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Preface 

When I was a graduate s tudent in applied mathematics at the Cali

fornia Inst i tute of Technology, we solved many differential equations (both 

ordinary differential equations and part ial differential equations). Given a 

differential equation to solve, I would think of all the techniques I knew 

tha t might solve tha t equation. Eventually the number of techniques I 

knew became so large tha t I began to forget some. 

Then I would have to consult books on differential equations to famil

iarize myself with a technique tha t I only vaguely remembered. This was a 

slow process and often unrewarding; I might spend twenty minutes reading 

about a technique only to realize tha t it did not apply to the equation I 

was trying to solve. 

Eventually I created a list of the different techniques tha t I knew. 

Each technique had a brief description of how the method was used and 

to what types of equations it applied. As I learned more techniques they 

were added to the list. This book is a direct outgrowth of tha t list. 

At Caltech we were taught the usefulness of approximate analytic 

solutions and the necessity of being able to solve differential equations 

numerically when exact or approximate solution techniques could not be 

found. Hence, approximate analytical solution techniques and numerical 

solution techniques were also added to the list. 

Given a differential equation to analyze, most people spend only a 

small amount of t ime using analytical tools and then use a computer to 

see what the solution "looks like." Because this procedure is so preva

lent, this second edition has expanded the section on numerical methods. 

New sections on finite difference formulas, grid generation, lattice gases, 

multigrid methods, parallel computers , and software availability have been 

added. Other par ts of this book have also been improved; additional sec-
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tions include: chaos, existence, uniqueness, and stability theorems, inverse 

problems, normal forms, and exact part ial differential equations. 

In writing this book, I have assumed tha t the reader is familiar with 

differential equations and their solutions. The object of this book is not 

to teach novel techniques, but to provide a handy reference to many pop

ular techniques. All the techniques included are elementary in the usual 

mathematical sense; since this book is designed to be functional it does not 

include many abstract methods of limited applicability. This handbook has 

been designed to serve as both a reference book and as a complement to 

a text on differential equations. Each technique described is accompanied 

by several current references; these allow each topic to be studied in more 

detail. 

It is hoped tha t this book will be used by students taking courses in 

differential equations (at either the undergraduate or graduate level). It 

will introduce the student to more techniques than they usually see in a dif

ferential equations class and will illustrate the different types of techniques. 

Furthermore, it should act as a concise reference for the techniques tha t 

a student has learned. This book should also be useful for the practicing 

engineer or scientist who solves differential equations on an occasional basis. 

A feature of this book is tha t it has sections dealing with stochastic 

differential equations and delay differential equations as well as ordinary 

differential equations and partial differential equations. Stochastic differ

ential equations and delay differential equations are often only studied 

in advanced texts and courses; yet, the techniques used to analyze these 

equations are easy to understand and easy to apply. 

Had this book been available when I was a graduate student, it would 

have saved me much time. It has saved me time in solving problems 

tha t arose from my own work in industry (the Jet Propulsion Laboratory, 

Sandia Laboratories, EXXON Research and Engineering, and the M I T R E 

Corporation). 

Par t s of the text have been utilized in differential equations classes at 

the Rensselaer Polytechnic Inst i tute . The s tudents ' comments have been 

used to clarify the text . Unfortunately, there may still be some errors in 

the text; the author would greatly appreciate receiving notice of any such 

errors. Please send these comments care of Academic Press. 

Boston, Mass. 1991 Daniel Zwillinger 



Introduction 

This book is a compilation of the most important and widely appli-

cable methods for solving and approximating differential equations. As a 

reference book, it provides convenient access to these methods and contains 

examples showing their use. 

The book is divided into four par ts . The first par t is a collection 

of transformations and general ideas about differential equations. This 

section of the book describes the techniques needed to determine if a part ial 

differential equation is well-posed, what the "natural" boundary conditions 

are, and many other things. At the beginning of this section is a list of 

definitions for many of the terms describing differential equations and their 

solutions. 

The second part of the book is a collection of exact analytical solution 

techniques for differential equations. The techniques are listed (nearly) 

alphabetically. First is a collection of techniques for ordinary differential 

equations, then a collection of techniques for part ial differential equations. 

Those techniques tha t can be used for bo th ordinary differential equations 

and part ial differential equations have a star (*) next to the method name. 

For nearly every technique the following are given: 

• the types of equations to which the method is applicable 

• the idea behind the method 

• the procedure for carrying out the method 

• at least one simple example of the method 

• any cautions tha t should be exercised 

• notes for more advanced users 

• references to the l i terature for more discussion or more examples 

The material for each method has deliberately been kept short to 

simplify use. Proofs have been intentionally omitted. 
xii i 
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It is hoped that , by working through the simple example(s) given, the 

method will be understood. Enough insight should be gained from working 

the example(s) to apply the method to other equations. Further references 

are given for each method so tha t the principle may be studied in more 

detail, or more examples seen. Note tha t not all of the references listed at 

the end of a method may be referred to in the text. 

The author has found tha t computer languages that perform symbolic 

manipulations (such as MACSYMA) are very useful for performing the 

calculations necessary to analyze differential equations. For some of the 

exact analytical techniques, illustrative MACSYMA programsf are given. 

Not all differential equations have exact analytical solutions; some-

times an approximate solution will have to do. Other times, an approximate 

solution may be more useful than an exact solution. For instance, an exact 

solution in terms of a slowly converging infinite series may be laborious to 

approximate numerically. The same problem may have a simple approx-

imation tha t indicates some characteristic behavior or allows a numerical 

value to be obtained. 

The third par t of this book deals with approximate analytical solution 

techniques. For the methods in this part of the book, the format is similar 

to tha t used for the exact solution techniques. We classify a method as 

an approximate method if it gives some information about the solution, 

but will not give the solution of the original equation(s) at all values of the 

independent variable(s). The methods in this section describe, for example, 

how to determine per turbat ion expansions for the solutions to a differential 

equation. 

When an exact or an approximate solution technique cannot be found, 

it may be necessary to find the solution numerically. Other times, a numer-

ical solution may convey more information than an exact or approximate 

analytical solution. The fourth par t of this book is concerned with the 

most important methods for finding numerical solutions of common types 

of differential equations. Although there are many techniques available 

for numerically solving differential equations, this book has only tried to 

illustrate the main techniques for each class of problem. At the beginning 

of the fourth section is a brief introduction to the terms used in numerical 

methods. 

When possible, a short FORTRAN program^ has been given. Once 

again, those techniques tha t can be used for bo th ordinary differential 

1" We make no warranties, express or implied, tha t these programs are 

free of error. The author and publisher disclaim all liability for direct or 

consequential damages resulting from your use of the programs. 
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equations and part ial differential equations have a star next to the method 

name. 

This book is not designed to be read at one sitting. Rather , it should 

be consulted as needed. Occasionally we have used "ODE" to s tand for 

"ordinary differential equation" and "PDE" to s tand for "partial differential 

equation". 

This book contains many references to other books. While some 

books cover only one or two topics well, some books cover all their topics 

well. The following books are recommended as a first source for detailed 

understanding of the differential equation techniques they cover: each is 

broad in scope and easy to read. 

R e f e r e n c e s 

[1] C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scien

tists and Engineers, McGraw-Hill, New York, 1978. 

[2] W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and 

Boundary Value Problems, Fourth Edition, John Wiley & Sons, New York, 

1986. 

[3] E. Butkov, Mathematical Physics, Addison-Wesley Publishing Co., Reading, 

MA, 1968. 

[4] C. R. Chester, Techniques in Partial Differential Equations, McGraw-Hill 

Book Company, New York, 1970. 

[5] L. Collatz, The Numerical Treatment of Differential Equations, Springer-

Verlag, New York, 1966. 

[6] C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equa

tions, Prentice-Hall Inc., Englewood Cliffs, Ν  J, 1971. 

[7] E. L. Ince, Ordinary Differential Equations, Dover Publications, Inc., New 

York, 1964. 

[8] L. V. Kantorovich and V. I. Krylov, Approximate Methods of Higher Anal

ysis, Interscience Publishers, New York, 1958. 



How to Use This Book 

This book has been designed to be easy to use when solving, or approx-
imating, the solutions to differential equations. This introductory section 
outlines the procedure for using this book to analyze a given differential 
equation. 

First , determine if the differential equation has been studied in the 
l i terature. A list of many such equations may be found in the "Look Up" 
Section beginning on page 148. If the equation you wish to analyze is 
contained on one of the lists in tha t section, then see the indicated reference. 
This technique is the single most useful technique in this book. 

Alternately, if the differential equation tha t you wish to analyze does 
not appear on those lists, or if the references do not yield the information 
you desire, then the analysis tha t must be performed depends on the type 
of the differential equation. 

Before any other analysis is performed, it must be verified tha t the 
equation is well-posed. This means tha t a solution of the differential 
equation(s) exists, is unique, and depends continuously on the "data" . See 
pages 14, 50, 80, and 94. 

G i v e n a n Ord inary Different ial E q u a t i o n 

[1] It may be useful to transform the differential equation to a canonical 
form, or to a form tha t appears in the "Look Up" Section. For some 
common transformations, see pages 101-133. 

[2] If the equation has some sort of special form, then there may be a 
specialized solution technique tha t may work. See the techniques on 
pages: 230, 233, 338. 

xv i i 
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[3] If the equation is a 

(A) Bernoulli equation, see page 194. 
(B) Chaplygin equation, see page 438. 

(C) Clairaut equation, see page 196. 
(D) Euler equation, see page 235. 
(E) Lagrange equation, see page 311. 
(F) Riccati equation, see page 332. 

[4] If the equation does not depend explicitly on the independent variable, 

see pages 190 and 350. 
[5] If the equation does not depend explicitly on the dependent variable, 

(undifferentiated) see pages 216 and 349. 
[6] If one solution of the equation is known, it may be possible to lower 

the order of the equation, see page 330. 
[7] Are discontinuous terms present? See page 219. 
[8] See all of the exact solution techniques, on pages 185-360. 
[9] If an approximate solution is desired, see the section "Looking for an 

Approximate Solution," on page xix. 

G i v e n a Part ia l Differential E q u a t i o n 

Part ial differential equations are t reated in a different manner from or-
dinary differential equations; in particular, the type of the equation dictates 
the solution technique. First, determine the type of the partial differential 
equation; it may be hyperbolic, elliptic, parabolic, or of mixed type (see 
page 33). 

[1] It may be useful to transform the differential equation to a canonical 
form, or to a form tha t appears in the "Look Up" Section. For 
transformations, see the following pages: 118, 139, 144, 390, 400. 

[2] The simplest technique for working with part ial differential equations, 
which does not always work, is to "freeze" all but one of the inde-
pendent variables, and then analyze the resulting partial differential 
equation or ordinary differential equation. Then the other variables 
may be added back in, one at a time. 

[3] If every term is linear in the dependent variable, then separation of 
variables may work, see page 419. 

[4] If the boundary of the domain must be determined as par t of the 
problem, see the technique on page 262. 

[5] See all of the exact solution techniques, on pages 365-432. In addition, 
many of the techniques tha t can be used for ordinary differential 
equations are also applicable to partial differential equations. These 
techniques are indicated by a star in the method name. 
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[6] If the equation is hyperbolic: 

(A) In principle, the differential equation may be solved using the 

method of characteristics, see page 368. Often, though, the cal-

culations are impossible to perform analytically. 

(B) See the section on the exact solution to the wave equation, page 429. 

[7] If an approximate solution is desired, see the section "Looking for an 

Approximate Solution," on page xix. 

G i v e n a S y s t e m of Differential E q u a t i o n s 

[1] First , verify tha t the system of equations is consistent, see page 39. 

[2] Note tha t many of the methods for a single differential equation may 

be generalized to handle systems. 

[3] By using differential resultants, it may be possible to obtain a single 

equation, see page 46. 

[4] The following methods are for systems of equations: 

(A) The method of generating functions, see page 265. 

(B) The methods for constant coefficient differential equations, see 

pages 360 and 384. 

(C) Finding integrable combinations, see page 283. 

[5] If the system is hyperbolic, then the method of characteristics will 

work (in principle), see page 368. 

[6] See also the method for PfafEan equations (page 326) and the method 
for matr ix Riccati equations (page 335). 

G i v e n a S t o c h a s t i c Differential E q u a t i o n 

[1] To determine the transit ion probability density, see the discussion of 
the Fokker-Planck equation on page 254. 

[2] To obtain the moments, without solving the complete problem, see 
pages 491 and 494. 

[3] If the noise appearing in the differential equation is not "white noise," 
the section on stochastic limit theorems might be useful (see page 545). 

[4] To numerically simulate the solutions of a stochastic differential equa-
tion, see the technique on page 695. 

G i v e n a D e l a y E q u a t i o n 

See the techniques on page 209. 
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Look ing for an A p p r o x i m a t e S o l u t i o n 

[1] If exact bounds on the solution are desired, see the methods on pages: 
470, 476, 484. 

[2] If the solution has singularities tha t are to be recovered, see page 503. 
[3] If the differential equation(s) can be formulated as a contraction map-

ping, then approximations may be obtained in a natural way, see 
page 54. 

Look ing for a N u m e r i c a l S o l u t i o n 

[1] It is extremely important tha t the differential equation(s) be well-
posed before a numerical solution is a t tempted . See the theorem on 
page 648 for an indication of the problems tha t can arise. 

[2] The numerical solution technique must be stable if the numerical 
solution is to approximate the t rue solution of the differential equation. 
See pages 613, 618 and 621. 

[3] It is often easiest to use commercial software packages when looking 
for a numerical solution, see pages 570 and 586. 

[4] If the problem is "stiff," then a method for dealing with "stiff" prob-
lems will probably be required, see page 690. 

[5] If a low accuracy solution is acceptable, then a Monte Carlo solution 
technique may be used, see pages 721 and 752. 

[6] To determine a grid on which to approximate the solution numerically, 
see page 606. 

[7] To find an approximation scheme tha t works on a parallel computer, 
see page 676. 

O t h e r T h i n g s t o C o n s i d e r 

[1] Does the differential equation undergo bifurcations? See page 16. 
[2] Is the solution bounded? See pages 476 and 484. 
[3] Is the differential equation well-posed? See pages 14 and 94. 
[4] Does the equation exhibit symmetries? See pages 314 and 404. 
[5] Is the system chaotic? See page 26. 
[6] Are some terms in the equation discontinuous? See page 219. 
[7] Are there generalized functions in the differential equation? See pages 

268 and 279. 
[8] Are fractional derivatives involved? See page 258. 
[9] Does the equation involve a small parameter? See the per turbat ion 

methods (pages 507, 510, 518, 524, 528, 532) or pages 463, 558. 
[10] Is the general form of the solution known? See page 354. 
[11] Are there multiple time or space scales in the problem? See pages 463 

and 524. 
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Definitions and Concepts 

1. Definition of Terms 

A d i a b a t i c Invariants When the parameters of a physical system vary 

slowly under the effect of an external per turbat ion, some quantities are 

constant to any order of the variable describing the slow rate of change. 

Such a quanti ty is called an adiabatic invariant. This does not mean tha t 

these quantities are exactly constant, but rather tha t their variation goes 

to zero faster then any power of the small parameter . 

A n a l y t i c A function is analytic at a point if the function has a power 

series expansion valid in some neighborhood of tha t point. 

A s y m p t o t i c equ iva l ence Two functions, f(x) and g(x), are said to be 

asymptotically equivalent as χ  —> XQ if f(x)/g(x) ~ 1 as χ  —• xo, tha t is: 

f(x) = g(x) [1 + o(l)] as χ  —• χ 0· See Erdélyi [4] for details. 

A s y m p t o t i c e x p a n s i o n s Given a function f(x) and an asymptotic 
series {gk(x)} at xo, the formal series Σ ^ = ο

α

^ ^ (
χ

) '
 w n e re

 ^
n e

 {
a

k} are 

given constants, is said to be an asymptotic expansion of f(x) if f(x) — 

Σ κ =ο
 a

kgk{x) = o(gn(x)) as χ  —• #o for every n; this is expressed as f(x) ~ 

Σ Τ =ο
 a

kgk(x)' Part ial sums of this formal series are called asymptotic 
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approximations to / ( x ) . Note tha t the formal series need not converge. 

See Erdélyi [4] for details. 

A s y m p t o t i c ser ies A sequence of functions, { ^ ( x ) } , forms an asymp-

totic series at xo if gk+i{x) = o(gk(x)) as χ  —• XQ. 

A u t o n o m o u s An ordinary differential equation is autonomous if the 
independent variable does not appear explicitly in the equation. For ex-
ample, yxxx + (yx)

2

 = y is autonomous while yx = χ  is not (see page 190). 

Bi furca t ion The solution of an equation is said to undergo a bifur-
cation if, at some critical value of a parameter , the number of solutions 
to the equation changes. For instance, in a quadrat ic equation with real 
coefficients, as the constant term changes the number of real solutions can 
change from 0 to 2 (see page 16). 

B o u n d a r y d a t a Given a differential equation, the value of the depen-
dent variable on the boundary may be given in many different ways. For 

Dir ich le t b o u n d a r y c o n d i t i o n s The dependent variable is prescribed 
on the boundary. This is also called a boundary condition of the first 
kind. 

H o m o g e n e o u s b o u n d a r y c o n d i t i o n s The dependent variable van-
ishes on the boundary. 

M i x e d b o u n d a r y c o n d i t i o n s A linear combination of the dependent 
variable and its normal derivative are given on the boundary, or, one 
type of boundary da t a is given on one par t of the boundary while 
another type of boundary da t a is given on a different par t of the 
boundary. This is also called a boundary condition of the third kind. 

N e u m a n n b o u n d a r y c o n d i t i o n s The normal derivative of the de-
pendent variable is given on the boundary. This is also called a 
boundary condition of the second kind. Sometimes the boundary 
da t a also includes values of the dependent variable at points interior 
to the boundary. 

B o u n d a r y layer A boundary layer is a small region, near a boundary, 
in which a function undergoes a large change (see page 510). 

B o u n d a r y value p r o b l e m An ordinary differential equation, where 
not all of the da t a is given at one point, is a boundary value problem. For 
example, the equation y" + y = 0 with the da t a y(0) = 1, y(l) = 1 is a 
boundary value problem. 
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Charac ter i s t i c s A hyperbolic part ial differential equation can be de-

composed into ordinary differential equations along curves known as char-

acteristics. These characteristics are, themselves, determined to be the 

solutions of ordinary differential equations. See page 368. 

C a u c h y p r o b l e m The Cauchy problem is an initial value problem for 

a part ial differential equation. For this type of problem there are initial 

conditions, but no boundary conditions. 

C o m m u t a t o r If £,[·] and H[-] are two linear differential operators, then 

the commutator of £,[·] and H[-] is defined to be the differential operator 

given by [L,H] := L ο  Η  — Ho L = — [ i / , L], For example, the commutator 

of the operators L[-] = x— and H[-] = 1 + — is 
ax dx 

[LiH] dx^J ^ dx) ~*~ dx) dx) dx 

See Goldstein [6] for details. 

C o m p l e t e A set of functions is said to be complete on an interval if 

any other function tha t satisfies appropriate boundedness and smoothness 

conditions can be expanded as a linear combination of the original func-

tions. Usually the expansion is assumed to converge in the "mean square," 

or L>2 sense. For example, the functions {un(x)} := {sin(rarx),cos(rarx)} 

are complete on the interval [0,1] since any Ο
λ

[0,1] function, / ( # ) , can be 

wri t ten as 
oo 

f(x) = α ο  + ^ [an cos (n7T#) + bn sin(ranr)^ 

n = l 

for some set of { α η , ί > η } . See Courant and Hilbert [3] for details. 

C o m p l e t e s y s t e m The system of nonlinear part ial differential equa-

tions: {Fk(xi,.. ·, xr, y,Pi, · · · ,Pr) = 0 I k = 1 , . . . , 5 } , in one dependent 

variable, 2 / (x) , where pi = dy/dxi, is called a complete system if each 

{F j , Ffc}, for 1 < j , k < r , is a linear combination of the {F^}. Here { , } 

represents the Lagrange bracket. See Iyanaga and Kawada [8], page 1304. 

C o n s e r v a t i o n form A hyperbolic part ial differential equation is said to 

be in conservation form if each te rm is a derivative with respect to some 

variable. Tha t is, it is an equation for w(x) = ν >(χ χ , X 2 , . . . , xn) tha t has 
. u r dfi(u,x) dfn(u,x) 
the form — 1 1 = 0 (see page 43). 

OXι  OX η  

C o n s i s t e n c y There are two types of consistency: 
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G e n u i n e c o n s i s t e n c y This occurs when the exact solution to an 

equation can be shown to satisfy some approximations tha t have been 

made in order to simplify the equation's analysis. 

A p p a r e n t c o n s i s t e n c y This occurs when the approximate solution 

to an equation can be shown to satisfy some approximations tha t have 

been made in order to simplify the equation's analysis. 

When simplifying an equation to find an approximate solution, the derived 

solution must always show apparent consistency. Even then, the approxi-

mate solution may not be close to the exact solution, unless there is genuine 

consistency. See Lin and Segel [9]. 

C o u p l e d s y s t e m s of e q u a t i o n s A set of differential equations is said to 

be coupled if there is more than one dependent variable, and each equation 

involves more than one dependent variable. For example, the system {y' + 

υ  = 0, v
f

 + y = 0} is a coupled system for {y(x), v(x)}. 

D e g r e e The degree of an ordinary differential equation is the greatest 

number of times the dependent variable appears in any single term. For 

example, the degree of y' + {y")
2

y + 1 = 0 is 3, while the degree of y"y'y
2

 + 

x
5

y = 1 is 4. The degree of y' = siny is infinite. If all the terms in 

a differential equation have the same degree, then the equation is called 

equidimensional-in-î/ (see page 233). 

D e l a y E q u a t i o n A delay equation, also called a differential delay equa-

tion, is an equation tha t depends on the "past" as well the "present." For 

example, y"(t) = y(t — r ) is a delay equation when τ  > 0. 

D e t e r m i n e d A t runcated system of differential equations is said to be 

determined if the inclusion of any higher order terms cannot affect the 

topological nature of the local behavior about the singularity. 

differential form A first order differential equation is said to be in 

differential form if it is writ ten P ( x , y)dx + Q(x, y)dy = 0. 

Dir ich le t p r o b l e m The Dirichlet problem is a part ial differential equa-

tion with Dirichlet da ta given on the boundaries. Tha t is, the dependent 

variable is prescribed on the boundary. 

Eigenva lues , E igenfunc t ions Given a linear operator L[-] with bound-

ary conditions B[-] there will sometimes exist non-trivial solutions to the 

equation L[y] = \y (the solutions may or may not be required to also 

satisfy B[y] = 0). When such a solution exists, the value of λ  is called 

an eigenvalue. Corresponding to the eigenvalue λ  there will exist solutions 

{?/(·; λ ) } ; these are called eigenfunctions. See Stakgold [12] for details. 
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liptic differential operator if the quadrat ic form x
1

 Ax, where A = ( α ^·), 

is positive definite whenever χ  φ  0. If the { a ^ } are functions of some 

variable, say t, and the operator is elliptic for all values of t of interest, 

then the operator is called uniformly elliptic. See page 33. 

E u l e r - L a g r a n g e e q u a t i o n If u = u(x) and J[u] = J f(u
f

,u,x)dx 

then the condition for the vanishing of the variational derivative of J with 
δ  J 

respect to u, — = 0, is given by the Euler-Lagrange equation: 
ou 

\ du dx du
1

 ) 

If w = w(x) and J = j g(w" ,w' ,w,x) dx, then the Euler-Lagrange equa-

tion is 
J2 

( d_ _ d d d
2

 d \ 

\dw dxdw'
 +

 dx
2

dw")
9

~ 

If ν  = v(x,y) and J = JJ h(vx,vy,v,x,y) dx dy, then the Euler-Lagrange 

equation is 

(d_ _ d d _ d d \ 

\ dv dx dvx dy dvy J 

See page 88 for more details. 

First integral : O D E When a given differential equation is of order η  

and, by a process of integration, an equation of order η  — 1 involving an 

arbi trary constant is obtained, then this new equation is known as a first 

integral of the given equation. For example, the equation y" + y = 0 has 

the equation (y')
2

 + y
2

 = C as a first integral. 

First Integral : P D E A function u(x, y, z) is called a first integral of 
dx du dz 

the vector field V = (P, Q, R) (or of its associated system: — = — = — ) 
Ρ  Q R 

if, at every point in the domain, V is orthogonal to grad u, i.e., 

 ̂ T^du du du 
V . Vu = Ρ — + Q— + R— = 0. 

ox oy oz 

Conversely, any solution of this part ial differential equation is a first integral 

of V . Note tha t if u(x, y, z) is a first integral of V , then so is f(u). 

Ell ipt ic o p e r a t o r The differential operator is an el-
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Freenet der ivat ive , G â t e a u x der iva t ive The Gâteaux derivative of 

the operator Ν [·], at the "point" u (x ) , is the linear operator defined by 

τ  r . \ ι  , . N[u + ε ζ ] - N[u] 
L[z(x)\ = hm . 

ε —•() £ 

For example, if N[u] = u
3

 + u" + (u')
2

 then L[z] = 3 u
2

z + z" + 2 u V . If, 

in addition, 

l im \\N[u + h]-N[u]-L[u]h\\ =Q 

(as is t rue in our example), then L[u] is also called the Fréchet derivative 

of N[-]. See Olver [11] for details. 

Fuchs ian e q u a t i o n A Fuchsian equation is an ordinary differential 

equation whose only singularities are regular singular points. 

F u n d a m e n t a l m a t r i x The vector ordinary differential equation y' = 

Ay for y = 2 / (x) , where A is a matr ix, has the fundamental matr ix Φ ( χ ) if 

Φ  satisfies Φ ' = Α Φ  and the determinant of Φ  is non-vanishing (see page 

97). 

G e n e r a l so lu t ion Given an n- th order linear ordinary differential equa

tion, the general solution contains all η  linearly independent solutions, with 

a constant multiplying each one. For example, the differential equation 

y" + y = 1 has the general solution y(x) = 1 + A sin χ  -h Β  cos χ , where A 

and Β  are arbitrary constants. 

G r e e n ' s funct ion A Green's function is the solution of a U ;^ , r differ

ential equation which has a delta function appearing either in the equation 

or in the boundary conditions (see page 268). 

H a r m o n i c func t ions A function φ (χ ) is harmonic if it satisfies Laplace's 

equation: V
2

0 = 0. 

H o d o g r a p h In a part ial differential equation, if the independent vari

ables and dependent variables are switched, then the space of independent 

variables is called the hodograph space (in two dimensions, the hodograph 

plane). See page 390 for more details. 

H o m o g e n e o u s e q u a t i o n s — 1 An equation is said to be homogeneous 

if all terms depend linearly on the dependent variable or it 's derivatives. 

For example, the equation yxx + xy = 0 is homogeneous while the equation 

Vxx + V = 1 is not. 

H o m o g e n e o u s e q u a t i o n s - 2 A first order ordinary differential equa

tion is said to be homogeneous if the forcing function is a ratio of homoge

neous polynomials (see page 276). 
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I l l -posed p r o b l e m s A problem tha t is not well-posed is said to be ill-

posed. Typical ill-posed problems are the Cauchy problem for the Laplace 

equation, the in i t ia l /boundary value problem for the backwards heat equa-

tion, and the Dirichlet problem for the wave equation. See page 94 for 

more details. 

Init ia l va lue p r o b l e m A ordinary differential equation with all of 

the da t a given at one point is an initial value problem. For example, the 

equation y" + y = 0 with the da t a y(0) — 1, y'(0) = 1 is an initial value 

problem. 

Invo lu tory t r a n s f o r m a t i o n An involutory transformation Τ  is one 

which, when applied twice, does not change the original system; i.e., T
2

 is 

equal to the identity function. 

L2 func t ions A function f(x) is said to belong to L2 if /0°° | / ( x ) |
2

 dx is 

finite. 

L a g r a n g e bracket If {Fj} and {Gj} are sets of functions of the inde-

pendent variables {u, t>,. . .} then the Lagrange bracket of u and ν  is defined 

to be 

f Ί (dFj dGj dFj dGj \ f Ί  

3 

See Goldstein [6] for details. 

Lagrang ian der iva t ive The Lagrangian derivative (also called the ma-
DF dF 

terial derivative) is defined by —— := ——h ν  · V F , where ν  is a given 
Dt dt 

vector. See Iyanaga and Kawada [8], page 669. 

Laplac ian The Laplacian is the differential operator usually denoted 

by V
2

 (in many books it is represented as Δ ) . It is defined by ν
2

φ  = 

d iv (g rad^ ) , when φ  is a scalar. The vector Laplacian of a vector is the 

differential operator denoted by φ  (in most books it is represented as V
2

) . 

It is defined by φ ν  = g rad(d ivv) — curl curl v, when ν  is a vector. See 

Moon and Spencer [10] for details. 

Leibniz 's rule Leibniz's rule states tha t 

d ( f
9

^ \ i
9

^ dh 
T i / M*,C)dC =9'(t)h(t,g(t))-f'(t)h(t,f(t))+ / 7ST(t , OdC-
rf* \Jf(t) J Jf(t) dt 

Lie A l g e b r a A Lie algebra is a vector space equipped with a Lie bracket 

(often called a commutator) [x, y] tha t satisfies three axioms: 
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(A) [x, y] is bilinear (i.e., linear in bo th χ  and y separately), 

(B) the Lie bracket is anti-commutative (i.e., [x,y] = — 

(C) the Jacobi identity, [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, holds. 

See Olver [11] for details. 

Limit cyc l e A limit cycle is a solution to a differential equation tha t is 

a periodic oscillation of finite ampli tude. See page 63 for more details. 

Linear differential e q u a t i o n s A differential equation is said to be 

linear if the dependent variable only appears with an exponent of 0 or 1. 

For example, the equation x
3

y"' + y
f

 + cos χ  = 0 is a linear equation, while 

the equation yy' = 1 is nonlinear. 

Linearize To linearize a nonlinear differential equation means to ap-

proximate the equation by a linear differential equation in some region. For 

example, in regions where \y\ is "small," the nonlinear ordinary differential 

equation y" + sin y = 0 could be linearized to y" + y = 0. 

Lipschi tz c o n d i t i o n If f(x,y) is a bounded continuous function in a 

domain D , then / ( x , y) satisfies a Lipschitz condition in y in D if 

l / ( s , î / i ) - / ( z , y2)\ < Ky\yi - 2 / 2 1 

for some finite constant Ky, independent of x, yi, and y2 in D. If, for some 

finite constant Kx, f{x,y) satisfies 

\f(xi,y) - f(x2,y)\ < Kx\xi - x 2 \ 

independent of x i , X2 , and y in Z}, then f{x,y) satisfies a Lipschitz con-

dition in χ  in D . If bo th of these conditions are satisfied and Κ  = 

m a x ( Ä " x, K y) , then / ( x , y ) satisfies a Lipschitz condition in D, with Lip-

schitz constant K. This also extends to higher dimensions. See Coddington 

and Levinson [2] for details. 

M a x i m u m pr inc ip le There are many "maximum principles" in the 

li terature. The most common is "a harmonic function at ta ins its absolute 

maximum on the boundary." See page 484 for more details. 

M e a n value t h e o r e m This is a s tatement about the solution of Laplace's 
equation. It states, "If V

2

u = 0 (in Ν  dimensions), then u(z) = Js udS/ Js dS 

where S is the boundary of a AT-dimensional sphere centered at z" For 

example, in Ν  = 2, we have, "In 2 dimensions, the value of a solution 

to Laplace's equation at a point is the average of the values on any circle 

about tha t point." See Iyanaga and Kawada [8], page 624. 
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N a t u r a l H a m i l t o n i a n A natural Hamiltonian is one having the form 

Η  = Τ  + V, where Τ  = \ Y^.=iPk
 anc

* V is a, function of the position 

variables only (i.e., V = V(q) = V{q\,..., qn))-

N e u m a n n p r o b l e m The Neumann problem is a part ial differential 

equation with Neumann da t a given on the boundaries. Tha t is, the normal 

derivative of the dependent variable is given on the boundary. See Iyanaga 

and Kawada [8], page 999. 

M e t a p a r a b o l i c e q u a t i o n s A metaparabolic equation has the form 

L[u] + M[ut] = 0, where u — u (x , £), L\\ is a linear differential operator in 

χ  of degree η , M[·] is a linear differential operator in χ  of degree m, and 

m < n. If, conversely, m > η , then the equation is called pseudoparabolic. 

See Gilbert and Jensen [5] for details. 

N e a r i d e n t i t y t r a n s f o r m a t i o n A near-identity transformation is a 

transformation in a differential equation from the old variables {a, 6, c , . . . } 

to the new variables {a , /?, 7 , . . . } via 

a = a + A ( a , / ? , 7 , . . . ) , 

6 = /3 + fl(a,/?,7,...)i 

c = 7 + C ( a , / ? , 7 , . . . ) , 

where {A, 5 , C , . . . } are strictly nonlinear functions (i.e., there are no linear 

or constant terms) . Very frequently {A, B,C....} are taken to be homo-

geneous polynomials (of, say, degree N) in the variables α , /?, 7 , w i t h 

unknown coefficients. For example, in two variables we might take 

Η  

Α (α ,β ) = Σ Α ι ,η -ι α >β
η

-1, 

η  

3=0 

for some given value of η  (see page 70). 

N o r m a l form An ordinary differential equation is said to be in nor-

mal form if it can be solved explicitly for the highest derivative; i.e., 

y(n) _ Q(x̂  . . . , 2 / (
n _ 1

) ) . A system of part ial differential equa-

tions (with dependent variables {ui , · · · > um} and independent variables 

yi, V2, · · · ? Vk}) is said to be in normal form if it has the form 

d
T

Uj _ ( dui d
r

~
1

um dui d
r

u m \ 
- Q ^ - * 3 ^ , 2 / 1 , . . . , ^ , ^ , . . . , ^ , — , . . . , 9 χ Τ_ λ  J 

for j = 1, 2 , . . . , m. See page 70 or Iyanaga and Kawada [8], page 988. 
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N o n l i n e a r A differential equation tha t is not linear in the dependent 

variable is nonlinear. 

Order of a differential e q u a t i o n The order of a differential equation is 

the greatest number of derivatives in any term in the differential equation. 

For example, the part ial differential equation u x x xx — uit + u
5

 is of fourth 

order while the ordinary differential equation vx + x
2

v
3

 + υ  = 3 is of first 

order. 

O r t h o g o n a l Two vectors, χ  and y , are said to be orthogonal, with 

respect to the matr ix W if x
T

Wy = 0 (often, W is taken to be the identity 

matr ix) . Two functions, say f(x) and g(x), are said to be orthogonal with 

respect to a weighting function w(x) if (f(x),g(x)) := / f(x)w(x)g(x) dx = 

0 over some appropriate range of integration. Here, an overbar indicates 

the complex conjugate. 

P a d é a p p r o x i m a n t A Padé approximant is a ratio of polynomials. The 
polynomials are usually chosen so tha t the Taylor series of the ratio is a 
prescribed function. See page 503 for more details. 

Part icu lar so lu t ion Given a linear differential equation, L[y] = / ( x ) , 

the general solution can be wri t ten as y = yp + £^ Ciyi where yp, the 
particular solution, is any solution tha t satisfies L[y] = / ( x ) . The are 
homogeneous solutions tha t satisfy L[y] = 0, and the {Ci} are arbitrary 
constants. If £,[·] is an n- th order differential operator then there will be η  

linearly independent homogeneous solutions. 

P o i s s o n bracket If / and g are functions of {pj, qj} then the Poisson 

bracket of / and g is defined to be 

The Poisson bracket is invariant under a change of independent variables. 

See Goldstein [6] or Olver [11] for details. 

Quasi l inear e q u a t i o n s A part ial differential equation is said to be 

quasilinear if it is linear in the first part ial derivatives. Tha t is, it has 

u(x) = u(xi,X2, · · · , xn) (
s ee

 P
a

g
e

 368). 

R a d i a t i o n c o n d i t i o n The radiation condition states tha t a wave equa-

tion has no waves incoming from an infinite distance, only outgoing waves. 

For example, the equation utt = V
2

u might have the radiation condition 

when the dependent variable is 
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u(x, t) ~ A- exp(ik(t — x)) as χ  —• —oo and u(x, t) ~ A+ exp(ik(t + #)) 

as χ  —• Η -oo. This is also called the Sommerfeld radiation condition. See 

Butkov [1] for details. 

R i e m a n n ' s Ρ  f u n c t i o n Riemann's differential equation (see page 156) 

is the most general second order linear ordinary differential equation with 

three regular singular points. If these singular points are taken to be α , δ , 

and c, and the exponents of the singularities are taken to be α , α ' ; /?,/?'; 

7 , 7
;

 (where a + α ' + β  + β ' + η  + 7' = 1), then the solution to Riemann's 

differential equation may writ ten in the form of Riemann's Ρ  function as 

{
a b c Λ  

α  β  7 χ  > 

ο ! β ' i J 

R o b b i n s P r o b l e m An elliptic part ial differential equation with mixed 

boundary conditions is called a Robbins problem. See Iyanaga and Kawada [8], 

page 999. 

Schwarz ian der ivat ive If y = y(x) then the Schwarzian derivative of y 
I \ III ο  / // \ 2 

with respect to χ  is defined by {x,y} := — / ; 2 
y" 2\y'J 

Note 

2 
(»') 

fdx\
2

 (dy\ 
t ha t {x, y) = - I— J {y, x} and, if y = y{z), then { 5 , z) = {s, y} I—J 

{y, z}. See Ince [7] for details. 

S h o c k A shock is a narrow region in which the dependent variable under-

goes a large change. Also called a "layer" or a "propagating discontinuity." 

(See page 368. 

Singular p o i n t s Given the homogeneous n- th order linear ordinary 

differential equation 

y
{n)

 + ( Z ( n - i ) ( x ) y
( n - 1)

 + qin-2)(x)y
{n

-
2)

 + · · · + qo(x)y = 0, 

the point XQ is classified as being an 

Ordinary po in t : if each of the {qi} are analytic at χ  = x$. 

Singular po int : if it is not an ordinary point. 

R e g u l a r s ingular po int : if it is not an ordinary point and (x — 

xo)
l

Qi{x) is analytic for i = 0 , 1 , . . . , n. 

Irregular s ingular po in t : if it is not an ordinary point and not a 

regular singular point. 

The point at infinity is classified by changing variables to t = 1/x and then 

analyzing the point t = 0. See page 342 for more details. 
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S ingular so lu t ions A singular solution is a solution of a differential 

equation that is not derivable from the general solution by any choice of 

the arbi trary constants appearing in the general solution. Only nonlinear 

equations have singular solutions. See page 540 for more details. 

Stabi l i ty The solution to a differential equation is said to be stable 

if small per turbat ions in the initial conditions, boundary conditions, or 

coefficients in the equation itself lead to "small" changes in the solution. 

There are many different types of stability tha t are useful. 

S t a b l e A solution y(x) of the system y' = / ( y , x ) tha t is defined for 

χ  > 0 is said to be stable if, given any ε  > 0, there exists a δ  > 0 such 

tha t any solution w(x) of the system satisfying |w(0) — y (0) | < δ  also 

satisfies |w(x) — y(x)\ < ε  . 

A s y m p t o t i c s tab i l i ty The solution u(x) is said to be asymptotically 

stable if, in addition to being stable, |w(x) — u(x)| —• 0 as χ  —• oo. 

R e l a t i v e s tab i l i ty The solution u(x) is said to be relatively stable if 

|w(0) — u(0) | < δ  implies tha t \w(x) — u(x)| < eu(x) . 

See page 80 or Coddington and Levinson [2] (Chapter 13) for details. 

Ste fan p r o b l e m A Stefan problem is one in which the boundary of 

the domain must be solved as par t of the problem. For instance, when a 

jet of water leaves an orifice, not only must the fluid mechanics equations 

be solved in the stream, but the boundary of the s t ream must also be 

determined. Stefan problems are also called free boundary problems (see 

page 262). 

S u p e r p o s i t i o n pr inc ip le If u(x) and v(x) are solutions to a linear 

differential equation (ordinary differential equation or partial differential 

equation), then the superposition principle states tha t au(x) + β υ (χ ) is 

also a solution, where a and β  are any constants (see page 352). 

Tota l differential e q u a t i o n s A total differential equation is an equa-

tion of the form: ^2k α ^(χ ) dxk = 0. See page 326 for more details. 

Trivial so lu t ion The trivial solution is the identically zero solution. 

Turning p o i n t s Given the equation y" + p(x)y = 0, points at which 

p(x) = 0 are called turning points. The asymptotic behavior of y(x) can 

change at these points. See Wasow [13] for details. 

W e a k so lu t ion A weak solution to a differential equation is a function 

tha t satisfies only an integral form of the defining equation. For example, 

a weak solution of the differential equation a(x)y" — b(x) = 0 only needs to 

satisfy fs[a(x)y" — b(x)]dx = 0 where S is some appropriate region. For 

this example, the weak solution may not be twice differentiable everywhere. 

See Zauderer [14] for details. 
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W e l l - p o s e d p r o b l e m s A problem is said to be well-posed if a unique, 

stable solution exists tha t depends continuously on the da ta . See page 94 

for more details. 

W r o n s k i a n Given the functions { 2 / 1 , 2 / 2 ? · · · , 2 /n}> the Wronskian is the 

determinant 

2/1 2/2 . • 2/n 

2/1 y
f

2 · • Vn 

(n) 

2 / i 

(n) 
2/2 

(n) 
• 2/n ' 

If the Wronskian does not vanish, then the functions are linearly indepen-

dent. See page 97. 
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2. Alternative Theorems 

A p p l i c a b l e t o Linear ordinary differential equations. 

Idea 

It is often possible to determine when a linear ordinary differential 

equation has a unique solution. Also, when the solution is not unique, 

it is sometimes possible to describe the degrees of freedom tha t make it 

non-unique. 

P r o c e d u r e 

Alternative theorems describe, in some way, the type of solutions to 

expect from linear differential equations. The most common alternative 

theorems for differential equations were derived by Fredholm. 

Suppose we wish to analyze the n- th order linear inhomogeneous or

dinary differential equation with boundary conditions 

*[«] = /(*), 
Bi[u] = 0, for i = 1 , 2 , . . . , n, 

for u(x) on the interval χ  Ε  [α , b]. First we must analyze the homogeneous 

equation and the adjoint homogeneous equation. Tha t is, consider the two 

problems 

L[u] = 0, 
(2.2) 

Bi[u\ = 0, for i = 1 , 2 , . . . , n, 

and 

(2 3) 

B ; M = 0, for ζ  = 1,2,. 

where £,*[·] is the adjoint of L[-], and {#*[·]} are the adjoint boundary 

conditions (see page 74). Then Fredholm's alternative theorem states tha t 

[1] If the system in (2.2) has only the trivial solution, tha t is u(x) = 0, 

then 

(A) the system in (2.3) has only the trivial solution; 

(B) the system in (2.1) has a unique solution. 

[2] Conversely, if the system in (2.2) has k linearly independent so

lutions, say {wi ,U2, . . . then: 
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(A) the system in (2.3) has k linearly independent solutions, say 

{vi,v2, 

(B) the system in (2.1) has a solution if and only if the forcing 

function appearing in (2.1), / , is orthogonal to all solutions 

to the adjoint system. Tha t is ( / , Vi) := f^f(x)vi(x)dx = 0 

for i = 1,2, . . . , f c ; 

(C) the solution to (2.1), if (B) is satisfied, is given by u(x) = 

+ SjLi
 c

j
u

j(
x

) f °
r a nv

 arbi trary constants {CJ} where 

û(x) is any solution to (2.1). 

E x a m p l e 1 

Given the ordinary differential equation for u{x) 

«' + u = / ( * ) , 

ti(0) = 0,
 (

 ' 

we form the homogeneous system 

u(0) = 0.
 < 2

'
5 ) 

Since (2.5) has only the trivial solution, we know tha t the solution to (2.4) 

is unique. By the method of integrating factors (see page 305) the solution 

to (2.4) is found to be u(x) = /* f{t)e
f

-
x

dL 

E x a m p l e 2 

Given the ordinary differential equation for u(x) 

u' + u = / ( x ) , 

u(0) - etx(l) = 0, 

we form the homogeneous system 

u(0) - e t i( l) = 0. 

(2.6) 

(2.7) 

In this case, (2.7) has the single non-trivial solution u(x) = e~
x

. Hence, 

the solution to (2.6) is not unique. To find out what restrictions must 

be placed on f(x) for (2.6) to have a solution, consider the corresponding 

adjoint homogeneous equation 

ν ' - ν  = 0, 

-ev(0) + v(l) = 0. 
(2.8) 
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Since (2.8) has a single non-trivial solution, v(x) = e
x

, we conclude tha t 

(2.6) has a solution if and only if 

/ f(t)e
t

dt = 0. (2.9) 
Jo 

If (2.9) is satisfied, then the solution of (2.6) will be given by 

u{x) = Ce~
x

 + Γ  f{t)e
l

-
x

dt 
Jo 

where C is an arbi trary constant. 

N o t e s 

[1] Epstein [1] discusses the Fredholm theorems in the general setting of a 
Banach space and a Hilbert space. 

[2] A generalized Green's function is a Green's function (see page 268) for a 
differential equation that does not have a unique solution. See Greenberg 
[2] for more details. 

R e f e r e n c e s 

[1] B. Epstein, Partial Differential Equations An Introduction, McGraw-Hill 
Book Company, New York, 1962, pages 83 and 111. 

[2] M. D. Greenberg, Application of Green's Functions in Science and Engi

neering, Prentice-Hall Inc., Englewood Cliffs, NJ, 1971. 
[3] R. Haberman, Elementary Applied Partial Differential Equations, Prentice-

Hall Inc., Englewood Cliffs, NJ, 1983, pages 307-314. 
[4] I. Stakgold, Green's Functions and Boundary Value Problems, John Wiley 

& Sons, New York, 1979, pages 82-90, 207-214, and 319-323. 

3. Bifurcation Theory 

A p p l i c a b l e t o Nonlinear differential equations. 

Idea 

Given a nonlinear differential equation tha t depends on a set of pa-
rameters, the number of distinct solutions may change as the parameters 
change. Points where the number of solutions change are called bifurcation 

points. 
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P r o c e d u r e 

While bifurcations occur in all types of equations, we restrict our 

discussion to ordinary differential equations. Consider the autonomous 

system 

§ = f ( x ; « ) , (3.1) 

where χ  and f are η -dimensional vectors and α  is a set of parameters . 

Define the Jacobian matr ix by 

J

^ - - = i = ( ^ ( x ; « ) | i . i = i , - . » ) . (3-2) 

Note tha t J ( x ; a ) z is the Fréchet derivative of f, at the point χ  (see page 

6). 

Using the solution x( t , a ) of (3.1), the values of α  where one or more 

of the eigenvalues of J are zero are defined to be bifurcation points. At 

such points the number of (real) solutions to (3.1) may change, and the 

stability of the solutions might also change. 

If any of the eigenvalues have positive real par ts , then tha t solution is 

unstable. If we are only concerned with the steady s ta te solutions of (3.1), 

as is often the case, then the bifurcation points will satisfy the simultaneous 

equations 

f(x; a ) = 0, det J = 0. (3.3) 

Define the eigenvalues of the Jacobian matr ix in (3.2) to be {λ ^ | i = 

1 , . . . , n } . We now presume tha t (3.1) depends on the single parameter a. 

Suppose tha t the change in stability is at the point a = a , where the real 

par t of a complex conjugate pair of eigenvalues ( λ ι  = λ 2) pass through 

zero: 

ReAi (S) = 0, I m A i ( S ) > 0 , R e A
/

1( 2 ) # 0 , 

and, for all values of a near 2 , Re Xi(a) < 0 for i = 3 , . . . , n. 

Then, under certain smoothness conditions, it can be shown tha t a 

small ampli tude periodic solution exists for a near a. Let ε  measures the 

ampli tude of the periodic solution. Then, there are functions μ ( ε ) and 

τ ( ε ) , defined for all sufficiently small, real ε , such tha t μ (0) = r (0 ) = 0 

and tha t the system with α  = a + μ ( ε ) has a unique small ampli tude 

solution of period Τ  = 2π  (1 Η - τ ( ε ) ) / I m A i ( S ) . When expanded, we have 

μ ( ε ) = μ 2ε
2

 -h 0 ( ε
3

) . The sign of μ 2 indicates where the oscillations occur, 

i.e., for a < a or for a > a. 
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Figure 3.1 A bead on a spinning semi-circular wire. 

E x a m p l e 1 

The nonlinear ordinary differential equation 

du 

~dt 
= g(u) = u

2

 — X\u — X2 (3-4) 

has steady states tha t satisfy g(u) = u
2

 — Xiu — \ 2 =0. These steady state 

solutions have bifurcation points given by 

dg_ 

du 
= 2u - λ ι  = 0. 

Solving these last two equations simultaneously, it can be shown tha t the 

bifurcation points, of the steady s ta te solutions, are along the curve 4X2 + 

X
2

 = 0. Further analysis shows tha t (3.4) will have two real steady state 

solutions when AX2 + X
2

 > 0, and it will have no real steady state solutions 

when 4 λ 2 + X
2

 < 0. 

E x a m p l e 2 

Consider a frictionless bead tha t is free to slide on a semi-circular hoop 

of wire of radius R t ha t is spinning at an angular ra te ω  (see Figure 3.1). 

The equation for 6(t), the angle of the bead from the vertical, is given by 

d
2

0 ( u
2

R \ ^ - + 0 s i n 0 ( l COS0) = 0 , (3.5) 

dr \ g ) 

where g is the magnitude of the gravitational force. We define the param-

eter ν  by ν  = g/u;
2

R. We will only analyze the case ν  > 0. 

The three possible steady solutions of (3.5) are given by: 
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0(i) = öi = 0, for ν  > 0, 

9{t) = 02 = arccosz/, for < 1, 

0{t) = Θ 3 = — arccos 1/, for ν  < 1. 

Therefore, for ν  > 1 (which corresponds to slow rotat ion speeds), the only 
steady solution is 9(t) = θ χ . For ν  < 1, however, there are three possible 
solutions. The solution 6(t) = θ \ will be shown to be unstable for ν  < 1. 

To determine which solution is stable in a region where there are 
multiple solutions, a stability analysis must be performed. This is ac-
complished by assuming tha t the t rue solution is slightly per turbed from 
the given solution, and the ra te of change of the per turbat ion is obtained. 
If the per turbat ion grows, then the solution is unstable. Conversely, if the 
per turbat ion decays (stays bounded) , then the solution is stable (neutrally 
stable). 

First we perform a stability analysis for the solution 9(t) = θ \. Define 

0( ί ) = 0 ι + ε 0 ( * ) , (3.6) 

where ε  is a small number and φ (ί ) is an unknown function. Using (3.6) in 

(3.5) and expanding all terms for ε  «C 1 results in 

^ + 9 ^ 1 φ  = 0( ε ). (3.7) 

The leading order terms in (3.7) represent the Fréchet derivative of (3.5) 

at the "point" 9(t) = 0i , applied to the function φ {ί ). The solution of this 

differential equation for </>(£), to leading order in ε , is 

φ (ί ) = A cos at + Β  sin at, (3.8) 

where A and Β  are arbi trary constants and a = . If ν  > 1, 

then a is real, and the solutions for φ (ί ) remain bounded. Conversely, 

if ν  < 1 then a becomes imaginary, and the solution in (3.8) becomes 

unbounded as t increases. Hence the solution 6(t) = θ \ is unstable for 

ν  < 1. 

Now we perform a stability analysis for the solution 9(t) = 02· Writing 

Q{t) = #2 +
 a n

d using this form in (3.5) leads to the equation for 
d

^

 + 9 ^ = 0(e). (3.9) 



20 I .A Def in i t ions a n d C o n c e p t s 

The leading order terms in (3.9) represent the Fréchet derivative of (3.5) 

at the "point" θ (ί ) = 0 2, applied to the function ψ (ί ). The solution of this 

differential equation for yj(t) is yj(t) = Acosßt + Bsmßt, where A and Β  

are arbitrary constants and β  = J g ( J.lfi/<1, then β  is real, and 

the solutions for vj(t) remain bounded. Therefore, the solution θ (ί ) = 02 is 

stable for ν  < 1. In an exactly analogous manner, θ (ί ) = θ 3 is stable for 

ν  < 1. 

From what we have found, we can construct the bifurcation diagram 

shown in Figure 3.2. In this diagram, the unstable steady solutions are 

indicated by a dashed line and the letter U, the stable steady solutions are 

indicated by the solid line and the letter S. In words this diagram states: 

(A) For no rotation (ω  = 0 or ν  — oo), the only solution is 6(t) = θ \ = 0. 

( Β ) As the frequency or rotation increases (and so ν  decreases), the solu-

tion 6{t) = #i becomes unstable at the bifurcation point ν  = 1. 

(C) For ν  < 1, the are two stable solutions, 0(t) — Θ 2 and 6{t) = 0 3 . In 

this example, there is no way to know in advance which of these two 

solutions will occur (physically, the bead can slide up either side of the 

wire). 

The formula in (3.3) can applied to (3.5) to determine the location of the 

bifurcation point, without performing all of the above analysis. If we define 

Χ ι  = θ  and x 2 = Τ '  t n en (3-5) can be written as the system of ordinary 
at 

differential equations 

Figure 3.2 Bifurcation diagram for the equation in 3.6. A branch with the label 

"S" ("U") is a stable (unstable) branch. 
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J

 dx ^ — 9cosX\ + — (cos
2

 χ ι  — s in
2

 x\) 0 J ' 

If ν  > 1, then no choice of ( x i , # 2 ) will allow bo th f and det J to be zero 

simultaneously. For ν  — 1, however, x i = #2 = 0 make bo th f and det J 

equal to zero. Hence, a bifurcation occurs at ν  = 1. 

E x a m p l e 3 

Abelson [1] has developed a computer program in LISP tha t automat i -

cally explores the steady-state orbits of one-parameter families of periodically-

driven oscillators. The program generates bo th textual descriptions and 

schematic diagrams. 

For example, consider DufBng's equation in the form χ  + O.li; + χ
3

 = 

ρ  cost where the parameter ρ  is in the range [1,25] and only those solutions 

with — 5 < χ  < 5 and —10 < χ  < 10 are considered. The program produced 

the graphical output shown in Figure 3.3, along with the following textual 

description: 

The system was explored for values of ρ  between 1 and 25, 

and 10 classes of stable periodic orbits were identified. 

Class A is already present at the start of the parameter range 
ρ  = 1 with a family of order-1 orbits AQ. Near ρ  = 2.287, there is 
a supercritical-pitchfork bifurcation, and AQ splits into symmetric 
families Α ι , ο  and Aiti, each of order 1. Α χ ,ο  vanishes at a fold 
bifurcation near ρ  = 3.567. Α χ ,ι  vanishes similarly. 

Class Β  appears appears around ρ  = 3.085 with a family of 
order-1 orbits Bo arising from a fold bifurcation. As the parameter 
ρ  increases, Bo undergoes a period doubling cascade, reaching 
order2 near ρ  = 4.876, and order 4 near ρ  = 5.441. Although the 
cascade was not traced past the order 4 orbit, there is apparently 
another period-doubling near ρ  = 5.52, and a chaotic orbit was 
observed at ρ  = 5.688. 

Class J appear around ρ  = 23.96 as a family of order-5 orbits 
Jo arising from a fold bifurcation. Jo is present at the end of the 
parameter range at ρ  = 25. 

This program is capable of recognizing the following types of bifur-

cations: fold bifurcations, supercritical and subcritical flip bifurcations, 

supercritical and subcritical Niemark bifurcations, supercritical and sub-

critical pitchfork bifurcations, and transcritical bifurcations. 

which has the Jacobian matr ix 
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Ε — • 

Ε — α  

<2 

• 

PL Ρ 1 Ρ 15 Ρ 17 Ρ 18 Ρ 19 Ρ 23 Ρ 26 PH 

fold supercritical pitchfork unidentified bifurcation 

-*- • 
supercritical flip expond for further detail 

Figure 3.3. Graphical output generated automatically from the Bifurcation 

Interpreter in Abelson [1]. For Duffing's equation, the evolution of 10 classes of 

families of periodic orbits and their bifurcations has been traced. The ρ  values 

along the horizontal axis indicate the parameter value at which the bifurcations 

occur. 

N o t e s 

[1] There are many different types of bifurcations. See Figure 3.4 for diagrams 

of some of the following bifurcations: 
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A 

fold transcritical 
supercritical 

pitchfork 

subcritical 

pitchfork 

Figure 3.4 Diagrams of some types of bifurcations. Unstable solutions are 

indicated by dashed lines, stable solutions are indicated by solid lines. 

(A) Hopf bifurcation: a stable steady solution bifurcates into a stable os-

cillatory solution. That is, there are no stable steady solutions in that 

particular region of parameter space. This occurs by having some of 

the eigenvalues of the Jacobian in (3.2) become purely imaginary. 

(B) fold bifurcation: on one side of the bifurcation point a stable and an 

unstable periodic point (of the same order) coexist. On the other side 

of the bifurcation point, both periodic points have vanished. 

(C) flip bifurcation (supercritical): a stable periodic point of order η  tran-

sitions to a stable periodic point of order 2n and an unstable periodic 

point of order n. 

(D) flip bifurcation (subcritical): an unstable periodic point of order 2n and 

a stable periodic point of order η  transition to an unstable periodic 

point of order n. 

(E) Niemark bifurcation (supercritical): a stable periodic transitions to an 

unstable periodic point and a stable limit cycle. 

(F) Niemark bifurcation (subcritical): a stable periodic point and unstable 

limit cycle transition to an unstable periodic point. 

(G) pitchfork bifurcation (supercritical): a stable periodic point transitions 

to two stable periodic points and an unstable periodic point, all of the 

same order. 

(H) pitchfork bifurcation (subcritical): a stable periodic point and two un-

stable periodic points transition to an unstable periodic point. 

(I) transcritical bifurcation: a stable periodic point and an unstable pe-

riodic point exchange stabilities; on the other side of the bifurcation 

point, the extrapolated stable point is now unstable, and vice-versa. 

[2] For a differential equation that is not autonomous, bifurcations can also 

occur from time dependent solutions to other time dependent solutions. 

[3] For the general finite dimensional mapping, C(x), from R
m

 to R
n

, the 

dG 
Jacobian J (x) := need not be square. In this case, the critical points 

σ χ  
(which include the bifurcation points) are in the set C, with 

The regular points are R
m

 — C. The critical values are the values in the 

set G(C) := {y \ y € R
n

, y = G(x) for some x G C}. The regular values are 

R
n

 - G(C). 

C := {χ  I x G R
m

, rank J (x) < min(ra,n)} . 
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[4] Sacks [11] describes the program POINCARE which classifies bifurcation 

points and constructs representative phase diagrams for each type of behav-

ior. The program is available from the author. 

References 

[1] H. Abelson, "The Bifurcation Interpreter: A Step Towards the Automatic 

Analysis of Dynamical Systems," Comp. & Maths, with Appls., 20, No. 8, 

1990, pages 13-35. 

[2] B. Eaton and K. Gustafson, "Calculation of Critical Branching Points in 

Two-Parameter Bifurcation Problems," J. Comput. Physics, 50, 1983, 

pages 171-177. 

[3] J. Guckenheimer, "Patterns of Bifurcations," in P. J. Holmes (ed.), New 

Approaches to Nonlinear Problems in Dynamics, SI AM, Philadelphia, 

1980, pages 71-104. 

[4] B. D. Hassard, Theory and Applications of Hopf Bifurcation, Cambridge 

University Press, New York, 1981. 

[5] M. Holodniok and M. Kubicek, "New Algorithms for the Evaluation of Com-

plex Bifurcation Points in Ordinary Differential Equations. A Comparative 

Numerical Study," Appl. Math, and Comp., 15, 1984, pages 261-274. 

[6] G. Iooss and D. D. Joseph, Elementary Stability and Bifurcation Theory, 

Second Edition, Springer-Verlag, New York, 1989. 

[7] A. D. Jepson and A. Spence "Numerical Methods for Bifurcation Problems," 

in A. Iserles and M. J. D. Powell (eds.), The State of the Art in Numerical 

Analysis, Clarendon Press, Oxford, 1987, pages 273-298. 

[8] M. Kubicek and M. Marek, Computational Methods in Bifurcation The-

ory and Dissipative Structures, Springer-Verlag, New York, 1983. 

[9] J. E. Marsden and M. McCracken, "The Hopf Bifurcation and Its Applica-

tions," Springer-Verlag, New York, 1976. 

[10] R. H. Rand and D. Armbruster, Perturbation Methods, Bifurcation The-

ory and Computer Algebra, Springer-Ver lag, New York, 1987. 

[11] E. Sacks, "Automatic Analysis of One-Parameter Planar Ordinary Differen-

tial Equations by Intelligent Numeric Simulation," Artificial Intelligence, 

48, 1991, pages 27-56. 

[12] R. Seydel, "Prom Equilibrium to Chaos: Practical Bifurcation and Stability 

Analysis," American Elsevier Publishing Company, New York, 1988. 

[13] E. F. Wood, J. A. Kempf, and R. K. Mehra, "BISTAB: A Portable Bifurca-

tion and Stability Analysis Package," Appl. Math, and Comp., 15, 1984, 

pages 343-355. 



4 . A C a v e a t for Par t ia l Differential E q u a t i o n s 25 

4. A Caveat for 

Partial Differential Equations 

To solve partial differential equations correctly, a good understanding 

of the nature of the part ial differential equation is required. This requires 

more t han a knowledge of the "physics" of the problem: a thorough un

derstanding of the type of part ial differential equation is needed. From 

Collatz [1] (page 260): 

That an investigation of the situation is absolutely essential 

is revealed even by quite simple examples; they show that 

formal calculation applied to partial differential equations can 

lead to false results very easily and that approximate methods 

can converge in a disarmingly innocuous manner to values 

bearing no relation to the correct solution. 

E x a m p l e 

Suppose we wish to solve the following wave equation 

(4.1.a-d) 

for 

for 

for ; 

We will a t t empt to solve (4.1) by looking for a series solution of the form 

(4.2) 

Using (4.2) in (4.1.a), we find tha t 

(4.3) 

To satisfy (4.1.b), we require α ^ ι  = 0. To satisfy (4.1.c), we also require 

(4.4) 
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t 

π  \ x 

Figure 4. Depiction of the characteristics and the range of validity of the 

solution found for equation (4.1). 

Evaluating (4.2) at χ  — 0 and using (4.3) and (4.4), we find tha t 

Now the conclusion in (4.5) is correct, but only for 0 < t < π / 2 . This is 

because the characteristics (see page 368), t = π /2 ± x, emanat ing from 

the points ( π / 2 , 0 ) , (—π /2,0) do not allow u(0. t) to be determined directly 

for t > π / 2 . 

See Figure 4 for a graphical representation of the characteristics of 

(4.1) and the region of validity for the solution in (4.5). 

N o t e s 

[1] The above example is from Collatz [1]. 

R e f e r e n c e s 

[1] L. Collatz, The Numerical Treatment of Differential Equations, Springer-

Verlag, New York, 1966. 

5. Chaos in Dynamical Systems 

(4.5) 

A p p l i c a b l e t o Nonlinear differential equations. 

Y i e l d s 

Information on whether or not a system is chaotic. 

26 
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Idea 

Chaos is a phenomenon tha t can appear in solutions to nonlinear dif-

ferential equations. Chaos is easily defined and can be easily (numerically) 

found in some equations. 

P r o c e d u r e 

For simplicity, we focus on deterministic systems modeled by coupled, 

autonomous, first order, ordinary differential equations of the form 

where χ  = (# i , x2,. · . , x n) is the state-space vector and q = (</i, q2,..., qm) 

is a set of parameters . This equation determines a set of solutions, each 

specified by their initial values. We can specify the solution corresponding 

to the initial condition ρ  by x ( t ; p ) . 

Consider a set of initial conditions contained in a vanishing small 

volume V. Under the action of (5.1), the volume will change as a function 

of t. Precisely, 

The summat ion te rm is the generalized divergence of g and is called the Lie 

derivative. Dissipative systems are characterized by contracting volumes; 

this is equivalent to dV/dt < 0. Conservative or Hamiltonian systems, in 

which (5.1) are Hamilton 's equations, obey Liouville's theorem: dV/dt = 0. 

Any trajectory of a dissipative system as t —» oo will approach a 

bounded region of phase space called an at t ractor . An at t rac tor has zero 

volume in phase space. At t ractors include points, limit cycles, and tori. 

For example, consider an unforced damped pendulum. The a t t rac tor for 

this is a point in phase space, the stable configuration with the pendulum 

hanging straight down. In this case, s tar t ing the pendulum swinging with 

slightly different initial conditions will lead to close pa ths in phase space 

and the same final s ta te . 

For nonlinear systems exhibiting chaos, the separation of two nearby 

trajectories increases exponentially with t ime. This is referred to as sensi

tive dependence on initial conditions. For dissipative systems, a stretching 

in one direction has to be accompanied by a more-than-compensating 

contraction in other directions, so tha t the volume of an arbi t rary droplet of 

initial conditions will contract with t ime. The phase-space trajectories for 

= £i(x; q) for i = 1 , 2 , . . . , η  (5.1) 

dV_ 

dt 
dx\ · · · dxn. 
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a chaotic system asymptotically approach a strange attractor, an a t t ractor 

with a fractional dimension (i.e., a fractal). 

Lyapunov exponents are a measure of the rate of divergence (or conver-

gence) of initially infinitesimally separated trajectories. The i th Lyapunov 

exponent, λ ^, can be found by considering the evolution of a vanishingly 

small set of initial conditions which form a hyperellipsoid. We define: 

\I := lim 
t—»OO 

p<(0) —0 

where pi(t) is the length of the zth principal axis of the hyperellipsoid at 

time t, for i = 1,2, . . . , n . An a t t rac tor is chaotic if it has at least one 

positive Lyapunov exponent. 

The Lyapunov exponents can be determined by analyzing the lin-

earized equations corresponding to (5.1). For illustrative purposes, we 

specialize to η  = 3 for the rest of this section. Consider the two close initial 

points: p 0 = (xo>î/o>2O) and p1 = p 0 + δ χ  = ( x 0 + 6x,y0 + 6y,z0 + δ ζ ). 

We want to find the evolution of the difference a(£) := x ( t ; p x) — x (£ ;p 0) . 

From Taylor series: 

dai = φ ι ^ ρ χ ) - xi(t;p0)] = d[gi(x(t; p 0 + δ χ )) - gi(x(t; p 0) ) ] 

dt dt dt 

C , dgi ^dgi 
« — ^ -F — ^ + — δ ζ  

ox ay oz 

dgi , dgi dgx 

ox oy oz 

where the part ial derivatives are evaluated at x ( £ ; p 0) . In general: 

dgi dgi\ 

dx dy dz 

dg2 dg2 dg2 

dx dy dz 

dg$ 9g3 dg3 

\ dx dy dz J 

a, 

where M is the Jacobian of the vector g. The Lyapunov exponents are 

related to the eigenvalues of the matr ix M . 

In special situations, analytical methods can be used to obtain the 

Lyapunov spectra, while numerical methods must be used in general. When 
dx 

there is a stat ionary solution given by — = g(x) = 0, the Jacobian matr ix 
dt 

is t ime-independent, and we can analytically obtain the (possibly complex) 
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Figure 5.1 Duffing equation with Γ  = .20. (Period 1 solution.) 

Figure 5.2 Duffing equation with Γ  = .28. (Period 2 solution.) 

eigenvalues, from which the Lyapunov exponents may be found. In general, 
dx da 

there are no stat ionary solutions and the equations — = g and — = 
at at 

M ( x ) a must be numerically solved simultaneously. See Wolf et al. [15] for 

a numerical technique for computing Lyapunov exponents. 

E x a m p l e 

Consider the Duffing equation: χ  + kx — χ  + χ
3

 = Γ  cos ut. This can 

be converted to an autonomous system as follows: 

dx _ d_ '
 x 

dt " d t \
V 1

 " 
ζ  

—ky + χ  — χ
3

 + Γ  cos ζ  

ω  

(5.3) 

In Figure 5.1-Figure 5.3 we show the different behavior of this system 

(x(t) versus t and x(t) versus y(t)) when k = .3, ω  = 1.2, and Γ  takes 

on the values 0.20, 0.28 and 0.50. For the numerical simulations shown, 

the initial conditions used were xo = (1 .3 ,0 ,0) , and we began plott ing the 

results when t = 50 to remove any initial transients. From deeper analysis 

it can be shown tha t the system has a period 1 (2, 4, 5, 2, 1) solution 

when Γ  = 0.20 (0.28, 0.29, 0.37, 0.65, 0.73). The solution is chaotic when 

Γ  = .50. 

A different set of parameters is shown in Figure 5.4. This figure has 

a plot of the three Lyapunov exponents of (5.3) when ω  = 1.0, k = 0.5 

and Γ  is varied from 0.2 to 0.9. At low values of Γ , the system is periodic 
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Figure 5.3 Duffing equation with Γ  = .50. (Chaotic solution.) 

driving force 

Figure 5.4. The three Lyapunov exponents for Duffing's equation with ω  = 1.0 

and k = 0.5 when Γ  is varied from 0.2 to 0.9. (From De Souza-Machado et al. [4].) 

since the largest Lyapunov exponent is zero. The system follows a period 

doubling route to chaos at Γ  « 0.36, when the largest Lyapunov exponent 

becomes greater t han zero. The system remains chaotic until the driving 

force gets very large ( Γ  > 0.84) except for windows of periodicity, which 

occur throughout the chaotic regime. 

N o t e s 

[1] There are many software packages for numerically computing Lyapunov 

exponents. See, for example, Rollins [12] and Parker and Chua [11]. 

[2] There are at least three scenarios in which the regular behavior of a system 

becomes chaotic. A standard route is via a series of period doubling bifurca-

tions, see page 16. Two other routes to chaos that are fairly well understood 

are via intermittent behavior and through quasiperiodic solutions. 

[3] Many equations have been shown to be chaotic: 

(A) Hale and Sternberg [6] have shown that the differential delay equation 

^Ξ ^Ι  — ax(t)+b-—
X

^n,
 T

^ — 7 is chaotic for certain parameter regimes. 
at 1 + χ  [t — τ ) 

(Β ) The equations defining the Lorenz attractor are 

χ  = lOy — lOx, 

y = —y — xz + 28x, 
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Figure 5.5 The canonical piece wise-linear circuit, and the voltage-current char-

acteristic of the nonlinear resistor GN-

(C) The Rössler equations are 

* = - ( v + s), 

y = χ  + ay, 

ζ  = b + X2 — cz. 

When a = 0.343, b = 1.82, and c = 9.75, this generates the "Rössler 

funnel." When a = 0.2, b = 0.2, and c = 5.7, this generates "the simple 

Rössler attractor." 

[4] For any autonomous electronic circuit to exhibit chaos, it must composed of 

at least three energy storage devices. (Otherwise, the Poincaré-Bendixson 

theorem states that the limiting set will be a point or a limit cycle, not a 

strange attractor.) A simple circuit with three energy storage devices that 

produces chaos was given in Matsumoto [9]. 

The circuit given in Chua and Lin [3], see Figure 5.5, is almost as simple 

as that given by Matsumoto and can simulate (by choosing different values 

for the nonlinear resistor) all possible chaotic phenomena in a rather large, 

three-dimensional state space. This circuit contains only six two-terminal 

elements: five of them are linear resistors, capacitors, and inductors; and 

only one element (GJV) is a three-segment, piecewise linear resistor. 

[5] The papers by Ablowitz and Herbst [1], Yamaguti and Ushiki [16], and 

Lorenz [7] describe and illustrate how numerical discretizations of a differ

ential equation can lead to discrete equations exhibiting chaos. 

[6] Different types of dynamical systems can have greater or lesser degrees 

of randomness. A simple classification of the amount of randomness in 

dynamical systems is as follows: 

(A) Ergodic systems: this is the "weakest" level of randomness, in which 

phase averages equal time averages. 

(B) Mixing systems: here, no time averaging is required to reach "equilib

rium." 

(C) K-systems: systems with positive Kolmogorov entropy. This means 

that a connected neighborhood of trajectories must exhibit a positive 

average rate of exponential divergence. 
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(D) C-systems: every trajectory has a positive Lyapunov exponent. 

(E) Bernoulli systems: these systems are as random as a fair coin toss. 

See Tabor [14] for details. 

[7] In this section we have focused on chaos appearing in coupled, first-order, 

ordinary differential equations. Chaos can also appear in partial differential 

equations and stochastic equations. 

[8] The journal Nonlinear Dynamics has many articles about chaos. 
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Most part ial differential equations are of three basic types: elliptic, 

hyperbolic, and parabolic. 

Elliptic equations are often called potential equations. They result 

from potential problems, where the potential might be tempera ture , volt-

age, or a similar quantity. Elliptic equations are also the steady solutions of 

diffusion equations, and they require boundary values in order to determine 

the solution. 

Hyperbolic equations are sometimes called wave equations, since they 

often describe the propagation of waves. They require initial conditions 

(where the waves s tar t from) as well as boundary conditions (to describe 

how the wave and boundary interact; for instance, the wave might be 

scattered or adsorbed). These equations can be solved, in principle, by 

the method of characteristics (see page 368). 

Parabolic equations are often called diffusion equations since they 

describe the diffusion and convection of some substance (such as heat) . 

The dependent variable usually represents the density of the substance. 

These equations require initial conditions (what the initial concentration 

of substance is) as well as boundary conditions (to specify, for instance, 

whether the substance can cross the boundary or not) . 

The above classification is most useful for second order part ial differen-

tial equations. For second order equations only characteristic curves need 

to be considered. For equations of higher degree, characteristic surfaces 

must be considered, see Whi tham [8] (pages 139-141) or Zauderer [10] for 

more details. After two special cases, we specialize the rest of this section 

to second order part ial differential equations. 

P r o c e d u r e 

Knowledge of the type of equation under consideration. 

Y i e l d s 

A p p l i c a b l e t o Par t ia l differential equations. 

Partial Differential Equations 

Classification of 6· 
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Spec ia l C a s e 1 

The most general second order linear partial differential equation with 

constant coefficients 

if the equation is hyperbolic, for some value of λ . See Garabedian [3] for 

details. 

Spec ia l C a s e 2 

The (real valued) second order part ial differential equation in η  di-

mensions 

for u(x.) = u(xi,... , £ n ) 5 where = dji, may be classified at the point 

x 0 as follows. Let A be the matr ix ( α ^ ( χ ο ) ) . By means of a linear 

transformation, the quadrat ic form g
T

Ag may be reduced to the form 

The values of { λ *}, which are the eigenvalues of A, determine the nature 

of the partial differential equation in (6.1). Since A has been assumed to 

be symmetric, all of the eigenvalues will be real. The classification at the 

point xo is then given by: 

(A) If all of the {X{} are of the same sign, then (6.1) is elliptic at x 0. 

(B) If any of the {λ *} are zero, then (6.1) is parabolic at xo. 

(C) If none of the {Ai} are zero and they are not all of the same sign, then 

(6.1) is hyperbolic at xo-

(D) If none of the {λ *} are zero and there are at least two tha t are positive 

and at least two tha t are negative, then (6.1) is ultrahyperbolic at xo. 

