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Preface

Distributed hash table (DHT) has been playing an important role in distributed
systems and applications, especially in large-scale distributed environments. DHT
was introduced to address a daunting challenge in large-scale system architecture.
Specifically, in a normal client/server model (C/S model), centralized servers would
potentially become the bottleneck of the whole system. As a comparison, the
distributed model, exemplified by the peer-to-peer (P2P) model, leverages the
resources spread across a list of nodes in the system. At the same time, it is desirable
to utilize all the peers’ capability efficiently and provide better robustness. DHT
technology was developed to meet these requirements. Indeed, in DHT, distributed
resources are managed so well that peers only need to know part of the system. The
elegance of DHT is its implicity in operations, providing only two basic operations,
including: (i) GET data from DHT and (ii) PUT data into DHT. Finally, given
its simplicity, DHT is yet suitable for a great variety of applications and provides
robustness and high efficiency, especially in large-scale systems.

For decades extensive work has been conducted for DHT. In academia,
researchers have proposed several variants of DHT and associated improvements,
which manage the resources in different structures, providing abundant choices
to build distributed systems. Meanwhile, many practical platforms of DHT have
been implemented, which can be regarded as a bridge translating DHT from theory
to practice and solving many practical problems such as load balance, multiple
replicas, consistency, latency, and so on. Finally, a lot of applications based on
DHT have been proposed, for example, multicast, anycast, distributed file systems,
search, storage, content delivery network, file sharing, and communication. Previous
surveys on DHT have been mainly focused on the theoretic aspect, with less
attention paid to platforms and applications.

In this book, we aim to report the development of DHT in both academic pursuit
and industrial development. It covers the main theory, platforms, and applications
of DHT. From this book, readers could learn the basic principle of several popular
DHT structures, many platforms used in both academic and commercial fields, and a
wide range of DHT-based applications. We have also presented our view of potential
limitations of DHT.

v



vi Preface

This book consists of five chapters. In Chap. 1 background information about
DHT is introduced. Seven variants of DHT are studied and compared in Chap. 2. In
Chap. 3, we classify 15 existing DHT platforms into two categories: (i) academic
and open-source platforms and (ii) commercial platforms. In Chap. 4 we present
eight DHT-based applications with detailed analysis of their pros and cons. In
Chap. 5, we outline the benefits and limitations of DHT.

Heifei, China Hao Zhang
Singapore, Singapore Yonggang Wen
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Chapter 1
Introduction

Nowadays distributed hash table (DHT) [1, 2] plays an important role in distributed
systems and applications, especially in large-scale distributed environments. In the
normal Client/Server model (C/S model) since the central server is in charge of most
of the resources, it becomes the most important part as well as the bottleneck and
weak point of the system. On the contrary, the distributed model (a typical one is the
peer-to-peer (P2P) model [3,4]) distributes the resources on the nodes in the system.
The distributed model provides better robustness and more efficiently utilizes all
peers’ capability, while the resources of the clients are idle in C/S mode. In
distributed environments a key problem is how to manage the resources efficiently,
which is a particular important issue in large-scale systems. DHT addresses this
problem and promotes the development of P2P greatly.

DHT is a simple and elegant design for distributed systems. It provides the
functions like a hash table to deal with the distributed data. DHT does not
require a central server and treats all DHT nodes in the distributed system equally.
Meanwhile, DHT inherits the great properties of hash table (e.g., locate and search
an element with high efficiency). DHT provides a global, abstract key space (often
referred to as the DHT space), where all resources (e.g., data and DHT nodes) have
unique identifiers (IDs). Like in the hash table, any data in DHT could be treated
as a tuple .K; V /, where K denotes the key that is mapped from the data by a hash
function and V denotes the original data. Each node also has a key called ID of
the node in the DHT space. Thus all data and nodes in a distributed system can be
consistently mapped into the DHT space. The DHT space is split into slots; each
node in a DHT system maintains the data that are mapped into this node’s slot.
As a result of its simple and elegant design, DHT has two primitive operations:
put() is a function that puts data V into the DHT space with a key K . get() is a
function that gets the original data using a given key K . Although extremely simple,
these two primitives are suitable for a great variety of applications and provide good
robustness and high efficiency, especially in large-scale systems.

DHT organizes the distributed resources so well that nodes only need to know a
part of the system from which they can get resources efficiently, and resources can

H. Zhang et al., Distributed Hash Table; Theory, Platforms and Applications,
SpringerBriefs in Computer Science, DOI 10.1007/978-1-4614-9008-1__1,

1

© The Author(s) 2013



2 1 Introduction

be located in O.1/ time regardless of how many resources are in the space (here
we do not consider the cost of underlying network routing). Furthermore, DHT is
more capable of dealing with system distributivity and dynamics than the regular
hash tables, since DHT can better adapt to the varying number and range of slots. It
possesses the following three properties:

1. High efficiency. DHT inherits the excellent properties of hash table, e.g.,
efficiently locating where data are stored in the DHT space without knowing the
global information. Efficiency is a very important concern in distributed systems.
Moreover, without knowing the global information means that every node in a
DHT system needs to know only a part of the system and works with others
cooperatively. This property is especially important and desirable for large-scale
systems.

2. Decentralization. DHT is not deployed on a single node but on many ones, each
of which maintains a portion of the hash table. This property means that there
is no central node, which could avoid the hot spot problem and achieves a good
load balance.

3. Scalability. This property is an outcome of the decentralization property. DHT
can be applied to distributed systems with varying sizes, ranging from several,
thousands of up to millions of nodes. However, the events of node joining and
leaving the system as well as node failures are not uncommon in such systems,
which means that DHT should handle these problems efficiently.

Consistent hashing [5] can be viewed as an early version of DHT and was
proposed in 1997 for distributed caching systems. In distributed caching systems,
regular solutions to mapping content objects to caching servers are typically based
on the operation h.object/ mod N , where h./ is a hash function specifically
chosen for individual system, and N is the total number of caching servers.
However, the dynamics of such systems (e.g., removing a server due to failure or
adding a new server) require content objects to be re-mapped to N � 1 (or N C 1)
regular caching servers by h.object/ mod .N � 1/ [or h.object/ mod .N C 1/].
Such re-mapping operations require every regular server to refresh the data that it
maintains. It costs too much when N is large. Generally speaking, node removal
and addition are not uncommon in large-scale distributed systems. This requires a
dynamic hash method to migrate data with affordable costs, e.g., a hash method with
good monotonicity [5]. Consistent hashing is a kind of hash algorithm that maps
all the keys and cache servers on a circle by common hash function, where each
server maintains the data on an arc (called slot) of this circle. In this way, consistent
hashing provides hash functionality in a way that it supports addition or removal
of slots by splitting arc or merging the neighbor arcs. Only a few servers have to
update the objects stored in their caches. Nowadays consistent hashing is widely
used in distributed caching systems. Not only in the caching scope, this architecture
is also borrowed by some of the P2P systems such as Chord [6], which encourages
the adoption of DHT greatly. For example, according to Google Scholar, the seminal
paper on Chord has been cited by more than 10,000 times by the end of 2012. This
suggests that DHT has been a popular research topic especially in P2P networks.
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In the past decade, extensive work has been done for DHT. In academia,
researchers have proposed numerous variants of DHT and improvements, which
manage the resources in many kinds of structures, providing abundant choices for
the construction of distributed system. Meanwhile, many platforms of DHT are
constructed, which can be regarded as a bridge transforming DHT from theory to
practice. They solve many practical problems such as load balance [7, 8], multiple
replicas [9, 10], consistency [11–13], latency [9, 13], security [14, 15] and so on.
Furthermore, lots of applications based on DHT are proposed such as multicast,
anycast, distributed file systems, search, storage, content delivery network, file
sharing and communication. There are also some surveys on DHT, most of which
only focus on theory of DHT. In [16] several DHT theories are described. In [17,18]
DHT is introduced as a part of P2P networks. In [19] the authors introduce the theory
of DHT from another aspect, where all the variants of DHT are classified by their
topologies. However, in these surveys the authors ignored many of DHT platforms
and applications that are very important, especially in the industrial area.

This book includes five chapters. In Chap. 1 some background information
about DHT is introduced. Seven variants of DHT are studied and compared in
many aspects in Chap. 2, which is the basis of the platforms. In Chap. 3 two
kinds of platforms (academic and open-source platform and commercial platform)
containing 15 different platforms are analyzed, based on which applications can be
constructed. In Chap. 4 we present eight application scenarios, and the advantages
of DHT in these applications. Chapter 5 summarizes the book by discussing the pros
and cons of DHT.



Chapter 2
DHT Theory

In this chapter, we discuss a set of DHT variants, which widely influence the design
and development of distributed systems in recent years. In each section, we first
describe the structure of each variant, present the key elements such as the routing
model and the data model, and then discuss the solutions to a common problem in
distributed environments [20], namely, nodes dynamically join and leave distributed
systems. In the last section, we compare the DHT variants from numerous aspects,
such as overlay network topology, distance metric, routing and data model and so on.

2.1 Chord

Chord [6] is a distributed lookup protocol. It solves a general but fundamental
problem in P2P networks, namely, how to efficiently locate the node which stores
a particular data item. In addition, Chord is designed to address challenges in P2P
systems and applications, for instance, load balancing, decentralization, scalability,
availability and flexible naming.

In Chord, the DHT space is a circle, which is a one-dimensional space referred to
as the Chord ring. Although the structure of Chord is a ring-like consistent hashing,
their aims are different. Consistent hashing focuses on the caching problem, while
Chord is an architecture for organizing the nodes and contents in P2P networks. In
Chord, both nodes and data are mapped into this space by a pre-determined hash
function (e.g., SHA-1 [21]). The keys used to map nodes and data are referred to
as the identifiers (IDs) of the corresponding nodes and data. IDs for nodes can be
generated by applying a hash function to unique information of individual nodes
(e.g., nodes’ IP addresses), and IDs for data can be computed by applying a hash
function to the data themselves.

IDs are ordered on the Chord ring by calculating ID mod 2m, where m is the
number of bits in the key. Therefore, IDs correspond to points on the Chord ring.
All IDs are arranged clockwise in an ascending order on the Chord ring. For a
node Ni with its ID being i , we define its previous node on the clockwise ring as

H. Zhang et al., Distributed Hash Table; Theory, Platforms and Applications,
SpringerBriefs in Computer Science, DOI 10.1007/978-1-4614-9008-1__2,
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6 2 DHT Theory

Fig. 2.1 An example of finger table

predecessor.Ni/, and define its next node as successor.Ni /. In particular,
the node with the maximal ID (i.e., NIDmax ) chooses the node with the minimal ID
(i.e., NIDmin) as its successor. Additionally, NIDmax is the predecessor of NIDmin .

However, if each node only knows its predecessor and successor in the one-
dimensional Chord ring (which is a directed graph), such a DHT system would
be inefficient and vulnerable for numerous reasons. First, the time complexity of
DHT lookup is O.n/, where n is the number of peers in such a system; hence, the
complexity could be too high when n is large. Second, each node can only send
messages to its successor on the ring; hence, the node connectivity is 1 in such a
system (both in-degree and out-degree). Third, since each node has only one choice
for routing, if one node fails, the connectivity of the graph will be destroyed.

Chord introduces a finger table structure to solve the above problems. Each node
has a finger table, and each finger table maintains up to m nodes (recall that the
size of the key space is 2m) for the purpose of efficient routing and increasing the
connectivity of the graph. For an arbitrary node N , the i th entry in its finger table
contains the first node clockwise from N C 2i�1:

N.fingerŒi � D successor.N C 2i�1/: (2.1)

Each node maintains the data whose IDs are in the range between this node’s ID
and its predecessor’s ID. The finger table structure improves the connectivity of the
Chord ring and thus improves the routing on the ring, which in turn significantly
reduces the complexity. More specifically, the time complexity of the DHT lookup
operation is reduced from O.n/ to O.log n/ due to increasing the connectivity from
1 to O.m/.

Figure 2.1 shows an example of the Chord ring where m D 6 and the finger table
of node N3. The first entry (i.e., the zeroth entry) in this finger table contains N6,
since according to Eq. 2.1, the ID of the first neighboring node defined by the finger
table should be .3 C 20/ mod 26 D 4. However, there does not exist a node whose
ID is 4. Therefore, the immediate next node on the ring, i.e., N6, is chosen for the
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reason that successor.4/ D N6. Similarly, the last entry (i.e., the fifth entry) in
the finger table contains N43, because .3 C25/ mod 26 D 35 and the first node that
succeeds the node N35 is successor.35/ D 43.

The two primitives for data storage and retrieval are as follows: (1) put(k; v)
stores a given data v whose ID is k on the node that has an ID closest to k, and
(2) v D get.k/ retrieves the corresponding data v stored at a node using the ID k.
The common key to both data storage and retrieval is how to locate the node that is
responsible for storing the data with a given ID. Chord locates the node as follows.
When a node N with ID j needs to locate where the data with ID k is stored (or
should be stored), it would send a query to the node N 0 satisfying the Eq. 2.2:

N 0 D
8

<̂

:̂

N.fingerŒ0� d.k; j / � d.N.fingerŒ0�; j /

N.fingerŒi � d.k; j / � d.N.fingerŒi C 1�; j / and d.k; j / > d.N.fingerŒi �; j /

N.fingerŒm � 1� otherwise
(2.2)

In Eq. 2.2, N.fingerŒ0� is the ID of node N , and the distance between ID x

and ID y is d.x; y/ D .x � y/ mod 2m, which is the Euclidean distance in the
one-dimensional ring space. Note that during data storage and retrieval, each node
always tries to send queries to the node that is the closest to the querying node.

A node may dynamically join or leave a Chord system. The primitive join()
inserts a new joining node into the Chord ring and updates relevant nodes’
successors accordingly. When a node joins a Chord system, it is assumed to know at
least one node on the Chord ring, which helps the new node to locate its successor.
Moreover, a stabilization protocol runs periodically to update the successor lists and
finger tables. The primitive leave() removes a voluntarily leaving node from the
Chord ring and updates the lists of successors and finger tables accordingly. When
a node leaves or fails, some other node may lose its successor (if the leaving/failing
node is the successor). To mitigate this situation, each node maintains a list of the
first r successors. When one of its successors leaves or fails, a node simply chooses
the next node on this list as the successor. By tuning the parameter of r , Chord could
balance the robustness and the cost of maintaining the successor list.

