
message corresponding to the current value of er r no followed by a newline.

SYNOPSI S

#i ncl ude <stdi o. h>

void perror(const char *s);
PGSl X: CX

No return values and no errors are defined for perror.

Example 2.5
The output produced by Example 2.4 might be as follows.

Failed to close the file: invalid file descriptor

The strerror function returns a pointer to the system error message corresponding to the
error code errnum

SYNOPSI S

#i ncl ude <string. h>

char *strerror(int errnum;
PCSI X: CX

If successful, strerror returns a pointer to the error string. No values are reserved for failure.

Use strerror to produce informative messages, or use it with functions that return error codes
directly without setting errno.



Example 2.6

The following code segment uses strerror to output a more informative error message when
cl ose fails.

int fildes;
if (close(fildes) == -1)

fprintf(stderr, "Failed to close file descriptor %l: %\n",
fildes, strerror(errno));

The strerror function may change errno. You should save and restore err no if you need to
use it again.

Example 2.7

The following code segment illustrates how to use strerror and still preserve the value of
errno.

int error;
int fildes;
if (close(fildes) == -1) {
error = errno; /* tenmporarily save errno */

fprintf(stderr, "Failed to close file descriptor %d: %\n",
fildes, strerror(errno));
errno = error; /* restore errno after witing the error nessage */

Correctly handing errno is a tricky business. Because its implementation may call other
functions that set err no, a library function may change errno, even though the man page

doesn't explicitly state that it does. Also, applications cannot change the string returned from
strerror, but subsequent calls to either strerror or perror may overwrite this string.

Another common problem is that many library calls abort if the process is interrupted by a
signal. Functions generally report this type of return with an error code of El NTR. For example,

the cl ose function may be interrupted by a signal. In this case, the error was not due to a

problem with its execution but was a result of some external factor. Usually the program should
not treat this interruption as an error but should restart the call.

Example 2.8
The following code segment restarts the cl ose function if a signal occurs.

int error;
int fildes;

while (((error = close(fildes)) == -1) & (errno == EINTR)) ;
if (error == -1)



perror("Failed to close the file"); /* a real close error occurred */

The whi | e loop of Example 2.8 has an empty statement clause. It simply calls cl ose until it

either executes successfully or encounters a real error. The problem of restarting library calls is
so common that we provide a library of restarted calls with prototypes defined inrestart. h.

The functions are designated by a leading r _ prepended to the regular library name. For
example, the restart library designates a restarted version of cl ose by the name r _cl ose.

Example 2.9

The following code segment illustrates how to use a version of cl ose from the restart library.

#include "restart.h" [* user-defined library not part of standard */
int fildes;

if (r_close(fildes) == -1)
perror("Failed to close the file"); /* a true close error occurred */
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2.5 Function Return Values and Errors

Error handling is a key issue in writing reliable systems programs. When you are writing a
function, think in terms of that function being called millions of times by the same application.
How do you want the function to behave? In general, functions should never exit on their own,
but rather should always indicate an error to the calling program. This strategy gives the caller
an opportunity to recover or to shut down gracefully.

Functions should also not make unexpected changes to the process state that persist beyond
the return from the function. For example, if a function blocks signals, it should restore the
signal mask to its previous value before returning.

Finally, the function should release all the hidden resources that it uses during its execution.
Suppose a function allocates a temporary buffer by calling mal | oc and does not free it before

returning. One call to this function may not cause a problem, but hundreds or thousands of
successive calls may cause the process memory usage to exceed its limits. Usually, a function
that allocates memory should either free the memory or make a pointer available to the calling
program. Otherwise, a long-running program may have a memory leak; that is, memory
"leaks" out of the system and is not available until the process terminates.

You should also be aware that the failure of a library function usually does not cause your
program to stop executing. Instead, the program continues, possibly using inconsistent or
invalid data. You must examine the return value of every library function that can return an
error that affects the running of your program, even if you think the chance of such an error
occurring is remote.

Your own functions should also engage in careful error handling and communication. Standard
approaches to handling errors in UNIX programs include the following.

« Print out an error message and exit the program (only in mai n).
« Return —1 or NULL, and set an error indicator such as err no.
« Return an error code.

In general, functions should never exit on their own but should always report an error to the
calling program. Error messages within a function may be useful during the debugging phase
but generally should not appear in the final version. A good way to handle debugging is to
enclose debugging print statements in a conditional compilation block so that you can
reactivate them if necessary.

Example 2.10

The following code segment shows an example of how to use conditional compilation for error
messages in functions.

#def i ne DEBUG /* comment this line out for no error nessages */

int nyfun(int x) {
X++;
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#i f def DEBUG
fprintf(stderr, "The current value of x is %\ n", x);
#endi f

If you comment the #def i ne line out, the fpri ntf statement is not compiled and nyf un does
no printing. Alternatively, you can leave the #def i ne out of the code completely and define
DEBUG on the compiler line as follows.

cc - DDEBUG . ..

Most library functions provide good models for implementing functions. Here are guidelines to
follow.

1. Make use of return values to communicate information and to make error trapping easy
for the calling program.

2. Do not exit from functions. Instead, return an error value to allow the calling program
flexibility in handling the error.

3. Make functions general but usable. (Sometimes these are conflicting goals.)

4. Do not make unnecessary assumptions about sizes of buffers. (This is often hard to
implement.)

5. When it is necessary to use limits, use standard system-defined limits rather than
arbitrary constants.

6. Do not reinvent the wheel—use standard library functions when possible.
7. Do not modify input parameter values unless it makes sense to do so.

8. Do not use static variables or dynamic memory allocation if automatic allocation will do
just as well.

9. Analyze all the calls to the nmal | oc family to make sure the program frees the memory
that was allocated.

10. Consider whether a function is ever called recursively or from a signal handler or from a
thread. Functions with variables of static storage class may not behave in the desired
way. (The error number can cause a big problem here.)

11. Analyze the consequences of interruptions by signals.

12. Carefully consider how the entire program terminates.

[ Team Lie ] [ rreviovs)
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2.6 Argument Arrays

A command line consists of tokens (the arguments) that are separated by white space: blanks,
tabs or a backslash (\) at the end of a line. Each token is a string of characters containing no

white space unless quotation marks are used to group tokens. When a user enters a command
line corresponding to a C executable program, the shell parses the command line into tokens and
passes the result to the program in the form of an argument array. An argument array is an
array of pointers to strings. The end of the array is marked by an entry containing a NULL

pointer. Argument arrays are also useful for handling a variable number of arguments in calls to
execvp and for handling environment variables. (Refer to Section 3.5 for an example of their

application.)
Example 2.11
The following command line contains the four tokens: m ne, -c¢, 10 and 2. 0.

mne -c 10 2.0

The first token on a command line is the name of the command or executable. Figure 2.2 shows
the argument array for the command line of Example 2.11.

Figure 2.2. The argv array for the call nine -¢ 10 2.0.

argv| |

[D] -.Iml Ill Inl IEI I""'ﬁ[:}l

[1] - ! 1! ']"'-,[:}'

[2] -.Ill IDI IRDI

[3] hlgl I‘I IDI IHDI

(4] nuLL

Example 2.12
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The m ne program of Example 2.11 might start with the following line.

int main(int argc, char *argv[])

In Example 2.12, the ar gc parameter contains the number of command-line tokens or arguments
(four for Example 2.11), and ar gv is an array of pointers to the command-line tokens. The ar gv
is an example of an argument array.

2.6.1 Creating an argument array with makear gv

This section develops a function, nakear gv, that creates an argument array from a string of
tokens. The makear gv function illustrates some complications introduced by static variables. We
use this function in several projects and exercises of subsequent chapters.

Example 2.13

Here is a prototype for a makear gv function that creates an argument array from a string of
tokens.

char **makeargv(char *s);

The makear gv of Example 2.13 has a string input parameter and returns a pointer to an ar gv
array. If the call fails, makear gv returns a NULL pointer.

Example 2.14

The following code segment illustrates how the makear gv function of Example 2.13 might be
invoked.

int i;
char **nyargv;
char nytest[] = "This is a test";

if ((nyargv = nakeargv(mytest)) == NULL)
fprintf(stderr, "Failed to construct an argunent array\n");
el se
for (i = 0; nyargv[i] != NULL; i++)
printf("%l:%\n", i, nyargv[i]);

Example 2.15

The following alternative prototype specifies that nakear gv should pass the argument array as a
parameter. This alternative version of makear gv returns an integer giving the number of tokens in
the input string. In this case, makear gv returns —1 to indicate an error.

i nt makeargv(char *s, char ***argvp);



Example 2.16

The following code segment calls the nakear gv function defined in Example 2.15.

int i;
char **nyargv;
char nytest[] = "This is a test";
i nt nunt okens;
i f ((numtokens = makeargv(mytest, &myargv)) == -1)
fprintf(stderr, "Failed to construct an argument array\n");
el se
for (i = 0; i < numtokens; i++)
printf("%: %\n", i, myargv[i]);

Because C uses call-by-value parameter passing, Example 2.15 shows one more level of
indirection (*) when the address of myar gv is passed. A more general version of nakear gv allows
an extra parameter that represents the set of delimiters to use in parsing the string.

Example 2.17
The following prototype shows a makear gv function that has a delimiter set parameter.

int makeargv(const char *s, const char *delinmiters, char ***argvp);

The const qualifier means that the function does not modify the memory pointed to by the first
two parameters.

Program 2.1 calls the makear gv function of Example 2.17 to create an argument array from a

string passed on the command line. The program checks that it has exactly one command-line
argument and outputs a usage message if that is not the case. The nmai n program returns 1 if it

fails, and O if it completes successfully. The call to nekear gv uses blank and tab as delimiters.

The shell also uses the same delimiters, so be sure to enclose the command-line arguments in
double quotes as shown in Example 2.18.

Example 2.18

If the executable for Program 2.1 is called ar gt est , the following command creates and prints an
argument array for This is a test.

argtest "This is a test”

Program 2.1 argtest.c

A program that takes a single string as its command-line argument and calls makear gv to create
an argument array.

#i ncl ude <stdi o. h>



#i ncl ude <stdlib. h>
i nt makeargv(const char *s, const char *delimters, char ***argvp);

int main(int argc, char *argv[]) {
char delinf] =" \t";
int i;
char **nyargv;
i nt nunt okens;

if (argc '= 2) {
fprintf(stderr, "Usage: % string\n", argv[0]);

return 1;
}
i f ((numtokens = makeargv(argv[1l], delim &myargv)) == -1) {
fprintf(stderr, "Failed to construct an argunent array for 9%\n", argv[1]);
return 1;
}
printf("The argunent array contains:\n");
for (i = 0; i < nuntokens; i ++)
printf("%: %\n", i, nyargv[i]);
return O;

2.6.2 Implementation of makear gv

This section develops an implementation of makear gv based on the prototype of Example 2.17 as
follows.

i nt makeargv(const char *s, const char *delimters, char ***argvp);

The makear gv function creates an argument array pointed to by ar gvp from the string s, using
the delimiters specified by del i mi t er s. If successful, nakear gv returns the number of tokens. If
unsuccessful, makear gv returns —1 and sets er r no.

The const qualifiers on s and del i m t er s show that nmakear gv does not modify either s or

del i mi ters. The implementation does not make any a priori assumptions about the length of s
or of del i mi ters. The function also releases all memory that it dynamically allocates except for
the actual returned array, so nakear gv can be called multiple times without causing a memory

leak.

In writing general library programs, you should avoid imposing unnecessary a priori limitations
on sizes (e.g., by using buffers of predefined size). Although the system-defined constant
MAX_CANON is a reasonable buffer size for handling command-line arguments, the nakear gv

function might be called to make an environment list or to parse an arbitrary command string
read from a file. This implementation of nakear gv allocates all buffers dynamically by calling

mal | oc and uses the C library function st rt ok to split off individual tokens. To preserve the input
string s, makear gv does not apply strt ok directly to s. Instead, it creates a scratch area of the
same size pointed to by t and copies s into it. The overall implementation strategy is as follows.

1. Use mal | oc to allocate a buffer t for parsing the string in place. The t buffer must be
large enough to contain s and its terminating "\ 0' .



. Copy s into t. Figure 2.3 shows the result for the string "nine -c 10 2.0".

Figure 2.3. The nakear gv makes a working copy of the string s in the
buffer t to avoid modifying that input parameter.

. Make a pass through the string t , using strt ok to count the tokens.
. Use the count (nunt okens) to allocate an ar gv array.
. Copy s intot again.

. Use strt ok to obtain pointers to the individual tokens, modifying t and effectively parsing
t in place. Figure 2.4 shows the method for parsing the tokens in place.

Figure 2.4. The makear gv parses the tokens in place by using strt ok.
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The implementation of nekear gv discussed here uses the C library function st rt ok to split a
string into tokens. The first call to strt ok is different from subsequent calls. On the first call,
pass the address of the string to parse as the first argument, s1. On subsequent calls for parsing
the same string, pass a NULL for s1. The second argument to strt ok, s2, is a string of allowed
token delimiters.

SYNCPSI S

#i ncl ude <string. h>

char *strtok(char *restrict sl, const char *restrict s2);
POSI X: CX

Each successive call to st rt ok returns the start of the next token and inserts a'\ 0' at the end of
the token being returned. The strt ok function returns NULL when it reaches the end of s1.

It is important to understand that st rt ok does not allocate new space for the tokens, but rather
it tokenizes sl in place. Thus, if you need to access the original s1 after calling st rt ok, you
should pass a copy of the string.

The restri ct qualifier on the two parameters requires that any object referenced by s1 in this



function cannot also be accessed by s2. That is, the tail end of the string being parsed cannot be

used to contain the delimiters. This restriction, one that would normally be satisfied in any
conceivable application, allows the compiler to perform optimizations on the code for strt ok. The

const qualifier on the second parameter indicates that the st rt ok function does not modify the
delimiter string.

Program 2.2 shows an implementation of makear gv. Since st rt ok allows the caller to specify
which delimiters to use for separating tokens, the implementation includes a del i ni t er s string
as a parameter. The program begins by using st r spn to skip over leading delimiters. This
ensures that **ar gvp, which points to the first token, also points to the start of the scratch

buffer, called t in the program. If an error occurs, this scratch buffer is explicitly freed.

Otherwise, the calling program can free this buffer. The call to f ree may not be important for
most programs, but if makear gv is called frequently from a shell or a long-running communication
program, the unfreed space from failed calls to makear gv can accumulate. When using nmal | oc or
a related call, analyze whether to free the memory if an error occurs or when the function returns.

Program 2.2 nmekeargv. c

An implementation of makear gv.

#i ncl ude <errno. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>

i nt nmakeargv(const char *s, const char *delimters, char ***argvp) {
int error;
int i;
i nt nunt okens;
const char *snew,
char *t;

if ((s == NULL) || (delimiters == NULL) || (argvp == NULL)) {
errno = ElI NVAL;

return -1,
}
*argvp = NULL;
snew = s + strspn(s, delimters); /* snewis real start of string */
if ((t = malloc(strlen(snew) + 1)) == NULL)
return -1,

strcpy(t, snew);

nunt okens = 0O;

if (strtok(t, delimters) != NULL) /* count the nunber of tokens in s */
for (nuntokens = 1; strtok(NULL, delimters) != NULL; nuntokens++) ;

/* create argunment array for ptrs to the tokens */
if ((*argvp = malloc((num okens + 1)*sizeof(char *))) == NULL) {
error = errno;
free(t);
errno = error;
return -1;

}

i f (nuntokens == 0)

/* insert pointers to tokens into the argunent array */



free(t);
el se {

strcpy(t, snew);
**argvp = strtok(t, delimters);
for (i = 1; i < nuntokens; i++)
*((*argvp) + i) = strtok(NULL, delimters);
}
*((*argvp) + nuntokens) = NULL; /* put in final NULL pointer */
return nuntokens;

Example 2.19 freenmakeargv. c

The following function frees all the memory associated with an argument array that was allocated
by makear gv. If the first entry in the array is not NULL, freeing the entry also frees the memory
allocated for all the strings. The argument array is freed next. Notice that it would be incorrect to
free the argument array and then access the first entry.

#i ncl ude <stdlib. h>

voi d freemakeargv(char **argv) {
if (argv == NULL)
return;
if (*argv !'= NULL)
free(*argv);
free(argv);
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2.7 Thread-Safe Functions

The st rt ok function is not a model that you should emulate in your programs. Because of its

definition (page 35), it must use an internal static variable to keep track of the current location
of the next token to parse within the string. However, when calls to st rt ok with different parse

strings occur in the same program, the parsing of the respective strings may interfere because
there is only one variable for the location.

Program 2.3 shows an incorrect way to determine the average number of words per line by
using st rt ok. The wor daver age function determines the average number of words per line by
using st rt ok to find the next line. The function then calls wor dcount to count the number of
words on this line. Unfortunately, wor dcount also uses st rt ok, this time to parse the words on
the line. Each of these functions by itself would be correct if the other one did not call st rt ok.
The wor daver age function works correctly for the first line, but when wor daver age calls strt ok
to parse the second line, the internal state information kept by strt ok has been reset by

wor dcount .

The behavior that causes wor daver age to fail also prevents strt ok from being used safely in
programs with multiple threads. If one thread is in the process of using st rt ok and a second
thread calls st rt ok, subsequent calls may not behave properly. POSIX defines a thread-safe
function, strtok_r, to be used in place of strt ok. The _r stands for reentrant, an obsolescent
term indicating the function can be reentered (called again) before a previous call finishes.

Program 2.3 wor daver agebad. ¢

An incorrect use of st rt ok to determine the average number of words per line.

#i ncl ude <string. h>
#define LI NE_DELIM TERS "\ n"
#define WORD DELIM TERS " "

static int wordcount(char *s) {
int count = 1;

if (strtok(s, WORD DELIM TERS) == NULL)

return O;
while (strtok(NULL, WORD DELIM TERS) != NULL)
count ++;
return count;
}
doubl e wordaverage(char *s) { /* return average size of words in s */

int |inecount = 1;
char *nextline;
i nt words;

nextline = strtok(s, LINE DELIM TERS);
if (nextline == NULL)
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return O.O;

words = wordcount (nextline);

while ((nextline = strtok(NULL, LINE DELIMTERS)) != NULL) {
wor ds += wordcount (nextline);
I i necount ++;

}

return (doubl e)words/|inecount;

The strtok_r function behaves similarly to st rt ok except for an additional parameter, | ast s,
a user-provided pointer to a location that strt ok_r uses to store the starting address for the
next parse.

SYNOPSI S

#i ncl ude <string. h>

char *strtok_r(char *restrict s, const char *restrict sep,
char **restrict |asts);

PCSI X: TSF

Each successive call to st rt ok_r returns the start of the next token and inserts a '\ 0' at the
end of the token being returned. The strt ok _r function returns NULL when it reaches the end
of s.

Program 2.4 corrects Program 2.3 by using st rt ok_r . Notice that the identifier | ast s used by

each function has no linkage, so each invocation accesses a distinct object. Thus, the two
functions use different variables for the third parameter of st rt ok_r and do not interfere.

Program 2.4 wor daver age. ¢

A correct use of strtok_r to determine the average number of words per line.

#i ncl ude <string. h>
#define LINE_DELIM TERS "\ n"
#define WORD DELIM TERS " "

static int wordcount(char *s) {
int count = 1;
char *lasts;

if (strtok_r(s, WORD DELIM TERS, &l asts) == NULL)

return O;
while (strtok_r(NULL, WORD DELIM TERS, &l asts) != NULL)
count ++;
return count;
}
doubl e wordaverage(char *s) { [* return average size of words in s */

char *| asts;
int |inecount = 1;



char *nextline;
i nt words;

nextline = strtok _r(s, LINE DELIM TERS, &l asts);
if (nextline == NULL)
return 0.O0;
wor ds = wordcount (nextline);
while ((nextline = strtok_r(NULL, LINE DELIM TERS, & asts)) != NULL) {

wor ds += wordcount (nextline);
| i necount ++;

}

return (doubl e)words/|inecount;
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2.8 Use of Static Variables

While care must be taken in using static variables in situations with multiple threads, static
variables are useful. For example, a static variable can hold internal state information between
calls to a function.

Program 2.5 shows a function called bubbl esort along with auxiliary functions for keeping
track of the number of interchanges made. The variable count has a static storage class

because it is declared outside any block. The static qualifier forces this variable to have internal
linkage, guaranteeing that the count variable cannot be directly accessed by any function aside

from bubbl esort. c. The cl earcount function and the interchange in the onepass function are
the only code segments that modify count . The internal linkage allows other files linked to
bubbl esort. c to use an identifier, count , without interfering with the integer count in this file.

The three functions cl ear count , get count and bubbl esort have external linkage and are
accessible from outside. Notice that the st ati ¢ qualifier for onepass gives this function internal

linkage so that it is not accessible from outside this file. By using appropriate storage and
linkage classes, bubbl esort hides its implementation details from its callers.

Program 2.5 bubbl esort.c

A function that sorts an array of integers and counts the number of interchanges made in the
process.

static int count = O;

static int onepass(int a[], int n) { /* return true if interchanges are nade */
int i;
int interchanges = 0;
int tenp;

for (i =0; i <n - 1; i++4)
if (a[i] > a[i+1]) {
tenp = ali];
a[i] = a[i+1];
a[i +1] = tenp;
i nt erchanges = 1;
count ++;

}

return interchanges;

}

voi d clearcount (void) {
count = O;

}

int getcount(void) {
return count;

}
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voi d bubblesort(int a[], int n) { /* sort a in ascending order */

int i;
for (i =0; i <n - 1; i++4)
if (!onepass(a, n - i))
br eak;

Exercise 2.20

For each object and function in Program 2.5 give the storage and linkage class where
appropriate.

Answer:

The function onepass has internal linkage. The other functions have external linkage. Functions
do not have a storage class. The count identifier has internal linkage and static storage. All
other variables have no linkage and automatic storage. (See Section A.5 for additional
discussion about linkage.)

Section 2.9 discusses a more complex use of static variables to approximate object-oriented
behavior in a C program.

[ Team Lie ] [ rreviovs)
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2.9 Structure of Static Objects

Static variables are commonly used in the C implementation of a data structure as an object.
The data structure and all the functions that access it are placed in a single source file, and the
data structure is defined outside any function. The data structure has the st ati ¢ attribute,

giving it internal linkage: it is private to that source file. Any references to the data structure
outside the file are made through the access functions (methods, in object-oriented
terminology) defined within the file. The actual details of the data structure should be invisible
to the outside world so that a change in the internal implementation does not require a change
to the calling program. You can often make an object thread-safe by placing locking
mechanisms in its access functions without affecting outside callers.

This section develops an implementation of a list object organized according to the type of
static structure just described. Each element of the list consists of a time and a string of
arbitrary length. The user can store items in the list object and traverse the list object to
examine the contents of the list. The user may not modify data that has already been put in the
list. This list object is useful for logging operations such as keeping a list of commands executed
by a program.

The requirements make the implementation of the list both challenging and interesting. Since
the user cannot modify data items once they are inserted, the implementation must make sure
that no caller has access to a pointer to an item stored in the list. To satisfy this requirement,
the implementation adds to the list a pointer to a copy of the string rather than a pointer to the
original string. Also, when the user retrieves data from the list, the implementation returns a
pointer to a copy of the data rather than a pointer to the actual data. In the latter case, the
caller is responsible for freeing the memory occupied by the copy.

The trickiest part of the implementation is the traversal of the list. During a traversal, the list
must save the current position to know where to start the next request. We do not want to do
this the way st rt ok does, since this approach would make the list object unsafe for multiple

simultaneous traversals. We also do not want to use the strtok_r strategy, which requires the

calling program to provide a location for storing a pointer to the next entry in the list. This
pointer would allow the calling program to modify entries in the list, a feature we have ruled
out in the specification.

We solve this problem by providing the caller with a key value to use in traversing the list. The
list object keeps an array of pointers to items in the list indexed by the key. The memory used
by these pointers should be freed or reused when the key is no longer needed so that the
implementation does not consume unnecessary memaory resources.

Program 2.6 shows the | i stli b. h file containing the prototypes of the four access functions:
accessdat a, adddat a, get dat a and freekey. The dat a_t structure holds ati ne_t value

(ti me) and a pointer to a character string of undetermined length (stri ng). Programs that use
the list must include the |i stli b. h header file.

Program 2.6 listlib.h

The header file li stlib. h.
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#i ncl ude <tinme. h>

typedef struct data_struct {
time_t tine;
char *string;

} data_t;

i nt accessdata(void);
int adddata(data_t data);
int freekey(int key);

int getdata(int key, data_t *datap);

Program 2.7 shows an implementation of the list object. The adddat a function inserts a copy of
the data item at the end of the list. The get dat a function copies the next item in the traversal
of the list into a user-supplied buffer of type data_t. The get dat a function allocates memory
for the copy of the stri ng field of this data buffer, and the caller is responsible for freeing it.

The accessdat a function returns an integer key for traversing the data list. Each key value

produces an independent traversal starting from the beginning of the list. When the key is no
longer needed, the caller can free the key resources by calling freekey. The key is also freed

when the get dat a function gives a NULL pointer for the stri ng field of *dat ap to signify that
there are no more entries to examine. Do not call f r eekey once you have reached the end of

the list.

If successful, accessdat a returns a valid nonnegative key. The other three functions return O if
successful. If unsuccessful, these functions return —1 and set err no.

Program 2.7 listlib.c

A list object implementation.

#i ncl ude <errno. h>

#incl ude <stdlib. h>

#i ncl ude <string. h>
#include "listlib.h"
#define TRAV.INIT_SI ZE 8

typedef struct list_struct {
data t item
struct list_struct *next;
} list _t;

static list_t endlist;

static list_t *headptr = NULL;
static list_t *tailptr = NULL;
static list_t **travptrs = NULL;
static int travptrs_size = 0;

int accessdata(void) {
int i;
list_t **newptrs;

/[* return a nonnegative key if successful

*/



if (headptr == NULL) {
errno = ElI NVAL;

/* can't access a conpletely enmpty |ist

*/

return -1;
}
if (travptrs_size == 0) { [* first traversal */
travptrs = (list_t **)calloc(TRAV_IN T_SI ZE, sizeof(list_t *));
if (travptrs == NULL) /* couldn't allocate space for traversal keys */
return -1;
travptrs[ 0] = headptr;
travptrs_size = TRAV_IN T_SI ZE
return O;
}
for (i =0; i <travptrs_size; i++) { /* ook for an enpty slot for key */
if (travptrs[i] == NULL) {
travptrs[i] = headptr
return i;
}
}
newptrs = realloc(travptrs, 2*travptrs_size*sizeof (list_t *));
if (newptrs == NULL) /* couldn't expand the array of traversal keys */
return -1;
travptrs = newptrs;
travptrs[travptrs_size] = headptr;
travptrs_size *= 2;
return travptrs_size/2
}
int adddata(data_t data) { /* allocate node for data and add to end of list */
list _t *newnode;
i nt nodesi ze;
nodesi ze = sizeof (list_t) + strlen(data.string) + 1
if ((newnode = (list_t *)(malloc(nodesize))) == NULL) /* couldn't add node */

return -1;
newnode->itemtinme = data.tine;
newnode->item string = (char *)newnode + sizeof(list_t);
strcpy(newnode->item string, data.string);
newnode- >next = NULL
i f (headptr == NULL)
headptr = newnode;
el se
tail ptr->next = newnode;
tail ptr = newnode;

return O;
}
int getdata(int key, data t *datap) { /* copy next itemand set datap->string */
list t *t:
if ( (key <0) || (key >= travptrs_size) || (travptrs[key] == NULL) ) {
errno = ElI NVAL;
return -1;
}
if (travptrs[key] == &endlist) { /* end of list, set datap->string to NULL */
dat ap->string = NULL;
travptrs[key] = NULL



return O; /* reaching end of list natural condition, not an error */

}

t = travptrs[key];

datap->string = (char *)malloc(strlen(t->temstring) + 1);

if (datap->string == NULL) /* couldn't allocate space for returning string */
return -1;

datap->tinme = t->temtine;

strcpy(datap->string, t->itemstring);

if (t->next == NULL)
travptrs[key] = &endlist;
el se
travptrs[key] = t->next;
return O;
}
int freekey(int key) { [* free list entry corresponding to key */
if ( (key <0) || (key >= travptrs_size) ) { /* key out of range */
errno = ElI NVAL;
return -1;
}
travptrs[key] = NULL;
return O;
}

The implementation of Program 2.7 does not assume an upper bound on the length of the
string field of dat a_t . The adddat a function appends to its internal list structure a node
containing a copy of dat a. The nmal | oc function allocates space for both the Ii st_t and its
string data in a contiguous block. The only way that adddat a can fail is if mal | oc fails. The
accessdat a function also fails if there are not sufficient resources to provide an additional
access stream. The freekey function fails if the key passed is not valid or has already been
freed. Finally, get dat a fails if the key is not valid. Reaching the end of a list during traversal is
a natural occurrence rather than an error. The get dat a function sets the stri ng field of *dat ap
to NULL to indicate the end.

The implementation in Program 2.7 uses a key that is just an index into an array of traversal

pointers. The implementation allocates the array dynamically with a small initial size. When the
number of traversal streams exceeds the size of the array, accessdat a calls real | oc to expand

the array.

The data structures for the object and the code for the access functions of | i stli b are in a

single file. Several later projects use this list object or one that is similar. In an object
representation, outside callers should not have access to the internal representation of the
object. For example, they should not be aware that the object uses a linked list rather than an
array or other implementation of the abstract data structure.

The implementation of Program 2.7 allows nested or recursive calls to correctly add data to the

list or to independently traverse the list. However, the functions have critical sections that must
be protected in a multithreaded environment. Sections 13.2.3 and 13.6 discuss how this can be

done.

Exercise 2.21



What happens if you try to access an empty list in Program 2.77?
Answer:

The accessdat a returns —1, indicating an error.

Program 2.8 executes commands and keeps an internal history, using the list data object of
Program 2.7. The program takes an optional command-line argument, hi story. If hi story is

present, the program outputs a history of commands run thus far whenever the program reads
the string " hi st ory" from standard input.

Program 2.8 calls r unpr oc to run the command and showhi st ory to display the history of
commands that were run. The program uses f get s instead of get s to prevent a buffer overrun
on input. MAX_CANON is a constant specifying the maximum number of bytes in a terminal input
line. If MAX_CANON is not defined in | i m ts. h, then the maximum line length depends on the
particular device and the program sets the value to 8192 bytes.

Program 2.9 shows the source file containing the r unpr oc and showhi st ory functions. When
runpr oc successfully executes a command, it adds a node to the history list by calling adddat a.
The showhi st ory function displays the contents of each node in the list by calling the get dat a
function. After displaying the string in a data item, showhi st ory function frees the memory
allocated by the get dat a call. The showhi st ory function does not call fr eekey explicitly
because it does a complete traversal of the list.

Program 2.8 keepl og. c

A main program that reads commands from standard input and executes them.

#include <limts. h>
#i ncl ude <stdio. h>

#incl ude <stdlib. h>
#i ncl ude <string. h>

#i f ndef MAX_CANON
#defi ne MAX_CANON 8192
#endi f

int runproc(char *cnd);
voi d showhi story(FILE *f);

int main(int argc, char *argv[]) {
char cnd[ MAX_CANON] ;
int history = 1;

if (argc == 1)
history = 0;

else if ((argc > 2) || strcnp(argv[1l], "history")) {
fprintf(stderr, "Usage: % [history]\n", argv[O0]);
return 1;



}
whil e(fgets(cnd, MAX CANON, stdin) !'= NULL) {
if (*(cmd + strlen(cnd) - 1) == '\n")
*(ecmd + strlen(cnd) - 1) 0;
if (history & !strcnp(cnd, "history"))
showhi st ory(stdout);
else if (runproc(cnd)) {
perror("Failed to execute command");
br eak;

}
}

printf("\n\n>>>>>>The |ist of conmands executed is:\n");
showhi st ory(stdout);
return O;

The runpr oc function of Program 2.9 calls the syst emfunction to execute a command. The
runpr oc function returns O if the command can be executed. If the command cannot be
executed, runpr oc returns —1 with errno set.

The syst emfunction passes the command parameter to a command processor for execution. It
behaves as if a child process were created with f or k and the child process invoked sh with
execl .

SYNOPSI S

#i ncl ude <stdlib. h>

int system(const char *comrand);
PCsSI X: CX

If command is NULL, the syst emfunction always returns a nonzero value to mean that a
command language interpreter is available. If command is not NULL, syst emreturns the
termination status of the command language interpreter after the execution of command. If

syst emcould not fork a child or get the termination status, it returns —1 and sets err no. A zero
termination status generally indicates successful completion.

Program 2.9 keepl oglib.c

The file keepl ogli b. c.

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#include "listlib.h"

int runproc(char *cnd) { /* execute cnd; store cnd and tine in history list */
data t execute;

if (tinme(&execute.tine)) == -1)
return -1;
execute.string = cnd;



if (system(cnd) == -1) /* command coul d not be executed at all */
return -1;
return adddat a(execute);

}
voi d showhi story(FILE *f) { /* output the history list of the file f */
data_ t data;
int key;
key = accessdata();
if (key == -1) {
fprintf(f, "No history\n");
return;
}
while (!getdata(key, &data) && (data.string !'= NULL)) {
fprintf(f, "Conmand: %\nTine: %\n", data.string, ctine(& data.tine)));
free(data.string);
}
}
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2.10 Process Environment

An environment list consists of an array of pointers to strings of the form name = value. The
name specifies an environment variable, and the value specifies a string value associated with
the environment variable. The last entry of the array is NULL.

The external variable envi r on points to the process environment list when the process begins
executing. The strings in the process environment list can appear in any order.

SYNOPSI S

extern char **environ
|1 SO C

If the process is initiated by execl , execl p, execv or execvp, then the process inherits the
environment list of the process just before the execution of exec. The execl e and execve
functions specifically set the environment list as discussed in Section 3.5.

Example 2.22 environ.c

The following C program outputs the contents of its environment list and exits.

#i ncl ude <stdio. h>
extern char **environ;

int main(void) {
int i;

printf("The environnent list follows:\n");

for(i = 0; environ[i] != NULL; i++)
printf("environ[%]: %\n", i, environ[i]);
return O;

Environment variables provide a mechanism for using system-specific or user-specific
information in setting defaults within a program. For example, a program may need to write
status information in the user's home directory or may need to find an executable file in a
particular place. The user can set the information about where to look for executables in a
single variable. Applications interpret the value of an environment variable in an application-
specific way. Some of the environment variables described by POSIX are shown in Table 2.1.

These environment variables are not required, but if one of these variables is present, it must
have the meaning specified in the table.

Use get env to determine whether a specific variable has a value in the process environment.
Pass the name of the environment variable as a string.
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SYNOPSI S

#i ncl ude <stdlib. h>

char *getenv(const char *nane);
PCSI X: CX

The get env function returns NULL if the variable does not have a value. If the variable has a
value, get env returns a pointer to the string containing that value. Be careful about calling

get env more than once without copying the first return string into a buffer. Some
implementations of get env use a static buffer for the return strings and overwrite the buffer on
each call.

Table 2.1. POSIX environment variables and their meanings.

variable meaning
COLUWMNS preferred width in columns for terminal
HOVE user's home directory
LANG locale when not specified by LC ALL or LC *
LC_ALL overriding name of locale
LC_COLLATE name of locale for collating information
LC_CTYPE name of locale for character classification
LC_MESSAGES name of locale for negative or affirmative responses
LC_MONETARY name of locale for monetary editing
LC_NUMERI C name of locale for numeric editing
LC_TI ME name of locale for date/time information
LI NES preferred number of lines on a page or vertical screen
L OGNAME login name associated with a process
PATH path prefixes for finding executables
PWD absolute pathname of the current working directory
SHELL pathname of the user's preferred command interpreter
TERM terminal type for output
TMPDI R pathname of directory for temporary files




TZ time zone information

Example 2.23

POSIX specifies that the shell sh should use the environment variable MAI L as the pathname of
the mailbox for incoming mail, provided that the MAI LPATH variable is not set. The following
code segment sets nai | p to the value of the environment variable MAI L if this variable is
defined and MAI LPATH is not defined. Otherwise, the segment sets nai | p to a default value.

#defi ne MAI LDEFAULT "/var/mail"
char *mailp = NULL;

if (getenv("MAI LPATH') == NULL)
mai |l p = getenv("MAIL");
if (mailp == NULL)
mai | p = MAI LDEFAULT;

The first call to get env in Example 2.23 merely checks for the existence of MAI LPATH, so it is
not necessary to copy the return value to a separate buffer before calling get env again.

Do not confuse environment variables with predefined constants like MAX_CANON. The
predefined constants are defined in header files with #def i ne. Their values are constants and
known at compile time. To see whether a definition of such a constant exists, use the #i f ndef
compiler directive as in Program 2.8. In contrast, environment variables are dynamic, and their
values are not known until run time.

Exercise 2.24 getpaths.c

Write a function to produce an argument array containing the components of the PATH
environment variable.

Answer:

#i ncl ude <stdlib. h>
#defi ne PATH DELIM TERS ":"

i nt makeargv(const char *s, const char *delimters, char ***argvp);

char **getpat hs(void) {
char **nyargv;

char *path;

path = getenv("PATH");

i f (makeargv(path, PATH DELIM TERS, &nyargv) == -1)
return NULL;

el se

return nyargv;
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2.11 Process Termination

When a process terminates, the operating system deallocates the process resources, updates
the appropriate statistics and notifies other processes of the demise. The termination can either
be normal or abnormal. The activities performed during process termination include canceling
pending timers and signals, releasing virtual memory resources, releasing other process-held
system resources such as locks, and closing files that are open. The operating system records
the process status and resource usage, notifying the parent in response to a wai t function.

In UNIX, a process does not completely release its resources after termination until the parent
waits for it. If its parent is not waiting when the process terminates, the process becomes a
zombie. A zombie is an inactive process whose resources are deleted later when its parent
waits for it. When a process terminates, its orphaned children and zombies are adopted by a
special system process. In traditional UNIX systems, this special process is called the i ni t

process, a process with process ID value 1 that periodically waits for children.
A normal termination occurs under the following conditions.

e return from main
« Implicit return from nmai n (the mai n function falls off the end)
« Calltoexit, Exit or _exit

The C exit function calls user-defined exit handlers that were registered by at exi t in the
reverse order of registration. After calling the user-defined handlers, exi t flushes any open
streams that have unwritten buffered data and then closes all open streams. Finally, exi t
removes all temporary files that were created by t npfi |l e() and then terminates control. Using
the r et ur n statement from nai n has the same effect as calling exi t with the corresponding
status. Reaching the end of mai n has the same effect as calling exi t (0) .

The Exit and _exit functions do not call user-defined exit handlers before terminating

control. The POSIX standard does not specify what happens when a program calls these
functions: that is, whether open streams are flushed or temporary files are removed.

The functions exit, Exit and _exit take a small integer parameter, st at us, indicating the
termination status of the program. Use a st at us value of O to report a successful termination.
Programmer-defined nonzero values of st at us report errors. Example 3.22 on page 77
illustrates how a parent can determine the value of st at us when it waits for the child. Only the
low-order byte of the status value is available to the parent process.

SYNOPSI S

#i ncl ude <stdlib. h>

void exit(int status);
void Exit(int status);
| SO C
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SYNOPSI S

#i ncl ude <uni std. h>
void _exit(int status);

POSI X

The C at exi t function installs a user-defined exit handler. Exit handlers are executed on a last-
installed-first-executed order when the program returns from nai n or calls exi t . Use multiple
calls to at exi t to install several handlers. The at exi t function takes a single parameter, the
function to be executed as a handler.

SYNOPSI S

#i ncl ude <stdlib. h>

int atexit(void (*func)(void));
| SO C

If successful, at exi t returns O. If unsuccessful, at exi t returns a nonzero value.

Program 2.10 has an exit handler, showt i nes, that causes statistics about the time used by the

program and its children to be output to standard error before the program terminates. The
ti mes function returns timing information in the form of the number of clock ticks. The

showt i mes function converts the time to seconds by dividing by the number of clock ticks per
second (found by calling sysconf ). Chapter 9 discusses time more completely.

Program 2.10 showtines. c

A program with an exit handler that outputs CPU usage.