If an equation is parabolic along a smooth curve in a domain D , and 

the equation is hyperbolic on one side of the curve and elliptic on the other 

side of the curve, then the equation is of mixed type. The smooth curve is 

called the curve of parabolic degeneracy. 

Little more can be said in general. We further specialize here and 

restrict ourselves to second order equations in two independent variables. 

may be placed in the form 

Ufcfc + * ' * + Η η ξ η  + Au = 0, 

if the equation is elliptic, or may be placed in the form 

M

*i*i - Η η ξ η  + Au = 0, 

(6.1) 

λ ΐ 0? + λ 202 + · · · + λ η ^ . 
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trial point;. 11 an equation is 0 1 tne same type at an points in tne aomam, 

then the equation is simply said to be of tha t type. 

A part ial differential equation of second order can be transformed 

into a canonical form for each of the three types mentioned above. The 

procedures are as follows. 

Hyperbolic Equations 

For hyperbolic equations we look for a new set of independent variables 

ζ  = ζ (χ , y) and η  = η (χ , y) in which (6.2) may be writ ten in the s tandard 

form 

ν ζ η  = Φ (ν .,η η ,υ ,ζ ,η ,ζ ). (6.3) 

Utilizing this change of variables, we can calculate 

ux = ν > η η χ  + ν >ζ ζ χ , 

uy = η η η ν  + η ζ ζ υ , 

uxx = η η η η χ η χ  + 2υ , η ζ η χ ζ χ  + Ή ζ ζ ζ χ ζ χ  + ^η Ή χ χ  + ν >ζ ζ χ χ , 

uXy = υ η η η χ η ν  + 2υ η ζ(η χ ζ υ  + η υ ζ χ ) + ζ̂ ζ χ ζ υ  + η η η χ υ + υ ,ζ ζ χ ν, 

uyy = η η η η υ η υ  + 2η η ζ η υ ζ ν  + η ζ ζ ζ ν ζ ν  + η η η ν ν + η ζ ζ υ υ , 

to find tha t (6.2) transforms into 

Au^c + BuCv + Cum = Φ  (m, Ur),uc, 77, C ) , (6 .4) 

where _ 
Α  = Α ζ ΐ  + Β ζ χ ζ ν  + 0$, 

Β  = Α ζ χ η χ  + Β (ζ χ η υ  + ζ υ η χ ) + 20ζ υ η ν , 

0=Α η
2

χ  + Β η χ η ν  + Cn

2

y. 

at some point (x,y), then (6.2) is 

hyperbolic 

parabolic 

elliptic 

at 

where Φ  need not be a linear function. 

Consider part ial differential equations of second order in two indepen-

dent variables, of the form 

Second Order Equations 

(6.2) 

If 
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Setting A = C = 0, we can find the following part ial differential equations 

for ζ  and η  

Çx_ = -Β  + V Β
2

 - AAC 

C y

 ™ ' (6.5.a-6) 

rte _ -B - Vb
2

 - AAC 

Vy~ 2A 

These equations may be readily solved (in principle) by the method of 

characteristics. For example, to solve equation (6.5.a) we only need to 

solve 

_dy_ _ -B + VB
2

 - \AC 

dx ~ 2A 

for Q(x,y) = R, where R is an arbi t rary constant. Then ζ  will be given by 

C = Q(x,y)-

After ζ  and η  are determined, then the original equation must be trans-

formed into the new coordinates (see page 139). The resulting equation will 

then be in s tandard form. 

Note tha t another s tandard form for hyperbolic equations (in two 

independent variables) is obtained from (6.3) by the change of variables 

a = r / - C , β  = η  + ζ . (6.6) 

This results in the equation 

UAA - Ußß = Φ  {u, U A - Uß, U A + Uß, \ (Β  + Θ ) , \ (Β  - ά )) . 

E x a m p l e 1 

Suppose we have the equation 

y
2

uxx - x
2

uyy = 0. (6.7) 

We recognize this equation to be hyperbolic away from the lines χ  = 0 and 
y = 0. To find the new variables ζ  and 77, we must solve the differential 
equations in (6.5). For this equation we have {A = y

2

, Β  = 0, C = — x
2
} , 

therefore (6.5) becomes 

Cx *^ Ή χ  

Cy y Vy 2 / ' 

with the solutions ζ  = y
2

 —χ
2

, η  = y
2

+x
2

. In these new variables, equation 
(6.7) becomes 

u

< "
=

w ^ r f " " w ^ 7 )
u

°

If the change of independent variable in (6.6) is made, then equation (6.8) 
becomes 

1 1 
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while, if C Φ  0, then case (6.10.b) corresponds to the equation 

(6.11.a) 

(6.11.6) 

In either case, we have only to solve a single equation to determine ζ . The 

variable η  can then be chosen to be anything linearly independent of ζ . As 

before, once ζ  and η  are determined, then the equation needs to be wri t ten 

in terms of these new variables. 

E x a m p l e 2 

Suppose we have the equation 

y
2

uxx - 2xyuxy + x
2

uyy + uy = 0. (6.12) 

Since {A — y
2

, Β  = -2xy, C = x
2

} , we find tha t B
2

 — 4AC = ) and so this 

equation is parabolic. In this case we choose to make Β  = C = 0. From 

equation (6.11) we must solve = —, which has the solution ζ  = y
2

 +x
2

. 
Cy V 

We choose η  = χ . Using these values of η  and ζ , we find tha t (6.12) becomes 

_ 2(Ç + η ) 1 

Parabolic Equations 

For parabolic equations we look for a new set of variables ζ  = C(x, y) 

and η  = η (χ , y) in which (6.2) can be wri t ten in one of the s tandard forms 

υ ,ζ ζ = φ  (u, υ ,η , υ , ζ ,η , ζ ), (6.9. α ) 

or 

η η η = φ  (u, υ , η , rxc,77, ζ ). (6.9.6) 

Utilizing (6.4), we see tha t we need to determine ζ  and η  in such a way 

tha t 

Β  = 0 = C, corresponding to (6.9.a), (6.10.a) 

or 

Β  = 0 = A, corresponding to (6.9.6). (6.10.6) 

If Α  φ  0, then case (6.10.a) corresponds to the single equation 
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Elliptic Equations 

For elliptic equations we look for a new set of variables α  = a(x, y) 

and β  = β (χ , y) in which (6.2) can be writ ten in the s tandard form 

u a a + Ußß = φ  (u, ua, Uß, α , β ). 

The easiest way in which to find a and β  is to determine variables 

ζ  = C(x, y) and η  = η (χ , y) tha t satisfy (6.5) and then form a = (η  + 0 / 2 , 

ß — — C)/2i (where, as usual, i = y/—î). Note tha t in this case, the 

differential equations in (6.5) are complex. However, since ζ  and η  are 

conjugate complex functions, the quantities a and β  will be real. 

E x a m p l e 3 

Suppose we have the equation 

We recognize this equation to be elliptic away from the lines χ  = 0 and 

y = 0. To find the new variables ζ  and 77, we must solve the differential 

equations in (6.5). For this equation we have {A = y
2

, Β  = 0, C = x
2

} , 

therefore (6.5) becomes 

Cx Vx 

(y y ' Vy 2/ ' 

with the solutions ζ  = y
2

 — ix
2

, η  = y
2

 -f ix
2

. Forming a and β  results in 

η +ζ  2 Ο  ^ - C 2 
a = _ = y , /3 = _ _ = x. 

In these new variables, equation (6.7) becomes 

1 1 

Uaa + Ußß = - — W a - Jß
U

ß-

N o t e s 

[1] Equations of mixed type are discussed in Smirnoff [6] and also in Haack and 
Wendland [4]. 

[2] Given a partial differential equation in the form of (6.1), the characteristic 
surfaces are defined by the characteristic equation 

έ
α

-
( χ )

( £ ) 0 
| ^ l = o . 
OX j 

The solutions to this equation are the only surfaces across which it(x) may 
have discontinuities in its second derivatives. 

[3] See the Notes section of the characteristics section (page 368) for how to 
determine when a system of partial differential equations is hyperbolic. 
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7. Compatible Systems 

A p p l i c a b l e t o Systems of differential equations. 

Y i e l d s 

Knowledge of whether the equations are consistent. 

P r o c e d u r e 1 

The two equations f(x,y,z,p,q) = 0 and g(x,y, z,p,q) = 0 for ζ  = 

z(x,y) (where, as usual, ρ  = zx, q = zy) are said to be compatible if every 

solution of the first equation is also a solution of the second equation, and 

conversely. These two equations will be compatible if {f,g} = 0, where 

g ( / , g ) , J(f,g) d(f,g) d(f,g) 

and where 

d(x,p) "d(z,p) d(y,q)
 H

 β ( ζ , β ) ' 

d(u, v) 

d(a,b) 
ua va = UaVb — vaut, is the usual Jacobian. 
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7. Compatible Systems 

A p p l i c a b l e t o Systems of differential equations. 

Y i e l d s 

Knowledge of whether the equations are consistent. 

P r o c e d u r e 1 

The two equations f(x,y,z,p,q) = 0 and g(x,y, z,p,q) = 0 for ζ  = 

z(x,y) (where, as usual, ρ  = zx, q = zy) are said to be compatible if every 
solution of the first equation is also a solution of the second equation, and 
conversely. These two equations will be compatible if {f,g} = 0, where 

g ( / , g ) , J(f,g) d(f,g) d(f,g) 

and where 

d(x,p) "d(z,p) d(y,q)
 H

 β ( ζ , β ) ' 

d(u, v) 

d(a,b) 

ua va = UaVb — vaut, is the usual Jacobian. 
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xzx - yzy, z(xzx + yzy) = 2xy. (7.1) 

From (7.1) we identify 

f(x,y,z,p,q) = xp-yq, g{x,y,z,p,q) = z{xp + yq) - 2xy. (7.2) 

Using (7.2) we can easily calculate 

d(x,p)
 2xy

> d(z,p)-
 XP

> 

d(», q)~ d(z,q)-
X!JP

-

Therefore, computing {/, g}, we find it to be zero. Hence, the two equations 
in (7.1) have identical solution sets. 

Since the equations in (7.1) are compatible, we can combine them 
without changing the solution sets. Solving the equations in (7.1) simulta-
neously for ρ  and q to obtain {zx = ρ  — yjz, zy = q = x/z}. These last 
two equations can be easily solved to obtain z

2

 = C + 2xy, where C is an 
arbitrary constant. 

P r o c e d u r e 2 

The conditions for consistency of a system of simultaneous partial 
differential equations of the first order, if the number of equations is an 
exact multiple of the number of dependent variables involved, is given in 
Forsyth [3]. To write the consistency conditions, let the unknown depen-
dent variables be {ζ * | i = l , . . . , m } , let the independent variables be 
{XJ I j = 1 , . . . , n } , and define pij = dzi/dxj. We presume the system has 
rm equations (with r < n ) , and tha t these equations can be solved with 
respect to the p^. Tha t is 

dzi 

Pij
 =

 Qx~
=

 h ({
χ ι

} ' ' { Ρ * μ } ) ' 

E x a m p l e 

Suppose we have the two following nonlinear partial differential equa-

tions for z(x, y) 
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where ζ  = ( l , m ) , α  = (j + l , r ) , j = (1, r — 1), and 

/ ^/ ύ  d/sa _ d/m d/sj d/ij dfsg _ dfia dfsj \ _ 0 

^ V d / V ^ P f c r dpSfldpkT dpsrdpkil dp8Tdp^J 

where z,fc = ( l , m ) , a = (j + l , r ) , μ , τ  = (r + l , n ) , j = ( l , r - 1). 

Spec ia l C a s e 1 

In the special case of m = 1, we have one dependent variable (which we 

call z) and r equations. Let pj = dz/dxj = fj(z,x\,..., x n , p r + i , . . . , p n) . 

In this case, (7.4) is automatically satisfied while (7.3) becomes 

ί ί ί ΐ  _ ^ + V " (
 d

h
 d

f
a

 d/q dfj \ = 0 

dxa dxj μ~ ^ λ  \9ρ μ  ά χ μ  dpμ  ά χ μ  J 

d d ö 
for α  = — 1), j = ( l , r ) , where we have defined - — = h p s — · 

dxs oxs oz 

Spec ia l C a s e 2 

In the special case of r = n, the system of ran equations becomes 

= Fij(z\,..., zm, # i , . . . , xn) and the consistency conditions become 

dfij dfia.s^fr dfij dfia\ 

for i = ( l , m ) , a = (1, j — 1) and j = ( l , n ) . These are known as Mayer's 

system of completely integrable equations. 

t To simplify notation, define (a, 6) to be the sequence of numbers α ,α  + 

l , a + 2 , . . . , & . 

forf i = ( l , m ) , j = ( Ι , η ) , Ζ  = ( Ι , η ) , λ  = ( l , m ) , μ  = (r -h l , n ) . Then, for 

consistency, the following conditions must be satisfied 

dfij _ dfia , γ > Λ  dfji _ f

 d

fia\ 

dxa dxj ^2^y
Xa

dzx

 J x j

d z j 
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Spec ia l C a s e 3 

Consider the special case of r = 1, with {Fi = 0, F2 = 0, . . . , Fm = 0}, 

where each Fj = pj — fj(z, # i , . . . , £ n , p r + i , . . . ,pn) is analytical in each of 

its arguments. A necessary and sufficient condition for the set of equations 

to be consistent is tha t [Fi,Fj] = 0, for all combinations of i and j . Here, 

[, ] represents the usual Poisson bracket. 

N o t e s 

[1] Jacobi's method (see page 397) takes a given partial differential equation 
and creates a compatible equation and then uses elimination between these 
two equations. 

[2] If it is known that a linear homogeneous ordinary differential equation of 
order η  has solutions in common with a linear homogeneous ordinary differ-
ential equation of order m (with m < n), then it is possible to determine a 
differential equation of lower degree that has, as its solutions, these common 
solutions. 

If the linear homogeneous ordinary differential equations L\(u) = 0 
and L2 (u) = 0 are defined by 

L i := p0D
n

 + piD
71

-
1

 + . . . + p n - i £ > + P n , 

L2 := qoD™ + qiD
171

'
1

 + . . . + qm-iD + qm, 

where D represents d/dx and each of the functions {pi,qi} depends on x, 
define the ordinary differential equation Ri (u) = 0 by 

Ri := r0D
n

-
m

 + r i D " - ™ "
1

 + . . . + r n_ m_ i L > + r n _ m, 

where the {ri} are defined by 

Po — roqo, 

Pi = riqo + ro 

P2 = r2qo + ri 

Pn — m — rn — mÇO ~h rn—τ η  — 1 

+ rn-m-2 

( " i
m

) « o + 9 i ] , 

( n - m - l \ , 

( λ Uo + qi 

(n- m\ ,, (n - m\ , 

X 2 )
q o +

 { 1 J
9 l + 9 2 

+ . . . , 

[q'o + qi] + 
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Then the order of the operator L3 := L\ — R1L2 will be depressed as much 
as is possible (the order of L3 will not exceed m-I). Note that only a finite 
number of rational operations and differentiations are required to determine 
the {r*i}. 

From the definition of L3 we see that all solutions common to both 
L\(u) = 0 and to L2(u) = 0 will also be solutions to Lz(u) = 0. If L 3 is 
identically zero, then we have found a factorization of L\ (see page 246). 
See Ince [4] or Valiron [6] for details. 

[3] Differential resultants can also be used to derive consistency conditions. See 
Berkovich and Tsirulik [2] for details. 

[4] Wolf [7] describes an algorithm which determines if an overdetermined sys-
tem of two equations for one function has any solution. An implementation 
in FORM AC is mentioned. 
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Their Applications," DifferentsiaVnye Uravneniya, 22 , No. 5, May 1986, 
pages 750-757. 

[3] A. R. Forsyth, Theory of Differential Equations, Part IV, Dover Publica-
tions, Inc., New York, 1959, pages 411-419. 

[4] E. L. Ince, Ordinary Differential Equations, Dover Publications, Inc., New 
York, 1964, pages 126-128. 

[5] I. N. Sneddon, Elements of Partial Differential Equations, McGraw-Hill 
Book Company, New York, 1957, pages 67-68. 

[6] G. Valiron, The Geometric Theory of Ordinary Differential Equations 

and Algebraic Functions, Math Sei Press, Brookline, MA, 1950, pages 320-
322. 

[7] T. Wolf, "An Analytic Algorithm for Decoupling and Integrating Systems of 
Nonlinear Partial Differential Equations," J. Comput. Physics, 60, 1985, 
pages 437-446. 

8. Conservation Laws 

A p p l i c a b l e t o Par t ia l differential equations. 

Y i e l d s 

Quantit ies tha t remain invariant during the evolution of the part ial 
differential equation. 



8. C o n s e r v a t i o n Laws 4 3 

Then the order of the operator L3 := L\ — R1L2 will be depressed as much 

as is possible (the order of L3 will not exceed m-I). Note that only a finite 

number of rational operations and differentiations are required to determine 

the {r*i}. 

From the definition of L3 we see that all solutions common to both 

L\(u) = 0 and to L2(u) = 0 will also be solutions to Lz(u) = 0. If L 3 is 

identically zero, then we have found a factorization of L\ (see page 246). 

See Ince [4] or Valiron [6] for details. 

[3] Differential resultants can also be used to derive consistency conditions. See 

Berkovich and Tsirulik [2] for details. 

[4] Wolf [7] describes an algorithm which determines if an overdetermined sys

tem of two equations for one function has any solution. An implementation 

in FORM AC is mentioned. 

R e f e r e n c e s 

[1] W. F. Ames, "Ad Hoc Exact Techniques for Nonlinear Partial Differential 

Equations," in W. F. Ames (ed.), Nonlinear Partial Differential Equa

tions in Engineering, Academic Press, New York, 1967, pages 54-65. 

[2] L. M. Berkovich and V. G. Tsirulik, "Differential Resultants and Some of 

Their Applications," DifferentsiaVnye Uravneniya, 22 , No. 5, May 1986, 

pages 750-757. 

[3] A. R. Forsyth, Theory of Differential Equations, Part IV, Dover Publica

tions, Inc., New York, 1959, pages 411-419. 

[4] E. L. Ince, Ordinary Differential Equations, Dover Publications, Inc., New 

York, 1964, pages 126-128. 

[5] I. N. Sneddon, Elements of Partial Differential Equations, McGraw-Hill 

Book Company, New York, 1957, pages 67-68. 

[6] G. Valiron, The Geometric Theory of Ordinary Differential Equations 

and Algebraic Functions, Math Sei Press, Brookline, MA, 1950, pages 320-

322. 

[7] T. Wolf, "An Analytic Algorithm for Decoupling and Integrating Systems of 

Nonlinear Partial Differential Equations," J. Comput. Physics, 60, 1985, 

pages 437-446. 

8. Conservation Laws 

A p p l i c a b l e t o Par t ia l differential equations. 

Y i e l d s 

Quantit ies tha t remain invariant during the evolution of the part ial 

differential equation. 



4 4 I .A Def in i t ions a n d C o n c e p t s 

j T(u{x,t)) dx (8.3) 

is independent of t, for solutions of (8.1) such tha t the integral converges. 

More generally, a part ial differential equation of order m in the η  

independent variables χ  = ( χ ι , x2, . . x n ) and a single dependent variable 

u is in conservation form if it can be wri t ten as 

71 rj 

Τ  u> du, d
2

u,..., d™-
l

u) = 0 (8.4) 

i=i
 O Xi 

Here d
3

u represents all j - t h order part ial derivatives of u with respect to x. 

E x a m p l e 1 

The Korteweg-de Vries equation 

ut = u x xx + uux (8.5) 

has an infinite set of conservation laws. The first few, in order of increasing 

rank, have the conserved densities 

Τ  = u, 

T = u
2

, 

T = u
3

-3u
2

x, 

Τ  = 5 u
4

 — 60uu
2

 — 36uxuxxx, 

To demonstrate , for instance, tha t Τ  = u
2

 is a conserved density, we 

compute 

dT d{u
2

) o n 2 
-7Γ Γ  = —Τ Γ Γ ~ = 2uut = 2uuxxx + 2u ux, 
at at 

where we have used the defining equation (8.5) to replace the ut term. Now 

we must determine a flux X such tha t (8.2) is satisfied. In this case, we 

find X = u
2

 — 2uuxx — | u
3

. 

P r o c e d u r e 

Given an evolution equation, which is a part ial differential equation of 

the form 

ut = F(u, ux, uxx,... ), (8.1) 

a conservation law is a part ial differential equation of the form 

(u(x, t)) + ^X (u (x , t)) = 0, (8.2) 

which is satisfied by all solutions of (8.1). We define T( ) to be the conserved 

density and X( ) to be the flux. An alternative s ta tement of (8.2) is tha t 
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E x a m p l e 2 

The Schrödinger equation 

d
2

u __, x .du _ _ ? + V ( a ï ) t l = t _ 

can be expressed in the form of (8.2) with 

Τ  = iu(x)u, 

where v(x) is defined by v"(x) = V{x)v(x). 

N o t e s 

[1] Conservation laws allow estimates of the accuracy of a numerical solution 
scheme (since (8.3) must be invariant in time). 

[2] Not all partial differential equations have an infinite number of conservation 
laws; there may be none or a finite number. 

[3] A conservation law for an evolution equation is called trivial if Τ  is, it-
self, the χ  derivative of some expression. If (8.1) has an infinite sequence 
of nontrivial conservation laws, then the equation is formally integrable. 
Infinite sequences of nontrivial conservation laws are given by Cavalcante 
and Tenenblat [2] for the following equations: Burgers, KdV, mKdV, sine-
Gordon, sinh-Gordon. 

[4] If a given partial differential equation is not written in conservation form, 
there are a number of ways of attempting to put it in a conserved form. See 
Bluman, Reid, and Kumei [1] for a short list of techniques. 

[5] If (8.4) is satisfied, then there exists an (n — l)-exterior differential form 
F such that (8.4) can be written dF = 0. This implies that there is an 
(n — 2)-form φ  such that F = ά φ . This, in turn, means that there exists an 
antisymmetric tensor of rank η , ψ , such that 

i<j<n l<i<i 

for i = 1,2,. . . ,ra. 
[6] A computer program in REDUCE for determining conservation laws is given 

in Ito and Kako [7]. In Gerdt, Shvachka and Zharkov [4] is the description 
of a computer program in FORMAC that determines conservation laws, 
determines Lie-Bäcklund symmetries, and also attempts to determine when 
an evolution equation is formally integrable. 

[7] Torriani [11] shows how the terms appearing in the expression of the den-
sities and the fluxes for the Korteweg-de Vries equation may be found by 
combinatorial methods. 
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9. Differential Resultants 

A p p l i c a b l e t o Two polynomial ordinary differential equations. 

Y i e l d s 

One ordinary differential equation in one independent variable. 
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Idea 

Given two polynomial equations (in, say, χ  and y) the classical method 

of resultants is as follows: the equations can always be wri t ten as the system 

of linear equations Aw = 0, where A = A(y) and w = w(x) φ  0. Since 

this system must have det A = 0, a polynomial equation only in y may 

be determined. The technique for polynomial differential equations is very 

similar. 

P r o c e d u r e 

Resultants have classically been used to eliminate one variable between 

two polynomial equations. For example, given the two equations 

x
3

 -3y
2

x
2

 + x + by
2

 = 0, (9.1) 

x
3

 + by
2

x
2

 - χ  + 3y
2

 = 0, (9.2) 

(9.1) and (9.2) may be multiplied by powers of χ  to obtain the system of 

equations: 

x
5

 - 3y
2

x
4 

+ X
3 

+ by
2

x
2 

= o, 
X

4 

-
3y

2

x
3 

+ X
2 

+ by
2

x = o, 
x

3 

-
3y

2

x
2 

+ X + = o, 
X

3 

+ 5y
2

x
2 

-
X + 3y

2 

= o, 
X

4 

+ by
2

x
3 

-
x

2 

+ 3y
2

x = o, 
x

5

 + 5y
2

x
4 

- X
3 

+ 3y
2

x
2 

= 0. 

This system can be wri t ten in matr ix form as 

- 3 y
2 

1 5y
2 

0 
ί

χ 5

Λ  
0 1 -3y

2 
1 5y

2 

0 X
4 

0 

0 0 1 - 3 î /
2 

1 by
2 

X
3 

0 

0 0 1 5y
2 

- 1 32/
2 

X
2 

0 

0 1 5y
2 

- 1 3y
2 

0 X 0 

V l 5y
2 

- 1 3y
2 

0 0 J \ 1 ) 

(9.3) 

This last equation is a 6 χ  6 system of the form Aw = 0. Since w φ  0 

(since, at least, the last component of w is non-zero), the determinant of A 

must vanish. Taking the determinant of the matr ix in (9.3), we find tha t 

y must satisfy the equation 

32y
2

(2S9y
8

 + 16y
4

 + 1) = 0. (9.4) 

All the different values of y, from the solutions of (9.1) and (9.2), must 

satisfy (9.4). 

Differential resultants are the analogue of resultants applied to differ

ential systems. There are two steps analogous to multiplying the original 

equations by powers of x. They are 
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0 - 1 0 0 3z ζ  \ 

1 0 0 0 0 1 ζ
2

 - ζ χ  

3z 0 0 - 1 0 ζ  0 

1 1 0 0 0 ζ
2

 - zx 
0 

0 0 z
2

 - zx 
1 1 0 0 

0 0 1 2 0 0 *2ζ Ζ χ  Ζ χ χ  

V o 0 0 1 2 ^Ζ Ζ χ  Ζ χ χ  0 / 

( Κ  \ 
y

3 
0 

yx 
0 

yyx 
— 0 

y
2

yx 
0 

y 0 

\ 1 ) 

(9.5) 

Taking the determinant of the matr ix appearing in (9.5) we conclude tha t 

z(x) is a solution of the single ordinary differential equation 

4x + ( ~
1 6

^ +
 1 2

*
2

 - $)
zz

xx +
 6 4

*
2

* x + (
2 3

 - 9 6 *
2

) z
2

z x 

+ (36z
4

 - llz
2

 + 2)z
2

 = 0. 

(A) differentiating one of the equations, 

(B) multiplying one of the equations by some term which may involve 

the independent and /o r the dependent variables. 

While there are algorithms published on how to proceed in any given 

case, as in Mishina and Proskuryakov [3], they are generally writ ten in the 

language of abstract algebra. 

E x a m p l e 

Suppose we have the following two coupled differential equations for 

{y(x),z(x)} 

A : 3yz + ζ  - yx = 0, 

Β  : - zx + z
2

 + y
2

 + y = 0. 

We seek a single differential equation only involving z(x). Note tha t we 

could solve equation (A) for y(x) (by integrating factors) and then substi

tu te this result in equation (B), but this creates an algebraic mess. This, 

in turn , makes it difficult to obtain a single simple equation for z(x). 

If we form the equations {A, B, y A, yB, yxB,dxB, ydxA}, then we ob

tain the system 
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N o t e s 

[1] This technique applies directly to systems of partial differential equations 

and to higher order equations. 

[2] There are specific technical requirements for when the classical method 

of resultants (when applied to polynomials) will work. There are similar 

requirements for when differential resultants will work. See Mishina and 

Proskuryakov [3] for details. 

Rubel [6] proves the following theorem which indicates that elimination 

is not always possible, at least for algebraic differential equations (ADEs, 

see page 644): 

There exists a system of two ADEs, in the two dependent 

variables u and υ  which possesses a real-valued C
n ,m

 solution 

u, ϋ  on a certain open interval I, but which has no solution 

u, ν  on I for which ν  satisfies an ADE that does not involve 

u or any derivative of u. 

[3] By taking equations pairwise' a system of, say, 10 equations in 10 different 

independent variables could, if fortunate, be reduced to a single equation in 

a single independent variable. 

[4] The two differential equations considered do not both have to be polynomial 

for this reduction scheme to work. The two equations only have to be 

polynomials in one of the dependent variables (the one that will be removed). 

[5] Any linear second order ordinary differential equation system can be inter

preted as the resultant of the elimination of a dependent variable from a pair 

of conjugate first order Hamilton's equations. See Tolstoy [8] for details. 
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Equations," Houston J. Math., 8, No. 2, 1982, pages 289-295. 
[7] A. Seidenberg, An Elimination Theory for Differential Algebra, Univer-

sity of California Press, 3 , No. 2, 1956, pages 31-66. 
[8] I. Tolstoy, "Remarks on the Linearization of Differential Equations," J. Inst. 
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10. Existence and Uniqueness 

Theorems 

A p p l i c a b l e t o Differential equations of all types. 

Y i e l d s 

Knowledge of whether a solution exists and, if so, if the solution is 
unique. 

Idea 

There are theorems available for most cases of interest. 

P r o c e d u r e 

Corresponding to the difficulty of the subjects involved, there are 
more theorems applicable to: ordinary differential equations than partial 
differential equations, linear equations than nonlinear equations, and initial 
value problems than boundary value problems. In the following we indicate 
some of the simple theorems tha t are frequently useful. 

The last theorem is applicable to part ial differential equations, the rest 
are applicable to ordinary differential equations. The first and last theorems 
are for vector systems, the other theorems are for scalar equations (which 
may sometimes be derived from the vector result). 

dx 
Theorem: Consider the initial value problem: — = F(£,x), with 

at 
x(to) = xo, where χ  = x(t) — (xi(<), X2{t), ..., xn(t)). If each of the 

functions {FA and < ^—^ 1 are continuous in a region R of ( ί , χ ) space 
I OXj J 

containing the point xo, then there is an interval \t - to\ < h in which 
there exists a unique solution to the problem. 

Theorem: Consider the initial value problem: y' = f(x,y) with 
y(xo) = yo. Let the functions / be continuous in some rectangle 
a<x<b, c<y<d containing the point (#o,2/o)- Assume that 
f(x,y) satisfies a Lipschitz condition in y. Then, in some interval 
xo — h < χ  < xo + h contained in a < χ  < 6, there is a unique solution 
to the given problem. 

Theorem: Consider the initial value problem: y' = f(x,y) with 
y(xo) = 2/0- Let the functions / and df/dy be continuous in some 
rectangle a < χ  < b, c < y < d containing the point (2:0,2/0)· Then, in 
some interval xo — h < χ  < xo + h contained in a < χ  < 6, there is a 
unique solution to the given problem. 
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Theorem: Consider the initial value problem: y" = f{x,y,y') with 
y(xo) = y o , y'(xo) = y'o- Let the functions / , / y , and fv> be continuous 
in an open region R of three-dimensional (x,y,y ') space. If the point 
(xo, 2/o,2/o) is i

n
 Ä, then there exists some interval about XQ for which 

there is a unique solution to the given problem. 

Theorem: Consider the initial value problem: 

2 /
( n)

 + p i ( x ) 2 /
( n - 1)

 + . . . + pn-i{x)y +p i (x )y = 

with 

y(x 0) = 2/o, y'(*o) = yi, · · · y
( n _ 1 )

( ^ o ) = y o
n _ 1 )

-

If the functions {pi(x)} and ^(x) are continuous on the open interval 
a < χ  < 6, then there exists a unique solution to the problem. 

Theorem: Consider the initial value problem: 

χ  = f(x,y,t), y' = g(x,y,t) 

with x(to) = xo, y (to) = yo- If / and g satisfy a Lipschitz condition 
(with respect to χ  and y) in the region {\t — to\ < A, \x — xo\ < B, 

12/ — 2/01 < C'}, then the problem has a unique solution in some interval 
a < t < b about the point to. 

Theorem: Consider the boundary value problem: 

x" = f(t,x,x'), 0 < t < 1, 

x(0) = A, x(l) = B. 

If / and fx are continuous and fx > 0, then there exists a unique 
solution. 

Theorem: Consider the initial value problem 

y" + f(x,y,y) = o, 

Öi[y] :=y ' (a ) + A y ( a ) - C i = 0 , (10 

B2[y] := y'(6) + By(b) - C2 = 0, 

where / satisfies a Lipschitz condition, and fy and fy> are bounded for 
χ  in the interval [a, 6] and for values of (y, y') of interest. Consider the 
two comparison equations 

u" + hi(x,ui,u'i) = 0, ß i [ui ] = 0, £ 2 ( ^ 1 ] = 0, 

^ 2 + h2(x,u2, u2) = 0, ßi[ i i 2] = 0, £ 2 ^ 2 ] = ° 5 

with hi(x,y,y') < f(x,y,y') < h2(x,y,y
;
)- W

e
 assume that the u\ 

and W2 problems have unique solutions. Then there exists at least 
one solution to (10.1) in the given region, and every solution has the 
property u\(x) < y(x) < u2(x). (This theorem is one of the major 
results of the theory of differential inequalities.) 

51 
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Cauchy-Kowalewski Theorem: If the vector u = (ui, u2, ..., un)
T 

satisfies 

u t = A(u)uXl u(0,x) = h(x), 

where Uk = v>k(x, £), A(u) is an analytic matrix, and h(x) is an analytic 
function, then a neighborhood of t = 0 can be found in which there is 
a unique solution u, with each Uk being analytic. 

E x a m p l e 1 

The first order initial value problem 

y' = M
1 / 3

, y(xo) = o (10 .2 ) 

has a right-hand side tha t is not Lipschitz continuous at y = 0. This 

equation, in fact, has an infinite number of solutions. Let x\ and x2 be any 

two numbers such tha t x\ < XQ < x2. Then the following function 

i - ( I )
3 / 2

( * i - * )
3 / 2

, i f * < * i , 
f(x) = < 0, if χ ι  < χ  < x2, 

[ ( | )
3 / 2

( x - x 2 )
3
/

2
, i f x 2 < x , 

is a solution to (10.2). 

E x a m p l e 2 

The nonlinear second order equation 

(tx/3y + 24(1 - u) = 0, u ( 0 ) = 1, u ; ( 0 ) = 0, 

has at least three solutions: u(t) = 1, u(t) = 1 — t
2
, and u(t) = 1 -f t

2

. 

N o t e s 

[1] Differential equations with discontinuities (see page 219) and delay equations 
(see page 209) do not meet the requirements of the above theorems. They 
must be investigated separately. 

[2] It is often possible to determine when a linear ordinary differential equation 
has a unique solution. When the solution is not unique, it is sometimes 
possible to describe the degrees of freedom that make it non-unique. See 
the section on alternative theorems, starting on page 14. 

[3] Fixed point theorems are a specific method that can be used to prove 
the existence of a solution, see page 54. The section on well-posedness 
of differential equations contains some results on existence and uniqueness; 
see page 94. 

[4] Bobisud and Ο 'Regan [1] consider existence questions for some second order 
initial value problems of the form y" + F(t, y,y') — 0, where F is allowed to 
be suitably singular. For example, F(t,y,y') = £ ~

1 / / 2
y

- 1
/

2
 is allowed. 
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Similar results are available for the equation ut = V u + u
p
; existence of a 

global positive solution depends on whether ρ  is greater than 1 + 2/N (see 
Fujita [5]). 

[7] A classic result of Lewy [7] is that the equation 

-ux - iuy + 2{ix - y)uz = F(x, y, z), 

where F(x,y,z) is of class C°°, has no H ^solution, no matter what open 
(x,y, z) set is taken as the domain of existence. 

R e f e r e n c e s 
[1] L. E. Bobisud and D. O'Regan, "Existence of Solutions to Some Singular 

Initial Value Problems," J. Math. Anal. Appi, 133, 1988, pages 214-230. 
[2] W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and 

Boundary Value Problems, Fourth Edition, John Wiley & Sons, New York, 
1986. 

[3] E. A. Coddington and N. Levinson, "A Boundary Value Problem for a 
Nonlinear Differential Equation with a Small Parameter," Proc. Amer. 

Math. Soc., 3 , 1952, pages 73-81. 
[4] M. Feckan, "A New Method for the Existence of Solution of Nonlinear 

Differential Equations," J. Differential Equations, 89, 1991, pages 203-
223. 

[5] H. Fujita, "On the Blowing Up of Solutions of the Cauchy Problem for 
ut = Au + u

1 + a
, " J. Fac. Sei. Univ. Tokyo Sect. A. Math, 16, 1966, 

pages 105-113. 
[6] H. A. Levine, "The Role of Critical Exponents in Blowup Theorems," SI A M 

Review, 32 , No. 2, 1990, pages 262-288. 

then there exists no solution in any star-shaped domain. 

, then existence of a solution is assured for any domain Ω ; 

where Ω  is a bounded domain in R
N

, with smooth boundary Θ Ω , has the 
interesting existence result (see Peletier [8]): 

does not have a solution for small enough ε  > 0. 
[6] The classical problem 

[5] The existence of solutions to a differential equation can be critically depen-
dent on the size of the coefficients in the equation. For example, Coddington 
and Levinson [3] show that the problem 
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[7] H. Lewy, "An Example of a Smooth Linear Partial Differential Equation 
without Solution," Annals of Math., 66, No. 1, July 1957, pages 155-158. 

[8] L. A. Peletier, "Elliptic Equations with Nearly Critical Growth," in C. M. 
Dafermos, G. Ladas, and G. Papanicolaou (eds.), Equadiff 1987, Marcel 
Dekker, New York, 1987, pages 561-574. 

[9] M. Plum, "Computer-Assisted Existence Proofs for Two-Point Boundary 
Value Problems," Computing, 46 , 1991, pages 19-34. 

11. Fixed Point Existence Theorems 

A p p l i c a b l e t o Differential equations of all types. 

Y i e l d s 

A s tatement about the existence of the solution. 

Idea 

If the s tatement concerning the existence of a solution to a differential 
equation can be interpreted as a s ta tement concerning fixed points in a 
Banach space, then a fixed point theorem might be useful. 

P r o c e d u r e 

The Schrauder fixed point theorem states: 

Let X be a non-empty convex set in a Banach space and let 
y be a compact subset of X. Suppose Y = }{X) maps X 

continuously into Y. Then there is a fixed point x* = f(x*). 

By interpreting a given differential equation as a continuous function 
in a Banach space, the above theorem indicates the existence of a solution. 

E x a m p l e 

Suppose we wish to determine whether a solution exists to the nonlin-
ear boundary value problem 

7/" - _p-u(x) 

' (11.1) 
u(0) = u(l) = 0, 

on the interval χ  € [0 ,1 ] . We first note tha t the problem 

v" = -φ (χ ), 

w(0) = u( l) = 0, 
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A s tatement about the existence of the solution. 

Idea 

If the s tatement concerning the existence of a solution to a differential 

equation can be interpreted as a s ta tement concerning fixed points in a 

Banach space, then a fixed point theorem might be useful. 

P r o c e d u r e 
The Schrauder fixed point theorem states: 

Let X be a non-empty convex set in a Banach space and let 

y be a compact subset of X. Suppose Y = }{X) maps X 

continuously into Y. Then there is a fixed point x* = f(x*). 

By interpreting a given differential equation as a continuous function 

in a Banach space, the above theorem indicates the existence of a solution. 

E x a m p l e 

Suppose we wish to determine whether a solution exists to the nonlin

ear boundary value problem 

7/" - _p-u(x) 

' (11.1) 
u(0) = u(l) = 0, 

on the interval χ  € [0 ,1 ] . We first note tha t the problem 

v" = -φ (χ ), 

w(0) = u( l) = 0, 
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has the solution ^ 

v(x) = / G(x,z)(j)(z)dz, 
Jo 

where G{x,z) is the Green's function (see page 271) 

Γ ( ν  _ J (1 — x)z, for 0 < ζ  < χ , 

^
[ X

'
Z )

~ \ ( l - z ) x , ΐ ο ν χ <ζ <1. 

Hence, we can write equation (11.1) in the form of an equivalent integral 

equation 

u(x) = f(u{x))= [ G{x,z)e~
u{z)

dz. (11.2) 
Jo 

To apply Schrauder 's fixed-point theorem to (11.2), we need to care

fully define the Banach space Β  and the sets X and Y. If we define 

Β  = rm space of continuous functions on (0,1) , 

X = {u(x) I 0 < u(x) < l,u(x) is continuous}, 

Y = f(X), 

then we can apply the theorem. Note tha t in this example, X is not 

compact but Y is. Note also tha t the bounds in X were derived after some 

analysis of (11.1). Finally, then, we conclude tha t (11.1) has a solution. 

N o t e s 
[1] In the example above we used a a fairly standard linearization trick that can 

be described in more generality. Suppose that an expression D(f, g) (which 

could involve derivatives of / and/or g) is linear in / . Suppose also that the 

linear differential equation 

£>(/,</) = o 

has a unique solution / = T[g] for each g in some function space. Then to 

find a solution, in that function space, of the (possibly nonlinear) equation 

D(f,f) = 0 

is equivalent to finding a fixed point of the mapping T. Thus a particular 

nonlinear differential equation can be studied by means of a more general 

linear differential equation, together with a fixed point problem. 

[2] Once a differential equation has been formulated as a fixed point statement, 

numerical methods that search for fixed points in a function space can be 

used. See, for example, Allgower [1]. 

[3] Interval techniques (see page 470) may also be used to bound the solution 

of a fixed point statement. See Moore [7] for details. 
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[4] A contraction mapping is a functional iteration, say yn+i = N[yn], that 

converges to the solution of the fixed point equation y = F [y]. The Picard 

iteration (see page 535) is such a mapping. 

[5] Another fixed point theorem that is of use in differential equations is Kras-

noselskii's theorem (see Franklin [3] for details): 

Consider the fixed-point equation χ  = f(x) + g(x) for χ  in 

a Banach space B. Let X be a non-empty closed convex set 

in B. Let f(x) map X continuously into a compact subset 

Y C X. Let g(x) be a contraction mapping on X (note that 

the range of g need not be compact). If it is assumed that 

y + g(x) G X for y € Y and x G Χ , then there is a fixed 

point of χ  = f(x) + g(x). 

[6] Another fixed point theorem that is of use in differential equations is the 

Tihonov fixed-point theorem (see Iyanaga and Kawada [6] for details): 

Let R be a locally compact topological linear space, A a 

compact convex subset of R, and Τ  a continuous mapping 

sending A into itself. Then Τ  has fixed points. 

[7] Some theorems regarding existence of solutions for differential equations 

may be found on page 50. 

R e f e r e n c e s 
[1] E. L. Allgower, "Application of a Fixed Point Search Algorithm to Nonlinear 

Boundary Value Problems Having Several Solutions," in S. Karamardian 

(ed.), Fixed Points: Algorithms and Applications, Academic Press, New 

York, 1977. 

[2] T. A. Burton, Stability and Periodic Solutions of Ordinary and Func-

tional Differential Equations, Academic Press, New York, 1985, Chapter 

3 (pages 164-196). 

[3] J. Franklin, Methods of Mathematical Economics, Springer-Verlag, New 

York, 1980, page 277. 

[4] J. K. Hale, Oscillations in Nonlinear Systems, McGraw-Hill Book Com

pany, New York, 1963, Appendix (pages 171-172). 

[5] P. Hartman, Ordinary Differential Equations, John Wiley & Sons, New 

York, 1964, Chapter 12 (pages 404-449). 

[6] S. Iyanaga and Y. Kawada, Encyclopedic Dictionary of Mathematics, 

MIT Press, Cambridge, MA, 1980, pages 542-543. 

[7] R. E. Moore, Interval Analysis, Prentice-Hall Inc., Englewood Cliffs, NJ, 

1966, Chapter 15 (pages 97-102). 

[8] D. R. Smart, Fixed Point Theorems, Cambridge University Press, New 

York, 1974, Chapter 6 (pages 41-52). 

[9] I. Stakgold, Green's Functions and Boundary Value Problems, John 
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12. Hamilton—Jacobi Theory 

where a dot denotes differentiation with respect to t. The equations in 

(12.1) are called Lagrange's equations. If we define the generalized mo-

dL 
menta by pi = —— and the Hamiltonian by H — p

T
q — L, then Lagrange's 

oqi 
equations become 

dH 

*
 =

 to' 

ft = - ψ ; (12-2) 

dL _ dH 

at " at' 

These equations are called Hamilton 's equations. If we change from the 

(H, p, q) variables to the (J, P , Q ) variables via the canonical transforma

tion defined by the generating function 5 ( P , q , t) (see page 105), then 

as 
Pi = ^—, 

oqi 

Q, - f , (12.3) 

J ( P , Q, 0 = ff(p(P, Q, t), q ( P , Q, i) , t ) + ^ . 

P r o c e d u r e 

A conservative dynamical system has a Lagrangian L defined by L = 

Τ  — V, where T(V) is the kinetic (potential) energy. If the generalized 

coordinates in this system are q = (qi, q2,... , g n) , then the equations of 

motion are given by 

(12.1) 

I d e a 

A change of variables may lead to more tractable equations. 

Y i e l d s 

A reformulation of a system of ordinary differential equations. 

A p p l i c a b l e t o Conservative dynamical systems. 
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In these new variables, Hamilton's equations may be writ ten 

Q - — 

If the canonical transformation is chosen so tha t J = 0, then (12.4) says 

tha t Ρ  and Q are constants. To have J vanish identically we require (from 

(12.3)) 

„(ds es as \ os 

\oqi dq2 dqn J dt 

This last equation is known as the Hamil ton-Jacobi equation. The proce

dure is to solve the Hamil ton-Jacobi equation for the generating function 

5 , make a canonical change of variables using this generating function, and 

then solve Hamilton's equation in these new coordinates. This will yield a 

solution to Lagrange's equations. 

E x a m p l e 
Suppose we want to solve the linear constant coefficient ordinary dif

ferential equation 

q + u)
2

q = 0. (12.5) 

This differential equation comes from the Hamiltonian Η  = \ (ρ
2

 + ω
2

α
2

), 

which, in turn , corresponds to the following Hamil ton-Jacobi equation 

2 1 

+ f = 0 .
 (12.6) , 2 2 

To solve for S(q,t), we use separation of variables (see page 419), and 

look for a solution in the form S(q,t) = a(q) + b(t), for some unknown 

functions a(q) and b(t). Using this form for S in (12.6) and making the 

usual argument about which terms must depend upon which variables, we 

determine tha t a(q) and b(t) must satisfy 

b = —a, 

2 

+ uj
2

q
2

 = 2a , 

where α  is a separation constant. Hence, S = —at + J y/2a — ω
2

α
2

 dq. If 

we call α  = P , then we can compute from (12.3) 

Q = ^ = -t + j(2P- α , Υ  Γ
1

/
2

 dq = -t + i a r c s i n ( - ^ ) , 

y/W Γ  "I 
which may be inverted to yield q = sin u;(t+(2) , which is the solution 

to (12.5).
 ω  
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N o t e s 

[1] Lagrange's equations can be interpreted as the Euler-Lagrange equations 

for the functional J = J Ldt. See page 88 for more details. 

[2] The functions / and g are said to be in involution or to Poisson commute 

if the Poisson bracket [/, g] is identically equal to zero. Liouville's theorem 

states that a function F is a first integral of a system with Hamiltonian 

function H if and only if H and F are in involution. See Abraham, Marsden, 

and Ratiu [1] for details. 

[3] Poisson's theorem states that the Poisson bracket of two first integrals of a 

Hamiltonian system is again a first integral. See Goldstein [2] for details. 

[4] Any function A(p,q) defined along the trajectories of (12.2) satisfies 

dA 

dt 
\A H] - V ( — — - — — \ 

~ 2s \ dq. dPj dpj dqj J 

where the square brackets denote the Poisson bracket. 

[5] A general form for a non-conservative system is often taken to be 

*" SE ÎS <>"> 
Pi = ~Ä *~ Ä ~ 

oqi dpi 

Where C(p, q) and D(p, q) are called the conservative and dissipation func

tions. For D = 0, this reduces to (12.3). For C = 0, this becomes a gradient 

system. Any function A(p, q) defined along the trajectories of (12.7) satisfies 

HA 
5 £ = VA-VD+[A,C] 
at 

Choosing A = C and A = D we obtain the evolution equations for the 

conservative and dissipative functions 

VC - V£>, 

V D - VD+[D,C\. 

dC 

dt 

dD 

dt 

Note that V
2

D equals the divergence of the vector field of (12.7) and 

that the system is dissipative when V
2

D < 0. 
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[6] Given the equations of motion: qi — / i(q, q, t), the inverse problem of 

classical mechanics is to determine whether these equations are equivalent to 

the Euler-Lagrange equations based on a Lagrangian L. That is, a matrix 

w = w(q,q,t) is desired so that 

W
- ^ - ^ = dt{Wi)~dq-' 

The necessary and sufficient conditions for the existence of w and L are 

called the Helmholtz conditions, they are: 

dwij dwik 

— Wij = Wj dxk dx 3 

_ 1 dfk 1 dfk 

l ^ f dfk dfk\ dfk 

dxi 

where V := ^ + ] £ m ^ m ^ - + ^
m
^f~)*

 S ee H o

J
m an a nd S n e

P l
e

y 
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13. Inverse Problems 

61 

A p p l i c a b l e t o Inverse problems. 

Y i e l d s 

Information about parameters appearing in a differential equation. 

I d e a 

There are theorems tha t are used to determine which inverse problems 

may be solved. 

P r o c e d u r e 

The field of inverse problems is filled with specialized theorems tha t 

are useful for specific applications. 

E x a m p l e 1 

Consider the eigenvalue problem 

—u" + q(x)u = λ η , for 0 < χ  < 1, 

u ( 0 ) c o s a + u ' ( 0 ) s i n a = 0, (13.1) 

u ( l ) cos / ? + u ' ( l ) s i n / 3 = 0, 

where λ  is a complex parameter , q(x) is a real-valued function tha t is 

integrable on the interval [0,1], and a and β  are values in the interval 

[ Ο , π ). 

One common inverse problem consists of determining the function q(x) 

from the eigenvalues of (13.1). There are many different results in this area. 

For example: 

Theorem: Suppose that (a,ß,q(x)) give rise to the eigen-
values { λ η } and suppose that (ä,ß,q(x)) give rise to the 
eigenvalues { λ η } . If for η  = 0 , 1 , . . . ; q(x) = q(x) for 

x G (0, ^) ; and α  = 57, then q(x) = q(x) almost everywhere 

on the interval (0,1). 

Another typical theorem is the following: 

Theorem: Let λ ο  < λ ι  < λ  2 < . · · be the eigenvalues of the 

problem — y" + q(x)y = Xy with 2/'(0) = y ' (7r) = 0, where 

q(x) is a real-valued continuous function. If λ η  = η
2
 for 

η  = 0 ,1 ,2 , . . . , then q(x) = 0. 
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E x a m p l e 2 

One common technique to show uniqueness for an inverse problem 

is to investigate a mapping between the solutions of two equations with 

different values for the parameter(s) of interest. We have, for example (see 

Rundell [11]): 

Theorem: Let u(x) and v(x) satisfy 

ut = uxx - a(x)u, ux(0,t) = 0, 

vt = Vxx - a(x)v, vx(0,t) — 0, 

for 0 < χ  < 1 and 0 < t < T. If u(0,t) = v(0,t), then 

v(x, t) = u(x, t) + f* K(x, s)u(s, t) ds, where K(x, s) satisfies 

the Goursat problem 

Kss - Ktt = (a(s) - â(x)) K(x, β ), for 0 < s < χ  < 1, 

Ks(x,0) = 0 for 0 < χ  < 1, 

K(x,x) = I J 0

X

 (a(r) - ä (r ) ) for 0 < χ  < 1. 

In this case it is possible to show tha t if K(x, s)f(s) ds = 0 for some 

positive function / ( # ) , then a = a. 

N o t e s 

[1] The numerical methods used to solve inverse problems tend to result in 

ill-conditioned systems. 
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14. Limit Cycles 

A p p l i c a b l e t o Systems of nonlinear autonomous differential equations. 

Y i e l d s 

Knowledge of whether or not there exist limit cycles. 

Idea 

Knowing tha t limit cycles exist for a differential system allows global 

characterizations of the differential system. 

P r o c e d u r e 

fix 
A non-constant solution of the system — = f(x) is called a cycle 

dt 
(or a limit cycle) if there is a positive number Τ  (called the period of the 

cycle) such tha t x(£ + T) = x(£) for all t. It is easy to show tha t inside of 

every cycle is at least one critical point (i.e., a point where f(x) = 0, see 

page 451). 

In many systems it is not only t rue tha t there are finitely many cycles 

but also tha t all solutions tend to one of these cycles. This knowledge 

permits a concise characterization of the phase plane. 
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E x a m p l e 1 

The nonlinear autonomous system 

— = -y + x(l-x -y ) , 

| = x + y(l-x*-y>), 

becomes, under the change of variables, {x = r c o s 0 , y = r s i n ö } the 

uncoupled system 

dr 2n ^0 

These new equations have the solution 

r(t)= t

 L

— = , e(t)=t + B, 
V I + Ae~

2t 

where A and Β  are arbi t rary constants. Hence, the solution of the original 
system is 

cos(t + B) sin(t + B) 

x(t) = ι  _ =, = >/l + ^ e "
2 <

 ' y/l + Be~
2t
 ' 

This states tha t all solutions tend to the circle x
2
(t) + y

2
(t) = 1 as t —> oo. 

Of course, in most circumstances it is not possible to construct explic-
itly the limit cycle. Generally theorems (such as those below) are used to 
prove the existence of a limit cycle. 

E x a m p l e 2 

The Van der Pol equation 

d χ  / _ f)\ dx „ _ _ μ ( 1 _ χ 2 ) _ +

 χ

 = 0 

with μ  > 0 has limit cycles. For this equation, there is negative damping 
for small values of χ  and positive damping for large values of x. Hence the 
value of χ  increases when χ  is small and it decreases when χ  is large. 
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N o t e s 

[1] Given a limit cycle Γ  and a positive number a define the annulus centered 

on Γ  to be {χ  | distance from χ  to Γ  is less than a} where the distance from 

χ  to Γ  is defined to be minlx — u|. 
ue r A cycle Γ  is called isolated if there is a positive number a for which the 

annulus centered on Γ  contains no other limit cycles. A cycle is non-isolated 
if every annulus centered of Γ  contains at least one other limit cycle. The 
system 

dx / ο  2 \ dy / 2 2 \ 
— =xsm[x + y j - y , — = y s i n ( x +y )+x 

has infinitely many isolated cycles while the system {x
f

 = y, y' = —x) has 
infinitely many non-isolated cycles. 

[2] Part of Hubert's 16th problem asked for the maximum number of limit cycles 
of the system {x

f

 = A(x, y), y' = B(x, y)} when A and Β  are polynomials. If 
A and Β  are polynomials of degree n, then the maximum number is known 
as the Hilbert number or the Hilbert function, Hn. It is known that Ho = 0, 

Hi = 0, H2 > 4, H3 > 6, < Hn if η  is odd, and Hn < oo. 

The example that shows that Η
2
 > 4 (found by Songling [9] is 

χ  = ax — y — 10x
2

 + (5 + b)xy + y
2

, 

y = χ  + χ
2

 + (8c - 25 - 9b)xy, 

where a = - 1 0 "
2 0 0

, b = - 1 C T
1 3

, and c = - Η Γ
5 2

. 

[3] If f(x) and g(x) are continuous, have continuous derivatives, and satisfy the 

conditions: 

(A) xg(x) > 0 for χ  φ  0, 

(Β ) f(x) is negative in the interval a < χ  < b (with a < 0 and b > 0) and 

positive outside of this interval, 

(C) /0°° f(x) dx = f{x) dx = oo, 

then every nontrivial solution of Liénard's equation 

^+f(x)%+9(x) = 0 (14.1) 

is either a limit cycle or a spiral which tends toward a limit cycle as t —> oo. 
See Birkhoff and Rota [1] for details. 

[4] Liénard's theorem states: 

If f(x) and g(x) are continuous, and satisfy the conditions: 

(A) F(x) := f* f(x) dx is an odd function, 
(B) F(x) is zero only at χ  = 0, χ  = α , χ  = - α , for some 

α  > 0, 
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(C) F(x) —> oo monotonically for χ  > a, 

(D) g(x) is an odd function, and g(x) > 0 for χ  > 0, 

then (14.1) has a unique limit cycle. 

For details see Jordan and Smith [4]. Note that Van der Pol's equation (see 

example 2) satisfies Liénard's theorem and, hence, has a unique limit cycle. 
[5] Bendixson's theorem states: 

If + ^ß- is continuous and is always positive or always 
ox oy 

negative in a certain region of the phase plane, then the 
autonomous system 

f = *"(*,»), §=<?(*, v) 

has no limit cycles in that region. 

For details see Simmons [8]. For example, the equation for the Lewis 
regulator 

d oo / ^ ι  ι  \ doc 

_ j r + (l _ W ) _ + as = 0 

which is equivalent to 

^ = F(x,y) = y, ^ = G(x,y) = -x - (1 - \x\)y 

has + = 1 — 1x1. Hence, the Lewis regulator has no limit cycles in 
ox oy 

the strip — 1 < χ  < 1. 
[6] The Levinson-Smith theorem states: 

For the differential equation 

x" + f(x, x)x + g(x) = 0 (14.2) 

if the following conditions are satisfied: 

(A) xg(x) > 0 for all χ  > 0, 

(
B

) / o ° °
 g

(
x

^
d x =

 ° ° ' 
(C) / ( 0 , 0 ) < 0 , 

(D) there exists an xo > 0 such that / ( χ , x') > 0 for \x\ > xo, 

for every x', 
(E) there exists a constant M > 0, such that / ( χ , χ ' ) > - M 

for |x| < xo, 

(F) there exists an xi > xo such that f(x,v(x))dx > 

lOMxo, where v(x) is any arbitrary positive and mono

tonically decreasing function of x, 

then (14.2) has at least one limit cycle. 

See Hagedorn [3] for details. 
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Idea 

Given a part ial differential equation it is not always clear what the 

"correct" boundary conditions are. This is especially true for nonlinear 

part ial differential equations. However, most part ial differential equations 

tha t arise in mathemat ical physics have been obtained from a variational 

principle (see page 88). 

If we start with the variational principle, then "natural" boundary 

conditions will be generated while deriving the equation we s tar ted with. 

Y i e l d s 

A proper set of boundary conditions. 

A p p l i c a b l e t o Par t ia l differential equations. 

for a PDE 

15. Natural Boundary Conditions 
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These boundary condition are, in a sense, the most appropriate bound

ary conditions for the original equation if there is no physical reason for 

imposing other conditions. 

P r o c e d u r e 

The variational principle tha t is most often used is 6J = 0, where δ  

represents a variation, J is a functional given by 

m-ff Φ ι ,Φ *)ά ί  dx, 

R 

L( ) is a linear or nonlinear functional and 0 (x , t) is the unknown function 

to be determined. This variational principle s tates tha t the integral J[j>\ 

should be stat ionary to small changes in φ . If we let /i(x, t) be a contin

uously differentiable function, tha t is "small" in magnitude, then we can 

form 

J[4> + h] - J [ 0 ] = JJ { l ^ + L ^ . / ^ . + L 0} d * d x + O ( | | / i | |
2

) , 

R 

where subscripts on L denote part ial derivatives. The variational principle 

requires tha t 6J := J[</> + h] — J [ 0 ] = 0, or tha t 

JJ { l ^ A + ί φ χ .η Χ 3;+L0}(ftdx = 0. (15.1) 

R 

If R is assumed to be a parallelpiped, then let Dt {DXj) denote the two 

par ts of the boundary of R on which t (XJ) is constant. By integrating by 

par ts , equation (15.1) can be wri t ten as 

jj ^-^l--^^Xj+L4}jhdtdx = 0, (15.2) 

R

 3 

where we have assumed tha t 

= 0. (15.3) 
DXi 

Now h(x.,t) was assumed to be arbitrary, so from (15.2) we conclude tha t 

Ι
£

*
+

4 ^ ' - ^
=

° ·

We conclude: if we can write a given part ial differential equation in the form 

of (15.4), for some operator L( ), then (15.3) gives the "natural" boundary 

conditions. 
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E x a m p l e 

Given the part ial differential equation 

φ η  - α
2

ν
2

φ  + β
2

φ  = 0, (15.5) 

where V
2

</> = J2j=i Φ χ ,χ ν  
we find tha t 

Ν  

Η Φ ,Φ ΐ ,Φ χ ) (15.6) 

3 = 1 

makes (15.4) and (15.5) identical. Therefore, the "natural" boundary 

conditions for (15.5) are, using (15.6) in (15.3), 

Equat ion (15.7) states tha t the part ial differential equation in (15.5) re

quires bo th initial and boundary conditions. This was to be expected since 

(15.5) is a hyperbolic equation. 

For example, if Ν  = 1 and R is the region [Ο ,Τ ] χ  [0, o o ) , then Dt = 

{t = 0} U {t = T} and DXl — {χ ι  = 0} U {x\ — o o } . Hence, the natural 

boundary conditions for (15.5) require tha t { ^ ( 0 , χ ι ) , φ ^Τ ,χ χ ), φ Χ ι(ί ,0), 

φ Χ ι(ί ,ο ο )} be specified. 

[1] Finding the operator L( ) , or equivalently finding the variational principle 

<SJ, is a non-trivial task in general. Also, very often one wants a vector 

variational principle that will encompass, simultaneously, several separate 

equations. 
[2] See the section on variational equations (page 88) for more examples. 
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Idea 

Find a change of variables, in the form of an infinite series, so tha t the 
original system of differential equations goes into a "normal" (or "simple" 
or "canonical" ) form. The normal form is the simplest member of an equiv
alence class of differential equations, all exhibiting the same qualitative 
behavior. Normal forms are often useful for stability analyses. 

P r o c e d u r e 

Start with the system x ' = f(x) such tha t (without loss of generality) 
χ  = 0 is a critical point. Expand this system to obtain 

x ' = i x + H ( x ) , 

where H ( x ) has strictly nonlinear functions (i.e., there are no linear or 
constant terms). 

If H (x ) has nonlinear terms of at least degree n, then make a near-
identity transformation using polynomials of degree η  with unknown coef
ficients. By appropriately choosing the unknown coefficients in the near-
identity transformation, the original differential equations, when writ ten in 
the new variables, will have increased the degree of the nonlinear terms by 
one. 

If the critical point is "hyperbolic" (all eigenvalues have non-zero real 
parts) then the nonlinear terms can always be removed (i.e., one order at 
a t ime). Also, the topological na ture does not change. See Guckenheimer 
and Holmes [6], Section 3.3. 

Mathematically, we can summarize the procedure as follows: 

[1] We are given the system of ordinary differential equations x ' = 
f(x) = A x + H ( x ) , which we wish to analyze near the point χ  = 0. 

[21 We make the near-identity transformation from χ  to u via χ  = 
u -I- g (u) , where g( ) is a strictly nonlinear function. 

Y i e l d s 

A reformulation of the differential equations. 

A p p l i c a b l e t o Systems of ordinary differential equations. 

Near-Identity Transformations 

16. Normal Forms: 
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[3] This change of variables produces the new equation 

u' = [/ + J p ^ u + g(u)) = Au + K ( u ) , (16.1) 

<9g 
where I is the identity matr ix and J = -τ — is the Jacobian of the 

du 

transformation. 
[4] The function g( ) is chosen to eliminate the nonlinear terms in the 

equation for u t ha t are of least order. 

This procedure can be iterated. 

E x a m p l e 1 

Suppose we have the system of equations 

dx ο  

T t
= x + y

' 

dy 

ä = y + *y-

Defining χ  = ( x y ) , this system has the form 

§ - ( i î M £ ) - ( Î î ) "
+ H

w <>"> 

where H ( x ) has quadrat ic nonlinearities. We now choose to make the 
near-identity change of variables (of second order) 

x = u + a02U
2
 + aiiuv + a 2o^

2
, 

2 2 (16.3) 
y = υ  + bo2u -h bnuv -h b2ov , 

where u and υ  are functions of t. Combining (16.2) and (16.3) we find 

^ = u + (1 — ao2)v
2

 — anuv — a2ou
2

 + higher order terms, 

dv
 ( 1 6

·
4 ) 

— = ν  — bo2v
2

 + (1 — bu)uv — b2ou
2

 + higher order terms, 
dt 

where "higher order terms" means terms tha t are of order 0 ( u
3
, u

2

v, uv
2

, v
3

). 

To eliminate the second order terms in (16.4) we take {ao2 = 1, a n = 0, 
a2o = 0, b02 = 0, 6 n = 1, 620 = 0} . Wi th these values, the transformation 
in (16.3) becomes 

χ  = ù + u
2
, 

y = ν  + uv 

so tha t the original differential equations in (16.2) becomes 

du 
— = u + higher order terms, 
at 

dv . . . 
— — v — higher order terms. 
dt 

This new system now has cubic (or higher order) nonlinearities. 
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E x a m p l e 2 

The system of ordinary differential equations for x(t) and y(t): 

x' = -y + F(x,y), 

y = x + G(:r,î/), 

where F ( ) and G ( ) are strictly nonlinear, has the normal form 

θ ' = 1 + Z V
2
 + A > r

4
 + i V

6
 + · · · , 

r ' = B i r

3

 + B 2 r
5
 + £ 3 r

7
 H- . . . , 

where u = r c o s ö , ν  = r s i n ö , and {u, v} are related, via a near-identity 

transformation, to {x,y}. In this example, the linear equations are not 

sufficient to determine the local behavior. Knowledge of B\ is needed to 

determine stability (unless it is zero, in which case B2 is needed, etc.). 

For example, if equation (16.5) has the form 

2 2 3 2 
X =

 V ~t~ FXX — h FXyXy + Fyy ~ + r aj X — |~ f XXy ^ 

2 3 

^
 1

 xyy 2 ^ 2/2/2/ g ' · · * ' 
9 ο  *ί  Ο  

x Î/ χ  x y y — GXX— + GXyXy + Fyy— + G X XX — + GXXy ^ 

' ^ £ 2 / 2 / 2 ^ 2 / 2 / 2 / g " T · · · , 

then we find (see Takens [10] for details) 

16.01
 =

 Gyyy GrXXy ~\~ FXyy ~\~ FXXX ~\~ FyyGyy FXXGXX GXXGXy 

GyyGxy -^xx^xy ^xy-^yy 

E x a m p l e 3 

The system of ordinary differential equations for x(t) and y(t): 

x' = y + F(x,y), 

y' = G{x,y), 

where F { ) and G ( ) are strictly nonlinear, has the normal form 

oo oo 

u' = v + J2bnUn, v' = Y^anu
n
, (16.7) 

n=2 n=2 
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where {u,v} are related, via a near-identity transformation, to {x, y}. For 
example, if equation (16.6) has the form 

2 2 3 2 
x y χ  x y 

χ ' = —y + Fxx— + Fxyxy + Fyy — + F x x x— + Fxxy—^-

2 3 

+ Fxyy I" -Pyyy "g~ + · · · > 

ο  2 ^ 2 
x 2/ χ  χ  y 

y — % Η
-
 G x x — + Gxyxy + Fyy — + G x xx — + GXXy—^-

then we find tha t 

W — V "Κ  2 (^*Xy FXX) U ~|~ Y2 [Ç*XyGyy FXXGyy 

+ 2FxyGXy + 2Gxxy — FyyGxx — G x x + 2 i^ x a ; ;c ) i t
3
 + . . . , (16.8) 

ν  — t^Gxx\L -\~ g (3/*ajyGxx ~h G x xx FXXGxy) u ~f~..., 

where C is an arbi trary constant. See Takens [10] for details. 

Another normal form for (16.6) is given by 

U' = V, 
oo oo 

U' = Σ <ι η υ
η
 + YinbnU

n
-\ 

71 = 2 71 = 2 

where {U, V} are related, via a near-identity transformation, to {x, y}. See 
Guckenheimer and Holmes [6] for details. 

N o t e s 
[1] If 0,2 φ  0, then the flow of the system in (16.7) is topologically equivalent 

to the flow of the system {υ ! = υ , υ ' = α 2 ϋ
2
} , which can be integrated in 

terms of elliptic integrals. If a,2 = 0, then other conclusions are possible; see 
Rand and Keith [8] for details. 

[2] To avoid computing the matrix inverse in equation (16.1), it is sufficient to 
expand (/ + J )

- 1
 into I — J - f J

2
 — . . . + ( — J )

7 1 -1
 if only the nonlinear terms 

of order η  are to be removed. 
[3] The concept of normal forms does not require that the transformations used 

be near-identity ones; but they are the ones most often used in practice. 
[4] The computations needed for this technique quickly become unmanageable 

unless a computer algebra system is used. MACSYMA programs for per-
forming the necessary computations are given in Rand and Keith [9] and in 
Chow et al. [2]. 
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P r o c e d u r e 

Many of the differential equations of mathemat ical physics are re

lated to self-adjoint eigenfunction problems. As a special subcase, S t u r m -

Liouville equations are often self-adjoint eigenfunction problems ( S t u r m -

Liouville problems are discussed in more detail on page 82). 

Let L[-] be the n- th order linear operator defined by 

d
n

y d
n

~
1

y 

L[y] =Ρ η (
χ

)-[^ +Pn-i(x)-j^^ + -'-+Po{x)y, 

where the {pi(x)} are complex valued and analytic, and pn(x) Φ  0 on the 

interval x G [α , b]. Define n boundary conditions by 

Β Ay\ := Σ  (
 M ^ ^ Ï Ï ( û ) + N j k

^ ^ )
{ b )

)
 =

 ° ' J = · · · '
n
' 

where the {Mjk, Njk} are given complex constants. 
The problem we will consider here is 

L[y] = \y, B[y] = 0, (17.1) 

where {B[y] = 0} is a shor thand notat ion for {J5j[y] = 0 | j = 1 , . . . ,n}. 

The system in (17.1) will always have the trivial solution, y(x) = 0. But, 

for certain values of λ , called eigenvalues, the system in (17.1) will have 

non-trivial solutions. Corresponding to a specific eigenvalue, λ η , will be 

one or more eigenfunctions; tha t is, non-trivial solutions to (17.1) when 

λ  = λ η . 

We represent the complex conjugate of g by g. Define the inner product 

of f(x) and g(x) by ( / , g) = f(t)g(t) dt, and the norm of f(x) by 

11/11
 :=

 > / ( / » / ) · If if^9)
 =

 0, then / and g are said to be orthogonal. 

If { / ΐ ΐ  ί ι , · · · > fn} are a set of functions with (/*, fj) = 0 when i φ  j , then 

the {fi(x)} are an orthogonal family. 

The adjoint operator to L[-], called £*[·], is defined by 

L'[y] := ( - i r ^ M + ( - i r -
d

" " ^ r . f
M

 + - + * » • 

Let u(x) be a solution to the system {L[u] = 0, B[u] = 0} , and let v(x) be 

a solution to the adjoint system = 0, B*[u] = 0} , where {-B*[y] = 0} 

is a shor thand notat ion for [y] = 0 | j = 1 , . . . , n} and the Β *[·] are, for 

the moment, unspecified. Using the definitions of u(x) and v(x), we can 

calculate 

vL[u]-uL*[v] = -^J{u,v), (17.2) 
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(17.3) 

Integrating (17.2) results in 

(17.4) 

We now define the !?*[·] to be those boundary conditions for which the 

right-hand side of (17.4) vanishes. 

If L = L*, then L is said to be formally self-adjoint. If L = L* and 

Β  = B*, then L is said to be self-adjoint. Note tha t , if L[-] is formally 

self-adjoint, then η  = 2r and L[-] must be of the form 

As we now record, self-adjoint operators have some very useful prop

erties. If L[-] is self-adjoint, then 

(A) The eigenvalues λ η  of (17.1) are real. 

(B) The eigenvalues are enumerable (with no cluster point) . 

(C) The eigenfunctions yn(x) corresponding to distinct eigenvalues are 

orthogonal. 

(D) If f(x) is any analytic function tha t satisfies the boundary conditions 

in (17.1) (i.e., Bj[f] = 0, for j = 1 , . . . , n ) , then, on the interval [a,6], 

f(x) = } -— -yk{x). Tha t is, the {yk{x)} are complete. It is this 

last s tatement tha t is of particular importance in solving differential 

equations; the method suggested by this s tatement , the method of 

eigenfunction expansions, is described on page 223. 

+ ... + ^(bl(x)^)+io{x)u. ( 1 7. 5 ) 

where J(u,v) is called the bilinear concomitant and is defined by 
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E x a m p l e 1 

Suppose we have the linear differential operator 

+ r 0( x ) . (17.6) 

Because of the form of the operator, we know tha t £,[·] will be formally 

self-adjoint (see (17.5)). For this operator we can evaluate J(u,v) at the 

upper and lower limits (from (17.3)) to find 

J(u,v) v(r2u")' — v'r2u"+r2v"u' — u(v2 v")'+ri {vu
1

 — uv') J . (17.7) 

To determine whether £,[·] is self-adjoint or not, we need to specify B[y\. 

Since (17.6) is a fourth order operator, four boundary conditions are re

quired. We will consider three separate cases. 

C a s e 1 

If B [y] is defined by 

Bi[y] = y (a), 

B2[y) = y"(a), 

BM = y (6) , 

then J(u,v) can be evaluated and (17.7) can be simplified to yield 

(17.8) 

T2V
n

v! + r\vu' (17.9) 

If we choose Β  = B* (i.e., B*[y] = Bi[y]), then the quanti ty in (17.9) is 

identically zero. Hence, !,[·], as defined by (17.6) and (17.8) is self-adjoint. 

C a s e 2 

If B[y] is defined by 

Bi[y] = y(a), 

B2[y] = y'{a), 

BM = y(b), 

BM = y'{b), 

then J(u, v) can be evaluated and (17.7) can be simplified to yield 

(17.10) 

v( r2«") ' — v'rzu" (17.11) 
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v(r2u")' — V'T^U" + r2v"u
f

 — u(r2v")' + r\(vv! — uv') (17.13) 
x=b 

Once again, if we choose Β  = B* then the quanti ty in (17.11) is identically 

zero. Hence, £,[·], as defined by (17.6) and (17.10) is self-adjoint. 

C a s e 3 

If B[y] is defined by 

Bi[y] = y(
a

), 

BM = y\a), 

Bs[y] = y"(a),
 [ ) 

BM = »'», 

then J(u,v) can be evaluated and (17.7) can be simplified to yield 

If, in this case, we choose Β  = £?*, then the quanti ty in (17.13) does not 

vanish. If Β  = Β *, then no information has been given at the boundary 

χ  = i>, and the quanti ty in (17.13) is indeterminate. Hence, L[-], as defined 

by (17.6) and (17.12), is not self-adjoint. An initial value problem can 

never be self-adjoint. 

E x a m p l e 2 
The operator 

with the boundary conditions 

is self-adjoint. See the section on Sturm-Liouville theory (page 82). 

E x a m p l e 3 

A third order linear ordinary differential equation is formally self-

adjoint if it has the form 

The general third order linear ordinary differential equation 

will be formally self-adjoint if and only if Β  = \Α ' and D = \(C - \B')'. 

The self-adjoint third order equation (17.14) has the first integral 

(17.14) 
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E x a m p l e 4 

The general fourth order linear ordinary differential equation 

A{x)y"" + B(x)y'" + C(x)y" + D(x)y' + E(x)y = 0, 

will be formally self-adjoint if and only if Β  = 2A' and D = (C - \B')'. 

[1] Some of the conditions above can be relaxed, and the main results for 

self-adjoint operators will still be true. See, for instance, Coddington and 

Levinson [3]. 

[2] For partial differential equations there are many results analogous to those 

mentioned above for ordinary differential equations. We enumerate some of 

them for the Helmholtz equation in two dimensions. For the equation 

given on the entire boundary of R (here η  represents the unit normal): 

(A) All the eigenvalues {λ *} are real. 