Researchers have studied how to improve Chord extensively and there has been
a large body of literature on Chord; To name a few of such studies, Flocchini
et al. [22] proposed a method that combines multiple Chord rings to achieve
data redundancy and reduce the average routing path length; Joung et al. [23]
proposed a two-layer structure called C hord 2, where super peers are introduced
to construct a conduct ring which could reduce the maintenance cost; Kaashoek
et al. introduced a Chord-like structure Koorde [24] where the bruijn graphs [25]
substitute the finger table; Cordasco et al. [26] proposed a family of Chord-
based P2P schemes, F-Chord(˛), using the Fibonacci numbers to improve the
degree, diameter and average path length of Chord. Furthermore, H-F-Chord(˛)
using the NoN (Neighbors of Neighbors) technique [27–29] is more efficient in
terms of its average path length O.log n= log log n/; Ganesan et al. [30] optimizes
Chord routing algorithms by exploiting the bidirectional edges, both clockwise and
counterclockwise, which reduces the average routing path length.
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2.2 Content-Addressable Network (CAN)

CAN [31] is a distributed, Internet-scale, DHT-based infrastructure that provides
hash table-like functionalities. Different from the one-dimensional space in Chord,
the DHT space in CAN is a d -dimensional Cartesian space. The d -dimensional
space is further dynamically partitioned among all nodes and each node only
maintains its own individual and distinct zone in the space.

In CAN, every node maintains 2d neighbors, thus the node connectivity is 2d .
Here the notion of “neighbors” means two zones that overlap along d �1 dimensions
and have neighbors on one dimension. As a result, CAN dose not need to introduce
complex structures such as long links (e.g., the finger table in Chord) connecting
nodes, which are further away from each other in the d -dimensional space, in order
to improve the connectivity and reduce the complexity of routing. Note that d is a
constant independent from the number of nodes in the system, which means that the
number of neighbors each node maintains is a constant, no matter how many nodes
the CAN system may have.

Figure 2.2 illustrates a two-dimensional CAN with 20 nodes. Each dimension
covers Œ0; 1/ and every node maintains a zone in the grid. For example, node 1

maintains the zone .0 � 0:25; 0:75 � 1:0/, and node 17 maintains the zone .0:375 �
0:5; 0:5 � 0:75/. Every node maintains the IDs (e.g., IP addresses) of its neighbors
that maintain the zones in the neighborhood.

The routing in CAN works as follows. When receiving a message with a specific
destination, a node routes the message towards the destination using a simple greedy
algorithm, i.e., the node goes through the list of its neighbors to select the one that
is closest to the destination, and then forwards the message to the selected neighbor.

Fig. 2.2 Example of a
two-dimensional CAN with
20 nodes
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This greedy forwarding process continues until the message arrives to the designated
destination. For instance, Fig. 2.2 shows a routing path from the node 7 to the point
P in the zone maintained by the node 14. The dashed lines illustrate the steps
in which nodes greedily forward a message from the source (i.e., node 7) to the
destination P .

The data in CAN is stored and retrieved based on the notion of key-value pairs,
similar to the notion adopted in Chord. More specifically, in order to store a key-
value pair (k; v) where k is the key and v is the corresponding value (i.e., data),
k is first mapped to a point P in the d -dimensional space using a hash function
specifically chosen by CAN; then the corresponding (k; v) pair is delivered to and
stored on the node that maintains the zone where P is located. Similarly, in order
to retrieve the value v for a given key k, a node should first obtain the point P by
mapping the key k, and then retrieve the corresponding value v from the node that
maintains the zone where P is located.

The protocol that accommodates the dynamic node arrival and departure is more
complex than that in Chord, due to the fact that the d -dimensional space adopted
by CAN is more complex than the one-dimensional space by Chord. When a node i

joins the CAN system, it should be introduced into the system by another node j that
is already in the system. More specifically, the new joining node must send a JOIN
request to find an existing node whose zone zj can be split. This zone should be split
by a certain number of dimensions, in such a way that the zone can be reclaimed
when nodes leave in the future. When a node i leaves the system, the zone zi that
it maintains should be taken over by other remaining nodes. If the zone zi can be
merged with a zone zj which is maintained by a node j (one of the neighbors of
the leaving node i ), then the node j should reclaim the zone zi by merging it with
its own zone zj and maintain the new larger zone. Otherwise, the zone zi should be
taken over by the neighbor whose zone is the smallest.

For instance, suppose that the first splitable dimension is the x axis. When a new
node (ID is 21) is joining the system, it finds that the zone maintained by the node
2 can be split in half. After the split, the zone maintained by the node 2 changes
from .0:25 � 0:5; 0:75 � 1:0/ to .0:25 � 0:375; 0:75 � 1:0/. The other half, i.e.,
.0:375 � 0:5; 0:75 � 1:0/, will be assigned to the joining node 21. When the node
17 leaves, its zone should be reclaimed and merged with the zone maintained by
the node 6. Note that after the zones split (and merge), the neighbors of the affected
zones should update their neighbor lists so that the joining node (and departing
node) can participate in (and be removed from) the routing system. For example,
before the node 17 joins in the CAN system, the neighbor list of the node 6 is
f2; 5; 7; 10g and the list of the node 7 is f3; 6; 8; 11g. After the node 17 successfully
joins, the zone maintained by the node 6 is split into two smaller zones, one is
maintained by the node 6, the other is by the node 17. Then node 6, 17 and the
neighbors 2, 5, 7, 10 should update their neighbor lists. After updating the neighbor
lists, the neighbors of the node 6 are f2; 5; 10; 17g, and the neighbors of the node 7

are f3; 8; 11; 17g.
To maintain the healthiness of the CAN system, each node periodically sends

update massages to its neighbors. When a node has not received the update massages
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from one of its neighbors for a long time (longer than a certain timeout threshold),
it considers that the neighbor fails and starts a takeover timer for it. When the timer
expires, the node sends a TAKEOVER message to all neighbors of the failed nodes,
announcing that it takes over the zone that is formerly maintained by the failed node.
However, if the node receives a TAKEOVER message before the timer expires, the
node then cancels this timer. When such a timer is initialized, it should be set up in
a way that it is proportional to the failed node’s zone. More specifically, if one node
fails, the neighbor who maintains the smallest zone should send the TAKEOVER
massage at the earliest moment and therefore takes over the failing node’s zone.

Besides, to improve the robustness and performance of the CAN system,
three technologies, i.e. increasing dimensions, multiple realities and RTT-weighted
routing, are introduced [31]. As a result, CAN behaves well in large-scale distributed
systems and has been applied to many applications in such systems.

2.3 Global Information Sharing Protocol (GISP)

GISP [32] is a protocol for fully decentralized P2P networks. GISP does not make
any assumption on the network structure, thus it is applicable to both structured and
unstructured P2P networks.

There are a set of key principles that guide the design of GISP. First, each
node should maintain as much peer information as possible, so the network has
great connectivity. Second, each node should discard information of unreachable
peers and keep more information about nodes that are numerically closer. Last but
not least, each node may possess different levels of capability; however, the more
capability one node possesses, the greater responsibility the node should take. GISP
introduces the notion of “peer strength” to quantify the capability of a node. The
powerful nodes (with higher peer strength) should keep more data and have more
connectivity than those with less peer strength.

The routing model in GISP works as follows. GISP leverages hash functions
such as MD5 and SHA-1 to map any binary data including a keyword into a
number with fixed bit length. Similar to Chord and CAN, each node in GISP has
a unique ID in the hash space. GISP defines the distance between two nodes by
distance.i; j /=.2si �12sj �1/, where i and j are the IDs of two nodes, si and
sj are the values of the two nodes’ “peer strength.” GISP adopts a greedy routing
strategy, namely, when forwarding a message to its destination, a node selects the
next-hop node who has the shortest distance to the destination.

The data storage and retrieval are similar to Chord. When inserting the data v
into a GISP system, the key k is computed (i.e., the hash value of the data v) and
the node whose ID is numerically closest to k is selected to maintain the data. In
other words, GISP selects the node who has the shortest distance to the hash value
of the data. For example, suppose that a GISP system has four nodes, whose ID
are 100, 110, 115, 122 respectively. If a piece of data with key 107 is pushed in
the system, then the node with ID is 110 would be selected to maintain the data.
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Data retrieval is similar to the data storage process. More specifically, given a key
k, the node that is responsible for maintaining the data is located and queried, then
the data v will be routed back to the requesting node. Data storage and retrieval are
conceptually straightforward; however, it is difficult to completely delete any stored
data. In GISP, when a node stores a piece of data, it also set up a timer for the data;
each node periodically check the data it maintains and delete the expired data.

Since node failures in P2P networks are not uncommon, in GISP the data is
duplicated and the replicas are distributed to multiple nodes whose IDs are closer to
the hash value of the corresponding data. The number of data replicas is determined
either statically or dynamically. The larger the number is, the more robust the system
is to multiple node failures, and the more storage capacity is required. As a result,
routing messages are not sent to only one node but to a group of peers (in the
ascending order of the distance from the nodes to the hash value of the data). In
order to avoid routing loops, each message is associated with a list of peers to which
this message has already been sent. For example, suppose that the node 4 is sending
a message M to the nodes 5, 6 and 7. When node 4 sends M to node 7, it also tells
node 7 that it has already sent this message M to node 5 and 6. Thus, node 7 will
not route M to 5 and 6.

When a node i is joining a GISP system, it is assumed that node i knows at least
an active node j in the system. From the node j , node i acquires knowledge about
other nodes in the network. When a node i leaves the system, it notifies other peers
its departure. In the case that some nodes leave the system without notifying others
(e.g., due to the network connectivity problems), GISP can still work well unless too
many peers fail at the same time and as a result too much data stored in the network
is lost.

GISP introduces a latency-based mechanism to relate the overlay network
topology with the real underlying physical network topology. Such a mechanism
can reduce the cost of network routing in GISP. More specifically, when a new node
is joining the network, GISP first determines this node’s ID based on the latency
values of the existing nodes that it knows. By doing so, nodes that are closer in the
underlay network topology are likely to form clusters (i.e., the distances/latencies
between nodes in such clusters are lower) in the overlay network topology.

2.4 Kademlia

Kademlia [33] is a P2P storage and lookup system. Both nodes and data in Kademlia
are assigned with 160-bit integer IDs. More specifically, each node chooses a
random 160-bit integer as its ID, and data is stored in the form of key-value pairs,
where the key is a 160-bit value generated by hash functions such as SHA-1 and
being the ID of the value, and the value is the data stored in Kademlia.

Unlike Chord and CAN, Kademlia defines the distance between two nodes i and
j by the bitwise exclusive OR operation (XOR), i.e., d.i; j / D i ˚ j . This distance
metric is unidirectional like the metric used in Chord, which means for any given
key i and a distance l > 0, there are only one key j that satisfies d.i; j / D l .
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Every piece of data in the form of key-value pair is stored on k nodes whose IDs
are the closest to the key. Here k is a key parameter in Kademlia to determine data
redundancy and system stability.

Each node i in Kademlia maintains multiple k-buckets. Each k-bucket is a linked
list with a maximum length of k. Each k-bucket keeps a list of nodes, which are
sorted in the ascending order of recent activities, i.e., the node that is the least
recently seen is stored at the head, and the node that is the most recently seen
is stored at the tail. The node whose distance from the node i is in the range of
Œ2m; 2mC1� is stored in the mth k-bucket (note that 0 � m < 160). The nodes in the
k-buckets are regarded as the neighbors of the node i .

Unlike in Chord and CAN, a node updates its neighbors dynamically upon
receiving any messages from them. More specifically, when a node i receives a
message from another node j , which is located in the mth k-bucket, this k-bucket
of node i will be updated in the following way. If j already exists in the k-bucket,
i moves j to the tail of the list, as node j is the node that is the most recently seen.
If j is not in the k-bucket and the bucket has fewer than k nodes, node i just inserts
j at the tail of the list. If the bucket is full, i pings the node at the head of this
k-bucket. If this head node responds, node i moves it to the tail and ignores node j .
Otherwise, i removes the head node and inserts j at the tail.

Kademlia has four RPC-like primitives, i.e., PING, STORE, FIND_NODE and
FIND_VALUE. The PING primitive probes a node to check whether it is online
or not. The STORE primitive is used to store a key-value pair. The FIND_NODE
primitive finds a set of nodes that are closest to a given node; in other words, it
returns k nodes from one or multiple k-buckets, whose IDs are closest to the given
node’s 160-bit ID. The FIND_VALUE primitive behaves like FIND_NODE, except
that it returns the stored value. These primitives work in a recursive way, and in
order to improve the efficiency of Kademlia, a lookup procedure is invoked by the
FIND_NODE and FIND_VALUE primitives. More specifically, at the beginning,
the lookup initiator picks ˛ nodes from its closest k-bucket and sends multiple
parallel FIND_NODE requests to these ˛ nodes. If the proper node is not found, the
initiator re-sends the FIND_NODE to the nodes it just learned in the last recursive
execution. A key-value pair may be stored on multiple nodes. With the recursive
lookup procedure, the key-value pair spreads across the network every hour. This
method ensures that for any data, multiple replicas exist for robustness. Every key-
value pair is deleted 24 h after it is initially pushed into the network.

When a node i is joining the network, it is assumed that it knows a node j

which is active and already in Kademlia. The joining process consists of multiple
steps. First, node i inserts j into its k-buckets. Second, node i starts a node lookup
procedure for its own ID, from which i learns some of the new nodes. Finally, node
i updates the k-buckets. During this process, node i strengthens its k-buckets and
inserts itself into other nodes’ k-buckets. When a node fails or leaves, it does not
notify any other node. There is no need for a special procedure to cope with node
departures, as the mechanism of k-buckets ensures that the leaving nodes will be
removed from the k-buckets.
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For the reasons of the simple distance metric and the k-bucket mechanism,
Kademlia becomes the most widely used DHT system—it has been adopted by
many popular P2P applications such as Overnet [34], eDonkeyTM/eMuleTM [35]
and BitTorrentTM [36, 37]. Researchers have made many efforts on analyzing and
improving the lookup performance of the Kademlia protocol [38–42], in order to
enhance the practicality of the Kademlia-based system.

2.5 Pastry

Pastry [43] is a self-organizing overlay network with a targeted basic capability of
routing messages efficiently. Every node in Pastry has a 128-bit ID. A node ID is
divided into multiple levels, each of which represents a domain. Each domain is
represented by b (an integer by which 128 is divisible) contiguous bits in the node
ID, i.e., the domain at level l is specified by the bits at positions b�l to b�.lC1/�1.
Each level contains 2b domains numbered from 0 to 2b � 1. Figure 2.3 illustrates an
example of dividing the Pastry node ID with b D 4. The first four bits specify the
domain at level 0, and the following four bits specify the domain at level 1. In this
case the domain at level l is domain 9 (i.e., the binary bit string is 1001).

Routing Model

Each node has a routing table, a neighborhood set and a namespace set. The routing
table of a node contains 2b � 1 nodes for each level l; these nodes have the same
prefix up to level l�1 as the local node. Hence, the routing table contains L�2b �1

nodes, where L is the number of the levels. The neighborhood set contains M nodes,
which are closest to the local node (measured by their physical distances). However,
note that the neighborhood set is not used in routing messages. The namespace
set contains L nodes which are closest to and centered around the local node. The
namespace set is used during the message routing and object insertion.

When a node routes an incoming message, the node first checks if the destina-
tion’s ID falls in its namespace set. If so, the message will be sent directly to the
destination node. Otherwise, the node uses the routing table to choose the domain at
a level l , where the nodes at this level l share the longest prefix with the destination
node’s ID. Then the node selects a node in this domain as the next hop. The selected
node has to be alive and be closer to the destination than other nodes in the same
domain.