#include <limts. h>

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

#i ncl ude <uni std. h>

#i ncl ude <sys/tines. h>

static void showines(void) {
doubl e ti cks;
struct tns tinfo;

if ((ticks = (double) sysconf(_SC CLK TCK)) == -1)
perror("Failed to determ ne clock ticks per second");
else if (times(&info) == (clock_t)-1)
perror("Failed to get tinmes information");
el se {
fprintf(stderr, "User tine: 8. 3f seconds\n",
tinfo.tns_utine/ticks);
fprintf(stderr, "Systemtine: 9%8. 3f seconds\ n",

tinfo.tns_stine/ticks);



fprintf(stderr, "Children's user tine: 8. 3f seconds\n",
tinfo.tns_cutine/ticks);

fprintf(stderr, "Children's systemtine: %.3f seconds\n",
tinfo.tns_cstine/ticks);

}

int main(void) {
if (atexit(showtines)) {
fprintf(stderr, "Failed to install showtinmes exit handler\n");
return 1;
}
/* rest of main program goes here */
return O;

A process can also terminate abnormally either by calling abort or by processing a signal that

causes termination. The signal may be generated by an external event (like Ctrl-C from the
keyboard) or by an internal error such as an attempt to access an illegal memory location. An
abnormal termination may produce a core dump, and user-installed exit handlers are not called.
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2.12 Exercise: An env Utility

The env utility examines the environment and modifies it to execute another command. When
called without arguments, the env command writes the current environment to standard output.
The optional uti | ity argument specifies the command to be executed under the modified
environment. The optional -i argument means that env should ignore the environment inherited
from the shell when executing uti | i ty. Without the -i option, env uses the [ nane=val ue]
arguments to modify rather than replace the current environment to execute utility. The env
utility does not modify the environment of the shell that executes it.

SYNOPSI S

env [-i] [nanme=value] ... [utility [argunment ...]]
PCSI X: Shel | and Utilities

Example 2.25
Calling env from the C shell on a machine running Sun Solaris produced the following output.

HOVE=/ user s/ sr obbi ns

USER=sr obbi ns

LOGNANME=sr obbi ns

PATH=/ bi n: /usr/ bi n:/usr/ucb:/usr/bin/ X11:/usr/local/bin
MAI L=/ var/ mai | / sr obbi ns

TZ=US/ Centr al

SSH2 CLI ENT=129. 115.12. 131 41064 129. 115.12. 131 22
TERMEsun- cmd

DI SPLAY=sqr 3:12.0

SSH2 SFTP_LOG FACI LI TY=-1

PWD=/ user s/ srobbi ns

Write a program called doenv that behaves in the same way as the env utility when executing
another program.

1. When called with no arguments, the doenv utility calls the get env function and outputs the
current environment to standard output.

2. When doenv is called with the optional -i argument, the entire environment is replaced by
the nanme=val ue pairs. Otherwise, the pairs modify or add to the current environment.

3. Iftheutility argument is given, use syst emto execute utility after the environment

has been appropriately changed. Otherwise, print the changed environment to standard
output, one entry per line.

4. One way to change the current environment in a program is to overwrite the value of the
envi r on external variable. If you are completely replacing the old environment (-i option),

count the number of nane=val ue pairs, allocate enough space for the argument array
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(don't forget the extra NULL entry), copy the pointers from ar gv into the array, and set
envi ron.

5. If you are modifying the current environment by overwriting envi r on, allocate enough

space to hold the old entries and any new entries to be added. Copy the pointers from the
old envi ron into the new one. For each nane=val ue pair, determine whether the name is

already in the old environment. If name appears, just replace the pointer. Otherwise, add
the new entry to the array.

6. Note that it is not safe to just append new entries to the old envi r on, since you cannot

expand the old envi ron array with real | oc. If all nanme=val ue pairs correspond to entries
already in the environment, just replace the corresponding pointers in envi ron.
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2.13 Exercise: Message Logging

The exercise in this section describes a logging library that is similar to the list object defined in
listlib.handlistlib.c of Program 2.6 and Program 2.7, respectively. The logging utility
allows the caller to save a message at the end of a list. The logger also records the time that
the message was logged. Program 2.11 shows the | og. h file for the logger.

Program 2.11 | og. h

The header file | og. h for the logging facility.

#i ncl ude <tinme. h>

typedef struct data_struct {
time_t tine;
char *string;

} data_t;

int addnsg(data_t data);
void clearl og(void);

char *getl og(void);

i nt savel og(char *filenane);

The dat a_t structure and the addnsg function have the same respective roles as the | i st _t
structure and adddat a function of I i st1i b. h. The savel og function saves the logged messages
to a disk file. The cl ear| og function releases all the storage that has been allocated for the
logged messages and empties the list of logged messages. The get | og function allocates

enough space for a string containing the entire log, copies the log into this string, and returns a
pointer to the string. It is the responsibility of the calling program to free this memory when
necessary.

If successful, addnmsg and savel og return 0. A successful get | og call returns a pointer to the
log string. If unsuccessful, addnmsg and savel og return —1. An unsuccessful get | og call returns
NULL. These three functions also set err no on failure.

Program 2.12 contains templates for the four functions specified in | og. h, as well as the static
structures for the list itself. Complete the implementation of | ogl i b. c. Use the logging facility

to save the messages that were printed by some of your programs. How might you use this
facility for program debugging and testing?

Program 2.12 loglib.c

A template for a simple logging facility.

#i ncl ude <stdlib. h>
#i ncl ude <string. h>
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#i nclude "l og. h"

typedef struct list_struct {
data_t item
struct |ist_struct *next;

} log_t;
static log_t *headptr = NULL
static log_ t *tailptr = NULL;

int addnsg(data_t data) {
return O;

}

void clearlog(void) {

}

char *getlog(void) {
return NULL;

}

int savel og(char *filenanme) {
return O;

}
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2.14 Additional Reading

The prerequisite programming background for doing the projects in this text includes a general
knowledge of UNIX and C. Appendix A summarizes the basics of developing programs in a UNIX

environment. UNIX in a Nutshell: A Desktop Quick Reference for System V by Robbins and Gilly
is a good user's reference [94]. A Practical Guide to the UNIX System, 3rd ed. by Sobell [108]

gives an overview of UNIX and its utilities from the user perspective. The classic reference to C
is The C Programming Language, 2nd ed. by Kernighan and Ritchie [62]. C: A Reference

Manual, 4th ed. by Harbison and Steele [46] provides a detailed discussion of many of the C

language issues that you might encounter in programming the projects for this text. Finally,
Standard C Library by Plauger is an interesting, but ultimately detailed, look at C library
function implementation [91]. The final arbiter of C questions is the ISO C Standard [56].
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Chapter 3. Processes in UNIX

A process is the basic active entity in most operating-system models. This chapter covers the
UNIX process model, including process creation, process destruction and daemon processes.
The chapter uses process fans and process chains to illustrate concepts of parentage,
inheritance and other process relationships. The chapter also looks at the implications of critical
sections in concurrent processes.

Objectives

« Learn how to create processes
o Experiment with f or k and exec

o Explore the implications of process inheritance
« Usewait for process cleanup

o Understand the UNIX process model

[ Team Lie 1 [ rreviovs)
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3.1 Process ldentification

UNIX identifies processes by a unique integral value called the process ID. Each process also
has a parent process ID, which is initially the process ID of the process that created it. If this
parent process terminates, the process is adopted by a system process so that the parent
process ID always identifies a valid process.

The get pi d and get ppi d functions return the process ID and the parent process ID,
respectively. The pi d_t is an unsigned integer type that represents a process ID.

SYNOPSI S

#i ncl ude <uni std. h>

pid_t getpid(void);
pid_t getppid(void) ;
POSI X

Neither the get pi d nor the get ppi d functions can return an error.

Example 3.1 out putPID.c

The following program outputs its process ID and its parent process ID. Notice that the return
values are cast to | ong for printing since there is no guarantee that a pi d_t will fitin anint.

#i ncl ude <stdi o. h>
#i ncl ude <uni std. h>

int main (void) {
printf("l am process % d\n", (long)getpid());
printf("My parent is %d\n", (long)getppid());
return O;

System administrators assign a unique integral user ID and an integral group ID to each user
when creating the user's account. The system uses the user and group IDs to retrieve from the
system database the privileges allowed for that user. The most privileged user, superuser or
root, has a user ID of 0. The root user is usually the system administrator.

A UNIX process has several user and group IDs that convey privileges to the process. These
include the real user ID, the real group ID, the effective user ID and the effective group ID.
Usually, the real and effective IDs are the same, but under some circumstances the process can
change them. The process uses the effective IDs for determining access permissions for files.
For example, a program that runs with root privileges may want to create a file on behalf of an
ordinary user. By setting the process's effective user ID to be that of this user, the process can
create the files "as if" the user created them. For the most part, we assume that the real and
effective user and group IDs are the same.
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The following functions return group and user IDs for a process. The gid_t and uid_t are
integral types representing group and user IDs, respectively. The get gi d and get ui d functions
return the real IDs, and get egi d and get eui d return the effective IDs.

SYNOPSI S

#i ncl ude <uni std. h>
gid_t getegid(void);
uid t geteuid(void);
git_t getgid(void);
uid_t getuid(void);
PCSI X

None of these functions can return an error.
Example 3.2 out putIDs.c

The following program prints out various user and group IDs for a process.

#i ncl ude <stdio. h>
#i ncl ude <uni std. h>

int main(void) {

printf("My real user IDis 9%l d\n", (long)getuid());
printf("My effective user IDis 9%ld\n", (long)geteuid());
printf("My real group IDis %l d\n", (long)getgid());
printf("My effective group IDis %Ild\n", (long)getegid());
return O;

[ Team Lie ] [ rreviovs)
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3.2 Process State

The state of a process indicates its status at a particular time. Most operating systems allow some
form of the states listed in Table 3.1. A state diagram is a graphical representation of the allowed
states of a process and the allowed transitions between states. Figure 3.1 shows such a diagram. The
nodes of the graph in the diagram represent the possible states, and the edges represent possible
transitions. A directed arc from state A to state B means that a process can go directly from state A
to state B. The labels on the arcs specify the conditions that cause the transitions between states to
occur.

Figure 3.1. State diagram for a simple operating system.
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While a program is undergoing the transformation into an active process, it is said to be in the new
state. When the transformation completes, the operating system puts the process in a queue of
processes that are ready to run. The process is then in the ready or runnable state. Eventually the
component of the operating system called the process scheduler selects a process to run. The process
is in the running state when it is actually executing on the CPU.

Table 3.1. Common process states.

state meaning
new being created
running instructions are being executed
blocked waiting for an event such as 1/0
ready waiting to be assigned to a processor
done finished
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A process in the blocked state is waiting for an event and is not eligible to be picked for execution. A
process can voluntarily move to the blocked state by executing a call such as sl eep. More commonly,
a process moves to the blocked state when it performs an 1/0 request. As explained in Section 1.2,
input and output can be thousands of times slower than ordinary instructions. A process performs 1/0
by requesting the service through a library function that is sometimes called a system call. During the
execution of a system call, the operating system regains control of the processor and can move the
process to the blocked state until the operation completes.

A context switch is the act of removing one process from the running state and replacing it with
another. The process context is the information that the operating systems needs about the process
and its environment to restart it after a context switch. Clearly, the executable code, stack, registers
and program counter are part of the context, as is the memory used for static and dynamic variables.
To be able to transparently restart a process, the operating system also keeps track of the process
state, the status of program 1/0, user and process identification, privileges, scheduling parameters,
accounting information and memory management information. If a process is waiting for an event or
has caught a signal, that information is also part of the context. The context also contains information
about other resources such as locks held by the process.

The ps utility displays information about processes. By default, ps displays information about
processes associated with the user. The - a option displays information for processes associated with
terminals. The - A option displays information for all processes. The - o option specifies the format of
the output.

SYNOPSI S

ps [-aA] [-G grouplist] [-o format]...[-p proclist]
[-t termist] [-U userlist]
POSI X Shells and Utilities

Example 3.3

The following is sample output from the ps -a command.

>% ps -a

PID TTY TI ME CVD
20825 pts/ 11 0: 00 pine
20205 pts/11  0:01 bash
20258 pts/16  0: 01 tel net
20829 pts/2 0: 00 ps
20728 pts/ 4 0: 00 pine
19086 pts/12 0: 00 vi

The POSIX:XSI Extension provides additional arguments for the ps command. Among the most useful
are the full (-f) and the long (-1 ) options. Table 3.2 lists the fields that are printed for each option.
An (all) in the option column means that the field appears in all forms of ps.

Example 3.4

The execution of the ps -1 a command on the same system as for Example 3.3 produced the following
output.

FS UubD PID PPIDCPRI N ADDR SZ WCHAN TTY TI ME CNVD
8 S 4228 20825 20205 0 40 20 ? 859 ? pts/11 0: 00 pine



4228 20205 19974
2852 20258 20248

3060 20728 20719

8 S
8 S
8 O 512 20838 18178
8 S
8 S

1614 19086 18875

oNeoNoNeoNo)

40 20 ? 321 ? pts/11 0:01 bash
40 20 ? 328 ? pts/16 0:01 tel net
50 20 ? 134 pts/2 0:00 ps

40 20 ? 845 ? pts/4 0:00 pine
40 20 ? 236 ? pts/12 0:00 vi

Table 3.2. Fields reported for various options of the ps command in the

POSIX:XSI Extension.

header option meaning

F -1 flags (octal and additive) associated with the process

S - process state

u b -, -1 user ID of the process owner

PI D (all) process ID

PPI D -f, - parent process 1D

c -f, -1 processor utilization used for scheduling

PRI -l process priority

NI - ni ce value

ADDR -1 process memory address

Sz -1 size in blocks of the process image

VCHAN - event on which the process is waiting

TTY @ald controlling terminal

TIME (all) cumulative execution time

CvD (alh command name (arguments with - f option)

[ Team LiB ] [+ FREvIoUs |
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3.3 UNIX Process Creation and fork

A process can create a new process by calling f or k. The calling process becomes the parent,
and the created process is called the child. The f or k function copies the parent's memory

image so that the new process receives a copy of the address space of the parent. Both
processes continue at the instruction after the f or k statement (executing in their respective

memory images).

SYNOPSI S

#i ncl ude <uni std. h>

pidt fork(void);
PCSI X

Creation of two completely identical processes would not be very useful. The f or k function

return value is the critical characteristic that allows the parent and the child to distinguish
themselves and to execute different code. The f or k function returns O to the child and returns

the child’s process ID to the parent. When f or k fails, it returns —1 and sets the errno. If the

system does not have the necessary resources to create the child or if limits on the number of
processes would be exceeded, f or k sets er rno to EAGAI N. In case of a failure, the f or k does

not create a child.
Example 3.5 sinplefork.c

In the following program, both parent and child execute the x = 1 assignment statement after
returning from f or k.

#i ncl ude <stdi o. h>
#i ncl ude <uni std. h>

int main(void) {
int x;

X = 0;

fork();

X = 1;

printf("l amprocess %d and ny x is %\n", (long)getpid(), X);
return O;

Before the fork of Example 3.5, one process executes with a single x variable. After the fork,
two independent processes execute, each with its own copy of the x variable. Since the parent

and child processes execute independently, they do not execute the code in lock step or modify
the same memory locations. Each process prints a message with its respective process ID and x

value.
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The parent and child processes execute the same instructions because the code of Example 3.5
did not test the return value of f or k. Example 3.6 demonstrates how to test the return value of
fork.

Example 3.6 twoprocs. c

After f or k in the following program, the parent and child output their respective process IDs.

#i ncl ude <stdi o. h>
#i ncl ude <uni std. h>
#i ncl ude <sys/types. h>

int main(void) {
pid_t childpid;

childpid = fork();

if (childpid == -1) {
perror("Failed to fork");
return 1;

}

if (childpid == 0) [* child code */
printf("l amchild %d\n", (long)getpid());

el se [ * parent code */
printf("l amparent %d\n", (long)getpid());

return O;

The original process in Example 3.6 has a nonzero value of the chi | dpi d variable, so it
executes the second pri ntf statement. The child process has a zero value of chi | dpi d and
executes the first pri nt f statement. The output from these processes can appear in either

order, depending on whether the parent or the child executes first. If the program is run
several times on the same system, the order of the output may or may not always be the same.

Exercise 3.7 badprocessl D. ¢

What happens when the following program executes?

#i ncl ude <stdi o. h>
#i ncl ude <uni std. h>
#i ncl ude <sys/types. h>

int main(void) {
pi d_t childpid;
pid_t nypid,

nypid = getpid();
childpid = fork();

if (childpid == -1) {
perror("Failed to fork");
return 1;



if (childpid == 0) /* child code */
printf("l amchild %d, ID=%d\n", (long)getpid(), (long)nypid);

el se /* parent code */
printf("l amparent %d, ID=%d\n", (long)getpid(), (long)nypid);
return O;
}
Answer:

The parent sets the nmypi d value to its process ID before the fork. When f or k executes, the

child gets a copy of the process address space, including all variables. Since the child does not
reset nypi d, the value of mypi d for the child does not agree with the value returned by get pi d.

Program 3.1 creates a chain of n processes by calling f ork in a loop. On each iteration of the
loop, the parent process has a nonzero chi | dpi d and hence breaks out of the loop. The child
process has a zero value of chi | dpi d and becomes a parent in the next loop iteration. In case
of an error, f or k returns —1 and the calling process breaks out of the loop. The exercises in
Section 3.8 build on this program.

Figure 3.2 shows a graph representing the chain of processes generated for Program 3.1 when
n is 4. Each circle represents a process labeled by its value of i when it leaves the loop. The

edges represent the is-a-parent relationship. A==3*B means process A is the parent of process
B.

Figure 3.2. Chain of processes generated by Program 3.1 when called
with a command-line argument of 4.
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Program 3.1 si npl echain.c
A program that creates a chain of n processes, where n is a command-line argument.

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <uni std. h>

int main (int argc, char *argv[]) {
pid_t childpid = 0;

int i, n;
if (argc !'= 2){ /* check for valid nunber of command-|ine argunents */
fprintf(stderr, "Usage: % processes\n", argv[O0]);
return 1;
}
n = atoi (argv[1]);
for (i =1; i <n; i++4)
if (childpid = fork())
br eak;
fprintf(stderr, "i:% process ID:%d parent ID%d child ID %d\n",
i, (long)getpid(), (long)getppid(), (long)childpid);
return O;



Exercise 3.8

Run Program 3.1 for large values of n. Will the messages always come out ordered by
increasing i ?

Answer:

The exact order in which the messages appear depends on the order in which the processes are
selected by the process scheduler to run. If you run the program several times, you should
notice some variation in the order.

Exercise 3.9

What happens if Program 3.1 writes the messages to st dout, using pri ntf, instead of to
stderr, using fprintf?

Answer:

By default, the system buffers output written to st dout , so a particular message may not
appear immediately after the pri ntf returns. Messages to st derr are not buffered, but instead
written immediately. For this reason, you should always use st derr for your debugging
messages.

Program 3.2 creates a fan of n processes by calling f or k in a loop. On each iteration, the newly

created process breaks from the loop while the original process continues. In contrast, the
process that calls f or k in Program 3.1 breaks from the loop while the newly created process

continues for the next iteration.
Program 3.2 sinplefan.c

A program that creates a fan of n processes where n is passed as a command-line argument.

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <uni std. h>

int main (int argc, char *argv[]) {
pidt childpid = 0;

int i, n;

if (argc !'= 2){ /* check for valid nunber of conmand-Iline argunents */
fprintf(stderr, "Usage: % processes\n", argv[O0]);
return 1;

}

n = atoi (argv[1]);

for (i =1; i <n; i++4)

if ((childpid = fork()) <= 0)
br eak;



fprintf(stderr, "i:%l process ID%d parent ID%d child ID % d\n",
i, (long)getpid(), (long)getppid(), (long)childpid);
return O;

Figure 3.3 shows the process fan generated by Program 3.2 when n is 4. The processes are
labeled by the value of i at the time they leave the loop. The original process creates n—1
children. The exercises in Section 3.9 build on this example.

Figure 3.3. Fan of processes generated by Program 3.2 with a
command-line argument of 4.

Exercise 3.10

Explain what happens when you replace the test

(childpid = fork()) <=0

of Program 3.2 with

(childpid = fork()) == -1
Answer:

In this case, all the processes remain in the loop unless the fork fails. Each iteration of the loop
doubles the number of processes, forming a tree configuration illustrated in Figure 3.4 when n

is 4. The figure represents each process by a circle labeled with the i value at the time it was

created. The original process has a O label. The lowercase letters distinguish processes that
were created with the same value of i . Although this code appears to be similar to that of

Program 3.1, it does not distinguish between parent and child after f or k executes. Both the



parent and child processes go on to create children on the next iteration of the loop, hence the
population explosion.
Exercise 3.11

Run Program 3.1, Program 3.2, and a process tree program based on the modification
suggested in Exercise 3.10. Carefully examine the output. Draw diagrams similar to those of

Figure 3.2 through Figure 3.4, labeling the circles with the actual process IDs. Use -3 to
designate the is-a-parent relationship. Do not use large values of the command-line argument

unless you are on a dedicated system. How can you modify the programs so that you can use
ps to see the processes that are created?

Answer:

In their current form, the programs complete too quickly for you to view them with ps. Insert
the sl eep(30); statement immediately before r et urn in order to have each process block for
30 seconds before exiting. In another command window, continually execute ps -1 . Section 3.4

explains why some of the processes may report a parent ID of 1 when sl eep is omitted.

Figure 3.4. Tree of processes produced by the modification of Program
3.2 suggested in Exercise 3.10.
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The f or k function creates a new process by making a copy of the parent's image in memory.
The child inherits parent attributes such as environment and privileges. The child also inherits
some of the parent's resources such as open files and devices.

Not every parent attribute or resource is inherited by the child. For instance, the child has a
new process ID and of course a different parent ID. The child's times for CPU usage are reset to
0. The child does not get locks that the parent holds. If the parent has set an alarm, the child is
not notified when the parent's alarm expires. The child starts with no pending signals, even if

the parent had signals pending at the time of the f or k.

Although a child inherits its parent's process priority and scheduling attributes, it competes for



processor time with other processes as a separate entity. A user running on a crowded time-
sharing system can obtain a greater share of the CPU time by creating more processes. A
system manager on a crowded system might restrict process creation to prevent a user from

creating processes to get a bigger share of the resources.
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3.4 The wait Function

When a process creates a child, both parent and child proceed with execution from the point of
the fork. The parent can execute wai t or wai t pi d to block until the child finishes. The wai t

function causes the caller to suspend execution until a child's status becomes available or until
the caller receives a signal. A process status most commonly becomes available after
termination, but it can also be available after the process has been stopped. The wai t pi d

function allows a parent to wait for a particular child. This function also allows a parent to check
whether a child has terminated without blocking.

The wai t pi d function takes three parameters: a pi d, a pointer to a location for returning the
status and a flag specifying options. If pi d is —1, wai t pi d waits for any child. If pi d is greater
than O, wai t pi d waits for the specific child whose process ID is pi d. Two other possibilities are
allowed for the pi d parameter. If pi d is O, wai t pi d waits for any child in the same process
group as the caller. Finally, if pi d is less than —1, wai t pi d waits for any child in the process
group specified by the absolute value of pi d. Process groups are discussed in Section 11.5.

The opti ons parameter of wai t pi d is the bitwise inclusive OR of one or more flags. The
WNOHANG option causes wai t pi d to return even if the status of a child is not immediately
available. The WUNTRACED option causes wai t pi d to report the status of unreported child
processes that have been stopped. Check the man page on wai t pi d for a complete
specification of its parameters.

SYNOPSI S

#i ncl ude <sys/wait.h>

pidt wait(int *stat_loc);
pidt waitpid(pid_t pid, int *stat_loc, int options);
PCsI X

If wai t or wai t pi d returns because the status of a child is reported, these functions return the
process ID of that child. If an error occurs, these functions return —1 and set errno. If called
with the WNOHANG option, wai t pi d returns O to report that there are possible unwaited-for

children but that their status is not available. The following table lists the mandatory errors for
wai t and wai t pi d.

errno cause

ECHI LD | caller has no unwaited-for children (wai t ), or process or process group specified by
pi d does not exist (wai t pi d), or process group specified by pi d does not have a
member that is a child of caller (wai t pi d)

EINTR | function was interrupted by a signal
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EI NVAL | opt i ons parameter of wai t pi d was invalid

Example 3.12

The following code segment waits for a child.

pid_t childpid;

childpid = wait (NULL);
if (childpid !'= -1)
printf("Waited for child with pid %d\n", childpid);

The r _wai t function shown in Program 3.3 restarts the wai t function if it is interrupted by a
signal. Program 3.3 is part of the restart library developed in this book and described in
Appendix B. The restart library includes wrapper functions for many standard library functions
that should be restarted if interrupted by a signal. Each function name starts with r _ followed
by the name of the function. Include the rest art . h header file when you use functions from
the restart library in your programs.

Program 3.3 r_wait.c

A function that restarts wai t if interrupted by a signal.

#i ncl ude <errno. h>
#i ncl ude <sys/wait.h>

pidt r wait(int *stat_loc) {
int retval;

while (((retval = wait(stat loc)) == -1) && (errno == EINTR)) ;
return retval;

Example 3.13

The following code segment waits for all children that have finished but avoids blocking if there
are no children whose status is available. It restarts wai t pi d if that function is interrupted by a

signal or if it successfully waited for a child.

pid_t childpid;

while (childpid = waitpid(-1, NULL, VNOHANG) )
if ((childpid == -1) && (errno != EINTR))
br eak;

Exercise 3.14

What happens when a process terminates, but its parent does not wait for it?



Answer:

It becomes a zombie in UNIX terminology. Zombies stay in the system until they are waited for.
If a parent terminates without waiting for a child, the child becomes an orphan and is adopted
by a special system process. Traditionally, this process is called i ni t and has process ID equal
to 1, but POSIX does not require this designation. The i ni t process periodically waits for

children, so eventually orphaned zombies are removed.
Example 3.15 fanwait.c

The following modification of the process fan of Program 3.2 causes the original process to print
out its information after all children have exited.

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>
#i ncl ude <unistd. h>
#i ncl ude <sys/wait.h>
#include "restart.h"

int main(int argc, char *argv[]) {
pi d_t childpid;
int i, n;

if (argc !'= 2) {
fprintf(stderr, "Usage: % n\n", argv[O0]);

return 1;
}
n = atoi(argv[1]);
for (i =1; i <n; i++4)
if ((childpid = fork()) <= 0)
br eak;

while(r_wait(NULL) > 0) ; /* wait for all of your children */
fprintf(stderr, "i:%l process ID%d parent ID%d child ID % d\n",

i, (long)getpid(), (long)getppid(), (long)childpid);
return O;

Exercise 3.16

What happens if you interchange the whi | e loop and f pri ntf statements in Example 3.157?

Answer:

The original process still exits last, but it may output its ID information before some of its
children output theirs.

Exercise 3.17



What happens if you replace the whi | e loop of Example 3.15 with the statement wai t ( NULL) ; ?

Answer:

The parent waits for at most one process. If a signal happens to come in before the first child
completes, the parent won't actually wait for any children.

Exercise 3.18 parentwaitpid.c

Describe the possible forms of the output from the following program.

#i ncl ude <stdi o. h>

#i ncl ude <uni std. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/wait.h>

int main (void) {
pid_t childpid;

/* set up signal handlers here ... */

childpid = fork();
if (childpid == -1) {

perror("Failed to fork");

return 1;
}
if (childpid == 0)

fprintf(stderr, "I amchild %d\n", (long)getpid());

else if (wait(NULL) !'= chil dpid)
fprintf(stderr, "A signal nust have interrupted the wait!\n");

el se
fprintf(stderr, "I amparent %d with child %d\n", (long)getpid(),
(1 ong) chi | dpi d);
return O;
}
Answer:

The output can have several forms, depending on exact timing and errors.

1. If fork fails (unlikely unless some other program has generated a runaway tree of
processes and exceeded the system limit), the "Fail ed to fork" message appears.
Otherwise, if there are no signals, something similar to the following appears.

I amchild 3427
| am parent 3426 with child 3427

2. If the parent catches a signal after the child executes f pri ntf but before the child's
r et ur n, the following appears.

I amchild 3427
A signal nust have interrupted the wait!



3. If the parent catches a signal after the child terminates and wai t returns successfully,
the following appears.

| amchild 3427
| am parent 3426 with child 3427

4. If the parent catches a signal between the time that the child terminates and wai t

returns, either of the previous two results is possible, depending on when the signal is
caught.

5. If the parent catches a signal before the child executes f pri ntf and if the parent
executes its f pri nt f first, the following appears.

A signal nust have interrupted the wait!
I amchild 3427

6. Finally, if the parent catches a signal before the child executes f pri ntf and the child
executes its f pri ntf first, the following appears.

I amchild 3427
A signal nust have interrupted the wait!

Exercise 3.19

For the child of Exercise 3.18 to always print its message first, the parent must run wai t

repeatedly until the child exits before printing its own message. What is wrong with the
following?

whi | e(childpid !'= wait(&tatus)) ;

Answer:

The loop fixes the problem of interruption by signals, but wai t can fail to return the chi | dpi d
because it encounters a real error. You should always test er r no as demonstrated in the

r _wait of Program 3.3.

Exercise 3.20 fanwai t msg. c

The following program creates a process fan. All the forked processes are children of the
original process. How are the output messages ordered?

#i ncl ude <errno. h>

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>
#i ncl ude <unistd. h>
#i ncl ude <sys/wait.h>



int main (int argc, char *argv[]) {
pid_t childpid = 0;

int i, n;
if (argc !'= 2){ /* check nunber of command-|ine argunents */
fprintf(stderr, "Usage: % processes\n", argv[O0]);
return 1;
}
n = atoi (argv[1]);
for (i =1; i <n; i++4)
if ((childpid = fork()) <= 0)
br eak;
for( ; ;) {
childpid = wait (NULL);
if ((childpid == -1) && (errno != EINTR))
br eak;
}
fprintf(stderr, "I amprocess %d, ny parent is %d\n",
(long)getpid(), (Iong)getppid());
return O;
}
Answer:

Because none of the forked children are parents, their wai t function returns —1 and sets errno
to ECHI LD. They are not blocked by the second f or loop. Their identification messages may

appear in any order. The message from the original process comes out at the very end after it
has waited for all of its children.

Exercise 3.21 chai nwai t msg. ¢

The following program creates a process chain. Only one forked process is a child of the original
process. How are the output messages ordered?

#1 ncl ude <errno. h>
#1 ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <uni std. h>
#i ncl ude <sys/wait.h>

int main (int argc, char *argv[]) {
pid_t childpid;
int i, n;
pidt waitreturn;

if (argc !'= 2){ /* check nunber of command-I|ine argunents */
fprintf(stderr, "Usage: % processes\n", argv[O0]);
return 1;
}
n = atoi(argv[1]);
for (i =1; i <n; i++4)
if (childpid = fork())
br eak;

while(childpid !'= (waitreturn = wai t (NULL)))



if ((waitreturn == -1) && (errno != EINTR))

br eak;
fprintf(stderr, "I amprocess %d, ny parent is %d\n",
(l'ong) getpid(), (long)getppid());
return O;
}
Answer:

Each forked child waits for its own child to complete before outputting a message. The
messages appear in reverse order of creation.

3.4.1 Status values

The stat | oc argument of wai t or wai t pi d is a pointer to an integer variable. If it is not NULL,

these functions store the return status of the child in this location. The child returns its status
by calling exit, exit, Exit orreturn from main. A zero return value indicates

EXI T_SUCCESS; any other value indicates EXI T_FAI LURE. The parent can only access the 8 least
significant bits of the child’s return status.

POSIX specifies six macros for testing the child's return status. Each takes the status value
returned by a child to wai t or wai t pi d as a parameter.

SYNOPSI S
#i ncl ude <sys/wait.h>

W FEXI TED(i nt stat_val)
VIEXI TSTATUS(i nt stat_val)
W FSI GNALED(i nt stat_val)
WERMSI G(i nt stat_val)

W FSTOPPED(i nt stat _val)
WSTOPSI G(i nt stat_val)

PCSI X

The six macros are designed to be used in pairs. The W FEXI TED evaluates to a nonzero value
when the child terminates normally. If W FEXI TED evaluates to a nonzero value, then

VEEXI TSTATUS evaluates to the low-order 8 bits returned by the child through _exit (), exit()
or ret urn from nai n.

The W FSI GNALED evaluates to a nonzero value when the child terminates because of an
uncaught signal (see Chapter 8). If W FSI GNALED evaluates to a nonzero value, then WITERMVSI G
evaluates to the number of the signal that caused the termination.

The W FSTOPPED evaluates to a nonzero value if a child is currently stopped. If W FSTOPPED
evaluates to a nonzero value, then WSTOPSI| G evaluates to the number of the signal that caused
the child process to stop.

Example 3.22 show et urnstatus. c



The following function determines the exit status of a child.

#i ncl ude <errno. h>

#i ncl ude <stdi o. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/wait.h>
#include "restart.h"

voi d show return_status(void) {
pid_t childpid;
i nt status;

childpid = r_wait(&status);
if (childpid == -1)
perror("Failed to wait for child");
else if (WFEX TED(status) && !WEXI TSTATUS( st at us))
printf("Child %d term nated nornally\n", (long)childpid);
else if (WFEXI TED( st at us))
printf("Child %d term nated with return status %\ n",
(long)chil dpid, WEXI TSTATUS(st atus));
el se if (WFSIGNALED( st at us))
printf("Child %d term nated due to uncaught signal %\ n",
(long) chil dpid, WIERMSI G( st at us)) ;
el se i f (WFSTOPPED( st at us))
printf("Child %d stopped due to signal %\ n",
(l'ong) chil dpid, WSTOPSI (st atus));

[ Team LIiB ]
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3.5 The exec Function

The f or k function creates a copy of the calling process, but many applications require the child
process to execute code that is different from that of the parent. The exec family of functions

provides a facility for overlaying the process image of the calling process with a new image. The
traditional way to use the f or k—exec combination is for the child to execute (with an exec

function) the new program while the parent continues to execute the original code.

SYNOPSI S

#i ncl ude <uni std. h>

extern char **environ;

i nt
i nt

i nt
i nt
i nt
i nt

execl (const char *path, const char *argO, ... /*, char *(0) */);

execl e (const char *path, const char *arg0O, ... /*, char *(0),
char *const envp[] */);

execlp (const char *file, const char *arg0O, ... /*, char *(0) */);

execv(const char *path, char *const argv[]);
execve (const char *path, char *const argv[], char *const envp[]);
execvp (const char *file, char *const argv[]);

PCsSI X

All exec functions return —1 and set err no if unsuccessful. In fact, if any of these functions return
at all, the call was unsuccessful. The following table lists the mandatory errors for the exec

functions.
errno cause

E2BI G size of new process's argument list and environment list is greater than
system-imposed limit of ARG_MAX bytes

EACCES search permission on directory in path prefix of new process is denied, new
process image file execution permission is denied, or new process image file is
not a regular file and cannot be executed

El NVAL new process image file has appropriate permission and is in a recognizable
executable binary format, but system cannot execute files with this format

ELOOP

a loop exists in resolution of pat h or fil e argument

ENAMETOOLONG | the length of pat h or fi | e exceeds PATH_MAX, or a pathname component is

longer than NAME_MAX

ENCENT component of pat h or fi | e does not name an existing file, or path or fil e is

an empty string

ENGEXEC image file has appropriate access permission but has an unrecognized format

(does not apply to execl p or execvp)
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ENOTDI R a component of the image file path prefix is not a directory

The six variations of the exec function differ in the way command-line arguments and the

environment are passed. They also differ in whether a full pathname must be given for the
executable. The execl (execl, execl p and execl e) functions pass the command-line arguments

in an explicit list and are useful if you know the number of command-line arguments at compile
time. The execv (execv, execvp and execve) functions pass the command-line arguments in an

argument array such as one produced by the makear gv function of Section 2.6. The ar g;
parameter represents a pointer to a string, and ar gv and envp represent NULL-terminated arrays
of pointers to strings.

The pat h parameter to execl is the pathname of a process image file specified either as a fully

qualified pathname or relative to the current directory. The individual command-line arguments
are then listed, followed by a (char *)0 pointer (a NULL pointer).

Program 3.4 calls the | s shell command with a command-line argument of -1 . The program
assumes that | s is located in the / bi n directory. The execl function uses its character-string
parameters to construct an ar gv array for the command to be executed. Since ar gv[ 0] is the
program name, it is the second argument of the execl . Notice that the first argument of execl ,
the pathname of the command, also includes the name of the executable.

Program 3.4 execls.c

A program that creates a child processtorunls -1|.

#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>
#i ncl ude <uni std. h>
#i ncl ude <sys/wait.h>

int main(void) {
pid_t childpid;

childpid = fork();

if (childpid == -1) {
perror("Failed to fork");
return 1;

}

if (childpid == 0) { [* child code */
execl ("/bin/ls", "Is", "-1", NULL);
perror("Child failed to exec |s");
return 1;

}

if (childpid != wait(NULL)) { /* parent code */
perror("Parent failed to wait due to signal or error");
return 1;

}

return O;



An alternative form is execl p. If the first parameter (fi | e) contains a slash, then execl p treats
fil e as a pathname and behaves like execl . On the other hand, if fi | e does not have a slash,
execl p uses the PATH environment variable to search for the executable. Similarly, the shell tries
to locate the executable file in one of the directories specified by the PATH variable when a user
enters a command.

A third form, execl e, takes an additional parameter representing the environment of the new
process. For the other forms of execl , the new process inherits the environment of the calling
process through the envi r on variable.

The execv functions use a different form of the command-line arguments. Use an execv function
with an argument array constructed at run time. The execv function takes exactly two
parameters, a pathname for the executable and an argument array. (The makear gv function of
Program 2.2 is useful here.) The execve and execvp are variations on execv; they are similar in
structure to execl e and execl p, respectively.

Program 3.5 shows a simple program to execute one program from within another program. The
program forks a child to execute the command. The child performs an execvp call to overwrite its

process image with an image corresponding to the command. The parent, which retains the
original process image, waits for the child, using the r _wai t function of Program 3.3 from the

restart library. The r _wai t restarts its wai t function if interrupted by a signal.

Example 3.23

The following command line to Program 3.5 causes execcnd to create a new process to execute
thels -1 command.

execcnd |s -1

Program 3.5 avoids constructing the ar gv parameter to execvp by using a simple trick. The
original ar gv array produced in Example 3.23 contains pointers to three tokens: myexec, I s and -
| . The argument array for the execvp starts at &ar gv[ 1] and contains pointers to the two tokens
Isand-I.

Exercise 3.24

How big is the argument array passed as the second argument to execvp when you execute
execcnd of Program 3.5 with the following command line?

execcnd Is -1 *.c

Answer:

The answer depends on the number of . ¢ files in the current directory because the shell expands
* . ¢ before passing the command line to execcnd.



Program 3.6 creates an argument array from the first command-line argument and then calls
execvp. Notice that execcndar gv calls the makear gv function only in the child process. Program
2.2 on page 37 shows an implementation of the nakear gv function.

Program 3.5 execcnd. c

A program that creates a child process to execute a command. The command to be executed is
passed on the command line.

#i ncl ude <errno. h>

#i ncl ude <stdio. h>

#i ncl ude <uni std. h>

#i ncl ude <sys/types. h>
#i ncl ude <sys/wait.h>
#i nclude "restart.h"

int main(int argc, char *argv[]) {
pid_t childpid;

if (argc < 2){ /* check for valid nunber of conmmand-I|ine arguments */
fprintf (stderr, "Usage: % command argl arg2 ...\n", argv[0]);
return 1;
}
childpid = fork();
if (childpid == -1) {
perror("Failed to fork");
return 1;
}
if (childpid == 0) { /* child code */

execvp(argv[1l], &argv[1]);
perror("Child failed to execvp the comand");

return 1;

}

if (childpid !'=r_wait(NULL)) { /* parent code */
perror("Parent failed to wait");
return 1;

}

return O;

Exercise 3.25

How would you pass a string containing multiple tokens to execcndar gv of Program 3.6?

Answer:

Place the command string in double quotes so that the command line interpreter treats the string
as a single token. For example, to execute | s -1, call execcndar gv with the following command

line.

execcndargv "lIs -1"



Exercise 3.26

Program 3.6 only calls the nakear gv function in the child process after the fork. What happens if
you move the makear gv call before the fork?