(B) There are an infinite number of eigenvalues. There is an eigenvalue of 

least magnitude, but no largest one. 

(C) The eigenfunctions {<l>i(x,y)} form a complete set: any analytic func

tion can be represented in the form f(x,y) = ^2ί α >ΐ φ ι (χ ^), for some 

set of constants {ai}. 

(D) Eigenfunctions belonging to different eigenvalues are orthogonal. That 

is j J φ ΐ φ ] dx dy = 0, if λ * φ  \ j . 

R 

(E) An eigenfunction φ  is related to it's eigenvalue λ  by the Rayleigh 

quotient 

N o t e s 

ν
2

0 + λ <£ = Ο , 

in a region R, with the boundary conditions 

α φ  + bS/φ  · η  = 0 

λ  = 
R 

φ
2

 dx dy 

R 

Many other partial differential equations have very similar properties. See 

Haberman [5] for details. 



80 I .A Def in i t ions a n d C o n c e p t s 

[3] Partial differential equations can also be self-adjoint. The elliptic equation 
auxx + cuyy + dux + euy + fu = g(x,y) is said to be essentially self-adjoint 
when Nx = My, where 

Ν  \— d , M := e . 

a c 

In this case, an integrating factor is given by where φ χ  = Ν , φ ν  = M. 

Multiplying the original equation by this factor puts the equation in self-
adjoint form. For example, the equation 

uxx + Uyy + x
2

ux + y
2

uy + u = 0 

has Ν  = χ
2

, M = y
2

 which leads to φ  = | (x
3

 + y
3

) . Multiplying the 

equation by ε
φ

 results in the self-adjoint form of the equation: 

[ exp( | (x
3

 + y
3

)) ux]x+ [ exp( | (x
3

 + y
3

) ) t i v] y + e x p ( i (x
3

 + y
3

) ) u = 0. 
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18. Stability Theorems 

A p p l i c a b l e t o Differential equations of all types. 

Y i e l d s 

Knowledge of whether or not there are stable solutions. 



80 I .A Def in i t ions a n d C o n c e p t s 

[3] Partial differential equations can also be self-adjoint. The elliptic equation 
auxx + cuyy + dux + euy + fu = g(x,y) is said to be essentially self-adjoint 
when Nx = My, where 

Ν  \— d , M := e . 

a c 

In this case, an integrating factor is given by where φ χ  = Ν , φ ν  = M. 

Multiplying the original equation by this factor puts the equation in self-
adjoint form. For example, the equation 

uxx + Uyy + x
2

ux + y
2

uy + u = 0 

has Ν  = χ
2

, M = y
2

 which leads to φ  = | (x
3

 + y
3

) . Multiplying the 

equation by ε
φ

 results in the self-adjoint form of the equation: 

[ exp( | (x
3

 + y
3

)) ux]x+ [ exp( | (x
3

 + y
3

) ) t i v] y + e x p ( i (x
3

 + y
3

) ) u = 0. 

R e f e r e n c e s 

[1] G. Birkhoff and G.-C. Rota, Ordinary Differential Equations, John Wiley 

& Sons, New York, 1978, Chapters 10-11. 

[2] E. Butkov, Mathematical Physics, Addison-Wesley Publishing Co., Read-

ing, MA, 1968, Chapter 9 (pages 332-404). 

[3] E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equa

tions, McGraw-Hill Book Company, New York, 1955, Chapter 7. 

[4] N. Dunford and J. T. Schwartz, Linear Operators, Interscience Publishers, 

New York, 1958. 

[5] R. Haberman, Elementary Applied Partial Differential Equations, Prentice-

Hall Inc., Englewood Cliffs, NJ, 1983, pages 214-219. 

[6] E. L. Ince, Ordinary Differential Equations, Dover Publications, Inc., New 

York, 1964, Chapters 9-11 (pages 204-278). 

[7] I. Stakgold, Green's Functions and Boundary Value Problems, John 

Wiley k Sons, New York, 1979, Chapter 3. 

18. Stability Theorems 

A p p l i c a b l e t o Differential equations of all types. 

Y i e l d s 

Knowledge of whether or not there are stable solutions. 



18. S tab i l i ty T h e o r e m s 81 

I d e a 

There are theorems available for most cases of interest. 

P r o c e d u r e 

There are many theorems tha t can be used to determine whether the 

solutions to a differential equation are stable. In the following we indicate 

some of the simple theorems tha t are frequently useful. 

Theorem: Consider the equation y' = Ay + f(t,y), where A is a real 
constant matrix whose eigenvalues all have negative real parts. Let f be 
real, continuous for small |y| and t > 0, and f(t,y) = o(|y|) as |f| —• 0, 
uniformly for t > 0. Then the identically zero solution is asymptotically 
stable. 

Theorem: If all solutions of y' = Ay, where A is a constant matrix, are 

bounded as t —• oo, the same is true of the solutions of y' = (A+B(t))y, 

provided that /°° \ \B(t) \ \ dt < oo. 

Theorem: If all solutions of y' = A(t)y, where A is a periodic matrix, 
are bounded, the same is true of the solutions of y' = (A(t) + B(t))y, 

provided that /°° \ \B(t) \ \ dt < oo. 

Theorem: If all solutions of y' = A(t)y, where lim f * ti(A) dt > - o o , 
t—>oo 

are bounded, the same is true of the solutions of y' = (A(t) + B(t))y, 

provided that / ° ° \\B(t)\\ dt < oo. 

N o t e s 
[1] Stability is required if a differential equation is to be well-posed; see page 94. 
[2] Floquet theory and Lyapunov functions are two techniques that can deter-

mine if an equation has stable or unstable solutions; see pages 448 and 476. 
[3] Note that solutions to the equation y' = A(t)f(y) can be increasing even 

if all the eigenvalues of A(t) have negative real parts for any fixed value 

/ L _ _ J _ ^ \ 
4(1 + *) ( 1 + t )

2 

1 1 

V 4 4(1 + ί ) / 
— 1 ± 2i 

This matrix has the eigenvalues λ ι ,2 = j t z τ τ , yet the general solution to 
4(1 + t) 

y' = A(t)f(y) is given by 

v m _ n ( (I + ι ) "
3 74

 \ . e ( (1 + * r
3 / 4

 log(l + *) λ  
yW - « ^ _ i ( i + t )i / 4 ) + ß [ { 1 + t )i / 4 (1 _ ι  iog(i + 

where a and β  are arbitrary constants. 
[4] There are many different technical definitions of stability. For the equation 

y' = f(*,y) (18.1) 

defined when t > to, the solution is said to be: 

of t. For example, consider the matrix A(t) = 
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(A) stable if, for each ε  > 0 there is a corresponding δ  = δ (ε ) > 0 such that 

any solution y(t) of (18.1) which satisfies the inequality \y(to) — y(*o)| < 

δ  exists and satisfies the inequality |y(£) — y(t)\ < δ  for all t > to. A 

solution that is not stable is said to be unstable. 

(B) asymptotically stable if, in addition to the above stability requirements, 

\y(t) — y(t)\ —• 0 as t —• oo, whenever \y(to) — y(to)\ is sufficiently 

small. 

(C) uniformly stable if, for each ε  > 0 there is a corresponding δ  = δ  (ε ) > 0 

such that any solution hatbfy(t) of (18.1) which satisfies the inequality 

I y (ί ο ) - y(to)\ < δ  for some t\ > to exists and satisfies the inequality 

| y ( 0 - y ( f ) l < ^ f o r a l H > t i . 

(D) uniformly asymptotically stable if, in addition to the requirements for 

asymptotic stability, there is a > 0, and for each ε  > 0 a correspond-

ing Τ  = Τ  (ε ) > 0 such that if |y(ti) - y(*i)| < δ 0 for some h > t0, 

then \y(t) - y{t)\ < ε  for all t>t\+T. 

(E) strongly stable if, for each ε  > 0 there is a corresponding δ  = δ (ε ) > 0 

such that any solution hatbfy(t) of (18.1) which satisfies the inequality 

|y(io) - y(*o)l < ^ f °
r

 some t\ > to exists and satisfies the inequality 

| y ( t ) - y ( 0 l <et™ all * > *0-

R e f e r e n c e s 
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Book Company, New York, 1953. 

[2] W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and 

Boundary Value Problems, Fourth Edition, John Wiley & Sons, New York, 
1986. 

[3] E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equa

tions, McGraw-Hill Book Company, New York, 1955. 

19. Sturm—Liouville Theory 

A p p l i c a b l e t o Second order linear ordinary differential operators. 

Y i e l d s 

Information about whether an operator is self-adjoint. 
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A p p l i c a b l e t o Second order linear ordinary differential operators. 

Y i e l d s 

Information about whether an operator is self-adjoint. 
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P r o c e d u r e 
Many of the differential equations of mathemat ical physics are S t u r m -

Liouville equations. Sturm-Liouville equations arise naturally, for instance, 

when separation of variables (see page 419) is applied to the wave equation, 

the potential equation, or the diffusion equation. 

The Sturm-Liouville operator, £ , is defined by 

(19.1) 

where ρ , p ' , q, s are real and continuous, and s(x) > 0 and p(x) > 0 on the 

interval (a, b). The Sturm-Liouville equation is defined by 

(19.2) 

or, equivalently, 

d_ 

dx 
P{x)

dx~ 
+ q(x)y + As(a;)y = 0, (19.3) 

for x G [α , b]. The parameter λ  is an eigenvalue of the equation. Given a 

specific set of boundary conditions, there may be specific values of λ  for 

which (19.2) has a non-trivial solution. For different types of boundary 

conditions, different types of behavior are possible. 

Many facts are known about Sturm-Liouville systems: 

[1] £ , as defined by (19.1), is formally self-adjoint (see page 74), with the 

inner product , {f,g)s ·= / s(x)f(x)g(x)dx. 

[2] £ is self-adjoint (see page 74) when 

(A) The boundary conditions are unmixed (or separated) . Tha t is, 

they are of the form 

aiy(a) + ßiy
f
{a) = 0, 

ct2y(b) + ß2y'(b)=0. 
(19.4) 

( Β ) The boundary conditions are periodic. Tha t is, they are of the 

form 

y(a) = y(b), 

y'{a) = y'{b). 

[3] When the boundary conditions are given as in (19.4), and, in addition, 

p(x) > 0, q(x) > 0, ctilßi > 0, α 2/ / ? 2 > 0, then 
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(A) £ is a positive definite operator (i.e., (Cu,u) > 0, for all u φ  0). 

( Β ) The eigenvalues are simple (i.e., each eigenvalue has a single eigen-

function associated with i t) . 

[4] When the operator C is not self-adjoint then 

(A) If λ  is a complex eigenvalue of £ , then λ  is an eigenvalue of £*, 

the adjoint of C. 

(B) Eigenfunctions of C are orthogonal to those of £*. 

If the interval [a, b] is finite and p(x) and s(x) are positive at the 

endpoints, then the problem is said to be regular. Otherwise, it is said to be 

singular. For singular Sturm-Liouville problems, problems are subdivided 

into two cases, the limit-circle case and limit-point case. Consider (19.2) 

when one of the endpoints is regular and the other singular. Define the 

s-norm of a function u(x) by 

\\u\\s = (u,u)s = / s(x)\u(x)\
2

 dx. 
Ja 

If, for any particular complex number λ , the solution to (19.2) satisfies 

[1] \\y\\s < o o , then C is said to be of the limit-circle type at infinity. In 

this case, all solutions of (19.2) will satisfy \\y\\s < o o , for any value 

of λ . 

[2] \\y\\8 = o o , then C is said to be of the limit-point type at infinity. 

If bo th endpoints are singular, we introduce an intermediate point /, 

a < I < b, and then classify C as being of the limit point type or the 

limit circle type at each endpoint according to the behavior of solutions in 

a < χ  < I and in / < χ  < b (the classification is independent of the choice 

o f / ) . 

For a given real λ , the problem in (19.2) is 

• oscillatory at χ  = a if and only if every solution has infinitely many 

zeros clustering at a. 

• nonoscillatory at χ  = a if and only if no solution has infinitely many 

zeros clustering at a. 

The classification is mutually exclusive for a fixed λ , but can vary with λ . 

If C is in the limit-point case at infinity, then there is the following 

completeness theorem: 

Theorem: If g(X) = / / ( χ ) Φ ( χ , λ ) dx then 
Jo 

/(#) = f^ouW Φ (
χ

ι λ )ά ρ (\) for a (computable) density 

function ρ ( λ ). 
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A completeness theorem is required for a proof tha t a separation of 

variables calculation (see page 419) has been done correctly. 

The following theorem and corollaries may help decide the type of the 

operator C: 

Theorem: Let M be a positive differentiate function, 
and let k\ and k2 be two positive constants such that for 
large x, 

> -k\M(x), 
/•OO 

/ (p(t)M(t))~
1/2

 dt = 00, 
J χ  

\p
1/2

(x)M'(x)M-
3/2

(x)\ < k2, 

then £ is in the limit-point case at infinity. 

Corollary: If q(x) > —k, where k is a positive constant, 
and p

_ 1

^
2

( t ) dt = oo (where η  is any finite number), then 
C is in the limit-point case at infinity. 

Corollary: If p(x) = 1 for 0 < χ  < oo and q(x) > —kx
2 

for some positive constant k, then C is in the limit-point case 
at infinity. 

Class i f icat ion of S t u r m - L i o u v i l l e P r o b l e m s 

Pruess et al. [7] have devised a classification scheme and taxonomy for 

Sturm-Liouville problems on the interval (a, b). They define: 

Category 1: Problem (19.2) is nonoscillatory at χ  = a and χ  = b. 

The spectrum is simple, purely discrete, and bounded below. 

Category 2: Problem (19.2) is nonoscillatory at one endpoint. At the other 

endpoint it is nonoscillatory for λ  G (—oo, to) and oscillatory for λ  G (ί ο , oo). 

The spectrum is simple, bounded below. The point spectrum (if any) 

is in (—ο ο ,ί ο ) while (to,oo) is the continuous spectrum. 

Category 3: Problem (19.2) is nonoscillatory at one endpoint. At the other 

endpoint it is limit circle and oscillatory. 

The spectrum is simple, unbounded both above and below, and is 

purely discrete. 

Category 4: Problem (19.2) is nonoscillatory at one endpoint. At the other 
endpoint it is limit point and oscillatory. 

The spectrum is simple and purely continuous; the continuous spectrum 

is the entire real line. 

Category 5: Problem (19.2) is limit circle and oscillatory at χ  = α . It is 
limit point and oscillatory at χ  — b. 

The spectrum is simple, unbounded both above and below, and purely 

discrete. 
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Category 6: Problem (19.2) is limit point and oscillatory at χ  = a. It is 

limit point and oscillatory at χ  = b. 

The nature of the spectrum is unknown; a continuous spectrum is likely. 

Category 7: Problem (19.2) is limit point and oscillatory at one endpoint. 

At the other endpoint it is limit circle and oscillatory. 

The spectrum is simple and purely continuous; the continuous spectrum 

is the entire real line. 

Category 8: Problem (19.2) is limit circle and oscillatory at one endpoint. 

At the other endpoint it is nonoscillatory for λ  G (-oo,*o) and oscillatory 

for λ  G ( ί ο , ο ο ). 

The spectrum is simple; the point spectrum (if any) is unbounded below 

but bounded above by to. The continuous spectrum is in (£o,oo). 

Category 9: Problem (19.2) is limit point and oscillatory at one endpoint. 

At the other endpoint it is nonoscillatory for λ  G (—ο ο ,ί ο ) and oscillatory 

for λ  G (<o,oo). 

The spectrum may be nonsimple. 

Category 10: At χ  = α  the problem in (19.2) is nonoscillatory for λ  G 
(—ο ο ,ί ο ) and oscillatory for λ  G ( ί ο , ο ο ). At χ  = b it is nonoscillatory for 

λ  G (—oo,ti) and oscillatory for λ  G (<ι , ο ο ). 

The spectrum may be nonsimple. The point spectrum (if any) is in 

the interval (-oo,min(<o,h)) and is bounded below. The continuous 

spectrum is in (min(to,h), oo). 

E x a m p l e 1 

The differential equation and boundary conditions 

correspond to the Sturm-Liouville operator in (19.1) w i thp (x ) = x, q(x) = 

0, s(x) = x. This is a regular Sturm-Liouville problem on the interval [1,2]. 

The eigenvalues and eigenfunctions are readily computed (see Stakgold [8], 

page 423). If we define λ η  = r
2

, then the rn are determined from 

-MY 

u( l ) 

u ( 2 ) 

o, 

o, 

Xxy 

M
r

n) 

M2rn] 

rn) _ N0(rn) 

!r») N0(2rn) 

and the corresponding eigenfunction is given by 

Vn(x) = 
rnirJ0(2rn) 

[Jo(rn)N0(rnx) - Jo(rnx)N0{rn)]. 
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E x a m p l e 2 
The differential equation with boundary conditions 

- ( * V ) ' - Au 

u( l ) 

u(e) 

0, 

for χ  6 [1, e] is a regular Sturm-Liouville problem with unmixed boundary 

conditions, so the eigenfunctions are complete. In this case we find 

with the boundary conditions z(0) = z{L) = 0 has the asymptotic eigenval-
ues and eigenfunctions 

as η  —• oo. (See the Prüfer method on page 122.) 

R e f e r e n c e s 
[1] G. Birkhoff and G.-C. Rota, Ordinary Differential Equations, John Wiley 

& Sons, New York, 1978, Chapters 10-11. 
[2] E. Butkov, Mathematical Physics, Addison-Wesley Publishing Co., Read-

ing, MA, 1968, pages 337-341. 
[3] E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equa-

tions, McGraw-Hill Book Company, New York, 1955, Chapters 7-12. 
[4] N. Dunford and J. Schwartz, Linear Operators, Part II: Spectral Theory, 

John Wiley & Sons, New York, 1958. 
[5] E. L. Ince, Ordinary Differential Equations, Dover Publications, Inc., New 

York, 1964, pages 217-218 and 235-241. 
[6] Β . M. Levitan and I. S. Sargsjan, Sturm-Liouville and Dirac Operators, 

Kluwer Academic Publishers, Dordrecht, The Netherlands, 1991, Chapter 6 
(pages 139-182) and Chapter 12 (pages 324-340). 

= χ  * /
2

 sin(rar log x). 

N o t e s 
[1] For transformations of (19.3), see page 128. 

[2] The regular Sturm-Liouville equation, written in the form 
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[7] S. Pruess, C. T. Fulton, and Y. Xie, "The Automatic Classification of Sturm-
Liouville Problems," (submitted for publication). 

[8] I. Stakgold, Green's Functions and Boundary Value Problems, John 
Wiley k Sons, New York, 1979, Chapter 7 (pages 411-466). 

[9] E. Zauderer, Partial Differential Equations of Applied Mathematics, 

John Wiley k Sons, New York, 1983, pages 136-159. 

20. Variational Equations 

A p p l i c a b l e t o Differential equations tha t arise from variational princi-

ples. 

Y i e l d s 
A variational principle. 

P r o c e d u r e 
Most differential equations tha t arise in mathematical physics have 

been obtained from a variational principle. The variational principle tha t 

is most often used is 6J = 0, where 6 represent a variation, and J is a 

functional given by 

J[u] = J J L{x,dXj)u(x)dx. (20.1) 

R 

Here, L( ) is a linear or nonlinear function of its arguments and u(x) is the 

unknown function to be determined. This variational principle states tha t 

the integral J[u] should be stat ionary to small changes in u(x). If we let 

ft(x) be a "small," continuously differentiable function, then we can form 

J[u + ft] - J[u] = JJ {L{x,dXj){u{x) + h(x))-L(x,dXj)u(x)} dx. 

R 

(20.2) 

By integration by par ts , (20.2) can often be wri t ten as 

J [u + ft] - J[ti] = J J N{x,dXj)u(x)dx + 0(\\h\\
2

), 

R 

plus some boundary terms (see page 67). The variational principle requires 

tha t 6J := J[u -h ft] — J[u] vanishes to leading order, or tha t 

N(x,dXj)u(x) = 0. (20.3) 
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[7] S. Pruess, C. T. Fulton, and Y. Xie, "The Automatic Classification of Sturm-

Liouville Problems," (submitted for publication). 

[8] I. Stakgold, Green's Functions and Boundary Value Problems, John 

Wiley k Sons, New York, 1979, Chapter 7 (pages 411-466). 

[9] E. Zauderer, Partial Differential Equations of Applied Mathematics, 

John Wiley k Sons, New York, 1983, pages 136-159. 

20. Variational Equations 

A p p l i c a b l e t o Differential equations tha t arise from variational princi

ples. 

Y i e l d s 

A variational principle. 

P r o c e d u r e 

Most differential equations tha t arise in mathematical physics have 

been obtained from a variational principle. The variational principle tha t 

is most often used is 6J = 0, where 6 represent a variation, and J is a 

functional given by 

J[u] = J J L{x,dXj)u(x)dx. (20.1) 

R 

Here, L( ) is a linear or nonlinear function of its arguments and u(x) is the 

unknown function to be determined. This variational principle states tha t 

the integral J[u] should be stat ionary to small changes in u(x). If we let 

ft(x) be a "small," continuously differentiable function, then we can form 

J[u + ft] - J[u] = JJ {L{x,dXj){u{x) + h(x))-L(x,dXj)u(x)} dx. 

R 
(20.2) 

By integration by par ts , (20.2) can often be wri t ten as 

J [u + ft] - J[ti] = J J N{x,dXj)u(x)dx + 0(\\h\\
2

), 

R 

plus some boundary terms (see page 67). The variational principle requires 

tha t 6J := J[u -h ft] — J[u] vanishes to leading order, or tha t 

N(x,dXj)u(x) = 0. (20.3) 
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Equat ion (20.3) is called the first variation of (20.1), or the Euler-Lagrange 

equation corresponding to (20.1). (This is sometimes called the Euler 

equation.) A functional in the form of (20.1) determines an Euler-Lagrange 

equation. Conversely, given an Euler-Lagrange equation, a corresponding 

functional can sometimes be obtained. 

Many approximate and numerical techniques utilize the functional 

associated with a given system of Euler-Lagrange equations. See, for 

example, the Rayleigh-Ritz method (page 554) and the finite element 

method (page 656). 

The following collection of examples assume tha t the dependent vari

able in the given differential equation has natural boundary conditions (see 

page 67). If the dependent variable did not have these specific boundary 

conditions, then the boundary terms tha t were discarded in going from 

(20.2) to (20.3) would have to be satisfied in addition to the Euler-Lagrange 

equation. 

E x a m p l e 1 

The Euler-Lagrange equation for the functional 

where y = y (χ ) is 

0. 

For this equation the na tura l boundary conditions are given by 

y(xo) = 2/0, y'{xo) = 2 / ό , 

y{x\) = 2 / 1 , t/(xi) = 2/1, 

y 

y 
, ( n - l ) 

E x a m p l e 2 

The Euler-Lagrange equation for the functional 

J[u] = j j F(x,y,u,ux,uy,uxx,uXy,Uyy)dxdy, 

R 

where u = u(x, y) is 

dF 

du 
A f — \ _ Α  ( — λ  + — (

 dF

 λ  

dx \dux) dy \duy ) dx
2

 \duxx J 

d
2

 f dF \ d
2

 ( dF \ 

dxdy \duxy) dy
2

 \duyy) 
= 0. 

(20.4) 
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E x a m p l e 3 

The Euler-Lagrange equation for the functional 

JM-IJ 
du\

2 

a i

d - x )
 +t + eu

2

 + 2fu dx dy, 

du\ ^ d i ^
u

\ _ j 

dx) dy V dy) 

i s 

d_ ( du\ 

dx 

E x a m p l e 4 

For the 2m-th order ordinary differential equation (in formally self-

adjoint form) 

fc=0 

u(a) = u ' (a) = · · · = u
( m

"
1 }

( a ) = 0, 

u{b) = u'{b) = · - - = u
( m

-
1 }

( & ) = 0, 

a corresponding functional is 

E x a m p l e 5 

Consider the system of η  second order ordinary differential equations 

for the unknowns {uk(x) \ k = 1 , . . . , n} 

- Ê [ é ( ^
( a r )

^ )
+

« * *
( x ) t t fc 

k=l
 L v 7 

= fj(x), 
(20.5) 

Uj(a) =Uj(b) = 0, 

for j = 1 ,2 , . . . , n. If pjk = Pfcj, (frfc = qkj, if the matr ix {pjfc} is bounded 
and positive definite, and if the matr ix {qjk} is bounded and non-negative 
definite, then a functional corresponding to (20.5) is 

J\
u
] = J [ έ  Pjk(x)^^ + qjk(x)v>juk -^2fj(x)uj(x)\ dx. 

a
 \j,k=l

 1
 3 = 1 I 
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E x a m p l e 6 

If Aij(x) is a symmetric and positive definite matr ix, so tha t the part ial 

differential equation for u(x) = . . . , xm) 

is elliptic in Ω , C (x ) > 0, and there are Dirichlet boundary conditions 

= 0, (20.6) 

an 

then a corresponding functional is 

•Ί ») - /„ ( t + ^ - ν ή  * . 00.7) 

where (20.7) is to be minimized over those functions tha t satisfy (20.6). 

E x a m p l e 7 

If Aij(x) is a symmetric and positive definite matr ix, so tha t the part ial 

differential equation for u (x) = u(xi,..., x m) , 

is elliptic in Ω , C (x ) > 0, and there are the boundary conditions 

du Σ Α  uu , x 
Α ι  ό —ο ο $(ν , Xi) + au = 0, (20.8) 

J Θ Ω  

where ν  is normal to 9Ω  and σ  is a positive function on # Ω , then a 

corresponding functional is 

J[u] = [ ί  Y A i — ^ + C u
2

- 2 / u ) dx+ [ au
2

dS, (20.9) 

where (20.9) is to be minimized over those functions for which (20.8) is 

satisfied. 
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N o t e s 

[1] Note that two different functionals can yield the same set of Euler-Lagrange 

equations. For example, δ  J J dx = δ  J(J + y + xy')dx. The reason that 

δ  j(y + xy') dx = 0 is because the integrand is an exact differential ( J*(y + 

xy')dx — j d(xy)). Hence, this integral is path independent; its value is 

determined by the boundary conditions. 

The Euler-Lagrange equations for the two functionals j J UxxUyy dx dy 

and J j (uxy)
2

 dxdy are also the same. 

[2] If a differential equation can be derived from a variational principle, then 

admittance of a Lie group is a necessary condition to find conservation laws 

by Noether's theorem. 

[3] Even if the boundary conditions given with a differential equation are not 

natural, a variational principle may sometimes be found. Consider 

u] = Γ  
J χ ι  

F(x, u, u) dx — gi (x, u) + g2(x,u) 

where g\(x,u) and g2(x,u) are unspecified functions. The necessary condi

tions for u to minimize J[u] are (see Mitchell and Wait [5]) 

du dx du ' 

dF dgi 

du
 +

 du 
= 0, 

dF_ dg2 

du du 

If gi and #2 are identically zero, then we recover the natural boundary 

conditions. However, we may choose gi and #2 to suit other boundary 

conditions. For example, the problem 

u" + f(x) = 0, 

u 4- au 

I x=x\ 

corresponds to the functional 

= 0, u + ßu = 0 

J Xl 

au 
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[4] This technique can be used in higher dimensions. For example, consider the 

functional 

F(x,y,u,Ux,Uy,Uxx,uXy,Uyy) dx dy 

+ / G(x,y,u,ua,uaa,un)da, 
JdR 

where d/da and d/dn are partial differential operators in the directions of 

the tangent and normal to the curve dR. Necessary conditions for J[u] to 

have a minimum are the Euler-Lagrange equations (given in (20.4)) together 

with the boundary conditions: 

dF 

.dux 

d dF 1 

dx duxx j 

dF 

ya -

dF δ  dF 

duy dy dUyy 

1 
Xaya + -

d_ ( dF _ dF Y 

da \duxx duyy J 

l \ ( d _ d F \ X a_ ( d _ d l _ \ 
2 \dx duxy J \dy duxy J 

δ  dF 

da duxy 

(xl-yl) 

dy duxy 

9 2 d G

 = o,' 
da dua da

1

 duaa 

dG dF 2 dF 2 dF 
Ö + Ö ya + Ö Χ σ  + Ö Xaya = 0, 

OUn OUxx OUyy OUxy 

dx dxi 
where χ σ  = — and ya = -r~. See Mitchell and Wait [51 for details. 

da da 
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Verlag, New York, 1966, pages 540-541. 

[3] S.J. Far low, Partial Differential Equations for Scientists and Engineers, 

John Wiley & Sons, New York, 1982, pages 362-369. 

[4] L. V. Kantorovich and V. I. Krylov, Approximate Methods of Higher 

Analysis, Interscience Publishers, New York, 1958, Chapter 4 (pages 241-
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[5] A. R. Mitchell and R. Wait, The Finite Element Method in Differential 
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[6] W. Yourgrau and S. Mandelstam, Variational Principles in Dynamics 

and Quantum Theory, Dover Publications, Inc., New York, 1979. 
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21. Well-Posedness of 

Differential Equations 

A p p l i c a b l e t o Ordinary differential equations and partial differential 

equations. 

Y i e l d s 

Knowledge of whether the equation is intrinsically well-posed. 

Idea 

Before an a t t empt is made to determine or approximate the solution of 

a differential equation, it should be checked to determine if the differential 

equation problem is intrinsically well-posed. 

P r o c e d u r e 

A well-posed differential equation is one in which 

(A) The solution exists. 

(B) The solution is unique. 

(C) The solution is stable (i.e., the solution depends continuously on 

the boundary conditions and initial conditions). 

If the differential equation is not well-posed, it is called an ill-posed or 

improperly posed problem. For such problems: there may not be a solution, 

there may be more than one solution, or whatever solution is determined 

(by an approximate scheme) may be unrelated to the actual solution. 

For partial differential equations, the third condition (concerning sta

bility) is generally the easiest to check. 

E x a m p l e 

Consider the initial value problem for the unknown function u(x,t), 

(21.1) 

We will show tha t the solution to this problem is not stable. Suppose tha t 

(21.1) has a solution, say uo{x,t). Assume tha t ε  is a fixed number, much 

smaller than one in magnitude, and define u\(x, t) by 

where k and σ  are also constants. At t = 0, u\(x, 0) differs from g(x) by a 

quanti ty tha t has magnitude ε , an arbitrarily small amount . 
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However, using u\(x, t) in (21.1), we determine tha t i t i (x, t) will satisfy 

the equation if σ  = ±fc
2

. Therefore, at any fixed value of £, say t = 

T, there exists a solution υ ,ο (χ ,Τ ) and an approximation to the solution 

u\(x,T) = uo(x,T) + ee
lkx

e
h T

. The approximation satisfies the same 

differential equation tha t the t rue solution satisfies. But since k is arbitrary, 

the approximate solution can be arbitrarily larger t han the t rue solution, by 

taking k arbitrarily large. Since two different expressions satisfy the same 

differential equation and initially were arbitrarily close, and are arbitrarily 

different in magnitude at any future t ime, we conclude tha t the problem is 

ill-posed. 

Note tha t , with the proper boundary conditions and initial conditions, 

the equation in (21.1) would have a unique solution. But the solution would 

be unstable since the equation is intrinsically ill-posed as an initial value 

problem. Hence, there would be, for instance, no easy way to numerically 

approximate the solution. 

N o t e s 

[1] For a discussion of some existence and uniqueness theorems, see page 50. 

For a discussion of some stability theorems, see page 80. 

[2] A standard example of an ill-posed problem is Laplace's equation with initial 

data. For example, the equation V
2

u = 0 with the initial data — (x,0) = 
ay 

— sinnx has the solution u(x,y) = sinnxsinhra/. As η  —» oo, the initial 
η  η  

data are becoming arbitrarily small in magnitude, while the solution (for 

y > 0) is becoming arbitrarily large. 

[3] Certain classes of equations have been well studied. We can therefore state: 

(A) For Laplace's equation and elliptic equations in general, the Dirichlet 

problem is well-posed. Also, tne Neumann problem does not have a 

unique solution, but is otherwise well-posed. 

(B) For the two-dimensional wave equation and hyperbolic equations in 

general, both are well-posed as an initial value problem. Both are, 

generally, ill-posed as boundary value problems. 

(C) For the heat equation and diffusion equations in general, both are well-

posed when given Dirichlet data and the time variable is increasing; 

both are ill-posed when the time variable is decreasing. See Beck, 

Blackwell, and St. Clair [2] for numerical schemes related to a specific 

ill-posed problem. 

[4] A backwards heat equation (a parabolic equation with decreasing time) is 

ill-posed. It may be made well-posed, however, by requiring the solution to 

satisfy a suitable constraint. Typically, one asks for non-negative solutions or 

for solutions that satisfy an a priori bound, which is obtained from physical 

considerations. 
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[5] Payne [10] contains the following non-exhaustive list of methods that have 

been proposed and used in treating various types of improperly posed Cauchy 

problems: 

(A) Function theoretic methods. 

(B) Eigenfunction methods. 

(C) Logarithmic convexity methods. 

(D) Weighted energy methods. 

(E) Lagrange identity methods. 

(F) Quasireversibility methods. 

(G) Restriction of data methods. 

(H) Numerical and programming methods. 

(I) Concavity methods. 

(J) Stochastic and probabilistic methods. 

(K) Method of generalized inverse in reproducing kernel spaces. 

(L) Comparison methods. 

Payne illustrates several of these methods on a backwards heat equation. 

[6] As Fichera [4] shows, finding the correct boundary conditions for a degen

erate problem (one in which the type changes) can be difficult in general. 

Fichera shows, for example, that the first order equation for u(x,y) 

a(x, y)ux + b(x, y)uy + eu = f 

in the rectangle R = {—a < χ  < α , —β  < y < β }, when a and b satisfy 

a ( - a , y ) >0, a(a,y) < 0, 

b{x,-ß) >0, b(x,ß) < 0, 

has no boundary conditions! However, the equation, 

-a(x,y)ux - b(x,y)uy + cu = f, 

in R, with the same conditions on a and b, requires that u be given on the 
entire boundary of R\ 

R e f e r e n c e s 
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[2] J. V. Beck, B. Blackwell, and C. R. St. Clair, Jr., Inverse Heat Problems, 
Wiley, New York, 1985. 

[3] B. L. Buzbee and A. Carasso, "On the Numerical Computation of Parabolic 
Problems for Preceding Times," Math, of Comp., 27, No. 122, April 1973, 
pages 237-266. 
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[4] G. Fichera, "On a Unified Theory of Boundary Value Problems for Elliptic-

Parabolic Equations of Second Order," in R. E. Langer (ed.), Boundary 

Problems in Differential Equations, Univ. of Wisconsin Press, Madison, 

Wisconsin, 1960, pages 97-120. 

[5] P. R. Garabedian, Partial Differential Equations, Wiley, New York, 1964, 

pages 450-457. 

[6] M. M. Lavrent'ev, V. G. Romanov, and S. P. Shishatskii, Ill-Posed Prob
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If { 2 / 1 , j / 2 i · · · i 2 / n } is any set of η  solutions to the equation L[y] = 0, then 

the matr ix 

Φ (χ ) = 

l m 

Vi 
2 / 2 
y'2 y'n 

is a solution matrix for (22.1). It is also called a fundamental solution. This 

matr ix satisfies the differential equation^l^ = Α Φ . 

The determinant of this matr ix, det<I>(£), is called the Wronskian of 

L[y] = 0 with respect to { 2 / 1 , 1 / 2 , . . · , 2 / n } and is denoted b y W(yi,y2,..., y n) . 

Note tha t the Wronskian is a function of x. 

If Φ ( χ ) satisfies Φ ' = Α Φ , then | Φ ( χ ) | ' = | Φ ^Γ ^4( ί ), and hence 

de t Φ ( x ) = d e t Φ ( x o ) e x p ^ y
,

 t r ^ ( 5 ) d 5 ^ , 

where t r A denotes the trace of the matr ix A. For the matr ix in (22.2) we 

have tr A = —a\ so tha t 

W(yi,...,yn)(x) = W(yl,...,yn)(x0) e x p ^ - J a^ds^j (22.3) 

This is sometimes called Liouville 's formula. 

From (22.3) we conclude tha t either W(x) vanishes for all values for 

x, or it is never equal to zero. If the Wronskian never vanishes, then the 

set {yi, y2,..., yn} is said to be linearly independent. A set of η  linearly 

independent solutions to L[y] = 0 is called a basis or a fundamental set. 

Alternately, given a set of η  linearly independent continuous functions, 

{ î / i j 2 / 2 » · · · ? 2 / n } » it is possible to find a unique homogeneous differential 
equation of order η  (with the coefficient of y^ being one) for which the 

set forms a fundamental set. This differential equation is given by 

/ 1x n ^ ( 2 / , 2 / l , 2 / 2 , - ^ 2 / n ) = Q 

W(yi,y2,...,yn) 
(22.4) 
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E x a m p l e 1 

Given the second order linear ordinary differential equation 

y" + y = 0, (22.5) 

the set {sin x, cos x} forms a fundamental set because each element in this 

set satisfies (22.5) and also the Wronskian is given by 

W ( s i n x , c o s x ) = sin χ  cos χ  

cos χ  — sin χ  
= - 1 , 

which does not vanish. Since the Wronskian is constant, we have verified 

tha t ai(x) = 0 in (22.5) (the a\(x) t e rm in this equation corresponds to 

the first derivative te rm) . 

E x a m p l e 2 

If we choose the two functions y\ = sin χ  and y2 = x, we can determine 

the linear second order equation tha t has these solutions as its fundamental 

set by constructing (22.4). Here η  = 2 so we find 

( - 1 ) 
2 W(y, x , s i n x ) 

W ( x , sin a;) 

y Χ  sin χ  

y' 1 cos χ  

y" 0 — sin χ  

χ  sin χ  

1 cos χ  

( χ  cos χ  — sinx)?/" + (x s inx )^ / — (s inx)y 

( χ  cos χ  — sin χ ) ' 

y" + 
χ  sin χ  

:ν '-
sin χ  

( χ  cos χ  — sin χ ) ( χ  cos χ  — sin χ )
1 

N o t e s 

[1] Given the linear partial differential equation 

L[u\ = Σ
 ai

^)ßZ^T. + Σ
 6

· ^ + <™ dxi 

for u(x), let Γ  = Γ ( χ ,£) = Γ (£ , χ ) be the geodesic distance between the 

points χ  and ζ . (For a rectangular coordinate system, Γ ( χ ,£) = ||x — £|| = 

\J(x\ — ξ ι )
2

 Η  V (xn — £ η )
2

·) A fundamental solution, S (x ,£) , satisfies 
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L[S] — 0 and, near χ  = ξ , has the form S = + V\ogY + W, where 

U, V, and VF are analytic functions and m = (η  — 2)/2. For example, for 
Laplace's equation in η  dimensions with η  > 2, V

2

w = 0, a fundamental 
solution is given by 

S = — ^ 2 , with r = ν ^ ι - £ ι )
2

 + · · · + ( ^ - ω
2

· 
r 

See Garabedian [3] for details. 
[2] The canonical form of a self-adjoint third order linear homogeneous differen-

tial equation is y'" 4-2 Ay' + A'y = 0, (see pages 78 and 135). A fundamental 
set of solutions for this equation are {u

2
 ,uv, v

2
}, where u(x) and v(x) are any 

two linearly independent solutions of the second order differential equation 
u" + \Au = 0. 
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I . B 

Transformat ions 

23. Canonical Forms 

A p p l i c a b l e t o The ordinary differential equations: 

d
2

y 

dx 

d
2

y Λ/ „ χ  dy 
— \ + 2(e + fx) -y- + ( px

2

 + 2ax + r )y = 0, (23.2) 

(a + # r ) 4̂ + (6 + rax) ^ + (c + nx)y = 0, (23.3) 
ax dx 

% - K s - * * ) -
 < - > 

Idea 

Each of these equations has certain canonical forms. When approxima-

tions and numerical values for these equations are reported in the l i terature, 

it is generally for the canonical forms. 

101 
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P r o c e d u r e 1 

By changing the dependent and independent variables from y = y(x) 

to ν  = v(z), equation (23.1) will take the form of one of the following four 

canonical forms: 

for some choice of the constants {ι /, λ , μ , κ ). 

P r o c e d u r e 2 

By changing the dependent and independent variables from y = y(x) 

to υ  = v(z), equation (23.2) will take the form of one the following four 

canonical forms: 

where A and Β  are constants. The transformation is given by 

y(x) = vz 

X — K>Z ) 

d ν  , 9 ν  

+ (Z* + J)v = 0, 

where J is a constant. The transformation is given by 

y(x) = v e ^
z 

χ  = Kz + 77, 

?
χ

+*
χ 2

ν (ζ ), 

for some choice of the constants {ι /, μ , ξ , η }. 



2 3 . C a n o n i c a l F o r m s 103 

P r o c e d u r e 3 

By changing the dependent and independent variables, equation (23.3) 

can be reduced to Weiler's canonical form (this is also known as a Kummer 

equation) 

d
2

v /f .dv 

dz
1

 dz 
z— + {b- ζ )— - av = 0. (23.5) 

The transformations tha t give (23.5) have several different forms depending 

on the numerical values of the coefficients in (23.3), see Bateman [2] for 

details. 

P r o c e d u r e 4 

A critical point is called a moving critical point if its location de-

pends on the initial conditions for the differential equation (and so the 

location of the critical point is not fixed solely by the coefficients of the 

differential equation). For example, the nonlinear differential equation 

2y — 1 
y" = (y')

2

 —« has the general solution y{x) = tan[log(j4x + £?)], where 
y + 1 

A and Β  are arbitrary constants . The initial conditions determine A and 

Β  and thus determine the location of the singularities of y(x). 

Given an ordinary differential equation in the form of equation (23.4), 

if F(y\ y, x) is rational in y', algebraic in y, and analytic in x, and if all of 

the critical points are fixed, then a change of variables of the form 

, x az(x) + b 
y { x)

 = TzWTd' 

where a, 6, c, d, and w are some functions of x, will transform the equation 

to one of fifty s tandard forms. Each of these fifty differential equations is 

for the unknown function z(x). 

Of these s tandard forms, six have solutions in terms of the Painlevé 
transcendents and all the others have first integrals tha t are equations of 
first order or have elementary integrals. The equations tha t define the six 
Painlevé transcendents are 

dx
2 

dx
2 

6y
2
 + x, 

2y
3
 + xy + a, 
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dx
2

 \2y y - l ) \ d x ) 

6y(y +1) 

y - i 

* i ( l + i + J - \ ( ± Y - ( l + i + J ^ L E L 
dx

2

 2 \y y — 1 y — x J \dx J \x x — 1 y — x J dx 

In the above equations, all of the parameters are assumed to be con-

stant . 

N o t e s 

[1] The first three transformations may be found in Bateman [2]. 

[2] The transformations for equation (23.4) may be found in Ince [4]. 

[3] Even though the Painlevé equations do not have elementary solutions in 
general, some choices of the parameters will lead to equations solvable in 
terms of elementary functions. For example, y = —l/x is a solution of the 
second Painlevé equation when a = 1, and y = -l/x + 3x

2

/(x
3

 4- 4) is a 
solution of the same equation when a = — 2. See Airault [1] for details. 

[4] An ordinary differential equation is said to have the Painlevé property if all of 
its solutions are free of moving critical points. Rand and Winternitz [7], de
scribe a MACSYMA program for determining whether a nonlinear ordinary 
differential equation has the Painlevé property (the differential equation 
must be a polynomial in both the dependent and independent variables and 
in all derivatives). 
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24. Canonical Transformations 

A p p l i c a b l e t o A system of ordinary differential equations tha t arise 

from a Hamiltonian. 

Y i e l d s 
A different system of ordinary differential equations tha t arise from a 

different Hamiltonian. 

P r o c e d u r e 
A Hamiltonian # ( p , q) (with ρ  = ( p 1 ?. . . , p n) and q = (qi,..., qn)) 

defines the system of ordinary differential equations 

d H

 If 

dH_ 

dpi 

v

" TT 

where a dot denotes differentiation with respect to the independent variable 

t (see page 57). The {pi,qi} are called the coordinates of the Hamiltonian. 

The transformation to the new system of coordinates {Pi,Qi} via 

ft-ft(P,Q), ( 2 4 1) 

is (commonly) said to be canonical if Hamilton's equations remain in

variant. Tha t is, there exists a new Hamiltonian i f ( P , Q) such tha t the 

equations 

P i =

 ~
K

^ (24.2) 
Qi= KPi, 

are valid. 

Canonical transformations can be defined implicitly by a generating 

function. For instance, for almost arbi t rary 5 ( p , Q,£), a canonical trans

formation is given by 

Pi = - S Q i, 

qi = -SPi, (24.3.a-c) 

tf(P,Q) = ff(p,q) + S t , 

where equations (24.3.a) and (24.3.b) must be solved to obtain explicit 

expressions for q ( P , Q ) , p ( P , Q ) . Also, for the St term, the derivative is 

taken with respect to the explicit dependence of S on t. 
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Other functional forms for the generating function are also possible. 

For example, a function of the form 5 (q , P , t) gives rise to the canonical 

transformation 

Pi
 =

 Sqii 

Qi = SPi, (24.4.o-c) 

tf(P,Q) = tf(p,q) + S t . 

E x a m p l e 

Given the Hamiltonian 

H=±(p
2

+a
2

(t)q
2

), (24.5) 

Hamilton's equations are {p = —o?q, q = p}, which can be combined to 

yield 

q + a
2

q = 0. (24.6) 

Hence, the Hamiltonian in (24.5) defines the second order ordinary differen

tial equation in (24.6). Now consider the canonical transformation induced 

by the generating function S(q, P, t) = q
2

P. From (24.4) we find 

Ρ  = 2<?P, 

K(Q,P)=
1

-(p
2

 + aV) = % ( 4 P
2

 + a
2

) . 

The equations corresponding to the new Hamiltonian are 

(24.7.a-&) 
P = - | ( 4 P

2

 + a
2

) , 

Q = APQ. 

Equation (24.7.a) is a nonlinear first order ordinary differential equation 

for P(t). After P(t) is determined, (24.7.b) can be used to determine Q(t) 

by quadrature . Hence, this change of variable has changed a second order 

linear ordinary differential equation into two successive first order ordinary 

differential equations. 
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N o t e s 
[1] Canonical transformations are sometimes called contact transformations. 

See page 206 for the correct definition of a contact transformation. 

[2] Technically, and in more generality, a transformation of the 2n variables 

{
x

jiPj I j — !>···>**} to the 2n variables {Xj,Pj \ j = l , . . . , n } is a 

canonical transformation if the differential form Y^=l(PjdXj — Pjdxj) is 

exact, i.e., there exists a function U = £/(x, p) such that 

η  

^(PjdXj - pjdxj) = dU. (24.8) 

J = I 

[3] The section on Hamilton-Jacobi theory (see page 57) utilizes canonical 
transformations to derive the Hamilton-Jacobi equation. 

[4] Tolstoy [8] shows that any given nonlinear ordinary differential equation 
may be transformed, in principle, by a variable transformation into a linear 
differential equation, or a system of such equations. This is the reverse of 
the process that was seen in the example. 

[5] The set of all canonical transformations forms a group. 

[6] Fouling transformations are canonical transformations in which the ρ  coor
dinates in configuration space are preserved; i.e., Ρ  = ρ , Q = Q(p,q). See 
Gelman and Saletan [4] for details. 

[7] A transformation, given by (24.1), which allows (24.2) to be written, and 
may or may not satisfy (24.8) is technically called a canonoid transformation. 
The lack of distinction between canonical and canonoid has occasionally led 
to ambiguity in the literature. See Negri, Oliveira, and Teixeira [7] or Currie 
and Saletan [3] for details. 
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Hill Book Company, New York, 1970, pages 197-206. 

[3] D. G. Currie and E. J. Saletan, "Canonical Transformations and Quadratic 
Hamiltonians," Nuovo Cimento B, 9, No. 1, 1972, pages 143-153. 

[4] Y. Gelman and E. J. Saletan, "q-Equivalent Particle Hamiltonians. II: The 
Two-Dimensional Classical Oscillator," Nuovo Cimento B, 18, No. 1,1973, 
pages 53-71. 

[5] H. Goldstein, Classical Mechanics, Addison-Wesley Publishing Co., Read
ing, MA, 1950, Chapter 8 (pages 237-272). 

[6] D. ter Haar, Elements of Hamiltonian Mechanics, Pergamon Press, New 
York, 1971, pages 98-103. 

[7] L. J. Negri, L. C. Oliveira, and J. M. Teixeira, "Canonoid Transformations 
and Constants of the Motion," J. Math. Physics, 28 , No. 10, October 1987, 
pages 2369-2372. 



108 I. B Transformat ions 

[8] I. Tolstoy, "Remarks on the Linearization of Differential Equations," J. Inst. 

Maths. Applies, 20, 1977, pages 53-60. 

25. Darboux Transformation 

A p p l i c a b l e t o Linear second order ordinary differential equations, a 

single equation or a system. 

Y i e l d s 

A reformulation of the problem. 

P r o c e d u r e 

Given the equation 

y " = (f(x) + K)y (25.1) 

for y(x), we say tha t the transformation 

z(x) = A(x, X)y + B(x, X)y' 

is a Darboux transformation if z(x) satisfies a differential equation of the 

form 

z" = (g(x) + \)z. (25.2) 

For example, if w(x) is a solution of (25.1), then a Darboux transformation 

is given by 

w' 
z = y' -y—. (25.3) 

w 

In this case, if y satisfies (25.1), then z(x) satisfies (25.2) with 

f(x)=g(x)-2[logw(x)}". 

That is to say, this transformation changes the potential function appearing 

in (25.1) from f(x) by of = — 2 [log iu (#)]" , where w(x) is an arbi trary 

solution of (25.1). The usefulness of this technique is tha t equation (25.2) 

might be easy to solve for z(x); then y(x) may be found from (25.3) by a 

single integration. 

For the system of second order ordinary differential equations 

y" = D(x)y, (25.4) 
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where D(x) is the matr ix 

D(x) = 

/ d n ( x ) di2(x) 

d.2n(x) 

\dni(x) dn2(x) 

we say tha t 

z{x) = A(x)y + B ( x ) y ' ( 2 5 . 5 ) 

where A and Β  are matrices, is a Darboux transformation if ζ  satisfies an 

equation of the form 

z" = F ( x ) z , (25.6) 

where F(x) is some new matr ix 

F(x) = 

( fn{x) fi2(x) 

f2l(x) Î22(x) 

fln(x)\ 

Î2n{x) 

\fnl(x) fn2(x) . · . fnn(x)/ 

Sometimes Darboux transformations of this type can be used to decouple 

systems of differential equations. See Humi [1] for details. 

E x a m p l e 1 
If the solution of the differential equation 

y" = (f(x) + \)y (25.7) 

is known for all values of λ  (call it y\), and w(x) = ν μ (χ ) is the solution 

when λ  = μ , then the general solution of the differential equation 

2 " = ( œ w ^ ( ^ ) + A - " ) 2 < 2 5 8 ) 

for z(x) is given by (see (25.3)) 

w'(x) 
ζ  = V\ - y χ  

w(x) ' 
(25.9) 

for λ  φ  μ . In particular, if we take f(x) = 0 in (25.7), then yo(x) = Ax + B 

when λ  = 0 and y\(x) — e
±y/

^
x

 for λ  φ  0. If we take μ  = 0 and w(x) = x, 

then equation (25.8) becomes 

with the solution given by equation (25.9); i.e., 

z(x) = e^(±VX-^j. 
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u

W - \ d(x) u2{x) + \ ) 

If we apply a Darboux transformation, we can hope to obtain the form of 

(25.6) with F(x) given by 

If we choose Β  = I in (25.5), then to obtain (25.6) we require 

A" + D' + AD = FA, 

2 A' + D = F. 

In our case, with D(x) given by (25.7) and F(x) given by (25.10) we require 

tha t the elements of the matr ix A(x) satisfy 

2a ' 12 = 2 a 2 1 = - d , 

2a'11+u1(x) = v1(x), (25.11) 

2 a 22 + u2(x) = v2(x). 

It is a simple mat te r to integrate these equations to obtain 

ai2(x) =c (x ) , a2i(x) = c(x), 

where a is an arbi trary constant and 

I(x) = J c(t)[u2{t) - mit)] dt. 

This solution is valid if the consistency constraint 

U l + U2 = ^ - ( l ) ' + \ ( l )
2

 + ^ a + , f ( 2 5 . 1 2, 

is satisfied. This constraint was derived in the solution of (25.11). 

Stated another way, we can choose d and m — u2 as arbi trary functions 

and then use (25.12) to compute the corresponding m +
 U

2 for which the 

resulting system of equations can be decoupled by the use of a Darboux 

transformation. 

E x a m p l e 2 

This example is from Humi [1], Suppose we wish to decouple a system 

of symmetric equations in the form of (25.4) with 



26 . A n I n v o l u t o r y Trans format ion 111 

R e f e r e n c e s 

[1] M. Humi, "Separation of Coupled Systems of Differential Equations by 

Darboux Transformation," J. Phys. A: Math. Gen., 18, 1985, pages 1085-

1091. 

[2] E. L. Ince, Ordinary Differential Equations, Dover Publications, Inc., New 

York, 1964, page 182. 

[3] B. G. Konopelchenko, "On Exact Solutions of Nonlinear Integrable Equa-

tions via Integral Linearising Transforms and Generalised Bäcklund-Darboux 

Transformations," J. Phys. A: Math. Gen., 23, 190, pages 3761-3768. 

[4] G. L. Lamb, Elements of Soliton Theory, John Wiley &; Sons, New York, 

1980, pages 38-41. 

[5] D. Levi, "Toward a Unification of the Various Techniques used to Integrate 

Nonlinear Partial Differential Equations: Bäcklund and Darboux Transfor-

mations vs. Dressing Method," Rep. Math. Phys., 23, No. 1, 1986, pages 

41-56. 

[6] I. V. Poplavskii, "Generalized Darboux-Crum-Krein Transformations," Theo. 

Math. Physics, 6 9 , No. 3, 1986, pages 1278-1282. 

[7] M. A. Sail, "Darboux Transformations for Non-Abelian and Nonlocal Equa-

tions of the Toda Chain Type," Theo. Math. Physics, 53, 1982, pages 1092-

1099. 

[8] S. Stanek and J. Vosmansky, "Transformations of Linear Second Order 

Ordinary Differential Equations," Archivum Mathematicum (BRNO), 22, 

No. 1, 1986, pages 55-60. 

[9] W. M. Zheng, "The Darboux Transformation and Solvable Double-Well 

Potential Models for Schrödinger Equations," J. Math. Physics, 25, No. 1, 

January 1984, pages 88-90. 

26. An Involutory Transformation 

A p p l i c a b l e t o Nonlinear part ial differential equations of a certain form. 

Y i e l d s 

A reformation of the part ial differential equation. 

Idea 

Inverting the dependent and independent variables might lead to a 

more tractable equation. 
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P r o c e d u r e 

Suppose we have a part ial differential equation of the form 

Φ

 (
Μ

' Jx' ^ )
 := φ

(
Μ

»
Μ

* '
Μ

^ ' · · · ϊ
Μ

* '
1 χ

« ' · · · )
 =

 ° ' ί
2 6

·
1

) 

for u = u(x,t). We introduce the inverse transformation 

U = X, 

X = u, 

t' = t. 

Since applying Τ  twice is equivalent to not applying T, the transformation 

is involutory (i.e., Τ
2

 = I = the identity). Noting tha t 

dx du'/dx' dx' 

d _ d du'/dt' d _ , 

dt " dt' du'/dx' dx'
 :

~ ' 

then, under T, equation 1 becomes 

Φ ( χ ;£>';<9') = 0 . ( 2 6 . 2 ) 

This transformation may be used to change classes of nonlinear equations 

with Dirichlet boundary conditions to linear form. For example, the class 

u' = $ ! ( f ' ) on x' = Φ ι ( ί ' ) , 

u' = Φ 2( ί ' ) on x' = Φ 2( 0 , 

u' = θ ( χ ' ) at t' = 0 , 

transforms, under T, to 

du 
TV 

0*u 

dt dx* 

ι ι  = Φ ι ( ί ) 

IX = Φ 2( ί ) 

on χ  = Φ ι ( ί ) , 

on χ  = Φ 2( ί ) , 

u = Θ
_ 1

( Χ ) at t = 0 . 
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ν ! = 0 on x' = Φ ι ( 0 , 

υ ! = L on χ ' = Φ 2( 0 > (26.3) 

u' = Θ ( χ ' ) at t' = 0, 

the transformed equation and in i t ia l /boundary conditions become 

du d
2

u 

u = <!>1(t) 

u = Φ 2(*) 

u = θ -
χ

( χ ) 

on 

on 

at 

χ  = 0, 

χ  = L, 

* = 0 . 

(26.4) 

The equation in (26.4) can be easily solved (by use of, say, Fourier t rans

forms) to yield 

**(*>*) = \ Σ
β χ ρ

( ~
Κ 7 1

^
T

)
S I N

( ^ J T ) /
 θ

 ^ ^ ( n r )
d a 

+ — J exp ( ^ — Ι
φ

ι ( ^ ) - ( - 1 )
η

* 2( τ ) ] d r 

This last relation, can be implicitly solved for χ  — x(u, t); which (under T) 

is the solution to (26.3) (i.e., u' = u'(x',t')). 

N o t e s 

[1] The Hodograph transformation is a different way in which the dependent 

and independent variables are interchanged. See page 390 for details. 

E x a m p l e 

Given the equation and ini t ia l /boundary conditions 
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R e f e r e n c e s 

[1] C. Rogers, "Inverse Transformations and the Reduction of Nonlinear Dirich-
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27. Liouville Transformation — 1 

A p p l i c a b l e t o The general Sturm-Liouville equation 

— \p{x)y'}' + r{x)y = Xp{x)y, for a < χ  < b, 

y'(a) + ay(a) = 0, (27.1) 

y'(6) + /?y(6) = 0. 

P r o c e d u r e 

The Liouville transformation (version 1) is to change the independent 

variable from x G [α , b] to t G [0, π ] by 

where J is defined by 

and to change the dependent variable from y(x) to u(t) by 

u(t) = f(x)y(x) = \P{x)P{x)]
l

l
4

y{x), (27.4) 

where we have defined f(x) := [p(x)p(x)]
1

^
4

. Wi th this change of variable, 

(27.1) becomes 

+ ft
2

 - q(t)]u = 0, for 0 < t < π , 

M
;

(0) + M O ) = 0, 

u'(n) + Hu{n) = 0, 
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p(xY 

q(t) = ^- + J
2

m(t), 

h = 727 Γ τ [ α ^ ρ ( ο ) - / ( ο ) / « ( β ) ] , 

Η  =-rtTrAßMb) - f(b)ft(b)]. 

_1 

/
2

( α ) 

J. 

f
2

(b) 

Note tha t </(£) may also be wri t ten as 

9 W = ̂  + (pp)-
1/4

4[(pp)
1/4

], 
ρ  at 

=

 ρ
 +

 Tp [(^)
 +

 (7) +

 4 (7) +

 2 (7) ( p ) " 4 ( p ) ] 

E x a m p l e 

If we have the equation and boundary conditions 

—{xy')' + —y = Axt/, for π  < χ  < 2 π , 
a; 

2 / ' ( Τ Γ ) = 0, 

2/ '(2 π ) = 0. 

Then we identify 

p ( x ) = x , r (x) = i , p(x) = x , 
a: 

α  = π , 6 = 2 π , a = 0, /? = 0. 

A simple calculation results in: J = 1, t = χ  — π , f(x) = <y/x = y/t + 1, 
1 1 3 1 

ra(£) — « — </(£) = — A:
2

 = λ , h = - - , and H = 
V ;

 x
2

 (t + 1)
2

 4(t + l )
2

 2 ' 
-. Hence, we obtain 

2( π  + 1) ' 

u" + Γ  λ  ; — - — T T y ] u = 0, for 0 < * < π , 

V 4(* + l ) V - -

ti'(0) - | u ( 0 ) = 0, (27.5) 

Α π )

 - 2 ( ^ T T f
 W

 = °· 

Equat ion (27.5) is in Liouville normal form. 

which is in Liouville normal form. The definitions of {k,q(t),h,H} are as 

follows 

k
2

 = J
2

X, 

m(t) =
 Γ ( Χ) 
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N o t e s 

[1] The standard assumptions required on (27.1) are that, on the interval [a,6]: 

ρ  and q are real-valued, ρ  > 0, q does not vanish, and ρ  and q have continuous 

second derivatives. Boundedness conditions are also required for the new 

functions. 

[2] The transformation 

J i n " p(*) (27.6) 

u(t) = ]p(x)\q(x)\}
1/4

y(x), 

when applied to (27.1) with ρ  = 0, results in 

^ + [±1 + R(t)]u(t) = 0, (27.7) 
at 

where 

ß W = P
1 / 4

k | -
3 / 4

^ ^ [ p ( x ) k ( x ) | ] -
1 /4 

and the plus (minus) sign is taken in (27.7) if q(x) > 0 (q(x) < 0). This is 
also called the Liouville transformation, See Eastham [5]. 

[3] The two different transformations, the one in theeqb and (27.4), and the one 
in (27.6), are each sometimes called the Liouville-Green transformation. 
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[9] G. Valiron, The Geometric Theory of Ordinary Differential Equations 

and Algebraic Functions, Math Sei Press, Brookline, MA, 1950, page 511. 

28· Liouville Transformation — 2 

A p p l i c a b l e t o The second order linear ordinary differential equation 

J + \m\t)y = 0 (28.1) 

on the finite interval 0 < t < T, where λ  is a constant and m(t) > 0. 

P r o c e d u r e 

The Liouville transformation (version 2) is to change the dependent 

and independent variables in (28.1) by 

- - C 
~ JJo 

m (ζ ) dz, 

1 f
T 

J — — I m
2

(z) dz, 
7Γ  Jo 

w(x) = m(t)y(t). 

This transformation changes (28.1) into 

+ [XJ
2

 + Q{x)] w = 0, (28.2) 

for 0 < χ  < π , where Q{x) is defined by 

dx
2 = Q(x)m*(x). 

The inverse transformation, which takes (28.2) into (28.1), is given by 

(28.3) 

where m*(x) = m(t) is any positive solution of the differential equation 
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E x a m p l e 

Suppose we have (essentially) Airy's equation 

^ | + Xty = 0. (28.4) 

Comparing (28.4) to (28.1) shows tha t m(t) = t
1

/
4

. Using this value for 

m(t) produces 

j = 2 T 3 / 2) 

3 π  

χ =Λ τ ) -
w(x) = i

1 / 4

l / ( i ) . 

Under this change of variables, (28.4) becomes 

d
2

w ( 4 λ  ·, 5 1 \ 

For large values of x, an approximation to (28.5) might be obtained by 

discarding the second term in the parentheses. 

N o t e s 

[1] The function Q(x) defined in (28.3) will be a constant if and only if m(t) = 

(at
2

 + ßt + 6)~
l/2
. In this case, Q(x) = -J

2
(aÖ - Aß

2
). 

[2] This transformation is useful when followed by some sort of asymptotic 

analysis. When the magnitude of λ  is large compared to Q(x), then the first 

order approximation to (28.2) will be to discard the Q(x) term. 

R e f e r e n c e s 

[1] W. Magnus and S. Winkler, Hill's Equation, Dover Publications, Inc., New 

York, 1966, page 51. 

29. Reduction of Linear ODEs 

to a First Order System 

A p p l i c a b l e t o Linear ordinary differential equations. 
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Y i e l d s 

A first order vector system. 

I d e a 

By introducing variables to represent the derivatives in an n-th order 
linear ordinary differential equation, a first order system of differential 
equations may be obtained. 

P r o c e d u r e 

Given the linear ordinary differential equation 

d
n

y d
( n _ 1 )

2 / dy 
— = a w- i ( s ) ( n_ 1 } + · · · + a i W - + a0(x)y + b(x) 

for y(x), introduce the variables {z i , z2> · · · j zn} defined by 

dy 

dx dx
2

' dx
n

' 

Using these new variables, (29.1) may be writ ten as 

(29.1) 

where 

,y 
(i) 

— y = A(x)y + b(x), 

, . . . , y
( n

-
1 )

)
T

 = ( y , ^ i ^ 2 , . . . ^ n - i )
1 

b = ( 0 , 0 , . . . , 0 , 6 ( x ) )
T
, 

and A is the matr ix 

/
 0 

0 

0 

0 

0 

0 0 0 0 

V a 0( x ) a i (x ) a2(x) a3(x) 

(29.2) 

a „ _ i ( x ) / 

If the initial conditions for equation (29.1) were in the form 

y(x0) = c 0, y'(xo) = c i , y"(xo) = c 2, . · · , y
( n _ 1 )

( x o ) = c „ _ i , 

then the initial condition for equation (29.2) is 

yC^o) = (co, c i , c 2 , . . . , c „ _ i )
T
. 

To solve an equation in the form of (29.2), see the section on vector ordinary 
differential equations (page 360). 
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or, equivalently, 

where y = (y,y
f

)
T

, b = ( 0 , s i n x )
T
, and A is the matr ix 

y — log χ  —x y 

N o t e s 

[1] Many packaged computer programs require the input to be in the form of a 
first order vector system. 

[2] The method of elimination is the opposite of the method presented here. In 
the method of elimination, a system of simultaneous equations is converted 
into a single equation of higher order. See Finizio and Ladas [1] for details. 

R e f e r e n c e s 

[1] N. Finizio and G. Ladas, Ordinary Differential Equations with Modern Ap
plications, Wadsworth Publishing Company, Belmont, Calif, 1982, pages 
162-170. 

30. Prüfer Transformation 

A p p l i c a b l e t o Linear, homogeneous, second order differential equations. 

Y i e l d s 
An equivalent system of two first order differential equations. 

it may easily be changed into the equivalent first order system 

E x a m p l e 
Given the linear ordinary differential equation with initial conditions 
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I d e a 

This Standard transformation changes an equation from Liouville nor

mal form to two successive ordinary differential equations. 

P r o c e d u r e 

Suppose we have the Sturm-Liouville equation 

d_ 

dx 
+ Q(x)u = 0, (30.1) 

defined on a < χ  < &, with Ρ  > 0 , P G C
1
, and Q continuous. If we 

think of this single second order equation as two first order equations for 
the unknowns {u,u'}, then we can change the dependent variables from 
{u, u'} to R(x) and θ (χ ) by 

P(x)u'(x) = R(x)cose(x), 

u(x) = R(x)sm6(x). 
(30.2) 

Using (30.2) in (30.1) we obtain two sequential first order ordinary differ-
ential equations for the unknowns R(x) and θ (χ ) 

^ = Q(x) s in
2
 0 + — ] — cos

2
 0, 

dx P\
x
) 

dR 

dx P(x) 
-Q(x) 

(30.3.a-6) 

R(x)sin 20. 

If (30.3.a) can be integrated, then (30.3.b) can be solved for 

R{x) = R{a)exp(^J J-̂ y - Q(t) sin20(*) d?j . (30.4) 

E x a m p l e 
If we have the linear second order homogeneous ordinary differential 

equation 
xu" - u' + x

3
u = 0, (30.5) 

then we can write (30.5) in Liouville normal form as 

d / 1 A 
— \ -u + xu = 0, 
dx \x ) 

from which we can identify: P(x) = 1/x, Q(x) = x. Therefore, from 
(30.3.a), we have 

— = x s in
J
 0 Η  — cos

2
 θ  

dx l/x 

= χ . 
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χ  
,2 

This equation can be solved to yield θ (χ ) = — + C , where C is an arbitrary 

constant. From equation (30.4) we then find R(x) = R(a). Therefore, we 

conclude tha t 

is the solution to (30.5). 

N o t e s 

[1] The Prüfer transformation is often used to obtain information about the 
zeros of u{x). 

R e f e r e n c e s 
[1] D. Adamova, J. Holrejsi, and I. Ulehla, "The Atkinson-Prüfer Transfor-

mation and the Eigenvalue Problem for Coupled Systems of Schrödinger 
Equations," J. Phys. A: Math. Gen., 17, 1984, pages 2621-2631. 

[2] P. B. Bailey, "Sturm-Liouville Eigenvalues via a Phase Function," SI A M 
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χ  
,2 
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ά φ __ / M 

dx' V χ
2 

M sin 26 

+ 2 ( x
3

 - Ma?) ' 

1 d ß _ M cos 20 

Ï2 ~ ~2(x
3
-Mx)' 

Idea 

This s tandard transformation changes an equation from Liouville nor-
mal form to two successive ordinary differential equations. 

P r o c e d u r e 

Suppose we have an ordinary differential equation in Liouville normal 
form 

u" + Q{x)u = 0, (31.1) 

defined on a < χ  < 6, with Q > 0. We define the modified amplitude R(x) 
and the modified phase φ (χ ) by 

R(x) . u
\

x
) = - T 7 7

s m (
K

x
) > 

Q 1 /4 (31.2) 

= R(x)Q
1/4
 cos0(x) . 

Using (31.2) in (31.1) we determine the modified Prüfer system correspond-
ing to (31.1) to be 

¥ ê = \%™^ <»·»--»> 

The modified Prüfer transformation is usually used to obtain asymp-
totic information about the solution to (31.1). 

E x a m p l e 
If u(x) satisfies 

u" + ( l - u = 0, (31.4) 

for 0 < χ  < oo, then the exact solution is u{x) = y/xZn(x), where Zn(x) 

is a Bessel function and η  = ±\JM + | . Comparing (31.4) to (31.1) we 

M 
identify Q(x) = 1 so tha t (31.3) becomes 

χ  
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For M = 0 ( 1 ) and χ  > 1, the above expressions can be expanded to yield 

Using (31.5) and Q(x) in (31.2.a) provides an approximation to u(x) for 

large values of x. This, in turn, provides an approximation to the n- th 

Bessel function. 

N o t e s 

[1] The modified Prüfer transformation is often used with Q(x) = \ — q(x) when 
λ  is large in magnitude compared to q(x)-
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[2] B. A. Hargrave, "Numerical Approximation of Eigenvalues of Sturm-Liouville 

Systems," J. Comput. Physics, 20, 1976, pages 381-396. 

which can be integrated (and then simplified) to yield 

(31.5) 

32. Transformations of Second 

Order Linear ODEs - 1 

A p p l i c a b l e t o The second order linear ordinary differential equation 

y" + a(x)y' + b(x)y = 0. (32.1) 
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t= / exp i— / a(z)dz) dr, 
Jxo \ Jxq / 
I Xo \ J Xo 

w(t) = y(x), 

then (32.1) becomes 

d
2

w 

dt
2 + 6 ( x ( i ) ) e x p [ - 2 / a(z)dz 

L Jxq 
w = 0. (32.2) 

E x a m p l e 

For the ordinary differential equation 

3«r * 7 „ 

y - ζ —2 y + -,—2-v = °-

1 - χ  1 - χ  

the change of variables becomes t = x/y/1 — x
2

 and the equation corre-

d
2

w 7_ 

dt
2 +

 (1 + i
2

)
2 sponding to (32.2) is — T -h 2 2w = 0 

Trans format ion 2 

If in equation (32.1) the expression 

is found to be a constant, then the change of independent variable given 

by 

z = C J >/bJx)dx, (32.4) 

where C is an arbi trary constant, will reduce equation (32.1) to an equation 

with constant coefficients. Moreover, if the expression in (32.3) is not 

constant, then no change of independent variable alone will reduce equation 

(32.1) to an equation with constant coefficients. 

Trans format ion 1 

If the dependent and independent variables in (32.1) are changed by 
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E x a m p l e 

Given the equation 

xy" + (8x
2

 - l)y
f

 + 20x
3

y = 0, (32.5) 

we note tha t a(x) = Sx — 1/x and b(x) = 20x
2

. Hence, the expression in 

(32.3) becomes 

b' + 2ab 40x + A0x
2

(Sx - x'
1

) 320x
3 

— — = constant. 
b3/2 2 03 / 2 χ 3 2 03 / 2 X 

Therefore, if the independent variable is changed by ζ  = C J \/2Öxdx, 

then equation (32.5), wri t ten in terms of z, will be a constant coefficient 
differential equation. A natural choice for C is C = 2/y/2Ö so tha t the 
transformation becomes ζ  = χ

2

. Using this new variable in (32.5) results 

in the equation 

S+4S+5!,=o' 
which has the solution y = e~

2z

 (A cos ζ  + Β  sin ζ ), where A and Β  are 

arbi trary constants. Hence, the general solution to (32.5) is 

y= (Acosx
2

 + Bs'mx
2

) e x p ( — 2 x
2

) . 

Trans format ion 3 

If the dependent variable in (32.1) is changed by 

y(x) = u(x) e x p ( ç \ J a(z) dz^j » 

then (32.1) becomes 

u" + I{x)u = 0, (32.6) 

where 

' Μ = Η ° ! - 5 | ) · <
3 2

'
7

> 

Equation (32.6) is said to be the normal form for equation (32.1). The 

quanti ty I(x) is the invariant of (32.1). 

Two ordinary differential equations which have the same name normal 

form (i.e., I(x) is the same) are said to be equivalent. This is because if 

2/1 (x) and 2/2 (#) satisfy 

y" +912/1 = 0, 

2 / 2 + P 2 2 / 2 + 9 2 2 / 2 = 0, 

(32.8) 
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4 χ
2

 2 χ
2

"
α

· 

2+α
2

υ  = 0 (32.11) 

and if bo th equations have the same invariant, then 

Vi(x) = V2(x)exp(-lJ (pl{z)-p2{z))dz^. (32.9) 

Conversely, if y\ and y2 are solutions to (32.8), and if yi(x) = f(x)y2(x) 

for some / ( # ) , then the invariants of the two equations in (32.8) are the 

same. 

E x a m p l e 

Suppose we wish to solve the equation 

d
2

y 2dy ( 2 2 λ  

-d?-~xTx+\
a

 +
 = ) 

in which α  is a constant . We find tha t (comparing (32.10) with (32.1), and 

using (32.7)) 

Now, we know the solution of 

to be v(x) = A cos arc + Β  sin ax, where A and Β  are arbi trary constants. 

Since the equations in (32.10) and (32.11) have the same invariant, one can 

be transformed into the other. Using (32.9), we find 

and, hence, the solution of (32.10) is y(x) = Ax cos ax + Bxsincx. 

Trans format ion 4 

If, instead of (32.1), bo th sides of 

(32.12) 

(32.13) 

are multiplied by 

then (32.12) is put in the formally self-adjoint form 

where 

See the method on page 128 for transformations of an equation in the form 

of (32.13). 

q(x) = p(x)b(x), 

r(x) = p(x)c(x). 
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N o t e s 

[1] Note that the invariant of the adjoint of (32.1) is equal to the invariant of 

(32.1). That is to say, invariants are preserved under the operation of taking 

the adjoint. 

[2] If (32.6) has the two linearly independent solutions u(x) and v(x) and if 

we define s(x) := u(x)/v(x), then {s,x} = 2I(x), where {, } denotes the 

Schwarzian derivative. 