Fig. 2.3 Node ID division in
Pastry with b D 4



14 2 DHT Theory

Data Model

Every data object v in Pastry has an object ID k that is at least 128 bits long,
which can be generated by a hash function. When storing an object v into the Pastry
network, Pastry routes a message containing the data object v to the node whose ID
is numerically closest to k (i.e., the ID of v). In order to improve the data availability,
each data object is not only stored on one node but also on a set of extra nodes whose
IDs are numerically close to the object ID.

When a node i joins a Pastry system, it is assumed that the node knows at least
an active node j in the network. Node j routes a “join” message on behalf of node
i and the message is destined for node i . Eventually, the message will be routed
to a node i 0 whose ID is numerically closest to i . Then node i copies node j ’s
neighborhood set as its initial neighborhood set, and takes the namespace set of
node i 0 as its initial namespace set. Node i also initializes its routing table using
the relevant information of the nodes on the path from j to i 0, including j and i 0.
When a node i is leaving a Pastry system, there is no specific protocols to handle the
node departure. Rather, nodes solve this problem by refreshing their routing table,
neighborhood set and namespace set.

2.6 Tapestry

Tapestry [44] is a P2P overlay routing infrastructure which offers scalable, location-
independent and efficient routing of messages using only local resources.

In Tapestry, each node has a 160-bit ID, and each application-specific endpoints
(e.g., objects) is assigned with a 160-bit globally unique identifier (GUID), both of
which can be generated by using a hash function such as SHA-1. The “distance”
between two nodes is assessed digit by digit; for example, a node whose ID is
“2341” which is closer to the node “2347” than the node “2338.” Below, we will
elaborate the routing and data model of Tapestry, respectively.

Routing Model

Each node maintains a routing table which consists of a set of neighboring nodes.
Tapestry guarantees that any node can be reached from the root in at most logˇ N

hops, where N is the size of the name space and ˇ is the base of IDs. In order
to do so, neighboring nodes in the routing table are organized into logˇ N levels.
In the j th level, at most c � ˇ pointers to the relative nodes that begins with
prefix.N; j � 1/ are maintained, where c neighbors differ only on the j th digit.
For instance, “325A” is maintained in the fourth level of the routing table of “3259”
with ˇ D 16.

When a node routes an incoming message, the node selects the next-hop node
from the neighbors by matching the level prefix, which is similar to the longest
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Fig. 2.4 An example of storing (publishing) a data object in Tapestry

prefix routing method used in the CIDR IP address allocation architecture [45]. As
a result, the IDs of the nodes on a route vary gradually (e.g., 3*** ) 34** ) 34A*
) 34AE, where “*” is the wildcard). Tapestry also provides the surrogate routing
to route messages to some active nodes with similar IDs. This scheme can mitigate
the problem of single-point failures.

Data Model

Each object in Tapestry has a root, as Tapestry maps each data object to a root node
whose ID is equal or closest to the GUID of the object. When a node stores or
retrieves a data object, it always sends the request to the root of the object. More
specifically, when a node i publishes a data object v it stores, it sends the publishing
message to the root of the object O . Each of the intermediate nodes on the path
from i to the root node stores a location mapping .v; i /. Upon receiving a request
message for the object v, each node on the path to the root node checks if it has the
location mapping for v. If it does have the mapping, it redirects the message to the
node i who stores v; otherwise, it forwards the message to the next hop towards the
root node. As a result, for any data object, the routing paths of the request messages
form a unique spanning tree, with the root being the root of the object.

Figure 2.4 illustrates an example of publishing data objects in Tapestry. Both the
node “4228” and the node “6712” store a data object O . Note that the node “6471”
is the root for this data object. When the node “4228” and “6712” send publishing
messages, each of the intermediate nodes along the paths towarding to the object’s
root creates a location mapping, i.e., a pointer for the object O to the publishers
“4228” and “6712.”

Figure 2.5 illustrates an example of how nodes retrieve a data object O . There are
three nodes, “54FE ,” “7452” and “656C ,” retrieving the data object O by sending
querying messages towards the root of this object. When the message from “54FE”
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Fig. 2.5 An example of retrieving a data object in Tapestry

is received by “623E ,” the latter finds that it has maintained the location mapping
for the object O (which points to “4228”), and thus forwards the querying message
directly to the publisher “4228,” rather than further forwards the message to the
root “6471.” Similarly, the messages from “7452” and “656C ” are sent directly
to “4228” and “6712” respectively. By doing so, Tapestry efficiently improves the
routing throughput and latency.

When a node i is joining a Tapestry system, it is assumed that it knows (or can
find) an active node which is already in the system. The data objects which should
be rooted at node i must be migrated to i . During the migration, node i constructs
its own routing table, and notifies other nodes so that they can insert i into their
routing table.

When a node i is leaving the system, Tapestry solves the problem in two cases:
voluntary node deletion and non-voluntary node deletion. In the first cast, the
leaving node i notifies all nodes that are related to i and moves the objects it
maintains to the new root. In the second case, node i leaves or fails without any
notification. In this case, nodes rely on periodical messages to detect whether the
outgoing link and node fails. Furthermore, Tapestry builds redundant pointers in
routing tables to improve robustness to node departures. A combination of these
techniques retains nearly 100 % success rate for routing messages.

2.7 Viceroy

Viceroy [46] is constructed on the butterfly network. In Viceroy each node has two
associated values: id and level. id is the identity of the node in the network, which
is a random value in the range Œ0; 1/ and is fixed throughout its participation; level
is a positive integer in the range Œ1; log N � and changes as the network evolves.
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Nodes in Viceroy form three types of sub-topologies: a general ring, which is
similar to the ring in Chord and is constructed by the successor and predecessor
relationships, multiple level rings, where all nodes in the same level form a ring,
and a butterfly network where each node connects to proper nodes to form a butterfly
network. In the butterfly network, each non-leaf node at level l connects to two nodes
at the lower level l C 1; such links are referred to as the left and the right down links
respectively. The left down link connects to the node which is the clockwise closest,
and the right down link connects to the node at about 1=2l away at level l C 1.
Additionally, each node at level l > 1 also connects to one node at the upper level
l � 1 which is numerically the closest node to the local node (such links are referred
to as up links).

The routing model and the data model are unified via a key primitive, LOOKUP,
in Viceroy. This primitive is used not only to maintain the network during nodes’
joining and leaving, but also to data retrievals. The primitive LOOKUP consists of
three phases. Firstly, the root node at level 1 is found through the up link. Secondly,
the next-hop node is selected using the down links. When a node at level l calculates
the distance between the destination and itself to determine which of the two down
links (i.e., left or right) should be used to forward messages. More specifically, if it
finds that the distance is at least 1=2l , then it forwards the lookup message through
the right down link; otherwise, the left down link should be used. Thirdly, when
a message reaches a node without down links or overshooting the destination, the
message is forwarded along the level ring until the destination node is found.

When a node i is joining the Viceroy system, it should join each of the three
types of sub-networks. First, node i finds out its predecessor and successor in the
general ring based on its ID. It inserts itself into this ring and gets the key-value
pairs between i and predecessor.i/ from its successor. This procedure operates
similar to Chord. Second, node i selects its level by a level selection mechanism and
joins the level ring. Last, node i joins the butterfly by choosing the two down links
and one up link.

When a node is leaving the Viceroy system, it removes all of the outbound
connections and notifies all neighboring nodes so that they can find a replacement.
Moreover, the leaving node must transfer the resources it maintains to its successor.

2.8 Comparison

All DHT variants discussed in the chapter focus on how to efficiently manage a large
number of nodes and data in a distributed system, and each variation has its unique
characteristics.

In this section, we will discuss their similarities and differences from the
perspectives of how the overlay network is constructed, the distance metric, the
routing and data model, and how node dynamics are handled.
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2.8.1 Overlay Network Topology

Chord is the simplest variation of DHT. It is a one-dimensional ring where all IDs
of both data and nodes are arranged clockwise in the ascending order. Every node
maintains the data whose IDs fall in the range bounded by the node’s ID and its
predecessor’s ID. CAN is featured with a d -dimensional hyper-cube structure. Its
d -dimensional Cartesian space is divided into a number of non-overlapping zones,
each of which is maintained by one node. Any data object is mapped into the d -
dimensional hyper-cube as a point in one of the zones. GISP is a structureless
variation of DHT, where there is no limitation for the number of connections among
nodes. Any two nodes have a direct connection if they know each other and they
are alive. Kademlia, Pastry and Tapestry all form a one-dimensional structure which
could be thought of as a tree structure. The nodes’ identifiers constitute the leaf
nodes in the tree. They use fixed-length bit strings as the IDs for nodes and data
objects (Kademlia and Tapestry use 160-bit IDs; Pastry uses 128-bit node ID and the
object ID is at least 128 bits long). Additionally, Kademlia organizes the network
with the XOR operation, so its structure is a special tree referred to as the XOR-
tree [47]. Pastry uses a ring structure to assist the routing when the tree structure
can’t find a proper target. Viceroy constructs a butterfly structure, which is the most
complex one in the aforementioned variations.

The levels of connectivity available in these variants also differ significantly.
More specifically, CAN has strong connectivity between nodes due to the d -
dimensional hyper-cube structure, and Viceroy benefits from the property of
butterfly structure, while in all other variants, nodes are less connected. Thus nodes
in these variants with less connectivity have to maintain multiple other nodes as their
neighbors (these nodes are not its numerical neighbors). For instance, each node
in Chord maintains a finger table, containing O.log N / nodes which are not the
numerical neighbors on the one-dimensional ring. The distances from this node to
the nodes in the finger table are half of ring perimeter, one-quarter of ring perimeter,
one-eighth of ring perimeter, . . . , so on and so forth. As a comparison, Viceroy
maintains three types of connectivity (i.e., links on the general ring, a level ring
and a butterfly network) which allow nodes to connect not only to their numerical
neighbors but also to other nodes. Due to the butterfly structure, each node in
Viceroy only maintains O.1/ peers. The enhancement of the connectivity in these
structures significantly improves the efficiency of routing.

2.8.2 Distance

The distance metric, d.i; j /, measures the distance between two nodes (or data
objects) of i and j in a distributed system. This metric is the key and basis for
routing and data retrieval operations. As a result, the difference in the distance
metrics used by different variants leads to different routing strategies.
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In Chord, the IDs of nodes and data objects are treated in the same manner. The
distance from i to j is defined as d.i; j / D .j �i/ mod 2m, where m is the number
of bits in the key and node identifiers. In CAN, the distance is the Euclidean distance
in the d -dimension space. From the geometric point of view, it is the distance
between two points in the d -dimensional hyper-cube. In GISP, the distance between
two data objects is the differences between their IDs. For the distance between two
nodes, GISP introduces a new parameter called “peer strength,” which represents
the capability of a node. More specifically, the distance between two nodes with IDs
i and j is d.i; j /=.2si �12sj �1/, where si and sj are the “peer strength” values of
these two nodes. This distance metric assigns a greater responsibility to the nodes
with a more powerful capability. In Kademlia, the distance between node i and j is
the bitwise exclusive OR (XOR), i.e., d.i; j / D i ˚j . This metric has extremely low
computational complexity than the Euclidean distances (e.g., adopted by Chord and
CAN), and it does not need an additional algorithmic structure for discovering the
target in the nodes which share the same prefix. In Pastry and Tapestry, the distances
both assessed digit by digit as in Plaxton [48]. In Viceroy, the IDs of data objects
and nodes are numbers in the range Œ0; 1/, thus the distance from node i to j is
d.i; j / D .j � i/ mod 1, similar to the distance metric used in Chord.

The distance metrics of Chord, Kademlia and Viceroy are unidirectional, which
means that for any given key k and a distance D > 0, only one key k0 can satisfy
d.k; k0/ D D. In other systems the number of nodes satisfying this condition is
more than 1. This also means that Chord, Kademlia and Viceroy can determine
a unique node by distance for the routing purpose, while all remaining variants
need to determine which node is the next hop by additional parameters. Besides,
The distance metrics used in Chord and Viceroy are directed, which means that
d.i; j / ¤ d.j; i/ in most situations.

2.8.3 Routing and Data Model

We compare the routing and data models adopted by different variants from three
perspectives: the routing table, the routing path selection and length. Below we
assume that there are N nodes in the network.

Routing Table

Each node in all DHT variants maintains the information of a set of other nodes
for the purpose of routing. However, different variants maintain different types of
nodes.

In Chord, each node stores three lists of nodes: a predecessor node, a finger table
consisting of up to m entries/nodes (note that the size of the ID space is 2m), and
a successor node list with r entries. The total number of nodes maintained by each
node is O.log N /. In CAN, each node in the d -dimensional hyper-cube maintains
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a list of 2d neighbors, which is independent of the total number of nodes in the
system (i.e., N ). This property is desirable since nodes keep a constant number of
neighbors regardless of the system size. In Kademlia, the length of node IDs is 160

bits. For any i (0 � i < 160), each node keeps a k-bucket, in which at most k

nodes are stored. The distance from any of the nodes in the i th k-bucket to the
local node is in the range Œ2i ; 2iC1�. Therefore, each node in Kademlia maintains at
most 160 � k neighboring nodes, which is equal to O.log N / in essence. In GISP,
each node maintains as many nodes as possible, but GISP dose not explicitly define
strategies for managing such information. In Pastry, each node maintains three sets
of nodes: a routing table consisting of approximately dlog2b N e � .2b � 1/ nodes
(recall that the levels are denoted by b bits), a neighborhood set of M nodes, and
a namespace set of L nodes. The typical values for L and M are 2b and 2 � 2b ,
respectively. In Tapestry, each node has a location mapping which consists of a
neighbor map with log2b N levels. To some extent, this is similar to the routing
table in Pastry. Each level contains c � 2b nodes, where c is chosen for redundancy
of routing nodes. The number of nodes every node maintains in these two variations
is O(log2b N ). Further more, Tapestry nodes also maintain pointers to the nodes who
publishes the objects to the local nodes, which reduces the lookup time greatly. In
Viceroy, each node maintains a constant (small) number of nodes. The number of
nodes a node maintains is at most 7.

In CAN and Viceroy, each node maintains only a constant number of nodes,
regardless the size of the network. On the contrary, in most of other variants, each
node maintains O.log N / nodes, which is a varying number dependent on the size
of the network. In summary, Viceroy nodes maintain the least number of nodes
[i.e., O.1/], while others maintain O.log2 N /. Thus Viceroy costs least to maintain
the complete structure; however, the structure of Viceroy is more sensitive to node
failures than other variants.

Path Length

The average length of routing paths is an important parameter that suggests the
efficiency of routing: the less number of hops a routing path has, the more efficient
the routing is.