Answer:

A parent call to nakear gv before the fork allocates the argument array on the heap in the parent
process. The f or k function creates a copy of the parent's process image for the child. After f or k
executes, both parent and child have copies of the argument array. A single call to makear gv

does not present a problem. However, when the parent represents a shell process, the allocation

step might be repeated hundreds of times. Unless the parent explicitly frees the argument array,
the program will have a memory leak.

Program 3.6 execcndargv. c

A program that creates a child process to execute a command string passed as the first
command-line argument.

#i ncl ude <errno. h>

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>
#i ncl ude <uni std. h>
#i ncl ude <sys/wait.h>
#include "restart. h"

i nt nakeargv(const char *s, const char *delinmiters, char ***argvp);

int main(int argc, char *argv[]) {
pid_t childpid;
char delinf] =" \t";
char **nyargv;

if (argc '= 2) {
fprintf(stderr, "Usage: % string\n", argv[O0]);

return 1;
}
childpid = fork();
if (childpid == -1) {
perror("Failed to fork");
return 1;
}
if (childpid == 0) { /[* child code */
if (makeargv(argv[1l], delim &nyargv) == -1) {
perror("Child failed to construct argunent array");
} else {
execvp(nyargv[ 0], &nmyargv[O0]);
perror("Child failed to exec comand");
}
return 1;
}
if (childpid !=r_wait(NULL)) { /* parent code */

perror("Parent failed to wait");



return 1;

}

return O;

The exec function copies a new executable into the process image. The program text, variables,

stack and heap are overwritten. The new process inherits the environment (meaning the list of
environment variables and their associated values) unless the original process called execl e or

execve. Files that are open at the time of the exec call are usually still open afterward.

Table 3.3 summarizes the attributes that are inherited by processes after exec. The second

column of the table gives library functions related to the items. The IDs associated with the
process are intact after exec runs. If a process sets an alarm before calling exec, the alarm still

generates a signal when it expires. Pending signals are also carried over on exec in contrast to
f or k. The process creates files with the same permissions as before exec ran, and accounting of
CPU time continues without being reinitialized.

Table 3.3. Attributes that are preserved after calls to exec. The second
column lists some library functions relevant to these attributes. A *
indicates an attribute inherited in the POSIX:XSI Extension.

attribute relevant library function
process ID getpid
parent process ID get ppi d
process group ID get pgi d
session ID getsid
real user ID getuid
real group ID getgid
supplementary group IDs get groups
time left on an alarm signal alarm
current working directory get cwd
root directory
file mode creation mask umask
file size limit* ulimt

process signal mask

si gpr ocnask

pending signals

si gpendi ng




time used so far

times

resource limits*

getrlimt,setrlimt

controlling terminal*

open, t cget pgr p

interval timers* ual arm
nice value* ni ce
semad] values* senop

[ Team LiB ]
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3.6 Background Processes and Daemons

The shell is a command interpreter that prompts for commands, reads the commands from
standard input, forks children to execute the commands and waits for the children to finish.
When standard input and output come from a terminal type of device, a user can terminate an
executing command by entering the interrupt character. (The interrupt character is settable,
but many systems assume a default value of Ctrl-C.)

Exercise 3.27

What happens when you execute the following commands?

cd /etc
s -1

Now execute the | s -1 command again, but enter a Ctrl-C as soon as the listing starts to
display. Compare the results to the first case.

Answer:

In the first case, the prompt appears after the directory listing is complete because the shell
waits for the child before continuing. In the second case, the Ctrl-C terminates the | s.

Most shells interpret a line ending with & as a command that should be executed by a

background process. When a shell creates a background process, it does not wait for the
process to complete before issuing a prompt and accepting additional commands. Furthermore,
a Ctrl-C from the keyboard does not terminate a background process.

Exercise 3.28

Compare the results of Exercise 3.27 with the results of executing the following command.

ls -1 &

Reenter the | s -1 & command and try to terminate it by entering Ctrl-C.

Answer:

In the first case, the prompt appears before the listing completes. The Ctrl-C does not affect
background processes, so the second case behaves in the same way as the first.

A daemon is a background process that normally runs indefinitely. The UNIX operating system
relies on many daemon processes to perform routine (and not so routine) tasks. Under the
Solaris operating environment, the pageout daemon handles paging for memory management.

The i n. rl ogi nd handles remote login requests. Other daemons handle mail, file transfer,


file:///D|/Tutoriales%20&%20Programacion/Prep%20Finales/XxX/Prentice%20Hall%20-%20Unix%20Systems%20Programming%202nd%20Ed/NFO/lib.html

statistics and printer requests, to name a few.

The runback program in Program 3.7 executes its first command-line argument as a
background process. The child calls set si d so that it does not get any signals because of a Ctrl-
C from a controlling terminal. (See Section 11.5.) The runback parent does not wait for its child
to complete.

Program 3.7 runback. c

The runback program creates a child process to execute a command string in the background.

#i ncl ude <stdio. h>
#incl ude <stdlib. h>
#i ncl ude <unistd. h>
#i ncl ude <sys/wait.h>
#include "restart.h"

i nt makeargv(const char *s, const char *delimters, char ***argvp);

int main(int argc, char *argv[]) {
pid_t childpid;
char delinf] =" \t";
char **nyargv;

if (argc '= 2) {
fprintf(stderr, "Usage: % string\n", argv[O0]);

return 1;
}
childpid = fork();
if (childpid == -1) {
perror("Failed to fork");
return 1;
}
if (childpid == 0) { /* child becones a background process */
if (setsid() == -1)
perror("Child failed to becone a session | eader");
else if (makeargv(argv[1l], delim &myargv) == -1)
fprintf(stderr, "Child failed to construct argunment array\n");
el se {
execvp(nmyargv[ 0], &nyargv[O0]);
perror("Child failed to exec comuand");
}
return 1; /* child should never return */
}
return O; [* parent exits */

Example 3.29
The following command is similar to entering | s -1 & directly from the shell.

runback "Is -1"
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3.7 Critical Sections

Imagine a scenario in which a computer system has a printer that can be directly accessed by
all the processes in the system. Each time a process wants to print something, it writes to the
printer device. How would the printed output look if several processes wrote to the printer
simultaneously? The individual processes are allowed only a fixed quantum of processor time. If
the quantum expires before a process completes writing, another process might send output to
the printer. The resulting printout would have the output from the processes interspersed—an
undesirable feature.

The problem with the previous scenario is that the processes are "simultaneously" attempting
to access a shared resource—a resource that should be used by only one process at a time.
That is, the printer requires exclusive access by the processes in the system. The portion of
code in which each process accesses such a shared resource is called a critical section.
Programs with critical sections must be sure not to violate the mutual exclusion requirement.

One method of providing mutual exclusion uses a locking mechanism. Each process acquires a
lock that excludes all other processes before entering its critical section. When the process
finishes the critical section, it releases the lock. Unfortunately, this approach relies on the
cooperation and correctness of all participants. If one process fails to acquire the lock before
accessing the resource, the system fails.

A common approach is to encapsulate shared resources in a manner that ensures exclusive
access. Printers are usually handled by having only one process (the printer daemon) with
permissions to access the actual printer. Other processes print by sending a message to the
printer daemon process along with the name of the file to be printed. The printer daemon puts
the request in a queue and may even make a copy of the file to print in its own disk area. The
printer daemon removes request messages from its queue one at a time and prints the file
corresponding to the message. The requesting process returns immediately after writing the
request or after the printer daemon acknowledges receipt, not when the printing actually
completes.

Operating systems manage many shared resources besides the obvious devices, files and
shared variables. Tables and other information within the operating system kernel code are
shared among processes managing the system. A large operating system has many diverse
parts with possibly overlapping critical sections. When one of these parts is modified, you must
understand the entire operating system to reliably determine whether the modification
adversely affects other parts. To reduce the complexity of internal interactions, some operating
systems use an object-oriented design. Shared tables and other resources are encapsulated as
objects with well-defined access functions. The only way to access such a table is through these
functions, which have appropriate mutual exclusion built in. In a distributed system, the object
interface uses messages. Changes to modules in a properly designed object-oriented system do
not have the same impact as they do for uncontrolled access.

On the surface, the object-oriented approach appears to be similar to the daemons described in
Section 3.6, but structurally these approaches can be very different. There is no requirement

that daemons encapsulate resources. They can fight over shared data structures in an
uncontrolled way. Good object-oriented design ensures that data structures are encapsulated
and accessed only through carefully controlled interfaces. Daemons can be implemented with
an object-oriented design, but they do not have to be.
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3.8 Exercise: Process Chains

This section expands on the process chain of Program 3.1. The chain is a vehicle for
experimenting with wai t and with sharing of devices. All of the processes in the chain created
by Program 3.1 share standard input, standard output and standard error. The fprintf to

standard error is a critical section of the program. This exercise explores some implications of
critical sections. Later chapters extend this exercise to critical sections involving other devices
(Chapter 6) and a token-ring simulation (Chapter 7).

Program 3.1 creates a chain of processes. It takes a single command-line argument that
specifies the number of processes to create. Before exiting, each process outputs its i value, its

process ID, its parent process ID and the process ID of its child. The parent does not execute
wai t . If the parent exits before the child, the child becomes an orphan. In this case, the child

process is adopted by a special system process (which traditionally is a process, i ni t, with
process ID of 1). As a result, some of the processes may indicate a parent process ID of 1.

Do not attempt this exercise on a machine with other users because it strains the resources of
the machine.

1. Run Program 3.1 and observe the results for different numbers of processes.

2. Fill in the actual process IDs of the processes in the diagram of Figure 3.2 for a run with
command-line argument value of 4.

3. Experiment with different values for the command-line argument to find out the largest
number of processes that the program can generate. Observe the fraction that are
adopted by i nit.

4. Place sl eep(10); directly before the final f pri ntf statement in Program 3.1. What is
the maximum number of processes generated in this case?

5. Put a loop around the final f pri ntf in Program 3.1. Have the loop execute k times. Put
sl eep( ) ; inside this loop after the f pri ntf. Pass k and mon the command line. Run
the program for several values of n, k and m Observe the results.

6. Modify Program 3.1 by putting a wai t function call before the final f pri ntf statement.
How does this affect the output of the program?

7. Modify Program 3.1 by replacing the final f pri nt f statement with four fpri ntf
statements, one each for the four integers displayed. Only the last one should output a
newline. What happens when you run this program? Can you tell which process
generated each part of the output? Run the program several times and see if there is a
difference in the output.

8. Modify Program 3.1 by replacing the final f pri nt f statement with a loop that reads
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nchar s characters from standard input, one character at a time, and puts them in an
array called nybuf . The values of n and nchar s should be passed as command-line
arguments. After the loop, put a '\ 0' character in entry nchar s of the array so that it
contains a string. Output to standard error in a single f pri ntf the process ID followed
by a colon followed by the string in nmybuf . Run the program for several values of n and
nchars. Observe the results. Press the Return key often and continue typing at the
keyboard until all of the processes have exited.
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3.9 Exercise: Process Fans

The exercises in this section expand on the fan structure of Program 3.2 through the
development of a simple batch processing facility, called r unsi m (Modifications in Section 14.6
lead to a license manager for an application program.) The r unsi mprogram takes exactly one

command-line argument specifying the maximum number of simultaneous executions. Follow
the outline below for implementing r unsi m Write a test program called t est si mto test the

facility. Suggested library functions appear in parentheses.

1. Write a program called r unsi mthat takes one command-line argument.

2. Check for the appropriate command-line argument and output a usage message if the
command line is incorrect.

3. Initialize pr _li mt from the command line. The pr_I i nt variable specifies the
maximum number of children allowed to execute at a time.

4. Initialize the pr _count variable to 0. The pr _count variable holds the number of active
children.

5. Execute the following main loop until end-of-file is reached on standard input.

a. If pr_count ispr_limt, wait for a child to finish (wai t ) and decrement
pr_count .

b. Read a line from standard input (f get s) of up to MAX_CANON characters and
execute a program corresponding to that command line by forking a child (f or k,
nmakear gv, execvp).

c. Increment pr_count to track the number of active children.

d. Check to see if any of the children have finished (wai t pi d with the WNOHANG
option). Decrement pr _count for each completed child.

6. After encountering an end-of-file on standard input, wait for all the remaining children
to finish (wai t ) and then exit.

Write a test program called t est si mthat takes two command-line arguments: the sleep time
and the repeat factor. The repeat factor is the number of times t est si miterates a loop. In the
loop, t esti msleeps for the specified sleep time and then outputs a message with its process ID
to standard error. Use r unsi mto run multiple copies of the t est si mprogram.

Create a test file called t esti ng. dat a that contains commands to run. For example, the file
might contain the following lines.
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testsim5 10
testsim8 10
testsim4 10
testsim13 6
testsim1l 12

Run the program by entering a command such as the following.

runsim?2 < testing.data
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3.10 Additional Reading

The Design of the UNIX Operating System by Bach [9] discusses process implementation under

System V. The Design and Implementation of the 4.3BSD UNIX Operating System by Leffler et
al. [70] discusses process implementation for BSD UNIX. Both of these books provide detailed

examinations of how real operating systems are implemented. Operating Systems: Design and
Implementation, 2nd ed. by Tanenbaum and Woodhull [125] develops a full implementation of

a UNIX-like operating system called MINIX. Solaris Internals: Core Kernel Architecture by
Mauro and McDougall [79] is another detailed book on a UNIX implementation.

There are many books that discuss Linux implementation. For example, Linux Device Drivers,
2nd ed. by Rubini and Corbet [102] provides a detailed guide to writing device drivers for

Linux. 1A-64 Linux Kernel: Design and Implementation by Mossberger et al. [83] discusses the
implementation of Linux on the Itanium processor.

Most general operating systems books such as Operating Systems Concepts, 6th ed. by
Silberschatz et al. [107] and Modern Operating Systems by Tanenbaum [122] address the
process model. Both of these references have case studies on UNIX and on Mach, a well-known
microkernel operating system. Comparing these two systems would be useful at this point. P.S.
to Operating Systems by Dowdy and Lowery [31] focuses on performance issues and analytical
models.
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Chapter 4. UNIX I/O

UNIX uses a uniform device interface, through file descriptors, that allows the same 1/0 calls to
be used for terminals, disks, tapes, audio and even network communication. This chapter
explores the five functions that form the basis for UNIX device-independent 1/0. The chapter
also examines 1/0 from multiple sources, blocking 1I/0 with timeouts, inheritance of file
descriptors and redirection. The code carefully handles errors and interruption by signals.

Objectives

o Learn the basics of device-independent 1/0

o Experiment withread and wite

o Explore ways to monitor multiple descriptors
« Use correct error handling

« Understand inheritance of file descriptors
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4.1 Device Terminology

A peripheral device is piece of hardware accessed by a computer system. Common peripheral
devices include disks, tapes, CD-ROMs, screens, keyboards, printers, mouse devices and
network interfaces. User programs perform control and 1/0 to these devices through system
calls to operating system modules called device drivers. A device driver hides the details of
device operation and protects the device from unauthorized use. Devices of the same type may
vary substantially in their operation, so to be usable, even a single-user machine needs device
drivers. Some operating systems provide pseudodevice drivers to simulate devices such as
terminals. Pseudoterminals, for example, simplify the handling of remote login to computer
systems over a network or a modem line.

Some operating systems provide specific system calls for each type of supported device,
requiring the systems programmer to learn a complex set of calls for device control. UNIX has
greatly simplified the programmer device interface by providing uniform access to most devices
through five functions—open, cl ose, read, wite and i octl . All devices are represented by

files, called special files, that are located in the / dev directory. Thus, disk files and other

devices are named and accessed in the same way. A regular file is just an ordinary data file on
disk. A block special file represents a device with characteristics similar to a disk. The device
driver transfers information from a block special device in blocks or chunks, and usually such
devices support the capability of retrieving a block from anywhere on the device. A character
special file represents a device with characteristics similar to a terminal. The device appears to
represent a stream of bytes that must be accessed in sequential order.

[ Team LiB 1 [rreviovs]
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4.2 Reading and Writing

UNIX provides sequential access to files and other devices through the read and write
functions. The r ead function attempts to retrieve nbyt e bytes from the file or device
represented by fi | des into the user variable buf . You must actually provide a buffer that is
large enough to hold nbyt e bytes of data. (A common mistake is to provide an uninitialized
pointer, buf , rather than an actual buffer.)

SYNOPSI S

#i ncl ude <uni std. h>

ssize_t read(int fildes, void *buf, size_t nbyte);

POSI X

If successful, r ead returns the number of bytes actually read. If unsuccessful, r ead returns —1
and sets errno. The following table lists the mandatory errors for r ead.

errno cause

ECONNRESET | read attempted on a socket and connection was forcibly closed by its peer

EAGAI N O NONBLOCK is set for file descriptor and thread would be delayed

EBADF fil des is not a valid file descriptor open for reading

EI NTR r ead was terminated due to receipt of a signal and no data was transferred

EIO process is a member of a background process group attempting to read from
its controlling terminal and either process is ignoring or blocking SI GI'TI N or
process group is orphaned

ENOTCONN read attempted on socket that is not connected

EOVERFLOW | the file is a regular file, nbyt e is greater than 0, and the starting position
exceeds offset maximum

ETI MEDOUT read attempted on socket and transmission timeout occurred

EWOULDBLOCK | file descriptor is for socket marked O NONBLOCK and no data is waiting to be
received (EAGAI N is alternative)

A r ead operation for a regular file may return fewer bytes than requested if, for example, it
reached end-of-file before completely satisfying the request. A r ead operation for a regular file

returns O to indicate end-of-file. When special files corresponding to devices are read, the
meaning of a r ead return value of O depends on the implementation and the particular device.
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A r ead operation for a pipe returns as soon as the pipe is not empty, so the number of bytes

read can be less than the number of bytes requested. (Pipes are a type of communication
buffer discussed in Chapter 6.) When reading from a terminal, r ead returns O when the user

enters an end-of-file character. On many systems the default end-of-file character is Ctrl-D.

The ssi ze_t data type is a signed integer data type used for the number of bytes read, or —1 if
an error occurs. On some systems, this type may be larger than an i nt. The si ze_t is an
unsigned integer data type for the number of bytes to read.

Example 4.1
The following code segment reads at most 100 bytes into buf from standard input.

char buf[100];
ssize_t bytesread,

byt esread = read(STDI N_FI LENO, buf, 100);

This code does no error checking.

The file descriptor, which represents a file or device that is open, can be thought of as an index
into the process file descriptor table. The file descriptor table is in the process user area and
provides access to the system information for the associated file or device.

When you execute a program from the shell, the program starts with three open streams
associated with file descriptors STDI N_FI LENO, STDOUT _FI LENO and STDERR_FI LENO.

STDI N_FI LENO and STDOUT_FI LENO are standard input and standard output, respectively. By

default, these two streams usually correspond to keyboard input and screen output. Programs
should use STDERR_FI LENO, the standard error device, for error messages and should never

close it. In legacy code standard input, standard output and standard error are represented by
0, 1 and 2, respectively. However, you should always use their symbolic names rather than

these numeric values. Section 4.6 explains how file descriptors work.

Exercise 4.2

What happens when the following code executes?

char *buf;
ssize_t bytesread;

byt esread = read(STDI N_FI LENO, buf, 100);

Answer:

The code segment, which may compile without error, does not allocate space for buf . The
result of read is unpredictable, but most probably it will generate a memory access violation. If
buf is an automatic variable stored on the stack, it is not initialized to any particular value.
Whatever that memory happens to hold is treated as the address of the buffer for reading.



The readl i ne function of Program 4.1 reads bytes, one at a time, into a buffer of fixed size
until a newline character (' \ n' ) or an error occurs. The function handles end-of-file, limited
buffer size and interruption by a signal. The r eadl i ne function returns the number of bytes
read or —1 if an error occurs. A return value of O indicates an end-of-file before any characters

were read. A return value greater than O indicates the number of bytes read. In this case, the
buffer contains a string ending in a newline character. A return value of —1 indicates that err no

has been set and one of the following errors occurred.

« An error occurred on r ead.

« At least one byte was read and an end-of-file occurred before a newline was read.
« nbytes-1 bytes were read and no newline was found.

Upon successful return of a value greater than O, the buffer contains a string ending in a
newline character. If r eadl i ne reads from a file that does not end with a newline character, it

treats the last line read as an error. The r eadl i ne function is available in the restart library, of
Appendix B.

Program 4.1 readline.c

The r eadl i ne function returns the next line from a file.

#i ncl ude <errno. h>
#i ncl ude <uni std. h>

int readline(int fd, char *buf, int nbytes) {
int nunread = O;
int returnval ;

while (nunread < nbytes - 1) {

returnval = read(fd, buf + nunmread, 1);

if ((returnval == -1) && (errno == EINTR))
conti nue;

if ( (returnval == 0) && (nunread == 0) )
return O;

if (returnval == 0)
br eak;

if (returnval == -1)
return -1,

nunt ead++;

if (buf[nunread-1] == "\n") {
buf [ nunread] = '\0';
return nunread;

}
}
errno = ElI NVAL;
return -1;

Example 4.3



The following code segment calls the r eadl i ne function of Program 4.1 to read a line of at most
99 bytes from standard input.

i nt bytesread,
char nybuf[100];

byt esread = readli ne(STDI N _FI LENO, nmnybuf, sizeof (nybuf));

Exercise 4.4

Under what circumstances does the r eadl i ne function of Program 4.1 return a buffer with no
newline character?

Answer:

This can only happen if the return value is 0 or —1. The return value of 0 indicates that nothing
was read. The return of —1 indicates some type of error. In either case, the buffer may not
contain a string.

The wri t e function attempts to output nbyt e bytes from the user buffer buf to the file
represented by file descriptor fil des.

SYNOPSI S

#i ncl ude <uni std. h>

ssize t wite(int fildes, const void *buf, size t nbyte);
PCSI X

If successful, wri t e returns the number of bytes actually written. If unsuccessful, wri t e returns
—1 and sets errno. The following table lists the mandatory errors for wite.

errno cause

ECONNRESET | write attempted on a socket that is not connected

EAGAI N O _NONBLOCK is set for file descriptor and thread would be delayed

EBADF fil des is not a valid file descriptor open for writing

EFBI G attempt to write a file that exceeds implementation-defined maximum; file is
a regular file, nbyt e is greater than 0, and starting position exceeds offset
maximum

EI NTR writ e was terminated due to receipt of a signal and no data was transferred




El O process is a member of a background process group attempting to write to
controlling terminal, TOSTCPR is set, process is neither blocking nor ignoring

SI GTTQU and process group is orphaned

ENGSPC no free space remaining on device containing the file

EPI PE attempt to write to a pipe or FIFO not open for reading or that has only one
end open (thread may also get Sl GPl PE), or write attempted on socket shut

down for writing or not connected (if not connected, also generates Sl GPl PE
signal)

EWOULDBLOCK | file descriptor is for socket marked O NONBLOCK and write would block
(EAGAI N is alternative)

Exercise 4.5

What can go wrong with the following code segment?

#defi ne BLKSI ZE 1024
char buf [ BLKSI ZE] ;

read(STDI N_FI LENO, buf, BLKSIZE);
Wi t e( STDOUT_FI LENO, buf, BLKSI ZE);

Answer:

The wri t e function assumes that the r ead has filled buf with BLKSI ZE bytes. However, r ead
may fail or may not read the full BLKSI ZE bytes. In these two cases, w i t e outputs garbage.

Exercise 4.6

What can go wrong with the following code segment to read from standard input and write to
standard output?

#defi ne BLKSI ZE 1024
char buf [ BLKSI ZE] ;
ssize_t bytesread,

byt esread = read(STDI N_FI LENO, buf, BLKSI ZE);
if (bytesread > 0)
write(STDOUT_FI LE, buf, bytesread);

Answer:

Although wri t e uses byt esr ead rather than BLKSI ZE, there is no guarantee that wri t e actually
outputs all of the bytes requested. Furthermore, either read or wi t e can be interrupted by a
signal. In this case, the interrupted call returns a —1 with errno set to El NTR.



Program 4.2 copies bytes from the file represented by fr onf d to the file represented by t of d.
The function restarts read and wi t e if either is interrupted by a signal. Notice that the write
statement specifies the buffer by a pointer, bp, rather than by a fixed address such as buf . If
the previous wri t e operation did not output all of buf , the next wri t e operation must start
from the end of the previous output. The copyfi | e function returns the number of bytes read
and does not indicate whether or not an error occurred.

Example 4.7 sinpl ecopy. c

The following program calls copyfi |l e to copy a file from standard input to standard output.

#i ncl ude <stdi o. h>
#i ncl ude <uni std. h>

int copyfile(int fronfd, int tofd);

int main (void) {
i nt nunbytes;

nunbytes = copyfil e(STDI N_FI LENO, STDOUT_FI LENO) ;
fprintf(stderr, "Nunmber of bytes copied: %\n", nunbytes);
return O;

Exercise 4.8
What happens when you run the program of Example 4.77
Answer:

Standard input is usually set to read one line at a time, so 1/0 is likely be entered and echoed
on line boundaries. The I/0 continues until you enter the end-of-file character (often Ctrl-D by
default) at the start of a line or you interrupt the program by entering the interrupt character

(often Ctrl-C by default). Use the stty -a command to find the current settings for these

characters.
Program 4.2 copyfilel.c

The copyfil e. ¢ function copies a file from fronfd to t of d.

#i ncl ude <errno. h>
#i ncl ude <uni std. h>
#defi ne BLKSI ZE 1024

int copyfile(int fronfd, int tofd) {
char *bp;
char buf [ BLKSI ZE] ;
int bytesread, byteswritten,;
int total bytes = 0;



for (5 5 ) {
while (((bytesread = read(fronfd, buf, BLKSIZE)) == -1) &&

(errno == EINTR)) ; /* handle interruption by signal */
if (bytesread <= 0) /* real error or end-of-file on fronfd */
br eak;
bp = buf;
while (bytesread > 0) {
while(((byteswitten = wite(tofd, bp, bytesread)) == -1) &&
(errno == EINTR)) ; /* handl e interruption by signal */
if (byteswitten <= 0) /* real error on tofd */
br eak;
total bytes += byteswitten;
byt esread -= byteswitten;
bp += byteswitten;
}
if (byteswitten == -1) /* real error on tofd */

br eak;

}

return total bytes;

Exercise 4.9

How would you use the program of Example 4.7 to copy the file nyi n. dat to nyout . dat ?

Answer:

Use redirection. If the executable of Example 4.7 is called si npl ecopy, the line would be as
follows.

si npl ecopy < nyin.dat > nyout. dat

The problems of restarting read and wri t e after signals and of writing the entire amount
requested occur in nearly every program using r ead and wri t e. Program 4.3 shows a separate
r _read function that you can use instead of r ead when you want to restart after a signal.
Similarly, Program 4.4 shows a separate r _wri t e function that restarts after a signal and writes
the full amount requested. For convenience, a number of functions, includingr _read, r_wite,
copyfil e and readl i ne, have been collected in a library called restart . c. The prototypes for
these functions are contained in rest art. h, and we include this header file when necessary.
Appendix B presents the complete restart library implementation.

Program 4.3 r _read.c

The r _r ead. ¢ function is similar to r ead except that it restarts itself if interrupted by a signal.

#i ncl ude <errno. h>
#1 ncl ude <uni std. h>

ssize t r_read(int fd, void *buf, size t size) {



ssize_ t retval;

while (retval = read(fd, buf, size), retval == -1 & errno == EINTR) ;
return retval;

Program 4.4 r_wite.c

The r_write.c function is similar to wi t e except that it restarts itself if interrupted by a signal
and writes the full amount requested.

#i ncl ude <errno. h>
#i ncl ude <uni std. h>

ssize t r_wite(int fd, void *buf, size_t size) {
char *buf p;
size t bytestowrite;
ssize t byteswitten;
size_t total bytes;

for (bufp = buf, bytestowite = size, total bytes = 0;
bytestowite > 0;
bufp += byteswritten, bytestowite -= byteswitten) {
byteswitten = wite(fd, bufp, bytestowite);
if ((byteswitten) == -1 & (errno != EINTR))
return -1;
if (byteswitten == -1)
byteswitten = 0;
total bytes += byteswitten;

}

return total bytes;

The functions r _read and r_writ e can greatly simplify programs that need to read and write
while handling signals.

Program 4.5 shows the readw i t e function that reads bytes from one file descriptor and writes
all of the bytes read to another one. It uses a buffer of size Pl PE_BUF to transfer at most

Pl PE_BUF bytes. This size is useful for writing to pipes since a write to a pipe of Pl PE_BUF bytes
or less is atomic. Program 4.6 shows a version of copyfi | e that uses the r eadwr i t e function.
Compare this with Program 4.2.

Program 4.5 readwite.c

A program that reads from one file descriptor and writes all the bytes read to another file
descriptor.

#include <limts. h>
#i nclude "restart. h"
#def i ne BLKSI ZE PI PE_BUF



int readwite(int fronfd, int tofd) {
char buf [ BLKSI ZE] ;
i nt bytesread,

if ((bytesread = r_read(fronfd, buf, BLKSIZE)) == -1)
return -1;

if (bytesread == 0)
return O;

if (r_wite(tofd, buf, bytesread) == -1)
return -1;

return bytesread;

Program 4.6 copyfile.c

A simplified implementation of copyfil e thatusesr_read andr_wite.

#i ncl ude <uni std. h>
#i nclude "restart. h"
#defi ne BLKSI ZE 1024

int copyfile(int fronfd, int tofd) {
char buf [ BLKSI ZE] ;
int bytesread, byteswitten;
int total bytes = 0;

for ( ; .
if ((bytesread = r_read(fronfd, buf, BLKSIZE)) <= 0)
br eak;
if ((byteswitten = r_wite(tofd, buf, bytesread)) == -1)
br eak;
total bytes += byteswitten;

}

return total bytes;

The r _writ e function writes all the bytes requested and restarts the write if fewer bytes are
written. The r _r ead only restarts if interrupted by a signal and often reads fewer bytes than
requested. The r eadbl ock function is a version of r ead that continues reading until the
requested number of bytes is read or an error occurs. Program 4.7 shows an implementation of
r eadbl ock. The readbl ock function is part of the restart library. It is especially useful for
reading structures.

Program 4.7 readbl ock. c

A function that reads a specific number of bytes.

#i ncl ude <errno. h>
#i ncl ude <uni std. h>

ssize_t readblock(int fd, void *buf, size_ t size) {
char *buf p;



si ze_t bytestoread;
ssize t bytesread;
size_t total bytes;

for (bufp = buf, bytestoread = size, total bytes = 0;
byt estoread > 0;
buf p += bytesread, bytestoread -= bytesread) {
bytesread = read(fd, bufp, bytestoread);
if ((bytesread == 0) && (total bytes == 0))
return O;
if (bytesread == 0) {
errno = ElI NVAL;
return -1;

if ((bytesread) == -1 & (errno != EINTR))
return -1;

if (bytesread == -1)
byt esread = 0;

t ot al bytes += byt esread,

}

return total bytes;

There are only three possibilities for the return value of r eadbl ock. The r eadbl ock function
returns O if an end-of-file occurs before any bytes are read. This happens if the first call to r ead
returns O. If readbl ock is successful, it returns si ze, signifying that the requested number of
bytes was successfully read. Otherwise, r eadbl ock returns —1 and sets err no. If readbl ock
reaches the end-of-file after some, but not all, of the needed bytes have been read, r eadbl ock
returns —1 and sets errno to El NVAL.

Example 4.10

The following code segment can be used to read a pair of integers from an open file descriptor.

struct {
int Xx;
int y;

} point;

if (readblock(fd, &point, sizeof(point)) <= 0)
fprintf(stderr, "Cannot read a point.\n");

Program 4.8 combines r eadbl ock withr _writ e to read a fixed number of bytes from one open
file descriptor and write them to another open file descriptor.

Program 4.8 readw it ebl ock. c

A program that copies a fixed number of bytes from one file descriptor to another.

#i nclude "restart. h"

int readwriteblock(int fronfd, int tofd, char *buf, int size) {



int bytesread;

byt esread = readbl ock(fronfd, buf, size);

if (bytesread != size) [* can only be 0 or -1 */
return bytesread;

return r_wite(tofd, buf, size);

[ Team Lie ] [ rreviovs)
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[ Team LiB ] [« previous]
4.3 Opening and Closing Files

The open function associates a file descriptor (the handle used in the program) with a file or
physical device. The pat h parameter of open points to the pathname of the file or device, and
the of | ag parameter specifies status flags and access modes for the opened file. You must
include a third parameter to specify access permissions if you are creating a file.

SYNOPSI S

#1 ncl ude <fcntl. h>
#i ncl ude <sys/stat. h>

int open(const char *path, int oflag, ...);
POSI X

If successful, open returns a nonnegative integer representing the open file descriptor. If
unsuccessful, open returns —1 and sets err no. The following table lists the mandatory errors for
open.

errno cause

EACCES search permission on component of path prefix denied, or file exists and
permissions specified by of | ag denied, or file does not exist and write

permission on parent directory denied, or O TRUNC specified and write
permission denied

EEXI ST O _CREAT and OEXCL are set and named file already exists

EI NTR signal was caught during open

El SDI R named file is directory and of | ag includes O WRONLY or O_RDWR
ELOCP a loop exists in resolution of pat h

EMFILE OPEN_MAX file descriptors currently open in calling process

ENAMETOOLONG | the length of pat h exceeds PATH_MAX, or a pathname component is longer
than NAMVE_MAX

ENFI LE maximum allowable number of files currently open in system

ENCENT O_CREAT not set and name file does not exist, or O _CREAT is set and either
path prefix does not exist or or pat h is an empty string

ENOSPC directory or file system for new file cannot be expanded, the file does not
exist and O_CREAT is specified
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ENCTDI R a component of the path prefix is not a directory

ENXI O O _NONBLOCK is set, the named file is a FIFO, O WRONLY is set, no process has
file open for reading; file is a special file and device associated with file does
not exist

EOVERFLOW named file is a regular file and size cannot be represented by an object of
type of f _t

ERCFS the named file resides on a read-only file system and one of O WRONLY,
O RDWR, O CREAT (if the file does not exist), or O TRUNC is set in of | ag

Construct the of | ag argument by taking the bitwise OR (] ) of the desired combination of the

access mode and the additional flags. The POSIX values for the access mode flags are
O _RDONLY, O WRONLY and O RDWR. You must specify exactly one of these designating read-only,

write-only or read-write access, respectively.

The additional flags include O APPEND, O CREAT, O EXCL, O _NOCTTY, O _NONBLOCK and

O _TRUNC. The O _APPEND flag causes the file offset to be moved to the end of the file before a
write, allowing you to add to an existing file. In contrast, O TRUNC truncates the length of a
regular file opened for writing to 0. The O _CREAT flag causes a file to be created if it doesn't
already exist. If you include the O CREAT flag, you must also pass a third argument to open to

designate the permissions. If you want to avoid writing over an existing file, use the
combination O CREAT | O _EXCL. This combination returns an error if the file already exists. The

O _NOCTTY flag prevents an opened device from becoming a controlling terminal. Controlling
terminals are discussed in Section 11.5. The O NONBLOCK flag controls whether the open returns
immediately or blocks until the device is ready. Section 4.8 discusses how the O NONBLOCK flag
affects the behavior of r ead and w i t e. Certain POSIX extensions specify additional flags. You
can find the flags in fcnt1 . h.

Example 4.11
The following code segment opens the file / home/ ann/ ny. dat for reading.

int nyfd;
myfd = open("/hone/ann/ ny.dat", O RDONLY);

This code does no error checking.

Exercise 4.12

How can the call to open of Example 4.11 fail?

Answer:

The open function returns —1 if the file doesn't exist, the open call was interrupted by a signal
or the process doesn't have the appropriate access permissions. If your code uses nyfd for a



subsequent read or wri t e operation, the operation fails.

Example 4.13

The following code segment restarts open after a signal occurs.

int nmyfd;
whi l e((nyfd = open("/home/ann/ ny.dat”, O RDONLY)) == -1 &&
errno == EINTR) ;
if (nyfd == -1) /* it was a real error, not a signal */
perror("Failed to open the file");
el se /* continue on */

Exercise 4.14

How would you modify Example 4.13 to open / horre/ ann/ ny. dat for nonblocking read?

Answer:
You would OR the O RDONLY and the O NONBLOCK flags.
nyfd = open("/home/ann/ny.dat", O RDONLY | O _NONBLOCK);

Each file has three classes associated with it: a user (or owner), a group and everybody else
(others). The possible permissions or privileges are read(r), write(w) and execute(x). These
privileges are specified separately for the user, the group and others. When you open a file with
the O_CREAT flag, you must specify the permissions as the third argument to open in a mask of

type node_t.

Historically, the file permissions were laid out in a mask of bits with 1's in designated bit
positions of the mask, signifying that a class had the corresponding privilege. Figure 4.1 shows

an example of a typical layout of such a permission mask. Although numerically coded
permission masks frequently appear in legacy code, you should avoid using numerical values in
your programs.

Figure 4.1. Historical layout of the permissions mask.

- user - = group - others -

r W X r Y X r Y X

POSIX defines symbolic names for masks corresponding to the permission bits so that you can
specify file permissions independently of the implementation. These names are defined in sys/

st at. h. Table 4.1 lists the symbolic names and their meanings. To form the permission mask,



bitwise OR the symbols corresponding to the desired permissions.

Table 4.1. POSIX symbolic names for file permissions.

symbol meaning
S | RUSR read by owner
S_I'WUSR write by owner
S_I XUSR execute by owner
S_I RWKU read, write, execute by owner
S_I RGRP read by group
S_I WeRP write by group
S_I XGRP execute by group
S_I RWKG read, write, execute by group
S_I ROTH read by others
S_I WOTH write by others
S_I XOTH execute by others
S_| RWKO read, write, execute by others
S ISUD set user 1D on execution
S 1SED set group ID on execution

Example 4.15

The following code segment creates a file, i nf 0. dat, in the current directory. If the i nf 0. dat

file already exists, it is overwritten. The new file can be read or written by the user and only
read by everyone else.

int fd;
mode t fdnpde = (S IRUSR| S IWSR | SIRGRP | S IROMH);

if ((fd = open("info.dat", O RDWR | O CREAT, fdnode)) == -1)
perror("Failed to open info.dat");

Program 4.9 copies a source file to a destination file. Both filenames are passed as command-
line arguments. Because the open function for the destination file has O CREAT | O _EXCL, the
file copy fails if that file already exists.



Program 4.9 copyfil emain.c

A program to copy a file.

#1 ncl ude <fcntl. h>

#i ncl ude <stdi o. h>

#i ncl ude <uni std. h>
#i ncl ude <sys/stat. h>
#include "restart.h"

#def i ne READ_FLAGS O RDONLY
#def i ne WRI TE_FLAGS (O WRONLY | O CREAT | O EXCL)
#define WRI TE_PERVMS (S_IRUSR | S_IWISR)

int main(int argc, char *argv[]) {
i nt bytes;
int fronfd, tofd,;

if (argc !'= 3) {
fprintf(stderr, "Usage: % fromfile to file\n", argv[O0]);

return 1;

}

if ((fronfd = open(argv[1l], READ FLAGS)) == -1) {
perror("Failed to open input file");
return 1;

}

if ((tofd = open(argv[2], WRI TE FLAGS, WRITE PERM5)) == -1) {
perror("Failed to create output file");
return 1;

}

bytes = copyfile(fronfd, tofd);
printf("%l bytes copied from% to %\n", bytes, argv[1l], argv[2]);
return O; /* the return closes the files */

Program 4.9 returns immediately after performing the copy and does not explicitly close the
file. The return from mai n causes the necessary cleanup to release the resources associated

with open files. In general, however, you should be careful to release open file descriptors by
calling cl ose.

The cl ose function has a single parameter, fil des, representing the open file whose resources
are to be released.

SYNOPSI S

#i ncl ude <uni std. h>

int close(int fildes);
POSI X



If successful, cl ose returns 0. If unsuccessful, cl ose returns —1 and sets errno. The following
table lists the mandatory errors for cl ose.

errno cause
EBADF fildes is not a valid file descriptor
EI NTR the cl ose function was interrupted by a signal

Program 4.10 shows an r _cl ose function that restarts itself after interruption by a signal. Its
prototype is in the header file restart. h.

Program 4.10 r _close.c
The r _cl ose. ¢ function is similar to cl ose except that it restarts itself if interrupted by a signal.