[3] Kamran and Olver [5] completely solve the equivalence problem, that is, 

determining when two second order linear differential operators are the same 

under a change of variable. 
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A p p l i c a b l e t o The second order linear ordinary differential equation in 

formally self-adjoint form 

33. Transformations of Second 

Order Linear ODEs - 2 

(33.1) 
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Trans format ion 1 

If the dependent variable in (33.1) is changed from χ  to s by s = 

dx dx 
-η —,-, and if p(x) > 0 for χ  > rr0, and ——,- = oo, then (33.1) 

becomes 

d
2

i / 
^ - 2 + p(x)q{x)y = 0. 

I 

Note tha t , as χ  —* oo, we have θ  —* oo. 

T r a n s f o r m a t i o n 2 

If the dependent variable in (33.1) is changed from y(x) to w(x) by 

w(x) = y/p(x)y(x), 

then (33.1) becomes 

d
2

w 

dx
2 H 

ρ  2dx\p) 4 \ ρ  / 
w = 0. 

T r a n s f o r m a t i o n 3 

If the independent and dependent variables are changed in (33.1) by 

y(x) =ß(x)w(t), 

η (ζ ) dz, 

then (33.1) becomes 

(33.2) 

Note tha t the operator !,[·] is defined by (33.1). If η (ζ ) is chosen to be 

1 
η (ζ ) = 

ρ {ζ )μ
2

(ζ Υ  

1 d
2

w 
then (33.2) simplifies to — ~ — ψ  + L[ß)w = 0. 

ρ μ  eft 
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34. Transformation of an ODE 

to an Integral Equation 

A p p l i c a b l e t o Second order linear ordinary differential equations. 

An ordinary differential equation may sometimes be formulated as an 

integral equation. 

P r o c e d u r e 

There is a s tandard transformation tha t will allow a linear second 

order initial value ordinary differential equation to be wri t ten as a Volterra 

integral equation. Given the differential equation with initial conditions 

for y(x), 

Y i e l d s 

An equivalent integral equation. 

Idea 

-JL + A(x)^-rB(x)y = g(x), 

y(a) = a, y'(a) = /?, 

an equivalent Volterra integral equation is 

where 

fix) = f \ x - C)ff(C) ά ζ  + (χ - a) U(a)a + β ) + a, 

J a 

Κ (χ ,ζ ) = (ζ -χ )[Β (ζ )-Α '(ζ ))-Α (ζ ). 

There is also s tandard transformation tha t will allow a linear second 

order boundary value ordinary differential equation to be wri t ten as a 
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Fredholm integral equation. Given the differential equation and boundary 

conditions for w(x), 

d
2

w x dw 

H?
 + c{x)

Tx 

w(a) = 7, w(b) = <5, 

dx*
 + ( X)

 Ac
 +

 ^
 = 

an equivalent Predholm integral equation is 

where 

w(x) = h(x)+ [ Η (χ ,ζ )υ >(ζ )ά ζ , 
Ja 

Hx) = 7 + j f (a: - C)j(C) <*C + δ  - η  - j \ b - ζ )3(ζ )ά ζ  

x — b 

Η (χ ,ζ ) = 
χ  — 

~b 

- î [ c - ( c) - (α  - C) ( C ( C ) - Ι ? ( θ ) ] , for x > C, 

^ [ C ( 0 - (6 - 0 (C'(C) - £ > « ) ) ] , for x < C-

E x a m p l e 

If satisfies 

2/ +y = x, 

»(0) = 0, y'(0) = 0, 

then y(x) satisfies the following Volterra integral equation 

(34.1) 

y(x) = Ç + J*(C-x)y(OdC. (34.2) 

The solution to (34.1), y = χ  — s inx , satisfies (34.2). 
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N o t e s 

[1] There are many other ways in which an ordinary differential equation may 

be transformed into an integral equation. For example, if y(x) satisfies the 

nth order ordinary differential equation 

ν
(η

\χ ) = ί {χ ) +
 Σ

°Λ χ )ν
υ

-
1

\*) 

and u(x) := y
<<n

\x), then u(x) satisfies the integral equation 

u(x) = F(x) + / K(x, t)u(t) dt, 

J a 

U- 1)! ' 

where F(x) is f(x) plus a polynomial in (x - a) generated by the initial 

conditions. See Squire [3] for more details on this technique, as well as two 

other techniques. 

[2] Bose's [1] shows that every solution of the n-th order linear homogeneous 

differential equation 

y
M

 = an-i{x)y
in

-
1)

-r'" + ao(x)y 

satisfies the integral equation 

y(x) = y(xo) + / h(u)du+ j II G(u, v)ao(v)y(v) dv > du, 

J XQ J XQ ^ J XQ ) 

where h(x) is the unique solution to 

ft'"-
1

) = an-i(x)h
(n

-
2)

 + ... + ai{x)h, 

h(x0) = y'(x0), ti(x0)=y"(xo),---,h
(n

-
2)

(x0) = y
(n

-
1)

(xo), 

and G(x,u) is the Green's function associated with (34.3). 
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35. Miscellaneous ODE 

Transformat ions 

Trans format ion 1 

If y(x) is defined by the ordinary differential equation 

dx 
= / ( x ) y , 

and the dependent variable is changed by 

(for arbi t rary ζ  = ζ (χ ), or χ  = χ (ζ )), then (35.1) becomes 

d
2

w 
x

2

/ ( x ) + ( i T
1

'
2

) 

= [x
2

f(x)-±{x,C}] W, 

w, 

(35.1) 

(35.2) 

(35.3) 

where dots denote differentiation with respect to ζ , and { χ , ζ } is the Schwarzian 

derivative of χ  with respect to ζ . If we choose ζ ( χ ) by 

C( x) = f (35.4) 

so tha t tt)(C) = y(x)f
1

^
4

(x), then (35.3) becomes 

d
2

w 
2 = [ 1 + 0 ( 0 ] « ; , (35.5) 
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1

^
4
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d
2

w / 5 \ 

This leads to the approximation w"—w = Q when ζ  ^> 1 (which corresponds 

to χ  » 1). 

Trans format ion 2 

This transformation removes the (n — l ) - t h derivative term in an n- th 

order ordinary differential equation. If y(x) satisfies 

(-l)
n

(py
M

)^ + L[y) = Xqy, (35.6) 

for 0 < χ  < 1, where L[y] is a linear differential operator of degree less 

than or equal to 2n — 2, and if the dependent and independent variables 

are changed from y(x) to w(t) by 

w(t) = {q
2n

-
l

P)
l/An

y{x), 

l / 2 n 

dx, 

* - J f ( î ) 
then (35.6) is transformed into 

?^+H[w) = K
2n
Xw, 

where H[w] is another linear differential operator of degree less t han or 
equal to 2n — 2. See Boyce [1]. 

with 

φ

^ ' ~ 1 6 /
3

 ~ f/Ux
2

 V /
1 / 4

/ ' 
This is called the Liouville transformation by Olver [7], and the Liouville-

Green transformation by Lakin and Sanchez [6]. By neglecting φ (ζ ) in 

equation (35.5), and solving for tu(C)> we obtain the first t e rm in the W K B 

approximation (see page 558). 

E x a m p l e 

If we apply this transformation to Airy's equation 

y" = xy, 

for χ  > 0, then we find (using f(x) = x) 

ζ (χ ) = J-zdz=
2

-x
z

l
2

, 

w(0 = VC(x)y(x) = x~
1/4

y(x)-

And so (35.5) becomes 



T r a n s f o r m a t i o n 4 

The general fourth order linear homogeneous ordinary differential equa

tion 

A(x)y"" + B(x)y"' + C{x)y" + D(x)y' + E{x)y = 0, 

for y(x) can be changed to the canonical form 

w"" + a(*)w" + b(t)w' + c(t)w = 0, 

for w(t), by the transformation 

w(t) = a(x)y(x), t = ß(x), 

where {a(x), β (χ )} are chosen to satisfy 

3 Γ  1 f
x
B(z) • 

α / 3 =
 e x

T U
0

^ . -

See Gregus [4] for details. 

then A{x) and may be wri t ten as 

If we write 

by the change of variables 

can be changed to the canonical form 

Trans format ion 3 

The general third order linear homogeneous ordinary differential equa-

tion 
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(35.7) 
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N o t e s 

[1] If the transformation given by (35.2) is applied to the equation 

Τ Τ  = [ / Ο Ο + 0 ( * ) ] ν > 

with ζ  denned by (35.4), then we obtain 

w. 

[2] The differential equation adjoint to (35.7) has the form: z'" + 2Az' + (A' -

b)z = 0. Hence, the equation in (35.7) will be self-adjoint if and only if 

b(x) = 0. 

[3] Olver [8] proves that any one-dimensional, first order Hamiltonian differen

tial operator can be put into constant coefficient form by a suitable change 

of variables. 

R e f e r e n c e s 

[1] W. E. Boyce, "Random Eigenvalue Problems," in A. T. Bharucha-Reid 

(ed.), Probabilistic Methods in Applied Mathematics, Academic Press, 

New York, 1968, pages 1-73. 

[2] A. Gonzalez-Lopez, "On the Linearization of Second-Order Ordinary Dif

ferential Equations," Lett Math. Phys., 17, No. 4, 1989, pages 341-349. 

[3] C. Grissom, G. Thompson, and G. Wilkens, "Linearization of Second Order 

Ordinary Differential Equations via Cartan's Equivalence Method," J. Dif

ferential Equations, 77, No. 1, 1989, pages 1-15. 

[4] M. Gregus, Third Order Linear Differential Equations, D. Reidel Pub

lishing Co., Boston, 1987, pages 1-2. 

[5] J. M. Hill, Solution of Differential Equations by Means of One-Parameter 

Groups, Pitman Publishing Co., Marshfield, MA, 1982, pages 44-45. 

[6] W. D. Lakin and D. A. Sanchez, Topics in Ordinary Differential Equa

tions, Dover Publications, Inc., New York, 1970, pages 36-41. 

[7] F. W. J. Olver, Asymptotics and Special Functions, Academic Press, New 

York, 1974, pages 190-192. 

[8] P. J. Olver, "Darboux' Theorem for Hamiltonian Differential Operators," 

J. Differential Equations, 71, 1988, pages 10-33. 

36. Reduction of PDEs 

to a First Order System 

A p p l i c a b l e t o Nonlinear par t ia l differential equations. 
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Y i e l d s 

A first order system of part ial differential equations. 

I d e a 

By introducing variables to represent the derivatives in a part ial dif-

ferential equation, a first order system may be obtained. 

P r o c e d u r e 

Sometimes it is advantageous to reduce a part ial differential equation 

of high order for a single unknown function to a system of several first order 

equations. This might be done, for instance, to utilize a specific numerical 

package tha t requires a part ial differential equation to be input as a first 

order system. This can always be done by introducing an appropriate set 

of derivatives as unknowns. 

The general procedure is to introduce new variables as the deriva-

tives of the desired function, and then "discover" relations among these 

functions. The derivation for the following second order equation may be 

found in Garabedian [1]. 

Suppose we have the second order part ial differential equation, with 

boundary conditions 

for the unknown u(x,y). We introduce new variables, {^i , . . . , ι ΐ β } , which 

are assumed to depend upon the new independent variables ζ  and 77, by 

the definitions 

u(0 ,tf) (36.1) 

U\ — x, U4 = U x, Ί ί γ  — UXy, 

U8 = Uyy, u2 = y, Us = u, 

U3 = U, Uß = u x x. 

If we specify the new independent variables by requiring 

dui _ du2 

u 1(0 , r / ) = 0, u2(0,v) = η  

then ui = χ  = ζ  and U2 = y = η  The purpose of introducing these new 

independent variables is to eliminate explicit dependence on χ  and y. 
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With these new variables, the equation in (36.1) can be wri t ten as the 

system 

du\ _ du2 du2 _ duz _ du2 

du4 du2 du$ ÖU4 

du6 _ du2 n du2 du2 du± du6 du7 

du-j _ due dug _ ÔU7 

θ ζ  δ η  ' θ ζ  θ η  ' 

(36.2) 

Most of the above equations are consistency requirements; i.e., (ux)y — 

(uy)x implies tha t (us)ç = («4)7)· The initial conditions for the variables 

{ u i , . . . , u 8} are given by 

u i ( 0 , » j ) = 0, 

" 2 ( 0 , η ) = η , 

«s (0 , !?) = / ( !? ) , 

«4(0,7?) = 3(77), 

«5(0,77) = /'(τ ?),
 1

 · ' 

ue(0,7?) = G(0, η , /(r?), 9(η ), /'(τ ?), g'(η ), /"(η )), 

"7(0,7?) = g'(η ), 

« 8( 0 , i 7 ) = / " ( · ? ) . 

Note tha t (36.2) is in the general form of a linear first order system 

duj duk 

for j = 1 , 2 , . . . , 8 . 

To convert the system in (36.2) back to the system in (36.1) may 

require the use of the boundary conditions in (36.3). 

N o t e s 
[1] Systems of high order partial differential equations can also be made into 

first order systems, by the introduction of enough terms. For instance, the 
system of equations for u(x,y) and v(x,y) 

Fi (x,y,u,ux,Uy,v,vx,Vy) = 0 

F2 (x,y,u,ux,Uy,v,vx,Vy) = 0 

can be written as a first order system, but the resulting system has 12 
dependent variables. See Garabedian [1] for details. 
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R e f e r e n c e s 
[1] P. R. Garabedian, Partial Differential Equations, Wiley, New York, 1964, 

pages 7-11. 

37. Transforming 
Partial Differential Equations 

Changing variables in a part ial differential equation is a straightfor-

ward process. 

P r o c e d u r e 

The general procedure is simple: Construct a new function, which 

depends upon new variables, and then differentiate with respect to the old 

variables to see how the derivatives transform. 

If a differential equation can be wri t ten in terms of coordinate-free 

expressions (for example, in terms of the gradient operator) , then a change 

of variables can be avoided by simply using the metric of the new coordinate 

system. At the end of this section are representations of coordinate-free 

expressions for an orthogonal coordinate system. Moon and Spencer [3] 

list the metric coefficients for 43 different orthogonal coordinate systems. 

(These consist of 11 general systems, 21 cylindrical systems, and 11 rota-

tional systems.) 

In an orthogonal coordinate system, let {a*} denote the unit vectors in 

each of the three coordinate directions, and let {ui} denote distance along 

each of these axes. The coordinate system may be designated by the metric 

coefficients { 0 1 1 , 0 2 2 , 0 3 3 } , defined by 

where { # i , #2 , # 3 } represent rectangular coordinates. Using the metric 

coefficients defined in (37.1), we define g = 011022033· 

Operations for orthogonal coordinate systems are sometimes wri t ten 

in terms of {h{} functions, instead of the {go} terms. Here, hi — y/gü, so 

tha t yjg = /i 1 /12^3· For example: 

A p p l i c a b l e t o Par t ia l differential equations. 

Idea 

(37.1) 
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χ ι  = uiu2, X2 = \J(u{ - c
2

) ( l - u\), X3 = y>3 

/ 2 2 2 / 2 2 2 

y u{- c y 1 — ^2 

E x a m p l e 1 

Suppose we have the equation 

fxx ~t~ fyy + %fy ~ ^1 (37.3) 

and we would like to transform the equation from the {#, y} variables to 

the {u, v} variables, where 

χ  
u = χ , υ  = —. 

y 

Note tha t the inverse transformation is given by χ  = u, y = u/v. 

We define g(u,v) to be equal to the function f(x,y) when wri t ten in 

the new variables. Tha t is 

f(x, y) = g(u, v)=g (x, ^ . (37.4) 

Now we create the needed derivative terms, carefully applying the chain 

rule. For example, by differentiating (37.4) with respect to χ  we obtain 

d d 
fx(x,y) =9ug^ {u) + gv—(v) 

d , ν  d ( x \ 
= g i

d x -
{ x)

 +
 92

dx-{y) 

1 
= gi + 0 2 -

y 

υ  
= gi + - 0 2 , 

u 

(A) Cyl indr ica l Po lar C o o r d i n a t e s 

χ ι  =r cos 0, X 2 = ^ s i n 0 , X3 = ζ  

Λ 1 = 1, ft2 = r, Λ 3 = 1 (37.2) 

( Β ) El l ipt ic C y l i n d e r C o o r d i n a t e s 
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d_ 
L

dy 

χ  
= 2 0 2 

y 

ν
2 

= 92-

u 

The second order derivatives can be calculated similarly: 

fxyix, y) 

= ί χ {9ι  + I92) 
2v v

2 

= 9ι ι  Η  012 + -ö922, 

u u 

u
2

 u
3

 u
2 

--2 92 3 912 2#22, 

V V V 

fyy{
x

i y) — 
dy 

2v
3

 v
4 

= —92 + - ^ 0 2 2 -
U U 

Finally, then, we can determine what equation (37.3) looks like in the 
new variables: 

0
 =
 Sxx ~f~ fyy H"

 x

fy 

( 2v ν
2
 \ /2υ

3
 υ

4
 \ . . / ν

2
 \ 

= ( f t l + - 3 1 2 + - 2 9 2 ή  + [ ^ 9 2 + ^922 ) + («) [ ~ - 9 2 ) 

_ v
2
(2v - u

2
) 2v v

2
(l + v

2
) 

— ö 9v 9uu + 9uv + ο  9vv 

u u u 

where we have used a subscript of " 1 " ( "2" ) to indicate a derivative with 

respect to the first (second) argument of the function g(u,v). Tha t is, 

gi(u, v) = gu(u,v). Use of this "slot notat ion" tends to minimize errors. 

In a like manner we find 

d θ  



142 I .B Trans format ions 

E x a m p l e 2 

As a simple example of using coordinate free representations, consider 

the diffusion equation in rectilinear coordinates: 

ut = κ  (uxx + uyy + uzz) = KV
2

U. (37.5) 

To convert to cylindrical polar coordinates we use (37.2) and (37.1) to 

transform (37.5) to; 

~ (d
2

u ldu 1 d
2

u d
2

u\ 

N o t e s 

[1] A MACSYMA program that will perform changes of variables in partial 

differential equations is described in Sternberg [4]. 

[2] When φ  represents a scalar and Ε  = Ε χ &ι  -\-E2Si2-\-E3a3 represents a vector, 

we have: 

, V7 , ai d<t> , &2 d<f> a 3 θ φ  
g r a d φ  = \φ  = -η =-ζ — + " 7 = Λ  ·" ~ τ = Λ — ' (37.6) 

V P l l OUI y/922 OU2 y/933 OU3 

div Ε  = V · E 

y/g {du 
J L J JL + J L (iEi) + A to ^ \ ? (

3 7 / r

) 
1 \ 011 / du2 \ 022 / dU3 \ 033 / J ' 

curl Ε  = V x E = ai -rà= + a 2 + a 3 , (37.8) 
V011 V022 V033 

y/g [ O U I L^ll^îXiJ OU2 L022 Öl i 2J ÔU3 [033 OU3 J J 

_ 1 r a Γ /12Λ 3 θ φ _ι  _ d _ Γ Λ 3Λ 1 ö^_i γ μ * θ φ _11 

/ΐ ΐ /ΐ 2/ΐ 3 IdUl L /il OîiiJ ÖIX2 L Jl2 #1*2 J # ^ 3 L ^3 # ^ 3 J / ' 
(37.9) 

graddivE = V(V · E) = ^ f l + - ^ f l + - ^ = £ 1 , (37.10) 
V011 σ ^ Ι  V022 OX2 χ /033 ^ 3 

file://-/-E2Si2-/-E3a3
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φ Ε  = grad div Ε  - curl curl Ε  

= V(V . Ε ) - V χ  (V χ  E) 

V 9 LOX3 

a f
 1 dT 

J
 1

 dT 

\ y/922 dX2 
+ a 2 

+ a 3 

+ 

\ V 5 3 3 Ö x 3 y g . 

922 ïdT3 

g idxi 

933 \dTi 

ÔX2 

where T and Γ  = ( Γ ι , Γ 2, Γ 3) are defined by 

dT3 

3X2 ]} 

« 1 1 \ 

β τ , ι ί  

922 + 
ÖX3 

E3\ 
033 J J 

(37.12) 

(37.13) 

R e f e r e n c e s 
[1] Ε . Butkov, Mathematical Physics, Addison-Wesley Publishing Co., Reading, 

MA, 1968, pages 34-39. 

[2] D. Harper, "Vector 33: A REDUCE Program for Vector Algebra and Calcu-

lus in Orthogonal Curvilinear Coordinates," Comput. Physics Comm., 54, 

1989, pages 295-305. 

[3] P. Moon and D. E. Spencer, Field Theory For Engineers, D. Van Nostrand 

Company, Inc., New York, 1961, Chapter 3. 

[4] P. Moon and D. E. Spencer, Field Theory Handbook, Springer-Verlag, New 

York, 1961. 

[5] S. Sternberg, "Change of Variables in Partial Differential Equations," De-

partment of Mathematics, University of New Mexico, preprint (or DTIC 

document number AD-A214 702). 
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38. Transformations of 

Partial Differential Equations 

Euler Trans format ion 

Given the first order part ial differential equation in two independent 

variables, F(x,y,z,p,q) = 0 (with, as usual, ρ  = z x, q — zy), and zxx φ  0 

the transformation 

' x = Zx X = Zx 

y = Y Y = y 

z = XZx -Z Ζ  = xzx — ζ  > 

p = X P = x 

q = -ZY * 
k Q = ~

z

v . 

is known as the Euler transformation. Note tha t Ζ γ  + zy = 0. Under 

this transformation, the original equation transforms into F(Zx,Y, Χ Ζ χ  — 

Z,X,-ZY) = 0. 

As an example, the equation G(xp — z,y,p,q) = 0 becomes, under 

the Euler transformation, G(Z, F, X , — Ζ γ ) = 0. As another example, the 

Clairaut part ial differential equation F = ζ  — (xzx + yzy + f(zx,zy)) = 0 

is transformed into F = Ζ  - Υ Ζ γ  4- / ( Χ , - Ζ γ ) = 0. Note tha t this 

latter equation is really an ordinary differential equation for Ζ  = Z(Y) 

(the variable X acts as a parameter) . 

Kirchoff Trans format ion 

Given the elliptic part ial differential equation 

(38.2) 

for ψ  = ψ  M, the Kirchoff transformation introduces the new dependent 

variable, Φ ( χ ) , defined by Φ  = K(t)dt, where ψ ο  is some arbi trary 

reference value. This transforms (38.2) into Laplace's equation ν
2

Φ  = 0. 

See Ames [1] for details. 
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Trans format ions o f P a r a b o l i c Different ial E q u a t i o n s I 

The parabolic par t ia l differential equation 

ut = a
2

uxx - 6ux + eu, 

where {a , δ , e} are constants, may be transformed into the simple diffusion 

equation 

Φ ί  — <*
2

φ χ χ, 

by means of the transformation 

u(x, t) = φ (χ , t) exp 
Γ  δ  ( δ

2

\ 
(38.3) 

Trans format ions of P a r a b o l i c Dif ferent ia l E q u a t i o n s II 

The nonlinear parabolic part ial differential equation 

ct = {D(c)cx)x 

may be transformed into the following equation with a simpler nonlinearity: 

D(c)vt = v
2

vcc. 

The transformation is given by v(c,t) = D(c)cx. See Hill [5]. 

R e m o v i n g Firs t D e r i v a t i v e T e r m s 

Linear elliptic equations and hyperbolic equations of second order, all 

of whose coefficients of the derivative terms are constants, can be t rans

formed so tha t the first derivative terms no longer appear . For example, 

we presume tha t u(x) satisfies 

η  n2
 71

 q 

Σ
Λ  OU * OU , N 

(38.4) 

Note tha t scaling of the {xk} allows (38.4) to be wri t ten with each {\k]\ 

equal to 0, 1, or — 1 . If we presume tha t no λ * is equal to zero, and we 

define 

w(x) = u(x) exp 

then w(x) satisfies 

η  o2 

Σ
Λ  OU) 

fe=l °
 Xk 

( c W - ï Ê ? ) » = o, 
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V o n M i s e s Trans format ion 

For fluid flow with constant viscosity, the Navier-Stokes equations (see 

page 148) sometimes take the form 

du dv d
2

u 

d x dy d

y (38.5.a-6) 
du dv Q 

dx dy 

these are called the boundary layer equations. A s tandard procedure for 

analyzing the Navier-Stokes equations (and equations derived from them) 

is to introduce the s t ream function Φ , defined by 

dy ' dx 

With this definition, (38.5.b) is automatically satisfied. In the Von Mises 

transformation, Φ  and χ  are t reated as the independent variables, instead 

of y and x. This transforms (38.5.a) into 

du _ d 

dx~"dV 

For applications, see Schlichting [8]. 

du 
vu— 

N o t e s 

[1] If the boundary data of are the Neuman type, then the Kirchoff transforma

tion may introduce nonlinearities in the boundary data for the Φ  problem. 

[2] The Kirchoff transformation is frequently useful in free boundary problems, 

where Κ  (φ ) changes value across the (unknown) boundary. 
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pages 74-75. 

[5] J. M. Hill, Solution of Differential Equations by Means of One-Parameter 

Groups, Pitman Publishing Co., Marshfield, MA, 1982, page 148. 
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[7] L. Rosenhead, Laminar Boundary Layers, Clarendon Press, Oxford, 1963. 
[8] H. Schlichting, Boundary Lay er Theory, McGraw-Hill Book Company, 
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II 

Exact Analytical Methods 

39· Introduction to 

Exact Analytical Methods 

The methods in this section of the book are for the exact solution of 

differential equations. The methods have been separated into two par ts : 

[1] Methods which can be used for ordinary differential equations and, 

sometimes, part ial differential equations. When a method in this 

par t can be used for a part ial differential equation, there is a s tar 

(*) alongside the method name. 

[2] Methods which can only be used for part ial differential equations. 

Since many of the common methods for part ial differential equations 

are also useful as methods for ordinary differential equations, the first 

par t of this section should not be overlooked when a t tempt ing to find the 

solution of a part ial differential equation. 

Listed below are, in the author ' s opinion, those methods tha t are 

the most useful when solving ordinary differential equations and part ial 

differential equations. These are the methods tha t might be tried first. 

147 
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M o s t Usefu l M e t h o d s for O D E s 

• Look Up Technique 

• Look Up ODE Forms 

• Computer-Aided Solution 

• Constant Coefficient Linear Equations 

• Eigenfunction Expansions* 

• Green's Functions* 

• Integral Transforms: Infinite Intervals* 

• Integrating Factors* 

• Series Solution* 

• Method of Undetermined Coefficients* 

M o s t Use fu l M e t h o d s for P D E s 

• Look Up Technique 

• Eigenfunction Expansions* 

• Green's Functions* 

• Integral Transforms: Infinite Intervals* 

• Method of Characteristics 

• Conformai Mappings 

• Lie Groups: P D E s 

• Separation of Variables 

• Similarity Methods 

40. Look Up Technique 

A p p l i c a b l e t o Equations of certain forms. 

Y i e l d s 

A reference to the literature, which may yield an analytical solution, 

an approximate analytical solution, or an approximate numerical solution. 

Idea 

Many functions of mathematical physics have been well studied. If a 

differential equation can be transformed to a known form, then information 

about the solution may be obtained by looking in the right reference. 
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• Look Up Technique 

• Eigenfunction Expansions* 

• Green's Functions* 

• Integral Transforms: Infinite Intervals* 

• Method of Characteristics 

• Conformai Mappings 

• Lie Groups: P D E s 

• Separation of Variables 

• Similarity Methods 

40. Look Up Technique 

A p p l i c a b l e t o Equations of certain forms. 

Y i e l d s 

A reference to the literature, which may yield an analytical solution, 
an approximate analytical solution, or an approximate numerical solution. 

Idea 

Many functions of mathematical physics have been well studied. If a 
differential equation can be transformed to a known form, then information 
about the solution may be obtained by looking in the right reference. 



4 0 . Look U p T e c h n i q u e 149 

P r o c e d u r e 

Compare the differential equation tha t you are trying to analyze with 

the lists on the following pages. If the equation you are investigating 

appears, see the references cited for tha t equation. 

The equations listed in this section include 

[1] Ordinary differential equations 

(A) First order equations 

(B) Second order equations 

(C) Higher order equations 

[2] Par t ia l differential equations 

(A) Linear equations 

(B) Second order nonlinearity 

(C) Higher order and variable order nonlinearities 

[3] Systems of differential equations 

(A) Systems of ordinary differential equations 

(B) Systems of part ial differential equations 

N o t e s 

[1] Realize that the same equation may look different when written in different 
variables. Some scaling of any given equation may be required to make it 
look like one of the forms listed. 

[2] Carslaw and Jaeger [27] have a large collection of exact analytical solutions 
for parabolic partial differential equations. 

[3] In Murphy [86] and in Kamke's two books ([64] and [65]) are long listings 
of ordinary differential equations and partial differential equations and their 
exact solutions. 

[4] The references follow the listings of differential equations. 

Ordinary Differential Equations 

First Order E q u a t i o n s 

Abel equation of the first kind (see Murphy [106], page 23) 

y' = fo(x) + fi(x)y + Î2(x)y
2

 + h(x)y
3
. 

Abel equation of the second kind (see Murphy [106], page 25) 

\go(x) + 9i(x)y] y' = fo{x) + h(x)y + Î2{x)y
2

 + h(x)y*-

Bernoulli equation (see page 194) 

y
f

 = a(x)y
n

 + b(x)y. 
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Binomial equation (see Hille [69], page 675) 

Briot and Bouquet 's equation (see Ince [74], page 295) 

xy' - Xy = aiox + a20x
2

 + anyx + a02y
2

 + 

Clairaut 's equation (see page 196) 

/On/' -y) = QW)-

Elliptic functions (see Gradshteyn and Ryzhik [60], page 917) 
y' = v/ ( l - 2 /2 ) ( 1_ f c2 2 / 2 ). 

Euler equation (see Valiron [138], page 201) 

/ = ± / a y
4
 + by

3

 + cy
2

 + dy + e 
y

 y α χ
4
 + k r

3
 + e x

2
 + dx + e ' 

Euler equation (see Valiron [138], page 212) 

y' + y
2

 = ax
m

. 

Heisenberg equation of motion (see Iyanaga and Kawada [76], page 1083) 

Jacobi equation (see Ince [74], page 22) 

( α ϊ  + bix + ciy)(xy' - y) - ( a 2 4- b2x + c2y)y
f

 + ( a 3 -f + c3y) = 0. 

Lagrange's equation (see page 311) 

y = xf(y') + 9(y')-

Löwner's equation (see Iyanaga and Kawada [76], page 1345) 

y y
l-n{x)y 

Riccati equation (see page 332) 

y' — a(x)y
2
 4- b(x)y + c(x). 

Weierstrass function (see Rainville [113], page 312) 

y' = V^y
3
 - 92y - 93-

Unnamed equation (see Boyd) 

y' = -ae-
b
/

y
. 

Unnamed equation (see Goldstein and Braun [58], page 42) 

g(y)y' = / ( * ) + h{x) G ( / / ( χ ) dx - / g(y) dy). 
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S e c o n d Order E q u a t i o n s 

Airy equation (see Abramowitz and Stegun [2], Section 10.4.1) 

y" = xy. 

Anger functions (see Gradshteyn and Ryzhik [60], page 989) 

151 

// y' Λ
 p 2

\ x - v 
sin ι / π . 

Baer equation (see Moon and Spencer [103], page 156) 

[χ  - ai){x - a2)y" + \ [2x - Κ  + a2)] y' - [p
2

x + q
2

] y = 0. 

Baer wave equation (see Moon and Spencer [103], page 157) 

(χ  - ai){x - a2)y" + \ [2x - (ax + a2)] y' - [k
2

x
2

 - p
2

x + q
2

] y = 0. 

Bessel equation (see Abramowitz and Stegun [2], Section 9.1.1) 

x
2

y" + xy' + (x
2

 — n
2

)y = 0. 

Bessel equation - modified (see Abramowitz and Stegun [2], Section 9.6.1) 

x
2

y" + xy' - (x
2

 + n
2

)y = 0. 

Bessel equation - spherical (see Abramowitz and Stegun [2], Section 10.1.1) 

x
2

y" + 2xy' + [x
2

 - n(n + 1)] y = 0. 

Bessel equation - modified spherical (see Abramowitz and Stegun [2], Sec-

tion 10.2.1) 

x
2

y" + 2xy' - [x
2

 + n(n + 1)] y = 0. 

Bessel equation - wave (see Moon and Spencer [103], page 154) 

x
2

y" + xy' + [a
2

x
4

 + b
2

x
2

 - c
2

] y = 0. 

Bôcher equation (see Moon and Spencer [103], page 127) 

V" +
 L 

y
 2 

1 
+
 4 

m i 

χ  — α ϊ  + ... + 
m n _ i 

χ  — a n_ i 

Λ ) + Α χ χ  - f . . . + Atx
l 

(x - a i)
m i

 (x - a 2 )
m 2

 · · - (χ  - α η - ι Γ -
1 y = o. 

Coulomb wave functions (see Abramowitz and Stegun [2], Section 14.1.1) 

y" + 
\_2η _ L(L + l) 

y = 0. 
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Duffing's equation (see Bender and Orszag [19], page 547) 

y" + V + ey
3

 = 0. 

Eckart equation (see Barut , Inomata, and Wilson [17]) 

y" + 
β η  α η  

1 + η  ( 1 + 7 ? ) ' 
+ 7 0 = 0, η  = e

6x

. 

Ellipsoidal wave equation (see Arscott [12]) 

y" - (a + bk
2

 s n
2
 χ  + qk

4

 s n
4
 x)y — 0. 

Complete elliptic integral (see Gradshteyn and Ryzhik [60], page 907) 

A. 
dx 

x(l-x
2

) 
dy 

dx 
- xy = 0. 

Confluent equation - general (see Abramowitz and Stegun [2], Section 
13.1.35) 

y" + 
2a ft„ bh' t. h" 

y' + 

a(a - 1) 2 a / ' 
+ f" + (f')

2
-

a(ti) 
/^2 

y = 0. 

Complete elliptic integral (see Gradshteyn and Ryzhik [60], page 907) 

d 
+ xy = 0. 

Emden equation (see Leach [90]) 

(x
2

y
f
Y + χ  V = o. 

Emden equation - modified (see Leach [92]) 

y " + a{x)y' + y
n

 = 0. 

Emden-Fowler equation (see Rosenau [118]) 

( x V ) ' ± ^
σ

2 /
η
 = 0. 

Integrals of the error function (see Abramowitz and Stegun [2], Section 
7.2.2) 

y" + 2xy' - 2ny = 0. 

Gegenbauer functions (see Infeld and Hull [75]) 

(1 - x
2

)y" - (2m + 3)xy' + Xy = 0. 
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Heine equation (see Moon and Spencer [103], page 157) 

A0 + Aix + A2x
2

 + A3x
3 1 

2 / " + -y
 2 

1 

+ x — α χ  χ  — a2 x — û3 

1 
2/+T 4 L(x - α ι ) ( χ  - a 2) (x - a 3)

2 = 0. 

Hermite polynomials (see Abramowitz and Stegun [2], Section 22.6.21) 

y" - xy' + ny = 0. 

Heun's equation (see Valent [137]) 

„ + [7 δ  (1 -h a + /? - 7 - <5)fc
21

 -
Λ 1

·
2 

1 - x l - k
z

x 

, aßk
z
x + 5 

x(l — x){l - fc χ ) 

Hill's equation (see Ince [74], page 384) 

y" -f (ao -f 2 a i c o s 2 x + 2 a 2c o s 4 x + .. .)y = 0. 

Hypergeometric equation (see Abramowitz and Stegun [2], Section 15.5.1) 

x(l - x)y" -f [c - (a + b + l )x] y' - afa/ = 0. 

Hyperspherical differential equation (see Iyanaga and Kawada [76], page 

1185) 

(1 - x
2

)y" - 2axy' + by = 0. 

Ince equation (see Athorne [13]) 

a + β  cos 2t + 7 cos 4£ 
ly Η  y = 0. 
y
 ( l + a c o s 2 * )

2
 ^ 

Jacobi 's equation (see Iyanaga and Kawada [76], page 1480) 

x(l — x)y" -f [7 - ( a + l)x] y' + n(a + ri)y = 0. 

Kelvin functions (see Abramowitz and Stegun [2], Section 9.9.3) 

x
2

y" + xy' — (ix
2

 + v
2

)y — 0. 

Kummer ' s equation (see Abramowitz and Stegun [2], Section 13.1.1) 

xy" + (b — x)y' — ay = 0. 

Lagerstrom equation (see Rosenblat and Shepherd [119]) 

k 
y" + -y' + eyy' = 0. 

χ  

Halm's equation (see Hille [69], page 357) 

( l + *
2

) V + A2/ = (). 
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Laguerre equation (see Iyanaga and Kawada [76], page 1481) 

xy" + (a + 1 - x)y' + Xy = 0. 

Lamé equation (see Moon and Spencer [103], page 157) 

1 1 

+ X — d \ CL2 a3 

y'+-
A0 + Α λ χ  

(χ  - α ι )(χ  - a2){x - a3) 
y = 0. 

Lamé equation (see Ward [143]) 

y" + (h- n(n + l)k
2

 s n
2

 x)y = 0. 

Lamé equation - wave (see Moon and Spencer [103], page 157) 

( a
2

 + b
2

)q - p(p + l)x + κ χ
2 

y" + 
1 1 1 

- + + — 
χ  χ  — a χ  — 

y' + -
x(x — a)(x — b) 

y = 0. 

Lane-Emden equation (see Seshadri and Na [124], page 193) 

// + -y' + y 
χ  

k _ 0. 

Legendre equation (see Abramowitz and Stegun [2], Section 8.1.1) 
. 2 

(1 - x
2
)y" - 2xy' + n ( n + 1) - m 

Ι -χ ' 
y = 0. 

Legendre equation - wave (see Moon and Spencer [103], page 155) 

" y = 0. (1 - x
2
)y" - 2xy

f
 - k

2
a

2
(x

2
-l)-p(p + l ) - ^ 

χ  — 1 

Lewis regulator (see Hagedorn [62], page 152) 

y" + (l-\y\)y' + y = 0. 

Liénard's equation (see Villari [140]) 

y" + f(x)y' + y = 0. 

Liouville's equation (see Goldstein and Braun [58], page 98) 

y" + 9(y)(y')
2

 + f(x)y' = o. 

Lommel functions (see Gradshteyn and Ryzhik [60], page 986) 

x
2

y" + xy' + (x
2

 - v
2

)y = χ
μ +1

. 

Magnetic pole equation (see Infeld and Hull [75]) 

y -
i (m + l ) + ^ - ( m + | ) c o s x + / + 1 \ 

s in
2
 χ  \ 2 J 

y = o. 



4 0 . L o o k U p T e c h n i q u e 155 

y" + 
cosh

2
 ax 

+ β  t anh ax + 7 2/ = 0. 

x
2
(x-i)

2
 Γ  V (y-i)2

 ( 2 / - χ )
2 

Mathieu equation (see Abramowitz and Stegun [2], Section 20.1.1) 

y" + (a - 2q cos 2x)y = 0. 

Mathieu equation - associated (see Ince [74], page 503) 

y" + [(1 - 2r) cot x] y' + (o + k
2
 cos

2
 x)y = 0. 

Mathieu equation - modified (see Abramowitz and Stegun [2], Section 
20.1.2) 

y" - (a - 2gcosh2x)y = 0. 

Morse-Rosen equation (see Barut , Inomata , and Wilson [17]) 

α  

umann ' s polynomials (see Gradshteyn and Ryzhik [60], page 990) 

Painlevé transcendent - first (see Ince [74], page 345) 

Painlevé transcendent - second (see Ince [74], page 345) 

Painlevé transcendent - third (see Ince [74], page 345) 

Painlevé transcendent - fourth (see Ince [74], page 345) 

Painlevé transcendent - fifth (see Ince [74], page 345) 

Painlevé transcendent - sixth (see Ince [74], page 345) 
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Parabolic cylinder equation (see Abramowitz and Stegun [2], Section 19.1.1) 

y" + {ax
2

 + bx + c)y = 0. 

Poisson-Boltzmann equation (see Chambré [36]) 

y" + -y' = - ^ y . 

Pöschl-Teller equation - first (see Barut , Inomata, and Wilson [16]) 

, , ' κ ( κ - Ι ) , A ( A - i r 
y" — 

s in
2
 ax c o s

2
 α χ  • ) -

6
2 

y = 0. 

Pöschl-Teller equation - second (see Barut , Inomata , Wilson [17]) 

^ _ μ / « ο ^ 1 +λ ( λ - 1 ) Ν _ 6 2ι  

L V sinh ax cosh ax J 
y = o. 

Polytropic differential equation (see Iyanaga and Kawada [76], page 908) 

( x y y = - x V -

Rayleigh equation (see Birkhoff and Rota [21], page 134) 

ι , " - μ [ ι - ( ί , ' )
2

] y' + y = o. 

Riccati-Bessel equation (see Abramowitz and Stegun [2], Section 10.3.1) 

x
2
y" + [x

2
 - n(n + l)]y = 0. 

Riemann's differential equation (see Abramowitz and Stegun [2], Section 

15.6.1) 

y" + 

+ 

l - α - α ' Ι - β - β ' 1 - 7 - 7 ' 
+ —r— + 

χ  — a x — b χ  — c 
y 

aa'{a - b){a - c) ßß'jb - c){b - a) j^(c - a)(c - b) 

x — a x — b x — c 

(x — a)(x — b)(x — c) 
= 0. 

Spheroidal wave functions (oblate) (see Abramowitz and Stegun [2], Section 

21.6.4) 

[(1 - x V ] ' + ( λ  + c
2

x
2

 - ^ - j ) y = 0. 

Spheroidal wave functions radial (see Abramowitz and Stegun [2], Section 

21.6.3) 
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χ  V + xy' + (χ  - ν  )y 

.2W -

Symmetric top equation (see Infeld and Hull [75]) 

Μ
2

 - \ + Κ
2

 - 2MK 

s in
2
 χ  

cos 
£ + ( , + * + i ) y = o. 

Tchebycheff equation (see Abramowitz and Stegun [2], Section 22 .6 .9 ) 

(1 - x
2

)y" - xy' + n
2

y = 0. 

Thomas-Fermi equation (see Bender and Orszag [19], page 25 ) 

y» = y^x-
1

/
2

. 

Titchmarsh 's equation (see Hille [69], page 617) 

y"+{\-x
2n

)y = 0. 

Ultraspherical equation (see Abramowitz and Stegun [2], Section 22 .6 .5 ) 

(1 - x
2

)y" - (2a + \)xy' + n(n + 2a)y = 0. 

Van der Pol equation (see Birkhoff and Rota [21], page 134) 

y" - μ (1 - y
2

)y' + y = 0. 

Wangerin equation (see Moon and Spencer [103], page 157) 

y"+ 
1 1 2 

+ + 
A0 + Aix + A2x

2 

4 [(χ  - ai)(x - a2){x - a 3 )
2 y = 0. 

2 [χ  — α ι  ' χ  — a2 ' χ  — a$\ 

Weber functions (see Gradshteyn and Ryzhik [60], page 989) 

y" + — + ( 1 - ^] y = -̂Ö [x -h ν  H- (χ  - ν ) cos ι /π ]. 

Χ  \ Χ
Δ
 ) 7Π Ζ Γ  

Weber equation (see Moon and Spencer [103], page 153) 

y" + ( α
2
 - %χ ή  y = 0 . 

Whit taker ' s equation (see Abramowitz and Stegun [2], equation 13 .1 .31 ) 

Struve functions (see Abramowitz and Stegun [2], Section 1 2 . 1 . 1 ) 
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Whittaker-Hil l equation (see Urwin and Arscott [135]) 

y" + (A + Β  cos 2x + C cos Ax)y = 0. 

Unnamed equation (see Chrisholm and Common [41]) 

y" + ( a 0 + aiy)y' + b0 + 6iy + 622/
2
 + *>32/

3
 = 0. 

Unnamed equation (see Gilding [57]) 

y" = - λ < Λ  

Unnamed equation (see La t t a [89]) 

(1 - x
2

)y" - 2axy' + (b + c x
2
) y = 0. 

Unnamed equation (see Rubel [121]) 

xyy" + yy' - x{y')
2

 = o. 

Unnamed equation (see Setoyanagi [125]) 

y" -h (ax
p

 -h bx
q

)y = 0. 

Unnamed equation (see Tsukamoto [134]) 

y" -f e
a t
2 /

6
 = 0. 

H i g h e r Order E q u a t i o n s 

Products of Airy functions (see Abramowitz and Stegun [2], equation 10.4.57) 

y'" - 4x</' - 2y = 0. 

Blasius equation (see Meyer [98], page 127) 

y"' + yy" = 0. 

Falkner-Skan equation (see Cebeci and Keller [35]) 

y"' + yy" + ß[l-(y')
2
]=0. 

Generalized hypergeometric equation (see Miller [101], page 271) 

( χ έ +α ι )'·"( χ έ +α '') ΐ /-έ ( χ έ +6ι )'''( χ έ +6?)2/ = 0· 
Laplace equations (see Valiron [138], pages 306-315) 

( a 0x + b0)y
{n)
 + {axx + & i ) 2 /

( n _ 1)
 + · · · + ( m + K)y = 0. 

Sixth order Onsager equation (see Viecelli [139]) 

( e
x
( e*2 / x ) x x) xx = / ( x ) . 
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Orr-Sommerfeld equation (see Herron [66]) 

-f"(x) y = 0. 

V
2

u + k
2

u = 0. 

Klein-Gordon equation (see Morse and Feshback [105], page 272) 

C 

Unnamed equation (see Hershenov [67]) 

Partial Differential Equations 

Linear E q u a t i o n s 

Biharmonic equation (see Kantorovich and Krylov [81], pages 595-615) 

Linear Boussinesq equation (see W h i t h a m [146], page 9) 

Busemann equation (see Chaohao [236]) 

Chaplygin's equation (see Landau and Lifshitz [87], page 432) 

Diffusion equation (see Morse and Feshback [105], page 271) 

Euler -Darboux equation (see Miller [100]) 

Euler-Poisson-Darboux equation (see Ames [7], Section 3.3) 

Helmholtz equation (see Morse and Feshback [105], page 271) 
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Kramers equation (see Duck, Marshall, and Watson [48]) 

Lambropoulos' equation (see Wilcox [147]) 

uxy + axux + byuy + cxyu + Ut = 0. 

Laplace's equation (see Morse and Feshback [105], page 271) 

V
2
u = 0. 

Lavrent 'ev-Bitsadze equation (see Chang [38]) 

uxx + (sgny)uyy = f(x,y). 

Onsager equation (see Wood and Morton [148]) 

Poisson equation (see Morse and Feshback [105], page 271) 

V
2

u = —4π ρ ( χ ). 

Schröedinger equation (see Morse and Feshback [105], page 272) 

h
2 

-—V
2
u + V{x)u = ihut. 2m 

Spherical harmonics in three dimensions (see Humi [73]) 

Spherical harmonics in four dimensions (see Humi [73]) 

uxx + 2(cotx)ux Η  ί — f uyy -f (cot y)uy H \—uzz] -h (η
2

 - l)u = 0. 

sin χ  V sin y / 

Tricomi equation (see Manwell [95]) 

^yy — U^xx · 

Wave equation (see Morse and Feshback [105], page 271) 

utt = c
2

V
2

u. 

Weinstein equation - generalized (see Akin [5]) 

Pt = Pxx -uPx + ^- [(u - F(x))P]. 

(e* (e
x

uxx)xx)xx + B
2

uyy = F(x,y). 

ι  d 

s inÖöö 
+ /(/ + !) Yi,m = 0. 

V
2
' 
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S e c o n d Order N o n l i n e a r i t y 

Benjamin-Bona-Mahony equation (see Avrin and Goldstein [14]) 

Boussinesq equation (see Calogero and Degasperis [31], page 54) 

Burgers ' equation (see Benton and P la tzman [20]) 

Burgers equation - non-planar (see Sachdev and Nair [122]) 

Ernst equation (see Calogero and Degasperis [31], page 62) 

Fisher 's equation (see Kal iappan [78]) 

Kadomtsev-Petviashvil i equation (see La tham [88]) 

Generalized Kadomtsev-Petviashvil i -Burgers equation (see Brugarino [28]) 

Khokhlov-Zabolotskaya equation (see Chowdhury and Nasker [40]) 

Korteweg-de Vries equation (KdV) (see Lamb [86], Chapter 4) 

KdV equation - cylindrical (see Calogero and Degasperis [31], page 50) 

KdV equation - generalized (see Boyd [26]) 
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KdV equation - spherical (see Calogero and Degasperis [31], page 51) 
u 

ut + u x xx - 6uux + - = 0. 

KdV equation - transitional (see Calogero and Degasperis [31], page 50) 

u>t + u x xx - 6f(t)uux = 0. 

KdV equation - variable coefficient (see Nimala, Vedan, and Baby [110]) 

ut + at
n

uux 4 ßt
m

uxxx = 0. 

Korteweg-de Vries-Burgers equation (KdVB) (see Canosa and Gazdag 
[32]) 

ut + 2uux - vuxx + μ η χ χ χ = 0. 

Kuramoto-Sivashinksy equation (see Michelson [99]) 

ut + V
4
w 4- V

2
u + ^ | V

2
u |

2
 = 0. 

Lin-Tsien equation (see Ames and Nucci [9]) 

^^tx V'x'U'xx ^yy ~ 0· 

Regularized long-wave equation (RLW) (see Calogero and Degasperis [31], 
page 49) 

ut + ux - 6uux - u t xx - 0. 

Thomas equation (see Rosales [116]) 

UXy 4 aUX + ßUy + 1UXUy == 0. 

Unnamed equation (see Rosen [117]) 

utt + 2uut - uxx = 0. 

Higher Order a n d Variable Order N o n l i n e a r i t i e s 

Generalized Benjamin-Bona-Mahony equation (see Goldstein and Wich-
noski [59]) 

ut - V
2

ut + V . φ {μ )) = 0. 

Born-Infeld equation (see Whi tham [146], page 617) 

( l - u
2
) uxx 4- 2uxutuxt - ( l 4- u

2

x) uu = 0. 

Boussinesq equation - modified (see Clarkson [42]) 

3^<t 'U't'U'XX 2^'χ '^

/χ χ
 ^xxxx — ^* 
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ut = V · M(u)V - KV
2

u^j 

Calogero-Degasperis-Fokas equation (see Gerdt , Shvachka, and Zharkov 

[55]) 

u x xx - \u\ -h ux (Ae
u

 + Be~
u

) = 0. 

Caudrey-Dodd-Gibbon-Sawada-Kote ra equation (see Aiyer, Fuchsteiner, 

and Oevel [4]) 

ut + u x x x xx -h 30uuxxx -h 30uxuxx - f 180 Ι Α
2
Ι Χ χ  = 0. 

Clairaut 's equation (see Iyanaga and Kawada [76], page 1446) 

u = xux + yuy + f(ux, Uy). 

Eckhaus part ial differential equation (see Kundu [85]) 

iut + u I X + 2 {\u\
2

)x u + | u |
4
u = 0. 

Fisher equation - generalized (see Wang [141]) 
m « . . 

ut - uxx u% = u (1 - u
a

). 
u 

Gardner equation (see Tabor [130], page 289) 

ut = 6(u + e
2

u
2

)ux + u x x x. 

Ginzburg-Landau equation (see Ka tou [83]) 

ut = (1 + ia)uxx + (1 + ic)u - (1 + id)\u\
2

u. 

Hamil ton-Jacobi equation (see page 57) 

Vt + H{t,x,VXl,...,VXn) = 0. 

Harry Dym equation (see Calogero and Degasperis [31], page 53) 
3 

Ut — uxxxu . 

Boussinesq equation - modified (see Clarkson [43]) 
1 2 Λ  

Uu — U>tUxx — 2
U
x

u
xx +

 u
xxxx = 0. 

Buckmaster equation (see Hill and Hill [68]) 

Generalized Burgers-Huxley equation (see Wang, Zhu and Lu [142]) 

ut - au
6

ux - u x x = ßu ( l - u
6
) (u

6
 - 7 ) . 

Cahn-Hil l iard equation (see Novick-Cohen and Segel [111]) 
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Hirota equation (see Calogero and Degasperis [31], page 56) 

ut + iau + ib(uxx - 2η \υ ?\η ) + cux + d(uxxx - 6η \η \
2

η χ ) = 0. 

Kadomtsev-Petviashvil i equation - modified (see Clarkson [42]) 

UXf UXXX ~\~ 3lLyy ()Ί 1χ 1ί χ χ ()UyZlXX . 

Klein-Gordon equation - quasilinear (see Nayfeh [108], page 76) 

uu - a
2

uxx + 7
2
n = ßu

3
. 

Klein-Gordon equation - nonlinear (see Matsuno [97]) 

V
2
u + Xu

p
 = 0. 

KdV equation - deformed (see Dodd and Fordy [47]) 

/ _ ο  3 uu\ \ 
ut + \uxx - 2η η

ό
 - - ^ = 0. 

V 2 T 7 + Î X V * 

KdV equation - generalized (see R a m m a h a [115]) 

Ut + uux + p\u\
p
~

1
ux = 0. 

KdV equation - modified (mKdV) (see Calogero and Degasperis [31], page 

51) 

ut + u x xx ± 6u
2
ux = 0. 

KdV equation - modified modified (see Dodd and Fordy [47]) 

ut + u x xx - l u
3

x + ux {Ae
au
 + B + Ce~

au
) = 0. 

KdV equation - Schwarzian (see Weiss [145]) 

— + {u;x} = X. 
ux 

Kupershmidt equation (see Fuchssteiner, Oevel, and Wiwianka [52]) 

Ut
 =
 U x x x xx ~\~ ~2~UxxxU ~\~ ~^UXXUX H~ ~^U Ux. 

Liouville equation (see Matsuno [97]) 

V
2
u + e

Xu
 = 0. 

Liouville equation (see Calogero and Degasperis [31], page 60) 

uxt = e^
u
. 
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= / ( î x , x , Vu). 

*XnXl

 LL
XnX2 

Phi-four equation (see Calogero and Degasperis [31], page 60) 

un - uxx - u + u
3

 = 0. 

Pla teau ' s equation (see Bateman [18], page 501) 

(1 + UI)UXX - 2UXUyUXy + (1 + y%)Uyy = 0. 

Porous-medium equation (see Elliot, Herrero, King, and Ockendon [49]) 

ut = V · (u
m

Vu). 

Rayleigh wave equation (see Hall [65]) 

utt - Uxx = e{ut - ix?)· 

Sawada-Kotera equation (see Matsuno [96], page 7) 

ut + 45u
z

ux + 15ux 

Ί ^χ χ  loî/î/jpajaj -j - U x x x xx — 0. 

Schröedinger equation - logarithmic (see Cazenave [34]) 

iut + V
2

u + u log \u\
2

 = 0. 

Schröedinger equation - nonlinear (see Calogero and Degasperis [31], page 
56) 

iut + uxx ± 2\u\
2

u = 0. 

Schröedinger equation - derivative nonlinear (see Calogero and Degasperis 
[31], page 56) 

iut + uxx ± i (\u\
2

u)x = 0. 

Molenbroek's equation (see Cole and Cook [44], page 34) 

ν
2

φ  = Μ ΐ ^ φ
2

χ φ χ χ  + 2 φ χ φ υ φ χ υ  + φ \ φ ν ν  +
 Ί

-^- (φ ΐ  + 02 - 1) 

Χ  ^</>χ ζ  + 0 y y 

Monge-Ampère equation (see Moon and Spencer [104], page 171) 

(UXy)
2
 - UXUy = f ( x , I/, U, UX,Uy) . 

Monge-Ampère equation (see Gilbarg and Trudinger [56]) 
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Sine-Gordon equation (see Calogero and Degasperis [31], page 59) 

uxx — uyy i sin u — 0. 

Sine-Gordon equation - damped (see Levi, Hoppensteadt and Miranker 

utt + aut - uxx + sin u = 0. 

Sine-Gordon equation - double (see Calogero and Degasperis [31], page 

Sinh-Gordon equation (see Grauel [61]) 

uxt = s inhu . 

Sinh-Poisson equation (see Ting, Chen, and Lee [131]) 

V
2
i i + Ä

2
 s inhu = 0. 

Strongly damped wave equation (see Ang and Dinh [11]) 

utt - V
2
u - V

2

ut + f(u) = 0. 

Wadati-Konno-Ichikawa-Schimizu equation (see Calogero and Degasperis 
[31], page 53) 

Zoomeron equation (see Calogero and Degasperis [31], page 58) 

Unnamed equation (see Aguirre and Escobedo [3]) 

ut - V
2

u = u
p

. 

Unnamed equation (see Bluman and Kumei [22]) 

Unnamed equation (see Calogero [29]) 

uxt + uuxx + F(ux) = 0. 

Unnamed equation (see Calogero [30]) 

ut = u x xx + 3(uxxu
2

 + 3 u
2
u ) + 3uxu

4

. 

[91]) 

60) 
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Unnamed equation (see Fujita [53]) 

V
2

u + e
u

 = 0. 

Unnamed equation (see Fujita [53]) 

ut = V
2

u + e
u

. 

Unnamed equation (see Fung and Au [54]) 

ut + u x xx - 6u2ux + 6\ux = 0. 

Unnamed equation (see Kaliappan [78]) 

ut = Duxx +u-u
k

. 

Unnamed equation (see Lin [45]) 

V
2

u + Ae~
u

 = 0. 

Unnamed equation (see Lindquist [94]) 

V - ( | V t i | * V u ) = / . 

Unnamed equation (see Roy and Chowdhury [120]) 

2\ux\
2

u 
-iut + uxx + - — = 0. 

Unnamed equation (see Trubek [132]) 

V
2

u + Ke
2u

 = 0. 

Unnamed equation (see Trubek [133]) 

V
2

u + Ku
a

 = 0. 

Unnamed equation (see Utepbergenov [136]) 

z
2

uzz + V
2

u + a{z)u = 0. 

ut = u x xx + u
2

uxx + 3uul 

1 — uu 

Unnamed equation (see Shivaji [127]) 

Unnamed equation (see Daniel and Sahadevan [236]) 

167 
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Systems of Differential Equations 

S y s t e m s of O D E s 

Bonhoeffer-van der Pol (BVP) oscillator (see Rajasekar and Lakshmanan [114]) 

x
3 

x' = x - — - y + I(t), 

y' = c(x + a - by). 

Brusselator (see Hairer, N0rsett , and Wanner [64], page 112) 

v! = A + u
2

v - (B + l )u , 

v' = Bu — u
2

v. 

Full Brusselator (see Hairer, N0rsett , Wanner [64], page 114) 

u' = 1 H- u
2

v — (w + l)w, 

ν  = uw — u
2

v, 

w = —uw + a. 

Hamilton's differential equations (see Iyanaga and Kawada [76], page 1005) 

^ = # P i( * , x , p ) , 

^ = - i U * , x , P ) . 

Jacobi elliptic functions (see Hille [69], page 66) 

u = vw, 

ν  — —uw, 

w' = —k
2

uv. 

Kowalevski's top (see Haine and Horozov [63]) 

dm 

—— = Am x m + 7 χ  1, 
dt 
df . 

Λ
 = λ 7 Χ 1 Π

· 

Lorenz equations (see Sparrow [128]) 

x' = a(y - x ) , 

y
f

 = rx — y — xz, 

z
f

 = xy — bz. 
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Lorenz equations - complex (see Flessas [51]) 

x' = a(y - x), 

y' = rx — ay — xz, 

z
f

 = -bz + \(x*y + xy*). 

Lotka-Volterra equations (see Boyce and DiPr ima [25], page 494) 

u' = u(a — bv), 

υ ' — v(—c + du). 

Nahm's equations (see Steeb and Louw [129]) 

Ut = [V,W], 

Vt = [W,U], 

Wt = [U,V]. 

Toda molecule equation - cylindrical (see Hirota and Nakamura [72]) 

(drr + T-'dr) log Vn - F n +1 + 2Vn - Vn-X = 0 

S y s t e m s of P D E s 

Dispersive long-wave equation (see Boiti, Leon, and Pempinelli [24]) 

ut = (u
2

 - u x + 2w)x, 

wt = {2uw -f wx)x. 

Beltrami equation (see Iyanaga and Kawada [76], page 1087) 

Boomeron equation (see Calogero and Degasperis [31], page 57) 

ut = b- v x , 

v x t = uxxb + a χ  wx - 2v χ  [ ν  x b ] . 

Carleman equation (see Kaper and Leaf [82]) 

ut -h ux = ν
2

 - ÎX
2
, 

vt - vx = u
2
 - ν

2

. 

Cauchy-Riemann equations (see Levinson and Redheffer [92]) 

ux - v y = 0, 

uy + vx = 0. 
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Chiral field equation (see Calogero and Degasperis [31], page 61) 

(U*Ux)t + (U*Ut)x = 0. 

Davey-Stewartson equations (see Champagne and Winternitz [37]) 

tut + uxx + auyy + 6ifc|it|
2
 — uw = 0, 

wxx + cwyy + d(\u\
2

)yy = 0. 

Dirac equation in 1 + 1 dimensions (see Alvarez, Pen-Yu, and Vazquez [6]) 

Ut + vx + imu + 2iX (|ix|
2
 — \v\

2

) u = 0, 

+ + imv + 2ζ λ  ( |v |
2
 — \u\

2

) ν  = 0. 

Drinfel 'd-Sokolov-Wilson equation (see Hirota, Grammaticos, and Ramani 

[71]) 

ut = 3wwx, 

wt = 2wxxx + 2uwx + uxw. 

Klein-Gordon-Maxwell equations (see Deumens [46]) 

V
2

s - ( | a |
2

 + 1 ) 5 = 0, 

V
2

a - V ( V · a) - 5
2

a = 0. 

Euler equations (see Landau and Lifshitz [87], page 3) 

+ (v · grad )v = — - g r a d P . 
ut ρ  

Fi tzhugh-Nagumo equations (see Sherman and Peskin [126]) 

Ut = uxx + u(u — a ) ( l — u) + w, 

wt = eu. 

Gross-Neveu model (see Calogero and Degasperis [31], page 62) 

iux

n)

 = V<
n

> E m = l (v
{m)

*U
{m)

 + U <
m

> * V <
m

> ) , 

iv[
n>

> = u( n ) (v(rn)*u(m) + uN * t ;( m ) ) i 

Heisenberg ferromagnet equation (see Calogero and Degasperis [31], page 

56) 

ŝ  — s X sxx. 

Hirota-Satsuma equation (see Weiss [144]) 

ut = \ u x xx + 3uux - 6wwx, 

wt = - w x xx - 3uwx. 
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KdV equation - super (see Kersten and Gragert [84]) 

ut = 6uux - u x xx + 3wwxx, 

wt = 3uxw + 6uwx - 4wxxx. 

Von Karman equations (see Ames and Ames [8]) 

V
4
u = Ε  [wly - wxxwyy], 

V
4
W = Cl + b [UyyWXX + UXXWyy ~ 2UXyWXy]. 

Kaup 's equation (see Dodd and Fordy [47]) 

fx = 2fgc(x-t), 

gt = 2fgc(x - t). 

Landau-Lifshitz equation (see Barouch, Fokas, and Papageorgiou [15]) 

Ut = U-Uxx + U> JU. 

Maxwell's equations (see Jackson [77], page 177) 

V D = 4 π ρ , V x H = — J„ 
c 

V B = 0, V x E + ~
 = 0

-

Reduced Maxwell-Bloch equations (see Calogero and Degasperis [31], page 

N a m b u - J o n a Lasinio-Vaks-Larkin model (see Calogero and Degasperis 

Navier's equation (see Eringen and Suhubi [50]) 

d
2
u 

(λ  + 2 μ ) ν ν  u - ^ V x V x u = 

Navier-Stokes equations (see Landau and Lifshitz [87], page 49) 

u t + (u · V) u = + vV
2

\i. 

c dt 

59) 

E t - v = 0, 

rx + ω ν  = 0, 

qx + Ε υ  = 0, 

vx — ω ν  — Eq = 0. 

[31], page 62) 

Ρ  

Matrix Liouville equation (see Andreev [10]) 
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Pohlmeyer-Lund-Regge model (see Calogero and Degasperis [31], page 61) 

Prandt l ' s boundary layer equations (see Iyanaga and Kawada [76], page 

672) 
μ  

Ut + UUX + VUy = Ut+ UUX + — Uyy, 

UX +Vy = 0. 

Toda equation - 3 + 1-dimensional (see Hirota [70]) 

V
2
 log V„ - Vn+1 + 2Vn - Vn-r = 0 

Vector Poisson equation (see Moon and Spencer [102]) 

φ Α  = - curl E. 

sigma-model (see Calogero and Degasperis [31], page 61) 

ν ** + ( v x v t ) v = 0. 

Massive Thirring model (see Calogero and Degasperis [31], page 62) 

iux + υ  H- u\v\
2

 = 0, 

ivt + u + v\u\
2

 = 0. 

Veselov-Novikov equation (see Bogdanov [23]) 

(dt + d
3

z+d%)v + dz(uv) + c\{vw) = 0, 

c\u = 3dzv, 

dzw = 3dz~v. 

Yang-Mills equation (see Calogero and Degasperis [31], page 62) 

Anti-self-dual Yang-Mills equation (see Ablowitz, Costa, and Teneblat [1]) 

(U*Ut)t-(U*Ux)1Î = 0. 

Unnamed equation (see Salingaros [123]) 

V x u = k 
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41. Look Up ODE Forms 

A p p l i c a b l e t o Ordinary differential equations. 

Y i e l d s 

An idea of whether or not a differential equation has a closed-form 
solution. 

I d e a 

An experienced differential equations practit ioner can look at many 
second order ordinary differential equations and readily guess whether or 
not there is a closed form solution. This is because there are many familiar 
forms tha t often appear. 

P r o c e d u r e 

Having a listing of familiar differential equation forms will make it 
possible to recognize these forms. We have tabula ted below many of the 
familiar forms tha t appear for second order ordinary differential equations. 
All of the equations below are from Abramowitz and Stegun [1]; the section 
in which each appears is referenced. 

In the table, ( ) represents a te rm tha t contains constants. Such a 
te rm may or may not be correlated with other terms of the form ( ). For 
example, equation 22.6.5 in [1] is 

( l - x
2

) y" - (2a + l)xy' + n(n + 2a)y = 0 

where a; is a real constant and η  is an integer. Isolating the χ  dependence, 
we list this equation as 

{l-x
2
)y" + ()xy' + ()y = Q, 

and disregard the fact tha t the hidden values have constraints on them 
and, in fact, are related. 
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N o t e s 

[1] Realize that the same equation may look different when written in different 

variables. Some scaling of any given equation may be required to make it 

look like one of the forms listed. 

R e f e r e n c e s 

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, 

National Bureau of Standards, Washington, DC, 1964. 

E q u a t i o n s o f t h e form: y" + c(x)y = 0 
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See 22.6.10 

See 10.4.1 

See 22.6.20 

See 19.1.1 

See 9.1.51 

See 9.1.49 

See 9.1.50 

See 14.1.1 

See 13.1.1 and 22.6.8 

See 9.1.54 

See 22.6.7 

See 22.6.14 

See 22.6.3 

See 22.6.17 

See 22.6.8 

See 22.6.4 
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b(x) = () + x, c(x) = ( ) + 0 

E q u a t i o n s of t h e form: ( l — x
2

) y" + fc(x)?/ + c(x)?/ = 0 

&(*) = ( ) , c(x) = ( ) - ( ) x
2 

δ ( χ ) = —x, c(x) = ( ) 

b(x) = - x , c(x) = ( ) - ( ) x
2 

&(x) = —2x, c(x) = ( ) 

b(x) = -2x, c W = ( ) + - ^ 
1 - χ  

6(x) = —3x, c(x) = ( ) 

b(x) = ( )x, c(x) = ( ) 

&(*) = () + ()*, Φ 0 = () 
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See 20.1.8 

See 22.6.9 

See 20.1.7 

See 22.6.13 

See 8.1.1 

See 22.6.11 and 22.6.12 

See 22.6.5 and 22.6.6 

See 22.6.1 and 22.6.2 

E q u a t i o n s o f t h e form: y" + b{x)y' + c(x)y = 0 

b(x) = - x , c(x) = ( ) 

b(x) — —2x, c(x) = ( ) 

b(x) = 2x, c(x) = —( )x 

fe(x) = 2x, c(x) = x
2

 — ( ) 

b(x) - 2x, c(x) = ( ) - x
2 

b(x) = ( ) - x, c(x) = ( ) 

b(x) = ( ) x , c(x) = ( ) + χ 0 

6(x) = ^ , c(x) = ( ) 
X 

6(x) = ( ) , c(x) = ( ) - ( ) c o s x 

E q u a t i o n s of t h e form: x?/" + &(x)i/ + c(x)y = 0 

&(*) = ( ) - * , c(x) = ( ) 

See 22.6.21 

See 22.6.19 

See 7.2.2 

See 10.1.1 

See 10.2.1 

See 22.6.15 

See 9.1.53 

See 9.1.52 

See 20.1.1 

See 13.1.1 

See 22.6.16 
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E q u a t i o n s of t h e form: x
2

y" + b(x)y' + c(x)y = 0 

b(x) = x, c(x) = x
2

 - ( ) See 9.1.1 

6 ( x ) = x , c(x) = ( ) - x
2

 See 9.6.1 

b(x) = 2x, c(x) = ( ) + x
2

 See 10.1.1 

b(x) = 2x, c(x) = ( ) - x
2

 See 10.2.1 

E q u a t i o n s of t h e form: x(l — x)y
n

 -h b(x)y' -h c(x)y = 0 

6(x) = ( ) - ( )x, c(x) = ( ) See 15.5.1 
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Exact Methods for ODEs* 

42. An N-th Order Equation 

d
n

y 
A p p l i c a b l e t o The equation — - = f(x). 

dx 

Y i e l d s 

Two exact forms of the solution are available. 

I d e a 

The explicit solution can be wri t ten analytically. 

* Some of the methods in this section can be used for part ial differential 
equations as well. These methods are indicated by a star (*). 

185 



186 I L A E x a c t M e t h o d s for O D E s 

y(x)= Γ  dx Γ  dx-- Γ  f{x)dx + C l

{ X

. *
o ) 

Jxq Jxo Jxq \

n

 *•)' 

(χ  - xo)
n

~
2 

(42.1) 

+
 C < 1

~ 1 *\\
 1 V C

n-l(x - Xo) + Cn, 

( n - 2 ) ! 

for any x$, where the {Cj} represent arbi trary constants. This solution 
can also be writ ten as 

/ \ n - 2 ^4Z.ZJ 

+ C2 , + · · · + Cn-^X - X0) + C n 

( n - 2 ) ! 

in which there are no repeated integrals. Sometimes the form in (42.2) is 

more useful than the form in (42.1). 

E x a m p l e 

The ordinary differential equation 

y(
4

) — s inx , 

2/(0) = 0, y'(0) = 0, 

y"(0) = 0, y'"(0) = 0, 

has the solution 

pX pX pX pX 

y(x) = dx dx dx sinxdx. (42.3) 
Jo Jo Jo Jo 

This solution may also be writ ten as 

1 f
x 

y(x) = - (x-t)
3

smtdt. (42.4) 
6 Jo 

For some it is easier to evaluate the expression in (42.4) (by expanding out 

(x — t)
3

 and integrating the four terms) to determine tha t 

, , . χ
3 

y(x) = smx — χ  + —-
6 

than it is to evaluate the expression in (42.3). 

P r o c e d u r e 

The geberal solution of the ordinary differential equation for y(x) 

=
 f i x ) 

can be found integrating with respect to χ  a total of η  t imes. This produces 

\n — 1 
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N o t e s 

[1] When the answer is to be computed numerically, the solution represented by 
(42.2) is more useful than the form in (42.1). It is much faster to numerically 
approximate a one-dimensional integral than a multi-dimensional integral. 

R e f e r e n c e s 

[1] E. L. Ince, Ordinary Differential Equations, Dover Publications, Inc., New 
York, 1964, page 42. 

43. Use of the Adjoint Equation 

see page 75 for details. The bilinear concomitant of L[ ] is defined to be 

r[ o o ( * H + ( - i )
n - 1

£ U r M * M + · · · 

n—1n—1 

-ku(n-m-l)(akWj(m-k)^ 

then the adjoint of £,[·] is defined to be !,*[·], where L*[-] is given by (shown 
operat ing on the function w(x)) 

P r o c e d u r e 

If we have the n- th order linear differential operator L[-] (shown oper
ating on the function u(x)) 

I d e a 

For every solution we can find of the adjoint equation, we can reduce 
the order of the original equation by one. 

Y i e l d s 

A linear differential equation of lower order. 

A p p l i c a b l e t o Linear differential equations. 
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and satisfies the equation 

wL[u] - uL*[w] = ^B{u,w), (43.2) 

for all u(x) and w(x). 

Suppose we wish to solve the equation L[u] = f(x). If we can find a 

solution to L*[w] = 0, call it w*(x), then we have (substi tuting into (43.2)) 

w*L[u]-uL*[w*] = ^B(u,w*)> 
dx 

or 

w^x)f(x) = ±B{u,w*), 

or 

B(u,w*) = J w*(x)f{x)dx. (43.3) 

Therefore, to find u(x) we can solve (43.3) instead of L[u] = f(x). In other 

words, w*(x) is an integrating factor for the equation L[u] = / ( # ) . The 

original differential equation, L[u] = f(x), is of degree η  while equation 

(43.3) is of degree η  — 1. 

Spec ia l C a s e 

For η  = 2 the adjoint equation is important enough to write separately. 

If the linear operator L[-] is defined by L[u(x)] = R(x)u" + S(x)u
f

 + T(x)u, 

then the adjoint is L*[w(x)] = Rw" + (2R! - S)w' + (R" - S' + T)w, and 

the bilinear concomitant is B(u, v) = uSw + u'Rw — u(Rw)
f

. 

E x a m p l e 

Suppose we wish to solve the equation L[u] = 1, where 

L[u] = (x
2

 - x)u" + (2x
2

 + 4x - 3)u' + Sxu. 

The adjoint, in this case, is the operator 

L*[w] = {x
2

 - x)w" -f {-2x
2

 + l)w' + (4x - 2)w, 

and the bilinear concomitant is given by 

B(u, w) = w(x
2

 - x ) ^ + u'(2x
2

 + 2x- 2)w - u(x
2

 - x)w'. (43.4) 

A solution to L*[w] = 0, obtained by the method of undetermined 

coefficients, is w*(x) = x
2

 Using this solution in (43.3) we obtain (with 

/ ( * ) = i ) 
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(χ
4

 - χ  V + 2x
4

u =^r+C. 
Ô 

(43.5) 

Note tha t equation (43.5) is a first order equation (the original differential 
equation was of second order). Since (43.5) is a first order linear equation, 

x — 1 
it can be solved by the use of integrating factors. Multiplying by —~— 

χ  
and integrating results in 

2x 

(x - l)
2

e
2x

u(x) = Γ  \L-±e
2x

 + Ce
2xX

—l 
J L 3 χ  

dx 

2x-3 
e

2x

 + 
C 

e
2x

 + D, 
12 -

 1

 2 x
2 

where D is another arbi t rary constant . Hence, the final solution is 

u(x) = 
1 

(x-iy 

2x-3 C 

12 + 2χ
λ  + De -2x 

N o t e s 

[1] If an operator and its adjoint are identical, then the operator is said to be 

formally self-adjoint (see page 74). In this case, the adjoint method does 

not help to find a solution of the original differential equation. . 