In Chord, the length of the routing paths is no more than O.log N / hops, as
a result of the finger table which allows to search in an exponential manner. In
CAN, due to the d -dimensional hyper-cube structure, the average routing path
length is d

4
N

1
d and any node can be reached by another node in O.dN

1
d / hops. In

Kademlia, Pastry and Tapestry, the average length of routing paths can be improved
to O.log2b N /, where b bits are merged to denote a digit. For example, b D 4

means that the IDs are hexadecimal and the 160-bits ID is regarded as a 20-digit
hexadecimal number. when b D 1, Kademlia, Pastry and Tapestry are the same
as Chord in terms of the efficiency of routing. In Viceroy, the average length of
routing paths is also O.log N /. In GISP, since any two nodes may be connected, it
is challenging to analyze its average routing path length of GISP.
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Path Selection

Each node in the above DHT variants knows only partial information about the
network. However, DHT ensures efficient routing path selection with such partial
information.

More specifically, each node tries its best to find out the node closest to the
destination. Here the “closest” node is chosen based on nodes’ numerical distances
to the destination. The distance metrics used in different variants are different; as
a result, the paths from the same source node to the destination are different in
different variants. All DHT variants adopt a locally optimal solution in each step,
which may achieve the global optimal solution. This is the reason why DHT-based
overlay networks perform efficiently in large-scale distributed systems.

2.8.4 Node’s Joining and Leaving

When a node i wants to join the system, it is assumed that it knows at least one
active peer j which is already in the system. In Chord, the active node j helps
node i to find its successor. Node i joining the system requires that some nodes in
the system should update their finger tables. With a stabilization protocol running
periodically, nodes update their successor nodes and their finger tables gradually,
which costs O.log N / times and O.log2 N / messages. In CAN the active node
j introduces node i into the system which allocates a zone for i to maintain.
Since all nodes only maintain a list of neighboring nodes, when a node joins in
CAN, the neighbors of this new node should update their neighbor lists. This is
sufficient to generate the correct routing path without a stabilization protocol. Thus
the joining operation in CAN costs O.1/ times. In Kademlia, the joining node i

starts a LOOKUP operation to insert itself into other nodes’ k-buckets and constructs
its own k-buckets gradually. In GISP, the network needs extra time to stabilize when
a node comes. In Pastry and Tapestry, node i must try its best to learn enough
number of peers and tells others to memorize it. In Viceroy, node i constructs the
three types of links by the JOIN operation [46].

When a node i leaves the network, affected nodes must update the node
information they maintains. Chord runs a stabilization protocol to update the nodes’
successors and finger tables. In CAN, each normal node sends update massages
to its neighbors periodically. When neighbors find a node has left, one of them
takes over the failed node’s zone and notifies other neighbors. In GISP, when a node
finds that some nodes are unreachable, it deletes these nodes from its routing list.
In Kademlia and Pastry, there are no specific protocol to handle node departures;
rather, they detect the target node before routing. This method reduces the impact
of node leaving, but it may increase the latency of message routing. In Tapestry,
nodes use heartbeat messages to detect whether a node is alive. In Viceroy, when a
node leaves voluntarily, the leaving node should execute the LEAVE operation [46]
before its departure. Otherwise, when node failures occur, the structure of Viceroy
should be repaired by executing the LOOKUP operation (Table 2.1).
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Table 2.1 Comparison of classical DHT variants. (a) Comparison from topology, distance and
path length (b) Comparison from path selection, number of peers, node’s joining & leaving

(a)

Algorithm
Overlay network
topology Distance from i to j

Routing path
length

Chord One-dimensional
ring

.j � i / mod 2m O.log N /

CAN d -dimensional
cube

Euclidean distance d
4
N

1
d

GISP Structureless Objects: the
difference of
the two IDs;
Nodes:
.i; j /=.2si �1

2sj �1/; si ; sj

are “peer
strength”

Uncertain

Kademlia XOR-tree i ˚ j O.log2b N /

Pastry Tree+ring Assessed digit by
digit

O.log2b N /

Tapestry Tree Same as Pastry O.log2b N /

Viceroy Butterfly .j � i / mod 1 O.log N /

(b)

Algorithm
Routing path
selection # of maintained peers Node’s joining Node’s leaving

Chord O.log2 N /

construct
Find successor;

protocol
Run stabilization

CAN 2d Generate neighbor
list

Update neighbor
lists

GISP Greedy
algorithm

As many as
possible

Generate routing
list

Delete failing nodes
from routing list

Kademlia At most 160 �
k.O.log2 N //

Constructs
k-buckets

Detect the target
node before
routing

Pastry O.log2b N / Generate routing
table,
neighborhood
set and a
namespace set

Detect the target
node before
routing

Tapestry O.log2b N / Construct the
routing table

Heartbreak message

Viceroy At most 7 Construct the three
kinds of links

Repaired by the
LOOKUP
operation



Chapter 3
DHT Platforms

Based on the theory of DHT, many researchers develop platforms, that implement
different kinds of DHT and provide interfaces and services to applications. DHT
translation from theory to platform is not a simple work. In this procedure
many problems and requirements will be exposed, such as load balance, multiple
replicas, consistency, latency and so on. Some platforms only complete the basic
functions including implementing specific DHT and providing interfaces to the
upper applications, such as Open Chord, Chimera, FreePastry and Khashmir.
Besides the fundamental implementation, some also supply specific services, such
as CoDeeN and CoralCDN for caching, hazelcast for data distribution. Some supply
additional guarantee, such as GNUnet for privacy and security. Some focus on
providing a platform for connecting all kinds of devices, such as JXTA. In the
following, we introduce the key design properties and characteristics of several DHT
implementations in both academic/open source platforms and commercial platforms
respectively.

3.1 Academic and Open-Source Platforms

In this section, we introduce 11 platforms that implement various DHT techniques,
including Bamboo, CoDeeN, CoralCDN, OpenDHT, JXTA, GNUnet, Open Chord,
hazelcast, i3, Overlay Weaver, Cassandra. They are all open-source platform, that
are free and allow other people to contribute to the system, which facilitates the
platform to grow and improve, but on the other hand, limits the maintenance and
stability of the system.

H. Zhang et al., Distributed Hash Table; Theory, Platforms and Applications,
SpringerBriefs in Computer Science, DOI 10.1007/978-1-4614-9008-1__3,
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3.1.1 Bamboo

Bamboo [11] is a Pastry based DHT platform written in Java. The first release
was written in December 2003. The latest version was published on March 3,
2006. Although Bamboo is built on the base of Pastry, it has several improvements
especially in peers’ joining and leaving problem, which is called “churn.”

Bamboo performs well under high levels of churn [20] by three technologies.
The first one is “static resilience to failures.” This technology allows node to
route messages even before recovery. The second one is “timely, accurate failure
detection.” In a P2P system where churn happens normally, it is quite often to send
messages to a node that has left the system. So the timely failure detection is very
important. Bamboo detects the failure by setting a proper timeout. If the timeout
is too short, many massages would be re-routed and the target node is mistaken
as a failed node. On the contrary, if the timeout is too long, the requesting node
would waste time waiting the response from a left node. For choosing an accurate
timeout, the nodes in Bamboo probe the latency actively. Furthermore, Bamboo uses
recursive routing to solve the problem that how to actively probe any node in the
network. The third one is “congestion-aware recovery.” In this technology, Bamboo
simplifies the Pastry’s joining algorithm, which allows a node to join the network
more quickly. In the leaf maintenance, Bamboo adds a “pull” operation which is a
reply to the “push” message of nodes, while Pastry only has a “push” operation,
that a node sends its entire leaf set to some neighbor nodes which is randomly
chosen in the set. This “feedback” method greatly increases the consistency of
the information that nodes maintain, especially in high churn situation. Bamboo
provides two algorithms called “global tuning” and “local tuning” respectively,
which optimize the route table all the time. Therefore, you may find that the nodes
in Bamboo keep changing their neighbors, even no node joins or leaves the network.

Since Bamboo is constructed by Berkeley, it incorporates into other Berkeley
projects easily, such as OceanStore and PIER [49]. Meanwhile, Bamboo is running
as an OpenDHT project [50], which allows anyone to put and get key-value pairs
into it only using XML RPC or Sun RPC. This make it much easier to run the DHT
individually.

3.1.2 CoDeeN

CoDeeN [14] is an academic content distribution network (CDN) for PlanetLab [51]
by the Network Systems Group at Princeton University. It consists of high-
performance proxy servers which are deployed on PlanetLab nodes. Users are
provided a fast and robust web content delivery service. CoDeeN has been built
since 2003. At present it is still under development and tries its best to provide
continual service.
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CoDeeN reduces the response time of Internet by caching the web pages and
resources of the remote sites on the proxy servers. These servers locate all over the
world, so users can get the resources from the nearest proxy server instead of the
original sites. If someone wants to use CoDeeN, she should pick the nearest proxy
server from the CoDeeN proxy server list. Meanwhile, this cache technology also
reduces the burden of the web site so that can support more users.

CoDeeN also does some work in privacy and security. All accesses via CoDeeN
are logged and the logs are monitored for the abuse. CoDeeN uses semi-restricted
proxies with several protections against the abuse. For instance, users cannot access
the sites containing licensed contents. CoDeeN protects the resources with IP-
address restrictions. A number of known virus and attack signatures are tested so
that CoDeeN could ban clients attempting to use the attacks.

CoDeeN is an implementation of DHT, which focuses on the web caching.
Although it is an academic platform, it provides a large amount of information for
the related research, which improves the performance of commercial CDN.

3.1.3 CoralCDN

CoralCDN [7] is a peer-to-peer content distribution network, which is comprised of
world-wide network of web proxies and nameservers. The first version of CoralCDN
online was deployed in March 2004, which also runs on the PlanetLab [51].
Unlike CoDeeN that users configure the proxy server manually, CoralCDN works
in another way. If Users want to access http://www.xxx.com/, they only add a suffix
in the way of http://www.xxx.com.nyud.net:8090. CoralCDN chooses the optimal
proxy server automatically.

Figure 3.1 shows the process of the CoralCDN. At first, a client sends a request
for http://www.xxx.com.nyud.net to its local resolver. Upon reviving the request,
the resolver transmits it to a Coral DNS server. The DNS server probes the round-
trip time to the client. According to the result, the DNS server finds out the nearest
http proxy server to the client and returns it to the client. Then the client sends
HTTP request http://www.xxx.com.nyud.net:8090 to this specified proxy. If the
proxy caches the proper object, it will return the web pages to the client. Otherwise,
the proxy will look up the object on other proxy in Coral. Only if there is no proper
resource in Coral, the original website will be accessed.

CoralCDN is built on a key-value indexing infrastructure Coral, which is based
on distributed sloppy hash table (DSHT) that differs from traditional DHT in
several aspects [52]. In DSHT, the PUT operation which puts the key-value pairs
in the network does not only consider the distance but also avoids hot spots. Thus
the resources would be stored far from the positions of their IDs. In the routing
procedure, the router determines the next target which is not the node closest to the
destination, but the one whose distance to the destination is closest to half of the
local router’s distance.

http://www.xxx.com/
http://www.xxx.com.nyud.net:8090
http://www.xxx.com.nyud.net
http://www.xxx.com.nyud.net:8090
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Fig. 3.1 The process of CoralCDN

Coral builds a XOR-tree structure like Kademlia and introduces locality infor-
mation. Coral uses several levels of DSHT to build a hierarchical routing structure,
which is divided by the delay. The higher the level is, the smaller the delay is and
the fewer the nodes are in this level. If a request comes, a node in Coral will search
proper resources on the highest level because of the smallest delay. If the resources
are not found, then the lower level is used. Delay implies the geographical distance
of two nodes. So the nodes at higher level probably locate in a smaller geographical
coverage.

CoralCDN introduces several properties to extend the classical DHT, especially
for avoiding hot spots and increasing speed. In the past years CoralCDN worked
well. M. J. Freedman [53] had observed it for a long time, which helps researchers
to learn CoralCDN. Compared with CoDeeN, CoralCDN is an open-source imple-
mentation, which allows more operability to improve and contribute to it.

3.1.4 OpenDHT

OpenDHT [50,54] is a platform which provides free and public DHT services. It was
established in 2005. Unlike usual DHT model, users of OpenDHT do not need to run
as a DHT node. The OpenDHT infrastructure runs the OpenDHT code and provides
interfaces to users to connect to it. User nodes issue RPC (Remote Procedure Call)
to upper applications. OpenDHT nodes act as gateways accepting the RPC from
clients.

OpenDHT places a high premium on simplicity. There are three interfaces to
simplify the operations and usages for users. In the three interfaces, routing model
is the most general one. It provides general access to each of the nodes on the
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routing path for the input key. It allows users to invoke arbitrary code at the
nodes on the routing path. Lookup model is another interface which is somewhat
less general. Compare with routing model, lookup model only provides general
access to the destination node for the input key. Correspondingly, code invocation
is only allowed on the endpoint. These two interfaces allow application-specific
code, which is the true power of the two interfaces. Based on the basic interfaces,
developers can generate applications and services with abundant functionality. The
third is storage model, which is far less flexible. It provides the put.key; value/

and get.key/ operations to support storage. This interface does not allow invoking
application-specific code, which limits the applications it supports, but it also makes
the interface simplicity to use and support.

OpenDHT agrees that public facilities provides limited storage. So the data in
OpenDHT has limited lifetime. Moveover, OpenDHT protects the storage from
some attacks. It presents two ways, which are immutable puts and signed puts, to
fight against malicious attacks to data. Among other things, OpenDHT provides
REMOVE function which is handled like regular insertion of keys.

3.1.5 JXTA

JXTA [55] is an open-source P2P platform started by Sun Microsystems in 2001.
It consists of several protocols that enable each connected device on a network to
exchange messages independently of the underlying network topology. The goal
of JXTA is providing services and infrastructure for P2P applications which are
independent from operating system and language.

JXTA has three distinct layers [56]. The lowest layer is platform, which contains
the core and fundamental functionality, such as peer pipes, peer monitoring, peer
groups, etc. The upper one is service, which provides several access to the JXTA
protocols such as searching, file sharing, indexing and so on. Application is the
top layer, which accesses the JXTA network and utilities based on services. XML
documents are widely used to describe services and information available on the
JXTA network because of their popularity and ability to be read easily by many
languages.

There are six protocols which construct the core functionality and standard
services [57], including:

• Peer resolver protocol (PRP) which is a basic communication protocol providing
query/reponse services.

• Endpoint routing protocol (ERP) which provides a set of query messages that
helps peer route messages to the destination.

• Peer discovery protocol (PDP) which helps peers to announce advertisements
and to discover other peers, groups and other information.

• Rendezvous protocol (RVP) provides mechanisms that enable propagation of
messages within a peer group.



28 3 DHT Platforms

• Peer information protocol (PIP) which is used to query status information form
peers.

• Pipe binding protocol (PBP) which builds a pipe or interface between peers for
communicating and routing.

These protocols provide basic functions in P2P network computing. They hide
many details in the lower level. Thus it is much easier to develop applications on
JXTA. Nowadays many applications and services are developed on JXTA.