#i ncl ude <errno. h>
#i ncl ude <uni std. h>

int r_close(int fd) {
int retval;

while (retval = close(fd), retval == -1 & errno == EINIR) ;
return retval;

[ Team Lie ] [ rreviovs)



file:///D|/Tutoriales%20&%20Programacion/Prep%20Finales/XxX/Prentice%20Hall%20-%20Unix%20Systems%20Programming%202nd%20Ed/NFO/lib.html

[ Team LiB ] [0 memene] [sEs 0]

4.4 The sel ect Function

The handling of 1/0 from multiple sources is an important problem that arises in many different
forms. For example, a program may want to overlap terminal 1/0 with reading input from a disk
or with printing. Another example occurs when a program expects input from two different
sources, but it doesn't know which input will be available first. If the program tries to read from
source A, and in fact, input was only available from source B, the program blocks. To solve this
problem, we need to block until input from either source becomes available. Blocking until at
least one member of a set of conditions becomes true is called OR synchronization. The condition
for the case described is "input available™ on a descriptor.

One method of monitoring multiple file descriptors is to use a separate process for each one.
Program 4.11 takes two command-line arguments, the names of two files to monitor. The parent
process opens both files before creating the child process. The parent monitors the first file
descriptor, and the child monitors the second. Each process echoes the contents of its file to
standard output. If two named pipes are monitored, output appears as input becomes available.

Program 4.11 nonitorfork.c

A program that monitors two files by forking a child process.

#i ncl ude <errno. h>
#i ncl ude <fcntl. h>
#i ncl ude <stdio. h>
#i ncl ude <string. h>
#i ncl ude <uni std. h>
#i nclude "restart.h"

int main(int argc, char *argv[]) {
i nt bytesread;
int childpid;
int fd, fdl, fd2;

if (argc '= 3) {
fprintf(stderr, "Usage: % filel file2\n", argv[O0]);

return 1;

}

if ((fdl = open(argv[1l], O RDONLY)) == -1) {
fprintf(stderr, "Failed to open file %:%\n", argv[1l], strerror(errno));
return 1;

}

if ((fd2 = open(argv[2], ORDONLY)) == -1) {
fprintf(stderr, "Failed to open file %:%\n", argv[2], strerror(errno));
return 1;

}

if ((childpid = fork()) == -1) {
perror("Failed to create child process");
return 1;

}

if (childpid > 0) /* parent code */
fd = fdil;

el se
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fd = fd2;
byt esread = copyfile(fd, STDOUT_FI LENO) ;
fprintf(stderr, "Bytes read: %l\n", bytesread);
return O;

While using separate processes to monitor two file descriptors can be useful, the two processes
have separate address spaces and so it is difficult for them to interact.

Exercise 4.16

How would you modify Program 4.11 so that it prints the total number of bytes read from the
two files?

Answer:

Set up some form of interprocess communication before creating the child. For example, the
parent process could create a pipe and the child could send its byte count to the pipe when it has
finished. After the parent has processed its file, the parent could wait for the child and read the
byte count from the pipe.

The sel ect call provides a method of monitoring file descriptors from a single process. It can

monitor for three possible conditions—a read can be done without blocking, a write can be done
without blocking, or a file descriptor has error conditions pending. Older versions of UNIX defined
the sel ect function in sys/ ti nme. h, but the POSIX standard now uses sys/ sel ect . h.

The nf ds parameter of sel ect gives the range of file descriptors to be monitored. The value of
nf ds must be at least one greater than the largest file descriptor to be checked. The r eadf ds
parameter specifies the set of descriptors to be monitored for reading. Similarly, wri t ef ds
specifies the set of descriptors to be monitored for writing, and er r or f ds specifies the file
descriptors to be monitored for error conditions. The descriptor sets are of type fd_set . Any of
these parameters may be NULL, in which case sel ect does not monitor the descriptor for the
corresponding event. The last parameter is a timeout value that forces a return from sel ect
after a certain period of time has elapsed, even if no descriptors are ready. When ti nmeout is
NULL, sel ect may block indefinitely.

SYNCPSI S

#i ncl ude <sys/sel ect. h>

int select(int nfds, fd set *restrict readfds,
fd set *restrict witefds, fd_set *restrict errorfds,
struct tineval *restrict tineout);

void FD CLR(int fd, fd set *fdset);
int FD ISSET(int fd, fd _set *fdset);
void FD SET(int fd, fd set *fdset);
void FD ZERQ(fd_set *fdset);

PCSI X

On successful return, sel ect clears all the descriptors in each of r eadf ds, wi t ef ds and



errorfds except those descriptors that are ready. If successful, the sel ect function returns the
number of file descriptors that are ready. If unsuccessful, sel ect returns —1 and sets errno. The
following table lists the mandatory errors for sel ect .

errno cause

EBADF | one or more file descriptor sets specified an invalid file descriptor

EINTR | the sel ect was interrupted by a signal before timeout or selected event occurred

EI NVAL | an invalid timeout interval was specified, or nf ds is less than O or greater than
FD SETSI ZE

Historically, systems implemented the descriptor set as an integer bit mask, but that
implementation does not work for more than 32 file descriptors on most systems. The descriptor
sets are now usually represented by bit fields in arrays of integers. Use the macros FD_SET,

FD CLR, FD_I SSET and FD_ZERO to manipulate the descriptor sets in an implementation-
independent way as demonstrated in Program 4.12.

The FD_SET macro sets the bit in *f dset corresponding to the f d file descriptor, and the FD_CLR
macro clears the corresponding bit. The FD_ZERO macro clears all the bits in *f dset . Use these
three macros to set up descriptor masks before calling sel ect . Use the FD_| SSET macro after
sel ect returns, to test whether the bit corresponding to the file descriptor f d is set in the mask.

Program 4.12 whi chi sready. c

A function that blocks until one of two file descriptors is ready.

#i ncl ude <errno. h>
#i ncl ude <string. h>
#i ncl ude <sys/sel ect. h>

i nt whichisready(int fdil, int fd2) {
i nt maxfd;
i nt nfds;
fd _set readset;

if ((fdl < 0) || (fdl >= FD SETSIZE) ||
I (

(fd2 < 0) fd2 >= FD SETSI ZE)) {
errno = ElI NVAL;
return -1;

}
maxfd = (fdl > fd2) ? fdl : fd2;
FD _ZERQ( &r eadset) ;
FD SET(fdl, &readset);
FD _SET(fd2, &readset);
nfds = sel ect (maxfd+1, &readset, NULL, NULL, NULL);
if (nfds == -1)
return -1,
if (FD_I SSET(fdl, &readset))



return fdi;
if (FD_I SSET(fd2, &readset))

return fd2;
errno = ElI NVAL;
return -1;

The function whi chi sready blocks until at least one of the two file descriptors passed as

parameters is ready for reading and returns that file descriptor. If both are ready, it returns the
first file descriptor. If unsuccessful, whi chi sready returns —1 and sets er r no.

Program 4.13 copy2files.c

A function that uses sel ect to do two concurrent file copies.

#i ncl ude <errno. h>

#i ncl ude <stdio. h>

#i ncl ude <string. h>
#i ncl ude <sys/tinme. h>
#include "restart. h"

int copy2files(int fronfdl, int tofdl, int fronfd2, int tofd2) {
i nt bytesread;
i nt maxfd;
int num
fd set readset;
int total bytes = O;

if ((fronfdl < O0) || (fronfdl >= FD _SETSI ZE) ||

(tofdl < 0) || (tofdl >= FD _SETSI ZE) ||

(fronfd2 < 0) || (fronfd2 >= FD _SETSI ZE) ||

(tofd2 < 0) || (tofd2 >= FD _SETSI ZE))

return O;
mexfd = fronfdl; [* find the biggest fd for select */
if (fronfd2 > maxfd)

maxfd = fronfd2;

for (5 ;) {
FD _ZERQ( &r eadset) ;
FD SET(fronfdl, &readset);
FD SET(fronfd2, &readset);

if (((num = sel ect(maxfd+l, & eadset, NULL, NULL, NULL)) == -1) &&
(errno == EINTR))
conti nue;

if (num== -1)

return total bytes;
if (FD_ISSET(fronfdl, &readset)) {
bytesread = readwite(fronfdl, tofdl);
if (bytesread <= 0)
br eak;
tot al bytes += byt esread,

if (FD_I SSET(fronfd2, &readset)) {
bytesread = readwite(fronfd2, tofd2);
if (bytesread <= 0)



br eak;
tot al byt es += byt esread,

}
}

return total bytes;

The whi chi sready function of Program 4.12 is problematic because it always chooses f d1 if both
fdl and f d2 are ready. The copy2fi | es function copies bytes from fr onf d1 to t of d1 and from
fronf d2 to t of d2 without making any assumptions about the order in which the bytes become

available in the two directions. The function returns if either copy encounters an error or end-of-
file.

The copy2fi | es function of Program 4.13 can be generalized to monitor multiple file descriptors
for input. Such a problem might be encountered by a command processor that was monitoring
requests from different terminals. The program cannot predict which source will produce the next
input, so it must use a method such as sel ect . In addition, the set of monitored descriptors is
dynamic—the program must remove a source from the monitoring set if an error condition arises
on that source’'s descriptor.

The noni t or sel ect function in Program 4.14 monitors an array of open file descriptors f d. When
input is available on file descriptor fd[i ], the program reads information from fd[i] and calls
docommand. The noni t or sel ect function has two parameters: an array of open file descriptors
and the number of file descriptors in the array. The function restarts the sel ect or r ead if either
is interrupted by a signal. When r ead encounters other types of errors or an end-of-file,

nmoni t or sel ect closes the corresponding descriptor and removes it from the monitoring set. The
nmoni t or sel ect function returns when all descriptors have indicated an error or end-of-file.

The wai t f dti med function in Program 4.15 takes two parameters: a file descriptor and an ending
time. It uses getti neout to calculate the timeout interval from the end time and the current time
obtained by a call to get ti neof day. (See Section 9.1.3.) If sel ect returns prematurely because
of a signal, wai t f dt i med recalculates the timeout and calls sel ect again. The standard does not
say anything about the value of the ti meout parameter or the f d_set parameters of sel ect
when it is interrupted by a signal, so we reset them inside the whi | e loop.

You can use the sel ect timeout feature to implement a timed read operation, as shown in
Program 4.16. The r eadt i med function behaves like r ead except that it takes an additional
parameter, seconds, specifying a timeout in seconds. The r eadt i med function returns —1 with
errno set to ETI ME if no input is available in the next seconds interval. If interrupted by a signal,
r eadt i med restarts with the remaining time. Most of the complication comes from the need to
restart sel ect with the remaining time when sel ect is interrupted by a signal. The sel ect

function does not provide a direct way of determining the time remaining in this case. The
readti med function in Program 4.16 sets the end time for the timeout by calling

add2currenttine in Program 4.15. It uses this value when calling wai t f dti ned from Program
4.15 to wait until the file descriptor can be read or the time given has occurred.

Program 4.14 nonitorsel ect.c

A function to monitor file descriptors using sel ect .



#i ncl ude <errno. h>

#i ncl ude <string. h>

#1 ncl ude <uni std. h>

#i ncl ude <sys/sel ect. h>

#i ncl ude <sys/types. h>

#i nclude "restart.h"
#def i ne BUFSI ZE 1024

voi d docommand(char *, int);

void nmonitorselect(int fd[], int nunfds) {
char buf [ BUFSI ZE] ;
i nt bytesread;
int i;
i nt maxfd;
i nt numow, nunteady;
fd _set readset;

maxfd = 0; /* set up the range of descriptors to nonitor
for (i =0; i < nunfds; i++) {
if ((fd[i] <0) || (fd[i] >= FD_SETSI ZE))
return;
if (fd[i] >= maxfd)
maxfd = fd[i] + 1;

}
numow = nunf ds;
whil e (nummow > 0) { /* continue nonitoring until all are done
FD ZERQ( &r eadset) ; /* set up the file descriptor nask
for (i =0; I < nunfds; i++)
if (fd[i] >= 0)
FD SET(fd[i], &readset);
nuntr eady = sel ect (nmaxfd, & eadset, NULL, NULL, NULL); /* which ready?
if ((numready == -1) && (errno == EINTR)) /* interrupted by signa
conti nue;
else if (nunready == -1) /* real select error
br eak;
for (i =0; (i < nunfds) && (nunready > 0); i++) { /* read and process
if (fd[i] == -1) /* this descriptor is done
conti nue;
if (FD_ISSET(fd[i], &readset)) { /* this descriptor is ready
bytesread = r_read(fd[i], buf, BUFSIZE)
nunrt eady- - ;
if (bytesread > 0)
docommand( buf, bytesread);
el se { /* error occurred on this descriptor, close it
r_close(fd[i]);
fd[i] = -1;
NUMOW- - ;
}
}
}
}

for (i = 0; i < nunfds; i++)
if (fd[i] >= 0)
r_close(fd[i]);

*/

*/
*/

*/
*/

*/

*/
*/

*/



Program 4.15 wai tfdtimed. c

A function that waits for a given time for input to be available from an open file descriptor.

#i ncl ude <errno. h>

#i ncl ude <string. h>

#i ncl ude <sys/sel ect. h>

#i ncl ude <sys/tinme. h>
#include "restart.h"
#define M LLI ON 1000000L
#define D_M LLI ON 1000000. 0

static int gettinmeout(struct tineval end,
struct tinmeval *tinmeoutp) {

gettineofday(tineoutp, NULL);
ti meoutp->tv_sec = end.tv_sec - tinmeoutp->tv_sec;
ti meoutp->tv_usec = end.tv_usec - tinmeoutp->tv_usec;
if (timeoutp->tv_usec >= MLLION) {

ti meout p->tv_sec++;

ti meoutp->tv_usec -= MLLION

if (timeoutp->tv_usec < 0) {
ti meout p->tv_sec--;
ti meout p->tv_usec += M LLION;

if ((tinmeoutp->tv_sec < 0) ||
((timeoutp->tv_sec == 0) && (tinmeoutp->tv_usec == 0))) {
errno = ETI Mg;
return -1;

}

return O;

}

struct tineval add2currenttine(doubl e seconds) {
struct tinmeval newine;

get ti meof day(&newti me, NULL);
newtine.tv_sec += (int)seconds;
newtine.tv_usec += (int)((seconds - (int)seconds)*D MLLION + 0.5);
if (newtine.tv_usec >= MLLION) {
newtime.tv_sec+t;
newtinme.tv_usec -= MLLION;
}

return newti me;

}

int waitfdtined(int fd, struct tinmeval end) {
fd _set readset;
int retval;
struct tinmeval tinmeout;

if ((fd <0) || (fd >= FD_SETSIZE)) {
errno = ElI NVAL;
return -1;

}
FD_ZERQ( &r eadset) ;



FD SET(fd, &readset);

if (gettineout(end, &inmeout) == -1)
return -1;
while (((retval = select(fd + 1, & eadset, NULL, NULL, &timeout)) == -1)
&% (errno == EINTR)) {
if (gettimeout(end, &tinmeout) == -1)
return -1;

FD _ZERQ( &r eadset) ;
FD SET(fd, &readset);

}

if (retval == 0) {
errno = ETI ME;
return -1;

}

if (retval == -1)
return -1;

return O;

Program 4.16 readtined. c

A function do a timed read from an open file descriptor.

#i ncl ude <sys/tinme. h>
#include "restart.h"

ssize_t readtined(int fd, void *buf, size_t nbyte, double seconds) {
struct tineval tinedone;

ti medone = add2currenttinme(seconds);

if (waitfdtinmed(fd, tinmedone) == -1)
return (ssize t)(-1);

return r_read(fd, buf, nbyte);

Exercise 4.17

Why is it necessary to test whether newti nme. t v_usec is greater than or equal to a million when it
is set from the fractional part of seconds? What are the consequences of having that value equal
to one million?

Answer:

Since the value is rounded to the nearest microsecond, a fraction such as 0.999999999 might
round to one million when multiplied by M LLI ON. The action of functions that use st ruct

ti meval values are not specified when the t v_usec field is not strictly less than one million.

Exercise 4.18

One way to simplify Program 4.15 is to just restart the sel ect with the same timeout whenever
it is interrupted by a signal. What is wrong with this?



Answer:

If your program receives signals regularly and the time between signals is smaller than the
timeout interval, wai t f dti med never times out.

The 2000 version of POSIX introduced a new version of sel ect called psel ect. The psel ect
function is identical to the sel ect function, but it uses a more precise timeout structure, st ruct
ti mespec, and allows for the blocking or unblocking of signals while it is waiting for 1/0 to be
available. The struct tinespec structure is discussed in Section 9.1.4. However, at the time of
writing, (March 2003), none of the our test operating systems supported psel ect .
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4.5 The poi1 Function

The pol | function is similar to sel ect, but it organizes the information by file descriptor rather

than by type of condition. That is, the possible events for one file descriptor are stored in a
struct pollfd. In contrast, sel ect organizes information by the type of event and has

separate descriptor masks for read, write and error conditions. The pol | function is part of the
POSIX:XSI Extension and has its origins in UNIX System V.

The pol | function takes three parameters: fds, nfds and ti meout. The fds is an array of
struct pollfd, representing the monitoring information for the file descriptors. The nf ds
parameter gives the number of descriptors to be monitored. The ti neout value is the time in
milliseconds that the pol | should wait without receiving an event before returning. If the

ti meout value is —1, pol | never times out. If integers are 32 bits, the maximum timeout period
is about 30 minutes.

SYNOPSI S

#i ncl ude <poll.h>

int poll(struct pollfd fds[], nfds_t nfds, int tineout);
PGsSI X: XSl

The pol | function returns O if it times out. If successful, pol | returns the number of descriptors
that have events. If unsuccessful, pol | returns —1 and sets er r no. The following table lists the
mandatory errors for pol | .

errno cause

EAGAI'N | allocation of internal data structures failed, but a subsequent request may succeed

EINTR | a signal was caught during pol |

EINVAL | nf ds is greater than OPEN_MAX

The struct pol | fd structure includes the following members.

int fd; /* file descriptor */
short events; /* requested events */
short revents; /* returned events */

The f d is the file descriptor number, and the event s and revent s are constructed by taking the
logical OR of flags representing the various events listed in Table 4.2. Set event s to contain the
events to monitor; pol | fills in the r event s with the events that have occurred. The pol |
function sets the POLLHUP, POLLERR and POLLNVAL flags in r event s to reflect the existence of
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the associated conditions. You do not need to set the corresponding bits in event s for these. If
fd is less than zero, the event s field is ignored and r event s is set to zero. The standard does

not specify how end-of-file is to be handled. End-of-file can either be communicated by an
revent s flag of POLLHUP or a normal read of O bytes. It is possible for POLLHUP to be set even if

PCLLI N or POLLRDNORM indicates that there is still data to read. Therefore, normal reading
should be handled before error checking.

Table 4.2. Values of the event flags for the pol | function.

event flag meaning
POLLIN read other than high priority data without blocking
POLLRDNORM read normal data without blocking
POLLRDBAND read priority data without blocking
POLLPRI read high-priority data without blocking
POLLOUT write normal data without blocking
POLLVRNORM same as POLLOUT
POLLERR error occurred on the descriptor
POLLHUP device has been disconnected
POLLNVAL file descriptor invalid

Program 4.17 implements a function to process commands from multiple file descriptors by
using the pol | function. Compare the implementation with that of Program 4.14. The sel ect

call modifies the file descriptor sets that are passed to it, and the program must reset these
descriptor sets each time it calls sel ect . The pol | function uses separate variables for input

and return values, so it is not necessary to reset the list of monitored descriptors after each call
to pol | . The pol | function has a number of advantages. The masks do not need to be reset

after each call. Unlike sel ect, the pol | function treats errors as events that cause pol | to
return. The ti neout parameter is easier to use, although its range is limited. Finally, pol | does
not need a nmax_f d argument.

Program 4.17 nonitorpoll.c

A function to monitor an array of file descriptors by using pol | .

#i ncl ude <errno. h>
#i ncl ude <poll.h>
#i ncl ude <stdlib. h>
#i ncl ude <stropts. h>



#i ncl ude <uni std. h>
#include "restart. h"
#defi ne BUFSI ZE 1024
voi d doconmand(char *, int);
void nmonitorpoll (int fd[],

char buf [ BUFSI ZE] ;

i nt bytesread,

int i;

i nt numow = 0;

i nt nunready;

struct pollfd *pollfd,

i nt nunfds)

for (i=0; i< nunfds;

if (fd[i] >= 0)
NUMOWH++;

if ((pollfd = (void *)calloc(nunfds,

return;

(i =0; i < nunfds; i++) {

(pollfd + i)->fd = *(fd + i);

(pollfd + i)->events = POLLRDNORM

i ++)

for

}

whil e (nummow > 0) {

/* Continue nonitoring until

{

/[* initialize the polling structure

si zeof (struct pollfd))) NULL)

descriptors done

nuntready = poll (pollfd, nunfds, -1);
if ((nunready == -1) && (errno == EINTR))
conti nue; /* poll interrupted by a signal, try again
else if (nunready == -1) /* real poll error, can't continue
br eak;
for (i =0; i < nunfds &% nunready > 0; i++) {
if ((pollfd + i)->revents) {
if ((pollfd + i)->revents & (POLLRDNORM | PCLLIN) ) {
bytesread = r_read(fd[i], buf, BUFSIZE)
nunr eady- - ;

if (bytesread > 0)
doconmmand( buf ,
el se
bytesread = -1;

byt esread) ;

/[* end of file

} elseif ((pollfd + i)->revents & (POLLERR | POLLHUP))
bytesread = -1;
el se /* descriptor not involved in this round
byt esread = O;
if (bytesread == -1) { /* error occurred, renove descriptor
r_close(fd[i]);
(pollfd + i)->fd = -1
NUMOW- - ;
}
}
}
}
for (i =0; i < nunfds; i++)

r_close(fd[i]);
free(pollfd);

*/

*/

*/
*/

*/

*/

*/
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4.6 File Representation

Files are designated within C programs either by file pointers or by file descriptors. The
standard 1/0 library functions for 1ISO C (f open, fscanf, fprintf, fread, fwite, fcl ose and
so on) use file pointers. The UNIX 1I/0 functions (open, read, wite, cl ose and i octl) use file
descriptors. File pointers and file descriptors provide logical designations called handles for
performing device-independent input and output. The symbolic names for the file pointers that
represent standard input, standard output and standard error are st di n, st dout and stderr,
respectively. These symbolic names are defined in st di 0. h. The symbolic names for the file
descriptors that represent standard input, standard output and standard error are

STDI N_FI LENO, STDOUT_FI LENO and STDERR_FI LENQO, respectively. These symbolic names are
defined in uni st d. h.

Exercise 4.19

Explain the difference between a library function and a system call.

Answer:

The POSIX standard does not make a distinction between library functions and system calls.
Traditionally, a library function is an ordinary function that is placed in a collection of functions
called a library, usually because it is useful, widely used or part of a specification, such as C. A
system call is a request to the operating system for service. It involves a trap to the operating
system and often a context switch. System calls are associated with particular operating
systems. Many library functions such as read and wri t e are, in fact, jackets for system calls.

That is, they reformat the arguments in the appropriate system-dependent form and then call
the underlying system call to perform the actual operation.

Although the implementation details differ, versions of UNIX follow a similar implementation
model for handling file descriptors and file pointers within a process. The remainder of this
section provides a schematic model of how file descriptors (UNIX 1/0) and file pointers (ISO C I/
0O) work. We use this model to explain redirection (Section 4.7) and inheritance (Section 4.6.3,

Section 6.2 and Chapter 7).

4.6.1 File descriptors

The open function associates a file or physical device with the logical handle used in the
program. The file or physical device is specified by a character string (e.g., / hone/ j ohns/ ny.
dat or /dev/tty). The handle is an integer that can be thought of as an index into a file

descriptor table that is specific to a process. It contains an entry for each open file in the
process. The file descriptor table is part of the process user area, but the program cannot
access it except through functions using the file descriptor.

Example 4.20

Figure 4.2 shows a schematic of the file descriptor table after a program executes the following.
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myfd = open("/honme/ann/ ny.dat", O RDONLY);

The open function creates an entry in the file descriptor table that points to an entry in the
system file table. The open function returns the value 3, specifying that the file descriptor entry
is in position three of the process file descriptor table.

Figure 4.2. Schematic diagram of the relationship between the file
descriptor table, the system file table and the in-memory inode table in
a UNIX-like operating system after the code of Example 4.20 executes.

file descriptor table | system file table in-memory inode table
[0] :

[1] ; | B

T entry for

[2] / /home /ann/my . dat

my£d
KN

USEr program area | kernel area

N T ——— L L I - e L L L L L L L L L e e L L L L L
i

The system file table, which is shared by all the processes in the system, has an entry for each
active open. Each system file table entry contains the file offset, an indication of the access

mode (i.e., read, write or read-write) and a count of the number of file descriptor table entries
pointing to it.

Several system file table entries may correspond to the same physical file. Each of these entries
points to the same entry in the in-memory inode table. The in-memory inode table contains an
entry for each active file in the system. When a program opens a particular physical file that is
not currently open, the call creates an entry in this inode table for that file. Figure 4.2 shows

that the file / hone/ ann/ ny. dat had been opened before the code of Example 4.20 because

there are two entries in the system file table with pointers to the entry in the inode table. (The
label B designates the earlier pointer in the figure.)

Exercise 4.21



What happens when the process whose file descriptor table is shown in Figure 4.2 executes the
cl ose(mnyfd) function?

Answer:

The operating system deletes the fourth entry in the file descriptor table and the corresponding
entry in the system file table. (See Section 4.6.3 for a more complete discussion.) If the

operating system also deleted the inode table entry, it would leave pointer B hanging in the
system file table. Therefore, the inode table entry must have a count of the system file table
entries that are pointing to it. When a process executes the cl ose function, the operating
system decrements the count in the inode entry. If the inode entry has a O count, the operating
system deletes the inode entry from memory. (The operating system might not actually delete
the entry right away on the chance that it will be accessed again in the immediate future.)

Exercise 4.22

The system file table entry contains an offset that gives the current position in the file. If two
processes have each opened a file for reading, each process has its own offset into the file and
reads the entire file independently of the other process. What happens if each process opens
the same file for write? What would happen if the file offset were stored in the inode table
instead of the system file table?

Answer:

The writes are independent of each other. Each user can write over what the other user has
written because of the separate file offsets for each process. On the other hand, if the offsets
were stored in the inode table rather than in the system file table, the writes from different
active opens would be consecutive. Also, the processes that had opened a file for reading would
only read parts of the file because the file offset they were using could be updated by other
processes.

Exercise 4.23

Suppose a process opens a file for reading and then forks a child process. Both the parent and
child can read from the file. How are reads by these two processes related? What about writes?

Answer:

The child receives a copy of the parent's file descriptor table at the time of the fork. The

processes share a system file table entry and therefore also share the file offset. The two
processes read different parts of the file. If no other processes have the file open, writes
append to the end of the file and no data is lost on writes. Subsection 4.6.3 covers this

situation in more detail.

4.6.2 File pointers and buffering

The ISO C standard 1/0 library uses file pointers rather than file descriptors as handles for 1/0.
A file pointer points to a data structure called a FI LE structure in the user area of the process.



Example 4.24

The following code segment opens the file / honme/ ann/ ny. dat for output and then writes a
string to the file.

FI LE *nyf p;

if ((nyfp = fopen("/hone/ann/ny.dat", "w')) == NULL)
perror("Failed to open /hone/ann/ nmy.dat");

el se
fprintf(myfp, "This is a test");

Figure 4.3 shows a schematic of the FI LE structure allocated by the f open call of Example 4.24.
The FI LE structure contains a buffer and a file descriptor value. The file descriptor value is the

index of the entry in the file descriptor table that is actually used to output the file to disk. In
some sense the file pointer is a handle to a handle.

Figure 4.3. Schematic handling of a file pointer after fopen.
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What happens when the program calls f pri nt f ? The result depends on the type of file that was
opened. Disk files are usually fully buffered, meaning that the f pri ntf does not actually write
the This is a test message to disk, but instead writes the bytes to a buffer in the FlI LE structure.
When the buffer fills, the 1/0 subsystem calls wri t e with the file descriptor, as in the previous
section. The delay between the time when a program executes f pri ntf and the time when the

writing actually occurs may have interesting consequences, especially if the program crashes.
Buffered data is sometimes lost on system crashes, so it is even possible for a program to



appear to complete normally but its disk output could be incomplete.

How can a program avoid the effects of buffering? An f f | ush call forces whatever has been
buffered in the FI LE structure to be written out. A program can also call set vbuf to disable
buffering.

Terminal 1/0 works a little differently. Files associated with terminals are line buffered rather
than fully buffered (except for standard error, which by default, is not buffered). On output, line
buffering means that the line is not written out until the buffer is full or until a newline symbol
is encountered.

Exercise 4.25 bufferout.c

How does the output appear when the following program executes?

#i ncl ude <stdi o. h>

int main(void) {
fprintf(stdout,
fprintf(stderr, "

a
a S been witten\n");
fprintf(stdout, "b"
b
\

o~ o~
Q -

~ Q@ -

fprintf(stderr,
fprintf(stdout, "
return O;

s been witten\n");

Answer:

The messages written to standard error appear before the 'a' and ' b' because standard
output is line buffered, whereas standard error is not buffered.

Exercise 4.26 bufferinout.c

How does the output appear when the following program executes?

#i ncl ude <stdi o. h>

int main(void) {
int i;
fprintf(stdout,
scanf("%d", & );
fprintf(stderr, "a has been witten\n");
fprintf(stdout, "b");
fprintf(stderr, "b has been witten\n");
fprintf(stdout, "\n");
return O;

a");

Answer:



The scanf function flushes the buffer for st dout, so ' a' is displayed before the number is read
in. After the number has been entered, ' b' still appears after the b has been written
message.

The issue of buffering is more subtle than the previous discussion might lead you to believe. If
a program that uses file pointers for a buffered device crashes, the last partial buffer created
from the f printf calls may never be written out. When the buffer is full, a wi t e operation is
performed. Completion of a wri t e operation does not mean that the data actually made it to
disk. In fact, the operating system copies the data to a system buffer cache. Periodically, the
operating system writes these dirty blocks to disk. If the operating system crashes before it
writes the block to disk, the program still loses the data. Presumably, a system crash is less
likely to happen than an individual program crash.

4.6.3 Inheritance of file descriptors

When f or k creates a child, the child inherits a copy of most of the parent's environment and

context, including the signal state, the scheduling parameters and the file descriptor table. The
implications of inheritance are not always obvious. Because children receive a copy of their
parent's file descriptor table at the time of the fork, the parent and children share the same file
offsets for files that were opened by the parent prior to the fork.

Example 4.27 openfork.c

In the following program, the child inherits the file descriptor for nmy. dat . Each process reads
and outputs one character from the file.

#incl ude <fcntl. h>

#i ncl ude <stdio. h>

#i ncl ude <unistd. h>
#i ncl ude <sys/stat. h>

int main(void) {

char ¢ = '!1";
int nyfd;
if ((nyfd = open("ny.dat", O RDONLY)) == -1) {
perror("Failed to open file");
return 1;
}
if (fork() == -1) {
perror("Failed to fork");
return 1;

}

read(nyfd, &c, 1);

printf("Process %d got %\n", (long)getpid(), c);
return O;

Figure 4.4 shows the parent and child file descriptor tables for Example 4.27. The file descriptor

table entries of the two processes point to the same entry in the system file table. The parent
and child therefore share the file offset, which is stored in the system file table.




Figure 4.4. If the parent opens ny. dat before forking, both parent and
child share the system file table entry.

parent's file descriptor table system file table (SFT)
(0] A (SFT)
(1] B(SFT) _ A
s C(SFT) B
(3] D (5FT) - C
[4] D (my.dat)

child’s file descriptor table

(01 A (SFT) -
(1] B (SFT)
(21 C(5FT) -
(3] D (SFT)
[&]

Exercise 4.28

Suppose the first few bytes in the file my. dat are abcdef g. What output would be generated by
Example 4.27?

Answer:

Since the two processes share the file offset, the first one to read gets a and the second one to
read gets b. Two lines are generated in the following form.

Process nnn got a
Process mmm got b



In theory, the lines could be output in either order but most likely would appear in the order
shown.

Exercise 4.29

When a program closes a file, the entry in the file descriptor table is freed. What about the
corresponding entry in the system file table?

Answer:

The system file table entry can only be freed if no more file descriptor table entries are pointing
to it. For this reason, each system file table entry contains a count of the number of file
descriptor table entries that are pointing to it. When a process closes a file, the operating
system decrements the count and deletes the entry only when the count becomes O.

Exercise 4.30

How does f or k affect the system file table?

Answer:

The system file table is in system space and is not duplicated by f or k. However, each entry in

the system file table keeps a count of the number of file descriptor table entries pointing to it.
These counts must be adjusted to reflect the new file descriptor table created for the child.

Example 4.31 forkopen.c

In the following program, the parent and child each open ny. dat for reading, read one
character, and output that character.

#1 nclude <fcntl. h>

#i ncl ude <stdio. h>

#i ncl ude <uni std. h>
#i ncl ude <sys/stat. h>

int main(void) {

char ¢ = "1";
int nyfd;
if (fork() == -1) {
perror("Failed to fork");
return 1;
}
if ((nmyfd = open("ny.dat”, O RDONLY)) == -1) {
perror("Failed to open file");
return 1;
}

read(nyfd, &c, 1);
printf("Process %d got %\n", (long)getpid(), c);
return O;



Figure 4.5 shows the file descriptor tables for Example 4.31. The file descriptor table entries
corresponding to ny. dat point to different system file table entries. Consequently, the parent
and child do not share the file offset. The child does not inherit the file descriptor, because each
process opens the file after the fork and each open creates a new entry in the system file table.
The parent and child still share system file table entries for standard input, standard output and
standard error.

Figure 4.5. If the parent and child open ny. dat after the fork call, their
file descriptor table entries point to different system file table entries.

parent's file descriptor table system file table (SFT)

" A (SFT) _

(11 B (5FT) - A

191 C(SFTy

(3] D (SFT) - C

[4] D (my.dat )

E (my.dat )

child's file descriptor table

o A (SFT) _
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- E (SFT) _

(4]

Exercise 4.32

Suppose the first few bytes in the file my. dat are abcdef g. What output would be generated by
Example 4.31?




Answer:

Since the two processes use different file offsets, each process reads the first byte of the file.
Two lines are generated in the following form.

Process nnn got a
Process nmm got a

Exercise 4.33 fileiofork.c

What output would be generated by the following program?

#i ncl ude <stdi o. h>
#i ncl ude <uni std. h>

int main(void) {
printf("This is ny output.");
fork();
return O;

Answer:

Because of buffering, the output of pri ntf is likely to be written to the buffer corresponding to
st dout , but not to the actual output device. Since this buffer is part of the user space, it is
duplicated by f or k. When the parent and the child each terminate, the return from nmai n causes
the buffers to be flushed as part of the cleanup. The output appears as follows.

This is my output.This is my output.

Exercise 4.34 fileioforkline.c

What output would be generated by the following program?

#i ncl ude <stdi o. h>
#i ncl ude <uni std. h>

int main(void) {
printf("This is nmy output.\n");
fork();
return O;

Answer:

The buffering of standard output is usually line buffering. This means that the buffer is flushed
when it contains a newline. Since in this case a newline is output, the buffer will probably be
flushed before the f or k and only one line of output will appear.
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4.7 Filters and Redirection

UNIX provides a large number of utilities that are written as filters. A filter reads from standard
input, performs a transformation, and outputs the result to standard output. Filters write their
error messages to standard error. All of the parameters of a filter are communicated as
command-line arguments. The input data should have no headers or trailers, and a filter should
not require any interaction with the user.

Examples of useful UNIX filters include head, tail , nore, sort, grep and awk. The cat

command takes a list of filenames as command-line arguments, reads each of the files in
succession, and echoes the contents of each file to standard output. However, if no input file is
specified, cat takes its input from standard input and writes its results to standard output. In

this case, cat behaves like a filter.

Recall that a file descriptor is an index into the file descriptor table of that process. Each entry
in the file descriptor table points to an entry in the system file table, which is created when the
file is opened. A program can modify the file descriptor table entry so that it points to a
different entry in the system file table. This action is known as redirection. Most shells interpret
the greater than character (>) on the command line as redirection of standard output and the

less than character (<) as redirection of standard input. (Associate > with output by picturing it
as an arrow pointing in the direction of the output file.)

Example 4.35

The cat command with no command-line arguments reads from standard input and echoes to
standard output. The following command redirects standard output to ny. fil e with >.

cat > ny.file

The cat command of Example 4.35 gathers what is typed from the keyboard into the file nmy.
file. Figure 4.6 depicts the file descriptor table for Example 4.35. Before redirection, entry [ 1]

of the file descriptor table points to a system file table entry corresponding to the usual
standard output device. After the redirection, entry [ 1] points to a system file table entry for

ny.file.

Figure 4.6. Status of the file descriptor table before and after
redirection for the process that is executing cat > ny.file.
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The redirection of standard output in cat > ny. fil e occurs because the shell changes the

standard output entry of the file descriptor table (a pointer to the system file table) to reference
a system file table entry associated with ny. fil e. To accomplish this redirection in a C

program, first open ny. fil e to establish an appropriate entry in the system file table. After the
open operation, copy the pointer to ny. fi |l e into the entry for standard output by executing the
dup2 function. Then, call cl ose to eliminate the extra file descriptor table entry for ny. fil e.

The dup?2 function takes two parameters, fil des and fil des2. It closes entry fi | des2 of the
file descriptor table if it was open and then copies the pointer of entry fi | des into entry

fil des2.

SYNOPSI S

#i ncl ude <uni std. h>
int dup2(int fildes, int fildes2);
PGCSI X

On success, dup?2 returns the file descriptor value that was duplicated. On failure, dup2 returns —
1 and sets errno. The following table lists the mandatory errors for dup?2.

errno cause

EBADF | fi| des is not a valid open file descriptor, or fi | des2 is negative or greater than or
equal to OPEN_IAX




EINTR | dup2 was interrupted by a signal

Example 4.36

Program 4.18 redirects standard output to the file my. fi |l e and then appends a short message

to that file.

Figure 4.7 shows the effect of the redirection on the file descriptor table of Program 4.18. The
open function causes the operating system to create a new entry in the system file table and to
set entry [ 3] of the file descriptor table to point to this entry. The dup2 function closes the

descriptor corresponding to the second parameter (standard output) and then copies the entry
corresponding to the first parameter (f d) into the entry corresponding to the second parameter

(STDOUT_FI LENO). From that point on in the program, a write to standard output goes to ny.

file.

Figure 4.7. Status of the file descriptor table during the execution of

Program 4.18.

after open after dup2 after close

file descriptor table file descriptor table file descriptor table
o) standard input (o1 standard input o1 standard input |
11 standard output [y write to my . file (1 write fo my.file |
(21| standard error 121 standard error | (21| standard error |
(3l|write to my . file (3)write to my . file |

Program 4.18 redirect.c

A program that redirects standard output to the file ny. fil e.

#i ncl ude
#i ncl ude
#i ncl ude
#1 ncl ude
#i ncl ude

<fcntl. h>
<stdi o. h>
<sys/stat. h>
<uni std. h>
"restart.h"

#defi ne CREATE_FLAGS (O WRONLY | O CREAT | O _APPEND)
#define CREATE_MODE (S IRUSR| S IWJSR | S IRGRP | S_IROTH)

int main(void) {
int fd;

fd =

if (fd

open("ny.file", CREATE FLAGS, CREATE_MODE);

= -1) {

perror("Failed to open ny.file");
return 1;




if (dup2(fd, STDOUT_FILENO == -1) {
perror("Failed to redirect standard output");
return 1;

}

if (r_close(fd) == -1) {
perror("Failed to close the file");
return 1;

}

if (wite(STDOUT_FILENO, "OK', 2) == -1) {
perror("Failed in witing to file");
return 1;

}

return O;

[ Team LiB 1 [rreviovs]
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4.8 File Control

The fcnt| function is a general-purpose function for retrieving and modifying the flags
associated with an open file descriptor. The fi | des argument of f cnt| specifies the descriptor,
and the cnd argument specifies the operation. The fcnt| function may take additional
parameters depending on the value of cnd.