[2] Similar results hold for linear partial differential equations. For the partial 

differential operator 

i , j = l i= 1 

the adjoint operator is defined by 

M\w] - d
2

(ajjw) _ djbjw) ^ ^ 

^ dxidxj ^ dxi 

i,j = l i = l 

With this definition of the adjoint, we find 

J (^wL[u] - uM[w]^ dx + J B[u,w]dxi ·· · dxi · ·· dxn = 0, (43.6) 

where B[u,w] is defined by 

j = l 

ddij 

dxj 
dij 

j ' = i 

du 
w — it 

ox j dx 

dw 

j 

In (43.6), dxi · · · dxi · · · dxn indicates the product dx\ · · · dxn with the factor 

dxi removed. See Garabedian [1] or Zauderer [5] for details. 

where C is an arbi t rary constant. Using w = w* = x
2

 in (43.4) produces 

B(u, w*) = (x
4

 - x
3

)u' + 2x
4

u. 

Equat ing these last two equations yields a first order equation for u 
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I d e a 

An autonomous equation is one left invariant under the transformation 

χ  —• χ  + a. Any ordinary differential equation in which the independent 

variable does not appear explicitly is an autonomous equation. Since 

we know something about the solution, we can reduce the order of the 

differential equation. 

[3] If the elliptic operator !,[·] is defined by L[u] = —V · (pVu) + qu, then 

wL[u] — uL[w] = V · (-pwVu + pteVtu). 

If the hyperbolic operator L[] is defined by L[u] = putt + L[u], then 

wL[it] — iiL[iy] = V · [—pwVu + puVw, pwut — puwt], 

where V = [V,d/dt] is the space-time gradient operator. If the parabolic 

operator £,[·] is defined by L[u] = put +L[«] , then 

iyl,[ii] — uL*[w] = V · [—pwVu + puVw, puw], 

where the operator !,*[·] is defined by L*[u] = —put + L[tt]. Each of the last 

three equations can be integrated to obtain an expression similar to (43.6). 

See Zauderer [5] for details. 

R e f e r e n c e s 

[1] P. R. Garabedian, Partial Differential Equations, Wiley, New York, 1964, 

pages 161-162. 

[2] E. L. Ince, Ordinary Differential Equations, Dover Publications, Inc., New 

York, 1964, pages 123-125. 

[3] W. Kaplan, Operational Methods for Linear Systems, Addison-Wesley Pub

lishing Co., Reading, MA, 1962, pages 448-453. 

[4] G. Valiron, The Geometric Theory of Ordinary Differential Equations and 

Algebraic Functions, Math Sei Press, Brookline, MA, 1950, pages 323-324. 

[5] E. Zauderer, Partial Differential Equations of Applied Mathematics, John 

Wiley k Sons, New York, 1983, pages 483-486. 

Y i e l d s 

An ordinary differential equation of lower order. 

A p p l i c a b l e t o Ordinary differential equations of the form F(y^ ,y(
n l

\ 

2 / ' , 2 / ) = 0. 

44. Autonomous Equations 
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(44.4) 

Equation (44.4) can be integrated to obtain 

(44.5} 

where Β  is a constant. Using u(y) • equation (44.5) can be writ

ten as - y + B, so tha t / dx, and therefore 

- C, where D
2

 = AB — 1 and C is an additional 

constant. Inverting this last equation gives y explicitly as a function of χ  

where Ε  = D/2 and F = CE. Hence, the two solutions to (44.1) are given 

by (44.3) and (44.6). 

P r o c e d u r e 

Given the n- th order autonomous equation F(y(
n

\ y ^
n _ 1

\ . . . , y", y', 

y) = 0, change the dependent variable from y(x) to u(y) = y'{x). The 

resulting ordinary differential equation for u(y) will be of lower order. To 

find how the higher order derivatives transform, consult Table 44. After 

the ordinary differential equation of lower order has been solved for u(y), 

y(x) can be determined from integrating u(y) = y (x); i.e. 

E x a m p l e 

Suppose we want to solve the nonlinear autonomous equation 

(44.1) 

Since there are no explicit occurrences of χ  in (44.1), we recognize the 

equation to be autonomous. Therefore, we change variables in (44.1) by 

Using Table 44, (44.1) transforms into ι  • 2yu, or 

(44.2) 

From (44.2), either u = 0 or 1 - 2y = 0. If u(y) = 0, then 

and so one solution to (44.1) is 

where A is a constant. Conversely, if u(y) φ  0, then equation (44.2) requires 

tha t 

(44.3) 
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[1] This method is derivable from Lie group methods (see page 314). 

[2] In Schwarz's paper [2], there is a description of a REDUCE program that 

will automatically determine first integrals for an autonomous system of 

equations. 

[3] The easiest way to make the necessary transformation in an autonomous 

differential equation is by replacing every occurrence of — with u—. For 

ax ay 
instance, writing (44.1) in the form 

[4] Sometimes it is advantageous to write a pair of first order autonomous 

equations as a single first order equation, by diving the two equations. For 

example, the predator-prey equations 

N o t e s 

leads immediately to equation (44.2) via 

dx 
— = -cy + dxy (44.7) 

can be written in the form 

dx _ ax — bxy 
(44.8) 

dy -cy + dxy' 

Table 44. How to transform derivatives under the change of independent 

variable: u(y) = yx(x). 

To simplify notation, define 2 / x( n) to be the n-th derivative of y with respect to x. 

Similarly for uŷ ny The last equation is, therefore, 
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Although equation (44.7) cannot be solved explicitly in finite terms, from 

equation (44.8) we can show that F(x,y) := dx + by — clog χ  — a log y is a 

constant on the solution curves {x(t),y(t)}. 

[5] It is straightforward to create a MACSYMA program that will, for au

tonomous equations, perform the necessary change of variables. In the 

following copy of a terminal session, the input equation 

ydx
2 

is transformed into 
3 du ο  2 - Λ  y - u—y + u y - 1 = 0. 

dy 

AUTONOMOUS(EQN,Y,X); 
y y 

3 2 2 

y - u u y + u y - 1 

y 

3 

y 

[6] Autonomous systems of ordinary differential equations can have center man-

ifolds, which are a classification of the solution surface. As a simple example, 

consider the system 

x ' = Ax + f(x, y), y' = Bx + g(x, y) , (44.9) 

where A is a constant matrix all of whose eigenvalues are imaginary, Β  is 

a constant matrix all of whose eigenvalues have negative real part, and the 

functions f and g, and their first derivatives, vanish as the point (0,0). Then 

there is a function h such that 

AUTONOMOUS(EQN,Υ ,Χ ):= BLOCK([NEW,A,U,MAX.DEGREE,J], 

DEPENDS(U,Y), 

MAX.DEGREE:DERIVDEGREE(EQN,Υ ,X), 

KILL(A), 

A[0]:Y, 

FOR J:l THRU MAX.DEGREE DO ( 

A[J]:EXPAND( SUBST(U,DIFF(Y,X),DIFF(A[J-1],X)) ) ), 

FOR J:l THRU MAX.DEGREE DO ( 

NEW: SUBSTC A[J], DIFF(Y,X,J), NEW ) ), 

FACTOR(NEW) )$ 

DEPENDS(Y,X)$ 

EQN: DIFF( DIFF(Y,X)/Y, X) -1+1/Y**3; 
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(A) h is an invariant manifold under (44.9), 

(B) h and its first derivatives vanish at (0,0), 

(C) the stability of the solution (0,0) is the same as that of the smaller 

system x' = Ax + f(x, h(x)). 

R e f e r e n c e s 

[1] C M . Bender and S.A. Orszag, Advanced Mathematical Methods for Scien-

tists and Engineers, McGraw-Hill, New York, 1978, pages 24-25. 

[2] F. Schwarz, "An Algorithm for Determining Polynomial First Integrals of 

Autonomous Systems of Ordinary Differential Equations," J. Symbolic Comp., 

1, 1985, pages 229-233. 

[3] E. D. Rainville and P. E. Bedient, Elementary Differential Equations, The 

MacMillan Company, New York, 1964, pages 268-269. 

45. Bernoulli Equation 

A p p l i c a b l e t o Ordinary differential equations of the form: y' + P(x)y = 

Q(x)y
n

. 

Y i e l d s 

An exact solution of the given equation. 

Idea 

By a change of dependent variable, a Bernoulli equation (which is a 

nonlinear equation of the form y
f

+P(x)y = Q(x)y
n

, where η  is not equal to 

1) can be transformed to a first order linear equation. This linear equation 

can be solved by the use of integrating factors
. 

P r o c e d u r e 

Suppose we have the equation 

y' + P(x)y = Q(x)y
n

, (45.1) 

which we recognize to be a Bernoulli equation. To solve, we divide the 

equation by y
n

 and change the dependent variable from y(x) to u(x) by 

u(x) = y(x)
1

-
n

. 

This changes (45.1) into the first order linear differential equation 

-r^—u' + P(x)u = Q(x). (45.2) 
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u(x) = exp ( n - 1 ) j P(t)cft] j y exp (
l

~
n

) j P(t)dt Q{s)ds^ 

E x a m p l e 

Suppose we have the equation 

y' + y = 2 /
3

s inx . (45.3) 

To solve this equation, divide it by y
3

 and then define u(x) = y{x)~
2

 so 

tha t (45.3) becomes 

-\u' + u = s inx . (45.4) 

The solution to (45.4) (obtained by the method of integrating factors) is 

u(x) = Ae
2x

 + | ( c o s x + 2 s i n x ) , 

where A is an arbi trary constant. Using y(x) = - u ( x )
- 1

/
2

, the final solution 

is found to be 

y(x) = [Ae
2x

 + | ( c o s x + 2s inx ) ] 
- 1 / 2 

N o t e s 

[1] If η  = 1, then the original equation is in the form of (45.2) and it can be 
solved directly by the use of integrating factors. 

R e f e r e n c e s 

[1] W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and 

Boundary Value Problems, Fourth Edition, John Wiley & Sons, New York, 
1986, page 28. 

[2] E. L. Ince, Ordinary Differential Equations, Dover Publications, Inc., New 
York, 1964, page 22. 

[3] E. D. Rainville and P. E. Bedient, Elementary Differential Equations, The 
MacMillan Company, New York, 1964, pages 69-71. 

[4] G. F. Simmons, Differential Equations with Applications and Historical Notes, 

McGraw-Hill Book Company, New York, 1972, page 49. 

An exact solution of (45.2) can be found by integrating factors (see page 

305). The solution is given by 
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46. Clairaut's Equation 

A p p l i c a b l e t o Differential equations of the form: f(xy' — y) = g(y')> 

Y i e l d s 

An exact implicit solution. Sometimes a singular solution may also be 

obtained. 

Idea 

A solution of the differential equation f(xy' — y) = g(y') is known. 

P r o c e d u r e 

Given the equation 

f(xy' -y) = g(y'), (46.1) 

a general solution (for which y" = 0) is given implicitly by 

f(xC -y) = g(C), (46.2) 

where C is an arbitrary constant. Equat ion (46.1) may also have a singular 

solution. If it does, it can be obtained by differentiating (46.1) with respect 

to χ  to obtain 

y"[f'(xy' -y)x-9'(y')) = o. (46.3) 

If the first term in (46.3) is zero, then (46.2) is recovered. If the second 

term in (46.3) is zero, then (46.1) and (46.2) can be solved together to 

eliminate y'. The resulting equation for y = y(x) will have no arbitrary 

constants and so will be a singular solution. 

E x a m p l e 

Suppose we have the ordinary differential equation 

(xy' - y)
2

 - [y')
2

 - 1 = 0. (46.4) 

Since (46.4) is of the same form as (46.1) (with f(x) = x
2

, g(x) = x
2

 — 1), 

a general solution can immediately be writ ten down as (xC — y)
2

 = C
2

 + 1 , 

or 

y = Cx ± VC
2

-1, (46.5) 

where C is an arbi trary constant. 

To find the singular solution, we differentiate (46.4) with respect to χ  

to obtain 

y"[2(xy' -2)x-2y']=0. 
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47. Computer-Aided Solution 

A p p l i c a b l e t o Some classes of ordinary differential equations, most 

frequently first and second order equations. 

Y i e l d s 

An exact solution. 

If the second te rm is set equal to zero, then we find 

y' = -^-r- (46.6) 
x - 1 

Using (46.6) in (46.4) we determine the singular solution to be 

x
2

 + y
2

 = 1. (46.7) 

Note tha t (46.7) is not derivable from (46.5), for any choice of C. 

N o t e s 

[1] The singular solution obtained by this method turns out to be the locus of 

the solutions in (46.2). That is, the envelope of the solutions in (46.2), for 

all possible values of the parameter C, will be the singular solution. See 

Ford [1] for details. 

[2] A generalization of Clairaut's equation is Lagrange's equation (see page 

311). 

[3] Clairaut's partial differential equation ζ  

has the solution ζ  = . See Kamke [3]. 

R e f e r e n c e s 

[1] L. R. Ford, Differential Equations, McGraw-Hill Book Company, New 

York, 1955, pages 16-18 

[2] E. L. Ince, Ordinary Differential Equations, Dover Publications, Inc., New 

York, 1964, pages 39-40. 

[3] E. Kamke, Differentialgleichungen Lösungsmethoden und Lösungen, Vol
ume II, Chelsea Publishing Company, New York, 1947, section 13.8, page 
123. 

[4] E. D. Rainville and P. E. Bedient, Elementary Differential Equations, The 
MacMillan Company, New York, 1964, pages 263-265. 
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Idea 

Some of the computer algebra languages tha t are available have a 

symbolic differential equation solver. 

P r o c e d u r e 

Find a computer system tha t runs any of the following computer 

languages: DERIVE, FORMAC, MACSYMA, MAPLE, Mathematica, mu-

Math, REDUCE, Scratchpad, SMP. Then learn how to use the language, 

and find the routine tha t solves differential equations automatically. 

E x a m p l e 1 

The following is a copy of a terminal session using MACSYMA, which 

was run on a SUN3 workstation. Note tha t ( c 2 ) , ( c 3 ) , ( c 4 ) , (c5) 

are input lines ("command" lines) and tha t ( d 2 ) , ( d 3 ) , ( d 4 ) , (d5) are 

output lines ("display" lines). 

In line (c2) a second order differential equation is input. In line (c3) 

the computer is asked for the solution. In line (c4) a nonlinear first order 

differential equation is entered. In line (c5) the solution is requested. 

The terms {'/.c, Xkl , 7,k2} are arbi trary constants in the solution tha t 

MACSYMA found. 

DOE MACSYMA Version 10. 

Copyright 1982, Massachusetts Institute of Technology 

Dumped by tony on Wed Jun 22 04:41:34 1988. 

Loading global MACSYMA init file. 

Welcome to DOE-MACSYMA 

(c2) Miff(y,x,2)+4*y=0; 

2 

d y 

(d2) + 4 y = 0 

2 

dx 

(c3) ode(7,,y,x); 

<< several lines deleted >> 

(d3) y = '/.kl sin(2 x) + */.k2 cos (2 x) 

(c4) Miff(y,x)=y/(x+y*log(y)); 

dy y 

(d4) 
dx y log(y) + χ  

(c5) ode('/,,y,x) ; 

2 

2 χ  - y log (y) 

(d5) = 7.c 
2 y 
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E x a m p l e 2 

The following is a copy of a terminal session of SMP tha t was run 

on a SUN3 workstation. Note tha t #1 [ 1 ] , and #1 [2] are input lines and 

tha t # 0 [ 1 ] , and #0[2 ] are output lines. On line # I [ 1 ] the second order 

differential equation, y" + 4y = 0 is input . On line #0[1] SMP returned 

the same differential equation in a slightly different format. On line #1 [2] 

the solution is asked for. The terms # k l and #k2 are arbi trary constants 

in the solution tha t SMP found. 

#I[1] : : Dt[y,{x,2}] + 4 u = 0 

#0[1]: 4u + Dt[y,x,{x,l}] = 0 

#I[2] : : Odesol[y.,y,x] 

O.D.E. Solver 

equation: 4u + Dt[y,x,{x,l}] = 0 

1) order = 2 

2) type = linear: a[x] y^+bCx] y'+c[x] y=f[x] 

3) homogeneous : f[χ ] = 0 

#0[2]: {y -> #kl Cos[2x] + #k2 Sin[2x]} 

E x a m p l e 3 

The following copy of a terminal session of M A P L E is due to Keith 

Geddes. On the first line the differential equation y" + 4y = 0 is input; on 

the second line a solution is requested. Note tha t C and CI are arbi trary 

constants in the solution tha t M A P L E found. 

IV/I 

Watmum at Univ of Waterloo 

\ MAPLE / Version 4.2 — Dec 1987 

< > For on-line help, type helpO; 

I 

> diff(y(x),x$2) + 4*y(x) = 0; 

2 

d 

y(x) + 4 y(x) = 0 

2 

dx 

> dsolve(",y(x)); 

2 

y(x) = 2 C sin(x) cos(x) + 2 Cl cos(x) - CI 
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E x a m p l e 4 

The following is a modification of a terminal session of R E D U C E which 

was originally created by Malcolm MacCallum. After the program is told 

tha t y depends on x, the differential equation y" + Ay = 0 is input; on the 

next line a solution is requested. 

Cambridge ORION/UNIX REDUCE System 

REDUCE 3.3 (7 Dec 1987) : 

1 : in odesolve $ 

« several lines deleted » 

2: depend y,x; 

3: ode := df(y,x,2)+4*y; 

ode := df(y,x,2)+4*y; 

4: odesolve(ode,y,x); 

This is a linear ODE of order 2 with constant coefficients 

The solution is given by equating the following to zero 

arbconst(2)*sin(2*x) + arbconst(l)*cos(2*x) - y 

E x a m p l e 5 

The following is a copy of a terminal session using muMATH, which 

was run on an IBM-XT. Note tha t input lines begin with a question mark 

and output lines begin with an "at" sign. 

Initially a package is loaded in tha t contains all of the routines for 

algebraic manipulat ion and for solving differential equations. On the next 

line the differential equation y" + Ay = 0 is input; then a solution is 

requested. On the following line a nonlinear first order ordinary differential 

equation is input; its implicit solution is then found. The terms A R B ( l ) , 

ARB ( 2 ) , ARB(3) are arbi trary constants in the solution tha t muMATH 

found. 

muSIMP-83 4.06 (12/18/83) 

MS-DOS Version 

Copyright (C) 1982 The SOFT WAREHOUSE 

Licensed by MICROSOFT Corp. 

« several lines deleted » 

? DE: DIF(Y(X),X,2) + 4*Y(X)==0; 

(0: 4 Y (X) + DIF (Y (Χ ), X, 2) == 0 

? SOLVE(DE,Y(X)); 

Φ : {Y (Χ ) == ARB(l) SIN (2 Χ ) + ARB(2) COS (2 Χ )} 
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? DIF(Y(Χ ),Χ )==Y(X)/(X+Y(X)*LN(Y(X))); 

«: DIF (Y (Χ ), X) == Y (X)/(X + Y (X) LN Y (X)) 

? SOLVE( β ,Y(X)); 

β : {2 X - Y (X) LN Y(X)~2 + 2 Y (X) ARB(3) == 0} 

E x a m p l e 6 

The following is a modified copy of a terminal session using Mathe-

matica on a SUN4. Note tha t the n t h input line is denoted I n [ n ] and the 

n t h output line is denoted Out [ n ] . On the first input line the differential 

equation y" + 4y = 0 is input; on the second input line a solution is 

requested. The terms C [1] and C [2] are arbi t rary constants in the solution 

tha t Mathemat ica found. 

Mathematica (sun4) 1.2 (November 6, 1989) [With pre-loaded data] 

by S. Wolfram, D. Grayson, R. Naeder, H. Cejtin, 

S. Omohundro, D. Ballman and J. Keiper 

with I. Rivin and D. Withoff 

Copyright 1988,1989 Wolfram Research Inc. 

— Terminal graphics initialized — 

In[l] := equation= y"[x]+4 y[x]==0 

Out[l]= 4 y[x] + y^Cx] == 0 

In[2]:= DSolve[ equation, y[x], x] 

Out [2]= {{y[x] -> C[2] Cos [-2 x] + C[l] Sin [-2 x]}} 

N o t e s 

[1] All of these symbolic manipulation languages can be used interactively or 

through a batch processor. 

[2] Packages that can handle a wider variety of differential equations are con

stantly being created. See, for example, Schmidt [5], Kovacic [4], Watan-

abe [9], or Chan [1]. 

[3] Many of the programs illustrated above, and many others (such as the 

package by Hubbard and West [8]) can be run on a microcomputer (such as 

an IBM PC or a Macintosh). 

[4] Given a homogeneous linear differential equation, whose coefficients are 

in a finite algebraic extension of Q[x], Singer's paper [14] has a decision 

procedure to determine a basis for the Liouvillian solutions. Liouvillian 

functions are, essentially, those functions that can be built up from rational 

functions by algebraic operations, taking exponentials and by integration. 

[5] The theory underlying the computer solution of ordinary differential equa

tions is quite complex. We need the following definitions: 

(A) Let if be a field of functions. The function θ  is a Liouvillian generator 

over Κ  if it is: 

(A) algebraic over K, that is if θ  satisfies a polynomial equation with 

coefficients in K; 

(B) exponential over K, that is if there is a ζ  in Κ  such that θ ' = ζ 'θ , 

which is an algebraic way of saying that θ  = exp ζ ; or 
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(C) an integral over K, that is if there is a ζ  in Κ  such that θ ' = ζ , 

which is an algebraic way of saying that θ  = J ζ . 

(Β ) Let Κ  be a field of functions. An over-field Κ (θ \,..., θ η ) of Κ  is called a 

field of Liouvillian functions over Κ  if each Θ Ϊ  is a Liouvillian generator 

over K. A function is Liouvillian over Κ  if it belongs to a Liouvillian 

field of functions over K. 

Then, some of the important theorems in this area are: 

Theorem: There is an algorithm which, given 

a second order linear differential equation, y" + 

ay' + by = 0 with a and b rational functions of 

x, either finds two Liouvillian solutions such that 

every solution is a linear combination with constant 

coefficients of these two solutions or proves that 

there is no Liouvillian solution (except zero). 

Theorem: There is an algorithm which, given a 

linear differential equation of any order, the coeffi

cients of which are rational or algebraic functions: 

either finds a Liouvillian solution, or proves that 

there is none. 

Theorem: Let A be a class of functions containing 

the coefficients of a linear differential operator L, 

let g be an element of A, and let us suppose that 

the equation L[y] = g has an elementary solution 

over A. Then either L[w] = 0 has an algebraic 

solution over A, or y belongs to A. 

Theorem: Let A be a class of functions, which 

contains the coefficients of a linear differential oper

ator L, let g be an element of A, and let us suppose 

that the equation L[y] = g has a Liouvillian solu

tion over A. Then either L[w] = 0 has a solution 

e j z(x) dx z algebraic over A, or y belongs to A. 

See Davenport, Siret, and Tournier [3] for details. 

[6] An example of the use of FORM AC may be found in Hanson et al. [6]. 

[7] Shtokhamer [13] presents a MACSYMA program that implements the Prelle-

Singer algorithm, and gives several examples. 

with
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48. Constant Coefficient 

Linear Equations 

A p p l i c a b l e t o Homogeneous linear ordinary differential equations with 

constant coefficients. 

Y i e l d s 

An exact solution. 

Idea 

Linear constant coefficient ordinary differential equations have expo

nential solutions. The method of undetermined coefficients can be used to 

solve this type of equation after a polynomial has been factored. 

P r o c e d u r e 

Given the n- th order linear equation 

(48.1) 

where the {a*} are constants, look for a solution of the form 

(48.2) 

where C is an arbi trary constant. Substi tut ing (48.2) into (48.1) yields 

Hence, (48.2) is a solution of (48.1) if λ  is a root of the characteristic 

equation, defined by 

(48.3) 
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If (48.3) has n different roots { λ »}, then the general solution to (48.1) is, 

by use of superposition, 

y(x) = Cne
XnX

 + C n _ i e
A

" -
l X

 + · · · + d e
A l

* , 

where the {Ci} are arbi t rary constants. If some of the roots of (48.3) are 

repeated (say λ ι  = X2 = . . . = A m) , then the solution corresponding to 

these is 

y(x) = {CmX™-
1

 + C m_ ! X
m

-
2

 + · · · + C2x + C i ) e
À 1

* . 

E x a m p l e 
Given the linear differential equation 

y(7) _ U y( 6 ) + 8 0 Y( 5 ) _ 2422/
( 4)

 + 419 Î /
( 3)

 - 4162/" + 220y' - 48y = 0, (48.4) 

we subst i tu te y(x) = e
Xx
 to find the characteristic equation 

λ
7

 - 14 λ
6

 -h 8 0 λ
5

 - 242 λ
4

 -f 419 λ
3

 - 416 λ
2

 -f 220λ  - 48 = 0, 

which factors as 

( λ  - 1 )
3

( λ  - 2 )
2

( λ  - 3)( λ  - 4) = 0. (48.5) 

The roots of equation (48.5) are { 1 , 1 , 1 , 2 , 2 , 3 , 4 } . The general solution to 

(48.4) is therefore 

y(x) = {Co + C i x + C2x
2

}e
x

 + {C3 + CAx}e
2x

 + C5e
3x

 + C 6e
4

* , 

where { C o , . . . , Ce} are arbi trary constants. 

N o t e s 

[1] Using the transformation described on page 118, the system in (48.1) can 

be written in the form y' = Ay, where A is an η  χ  η  constant matrix. Then 

the techniques described on page 360 may be used. 

R e f e r e n c e s 
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1986, Section 5.3 (pages 263-268). 

[2] G. F. Simmons, Differential Equations with Applications and Historical Notes, 

McGraw-Hill Book Company, New York, 1972, pages 83-86. 
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49. Contact Transformation 

A p p l i c a b l e t o First order and (occasionally) second order ordinary 

differential equations. 

Y i e l d s 

A reformulation, which may lead to an exact solution (sometimes in 

parametr ic form). 

Idea 

By changing variables a different, and sometimes easier, differential 

equation may be found. 

P r o c e d u r e 

Given a relation between three variables 

φ (χ ,ν ,ρ ) = 0, (49.1) 

it will be a first order ordinary differential equation if dy — pdx = 0. If the 

variables in (49.1) are changed by 

x = x(X,Y,P), 

y = y(X,Y,P), 

p = p(X,y,P), 

(49.2) 

then the transformed equation φ (Χ ,Υ ,Ρ ) = 0 will also be an ordinary 

differential equation if dY — PdX = 0. If this is t rue, then (49.2) is a 

contact transformation. For example, the change of variables 

(49.3) 

is a contact transformation. It is easy to show this: 

0 = dy — pdx 

= d(PX -Y)-XdP 

= PdX -dY. 

If the new differential equation, Φ (Χ ,Υ ,Ρ ) = 0, can be solved, then the 

solution to φ (χ ^,ρ ) = 0 may be determined by eliminating X , Y, and Ρ  

from the original equation, using the solution found and the transformation 

rules. 
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E x a m p l e 

Suppose we are given the nonlinear first order ordinary differential 

equation 

2 2y{t) ~2xî-y=°> ·
4 ) 

which we may write as 

2yp
2

 — 2xp — y = 0. 

We utilize the contact transformation in (49.3) to obtain, after some alge-

bra, the new first order ordinary differential equation 

Ρ  + Y (
 l

~
2 X2

 \ = 0. (49.5) 
\2X

3
-3Xj

This differential equation can be solved by integrating factors to obtain 

Y = C (2X
3
 -3X)

1/3
, (49.6) 

where C is an arbi t rary constant . Now tha t we have the solution of the 
transformed equation, we can find the solution of the original differential 
equation. 

Utilizing Y = xX — y and Ρ  = χ  from (49.3), equations (49.5) and 
(49.6) can be wri t ten as 

x / 1 - 2X
2
 \ 

χ  + (xX - y) s = 0, 
V yJ

\2X
3
-3Xj (49.7) 

xX-y= (2X
3
-3X)

1/3
. 

Now X can be eliminated between these two equations by, say, the method 
of resultants (see page 46). This produces the solution to (49.4) in the 
form f(x,y) = 0 (there are 21 algebraic terms in this representation). 
Alternately, we can obtain a parametr ic representation of the solution by 
solving (49.7) for χ  = x(X) and y = y(X) and then treat ing X as a 
parameter . 
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N o t e s 

[1] The condition dy — pdx = 0 states that, if the point is on a curve, 
then ρ  should be its tangent. The change of variables in this method 
gives a different parameterization of the same curve. In particular, if two 
curves touch in the old parameterization, then they also touch in the new 
parameterization; hence the name of the transformation. 

[2] Some second order ordinary differential equations may also be solved by 
J

2

V 1 Λ

2

„ 

this method. If R — —— — =• and — = — = —^ then we may use the 
dP _ £Y_ , 1 _ dp _ d'y 

dX * dX
2

 R~ dx~ dx
2 

relation dP — RdX = dx — Rdp. 

[3] In more generality, a transformation of the 2n + 1 variables {z,Xj,pj | j = 

Ι , . , . , η } to the 2n + 1 variables {Z,XjyPj | j = Ι , . , . , η } is a contact 
transformation if the total differential equation 

dz — pidxi — pidxi — ... — pndxn = 0 

is invariant under the transformation; i.e., if the equality 

dZ — P\dX\ — PïdX-i — ... — PndXn = p[dz — pidxi — p2dx2 - . . . - p nd x n] 

holds identically for some nonzero function p(x, p ,z ) . See Iyanaga and 
Kawada [5] for details. 

[4] A contact transformation is also a canonical transformation (see page 105). 
The generating function of the canonical transformation, Ω , satisfies the 

three relations: Ω ( ζ , ζ , Χ , Ζ ) = 0, τ τ —- H-Pj-^z = 0, and \-pj — = 0. 
oXj ο  Ζ  oxj oz 

[5] The Legendre transformation (see page 400) is an example of a contact 

transformation. For this transformation: Ω  = Z - h z - f ^XJXJ, Ζ  = 

Σ Ά Ρ 3
χ

3 -
 Ζ

Ι
 χ

3 = - P i »
 P

J = ~
χ

3 , and ρ  = - 1 . 

[6] The Pedal transformation is given by: Ω  = Ζ
2

 - ζ  Ζ  - Y^XJXJ + Σ ,Χ *, 

Xj = -PJZ, pj = — i i , and ρ  = 
2Z - ζ  '

 H

 2Z-z' 

[7] The similarity transformation is given by: Ω  = (Ζ  —z)
2

 — a
2

 -f ̂ 2(Xj —x)j)
2

, 

Xj = Xj - apj ( l + Σ Ρ ))~
1/2

, PJ = Pj, Ζ  = Xj; + a ( l + Σ ρ ))~
1/2

, and 
p = l. 

[8] Composing two contact transformations, or taking the inverse of a contact 
transformation, results in another contact transformation. Since the iden-
tity transformation is also a contact transformation, the set of all contact 
transformations forms an infinite dimensional topological group. 

[9] This method is derivable from the method of Lie groups (see page 314), 
where it goes by the name of the extended group of transformations. See 
Ince [4] or Seshadri and Na [6] for details. 
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[10] Some other contact transformations are: 

= x-yp 

yyjp
2

 - 1 

Ρ  

1 J 

x = X -

y = Y + 

aP 

y/l + P
2 

a 

y/l + P
2 

: X + 

y-

p 

a>P \ 

yfî+p 
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50· Delay Equations 

A p p l i c a b l e t o Ordinary differential delay equations. 

Y i e l d s 

In many cases, an exact analytical solution. 

I d e a 

There are several s tandard techniques for delay equations. 
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= x-yp 

yyjp
2

 - 1 

Ρ  

1 J 

x = X -

y = Y + 

aP 

y/l + P
2 

a 

y/l + P
2 

: X + 

y-

p 

a>P \ 

yfî+p 

R e f e r e n c e s 
[1] H. Bateman, Partial Differential Equations of Mathematical Physics, Dover 

Publications, Inc., New York, 1944, pages 81-83. 
[2] C. Caratheodory, Calculus of Variations and Partial Differential Equations 

of the First Order, Holden-Day, Inc., San Francisco, 1965, Chapter 7 (pages 
102-120). 

[3] C. R. Chester, Techniques in Partial Differential Equations, McGraw-Hill 
Book Company, New York, 1970, pages 206-207. 

[4] E. L. Ince, Ordinary Differential Equations, Dover Publications, Inc., New 
York, 1964, pages 40-42. 

[5] S. Iyanaga and Y. Kawada, Encyclopedic Dictionary of Mathematics, MIT 
Press, Cambridge, MA, 1980, pages 286 and 1448. 

[6] R. Seshadi and T. Y. Na, Group Invariance in Engineering Boundary Value 
Problems, Springer-Verlag, New York, 1985, pages 18-20. 
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P r o c e d u r e 

The s tandard methods for solving delay equations are by the use of 

(A) Laplace transforms, 

(B) Fourier transforms, 

(C) Generating functions, 

(D) General expansion theorems, 

(E) The method of steps. 

For the first two methods, the technique is the same as it is for ordinary 

differential equations(see page 2 9 5 ) . Tha t is, the transform is taken of 

the delay equation; by algebraic manipulations the transform is explicitly 

determined; and then an inverse transformation is taken. See Example 1. 

For a delay equation with a single delay, the method of steps consists 

of solving the delay equation in successive intervals, whose length is the 

time delay. In each interval, only an ordinary differential equation needs 

to be solved. See Example 2. 

The method of generating functions is frequently used when only 

integral values of the variables are of interest. The technique is similar 

to the technique for integral transforms described above. For generating 

functions the integration is replaced by a summation, and the "inverse 

transformation" is generally a differentiation (see page 2 6 5 for more de-

tails). See Example 3 . 

The general expansion theorems are all of the same form; given a 

delay equation, the solution can be expressed as a sum over the roots of a 

transcendental equation called the characteristic equation. 

E x a m p l e 1 

Suppose we have the delay equation 

y'(t) + ay(t-l) = 0, ( 5 0 . 1 ) 

with the boundary conditions 

y

(t) = y0 when - 1 < t < 0, (50 .2 ) 

where α  is a constant. We define the Laplace transform of y(t) to be 

Y(s) by Y(s) = J 0°° e~
st

y(t) dt. Multiplying equation ( 5 0 . 1 ) by e~
st

 and 

integrating with respect to t yields 

/»oo poo 

/ e-
st

y'(t) dt + a e-
st

y(t -l)dt = 0. (50 .3 ) 
Jo Jo 

The first integral in (50 .3 ) can be integrated by par ts to yield 

oo 

e-
8t

y'(t)dt = sY(s)-y0. (50 .4) 
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71 = 0 

then an inverse Laplace transform may be taken te rm by te rm to conclude 

tha t 

L ^
1

 <t-n+l)
n 

i/W = yoE(-
q

) ", ' , (50.7) 
n=0 

where the floor function, [̂ J ? is the greatest integer less than or equal to t. 

Another way of expressing the solution in (50.7) is by taking the 

inverse transform of Y(s), as defined in (50.6), directly, and using Cauchy's 

theorem to evaluate the Bromwich contour integral. This results in 

*'
) =

 -
β

* Σ ; Λ ϊ Τ ο '
 ( 5 0

·
8 ) 

where the summation is over all roots of the equation 

s + ae~
s

 = 0. (50.9) 

All the roots of (50.9) will be simple unless a = e
_ 1

, when there is a double 

root at s = — 1 . The solution in (50.8) can be approximated (for large t) 

by just using the sr tha t has the smallest real par t . There exist theorems 

(see Pinney [10] for instance) tha t allow the solution of (50.1) to be wri t ten 

in the form of (50.8) immediately. 

The second integral in (50.3) can be evaluated by changing the variable of 

integration from t to u = t — 1: 

Λ Ο Ο  Λ Ο Ο  

a / e-
9t

y(t - 1) dt = a / e -
e ( t t + 1 )

2 / ( t x ) du 
Jo J-i 

= a J°° e-
8

(
u

+Vy(u)du + a Ç e ' ^ ^ y ^ d u 

1 - e'
8 

= ae
 8

Y(s) + ay0 . 
S
 (50.5) 

Utilizing bo th (50.4) and (50.5) in (50.3) results in the algebraic equation 

1 - e~
s 

sY(s) - 2/0 + ae
 8

Y{s) + ay0 = 0, 
s 

which can be solved for Y (s): 

Y(s) =
 y
-f - -Η ^· (50-6) 
s s{s + ae ) 

If this formula for Y (s) is expanded as 

oo 

Y(s) =^-y0 Y(-l)
n
a

n+1
e-

n3
s-

n
-\ 

ft ' J 
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E x a m p l e 2 

In the method of steps, only a sequence of ordinary differential equa-

tions need to be solved. To illustrate this method, consider equations (50.1) 

and (50.2). In the interval 0 < y < 1 the solution satisfies 

y'{t) + ay0 = 0, 

2/(0) = 2/0-
(50.10) 

The equation in (50.10) has the solution 

y(t) = 2/o(l - at), for 0 < y < 1. (50.11) 

Now we solve for y(t) in the next interval of length one. Using (50.11) we 

find tha t , in the interval 1 < y < 2, the solution satisfies 

y'(t) + ay0[l-a(t-l)} = 0, 

y(0) = yo(l-a). 

The equation in (50.12) has the solution 

y(t) = y0 [1 - at + \a?{t - l )
2

] , for 1 < y < 2. 

This process can be repeated indefinitely. The solution obtained is identical 

to the solution in (50.7). 

E x a m p l e 3 

This example shows how generating functions may be used to solve 

delay equations. Consider equations (50.1) and (50.2). We define the 

generating function associated with y(t), for 0 < t < 1, by 

oo 

Y(t,k) = Y^y{t+p)k
p

. (50.13) 

p=0 

Once this generating function is known, y(t) may be obtained in either or 

the two ways 

= —. ( Y&tyk-P^dk, 
2π ι  Jc 

where C is a closed contour surrounding the origin in the fc-plane and lying 

wholly within the region of analyticity in k of Y{t, k). 
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Yt(t,k) = Yjy'{t+p)k^ 

z° (50.14) 

kY(t,k) = Ytv(t+p +
 1

)*?. 
p=l 

If we now evaluate (50.1) when t has the value t + p , multiply by fc
p

, and 

sum with respect to ρ  from one to infinity we find (by using (50.14)) 

Yt(t, k) + a (kY(t, k) + y(t - 1)) = 0 

or, since 0 < t < 1, 

Yt(t, k) + akY{t, k) = -ayQ. 

This equation is an ordinary differential equation and can be readily solved 

to yield 

Y(t,k) = e~
akt

F(k)- ψ  (50.15) 
k 

where F(k) is some unknown function. We can determine this function by 

a judicious use of the initial conditions. Evaluating (50.13) at t = 1 we find 

kY{\,k) = kY^y{l+p)k
p 

p=0 

oo 

= £ y ( l + p ) F
+ 1 

p=0 

oo 

(50.16) 

By differentiating (50.13) with respect to t, multiplying k and redefin-

ing ρ  we find tha t 

Evaluating (50.16) by use of (50.15) results in 

or 
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This leads to the complete determination of the generating function 

Via some algebraic manipulations, we can obtain 

Y(t,k) = y 0 ± fc»g
 (

-
a (P + f

7
g + 1 ) ) 9

, (50.17) 

p=0 q=0 

so tha t the solution can be read off (compare (50.17) with (50.13)): 

q=0 ' 

where the floor function indicates the least integer. 

N o t e s 

[1] In the literature, equations of the form y'h(t) = yh-\(t) are often called 

differential-difference equations, while equations of the form y'(t) = y(t — 

1) are called mixed differential-difference equations. Delay equations are 

also known as functional equations, differential-delay equations, differential 

equations with deviating argument, and as equations with retarded arguments. 

Neutral differential equations are differential equations in which the highest 

order derivative of the unknown function is evaluated both at the present 

state t and at one of more past or future states. 

[2] The sunflower equation is: x(t) + ax(t) + 6sin(i — r) = 0. 

[3] The Cherwell-Wright differential equation is: x(t) = (a — x(t — l))x{t). 

[4] Marsaglia et al. [8] numerically evaluate the following functions: 

(A) Renyi's function: [(x — l)y(x)]' = 2y(x — 1) 

(B) Dickman's function: xy'(x) = —y(x — 1) 

(C) Buchstab's function: [xy{x)}' = y(x — 1) 

[5] Several authors have tried to analyze delay equations by replacing y(t — r) 

with the first few terms of a Taylor series, say 

y(t - r) ~ y(t) - ry'(t) + \r
2

y"(t) - . . . + ( - l ) - i r - y
w

W . 

This is generally a bad technique, as the approximations that are obtained 

are often unrelated to the original equation. See Driver [6] (page 235) for 

more details. 

[6] The book by Pinney [10] contains a large compilation of delay equations 

that have appeared in the literature. References are cited, and the (then) 

current knowledge of each of the equations is given. 



50 . D e l a y E q u a t i o n s 215 

[7] The system of linear delay equations 

u(t) = Au(t) + Bu(t - d), fo 

u(t) = g(t), for -d<t< t0, 

for t > to 

where d > 0 is the delay and A and Β  are constant square matrices has a 

solution of the form u(t) = ce
8t

 if and only if s is a zero of the transcendental 

equation: det (is- A- Be~
ds

) = 0. 

[8] As an example of the general expansion theorems, the equation 

where {sr} are complex numbers satisfying asr + b + ce~
 r

 = 0 , and pr(t) 

is a polynomial in t of degree less than the multiplicity sr (see Bellman and 

Cooke [3], page 55). The sum in (50.18) is either finite or infinite, with 

suitable conditions to insure convergence. In actuality, finding all the solu-

tions to (50.15) is very difficult. This technique generalizes to higher order 

ordinary differential equations and partial differential equations, but the 

work in obtaining a solution becomes prohibitive unless numerical methods 

are used. 

[9] Delay equations are usually solved numerically. A survey of numerical 

techniques for solving delay equations may be found in Cryer []. In Nieves' 

paper [9] is the description of a computer algorithm that will numerically 

approximate the solution of functional equations with a minimal amount of 

user input. 

R e f e r e n c e s 

[1] A. N. Al-Butib, "One-Step Implicit Methods for Solving Delay Differential 

Equations," Int. J. Comp. Math., 16, 1984, pages 157-168. 

[2] V. L. Bakke and Z. Jackiewicz, "Stability Analysis of Linear Multistep 

Methods for Delay Differential Equations," Int. J. Math. & Math. Sei., 9, 

No. 3, 1986, pages 447-458. 

[3] R. E. Bellman and K. L. Cooke, Differential-Difference Equations, Aca-

demic Press, New York, 1963. 

[4] T. A. Burton, Stability and Periodic Solutions of Ordinary and Func

tional Differential Equations, Academic Press, New York, 1985. 

[5] C. W. Cryer, "Numerical Methods for Functional Differential Equations," 

in K. Schmitt (ed.), Delay and Functional Differential Equations and 

Their Applications, Academic Press, New York, 1972, pages 17-101. 

[6] R. D. Driver, Introduction to Ordinary Differential Equations, Harper 

& Row, Publishers, New York, 1978, Chapter 6 (pages 206-237). 

au(t) + bu(t) + cu(t -d) = 0, 

where a,b,c,d are all constant, and d is positive, is satisfied by 

(50.18) 

r 
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[7] L. E. El'sgol'ts and S. B. Norkin, Introduction to the Theory and Appli

cation of Differential Equations with Deviating Arguments, Academic 

Press, New York, 1973. 

[8] G. Marsaglia, A. Zaman, and J. C. W. Marsaglia, "Numerical Solution of 

Some Classicial Differential-Difference Equations," Math, of Comp., 53 , 

No. 187, July 1989, pages 191-201. 

[9] K. W. Nieves, "Automatic Integration of Functional Differential Equations: 

An Approach," ACM Trans. Math. Software, 1, No. 4, December 1975, 

pages 357-368. 

[10] E. Pinney, Ordinary Difference-Differential Equations, University of Cal-

ifornia Press, Berkeley, 1959. 

[11] T. L. Saaty, Modern Nonlinear Equations, Dover Publications, Inc., New 

York, 1981, Chapter 5 (pages 213-261). 

[12] L. Torelli, "Stability of Numerical Methods for Delay Differential Equa-

tions," J. Comput. Appl. Math., 25, 1989, pages 15-26. 

[13] R. Weiner and K. Strehmel, "A Type Insensitive Code for Delay Differen-

tial Equations Basing on Adaptive and Explicit Runge-Kutta Interpolation 

Methods," Computing, 40 , No. 3, 1988, pages 255-265. 

51. Dependent Variable Missing 

A p p l i c a b l e t o Ordinary differential equations of the form G(y^, y^
n

~
1

^, 

• . · , ΐ Λ ΐ Λ * ) = 0 

Y i e l d s 

An ordinary differential equation of lower order. 

Idea 

If the dependent variable does not appear explicitly in an ordinary 

differential equation, then the order of the ordinary differential equation 

can be reduced by one
. 

P r o c e d u r e 

Suppose we have the n- th order ordinary differential equation 

G(y^,y^-
1

\...,y",y',x) = 0. (51.1) 

Notice tha t the variable y(x) does not appear explicitly in (51.1). 

If we define p(x) = y'(x), then equation (51.1) becomes 

G(p^-
1

\p^-
2

\...,p',p,x)=0, (51.2) 
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R e f e r e n c e s 
[1] W. Ε . Boyce and R. C. DiPrima, Elementary Differential Equations and 

Boundary Value Problems, Fourth Edition, John Wiley & Sons, New York, 

1986, pages 111-112. 

[2] M. E. Goldstein and W. H. Braun, Advanced Methods for the Solution of 
Differential Equations, NASA SP-316, U.S. Government Printing Office, 

Washington, D.C., 1973, pages 74-76. 

[3] E. L. Ince, Ordinary Differential Equations, Dover Publications, Inc., New 

York, 1964, page 43. 

[4] E. D. Rainville and P. E. Bedient, Elementary Differential Equations, The 

MacMillan Company, New York, 1964, pages 266-268. 

N o t e s 
[1] This solution technique can be derived from Lie group methods (see page 

314). 

where Β  is another arbi t rary constant . 

where A is an arbi trary constant. Then p(x) can be integrated to obtain 

2/0*0 

Equat ion (51.4) can be solved by integrating factors (see page 305) to obtain 

(51.4) 

Using y
f
(x) = p(x), equation (51.3) can be writ ten as 

E x a m p l e 
Suppose we have the second order equation 

which is an ordinary differential equation of order (η  — 1) for the dependent 

variable p(x). After solving (51.2) for p(x), y(x) can be found by integrating 

p{x). 

(51.3) 
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52· Differentiation Method 

A p p l i c a b l e t o Nonlinear ordinary differential equations. 

Y i e l d s 

An explicit solution. 

Idea 

Sometimes differentiating an ordinary differential equation will result 

in an ordinary differential equation tha t is easier to solve. 

P r o c e d u r e 

Given an ordinary differential equation, differentiate it with respect to 

the independent variable. This will yield a new equation tha t may some

times factor (see page 245), or simplify in some other way. By considering 

each term in this new equation to be equal to zero, several possible solutions 

may be found. 

The general solution of each term must then be used in the original 

equation, possibly to constrain some of the parameters . 

E x a m p l e 

Suppose tha t we have the nonlinear ordinary differential equation 

2yy"-{y'Y = \{y'-xy"f. (52.1) 

If this equation is differentiated with respect to x, the simplified result is 

y'" (x
2

y" - xy' - 3i,) = 0, 

from which we recognize tha t 

y'" = 0 or x
2

y" - xy' - 3y = 0. (52.2) 

In the first case, a candidate for the general solution is 

y(x) = ax
2

 + bx + c. 

Using this form in the original equation, (52.1), we find after some sim

plification tha t 3ac = b
2

. Using this equation to determine c, a general 

solution to (52.1) is found to be 

b
2 

y(x) = ax
2

 + bx + — . (52.3) 
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Another possibility is tha t the second expression in (52.2) is equal to 

zero. This second equation is an Euler equation (see page 235), and so the 

general solution is found to be 

Using this form in the original equation, (52.1), we find after some sim

plification tha t aß = 0. Hence, two different solutions to (52.1) are given 

by 

(52.4) 

Between (52.3) and (52.4) are three different solutions to (52.1). 

N o t e s 

[1] The above example is from Bateman [1]. 

[2] This procedure is used to find the singular solutions to Clairaut's equation 

(see page 196). 

R e f e r e n c e s 

[1] H. Bateman, Partial Differential Equations of Mathematical Physics, Dover 

Publications, Inc., New York, 1944, pages 66-67. 

53. Differential Equations • · · · · • 
with Discontinuities 

A p p l i c a b l e t o Equations tha t contain discontinuous functions. 

Y i e l d s 

An exact solution. 

I d e a 

Equations can be solved locally and then patched together at the points 

of discontinuity. 
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P r o c e d u r e 

The following discussion is limited to linear ordinary differential equa

tions, but the general techniques apply to linear and nonlinear ordinary 

differential equations and partial differential equations. 

Suppose we have the equation 

a n( * ) y
( n)

 + an-iy
{n

-
1]

 + . · . + a i (x )y ' + a0(x)y = 6(x), (53.1) 

where the {a,i(x)} and b(x) may all be discontinuous. For example, α χ (χ ) 

may look like 

We presume tha t the {ai(x)} and b(x) are discontinuous at only a finite 

number of points, say {xi,X2, · · · >#m}> and tha t we wish to find the solu

tion at the point Xf with Xo < x\ < ... < xm < Xf. Assume further tha t 

the initial da ta {V(XQ), y'(xo), y"(xo),..., y^
n

~
l

\xo)} are all given. 

The general technique is to divide the interval from xo to Xf into m 

intervals and solve (53.1) separately on each interval. Since the equation 

is continuous on these intervals, we can use any technique known to us to 

find the solution. Define yj(x) to be the solution in the interval [XJ,XJ+I]. 

To determine yj(x) completely, we need to specify the value of {yj(xj), 

y'j(xj), Vj \Xj)}- These can be determined from yj-i(x). Since 

an equation of n- th order (which is what equation (53.1) is) must have 

continuous derivatives of all orders up to η  — 1, we simply match the values 

of yj(x) and its derivatives to the values of yj-i(x) and its derivatives, all 

at the point Xj. 

To illustrate this technique on equation (53.1), we would solve 

in the interval [XJ,XJ+I], for j = 0 , 1 , 2 , . . . , m. To obtain the initial values 

for each equation we take 

χ  if 0 < χ  < 3, 

s inx if 3 < χ  < 8. 

an{x)y^
n)

 + a n_ i j / j
n 1}

 + . . . + ai(x)y'j + a0(x)yj = b(x) 

I yo(xo) \ ( y{xo) \ 

ü(xo) y'(xo) 

Ky^Hxo)/ W^Hxo)/ 
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y'j(xj) 

/ yj-i(xj) \ 

Vj-i(
x

j) 
for j = 1,2, . . . , r a . 

Finally, the solution at χ  = Xf will be given by ym(xf). 

E x a m p l e 

Suppose we want to determine the value of y(t) at t = Τ  when 

y" + f(t)y = o, 

and f(t) is given by 

/(*) 
- 1 for 0 < t < r , 

for r < t < T, 

given tha t y(0) = 1, y'(0) = 0. (Here, τ  and Τ  are fixed constants.) To 

solve this problem, we break the interval from 0 to Τ  into two intervals; 

interval I will be from 0 to r while interval II will be from τ  to T. 

In interval I, f(t) can be replaced by — 1 , so we solve 

y'l 2 /1 = 0, 2/i(0) = l , yi(0) = 0. 

This equation has the solution 

yi(t) = cosh i . 

In interval II, f(t) can be replaced by 1, so we solve 

2/2 + 2 / 2 = 0, (53.2) 

in the interval from r to T. For the initial values of 2/2 M ? we use the final 

values of yi (£), tha t is, 

2/2 (r) = 2/1 (r) = coshr , 

2/2 (
r

) = y'i(
T

) = s i n h r . 
(53.3) 

The solution of (53.2) and (53.3) is 

2/2 {t) = (sin r cosh r + cos r sinh r ) sin t + (cos r cosh r — sin r sinh r ) cos t, 

and hence, the value of y(t) at t = Τ  is given by 

2/2 (Î
1
) = (sin τ  cosh r + cos r sinh r ) sin T -h (cos r cosh r — sin r sinh r ) cos Γ . 

and then 
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N o t e s 

[1] When the discontinuities involve the dependent variable, then the problem 

is generally a free boundary problem. See Elliot and Ockendon [2] or 

Fleishman [5] for a discussion. 

[2] If the discontinuity appearing in a linear differential equation is a single 

delta function, which appears as a forcing function, then the solution will 

be a Green's function (see page 268). 

[3] If the discontinuities include generalized functions (such as a delta function), 

then the solution may only exist in the weak sense. See Gear and 0sterby [6] 

for details. 

[4] There exist computer programs for numerically approximating differential 

equations with discontinuities. See Enright et al. [3] or Gear and 0sterby [6]. 

[5] Fleishman [5] analyzes the equation χ  = ^4(t)x + sgn(x) + t(t), where "sgn" 

represents the signum function. 

R e f e r e n c e s 
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1986, Section 6.3.1 (pages 304-309). 

[2] C. M. Elliot and J. R. Ockendon, Weak and Variational Methods for 

Moving Boundary Problems, Pitman Publishing Co., Marshfield, MA, 

1982. 

[3] W. H. Enright, K. R. Jackson, S. P. NOorsett, and P. G. Thomsen, "Effective 

Solution of Discontinuous IVPs Using a Runge-Kutta Formula Pair with 

Interpolants," Appl. Math, and Comp., 27, 1988, pages 313-335. 

[4] A. F. Filippov, Differential Equations with Discontinuous Righthand 

Sides, Kluwer Academic Publishers, Dordrecht, the Netherlands, 1988. 

[5] B. A. Fleishman, "Convex Superposition in Piecewise-Linear Systems," J. Math. 

Anal. Appl., 6, No. 2, April 1963, pages 182-189. 

[6] C. W. Gear and O. Osterby, "Solving Ordinary Differential Equations with 

Discontinuities," ACM Trans. Math. Software, 10, No. 1, March 1984, 

pages 23-44. 

[7] I. N. Hajj and S. Skelboe, "Steady-State Analysis of Piecewise-Linear Dy

namic Systems," IEEE Trans. Circ. & Syst., C A S - 2 8 , No. 3, March 

1981, pages 234-241. 

[8] H. H. Pan and R. M. Hohenstein, "A Method of Solution of an Ordinary Dif

ferential Equation Containing Symbolic Functions," Quart. Appl. Math., 

April 1981, pages 131-136. 

[9] T. S. Parker and L. O. Chua, "Efficient Solution of the Variational Equation 

for Piecewise-Linear Differential Equations," Circuit Theory and Appl., 

14, No. 4, 1986, pages 305-314. 

[10] D. Stewart, "A High Accuracy Method for Solving ODEs with Discontinuous 

Right-hand Side," Numer. Math., 58, 1990, pages 299-328. 

[11] D. Westreich, "Numerical Solution of the Eigenvalue Problem for Discon

tinuous Linear Ordinary Differential Equations," J. Inst. Maths. Applies, 

25, 1980, pages 147-160. 
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A p p l i c a b l e t o Linear differential equations with linear boundary con-

ditions. 

Y i e l d s 

An exact solution in terms of an infinite series. 

Idea 

Any "well-behaved" function can be expanded in a complete set of 

eigenfunctions. In this method, we expand the dependent variable in a dif-

ferential equation as a sum of the eigenfunctions with unknown coefficients. 

From the given equation and boundary conditions, equations can then be 

determined for the unknown coefficients. 

P r o c e d u r e 

We will describe the procedure for ordinary differential equations, 

but the same procedure can be used for part ial differential equations (see 

Example 2). Assume tha t we want to solve the inhomogeneous linear 

ordinary differential equation 

oV 
L

[y]
 : =

^ P r (
x

) - ^ f = 

r=l 

Bi[y]'=it (Cir^+ dir

j£(*)) = ° ' * = 1 , 2 , . . . , n , 

(54.1.a-6) 

for y{x), where x G [α , b] and {cfr, dir,pr(x), h(x)} are all known. 

Let us suppose tha t we know a complete set of eigenfunctions {uk{x)} 

tha t satisfy the boundary conditions in (54.1) and are orthogonal with 

respect to some weighting function w(x). These could be obtained from a 

table (e.g., see page 292), or we might look for a set tha t is related to the 

differential equation in (54.1). A common approach is to choose a set of 

eigenfunctions {uk} tha t satisfy 

H[uk] = \ k u k , 
(54.2.a-6) 

Ri[uk] = 0, ι  = 1,2, 

where Η [·] is a linear operator related to L[-] in some way, the Ri[-] are 

linear boundary conditions related to Bi [·] in some way, and λ & is a constant 

(Afc is an eigenvalue of the ( i i , {Ri}) system). The orthogonality condition 

54. Eigenfunction Expansions 
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requires tha t 

(uk,um) := J uk(x)um(x)w(x) dx = Nk6km = I 
0 for m φ  fc, 

Nk for m = k. 

(54.3) 

Frequently the operator Η [·] is chosen to be same as the operator L[-], 

and the {Ri} are chosen to be the same as the {Bi}. This is not required, 

nor must the degree of the differential equation in (54.2.a) be η  (which is 

the degree of the differential equation in (54.1.a)). 

Since the presumed eigenfunctions are complete, we can write any 

"sufficiently smooth" function as a linear combination of these functions. 

In particular, we choose to represent y(x) and h(x) as 

(54.4.a-6) 

k=l k=l 

Once the {yk} are known, the problem is solved. The {hk} can be deter-

mined, given h(x), by multiplying (54.4.b) by w(x)um(x) and integrating 

with respect to χ  from a to b. This calculation can be writ ten as 

(h(x),um(x)) = \^2hkuk(x),um(x)J , 

oo 

= Y^hk (uk(x),um{x)), 

k=l 
oo 

= ^2
h

k {Nk6km), 

k=l 

where we have utilized (54.3). If we take the {Ri} to be identical to the 

{Bi} then, from (54.2.b), the boundary conditions for y(x) (in (54.1.b)) are 

automatically satisfied. Hence, only equation (54.1.a) needs to be satisfied. 

Using (54.4.a) in (54.1.a) results in 

L[y] = L ^2ykuk(x) 

lk=l 

oo 

(54.5) 
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The {yk} can now be determined from (54.5) by multiplying (54.5) by 

w(x)um(x) and integrating with respect to χ  from a to b. This produces 

oo 

Σ  Vk (L[uk],um) = (h(x),um) = Nmhm, for m = 1 , 2 , . . . , (54.6) 

k=l 

which is an infinite system of linear algebraic equations. In principle, all of 

the {yk} in (54.6) are coupled together. 

In practice, if a good choice was made for the eigenfunctions, then 

(54.6) will simplify and ym can be determined directly from (54.6). For 

instance, if H[·] is chosen to be equal to L[-] then L[un] = Xnun (from 

(54.2)) and (54.6) becomes Σ Τ =ι ykXk(uk,um) = Nmhm or, by orthogo-

nality, y m = hm/Xm. 

E x a m p l e 1 

Suppose we have the fourth order differential equation and boundary 

conditions 

L[y) :=y""-ray" + ßy = h(x), 

2/(0) = 0, 2/(1) = 0, (54.7) 

y"(0) = 0, y " ( l ) = 0, 

to solve for y(x) on the interval x G [0,1]. 

For this case we choose to use the eigenfunctions corresponding to the 
Sturm-Liouville operator (see page 82) 

H[u] = u", 

u(0) = 0, (54.8) 

= 0. 

For the operator in (54.8) it is easy to determine tha t the eigenfunctions 
are Uk(x) = sinfc7rx, the eigenvalues are Xk = kn, and the weighting 
function is w(x) = 1. Since this is a self-adjoint problem (see page 74), 
we know tha t these eigenfunctions are complete. Now tha t we have a set of 
eigenfunctions, we observe tha t they satisfy the four boundary conditions 
given in (54.7). 

We write y(x) in terms of these eigenfunctions as 

oo 

y(x) = ^2 Vk
 s m

 knx. (54.9) 
k=l 



226 I L A E x a c t M e t h o d s for O D E s 

Using (54.9) in (54.7) and then multiplying by um(x) and integrating from 

χ  = 0 to χ  = 1 results in 

/ L[y(x)]um(x)dx = 
Jo Jo 

um(x) dx yk sin knx 

lk=l 
oo - 1 

= y2yk

 L[sin(knx)]um(x) dx 

k=i
 Jo 

= / h(x)um(x)dx. 
Jo 

Equat ing the last two expressions, using um(x) = sinra7nr and simplifying 

gives 

oo - ι  

y^2/fc / (fc
4

7r
4

 — ak
2

n
2

 + ß) s i n k n x s m m w x d x = 
k=i

 Jo 

/ h(x) sinmirx dx, 
Jo 

or (since /J" sin knx sin π ι π χ  dx = \δ km) 

1 r1 

-yk

 ( fcV 4 - a f c V + β ) = h(x) sin £ π χ  dx. (54.10) 

Hence, solving (54.10) for yk and using this value in (54.9) results in the 

explicit solution 

k=l 

! f h(x) 
Jo 

sin k-κ χ  dx 

£
4

π
4

 - afc V + β  
sin knx. 

J 

If a and /? are such tha t &
4

π
4

 — ak
2

n
2

 + β  = 0, for some value of k, 

then there will be no solution unless h(x) sin knx dx = 0. Even then, 

the solution will not be unique; this is because the differential equation 

L[u] = 0, with the boundary conditions in (54.7), will have the solution 

u(x) = Cs'mknx, where C is arbitrary. See the section on alternative 

theorems (page 14). 
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/ φ ι  s i n π ι π χ d x = / φ χ χ ύ τ ι π ι π χ ά χ . (54.15) 
Jo Jo 

After utilizing (54.12) for φ  in (54.15), the resulting equation should be 

integrated by par ts , using the information in (54.13). This results in 

a'n(t) = - n V a n ( t ) , (54.16) 

where a prime denotes a derivative with respect to t. The solution of (54.16) 

<*n(t) = an{0)e~ 

(54.17) 

is 

0- η
2

7 Γ
2

< 

= ^2 J f(z)smnnzdz^j e " ^
2

* , 

E x a m p l e 2 

Suppose we want to solve the part ial differential equation 

Φ ί  = Φ χ χ , 

0 ( * , Ο ) = / ( * ) , 

(54.11.a-d) 

0(O,t) = O, 

0 (1 , ί ) = Ο , 

for 0 = φ (χ ,ί ). We can use the eigenfunctions in (54.8) to solve this 

problem. In this case we expand φ (χ , t) as 

oo 

φ (χ ,ί ) = a>n(t) s i n η π χ . (54.12) 

n = l 

By using this representation for φ (χ , t), the boundary conditions in (54.11.b) 

and (54.11.c) are automatically satisfied. By multiplying (54.12) by sin(rmr#) 

and integrating from χ  = 0 to χ  = 1, we find tha t 

an(t) = 2Î φ ^,ή ή τ ι η π ζ ά ζ . (54.13) 
Jo 

Using the boundary condition from (54.11.b) in (54.13) produces the initial 

values for the {an(t)} 

an(0) = 2 / φ (ζ , 0) sin η π  ζ  dz = 2 / f(z) sinη π ζ dz. (54.14) 
Jo Jo 

Now, the correct procedure is to multiply the original equation, (54.11.a), 

by one of the eigenfunctions, sinra7r:r, and integrate from χ  = 0 to χ  = 1 

to obtain 



228 I I . A E x a c t M e t h o d s for O D E s 

where we have used (54.14). Combining (54.12) and (54.17) we determine 

the final solution to (54.11) to be 

φ (χ ,ί ) = Σ , J î{z)smnnzdz^ e ^ ^
1
 s inranr. 

Be aware tha t it would have been incorrect, when trying to obtain an 
ordinary differential equation for an(t), to subst i tute (54.12) into (54.11.a) 
and then multiply by one of the eigenfunctions and perform the integra
tion. While this would have resulted in the same differential equation and 
boundary conditions for an in this example, it might not work in other cases 
(see the next example). The proper technique is to multiply the original 
equation by one of the eigenfunctions, and then integrate by par ts . 

E x a m p l e 3 
Consider solving Laplace's equation in two dimensions in the unit 

square 
U>XX ~\~ Uyy 0, 

u(x, 1) = u(0, y) = u(l, y) = 0, (54.18.a-c) 

u(x,0) = f{x). 

Since the functions {sin nny} are complete on the interval [0,1], we choose 
to represent the solution to (54.18) in the form 

oo 

u(x,y) = c n( x ) s i n nny, (54.19) 
n=0 

from which we can deduce tha t 

c n( ^ ) = 2 / u(x,y) sin nny dy. (54.20) 
Jo 

Prom the boundary conditions on u(x,y) at χ  = 0 and at χ  = 1 we also 

find tha t c n(0 ) = c n( l ) = 0. 

We will show tha t an incorrect answer is obtained if the {cn} are 

determined in a naive way. If we subst i tuted the assumed form of the 

solution, e.g. (54.19), into the equation in (54.18.a) then we would find 

oo 

uxx + uyy = ^ (c^ - n
2

n
2

cn) smnny = 0. 

71 = 0 

Hence, by orthogonality, we would find tha t c'n — n
2

n
2

cn = 0. Solving 

this differential equation with the boundary conditions on cn (e.g. c n(0 ) = 
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c n( l ) = 0) we would be led to cn(x) = 0 and so u(x, y) = 0. This is clearly 

wrong. 

If, instead, the equation in (54.18.a) is multiplied by 2 sin nny and then 

integrated with respect to y from 0 to 1, then we obtain 

0 = / 2 sin nny(uxx + uyy) dy 
Jo 

d
2

 f
1 

= —7y I 2u(x,y) sin nny dy + 2uy(x,y)sinnny 
dx

z

 Jo 

— 2nnu(x, y) cos nny 

= d'n + 2nnf(x) - η
2

π
2

ο η  

1 Λ ΐ  

— η
2

π
2

 / 2u(x, y) sin nnydy 
ο  Jo 

where we have integrated by par ts twice, used (54.20) to subst i tute for the 

integral, and used the boundary conditions in (54.18.b-c). Solving this last 

equation for cn(x) we find 

cn(x) = 2η π  \ G(x;t)f{t)dt 

sinhrar:r< sinhn7r(l — x>) 

/ 
where G(x; t) is the Green's function G(x; t) = , 

η π  sinh η π  
where x> (x<) indicates the larger (smaller) of χ  and t. 

This second approach gives the correct solution to this problem. The 

reason tha t the first approach would not work is tha t the series chosen to 

represent the solution does not have uniform convergence. 

N o t e s 

[1] Note that the solution in Example 2 would have been obtained in exactly 

the same form if separation of variables had been used (see page 419). 

[2] If the chosen eigenfunctions do not come from a self-adjoint operator, then 

it will be necessary to know the eigenfunctions of the adjoint operator. This 

is because the orthogonality condition will utilize the eigenfunctions of the 

adjoint operator. 

[3] Since the eigenfunctions we used in the examples were just sine functions, 

the expansions obtained here are identical to the results that would have 

been obtained from a Fourier sine series (see page 293). 

[4] To determine that a set of functions is complete, it is not necessary that 

they be derived from a self-adjoint operator. See Minzoni [6] for an example 

of a set of functions proved complete by using theorems from analysis. 



230 I I . A E x a c t M e t h o d s for O D E s 

R e f e r e n c e s 

[1] G. Birkhoffand G.-C. Rota, Ordinary Differential Equations, John Wiley 

& Sons, New York, 1978, Chapter 11. 

[2] E. Butkov, Mathematical Physics, Addison-Wesley Publishing Co., Read-

ing, MA, 1968, pages 304-318. 

[3] Z. Divis, "A Note on the Rate of Convergence of Sturm-Liouville Expan-

sions," J. Approx. Theory, 50, 1987, pages 200-207. 

[4] S.J. Farlow, Partial Differential Equations for Scientists and Engineers, 

John Wiley & Sons, New York, 1982, Lesson 9 (pages 64-71). 

[5] M. Kobayashi, "Eigenfunction Expansion: A Discontinuous Version," SIAM 

J. Appl. Math., 50, No. 3, June 1990, pages 910-917. 

[6] A. A. Minzoni, "On the Completeness of the Functions e ~
n p ( x)

 cos nx, e~
n p ( x) 

sin r i x for η  > 0 and p(x) a 2π  Periodic Function," Stud. Appl. Math., 75, 

1986, pages 265-269. 

[7] I. Stakgold, Green's Functions and Boundary Value Problems, John 

Wiley & Sons, New York, 1979. 

[8] E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-

Order Differential Equations, Clarendon Press, Oxford, 1946. 

55. Equidimensional-In-x 

Equations 

A p p l i c a b l e t o Ordinary differential equations of a certain form. 

Y i e l d s 

An autonomous ordinary differential equation of the same order (which 

can then be reduced to an ordinary differential equation of lower order). 

Idea 

An equidimensional-in-x equation is one in which the scaling of the χ  

variable does not change the equation. By a change of independent variable, 

we can change an equation of this type into an autonomous equation. 
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55. Equidimensional-In-x 

Equations 

A p p l i c a b l e t o Ordinary differential equations of a certain form. 

Y i e l d s 

An autonomous ordinary differential equation of the same order (which 

can then be reduced to an ordinary differential equation of lower order). 

Idea 

An equidimensional-in-x equation is one in which the scaling of the χ  

variable does not change the equation. By a change of independent variable, 

we can change an equation of this type into an autonomous equation. 



55 . E q u i d i m e n s i o n a l - I n - x E q u a t i o n s 231 

Ή =*ν Έ · (55-1) 

( ^ ^ = 2 » Ä . ( 5 5 . 2 ) 

P r o c e d u r e 
An equidimensional-in-x equation is one tha t is left invariant under 

the transformation χ  —• ax, where α  is a constant . Tha t is, if the original 

equation is an equation for y(x) and the χ  variable is replaced by the 

variable ax', then the new equation (in terms of y and x') will be identical 

to the original equation (which is in terms of y and x). An equation of 

this type can be converted to an autonomous equation of the same order 

by changing the independent variable from χ  to t by the transformation 

χ  = e
l

. 

E x a m p l e 

Suppose we have the nonlinear second order ordinary differential equa

tion 

d
2

y = 2ydy_ 

dx
2

 dx 
First we will show tha t this equation is equidimensional-in-x. Substi tut ing 

ax' for χ  in (55.1) produces 

'd{ax>f
 y

d(ax'Y 

or, multiplying (55.2) by the constant a 

,_fy_ _ 2 dy_ 

d(x>f~
y

dx" 

which is identical to equation (55.1). 

Since we now know tha t (55.1) is equidimensional-in-x, we change 

variables from y(x) to y(t) by χ  = e
l

. Using Table 55, we find tha t 

é e -
2

\ y t t- yt) = 2y{e-
t
yt), 

or 

ytt -yt = 2yyt- (55.3) 

The equation in (55.3) is autonomous (there is no explicit t dependence). 
Hence, it can be reduced to an ordinary differential equation of order one 
by the transformation u(y) = yt(t) (see page 190 for more information). 

Carrying out the details (equation (55.3) was the example in the 
section on autonomous equations), it is easy to derive tha t either y{t) is a 
constant for all t, or y(t) satisfies 

y(t) = £ t a n ( F + ££) - \ , 

where Ε  and F are arbi trary constants . Changing the independent variable 

from t to χ  we have 

y(x) = E t a n ( F + Ε  log χ ) - \. 
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yx = e~\yt), 

yxx = e~
2t

(ytt - yt), 

yxxx = e~
3t

(yttt - 3ytt + 2yt), 

yxxxx = e~
4t

(ytttt - Gyttt + Uytt -§yt), 

y x x x xx = e~
5t

(yttttt - lOytttt + 35y«T - 50y« + 24y t), 

To simplify notation, define 2 / X( N) to be the n-th derivative of y with respect to x. 

Similarly for uŷ ny The last equation is, therefore, 

yx(5) = e~
5t

(yt{5) - 10yT(4) + 35y t tt - 50ytt + 24y t), 

2/X(6) = e "
6 t

( y t( 6 ) - 15yt(5) + 85yT(4) ~ 225y«T + 274yTT - 120yt), 

y«(7) = e-
7t

(yt(7) - 21y t ( 6) + 175y t ( 5) - 735y t ( 4) + 1624y«T - 1764y« + 720y t). 

Table 55. How to transform derivatives under the change of dependent variable: 

χ  = é. 

N o t e s 
[1] This method is derivable from Lie group methods (see page 314). 
[2] It is easy to write a MACSYMA program that will perform the neces

sary change of variables. In the terminal session shown, the second order 
equidimensional-in-x equation 

tè)*-'â=« 

is converted into the second order autonomous equation 

d
2
u (du\

2
 du 

u—T — I — 1 - u— = 0. 
dt

2
 \dt) dt 

This autonomous equation could then be reduced to a first order equation 
by the MACSYMA program given on page 193. 

(cl) DEPENDS(Y,X)$ 

(c2) EQUIDIMENSIONAL_IN_X(EQN,Y,X):= BLOCK([NEW,HOLD,J], 

DEPENDS ([U] ,[T]), 

GRADEF(Τ , X, V.E**(-T) ), 
NEW:SUBST( U, Y, EQN ), 
NEW:EV(NEW, DIFF), 
NEW:SUBST( 7,E**T, X, NEW), 
NEW:FACTOR(NEW), 
NEW)$ 

(c3) EQN: DIFF(Y.X)**2-Y*DIFF(Y,X,2); 

2 
(d3) (y ) - y y 

X XX 
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(c4) EQUIDIMENSIONAL_IN.X(EQN,Y,X); 

- 2 t 2 

(u ) - u u ) 

t t 

(d4) - 7.e (u u 

t t 

R e f e r e n c e s 

[1] C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scien-

tists and Engineers, McGraw-Hill, New York, 1978, page 25. 

A p p l i c a b l e t o Ordinary differential equations of a certain form. 

An equidimensional-in-?/ equation is one in which the scaling of the y 

variable does not change the equation. This information can be used to 

lower the order of the equation by a change of the dependent variable. 

P r o c e d u r e 

An equidimensional-in-?/ equation is one tha t is left invariant under 

the transformation y —• ay, where α  is a constant. Tha t is, if the original 

equation is an equation for y(x) and the y variable is replaced by the 

variable ay', then the new equation (in terms of y' and x) will be identical 

to the original equation (which is in terms of y and x). An equation of 

this type can be converted to an equation of lower order by changing the 

dependent variable from y(x) to e
u(<x

\ 

E x a m p l e 

Suppose we have the equation 

56. Equidimensional-In-y 

Equations 

Y i e l d s 

An ordinary differential equation of lower order. 

I d e a 

fy_(dy\ 

dx
2

 \dx) 

21 
+ x

2

y
2

 = 0, (56.1) 

to solve. We can tell by inspection tha t this equation is equidimensional-

in-y since all of the y terms in (56.1) all appear to the same power. Tha t 
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(c4) EQUIDIMENSIONAL_IN.X(EQN,Y,X); 

- 2 t 2 

(u ) - u u ) 

t t 

(d4) - 7.e (u u 

t t 

R e f e r e n c e s 

[1] C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scien-

tists and Engineers, McGraw-Hill, New York, 1978, page 25. 

A p p l i c a b l e t o Ordinary differential equations of a certain form. 