The routing tragedy of JXTA is a loosely-consistent DHT walker which combines
DHT index and a limited range walker [58]. In this way JXTA can work well both
in the high-churn-rate situation and the steady network environment.

3.1.6 GNUnet

GNUnet [15,59] is a framework for secure P2P networking. Anonymous distributed
file sharing based on reputation is the first service implemented on the networking
layer. GNUnet is written in C language and currently runs on WindowsTM, Linux,
Mac OSTM, BSD and SolarisTM. GNUnet uses Kademlia style routing [60], which
is popular in the implementations of DHT.

The goals of GNUnet are deniability for all participants, distribution of contents
and loads, and efficiency in terms of space and bandwidth [61]. It provides
authentication and protective security against particular attacks in the network layer.
Meanwhile, a file sharing service providing full anonymity is implemented in the
application layer. Every peer in GNUnet inserts content anonymously and claims
ignorance. Content migration is used to prevent the publisher being located. Hence,
the adversary cannot confirm the content publisher unless performing full traffic.
The traffic is protected by encryption and encoding, which achieve the aim that
none of the intermediaries knows the content while the receiver can decrypt it.

In GNUnet, the file is split into several GBlocks. Each block is only 1k. So it
is convenient to migrate file even the file is large. The file may be maintained by
multiple nodes. It avoids the traffic-burst in migration since the load is distributed
to plenty of nodes. The blocks are encrypted, so the content is hidden from the
intermediaries in transmission, even the maintainers if they do not have keys.

GNUnet is able to avoid content from malicious hosts. GNUnet uses a double
hash method for content and query. The first hash value is used as the encryption
key. The second hash value (the hash value of the first one) is used to locate the data.
Since the data transmitted in the network is encrypted, the privacy is preserved from
malicious nodes. Moreover, using hash value as the key solves another challenge. If
two parties insert the same file in the network independently, they will use the same
key (hash values of files are the same). The two versions can replace each other even
they are encrypted.

GNUnet applies indirection mechanism for anonymity. Indirection hides the
source, since it claims that it just indirects the packets. However, this scheme costs
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too much if all the nodes in the transmission path. In GNUnet, indirect queries
are decided by the receivers freely or randomly whether or not to indirect the
reply, which decreases the cost without reducing the security. Furthermore, GNUnet
reduces the influence of malicious nodes as possible as it can. When a new node
joins GNUnet, it is treated as untrusted one that the established nodes reply the new
node’s query only if they have excess bandwidth. The reputation tragedy is used so
that the malicious nodes have little influence. In this way, GNUnet reduces the harm
of malicious nodes greatly.

The significant distinction between GNUnet and other file sharing system like
Gnutella and Napster is that GNUnet gives stronger security guarantees that it is
more resistant to attacks. In 2011, GNUnet was again reachable via IPv6. Now it
fully supports IPv6.

3.1.7 Open Chord

Open Chord [62] is an implementation of the Chord DHT. It provides an interface
for P2P applications for quickly storing and retrieving data from Chord. Open Chord
is written by Java and is distributed under GNU General Public License (GPL),
which allows Open Chord to be used and extended for free.

Open Chord is divided into three layers [63]. The lowest layer is communication
layer that employs communication protocol. The protocol is based on a network
communication protocol such as Java Sockets. On the communication layer, the
communication abstraction layer is implemented. This layer hides the details of the
communication and provides interfaces for synchronous communication between
peers. On top of the communication abstraction layer, a Chord logic network
resides. This layer provides two interfaces to applications for storing, retrieving and
removing data in the Chord DHT synchronously and asynchronously. This layer
implements the properties of Chord DHT described in [6].

Open Chord provides interfaces and APIs so that applications can be easily
implemented when they want to employ Chord DHT. Now the latest version is
Open Chord version 1.0.5, but the manual is still for Open Chord version 1.0.4. This
manual shows some limitations of version 1.0.4, such as prohibition of remote class
loading, changing the communication protocol easily, trust in all the participant of
the DHT and so on. Nevertheless, Open Chord still is a good implementation of
Chord.

3.1.8 Hazelcast

Hazelcast [8] is a clustering and highly scalable data distribution platform for Java,
from which developers can easily design and develop highly scalable and reliable
applications for their businesses.
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In Hazelcast the data is almost evenly distributed across all nodes, which means
each node carries ( 1

n
“total data”) + “backups,” where n is the number of

nodes in the cluster. If a node fails, the data it holds will be dynamically redistributed
to the remaining live nodes by the backup replicas stored on other members.
When a new node joins, it will be responsible for almost ( 1

n
“total data”) +

“backups” to reduce the load on others. In Hazelcast’s data structure all nodes
have equal rights and responsibilities. The distribution of data and organization of
the nodes are based on DHT. So there is no single cluster master that may cause
single point failure.

Hazelcast provides many distributed technologies to support the distributed
data management [64]. It implements the Distributed Queue, Distributed Set,
Distributed List and Distributed Map based on java.util.{Queue, Set,
List, Map}. A distribution mechanism Distributed Topic is provided for publish-
ing messages that are delivered to multiple subscribers. Furthermore, Distributed
Lock is deployed and Distributed Events is used to satisfy the distributed envi-
ronment. Moreover, Hazelcast has other functionality and features which make
Hazelcast manage the distributed data better.

Although Hazelcast is developed by a company, it is a real open source platform,
where the source code can be downloaded at http://code.google.com/p/hazelcast/.
ZooKeeper [65] is another system which provides similar function with Hazelcast,
but instead of Hazelcast’s DHT, ZooKeeper is based on master/slaver model.

3.1.9 i3

i3 [66, 67] is an overlay-based Internet Indirection Infrastructure that offers a
rendezvous-based communication abstraction to provide services like multicast,
anycast and mobility. Every device connecting to i3 infrastructure is associated with
an identifier, which could be used to obtain delivery of the packets. i3 stores the
triggers. When one host wants to send packet to another, the packet will be assigned
an identifier too. i3 would transmit the packet to the proper destination based on the
trigger of the identifier. For example host R inserts a trigger .id; R/ into i3, then all
the packets with identifier id would be received by R.

Multicast, anycast and mobility are three fundamental communication services
that i3 provides. Suppose there is a mobile host with a trigger .id; R/ in i3. When
the host moves from one location to another, it will be assigned a new address
R0. The trigger in i3 is changed from .id; R/ to .id; R0/. So the sender need not
to be aware of the current address or location of the mobile host, instead he only
knows the identifier of the destination. If some packets will be send to a group of
hosts, all the members of the group register triggers with the same identifier. What’s
more, i3 provides another scheme to support anycast. In this case, the identifiers of
receivers share a common prefix p. When the packet with the identifier pja, where
p is the prefix and a is the suffix, is sent to the group, the corresponding receiver
would be chosen by the longest matching prefix rule. Furthermore, i3 supports the

http://code.google.com/p/hazelcast/
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Fig. 3.2 Decomposition of runtime in Overlay Weaver

mechanism of identifier stack, which allows applications to insert some transcoders
in the routing path of packets. This service supported by i3 greatly facilitates many
applications such as watermarking in the video stream, video format conversion.

i3 is an open source implementation of Chord. An instantiation of i3 has been
running on the Planetlab. i3 can be used in many useful applications, such as
connecting to home machines, secure intranet access, middle-box applications. i3
works like a cloud, in which the id-address pairs are stored. The hosts do not need
to take care of the accurate address of the destination. They only assign the identifier
of target to the packets which will be sent, regardless of multicast or unicast, mobile
host or fixed one. i3 hides the details of the implementation to the applications,
which gives us an easy way to use it.

3.1.10 Overlay Weaver

Overlay Weaver [68,69] is an overlay construction toolkit which provides a common
API for higher-level services such as DHT and multicast. Overlay Weaver is an open
source implementation. It currently implements many structured routing algorithms
including Chord [6], Kademlia [33], Koorde [24], Pastry [43] and Tapestry [44], and
also supports unstructured algorithms.

Overlay Weaver is designed in a modular manner, i.e., it can be divided into
several components. Figure 3.2 illustrates the components of Overlay Weaver. The
lowest layer is routing layer, which is corresponding to key-based routing. This
layer has been decomposed into three parts: Messaging Service, Routing Algorithm
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and Routing Driver. Messaging Service deals with communication between hosts.
Routing Algorithm implements many kinds of routing algorithms. Routing Driver
conducts the common routing process and provides uniform interface to the upper
layer. Based on the routing layer, the higher-level services layer is deployed. In addi-
tion to DHT, it provides the Mcast, which performs a multicast on an overlay. This
level supports abstract interface to applications layer, which makes it easy to develop
applications on Overlay Weaver. Furthermore, Overlay Weaver also provides Dis-
tributed Environment Emulator which can emulate tens of thousands of nodes on a
single computer virtually. It brings results of algorithm researches to applications
directly, which gives developers and researchers much more facilitation.

3.1.11 Cassandra

Cassandra [9], originally designed by FacebookTM, is a distributed structured
storage system deployed on a large amount of commodity servers. It provides a
NoSQL database to precess plenty of data and has been employed by many famous
companies like FacebookTM, TwitterTM, DiggTM, CiscoTM, etc. Cassandra is an open
source implementation since 2008. Now it is developed as an Apache [70] top level
project.

Cassandra combines the data model of GoogleTM’s BigTable [71] and distributed
architecture of AmazonTM’s DynamoTM [12]. It is designed to run on large-scale
distributed systems handling very high write throughput and achieving scalability
and availability. Rather than exception it treats failures as the normal situation.
It provides database interface composed of three APIs: insert(table; key; row-
Mutation),get(table; key; columnName), delete(table; key; columnName). It is
so easy to use, but on the contrary the internal implementation of Cassandra is
not an easy job. Cassandra is hoped to process the ability to scale incrementally,
so consistent hashing using order preserving hashing is used. Meanwhile, a token
method is used for scaling the cluster. High availability and durability are achieved
by replication. Cassandra provides several replication policies to meet various
situation and requirements. For failure detection, a modified version of the ˆ

Accrual Failure Detection [72] is used, which introduces a dynamically adjusted
parameter ˆ which reflects network and load conditions.

Cassandra can be treated as a NoSQL database with four prominent charac-
teristics [73]. Firstly, Cassandra is decentralized, where no master exists which
would introduce single point of failure. Secondly, read and write throughput increase
linearly with addition of new nodes. The performance improvement can be realized
without downtime and interruption to applications. Thirdly, multiple replicas of
data in Cassandra exist at any time for fault-tolerant. Node failure can be solved
without downtime. Lastly, Cassandra supports a tunable level of consistency, which
allows users to choose a tradeoff between write and read in different application
scenarios. Cassandra is an outstanding distributed database that achieves high
update throughput with low latency, even it still is perfected by Apache committers
and is contributed by many corporations [74].
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3.2 Commercial Platforms

In this section, we present four commercial DHT platforms, including WebSphere
eXtreme ScaleTM, DynamoTM, SandStoneTM, and Service Routing Layer.

3.2.1 WebSphere eXtreme Scale

WebSphere eXtreme ScaleTM [10] is a proprietary DHT implementation by IBMTM

used for object caching. It performs as a powerful distributed cache system to speed
the access to data.

For improving the performance of computer, engineers add several levels of
cache between memory and CPU. The cache can increase the speed of access data.
This technology can be used in network similarly. WXSTM puts two levels of cache
between data source and users that greatly speeds the access. However, the key
difference between computer and network in caching is that the caching mechanism
in computer is centralized while it is distributed in network. WXSTM organizes the
cache in DHT way. In WXSTM the most fundamental component is the grid. Data
is stored as key-value pairs in the maps. Several maps are contained in the grid. The
map sets can be partitioned into parts which are maintained by multiple containers.
In this way the cached data are organized between plenty of machines.

Figure 3.3 illustrates the outline of high performance access using WXSTM,
where the client is searching proper data. In this procedure, ObjectGrid API firstly
searches the data in the Near cache. If nothing is found in the Near cache, it will
locate the shard in the grid who contains the querying data. Here shard is the instance
of data (or a portion of data split by WXSTM). If the result is still not found, the data
would be loaded from the Back-end datasource. In this scenario the client, Near
cache, shard and datasource resembles CPU, L1 Cache, L2 Cache and main memory
in computer respectively.

WXSTM provides distributed object caching essential for elastic scalability.
Every map set has four or three partitions and each partition has one or two
replicas [75]. The Characteristics of WXSTM are high performance and elastic
scalability, but the performances are greatly influenced by the cache hit rate. So
WXSTM should be deployed with adequate consideration so that the power of
WXSTM would be leveraged sufficiently.

3.2.2 Dynamo

AmazonTM is one of the largest e-commerce operations maintaining a large number
of servers and data centers all over the world. It runs a world-wide e-commerce
platform to millions customers, which has strict requirements to the storage system
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Fig. 3.3 Structure of ObjectGrid of WXSTM

in terms of performance, reliability, efficiency and scalability. DynamoTM [12], a
component of the platform of one of the largest e-commerce corporations which
maintains a large number of servers and data centers all over the world, is a key-
value completely distributed storage system that provides an “always-on” storage
experience, satisfying the customer’s strict requirements to the storage system in
terms of performance, reliability, efficiency and scalability to AmazonTM’s core
applications and services. It provides a DHT-typical simple primary-key only
interface to meet many services on AmazonTM’s platform.

DynamoTM deploys many technologies to solve the problems in large-scale
distributed storage systems and achieve high usability and performance. Firstly,
DynamoTM uses a variant of consistent hash that each node is assigned to multiple
points in the ring, which could balance the load by the number of virtual nodes
that one physical node is responsible. Meanwhile, one piece of data is maintained
by multiple nodes in the form of replicas, which could achieve high availability
and durability. Thirdly, vector clocks are used to provide eventual consistency, and
consistency of read operation is guaranteed by quorum scheme which requires
R C W > N , where N, R, W are the number of replicas, the minimum number
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Fig. 3.4 The architecture of SandStoneTM

of nodes that must participate in a successful read or write operation respectively.
Fourthly, hinted handoff and replica synchronization in which inconsistencies are
detected by Merkle trees are used to handle churn and failures of nodes. In this
manner, DynamoTM is running to support thousands of millions of users and many
demanding services.

During these years, some criticisms about DynamoTM exist, especially
DynamoTM is regarded as “a flawed architecture” [76]. However, DynamoTM is
still running well and provides several core services. Argument and debate are not
always bad things. On the contrary, intense discussion makes people know concept
better, which helps us to perfect applications and services.

3.2.3 SandStone

SandStoneTM [13] is a DHT based key-value storage system developed by
HuaweiTM. The name “SandStone” means that “the enormous sand-like tiny PCs’
capability is united as an invincible cornerstone of distributed infrastructure.”
SandStoneTM is a highly decentralized, loosely coupled architecture with carrier
grade performance. It performs good scalability, strong consistency, high reliability
which can meet or exceed “five nine” high availability standards.