SYNOPSI S

#include <fcntl. h>
#i ncl ude <uni std. h>
#i ncl ude <sys/types. h>

int fentl(int fildes, int cnd, /* arg */ ...);
PCOSI X

The interpretation of the return value of f cnt| depends on the value of the cnd parameter.
However, if unsuccessful, fcnt| returns —1 and sets err no. The following table lists the
mandatory errors for fcntl .

errno cause

EACCES cnd is F_SETLK and locking not allowed

EBADF fil des is not a valid open file descriptor or file is not opened properly for type
of lock

EI NTR cnd is F_SETLKWand function interrupted by a signal

El NVAL cnd is invalid, or cnd is F_DUPFD and ar g is negative or greater than or equal to

OPEN_MAX, or cnd is a locking function and ar g is invalid, or fi | des refers to a
file that does not support locking

EMFILE cnd is F_DUPFD and OPEN_MAX descriptors for process are open, or no file
descriptors greater than or equal to ar g are available

ENGLCK cnd is F_SETLK or F_SETLKWand locks would exceed limit

EOVERFLON| one of values to be returned cannot be represented correctly, or requested lock
offset cannot be represented in of f _t

The fcnt| function may only be interrupted by a signal when the cnd argument is F_SETLKW
(block until the process acquires an exclusive lock). In this case, fcntl returns —1 and sets
errno to El NTR. Table 4.3 lists the POSIX values of the cnd parameter for fcnt| .
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An important example of the use of file control is to change an open file descriptor to use
nonblocking 1/0. When a file descriptor has been set for nonblocking 1/0, the read and wite

functions return —1 and set er r no to EAGAI N to report that the process would be delayed if a

blocking 1/0 operation were tried. Nonblocking 1/0 is useful for monitoring multiple file
descriptors while doing other work. Section 4.4 and Section 4.5 discuss the sel ect and pol |
functions that allow a process to block until any of a set of descriptors becomes available.
However, both of these functions block while waiting for 1/0, so no other work can be done
during the wait.

Table 4.3. POSIX values for cnd as specified in fcntl . h.

cnd meaning

F_DUPFD duplicate a file descriptor

F_GETFD get file descriptor flags

F_SETFD set file descriptor flags

F_GETFL get file status flags and access modes

F_SETFL set file status flags and access modes

F_GETOM [ jffil des is a socket, get process or group ID for out-of-band signals

F_SETOM [ iffil des is a socket, set process or group ID for out-of-band signals

F_GETLK get first lock that blocks description specified by ar g

F_SETLK set or clear segment lock specified by ar g

F_SETLKW | same as FSETLK except it blocks until request satisfied

To perform nonblocking 1/0, a program can call open with the O_NONBLCCK flag set. A program
can also change an open descriptor to be nonblocking by setting the O NONBLOCK flag, using
fcntl . To set an open descriptor to perform nonblocking 1/0, use the F_CGETFL command with
fcntl to retrieve the flags associated with the descriptor. Use inclusive bitwise OR of

O _NONBLOCK with these flags to create a new flags value. Finally, set the descriptor flags to this
new value, using the F_SETFL command of fcnt | .

Example 4.37 set nonbl ock. ¢

The following function sets an already opened file descriptor f d for nonblocking 1/0.

#i ncl ude <fcntl . h>
#i ncl ude <stdi o. h>
#i ncl ude <uni std. h>



i nt setnonbl ock(int fd) {

int fdflags;

if ((fdflags = fentl (fd, F_GETFL, 0)) == -1)
return -1;

fdflags | = O NONBLOCK;

if (fentl (fd, F_SETFL, fdflags) == -1)
return -1;

return O;

If successful, set nonbl ock returns 0. Otherwise, set nonbl ock returns —1 and sets err no.

The set nonbl ock function of Example 4.37 reads the current value of the flags associated with
fd, performs a bitwise OR with O_NONBLOCK, and installs the modified flags. After this function
executes, a read from f d returns immediately if no input is available.

Example 4.38 set bl ock. c

The following function changes the 1/0 mode associated with file descriptor f d to blocking by
clearing the O _NONBLCCK file flag. To clear the flag, use bitwise AND with the complement of the
O_NONBLOCK flag.

#i nclude <fcntl. h>
#i ncl ude <stdio. h>
#i ncl ude <uni std. h>

int setblock(int fd) {

int fdflags;

if ((fdflags = fentl (fd, F_GETFL, 0)) == -1)
return -1;

fdfl ags &= ~O_ NONBLOCK;

if (fentl (fd, F_SETFL, fdflags) == -1)
return -1;

return O;

If successful, set bl ock returns 0. If unsuccessful, set bl ock returns —1 and sets err no.

Example 4.39 process_or_do_work. c

The following function assumes that f d1 and f d2 are open for reading in nonblocking mode. If
input is available from either one, the function calls docommand with the data read. Otherwise,
the code calls dosonet hi ng. This implementation gives priority to f d1 and always handles input
from this file descriptor before handling f d2.

#i ncl ude <errno. h>



#i ncl ude <uni std. h>
#i nclude "restart. h"

voi d doconmand(char *, int);
voi d dosonet hi ng(void);

voi d process_or_do_work(int fdi, int fd2) {
char buf[1024];
ssize_t bytesread;

for (; ;) {
bytesread = r_read(fdl, buf, sizeof(buf));
if ((bytesread == -1) && (errno != EAGAIN))
return; /* a real error on fdl */

else if (bytesread > 0) {
docommand( buf, bytesread);

conti nue;
}
bytesread = r_read(fd2, buf, sizeof(buf));
if ((bytesread == -1) && (errno != EAGAIN))
return; /* a real error on fd2 */

else if (bytesread > 0)
docommand( buf, bytesread);
el se
dosonet hi ng(); /* input not available, do sonething else */

[ Team Lie ] [ rreviovs)
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4.9 Exercise: Atomic Logging

Sometimes multiple processes need to output to the same log file. Problems can arise if one
process loses the CPU while it is outputting to the log file and another process tries to write to
the same file. The messages could get interleaved, making the log file unreadable. We use the
term atomic logging to mean that multiple writes of one process to the same file are not mixed
up with the writes of other processes writing to the same file.

This exercise describes a series of experiments to help you understand the issues involved
when multiple processes try to write to the same file. We then introduce an atomic logging
library and provide a series of examples of how to use the library. Appendix D.1 describes the

actual implementation of this library, which is used in several places throughout the book as a
tool for debugging programs.

The experiments in this section are based on Program 3.1, which creates a chain of processes.
Program 4.19 modifies Program 3.1 so that the original process opens a file before creating the

children. Each child writes a message to the file instead of to standard error. Each message is
written in two pieces. Since the processes share an entry in the system file table, they share
the file offset. Each time a process writes to the file, the file offset is updated.

Exercise 4.40

Run Program 4.19 several times and see if it generates output in the same order each time.
Can you tell which parts of the output came from each process?

Answer:

On most systems, the output appears in the same order for most runs and each process
generates a single line of output. However, this outcome is not guaranteed by the program. It
is possible (but possibly unlikely) for one process to lose the CPU before both parts of its output
are written to the file. In this, case the output is jumbled.

Program 4.19 chai nopenfork.c

A program that opens a file before creating a chain of processes.

#i ncl ude <fcntl. h>
#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>
#i ncl ude <uni std. h>
#i ncl ude <sys/stat. h>

#def i ne BUFSI ZE 1024
#defi ne CREATE_FLAGS (O WRONLY | O CREAT | O TRUNC)
#define CREATE_PERVB (S IRUSR | S IWJUSR| S IRGRP | S_I ROTH)

int main (int argc, char *argv[]) {
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char buf [ BUFSI ZE] ;
pidt childpid = 0;

int fd;

int i, n;

if (argc !'= 3){ /* check for valid number of conmand-I|ine argunents */
fprintf (stderr, "Usage: % processes filenane\n", argv[O0]);
return 1;

}

/* open the log file before the fork */
fd = open(argv[ 2], CREATE FLAGS, CREATE PERWVB);

if (fd < 0) {
perror("Failed to open file");
return 1;
}
n = atoi(argv[1]); /* create a process chain */
for (i =1; i <n; i++4)
if (childpid = fork())
br eak;
if (childpid == -1) {
perror("Failed to fork");
return 1;
}

/[* wite twice to the common log file */
sprintf(buf, "i:%l process:%d ", i, (long)getpid());
wite(fd, buf, strlen(buf));
sprintf(buf, "parent:%d child:%d\n", (long)getppid(), (long)childpid);
write(fd, buf, strlen(buf));
return O;

Exercise 4.41

Put sl eep(1); after the first wit e function in Program 4.19 and run it again. Now what
happens?

Answer:

Most likely, each process outputs the values of the first two integers and then each process
outputs the last two integers.

Exercise 4.42

Copy chai nopenf or k. ¢ to a file called chai nf or kopen. ¢ and move the code to open the file
after the loop that forks the children. How does the behavior of chai nf or kopen. c differ from
that of chai nopenf ork. c?

Answer:

Each process now has a different system file table entry, and so each process has a different
file offset. Because of O TRUNC, each open deletes what was previously written to the file. Each

process starts writing from the beginning of the file, overwriting what the other processes have



written. The last process to write has control of the final file contents.

Exercise 4.43

Run chai nf or kopen several times and see if it generates the same order of the output each

time. Which process was executed last? Do you see anything unusual about the contents of the
file?

Answer:

The process that outputs last may be different on different systems. If the last process writes
fewer bytes than another process, the file contains additional bytes after the line written by the
last process.

If independent processes open the same log file, the results might be similar to that of Exercise
4.43. The last process to output overwrites what was previously written. One way to try to
solve this problem is to call | seek to move to the end of the file before writing.

Exercise 4.44

Copy chai nf or kopen. ¢ to a file called chai nf or kopenseek. c. Add code before each write to
perform | seek to the end of the file. Also, remove the O TRUNC flag from CREATE_FLAGS. Run
the program several times and observe the behavior. Use a different file name each time.

Answer:

The | seek operation works as long as the process does not lose the CPU between | seek and
wri t e. For fast machines, you may have to run the program many times to observe this
behavior. You can increase the likelihood of creating mixed-up output, by putting sl eep(1);
between | seek and wite.

If a file is opened with the O _APPEND flag, then it automatically does all writes to the end of the
file.

Exercise 4.45

Copy chai nf or kopen. ¢ to a file called chai nf or kappend. c. Modify the CREATE_FLAGS constant
by replacing O TRUNC with O_APPEND. Run the program several times, possibly inserting sl eep
(1) between the writ e calls. What happens?

Answer:

The O_APPEND flag solves the problem of processes overwriting the log entries of other

processes, but it does not prevent the individual pieces written by one process from being
mixed up with the pieces of another.



Exercise 4.46

Copy chai nf or kappend. c to a file called chai nf or konewri t e. c. Combine the pair of spri ntf
calls so that the program uses a single wri t e call to output its information. How does the
program behave?

Answer:

The output is no longer interleaved.

Exercise 4.47

Copy chai nf orkonewr i t e. ¢ to a file called chai nf or kf pri ntf. c. Replace open with a
corresponding f open function. Replace the single writ e with f printf. How does the program
behave?

Answer:

The f printf operation causes the output to be written to a buffer in the user area. Eventually,
the 170 subsystem calls wri t e to output the contents of the buffer. You have no control over
when wri t e is called except that you can force a wri t e operation by calling f f | ush. Process
output can be interleaved if the buffer fills in the middle of the f pri ntf operation. Adding sl eep
(1) ; shouldn't cause the problem to occur more or less often.

4.9.1 An atomic logging library

To make an atomic logger, we have to use a single wri t e call to output information that we
want to appear together in the log. The file must be opened with the O _APPEND flag. Here is the
statement about the O_APPEND flag from the wri t e man page that guarantees that the writing
is atomic if we use the O _APPEND flag.

If the O_APPEND flag of the file status flags is set, the file offset will be set to the

end of the file prior to each write and no intervening file modification operation
will occur between changing the file offset and the write operation.

In the examples given here, it is simple to combine everything into a single call to wri t e, but
later we encounter situations in which it is more difficult. Appendix D.1 contains a complete
implementation of a module that can be used with a program in which atomic logging is
needed. A program using this module should include Program 4.20, which contains the
prototypes for the publicly accessible functions. Note that the interface is simple and the
implementation details are completely hidden from the user.

Program 4.20 atonic_| ogger. h

The include file for the atomic logging module.



nt atom c_|log_array(char *s, int |len);
nt atonic_log clear();

nt atonic_|og close();

nt atonic_| og open(char *fn);

nt atomic_log printf(char *fnt, ...);
nt atomc_|l og_send();

nt atomi c_log_string(char *s);

The atomic logger allows you to control how the output of programs that are running on the
same machine is interspersed in a log file. To use the logger, first call at om c_I og_open to

create the log file. Call at om c_| og_cl ose when all logging is completed. The logger stores in a
temporary buffer items written with atonmi c_|l og_array, atom c_l og_string and

atom c_l og_printf. When the program calls at om c_| og_send, the logger outputs the entire
buffer, using a single wri t e call, and frees the temporary buffers. The atoni c_I| og_cl ear

operation frees the temporary buffers without actually outputting to the log file. Each function
in the atomic logging library returns 0 if successful. If unsuccessful, these functions return —1
and set errno.

The atomic logging facility provides three formats for writing to the log. Use atom ¢c_| og_array
to write an array of a known number of bytes. Use atoni c_| og_stri ng to log a string.
Alternatively, you can use atom c¢_| og_pri ntf with a syntax similar to f pri ntf. Program 4.21

shows a version of the process chain that uses the first two forms for output to the atomic
logger.

Exercise 4.48

How would you modify Program 4.21 to use atom c_|l og_printf?

Answer:

Eliminate the buf array and replace the four lines of code involving sprintf,
atom c_log_array and atom c_| og_st ri ng with the following.

atomc _log printf("i:% process:%d ", i, (long)getpid());
atomc _log printf("parent:%d child ID: %d\n",
(long)getppid(), (long)childpid);

Alternatively use the following single call.

atomc_log printf("i:%l process: %d parent:%d child: % d\n",
i, (long)getpid(), (long)getppid(), (long)childpid);

Program 4.21 chai nf or kopenl og. ¢

A program that uses the atomic logging module of Appendix D.1.

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>



#i ncl ude <string. h>
#i ncl ude <uni std. h>
#i ncl ude "atom c_| ogger. h"

#defi ne BUFSI ZE 1024
int main (int argc, char *argv[]) {

char buf [ BUFSI ZE] ;
pidt childpid = 0;

int i, n;
if (argc !'= 3){ /* check for valid number of conmand-I|ine argunents */
fprintf (stderr, "Usage: % processes filenane\n", argv[O0]);
return 1;
}
n = atoi(argv[1]); /* create a process chain */
for (i =1; i <n; i++4)
if (childpid = fork())
br eak;
if (childpid == -1) {
perror("Failed to fork");
return 1;
}
if (atomic_log open(argv[2]) == -1) { /* open atomc log file */
fprintf(stderr, "Failed to open log file");
return 1;
}

/* log the output, using two different forns */
sprintf(buf, "i:% process: % d", i, (long)getpid());
atom c_l og_array(buf, strlen(buf));
sprintf(buf, " parent:%d child:%d\n", (long)getppid(), (long)childpid);
atom c_l og_string(buf);

if (atomic_log send() == -1) {
fprintf(stderr, "Failed to send to log file");
return 1;

}

atom c_|l og_cl ose();

return O;

Exercise 4.49

Modify Program 4.19 to open an atomic log file after forking the children. (Do not remove the
other open function call.) Repeat Exercises 4.40 through Exercise 4.47 after adding code to

output the same information to the atomic logger as to the original file. Compare the output of
the logger with the contents of the file.

Exercise 4.50

What happens if Program 4.19 opens the log file before forking the children?

Answer:



Logging should still be atomic. However, if the parent writes information to the log and doesn't
clear it before the fork, the children have a copy of this information in their logging buffers.

Another logging interface that is useful for debugging concurrent programs is the remote
logging facility described in detail in Appendix D.2. Instead of logging information being sent to
a file, it is sent to another process that has its own environment for displaying and saving the
logged information. The remote logging process has a graphical user interface that allows the
user to display the log. The remote logger does not have a facility for gathering information
from a process to be displayed in a single block in the log file, but it allows logging from
processes on multiple machines.

[ Team Lig 1 [rreviovs
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4.10 Exercise: A cat Utility

The cat utility has the following POSIX specification[52].

NAVE
cat - concatenate and print files

SYNOPSI S
cat [-u] [file ...]

DESCRI PTI ON
The cat utility shall read files in sequence and shall wite
their contents to the standard output in the same sequence.

OPTI ONS
The cat utility shall conformto the Base Definitions vol unme
of | EEE STd 1003. 1-2001, Section 12.2, Uility Syntax Cuidelines.

The follow ng option shall be supported:

-u Wite bytes fromthe input file to the standard out put
wi t hout delay as each is read

OPERANDS
The foll ow ng operand shall be supported:

file A pathname of an input file. If no file operands are
speci fied, the standard input shall be used. If a file
is '-'", the cat utility shall read fromthe standard

i nput at that point in the sequence. The cat utility
shall not close and reopen standard input when it is
referenced in this way, but shall accept nultiple
occurrences of '-' as a file operand.

STDI N
The standard input shall be used only if no file operands are
specified, or if a file operand is '-'. See the INPUT FILES
section.

| NPUT FI LES

The input files can be any file type.

ENVI RONVENT VARI ABLES
(.... along section onmtted here ....)

ASYNCHRONOUS EVENTS
Def aul t .

STDOUT
The standard output shall contain the sequence of bytes read from
the input files. Nothing else shall be witten to the standard
out put .
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STDERR
The standard error shall be used only for diagnostic nessages.

OUTPUT FI LES
None.

EXTENDED DESCRI PTI ON
None.

EXI T STATUS
The followi ng exit values shall be returned:

0: Al'l input files were output successfully.
>0 An error occurr ed.

CONSEQUENCES COF ERRORS
Def aul t .

The actual POSIX description continues with other sections, including APPLI CATI ON USAGE,
EXAMPLES and RATI ONALE.

1. Compare the POSIX description of cat with the man page for cat on your system and
note any differences.

2. Execute the cat command for many examples, including multiple input files and files

that don't exist. Include a case in which you redirect standard input to a disk file and
use several ' -' files on the command line. Explain what happens.

3. Write your own cat utility to conform to the standard. Try to duplicate the behavior of
the actual cat utility.

4. Read the section of the cat man page on ENVI RONVENT VARI ABLES.
5. Experiment with the effect of relevant environment variables on the behavior of cat .

6. Incorporate the handling of environment variables into your own cat utility.
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4.11 Additional Reading

Advanced Programming in the UNIX Environment by Stevens [112] has an extensive discussion

of UNIX I/0 from a programmer's viewpoint. Many books on Linux or UNIX programming also
cover 1/0. The USENIX Conference Proceedings are a good source of current information on
tools and approaches evolving under UNIX.
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Chapter 5. Files and Directories

Operating systems organize raw storage devices in file systems so that applications can use
high-level operations rather than low-level device calls to access information. UNIX file systems
are tree structured, with nodes representing files and arcs representing the contains
relationship. UNIX directory entries associate filenames with file locations. These entries can
either point directly to a structure containing the file location information (hard link) or point
indirectly through a symbolic link. Symbolic links are files that associate one filename with
another. This chapter also introduces functions for accessing file status information and
directories from within programs.

Objectives

« Learn about file systems and directories
« Experiment with directory traversal

« Explore UNIX inode implementation

« Use functions for accessing directories

o Understand hard links and symbolic links

[ Team LiB 1 [rreviovs]
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5.1 UNIX File System Navigation

Operating systems organize physical disks into file systems to provide high-level logical access
to the actual bytes of a file. A file system is a collection of files and attributes such as location
and name. Instead of specifying the physical location of a file on disk, an application specifies a
filename and an offset. The operating system makes a translation to the location of the physical
file through its file systems.

A directory is a file containing directory entries that associate a filename with the physical
location of a file on disk. When disks were small, a simple table of filenames and their positions
was a sufficient representation for the directory. Larger disks require a more flexible
organization, and most file systems organize their directories in a tree structure. This
representation arises quite naturally when the directories themselves are files.

Figure 5.1 shows a tree-structured organization of a typical file system. The square nodes in
this tree are directories, and the / designates the root directory of the file system. The root
directory is at the top of the file system tree, and everything else is under it.

Figure 5.1. Tree structure of a file system.

dirC dirh

my3.dat dirR myl.dat myd.dat

myl.dat

The directory marked di r A in Figure 5.1 contains the files nyl. dat, ny2. dat and di r B. The
di r B file is called a subdirectory of di r A because di r B is a directory contained in di r A of the
file system tree. Notice that di r B also contains a file named ny1. dat . Clearly, the filename is
not enough to uniquely specify a file.

The absolute or fully qualified pathname specifies all of the nodes in the file system tree on the
path from the root to the file itself. The absolute path starts with a slash (/) to designate the

root node and then lists the names of the nodes down the path to the file within the file system
tree. The successive names are separated by slashes. The file nyl. dat indirAin Figure 5.1
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has the fully qualified pathname / di r A/ nyl. dat, and nyl. dat in di r B has the fully qualified
pathname / di r A/ di r B/ ny1. dat .

5.1.1 The current working directory

A program does not always have to specify files by fully qualified pathnames. At any time, each
process has an associated directory, called the current working directory, that it uses for
pathname resolution. If a pathname does not start with /, the program prepends the fully

qualified path of the current working directory. Hence, pathnames that do not begin with / are

sometimes called relative pathnames because they are specified relative to the fully qualified
pathname of the current directory. A dot (. ) specifies the current directory, and a dot-dot (. .)

specifies the directory above the current directory. The root directory has both dot and dot-dot
pointing to itself.

Example 5.1

After you enter the following command, your shell process has the current working directory /
di r A/ dirB.

cd /dirAdirB

Exercise 5.2

Suppose the current working directory of a process is the / di r A/ di r B directory of Figure 5.1.
State three ways by which the process can refer to the file nyl. dat in directory di r A. State
three ways by which the process can refer to the file nyl. dat in directory di r B. What about the
file ny3. dat indirC?

Answer:

Since the current working directory is / di r A/ di r B, the process can use /di rA/ nyl.dat, ../
nyl.dat or even./../nyl. dat for the nyl. dat file in di r A. Some of the ways by which the
process can refer to the nyl. dat file of di r Binclude nyl.dat, /dirA/ dirB/ nyl.dat,./nyl.
dat, or../dirB/ nmyl. dat. The file ny3. dat in di r C can be referred to as / di r C/ ny3. dat
or../../dirC/ ny3.dat.

The PWD environment variable specifies the current working directory of a process. Do not
directly change this variable, but rather use the get cwd function to retrieve the current working
directory and use the chdi r function to change the current working directory within a process.

The chdi r function causes the directory specified by pat h to become the current working
directory for the calling process.

SYNOPSI S

#i ncl ude <uni std. h>



int chdir(const char *path);
PCsI X

If successful, chdi r returns O. If unsuccessful, chdi r returns —1 and sets er r no. The following
table lists the mandatory errors for chdi r.

errno cause
EACCES search permission on a pat h component denied
ELOCP a loop exists in resolution of pat h

ENAMETOOLONG | the length of pat h exceeds PATH_MAX, or a pathname component is longer
than NAMVE_MAX

ENGENT a component of pat h does not name an existing directory

ENGTDI R a component of the pathname is not a directory

Example 5.3

The following code changes the process current working directory to / t np.

char *directory =" /tnp";

if (chdir(directory) == -1)
perror("Failed to change current working directory to /tnmp");

Exercise 5.4

Why do ENCENT and ENOTDI R represent different error conditions for chdi r ?

Answer:

Some of the components of pat h may represent symbolic links that have to be followed to get
the true components of the pathname. (See Section 5.4 for a discussion of symbolic links.)

The get cwd function returns the pathname of the current working directory. The buf parameter
of get cwd represents a user-supplied buffer for holding the pathname of the current working
directory. The si ze parameter specifies the maximum length pathname that buf can
accommodate, including the trailing string terminator.

SYNOPSI S

#i ncl ude <uni std. h>



char *getcwd(char *buf, size t size);
PCsI X

If successful, get cwd returns a pointer to buf . If unsuccessful, get cwd returns NULL and sets
er rno. The following table lists the mandatory errors for get cwd.

errno cause
El NVAL sizeis O
ERANGE si ze is greater than O, but smaller than the pathname + 1.

If buf is not NULL, get cwd copies the name into buf . If buf is NULL, POSIX states that the
behavior of get cwd is undefined. In some implementations, get cwd uses nmal | oc to create a
buffer to hold the pathname. Do not rely on this behavior.

You should always supply get cwd with a buffer large enough to fit a string containing the
pathname. Program 5.1 shows a program that uses PATH _MAX as the buffer size. PATH_MAX is an

optional POSIX constant specifying the maximum length of a pathname (including the
terminating null byte) for the implementation. The PATH _MAX constant may or may not be

defined in li m ts. h. The optional POSIX constants can be omitted from | i ni ts. h if their
values are indeterminate but larger than the required POSIX minimum. For PATH_MAX, the
_PCsI X_PATH_MAX constant specifies that an implementation must accommodate pathname
lengths of at least 255. A vendor might allow PATH _MAX to depend on the amount of available
memory space on a specific instance of a specific implementation.

Program 5.1 get cwdpat hmax. ¢

A complete program to output the current working directory.

#include <limts. h>
#i ncl ude <stdio. h>
#i ncl ude <unistd. h>
#i f ndef PATH MAX
#defi ne PATH MAX 255
#endi f

int main(void) {
char nycwd[ PATH _MAX] ;

if (getcwd(nycwd, PATH MAX) == NULL) {
perror("Failed to get current working directory");
return 1;
}
printf("Current working directory: 9%\n", mycwd);
return O;



A more flexible approach uses the pat hconf function to determine the real value for the
maximum path length at run time. The pat hconf function is one of a family of functions that

allows a program to determine system and runtime limits in a platform-independent way. For
example, Program 2.10 uses the sysconf member of this family to calculate the number of

seconds that a program runs. The sysconf function takes a single argument, which is the name
of a configurable systemwide limit such as the number of clock ticks per second (_SC_CLK_ TCK)
or the maximum number of processes allowed per user (_SC _CH LD_MAX).

The pat hconf and f pat hconf functions report limits associated with a particular file or
directory. The f pat hconf takes a file descriptor and the limit designator as parameters, so the
file must be opened before a call to f pat hconf . The pat hconf function takes a pathname and a

limit designator as parameters, so it can be called without the program actually opening the
file. The sysconf function returns the current value of a configurable system limit that is not

associated with files. Its nane parameter designates the limit.

SYNOPSI S

#i ncl ude <uni std. h>

| ong fpathconf(int fildes, int name);
| ong pat hconf (const char *path, int nane);
| ong sysconf(int nane);
PCsI X

If successful, these functions return the value of the limit. If unsuccessful, these functions
return —1 and set er r no. The following table lists the mandatory errors.

errno cause
El NVAL nane has an invalid value
ELOOP a loop exists in resolution of pat h (pat hconf)

Program 5.2 shows a program that avoids the PATH MAX problem by first calling pat hconf to

find the maximum pathname length. Since the program does not know the length of the path
until run time, it allocates the buffer for the path dynamically.

Program 5.2 get cwdpat hconf . ¢

A program that uses pat hconf to output the current working directory

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <uni std. h>

int main(void) {



| ong maxpat h;

char *nycwdp;

if ((maxpath = pathconf(".", _PC PATH MAX)) == -1) {
perror("Failed to determ ne the pathnane | ength");
return 1;

}

if ((nycwdp = (char *) malloc(maxpath)) == NULL) {
perror("Failed to all ocate space for pathnane");
return 1;

if (getcwd(mycwdp, maxpath) == NULL) {
perror("Failed to get current working directory");
return 1;

}
printf("Current working directory: %\n", nycwdp);
return O;

5.1.2 Search paths

A user executes a program in a UNIX shell by typing the pathname of the file containing the
executable. Most commonly used programs and utilities are not in the user's current working
directory (e.g., vi, cc). Imagine how inconvenient it would be if you actually had to know the

locations of all system executables to execute them. Fortunately, UNIX has a method of looking
for executables in a systematic way. If only a name is given for an executable, the shell
searches for the executable in all possible directories listed by the PATH environment variable.

PATH contains the fully qualified pathnames of important directories separated by colons.

Example 5.5
The following is a typical value of the PATH environment variable.

fusr/bin:/etc:/usr/local/bin:/usr/ccs/bin:/hone/robbins/bin:.

This specification says that when you enter a command your shell should search / usr/ bi n first.
If it does not find the command there, the shell should next examine the / et ¢ directory and so
on.

Remember that the shell does not search subdirectories of directories in the PATH unless they
are also explicitly specified in the PATH. If in doubt about which version of a particular program
you are actually executing, use whi ch to get the fully qualified pathname of the executable. The
whi ch command is not part of POSIX, but it is available on most systems. Section 5.5 describes
how you can write your own version of whi ch.

It is common for programmers to create a bi n directory for executables, making bi n a
subdirectory of their home directories. The PATH of Example 5.5 contains the / hone/ r obbi ns/
bi n directory. The bi n directory appears before dot (. ), the current directory, in the search
path leading to the problem discussed in the next exercise.



Exercise 5.6

A user develops a program called cal hit in the subdirectory progs of his or her home directory
and puts a copy of the executable in the bi n directory of the same account. The user later
modifies cal hit in the progs directory without copying it to the bi n directory. What happens
when the programmer tries to test the new version?

Answer:

The result depends on the value of the PATH environment variable. If the user's PATH is set up
in the usual way, the shell searches the bi n directory first and executes the old version of the
program. You can test the new version with . /cal hit.

Resist the temptation to put the dot (. ) at the beginning of the PATH in spite of the problem
mentioned in Exercise 5.6. Such a PATH specification is regarded as a security risk and may

lead to strange results when your shell executes local programs instead of the standard system
programs of the same name.

[ Team Lig 1 [rrevios
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5.2 Directory Access

Directories should not be accessed with the ordinary open, cl ose and r ead functions. Instead,
they require specialized functions whose corresponding names end with "di r" : opendir,
cl osedir and readdir.

The opendi r function provides a handle of type DI R * to a directory stream that is positioned
at the first entry in the directory.

SYNCOPSI S

#i ncl ude <dirent. h>

DI R *opendi r (const char *dirnane);
POSI X

If successful, opendi r returns a pointer to a directory object. If unsuccessful, opendi r returns
a null pointer and sets err no. The following table lists the mandatory errors for opendi r .

errno cause

EACCES search permission on a path prefix of di r nane or read permission on
di r nane is denied

ELOOP a loop exists in resolution of di r narme

ENAMETOOLONG | the length of di r name exceeds PATH _MAX, or a pathname component is
longer than NAME_NMAX

ENGENT a component of di r name does not name an existing directory

ENOTDI R a component of di r name is not a directory

The DI R type, which is defined in di r ent . h represents a directory stream. A directory stream is

an ordered sequence of all of the directory entries in a particular directory. The order of the
entries in a directory stream is not necessarily alphabetical by file name.

The readdi r function reads a directory by returning successive entries in a directory stream
pointed to by di rp. The r eaddi r returns a pointer to a struct dirent structure containing
information about the next directory entry. The r eaddi r moves the stream to the next position
after each call.

SYNOPSI S
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#i ncl ude <dirent. h>

struct dirent *readdir(D R *dirp);
PGCsI X

If successful, r eaddi r returns a pointer to a struct dirent structure containing information
about the next directory entry. If unsuccessful, r eaddi r returns a NULL pointer and sets err no.
The only mandatory error is EOVERFLOW which indicates that the value in the structure to be
returned cannot be represented correctly. The r eaddi r function also returns NULL to indicate
the end of the directory, but in this case it does not change err no.

The cl osedi r function closes a directory stream, and the r ewi nddi r function repositions the
directory stream at its beginning. Each function has a di r p parameter that corresponds to an
open directory stream.

SYNOPSI S

#i ncl ude <dirent. h>

int closedir(DIR *dirp);
void rewinddir(D R *dirp);
PCsI X

If successful, the cl osedi r function returns 0. If unsuccessful, it returns —1 and sets err no.
The cl osedi r function has no mandatory errors. The r ewi nddi r function does not return a
value and has no errors defined.

Program 5.3 displays the filenames contained in the directory whose pathname is passed as a
command-line argument.

Program 5.3 shownanes. ¢

A program to list files in a directory.

#i ncl ude <dirent. h>
#i ncl ude <errno. h>
#1 ncl ude <stdi o. h>

int main(int argc, char *argv[]) {
struct dirent *direntp;
DR *dirp;

if (argc !'= 2) {
fprintf(stderr, "Usage: % directory_nane\n", argv[O0]);
return 1;

}

if ((dirp = opendir(argv[1])) == NULL) {
perror ("Failed to open directory");
return 1;



}

while ((direntp = readdir(dirp)) != NULL)
printf("%\n", direntp->d_nane);

while ((closedir(dirp) == -1) && (errno == EINTR)) ;

return O;

Exercise 5.7

Run Program 5.3 for different directories. Compare the output with that from running the | s
shell command for the same directories. Why are they different?

Answer:

The | s command sorts filenames in alphabetical order. The r eaddi r function displays filenames
in the order in which they occur in the directory file.

Program 5.3 does not allocate a struct dirent variable to hold the directory information.
Rather, r eaddi r returns a pointer to a static st ruct dirent structure. This return structure
implies that r eaddi r is not thread-safe. POSIX includes r eaddi r _r as part of the POSIX:TSF
Extension, to provide a thread-safe alternative.

POSIX only requires that the struct dirent structure have a d_nane member, representing a
string that is no longer than NAME_MAX. POSIX does not specify where additional information

about the file should be stored. Traditionally, UNIX directory entries contain only filenames and
inode numbers. The inode number is an index into a table containing the other information
about a file. Inodes are discussed in Section 5.3.

5.2.1 Accessing file status information

This section describes three functions for retrieving file status information. The f st at function
accesses a file with an open file descriptor. The st at and | st at functions access a file by name.

The | stat and st at functions each take two parameters. The pat h parameter specifies the
name of a file or symbolic link whose status is to be returned. If pat h does not correspond to a
symbolic link, both functions return the same results. When pat h is a symbolic link, the | st at
function returns information about the link whereas the st at function returns information about
the file referred to by the link. Section 5.4 explains symbolic links. The buf parameter points to
a user-supplied buffer into which these functions store the information.

SYNOPSI S

#i ncl ude <sys/stat.h>

int Istat(const char *restrict path, struct stat *restrict buf);
int stat(const char *restrict path, struct stat *restrict buf);

PCOSI X



If successful, these functions return 0. If unsuccessful, they return —1 and set errno. The
restrict modifier on the arguments specifies that pat h and buf are not allowed to overlap.
The following table lists the mandatory errors for these functions.

errno cause

EACCES search permission on a pat h component denied

ElO an error occurred while reading from the file system

ELOCP a loop exists in resolution of pat h

ENAMETOOLONG | the length of the pathname exceeds PATH MAX (I st at ), the length of pat h
exceeds PATH MAX (st at), or a pathname component is longer than
NAVE_NMAX

ENCENT a component of pat h does not name an existing file

ENOTDI R a component of the path prefix is not a directory

EOVERFLOW the file size in bytes, the number of blocks allocated to file or the file serial
number cannot be represented in the structure pointed to by buf

The struct stat

structure, which is defined in sys/ st at . h, contains at least the following

members.

dev_t st _dev; /* device ID of device containing file */

i no_t st _ino; [* file serial number */

node_t st _node; [* file node */

nlink t st _nlink; [ * nunber of hard Iinks */

uid_t st _uid; /[* user IDof file */

gid_t st _gi d; /* group ID of file */

of f _t st _si ze; [* file size in bytes (regular files) */
/* path size (synbolic links) */

time_t st _atine; /* time of |ast access */

time_t st_ntine; /* time of |ast data nodification */

time_t st _ctinmne; [* time of last file status change */

Example 5.8 printaccess. c

The following function displays the time that the file pat h was last accessed.

#i ncl ude <stdi o. h>
#i ncl ude <tinme. h>
#i ncl ude <sys/stat. h>

voi d printaccess(char *path) {
struct stat statbuf;




if (stat(path, &statbuf) == -1)
perror("Failed to get file status");
el se
printf("% |ast accessed at %", path, ctinme(&statbuf.st_atine));

Exercise 5.9 printaccessnodbad. ¢

What is wrong with the following function that attempts to print both the access time and the
time of modification of a file? How would you fix it?

#i ncl ude <stdi o. h>
#i ncl ude <tinme. h>
#i ncl ude <sys/stat. h>

voi d printaccessnodbad(char *path) {
struct stat statbuf;

if (stat(path, &statbuf) == -1)
perror("Failed to get file status");
el se

printf("% accessed: % nodified: %", path,
ctinme(&statbuf.st_atine), ctine(&statbuf.st _ntine));

Answer:

The string returned by cti ne ends with a newline, so the result is displayed on 2 lines. More
importantly, cti nme uses static storage to hold the generated string, so the second call to cti ne

will probably write over the string containing the access time. To solve the problem, save the
access time in a buffer before calling ct i ne the second time, as in the following code. An

alternative would be to use two separate print statements. After the st rncpy call, the string is
terminated at the position that would have contained the newline.

printaccessnod. c

#i ncl ude <stdi o. h>

#i ncl ude <string. h>
#include <tine. h>

#i ncl ude <sys/stat. h>
#define CTIME_SI ZE 26

voi d printaccessnod(char *path) {
char ati ne[ CTI VE_SI ZE] ; /* 26 is the size of the ctine string */
struct stat statbuf;

if (stat(path, &statbuf) == -1)
perror("Failed to get file status");
el se {

strncpy(atine, ctine(&statbuf.st_atine), CTIME SIZE - 1);
atime[ CTIME_SI ZE - 2] = 0;
printf("% accessed: % nodified: %", path, atine,



ctinme(&statbuf.st_ntine));

The f st at function reports status information of a file associated with the open file descriptor
fildes. The buf parameter points to a user-supplied buffer into which f st at writes the
information.

SYNOPSI S

#i ncl ude <sys/stat.h>

int fstat(int fildes, struct stat *buf);
PCsI X

If successful, f st at returns O. If unsuccessful, f st at returns —1 and sets errno. The following
table lists the mandatory errors for f st at .

errno cause
EBADF fil des is not a valid file descriptor
EIO an 1/0 error occurred while reading from the file system

EOVERFLON| the file size in bytes, the number of blocks allocated to file or the file serial
number cannot be represented in the structure pointed to by buf

5.2.2 Determining the type of a file

The file mode member st _node specifies the access permissions of the file and the type of file.
Table 4.1 on page 105 lists the POSIX symbolic names for the access permission bits. POSIX
specifies the macros of Table 5.1 for testing the st _node member for the type of file. A regular

file is a randomly accessible sequence of bytes with no further structure imposed by the
system. UNIX stores data and programs as regular files. Directories are files that associate
filenames with locations, and special files specify devices. Character special files represent
devices such as terminals; block special files represent disk devices. The | SFI FO tests for pipes

and FIFOs that are used for interprocess communication.Chapter 6 discusses special files, and
Chapter 14 discusses interprocess communication based on message queues, semaphores and
shared memory.

Example 5.10 isdirectory.c

The i sdi rect ory function returns true (nonzero) if pat h is a directory, and false (0) otherwise.

#i ncl ude <stdi o. h>
#i ncl ude <tinme. h>
#i ncl ude <sys/stat. h>



int isdirectory(char *path) {
struct stat statbuf;

if (stat(path, &statbuf) == -1)
return O;
el se
return S | SDI R(statbuf.st_node);
}
Table 5.1. POSIX macros for testing for the type of file. Here m is of
type node_t and the value of buf is a pointer to a struct stat structure.
macro tests for
S | SBLK(m) block special file
S | SCHR(m) character special file
S |1 SDI R(m) directory
S | SFI FO(m) pipe or FIFO special file
S | SLNK(m) symbolic link
S | SREG(m) regular file
S | SSOCK(m) socket
S TYPEI sSMXbuf) message queue
S TYPEI SSEMbuf) semaphore
S TYPEI SSHM(buf) shared memory object

[ Team LiB 1 [rreviovs]
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5.3 UNIX File System Implementation

Disk formatting divides a physical disk into regions called partitions. Each partition can have its
own file system associated with it. A particular file system can be mounted at any node in the
tree of another file system. The topmost node in a file system is called the root of the file
system. The root directory of a process (denoted by /) is the topmost directory that the process

can access. All fully qualified paths in UNIX start from the root directory / .