An equidimensional-in-?/ equation is one in which the scaling of the y 

variable does not change the equation. This information can be used to 

lower the order of the equation by a change of the dependent variable. 

P r o c e d u r e 

An equidimensional-in-?/ equation is one tha t is left invariant under 

the transformation y —• ay, where α  is a constant. Tha t is, if the original 

equation is an equation for y(x) and the y variable is replaced by the 

variable ay', then the new equation (in terms of y' and x) will be identical 

to the original equation (which is in terms of y and x). An equation of 

this type can be converted to an equation of lower order by changing the 

dependent variable from y(x) to e
u(<x

\ 

E x a m p l e 

Suppose we have the equation 

56. Equidimensional-In-y 

Equations 

Y i e l d s 

An ordinary differential equation of lower order. 

I d e a 

fy_(dy\ 

dx
2

 \dx) 

21 
+ x

2

y
2

 = 0, (56.1) 

to solve. We can tell by inspection tha t this equation is equidimensional-

in-y since all of the y terms in (56.1) all appear to the same power. Tha t 
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is, the y terms in (56.1) are all quadrat ic , the terms being of the form 

{y

2

^ yl,ylx,--,yyx, ν ν χ χ ,ν χ ν χ χ , · · ·}· 

To formally show tha t (56.1) is equidimensional-in-?/, subst i tute ay' 

for y in (56.1) to find 

(1-x) {ay/)d
2

(ay') fd(ay') 
f\ \

 2 

dx
2

 V dx 

Or, since α  is a non-zero constant, 

+ x\ay')
2

 = 0. 

(1-x) 
dx

2

 \dx ) 
+ x V

2

 = o, (56.2) 

which has the same form as (56.1). Now, subst i tut ing e
u

^ for y(x) in 

(56.1) produces 

( 1 - x ) 
ο  (d

2

u f d u \ \ ( du\ 
V

 [d?
+

{d-x) )-\
V

d-x) 
+ x

2

y
2

 = 0, (56.3) 

where Table 56 has been used to determine how the derivatives transform 

under this change of variable. For y φ  0, equation (56.3) becomes 

]

dx
2 (l-x)^-l+x

2

=0. (56.4) 

Note tha t equation (56.4) does not have any explicit y dependence. If it 

did have any such terms, then the original equation could not have been 

equidimensional-in-î/. The solution to equation (56.3) is (see page 185) 

/

x
 Γ  f

w

 ζ  

/ — Γ  ^
z dw, 

3 2 

= Ί Γ  + + (
x

 "
 X

)
 l o

s (
x

 - 1) + A * + B , 

Ο  Δ  

where A and Β  are arbi trary constants. Hence, the solution of the original 

equation is 

y(x) = e
u M

 = (x- I )**"
1

* e x p ^ y + y + Ax + B^j . 
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57. Euler Equations 

A p p l i c a b l e t o Linear ordinary differential equations of the form 

a0x
n

y
M

 + α ι χ
7 1

"
1

! / ^ -
1

) + . . . + an-Xxy' + any = 0. 

Y i e l d s 

An exact solution. 

Idea 

An equation of the above type can be turned into a linear constant co-

efficient ordinary differential equation by a change of independent variable. 

This new equation can be solved exactly. 

y = e
u

, 

y x = yux, 

y xx = y(uxx + u
2

x], 

yxxx = y(uxxx + 3uxuxx + ul], 

yxxxx — y{uxxxx + Auxuxxx + 3 u xx + 6 u xu xx + ux . 

To simplify notation, define î / x( n) to be the n-th derivative of y with respect to x. 
Similarly for u x( n) . 

2 /x(4) = 2 / ( ^ x ( 4 ) + 4 u xu x xx + 3 u xx -h 6 i t xu xx -h ut), 

yx(5) = 2 / ( ^ x ( 5 ) + 5i i xu x( 4) + 1 0 i t x xw x xx + 1 0 u xt t x xx + 1 5 u xu xx + lOuluxx + t i x) , 

2/x(6) = y(ux(6) + 6 u xi t x( 5 ) + 15 i t x xi t x(4 ) 4- 15 t i xu x (4) + 1 0 u x xx + 2 0 i i xu x xx 

+ 15u xx + 60ux u x xu x xx + 4 5 u xi t xx + 1 5 u xu xx + ux). 

Table 56. How to transform derivatives under the change of independent 
variable: y(x) = e

u ( x )
. 

N o t e s 
[1] This method is derivable from Lie group methods (see page 314). 

[2] Equidimensional-in-y equations are also called equations homogeneous in y. 

R e f e r e n c e s 
[1] C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Seien-

tists and Engineers, McGraw-Hill, New York, 1978, page 27. 
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1
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This new equation can be solved exactly. 

y = e
u
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yx(5) = 2 / ( ^ x ( 5 ) + 5i i xu x( 4) + 1 0 i t x xw x xx + 1 0 u xt t x xx + 1 5 u xu xx + lOuluxx + t i x) , 

2/x(6) = y(ux(6) + 6 u xi t x( 5 ) + 15 i t x xi t x(4 ) 4- 15 t i xu x (4) + 1 0 u x xx + 2 0 i i xu x xx 

+ 15u xx + 60ux u x xu x xx + 4 5 u xi t xx + 1 5 u xu xx + ux). 

Table 56. How to transform derivatives under the change of independent 
variable: y(x) = e

u ( x )
. 

N o t e s 
[1] This method is derivable from Lie group methods (see page 314). 

[2] Equidimensional-in-y equations are also called equations homogeneous in y. 

R e f e r e n c e s 
[1] C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Seien-

tists and Engineers, McGraw-Hill, New York, 1978, page 27. 
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P r o c e d u r e 

An Euler equation has the form 

a0x
n

y
{n)

 + α λ χ
η

-
ι

ν ^-^ + . . . + an-Xxy' + any = 0. (57.1) 

If the independent variable is changed from χ  to t (via the transformation 

χ  = e
l

) then the resulting equation becomes a linear constant coefficient 

ordinary differential equation. This type of equation can be solved exactly. 

Use Table 57 to determine how the derivatives of y with respect to χ  

become derivatives of y with respect to t. 

Alternately, a solution of the form y = x
k

 can be tried directly in 

(57.1). 

E x a m p l e 1 

Given the Euler equation 

x
2

yxx - 2xyx + 2y = 0, 

we change variables by χ  = e
l

 to obtain 

y
tt -

 3y
t

 + 2y = 0. (57.2) 

The s tandard technique for solving a linear constant coefficient ordinary 

differential equation is to look for exponential solutions (see page 204). 

Using y = e
xt

 in (57.2) we find the characteristic equation to be λ
2

— 3 λ + 2 = 

0. The roots of this equation are λ  = 1 and λ  = 2. Therefore, the solution 

to (57.2) is 

y(t) = C1e
t

 + C2e
2t

, 

where C\ and C2 are arbi trary constants. Writing this solution in the 

original variables, we determine the final solution 

y(x) = C\x + C2x
2

. 

E x a m p l e 2 

Given the Euler equation 

x
3

y"' - x
2

y" - 2xy' - 4y = 0 (57.3) 

we use y = x
k

 to find the characteristic equation: 

λ ( λ  - 1)(A - 2)x
k

 - λ ( λ  - l)x
k

 - 2Xx
k

 - Ax
k

 = 0 

or 

( λ
2

 + 1) (A - 4) = 0
. 

This equation has the roots λ  = 4 and λ  = ±i. Hence, the general solution 

to (57.3) is 

y = C\x
A

 + C2 cos(logx) + C3 sin(logx) 
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Vx = e~\yt), 

Vxx = e~
2t

(ytt - yt), 

yxxx = e~
3t

(yttt - 3y tt + 2y t), 

yXXxx = e~
4t

(ytttt - fyttt + Hytt - 6y*), 

yxxxxx = e~
5t

(yttttt - lOytttt + 35y«t - 50y« + 24y t). 

To simplify notation, define yx(n) to be the n-th derivative of y with respect to x. 

Similarly for y t ( n ). 

y x( 5 ) = e "
5 t

( y t ( 5) - 10y t ( 4) + 35y t« - 50y tt + 24y t), 

yx(6) = e ~
6 t

( y t( 6 ) - 15yt(5) + 85y f ( 4) - 2 2 5 y m + 274y tt - 120y t), 

y x( 7 ) = e "
7 t

( y t ( 7 ) - 21y< ( 6) + 175y t ( 5) - 735y t ( 4) + 1624yttt - 1764y tt + 720y t), 

y«(8) = e~
8t

(ym - 28y t ( 7) + 322y t ( 6) - 1960y t ( 5) + 6769y t ( 4) - 13132yt« 

+ 13068y« - 5040y t). 

Table 57. How to transform derivatives under the change of dependent variable 

χ  = é. 

N o t e s 
[1] This method is also applicable to the equation 

a0(Ax + B)
n
y

(n)
 + ai(Ax + B)

n
-

l
y

{n
~

l)
 + . . . + a n_ i ( A r + B)y' + any = 0 

which is only a trivial modification of an Euler equation. 
dx du 

[21 Equations of the form —. = ±—, , where P(x) is a polynomial of 
y/P(x) y/PÏy)' 

degree three or four have also been called Euler equations, see Valiron [5]. 
[3] Euler matrix differential equations (in which the {ai} in (57.1) are all ma

trices) are discussed in Jodar [3]. 

R e f e r e n c e s 
[1] W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and 

Boundary Value Problems, Fourth Edition, John Wiley & Sons, New York, 
1986, Section 4.4. 

[2] N. Finizio and G. Ladas, Ordinary Differential Equations with Modern 
Applications, Wadsworth Publishing Company, Belmont, Calif, 1982, pages 
103-105. 

[3] L. Jodar, "Boundary Value Problems for Second Order Operator Differential 
Equations," Linear Algebra and its Appls., 91 , 1987, pages 1-12. 

[4] G. F. Simmons, Differential Equations with Applications and Historical 
Notes, McGraw-Hill Book Company, New York, 1972, page 86. 

[5] G. Valiron, The Geometric Theory of Ordinary Differential Equations 
and Algebraic Functions, Math Sei Press, Brookline, MA, 1950, pages 201-
202. 
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58. Exact First Order Equations 

A p p l i c a b l e t o First order ordinary differential equations. 

Y i e l d s 

An exact solution (generally implicit). 

Idea 

Some first order ordinary differential equations can be integrated di

rectly. 

P r o c e d u r e 

If the given ordinary differential equation has the form 

dy N(x, y) 

dx M (x, y) ' 

and N(x,y) and M(x,y) are such tha t 

(58.1) 

then (58.1) is said to be an exact ordinary differential equation. Such an 

equation can be solved exactly, though the answer may be in terms of an 

integral. The (implicit) solution will be of the form 

(58.2) 

(58.3) 

where C is an arbi trary constant. Motivating this is straightforward. 

Differentiating (58.3) with respect to χ  and rearranging terms gives 

(58.4) 

Comparing (58.4) to (58.1) we have 

(58.5.a-6) 

and hence (58.2) is satisfied (since <pxy = φ ν χ). Conversely, if (58.2) is 

satisfied, then there is a φ  such tha t (58.5) is satisfied. To solve (58.5) for 

φ , integrate (58.5.a) with respect to χ  and integrate (58.5.b) with respect 

to y for 

(58.6.o-6) 

where f(y) and g(x) are unknown functions. Comparing (58.6.a) to (58.6.b) 

will determine f(y) and g(x). Knowing either of these, the full solution is 

then given by (58.6.a) or (58.6.b). 
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E x a m p l e 

Suppose we have the equation 

*V = 3 *
2

 - y
2

 - 7 

dx e
y

 + 2xy + l'

In (58.7) we identify 

N(x,y) = 3 x
2

- y
2

- 7 , 

M(x,y) = e
y

 + 2xy + 1. 

Following our procedure, we find Mx = — Ny = 2y and so we know tha t we 

can solve (58.7) exactly. Integrating TV and M we find 

φ (χ , y) = - j N{x, y) dx + f(y) = -(x
3

 + y
2

x - Ix) + f(y), 
J

 (58.8.a-fe) 

Φ {Χ , y)= / M(x, y) dy -f g(x) = (e
y

 + y
2

x + y) + g(x). 

Comparing (58.8.a) to (58.8.b) we deduce tha t 

-x
3

 - y
2

x + 7x + f(y) = e
y

 + y
2

x + y -h g{x), 

or 

f(y) - (e
y

 + y) = g(x) - (7χ  + χ
3

) . (58.9) 

From (58.9) we conclude tha t 

f(y) = ev + y + A, g(x) = 7x - x
3

 + A, (58.10.a-fc) 

where A is an arbi t rary constant. Using either (58.10.a) in (58.8.a) or 

(58.10.b) in (58.8.b) we conclude 

φ (χ , y) = -χ
3

 - y
2

 + 7x + e
y

 + y + Α . 

The solution is then given by φ (χ , y) = C , where C is an arbi trary constant . 

Therefore 

-x
3

 - y
2

 + 7x + e
y

 + y = Β , (58.11) 

is the final solution, where Β  := A — C is a final arbi t rary constant . Note 

tha t the solution in (58.11) is implicit. 
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R e f e r e n c e s 

[1] W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and 

Boundary Value Problems, Fourth Edition, John Wiley & Sons, New York, 

1986, pages 79-84. 

[2] E. D. Rainville and P. E. Bedient, Elementary Differential Equations, The 

MacMillan Company, New York, 1964, pages 29-33. 

[3] G. F. Simmons, Differential Equations with Applications and Historical Notes, 

McGraw-Hill Book Company, New York, 1972, pages 38-41. 

59. Exact Second Order 

Equations 

A p p l i c a b l e t o Some nonlinear second order ordinary differential equa

tions of the form f(x, y, y')y" + g(x, y, y') = 0. 

Y i e l d s 

A first integral (which will be a first order ordinary differential equa

tion). 

Idea 

Some second order ordinary differential equations can be integrated 

once. 

P r o c e d u r e 

The second order differential equation 

F(x,y,y
,

,y
,,

) = 0 (59.1) 

is said to be exact if it is the total differential of some function; i.e., F = 

ά φ /dx where φ  = φ (χ , y, y'). If (59.1) is exact, then φ  = C is a solution to 

(59.1), with C an arbi trary constant. Differentiating φ  = C with respect 

to χ  we find 

Comparing (59.2) to (59.1), we conclude tha t , for (59.1) to be exact, 

F(x,y,y',y") must have the form 

F{x, 2 / , y\ y") = f{x, y, v')v" + 9(χ , y, y'), (59.3) 
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R e f e r e n c e s 

[1] W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and 

Boundary Value Problems, Fourth Edition, John Wiley & Sons, New York, 
1986, pages 79-84. 

[2] E. D. Rainville and P. E. Bedient, Elementary Differential Equations, The 
MacMillan Company, New York, 1964, pages 29-33. 

[3] G. F. Simmons, Differential Equations with Applications and Historical Notes, 

McGraw-Hill Book Company, New York, 1972, pages 38-41. 

59. Exact Second Order 

Equations 

A p p l i c a b l e t o Some nonlinear second order ordinary differential equa-
tions of the form f(x, y, y')y" + g(x, y, y') = 0. 

Y i e l d s 

A first integral (which will be a first order ordinary differential equa-
tion). 

Idea 

Some second order ordinary differential equations can be integrated 
once. 

P r o c e d u r e 

The second order differential equation 

F(x,y,y
,

,y
,,

) = 0 (59.1) 

is said to be exact if it is the total differential of some function; i.e., F = 

ά φ /dx where φ  = φ (χ , y, y'). If (59.1) is exact, then φ  = C is a solution to 
(59.1), with C an arbi trary constant. Differentiating φ  = C with respect 
to χ  we find 

Comparing (59.2) to (59.1), we conclude tha t , for (59.1) to be exact, 
F(x,y,y',y") must have the form 

F{x, 2 / , y\ y") = f{x, y, v')v" + 9(χ , y, y'), (59.3) 
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for some functions / and g with 

f(x, y, V') = ^ , 9(x, y, V') = ^ + γ ^'- (59.4. α -6) 

By differentiating (59.4.a-b) with respect to x, y, a n d p , (us ing ρ  := dy/dx), 

all dependence on φ  can be eliminated between the two equations in (59.4) 
to obtain 

fxx + 2pfxy + Ρ  fyy
 =

 9xp + P9yp ~ 9yi ^ 

fxp "f" P/yp + = ^pp. 

If the conditions in (59.5) hold, then (59.3) is exact. If (59.3) is exact, 
then we can integrate (59.4.a) (with respect to p) to determine φ (χ , y, y') 

as 

<ß = h(x,y) + J f (x,y,ρ ) dp, (59.6) 

where h(x, y) is, so far, an arbi trary function of integration. This function 

will be restricted when (59.6) is used in (59.4.b). 

E x a m p l e 

Given the equation 

xyy" + x(y')
2

 + yy' = 0, (59.7) 

which has the form of (59.3), we identify: / = xy, g = x(y')
2

 + yy' = 

xp
2

 + yp. It is easy to verify tha t (59.5) holds. Hence, equation (59.7) is 
exact. Equat ion (59.6) now becomes 

φ  = h(x,y) + Jxydp 

= h(x, y) + xyp. 

Using (59.8) in (59.4.b) yields 

(59.8) 

ο  Β φ  8φ  . 
g = xp+yp= — + —y 

dx dy (59.9) 

= (hx + yp) + {hy + xp)p. 

Hence, if h is constant, say h = D, then (59.9) will be satisfied. Therefore 
a first integral of (59.7) is given by φ  = C, or 

C = φ (χ ^,ρ ) 

= D + xy\ 

= D + xy 

D + xyP (59.10) 

dy_ 

dx 
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In this example the first integral (59.10) can itself be integrated in closed 

form (this is often t rue) . A solution to (59.7), obtained by solving the 

ordinary differential equation in (59.10), is thus given by 

where Ε  is another arbi trary constant. 

N o t e s 

[1] The most general solution for h(x, y) in (59.9) is h = h(y—x). With this form 
for h, however, the first integral cannot be integrated to yield an explicit 
solution. 

[2] Exact second order linear ordinary differential equations have factorable 
operators (see page 246). 

[3] Given the differential equation 

f(x,y,...,y
(n)

) = 0, (59.11) 

define fi — — τ τ · Then (59.11) will be exact if 
dy

K%) 

/ o

" ^
 +

 ^ "
, ,, + (

"
1 ) n

^
= 0

- ·
1 2) 

If the differential equation in (59.11) is exact, then a first integral can be 
found by a repetitive sequence of steps: First integrate the highest order 
term in / and call this result F\. Then integrate the highest order term in 
fdx - dF\ and call this result F2. Continue in this manner until fdx — dF\ — 

dF2 — . . . = 0. Then a first integral is given by Fi 4- F2 + . . . = constant. 
For example, given the nonlinear third order equation 

f = yy'"-y'y" + y
3

y
,

 = o, (59.13) 

we identify / 3 = y, f2 = -y\ fi = -y" + y
3
, fo = y'" + 3y

2

y'\ and verify 
that (59.12) is satisfied. We then calculate F\ = yy", since the highest order 
term in / is yy"'. Then fdx - dF\ = (—2y'y" + y

3

y')dx, and so we take 
F2 = -(y'f- Then fdx - dFi - dF2 = y

3

y'dx, and so F3 = \y
4

. Finally 
then, fdx - dF\ - dF2 - dF$ = 0, so that 

\ 2 _ l 1 . . 4 
yy" ~(y) +\y = constant 

is a first integral of (59.13). 
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R e f e r e n c e s 

[1] M. E. Goldstein and W. H. Braun, Advanced Methods for the Solution of 

Differential Equations, NASA SP-316, U.S. Government Printing Office, 
Washington, D.C., 1973, page 93. 

[2] G. Murphy, Ordinary Differential Equations, D. Van Nostrand Company, 
Inc., New York, 1960, pages 221-222. 

60. Exact N-th Order 

Equations 

A p p l i c a b l e t o Linear n - th order ordinary differential equations. 

Y i e l d s 

A first integral. 

I d e a 

Some linear differential equations can be integrated exactly without 

modifying the equation in any way. 

P r o c e d u r e 

The linear n- th order ordinary differential equation 

d
n
v d

n
~

1
y dv 

Pn{x)
dx^

 + P n
~

l { x )
d x ^

 +
 ' "

 + Pl{x)
~oÛ

 + P
°

{ x )y =

is said to be exact if it can be integrated once to yield 

JTI — 1 jfi—2 j ρ  

Q n _ 1 ( x ) 5 ^ + Q n _ 2 ( x ) ^ - ^ + . . . + Q 1 ( x ) £ + Qo(x)i/ = J R(x)dx. 

(60.2) 
If (60.1) is exact, then the {Qi(x)} may be found from 

Qn-l — Pn, 

Qn-2 = Pn-1 — P'm 

Qn-3
 =

 Pn-2 ~ P'n-1 P'n'» 

Qo = Pi - Pi + Pz - • • • + ( - l ) " -
1

^ " -
1

) . 

A necessary and sufficient condition for (60.1) to be exact can be found 

by differentiating (60.2) with respect to χ  and comparing terms with (60.1). 
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Equations 

A p p l i c a b l e t o Linear n - th order ordinary differential equations. 

Y i e l d s 

A first integral. 

I d e a 

Some linear differential equations can be integrated exactly without 

modifying the equation in any way. 

P r o c e d u r e 

The linear n- th order ordinary differential equation 

d
n
v d

n
~

1
y dv 

Pn{x)
dx^

 + P n
~

l { x )
d x ^

 +
 ' "

 + Pl{x)
~oÛ

 + P
°

{ x )y =

is said to be exact if it can be integrated once to yield 

JTI — 1 jfi—2 j ρ  

Q n _ 1 ( x ) 5 ^ + Q n _ 2 ( x ) ^ - ^ + . . . + Q 1 ( x ) £ + Qo(x)i/ = J R(x)dx. 

(60.2) 
If (60.1) is exact, then the {Qi(x)} may be found from 

Qn-l — Pn, 

Qn-2 = Pn-1 — P'm 

Qn-3
 =

 Pn-2 ~ P'n-1 P'n'» 

Qo = Pi - Pi + Pz - • • • + ( - l ) " -
1

^ " -
1

) . 

A necessary and sufficient condition for (60.1) to be exact can be found 

by differentiating (60.2) with respect to χ  and comparing terms with (60.1). 
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1 ^ + (3 + 6 x ) ^ + 6 -(1-f χ  + r ) - 4 + (3 + 6 s ) + 6-^- = 6x, (60.3) 

then we have: P ( x ) = 6x, P 0 = 0, P i = 6, P2 = 3 + 6x, P 3 = 1 + x + x
2

. 

It is easy to verify t ha t 

d
3

P3 d
2

P2 | dP1 0 

and so (60.3) is exact. Integrating equation (60.3) directly we obtain 

(1 + χ  + z
2

) ^ + (2 + 4 x ) $ + 2y = 3x
2

 + A, (60.4) 

where A is an arbi trary constant. Now the equation in (60.4) is again exact, 

and so it can be integrated again to yield 

(1 + χ  + x
2

)^- + (1 + 2x)y = x
3

 + Ax + B, (60.5) 
dx 

where Β  is an arbi trary constant. 

Finally, the equation in (60.5) is exact once again. It can be integrated 

to yield the general solution of (60.3) 

(1 + χ  + x
2

)y = — + A— + Bx + C, 

TT Ζ  

where C is an arbi trary constant. 

This condition is 

ώ ^ " d x " "
1 +

 ~ ώ
 P

° - ° -

Spec ia l C a s e 

The second order linear ordinary differential equation 

P(x)y" + Q(x)v' + Ä(x)y = ο  

will be exact if and only if P"(x) - Q'(x) + R(x) = 0. 

E x a m p l e 

If we have the linear ordinary differential equation of third order 
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61. Factoring Equations 

A p p l i c a b l e t o Ordinary differential equations and partial differential 

equations. 

Y i e l d s 

Equations of lower degree. 

Idea 

If a differential equation can be factored into simple terms, then the 

solution to each of the factors is a solution to the original equation. 

P r o c e d u r e 

Given a differential equation, a t t empt to factor it. If this is possible, 

then solve each factor separately. Each of the solutions of the different 

factors will be a solution of the original differential equation. 

E x a m p l e 

The nonlinear ordinary differential equation 

l / (y ' + v) = x{x + v) (61.1) 

for y(x) may be factored into 

(y
f

 + y + x)(y'-x) = 0. (61.2) 

Solving each of the factors appearing in (61.2) separately, the solutions to 

(61.1) are given by 

{ Ae~
x

 + 1 - x, 

where A and Β  are constants. 
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E x a m p l e 

The nonlinear ordinary differential equation 

l / (y ' + v) = x{x + v) (61.1) 

for y(x) may be factored into 

(y
f

 + y + x)(y'-x) = 0. (61.2) 

Solving each of the factors appearing in (61.2) separately, the solutions to 

(61.1) are given by 

{
Ae~

x

 + 1 - x, 

where A and Β  are constants. 
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62. Factoring Operators 

A p p l i c a b l e t o Ordinary differential equations and partial differential 

equations. 

Y i e l d s 

A sequence of equations to solve tha t are of lower order. 

Idea 

If the operator representing a differential equation can be "factored" 

into two or more operators, it may be easier to find a solution. 

P r o c e d u r e 

Suppose we wish to solve the differential equation Q[u] = 0 for the 

quanti ty u(x), where Q[-\ is a differential operator. When possible, "factor" 

the differential equation Q[u] = 0 as L[i/[u]] = 0 where £,[·] and H[-] are 

also differential operators. Then solve the two equations: L[v] = 0 for v, 

and then H[u] = v. 
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also differential operators. Then solve the two equations: L[v] = 0 for v, 

and then H[u] = v. 



6 2 . Fac tor ing Operators* 247 

E x a m p l e 1 

The fourth order part ial differential equation 

( V
4

- a
2

) u = 0, (62.1) 

where a is a constant and V
2

 is the usual Laplacian, may be factored as 

( V
2

 - a ) ( V
2

 + a)u = 0. 

The general solution of (62.1), therefore, is given by the solution of the two 

successive second order differential equations 

( V
2

 - a)v = 0,  χ  

ο  (
6 2

·
2

) 
( V

2

 + a)u = v.  ' 

Alternatively, (62.1) could have factored equation as 

( V
2

 + a ) ( V
2

- a ) u = 0 

so tha t the general solution of (62.1) can also be writ ten as the solution of 

( V
2

 + a)w = 0, 

2 (62.3) 
(V — a)u — w. 

Solving (62.2) or (62.3) as a sequence of two second order differential 

equations may be easier than solving the fourth order equation (62.1) 

directly. 

E x a m p l e 2 

If we want to solve the nonlinear ordinary differential equation 

Q[u] = u
2

xx - 2uxuxx + 2uux - u
2

 = 0 
2 2 (62.4) 

= (uxx - ux) - (ux - u) = 0 , 

then we might factor the operator Q[-] as Q[u] = L[if[u]], where L[v] = 

v
2

—v
2

, and H[u] = ux — u. Therefore, the equation Q[u] = 0 can be solved 

by solving the sequence of first order differential equations 

L[v] = 0, H[u] = v. 

The solution of L[v] = 0 is ν  = Ce
±x

, where C is an arbitrary constant . 

The general solution of (62.4) can then be determined by solving 

H[u] = U x- u = v = Ce
±x

. (62.5) 

Equation (62.5) can be solved by the use of integrating factors (see page 

305) to obtain the two possible forms of the solution 

f (A + Cx)e
x

, 

{ Ce~
x

 + Be
x

, 

where A and Β  are also arbi trary constants . 
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E x a m p l e 3 

The relativistic wave equation 

1 d
2

yj d
2

vb d
2

ip θ
2

ψ  m
2

c
2 

c
2

 at
2

 dx
2

 dy
2

 dz
2

 h
2 

was factored by Dirac using hypercomplex algebra. If {c*i, « 2 , « 3 , # 4 } 

represent four of the elements in this algebra tha t obey the relation α μ α ν  + 

&ν &μ  — 2<$ μ ι /, then the factored equation is 

The first factor led to the correct relativistic theory for the electron, while 

the second factor led to Dirac's prediction of the positron. See Dirac [4] 

for details. 

E x a m p l e 4 

The formally self-adjoint homogeneous fourth order operator 

may be factored into L[^(x)L[i/]], where L\\ is the second order operator 

v(x) = ^ 2 , 
α  

\{x) = α
2

β ', 

μ (χ ) = ^ ( α " + \ Ί α ) , 

and {α (χ ), β  (χ ), y (χ ), δ  (χ )} are any solution to 

P{x) = α
2

β '\ 

Q(x) = α
2

β "' + 2α α 'β " + (ά α α " - 2α '
2

 + η α  

Rix) = % ( α "" + α Ί " + α  Υ  + α δ ), 

ή  β ', 

with 4δ  = 2η " + η  
2

. See Hill [9] for details. 

where {v(x), μ (χ ), \(x)} satisfy 
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L[u] 
W(ui,U2) d 

u\ dx 

N o t e s 

[1] It is not true that the number of distinct factorizations is limited by the 

order of the differential equation. For example, the second order ordinary 

differential equation 

has the three distinct factorizations 

[2] The Laplacian in two dimensions admits the factorization: 

where i Therefore, using ζ  = χ  + iy, Laplace's equation may be 

written as V
2

u 0. This shows that the most general solution to 

Laplace s equation in two dimensions is u = f(z) + g(z), where f(z) and 

g (ζ ) are arbitrary functions. Also, since the biharmonic equation may be 

written as Vu — 0, the general solution of the biharmonic 

equation is seen to be u = f(z) + g(z) + zh(z) + zj(z). 

The operators d/dz and d/dz are known as Wirtinger derivatives. In 

two dimensions, solutions of Poisson's equation may sometimes be found by 

use of Wirtinger derivatives. See Henrici [8] for details. 

[3] It is possible to write down an "explicit" factorization of any n-th order 

linear differential equation. To do so, however, requires explicit knowledge 

of the η  linearly independent solutions. For example, if L[-] is the differential 

operator 

and t i l , i i 2 are any two linearly independent solutions of L[u] = 0, then 

where W ( u i , i i 2 ) is the Wronskian of ui(x) and ui(x). In the n-th order 

case, consider the differential operator 
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If {ui,U2,... ,un} are η  linearly independent solutions of H[u] = 0, then 

define Wk (for k = 1,2,.. . ,n) to be the Wronskian of the first k linearly 

independent solutions; i.e., Wk := W(ui, U 2 , . . . , Uk). Using this definition, 

we can write if [it] as 

L J

 Wn-! dx\Wn-lWn 

d ( w\ 

dx\WiW3 

See Rainville [11] for details. 

[4] The factorization 

\dx\W0W2\dx\wJ J J J J J 

leads to the technique for solving Riccati equations described on page 332. 

[5] Differential resultants can be used to analyze the factoring of operators for 

linear differential equations. See Berkovich and Tsirulik [1] for details. 

[6] Two differential operators Ρ  and Q are said to be permutable if P(Q) = 

Q(P). Prom Ince [10] we have 

If Ρ  and Q are permutable operators of orders m and η  

respectively, they satisfy identically an algebraic relation of 

the form F(P, Q) — 0 of degree η  in Ρ  and of degree m in Q. 

For example, the operators 

P = 
d

2

 2 

dx
2

 x
2 

d
3

 3 d 3 
Q

 dx
3

 x
2

dx + xz' 

are permutable since PQ = QP. We can also find the algebraic relation 

P
3

 -Q
2

 = 0, observe: 

p ( p ( p ( m = f - *-r+24r - 74r+-
l

-^f=q(q(/)). 

X X X X X 

This example is due to Ince [10]. See also Grünbaum [7]. 

file:///dx/W0W2/dx/wJ
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63· Factorization Method 

A p p l i c a b l e t o Eigenvalue/eigenfunction problems for homogeneous 

second order ordinary differential equations. 

Y i e l d s 

An equation from which a single eigenfunction can be used to calculate 

additional eigenfunctions. 
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Idea 

By "factoring" an ordinary differential equation into a certain form, a 

ladder of eigenfunctions may be formed. 

P r o c e d u r e 

Suppose we have the linear second order ordinary differential equation 

where m is an integer, for which we would like to determine the eigenfunc

tions {y} corresponding to a single value of the eigenvalue λ . We denote 

the eigenfunction by y (A, m ) and suppress the χ  dependence. The equation 

in (63.1) is said to be factorizable if it is equivalent to each of 

where L(A, m) is a function and the H± are differential operators. For a 

factorizable equation, finding L(A, m) and the H± is a difficult task. Also, 

not all equations in the form of (63.1) are factorizable. 

If (63.1) is factorizable, and if y(\,m) is a solution of (63.1), then (see 

the notes) 

are also solutions corresponding to the same value of λ , but different values 

of m. Hence, given one solution of (63.1) (for a specific value of λ ) , a ladder 

of solutions belonging to this value of λ  may be formed by repeatedly 

i terating (63.3). 

E x a m p l e 1 

The equation for the associated spherical harmonics may be put in the 

form 

—2 + r (x , m)y + Xy = 0, (63.1) 

Η ™+
λ

Η ™+
ι

ν (\, m) = L(A, m + l)y(A, m ) , 

H™H™y(\,m) = L(A, m)y(A, m) , 
(63.2.a-6) 

y(A,m + l ) = i / !
n + 1

y ( A , m ) , 

y ( A , m - l ) = tf™y(A,m), 
(63.3.a-fe) 

(63.4) 

This equation is factorizable, and we find 

L(A, m) = A — (m — I ) 

(63.5) 
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The eigenvalues of (63.4) are of the form λ  = 1(1 + 1) for I = m, m + 1, — 

Some of the eigenfunctions of (63.4) are of the form 

All of the remaining eigenfunctions may be found from (63.3) and (63.5) 

to be given by 

E x a m p l e 2 

As another example, Legendre's differential equation 

has the factorizations 

where Η Ψ  = (1 mx. This factorization leads to the ladder of 

solutions: Vm+i = 

N o t e s 

[1] The results in (63.3) are straightforward to derive. For example, operating 

on (63.2.b) with results in 

Since this has the same form as (63.2.a), which is by hypothesis equivalent 

to (63.1), it must be that y = H^y(\m) is a solution of (63.1). In (63.3) 

we called this y(\,m — 1) since, when (63.6) is compared to (63.2.a), the 

parameter m is replaced by m — 1. 

[2] The factorization method has been generalized to systems of equations in 

Humi [4]. 

[3] The operators in (63.3) are sometimes called raising and lowering operators. 

This method is sometimes called the ladder method. 

[4] Infeld and Hull [5] have a large list of equations to which this method applies. 

[5] The paper by Hermann [3] relates the technique in this section to Lie groups. 

Sattinger and Weaver [8] also consider the relation to Lie groups. 

(63.6) 
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64. Fokker-Planck Equation 

A p p l i c a b l e t o Linear ordinary differential equations with linearly 

appearing "white Gaussian noise" terms (a single differential equation, or 

a system). 

Y i e l d s 

A Fokker-Planck equation (which is a parabolic part ial differential 

equation) for the probability density of the solution. 

Idea 

If a differential equation contains random terms, then the solution to 

the differential equation can only be described statistically. The solution 

to the Fokker-Planck equation is the probability density of the solution to 

the original differential equation. 
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64. Fokker-Planck Equation 

A p p l i c a b l e t o Linear ordinary differential equations with linearly 

appearing "white Gaussian noise" terms (a single differential equation, or 

a system). 

Y i e l d s 

A Fokker-Planck equation (which is a parabolic part ial differential 

equation) for the probability density of the solution. 

Idea 

If a differential equation contains random terms, then the solution to 

the differential equation can only be described statistically. The solution 

to the Fokker-Planck equation is the probability density of the solution to 

the original differential equation. 
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P r o c e d u r e 

Here we present the technique for constructing the Fokker-Planck 

equation for a linear system of ordinary differential equations depending on 

several white noise terms. Consider the linear system for the m component 

vector x(£) 

| x ( t ) = b ( t , x ) + * ( i , x ) n ( t ) ,

χ (*ο ) = y , 

where σ (£ , χ ) is a real m χ  η  matr ix and n(t) is a vector of η  independent 

white noise terms. Tha t is 

E[ni(t)nj(t + T)]=6ij6(r), 

where E[-] is the expectation operator, 6ij is the Kronecker delta, and 

δ  (τ ) is the delta function. The Fokker-Planck equation corresponding to 

(64.1.a) is given by 

^-té^kt^^. (·«) 
where Ρ  = Ρ ( ί , χ ) is a probability density and the matr ix A = ( α ^ ) is 

defined by A(t, χ ) = σ ( £ , χ ) σ
τ

( £ , χ ) . The initial conditions for (64.3) come 

from (64.1.b), they are 

m 

P(to,x) = l[S(xi-yi). (64.4) 
i=l 

The solution of (64.3) and (64.4) is the probability density of the solution 

to (64.1). Any statistical information about x(t) tha t could be ascertained 

from (64.1), can be derived from P ( £ , x ) . For example, the expected value 

of some function of χ  and t, say / i (x , £), at a t ime t, can be calculated by 

/

oo 

h(x(t),t)P(t,x)dx. 

-oo 

Spec ia l C a s e 

In the special case of one dimension, the stochastic differential equation 

dx 

-^ = f(x) + g(x)n(t), (64.5) 

with x(0) = z, corresponds to the Fokker-Planck equation 

dP d , f , Χ Τ Ίλ  i a
2

/ 2 / xm 

^ = - ^ ( / ( * ) p ) + ^ ( s
2

( * ) N 
for P(t,x) with P(0,x) = 6{x - z). 
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E x a m p l e 

Consider the Langevin equation 

x" + ßx' = N{t), (64.6) 

with the initial conditions 

x (0) = 0, x'(0) = M 0, (64.7) 

where N(t) satisfies 

E[N(t)) = 0, 

E[N(t)N(t + T)] = 6(r). 
(64.8) 

From (64.8), we recognize tha t N(t) is a white noise term. Therefore, we 

can use the Fokker-Planck equation to determine the probability density 

of x(t). Since (64.6) has second derivative terms, we rewrite (64.6) and 

(64.7) as the vector system (see page 118) 

dt\uj \-ßu)

 + \o i)\m(t)J' 

The Fokker-Planck equation for P(t,x, u) , the joint probability density of 

χ  and u at time t, is 

dP d . π Ν  d , a nN ld
2

P 

m = - ä - x
{ u P ) +

d - J
ß u P ) +

2 ^ 

P ( 0 , x, u) = 6(x)6(u — UQ). 

(64.9) 

In this example, we can solve (64.9) exactly by taking a Fourier transform 

in χ  (see page 299), and then using the method of characteristics (see page 

368). We eventually determine 

P(t,x,u) = 
1 

d e t D 
exp 

_ ί χ - μ χ \ Ό ί χ - μ χ \ 

\u-ßuJ \u-ßuJ 
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where D = (
 xx xu

 ) , and the parameters {μ χ ,μ  u ι  0~χ χ  ι  & xu ι  0~uu } are 
γ  & xu &uu J 

given by 

* = f ( l - e - " ) , 

μ η  = u0e~
ßt

, 

β
2

 β
3 K

 ' 2ß
3 v

 ' 

1 1 
2 =̂ ( l - e - ^ ) - - i , ( l - e - ^ ) , 

β
Δ  x

 ' 2ß 

σ
2

 = — (1 - e~
2ßt

) 
°uu 2ß

{ h 

The details of this calculation are presented in Schuss [7]. 

N o t e s 

[1] With a Fourier transform, the method of characteristics can often solve a 
Fokker-Planck equation in one dimension. 

[2] Since a Fokker-Planck equation and the equation for a Green's function (see 
page 268) both have delta function forcing terms, the solution techniques 
are similar. 

[3] Not all noise terms are white Gaussian noise (the requirements in (64.2) are 
very stringent). The book by Srinivasan and Vasudevan [8] has descriptions 
of several approximate techniques for other types of noise. 

[4] When the coefficient of the noise term (i.e., g(x) in (64.5)) is small, then a 
singular perturbation problem generally results. 

[5] The solution of (64.1) is a Markov process; the density of its probability 
transition function is given by the solution to the Fokker-Planck equation 
and its initial conditions. 

[6] Another name for the Fokker-Planck equation is the forward Kolmogorov 
equation. 

[7] The solution of the Fokker-Planck equation in (64.3) (and its initial condi-
tions in (64.4)) might be better represented by P(£,x ; io ,y)- The function 
P (£ ,x ; io ,y) also satisfies the backwards Kolmogorov equation, which is the 
adjoint of (64.3). This equation: 

dt0~ ^
l

d V i 2 2 -^
a iJ

 dyidyj ' (64.10) 

P ( i 0, x ;*o , y ) = <5(x-y) , 

has as its independent variables the "backward variables" {<o,y}« 

[8] When only moments of the probability density P ( t , x ) are required, the 
method of moments (see page 491) may sometimes be used to calculate 
these moments without having to solve the Fokker-Planck equation. 
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[9] Another equivalent form of equation (64.1.a) that often appears is 

d x ( 0 = b(t, x) dt + a(t, x) dw(t), (64.11) 

where w(t) is a vector of independent standard Wiener processes. 
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65. Fractional Differential Equations 

A p p l i c a b l e t o Fractional differential equations. 

Y i e l d s 

An exact solution. 

Idea 

There are two common ways to solve fractional differential equations; 

using an integral transform, or transforming to an ordinary differential 

equation. 
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65. Fractional Differential Equations 

A p p l i c a b l e t o Fractional differential equations. 

Y i e l d s 

An exact solution. 

Idea 

There are two common ways to solve fractional differential equations; 

using an integral transform, or transforming to an ordinary differential 

equation. 
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J{x) = De
x

 - 2Ci y/ïre
x

 erf(<v/x) + -7= 
yjx 

(65.4) 

P r o c e d u r e 

There are two main methods for solving fractional differential equa

tions 

(A) transformation to an ordinary differential equation, 

(B) using the Laplace transform. 

To transform to an ordinary differential equation, care must be taken 

since the ordinary chain rule from calculus does not apply to fractional 

derivatives. 

E x a m p l e 1 

This example will convert a fractional differential equation into an 

ordinary differential equation. Suppose we wish to solve the fractional 

differential equation 

d
1/2

f 

s w
+

' - °
) 

for / ( x ) . To convert this to an ordinary differential equation, we will 

differentiate with respect to χ  one-half t ime. This will produce a new 
d}>2f 

differential equation tha t involves — r - τ τ . Eliminating this te rm between 
dx

1,z 

the new equation and equation (65.1), we will have determined an ordinary 
differential equation. 

To differentiate (65.1) with respect to χ  one-half t ime, we have to use 
the differentiation rule (from Oldham and Spanier [4]

,
 page 155) 

j l - Q nQ Hf 

dx^dx*'
 1 2

 + . . . + O mx 

where 0 < Q < r a < Q + l , r a i s a n integer and the {Ci} are arbi trary 
constants. Hence, differentiating (65.1) one-half t ime results in 

Eliminating the d
1

!
2

 jdx
1

!
2

 t e rm between (65.1) and (65.2) results in 

^ - / = C x x -
3
/

2
, (65.3) 

which is an ordinary differential equation for / ( x ) . Equat ion (65.3) has the 
solution (obtained by use of integrating factors) 
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where D is another arbi trary constant. If we now utilize (65.4) in (65.1), 

it turns out tha t D and C\ are related by Ό  = 2Ciy/ïr. This is because of 
the identities 

d
1/2

 d
1/2

 1 
-e

x

 eif(y/x) = e
x
, — — - = = 0, 

dx'/
2

 ^
 VV y

 ' d x ^
2

^ 

d
1

'
2

 1 

from Oldham and Spanier [4], pages 119 and 123. Therefore, the solution 
of (65.1) is 

[ e
x
e r f c ( \ / ï ) -

 1 
f(x) = D 

E x a m p l e 2 

This example will solve a fractional differential equation by use of 
Laplace transforms. Suppose we wish to solve the fractional differential 
equation 

The Laplace transform of (65.5) is 

sF(s) - /(O) + yfsF(s) - y 2

 ;

 + F(s) = 0 (65.6) 

where F(s) is defined to be the Laplace transform of f(x); tha t is, 

/•OO 

F(s) := / /(. 
JO 

x)e
 X8

ds. 

If we define the constant C by C = / ( 0 ) + d ~
1 / 2

/ ( 0 ) / d z ~
1 / 2

, then the 
solution to (65.6) is given by 

c c c 
F { S) =

 (> Α -1)( λ /? + 2 )
 =

 3 ( v ^ - l ) ~ 3 ( v ^ + 2 ) '

and so the final solution to (65.5) can be obtained by finding the inverse 

Laplace transform to (65.7), which is 

f{x) = y [2e
4

* erfc(2>/i) + e
x

 e r f c ( - . 
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N o t e s 

[1] Fractional differential equations are also called extraordinary differential 

equations. 

[2] One of many equivalent definitions for fractional derivatives is the following 

for η  > q > 0. 

[3] Certain diffusion problems can be reduced to the solution of a semi-differential 

equation (one in which all the derivatives are either to an integer order, or 

a half integer order). See Chapter 11 of Oldham and Spanier [4] for details. 

[4] A third technique for solving fractional differential equations is by the use 

of power series (see page 342). For fractional differential equations, a series 

of the form 

is used, where ρ  > —1, η  is an integer, ao Φ  0, and the {ai} are unknowns. 

[5] In Erdélyi's paper [2], there are several boundary value problems for or-
dinary differential equations that are solved by using fractional differential 
techniques. 
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Κ χ ) = χ Ρ Σ  akx 
k/n 

k=0 
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66· Free Boundary Problems 

A p p l i c a b l e t o Systems of differential equations in which the location 

of the boundary of the domain is one of the unknowns to be determined. 

Idea 

Sometimes a similarity solution may be used to determine the location 

of the free boundary. In more difficult problems, a numerical technique may 

be required. 

P r o c e d u r e 

In free boundary problems, a differential equation must be solved in a 

domain whose size can vary. One of the unknowns to be determined is the 

size of the domain on which the equation is to be satisfied. 

Differential equations of this type are most often solved numerically. 

In rare cases, an analytical solution may be obtained. These solutions are 

generally found by use of similarity methods (see page 424). 

E x a m p l e 

Consider a mass of water in χ  > 0 at t ime t = 0. Initially the water 

has the constant tempera ture TH > 0. If a constant temperature TQ < 0 is 

maintained at the surface χ  = 0, then the boundary of freezing, χ  = s(t), 

will move into the fluid. The unknowns to solve for in this problem are the 

tempera ture of the water w(x,t), the temperature of the ice u(x,t), and 

the location of the unknown boundary, χ  = s(t). See Figure 66. 

solid / 

/ liquid 

•YYYY.-Y/' g 

> 
Figure 66. This diagram illustrates the location of the freezing boundary for 

the system given in (66.1). 
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The equations tha t describe the unknowns are: 

u>t = u x x, for 0<x<s(t), t > 0, 

wt — wxx, for s(t) <x < oo, t > 0, 

u (0 , t ) = T c , 

w(x,0) = TH, (66.1.a-g) 

u(*( t ) , t ) = 0, 

w(s(*),*) = 0, 

u * ( 5 ( * ) , t ) - w x( s ( * ) , * ) = λ * ' ( ί ) . 

Here we have defined the freezing boundary to be the curve along which 

the tempera ture is zero, and equation (66.1.g) represents the transfer of 

latent heat necessary to create the ice. The parameter λ  is the latent heat 

of fusion times the density divided by the coefficient of heat conduction. 

Now we propose the similarity solution. Since diffusion equations often 

have t ime scaling as the square of a distance, we assume tha t a solution to 

(66.1) can be found with 

u(x, t) = /(η ) = f (^j , w(x, t) = 9(η ) = g (^j , (66.2) 

for some unknown functions /(η ) and g{rj). Using these proposed forms in 

(66.1.g) shows tha t these forms are possible only if the freezing boundary 

is given by 

s(t) = a\ft, (66.3) 

for some value of a. Using (66.2) and (66.3) in (66.1) we find the equivalent 

system 

f"(v) + hf'in) = 0 , for 0 < η  < α , 
9"(v) + = 0 . for a < η  < oo, 

/ ( 0 ) = T C, / ( o ) = 0, ) 

ff(oo) = TH, g(a) = 0, 

/ ' ( a ) - * ' ( « ) = γ · 

The ordinary differential equations in (66.4) may be solved to determine 

tha t 

erffa /2) 
fir,) = T C - T H 

erf(a /2) ' 

9 { V)

 = e r f c ^72 )
 [ e r f ( i ? / 2 )

 -
 e r f ( a / 2 ) ]

 ' 
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where a satisfies the transcendental equation 

erf (a /2) erfc(a/2) 
(66.5) 

N o t e s 

[1] In writing (66.1.a) and (66.1.b) we have assumed that the thermo-physical 

parameters in both the ice and the water are the same (i.e., the Stefan 

number, which is a ratio of these parameters, is equal to one). In reality, 

these parameters are different and a constant which cannot be scaled out 

must be introduced into either (66.1.a) or (66.1.b). 

[2] The example illustrated above is described in more detail in Chapter 3 of 

Crank [2]. 

[3] Melting problems for a pure material are also known as Stefan problems. 

[4] Another technique often used in free boundary problems is changing coordi-

nates so that the free boundaries become fixed in the new coordinate space. 

This is the idea behind the hodograph method (see page 390). 

[5] Free boundary problems often arise in hydrodynamics, when the flow over 

an airfoil is being computed. When the flow becomes supersonic the type of 

governing equation changes from hyperbolic to elliptic and a different type 

of numerical scheme is required. Where the equation changes type is not 

known a priori. 

[6] Some of the popular numerical techniques for solving free boundary prob-

lems go by the name of front tracking methods or front fixing methods. 

These techniques generally require that the location of the free boundary be 

approximately known before the computer code is run. A better approach 

is to use enthalpy methods. These methods do not need initial information 

about the interfaces, and multiple fronts can also occur. 

[7] The paper by Hill and Dewynne [5] discusses several different approximation 

techniques applied to a single physical problem involving a free boundary. 
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67. Generating Functions 

A p p l i c a b l e t o Systems of differential equations, where each equation 

has a similar form. 

Y i e l d s 

An exact analytic solution. 

I d e a 

Sometimes a single function can be used to contain the information in 

several equations. 

P r o c e d u r e 

We illustrate the method as it applies to ordinary differential equa-

tions. Suppose we have a system of ordinary differential equations for 

{
u

k{t)}, all of the form 

~J2
U

N = f{y>N-m, · · · , Ujv, . . . , UN+m,t), (67.1) 
at 

for Ν  = 1 , 2 , . . . , oo or Ν  = ± 1 , ± 2 , . . . , ±oo . We might introduce the 
ordinary generating function 

G(s,t) = ^uk(t)s
k

, (67.2) 
k 

or the exponential generating function 

= 5 > f c( t ) £ . (67.3) 
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Using (67.2) (or (67.3)) and (67.1), we can sometimes find a part ial differ

ential equation for G(s,t) (or H(s,t)). After solving the part ial differential 

equation we can determine the {uk(t)} from either 

v>k{t) 

or 

k\ \dsJ 
G(s,t) 

8=0 

H(s,t) 
3 = 0 

After we have solved for the {uk(t)} we must then check tha t (67.2) 

(or (67.3)) converges for the values of t t ha t are of interest. 

E x a m p l e 

The classic equations relating to service times are called the birth and 

death equations (see Karlin and Taylor [2], page 135). For the special case 

of "constant death" and "linear birth," these equations have the form 

dt 
P0(t) = -\P0(t) + ßP1(t)1 

(67.4) 

- P N ( t ) = A P J V - I W - ( λ  + Ν μ )Ρ Ν (ί ) + (TV + 1 ) μ Ρ Ν + 1( * ) , 

where μ  and λ  are constants and Ν  = 1 , 2 , . . . , oo. The initial conditions 

for (67.4) are 

PN(0) = SNj1 (67.5) 

where 6NJ is the Kronecker delta and j is a given positive integer. The 
ordinary generating function is defined in this case by 

G(t,s) = Y/Pk(t)s
k

. 

k=0 

Differentiating G(t, s) with respect to t leads to 

ÔG 

dt - Σ  
fc=0 

= [ - λ Ρ 0( ί ) + μ Λ ( ί ) ] * ° 
OO 

+ Σ  ( A A - i ( i ) - ( λ  + kß)Pk(t) + (k + l)ßPk+i(t)) s
k 

fe=l 

= λ (* - 1) [ P 0 + P i s + P2s
2

 + •••] 

+ μ (1 - s) [Pi + 2P2s + 3 P 3s
2
 + · · · ] 

dG] 
= {l-s) -XG + μ  

ds 

(67.6) 

(67.7) 
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The initial condition for G(t, s), from (67.5) and (67.6), becomes 

G(0,s) = s
j
. (67.8) 

The part ial differential equation in (67.7), with the initial condition in 

(67.8), can be solved by the method of characteristics (see page 368). The 

solution is 

G(t,s) = E-Ad-XI-e-"')/*« [1 - (1 - I)E-"*]
I

 . 

Taking a Taylor series of (67.8) with respect to s (see (67.6)) results 

in 

P0(t) = e-*
l
-M»{\ - y)

j
, 

Pl(t) = e-Hi-vV^-y)
3
'
1
 [Xy2 + ϋ μ  _ 2A) ι , + A ] , 

P2(t) = e - ^ - y ^
{ 1

-
y

2

) J

~
2

{ \ Y + (2jXß - 4 λ
2
) 2 /

3 

+ HU - 1 ) μ
2
 - 2A(2j> - 3 λ ) ] 2 /

2
 + (2jXß - AX

2

)y + λ
2
} , 

where y = e~
ßt

. 

N o t e s 

[1] For the example given above, Laplace transforms (see page 300) could also 
have been used to solve (67.7) with (67.8). 

[2] Nonlinear systems of differential equations can also be solved by this method. 
A classic application is to equations describing the aggregation of particles 
(see Feller [1]). 
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Equations," Comp. & Maths, with Appls., 13, No. 7, 1987, pages 595-600. 

[4] H. M. Taylor and S. Karlin, An Introduction to Stochastic Modeling, Aca-
demic Press, New York, 1984, pages 310-316 and 337-338. 
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G ( x ; z ) / ( z ) d z , (68.3) 

integrated over some appropriate region. 

Conversely, suppose we want to solve the linear homogeneous differ-

ential equation 

L[v] = 0, 
(68.4) 

B[v] = ft(x).

If we can solve 

L[<?(x;z)] = 0 , 

Bfo(x;z)] = < 5 ( x - z ) , 

68. Green's Functions 

A p p l i c a b l e t o Linear differential equations with linear boundary con-

ditions. 

Y i e l d s 

An exact solution, in the form of an integral or an infinite series. 

Idea 

Initially, the solution of the linear differential equation with a "point 

source" is determined. Then, using superposition, the "forcing function" 

(appearing in either the differential equation or the boundary condition) is 

t reated as a collection of point sources. 

P r o c e d u r e 

Suppose we have the following linear differential equation for u(x) 

(68.1) 

with the linear homogeneous boundary conditions 

for i = 1 ,2 , . . . , n. Suppose we can solve for G(x; z) , where G(x; z) satisfies 

(68.2) 

and <5(x) is the usual delta function. Then the solution to (68.1) with (68.2) 

can be writ ten as 
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for #(x; z) , then the solution to (68.4) is given by 

v(x) = J g(x; z)h(z) dz. 

Both G(x; z) and #(x; z) are called Green's functions. The functions / ( x ) 

and h(x) are often referred to as "forcing functions." If, for example, 

/ ( x ) = 0, then by (68.3) u(x) = 0. 

Green's functions can be calculated once, then used repeatedly for 

different functions / ( x ) and Λ ( χ ). Some Green's functions are tabula ted in 

Table 68. To calculate the Green's function G (x ;z ) , we require: 

(A) L[G(x; z)] = 0, except at χ  = z. 

(B ) f l i [G (x ;« ) ] = 0. 

(C) If £,[·] is an n- th order ordinary differential equation, 

then G(x; z) must be continuous (with its derivatives up to 

order η  — 1) at χ  = ζ . 

,z+ 

(D) / L[G(x;z)]dx = 1. 
Z

 (68.5.a-d) 

The conditions on ^(x; z) are very similar: 

(A) L f o ( x ; z ) ] = 0 . 

(B) B[g(x;z)] = 0, except at χ  = z. 

(C) If L[-] is an n- th order ordinary differential equation, 

then p(x; z) must be continuous (with its derivatives up to 

order η  — 1) at χ  = z. 

(D) / B[0(x;z ) ]dx = l . 
Jz-

(68.6.a-d) 

Conditions (68.5.a,d) and (68.6.b,d) follow from the definition of the delta 

function. Conditions (68.5.c) and (68.6.c) follow from the definition of what 

a solution to an n- th order differential equation means, and (68.5.b) and 

(68.6.c) follow from the defining equations for G (x ;z ) and # (x;z ) . 

Many methods can be used to construct a G (x ;z ) or a # (x;z ) tha t 

satisfies the above four requirements. We will illustrate two methods for 

constructing G(x; z) for the special case of a second order linear ordinary 

differential equation. Then we illustrate the construction process for #(x; z) 

for a part ial differential equation. 
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M e t h o d 1 

Define the general linear second order ordinary differential equation 

with linear homogeneous boundary conditions by 

L[u]:=^(p(x)^j-s(x)u, 

Bi[u] := α ι « ( α ) + oc2u'(a) = 0, 

B 2[ u ] : = / ? i u ( a ) + &u
,

(&) = 0, 

and suppose tha t we wish to solve L[u] = f(x). If yi(x) and y2{x) are 

non-trivial (i.e., not identically equal to zero) and satisfy 

L[yi] = 0, 

L[y2] = 0, 

£i[tfi] = 0, 

B2\3ft] = 0, 

then we can write G(x; z) as 

Γ  yi(x)V2(z) 

G(x;z)={ 

for a < χ  < z, 

for ζ  < χ  < b, 

where W(z) = 

point χ  = z. 

yi(z) y2(z) 

yi'(z) yJ{z) 

p(z)W(z) 

V2(x)yi(z) 

I p(z)W(z) 

is the Wronskian of y\{x) and y2(x) at the 

M e t h o d 2 

Suppose tha t !,[·] is a self-adjoint operator, so tha t it has a complete 

set of orthogonal eigenfunctions (see page 82). Suppose further tha t we 

know the eigenvalues { λ η } and the eigenfunctions {φ η } for {L,Bi,B2} 
(see page 82). Tha t is 

Ι \Φ η ] = Κ Φ η , 

Β ι [φ η ]=0, 

Β 2[φ η ] = 0, 

then G (χ ; ζ ) is found to be 

G(x ; z ) = £ 
4>n(x)4>n(z) 

^\ η $φ Ι {χ )ά χ  
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for 0 < χ  < z, 
L

 (68.8) 
Ζ { Χ

τ > for z<x<L. 
L 

For the second method, we find the eigenvalues and eigenfunctions to 

be 

so tha t 

\
 ΗΠ

 Λ  ( \ · \ · f
n 7 r x

\ 
n =

 T " ' ^
n

'
x

'
 = s m X nX = s i n

( , ~ L ~ ) ' 

71=1 

Using either of (68.8) or (68.9) for G ( x ; z ) , the solution to (68.7) can be 

writ ten as ^ 

y(x) = ί  G(x;z) f(z)dz. (68.10) 
Jo 

For example, using (68.8) in (68.10), the solution to (68.7) can be 

wri t ten as 

Vix) = [ f(z) dz + £
 Z

-^± f { z) d z. (68 . l i ) 

Note the similarity between (68.11) and the form of the solution shown in 

the section on variation of parameters (see page 356). 

If, for example, f(x) = x
3

, then evaluation of (68.11) results in 

y(x) = ^ ( x
4

- L
4

) . 

The second method yields the same answer. For this example, the second 

method is equivalent to using finite Fourier series (see page 295). 

E x a m p l e 1 

Suppose we wish to solve 

y" = fix), y JK

 ' (68.7) 
y(0) = 0, y(L) = 0. 

For the first method, we require the solutions y\(x) and y2(#) of 

2/1 = 0, 2/i(0) = 0, 

y'i = 0, y2(L) = 0. 

The solutions to these equations are 

2/1 (x) = Ax, y2(x) = B{x - L) , 

where A and Β  are arbi t rary constants . We compute the Wronskian to be 

W{z) = ABL. Therefore 

ί  x(z - L) 

G(x;z)=\ 

http://68.li
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(68.12) 
d

2
u _ 1 du 

for u(x,t) with the initial and boundary conditions 

u{x, 0) = Λ ( χ ), u (±oo , t) = 0. (68.13) 

We choose to write the solution as 

u{x,t) = J g(x,t;z)h(z)dz, (68.14) 

where the Greens function g(x,t;z) satisfies 

&g_ = i_dg_ 

dx
2
 a

2
 at' 

g(x, 0; ζ ) = δ (ζ  — χ ), g(±oo,t; ζ ) = 0. 

Taking a Fourier transform (in x) of the equation for g(x, t; z) results in 

dg 2 2 -
— = -α  ω  g, 
α τ

 , (68.15) 

ftu>,0;z) = —e
i
»*, 

ν 2 π  

where g{u, t; ζ ) is defined to be the Fourier transform of g(x, t] z); tha t is, 

1 f°° 
g(u>, t; z) := - = / g(x, t; z)e

luJX
 dx. 

ν  2 π  J-oo 

Solving the ordinary differential equation in (68.15) results in 

g{w,t;z) = ^==e^e-
a2
^. 

ν 2 π  

Using the inverse Fourier transform we then have our solution 

1 f°° 
g(x,t;z) = - = / g(u,t;z)e

 %ω χ
 dx. 

ν  2 π  J-oo 

By using the convolution theorem for Fourier transforms, we can determine 

tha t 

This should be used in (68.14) to determine the solution to (68.12) and 

(68.13). 

E x a m p l e 2 

Suppose we are given the parabolic part ial differential equation 
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Table 68: 

Green's functions for various partial differential equations. 

In the following, r = (x, y, z), r 0 = (xo, yo, 20), R
2
 = (x - xo)

2
 + (y - yo)

2
 + 

(z - zo)
2
, P

2
 = (x - xo)

2
 + (y - yo)

2

, and H(-) is the Heaviside function 

(equal to one when the argument is positive, otherwise zero). 

• For the potential equation 

V
2
G + k

2
G = - 4 Τ Γ Ο ( Γ - Γ Ο ) , 

with the radiation condition (outgoing waves only), the solution is 

? ™ „ i f c | s - * o ! 

k 

G — ^ inH^(kP) in two dimensions, 

eikR 

—— in three dimensions, 
i t 

where #£
1 }

( · ) is a Hankel function (also called a Bessel function of the third 
kind). 

• For the diffusion equation 

V
2

G - α
2
ψ - = - 4 π ό ( Γ  - r0)6(t - t0), σ τ  

with the initial condition G = 0 for t < to, and the boundary condition 

G = 0 a t r = ooin7V dimensions, the solution is 

Ν  

Γ  - — I
 a

 \ „ - a
2

l i r - r 0 | |
2

/ 4 ( t - t 0) 
^ — 2 

a
2
 \2y/ic(t-to)J 

• For the wave equation 

V
2

G - i §
 =

 "
4

^ (
r

 -
 r

o)S(t - *o), 
c dt 

with the initial conditions G = Gt = 0 for t < to, and the boundary 
condition G — 0 at r = 00 the solution is 

2cnH 

G={ 

one space dimension, 

2c 
. =H \(t — to) — —1 for two space dimensions, 

y/c
2
(t-t0)

2
-P

2 L Ci 

^ ^ - (t — io)J for three space dimensions. 
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N o t e s 

[1] If ζ  is in a η -dimensional space, then the integrals appearing in (68.5.d) and 

(68.6.d) are η  single integrals, each one over one of the coordinate axes. 

[2] Delta functions, in non-rectangular coordinate systems, are easily deter-

mined by a change of variables in the defining relation: J δ (ζ ) dz = 1. In 

changing variables, the Jacobian of the transformation will then divide the 

delta function terms. For example: 

(A) In a spherical coordinate system, usually denoted by the coordinates 

r, Θ , and φ , the delta function located at the point x' = (r', #',(//) is 

given by 

δ (χ  - χ ' ) = Τ Λ -τ ί ί Γ  - ν ')δ (θ  - θ ')δ (φ  - φ '), 
r smv 

for r ' φ  0 and θ ' Φ  Ο ,π . For a point source at r = r' and 0 = 0, 

the representation 6(r — r')6(6)/2nr
2
 sin0 may be used, while a point 

source at the origin has the representation ό ( Γ )/4 π τ *
2

. 

(Β ) In a cylindrical coordinate system, usually denoted by the coordinates 

ρ , Θ , and z, the delta function located at the point χ ' = (ρ ',θ ',ζ ') is 

given by 

_ χ , } = δ {ρ -ρ ')δ (θ -θ ')δ (ζ -ζ ')^ 

Ρ  

δ (ζ )δ ( ) 
for p' > 0. A point source at the origin has the representation 

27Γ  ρ  

[3] If G*(x; z) satisfies the problem adjoint to !,[·] (see page 74), then G(x; z) = 

G*(z;x). Therefore, if £,[·] and its associated boundary conditions are self-

adjoint and L[G(x; z)] = <$(x — z), then G(x; z) = G(z; x). This is called the 

reciprocity principle. It can be observed in our example (see (68.9)). 

[4] When the operator is self-adjoint, the Green's function is sometimes written 

in terms of the variables x< and x> instead of χ  and z. When this is done, 

x< (x>) represents the smaller (larger) of χ  and z. For example, (68.11) 

i l l · ^/ \
 x

< (
x
> ~ L) 

could be written as G(x; z) = —-—= -. 

As another example, the differential equation with boundary conditions 

y" + k
2
y = / (x ) , 

y (0) = 0, y ' ( l ) = 0, 

π  , r . ^ / \ cosfc(l — x<) sinkx> 
has the Green s function G(x: z) = ; = . 

k cos k 
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[5] Consider the self-adjoint second order operator L[u] = (p(x)u'(x))'+q(x)u(x), 
and consider the boundary conditions 

Bi[u] := a\u(a) + a,2u(a) = 0, 

B2[u] :=biu(b) + b2u'(b) = 0. 

Define φ (χ ) and ψ (χ ) to be the solutions to: 

(68.16) 

ί ,[φ ] = \τ (χ )φ , Β 1[φ ] = 0, 

L[tp] = \r(x)rp, Β 2[ψ ] = 0. 

Then, the Green's function for the operator L — Ar, which satisfies the 

boundary conditions in (68.16) is given by G\(x;z) = ^τ ~τ ^$τ τ ^ι τ ^ where 
ρ (χ )\ν {φ ,ψ ) 

\ν (φ , φ ) represents the Wronskian. 

[6] There will not exist a Green's function if the solution of the original problem 

is indeterminate. In this case, a generalized Green's function will exist. As 

an example, consider the system 

y" = /(*), 

2/(0) = 2 / ( 1 ) , 

y ' ( 0 ) = 2 / ' ( l ) . 

If u(x) is any solution to the above system, then so is u(x) + C where C is 
any constant. Since the solution of the original system is indeterminate an 
ordinary Green's function cannot be found. See the section on alternative 
theorems (page 14) or Farlow [4] for details. 

Sometimes, in such problems, the specific solution in which the Green's 
function is symmetric in both χ  and ζ  is chosen. This results in the modified 
Green's function. See Stakgold [8] (pages 215-218) for details. 

[7] Fokker-Planck equations have delta function initial conditions. The meth-
ods used for solving these equations are the same as the methods used for 
finding Green's functions. 

[8] Butkovskiy's book [2] has a comprehensive listing of Green's functions. 
Any particular Green's function problem is partitioned into one of several 
separate disjoint groups labeled by a triple of integers: (r, m ,n ) . In this 
partitioning, r represents the dimension of the spatial domain, m is the 
order of the highest derivative with respect to t, and η  is the order of the 
highest derivative with respect to the space variables. Over 500 problems 
are catalogued and solved. 
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69. Homogeneous Equations 

A p p l i c a b l e t o First order ordinary differential equations of a certain 

form. 

Y i e l d s 

An exact solution. 

Idea 

If P(x, y) and Q(x, y) are homogeneous functions of χ  and y of the same 

degree, then, by the change of variable y = vx, the differential equation 

y' = P(x,y)/Q(x,y) can be made separable. 
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69. Homogeneous Equations 

A p p l i c a b l e t o First order ordinary differential equations of a certain 

form. 

Y i e l d s 

An exact solution. 

Idea 

If P(x, y) and Q(x, y) are homogeneous functions of χ  and y of the same 

degree, then, by the change of variable y = vx, the differential equation 

y' = P(x,y)/Q(x,y) can be made separable. 
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P r o c e d u r e 

A function H(x, y) is called homogeneous of degree η  if H(tx, ty) = 

t
n

H(x,y). In particular, a polynomial, P(x,y), of two variables is said to 

be homogeneous of degree η  if every t e rm of P(x, y) is of the form xJy
n

~J 

for j = 0 , 1 , . . . , n. A homogeneous function of degree η  can be wri t ten as 

H(x,y) = x
n

H(l,y/x). Therefore, given an ordinary differential equation 

of the form 

dx Q(x,y) 

where P(x, y) and Q(x, y) are bo th homogeneous polynomials of degree n, 

we change variables by y = vx to obtain 

dv P(l,v) 
X h V = ———-. 

dx Q(l,v)' 

Since this is a separable equation, it can be integrated to yield (see page 341) 

dv 

I 
Q(i,v) 

where C is an arbi trary constant . 

= log χ  + C, 

E x a m p l e 
Suppose we have the ordinary differential equation 

dy_ = 2x
3

y - y
4 

dx x
4

 - 2xy
3 (69.2) 

Since bo th the numerator and denominator of the r ight-hand side of (69.2) 

are homogeneous polynomials of degree four, we set y = vx to obtain 

dv 2v — v
4 

x— + ν  = ~. 
dx 1 - 2v

6 

or 
dv ν  + v

4 

x-
dx 1 - 2v

3

 ' 

This last equation is separable, and the solution is given by 

..3 

J x J ν  + I T 

logx = / f ^-^r ] dv 

J \v l + v
3

) 

= log ν  - log(l + v
3

) + log C, 

or 
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where C is an arbi t rary constant. Substi tut ing ν  = y/χ  in (69.3) yields the 

final solution x
3

 + y
3

 = Cxy. 

N o t e s 

[1] Equation (69.1) may be made exact (see page 238) by multiplying by the 

integrating factor l/(Px — Qy). 

[2] This method is derivable from Lie group methods (see page 314). 

[3] This method is contained in the method for scale invariant equations (see 
page 338). 

[4] Beware that the expression "homogeneous equation" has two entirely differ

ent meanings, see the definitions (page 1). 

[5] It may be simpler to think of homogeneous equations as ordinary differential 

equations of the form dy/dx = f (y/x). This is equivalent to (69.1). 

[6] The equation 

dj_ = f a tx + ftty + c A 9 4) 

dX ya,2X + 02y + C2 J 

can be made homogeneous if α ι &2 φ  &2b\. The change of variables 

χ  = X + Λ , 

y = Y + k, 

changes (69.4) into the homogeneous equation 

dY = / a i X + 6ir\ 
dX

 J

\a2X + b2Y)' 

when h and k satisfy the equations: ^ ^ ^ fc^
 =

 ^ ^ ) ' 

[7] If α ι &2 = a2&i, then (69.4) can be made separable (see page 341). Changing 

variables via Y = χ  + — y = χ  + — y results in the equation 
α ϊ  a>2 

dY_ = χ | 6ι  /α χ Υ  + α \ 

dx ai \ci2Y + C2J 

x(l + v
3

) = Cv, (69.3) 

file:///ci2Y
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70. Method of Images* 

A p p l i c a b l e t o Differential equations with homogeneous boundary 

conditions and sources present. 

Y i e l d s 

An exact solution. 

I d e a 

If we know the solution to a free space problem, then we can often 

use superposition to find a solution in a finite domain with homogeneous 

boundary conditions. 

P r o c e d u r e 

Given a problem with a source present, solve the free space problem 

( that is, disregarding the boundary conditions). By superposition, deter

mine the solution when there are sources at different points, of different 

s trengths. Choose the position and strengths of these sources so as to 

obtain the desired boundary conditions. 

The added sources cannot appear in the physical domain of the prob

lem. Symmetry considerations tend to simplify the process of determining 

where the sources should go. 
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F igure 70.1 Equation (70.1) represents the potential outside of a grounded 
sphere of radius R , with a source point present. 

E x a m p l e 1 

Suppose we wish to find the potential , </>(x), outside of a grounded 

sphere of radius ß , when there is a point source at position y (with | |y | | = 

λ  > R). The equations tha t represent this problem are: 

V
2
0 = < 5 ( x - y ) , 

0, φ  

|x||=ä 

= 0, 
(70.1.a-c) 

|x||=oo 

in the region R < | |x | | < oo. See Figure 70.1. If the boundary condition at 

| |x | | = R is ignored, then the problem 

V
2

* = < 5 ( x - y ) , 

= 0, 

||x||=oo 

has the solution (using Green's functions, see page 273) 

1 
φ  = — 

4 π | | χ - γ | Γ  

If we place an additional source of s t rength S at the point ζ  and solve 

ν
2
Φ  = « ( χ - γ ) + 5 Α ( χ - ζ ) , 

(70.2) 

Φ  = 0, 
(70.3) 

||x||=oo 

then we obtain (using (70.2) and superposition) 

1 S Φ  = — 
4 π | | χ  - y | | 4 π | | χ  - z| 

(70.4) 
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Note tha t the point ζ  cannot be in the region Ä < | |x | | < oo, since then 
equation (70.3) (whose solution we want to be the solution to (70.1)) will 
not satisfy (70.1.a). 

To determine the s t rength and location of the additional source ( 5 and 
z), we calculate the potential at χ  = ρ  where | | p | | = R (i.e., on the surface 

of the sphere). We find 

Φ  

x = p 
4 π  | p - y | l P - z | 

For this to be zero (and so Φ  = φ ) we require (after some vector algebra) 

λ
4 ζ  = -y-

Hence, 

Φ  -
4 π  

R 

y| | λ
4

 | | x - y Ä
2
/ A

2 (70.5) 

satisfies (70.3) and also (70.1.b). Since | |z| | < R (by virtue of | |y | | = λ  > R) 
the point source, we added is not in the physical domain of the problem. 

Therefore, the solution to (70.1) is given by (70.5). 

E x a m p l e 2 

Suppose we wish to solve Laplace's equation in the half plane: 

V
2

u = 0, for y > 0, —oo < χ  < oo, 

u(x,0) = f(x), 

u —• 0, as \x
2
 + y

2
\ —• oo. 

(70.6) 

The solution to (70.6) can be obtained by Green's functions (see page 273): 

/

dG 
/ ( x ) — ( x , 0 ; C , i ? ) d x , (70.7) 

where the Green's function G(x, y; ζ , η ) satisfies: 

d
2
G d

2
G 

V'G = 
dx

2
 dy

2 

G(x,0;<,»7) = 0 

= 6(x - ζ )6(ν  - η ), 
(70.8. α -6) 

A solution to (70.8.a) is given by 

G(x, y, Cv) = ^ log \/(x - C)
2

 + (y- v)
2

- (70.9) 
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a y 

> 
χ  

Figure 70.2 The original source and the image source for (70.8). 