SandStoneTM architecture is depicted in Fig. 3.4. It consists of four components.
The top layer is the data storage module, which takes charge of storage. It is
composed of many functions and submodules to manage the data including data
consistency verification, data storage and data restoring. The middle layer is the
key based routing module, including ID allocation, DHT routing protocol and peer
failure detection. The bottom layer is the communication module, which completes
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Fig. 3.5 The service routing layer’s position in network

the intercommunication between peers and hides the connection details from the
upper layers. The configurations and statistics module manages and configures the
other three layers.

SandStoneTM applies many technologies to increase the performance of the
system. SandStoneTM uses an ID allocation method called “Strip Segmentation”
to let peers carry region indication. To makes good use of region information,
SandStoneTM is composed of a global DHT and several logical region DHTs, which
are used not only to decrease the backbone network overhead, but also to reduce
the latency. Furthermore, besides the finger table in Chord, SandStoneTM makes a
further step to add an extra One-hop Routing Table, which could reduce the latency
further to meet the latency sensitive applications. To achieve high availability
and durability, SandStoneTM replicates data on multiple peers. Unlike DynamoTM

storing replicas successively, SandStoneTM stores them more dispersedly. In order to
keep these replicas consistent, SandStoneTM also modifies the “quorum” technique
to provide optimized eventual consistency.

3.2.4 An Overlay Platform: Service Routing Layer

In the past the network service providers usually offer IP packet delivery service
and other IP-based services. With the growing requirement to multiple multi-
level services, a service routing layer is proposed. It is an overlay platform [77].
Figure 3.5 shows the service routing layer lying on the IP layer. Some edge-
based application and innovation can continue as before. Moreover, enhanced
functionality and services can be offered by the overlay service routing layer. The
overlay is programmable so that new functionality can be produced by combining
a small set of basic defined functions. The service routing layer facilitates the
deployment of new services and applications provided either service providers or
the third parties, which is the goal of its implementation.

This platform by CiscoTM pays more attention to the combination of overlay
layer with physical network. It is designed as a provider-hosted overlay in order to
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provide both overlay based applications and the ones IP layer directly supported.
The routing layer provides a “topological proximity” function to employ some
network layer topology information to the overlay layer. Furthermore, the platform
takes the advantage that service provider has more ability to control the properties
of network into account, so it also makes use of Diffserv to improve the QoS. The
platform implements the relatively complex schemes in the above, and provides a set
of simple functions to the applications, which are distributed hash table, proximity,
caching, streaming support and events. Based on these functions, block functions
can be extended and composed, which could implement a rich set of applications
and features.

In this service provider-hosted platform employs services in DHT way, which
gives services good scalability. A service descriptor mechanism is used to release
services. The descriptors which delegate services are stored and located in the DHT.
Services can be replicated on many places. With this scheme a service shows great
scalability, and the allocated resources of it can be changed dynamically according
to the popularity of the service.

3.3 Conclusion

Recently, many platforms of DHT have been implemented. All of these imple-
mentations provide interfaces to other applications or can be combined with other
projects. In this chapter, we introduce some of the DHT platforms. Each of them
has its unique features and characteristics. These platforms can be classified into
two sets. One focuses on supplying some service itself and can be integrated with
other applications and projects to supply richer services. Such as Bamboo, CoDeeN
and CoralCDN that support caching service, GNUnet for anonymous distributed
file sharing, hazelcast for data distribution, DynamoTM for object caching, Cas-
sandra, DynamoTM and SandStoneTM for data storing. They improve the DHT
for their features like Bamboo for high churn, GNUnet enhancing the security in
communication. These platforms focus on some areas of DHT applications, but
can be infrastructures integrated with other projects to extend services. The other
set emphasizes on providing interfaces to other applications, such as OpenDHT,
JXTA, Open Chord, i3, Overlay Weaver, Service Routing Layer. They do not
care about supplying particular application. The goal of them are providing basic
functionalities to upper applications. The platforms in former set have more
independence that they can provide services without additional components. The
platforms in latter set are more general that they focus on the basic functions for
applications and services developed on them. The characteristics of each platforms
are summarized at Table 3.1.

In the past several years, plenty of platforms of DHT are implemented. Besides
the implementation above, there are still many platforms, such as SharkyPy [78]
which is an implementation of Kademlia DHT, Chimera [79] which is a light-
weight DHT implementation providing similar functionality as Tapestry and Pastry,
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Table 3.1 Comparison of DHT platforms

Platform Type Properties

Bamboo Open source Improving Pasrty; performing well under high levels of
churn

CoDeeN Academic Focusing on the web caching; providing strong privacy
and security

CoealCDN Open source A content distribution network which provides an
intelligentized interface to be used easily; using
hierarchical DSHT which performs better than the
normal DHT at avoiding hot spots and increasing
speed

GNUnet Open source Using Kademlia style routing; providing strong security
Hazelcast Open source A clustering and highly scalable data distribution

platform; good load balance and backup of distributed
data

Cassandra Open source Storage system deployed on plenty of servers; NoSQL
database;

WXS Commercial Distributed object caching; elastic scalability and high
performance

Dynamo Commercial Distributed storage system; suited for large-scale
application; high usability and performance

SandStore Commercial Storage system with carrier grade performance;
improving the performance with many technologies;
considering the telecom underlay network

OpenDHT Open source Simple interfaces to use
JXTA Open source A platform that enables any connected device on a

network to exchange messages independently of the
underlying network topology

Open Chord Open source An implementation of the Chord DHT
i3 Open source Offers a rendezvous-based communication abstraction

based on Chord; provide services like multicast,
anycast, mobility and identifier stack

Overlay Weaver Open source Providing a common API for higher-level services such
as DHT and multicast; designed in a modular way

Service routing layer Commercial A programmable overlay avoiding needless cost and
complexity; combined with traditional IP layer

MaidSafe [80] which is an open source full Kademlia implementation with NAT
traversal, FreePastry [81] which is an open source implementation of Pastry,
JDHT [82] which is a simple Java based Distributed Hash Table, Khashmir [83]
which is a Distributed Hash Table based on Kademila and written in Python,
Mace [84] which is a C++ language extension and source-to-source compiler for
building distributed systems, Dijjer [85] which is free P2P software that dramatically
reduces the bandwidth needed to host large files. AkamaiTM [86, 87] which is a
famous Since so many implementations and plenty of researches based on them are
exists, it gives a great push to the applications of DHT.



Chapter 4
DHT Applications

Like Pythagorean theorem and Newton Law, excellent theories are always simple
and graceful. DHT, which performs so graceful that only two basic operations:
get data from DHT and put data into DHT, is wildly used in many aspects of
applications. In this chapter several DHT applications will be discussed.

DHT forms an infrastructure that can be used to build more complex services,
such as multicast, anycast, distributed file systems, search, storage, content delivery
network, file sharing, and communication. Going beyond the theory and implemen-
tations of DHT introduced in the previous chapters, we will focus on the applications
of DHT in these aspects.

In the following sections, we will elaborate each application scenario, by first
highlighting the motivations and the challenges. Then, we will illustrate how the
problems are solved by DHT, or why the DHT method is suitable to the applications.
For some applications, such as Multicast, DNS, and communication, we provide
concrete examples to illustrate application scenarios. At the end of this chapter, we
will summarize the role of DHT in the various applications.

4.1 Multicast

Multicast is one kind of message delivery that single source node sends a message
in a single transmission to a group of destination nodes simultaneously. It can be
widely used in public content broadcasting, voice and video conference, collabora-
tive environments, games and so on. Compared with IP multicast requiring high cost
to the infrastructure, overlay multicast or application multicast solely built on end-
users can be implemented upon any infrastructures. The overlay multicast protocols
are summarized in [88, 89] , and DHT is one way to meet the requirement.

Multicast is a distributed Internet-scale application. DTH has a property that
each node only maintains partial information but can perceive any information
in the whole system. It allows nodes in a multicast group only to maintain
a little information about the group. Scribe [90], mDHT [91], XScribe [92],
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SplitStream [93] and Bayeux [94] all are the DHT based solutions of multicast.
Here we briefly describe Scribe which is the best known DHT overlay multicast
protocol.

Scribe is a scalable application-level Pastry based multicast infrastructure, which
provides best-effort to deliver multicast messages. Scribe offers four API to its
applications.

• CERATE: create(credentials, groupId)
This function creates a group whose ID is groupId. The credentials are used

for access control, which are provided to authenticate the node.
• JOIN: join(credentials, groupId, messageHandler)

This function helps a node join the group with groupId. All the multicast
messages this group receives are handled by the massageHandler.

• LEAVE: leave(credentials, groupId)
This function causes the local node to leave the group whose ID is groupID.

• MULTICAST: multicast(credentials, groupId, message)
This function broadcasts the message to the group with groupId.

Scribe constructs a multicast tree for each multicast group. When a node wants
to create multicast group, it asks Pastry to route a CREATE message with a unique
groupId. The message is routed to a node whose ID is closest to the groupId, which
we call rendezvous point. The rendezvous point is the root of the multicast tree.
Other nodes in the tree are called forwarders, which may or may not be the number
of the group. Each forwarder maintains a children table for the group. When a node
wants to join the group, it sends a JOIN message with the group’s groupId, which
would be routed toward the rendezvous point of the group. Each node along the
route executes Scribe’s forward method by the following way. If the local node is
a forwarder of the multicast tree of the group, it accepts the node as a child and
adds it to the child table. If not, the local node creates a child table and adds the
source node. Then it sends a JOIN message along the route from the joining node
to the rendezvous point and becomes a forwarder. The original JOIN message is
terminated. Figure 4.1 illustrates the growth of a multicast tree in Scribe. In the
beginning, the nodes in the multicast tree are “1100,” “1101,” “1110” and “0111,”
where “1100” is the root of the tree and the rendezvous point of the relevant group.
When the node “0100” wants to join the group, it sends a JOIN message which is
received by “1001.” “1001” is not a forwarder of the tree, so it creates a child table
for the group and inserts “0100” in it. Then it sends JOIN message to the next one
“1110,” which is already in the tree. “1110” inserts “1001” into its child table. Now
the multicast tree possesses six nodes.

Each nonleaf node sends a heartbeat message to its children. When a child dose
not receive the heartbeat message for a long time, it considers the parent failed and
sends the JOIN message to repair the multicast tree. Particularly the root, which is
the most important node in the tree, has an access control list and identifies the group
creator. If it fails, the multicast tree is destroyed. Scribe replicates the information
about the group on the k closest nodes to the root. The multiple replicas guarantee
the group information still in Scribe when the root fails. If a leaf node leaves, it dose
not influence other nodes.
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Fig. 4.1 The growth of a multicast tree in Scribe

When multicast sources disseminate messages to a group, it uses Pastry to locate
the rendezvous point of the group. Then the root of the multicast tree of this
group disseminates the messages along the tree. In this way, multicast messages are
disseminated to the certain nodes. The randomization properties of Pastry ensure
the balance of Scribe so that Scribe works well.

Multicast is the key technology of the streaming media application [95] where
media data is constantly received by multiple nodes and is presented without
downloading the whole media files. So the systems like SplitStream [93] construct
multiple multicast trees on the DHT overlay to deliver the streaming packets.

4.2 Anycast

Anycast delivers the packets to the best node within a group according to different
metrics such as latency, throughput, bandwidth and so on. Anycast can be used
widely by many applications such as DNS and server automatic selection. The
property of anycast that choosing the best target in a group automatically and
transparently meets the requirement of CDN (Content Delivery Network) so well
that it may be directly used in CDN. Like multicast, IP anycast is not supported
well by the existed routers. Firstly, the upper protocols such as TCP cannot take
advantage of it, because the packets from the same source node may be routed to
the different destinations. Secondly, anycast is limited by the scalability that global
anycast application may lead to huge and unmanageable routing tables. Thirdly, the
IP anycast requires the support of routers.

Overlay anycast is the one way to solve the problem. Many overlay anycast
architectures [96–99] employ proxies to manage the anycast group and record
information about the hosts. So when an anycast request comes, the proxies choose
the best target. Here many proxies existing in the network and much information
should be stored and updated, so DHT may be used. Proxima [97] is a network
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coordinate based infrastructure providing lightweight and flexible anycast service.
It deploys a DHT overlay which stores the synthetic coordinates of the hosts in
Internet. When a client proposes an anycast request to a group of servers, it firstly
gets the coordinates of servers from DHT. Then the RTT (Round-trip Time) can be
calculated so that the nearest server could be selected. ChunkCast [100] is another
solution. It focuses on the download from CDN where each object is partitioned
into plenty of chunks. It builds a distributed directory tree for each object on top of
Bamboo. All the chunks of the object represented by the bit vectors are published on
the tree. The chunk lookup could be treated as an anycast message to the publishers
of the object. Through the tree the nearest adequate publisher could be selected.
Furthermore, if a better publisher hangs on the tree, the download requirement
switches to the new peer.

Anycast is a key operation in many network scenarios, and IPv6 plans to support
anycast directly [101]. However, it is not carried out yet so far, because of the
non-uniform protocol standard. Meanwhile, both anycast of IP layer and anycast
of overlay have their own strong points and defects, such as IP anycast is more
efficient and overlay anycast is more flexible. Therefore, the DHT based anycast
application is still worth exploiting in the era of IPv6.

4.3 DNS

The domain name system (DNS) is a naming system which translates domain
names that are meaningful to humans into the IP addresses that are the numerical
identifiers of computers in Internet. The unique IP identifiers are the foundation of
the communications in Internet. Locating the host and selecting the route path all
rely on the IP address. So DNS which provides the function of IP address lookup
constitutes a critical component of Internet infrastructure. It is used extremely
frequently everyday.

Currently DNS is a hierarchical system organized in a tree structure. A large
distributed database stored the tuples of IP and domain name is maintained by the
DNS servers all over the world. However, the tree structure has inherent limitations.
The root of the tree is the bottleneck of the system. If it fails or the connections to
the children are dropped, it would have great influence. Furthermore, the path of
query is definite that the next hop is the father if the query is not matched locally, so
DoS attack, which is the foremost problem with DNS, would be launched to disable
the system easily. With its distributivity and safety needs, the DHT-style DNS is
naturally proposed. The DHT-style DNS is a flat structure that all the nodes have
the same weight and right. Every node has different next hop, so the DoS attack has
much less influence. Moreover, DHT also provides efficient routing scheme which
meets the requirement of quick response of DNS. Therefore, the DHT based DNS
is another exciting application.