Figure 5.2 shows a typical root file system tree containing some of the standard UNIX
subdirectories. The / dev directory holds specifications for the devices (special files) on the
system. The / et ¢ directory holds files containing information regarding the network, accounts
and other databases that are specific to the machine. The / hone directory is the default
directory for user accounts. The / opt directory is a standard location for applications in System
V Release 4. Look for i ncl ude files in the / usr/i ncl ude directory. The / var directory contains

system files that vary and can grow arbitrarily large (e.g., log files, or mail when it arrives but
before it has been read). POSIX does not require that a file system have these subdirectories,
but many systems organize their directory structure in a similar way.

Figure 5.2. Structure of a typical UNIX file system

N

dewv home opt UST VAar
special files specifics user application sharable varying files
for devices for system directories packages files (e.g.. logs)

5.3.1 UNIX file implementation

POSIX does not mandate any particular representation of files on disk, but traditionally UNIX
files have been implemented with a modified tree structure, as described in this section.
Directory entries contain a filename and a reference to a fixed-length structure called an inode.
The inode contains information about the file size, the file location, the owner of the file, the
time of creation, time of last access, time of last modification, permissions and soon.

Figure 5.3 shows the inode structure for a typical file. In addition to descriptive information
about the file, the inode contains pointers to the first few data blocks of the file. If the file is
large, the indirect pointer is a pointer to a block of pointers that point to additional data blocks.
If the file is still larger, the double indirect pointer is a pointer to a block of indirect pointers. If
the file is really huge, the triple indirect pointer contains a pointer to a block of double indirect
pointers. The word block can mean different things (even within UNIX). In this context a block
is typically 8K bytes. The number of bytes in a block is always a power of 2.

Figure 5.3. Schematic structure of a traditional UNIX file.
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Exercise 5.11

Suppose that an inode is 128 bytes, pointers are 4 bytes long, and the status information takes
up 68 bytes. Assume a block size of 8K bytes and block pointers of 32 bits each. How much
room is there for pointers in the inode? How big a file can be represented with direct pointers?
Indirect? Double indirect? Triple indirect?

Answer:

The single, double, and triple indirect pointers take 4 bytes each, so 128 - 68 - 12 = 48 bytes
are available for 12 direct pointers. The size of the inode and the block size depend on the
system. A file as large as 8192 x 12 = 98, 304 bytes can be represented solely with direct
pointers. If the block size is 8K bytes, the single indirect pointer addresses an 8K block that can
hold 8192 =+ 4 = 2048 pointers to data blocks. Thus, the single indirect pointer provides the
capability of addressing an additional 2048 x 8192 = 16, 777, 216 bytes or 16 megabytes of
information. Double indirect addressing provide 2048 x 2048 pointers with the capability of
addressing an additional 32 gigabytes. Triple indirect addressing provides 2048 x 2048 x 2048
pointers with the capability of addressing an additional 64 terabytes. However, since 20483 =
233, pointers would need to be longer than 4 bytes to fully address this storage.



Exercise 5.12

How large a file can you access using only the single indirect, double indirect, and triple indirect
pointers if the block size is 8K bytes and pointers are 64 bits?

Answer:

A block can now hold only 1024 pointers, so the single indirect pointer can address 1024 x
8192 = 8,388,608 bytes. Double indirect addressing provides 1024 x 1024 pointers with the
capability of addressing an additional 8 gigabytes. Triple indirect addressing provides 1024 x
1024 x 1024 pointers with the capability of addressing an additional 8 terabytes.

Exercise 5.13

How big can you make a disk partition if the block size is 8K bytes and pointers are 32 bits?
How can bigger disks be handled? What are the tradeoffs?

Answer:

32-bit addresses can access approximately 4 billion blocks (4,294,967,296 to be exact). 8K

blocks give 245 = 3.5 x 1013 bytes. With a block address of fixed size, there is a tradeoff
between maximum partition size and block size. Larger blocks mean a larger partition for a
fixed address size. The block size usually determines the smallest retrievable unit on disk.
Larger blocks can be retrieved relatively more efficiently but can result in greater internal
fragmentation because of partially filled blocks.

The tree-structured representation of files is fairly efficient for small files and is also flexible if
the size of the file changes. When a file is created, the operating system finds free blocks on
the disk in which to place the data. Performance considerations dictate that blocks of the same
file should be located close to one another on the disk to reduce the seek time. It takes about
twenty times as long to read a 16-megabyte file in which the data blocks are randomly placed
than one in which the data blocks are contiguous.

When a system administrator creates a file system on a physical disk partition, the raw bytes
are organized into data blocks and inodes. Each physical disk partition has its own pool of
inodes that are uniquely numbered. Files created on that partition use inodes from that
partition's pool. The relative layout of the disk blocks and inodes has been optimized for
performance.

POSIX does not require that a system actually represent its files by using inodes. The i no_t
st _i no member of the struct stat is now called a file serial number rather than an inode

number. POSIX-compliant systems must provide the information corresponding to the
mandatory members of the struct stat specified on page 155, but POSIX leaves the actual

implementation unspecified. In this way, the POSIX standard tries to separate implementation
from the interface.

Exercise 5.14

Give some limitations of a file implementation based on inodes.



Answer:

The file must fit entirely in a single disk partition. The partition size and maximum number of
files are fixed when the system is set up.

5.3.2 Directory implementation

A directory is a file containing a correspondence between filenames and file locations. UNIX has
traditionally implemented the location specification as an inode number, but as noted above,
POSIX does not require this. The inode itself does not contain the filename. When a program
references a file by pathname, the operating system traverses the file system tree to find the
filename and inode number in the appropriate directory. Once it has the inode number, the
operating system can determine other information about the file by accessing the inode. (For
performance reasons, this is not as simple as it seems, because the operating system caches
both directory entries and inode entries in main memory.)

A directory implementation that contains only names and inode numbers has the following
advantages.

1. Changing the filename requires changing only the directory entry. A file can be moved
from one directory to another just by moving the directory entry, as long as the move
keeps the file on the same partition or slice. (The nv command uses this technique for
moving files to locations within the same file system. Since a directory entry refers to an
inode on the same partition as the directory entry itself, mv cannot use this approach to
move files between different partitions.)

2. Only one physical copy of the file needs to exist on disk, but the file may have several
names or the same name in different directories. Again, all of these references must be
on the same physical partition.

3. Directory entries are of variable length because the filename is of variable length.
Directory entries are small, since most of the information about each file is kept in its
inode. Manipulating small variable-length structures can be done efficiently. The larger
inode structures are of fixed length.
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5.4 Hard Links and Symbolic Links

UNIX directories have two types of links—Ilinks and symbolic links. A link, sometimes called a
hard link, is a directory entry. Recall that a directory entry associates a filename with a file
location. A symbolic link, sometimes called a soft link, is a file that stores a string used to
modify the pathname when it is encountered during pathname resolution. The behavioral
differences between hard and soft links in practice is often not intuitively obvious. For simplicity
and concreteness, we assume an inode representation of the files. However, the discussion
applies to other file implementations.

A directory entry corresponds to a single link, but an inode may be the target of several of
these links. Each inode contains the count of the number of links to the inode (i.e., the total
number of directory entries that contain the inode number). When a program uses open to
create a file, the operating system makes a new directory entry and assigns a free inode to
represent the newly created file.

Figure 5.4 shows a directory entry for a file called nanel in the directory / di r A. The file uses

inode 12345. The inode has one link, and the first data block is block 23567. Since the file is
small, all the file data is contained in this one block, which is represented by the short text in
the figure.

Figure 5.4. Directory entry, inode and data block for a simple file.
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5.4.1 Creating or removing a link

You can create additional links to a file with the | n shell commandor the | i nk function. The

creation of the new link allocates a new directory entry and increments the link count of the
corresponding inode. The link uses no other additional disk space.

When you delete a file by executing the r mshell command or by calling the unl i nk function

from a program, the operating system deletes the corresponding directory entry and
decrements the link count in the inode. It does not free the inode and the corresponding data
blocks unless the operation causes the link count to be decremented to O.

The |'i nk function creates a new directory entry for the existing file specified by pat hl in the
directory specified by pat h2.

SYNOPSI S

#i ncl ude <uni std. h>

int Iink(const char *pathl, const char *path2);



POSI X

If successful, the | i nk function returns 0. If unsuccessful, | i nk returns —1 and sets errno. The
following table lists the mandatory errors for | i nk.

errno cause

EACCES search permission on a prefix of pat hl or pat h2 denied, or link requires
writing in a directory with write permission denied, or process does not have
required access permission for file

EEXI ST pat h2 resolves to a symbolic link or to an existing file

ELOOP a loop exists in resolution of pat hl or pat h2

EMLI NK number of links to file specified by pat h1 would exceed LI NK_MAX

ENAMETOOLONG | the length of pat hl or pat h2 exceeds PATH_MAX, or a pathname component
is longer than NAME_NAX

ENGENT a component of either path prefix does not exist, or file named by pat h1
does not exist, or pat hl or pat h2 points to an empty string

ENGSPC directory to contain the link cannot be extended

ENOTDI R a component of either path prefix is not a directory

EPERM file named by pat h1 is a directory and either calling process does not have
privileges or implementation does not allow | i nk for directories

ERCFS | i nk would require writing in a read-only file system

EXDEV link named by pat h2 and file named by pat hl are on different file systems,
and implementation does not support links between file systems

Example 5.15

The following shell command creates an entry called nane2 in di r B containing a pointer to the
same inode as / di r A/ nanel.

In /dirA nanel /dirB/ name2

The result is shown in Figure 5.5.

Example 5.16

The following code segment performs the same action as the | n shell command of Example




5.15.

#i ncl ude <stdi o. h>
#i ncl ude <uni std. h>

if (link("/dirA nanel", "/dirB/ nane2") == -1)

perror("Failed to make a new link in /dirB");

Figure 5.4 shows a schematic of / di r A/ nanel before the | n command of Example 5.15 or the
I i nk function of Example 5.16 executes. Figure 5.5 shows the result of linking.

Figure 5.5. Two hard links to the same file shown in Figure 5.4.

directory entry in /dira directory entry in /dirB
mnode name inode name
12345 nameal 12345 name?Z
inode 12345
2 block 23567
“This is tie
[ [ fext i the
23567 )
. . file."

The | n command (or | i nk function) creates a link (directory entry) that refers to the same
inode as di r A/ nanmel. No additional disk space is required, except possibly if the new directory

entry increases the number of data blocks needed to hold the directory information. The inode
now has two links.

The unl i nk function removes the directory entry specified by pat h. If the file's link count is O
and no process has the file open, the unl i nk frees the space occupied by the file.

SYNOPSI S

#i ncl ude <uni std. h>

int unlink(const char *path);
PCSI X



If successful, the unl i nk function returns O. If unsuccessful, unl i nk returns —1 and sets err no.
The following table lists the mandatory errors for unl i nk.

errno cause

EACCES search permission on a component of the path prefix is denied, or write
permission is denied for directory containing directory entry to be removed

EBUSY file named by pat h cannot be unlinked because it is in use and the
implementation considers this an error

ELOOP a loop exists in resolution of pat h

ENAMETOOLONG | the length of pat h exceeds PATH_MAX, or a pathname component is longer
than NAVE_MAX

ENGENT a component of pat h does not name an existing file, or pat h is an empty
string

ENOTDI R a component of the path prefix is not a directory

EPERM file named by pat h is a directory and either the calling process does not

have privileges or implementation does not allow unl i nk for directories

EROFS unl i nk would require writing in a read-only file system

Exercise 5.17

The following sequence of operations might be performed by a text editor when editing the file /
di r A/ nanel.

Open the file / di r A/ nanel.

Read the entire file into memory.

Close / di r A/ nanel.

Modify the memory image of the file.

Unlink / di r A/ nanel.

Open the file / di r A/ nanel (create and write flags).

Write the contents of memory to the file.



Close / di r Al nanmel.

How would Figures 5.4 and 5.5 be modified if you executed this sequence of operations on each

configuration?

Answer:

After these operations were applied to Figure 5.4, the new file would have the same name as

the old but would have the new contents. It might use a different inode number and block. This

is what we would expect. When the text editor applies the same set of operations to the

configuration of Figure 5.5, unlinking removes the directory entry for / di r A/ nanel. The unl i nk
reduces the link count but does not delete the file, since the link / di r B/ nane2 is still pointing to

it. When the editor opens the file / di r A/ nanel with the create flag set, a new directory entry
and new inode are created. We now have / di r A/ nanel referring to the new file and / di r B/
nane?2 referring to the old file. Figure 5.6 shows the final result.

Figure 5.6. Situation after a text editor changes a file. The original file
had inode 12345 and two hard links before editing (i.e., the
configuration of Figure 5.5).
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Exercise 5.18

Some editors back up the old file. One possible way of doing this is with the following sequence

of operations.

Open the file / di r A/ nanel.



Read the entire file into memory.

Close / di r A/ nanel.

Modify the memory image of the file.

Rename the file / di r A nanel /dir Al namel. bak.

Open the file / di r A/ nanel (create and write flags).

Write the contents of memory to the file.

Close / di r A/ nanel.

Describe how this strategy affects each of Figures 5.4 and 5.5.

Answer:

Starting with the configuration of Figure 5.4 produces two distinct files. The file / di r A/ nanel
has the new contents and uses a new inode. The file / di r A/ nanel. bak has the old contents
and uses the old inode. For the configuration of Figure 5.5, / di r A/ nanel. bak and / di r B/ nane2
point to the old contents using the old inode. The second open creates a new inode for di r A/
nanel, resulting in the configuration of Figure 5.7.

Figure 5.7. Situation after one file is changed with an editor that makes
a backup copy.
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The behavior illustrated in Exercises 5.17 and 5.18 may be undesirable. An alternative
approach would be to have both / di r A/ nanel and / di r B/ nane2 reference the new file. In
Exercise 5.22 we explore an alternative sequence of operations that an editor can use.

5.4.2 Creating and removing symbolic links

A symbolic link is a file containing the name of another file or directory. A reference to the
name of a symbolic link causes the operating system to locate the inode corresponding to that
link. The operating system assumes that the data blocks of the corresponding inode contain
another pathname. The operating system then locates the directory entry for that pathname
and continues to follow the chain until it finally encounters a hard link and a real file. The
system gives up after a while if it doesn't find a real file, returning the ELOOP error.

Create a symbolic link by using the | n command with the - s option or by invoking the syni i nk
function. The pat hl parameter of synl i nk contains the string that will be the contents of the
link, and pat h2 gives the pathname of the link. That is, pat h2 is the newly created link and

pat hl is what the new link points to.

SYNOPSI S

#i ncl ude <uni std. h>

int synmlink(const char *pathl, const char *path2);
PCsI X

If successful, sym i nk returns O. If unsuccessful, sym i nk returns —1 and sets errno. The
following table lists the mandatory errors for sym i nk.

errno cause

EACCES search permission on a component of the path prefix of pat h2 is denied, or
link requires writing in a directory with write permission denied

EEXI ST pat h2 names an existing file or symbolic link
EIO an 1/0 error occurred while reading from or writing to the file system
ELOOP a loop exists in resolution of pat h2

ENAMETOOLONG | the length of pat h2 exceeds PATH _MAX, or a pathname component is longer
than NAMVE_MAX or the length pat hl is longer than SYM.I NK_MAX

ENCENT a component of pat h2 does not name an existing file, or pat h2 is an empty
string
ENGSPC directory to contain the link cannot be extended, or the file system is out of

resources




ENOTDI R a component of the path prefix for pat h2 is not a directory

ERCFS the new symbolic link would reside on a read-only file system

Example 5.19

Starting with the situation shown in Figure 5.4, the following command creates the symbolic
link / di r B/ nane2, as shown in Figure 5.8.

In -s /dirA nanel /dirB/ nane2

Figure 5.8. Ordinary file with a symbolic link to it.
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Example 5.20

The following code segment performs the same action as the | n -s of Example 5.19.

if (symink("/dirA namel", "/dirB/ name2") == -1)
perror("Failed to create synbolic link in /dirB");

Unlike Exercise 5.17, the | n command of Example 5.19 and the syni i nk function of Example
5.20 use a new inode, in this case 13579, for the symbolic link. Inodes contain information

about the type of file they represent (i.e., ordinary, directory, special, or symbolic link), so
inode 13579 contains information indicating that it is a symbolic link. The symbolic link requires
at least one data block. In this case, block 15213 is used. The data block contains the name of
the file that / di r B/ nane2 is linked to, in this case, / di r Al nanel. The name may be fully

qualified as in this example, or it may be relative to its own directory.




Exercise 5.21

Suppose that / di r A/ nanel is an ordinary file and / di r B/ nane2 is a symbolic link to / di r A/
namel, as in Figure 5.8. How are the files / di r B/ nane2 and / di r A/ nanel related after the
sequence of operations described in Exercise 5.17?

Answer:

/ di r Al namel now refers to a different inode, but / di r B/ nane2 references the name di r A/
nanel, so they still refer to the same file, as shown in Figure 5.9. The link count in the inode
counts only hard links, not symbolic links. When the editor unlinks / di r A/ nanel, the operating
system deletes the file with inode 12345. If other editors try to edit / di r B/ nane2 in the interval
during which / di r A/ nanmel is unlinked but not yet created, they get an error.

Figure 5.9. Situation after editing a file that has a symbolic link.
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Exercise 5.22

How can the sequence of operations in Exercise 5.17 be modified so that / di r B/ nane2
references the new file regardless of whether this was a hard link or a symbolic link?

Answer:

The following sequence of operations can be used.

Open the file / di r A/ nanel.

Read the entire file into memory.



Close / di r A/ nanel.

Modify the memory image of the file.

Open the file / di r A/ nanel with the O WRONLY and O _TRUNC flags.

Write the contents of memory to the file.

Close / di r Al nanmel.

When the editor opens the file the second time, the same inode is used but the contents are
deleted. The file size starts at 0. The new file will have the same inode as the old file.

Exercise 5.23

Exercise 5.22 has a possibly fatal flaw: If the application or operating system crashes between
the second open and the subsequent write operation, the file is lost. How can this be prevented?

Answer:

Before opening the file for the second time, write the contents of memory to a temporary file.
Remove the temporary file after the close of / di r A/ nanel is successful. This approach allows

the old version of the file to be retrieved if the application crashes. However, a successful
return from cl ose does not mean that the file has actually been written to disk, since the

operating system buffers this operation. One possibility is to use a function such as f sync after
write. The f sync returns only after the pending operations have been written to the physical
medium. The f sync function is part of the POSIX:FSC Extension.

Exercise 5.24

Many programs assume that the header files for the X Window System are in / usr/i ncl ude/
X11, but under Sun's Solaris operating environment these files are in the directory / usr/
openwi n/ share/incl ude/ X11. How can a system administrator deal with the inconsistency?

Answer:

There are several ways to address this problem.

1. Copy all these files into / usr/i ncl ude/ X11.

2. Move all the files into / usr/i ncl ude/ X11.

3. Have users modify all programs that contain lines in the following form.

#i ncl ude <X11/xyz. h>



Replace these lines with the following.

#i ncl ude, "/usr/openw n/share/include/ X11/ xyz. h"

4. Have users modify their makefiles so that compilers look for header files in the following
directory.

/usr/ openw n/ share/incl ude

5. Create a symbolic link from / usr/i ncl ude/ X11 to the following directory.

[ usr/ openwi n/ share/incl ude/ X11

All the alternatives except the last have serious drawbacks. If the header files are copied to the
directory / usr /i ncl ude/ X11, then two copies of these files exist. Aside from the additional disk

space required, an update might cause these files to be inconsistent. Moving the files (copying
them to the directory / usr/i ncl ude/ X11 and then deleting them from / usr/ openw n/ shar e/

i ncl ude/ X11) may interfere with operating system upgrades. Having users modify all their

programs or makefiles is unreasonable. Another alternative not mentioned above is to use an
environment variable to modify the search path for header files.

Exercise 5.25

Because of a large influx of user mail, the root partition of a server becomes full. What can a
system administrator do?

Answer:

Pending mail is usually kept in a directory with a name such as /var/ mai | or/var/spool/
mei | , which may be part of the root partition. One possibility is to expand the size of the root

partition. This expansion usually requires reinstallation of the operating system. Another
possibility is to mount an unused partition on var . If a spare partition is not available, the / var/

spool / mai | directory can be a symbolic link to any directory in a partition that has sufficient
space.

Exercise 5.26

Starting with Figure 5.8, execute the command r m / di r A/ nanel. What happens to / di r B/
name2?

Answer:

This symbolic link still exists, but it is pointing to something that is no longer there. A reference
to / di r B/ nane2 gives an error as if the symbolic link / di r B/ nane2 does not exist. However, if

later a new file named / di r A/ nanel is created, the symbolic link then points to that file.



When you reference a file representing a symbolic link by name, does the name refer to the link
or to the file that the link references? The answer depends on the function used to reference
the file. Some library functions and shell commands automatically follow symbolic links and
some do not. For example, the r mcommand does not follow symbolic links. Applying rmto a

symbolic link removes the symbolic link, not what the link references. The | s command does

not follow symbolic links by default, but lists properties such as date and size of the link itself.
Use the - L option with | s to obtain information about the file that a symbolic link references.

Some operations have one version that follows symbolic links (e.g., st at ) and another that

does not (e.g., | st at ). Read the man page to determine a particular function's behavior in
traversing symbolic links.
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5.5 Exercise: The whi ch Command

The whi ch command is available on many systems. It takes the name of an executable as a

command-line argument and displays the fully qualified pathname of the corresponding
executable. If the argument to whi ch contains a path specifier (/ ), whi ch just checks to see if

this path corresponds to an executable. If the argument does not contain a path specifier,
whi ch uses the PATH environment variable to search directories for the corresponding

executable. If whi ch locates the executable, it prints the fully qualified path. Otherwise, whi ch
prints an message indicating that it could not find the executable in the path.

Implement a whi ch command. If no path-specifier character is given, use get env to get the
PATH environment variable. Start by creating a fully qualified path, using each component of
the PATH until an appropriate file is found. Write a checkexecut abl e function with the following
prototype.

i nt checkexecut abl e(char *nane);

The checkexecut abl e function returns true if the given file is executable by the owner of the
current process. Use get eui d and get egi d to find the user ID and group ID of the owner of the
process. Use st at to see if this user has execute privilege for this file. There are three cases to

consider, depending on whether the user is the owner of the file, in the same group as the file
or neither.

The whi ch command of the csh shell also checks to see if an alias is set for the command-line

argument and reports that alias instead of searching for an executable. See if you can
implement this feature.
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5.6 Exercise: Biffing

Some systems have a facility called bi f f that enables mail notification. When a user who is
logged in receives mail, bi ff notifies the user in some way (e.g., beeping at the terminal or
displaying a message). UNIX folklore has it that bi f f 's original author had a dog named Biff
who barked at mail carriers.

Program 5.4 shows the code for a C program called si npl ebi f f. ¢ that beeps at the terminal at
regular intervals if the user ost udent has pending mail. The program beeps by sending a Ctrl-G

(ASCII 7) character to standard error. Most terminals handle the receipt of Ctrl-G by producing
a short beep. The program continues beeping every 10 seconds, until it is killed or the mail file
is removed. This simple version assumes that if the mail file exists, it has mail in it. On some

systems the mail file may exist but contain zero bytes when there is no mail. Program 8.10 on

page 281 gives a version that does not have this problem.

Example 5.27
The following command starts si npl ebi ff.

sinplebi ff &

The & tells the shell to run si npl ebi ff in the background so that ost udent can do something
else.

Exercise 5.28

What happens if you execute the command of Example 5.27 and then log off?

Answer:

The si npl ebi f f program continues to run after you log off, since it was started in the
background. Execute ps -a to determine si npl ebi f f's process ID. Kill the si npl ebi ff process
by entering the command kil | -KILL pid. Make sure si npl ebi ff is gone by doing another
ps -a.

Program 5.4 sinplebiff.c

A simple program to notify ost udent of pending mail.

#i ncl ude <errno. h>
#i ncl ude <fcntl. h>
#i ncl ude <stdio. h>
#i ncl ude <uni std. h>
#i ncl ude <sys/stat. h>
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#defi ne MAILFILE "/var/ mail/ostudent™
#def i ne SLEEPTI ME 10

int main(void) {

int mailfd;
for( ;5 ) {
if ((mailfd = open(MAILFILE, O RDONLY)) != -1) {
fprintf(stderr, "%", "\007");
while ((close(mailfd) == -1) &k (errno == EINTR)) ;
}

sl eep( SLEEPTI ME) ;

Mail is usually stored in a file in the / var/ mai | or/var/spool / mai | directory. A file in that

directory with the same name as the user's login name contains all unread mail for that user. If
ost udent has mail, an open of / var/ mai | / ost udent succeeds; otherwise, the open fails. If the

file exists, the user has unread mail and the program beeps. In any case, the program sleeps
and then repeats the process indefinitely.

Exercise 5.29

Run Program 5.4 after replacing the user name and mail directory names so that they are
appropriate for your system.

Program 5.4 is not very general because the user name, mail directory and sleep time are
hardcoded. In addition, the st at function provides more information about a file without the
overhead of open.

Exercise 5.30

Modify Program 5.4 to use st at instead of open.

Exercise 5.31

On some systems, a user's new mail file always exists but has zero bytes if the user has no
mail. Modify si npl ebi ff to account for this case.

The POSIX-approved way of getting the user name is to call get ui d to find out the user ID and
then call get pwui d to retrieve the user's login name. The get pwui d function takes the user's
numerical ID as a parameter and retrieves a passwd structure that has the user's name as a
member.

SYNOPSI S

#i ncl ude <pwd. h>

struct passwd *getpwui d(uid_t uid);



POSI X

If unsuccessful, get pwui d returns a NULL pointer and sets err no.

The struct passwd structure is defined in pwd. h. The POSIX base definition specifies that the
struct passwd structure have at least the following members.

char *pw_namne /* user's login nanme */

uid t pwuid /* nunerical user ID */

gid t pwgid /* nunerical group ID */

char *pwd_dir [* initial working directory */
char *pw_shel | /* programto use as shell */

Exercise 5.32

Find out the base directory name of the directory in which unread mail is stored on your
system. (The base directory in Program 5.4 is /var/ mai | / .) Construct the pathname of the

unread mail by concatenating the base mail directory and the program’s user name. Use
get ui d and get pwui d in combination to determine the user name at run time.

The directory used for mail varies from system to system, so you must determine the location
of the system mail files on your system in order to use si npl ebi ff. A better version of the

program would allow the user to specify a directory on the command line or to use system-
specific information communicated by environment variables if this information is available. The
POSIX:Shell and Utilities standard specifies that the sh shell use the MAlI L environment variable

to determine the pathname of the user's mail filefor the purpose of incoming mail notification.
The same standard also specifiesthat the MAI LCHECK environment variable be used to specify

how often (in seconds) the shell should check for the arrival of new messages for notification.
The standard states that the default value of MAI LCHECK should be 600.

Exercise 5.33

Rewrite Program 5.4 so that it uses the value of MAI LCHECK for the sleep time if that
environment variable is defined. Otherwise, it should use a default value of 600.

Exercise 5.34

Rewrite your program of Exercise 5.33 so that it uses the value passed on the command line as
the pathname for the user's mailbox. If si npl ebi ff is called with no command-line arguments,
the program should use the value of the MAI L environment variable as the pathname. If MAI L is

undefined and there were no command-line arguments, the program should use a default path
of /var/ mai | / user . Use the method of Exercise 5.32 to find the value of user.

Exercise 5.35

Rewrite Program 5.4 so that it has the following synopsis.



sinmplebiff [-s n] [-p pathname]

The [ ] in the synopsis indicates optional command-line arguments. The first command-line
argument specifies a sleep interval. If -s n is not provided on the command line and
MAI LCHECK is not defined, use thevalue of SLEEPTI ME as a default. The - p pat hnane specifies a

pathname for the system mail directory. If this option is not specified on the command line, use
the MAI L environment variable value as a default value. If MAI L is not defined, use the

MAI LFI LE defined in the program. Read the man page for the get opt function and use it to
parse the command-line arguments.
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5.7 Exercise: News biff

The si mpl ebi ff program informs the user of incoming mail. A user might also want to be

informed of changes in other files such as the Internet News files. If a system is a news server,
it probably organizes articles as individual files whose pathname contains the newsgroup name.

Example 5.36

A system keeps its news files in the directory / var/ spool / news. Article 1034 in newsgroup
conp. 0s. uni x is located in the following file.

[ var/ spool / news/ conp/ os/ uni x/ 1034

The following exercises develop a facility for biffing when any file in a list of files changes.

1. Write a function called | ast nod that returns the time at which a file was last modified.
The prototype for | ast nod is as follows.

time_t |astnod(char *pathnane);

Use st at to determine the last modification time. The ti ne_t is time in seconds since
00:00:00 UTC, January 1, 1970. The | ast nod function returns —1 if there is an error
and sets err no to the error number set by st at .

2. Write a main program that takes a pathname as a command-line argument and calls
| ast nod to determine the time of last modification of the corresponding file. Use cti ne

to print out the ti ne_t value in a readable form. Compare the results with those
obtained from s -1.

3. Write a function called convert news that converts a newsgroup name to a fully qualified
pathname. The prototype of convert news is as follows.

char *convertnews(char *newsgroup);

If the environment variable NEWSDI R is defined, use it to determinethe path. Otherwise,
use / var/ spool / news. (Call get env to determine whether the environment variable is
defined.) For example, if the newsgroup is conp. 0s. uni x and NEWSDI R is not defined,
the pathname is the following.

/ var/ spool / news/ conp/ os/ uni x

The convert news function allocates space to hold the converted string and returns a

pointer to that space. (A common error is to return a pointer to an automatic variable
defined within conver t news.) Do not modify newsgr oup in convertnews. The


file:///D|/Tutoriales%20&%20Programacion/Prep%20Finales/XxX/Prentice%20Hall%20-%20Unix%20Systems%20Programming%202nd%20Ed/NFO/lib.html

convert news returns a NULL pointer and sets er r no if there was an error.

4. Write a program that takes a newsgr oup name and a sl eept i me value as command-line
arguments. Print the time of the last modification of the newsgr oup and then loop as
follows.

a. Sleep for sl eepti ne.
b. Test to see whether the newsgr oup has been modified.

c. If the newsgr oup directory has been modified, print a message with the
newsgr oup name and the time of modification.

Test the program on several newsgroups. Post news to a local newsgroup to verify that
the program is working. The newsgr oup directory can be modified both by news arrival

and by expiration. Most systems expire news in the middle of the night.

5. Generalize your newshi ff program so that it reads in a list of files to be tracked from a

file. Your program should store the files and their last modification times in a list. (For
example, you can modify the list object developed in Section 2.9 for this purpose.) Your
program should sleep for a specified number of seconds and then update the
modification times of the files in the list. If any have changed, print an informative
message to standard output.

[ Team Lig 1 [rreviovs
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5.8 Exercise: Traversing Directories

The exercises in this section develop programs to traverse directory trees in depth-first and
breadth-first orders. Depth-first searches explore each branch of a tree to its leaves before
looking at other branches. Breadth-first searches explore all the nodes at a given level before
descending lower in the tree.

Example 5.37

For the file system tree in Figure 5.1 on page 146, depth-first ordering visits the nodes in the
following order.

dirC
my 3. dat
dirA
dirB
nmyl. dat
myl. dat
my2. dat

The indentation of the filenames in Example 5.37 shows the level in the file system tree. Depth-
first search is naturally recursive, as indicated by the following pseudocode.

depthfirst(root) {
for each node at or bel ow root
vi sit node;
if node is a directory
dept hfirst(node);

Example 5.38
For the file system tree in Figure 5.1, breadth-first order visits the nodes in the following order.

/

/dirC

/dirA

[ dirC ny3. dat
/dirAdirB

[dirA nyl. dat
[dirA ny2. dat
[dirAdirB/ nyl. dat

Breadth-first search can be implemented with a queue similar to the history queue of Program
2.8 on page 47. As the program encounters each directory node at a particular level, it

enqueues the complete pathname for later examination. The following pseudocode assumes the
existence of a queue. The enqueue operation puts a node at the end of the queue, and the
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dequeue operation removes a node from the front of the queue.

breadt hfirst (root)({
enqueue(root);
while (queue is not enpty) {
dequeue( &next) ;
for each node directly bel ow next:
visit the node
if node is a directory
engueue( node)

Exercise 5.39

The UNIX du shell command is part of the POSIX:UP Extension. The command displays the

sizes of the subdirectories of the tree rooted at the directory specified by its command-line
argument. If called with no directory, the du utility uses the current working directory. If du is

defined on your system, experiment with it. Try to determine which search strategy it uses to
traverse the tree.

Develop a program called nmydu that uses a depth-first search strategy to display the sizes of
the subdirectories in a tree rooted at the specified file.

1. Write a function called dept hfi r st appl y that has the following prototype.

int depthfirstapply(char *path, int pathfun(char *pathl));

The dept hfi rstappl y function traverses the tree, starting at pat h. It applies the

pat hf un function to each file that it encounters in the traversal. The dept hfi rst apply
function returns the sum of the positive return values of pat hf un, or —1 if it failed to
traverse any subdirectory of the directory. An example of a possible pat hf un is the

si zepat hf un function specified in the next part.

2. Write a function called si zepat hf un that has the following prototype.

i nt sizepathfun(char *path);

The si zepat hf un function outputs pat h along with other information obtained by calling
st at for pat h. The si zepat hf un returns the size in blocks of the file given by pat h or -1
if pat h does not correspond to an ordinary file.

3. Use dept hfirstapply with the pat hf un given by si zepat hf un to implement the
following command.

showt r eesi ze pat hnanme



The showt r eesi ze command writes pat hnane followed by its total size to standard
output. If pat hnane is a directory, the total size corresponds to the size of the entire
subtree rooted at pat hnane. If pat hnane is a special file, print an informative message
but no size.

4. Write a command called nydu that is called with a command-line argument r oot pat h as
follows.

mydu r oot path

The mydu program calls a modified dept hfirst appl y with the function si zepat hf un. It

outputs the size of each directory followed by its pathname. The size of the directory
does not count the size of subtrees of that directory. The program outputs the total size
of the tree at the end and exits.

5. Write breadt hfi rstappl y that is similar to dept hfi r st appl y but uses a breadth-first
search strategy.

[ Team LiB 1 [rreviovs]
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5.9 Additional Reading

Advanced Programming in the UNIX Environment by Stevens [112] has a good technical

discussion of files and directories. Depth-first and breadth-first search strategies are discussed
in standard algorithms books such as An Introduction to Algorithms by Cormen, Leiserson and
Rivest [25].

[ Team LiB 1 [rreviovs]
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Chapter 6. UNIX Special Files

This chapter discusses UNIX special files that represent devices. Two important examples of
special files are pipes and FIFOs, interprocess communication mechanisms that allow processes
running on the same system to share information and hence cooperate. The chapter introduces
the client-server model and also discusses how to handle special files representing devices such
as terminals.

Objectives

o Learn about interprocess communication

o Experiment with client-server interactions

» Explore pipes and redirection

« Use device control to set parameters

« Understand how UNIX achieves device independence

[ Team Lig 1 [rreviovs
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6.1 Pipes

The capacity to communicate is essential for processes that cooperate to solve a problem. The
simplest UNIX interprocess communication mechanism is the pipe, which is represented by a
special file. The pi pe function creates a communication buffer that the caller can access

through the file descriptors fi |l des[ 0] and fil des[ 1] . The data written to fi | des[ 1] can be
read from fil des[ 0] on a first-in-first-out basis.

SYNOPSI S

#i ncl ude <uni std. h>
int pipe(int fildes[2]);
PCSI X

If successful, pi pe returns 0. If unsuccessful, pi pe returns —1 and sets err no. The following
table lists the mandatory errors for pi pe.

errno cause

EMFILE | more than MAX_OPEN- 2 file descriptors already in use by this process

ENFI LE | humber of simultaneously open files in system would exceed system-imposed limit

A pipe has no external or permanent name, so a program can access it only through its two
descriptors. For this reason, a pipe can be used only by the process that created it and by
descendants that inherit the descriptors on f or k. The pi pe function described here creates a

traditional unidirectional communication buffer. The POSIX standard does not specify what
happens if a process tries to write to fi |l des[ 0] or read from fil des[1].

When a process calls r ead on a pipe, the r ead returns immediately if the pipe is not empty. If
the pipe is empty, the r ead blocks until something is written to the pipe, as long as some

process has the pipe open for writing. On the other hand, if no process has the pipe open for
writing, a r ead from an empty pipe returns 0O, indicating an end-of-file condition. (This

description assumes that access to the pipe uses blocking 1/0.)
Example 6.1

The following code segment creates a pipe.

int fd[2];

if (pipe(fd) == -1)
perror("Failed to create the pipe");
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If the pi pe call executes successfully, the process can read from fd[ 0] and write to fd[ 1] .

A single process with a pipe is not very useful. Usually a parent process uses pipes to
communicate with its children. Program 6.1 shows a simple program in which the parent
creates a pipe before forking a child. The parent then writes a string to the pipe and prints a
message to standard error. The child reads a message from the pipe and then prints to
standard error. This program does not check for errors on the read or wri t e operations.

Program 6.1 parentwitepipe.c

A program in which a parent writes a string to a pipe and the child reads the string. The
program does not check for 1/0 errors.

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

<stdi o. h>
<string. h>
<uni st d. h>
<sys/types. h>

#defi ne BUFSI ZE 10

int main(void) {

char bufin[ BUFSI ZE] = "enpty";

char bufout[] = "hello";

i nt bytesin;

pid_t childpid;

int fd[2];

if (pipe(fd) == -1) {
perror("Failed to create the pipe");
return 1;

}

bytesin = strlen(bufin);
childpid = fork();

if (childpid == -1) {
perror("Failed to fork");
return 1;
}
if (childpid) /* parent code */

write(fd[1l], bufout, strlen(bufout)+1);

el se

/* child code */

bytesin = read(fd[ 0], bufin, BUFSIZE);
fprintf(stderr, "[%d]:my bufinis {%*s}, ny bufout is {%}\n",

(long)getpid(), bytesin, bufin, bufout);

return O;

Exercise 6.2

Run Program 6.1 and explain the results. Does the child always read the full string?

Answer:



The parent's buf i n always contains the string "enpt y". The child's buf i n most likely contains
the string "hel | 0" . However, reads from pipes are not atomic. That is, there is no guarantee
that a single r ead call actually retrieves everything written by a single wri t e call. It is possible
(though not likely in this case) that the child's bufi n could contain something like "hel ty" if

r ead retrieves only partial results. If the parent's wri t e operation fails, the child's bufin
contains "enpty".

Exercise 6.3

Consider the following code segment from Program 6.1.

if (childpid)
write(fd[1l], bufout, strlen(bufout)+1);
el se

bytesin = read(fd[0], bufin, BUFSIZE);

What happens if you replace it with the following code?

if (childpid)
copyfil e(STDI N_FILENO, fd[1]);
el se

copyfile(fd[0], STDOUT_FILENO):;

(The copyfi | e function is shown in Program 4.6 on page 100.)

Answer:

The parent process reads from standard input and writes to the pipe, while the child reads from
the pipe and echoes to standard output. The parent echoes everything entered at the keyboard
as it is typed, and the child writes to the screen as it reads each entered line from the pipe. A
difficulty arises, however, when you enter the end-of-file character (usually Ctrl-D) at the
terminal. The parent detects the end of the input, displays the message written by its f printf,
and exits with no problem, closing its descriptors to the pipe. Unfortunately, the child still has f d
[ 1] open, so the copyfi | e function does not detect that input has ended. The child hangs,
waiting for input, and does not exit. Since the parent has exited, the prompt appears, but the
child process is still running. Unless you execute ps you might think that the child terminated

also. To fix the problem, replace the substitute code with the following.

if (childpid & (close(fd[0]) !'=-1))
copyfil e(STDI N _FI LENO, fd[1]);

else if (close(fd[1]) !'= -1)
copyfile(fd[ 0], STDOUT_FILENO);

Program 6.2 shows a modification of Program 3.2 from page 68. The modification demonstrates
how to use reading from pipes for synchronization. The parent creates a pipe before creating n-
1 children. After creating all its children, the parent writes n characters to the pipe. Each

process, including the parent, reads a character from the pipe before proceeding to output its
information to standard error. Since the read from the pipe blocks until there is something to
read, each child waits until the parent writes to the pipe, thereby providing a synchronization



point called a barrier. None of the processes can do any writing to standard error until all of the
processes have been created. Section 6.8 gives another example of barrier synchronization.