But (70.9) does not satisfy (70.8.b). If we place an image source at (ζ , —77), 

having the opposite sign of the source at (ζ , η ) then G(x, y; ζ , η ) will vanish 

along y = 0 by symmetry. See Figure 70.2. 

Hence, the solution to (70.8) is 

This solution is known as Poisson's integral 

N o t e s 

[1] The method of images is often used to solve Laplace's equation in hydrody-

namics and electrostatics. 

[2] The method of images is also often used for diffusion problems and hyper-

bolic problems. See, for example, Butkov [1] or Stakgold [4]. 
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pages 1487-1492. 
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1962, pages 26-29. 
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New York, 1953, pages 228-230. 

[5] I. Stakgold, Green's Functions and Boundary Value Problems, John Wiley 

& Sons, New York, 1979, pages 72-73 and 491-493. 

[6] E. Zauderer, Partial Differential Equations of Applied Mathematics, John 

Wiley & Sons, New York, 1983, pages 420-432. 

G(x, y; C, î?) = ^ - log V ( x - 0
2

 + (y-rj)
2

 - ^ log y/(x - ζ )
2

 + (ν + η )
2
. 

Using this is in (70.7), we obtain the solution to (70.6): 
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71. Integrable Combinations 

A p p l i c a b l e t o Systems of ordinary differential equations. 

Y i e l d s 

One or more ordinary differential equations tha t can be integrated 

exactly. 

I d e a 

Sometimes, by combining pieces of a system of differential equations, 

a combination of the dependent variables can be determined explicitly in 

terms of the independent variable. 

P r o c e d u r e 

Integration of the system of ordinary differential equations 

= fi(t,Xi,X2,...<>Xn), for i = 1 , 2 , . . . , n , 

is often accomplished by choosing integrable combinations. An integrable 

combination is a differential equation which is derived from a system of 

differential equations and is readily integrable. 

E x a m p l e 1 

Given the two equations 

ι - I - <™ 

an integrable combination can be obtained by adding the two equations to 

obtain 

d(x + y) . m 

- d t -
= X + y

-

This last equation can be integrated (treating χ  + y as a single variable) to 

yield 

x + y = Ae\ (71.2) 

where A is an arbi t rary constant. For the equations in (71.1), another 

integrable combination may be obtained by subtract ing the equations. 

Integrating this new equation results in 

x - y = Be~\ (71.3) 

where Β  is another arbi t rary constant . The explicit solution for x(t) and 

y(t) may be obtained by combining (71.2) and (71.3). 
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E x a m p l e 2 

Suppose we have the nonlinear system of ordinary differential equa

tions 

dx 

dy q 

Λ
 = 3XZ

' 

dz 

Tt = ~
xy

-

Multiplying the first equation by x, the second by 2y, and the third by 3z 

and adding, results in 

^
x

 + 2 ^ + 3 ^
Z

 0 
dt dt dt 

This last equation may be integrated to obtain x
2

 + 2y
2

 + 3z
2

 = C, where C 

is an arbitrary constant. For this example, another integrable combination 

can be found by multiplying the first equation by x, multiplying the second 

by 2 / , and adding. After solving this new differential equation, we determine 

the additional relation x
2

 + y
2

 = D, where D is another arbi trary constant. 

N o t e s 

[1] Each linearly independent integrable combination yields a first integral of 

the original system. 

R e f e r e n c e s 

[1] L. E. Elsgolts, Differential Equations and the Calculus of Variations, MIR 

Publishers, Moscow, 1970, pages 186-189. 

72. Integral Representations: 

Laplace's Method 

A p p l i c a b l e t o Linear ordinary differential equations. 

Y i e l d s 

An integral representation of the solution. 

Idea 

Sometimes the solution of a linear ordinary differential equation can 

be writ ten as a contour integral. 
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Laplace kernel: 

Euler kernel: 

We combine (72.2) and (72.1) for 

K{z,£) = efi* (72.3) 

Κ (ζ ,ξ ) = (ζ -ξ )
Ν

 (72.4) 

/ Ε Μ [Κ (ζ ,ζ )]ν (ξ )ά ξ  = 0. (72.5) 
Je 

Now we must find a linear differential operator Α ξ [·], operating with respect 

to ξ , such tha t 

L,[K{z^)] = At[K{z,t)]. 

After Α ξ [-] has been found, then (72.5) can be rewrit ten as 

/ Α ξ [Κ (ζ ,ξ )]ν (ξ )ά ξ  = 0. (72.6) 
Je 

Now we integrate (72.6) by par ts . The resulting expression will be a 

differential equation for ν (ξ ) with some boundary terms. The boundary 

terms determine the contour C, and the differential equation determines 

ν (ξ ). Knowing bo th ν (ξ ) and C, the solution to (72.1) is given by (72.2). 

P r o c e d u r e 

Let Lz[-] be a linear differential operator with respect to z, and suppose 

tha t the ordinary differential equation we wish to solve has the form 

Lz[u{z)]=0. (72.1) 

We look for a solution of (72.1) in the form 

u(z)= [ Κ (ζ ,ξ )ν (ζ )ά ζ , (72.2) 
Je 

for some function ν  (ξ ) and some contour C in the complex ξ  plane. The 

function K(z, ξ ) is called the kernel Some common kernels for Laplace's 

method are: 
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Spec ia l C a s e 

For the case where Lz[-] is a linear operator with polynomial coeffi

cients, the solution is easy to find using the Laplace kernel. Let Lz[] have 

the form 

(72.7) 

where the {ar3} are constants. Then define the linear differential operator 

Μ ,[·] by 

Now define Μ £[·] to be the adjoint of Μ ξ [·]. Then Lz[u(z)] = 0 will have a 

solution of the form 

(72.8) 

if ν  (ξ ) satisfies 

and C is determined by 

(72.9) 

(72.10) 

where P{e
z

^, ν (ξ )}
 1S

 the bilinear concomitant of e
z

^ and υ (ξ ) (see page 

187). Note the order of the original differential operator in (72.7) was Ν  

while the order of the differential operators in (72.8) and (72.9) is M. 

E x a m p l e 

Consider Airy's equation 

(72.11) 

We assume tha t the solution of (72.11) has the form 

(72.12) 

for some υ  (ξ ) and some contour C. Substi tut ing (72.12) into (72.11) we 

find 

(72.13) 
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Figure 72. A solution to (72.11) is determined by any contour C that starts 
and ends in the shaded regions. All of the shaded regions extend to infinity. One 
possible contour is shown. 

The second term in (72.13) can be integrated by par ts to obtain 

/ Î
2
f ( 0 e * d e - \ν (ζ )β *\ + t t / (€ )e*de = 0, 

Je L \c Jc 

or 

+ / [ i
2
t ; (0 + ν '{ζ )] ά ξ  = 0. (72.14) 

L l e Je 

We choose 

and 

€
2
« ( 0 + »'(0 = o, 

ν (ξ )ε  = 0. 

(72.15) 

(72.16) 

Wi th these choices, equation (72.14) is satisfied. From (72.15) we can solve 
for ν (ξ ) 

Using (72.17) in (72.16) we must choose the contour C so tha t 

<r3> 
= « p ( - * - l . ) | = 0 , 

(72.17) 

(72.18) 

for all real values of z. The only restriction tha t (72.18) places on C is 
tha t the contour s tar t and end in one of the shaded regions in Figure 72. 
Finally, the solution to (72.11) can now be writ ten 

u{z)= [ e«* 
Jc 

»de- (72.19) 

Asymptotic methods can be applied to (72.19) to determine information 
about u(z). 

A 
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Lz = 

so that (from (72.8)) 

and also 

Μ * =ξ
2

 + 
2 d 

So we have to solve (from (72.9)) 

Μ ^[υ (ξ )] = ξ
2

υ  + υ ' = 0. 

Since this last equation is identical to (72.15), we find the same υ (ξ ). We 

compute the bilinear concomitant to be 

P { e * « ( 0 } = « ( 0 ^ e * - e * ^ « ( 0 , 

= (ζ  + ξ
2

)β χ ρ (-ζ ξ -ψ ), 

and we find the same contour C as before (see 18). 

N o t e s 

[1] Two linearly independent solutions of Airy's equation are often taken to be 

1 f°° ft
3

 \ 
Ai(x) = — cos I —- + xt J dt, 

π

 Jo V
3
 / 

Bi(x)
 = ~ J |

e x

P ^ ~ y + c o s ̂  V + x i) dt. 

These solutions represent two different choices of the contour in (72.19). 
[2] The Laplace equations 

(aox + &o)y
( n)

 + (aix + 6 i ) y
( n - 1)

 + ... + (anx + bn)y = 0 

have solutions in the form of (72.2). Indeed, this was Laplace's original 
example. See Valiron [6] or Davies [3] for details. 

[3] When the kernel of the transformation is some function of the product ζ ξ , 

then this method is sometimes called the Mellin transformation. See Ince [4] 
for details. 

For this example, we also could have used the general results in (72.8)-

(72.10). Identifying equation (72.11) with the operator in equation (72.7) 

we find 

dz
2

 *' 



72 . Integra l R e p r e s e n t a t i o n s : Laplace 's M e t h o d * 289 

[4] Sometimes a double integral may be required to find an integral represen

tation. In this case, a solution of the form u(z) = ff K(z; s, t)w(s, t) ds dt is 

proposed. Details may be found in Ince [4], page 197. As an example, the 

equation 

(x
2

 - l Ä + (α  + & + l)x^- + aby = 0 
dx dx 

has the two linearly independent solutions 

y±(x) = J e x P| ± X 5 t - ^(S
2
 + <

2
) ] S

0
"

1
*

6
-

1
 dsdt. 

[5] Equations of the form 

[•"'(•=) + 0 (*=)]"·· 
which are sometimes called Pfaffian differential equations, can also be solved 
by this method. See Bateman [2] or Ince [4] (page 190) for details. 

[6] An application of this method to partial differential equations may be found 
in Bateman [2], pages 268-275. 

[7] The Mellin-Barnes integral representation for an ordinary differential equa-
tion has the form 

u(z) = f 
Jc 

Κ (ζ ,ξ )ζ * 

Π
Γ

( * ί - θ Π Γ ( 1 - α , + 0 
J = l 

Π  Γ ( 1 Π  Γ  (ai-ξ ) 
Lj=m+1 j = n+l 

dl. 

In this representation, only the contour C and the constants {ai, 6j, m, n, g, r} 
are to be determined (see Babister [1] for details). 

R e f e r e n c e s 
[1] A. W. Babister, Transcendental Functions Satisfying Nonhomogeneous Lin-

ear Differential Equations, The MacMillan Company, New York, 1967, pages 
24-26. 

[2] H. Bateman, Differential Equations, Longmans, Green and Co., 1926, Chap-
ter 10, (pages 260-264). 

[3] B. Davies, Integral Transforms and Their Applications, Springer-Verlag, 
New York, 1978, pages 342-367. 

[4] E. L. Ince, Ordinary Differential Equations, Dover Publications, Inc., New 
York, 1964, pages 186-203 and 438-468. 

[5] F. W. J. Olver, Asymptotics and Special Functions, Academic Press, New 
York, 1974. 
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[6] G. Valiron, The Geometric Theory of Ordinary Differential Equations and 

Algebraic Functions, Math Sei Press, Brookline, MA, 1950, pages 306-319. 

73. Integral Transforms: 

Finite Intervals 

A p p l i c a b l e t o Linear differential equations. 

Idea 

In order to solve a linear differential equation, it is sometimes easier to 

transform the equation to some "space," solve the equation in tha t "space," 

and then transform the solution back. 

P r o c e d u r e 
Given a linear differential equation, multiply the equation by a kernel 

and integrate over a specified region (see Table 73 for a listing of common 

kernels and limits of integration). Use integration by par ts to obtain an 

equation for the transform of the dependent variable. 

You will have used the "correct" transform (i.e., you have chosen the 

correct kernel and limits) if the boundary conditions given with the original 

equation have been utilized. Now solve the equation for the transform of 

the dependent variable. Prom this, obtain the solution by multiplying by 

the inverse kernel and performing another integration. Table 73 also lists 

the inverse kernel. 

E x a m p l e 1 
Suppose we have the boundary value problem for y = y (χ ) 

y**
 + y = 1

> (73.1.a-c) 
2/(0) = 0, y(l) = 0. 

Since the solution vanishes at bo th of the endpoints, we suspect tha t a 

finite sine transform might be a useful transform to try. Define the finite 

sine transform of y(x) to be ζ (ξ ), so tha t 

ζ (ξ ):= [ y(x)s'm£xdx. (73.2) 
Jo 

(See "finite sine t ransform-2" in Table 73). Now multiply equation (73.1.a) 

by sinÇx and integrate with respect to χ  from 0 to 1. This results in 

/ yxx{x)sm^xdx-\- I y{x)sm£)xdx = I sm^xdx. (73.3) 
Jo Jo Jo 
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If we integrate the first t e rm in (73.3) by par ts , twice, we obtain 

L yxx{x) s i n f x d x = y x( x ) s i n £ x 
ο  

x=l 

— £y(x )cos fx 
x=0 

x=l 

χ

 x =0

 (73.4) 

+ £
2

 / y(x)sinÇx dx. 
Jo 

Since we are only interested in ξ  = 0, π , 2 π , . . . , (see Table 73) the first t e rm 

on the right-hand side of (73.4) is identically zero. Because of the boundary 

conditions in (73.1.b-c), the second t e rm on the right-hand side of (73.4) 

also vanishes. Since we have used the given boundary conditions to simplify 

certain terms appearing in the transformed equation, we suspect we have 

used an appropriate transform. If we had taken a finite cosine transform, 

instead of the one tha t we did, the boundary terms from the intergration 

by par ts would not have vanished. 

Using (73.4), simplified, in (73.3) results in 

f
2

 ί  y(x)sin£xdx + J y(x) sinfxdx = — 
Jo Jo 

— COS ξ  

Using the definition of ζ (ξ ) (from (73.2)) this becomes 

or 

fc\
 1

 ~
C Q S

£ ζ (ί ) = ïïTërc 
Now tha t we have found an explicit formula for the transformed function, 
we can use the summation formula (inverse transform) in Table 73 to 
determine tha t 

ν (
χ

)= Σ  2z(Osin£x, 
ξ =0,7Γ ,2π ,... 

1 — cos ξ  

Σ ± — COS ζ  . ^ 
2 - 77— sin fx, 

( l + £
2

)£ 

t o (ΐ  + Λ
2

) ^ 

y-v 4 sin knx 

(73.5) 

fc
=
1
,3,

5
,...(

1

+-
2fc2

)-
fc

' 

where we have defined k = ξ /π . 

cos 1 — 1 
The exact solution of (73.1) is y(x) = 1 — cos χ -I : s inx . If this 

s i n l 

solution is expanded in a finite Fourier series, we obtain the representation 

in (73.5). 
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E x a m p l e 2 

Suppose we have the following part ia l differential equation for 0(r , t) 

(this corresponds to the temperature of a long circular cylinder whose 

surface is at a constant temperature) 

d
2

o Ida Ida 

T r y H—~JT — for 0 < r < 1 and t > 0, 
dr1 r dr κ  dt , . 

0( l ,<) = 0o, f o r * > 0 , '
0 ) 

0(r,O) = 0, for 0 < r < 1. 

Multiplying this equation by rJ0(pr) (where ρ  is positive and satisfies 

Jo(p) = 0,
 s ee

 "finite Hankel t ransform-1" in Table 73), and integrating 

with respect to r from 0 to 1, we find 

Ρ Φ Ο 4(Ρ ) - P
2

* = ~ , (73.7) 
κ  at 

where we have defined Φ ( ρ , i) = </>(r, t)rJo(pr) dr. This follows from the 

relation: / ( —s- + - — J rJ0(pr) dr = ρ φ ο Μ ρ ) - ρ
2

Φ ( ρ , t). The initial 

Jo V dr
z

 r or J 

condition in (73.6) is transformed to Φ ( ρ , 0) = 0. Using this, we can solve 

(73.7) to find Φ ( ρ , t) = —JQ(P) [e~
Klp2t

 - l ) . Taking the inverse transform 

(and noting tha t JQ{P) = —Ji(p)) we arrive at the final solution to (73.6): 

« Γ , . , - * . Σ ( < - * - 0 3 5 & 

where the summation is over all positive roots of Jo(p) = 0. 

Table 73: 

Different transform pairs of the form 

rß 

t/(£fc) = / u(x)K(x,£k)dx, u(x) = Y^H(x,Çk)v(tk). 
J a

 it 

Fin i te cosine t r a n s f o r m - 1, (see Miles [6], page 86) here / and h are arbitrary, 
and the satisfy £k tan£fcZ = h. 

ν { ω = f ^ o « ^ ) * , «(«) = S
(2

"^
o)(

lt
ft

'i!,T
(&x)

t>(&). 
Jo tk ^

h

 ' 
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Finite cosine transform - 2, (see Butkov [2], page 161) this is the last 

transform with h = 0, I = 1, so that £k = 0, π , 2π , 

v

(£k) = / u(x) cos (x£fc) dx, ti(x) = 5̂ (2 - <5ξ Λ ο ) cos (£fcx) 

Finite sine transform - 1, (see Miles [6], page 86) here I and h are arbitrary, 

and the {ξ *} satisfy cot (ξ */) = —Λ . 

V(&)= /V) ein u{x) = Σ 2
( α

 + W)-

Finite sine transform - 2, (see Butkov [2], page 161) this is the last transform 

with h = 0, / = 1, so that = 0, π , 2π , 

w(Îfc) = / t i ( a r ) sin (x£fc) dx, ti(x) = ^ 2 sin (£fcx) ν (ξ *). 

Finite Hankel transform - 1, (see Tranter [9], page 88) here η  is arbitrary 

and the are positive and satisfy Jn(£k) = 0. 

= Γ  U ( X ) X J „ ( s & ) dX, u ( s ) = T
 2

 * ^ L " « * ) -

Λ  T T Λ Η +ΐ Ι Ξ Α :) 

Finite Hankel transform - 2, (see Miles [6], page 86) here η  and /i are arbitrary 

and the are positive and satisfy Çk Jn{aÇk) + hJn(a£k) = 0. 

t l ( & ) = Ζ
0

 t l ( * ) * J „ ( * & ) dX, I I ( X ) = Σ  Γ ^ 2 ^ ^ ί
η ( Χ ζ

η  , 2 , t Mtk). 

Jo " K/
1 a

 -
m

 /Ά ι ί α ς / Υ  

Finite Hankel transform - 3, (see Miles [6], page 86) here b > a and the 

satisfy Zn(bÇk) = 0 where Zn(x£fc) : = ^ n « * ) J n( x £ k ) - Jn(aÇk)Ynfâk). 

«(&)= [
b

u(x)xZn(xCk)dx, u(x) = Σ \ ff ff
 ) Z

: ^ t \
V

^ ' 

Legendre transform, (see Miles [6], page 86) here Çk = 0,1,2, 

««O = f η (χ )Ρ ξ „ (x) dx, u(x) = T %*±±P<t (*)«(&)· 
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N o t e s 

[1] There are many tables of transforms available (see Bateman [1] or Magnus, 

Oberhettinger, and Soni [5]). It is generally easier to look up a transform 

than to compute it. 

[2] Transform techniques may also be used with systems of linear equations. 

[3] The Legendre transform is useful for differential equations that contain the 

operator L[u] = — ^(1 —
 r 2

) ^ r ) - For example, the transform of L[u] is 

simply - ξ *( ξ * + 1) ν (&)· 

[4] The finite Hankel transforms are useful for differential equations that contain 
2 

ι  r Γ  1 ur η  
the operator L[u\ = urr Λ  -~u. 

r r 

[5] Integral transforms can be constructed by integrating the Green's function 

for a Sturm-Liouville eigenvalue problem. This involves explicitly finding 

a representation of the delta function in terms of the eigenfunctions. For 

example, the relation 

= y 2Jo(QJo(f rÇ) 

γ  J?(0 

where the sum is over all of the roots of Jo(C) = 0, can be used to derive the 

Fourier-Bessel series (i.e., the "finite Hankel transform - 1," with η  = 0 

and a = 1). For more details see Stakgold [8]. 

[6] A transform pair that is continuous in each variable, on a finite interval, is 

the finite Hilbert transform 

π

 J - i
 χ

- ς  

dx, u(x) = 
v T 

π

 J-l 

1

 V^ë υ (ξ )ά ξ  

where C is an arbitrary constant, and the integrals are to be evaluated in 
the principal value sense. See Sneddon [7], page 467, for details. 

[7] Assuming that g(u + 1) = g(u), f(t + 1) = /(<), g(u)du = 0, and 

f(t)dt = 0, then we have the transform pair 

f(t)= I g(u) cot n(t — u) du, g(u) = / f(t) cot π ( ί  — u) du. 
Jo Jo 

See Courant and Hilbert [3], page 98. 
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74. Integral Transforms: 

Infinite Intervals 

A p p l i c a b l e t o Linear differential equations. 

I d e a 

In order to solve a linear differential equation, it is sometimes easier to 

transform the equation to some "space," solve the equation in tha t "space," 

and then transform the solution back. 

P r o c e d u r e 

Given a linear differential equation, multiply the equation by a kernel 

and integrate over a specified region (see Table 74 for a listing of common 

kernels and limits of integration). Use integration by par ts to obtain an 

equation for the transform of the dependent variable. 

You will have used the "correct" transform (i.e., you have chosen the 

correct kernel and limits) if the boundary conditions given with the original 

equation have been utilized. Now solve the equation for the transform of 
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74. Integral Transforms: 

Infinite Intervals 

A p p l i c a b l e t o Linear differential equations. 

I d e a 

In order to solve a linear differential equation, it is sometimes easier to 

transform the equation to some "space," solve the equation in tha t "space," 

and then transform the solution back. 

P r o c e d u r e 

Given a linear differential equation, multiply the equation by a kernel 

and integrate over a specified region (see Table 74 for a listing of common 

kernels and limits of integration). Use integration by par ts to obtain an 

equation for the transform of the dependent variable. 

You will have used the "correct" transform (i.e., you have chosen the 

correct kernel and limits) if the boundary conditions given with the original 

equation have been utilized. Now solve the equation for the transform of 



296 I L A E x a c t M e t h o d s for O D E s 

the dependent variable. Prom this, obtain the solution by multiplying by 

the inverse kernel and performing another integration. Table 74 also lists 

the inverse kernel. 

W a r n i n g 

After a solution is obtained by a transform method, it must be checked 

tha t the solution satisfies the requirements of the transform. For example, 

for a function to have a Laplace transform, it must be a L2 function (i.e., 

square integrable). 

E x a m p l e 1 

Suppose we wish to find the solution to the parabolic part ial differential 

equation 

ut = a2uxx (74.1) 

with the initial condition and boundary conditions given by 

u(x ,0) = 0, 

u(0, t) = u0, for t > 0, (74.2.a-c) 

u(oo, t) = 0, for t > 0, 

where a and uo are given constants. 

Since this problem is in a semi-infinite domain (i.e., t varies from 0 to 

o o ) , we suspect tha t a Laplace transform in t may be useful in finding the 

solution. Let £{ ·} denote the Laplace transform operator, and define 

v(x,s) := C{u(x,t)} := / e~
8t

u(x,t)dt (74.3) 
Jo 

to be the Laplace transform of u(x,t). We want to manipulate (74.1) into 

a form such tha t there are v(x,s) terms present. To obtain this form, 

multiply (74.1) by e~
8t

 and integrate wth respect to t from 0 to o o to 

obtain 

roo /»oo 

/ e-
8t

ut(x,t) dt = a
2

 / e~
st

uxx(x,t) dt. (74.4) 
«/Ο  Λ ) 

The left-hand side of (74.4) can be integrated by par ts while the χ  deriva

tives can be taken out of the integral in the right-hand side to obtain 

_u(x,t)e " Γ  Γ  s e- s t u {x t ) dt = a2&_ r e - t u f a t ) d L 
s
 lo Jo ο χ

Δ

 Jo 

If we assume tha t l i m ^ o o e~
st

u(x, t) = 0 and use (74.2.a), then we obtain 

poo Q2 poo 

/ se~
st

u(x,t)dt = a
2

—~ e~
st

u(x,t) dt. 
Jo ο χ

Δ

 Jo 
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Finally, using the definition of v(x, s ) , from (74.3), we obtain 

d
2 

sv(x,s) = a
2

-^v(x,s), (74.5) 

which is essentially an ordinary differential equation in the independent 

variable x. The boundary conditions for this equation come from taking 

the Laplace transform of (74.2.b-c). We calculate 

Λ  OO 

v(0,s) := C{u(0,t)} = C{u0} = / e-
st

u0dt=—, 

Jo
 s 

u(oo, s) := £{u(oo , t)} = C{0} - 0. 

(74.6) 

Solving (74.5) with the boundary conditions in (74.6) results in 

(74.7) 

A table of inverse Laplace transforms, when applied to (74.7), results in 

u(x, t) — C {v{x, s)} 

/«σ +ΐ ο ο  γ  ρ σ -i-too 

= ^r- e
st

v(x,s) 2 πΐ

 Ja-zoo 

6 1

 \2ty/â) 

ds 
(74.8) 

= u0\l 

which is the final solution. 

Now tha t we have the solution we must either verify tha t it solves the 
differential equation and initial condition and boundary conditions tha t 
we s tar ted with (equation (74.1)), or we must verify tha t the steps we 
performed in obtaining the solution are valid. In this case it means verifying 
tha t l i m ^ o o e~

st
u(x, t) = 0, and tha t u(x,t) is square integrable. Since 

each of these are true, the solution found in (74.8) is correct. 
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E x a m p l e 2 

Suppose we have the ordinary differential equation 

dx 
-Tj=y+P(x) (74.9) 

for y(x), for —oo < χ  < oo, with the boundary conditions: y(±oo) = 0, 

y'(±oo) = 0. Since the equation is on a (doubly) infinite domain, we try 

to use a Fourier transform in χ  to find the solution. 

Let Τ {·] denote the Fourier transform operator, and define 

/

oo 

y(x)e
iux

dx 

-OO 

to be the Fourier transform of y(x). If we apply the operator to (74.9) 

(by multiplying by e
luJX

 and integrating with respect to x) , we find 

/
OO ι 4 Λ Ο Ο  Λ Ο Ο  

e*"*2J[da:= / e
iux

ydx + I e
iu)X

p(x)dx. 
-oo dx J—oo J—oo 

Integrating by par ts and using the given boundary conditions, this can be 

simplified to 

/

oo 

e
iwx

p(x) dx. 

-OO 

This last expression can be solved to yield 

ζ {ω ) = I e
iu,x

p{x)dx (74.10) 
ω * - 1 J - o o 

For any given p(x), the integral in (74.10) can be evaluated, and then an 

inverse Fourier transform can be taken to determine y(x) = Τ ~
1

{ζ (ω )}. 
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Table 74: 
Different integral transform pairs of the form 

Fourier transform, (see Butkov [5], Chapter 7) 

Fourier cosine transform, (see Butkov [5], page 274) 

Fourier sine transform, (see Butkov [5], page 274) 

Hankel transform, (see Sneddon [23], Chapter 5) 

Hartley transform, (see Bracewell [4]) 

Hilbert transform, (see Sneddon [23], pages 233-238) 

Ä"-transform, (see Bateman [2]) 
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Kontorovich-Lebedev transform, (see Sneddon [23], Chapter 6) 

υ (ξ )= f ^^-u(x)dx, u(x) = \ ί  ξ 8Ϊ η Υ ϊ (π ξ )Κ φ )υ (ξ )ά ξ . 
Jo

 x

 * Jo 

Kontorovich-Lebedev transform (alternative form), (see Jones [13]) 

roc 1 λ ι ο ο  

« ( 0 = / Hf\x)u{x)dx, u(x) = -— ξ Μ χ )υ (ξ )ά ξ . 

Jo J —too 

Laplace transform, (see Sneddon [23], Chapter 3) 

roc 1 /» σ  + ι ο ο  

υ (ξ )= / β -
χ ξ

 u(x) dx, tt(x) = - i T / β
χ ξ

υ (ξ )ά ξ . 

J 0 J σ  — loo 

Mehler-Fock transform of order m, (see Sneddon [23], Chapter 7) 

roc 

υ (ξ ) = / s inh(x)P^_ 1 / 2(coshx) u(x) dx, 
Jo 

roc 

u(x)= / ETANH(^)I^_ 1 / 2(cosha;)t ; (Ç)DÇ. 
Jo 

Mellin transform, (see Sneddon [23], Chapter 4) 

roo ^ ra + ioo 

ν (ξ ) = / x^~
x

 u(x) dx, u(x) — -—; / χ ~^ν (ξ )ά ξ . 
In 2π 2 / 
J 0 J σ  — loc 

Weber formula, (see Titchmarsh [25], page 75) 

/

o o 

^[Μ χ ξ )Υ ν (α ξ ) - Υ ν (χ ξ )Μ α ξ )] u(x)dx, 

Jo #{α ξ ) + Υ 2(α ξ ) 

Weierstrass transform, (see Hirschman and Widder [11], Chapter 8) 

V( 0 = - F = / e
u

~
x)2/4

u(x)dx, ti(x) = - ± = l i m / β
(χ

-
ί ξ )2/4

ν (ί ξ )ά ξ . 
ν 4 π  Λ /4π  τ ^ο ο  J_T 

Unnamed transform, (see Naylor [18]) 

υ (ξ ) = Ι  Κ 0(\ξ -χ \)η (χ )ά χ , u(x) = ~ (J^ - l) J Κ 0(\ξ -χ \)υ (ξ )ά ξ . 
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N o t e s 
[1] Note that many of the transforms in Table 74do not have a standard form. 

In the Fourier transform, for example, the two y/2n terms might not be 

symmetrically placed as we have shown them. Also, a small variation of the 

K-transform is known as the Meijer transform (see Ditkin and Prudnikov [8], 

page 75). 

[2] There are many tables of transforms available (see Bateman [2] or Magnus, 

Oberhettinger and Soni [16]). It is generally easier to look up a transform 

than to compute it. 

[3] Transform techniques may also be used with systems of linear equations. 

[4] If a function f(x,y) has radial symmetry, then a Fourier transform in both 

χ  and y is equivalent to a Hankel transform of f(r) = f(x,y), where r
2

 = 

x
2

 + y
2

. See Sneddon [23], pages 79-83. 

[5] Integral transforms can be constructed by integrating the Green's function 

for a Sturm-Liouville eigenvalue problem. This involves explicitly finding 

an integral representation of the delta function. For example, the relation 

can be used to derive the Fourier transform. To see this, change η  to χ  — ξ  

in (74.11), multiply by /(£) and integrate with respect to ξ  to obtain 

For more details, see Davies [7] (pages 267-287), or Stakgold [24]. 

[6] Many of the transforms in the table have a convolution theorem, which 

describes how the transform of the product of two functions is related to 

the transforms of the individual functions. For example, if g(t) (respectively 

h(t), k(t)) has the Laplace transform G(s) (respectively H(s), K(s)), and 

G{s) = H(s)K{s), then 

This is called a convolution product and is often denoted by g(t) = h(t)*k(t). 

See Miles [17], Table 2.3 (page 85). 

[7] Most of the transforms in Table 74 have simple formulae relating the trans

form of the derivative of a function to the transform of the function. For 

example, if G(s) is the Laplace transform of g(t) then 

£{</">(<)} = s
n

G{s) - g^-'Ho) + S 5

(

" -
2 )

( 0 ) + · · · + (-îr^-Vû). 
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d
r

u _ ( r y -
1

 dZ\u\Vr\ γ > 

dx
r

'
Vr

 ~ \x) dx 2^ 

-
1

 Ci 

• 1

 X 

1=1 

where vr = (—1/r, - 2 / r , . . . , —(r — l ) / r ) . This transform can be applied, 

for example, to the equations + axy' + by = f(x) and 

ι  d
r

 bi d
r _ 1

 br-i d\ , . . 

See Klyuchantsev [14] for details. 

[8] Two transform pairs that are continuous in one variable and discrete in the 

other variable, on an infinite interval, are the Hermite transform 

2 1 f°° 2 

u(x) = vnHn(x)e~
x / 2

, vn = / n n x, r- \ u(x)Hn(x)e~
x /2

 dx, 
^ (2 )W* 

where Hn(x) is the n-th Hermite polynomial, and the Laguerre transform 

°° ι  roc 

= Σ
 w

^ n W r /
 U

' . l V vn= u(x)L°{x)x
a

e~
x

 dx, 
^ Γ ( η  -h α  + 1) J0 

where L"(x) is the Laguerre polynomial of degree n, and a > 0. See 

Haimo [10] for details. 

[9] Integral transforms are generally created for solving a specific differential 

equation with a specific class of boundary conditions. The Mathieu inte

gral transform (see Inayat-Hussain [12]) has been constructed for the two-

dimensional Helmholtz equation in elliptic-cylinder coordinates. 

[10] The papers by Namias [19], [20] on fractional order Fourier and Hankel 

transforms contain several examples of how the transforms may be used to 

solve differential equations. 

[11] If we recognize that 

e - n & s h ? - ' ) s h ;

1=1 

then we see that the v—transform, defined by 

/•OO Λ Ο Ο  . ^ 

where ν  = ( ι / ι , . . . , vr-\) and i runs from 1 to r — 1 in each sum and product, 

can be used with (74.12) to obtain: 
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[12] Classically, the Fourier transform of a function only exists if the function 

being transformed decays quickly enough at ±oo. The Fourier transform 

can be extended, though, to handle generalized functions. For example, the 

Fourier transform of the n-th derivative of the delta function is given by 

;F(a<«>(t)) = ( iu, )». 

Another way to approach the Fourier transform of functions that do 

not decay quickly enough at either oo or — oo is to use the one-sided Fourier 

transforms. See Chester [6] for details. 

[13] Many of the transforms listed generalize naturally to η  dimensions. For 

example, in η  dimensions we have: 

(A) Fourier transform: ν (ξ ) = (2 τ τ )~
η /2

 / R n e ^
x

u ( x ) d x , 

u(x) = ( 2 * ) - » /
2

/ Rn e - *
x

t , « ) d 6 . 

(B) Hilbert transform (see Bitsadze [3]): 

ÈL 
dxi 

Φ (ν ) 

Ρ  Γ ( η /2) f yi - Xj Λ, 

Γ ( η /2) / ( y - x ) - V / 

" π - /
2

 | y - x |
n y

' 

l , 2 , . . . , n - l , 

[14] The name Bessel transform is given to an integral transform that involves a 

Bessel function. This class includes Hankel, K, Kontorovich-Lebedev, and 

many other transforms. 

[15] Note that, for the Hilbert transform, the integrals in Table 74 are to be 

taken in the principal value sense. 
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(A) if -J- Γ ^ τ ^ - — ) = / ( # ) , a function of χ  alone, then 
Ν  \ oy 

75. Integrating Factors 

A p p l i c a b l e t o Linear first order ordinary differential equations. 

Y i e l d s 

An exact equation tha t can then be integrated. 

I d e a 

When a given equation is not exact, it may be possible to multiply the 

equation by a certain t e rm so tha t it does become exact. The term tha t is 

used is called an integrating factor. 

P r o c e d u r e 

Let us suppose tha t the nonlinear ordinary differential equation 

M(x, y) dx + N(x, y)dy = 0 (75.1) 

is not exact (see pages 238-243). It may be, however, tha t if (75.1) is 

multiplied by an integrating factor u(x, y) the resulting equation 

uMdx + uNdy — 0 

is exact. For this to be the case, we require d(uM)/dy = d(uN)/dx, or 

id M _ dN_\ = Ndu _ Mdu 

\ dy dx J dx dy 

In general, solving the part ial differential equation in (75.2), for u(x,y), 

is more difficult t han solving the ordinary differential equation in (75.1). 

But, in certain cases, it may be easier. For example, 

dN\ 

dx J 

u{x,y) = u(x) = exp(f
x

 f(z) dz) is an integrating factor for 

(75.1); 

(B) if ( — = g(y), a function of y alone, then 
M \ oy ox J 

u(x,y) = u(y) = e x p ( /
2/

 g(z) dz) is an integrating factor for 

(75.1). 
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is an integrating factor. When (75.4) is multiplied by u(x) = x, we obtain 

χ
3

, 

x
3

, (75.10) 

xy' + y - χ
3

, 
ά

(
χ

ν ) _ „3 

dx 

χ
4 

xy = — + C, 

or 

x
3

 C 
» = T + 7, (75.11) 

where C is an arbi trary constant. 

E x a m p l e 

Suppose we have the general linear first order ordinary differential 

equation 

y' + P(x)y = Q(x). (75.3) 

We recognize tha t the homogeneous equation corresponding to (75.3) y' + 

P(x)y = 0, or 

dy + (P(x)y)dx = 0, 

has the integrating factor u(x) = e x p ( /
x

 P(z) dz), since M = yP{x), Ν  = 

1 and case (A) applies with f(x) := P(x). Hence equation (75.3) can be 

wri t ten as 

(y
f

 + P(x)y)exp(^J P(z)dz^j = Q(x)exp(^J P{z)dz^j, 

or 

and therefore (by integrating) we find the solution to be 

Spec ia l C a s e 

For a concrete illustration, the equation 

(75.4) 

has {P{x) = l/x,Q(x) = x
2

} , so tha t 

dw. 
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N o t e s 

[1] If equation (75.1) admits a one parameter Lie group with generators {ξ , η } 

(see page 314), then an integrating factor is given by u(x,y) = — —. 
is η  — Μ  ξ  

For example, the differential equation y(y
2

 — x)dx + x
2

 dy = 0 is 

invariant under the transformation {y' = e
e / 2

y , x' = e
£

x}. Therefore the 

infinitesimal operator of the group is described by {η  = \y, ξ  = χ }. This 

2 
leads to the integrating factor u = 2 ~ , which leads to the solution 

3xy(x - 2y ) 
V = 

y/2xTC 

[2] If Mx + Ny φ  0, and equation (75.1) is homogeneous (see page 276), then 

an integrating factor is given by u(x,y) = ——^ ^ . 

For example, the differential equation (xy - 2y
2

) dx - (x
2

 - 3xy) dy = 0 

is homogeneous and has the integrating factor u = 1 /xy
2

. This leads to the 

solution — — log(x
2

y
3

) = C. 

y 

[3] If M = M\(x)y — M2(x)y
n

 and Ν  = 1, then an integrating factor is given 

by u(x,y) = y~
n

 exp((l — n)/intM\ dx). 

[4] The differential equation M\(x)M2(y) dx + N\(x)N2(y) dy = 0 has the inte

grating factor u = (M2Ni)~
1

. 

[5] The differential equation yf(xy) dx + xg(xy) dy = 0, when f Φ  g, has the 

integrating factor u = l/[xy(j—g)]. For example, the equation y(l—xy) dx— 

x(l + xy) dy = 0 has {f(z) = 1 — z, g(z) = —1 — z} so that an integrating 

factor is given by u = l/2xy. This leads to the implicit solution ye
xy

 = Cx. 

[6] Given equation (75.1), if ζ  = Ν  — IM is an analytic function of χ  and y (i.e., 

the Cauchy-Riemann equations {Nx = —My, Ny = Mx} are satisfied), then 

an integrating factor is given by 1/(N
2

 + M
2

). 

For example, the homogeneous equation 

(y
2

 + 2xy — x
2

) dy — (y
2

 — 2xy — x
2

) dx = 0 

has the integrating factor u = 1/ 2̂ {x
2

 + y2

)
2

j which leads to the solution 

y + x = C(x
2

 + y
2

) . 

[7] Sometimes an integrating factor of the form x
k

y
n

 can be found (for specific 

values of k and n). This form of the integrating factor will always be ade

quate for differential equations of the form x
a

y
b

(py dx+qx dy)+x
d

y
e

(ry dx+ 

sxdy) = 0, where {a, ft, d, e, p, q, r, s} are constants. 

[8] The technique presented here also applies to linear ordinary differential equa

tions of higher order. For example, the second order ordinary differential 

equation 

Vx^4 + 2x^r + 3y = 0 (75.5) 
dx dx 
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can be made exact (see page 240) by use of the integrating factor u(x) = y/x. 

Multiplying equation (75.5) by yfx results in 

Murphy [2] has a discussion of how to make second order ordinary differential 

equations exact (see page 165). 

[9] When the quasilinear partial differential equation in two independent vari

ables, M(x,y,u)ux = N(x,y,u)uy, has Mx = Ny, then the solution is given 

implicitly by Φ (χ ^,υ ,) = 0, where Μ  = Φ ν  and Ν  = Φ χ . If, alternately, 

Mx φ  Ny, then it may be possible to find an integrating factor v(x,y) such 

that (vM)x = (vN)y. For example, if (Ny — Mx)/M is a function of £ alone, 

then v(x) = exp^J^v doc^J will be an integrating factor. 

As an illustration, the equation ux = yuy has the integrating factor 

v(x) = e
x

. The solution can then be found to be u{x,y) = —Cy
3

e
3x

, where 

C is an arbitrary constant. 

R e f e r e n c e s 

[1] W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and 

Boundary Value Problems, Fourth Edition, John Wiley & Sons, New York, 

1986, pages 84-87. 

[2] G. Murphy, Ordinary Differential Equations, D. Van Nostrand Company, 

Inc., New York, 1960. 

[3] J. D. Murray, Asymptotic Analysis, Springer-Ver lag, New York, 1984, pages 

22-27. 

[4] M. J. Prelle and M. F. Singer, "Elementary First Integrals of Differential 

Equations," Trans. Amer. Math. Soc, 279, No. 1, September 1983, pages 

215-229. 

[5] E. D. Rainville and P. E. Bedient, Elementary Differential Equations, The 

MacMillan Company, New York, 1964, pages 35-37 and 59-66. 

[6] G. F. Simmons, Differential Equations with Applications and Historical Notes, 

McGraw-Hill Book Company, New York, 1972, pages 42-46. 

76. Interchanging Dependent and 

Independent Variables 

A p p l i c a b l e t o Ordinary differential equations. 
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A p p l i c a b l e t o Ordinary differential equations. 
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Y i e l d s 

A reformulation of the original equation. 

I d e a 

Sometimes it is easier to solve an ordinary differential equation by 

interchanging the role of the dependent variable with the role of the in

dependent variable. If this technique works, then the solution is given 

implicitly by χ  = x(y) instead of the usual y = y {χ ). 

P r o c e d u r e 

Given the equation 

to solve, it might be easier to solve the equivalent equation 

dx 1 

X ( y ) =( ^
3

/ 3 _ 2 L _ 3 ) , 

where A is an arbi t rary constant . 

This method can also be used for ordinary differential equations with 

an order greater than 1. For these cases, Table 76 can be used to de

termine how the derivatives {yx, yxx,...} transform into the derivatives 

{Xy, Xyyi · · ·}· 

E x a m p l e 1 

Suppose the solution is desired to the ordinary differential equation 

Interchanging the dependent and independent variables in this equation 

produces 

Equat ion (76.1) is now a Bernoulli equation with η  = — 1 and can be solved 

exactly (see the section on Bernoulli equations, page 194). The solution is 

(76.1) 
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Vx 

— τ ·

- 3 

y xx — Xy Xyy, 

Vxxx — ^ r ~
5

r
2

 — 

— y Xyy 

Vxxxx = —l5Xy

7

Xyy 

Vxxxxx = lOoXy Xyy 

^yyy 

OXy XyyXyyy ~ Xy Xyyyy 

]oXy Xyy^yyy H~ ^
X

y
 X

yyy 

+ loXy XyyXyyyy ~~ Xy
 x

yyyyy 

Table 76. How higher order derivatives transform when the dependent and 

independent variables are switched. 

E x a m p l e 2 

As a second illustration, the following formidable nonlinear ordinary 

differential equation 

y" + xy(y'f = 0 (76.2) 

becomes, after interchanging the dependent and independent variables, 

Airy's equation 

d
2

x 

dy
z 

Hence, the solution to (76.2) is 

x(y) = C1Ai(y) + C2Bi(y), 

where C\ and C2 are arbitrary constants. 

N o t e s 

[1] When this method is applied to partial differential equations (and not ordi

nary differential equations), then the method is called the hodograph trans

formation (see page 390). 

References 
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77. Lagrange's Equation 

A p p l i c a b l e t o Equat ions of the form: y = xF (~^J + G ' 

Y i e l d s 

An exact solution, sometimes given parametrically. 

I d e a 

Equations of this form can be solved by quadratures . 

P r o c e d u r e 

Given an equation of the form 

use ρ  to represent dy/dx so tha t (77.1) can be wri t ten as 

y = xF(p) + G(p). (77.2) 

Now differentiate (77.2) with respect to χ  to obtain 

 EE ρ  = F(p) + g [xF'(p) + G'(ρ )]. (77.3) 

Equat ion (77.3) can be rewrit ten as 

dp
 X

\p-F(p))
 +

 \p-F(p))>
) 

which is now a linear differential equation in χ  and p. It can be solved by 
the method of integrating factors (see page 305) to determine 

* = <I>(P,C), (77.5) 

where C is an arbi t rary constant . Now there are two possibilities: 

(A) Eliminate ρ  between (77.2) and (77.5) to find $(y,x,C) = 0 
(B) Use (77.5) in (77.2) to obtain the parametr ic solution 

x = 0 ( P , C ) , 

y = 0 ( P , C ) F ( P ) + G(P) , 

where Ρ  is a free parameter . 
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4 Ρ  

where C is an arbi trary constant. Using (77.7) in (77.6) we can remove the 

χ  dependence to obtain 

a o 2C 
V = -ν  Η  . 
y

 2
y

 ρ  

Hence, a parametric solution of (77.6) is given by 

where Ρ  can have any value. By use of resultants (see page 46), the 

parameter Ρ  can be removed from (77.8) to determine the implicit solution 

(see page 46), 

(21ay
2

 - 1 6x

3
) Î /

2
 + 16a

2

x(9ay
2

 - Ax
3

)C - l2Sa
3

x
2

C
2

 - 6 4 a
4
C

3
 = 0. 

If C is taken to be zero, for instance, then the explicit solution y = 

— = x
3

/
2
 is obtained. 

3 v 3 a 

E x a m p l e 1 

Suppose we have the equation 

where α  is a constant. Comparing (77.6) to (77.1), we identify F(p) = 2p, 

G(p) = ap
3

. Hence, equation (77.5) becomes 

dx 2x 
— = + Sap. 
dp ρ  

This last equation has an integrating factor of p
2

 and so 

x=—p
2

 + - j , (77.7) 



77. Lagrange ' s E q u a t i o n 3 1 3 

E x a m p l e 2 

If we have the equation 

»-* !-(§)'· <™> 

then we make the identification {F(p) = 2p,G(p) = — p
2
} so tha t (77.4) 

becomes 

dx 

dp 

or (using the integrating factor p
2

) 

x=\p
2

 + ^ , (77.10) 
3 p

z 

where C is an arbi t rary constant. Using (77.10) in (77.9) results in 

C p
2 

ρ  3 

Hence, a parametric solution of (77.9) is given by 

C 

c c ' (77·η ) 

V =

 P

 +

 P
5
' 

χ  = - P

2

 + — X
 3 ^

 +
P

2
' 

where Ρ  can have any value. By use of resultants the parameter Ρ  can be 

removed from (77.11) to determine the implicit solution 

y
2

(4y - 3x
2

) + 6x(2x
2

 - 3y)C + 9 C
2
 = 0. 

N o t e s 

[1] Equation (77.1) is known as d'Alembert's equation and also as an equation 

linear in χ  and y. 

[2] If F Ξ  1, then (77.1) is the same as Clairaut's equation (see page 196). 

[3] The technique presented in this section is only an application of the more 

general technique described on page 350. 
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R e f e r e n c e s 
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A p p l i c a b l e t o Linear and nonlinear ordinary differential equations. 

Invariants and symmetries of a differential equation. Often these can 
be used to solve a differential equation. 

By determining the transformation group under which a given differ-
ential equation is invariant, we can obtain information about the invariants 
and symmetries of a differential equation. Sometimes these can be used to 
solve a given differential equation. 

P r o c e d u r e 

A one parameter Lie group of transformations is a family of coordinate 

transformations of the form 

such tha t ε  = 0 gives the identity transformation. It is also required (for 
the transformations to form a group) tha t f(x, y-,ε  + 6) = f(xe,ye; δ ), and 
f~

l

{x, y;ε ) = f(x,y; —ε ), with analogous formulae for g(x, y; ε ). 

Equation (78.1) is called the global transformation group. Expanding 
(78.1) for small values of ε  yields 

78. Lie Groups: ODEs 

Y i e l d s 

Idea 

xe = f(x,y;e), 

Ve = g(x,y;e), 
(78.1) 

χ ε  = χ  + ξ (χ ^)ε  + 0(ε
2

), 

Ve = y + ^x,y^ + 0^
2

), 

where 

(78.2) 
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ential equation is invariant, we can obtain information about the invariants 

and symmetries of a differential equation. Sometimes these can be used to 

solve a given differential equation. 
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A one parameter Lie group of transformations is a family of coordinate 

transformations of the form 

such tha t ε  = 0 gives the identity transformation. It is also required (for 

the transformations to form a group) tha t f(x, y-,ε  + 6) = f(xe,ye; δ ), and 

f~
l

{x, y;ε ) = f(x,y; —ε ), with analogous formulae for g(x, y; ε ). 

Equation (78.1) is called the global transformation group. Expanding 

(78.1) for small values of ε  yields 

78. Lie Groups: ODEs 

Y i e l d s 

Idea 

xe = f(x,y;e), 

Ve = g(x,y;e), 
(78.1) 

χ ε  = χ  + ξ (χ ^)ε  + 0(ε
2

), 

Ve = y + ^x,y^ + 0^
2

), 

where 

(78.2) 
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The quantit ies ξ  and η  are called the infinitesimal transformations of the 

group. Lie's first fundamental theorem states tha t knowing the infinites-

imals {^(rc, 2 / ) , T7(a:, y)} is equivalent to knowing the functions {/ ,#} tha t 

appear in (78.1). 

An n- th order differential equation 

G(x,y,y',...J
n)

) = 0 (78.3) 

is said to be invariant under the group defined by (78.1) if the differential 

equation 

G ( x
e
, t f e , ^ , . . . , y i

n )

) = o 

is equivalent to (78.3) under the change of variables in (78.1). The differ-

ential equation G = 0 will be invariant with respect to the one parameter 

group (defined by (78.1)) if 

U
M

G = 0, (78.4) 

on the manifold G = 0 in the space of the variables {x, y, y',..., y^}. The 

operator (sometimes called the n-th prolongation, see Olver [10]) is 

defined by 

(78.5) 

where ξ ο  = η  and ξ ι  = D(£j_i ) - y ^ £ ) ( ^ ) , for I = 1 , 2 , . . . , n, and the total 

d d ö 
derivative operator D is defined by D := ——h y' ——h y"τ η  + Hence, 

ox oy oy 

(78.4) is a quasilinear equation, and the method of characteristics may be 

used to solve it. 

If the differential equation G = 0 is invariant with respect to the group, 

then the subsidiary equations of (78.4) can be wri t ten as (see page 368) 

dx = dy = d(y') = = d(yW) 

ξ  V ξ ΐ  ξ η  

We can sometimes integrate two of these equations to obtain the two 

integrals: u = u(x, y, y',...) and ν  = v(x, y, y',...). If the original equation, 

G = 0, is wri t ten in terms of these new variables, then the resulting 

differential equation will only be of order η  — 1. Hence, we will have reduced 

the order of the given differential equation. 
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dx _ dy _ dy' _ dy" 

x y 0 -y 
Il ' 

dx dy 
From the first equality, — = — , we find tha t y / x is a constant; we write 

x y 

dy dy! 
this as y/x = u. From the second equality, — = — , we find tha t y is a 

y 0 

E x a m p l e 

Given the class of second order ordinary differential equations 

we ask if this differential equation is invariant under the magnification 

group 

(78.6) 

(78.7) 

If it is, then we should be able to reduce (78.6) to a sequence of first order 

ordinary differential equations. Using (78.7) in the definitions in (78.2) and 

(78.5) we can sequentially calculate 

Applying £ Λ
2

' to G we find 

where F\ denotes the derivative of F with respect to its first argument. We 

conclude, then, tha t G = 0 is invariant under the magnification group. 

Now we form the subsidiary equations: 

constant; we write this as y! = v. 
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Now we will write the equation G = 0 in terms of the "constants" 

which parameterize the solution space: {u, v}. To change variables we will 

need 

Hence 

Finally, then, we have transformed the second order differential equation 

G = 0 into a first order differential equation in terms of u and v. After 

this equation is solved for ν  = v(u), we then have a first order equation for 

y(x) (using u = y fx and ν  = y'). 

Spec ia l C a s e 1 

If we choose the special case F(u, υ ) = υ  — u (for which (78.6) becomes 

the linear equation x
2

y"—xy' -\-y = 0, with solutions y = χ  and y = χ  log χ ) , 

equation (78.8) becomes (υ  — u - 0. The most general solution 

to this eauat ion is υ  = u + C . where C is an arbi trarv constant. Changing 

to our original variables, this becomes f C. This equation has the 

solution y = Cxlogx + Ox, where D is another arbi trary constant . 

special ^ase ^ 
If we choose the special case F(u,v) = u

2

 — v
2

 (for which (78.6) 

becomes the nonlinear equation x
z

y
n

 + x
2

(y')
2

 — y
2

 = 0)
,
 equation (78.8) 

becomes -v — u. This first order equation can be integrated to yield 

υ  = (u
2

 — 2u + 2) + Ce
 u

, where C is an arbi trary constant. In this case 

we cannot integrate again to obtain y = y (χ ) in closed form. 

N o t e s 

[1] Lie group analysis is the most useful and general of all the techniques 

presented in this book. Many of the other methods presented in this book 

can be derived from the method of Lie groups. For example: 

(A) Equations with the dependent variable missing (see page 216) are in-

variant under the translation group {xe = x, y£ = y + ε }. 

(Β ) Equations with the independent variable explicitly missing (see page 

190) are invariant under the translation group {χ ε  = i + e,y e = 2 / } · 

(C) Homogeneous equations (see page 276) are invariant under the affine 

group {χ ε  = x,y£ = ye
£

}. 

(D) Scale invariant equations (see page 338) are invariant under the group 

{χ ε  = xe
£

,y£ = ye
p£

}. 
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(E) In Kumei and Bluman [9] it is shown that the hodograph transforma-

tion (see page 390) and the Legendre transformation (see page 400) are 

derivable from Lie group methods. 

(F) Similarity solutions (see page 424) are all derivable from Lie group 

methods. 

(G) Contact transformations (see page 206) and the Riccati transformation 

(see page 332) are derivable from Lie group methods. 

[2] Easily readable books that explain Lie groups more fully are Bluman and 

Kumei [2] and Stephani [15]. 

[3] Using Lie groups to find symmetries of differential equations can be com-

putationally intensive. Algorithms have been developed for computerized 

handling of the calculations, see Bocharov and Bronstein [3], Champagne 

and Winternitz [4], or Eliseev, Fedorova, and Kornyak [6]. 

[4] In the older literature, transformation groups were found and then classes of 

equations that were invariant under that group were determined. This was 

what was done in the example in this section. For example, it can be shown 

that the most general second order differential equation invariant under a 

group of the form 

χ ε  = /( χ ; ε ) = χ  + ε ζ (χ ) + 0 ( ε
2

) , 

ye = g(x; e)y = y + ε η (χ )ν  + 0 ( ε
2

) , 

has the form 

y
 +

{ — ) y
 +

 { - ^ ) y = *ξ
2

 ' 

where Φ  is an arbitrary function of its arguments, and {A, B, s} are defined 

by 

A(x,y) = sy, 

B(x,y) = (ξ χ -η ν )8, 

See Hill [7] (page 84) for details. 

[5] Recently the procedure in the last note has been reversed: given a differential 

equation, find a transformation group which leaves the equation invariant. 

To derive the transformation group, a set of partial differential equations 

arising from the equation U^G = 0 must be solved. For example, for the 

second order ordinary differential equation χ  = f(t,x,x) to be invariant 

under the group 

xe = χ  + ε ψ {ί ,χ ) + 0 ( ε
2

) , 

te = * + ε <£(ί ,ζ ) + 0 ( ε
2

) , 
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requires that the following equation 

Ψ η  + (2rpxt - <t>tt)x + {φ χ χ  - 2<t>xt)x
2

 ~ Φ χ χ Χ
3 

+ [(φ χ  - 2φ ι ) - 3φ χ χ ] f(t,x,x) - φ ΐ ι ψ ,χ ,χ ) - i/>fx(t,x,x) 

- [*l>t + (Ψ χ  -φ ι )χ - φ χ χ
2

] fx(t,x,x) = 0 

hold for all ( ί , χ , χ ) . See Aguirre and Krause [1] for details. 

[6] The operator V, with V = ξ (χ ,ν )-^- + η (χ ^)-^-, is called the infinitesimal 

ox oy 
operator of the group. Observe that an arbitrary function of xe and y e, 

F ( x
e

, y
e

)
,
 can be formally expanded in terms of

 χ
 and y as 

[7] If the parameter ε  appearing in (78.1) had been an r-dimensional vector, 

then there would be r infinitesimal operators {Vi, V2,..., Vr}. Lie's second 

fundamental theorem states that these operators generate an r-dimensional 

Lie group under commutation: [V^Vb] = KabVc, where the /Ts are called 

structure constants and summation occurs over repeated indices. Lie's third 

fundamental theorem relates the structure constants to one another. 

If, in the above, r = 1 then the order of the original equation can be 

reduced by one. If η  > 2 and r = 2, then the order of the original equation 

can be reduced by two. If η  > 3 and r > 3, then it does not follow that the 

order of the original equation can be reduced by more than two. However, if 

the r-dimensional Lie algebra has a g-dimensional solvable subalgebra, then 

the order of the original equation can be reduced by q. See Bluman and 

Kumei [2] for details. 

[8] The analysis in this section can be obtained from the general results of Lie 

algebras. For example, if x(t) satisfies the equation χ  = / ( χ , χ ) , where / 

is in C°°, and the solution is analytic for all t, then the solution may be 

obtained from xt+T = e
tQ,T

 xT, where 

and we have used xT to denote x(r). For example, for the differential 

equation χ  = 1, we have / = 1 so that Ω τ  = vrdXr + dVr + dT, and we 

can calculate 

= F(x, y) + eVF(x, y) + \e
2

V
2

F{x, y) + · · · 

= e
eV

F(x,y), 

Ω
2

Τ Χ Τ  Ω τ ν τ  — 1, 

Ω τ 1 = 0, 

0, for k > 3. 
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Using these calculations, we can then find 

Xt+r = e XT 

k=0 

= XT + tVT + —, 

or x(t + r ) = Z ( t ) + fcr(r) + t
2

/2. 

This also generalizes to higher dimensions. For example, the solution 

of the vector equation χ  = f(x,x) may be written as x*+T = β
ί Ω τ

χ τ , where 

Ω τ  = v T . V x T + f ( x T, v T) · V V r + -7^ 

[9] Technically, a Lie group is a topological group (i.e., a group that is also 

a topological space) which is also an analytic manifold on which the group 

operations are analytic. The tangent space to that manifold is a Lie algebra, 

which is a linear vector space. See Sattinger and Weaver [12] for an algebraic 

approach to Lie groups. 

[10] It is also possible to find discrete groups that transform solutions of ordinary 

differential equations to other solutions, see Zaïtsev [18]. For example, the 
generalized Emden-Fowler equation y" = Ax

n

y
rn

 (y')
1

 is described by the 
parameters c = (n,m,l). Under the discrete transformation {y = at, χ  = 

bu} the solution y = y(x;c) is mapped to the solution u = u(y,c'), where 

c' = (n ,m,3 - /). Another such discrete transformation is given by {y = 

au-
1

'™, χ  = bt
1

""*»} for which c' = ( 5 - , - 1 - , ^i±l). 
\ η  + 1 1 — Z ra/ 

Zaïtsev [1] illustrates this method by writing the solution of y" = 

x~
15

^
8

yVy
7

 in terms of the solutions to u" = 6u
2
 (which are elliptic func-

tions). 
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79. Operational Calculus 

A p p l i c a b l e t o Ordinary differential equations and partial differential 

equations. 

Y i e l d s 

A reformulation of the original differential equation. 

Idea 
It may sometimes be easier to solve a differential equation in a trans-

formed space. 

P r o c e d u r e 

Given an ordinary differential equation, transform it to a field of 

operators, solve the equation in tha t field, and then transform back. In this 

field, ordinary functions, generalized functions, and differential operators 

are all t reated as objects in a single algebraic s t ructure. 

The operator field tha t is used has, among other elements, an identity 

operator ( J ) , a differentiation operator (often denoted by D or s) and 

an integration operator (often denoted by D~
x

). The operator D, when 

applied to the operator corresponding to a function / ( t ) , results in 

The operator D when applied to the operator corresponding to a func-

tion f(t) results in 

The braces around the above expressions emphasize tha t they are operators 

in the field. In many applications, the operator D is formally t reated as 

being a "large constant." 

There are tables of formulae describing how operators interact in their 

quotient field. For example, since 

we can calculate 

£>{/} = {/'} + {/(<>)}, (79.1.) 

I I I 

(D - a)
2

 (D -a)(D- a) 

= {e
at

}{e
at

} 
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since the "product" of two operators is the operator corresponding to a 

convolution. The formula in (79.2) follows from (79.1) when f(t) = e
at

, 

since 

(D - a) {e
at

} = ({ae
at

} ) + {1} - α  {e
at

} = I. 

It is easy to represent generalized functions and non-continuous func-
tions in the field. For example, a square wave of period 2c has the operator 

Τ  
representation 

D(l + e-
cD

)' 

E x a m p l e 1 

The following ordinary differential equation for y(t) 

y" + y = 0, 

has the operator representation 

(D
2

 + 1 ) M = 0, (79.3) 

or 

D
2

 (1 + D-
2

) {y} = 0. 

By applying D~
2

 to the left of the above equation, we obtain 

(l + D-
2

){y} = D-
2

{0} 

= At + B, 

where A and Β  are arbi t rary constants . This equation may be formally 

solved by "dividing" by the operator on the left and expanding terms. We 

find 

{y(t)} = { r ^ ( A t + B)} 

= {(l-D-
2

 + D-*----)(At + B)} 

j \ „ „ . / At
3

 Bt
2

\ ( At
5

 Bt*\ I 

= {>lsin£ + Β  cost} . 

(79.4) 

Hence, y(t) = Asint + Β  cost. Really, in this last calculation, there would 

be many more terms than those illustrated. For instance, when D~
4

 is 

applied to {At + B), we obtain ί  — —— — — j plus some terms of the 

form (Cit
3

 + C2t
2

 + C3t + C 4) . When the form of the solution, with all 

these additional terms, is subst i tuted into the defining equation (79.3), 

these additional constants tu rn out to be zero. 
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E x a m p l e 2 

Consider the constant coefficient linear ordinary differential equation 

for z(t) 

ζ " + 3z' + 2z = f(t), 

z(0) = 1, z'(0) = 0, 

Because of the formula 

(which parallels the rule for Laplace transforms) the equation for z(t) has 

the operator representation 

D
2

{Z}-D] +3[D{z}-I] + 2{z} = {f}, 

This operator equation can be manipulated into 

s z \ =
 d +

*
t

 + m 
1

 ' D
2

 + W + 2 D
2

 + ZD + 2 

=
 21

 -
 1

 (
 1

 -
 1

 \ 

^ { 2 e -
t

} - { e -
2 i

} + { e -
t

- e -
2 t

} { / } , 

and hence 

z(t) = 2e~
l

 - e~
2t

 + f (e~
u

 - e~
2u

) f(u) du, 
Jo 

which is the same result tha t would be obtained by use of Laplace trans-

forms. 

N o t e s 

[1] The operational calculus is also called the Heaviside calculus. 

[2] The operational calculus, at its simplest level, has a great similarity with 

Laplace transforms. One school of thought is that any integral transform 

creates an operational calculus. 

[3] It is sometimes difficult to justify the formal steps that are employed in 

using the operation calculus. One solution (see Erdélyi [3]) is to use a more 
precisely defined operator, such as the primary operator 

Dxf(t) = f(t) + \ [ e
x{t

~
e)

f{e)de 
Jo 

which has the inverse D\
 1

g(t) = g(t) — λ  f* g{6) ά θ . 
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y = 0 are 

[4] Infinite order differential equations are often solved by techniques similar 

to those described above. For example, the ordinary differential equations 

( a 5# 0 ^ ^X ~~a^ =Z ̂  anc* [COS 0̂̂ ~) ~*~ — α  

infinite order differential equations for y(x) (here H(x) represents the step 

function). Recent results (as well as the solutions to the two above equa-

tions) may be found in Dimitrov [2]. 

[5] The extension of this technique to partial differential equations is straight-en θ  
forward. Using D for — and D' for —, a partial differential equation 

ox ut 

can sometimes be written in the form P{D, D'){y} = {/}. The "inversion" 

process will then proceed in two steps. For example, a calculation analogous 

to the one in (79.4) might proceed as follows: 

{y} = 
— ; i n 

P(D,D')
XJI 

D - 6DD' + 9D 
72 ( l2x

2

 + 36x<) 

i f n' n'
2

 \ 

y
1

+
6

 -5
+21

-rf
 +

 · j (
1 2

*
2 + 3 6 x

' ) 

^ ( l 2 x
2

 + 36**) + ^ ( 3 6 z ) 

(x
4

 + 6x
3

t) + (9x
4

) = 10x
4

 -f 6x
3

t. 
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80. Pfaffian Differential Equations 

A p p l i c a b l e t o Pfaffian differential equations. 

Y i e l d s 

Knowledge of whether the equation is integrable. 

Idea 

Pfaffian differential equations are part ial differential equations of the 

form 

f(x) -dx = ^ F i ( X i , X 2 , - - . , ^ n ) ^ i = 0. (80.1) 

i = l 

For equations of this type: 

(A) If η  = 3, then a necessary and sufficient condition tha t (80.1) be 

integrable is tha t 

f ( x ) - c u r l f ( x ) = 0 . 

(B) If η  > 4, then a necessary and sufficient condition tha t (80.1) be 

integrable is tha t 

dFr dFq 

dxq dxr 

+ Fa 

dFp dFr 

dxr dxO 

+ Fr 

dFq dFp 

dxp dxqj 
= 0, 

where p, q, and r are any three of the integers l , 2 , 3 , . . . , n . 

There exist a number of techniques for integrating Pfaffian equations. 

(80.2) 

E x a m p l e 

If we have the equation 

then we identify 

so tha t 

Therefore f(x) · cur l f (x) = 0, and there exists a solution to (80.2). The 

solution is, in fact, given by y(x + z) = C(y + 2), where C is any constant. 
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P r o c e d u r e 1 

If a Pfaffian equation is integrable, then there exists an integrating 

factor μ  such tha t 
η  

By appropriate manipulat ions of (80.1), it may be shown tha t μ  satisfies 

any of the equations 

ψ _ Α ] _ Id Fj dFj 

μ  ~~ ~ i
F

i l
dx

j
 d x

i 
dxj, (80.3) 

for i = 1 , 2 , . . . , n . Any one of these equations may be solved to determine 

an integrating factor. Alternately, if two integrating factors can be found, 

say μ  and v, then a solution to (80.1) is given by μ )ν  = constant. 

E x a m p l e 1 

The Pfaffian differential equation 

y(x
2

 — y
2

 — xy) dx + x(y
2

 — x
2

 — xz) dy + xy(x + y) dz = 0 (80.4) 

can be shown to pass the integrability requirements. Substi tut ing into 

(80.3) results in 

ά μ  2(x-y)(2x + 2y + z) Λ 2{x + y) 
~ ~ T~2 2 χ

 d

V - ~2 2

 d z

' 

μ  y(x' - y - yz) x - y - yz 

= _ 2 ( « - | ! ) ( 2 x + 2y + z ) < f a_ 2{x + y) &> 

xyy — χ  — xz) y —χ  — xz 

\
x

 y J 

for j = 1 ,2,3. The last equation in (80.5) can be integrated to determine 

μ  = l/(xy)
2

. Hence, multiplying (80.4) by l/(xy)
2

 results in 

which can be integrated to yield 

y χ  \ xy J 

where C is an arbi trary constant. 
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P r o c e d u r e 2 

If an integrable Pfaffian differential equation is of the form Pdx + 

Qdy + Rdz = 0, where P , Q, and R are homogeneous functions of the same 

degree, then a solution may be found. First, define Ζ  = Px + Qy + Äz. 
Then form 

Pdx + Qdy + Rdz - dZ dZ 

-χ  Ζ  ~
 (oU.bJ 

and integrate (we have only addressed the case of Ζ  φ  0, although there 

are special techniques tha t can be used when Ζ  = 0). 

E x a m p l e 2 

Given the Pfaffian equation 

(yz + z
2

) dx — xz dy + xy dz = 0, 

we define Ζ  = xz(y + z). Forming (80.6) we obtain 

dZ 2(dy + dz) 

y + ζ  
= 0, 

which can be immediately integrated to yield Ζ  = C(y + z)
2

 or xz = 

C ( 2 / + z), where C is an arbitrary constant. 

P r o c e d u r e 3 

The Pfaffian differential equation Pdx + Qdy + Adz = 0 can sometimes 

be solved by taking one variable, say z, as a constant . Then the solution 

of Pdx + Qift/ = 0 (since ζ  = constant means tha t dz = 0) will be given by 

u(x,y) = constant. 

We take the "constant" in this last expression to be f(z). Differen-

tiating u(x,y) = f{z), and comparing to the original equation, we may 

sometimes obtain an ordinary differential equation for f(z). 

E x a m p l e 3 

Given the Pfaffian equation 

2x dx + dy + (l + 2z
2

 + 2yz + 2x
2

z) dz = 0, 

we treat ζ  as a constant to obtain 2x dx Η - dy = 0, which has the solution 

x
2

 + y = constant = f(z). This can be differentiated to obtain 

2xdx + dy + f'(z)dz = 0. 

Comparing this to the original equation, we find tha t f(z) satisfies the 

ordinary differential equation: / ' = 1 -h 2z
2

 + 2zf. Solving this equation 

to obtain f(z) = Ce~
z

 — z, where C is an arbi trary constant, we find the 

solution to the original equation to be 

x
2

 + y -h ζ  = C e
-

*
2

. 
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N o t e s 

[1] Another name for a Pfaffian differential equation is a total differential equa-
tion. 

[2] One way to solve Pfaffian differential equations in three dimensions is by 

the observation: if curlf(x) = 0, then f(x) must be the gradient of a scalar. 

Hence, the set of partial differential equations 

, . dv(x) 
fi(x) = - g ^ - " '

 f or

 * = 1 , · · · , η , 

may be solvable for v(x). The solution to (80.1) would then be given 

implicitly by v(x) = constant. 

[3] If the Pfaffian differential equation is of the form ] Γ ) Γ =ι  / * (
x <

) = u ' t n e n 

the integral surfaces are defined by Σ Γ =ι  / ί %{
χ

%)^χ % = C, where C is an 

arbitrary constant. 

[4] Sometimes a Pfaffian differential equation can be reduced to a system of or-

dinary differential equations. One such procedure is called Mayer's method. 

See Carathéodory [1] for details. 

[5] Given the system of m Pfaffian differential equations in m dependent vari-
ables {zj I j = 1,2, . . . , m) and η  independent variables {xk | k = 1 ,2, . . . , n) 

dzj = 2^P j f c(x , z )dxfc , j = 1,2, . . . , m , 

k=l 

the condition for complete integrability is given by 

i=l i=l 

for j = 1,2, . . . , m and k, I = 1 ,2, . . . , n. See Iyanaga and Kawada [6] for 

details on how this system may be solved. 

[6] Using the notation of exterior calculus, a total differential equation is an 

equation of the form ω  — 0, where a; is a differential 1-form ]£Γ =ι
 α

» (
χ

) dx% 
on a manifold. A 1-form ω  is called a Pfaffian form. See Iyanaga and 

Kawada [6] for details. 
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81. Reduction of Order 

A p p l i c a b l e t o Linear ordinary differential equations. 

Y i e l d s 

A lower order differential equation, if any non-trivial solution of the 

homogeneous equation is known. 

Idea 

For an n- th order linear ordinary differential equation, any non-trivial 

solution of the homogeneous equation can be used to reduce the order of 

the equation by one. For the special case of second order linear differential 

equations, knowing any solution of the homogeneous equation allows the 

general solution to be found. 
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P r o c e d u r e 

We choose to illustrate the method for second order equations. If we 

have the general second order linear ordinary differential equation 

y" + p{x)y' + q(x)y = r(x), (81.1) 

let z(x) be any non-trivial solution to the corresponding homogeneous 

equation; i.e., z(x) satisfies 

z" + p(x)z
f

 + q(x)z = 0. (81.2) 

If we look for a solution of (81.1) in the form of y(x) = z(x)v(x), then we 

can obtain a solvable equation for v(x). Subst i tut ing y(x) = z(x)v(x) into 

(81.1) yields 

zv" + (2ζ ' + ρ ζ )ν ' + {ζ " + ρ ζ ' + qz)v = r. (81.3) 

Since z(x) satisfies (81.2), equation (81.3) becomes 

zv" + (2z
1

 + pz)v
f

 = r. (81.4) 

If we now let w(x) = v'(x), then (81.4) becomes a first order linear ordinary 

differential equation for w(x). It can be solved by the use of integrating 

factors (see page 305). 

E x a m p l e 

Given the second order linear differential equation 

g - 2 x | + 2y = 3, (81.5) 

we recognize tha t z(x) = χ  is a solution of the homogeneous equation. 

Equat ion (81.4) becomes 

This equation may be solved by recognizing tha t it is a linear first order 

ordinary differential equation in the unknown dv/dx. Hence, integrating 

factors can be used to find dv/dx. After dv/dx is determined, it can be 

integrated directly to yield 

3 A f
x

 e
f2 

where A and Β  are arbi t rary constants . Using the relationship y(x) = 

z(x)v(x), the general solution of (81.5) is 

-^-dt + Bx. 
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Zl V 

• z'p v' 

Jp) Jp) 

. Zp 
v(p) 

reduces (81.7) to a linear ordinary differential equation of order n—p for v(x). 

R e f e r e n c e s 

[1] W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and 

Boundary Value Problems, Fourth Edition, John Wiley & Sons, New York, 
1986, section 3.4 (pages 127-131). 

[2] N. Finizio and G. Ladas, Ordinary Differential Equations with Modern Ap-

plications, Wadsworth Publishing Company, Belmont, Calif, 1982, pages 
108-116. 

[3] E. D. Rainville and P. E. Bedient, Elementary Differential Equations, The 
MacMillan Company, New York, 1964, pages 127-129. 

82. Riccati Equation 

A p p l i c a b l e t o Ordinary differential equations of the form y' = a(x)y
2

 + 

b(x)y + c(x). 

N o t e s 

[1] In both Rainville and Bedient [3] and in Finizio and Ladas [2] are an account 

of the general n-th order linear ordinary differential equation. The general 

result is that: 

If z(x) is a solution of the linear homogeneous equation 

z
(n)

 + p i ( x ) *
( n _ 1)

 + . . . + pn(x)z = 0 (81.6) 

and if y(x) = v(x)z(x), then the equation 

y
(n)

 - h p i ( x ) y
( n

-
1}

 + . . . +Pn(x)y = r(x) (81.7) 

transforms into 

v
(n)

 + qiix^-V + . . . + qn-iv' = r(x). 