The cooperative domain name system (CoDoNS) [102] is a DHT based name
service, providing high lookup performance, good load balance and fast propagation
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Fig. 4.2 Proactive caching in
beehive

of updates. CoDoNS is built on Beehive [103], which is a proactive replication
system that decreases the lookup hops to O.1/ in prefix-matching DHT like Pastry
and Tapestry. Figure 4.2 illustrates the proactive caching of Beehive enhancing of
prefix-digits like Pastry. Node Q queries an object with ID 2215. The first hop
is A with ID 2011, then A transmits the query to B.2211/. At last B reroutes
it to C.2214/ where the object 2215 is stored. There are three hops in classical
Pastry. With proactive caching of Beehive, 2215 is cached among other nodes by
the scheme that level i caching scheme ensures that the object can be located in i
hops. Thus in Fig. 4.2, if L2 caching scheme is employed, all the nodes in L2 region
cache replicas of the data. The path of the query would be decreased to 2 hops. If
L1 is used, the query only need to be routed at 1 hop. The proactive replication
reduces the hop number of query greatly which accelerates the response of DNS
request. More outstanding ability of CoDoNS is defending the DoS attacks, that
the excess query will be solved by increasing the number of replicas to spread the
load. This is incompatible with the tree-style DNS architecture. Some works [104]
had compared the two structures of DNS and evaluated the performance of the tree
structure overwhelms the DHT except defending the attacks. But it only analyzes
the basic DHT rather than some special DHT-style DNS such as CoDoNS.

DHT meets many requirements of DNS such as distribution, caching, replicas,
and the put/get operations are suited to DNS. Moreover, nowadays the most serious
threat to DNS system is attacks like DoS. So DHT would be a good choice to next
generation name service of Internet.
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4.4 Search

Search is one of the most important application nowadays. All of the searching
corporations including GoogleTM, BingTM, Yahoo!TM, BaiduTM, and so on, have
great influence to the Internet, even to the whole human society. Everyday hundreds
of billions of search queries are launched. However these centralized search engines
only cover a part of data of the whole Internet. Even GoogleTM, the largest and best
search engine in the world, only indexes about 1=10 of the total number of the Web
pages. Furthermore, it does not include the deep Web pages, the number of which is
much more than surface Web’s (2008) [105].

In the recent years another type of search engine or technology enters our sight
view. Compared with the traditional search engine, the distributed search engine
consists of plenty of peers, which could be clients and servers at the same time. In
the distributed search engine there is no center servers, where all the users are equal.
The distributed search engine collects the power of the peers all over the world.
The more peers are running in the network, the more powerful a distributed search
engine is. Even if hundreds of millions of computers work as the distributed search
engine peers, the engine would have more capability than the largest traditional
search engine. From this point of view, the distributed search engine has infinite
processing ability, unlimited storage space and very high bandwidth to solve all
kinds of search queries form billions of users, which is much stronger than any
centralized engine.

In the distributed searching, how to store and manage the huge distributed index
database is the key challenge. DHT is one of the way to solve it. Every node
maintains a part of the index database by the DHT allotment. The query and
the index updating information would be routed to the exact node who maintains
the related key. In this way the database and the queries are dispersed to all the
nodes in the network. Furthermore, the DHT distributes the network load and query
processing server, which could enhance the ability protecting from DoS attacks.
Some distributed searching engines based on DHT are exploited. The following two
engines are the most representative applications.

4.4.1 YaCy

YaCyTM [106] is a distributed open source search engine which is based on DHT.
It is written by Java and supports WindowsTM, Linux and Mac OSTM. The latest
version is YaCyTM 1:4 (May 2013). If a user wants to use YaCyTM, firstly she installs
a YaCyTM appliance. YaCyTM comprises web crawler, indexer, index library, user
interface and a P2P network. The crawler harvests the web pages, which are the
input of the indexer. The indexer indexes the pages and put them into the index
library locally, which uses inverted index [107]. Then they will be merged into a
global search index library which is an integrated NoSQL database shared for the
YaCyTM network. When user queries an object, the result would be fetched from the
global database.
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YaCyTM provides search API, which easily integrates YaCyTM into other pro-
gramming environments such as PHP or Perl. In the distributed search environment,
YaCyTM can provide superior privacy protection because the distributed architecture
lead to no search logs and monitoring of search queries. The core concept of
YaCyTM is free, so YaCyTM search means that information should be free access for
everyone, and YaCyTM itself is a GPL-licensed free engine. There are also several
P2P search engines, such as Solandra [108] which is a real-time distributed search
engine combined with Cassandra and Lucene [107], Elastic Search [109] which is
built for the cloud and so on.

4.4.2 FAROO

FAROOTM [110] is a commercial P2P search engine, which is the largest decentral-
ized search engine that it has had more than 2.5 million peers as of May 2013.

FAROOTM claims that it is the fastest P2P search engine with a mean response
Time below one second, and it has more efficient index than any other P2P web
search engines. Meanwhile, FAROOTM supports multilingual search so that people
all over the world could use it. FAROOTM search architecture contains a distributed
index and distributed crawlers, which are driven by users themselves. The capability
of search engines depends on the power of crawlers. With the Internet growth,
FAROOTM search scale grows, and the distributed crawlers are more powerful.
There are four application fields for FAROOTM crawling. The first one is the
attention based ranking. The ranking of the search results are voted by the visiting
web pages, which is not so different from Page Rank. The second one is real-time
search, from which users can find the results in the past month, past week, past day,
even past hour that is too soon. The next one is indexing the deep web. Many web
pages are crested on demand from databases which do not have incoming links. If
crawlers want to crawl them, the engines must do more additional work. So these
pages cannot be crawled by normal search crawlers. On the contrary, the capability
of P2P search engines depends on the scale of network, which could be considered
to be boundless. So FAROOTM may do this work more easily than the normal search
engines. The last one is personalization and behavioural targeted online advertising.
This technology is based on click streams identified from network traffic, but got
some buzz in the test by PhormTM [111].

FAROOTM protects the privacy in two ways. One is by the architecture that it
is hard to trace a user in the distributed environment. The other is encryption, i.e.
all the queries are encrypted. FAROOTM can be employed on multiple platforms
such as PC, tablet, etc. The user interface of FAROOTM is a web page like the
normal search engine, and it is supported by most of the browsers, such as Internet
ExplorerTM, FirefoxTM, OperaTM, SafariTM, MozillaTM and ChromeTM. However it
is not mentioned about Linux, maybe there will be a version of FAROOTM for Linux
users in the future.
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Distributed search engine is a promising development. It provides more powerful
processing ability, larger storage space, etc. It has higher scalability, more fault-
tolerant and lower resource cost than traditional engine. Searching the whole
Internet is a magnificent project, maybe uniting all the users on Internet is a more
accordant way.

4.5 Storage

Nowadays more and more devices like cellular phones, televisions, even cars are
capable of connecting to Internet. So storing personal data on the network to
facilitate a variety of devices and to enhance the storage capability of them. An
Internet-based storage system with strong persistence, high availability, scalability
and security is required. Obviously the centralized methods is not a good way
because it is lack of scalability and has the single point of failure problem. If the
center fails, all the owners lose the capability to access their data which may cause
inestimable losses. Besides, it is impossible to store all the data on one machine,
though it is facility to management. Even in the cloud computing center which
provides online storage functionality the data is distributed to tens of thousands
of machines in a distributed way. Therefore, a distributed storage system seems to
be a good choice to manage the gigantic storage.

How to organize so many kinds of data efficiently is the first hit. DHT with
its wonderful structure is suitable to the distributed environment. DHT provides a
high efficient data management scheme that each node in the system is responsible
to a part of the data. It supports exact and quick routing algorithm to ensure
users retrieving their data accurately and timely. Furthermore, replication and
backup, fault-tolerant and data recovery, persistent access and update which are
concerned in the storage area are not difficult to DHT. Recently many researches
and systems [9, 112–115] are proposed to the development the DHT based storage.
OceanStore [112] and PAST [113] are two famous solutions to the worldwide
distributed storage.

4.5.1 OceanStore

OceanStore [112] is designed to provide global-scale persistent storage and con-
tinuous access to the information. Each object has a globally unique identifier
(GUID), which is generated by the secure hash. OceanStore supports two types of
data access control which are reader restriction and writer restriction. The former
prevents unauthorized reads by encrypting all data in the system. The latter prevents
unauthorized writes by signing all the write operations. For high availability and
reliability, every object has multiple replicas dispersed in the network. However, the
basic replicating scheme is sensitive because each object has a single root which
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is vulnerable to the single point of failure. OceanStore improves the scheme that
it hashes each GUID with different salt values. Thus the results will be mapped to
several root. Of course this modification will complicate the update of object. When
one object is modified, all the replicas should be updated.

OceanStore also provides two routing mechanisms. First, a fast, probabilistic
algorithm is used to find the target. The routing process is based on an attenuated
Bloom filter that each node maintains a routing table consisting of Bloom filter
vectors. The i th vectors merges all the Bloom filters of n-hop nodes. If it fails, a
slower, deterministic algorithm will start.

DHT plays an important role in OceanStore, where all the GUID are mapped
into the system in DHT manner. Each node maintains only a part of data and the
roots of data are established by the Tapestry algorithm. Meanwhile, the deterministic
algorithm also uses Tapestry, which enables the routing to be highly efficient. With
Tapestry the target will be found within O.log n/ hops, where n is the number of
the nodes in the system.

4.5.2 PAST

PAST [113, 116] is an Internet-based, P2P global storage system, which is based
on Pastry. It aims to provide strong persistence, high scalability, availability and
security. Although Pastry already provides the functionality of data storage, PAST
focuses on storage with much more consideration.

In PAST the length of node ID (nodeId) is 128 bits, and the length of file ID
(fileId) is 160 bits. PAST exports three operations to its clients:

• fileId D Insert(name, owner-credentials, k, file)
This function allows clients to store a file on k nodes in the network. The

operation produces a fileId which is computed by the file name, the owner’s
public key and a randomly chosen salt.

• file D Lookup(fileId)
This function helps node to retrieve a copy of the file with fileId if it exists in

PAST.
• Reclaim(fileId, owner-credentials)

This function reclaims the storage with fileId in PAST. Once this function is
invoked, PAST no longer guarantees the file with fileId.

Smartcards are used to enhance the functionality of data storage in PAST. Quota
management and security are two main issues. Each node in PAST has a limit of
storage space. When node A receives an insert request and there is no enough space
to store the file, file diversion is performed to achieve more global load balancing
and storage capability of PAST. Node A chooses a node B in its leaf set which
is not among the k closest nodes. Here “leaf set” is also called namespace set in
Pastry, which are numerically closest to node A. A asks B to store the file and itself
maintains a pointer to node B . In this way, A has diverted a copy to B .
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Security is another important design consideration in PAST. PAST uses smart-
card’s public key to generate the node IDs, store files, and manage access to files.
When a client tends to insert a file into PAST system, it first generates a file
certificate and then routes the certificate with the file to the destinations. The file
certificate allows each storing node to verify the authorization of the client and the
file. When the client wants to reclaim the file, it generates a reclaim certificate with
smartcard and sends it to the file storing nodes. With the reclaim certificate, the
authentication of client can be verified.

Recently cloud storage is a hot topic, which studies online storage models where
the data is originally stored on storage vendors rather than on host locally. Usually
it is in the form of large-data seemingly centralized centers. In fact, all the data are
stored in a distributed fashion on thousands of servers of data centers, though many
of them are located in a same location. Some of the cloud storage solutions such as
Cassandra [9, 117] choose DHT as the data distribution scheme. Hence, DHT is a
promising technique that can be utilized in the cloud computing in many aspects.

4.6 CDN

Content delivery network (CDN) is a system that contains copies of data on various
nodes. It improves the performance of access by caching the original servers. On the
one hand, the caching scheme disperses the load to multiple replicate servers, which
increases the access bandwidth. On the other hand, the request of user is routed to
the nearest caching server, which reduces the latency of access. The traditional CDN
copies the data from the original server to the multiple edge CDN servers. Nowadays
there is a huge amount of data in Internet. It takes too much storage space to generate
several mirrors of original servers. P2P CDNs based on DHT are proposed to lower
the cost and higher the efficiency. In DHT based CDN, the replicas are organized by
DHT technology. The data can be replicated dynamically. Figure 4.3 illustrates the
deployment of DHT based CDN. A DHT network lies between server and clients.
For example, when the data is requested, it is checked whether the data exists in the
CDN by the DHT algorithm. If not, the relative CDN server firstly replicates the data
from the original server. According to the number of requests, the replicas propagate
reversely along the routing path with a timer. Once the data is requested again, the
query stops at the first CDN server containing the relevant data and the timer on
the server is reset. Thus the latency is reduced by shortening the path. If the timer
expires, the data will be deleted from the caching server, which saves storage space
for other more desired data. The more people require the data, the more replicas of
it exist in the network. In this way the hot data has many copies in the network, and
the response time is short, while the unpopular data has little copies in order to save
the storage space and update bandwidth.

DHT based CDN optimizes the tradeoff of performance and cost. It provides
the similar performance to the traditional CDN but costs much lower. Many
DHT based CDNs have been exploited such as Bamboo [11], CodeeN [14],
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Fig. 4.3 The architecture of DHT based CDN

CoralCDN [7]. Because CDN is a kind of application that always is combined with
other applications and for each of them is a platform of DHT implementation. Thus
the detail of the introduction is shown in Sect. 3.1.

4.7 File Sharing

File sharing is a service providing access to the files and data stored in Internet. Here
we discuss the global-scale file sharing application that files can be shared with the
users all over the world. Users can find and download files in any corner of the world.
By file sharing service of Internet, a lot of digital information such as multimedia
documents, electronic books, software can be spread quickly and efficiently.

The first type of file sharing model is the traditional server system, where all the
files are stored at servers, and users connect directly to the servers to fetch data.
The most famous application is FTP service, which is still popular and used widely
in nowadays. This completely centralized method that all the data aggregating at
few nodes in the network has its own advantages. Firstly, the servers of files play
too important roles in the file sharing. If the server fails, all the files on it would
not be fetched. Besides, too much load and responsibility fall on servers’ shoulders.
Every server must maintain a large number of files, and tens of thousands of clients
require files from one server at the same time. Moreover, it lacks of scalability that
DoS attack is fatal to the servers. Therefore, dispersing the burden of servers is
the key technologies of the file sharing. Then contents centralized directory P2P
network comes out, the delegate of which is Napster [118], where the server stores
the file indices rather than files themselves. The clients find out the file owners by
the indices, and get the content from other peers. This technology that transmits the
download burden from servers to peers takes significant progress, but the central
index server still is the core and vulnerable point of the file sharing system. So
Bittorrent introduces tracker servers, each of which maintains the lists of peers to
distribute the key information.
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However, this design arises some issues. For example, if you cannot connect
to any tracker, you will be an isolated island in the Bittorrent network that hardly
fetches any data. Fortunately, DHT completely overcomes the following three
disadvantages of the server model. First of all, there is no server node. All the nodes
in DHT network are equal. The failing of one or several nodes does not influence
file sharing. When one node fails, other nodes will take change of the information
it maintains. Secondly, the load is distributed to all the nodes. No one has too
much load and responsibility. The network will be repaired quickly when some
nodes fail. Thirdly, DHT is good at working in large-scale distributed systems. It
endows the system with high scalability. The nodes can join and leave dynamically.
So DHT is introduced into the file sharing systems, like DHT of Bittorrent that
provides connection when the trackers fail, KAD of eMule where all the nodes
are both clients and servers. DHT completely distributes the key information of
the file sharing system. In DHT the server is not needed anymore. Each of the
peers in the network is responsible for a part of file information. In the file sharing
systems, Kademlia based DHT is the most popular DHT structure. Overnet [34],
Bittorrent [36, 37], eDonkey, eMule [35] and the inheritances of them all develop
their DHT networks based on Kademlia.