Notice that Program 6.2 usesr_w i te and r_read rather than write and r ead to ensure that

the parent actually writes everything and that the children actually perform their reads. The
children do not synchronize after the barrier.

Program 6.2 synchroni zef an. ¢

A synchronized process fan. Processes wait until all have been created before echoing their
messages to standard error.

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>
#i ncl ude <uni std. h>
#include "restart.h"

int main (int argc, char *argv[]) {
char buf[] ="g";
pidt childpid = 0;

int fd[2];

int i, n;

if (argc !'= 2){ /* check for valid nunmber of conmand-I|ine argunents */
fprintf (stderr, "Usage: % processes\n", argv[O0]);
return 1;

}

n = atoi(argv[1]);

if (pipe(fd) == -1) { /* create pipe for synchronization */
perror("Failed to create the synchroni zati on pipe");
return 1;

}

for (i =1; i <n; i++) /* parent creates all children */
if ((childpid = fork()) <= 0)

br eak;

if (childpid > 0) { /* wite synchronization characters to pipe */

for (i =0; i <n; i++)

if (r_wite(fd[1], buf, 1) I=1)
perror("Failed to wite synchronization characters");

}
if (r_read(fd[0], buf, 1) !'=1) /* synchroni ze here */
perror("Failed to read synchronizati on characters");
fprintf(stderr, "i:% process ID:%d parent ID%d child ID %d\n",
i, (long)getpid(), (long)getppid(), (long)childpid);
return (childpid == -1);
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6.2 Pipelines

Section 4.7 explains how a process can redirect standard input or output to a file. Redirection

allows programs that are written as filters to be used very generally. This section describes how
to use redirection with pipes to connect processes together. (You may want to review Section

4.7, which explains how a process can redirect standard input or output to a file.)

Example 6.4

The following commands use the sort filter in conjunction with | s to output a directory listing
sorted by size.

Is -1 > ny.file
sort -n +4 < ny.file

The first option to sort gives the type of sort (n means numeric). The second option instructs
the program to find the sort key by skipping four fields.

The first command of Example 6.4 causes the process that runs the | s -1 to redirect its
standard output to the disk file my. fi |l e. Upon completion, ny. fil e contains the unsorted
directory listing. At this point, the second command creates a process to run the sort with its
standard input redirected from ny. fi |l e. Since sort is a filter, the sorted listing appears on
standard output. Unfortunately, when the pair of commands completes, ny. fi | e remains on
disk until explicitly deleted.

An alternative approach for outputting a sorted directory listing is to use an interprocess
communication (IPC) mechanism such as a pipe to send information directly from the | s

process to the sort process.

Example 6.5

The following alternative to the commands of Example 6.4 produces a sorted directory listing
without creating the intermediate file my. fil e.

Is -1 | sort -n +4

The vertical bar (] ) of Example 6.5 represents a pipe. A programmer can build complicated

transformations from simple filters by feeding the standard output of one filter into the
standard input of the other filter through an intermediate pipe. The pipe acts as a buffer
between the processes, allowing them to read and write at different speeds. The blocking
nature of read and wri t e effectively synchronize the processes.

The connection between | s and sort in Example 6.5 differs from redirection because no
permanent file is created. The standard output of | s is "connected" to the standard input of
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sort through the intermediate communication buffer. Figure 6.1 shows a schematic of the
connection and the corresponding file descriptor tables after the processes representing | s and
sort establish the connection. The | s process redirects its standard output to the write
descriptor of the pipe, and sort redirects its standard input to the read descriptor of the pipe.
The sort process reads the data that | s writes on a first-in-first-out basis. The sort process
does not have to consume data at the same rate as | s writes it to the pipe.

Figure 6.1. Status of the file descriptor table during execution of
Example 6.5.

sort
(21 _ file descriptor table
7 ’ 0] pipe read
fnsurt (- 1) standard output
(0] 121 standard error
. ipe ~
plp 1s
) i1 file descriptor table
J— f;_- 0] standard input
( 1ls »— : :
=< 1] pipe write
o) 2 21 standard error

Program 6.3 shows a program that implements the equivalent of Example 6.5. Figures 6.2 to
6.4 depict the state of the file descriptor table for Program 6.3. In Figure 6.2, the child process

inherits a copy of the file descriptor table of the parent. Both processes have read and write
descriptors for the pipe. Figure 6.3 shows the file descriptor table after the child redirects its

standard output and the parent redirects its standard input, but before either process closes
unneeded file descriptors. Figure 6.4 shows the configuration after each process completes the

cl ose calls. This is the configuration inherited by execl .

Figure 6.2. Status of the file descriptor table after the fork in Program
6.3.
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Figure 6.3. Status of the file descriptor table after both dup2 functions of
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Figure 6.4. Status of the file descriptor table after all cl ose calls of
Program 6.3.
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Exercise 6.6

Explain why the only return values in Program 6.3 indicate error conditions. Under what
circumstances does this program execute successfully?

Answer:

The program executes successfully when both parent and child successfully run execl on their

respective programs and these programs complete successfully. If execution reaches one of the
r et ur n statements of Program 6.3, at least one of the execl calls failed. Once an execl call

completes successfully, the program on which execl was run is responsible for the error
handling.

Program 6.3 sinpleredirect.c

A program to execute the equivalent of | s -1 | sort -n +4.

#i ncl ude <errno. h>
#i ncl ude <stdio. h>
#i ncl ude <unistd. h>
#i ncl ude <sys/types. h>

int main(void) {
pi d_t childpid;
int fd[2];

if ((pipe(fd) ==-1) || ((childpid = fork()) == -1)) {



perror("Failed to setup pipeline");

return 1;
}
if (childpid == 0) { /[* Is is the child */
if (dup2(fd[1l], STDOUT_FILENO == -1)
perror("Failed to redirect stdout of Is");
else if ((close(fd[0]) == -1) || (close(fd[1]) == -1))
perror("Failed to close extra pipe descriptors on Is");
el se {
execl ("/bin/ls", "I's", "-1", NULL);
perror("Failed to exec |Is");
}
return 1;
}
if (dup2(fd[0], STDIN_FILENO == -1) /* sort is the parent */
perror("Failed to redirect stdin of sort");
else if ((close(fd[0]) == -1) || (close(fd[1l]) == -1))
perror("Failed to close extra pipe file descriptors on sort");
el se {
execl ("/bin/sort", "sort", "-n", "+4", NULL);
perror("Failed to exec sort");
}
return 1;

Exercise 6.7

What output would be generated if the file descriptors f d[ 0] and fd[ 1] were not closed before
the calls to execl ?

Answer:

No output would be generated. The sort process reads from standard input until an end-of-file
occurs. Since it is reading from a pipe, sort detects an end-of-file (r ead returns 0) only when
the pipe is empty and no processes have the pipe open for writing. As illustrated in Figure 6.4,
only the | s program (the child) can write to the pipe. Eventually, this program terminates, and
sort (the parent) detects end-of-file. If Program 6.3 omits the cl ose calls, the situation looks
like Figure 6.3. When the child terminates, the parent still has file descriptor [ 4] open for
writing to the pipe. The parent blocks indefinitely, waiting for more data.

[ Team Lie ] [ rreviovs)
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6.3 FIFOs

Pipes are temporary in the sense that they disappear when no process has them open. POSIX
represents FIFOs or named pipes by special files that persist even after all processes have

closed them. A FIFO has a name and permissions just like an ordinary file and appears in the
directory listing given by | s. Any process with the appropriate permissions can access a FIFO.

Create a FIFO by executing the nkfi f o command from a shell or by calling the nkfi f o function
from a program.

The nkfi f o function creates a new FIFO special file corresponding to the pathname specified by
pat h. The node argument specifies the permissions for the newly created FIFO.
SYNOPSI S

#i ncl ude <sys/stat.h>

int nkfifo(const char *path, node_t node);
PCSI X

If successful, nkfi f o returns O. If unsuccessful, nkfi f o returns —1 and sets errno. A return

value of —1 means that the FIFO was not created. The following table lists the mandatory errors
for nkfifo.

errno cause

EACCES search permission on a component of path prefix denied, or write permission
on parent directory of FIFO denied

EEXI ST named file already exists

ELOOP a loop exists in resolution of pat h

ENAMETOOLONG | |length of pat h exceeds PATH_MAX, or a pathname component is longer than
NANVE_MAX

ENCENT component of path prefix specified by pat h does not name existing file, or
pat h is an empty string

ENOSPC directory to contain new file cannot be extended, or the file system is out of
resources

ENOTDI R component of path prefix is not a directory

ERCFS the named file would reside on a read-only file system

Unlike many other 1/0 functions, nkfi f o does not set errno to El NTR.
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Example 6.8

The following code segment creates a FIFO, nyfi f o, in the current working directory. This FIFO
can be read by everybody but is writable only by the owner.

#define FIFO PERMB (S IRUSR| S IWSR | S IRGRP | S_|ROTH)

if (nkfifo("nyfifo", FIFO PERMS) == -1)
perror("Failed to create nyfifo");

Remove a FIFO the same way you remove a file. Either execute the r mcommand from a shell
or call unl i nk from a program. Example 6.9 shows a code segment that removes the FIFO that
Example 6.8 created. The code assumes that the current working directory of the calling
program contains nyfi f o.

Example 6.9
The following code segment removes nyfi f o from the current working directory.

if (unlink("myfifo") == -1)
perror("Failed to remove nyfifo");

Program 6.4 creates a named pipe from a path specified on the command line. It then forks a

child. The child process writes to the named pipe, and the parent reads what the child has
written. Program 6.4 includes error checking, identifying each message with the process ID.

This identification of messages is important because the parent and child share standard error.
Program 6.4 parentchildfifo.c

The parent reads what its child has written to a named pipe.

#i ncl ude <errno. h>

#include <fcntl. h>

#i ncl ude <stdio. h>

#i ncl ude <string. h>

#i ncl ude <uni std. h>

#i ncl ude <sys/stat. h>

#i ncl ude <sys/wait.h>

#defi ne BUFSI ZE 256

#define FIFO PERM (S IRUSR | S_|WSR)

int dofifochild(const char *fifonane, const char *idstring);
i nt dofifoparent(const char *fifonane);

int main (int argc, char *argv[]) {
pi d_t chil dpid;

if (argc !'= 2) { /* command |ine has pipe nane */
fprintf(stderr, "Usage: % pipenane\n", argv[O0]);



return 1;

}
if (nkfifo(argv[1l], FIFO PERM == -1) { /* create a nanmed pipe */
if (errno !'= EEXI ST) {
fprintf(stderr, "[%d]:failed to create nanmed pipe %:. %\n",
(long)getpid(), argv[1l], strerror(errno));
return 1;
}
}
if ((childpid = fork()) == -1){
perror("Failed to fork");
return 1;
}
if (childpid == 0) /* The child wites */
return dofifochild(argv[1l], "this was witten by the child");
el se

return dofifoparent(argv[1]);

The dofi f ochi | d function of Program 6.5 shows the actions taken by the child to write to the
pipe. Notice that Program 6.5 uses snprintf rather than spri ntf to construct the message.
The first three parameters to snpri ntf are the buffer address, the buffer size and the format
string. The snprintf does not write beyond the specified size and always inserts a null
character to terminate what it has inserted. Program 6.5 also usesr_wite instead of wite to
make sure that the child writes the entire message.

Program 6.5 dofifochild.c

The child writes to the pipe and returns.

#i ncl ude <errno. h>

#i ncl ude <fcntl. h>

#i ncl ude <stdio. h>

#i ncl ude <string. h>
#i ncl ude <unistd. h>
#i ncl ude <sys/stat. h>
#include "restart.h"
#defi ne BUFSI ZE 256

int dofifochild(const char *fifonane, const char *idstring) {
char buf [ BUFSI ZE] ;
int fd;
int rval;
ssize t strsize;

fprintf(stderr, "[%d]:(child) about to open FIFO %...\n",
(long)getpid(), fifonane);
while (((fd = open(fifoname, O WRONLY)) == -1) && (errno == EINIR)) ;
if (fd == -1) {
fprintf(stderr, "[%d]:failed to open naned pipe % for wite: %\n",
(long)getpid(), fifonane, strerror(errno));
return 1;



rval = snprintf(buf, BUFSIZE, "[%d]:%\n", (long)getpid(), idstring);
if (rval <0) {
fprintf(stderr, "[%d]:failed to nake the string:\n", (long)getpid());
return 1;
}
strsize = strlen(buf) + 1;
fprintf(stderr, "[%d]:about to wite...\n", (long)getpid());
rval = r_wite(fd, buf, strsize);
if (rval !'= strsize) {
fprintf(stderr, "[%d]:failed to wite to pipe: %\n",
(long)getpid(), strerror(errno));
return 1;
}
fprintf(stderr, "[%d]:finishing...\n", (long)getpid());
return O;

The dof i f opar ent function of Program 6.6 shows the actions taken by the parent to read from
the pipe.

Exercise 6.10
What happens to the named pipe after the processes of Program 6.4 exit?

Answer:

Since neither process called unl i nk for the FIFO, it still exists and appears in the directory
listing of its path.

Program 6.6 dofifoparent.c

The parent reads what was written to a named pipe.

#1 ncl ude <errno. h>

#i ncl ude <fcntl. h>

#i ncl ude <stdi o. h>

#i ncl ude <string. h>

#i ncl ude <uni std. h>

#i ncl ude <sys/stat. h>
#include "restart.h"
#defi ne BUFSI ZE 256

#define FI FO MODES O RDONLY

i nt dofifoparent(const char *fifonanme) {
char buf [ BUFSI ZE] ;
int fd;
int rval;

fprintf(stderr, "[%d]: (parent) about to open FIFO %...\n",
(long)getpid(), fifonane);
while (((fd pen(fifonane, FIFO MODES)) == -1) && (errno == EINTR)) ;

=0
if (fd == -1) {



fprintf(stderr, "[%d]:failed to open naned pipe % for read: %\n",
(long)getpid(), fifonane, strerror(errno));
return 1;
}
fprintf(stderr, "[%d]:about to read...\n", (long)getpid());
rval = r_read(fd, buf, BUFSIZE);
if (rval == -1) {
fprintf(stderr, "[%d]:failed to read from pi pe: %\n",
(long)getpid(), strerror(errno));
return 1;
}
fprintf(stderr, "[%d]:read % *s\n", (long)getpid(), rval, buf);
return O;

[ Team L8 1 [rrevios
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6.4 Pipes and the Client-Server Model

The client-server model is a standard pattern for process interaction. One process, designated
the client, requests a service from another process, called the server. The chapters in Part 4 of
the book develop and analyze applications that are based on the client-server model with
network communication. This section introduces client-server applications that use named pipes
as the communication vehicle. We look at two types of client-server communication—simple-
request and request-reply. In simple-request, the client sends information to the server in a
one-way transmission; in request-reply the client sends a request and the server sends a reply.

Programs 6.7 and 6.8 illustrate how the simple-request protocol can be useful in logging. The

client writes logging information to a named pipe rather than to standard error. A server reads
from the named pipe and writes to a file. At first glance, the use of the named pipe appears to
have added an extra step with no benefit. However, pipes and FIFOs have a very important
property—writes of no more than Pl PE_BUF bytes are guaranteed to be atomic. That is, the

information is written as a unit with no intervening bytes from other writes. In contrast, an
fprintf is not atomic, so pieces of the messages from multiple clients might be interspersed.

The server of Program 6.7 creates the pipe if it does not already exist. The server opens the

pipe for both reading and writing, even though it will not write to the pipe. When an attempt is
made to open a pipe for reading, open blocks until another process opens the pipe for writing.

Because the server opens the pipe for reading and writing, open does not block. The server
uses copyfil e to read from the pipe and to write to standard output. To write to a file, just

redirect standard output when the server is started. Since the server has the pipe open for
writing as well as reading, copyfi | e will never detect an end-of-file. This technique allows the

server to keep running even when no clients are currently writing to the pipe. Barring errors,
the server runs forever.

Program 6.7 pi peserver.c

The program reads what is written to a named pipe and writes it to standard output.

#1 ncl ude <errno. h>

#1 ncl ude <fcntl. h>

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

#i ncl ude <uni std. h>

#i ncl ude <sys/stat. h>

#include "restart.h"

#defi ne FlI FOARG 1

#define FIFO PERVS (S IRWU | S IWERP| S | WOTH)

int main (int argc, char *argv[]) {
int requestfd,

if (argc !'= 2) { /* name of server fifo is passed on the command |ine */
fprintf(stderr, "Usage: % fifonane > logfile\n", argv[O0]);
return 1;
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/* create a nanmed pipe to handle incom ng requests */

if ((nkfifo(argv[FI FOARG, FIFO PERMS) == -1) && (errno != EEXIST)) {
perror("Server failed to create a FIFQ');
return 1;
}
/* open a read/wite comuni cation endpoint to the pipe */
if ((requestfd = open(argv[FI FOARG, ORDWR)) == -1) {
perror("Server failed to open its FIFQ');
return 1;
}
copyfil e(requestfd, STDOUT_FI LENO ;
return 1;

The client in Program 6.8 writes a single line to the pipe. The line contains the process ID of the
client and the current time. Multiple copies of Program 6.8 can run concurrently. Because of the

atomic nature of writes to the pipe, pieces of the messages from different clients are not
interleaved.

Program 6.8 pipeclient.c

The client writes an informative message to a named pipe.

#i
#i
#i
#i
#i
#i
#i
#i
#i
#i

ncl ude <errno. h>
nclude <fcntl. h>
nclude <limts. h>
ncl ude <stdio. h>
ncl ude <stdlib. h>
ncl ude <strings. h>
ncl ude <tine. h>

ncl ude <unistd. h>
ncl ude <sys/stat. h>
nclude "restart.h"

#defi ne FlI FOARG 1

int main (int argc, char *argv[]) {

tinme_t curtine;

int |en;

char request buf[ Pl PE_BUF] ;
int requestfd;

if (argc '=2) { [/* nane of server fifo is passed on the command |ine */
fprintf(stderr, "Usage: % fifonane", argv[O0]);
return 1;
}
if ((requestfd = open(argv[FI FOARG, O WRONLY)) == -1) {
perror("Client failed to open log fifo for witing");
return 1;
}

curtinme = time(NULL);
snprintf(requestbuf, PIPE BUF, "%l: %", (int)getpid(), ctine(&urtine));
I en = strlen(requestbuf);



if (r_wite(requestfd, requestbuf, len) I'=1len) {
perror("Client failed to wite");
return 1;

}

r_cl ose(requestfd);
return O;

Exercise 6.11

How would you start Program 6.7 so that it uses the pipe nypi pe and the log file it creates is
called nyl og? When will the program terminate?

Answer:

pi peserver mypi pe > nyl og

The program does not terminate unless it is Kkilled. You can Kkill it by typing Ctrl-C at the
keyboard. No client error can cause the server to terminate.

Exercise 6.12

Start the pi peserver of Program 6.7 and run several copies of the pi pecl i ent of Program 6.8
and observe the results.

We now consider a second example of the client-server model with named pipes, a simple time
(sequence number) server that illustrates some of the difficulties in using the client-server
model with pipes and FIFOs.

The implementation uses two named pipes—a request pipe and a sequence pipe. Clients write a
byte to a request pipe (e.g., ' g' ). The server responds by writing a sequence number to the

sequence pipe and incrementing the sequence number. Unfortunately, reading from a pipe is
not an atomic operation. Since the sequence number is more than one byte, it is possible
(though unlikely) that a client may not get all of the bytes of a sequence number in one read.
Depending on the interleaving of the client processes, the next client may get part of the
previous sequence number. To handle this possibility, a client that does a partial read of the
sequence number immediately transmits an error designator (e.g., ' €' ) on the request pipe.

When the server encounters the error character, it closes and unlinks the pipes. The other
clients then detect an error.

As before, the server opens both pipes for reading and writing. The server terminates only
when it receives an ' e' byte from a client. When that happens, future clients block when they
try to open the request pipe for writing. Pending clients receive an error when they try to write
to the request pipe since no process has this pipe open. When a process writes to a pipe or
FIFO that no process has open for reading, wri t e generates a Sl GPl PE signal. Unless the
process has specifically prevented it, the signal causes the process to terminate immediately.
Section 8.4 explains how to respond to these types of signals.

Programs 6.9 and 6.10 illustrate the difficulties of implementing a request-reply protocol by




using named pipes. When multiple clients make requests, the server replies can be read by any
client. This allows a sequence number meant for one process to be read by another process.
Second, because reads are not atomic, a partial read by one client causes the next client to
receive incorrect results. The solution in Program 6.9 and Program 6.10 is for the client to send

an error code, which causes the server to terminate. This strategy may suffice for closely
cooperating processes, but it is not applicable in general. A malicious client could cause the
protocol to behave incorrectly without detecting an error. In most cases, the client should never
be able to cause the server to fail or exit. The exercise of Section 6.10 explores an alternative

strategy in which the server creates a separate named pipe for each distinct client. Now each
pipe only has a single reader, eliminating the two problems described above.

Program 6.9 segserverbad. c

A sequence server reads a character from the request pipe and transmits a sequence number
to the sequence pipe. (See text for a discussion.)

#1 ncl ude <errno. h>

#1 ncl ude <fcntl. h>

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

#i ncl ude <uni std. h>

#i ncl ude <sys/stat. h>

#include "restart.h"

#defi ne ERROR CHAR e’

#define OK CHAR ' ¢'

#defi ne REQUEST FI FO 1

#define REQ PERVB (S IRUSR | S IWUSR | S IWERP | S | WOTH)
#defi ne SEQUENCE_FI FO 2

#define SEQ PERVS (S IRUSR | S IWUSR | S |IRGRP| S_| ROTH)

int main (int argc, char *argv[]) {
char buf[1];
int reqfd, seqfd; |long seqnum = 1;
if (argc !'= 3) { /* nanmes of fifos passed on the command Iine */
fprintf(stderr, "Usage: % requestfifo sequencefifo\n", argv[O0]);
return 1;

/* create a nanmed pipe to handle incom ng requests */
if ((nkfifo(argv[REQUEST FIFQ, REQ PERMS) == -1) && (errno != EEXIST)) {
perror("Server failed to create request FIFQO);
return 1;

if ((nkfifo(argv[ SEQUENCE FI FQ, SEQ PERMB) == -1) && (errno != EEXI ST)){
perror("Server failed to create sequence FlIFQO");
if (unlink(argv[ REQUEST FIFQ) == -1)
perror("Server failed to unlink request FIFQO");
return 1;

if (((reqfd = open(argv[ REQUEST_FIFQ, ORDWR)) == -1) ||
((seqgfd = open(argv[ SEQUENCE FIFQ, O RDWR)) == -1)) {
perror("Server failed to open one of the FIFGs");
return 1;



if (r_read(reqfd, buf, 1) == 1) {
if ((buf[0] == OK_CHAR) &&
(r_wite(seqgfd, &seqgnum sizeof (seqnum)) == sizeof (seqnun)))

seqnumt+;
else if (buf[0] == ERROR _CHAR)
br eak;
}
}
if (unlink(argv[REQUEST_FIFQ) == -1)
perror("Server failed to unlink request FIFQO");
i f (unlink(argv[ SEQUENCE FI FQ) == -1)
perror("Server failed to unlink sequence FlI FO");
return O;

Program 6.10 seqclientbad. c

The client writes a request to a request pipe and reads the sequence number from the
sequence pipe. This client can cause the server to exit.

#i
#i
#i
#i
#i
#i
#i
#i

ncl ude <errno. h>
nclude <fcntl. h>
ncl ude <stdio. h>
ncl ude <stdlib. h>
ncl ude <strings. h>
ncl ude <uni std. h>
ncl ude <sys/stat. h>
nclude "restart.h"

#defi ne ERROR CHAR ' €'
#define OK CHAR ' g
#def i ne REPEAT_MAX 100
#defi ne REQUEST_FI FO 1
#defi ne SEQUENCE_FI FO 2
#defi ne SLEEP_MAX 5

int main (int argc, char *argv[]) {

int i;

char reqbuf[1];
int reqfd, seqfd;
| ong segnum

if (argc !'= 3) { /* names of pipes are command-line argunents */
fprintf(stderr, "Usage: % requestfifo sequencefifo\n", argv[0]);
return 1;
}
if (((reqfd = open(argv[ REQUEST FIFQ, O WRONLY)) == -1) ||
((seqfd = open(argv[ SEQUENCE_FI FQ, O RDONLY)) == -1)) {
perror("Client failed to open a FIFQO');
return 1;
}

for (i = 0; i < REPEAT_MAX; i++) {
regbuf[ 0] = OK CHAR;
sl eep((int)(SLEEP_MAX*drand48()));
if (r_wite(reqfd, regbuf, 1) == -1) {
perror("Client failed to wite request");



br eak;

}

if (r_read(seqfd, &seqnum sizeof (seqnum)) != sizeof (seqnun) ) {
fprintf(stderr, "Client failed to read full sequence nunber\n");
regbuf[ 0] = ERROR_CHAR,
r wite(reqfd, reqgbuf, 1);
br eak;

}

fprintf(stderr, "[%d]:received sequence nunber % d\n",
(long)getpid(), seqnum;
}

return O;

The situation with nonatomic reads from pipes can actually be worse than described here. We
have assumed that a read becomes nonatomic as follows.

1. The server gets two requests and writes two sequence numbers (4-byte integers) to the
pipe.

2. One client calls r ead for the sequence pipe requesting four bytes, but r ead returns only
two bytes.

3. The second client calls r ead for the sequence pipe to read the next four bytes. These

four bytes consist of the last two bytes from the first sequence number and the first two
bytes of the second sequence number.

Under these circumstances the first client detects an error, and the server shuts down. The
second client may or may not know an error occurred.

However, another scenario is technically possible, although it is very unlikely. Suppose the
server writes two 4-byte integer sequence numbers and the bytes in the pipe are abcdef gh.

The POSIX standard does not exclude the possibility that the first client will read the bytes abgh
and the second one will read the bytes cdef . In this case, the sequence numbers are incorrect
and the error is not detected at all.

Exercise 6.13

Try running one copy of Program 6.9 (seqgser ver bad) and two copies of Program 6.10
(seqcl i ent bad). What happens?

Answer:

This should work correctly. The two copies of seqcl i ent bad should get disjoint sets of
sequence numbers.

Exercise 6.14

Try running two copies of Program 6.9 (seqgser ver bad) and one copy of Program 6.10




(seqcl i ent bad). What happens?

Answer:

Either server can respond to a request for a sequence number. It is possible that the client will
get the same sequence number twice.

Exercise 6.15

Change the seqcl i ent bad to have a SLEEP_MAX of O and a REPEAT_MAX of 1,000,000. Comment
out the last f pri ntf line. Run two copies of the client with one copy of the server. What
happens?

Answer:

It is possible, but unlikely, that the server will terminate because one of the clients received an
incorrect number of bytes when requesting the sequence number.
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6.5 Terminal Control

Many special files represent devices with characteristics that are platform dependent, making
standardization difficult. However, since terminal control was thought to be essential on all
systems, the POSIX standards committee decided to include library functions for manipulating
special files representing terminals and asynchronous communication ports. This section
describes these functions and the way to use them.

The stty command reports or sets terminal 1/0 characteristics. When executed without any
arguments or with the - a or - g options, the stty command outputs information about the
current terminal to standard output. The - a produces a longer form of the readable information
produced by stty without arguments; the - g option produces the information in a form that
can be used by a program. The second form of stty allows operands to change the behavior of
the terminal associated with a shell.

SYNOPSI S
stty [-a | -g]

stty operands
PCSI X: Shell and Uilities

Exercise 6.16

Execute stty, stty -aand stty -g on your system. Try to interpret the results.

Answer:

The stty command outputs the following under Sun Solaris 9.

speed 9600 baud; -parity

rows = 34; colums = 80; ypixels = 680; xpixels = 808;
swtch = <undef >

brkint -inpck -istrip icrnl -ixany inmaxbel onlcr tab3
echo echoe echok echoctl echoke iexten

The stty -a command on the same system outputs a more complete listing of the terminal
settings.

speed 9600 baud;
rows = 34; colums = 80; ypixels = 680; xpixels = 808;

csdata ?

eucw 1:0:0:0, scrw 1:0:0:0

intr = ~c; quit = "\; erase = "?; kill = ~u;

eof = "d; eol = <undef>; eol 2 = <undef>; swtch = <undef >;

start = ~q; stop = ”s; susp = *z; dsusp = "y;
rprnt = ~r; flush = *o0; werase = *w, |next = "v;
-parenb -parodd cs8 -cstopb -hupcl cread -clocal -1oblk
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-crtscts -crtsxoff -parext -ignbrk brkint ignpar -parnrk

-inpck -istrip -inlcr -igncr icrnl -iuclc ixon -ixany -ixoff

i mxbel isig icanon -xcase echo echoe echok -echonl -noflsh
-tostop echoct!l -echoprt echoke -defecho -flusho -pendin iexten
opost -olcuc onlcr -ocrnl -onocr -onlret -ofill -ofdel tab3

The stty -g command outputs the following on a single line.

2506: 1805:; dOObd: 8a3b: 3: 1c: 7f:15:4:0: 0: 0: 11: 13: 1a: 19: 12: f:
17:16:0:0:1:1:0:00:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:
0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0

The interpretation of the fields closely follows the flags in the st ruct term os structure
described below.

The stty -a command displays the current terminal settings, and the second form of stty
allows you to change them. One important operand of stty is sane. This operand sets all

modes to reasonable values and is useful if you terminate a program that has set the modes in
an inconvenient way. You can use stty sane to recover when, for example, local echo has

been turned off and you cannot see what you are typing. Sometimes you will have to terminate
the line containing the stty command with a Ctrl-J rather than pressing the Return key if

Return has been set to send a carriage return rather than a newline.

Programs access terminal characteristics through the struct tern os structure, which includes
at least the following members.

tcflag t c_iflag; /* input nodes */
tcflag t c_oflag; /* out put nodes */
tcflag_t c_cflag; /* control nodes */
tcflag_t c_Iflag; /* local nodes */

cc_t c_cc[ NCCs] ; /* control characters */

The c_cc array of the struct term os structure holds the values of the characters that have

special meaning to the terminal device drivers, for example, the end of input or program break
characters. Table 6.1 on page 206 lists the special characters and their default settings.

The c_i fl ag member of the struct termn os structure controls the way a terminal handles
input; the c_of | ag controls the way a terminal handles output. The c_cf | ag specifies hardware
control information for the terminal, and the c_|I f| ag controls the editing functions of the
terminal. Table 6.2 on page 210 lists the POSIX values that these flags can take on. You can
set an action by performing a bitwise OR of the appropriate struct term os field with the

corresponding flag, and you can clear it by performing a bitwise AND with the complement of
the flag.

Example 6.17

The ECHO value of the c_I f| ag field of struct term os specifies that characters typed at

standard input should be echoed to standard output of the terminal. The following code
segment clears the ECHO flag in a struct term os structure.



struct termo term
termc_|flag & ~ECHG,

The tcget attr function retrieves the attributes associated with the terminal referenced by the
open file descriptor fi |l des. The attributes are returned in a struct term os structure pointed
to by term os_p. The tcsetattr function sets the parameters of the terminal referenced by the
open file descriptor fil des from the struct tern os structure pointed to by termi os_p. The
opti onal _acti ons parameter controls the point at which the changes take effect: TCSANOW
signifies that changes occur immediately, and TCSADRAI N signifies that changes occur after all
output to fi | des is transmitted. If opti onal _acti ons is TCSAFLUSH, the changes occur after all
output to fi | des is transmitted. In this case, all input received but not read is discarded.

SYNOPSI S

#i ncl ude <term os. h>

int tcgetattr(int fildes, struct termos *term os_p);
int tcsetattr(int fildes, int optional _actions,
const struct term os *term os_p);

PCOSI X

These functions return O if successful. If unsuccessful, these functions return —1 and set err no.
The following table lists the mandatory errors for these functions.

errno cause

EBADF | fi| des is not a valid file descriptor

EINTR | a signal interrupted t csetattr

EI NVAL | opti onal _acti ons is not a supported value, or attempt to change attribute
represented in struct term os to an unsupported value

ENOTTY | file associated with fi | des is not a terminal

Program 6.11 shows a ttyset char function that sets a particular character. The t t set char
function first calls t cget at tr to read the current settings of the terminal into a struct

t er m os structure. After modifying the desired characters, ttyset char callstcsetattr to
change the actual terminal settings. It is possible for t csetattr to be interrupted by a signal
while it is waiting for output to drain, so we restart it in this case.

Example 6.18

The following code segment calls the tt yset char function of Program 6.11 to set the character
that indicates end of terminal input to Ctrl-G. (The usual default is Ctrl-D.)




if (ttysetchar(STD N_FILENO, VECOF, 0x07) == -1)
perror("Failed to change end-of-file character");

Table 6.1. The POSIX special control characters

canonical mode noncanonical mode description usual default
VEOF EOF character Ctrl-D
VEOL EQL character none
VERASE ERASE character backspace or delete
VI NTR VI NTR | NTR character Ctrl-C
VKI LL Kl LL character Ctrl-U
VM N M N value 1
VQUI T VQUI T QU T character Ctrl-\
VSUSP VSUSP SUSP character Ctrl-Z
VTI VE TI ME value 0
VSTART VSTART START character Ctrl-Q
VSTOP VSTOP STOP character Ctrl-S

Program 6.11 ttysetchar.c

A function that sets a particular terminal control character to be a particular value.

#i ncl ude <errno. h>
#i ncl ude <term os. h>
#i ncl ude <uni std. h>

int ttysetchar(int fd, int flagnanme, char c) {
int error;
struct termos term

if (tcgetattr(fd, &erm == -1)
return -1;
termc_cc[flagnane] = (cc_t)c;
while (((error = tcsetattr(fd, TCSAFLUSH, &ern) == -1) &&
(errno == EINTR)) ;
return error;



Program 6.12 shows a function that uses tcgetattr andtcsetattr to turn echoing on or off.
When echoing is turned off, the characters that you type do not appear on the screen.

Exercise 6.19

Why did Program 6.12 use t cget attr to read the existing struct termn os structure before
setting the echo flags?

ANnswer:

The code shouldn't change any of the other settings, so it reads the existing st ruct term os
structure before modifying it.

Program 6.12 setecho.c

A function to turn terminal echo on or off.

#i ncl ude <errno. h>

#i ncl ude <term os. h>

#1 ncl ude <uni std. h>

#defi ne ECHOFLAGS (ECHO | ECHOE | ECHOK | ECHONL)

int setecho(int fd, int onflag) {
int error;
struct termos term

if (tcgetattr(fd, &erm == -1)
return -1;

if (onflag) /* turn echo on */
termc_|flag | = ECHOFLAGS;

el se /* turn echo off */
termc_|flag & ~ECHOFLAGS;

while (((error = tcsetattr(fd, TCSAFLUSH, &term) == -1) &&

(errno == EINTR)) ;
return error;

Exercise 6.20

What happens when you run the following program? Under what circumstances might such
behavior be useful?

#i ncl ude <uni std. h>
int setecho(int fd, int onflag);

int main(void) {
set echo(STDI N_FI LENO, 0);
return O;



Answer:

After you run this program, you will not see anything that you type on the computer screen.
You can log out or use stty sane to set the echo back on. Turning off echoing is used for

entering passwords and other secrets.

Program 6.13 shows the passwor dnosi gs function that retrieves the password entered at the

controlling terminal of a process. It returns O if successful. On failure it returns —1 and sets
errno. Notice that passwor dnosi gs sets the errno based on the first error that occurs. While
most functions return immediately after an error, functions that must always restore state have
to clean up before they return. The program calls the set echo function of Program 6.12 to turn

echoing off and on. It must turn the terminal echo back on before returning or the user won't
be able to see what is typed.

Program 6.13 passwor dnosi gs. ¢

A function that prompts for and reads a password, assuming that no signals will occur.

#i ncl ude <errno. h>
#incl ude <fcntl. h>
#i ncl ude <stdio. h>
#i ncl ude <string. h>
#i ncl ude <term os. h>
#i ncl ude <uni std. h>
#include "restart.h"

int readline(int fd, char *buf, int nbytes);
int setecho(int fd, int onflag);

i nt passwordnosi gs(char *pronpt, char *passbuf, int passmax) {
int fd; int firsterrno = 0O;
i nt passlen;
char ternmbuf[L_cterm d];

if (ctermd(ternmbuf) == NULL) { [* find the term nal nanme */
errno = ENCDEV;
return -1;

}

if ((fd = r_open2(ternbuf, O RDWR)) == -1) /* open the terminal */
return -1;

if (setecho(fd, 0) == -1) /[* turn echo off */
firsterrno = errno;

else if (r_wite(fd, prompt, strlen(pronpt)) == -1) [* wite pronpt */
firsterrno = errno;

else if ((passlen = readline(fd, passbuf, passmax)) == 0)
firsterrno = El NVAL;

else if (passlen == -1)
firsterrno = errno;

el se
passbuf [ passlen-1] = "\0'; /* renove new ine */

if ((setecho(fd, 1) == -1) && !firsterrno) /* always turn echo back on */

firsterrno = errno;



if ((r_wite(fd,"\n",1) == -1) && !firsterrno)
firsterrno = errno;

if ((r_close(fd) == -1) && !firsterrno)
firsterrno = errno;

if (firsterrno)
errno = firsterrno;

return firsterrno ? -1 : O;

The passwor dnosi gs uses readl i ne of Program 4.1 on page 95 to read in a line from the

terminal. We were able to use it here because it was written to use a general file descriptor
rather than just reading from standard input.

The passwor dnosi gs function uses the controlling terminal as determined by the cterm d
function rather than using standard input. The controlling terminal is usually something like /
dev/tty and often shares the same physical devices as standard input and standard output,

which are usually the keyboard and screen. One of the consequences of using a controlling
terminal rather than standard input and standard output is that controlling terminals cannot be
redirected from the command line. This is often used for passwords to discourage users from
storing passwords in a file.

Exercise 6.21

What happens if a signal aborts a program that is executing passwor dnosi gs? This could
happen if the user enters Ctrl-C after being prompted for the password.

Answer:

If the signal comes in after passwor dnosi gs turns off echoing, the user won't be able to see
subsequent typing at the terminal. If you do this, try typing stty sane followed by Return to
get the terminal back to echo mode. Chapter 8 addresses this issue more carefully in Program
8.4 on page 266.

Table 6.2 lists the flags for terminal control. Chapter 8 discusses some of the issues related to
terminals and signals. The project of Chapter 11 explores many aspects of terminal
configuration and the interaction of terminal devices with user processes.

6.5.1 Canonical and noncanonical input processing

A common misconception is that somehow the keyboard and screen are connected, so
everything that you type automatically appears on the screen. The keyboard and screen are, in
fact, separate devices that communicate with terminal device drivers running on the computer.
The device drivers receive bytes from the keyboard, buffering and editing them as specified by
the settings for these devices.

The usual method of handling terminal input, canonical mode, processes input one line at a
time. The special characters of Table 6.1 are used for terminating input and simple editing such

as erasing the last character typed. A line is a sequence of bytes delimited by a newline (NL),
an end-of-file (ECF) or an end-of-line (ECL).



In canonical mode, r ead requests do not return until the user enters a line delimiter (or the
process receives a signal). The ERASE and Kl LL characters work only on the portion of a line
that has not yet been delimited. A r ead request can return only one line, regardless of the
number of bytes requested. If the system defines the POSIX constant MAX_CANON for the
terminal, input lines cannot be longer than MAX_CANON.

A consequence of canonical mode processing is that input from a terminal behaves differently
from input from other devices such as disks. In noncanonical mode, input is not assembled into
lines. The device driver does not respond to the ERASE and Kl LL characters. Noncanonical input

processing has two controlling parameters—M N and Tl ME. The M N parameter controls the
smallest number of bytes that should be gathered before r ead returns. The Tl ME parameter
refers to a timer with a 0.1-second granularity used for timing out bursty transmissions. Table
6.3 summarizes the settings for M N and TI ME.