Another famous file sharing network is Freenet. Freenet at first is a distributed
information storage system [119]. Now it is free software which lets users anony-
mously share files, browse an publish sites without censorship [120]. Compared with
mainstream DHT file sharing networks like Bittorrent and eMule, Freenet aspires to
share files without any auditing or tracking. Freenet is one of the earliest implements
of DHT, the white paper of which was written in 1999 [121]. Until now the Freenet
software has been downloaded more the two million times.

There are five design goals of Freenet, which are anonymity for both producers
and consumers of information, deniability for stores of information, resistance
to third parties’ attempts to deny address to information, efficient dynamic stor-
age/routing of information and decentralization of network function [122]. The last
two aims could be solved by the DHT features, which also are the properties of
other distributed softwares and platforms. Whereas the first three aims are extremely
concerned about by Freenet. In Freenet, the privacy protection exists in every aspects
of Freenet.

Freenet uses an unstructured architecture, files and nodes in Freenet have globally
unique identifiers (GUIDs). In Freenet, there are two kinds of GUID keys. One
is content-hash keys (CHK), which is generated by hashing the contents of the
file stored in the network. Another is signed-subspace key (SSK), which sets up
a personal namespace where anyone can read but only the owner can write. The
SSK of a file is generated by the personal public-private key pair. Firstly user
should summarize the file in a short description. Then she hashes the public key
and the descriptive string independently. Thirdly, the two results are concatenated
and hashed again. Lastly, the private key is used to sign the file providing an integrity
check. In this way, if a user wants to retrieve a file from a subspace, she only needs
the public key of the subspace and the description, from which the SSK could be
recreated. However, if the user wants to update the file, the private key is required
to generate a valid signature.
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In the routing procedure every node forwards the message to the node closest
to the target, and the routing is trained by the request processing. Freenet also tries
its best to protect the privacy in this procedure. Massages are propagated through
node-to-node chains. Every node on the chain only knows the predecessor and the
successor, even dose not know the message’s originator and the endpoint of the
chain. Each link between two nodes is individually encrypted, so the routers do not
know any other information about the packets except the neighbors. Furthermore,
Freenet adds some mix-net route before normal routing to enhance security so that
the path of the messages are monitored more hard. However, the high-level security
brings some impact to the efficient of routing. Some improvements were proposed
to solve this problem, maybe the small world theory is the most attractive way and
several researches focus on it [123, 124].

More recently “darknet” [125, 126] as an important development of Freenet,
enhances the security and privity of users for Freenet. It allows users only to connect
to their friends, thus greatly reduce the vulnerability. At the mean time, users can
still connect to any other peers of the network through their friends’ connections,
which makes it very difficult to block Freenet, which constructs a real “free world.”

4.8 Communication

The communication system is a network that can connect remote people, such as
telephone system, postal system. Here we focus on the communication based on
Internet, which is mainly composed of Instant Messaging (IM) and Voice over IP
(VoIP). IM connects two or more people by real-time text-based communication.
The classical delegates are MSNTM, QQTM. VoIP is the same as IM, except that the
form of communicating information is voice rather than text. In this area SkypeTM is
the leader. Nowadays the two services are often intertwined in the same application
software, which users can chat through MSNTM and QQTM, and also can send text
information by SkypeTM.

Recently the majority of IM and VoIP systems are centralized, a user agent
installed on the client’s machine connects to a central server. All the information
such as buddy list, state of online or outline, is stored on the server, even the
communication messages between two clients are transmitted by the central server.
Like all the centralized application, the central server is the bottleneck and weak
point. Furthermore, some scenarios, such as prohibiting contacting an outside server
and ephemeral groups, also requires no central server communication system.

In the distributed communication system, DHT plays an important role that has
been used in the commercial system. SkypeTM, which is one of the most famous
applications in VoIP and IM areas, employs DHT in its network. In the following
we will introduce the distributed architecture of SkypeTM.

SkypeTM is composed of the ordinary hosts, the super nodes and the login
server [127]. The login server is the only centralized component in SkypeTM

network. It is in charge of the usernames and passwords about SkypeTM users.
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Fig. 4.4 The architecture of SkypeTM network. It is composed of the login server, the ordinary
hosts and the super nodes

All the users must connect to the login server for authentication in the login phase.
The ordinary hosts are the machines or devices that can run SkypeTM application.
Tens of millions of hosts are widely distributed in the world. They possess different
capabilities of CPU, memory, storage and bandwidth. Some of the hosts with public
IP addresses and strong capability are chosen as the super nodes. Each super node
manages a group of ordinary hosts. The super nodes compose the backbone of
SkypeTM network. Almost all the information is transmitted in the super node
network, except the first hop (from source host to the super node in charge of the
source) and the last hop (from super node to the destination). Figure 4.4 shows these
three entities in the SkypeTM network. The architecture of SkypeTM is a hierarchical
network, where a group of ordinary hosts and a super node construct a small-scale
centralized network, and the super nodes make up a distributed network.

Except the login information, all of other data is stored distributedly in the super
node network. With its private Global Index (GI) technology, the hosts can search
for users accurately and efficiently. We are not sure about the relationship of GI and
DHT, but obversely DHT can be used to store and retrieve data in the distributed
environment. In SOSIMPLE [128] DHT has been used for lookups. Meanwhile,
since each super node maintains a group of ordinary hosts, in DHT the division of
host groups can be determined by the IDs. In other words, the group can be shaped
by the relationship of nodes’ IDs in DHT, e.g. the precursor-successor relationship
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is formed according to the distance between the super node and the host. DHT
provides high scalability and can work with churning, so it is easy to solve the
problem of the group member’s change.

DHT also can be used to interconnecting the different IM networks.
CrossTalk [129] constructs a public gateway DHT network to store the presence and
name to gateway mappings. Each IM network has gateways which are responsible
to the information format conversion. Users will announce their status in the DHT
and get the foreign buddies from it. When two users in different IM systems talk
to each other, the sponsor will locates the gateway of the recipient in DHT. Hence,
DHT fulfills itself as a distributed storage and data location network.

IM and VoIP in essential are communication among end points. In this aspect
it does not need the participation of the servers. Therefore, besides using DHT’s
storage capability, the communication may also be the DHT style without the central
server, which is more direct and suitable to meet the end-to-end requirement.

4.9 Conclusion

As discussed above, DHT can be applied in many aspects to improve the per-
formance of communication networks. Table 4.1 summarizes the applications
DHT has been developed in. Multicast usually needs to build a multicast tree
structure to propagate information. Compared with the regular Internet routing
algorithms, which build the routing table by the local information, routers of DHT
know the architecture naturally, without broadcasting to perceiving the network as
Distance Vector algorithm and Link State algorithm. When the destination address is
determined, every router knows the next hop. Each hop makes the message closer to
the target. Therefore, if the root of the multicast tree is determined, the tree could be
constructed based on the DHT routing scheme. DHT also can be used in anycast
applications. Some projects [97] employ the scalability of storage and accuracy
of data location of DHT to store the information about the servers, some [100]
construct the directory tree for each object. The DHT routing algorithms ensure
that the next hop is closer to the target so that all the path will be aggregated at
the root of the tree. The data is stored along the routing path. When a query is
transmitted to the node of the tree, the nearest adequate publisher could be selected.
For DNS, DHT provides another flat structure solution, where all the DNS servers
are equal. So it can conquer the root bottleneck of the classical tree structure. In the
searching area, DHT could be used to build the distributed search engine. The index
database is distributively stored on the nodes in the network. Each node maintains
a part of the database allotted by DHT. Meanwhile, the search queries are also
dispersed to the whole network. DHT combines all the nodes in the network to
construct a powerful search engine, which could be stronger and stronger with the
increment of the users. In storage area, the distributed network storage system could
develop the allotment strategy by DHT. With the DHT’s help the distributed storage
system could be organized by itself. Every node knows the data it should maintain
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Table 4.1 Comparison of DHT applications

The mainly used properties of
Application DHT Advantages by introducing DHT

Multicast The route table is determined by
DHT algorithms, not by
broadcasting. Each hop makes
the message closer to the target

Easy to build a multicast tree

Anycast Distributed storage and efficient
accurate data location; Each
hop makes the message closer
to the target

High storage scalability and rapid
position; Easy to build a
directory tree

DNS The equality of DHT nodes Conquer the bottleneck of root of
tree structure and the
vulnerability for DoS

Search Distributed storage and efficient
accurate data location

Enhance the scalability and ability
of engine

Storage Distributed storage and efficient
accurate data location

High storage scalability; Prevent
the single point of failure

CDN Distributed storage and efficient
accurate data location

Save the storage space

File sharing Distributed storage and efficient
accurate data location

High storage scalability; Prevent
the single point of failure

Communication Distributed storage; The
determined network structure

Prevent the single point of failure;
Improve the performance of
long distance communication

naturally, without any announcement of the third party. For file sharing, DHT plays
the similar role as what in the storage. DHT allocates each node a part of data to
maintain. The routing path could be ensured only by knowing the target’s ID. For
communication, DHT provides the interfaces that most of the information of the
users is stored in the distributed way, and provides a distributed way to construct the
network architecture, which has shown the advantages especially in cross-border
long distance communication.

From the analysis above, DHT applications have two properties. One is dis-
tributivity. DHT owns an allotting scheme that distributes the data to the nodes
in a distributed environment. All the nodes in the system can work together
harmoniously. Without the assignment of the central server, every node knows
which part of data it should maintain. The location of data and the routing path
are determined only by the ID. Because of the clarity of the DHT network structure,
the routing table is predictable without broadcasting. This ability of well organizing
resources and nodes makes DHT suitable for the distributed applications. The other
is large scale. DHT provides high scalable storage and efficient routing algorithms,
which are sufficient to meet the request of the global-scale applications. In a
distributed system with tens of thousands of nodes, the failing of nodes is normal
state. DHT has efficient ways to solve this problem. In the churning environment
DHT performs well.
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Except the applications above, there are also many other aspects DHT can play
an important role, such as network games [130], device-tracking [131, 132], etc.
Resource sharing is a basic service of DHT. Nowadays the data sharing system based
on DHT has been applied widely. The application of data sharing is so mature that
music, movies, books and many kinds of multimedia resources are shared globally.
Currently another important resource called computing resource becomes popular.
Computing resource also is a valuable resource [133] that has a huge commercial
market. Cloud computing is the most striking one that sells computing resources
to renters. Cloud computing in this phase shows in the form of centralization,
which limits the scale of it. Distributed computing and Peer-to-Peer computing have
appeared for a long time, some projects such as SETI@home [134] have shown
the unparalleled power of the distributed computing. However, SETI@home also
needs a central server to segment the task which is a very heavy work. Clients do
not communicate to each other. If someday DHT is used in the computing, and
the computing develops to a pure distributed style, the computing power may be
enhanced to a novel stage.



Chapter 5
Summary

In the above chapters, we summarize the theory, platforms and applications of
DHT. In theory, there are plenty of variants of DHT, which provide many choices
for constructing DHT-based platforms and applications. Meanwhile, a number of
platforms of DHT have been built for several years, both in academic area and
commercial area. These platforms provide an efficient way to construct applications.
The direct reason of prosperity of theory and platforms is the wide range of uses of
DHT. On the one hand, from the summary in the above chapters, DHT is widely
used in many aspects, which motivates the research for DHT. On the other hand,
there are lots of studies contributed on DHT, which is convenient for developing the
applications. All in all, DHT is a promising technology and has much influence on
the development of networks.

However, DHT also has its limitations. First of all, DHT is not good at calculating
global statistics. In C/S model, the server knows the global states of the system,
so it is easy to get global information about the system. For example, if a user
wants to know the number of users, it is easy to get the information from server.
On the contrary, in DHT-based systems there is no central node. Each node only
knows a portion of information. When a global statistic is required, all the nodes (or
multiple nodes) in the system have to join in the process of calculation, which has
additional communication cost and delay. Meanwhile, during the process, the state
of the node in the system may change over time, e.g., new node’s joining, node’s
leaving or failing, which makes the result hard to represent the real-time status of
system accurately. Thus in this system, the solution for commuting global statistics
navigates a tradeoff among accuracy, cost, performance and robustness [135].
Normally three kinds of methods are used in aggregation [136], namely, gossip-
based method [137], tree-based method [138] and mixture method [139]. However,
due to the lack of central node in DHT-based distribution system, it is not as
convenient as centralized model to calculate the global aggregate statistics.

Moreover, complex searches are not suitable for DHT-based applications. In
search area, for exact match, there is no problem for DHT. However, complex
searches, including range search and substring search, are invalid in DHT. Due to the
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Fig. 5.1 The range search tree in CANDy

hash mapping, DHT changes the properties of the original resources. The resources
with little difference are mapped to quite different values. Plenty of research work
has been contributed in this area. For example, in [140] substring searches are
realized by the exact-match facility of hash. The original string and query string are
split into several n-length substrings, so the exact string match can be used directly
by matching the n-length substrings. Here the typical n is 2 or 3. For example, the
filename of a file with ID I is “Mona Lisa,” which could be split into seven trigrams:
Mon, ona, na%, a%L, %Li, Lis, isa (“%” represents the space character). For each
3-gram gi , the pair .gi ; I / is inserted into the hash index, keyed by gi . When a
substring query is required (e.g. “Mona Li”), it also be split into 3-length substrings
to search. This scheme indeed solves the problem of substring search, but it costs too
much. For the range search, “range search tree” is a popular method [141], which
uses the tree structure to organize the data. Figure 5.1 is an example about range
search in CANDy [141]. The value space V D f0; 1; 2; � � � ; 7g, which is stored
in a 4-level tree. The leaves of the tree comprise the individual values. The parent
contains the values of its children. In this case, the first leaf N1 from the left has
the value 0, and its parent N8 covers the subrange from 0 to 1. The root of the
tree covers the full value space V . When a range request f1; 2; � � � ; 6g comes, four
subqueries are generated: the first for 1 from the node N1, the second for Œ2; 3� from
N9, the third for Œ4; 5� from N10 and the fourth for 6 from N6. Although there are
plenty of researches in this area [142–144], all of them incur high storage cost or
computational complexity. The property of hash function makes that the complex
search is a difficult issue.

Last but not the least, security is another concerned issue in DHT-based research.
In C/S model, the server knows the global information of the system, and is the most
important node, which is more trustable than the clients. In DHT environment each
node only knows a small subset of other nodes, and all the nodes are traded the same.
This property makes it difficult to prevent malicious nodes from joining the system.
The most studied DHT attacks in the literature are Sybil attack, Eclipse attack and



5 Summary 59

routing/storage attacks [145]. All of them are based on lack of authentification. A
node is not able to judge others to be honest or not, which makes the security scheme
in DHT-based applications is much more difficult than C/S based applications, or
other applications that have nodes playing the dominant role.
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