Table 6.2. The POSIX values of flags for terminal control.

field flag description
c_iflag BRKI NT signal interrupt on break
| CRNL map CR to NL on input
| GNBRK ignore break condition
| GNCR ignore CR
| GNPAR ignore characters with parity errors
I NLCR map NL to CR on input
I NPCK enable input parity check

| STRI P strip character

| XOFF enable start/stop input control

| XON enable start/stop output control

PARVRK mark parity errors

c_ofl ag oPGsT postprocess output

OCRNL map CR to NL on output (POSIX:XSI Extension)

ONGCR no CR output at column 0 (POSIX:XSI Extension)




ONLRET NL performs CR function (POSIX:XSI Extension)

c_cflag Csl ZE character size (CS5—€S8 for 5 to 8 bits, respectively)

csToPB send two stop bits, else one

CREAD enable receiver

PARENB enable parity

PARCDD odd parity, else even

HUPCL hang up on last close
CLOCAL ignore modem status lines
c_|Iflag ECHO enable echo
ECHOE echo ERASE as an error-correcting backspace
ECHOK enable KI LL

ECHONL echo a newline

I CANON canonical input (erase and kill processing)
I EXTEN enable extended (implementation-defined) functions
ISIG enable signals

NCOFLSH disable flush after interrupt, quit, or suspend

TGsTOP send Sl GTTOU for background output

Program 6.14 shows a function that sets the current terminal to be in noncanonical mode with
single-character input. After a set noncanoni cal call, the terminal device driver delivers each
character as typed, treating the ERASE and Kl LL characters as ordinary characters. The function
returns O on success. If an error occurs, set noncanoni cal returns —1 and sets err no.

Exercise 6.22

How would you set the terminal back to canonical mode after a call to the function
set noncanoni cal ?

Answer:

This may be a problem on some systems. POSIX allows ¢c_cc[ M N] and c_cc[ Tl ME] to be used
for VEOF and VEQOL in canonical mode. On some systems, a call to set noncanoni cal will

overwrite these values. Unless these values have been saved, there is no way to restore them
to their original values. If you just set the | CANON bit in the c_I f 1 ag of the struct term os



structure, it may not return the terminal to the previous canonical mode state. Program 6.15
provides a method for handling this.

Table 6.3. Parameters for noncanonical mode processing.

case meaning

M N> 0, TI ME> O | TI ME is an interbyte timer If TI ME expires or M N bytes are received, r ead
is satisfied.

M N> 0O, TI ME = 0 | r ead blocks until at least M N bytes received

M N= 0, TI ME > 0 | read is satisfied when a single byte arrives or Tl ME expires

M N= 0, TI ME = 0 | minimum of number of bytes requested or number of bytes available
returned

Exercise 6.23

Suppose that standard input has been set to noncanonical mode. Five characters have been
typed at the keyboard. You try to read 10 bytes from standard input. What happens in each of
the following cases?

a. MN=5and TIME=0

b. MN= 0 and TI ME = 100

c. MN=20 and TI M = 100

d. MN=3and Tl ME = 100

e. MN=20and TIME=0

f. MN=0Oand TIME=0

Answer:
a. You receive 5 bytes immediately.
b. You receive 5 bytes immediately.
c. You receive 5 bytes after a delay of 10 seconds.

d. You receive 5 bytes immediately.



e. You block until at least 5 more characters are entered.

f. You receive 5 bytes immediately.
Program 6.14 set noncanoni cal . c

A function that sets the terminal associated with the caller to perform single character input
(rather than line processing).

#i ncl ude <errno. h>
#incl ude <fcntl. h>
#i ncl ude <stdio. h>
#1 ncl ude <term os. h>
#i ncl ude <uni std. h>
#include "restart. h"

int ttysetchar(int fd, int flagnanme, char c);

i nt setnoncanonical (void) {
int error;
int fd;
int firsterrno = 0;
struct termos term
char ternmbuf[L_cterm d];

if (ctermd(ternmbuf) == NULL) { /* find the term nal nanme */
errno = ENCDEV,
return -1;
}
if ((fd = r_open2(ternbuf, O RDONLY)) == -1) /* open the term nal */
return -1;
if (tcgetattr(fd, &erm == -1) /[* get its termos */
firsterrno = errno;
el se {
termc_|flag & ~I CANON,
while (((error = tcsetattr(fd, TCSAFLUSH, &ern)) == -1) &&
(errno == EINTR)) ;
if (error)
firsterrno = errno;
}

if (!firsterrno & (ttysetchar(fd, VMN, 1) || ttysetchar(fd, VTIMg 0)))
firsterrno = errno;

if ((r_close(fd) == -1) && !firsterrno)
firsterrno = errno;

if (firsterrno)
errno = firsterrno;

return firsterrno ? -1 : O;

Program 6.15 shows two functions for saving and restoring the struct term os structure. Each
takes a pointer to a struct term os structure as a parameter and returns O on success. On
error these functions return —1 with err no set. The correct way to temporarily set noncanonical




mode is as follows.

1. Call getterm os to save struct termn os structure in a local variable.

2. Call set noncanoni cal .

3. Do the noncanonical mode processing.

4. Restore the original terminal mode by calling sett er m os.

Program 6.15 saveternios. c

Functions for saving and restoring the terminal mode.

#i ncl ude <errno. h>
#i ncl ude <fcntl. h>
#i ncl ude <stdio. h>
#i ncl ude <term os. h>
#1 ncl ude <uni std. h>
# nclude "restart. h"

int getterm os(struct termos *ternp) {
int fd;
int firsterrno = 0;
char ternmbuf[L_cterm d];

if (ctermd(ternbuf) == NULL) {
errno = ENOCDEV;

return -1;

}

if ((fd = r_open2(ternbuf, O RDONLY)) == -1)
return -1;

if (tcgetattr(fd, ternp) == -1)
firsterrno = errno;

if ((r_close(fd) == -1) & !firsterrno)

firsterrno = errno;
if (firsterrno) {
errno = firsterrno;

return -1;
}
return O;
}
int setterm os(struct termos *ternp) {
int error;
int fd;

int firsterrno = 0;
char ternbuf[L_cterm d];

if (ctermd(ternbuf) == NULL) {
errno = ENODEV;
return -1;

[* find the term nal

name */

/* open the term nal */

/* get its termos */

/[* find the term nal

nane */



}

if ((fd = r_open2(ternbuf, O RDONLY)) == -1) /* open the term nal */
return -1;
while (((error = tcsetattr(fd, TCSAFLUSH, ternp)) == -1) &&
(errno == EINTR)) ;
if (error)
firsterrno = errno
if ((r_close(fd) == -1) & & !firsterrno)

firsterrno = errno

if (firsterrno) {
errno = firsterrno
return -1;

}

return O;

[ Team LiB 1 [rreviovs]
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6.6 Audio Device

An audio device (microphone, speaker) is an example of a peripheral device represented by a
special file. The device designation for this device on many systems is / dev/ audi o. The
discussion in this section illustrates the nature of special files, but it is specific to Sun systems.
The audio device may behave differently on different systems. Note: If you logged in from an
ASCII terminal or X-terminal, you cannot use the audio device even if the system has one.

Example 6.24
The following command plays the audio file sanpl e. au on the speaker of a Sun workstation.

cat sanple.au > /dev/audio

The audio device may support several audio formats, and you may have to set the audio device
for the proper format before Example 6.24 works correctly. Audio files typically contain a
header giving information about the format of the audio file. Sending the file directly to the
audio device, as in this example, may cause the header to be interpreted as audio data. You
will probably hear a series of clicks at the beginning of the playback. Many systems have a
utility for playing audio. The utility reads the header and uses this information to program the
audio device for the correct format. This command utility may be called audi opl ay or just pl ay.

In this section, we assume that we are using audio files in a fixed format and that the audio
device has already been set for that format.

Program 6.16 contains a library of functions for reading and writing from the audio device.
None of these library functions pass the file descriptor corresponding to the audio device.
Rather, the audio library is treated as an object that calling programs access through the
provided interface (open_audi o, cl ose_audi o, read_audi o and wri t e_audi 0).

The open_audi o opens / dev/ audi o for read or write access, using blocking 1/0. If the audio
device has already been opened, open hangs until the device is closed. If the audio device had
been opened with the O NONBLOCK flag, open would have returned with an error if the device
were busy.

The open_audi o function attempts to open both the microphone and the speaker. A process
that will only record can call open with O RDONLY; a process that will only play can call open
with O WRONLY. If it is interrupted by a signal, open_audi o restarts open.

The speaker can handle data only at a predetermined rate, so wri t e_audi o may not send the
entire buffer to the speaker in one wri t e function. Similarly, r ead_audi o reads only the data

currently available from the microphone and returns the number of bytes actually read. The
get _record_buffer_size function uses i oct| to retrieve the size of the blocks that the audio

device driver reads from the audio device.
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Program 6.16 audiolib.c

The audio device object and its basic operations.

#1 ncl ude <errno. h>

#i ncl ude <fcntl. h>

#i ncl ude <stdi o. h>

#i ncl ude <stropts. h>

#i ncl ude <unistd. h>

#i ncl ude <sys/audi 0. h>
#include "restart. h";
#define AUDI O "/ dev/ audi 0"

static int audio fd = -1; /* audio device file descriptor */

i nt open_audi o(void) {
while (((audio_fd = open(AUDIO, O RDWR)) == -1) && (errno == EINTR)) ;
if (audio_fd == -1)
return -1;
return O;

}

voi d cl ose_audi o(void) {
r_close(audi o_fd);
audio fd = -1;

}

int read_audi o(char *buffer, int maxcnt) {
return r_read(audio_fd, buffer, naxcnt);

}

int wite_audio(char *buffer, int naxcnt) {
return r_wite(audio fd, buffer, maxcnt);

}

int get_record_buffer_size(void) {
audi o_i nfo_t myaudi o;

if (audio_fd == -1)
return -1;

if (ioctl (audio_fd, AUDI O GETI NFO, &nyaudio) == -1)
return -1;

el se

return myaudi o.record. buffer_size;

The i oct| function provides a means of obtaining device status information or setting device
control options. The i oct| function has variable syntax. Its first two parameters are an open

file descriptor and an integer specifying the type of request. Different requests may require
different additional parameters.

SYNOPSI S

#i ncl ude <stropts. h>



int ioctl(int fildes, int request, .... /[* arg */);
PCSI X

If successful, i oct| returns a value other than —1 that depends on the r equest value. If
unsuccessful, i oct| returns —1 and sets errno. The mandatory errors depend on the value of
request . See the man page for i oct| for further information.

The i oct| function provides a means of obtaining device status information or setting device
control options. The Sun Solaris operating environment uses the AUDI O GETI NFO request of

i octl to retrieve information about the audio device. The audi o_i nfo_t type defined in

audi oi 0. h holds configuration information about the audio device.

typedef struct audio_info {

audi o_prinfo_t pl ay; /* output status information */
audi o_prinfo_t record; /* input status information */
uint _t nmonitor_gain; /* input to output mx */

uchar _t output _rmuted; /* nonzero if output nuted */
uchar _t _xxx[3]; /* Reserved for future use */
uint _t _yyy[3]; /* Reserved for future use */

} audio_info_t;

The audi o_pri nfo_t member of the preceding structure is defined as follows.

struct audio_prinfo {
/* The foll ow ng val ues describe the audi o data encodi ng */
ui nt _t sanple_rate; /* sanples per second */

uint _t channel s; /* nunber of interleaved channels */
uint _t preci si on; /[* nunber of bits per sanple */
uint _t encodi ng; /* data encodi ng nethod */

/* The followi ng val ues control audio device configuration */

uint _t gai n; [* volune |evel */

uint _t port; /* selected I/O port */

uint _t avail _ports; [/* available I/O ports */

uint _t XXX[ 2]; /* reserved for future use */

uint t buffer _size; /* 1/0 buffer size */

/* The foll ow ng val ues describe the current device state */

ui nt _t sanpl es; /* nunmber of sanples converted */

uint _t eof ; /* end-of-file counter (play only) */
uchar _t pause; /* nonzero if paused, zero to resune */
uchar _t error; /* nonzero if overflow underflow */
uchar _t waiting; /* nonzero if a process wants access */
uchar _t bal ance; /* stereo channel bal ance */

ushort _t m nordev;

/* The follow ng values are read-only device state flags */
uchar _t open; /* nonzero if open access granted */
uchar _t active; /* nonzero if 1/0O active */

} audio_prinfo_t;

The buf f er _si ze member of the audi o_pri nfo_t structure specifies how large a chunk of



audio data the device driver accumulates before passing the data to a read request. The
buf f er _si ze for play specifies how large a chunk the device driver accumulates before sending

the data to the speaker. Audio tends to sound better if the program sends and receives chunks
that match the corresponding buf f er _si ze settings. Use i oct| to determine these sizes in an

audio application program. The get _record_buffer_si ze function in Program 6.16 returns the
appropriate block size to use when reading from the microphone, or —1 if an error occurs.

Program 6.17 reads from the microphone and writes to the speaker. Terminate the program by

entering Ctrl-C from the keyboard. It is best to use headphones when trying this program to
avoid feedback caused by a microphone and speaker in close proximity. The audi ol i b. h

header file contains the following audio function prototypes.

i nt open_audi o(void);

voi d cl ose_audi o(voi d);

int read_audi o(char *buffer, int maxcnt);
int wite_ audio(char *buffer, int |ength);

Program 6.17 audi ocopy. c

A simple program that reads from the microphone and sends the results to the speaker.

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude "audiolib.h"

#defi ne BUFSI ZE 1024

int main (void) {
char buf f er[ BUFSI ZE] ;
i nt bytesread,

if (open_audio() == -1) {
perror("Failed to open audio");
return 1;
}
for( ; ;) {
if ((bytesread = read_audi o(buffer, BUFSIZE)) == -1) {
perror("Failed to read m crophone");
br eak;
} elseif (wite_audio(buffer, bytesread) == -1) {
perror("Failed to wite to speaker");
br eak;
}
}
cl ose_audi o();
return 1;

The implementation of Program 6.16 opens the audio device for blocking 1/0. Nonblocking
reads are complicated by the fact that r ead can return —1 either if there is an error or if the
audio device is not ready with the data. The latter case has an err no value of EAGAI N and

should not be treated as an error. The primary reason for opening the audio device in
nonblocking mode is so that open does not hang when the device is already open. An




alternative is to open the audio device in nonblocking mode and then to use fcnt| to change
the mode to blocking.

Example 6.25 nonbl ocki ngaudi o. ¢

The following program opens the audio device for nonblocking 1/0. It then reads BLKSI ZE bytes

from the audio device into a buffer. It does nothing with the audio that is read in other than
display the number of bytes read.

#1 ncl ude <errno. h>

#i ncl ude <fcntl. h>

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

#i ncl ude <unistd. h>

#include "restart.h"

#defi ne AUDI O DEVI CE "/ dev/ audi 0"
#def i ne BLKSI ZE 1024

int main(void) {
i nt audi of d;
char *bp;
char buffer[ BLKSI ZE] ;
unsi gned byt esneeded,;
i nt bytesread,

if ((audiofd = open(AUDI O DEVI CE, O NONBLOCK | O RDWR)) == -1) {
perror("Failed to open audi o device");
return 1;

}

bp = buffer;

byt esneeded = BLKSI ZE;
whi | e(byt esneeded !'= 0) {
byt esread = r_read(audi ofd, bp, bytesneeded);
if ((bytesread == -1) && (errno != EAGAIN))
br eak;
if (bytesread > 0) {
bp += bytesread;

byt esneeded -= byt esread;
}
}
fprintf(stderr, "%l bytes read\n", BLKSIZE - bytesneeded);
return O;

In testing audio programs, keep in mind that the audio device is closed when the program
exits. If the audio buffer still holds data that has not yet reached the speakers, that data may
be lost. The draining of a device after a cl ose is system dependent, so read the man page

before deciding how to handle the situation.
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6.7 Exercise: Audio

The exercises in this section assume that the operating system handles the audio device in a
way similar to how the Solaris operating environment handles it.

1. Add the following access functions to the audio object of Program 6.16.

a. The play_fil e function plays an audio file. It has the following prototype.

int play _file(char *fil enane);

The pl ay_fil e outputs the audio file specified by fi | enane to the audio device,
assuming that the speaker has already been opened. If successful, play file
returns the total number of bytes output. If unsuccessful, pl ay_fil e returns —1
and sets errno.

b. Therecord_fil e function saves incoming audio data to a disk file. It has the
following prototype.

int record_file(char *fil enane, int seconds);

The record_fil e function saves audio information for a time interval of seconds
in the file given by fi | enane, assuming that the microphone has already been
opened. If successful, record_fil e returns the total number of bytes recorded.
If unsuccessful, record _fil e returns —1 and sets err no.

c. The get _record_sanpl e_r at e function determines the sampling rate for
recording. It has the following prototype.

int get record _sanple rate(void);

If successful, get _record_sanpl e_r at e returns the sampling rate for recording.
If unsuccessful, get _record_sanpl e_r at e returns —1 and sets err no.

d. The get _pl ay_buffer_si ze returns the buffer size that the audio device driver

uses to transfer information to the audio output device. It has the following
prototype.

int get_play_buffer_size(void);

If successful, get _pl ay_buffer_si ze returns the buffer size for recording. If
unsuccessful, get _pl ay_buffer_si ze returns —1 and sets err no.
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e. The get _pl ay_sanpl e_r at e function determines the sampling rate for playing. It
has the following prototype.

int get_play_sanple_rate(void);

If successful, get _pl ay_sanpl e_r at e returns the sampling rate used for playing
audio files on the speaker. If unsuccessful, get _pl ay_sanpl e_rat e returns —1
and sets errno. A rate of 8000 samples/second is considered voice quality.

f. The set _pl ay_vol une function changes the volume at which sound plays on the
speaker. It has the following prototype.

int set_play_vol une(doubl e vol une);

The set _pl ay_vol une sets the gain on the speaker. The vol une must be
between 0.0 and 1.0. If successful, set _pl ay_vol unme returns 0. If unsuccessful,
set _pl ay_vol une returns —1 and sets err no.

g. The set _record_vol une function changes the volume of incoming sound from
the microphone. It has the following prototype.

int set_record_vol une(doubl e vol une);

The set _record_vol une function sets the gain on the microphone. The vol une
value must be between 0.0 and 1.0. If successful, set _record_vol unme returns O.
If unsuccessful, it returns —1 and sets err no.

Rewrite Program 6.17 to copy from the microphone to the speaker, using the preferred
buffer size of each of these devices. Call get _record_buffer_size and

get _pl ay_buffer_size to determine the respective sizes. Do not assume that they are
the same in your implementation.

Use the record_fil e function to create eight audio files, each of which is ten seconds in
duration: pi d1. au, pid2. au, and so on. In the file pi d1. au, record the following

message (in your voice): "I am process 1 sending to standard error". Record similar
messages in the remaining files. Play the files back by using the pl ay_fi | e function.

Be sure to create a header file (say, audi ol i b. h) with the prototypes of the functions in

the audio library. Include this header file in any program that calls functions from this
library.

Record your speaking of the individual numerical digits (from O to 9) in ten different
files. Write a function called speak_nunber that takes a string representing an integer

and speaks the number corresponding to the string by calling pl ay_fil e to play the

files for the individual digits. (How does the program sound compared to the computer-
generated messages of the phone company?)



6. Replace the fprintf statement that outputs the various IDs in Program 3.1 on page 67
with a call to pl ay_fil e. For the process with i having value 1, play the file pi d1. au,

and so on. Listen to the results for different numbers of processes when the speaker is
opened before the fork loop. What happens when the speaker is opened after the fork?
Be sure to use snprintf to construct the filenames from the i value. Do not hardcode

the filenames into the program.

7. Make a recording of the following statement in file pi d. au: "My process ID is". Instead
of having each process in the previous part play a pi di . au file corresponding to its i
number, use speak _nunber to speak the process ID. Handle the parent and child IDs
similarly.

8. Redesign the audio object representation and access functions so that processes have
the option of opening separately for read and for write. Replace audi o_f d with the

descriptors pl ay_fd and record_f d. Change the open_audi o so that it sets both
play fd andrecord_fd to the file descriptor value returned by open. Add the following
access functions to the audio object of Program 6.16.

a. The open_audi o_for _record function opens the audio device for read
(O_RDONLY). It has the following prototype.

i nt open_audi o _for_record(void);
The function returns O if successful or —1 if an error occurs.

b. The open_audi o_for _pl ay function opens the audio device for write (O WRONLY).
It has the following prototype.

i nt open_audi o _for_play(void);

The open_audi o_f or_pl ay function returns O if successful or —1 if an error
occurs.
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6.8 Exercise:; Barriers

A barrier is a synchronization construct used by cooperating processes to block until all
processes reach a particular point. The exercises in this section use a FIFO to implement a
barrier. They extend the simple barrier of Program 6.2.

Write a barrier server that takes two command-line arguments: the name of a barrier (nhane)
and the size of the barrier (n). The size represents the number of processes that need to block
at that barrier. The server creates a named pipe, nane. r equest , to handle requests for the
barrier and a named pipe, nane. r el ease, for writing the release characters. For example, if the
barrier name is nybarri er, the server creates pipes called nybarri er.request and nybarri er.
r el ease. The server then does the following in a loop.

1. Open narme. request for reading.

2. Read exactly n characters from nane. r equest .

3. Close nane. r equest .

4. Open nane. r el ease for writing.

5. Write exactly n characters to nane. r el ease.

6. Close nane. rel ease.

Write the following barrier function for use by the clients.

int waitatbarrier(char *nane);

The function blocks at the barrier with the given name. If successful, the wai t at barri er
function returns 0. If unsuccessful, wai t at barri er returns —1 and sets errno. The
wai t at barri er does the following in a loop.

1. Open nane.request for writing.

2. Write one byte to name. r equest .

3. Close nane. r equest .

4. Open nane. r el ease for reading.

5. Read one byte from nane. r el ease.
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6. Close nane. rel ease.

Be sure that wai t at barri er closes any pipe that it opens, even if an error occurs. If an error
occurs on aread or wite, save the value of errno, close the pipe, restore errno and return —
1.

This function works because of the way blocking is done when a pipe is opened. An open

operation for read will block until at least one process has called open for writing. Similarly, an
open operation for write will block until at least one process called open for reading. The client

will block on the open of the request pipe until the server has opened it. It will then block on
the open of the release pipe until the server has read the bytes from all of the other processes
and opened the release pipe for writing. A second attempt to use the barrier with the same
name will block on the open of the request pipe until all of the processes have passed the first
barrier since the server has closed the request pipe.

Test your clients and server by modifying the process chain of Program 3.1 on page 67 or the
process fan of Program 3.2 on page 68. Have each one use the same named barrier several

times. Each time they wait at the barrier, they should print a message. If the modification is
working correctly, all the first messages should be printed before any of the second ones. Are
there any circumstances under which reusing a barrier can fail?

Generalize your barrier server to handle many different barriers. You should still have one
request pipe. The clients send the name and size of the barrier they are requesting in a single
write to the request pipe. The server keeps a dynamic list of the barriers. If a request for a new
barrier comes in, the server creates a new release pipe, adds this barrier to its list, and creates
a child process to handle the barrier. If a request for an old barrier comes in, it is ignored.

Clients can create as many barriers as they need, but each client now has to know how many
other clients there are. Alternatively, the server can be given the number of clients on the
command line when it starts up. See if you can devise a mechanism for the server to find out
from the clients how many they are. Be careful, this is not easy.
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6.9 Exercise: The stty Command

Do the following to become more familiar with terminal control.
1. Read the man page on struct term os.
2. Execute stty -a and try to understand the different fields.

3. Compare the facilities provided by the specific terminal calls to those provided by use of
i octl . Read the struct terni os information in Section 7 of the man pages for

additional information.

Read the man page for stty and write your own program modeled after it.

[ Team Lie 1 [ rreviovs)
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6.10 Exercise: Client-Server Revisited

Section 6.4 developed an implementation of request-reply using named pipes. The
implementation was limited because multiple readers do not behave well with pipes. Write a
new version of these programs in which the clients send their process IDs rather than single
characters. To service each request, the server uses a FIFO whose name includes the process
ID of the client. After servicing the request, the server closes the response FIFO and unlinks it.
Be sure that no client can cause this version of the server to exit.

Although the clients are sending multibyte process IDs to the server, the server will not receive
interleaved IDs because writes to the pipe are atomic. Since only one process is reading from
each pipe, reads do not need to be atomic.

If the server is responsible for creating the pipe from the process ID that is sent to it, the client
may try to open the pipe before it exists, generating an error. Have the client create the reply
pipe before sending its ID to the server on the request pipe. After sending its ID, the client
opens the reply pipe for reading and blocks until the server opens it for writing. After the client
receives its reply, it can close and unlink the reply pipe.

Note that both the client and the server need to run in the same directory so that they can
access the same pipes.

[ Team Lig 1 [rreviovs
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6.11 Additional Reading

The USENIX Conference Proceedings are a good source of current information on tools and
approaches evolving under UNIX. Operating Systems Review is an informal publication of
SIGOPS, the Association for Computing Machinery Special Interest Group on Operating
Systems. Operating Systems Review sometimes has articles on recent developments in the
area of file systems and device management.

Advanced Programming in the UNIX Environment by Stevens [112] contains some nice case
studies on user-level device control, including a program to control a PostScript printer, a
modem dialer, and a pseudo terminal management program. Understanding the LINUX Kernel:
From 1/0 Ports to Process Management by Bovet and Cesati [16] discusses underlying 170
implementation issues in LINUX. Data Communications Networking Devices by Held [47] is a
general reference on network device management. Finally, SunOS 5.3 Writing Device Drivers is
a very technical guide to implementing drivers for block-oriented and character-oriented
devices under Solaris [119].
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Chapter 7. Project: The Token Ring

The projects of this chapter explore pipes, forks and redirection in the context of a ring of
processes. Such a ring allows simple and interesting simulations of ring network topologies. The
chapter also introduces fundamental ideas of distributed processing, including processor
models, pipelining and parallel computation. Distributed algorithms such as leader election
illustrate important implementation issues.

Objectives

o Learn about ring-based network architectures

o Experiment with interprocess communication

« Explore distributed algorithms on a ring topology
« Use fork and pipes

« Understand implications of inheritance
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7.1 Ring Topology

The ring topology is one of the simplest and least expensive configurations for connecting
communicating entities. Figure 7.1 illustrates a unidirectional ring structure. Each entity has

one connection for input and one connection for output. Information circulates around the ring
in a clockwise direction. Rings are attractive because interconnection costs on the ring scale
linearly—in fact, only one additional connection is needed for each additional node. The latency
increases as the number of nodes increases because the time it takes for a message to circulate
is longer. In most hardware implementations, the rate at which nodes can read information
from the ring or write information to the ring does not change with increasing ring size, so the
bandwidth is independent of the size of the ring. Several network standards, including token
ring (IEEE 802.5), token bus (IEEE 802.4) and FDDI (ANSI X3T9.5) are based on ring
connectivity.

Figure 7.1. Unidirectional ring with five nodes.

1

50 C&;)
| |

| |'

0 ot

This chapter develops several projects based on the ring topology of Figure 7.1. The nodes

represent processes and the links represent pipes. Each process is a filter that reads from
standard input and writes to standard output. Process n- 1 redirects its standard output to the

standard input of process n through a pipe. Once the ring structure is set up, the project can be

extended to simulate network standards or to implement algorithms for mutual exclusion and
leader election based on the ring architecture.
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Section 7.2 presents a step-by-step development of a simple ring of processes connected by
pipes. Section 7.3 provides several exploratory exercises that build on the basic ring structure.
The figures of Section 7.2 trace the code through the creation of two processes on the ring, but
the basic ring is too complicated to trace manually much beyond that.

We suggest that before working through Section 7.3, you use the fork-pipe simulator to try

some of the examples. The book web page has a link to this simulator, which shows a diagram
of the processes and pipes as it traces the code. The simulator also allows experimentation with
process chains, fans and trees as well as more complicated structures such as a bidirectional
ring. The simulator allows you to experiment with the effects of using different CPU scheduling
algorithms, or you can single-step through the code, determining which process runs at each
step. The simulator also can produce a log of the output generated and a trace of the
instructions executed.

Once you have a thorough understanding of the ring and its behavior, you can go on to the
other projects in this chapter. Section 7.4 tests the ring connectivity and operation by having
the ring generate a Fibonacci sequence. Section 7.5 and Section 7.6 present two alternative
approaches for protecting critical sections on the ring. Once the ring structure is set up, the
basic project of Section 7.2 can be extended to simulate network standards or to implement
algorithms for mutual exclusion and leader election based on the ring architecture. The
remaining sections of the chapter describe extensions exploring different aspects of network
communication, distributed processing and parallel algorithms. The extensions described in
each of the later sections are independent of those in other sections.
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7.2 Ring Formation

This section develops a ring of processes starting with a ring containing a single process. You
should review Section 4.6 if you are not clear on file descriptors and redirection.

Example 7.1

The following code segment connects the standard output of a process to its standard input
through a pipe. We omit the error checking for clarity.

int fd[2];

pi pe(fd);

dup2(fd[ 0], STDI N_FILENO);
dup2(fd[ 1], STDOUT_FILENO ;
close(fd[0]);

close(fd[1]);

Figures 7.2-7.4 illustrate the status of the process at various stages in the execution of
Example 7.1. The figures use [ 0] to designhate standard input and [ 1] to designate standard
output. Be sure to use STDI N_FI LENO and STDOUT_FI LENO when referring to these file

descriptors in program code. The entries of the file descriptor table are pointers to entries in
the system file table. For example, pi pe write in entry [ 4] means "a pointer to the write entry

in the system file table for pi pe,” and standard input in entry [ 0] means "a pointer to the entry

in the system file table corresponding to the default device for standard input"—usually the
keyboard.

Figure 7.2 depicts the file descriptor table after the pipe has been created. File descriptor
entries [ 3] and [ 4] point to system file table entries that were created by the pi pe call. The
program can now write to the pipe by using a file descriptor value of 4 inawite call.

Figure 7.2. Status of the process of Example 7.1 after pi pe(fd) executes.
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Figure 7.3 shows the status of the file descriptor table after the execution of the dup2 functions.
At this point the program can write to the pipe using either 1 or 4 as the file descriptor value.
Figure 7.4 shows the configuration after descriptors [ 3] and [ 4] are closed.

Figure 7.3. Status of the process of Example 7.1 after both dup2
functions execute.
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Figure 7.4. Status of the process at the end of Example 7.1.
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Exercise 7.2

What happens if, after connecting standard output to standard input through a pipe, the
process of Example 7.1 executes the following code segment?

int i, nyint;

for (i =0; i < 10; i++) {
write(STDOUT_FI LENO, &, sizeof(i));
read( STDI N_FI LENO, &myint, sizeof (nyint));
fprintf(stderr, "%\ n", nyint);



Answer:

The code segment outputs the integers from 0 to 9 to the screen (assuming that standard error
displays on the screen).

Exercise 7.3
What happens if you replace the code in Exercise 7.2 by the following code?
int i, nyint;
for (i =0; i <10; i++) {
read( STDI N_FI LENO, &mnyint, sizeof (nyint));

write(STDOUT_FILENO &, sizeof(i));
fprintf(stderr, "%\ n", nyint);

ANnswer:

The program hangs on the first r ead because nothing had yet been written to the pipe.

Exercise 7.4
What happens if you replace the code in Exercise 7.2 by the following?

int i, nyint;

for (i =0; i < 10; i++) {
printf("% ", i);
scanf("%", &myint);
fprintf(stderr, "%\ n", nyint);

Answer:

The program may hang on the scanf if the pri ntf buffers its output. Put an ff | ush(st dout)
after the printf to get output.

Example 7.5

The following code segment creates a ring of two processes. Again, we omit error checking for
clarity.

int fd[2];
pid_t haschild;

pi pe(fd); /[* pipe a */
dup2(fd[ 0], STDI N_FILENO ;



dup2(fd[ 1], STDOUT_FILENO) ;

close(fd[0]);

close(fd[1]);

pi pe(fd); /[* pipe b */
haschild = fork();

if (haschild > 0)

dup2(fd[ 1], STDOUT_FILENO ; /* parent(A) redirects std output */
else if (!haschild)
dup2(fd[ 0], STDI N _FILENO) ; /* child(B) redirects std input */

close(fd[0]);
close(fd[1]);

The parent process in Example 7.5 redirects standard output to the second pipe. (It was coming
from the first pipe.) The child redirects standard input to come from the second pipe instead of
the first pipe. Figures 7.5—7.8 illustrate the connection mechanism.

Figure 7.5. Connections to the parent process of Example 7.5 after the
second pi pe(fd) call executes.
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Figure 7.5 shows the file descriptor table after the parent process A creates a second pipe.
Figure 7.6 shows the situation after process A forks child process B. At this point, neither of the
dup2 functions after the second pi pe call has executed.

Figure 7.6. Connections of the processes of Example 7.5 after the fork.
Process A is the parent and process B is the child.




Process A
file descriptor table

(0] pipe a read
1] pipe a write

121 standard error

(2%
U] e — .
e 131 pipe b read
I 1., e Hx |
A J_.x' 4) pipe b wrire
[1] |
| [3) [4] |
' » Process B
| pipe a J pipe b \ file descriptor table
) [ 3] (4 (0 pipe a read
[1]] ' . .
- Bt'“ 111 pipe a write
..\.x -. .\-. ) ..‘:I .._-.
e "'F — N e 121 standard error
S e I'-_I'I \"-\.H-.-.'. - l§ )
(2] (31pipe b read

141 pipe b write

Figure 7.7 shows the situation after the parent and child have each executed their last dup2.

Process A has redirected its standard output to write to pipe b, and process B has redirected its
standard input to read from pipe b. Finally, Figure 7.8 shows the status of the file descriptors

after all unneeded descriptors have been closed and a ring of two processes has been formed.

Figure 7.7. Connections of the processes of Example 7.5 after theif
statement executes. Process A is the parent and process B is the child.
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Figure 7.8. Connections of the processes of Example 7.5 after the entire

code segment executes. Process A is the parent and process B is the
child.
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Exercise 7.6

What would happen if the code of Exercise 7.2 is inserted after the ring of two processes of
Example 7.57?

Answer:

The new code is executed by two processes. Each process writes 10 integers to the pipe and
reads the integers written by the other process. The processes cannot get too far out of step,
since each process needs to read from the other before writing the next value. You should see
two lines of O followed by two lines of 1, etc.

The code of Example 7.5 for forming a ring of two processes easily extends to rings of arbitrary
size. Program 7.1 sets up a ring of n processes. The value of n is passed on the command line
(and converted to the variable nprocs). A total of n pipes is needed. Notice, however, that the
program needs an array only of size 2 rather than 2n to hold the file descriptors. After the ring

of two processes is created, the parent drops out and the child forks again. (Try to write your
own code before looking at the ring program.)

Program 7.1 ring.c

A program to create a ring of processes.

#i ncl ude <errno. h>
#i ncl ude <stdio. h>
#1 ncl ude <stdlib. h>
#i ncl ude <string. h>
#i ncl ude <uni std. h>



int main(int argc, char *argv[ 1) {

pid_t childpid; /* indicates process shoul d spawn anot her */
int error; /* return value fromdup2 call */
int fd[2]; /* file descriptors returned by pipe */
int i; /* nunber of this process (starting with 1) */
i nt nprocs; /* total nunber of processes in ring */

/* check command line for a valid nunmber of processes to generate */
if ( (argc !'=2) || ((nprocs = atoi (argv[1l])) <= 0) ) {
fprintf (stderr, "Usage: % nprocs\n", argv[O0]);

return 1;
}
if (pipe (fd) == -1) { /* connect std input to std output via a pipe */
perror("Failed to create starting pipe");
return 1;
}
if ((dup2(fd[0], STDIN_FILENO == -1) |
(dup2(fd[ 1], STDOUT_FILENO == -1)) {
perror("Failed to connect pipe");
return 1;
}
if ((close(fd[0]) == -1) || (close(fd[1]) == -1)) {
perror("Failed to close extra descriptors");
return 1;
}
for (i =1; i < nprocs; i++) { /* create the remaining processes */
if (pipe (fd) ==-1) {
fprintf(stderr, "[%d]:failed to create pipe %: %\n",
(long)getpid(), i, strerror(errno));
return 1;
}
if ((childpid = fork()) == -1) {
fprintf(stderr, "[%d]:failed to create child %l: %\n",
(long)getpid(), i, strerror(errno));
return 1;
}
if (childpid > 0) [* for parent process, reassign stdout */
error = dup2(fd[1], STDOUT_FILENO ;
el se [* for child process, reassign stdin */
error = dup2(fd[0], STDI N_FILENO);
if (error == -1) {
fprintf(stderr, "[%d]:failed to dup pipes for iteration %l: %\n",
(long)getpid(), i, strerror(errno));
return 1;
}
if ((close(fd[0]) == -1) || (close(fd[1]) == -1)) {
fprintf(stderr, "[%d]:failed to close extra descriptors %l: %\n",
(long)getpid(), i, strerror(errno));
return 1;
}
if (childpid)
br eak;
} /* say hello to the world */

fprintf(stderr, "This is process %d with ID %d and parent id %d\n",

i, (long)getpid(), (long)getppid());
return O;
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7.3 Ring Exploration

The following exercises test and modify Program 7.1. You can try these either by compiling the

ring code or by using the fork-pipe simulator. A link to the simulator appears on the book web
page. For each modification, make a new copy of the program. Suggested names for the
executables are shown in parentheses.

1. Run the program shown in Program 7.1 (ri ng).

2. Create a makefile with descriptions for compiling and linting the program. Use nake to
compile the program. Add targets for additional parts of this project. (Refer to Section
A.3 if you are unfamiliar with the nmake utility.)

3. Make any corrections required to eliminate all lint errors and warning messages that
reflect problems with the program. (Refer to Section A.4 if you are unfamiliar with the

i nt utility.)

4. Run ri ng for several values of the command-line argument and observe what happens
as the number of processes in the ring varies from 1 to 20.

5. Modify the original ri ng program by putting a wai t call before the final f pri nt f
statement (ri ngl). How does this affect the output of the program?

6. Modify the original ri ng program by putting a wai t call after the final fpri ntf
statement (ri ng2). How does this affect the output of the program?

7. Replace the fprintf statement in the original ri ng program with calls to sprintf and
prtastr (ring3). Write a prtastr function with the following prototype.

void prtastr(const char *s, int fd, int n);

The prtastr function prints the s string one character at a time to the file specified by
descriptor f d using wri t e. After outputting each character, prtastr calls the following
function.

wast esoneti ne. c

voi d wastesonetine(int n) {
static volatile int dumry = O;
int i;

for (i=0; i < n; i++)
dunmy ++;
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10.

11.

12.

This just wastes some CPU time. The variable dunmy is declared to be volatile so that the
action of the f or loop is not optimized away. Use prt astr to output the string to
standard error. Pass the value of n used by prtastr as an optional command-line
argument to ri ng3. Use O as the default value for this parameter. (The single character

at a time gives the ring processes more opportunity to interleave their output.) Run the
program with a value of n that causes a small, but barely noticeable, delay between the

output of characters.

Compare the results of running the modified ri ng3 if you do the following.

a. Insert wai t before the call to prtastr (ri ng4).

b. Insert wai t after the call to prtastr (ri ng5).

Modify ri ngl as follows (ri ngt opol ogy).

a. Before the wai t , each process allocates an array of nprocs elements to hold the

IDs of all the processes on the ring. The process puts its own process ID in
element zero of the array and sets its variable next _| D to its process ID.

b. Do the following for k going from 1 to nprocs- 1.

i. Write next _| D to standard output.

ii. Read next _| D from standard input.

iii. Insert next _I Dinto position k of the ID array.

c. Replace the fprintf after the wai t with a loop that outputs the contents of the

ID array to standard error in a readable single-line format. This output tests the
ring connectivity, since the ID array contains the processes in the order in which
they appear upstream from a given process.

Modify ri ngt opol ogy by having the child rather than the parent break out of the loop
(ri ngchi | dbreak). We are now creating a process fan instead of a chain. Determine

how this affects the topology. Do we still have a ring? If using the simulator, you can
just modify ri ng since you do not need to send anything around to ring to determine

the topology.

Modify ri ngt opol ogy by having neither process break out of the loop (ri ngnobr eak).

We are now creating a process tree instead of a chain. Determine how this affects the
topology. Do we still have a ring? Th