This last equation may be reduced in order by defining w(x) = v'(x). 

[2] More generally, if {z\(x),..., zv(x)} are linearly independent solutions of 

(81.6), then the substitution 
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w' + a(x)c(x)w = 0. (82.3) 
a(x) 

It might be easier to solve (82.3) than to solve (82.1) by other means. 

P r o c e d u r e 2 

Suppose we have the Riccati equation 

y
f

 = a{x)y
2

 + b(x)y + c{x), (82.4) 

and suppose further tha t one solution to this equation is already known to 

us, say, y(x) = z(x). If y(x) = z{x) + u{x) is subst i tuted in (82.4), then 

the solvable Bernoulli equation 

v! = (b + 2az)u + au
2 

is obtained for u(x). To solve this equation, the new dependent variable 

v(x) = l/u(x) should be introduced and then integrating factors used (see 

pages 194 and 305). 

then we obtain the equivalent second order linear ordinary differential 

equation 

(82.2) 

If the dependent variable in (82.1) is changed from y(x) to w(x) by 

(82.1) 

P r o c e d u r e 1 

Suppose we have the Riccati equation 

I d e a 

A change of dependent variable can transform a Riccati equation to a 

linear second order ordinary differential equation. Also, if one solution to 

a Riccati equation is known, then the other solution can be wri t ten down 

explicitly. 

Y i e l d s 

A reformulation as a linear second order ordinary differential equation, 

or a second solution if one solution is already known. 
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y(X) = - e 
—x 

( cos χ  — C sin χ  \ 

\ s i n x + C c o s x / ' 

where we have defined C = B/A (and assumed Α  φ  0). 

E x a m p l e 2 

Suppose we have the equation 

y' = y
2

-xy-rl (82.7) 

to solve. A solution to (82.7), obtained by inspection, is y(x) = x. We 

utilize this solution in forming 

y{x) = x + u(aO, (82.8) 

and then (using (82.8) in (82.7)) the equation u' = u
2

 + xu is obtained. 
e* 2/2 

This Bernoulli equation has the solution u(x) = γ χ  , where A 
A

-
 e

t2

/
2

dt 

Jo 
is an arbitrary constant. Thus, the second solution to (82.7) is 

y(x) = x + 
^0 

E x a m p l e 1 

Suppose we have the Riccati equation 

y' = e V - y + e~
x

 (82.5) 

to solve. By identifying a(x) = e
x

, b(x) = — 1, and c(x) = e~
x

, the change 

of variables in (82.2) becomes 

y(x) = ^ e " * , (82.6) 
w(x) 

so tha t (82.5) becomes w"+w = 0, which could have been obtained directly 

from (82.3). The solution to this equation is w(x) = Asmx+Bcosz, where 

A and Β  are arbi trary constants. Using this solution in (82.6) leads to the 

general solution of (82.5): 

, N _^ f A cos χ  — Bsmx\ 
y (χ ) = -e

 χ

 [ -— . 
\ Α  S i n z + Β  cos x J 

There should be only one arbitrary constant in the solution to (82.5), since 

it is a first order ordinary differential equation. In fact, this last equation 

may be writ ten as 

file:///sinx
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N o t e s 

[1] The transformation in (82.2) is known as the Riccati transformation. 

[2] The following identity 

[έ  -q{x)] [ £ + H u

=
u

"
+

v -
? 2

)
u

·
9 ) 

shows that the differential equation u" + p(x)u = 0 can be factored into the 

form of (82.9) if q' — q
2

 = p, which is a Riccati equation. This is specialized 

case of (82.1)-(82.3). 

R e f e r e n c e s 

[1] C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scien-

tists and Engineers, McGraw-Hill, New York, 1978, Section 1.6. 

[2] W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and 

Boundary Value Problems, Fourth Edition, John Wiley & Sons, New York, 

1986, pages 93-94 and 142-143. 

[3] M. E. Goldstein and W. H. Braun, Advanced Methods for the Solution of 

Differential Equations, NASA SP-316, U.S. Government Printing Office, 

Washington, D.C., 1973, pages 45-46. 

[4] E. L. Ince, Ordinary Differential Equations, Dover Publications, Inc., New 

York, 1964, pages 23-25 and 295. 

[5] W. T. Reid, Riccati Differential Equations, Academic Press, New York, 

1972. 

[6] G. F. Simmons, Differential Equations with Applications and Historical Notes, 

McGraw-Hill Book Company, New York, 1972, pages 62-63. 

83. Matrix Riccati Equations 

A p p l i c a b l e t o Systems of quadrat ic ordinary differential equations. 

Y i e l d s 

An exact solution. 

Idea 

There is an exact solution available for matr ix Riccati equations. If 

the given ordinary differential equations can be put in the form of a matr ix 

Riccati equation, then the solution can be found. 
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P r o c e d u r e 

If Z(t), A(i) and K(t) are all TV χ  Ν  matrices, then we can use the 

following theorem: 

If Z(t) satisfies the following matrix Riccati equation 

jtZ = Ζ Α Ζ  + Κ Ζ  + Ζ Κ
τ

, Z(t = 0) = Zo, (83.1) 

then Z(t) is explicitly given by 

Z(t) = Q(t) ZÖ
1
- [ Q

L
(s)A(s)Q(s)ds 

L Jo 

where Q(t) is defined to be the solution of 

jtQ(t) = K(t)Q(t), Q(t = 0 ) = 7, (83.3) 

J is the Ν  χ  Ν  identity matrix, and the required matrix 

inverses are assumed to exist. 

If a given system of ordinary differential equations can be placed in 

the form of (83.1), then the solution can be found from (83.2). 

E x a m p l e 

Suppose we wish to solve the following system of equations for x(t) 

and y(t) 

d x

 = a(t)(y
2

 - x
2

) + 2b(t)xy + 2cx, 

Q
T

W, (83.2) 

(83.4) 
dt 

^ = b(t)(y
2

 - x
2

) - 2a(t)xy - 2cy, 

with 

x ( 0 ) = D, 2 / ( 0 ) = E. 

If we form the matrices 

7 - ( x V \ Α - / " « Ο
 b

(t)\ 

\y -χ )' V Kt) a(t))' 

then the equations in (83.4) are the same as those in (83.1). The solution 

for Q(t) from (83.3) is 

Q(t) = e
ct

I. 
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Therefore, the solution for Z is 

Z(t) = e
2ct

 J Z O "
1 - jTe2c8A(s)ds . 

If we define ^ 

a(t)= [ e
2cs

a(s)ds, 
Jo 

ß(t)= [ e
2c8

b{s)ds, 
Jo 

then by equating the corresponding entries of (83.2) we can find {x{t), y(t)} 

in terms of { α ( ί ) , ß(t)}. We have 

x(t) = e
2ct

 [a(t)(E
2

 + D
2

) + D] / Δ , 

y(t) = e
2ct

 [ß(t)(E
2

+D
2

) + D] / Δ , 

where Δ  = Δ  ( χ ) is defined by 

Δ ( χ ) = [ß
2

(t) + a
2

(t)] [E
2

 + D
2

] - 2/?(t)E + 2 a ( t ) D + 1. 

N o t e s 

[1] Matrix Riccati equations arise naturally in a number of physical settings. 

For example, the gains in a Kalman-Bucy filter satisfy a matrix Riccati 

equation (see Schuss [11], page 261). Also, the deflection of a beam can 

be described by such equations (see Distéfano [2]). They also appear quite 

often in the context of control theory (see Jodar and Abou-Kandil [3]) and 

invariant embedding solutions (see page 669). 

[2] Kerner [5] shows that nonlinear differential systems of arbitrary order 

Ci = Xi(Ci,C2, for t = 1,2, . . . , A:, 

may often be reduced to Riccati systems 

for i = 1, 2 , . . . , η , η  > k, a n d A , # , C constant, 

and then to elemental Riccati systems 

Zi = Ε ί α β Ζ α Ζ β , for ι  = 1,2,. . . ,p, p(n) > n, 

where Eiaß equals 0 or 1. His examples include ordinary differential equation 

systems that contain exponential functions and elliptic functions. 
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84. Scale Invariant Equations 

A p p l i c a b l e t o Ordinary differential equations of a certain form. 

Y i e l d s 

An equidimensional-in-rr ordinary differential equation of the same 

order (which can then be reduced to an ordinary differential equation of 

lower order). 

R e f e r e n c e s 

[1] S. Bittanti, A. J. Laub, and J. C. Willems (eds.), The Riccati Equation, 

Springer-Verlag, New York, 1991. 

[2] N. Distéfano, Nonlinear Processes in Engineering, Academic Press, New 

York, 1974, pages 58-59. 

[3] L. Jodar and H. Abou-Kandil, "A Resolution Method for Riccati Differential 

Systems Coupled in Their Quadratic Terms," SIAM J. Appl. Math., 19, 

No. 6, November 1988, pages 1425-1430. 

[4] R. A. Jones, "Existence Theorems for the Matrix Riccati Equation W' + 

WP(t)W + Q(t) = 0," Int. J. Math. & Math. Sei., 1, 1978, pages 13-19. 

[5] E. H. Kerner, "Universal Formats for Nonlinear Ordinary Differential Equa-

tions," J. Math. Physics, 22 , No. 7, July 1981, pages 1366-1371. 

[6] K. N. Murty, K. R. Prasad, and M. A. S. Srinivas, "Upper and Lower 

Bounds for the Solution of the General Matrix Riccati Differential Equa-

tions," J. Math. Anal. Appl., 147, No. 1, 1990, pages 12-21. 

[7] D. W. Rand and P. Winternitz, "Nonlinear Superposition Principles: A 

New Numerical Method for Solving Matrix Riccati Equations," Comput. 

Physics Comm., 33 , 1984, pages 305-328. 

[8] M. Razzaghi, "A Computational Solution for the Matrix Riccati Equation 

Using Laplace Transforms," Int. J. Comp. Math., 11 , 1982, pages 297-

304. 

[9] W. T. Reid, Riccati Differential Equations, Academic Press, New York, 

1972. 

[10] W. T. Reid, "Solutions of a Riccati Matrix Differential Equation as Func-

tions of Initial Values," J. Math. Mech., 8, 1959, pages 221-230. 

[11] Z. Schuss, Theory and Applications of Stochastic Differential Equations, 

John Wiley k Sons, New York, 1980. 

[12] R. M. Wilcox and L. P. Harten, "MACSYMA-Generated Closed-Form So-

lutions to Some Matrix Riccati Equations," Appl. Math, and Comp., 14, 

1984, pages 149-166. 
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I d e a 

A scale invariant equation is one in which the equation is unchanged 

when χ  and y are scaled in a certain way. When an equation is scale 

invariant, we can convert the equation into an equidimensional-in-x ordi

nary differential equation of the same order by a change of the dependent 

variable. This equidimensional-in-x ordinary differential equation can then 

be changed into an autonomous equation of lower order. 

P r o c e d u r e 

A scale invariant equation is one t ha t is left invariant under the trans

formation {x —• ax, y —• a
p

y}, where a and ρ  are constants. Tha t is, if the 

original equation is an equation for y(x) and the χ  variable is replaced by 

the variable ax' and the y variable is replaced by the variable a
p

y', then 

the new equation (in terms of y' and x') will be identical to the original 

equation (which is in terms of y and x). The way to determine the value 

of ρ  is to change variables and then see what value of ρ  leaves the equation 

unchanged. 

A scale invariant equation can be converted to an equidimensional-in-x 

equation by the subst i tut ion for y 

y{x) = x
p

u(x). (84.1) 

By the techniques on page 230, this equidimensional-in-x equation may 

then be made autonomous, and then (after another transformation) the 

order of the equation can be reduced. 

E x a m p l e 

Suppose we have the nonlinear second order ordinary differential equa

tion 

x

 dx
2+

 dx yV 

To determine if this equation is scale invariant, and if it is, what the value 

of ρ  is, we subst i tute ax' for χ  and a
p

y
f

 for y to obtain 

_ , . 2d
2

( a V ) , 0, _ „ , ^ ( a V ) _ 1 
{ax')

2 v

 V + 3 ( 0 x 0 
d(ax'f

 V

 ' d(ax') - (a»y')\axr 

or 

a V ' d V + 3 ^ V = a
(-3

P
-4) 1

dx'
2

 dx' 2 , ' V
4

Hence, if we choose ρ  so t ha t ρ  = —3p — 4, then the form of (84.3) will 

be the same as the form of (84.). So the equation is scale invariant, with 
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2 +u = - 3 . (84.5) 

du u 

The solution of (84.6) can be found by separating variables (see page 419) 

v{u) = ±̂ A-u
2

 -

where A is an arbi trary constant. To find u(t), we must now solve 

du , x . I 0 1 
λ  = ^ ) = ± ^ A - ^ _ _ . (84.7) 

Equation (84.7) is a separable equation whose solution is 

u{t) = ± Vcosh JB + sinh 5 sin(2t -f C), 

where and C are arbitrary constants. The last step is to recall tha t 

y(x) = u(x)/x and tha t χ  = é. The final solution is therefore 

y(x) = ±-y/coshB + sinh i?sin(2 log x -h C) . 
χ  

N o t e s 

[1] This method is derivable from Lie group methods (see page 314). The 
d d 

infinitesimal operator in this case is given by U = x-—\-py-z-. 
ox oy 

[2] A special case of this method (when ρ  = 1) is the method for homogeneous 

equations (see page 276). 

[3] Euler equations (see page 235) are scale invariant equations for any value of 

the parameter p. 

[4] Scale invariant equations are also called isobaric equations. 

[5] In Rosen's paper [3] a change of variable is proposed, different from the one 

presented above, that often allows parametric solutions to be obtained. 

the value ρ  = — 1. To make this equation equidimensional-in-x, we change 

variables by (84.1): y(x) = u(x)/x. Using this change of variables in (84.2) 

produces 

9d
2

u du 1 . . 
χ

2

—« + χ — + u= (84.4) 
dx

1

 dx u
6 

Equation (84.4) is equidimensional-in-x, so we use the substi tution χ  = e* 

(see page 230) for 

fu 

dt
2

 ' " u 

Equation (84.5) is autonomous, so we change the independent variable by 

v(u) = u'(t) (see page 190) for 

dv 1 , 
v

^ 7 . +
u

= - 3 - (
84

·
6

) 

file:///-py-z-


85 . S e p a r a b l e E q u a t i o n s 341 

R e f e r e n c e s 

[1] C M . Bender and S.A. Orszag, Advanced Mathematical Methods for Scien-

tists and Engineers, McGraw-Hill, New York, 1978, pages 25-26. 

[2] M. E. Goldstein and W. H. Braun, Advanced Methods for the Solution of 
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The evaluation of (85.2) only requires tha t two integrals be evaluated. 

An arbi t rary constant of integration must be included to obtain the most 

general solution of (85.1). 

(85.2) 

bo th sides can be formally multiplied by dx/f(y) and then integrated to 

obtain 

(85.1) 

P r o c e d u r e 

Given an equation of the form 

I d e a 

First order ordinary differential equations can be solved directly if the 

forcing te rm factors into a te rm involving only the independent variable 

and a te rm involving only the dependent variable. 

Y i e l d s 

An exact solution, often implicit. 

A p p l i c a b l e t o First order ordinary differential equations. 

85. Separable Equations 
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85. Separable Equations 
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E x a m p l e 

Suppose we have the equation 

dy 9 x
8

 + l 

1Z
 =

 2 i ϊ  (
8 5

·
3

) 

ax y + 1 

to solve. Multiplying bo th sides of (85.3) by (y
2

 + l ) dx and then integrating 

results in 

J{y
2

 + l)dy = J(9xs

 + l)dx. 

Evaluating the integrals yields 

Y+y = x
9

 + x + C, 

where C is an arbi trary constant. 

N o t e s 

[1] The solution obtained by this method will generally be implicit. 

[2] The formal procedure of multiplying (85.1) by dx/f(y) can be rigorously 

shown to give the correct answer. 

R e f e r e n c e s 

[1] W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and 

Boundary Value Problems, Fourth Edition, John Wiley & Sons, New York, 

1986, Section 2.4 (pages 37-42). 

[2] E. L. Ince, Ordinary Differential Equations, Dover Publications, Inc., New 

York, 1964, pages 17-18. 

[3] G. F. Simmons, Differential Equations with Applications and Historical Notes, 

McGraw-Hill Book Company, New York, 1972, pages 35-36. 

86. Series Solution* 

A p p l i c a b l e t o Homogeneous linear ordinary differential equations. Most 

frequently second order differential equations. 

Y i e l d s 

An infinite series expansion of the two independent solutions. 
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Idea 

If an infinite series is subst i tuted into a linear equation, the different 

coefficients may be matched to obtain recurrences for the coefficients of the 

series. Solving these recurrences results in an explicit solution. 

P r o c e d u r e 

Given a homogeneous linear second order ordinary differential equation 

in the form 

l/' + P(xW + Q(x)y = 0, (86.1) 

we search for a series solution around the point χ  = 0. Clearly, an 

expansion about any other point, XQ, could be determined by changing 

the independent variable to t = χ  — xo, and then analyzing the resulting 

equation near t = 0. 

If χ  = 0 is an ordinary point of (86.1) (the definitions of ordinary 

points and singular points are given on page 11) then we may assume tha t 

P(x) and Q{x) have the known Taylor expansions 

oo oo 

P(x) = Σ  Pnx
n

, Q(x) = Σ  Qnx
n

, (86.2) 

71 = 0 71=0 

in the region \x\ < p, where ρ  represents the minimum of the radii of 

convergence of the two series in (86.2). In this case, equation (86.1) will 

have two linearly independent solutions of the form 

oo 

ν (χ ) = Σ α η χ
η . (86.3) 

71=0 

Alternately, if χ  = 0 is a regular singular point of (86.1) then we may 

assume tha t P(x) and Q(x) have the known expansions 

oo oo 

P(x) = Σ
 p

n *
n

, Q(x) = Σ  Q n x
n

, (86.4) 

n = - l n = - 2 

in the region \x\ < p. After determining the expansions in (86.4), we need 

to determine the roots to the indicial equation 

a
2

 + α ( Ρ _ ι  - 1) + Q-2 = 0, (86.5) 

which is obtained by utilizing y = x
a

 in (86.1), along with the expansions 

in (86.4), and then determining the coefficient of the lowest order term. 

The two roots of this equation are called the exponents of the singularity. 
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There are now several cases, depending on the values of the exponents of 

the singularity: 

[1] If α χ  φ  a2 and α ϊ  — a2 is not equal to an integer, then (86.1) will have 

two linearly independent solutions in the forms 

yi(x) = | x |
a i

 (^l + E ^ j ' 

y2(x) = \x\
a2

 (l + f^CnxA. 

Ζ
1

 (
86

·
6

) 

\ n = l / 

[2] If a i = a2, then (calling a = a\) (86.1) will have two linearly inde-

pendent solutions in the forms 

yi(x) = \x\
a

 (ΐ  + Σ ά η χ Α  , 
n =1

 { ο  (86.7) 

V2(x) = yi{x) log | χ | + \χ \α

 Σ
 enxU

' 
n=0 

[3] If α ϊ  = a2 + M , where M is an integer greater than 0, then (86.1) will 

have two linearly independent solutions in the forms 

yi(x) = \x\
Q

* y + J2fnX
n

j , 

oo 

y2{x) = hyi(x) log |x| + \x\
Q2 Σ  9nX

n

, 

(86.8) 

n=0 

where the parameter h may be equal to zero. 

The procedure in each of the four cases is the same: Substi tute the 

given forms ((86.3), (86.6), (86.7), or (86.8)) into the original equation 

(86.1) and equate the coefficients of the x* and χ ΐ  log χ  terms for different 

values of j . This will yield recurrence relations for the unknown coefficients. 

Solving these recurrence relations will determine the solution. 

In the case of an ordinary point, there will be two unknown coefficients 

tha t parameterize the series solutions in (86.3). These two coefficients will 

generate the two linearly independent solutions of (86.1). 
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// , l + 2x , 1 
v 

2x * 2x 
+ ^ f V - ^ î » = 0, (86.12) 

we easily see tha t χ  = 0 is a regular singular point. In this case we have 
(see (86.4)) P _ i = ^, Q _ 2 = — \. Therefore, the indicial equation (from 
(86.5)) becomes 

{a-I) (a- \) = 0. 

Since the roots α ϊ  = 1, a2 = — \ are unequal and do not differ by an 
integer, then we have case [1]. Using (86.6) in (86.12), for α χ  = 1, and 
equating powers of χ  we readily find tha t 

Y/(n+l)(n)bnx
n

-
1

 + ^ ^ - ^1 + Σ
 6

»
χ

" j ^ + Σ
 b

"
x n +1

 j - 0. 

E x a m p l e 1 

Given the equation 

2 / " + 2 / = 0, (86.9) 

we easily see tha t χ  = 0 is an ordinary point. Using (86.3) in (86.9) we find 

( 2 d 2 + α 0) + (6a 3 + ai)x + (12a 4 + a2)x
2

 + ... 

+ [(n + l ) ( n + 2 ) a n+ 2 + a n] x
n
 + . . . = 0. 

Hence, we must have a n + 2 = —-, 7 7 7 τ τ . I terat ing this relation we 
(n + l ) ( n + 2) 

find 

a

- =
 (

-
1 ) m

( i ) ! ' ^ - ^ - ^ ( ^ Τ Ί ) ! ·

Hence, using (86.10) in (86.3), 

y ( x ) = a o ( l - Ç + ° Ç - . . ^ + a 1 ( x - Ç + Ç (86.11) 

Of course, the exact solution to (86.9) is y(x) = a o c o s x + a i s i n x , which 

is what (86.11) has reproduced. 

E x a m p l e 2 

Given the equation 
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Equat ing the coefficients for different powers of χ  we find that 

2(J + 1) 

2j
2

 + 7J + S 

Hence, one solution of (86.12) is of the form 

yx(aO = * ( ! - § . χ  + 

The other solution can be obtained by using a 2 = — \ in (86.6) and (86.12). 

For this solution we find 

The general solution of (86.12) is a linear combination of yi(x) and y2(x). 

N o t e s 

[1] This method is similar to the method of Taylor series (see page 548) but is 

different in that 

(A) it allows for logarithmic terms to be present, as well as fractional 

(B) the recurrence relations are computed just once, 

(C) the method only applies to linear ordinary differential equations. 

[2] The series solution found in (86.3), (86.6), (86.7) and (86.8) will always 

converge in the region \x\ < p. 

[3] The series in (86.6) are sometimes called Frobenius series. For regular 

singular points, this method is sometimes called the method of Frobenius. 

[4] Delia Dora and Tournier [4] describe a computer package that will symbol-
ically produce the series for singular points. 

[5] When the given linear ordinary differential equation has an irregular singular 

point, then series solutions are difficult to obtain and they may be slowly 

convergent. See Goldstein and Braun [6] or Bender and Orszag [1] for details. 

Often the WKB method (see page 558) is used to approximate the solution 

near an irregular singular point. 

[6] Understanding the nature of the singular points in an ordinary differential 

equation leads to an understanding of the types of boundary conditions to be 

expected for that equation. For example, the ordinary differential equation 

xy' = 1 has the solution y = C + logx, where C is an arbitrary constant. 

Only if y(x) is specified at some point other than χ  = 0 will it be possible 

to determine the constant C. The point χ  = 0 is a regular singular point of 

this equation. 

2/2 (x) = x 
1/2 ( 1 _ X + I X 2 

powers, 
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[7] This method extends easily to the general n-th order homogeneous linear or-
dinary differential equation at a regular singular point xo. If the differential 
equation is given by 

An) , g n - l ( g ) ( n - 1 ) g n - 2 p g ) ( n - 2 ) , , _ M E L _ w - Π  

(X - Xo) (χ  - x0y (X - Xo) 

where {qo(x),..., qn-i{x)} are analytic at #o, then the indicial equation for 
a is given by 

(Ct)n + 9 η - ΐ ( Χ θ ) ( α ) η - 1 + ? n - 2 ( Χ θ ) ( α ) η - 2 Η  h ?θ (ζ θ )(ΰ !)θ  = 0. (86.13) 

where ( α ) η  := ( α )( α  — 1) · · · ( α  — η  Η - 1) and (α )ο  := 1. If the η  roots 
of (86.13) do not differ by integers, then there are η  linearly independent 
solutions of the form of (86.6). Otherwise, the forms in (86.7) and (86.8) 
must be generalized. See Bender and Orszag [1] for details. 

[8] Series solutions can also be used to find the solutions of partial differential 
equations (see Collatz [3] or Garabedian [5]), or to approximate the solution 
of nonlinear differential equations (see, for example, Leavitt [8]). 

[9] The computer language MACSYMA has a function called SERIES that 
will compute the series expansion of a second order ordinary differential 
equation. 

In the following terminal session with MACSYMA, Airy's equation 
(yxx + xy = 0) was input and the power series representation of the solution 
was obtained. 

(cl) DERIVABBREV:TRUE$ 

(c2) LOAD(SERIES)$ 

(c3) DEPENDS(Y,X)$ 

(c4) DIFF(Y,X,2) + X*Y = 0; 

(d4) y + x y = 0 

χ  χ  

(c5) NICEINDICESC SERIES(D4,Y,X) ); 

DIAGNOSIS: ORDINARY POINT 

inf inf 

==== i 3 i ==== i 3 i 

\ (- 1) x \ (- 1) x 

(d5) y = 7,k2 x > + '/.kl > 

/ 4 i / 2 i 

==== fff (-, i) 9 i! ==== fff(-, i) 9 i! 

i = 0 3 i = 0 3 

The function f f f ( η , i ) is defined (in the MACSYMA manual) by f f f ( η , i ) = 
(n) i = n ( n - l ) · · · ( n - i + 1 ) . Note that

 #

/#kl and Xkl are arbitrary constants 
that appear in the general solution. 
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[10] When all of the singular points in an ordinary differential equation are 
regular, then the equation is said to be of Fuchs' type. A second order 
Fuchsian equation with 3 regular singular points can be transformed by a 
linear fractional transformation into the Riemann differential equation: 

" _L f
Al

 . \ , / A3 A4 A5 \ 

where the {Ai} are constants. This equation can then be changed to a 

hypergeometric equation by a change of dependent variable. 

[11] Morse and Feshback [9] discuss the canonical second order equations that 

have: 1, 2, and 3 regular singular points, 1 regular and 1 irregular singular 

points, 1 and 2 irregular singular points, 
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87. Equations Solvable for χ  

A p p l i c a b l e t o First order ordinary differential equations tha t are of the 

first degree in x\ i.e., equations of the form χ  = / ( y , y'). 

Y i e l d s 

An exact solution, sometimes implicit. 

Idea 

Equations of the form χ  = f(y,y
f

) can be solved by finding a second 

equation involving x, y, and y', and then eliminating y' between the two 

equations. 

P r o c e d u r e 

Given an equation of the form 

= /(2/ Ί )' (87.1) 

dy 
define, as usual, ρ  = — , so tha t (87.1) may be writ ten 

dx 

χ  = f(y,p). (87.2) 

Now differentiate this with respect to y to obtain 

dx . ( dp\ 

dy 

or Η  (87·3) 

for some function φ . Now the ordinary differential equation in (87.3), for 

ρ  = p(y), may sometimes be integrated to obtain 

F ( y , p ; C ) = 0, (87.4) 

for some function F , where C is an arbi t rary constant. By elimination, the 

ρ  may sometimes be removed from equations (87.2) and (87.4) to determine 

y = y (x; C ) . In cases where it cannot be removed, we obtain a parametr ic 

solution. 
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88. Equations Solvable for y 

A p p l i c a b l e t o First order ordinary differential equations tha t can be 

explicitly solved for y; i.e., equations of the form y = f(x,y'). 

Y i e l d s 

An exact solution, sometimes implicit. 

Idea 

Equations of the form y = f(x, y') can be solved by finding a second 

equation involving x, y, and y', and then eliminating the y' term between 

the two equations. 

E x a m p l e 

Suppose we wish to solve the nonlinear ordinary differential equation 

'(!)'· <
8

"> 
for y(x). Solving (87.5) for χ  results in 

x

= -
p

{
+

i > ^ 

where we have used y' = p. Differentiating (87.6) with respect to y, and 

factoring results in 

H) -·· 
This equation may be integrated to yield 

py = C. (87.7) 

Solving (87.7) for p, and using this is (87.5) results in the explicit solution 

2xC - y
2

 + C
2

 = 0. 

R e f e r e n c e s 

[1] H. T. H. Piaggio, An Elementary Treatise on Differential Equations and 

Their Applications, G. Bell Sz Sons, Ltd, London, 1926, page 64. 
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P r o c e d u r e 

Given an equation of the form 

» = / ( * . t : ) . (
8 8

-D 

dy 
define, as usual, ρ  = — , so tha t (88.1) may be wri t ten 

dx 

V = f(x,p). (88.22) 

Now differentiate with respect to χ  to obtain 

dy_ 

dx 

or 

ρ  = Φ (*>ρ >^)> (
88

·
3

) 

for some function φ . Now the ordinary differential equation in (88.3), for 

ρ  — p(x), may sometimes be integrated to obtain 

F ( x , p ; C ) = 0, (88.4) 

for some function F , where C is an arbi t rary constant. By elimination, the 

ρ  may sometimes be removed from equations (88.2) and (88.4) to determine 

y = y (x; C). In cases where it cannot be removed, we obtain a parametr ic 

solution. 

E x a m p l e 

Suppose we wish to solve the nonlinear ordinary differential equation 

X = y

a % ~

X

i ^ )

 = y P

~

 X p 2

' (

88

*

5

) 

for y(x). Differentiating (88.5) with respect to x, and using ρ  = y', results 

in 

dp px 

dx ρ
2

 — 1 

This last equation may be integrated to determine 

\x
2

 = C +\p
2

 - l o g p , (88.6) 

where C is an arbi trary constant. Together, equations (88.5) and (88.6) 

consti tute a parametr ic representation of the solution to (88.5). In this 

representation, ρ  is t reated as a running variable. 
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N o t e s 

[1] The technique used for Lagrange's equation is a specialization of the present 

technique applied to a restricted class of equations (see page 311). 

R e f e r e n c e s 

[1] H. T. H. Piaggio, An Elementary Treatise on Differential Equations and 

Their Applications, G. Bell & Sons, Ltd, London, 1926, page 63. 

89. Superposition 

A p p l i c a b l e t o Linear differential equations. 

Y i e l d s 

A set of linear differential equations with "easier" initial conditions or 

boundary conditions. The sum of the solutions to these new equations will 

produce the solution to the original equation. 

Idea 

By use of superposition, the solution to an inhomogeneous linear dif

ferential equation may be determined in terms of simpler systems. 

P r o c e d u r e 

Given a linear differential equation with a forcing term, inhomogeneous 

initial conditions, or inhomogeneous boundary conditions, construct a set 

of equations with each equation having more homogeneous par ts than the 

original system. Solve each of these par ts separately, and then combine 

them for the final solution. 

E x a m p l e 

Given the linear second order ordinary differential equation 

L[y] = y" + a{x)y' + b(x) = / ( * ) , (89.1) 

we choose y\(x) and y2(x) to be any linearly independent solutions of 

L[yi] = 0. If Ci and C2 are any constants then 

yc(x) = Ciyi{x) + C2y2(x) 

is called the homogeneous solution or the complementary solution of (89.1). 

We also define yp(x) to be any solution to L[yp] = f(x). The function yp(x) 

is called a particular solution. 
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N o t e s 

[1] The technique used for Lagrange's equation is a specialization of the present 

technique applied to a restricted class of equations (see page 311). 

R e f e r e n c e s 

[1] H. T. H. Piaggio, An Elementary Treatise on Differential Equations and 

Their Applications, G. Bell & Sons, Ltd, London, 1926, page 63. 

89. Superposition 

A p p l i c a b l e t o Linear differential equations. 

Y i e l d s 

A set of linear differential equations with "easier" initial conditions or 

boundary conditions. The sum of the solutions to these new equations will 

produce the solution to the original equation. 

Idea 

By use of superposition, the solution to an inhomogeneous linear dif

ferential equation may be determined in terms of simpler systems. 

P r o c e d u r e 

Given a linear differential equation with a forcing term, inhomogeneous 

initial conditions, or inhomogeneous boundary conditions, construct a set 

of equations with each equation having more homogeneous par ts than the 

original system. Solve each of these par ts separately, and then combine 

them for the final solution. 
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Given the linear second order ordinary differential equation 
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we choose y\(x) and y2(x) to be any linearly independent solutions of 
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yc(x) = Ciyi{x) + C2y2(x) 
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is called a particular solution. 
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Any solution of (89.1) (there will be different solutions, depending on 

what initial conditions or boundary conditions are chosen with (89.1)) may 

be wri t ten in the form 

y(x) = yc(x) + yP(x), 

for some choice of C\ and C^. 

N o t e s 

[1] In fluid dynamics, the influence of an obstacle in a flow can be simulated by 

a continuous superposition of sources. See, for instance, Homentcovschi [2]. 

[2] There also exist superposition principles for nonlinear equations. These are 

relations that allow new solutions, with arbitrary constants in them, to be 

calculated from other solutions. For instance, if yi, j / 2 , and 2/3 are solutions 

of the Riccati equation (see page 332), then y will also be solution if it 

satisfies 

where C is an arbitrary constant. See Ince [4] for details. 

[3] More generally, Lie and Scheffers [6] showed that a necessary and sufficient 

condition for a system of η  first order ordinary differential equations to have 

a (nonlinear) superposition formula is that the system of equations be of the 

form fc(*)Cfc(y)
 a n

d that the vector fields Xk := 

generate a finite dimensional Lie algebra. 

Given a set of vector fields, Ζ  = {Χ ι , ...,Xr}, and a Lie bracket [, ], 

a Lie algebra is generated by adding to Ζ  all elements of the form [Xi,Xj]. 

This process is repeated with the new, potentially larger, set Ζ  until no new 

elements enter Z. The resulting Ζ  is closed under the [, ] operation and is 

a Lie algebra; it may contain a finite or an infinite number of elements. 

R e f e r e n c e s 

[1] W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and 

Boundary Value Problems, Fourth Edition, John Wiley & Sons, New York, 

1986, Section 7.4 (pages 352-357). 

[2] D. Homentcovschi, "Uniform Asymptotic Solutions of the Potential Field 

Around a Thin Oblate Body of Revolution," SI AM J. Appl. Math., 42 , 

No. 1, February 1982, pages 44-65. 

[3] J. Hamad, P. Winternitz, and R. L. Anderson, "Superposition Principles for 

Matrix Riccati Equations," J. Math. Physics, 24, No. 5, May 1983, pages 

1062-1072. 

[4] E. L. Ince, Ordinary Differential Equations, Dover Publications, Inc., New 

York, 1964, pages 23-25. 

[5] A. S. Jones, "Quasi-Additive Solutions of Nonlinear Differential Equations," 

J. Austral. Math. Soc. (Series A), 42 , 1987, pages 92-116. 
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[6] S. Lie and G. Scheffers, Vorlesungen über Continuierlichen Gruppen mit 

geometrischen und anderen Anwendungen, Teubner, Leipzig, 1893. 

[7] M. A. del Olmo, M. A. Rodriguez, and P. Winternitz, "Superposition For

mulas for Rectangular Matrix Riccati Equations," J. Math. Physics, 28, 

No. 3, March 1987, pages 530-535. 

[8] S. Shnider and P. Winternitz, "Classification of Systems of Nonlinear Ordi

nary Differential Equations with Superposition Principles," J. Math. Phys

ics, 25, No. 11, November 1984, pages 3155-3165. 

90. Method of 

Undetermined Coefficients 

A p p l i c a b l e t o Linear or nonlinear differential equations, a single 

equation or a system. 

Y i e l d s 

An exact homogeneous solution, an exact particular solution, or both. 

Idea 

If the general form of the solution of a given differential equation 

is known (or can be guessed), it can be subst i tuted into the defining 

equations with unknown coefficients. Then the unknown coefficients can 

be determined. 

P r o c e d u r e 

Very often we can guess the form of a solution to a differential equation. 

Or, we could just guess blindly. By having several unknown parameters 

in the assumed form of the solution, the solution should be able to fit 

the defining equation(s). By forcing the guessed solution to satisfy the 

equation, we may be able to determine these unknown quantit ies. 

E x a m p l e 1 

Suppose we have the equation 

y" --^y = 7x
4

 + 3x
3

. (90.1) 
χ  

If we suspect tha t this equation has a power type solution for y(x), we 
might search for a solution in the form 

y(x) = ax
b

, (90.2) 
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No. 3, March 1987, pages 530-535. 
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P r o c e d u r e 
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3
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where a and b are unknowns to be determined. In this example, we presume 

tha t a and b are constants (in more complicated problems, the unknowns 

can be functions to be determined). We t ry to determine a and b by 

subst i tut ing our guess in the original equation for y(x). Using (90.2) in 

(90.1) yields 

ax
b

~
2

{b
2

 -b-2) = 7x
4

 + 3 x
3

. (90.3) 

This equation must be satisfied for all values of x. There is no single set of 

values for a and b for which this will be t rue. However, note the following: 

(A) If b = 6, α  = 1/4, then the left-hand side of (90.3) becomes 7 x
4

. 

(B) If b = 5, a = 1/6, then the left-hand side of (90.3) becomes 3 x
3

. 

(C) If b = — 1 , then the left-hand side of (90.3) becomes zero. 

(D) If b = 2, then the left-hand side of (90.3) becomes zero. 

The first two facts enable us to write the particular solution of (90.1) 

as 

yp(x) = \x* + \ x \ 

The second two facts tell us tha t y(x) = x
2

 and y(x) = 1/x are bo th 

solutions to the homogeneous equation 

X 

Therefore, the complete solution to (90.1) is 

y(x) = ]x
6

 + ];X
5

 + Ax
2

 + - , 
4 6 χ  

where A and Β  are arbi t rary constants . 

E x a m p l e 2 

Suppose we have the part ial differential equation 

uxx — ut, 

u(0,t) = 0, 

u ( l , t ) = 0, 

u(x, 0) = sin7nr. 

An appropriate guess for the form of the solution would be 

u(x,t) = f(t) sinnx, 

for some unknown function f(t). Using this guess in (90.4) results in the 

system 

f' + n
2

f = 0, / ( 0 ) = 1. 

Hence, / ( i ) = e"***. 

(90.4) 
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E x a m p l e 3 

A guess for the form of the solution of the equation 

ut = (uux)x (90.5) 

might be 

u(x,t) = f(t) + g(t)x
p

, (90.6) 

for some functions f(t) and g(t), and some constant p. Using (90.6) in 

(90.5) leads to the choice ρ  = 2. Wi th this value, f(t) and g(t) can be 

determined so tha t 

See Ames [1] for more details. 

N o t e s 

[1] In Table 3.1 of Boyce and DiPrima [2] is a description of general solution 

forms for a forced linear second order constant coefficient differential equa

tion when the forcing function is a polynomial, a trigonometric function, 

an exponential function, or a combination of these terms. By utilizing this 

general form with unknown coefficients, a solution may be obtained. 

[2] The reason that we suspected (90.1) to have a power type solution is that 

the homogeneous part of (90.1) is a Euler equation. 

R e f e r e n c e s 

[1] W. F. Ames, "Ad Hoc Exact Techniques for Nonlinear Partial Differential 

Equations," in W. F. Ames (ed.), Nonlinear Partial Differential Equations 

in Engineering, Academic Press, New York, 1967. 

[2] W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and 

Boundary Value Problems, Fourth Edition, John Wiley & Sons, New York, 

1986, Section 3.6.1 (pages 146-155). 

[3] E. D. Rainville and P. E. Bedient, Elementary Differential Equations, The 

MacMillan Company, New York, 1964, pages 115-118. 

[4] G. F. Simmons, Differential Equations with Applications and Historical Notes, 

McGraw-Hill Book Company, New York, 1972, pages 87-90. 

u(x, t) = (C- ßty
1

 x
2

 + (C- 6t) 
- 1 / 6 

91. Variation of Parameters 

A p p l i c a b l e t o Forced, linear ordinary differential equations. 
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R e f e r e n c e s 

[1] W. F. Ames, "Ad Hoc Exact Techniques for Nonlinear Partial Differential 
Equations," in W. F. Ames (ed.), Nonlinear Partial Differential Equations 

in Engineering, Academic Press, New York, 1967. 
[2] W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and 

Boundary Value Problems, Fourth Edition, John Wiley & Sons, New York, 
1986, Section 3.6.1 (pages 146-155). 

[3] E. D. Rainville and P. E. Bedient, Elementary Differential Equations, The 
MacMillan Company, New York, 1964, pages 115-118. 

[4] G. F. Simmons, Differential Equations with Applications and Historical Notes, 

McGraw-Hill Book Company, New York, 1972, pages 87-90. 
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Y i e l d s 

An integral representation of the particular solution. 

Idea 

If we know the solution to the homogeneous equation, we can write 

down an expression for the particular solution. 

P r o c e d u r e 

We illustrate the general technique for the linear ordinary differential 

equation of second order. Suppose we have the equation 

y" + P(x)y' + Q(x)y = Ä(x) , (91.1) 

and suppose tha t we know tha t {yi (x) , y2{x)} are two linearly independent 

solutions to the homogeneous (unforced) equation 

y" + P(x)y' + Q(x)y = 0. (91.2) 

Tha t is, every solution of (91.2) is a linear combination of y\(x) and 2 /2 (2) . 

We look for the particular solution of (91.1) in the form 

y(x) = vi(x)yi(x) + v2(x)y2(x), (91.3) 

where v\(x) and v2(x) are to be determined. Differentiating (91.3) with 

respect to χ  yields 

y' = (viyi + v2y'2) + {v[yi + v'2y2). (91.4) 

We choose the second term in (91.4) to vanish, so tha t 

+ ^22/2) = 0. (91.5) 

If we now differentiate (91.4) with respect to x, and use this expression 
(with (91.3), (91.4) and (91.5)) in (91.2) then we obtain 

vil/i + t ; ^ = Ä(x) . (91.6) 

Equations (91.5) and (91.6) const i tute two algebraic equations for the two 

unknowns v[(x) and v2(x). Solving these two algebraic equations yields 

, _ y2(x)R(x) , _ yi(x)R(x)
V l

~ w { y i, y 2y * ~ w { y i, y 2y

 ( 9 1 J

where W(y\,y2) := y[y2 — yiy'2 is the usual Wronskian. The equations in 

(91.7) can be integrated, and the results used in (91.3) for 

J W(yi,y2) J W{yi,y2) 
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, . f — sin χ  c -cscx 
V2\x) = I dx = —x. 

Hence, the particular solution to (91.8) is y(x) = s inx log(s inx) — χ  cosx. 

N o t e s 

[1] In Boyce and DiPrima [1] or Finizio and Ladas [4] may be found the gener-
alization of the analysis presented above for differential equations of higher 
order. The result is: 

If {y i , 2 / 2 , · · · , 2 /n } form a fundamental system of solutions for 
the equation 

y
( n)

 + an-iiaOy*""
1

* + · · · + ai(x)y' + a0(x)y = 0, 

and if the functions {1x1,1x2, · · · ,Wn} satisfy the system of 
equations 

yiixi + y 2 i x 2 + · · · + ynun = 0, 

1 1 . 1 1 , . 1 1 r\ 

y\U\ + y 2 ^ 2 + · · · + ynUn = 0, 

III. III. . II I f\ 

 · · ·  =

n

then y = myi + uiyi + · · · + ix nyn is a particular solution of 

y
( n)

 + a n_ i ( x ) y
( n _ 1)

 + · · · + ai(x)y' -f a0(x)y = f{x). 

[2] This last result could also have been obtained by applying variation of 
parameters to a system of linear first order ordinary differential equations. 
Suppose we have the system 

χ  = P(t)x + g(t), w
 *

W
 (91.9) 

x(<o) = xo, 

E x a m p l e 

Suppose we have the equation 

y" + y = cscx (91.8) 

to solve. The solutions to the homogeneous equation, y " + y = 0, are clearly 

y ι  (x) — sin χ  and y2 (x) = cosx. Hence, we can compute the Wronskian to 

be W(y\,y2) = — 1 . Using this in (91.7) results in 

, . f — COS X CSC X , , / . χ  

vi\x) — I dx = log(sinx), 
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R e f e r e n c e s 

[1] W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and 

Boundary Value Problems, Fourth Edition, John Wiley & Sons, New York, 
1986, pages 156-162, 275-277, and 391-393. 

[2] E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equa

tions, McGraw-Hill Book Company, New York, 1955, pages 87-88. 
[3] N. Finizio and G. Ladas, Ordinary Differential Equations with Modern Ap

plications, Wadsworth Publishing Company, Belmont, Calif, 1982, page 136. 
[4] E. L. Ince, Ordinary Differential Equations, Dover Publications, Inc., New 

York, 1964, pages 122-123. 
[5] E. D. Rainville and P. E. Bedient, Elementary Differential Equations, The 

MacMillan Company, New York, 1964, pages 130-136. 
[6] G. F. Simmons, Differential Equations with Applications and Historical Notes, 

McGraw-Hill Book Company, New York, 1972, pages 90-93. 

*o) > 16, this matrix is numerically singular even in 64-bit arithmetic. 

fundamental matrix = 

singular for t ^> to. For example, the problem u = u has the 

. Foi\(t-

where I is an identity matrix of appropriate size. See Boyce and DiPrima [1] 
or Coddington and Levinson [3] for details. 

[3] If (91.9) is stiff, that is P(t) has eigenvalues with widely separated positive 
and negative real parts (see page 690), then Φ ( ί ) may become numerically 

where Φ (<) is a fundamental matrix of the system. This means that Φ ( ί ) 
satisfies 

where g(i) is a time dependent vector and P(t) is a time dependent matrix. 
Then the solution can be written as 

For
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92. Vector Ordinary 

Differential Equations 

A p p l i c a b l e t o A system of constant coefficient linear ordinary differ

ential equations. 

Y i e l d s 

An exact solution is obtained. 

Idea 

Very often a system of coupled equations with constant coefficients 

can be transformed to a system of decoupled equations with constant 

coefficients. 

P r o c e d u r e 

Given a system of η  ordinary differential equations with constant 

coefficients, write the system as a vector ordinary differential equation in 

the following form 

y' = Ay, y(t0) = y 0, (92.1) 

where y is a vector of the unknowns and A is a constant η  χ  η  matrix. 

Then determine the eigenvectors of A (i.e., those vectors χ  tha t satisfy 

Ax = λ χ  for some value of λ ) , and construct a diagonalizing matr ix S 

whose columns are the eigenvectors of A. Then change variables by the 

transformation y = ^ u , so tha t (92.1) becomes 

(Su)' = A(Su), 

or 

u' = S^ASu. (92.2) 

By our choice of S, and assuming tha t A has η  linearly independent 

eigenvectors, the matr ix S~
X

AS will be diagonal. Hence the equations in 

(92.2) will decouple and each row of (92.2) will be an ordinary differential 

equation in one dependent variable (ui). These equations can be solved 

by the method applicable to linear constant coefficient ordinary differential 

equations (see page 204). Once u is known, then y can be recovered from 

y = Su. 
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(92.4) 

where Β  and C are arbi trary constants . Therefore, using our original 

transformation we obtain y = Su, or 

Note tha t these last equations are decoupled and have constant coefficients. 

The solutions to these equations are given by 

Equat ion (92.4) can be expanded as 

are λ  = 7 and λ  = 10 with the corresponding eigenvectors (1, — 1 )
T

, ( 2 , 1 )
T

. 

Therefore, the diagonalizing matr ix, S, whose columns are the eigenvectors 

We will also need the inverse of S, which is 

If we change variables by y = Su then, (92.3) 

a t ta ins the form of (92.2). Specifically, we find 

This system of equations can be wri t ten as a vector ordinary differential 

equation as follows: 

or y' = Ay, where y = ( y i , 2 / 2 )
T

 and A = The eigenvalues of A 

(92.3) 

E x a m p l e 

Suppose we have the system of equations 
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and therefore 

2/1 = Be
7t

 + 2Ce 
(92.5) 

y2 = -Be
11

 + Ce lot 

The constants Β  and C may be found by evaluating (92.5) at t = to and 

using (92.1): 

N o t e s 

[1] For a review of eigenvalues and eigenvectors see Strang [6]. 

[2] Of course, some systems of equations that are not of first order can also be 

reduced to the form of (92.). See page 118 for details. 

[3] For a similar technique applied to partial differential equations, see page 

[4] This method is the same as "solving" the system in (92.1) by writing y = 

e
A t

y 0, where the exponential of a matrix is another matrix. See Coddington 

and Levinson [4] or Moler and Van Loan [5] for details. 

[5] Similar results apply when A is a function of t. The equation y ' = A(t)y, 

with y(to) = y 0, has the solution y(t) = e
B ( < )

y(*o) , where B(t) := A(t) dt, 

whenever Β  A = AB. 

[6] Given (92.1), a faster technique to find the solution (analogous to the 

method for constant coefficient linear equations on page 204) is to find the 

eigenvalues {Ai} and eigenvectors {χ »} of A and then write the most general 

solution in the form 

384. 

η  

(92.6) 

i=l 

where the { C i } are unknown constants. 

For the example given, we can directly write the solution as 

y = <7 ι χ ι β
λ ι

*+ C 2x 2e 

which is identical to (92.5). 
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[7] If the matrix A cannot be diagonalized (that is, if A does not have η  linearly 

independent eigenvectors), then A has generalized eigenvectors. If the vector 

z^
m)

 satisfies (A - Ä i / )
m

z ^
m)

 = 0 and (A - Xil)
m

-
l

m\
m)

 φ  0, then z\
m) 

is called a generalized eigenvector of order m. (Note that a generalized 

eigenvector of order 1 is a usual eigenvector). Given z\
m

\ define z\
n

~
1

^ = 

(A — Xil)z\
n

^ for η  = m, m — 1 , . . . , 2. Then define 

for r = 1,2, . . . , m. Then the { y i r} will be a collection of linearly indepen

dent vectors and all solutions of (92.1) will be of the form ^ Ciryir (as 

in (92.6)). See Campbell [3] for details. 

[8] Nonhomogeneous systems of linear equations, of the form 

y' = A(t)y + g(t) 

may also be analyzed (see Boyce and DiPrima [2]. The easiest method is 

a generalization of the method of variation of parameters (see page 356). 

Alternately, if the nonhomogeneous system is of the form y' = Ay + tu, 

where A is a constant matrix and u is an arbitrary vector, then the system 

may be re-written as 

é C O - C r O - f t 0 ( 0 · 
which is now in the form of (92.1). 

[9] The solution of 

^37- = AX + XB, X(0) = C, 
at 

where A, B, C and X are all matrices is X(t) = e
At

Ce
Bt

. See Bellman [1] 
for details. 

R e f e r e n c e s 

[1] R. Bellman, Introduction to Matrix Analysis, McGraw-Hill Book Com-
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Boundary Value Problems, Fourth Edition, John Wiley & Sons, New York, 
1986, Chapter 7 (pages 323-395). 

[3] S. L. Campbell, Singular Systems of Differential Equations, Pitman Pub-
lishing Co., Marshfield, MA, 1980. 

[4] E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equa-

tions, McGraw-Hill Book Company, New York, 1955, pages 67-77. 
[5] C. Moler and C. Van Loan, "Nineteen Dubious Ways to Compute the 

Exponential of a Matrix," SIAM Review, 20, No. 4, October 1978, pages 
801-836. 

[6] G. Strang, Linear Algebra and Its Applications, Academic Press, New 
York, 1976, Chapter 5 (pages 171-230). 
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Exact Methods for PDEs 

93· Bäcklund Transformations 

A p p l i c a b l e t o Nonlinear part ial differential equations. 

Y i e l d s 

If a Bäcklund transformation can be found, then the solution of a non
linear part ial differential equation can be used to obtain either a different 
solution to the same part ial differential equation, or to obtain a solution to 
a different nonlinear part ial differential equation. 

I d e a 

Prom a solution of a nonlinear part ial differential equation, we can 

sometimes find a relationship tha t will generate the solution of 

(A) a different part ial differential equation (this is a Bäcklund trans
formation), 

(B) the same part ial differential equation (this is an auto-Bäcklund 
transformation). 

3 6 5 
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2 . ( v - u \ 

P r o c e d u r e 

The first step (which is extremely difficult) is to determine a Bäcklurid 

transformation between two part ial differential equations. There are var

ious methods described in the l i terature (see the references) tha t can be 

utilized for certain classes of equations. This transformation will utilize a 

solution of one of the partial differential equations to determine a solution 

to the other part ial differential equation. 

E x a m p l e 1 

Suppose we wish to find solutions to Burgers ' equation 

(93.1) 

Suppose tha t a solution of (93.1), u(x,t), is already known. If φ {χ ,ί ) is 

defined to be any solution of the linear part ial differential equation for 

φ (χ ,ί ) 

(93.2) 

(where w(x,t) also satisfies (93.1)) and v(x,t) is defined by 

(93.3) 

then v(x, t) also satisfies Burgers ' equation. Hence, two solutions of Burg-

ers' equation (i.e., u(x,t) and w(x,t)) can be used to generate another. 

For example, a solution to (93.1) is clearly u(x,t) = 0. Using this 

and w(x,t) = 0 in (93.2) results in 6t = σ φ χ χ, which has as a solution 

Using this in (93.3) results in a different solution to 

Burgers ' equation ν (χ Λ ) This solution mav be utilized to determine 

another solution, and the process can be repeated indefinitely. 

E x a m p l e 2 

Suppose we wish to determine solutions to the sine-Gordon equation 

(93.4) 

An auto-Bäcklund transformation is given by the pair of part ial differential 

equations 

(93.5.0-6) 
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Tha t is, given a solution to (93.4), u ( x , i ) , if v(x,t) satisfies (93.5), then 
v(x, t) will also be a solution of (93.4). This may be verified by determining 
vxt bo th by differentiating (93.5.a) with respect to ί  and by differentiating 

(93.5.b) with respect to x. This results in 

Λ  . (υ  — u\ (υ  + u\ 
vxt = uxt + 2sin( —^— 1 cosl — — I , 

_ . (ν  + u\ ί ν  -u\ 
vxi = -uxt + 2 s m l — — 1 cosl — — 1 . 

(93.6) 

Equat ing the two expressions in (93.6) results in (93.4), while adding them 

results in 

vxt = sin v. 

If we choose to utilize the solution u(x,t) = 0 of (93.4), then we can use 
the auto-Bäcklund transformation to determine another solution. Using 
u(x, t) = 0 in (93.5) results in 

Λ , . ν  2 . υ  
υ χ  = 2 À s i n - , vt = - s i n - . 

This system of equations is easily solved to yield a new solution of the 
sine-Gordon equation 

ν  „ I\ x\ 
t an - = C exp yXt + - J 

This solution may be used to determine another solution, and so on. 

N o t e s 

[1] The transformation in (93.2) and (93.3) with: 
(A) w = 0 (which we used in Example 1) is the Cole-Hopf transformation 

(see Whitham [11], pages 97-98). 
(B) w = φ  was first found in Fokas [5]. 

The transformation as we have presented it was found in Weiss, Tabor, 
and Carnevale [10]. 

[2] The Cole-Hopf transformation may also be written as the set of partial 
differential equations for the unknown v(x,t) 

2σ
 v

 ' 4σ  

[3] Sometimes a Bäcklund transformation cannot be used to generate an infinite 
sequence of new solutions; the solutions repeat after some point. See Chan 
and Zheng [3] for some techniques to find new Bäcklund transformations 
when this occurs. 
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[4] Sakovich [9] determines all evolution equations (wt = f(wx,wxx,..., wx...x)) 

and all Klein-Gordon equations (wxy = f(w)) that admit a Bäcklund auto-
transformation (i.e., a mapping of the form φ  = a[w], where a[w] includes 
finite derivatives of w, that maps a solution of an equation to itself). Be-
sides the linear equations, they include only the Liouville equation and the 
Burgers equation hierarchy. 
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94. Method of Characteristics 

A p p l i c a b l e t o Systems of quasilinear part ial differential equations (i.e., 
one or more part ial differential equations linear in the first derivatives of 
the dependent variables, with no higher order derivatives present). 
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Y i e l d s 

If the initial da t a is not given along a characteristic, then an exact 

solution can be obtained (generally implicit). 

Idea 

A quasilinear part ial differential equation can be transformed into a 

set of ordinary differential equations tha t define the characteristics and a 

set of ordinary differential equations tha t describe how the solution changes 

along any specific characteristic. 

P r o c e d u r e 

Suppose we have the quasilinear part ial differential equation 

α ι ( χ , u)uXl + a 2( x , u)uX2 H h a ^ ( x , u)uXN = 6(x, u) , (94.1) 

for the unknown it(x) = u(x\,x2,... ,# ;v) . If we were to differentiate u(x) 

with respect to the variable s, then we obtain 

du 

ds 

If we define 

^ = a f c( x , u ) , (94.3) 

for k = 1 , 2 , . . . , N, then using (94.1) in (94.2) results in 

^ = 6 ( x , U ) . (94.4) 
ds 

To determine the solution of the part ial differential equation in (94.1), 

we need to integrate the ordinary differential equations given in (94.3) 

and (94.4). (Equation (94.3) may look like a partial differential equation, 

but it is an ordinary differential equation with respect to s.) To perform 

this integration, initial conditions are needed in s for the {xk} and for u. 

Generally, the initial da t a for (94.1) will be given in the form 

g(*,u) = 0, (94.5) 

on some manifold in χ  space. We identify this surface as correspond

ing to s = 0. If we think of χ  and u as depending on the variables 

{ s , t i , Î 2 î · · · then the variables {ti, t2,...,£Λ Γ -Ι } can be used to 

parametrize the initial da t a in (94.5) (the examples will make this clear). 

Tha t is, 

X l( s = 0) = / i l (* l>*2 , - - - ,*JV- l ) , 

x2(s = 0) = Μ * Ι > * 2 , · · . , * Λ Γ - Ι ) , 

: (94.6) 

xN(s = 0) = h N{ t 1, t 2, . . . , £ J V - I ) , 

u(s = 0) = v ( * i , i 2 , . . - , * i v - i ) . 
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shock 

t 

Figure 94. Depiction of the characteristics for a quasilinear equation. 

Hence (94.6) supplies the initial conditions for the differential equations in 

(94.3) and (94.4). 

After χ  and u are determined from (94.3), (94.4), and (94.6), then an 

implicit solution will have been obtained. If the {s, ti, t2,..., t^-i} can be 

analytically eliminated, then an explicit solution will be obtained. It is not 

always possible to perform this elimination analytically. 

The physical picture of the construction of the solution is shown in Fig

ure 94. The solution u is determined by the ordinary differential equation 

(94.4) along each characteristic. A characteristic is specified by the {U} 

values. The parameter s represents scaled distance along a characteristic. 

When two characteristics cross, a shock is formed. 

Note tha t a shock cannot form if the equation in (94.1) is linear; tha t 

is, each {a*} is only a function of x, and not of u. At a shock, extra 

conditions are required. (See Landau and Lifshitz [2] for a discussion of 

the Rankine-Hugoniot adiabatic, which is used in fluid mechanics.) 

E x a m p l e 1 

Suppose we want to solve the quasilinear part ial differential equation 

ux + x
2

uy = -yu, 

u

 = f{y)
 on x 

on χ  = 0, 
(94.7.a-fe) 

where f(y) is a given function. Forming du/ds we have 

(94.8) 

Comparing (94.8) to (94.7), we take 

.2 — = -yu. 
ds 

du 
(94.9.a-c) 



9 4 . M e t h o d of Charac ter i s t i c s 3 7 1 

x(s = 0) = 0, 

y(s = 0) = t i , (94.10.a-c) 

u(s = 0) = / f r ) . 

The solution of (94.9.a) with (94.10.a) is 

x ( M i ) = s. (94.11) 

Therefore, (94.9.b) and (94.10.b) can be wri t ten as 

= 5
2

, 2 / ( 5 = 0 ) = t u 
ds 

with the solution 

5
3 

2 / ( M i ) = y + * i . (94.12) 

Finally, the equation for u (from (94.9.c), (94.10)c, and (94.12)) becomes 

du is
3

 \ , x 

d" = - ^ 7 Φ  = 0) = / ( * ι ) , 

with the solution 

u ( M i ) = / ( t i ) e x p ^ - ^ - . (94.13) 

Equations (94.11), (94.12), and (94.13) consti tute an implicit solution of 

(94.7). 

In this case it is possible to analytically eliminate the s and t\ variables 

to obtain an explicit solution. From (94.11) we obtain s — χ . Using this in 

x
3 

(94.12) results in ti = y — — . Using these two values in (94.13) results in 
ο  

the explicit solution 

u{x, y) = f(y- y ) exp ( y ~ 

The initial da t a in (94.7.b) can be wri t ten parametrically as 
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ux + uy + xyuz = u
2

, 

u — x
2

 on y = ζ , 
(94.14) 

E x a m p l e 2 

If we have the quasilinear part ial differential equation in three depen

dent variables 

then we can write (94.3), (94.4), and (94.6) as 

The equations for χ  and y can be integrated to yield 

(94.15) 

Using these values for χ  and y, the equation for ζ  becomes 

(94.16) 

which can be integrated to yield 

The equation for u can also be integrated to obtain 

(94.17) 

The equations in (94.15), (94.16), and (94.17) consti tute an implicit 

solution to (94.14). The variables t\ and t<i can be eliminated to yield 

To actually evaluate u(x, y, z) at some given value of x, y, and ζ  requires 

two steps. First the equation in (94.18.b) must be solved for s, and then 

this value is utilized in equation (94.18.a). 

Alternately, the method of resultants (see page 46) could be used to 

obtain a single polynomial equation in terms of x, y, z, and u, alone. This 

results in an equation with 123 terms; the implicit solution given by (94.18) 

is more useful and more compact. 

(94.18.a-6) 
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N o t e s 

[1] This technique extends naturally to systems of partial differential equa

tions, with virtually no increase in complexity. This allows a single partial 

differential equation of higher order (and hyperbolic type) to be analyzed. 

For example, the wave equation uxx = utt can be written, in the variables 

{v := ux, w := Ut}, as the system of two quasilinear equations {vt = wx, 

Wt = vx}. 

[2] The general quasilinear system of Ν  equations for the Ν  unknowns u = 

(iti, i t 2 , - · · *u n) in the two independent variables {x, t} has the form 

^ ^ ( u , ^ ) ^ - + 5Zo.j(u,a;)̂ - +6< = 0, 

j=i j=i 

for i = 1,2, ...,7V. This equation will be hyperbolic (and hence solvable 

by the method of characteristics) if there exist Ν  linearly independent real-

valued iV-dimensional vectors {v^\ v^
2

\ . . . , v ^ } and Ν  non-zero real-

valued two-dimensional vectors {oL^ k\ß^} such that 

for k = 1 , . . . , N. See Whitham [4] for details and for several examples using 
this formalism. 

[3] Referring to (94.1), it turns out that discontinuities in Vu can propagate 
along characteristics, but discontinuities in u cannot. In fact, if u satisfies a 
second order linear hyperbolic partial differential equation in χ  and y, and 

if {u, ux,uy, uxx, uxy} are all continuous across a curve C but uyy suffers a 

jump upon crossing C, then C is necessarily a characteristic of the partial 

differential equation. 

[4] Eliminating the {s, t } variables at the end of the calculation will be possible, 

in principle, whenever the Jacobian of the transformation does not vanish; 

i e d(u,xi,x2,.-.) 

# ( M i , * 2 , · · · ) 
[5] An equivalent way of writing (94.3) is the form 

dxi _ dx2 _ _ dxN 

which are called the subsidiary equations. When one or more of the au are 

zero, this equation looks peculiar, but is should be interpreted to be the 

same as (94.3). This form is used in place of (94.3) in many older texts. 

This formulation has been used occasionally in this book. 
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95. Characteristic Strip Equations 

A p p l i c a b l e t o Some partial differential equations in two independent 

variables. 

Y i e l d s 

When the technique is applicable, an implicit solution. 

This method appears to be a generalization of the method of charac

teristics, but it can in fact be derived from tha t method. The formulae 

presented here are handy to use directly. 

P r o c e d u r e 

Given the part ial differential equation 

where ρ  = ux, q = uy, we search for a solution u = u(x,y). The technique 

is to solve the system of "strip equations" given by 

Idea 

F(x,y,u,p, q) = 0, (95.1) 

dx 

(95.2) 

where we now consider {x, y,p, q, u} to all be functions of the two variables 

{ s , i } . The equations in (95.2) are also called Charpit's equations. 
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or q(0,t) = 2t. The original equation, (95.4), can be used (at s = 0) to 

determine tha t p(0,t) = u(0,t)/q(0,t) = t/2. Now tha t we have the initial 

conditions for all five variables appearing in (95.5), we can find the solution. 

The "initial" values for (95.2) (corresponding to 5 = 0) are given in 

terms of the other independent variable t. It will be possible to give initial 

values to all of the terms in (95.2) since the original equation (95.1) will 

have da t a with it tha t can be parameterized in terms of t. 

After we have determined {x, y, u} as functions of {s, £}, we must solve 

the equations implicitly to obtain the final solution in the form u = u(x, y). 

E x a m p l e 

Suppose we have the nonlinear part ial differential equation 

(95.3) 

with the initial da ta 

By comparing (95.3) with (95.1) we find tha t F = pq — u. Hence, the 

equations in (95.2) can be wri t ten as 

(95.5.a-e) 

The initial conditions for (95.5) are given by parameterizing (95.4) in terms 

of the dummy variable t. One such parameterizat ion (there are always 

infinitely many) is 

(95.6) 

To determine the initial conditions for ρ  and q, we utilize the chain rule 

which can be evaluated at s = 0 (using (95.6)) to yield 
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Equations (95.5.b) and (95.5.d) can be integrated directly to yield 

ρ  = \te\ q = 2te
8

. 

Substi tut ing these expressions in (95.5.a), (95.5.c), and (95.5.e), and inte

grating, results in 

χ  = 2t{e
s

 - 1), 

y = \t(e

8

 + 1), (95.7.a-c) 

u = t
2

e
2s

. 

Equations (95.7.a) and (95.7.b) can be inverted to produce s and t as 

functions of χ  and y: 

es _ *y + x t _ 4y-x 

4y — χ  ' 4 

Using these relations in (95.7.c) yields the final answer 

(x + Ay)
2 

" ( M ) = jg—· 

N o t e s 

[1] This method is sometimes called the Lagrange-Charpit method. 

[2] Frequently, inverting the variables at the end (i.e., finding s = s(x,y) and 

t = t(x,y)) is the step that cannot be carried out analytically. 

[3] The variable s really specifies a characteristic, while t represents distance 

along any single characteristic. 

[4] This technique works, as the example shows, even when the original equation 

is not quasi-linear. That is, the method of characteristics could not have 

been applied directly to (95.3). 

R e f e r e n c e s 

[1] Ε . T. Copson, Partial Differential Equations, Cambridge University Press, 

New York, 1975, pages 5-9. 

[2] P. R. Garabedian, Partial Differential Equations, Wiley, New York, 1964, 

pages 24-31. 

[3] I. N. Sneddon, Elements of Partial Differential Equations, McGraw-Hill 

Book Company, New York, 1957, pages 61-66. 

[4] E. Zauderer, Partial Differential Equations of Applied Mathematics, John 

Wiley & Sons, New York, 1983, pages 56-68. 

96. Conformai Mappings 

A p p l i c a b l e t o Laplace's equation (V
2

u = 0) in two dimensions. 
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Y i e l d s 

A reformulation of the original problem. 

Idea 

Laplace's equation in two dimensions with a given boundary can be 

transformed to Laplace's equation with a different boundary by a conformai 

map. The idea is to choose the conformai map in such a way tha t the new 

boundary makes the problem easy to solve. 

P r o c e d u r e 

Given Laplace's equation in the variables {x,y} (i.e., V
2

u = uxx + 

uyy = 0), we define the complex variable ζ  = x + iy, where i = y/—ï. All 

of the boundaries of the original problem can now be described by values 

of z. 

Any analytic transformation between two complex variables, say ζ  = 

F(z), for which ά ζ /dz is never zero, is said to be conformai It turns out 

tha t Laplace's equation is invariant under a conformai map. Tha t is, if 

UXX ~f" Uyy = 0, and F(z) is a conformai map, then 

In the new variables, {£, τ /}, the boundary might be very simple. If 
so, then Laplace's equation can be solved in this new domain. Then the 
solution of Laplace's equation in the original domain can be found by the 
change of variables induced by the conformai map. 

A commonly used conformai map is the Schwartz-Christoffel transfor-

mation. This maps a closed polygonal figure (with η  vertices) into a half 
plane. The mapping is given by the solution of 

% = C ( C - ζ ι )
β ι /π

~
1

(ζ  - ζ 2)
β 2/π

-
1

 · · · (C - C n ) ^ "
1

 (96.1) 

for appropriate / 3 2 , . . . , β η } and { C i , C2, · · · , Cn}- The { $ } are the 
interior angles of the polygon, and the {ζ ΐ } are the (complex valued) 
positions of the polygon's vertices. 

After the differential equation in (96.1) is formulated, it must be 
solved. The unknown constant C, as well as the arbi trary constant resulting 
from the integration, will be determined when the {ζ ΐ } are prescribed. The 
resulting function ζ  = F(z) is the conformai map tha t maps the interior 
of the given polygonal figure into the half plane. See Trefethen [10] for a 
numerical implementation. 
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2 / A η  A IL 
u = 1 

u = 0 u = 0 > u = 0 
X 

χ  = — 1 χ  = 1 

F igure 96.1 The original domain for Laplace's equation and the domain after a 

conformai mapping has been applied. 

E x a m p l e 1 

Suppose we have Laplace's equation (uxx + uyy = 0) to solve in the 

half plane H = { — o c < x < o o , 0 < y < o o } , with the boundary conditions 

c _ e + „ _ _ l og ( i ^ i ) . l og ( i ± | ^ l ) , ( 9 6. 2 ) 

the half plane H is mapped into a str ip of height π  in the (ξ , η ) plane. See 

Figure 96.1 for pictures of the two geometrical regions involved. 

In the (ξ , η ) plane the boundary conditions become 

The solution to Laplace's equation in this domain is simply η ) = η /π . 

To transform back to (x, y) coordinates, the transformation in (96.2) must 

be inverted. After some algebra it can be shown tha t 

for 

for 

|x| > 1, 

|x| < 1. 

Under the mapping 

u ( £ , 0 ) = 0, 

η (ξ ,π ) = 1. 

η  = arg 

so tha t 
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z\ = ι α  

w = 1 

z2 = 0 

w = 0 

w = 0 x 

η  A 

W 
f

 1

 f > 
= 0 \ w = 1 \ w = 0 ξ  

Ci = - 1 C2 = 1 

Figure 96.2 The original domain for Laplace's equation and the domain after 
the Schwartz-Christoffel transformation has been applied. 

E x a m p l e 2 

Suppose we have Laplace's equation (V
2

w = 0) in the channel open 

on the right (see Figure 96.2), with the boundary conditions 

w(x, 0) = 0 for 0 < χ  < oo 

w(x, a) = 0 for 0 < χ  < oo 

w(0,y) = 1 f o r 0 < î / < l . 

The polygon in which this problem is being solved has vertices at 
z\ = ia and z2 = 0, with the corresponding interior angles β ι  = β 2 = π / 2 . 

Using the Schwartz-Christoffel transformation we choose the vertices in 

the ζ  plane to map to the vertices ζ ι  = — 1 and C2 = 1 in the ζ  plane. The 

differential equation in (96.1) becomes: 

| = c ( c + i )
1 / 2

( C - i )
1 /2 

with the solution z = C c o s h
- 1

 ζ  -h D, where D is an arbi trary constant. 

To determine the constants C and D we must enforce tha t the vertices 

in the z plane mapped to the vertices in the ζ  plane. We have the two 

simultaneous equations: 

Zl=ia = C c o s h "
1

 (Ci) + D = C c o s h "
1

 ( - 1 ) + D = Cin + D, 

z2=0 = C c o s h "
1

 (Ca) + D = C c o s h "
1

 (1) + D = D, 

with the solution {D = 0, C = α / π } . Hence, the desired conformai 

mapping is C = cosh The problem in the C domain is now identical 

to the problem solved in Example 1. 
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N o t e s 

[1] The Joukowski transformation, given by ζ  = z + a
2

/z, maps an ellipse into 
a circle, or a circle into a strip. 

[2] Algebraic mappings, given by ζ  = z
13

^, with β  > 0, map a corner with 
angle α  to a corner with angle α β /π . For instance, if β  = 2π , then a quarter 
plane (α  = π /2) is mapped to a half plane. 

[3] Numerical implementation of the Schwartz-Christoffel transformation can 
fail on some seemingly very simple polygons. Mapping a rectangle with 
an aspect ration of 20 to 1, or most other regions with a similar degree 
of elongation, onto a half-plane may cause problems because the points in 
the transformed plane will be very close together. (This is known as the 
"crowding phenomenon.") 

[4] The Schwartz-Christoffel transformation can also be used for doubly con
nected domains, see Iyanaga and Kawada [4]. 

[5] Conformai mappings are often used in hydrodynamics and electrostatics 
because, under a conformai mapping, lines of flow and equipotential lines 
are mapped into lines of flow and equipotential lines. 

[6] Conformai mappings are often used to obtain an orthogonal coordinate 
system inside of a two-dimensional body. This may be used, for instance, 
when a grid is required on which the solution to a partial differential equation 
will be approximated numerically. 

[7] Even when an analytic conformai map cannot be found, there are fast 
numerical techniques for finding an approximate conformai map. Riemann's 
mapping theorem states that all bounded simply connected plane regions 
can be conformally mapped onto the unit disk, and all bounded doubly 
connected plane regions can be conformally mapped onto an annulus. Using 
Poisson's formula (see page 411) exact solutions can be written down for 
these two geometries. See Trefethen [11] or Fornberg [2] for details. 

[8] The mapping used in this method need not be conformai everywhere, it only 
needs to be conformai in the domain in which Laplace's equation is being 
solved. (Very few maps are conformai everywhere.) 

[9] Kober [6] has a large collection of conformai mappings, with the geometric 
regions in both the (x,y) and (η , ζ ) planes clearly illustrated. 

[10] Seymour [9] describes a computer package that permits real time manipula
tion and display of conformai mappings of one complex plane onto another. 

[11] If V
2

; î/ represents the Laplacian in {x,y} space, then under the conformai 
mapping ζ  = F(z) the operator V

2

>y is mapped to the operator \F'(z)\
2

V
2

^. 

Hence, the biharmonic equation V
4

w := VXjyV
2

,yu = 0 becomes, under a 

conformai mapping, |F ' (*) |
2

 V
2

^ ( | F ' ( z ) |
2

V
2

) C) u = 0. 
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97. Method of Descent 

A p p l i c a b l e t o Par t ia l differential equations (most often, wave equa

tions). 

Y i e l d s 

An exact solution. 

Idea 

For some part ial differential equations (in particular some wave equa

tions) odd dimensional problems are easier than even dimensional prob

lems. Hence it is reasonable, when given a 2n dimensional problem, to 

instead solve a 2n + 1 dimensional problem and then "come down one 

dimension." 

P r o c e d u r e 

Given a part ial differential equation in η  dimensions for the quanti ty 

tz(x) = t i ( x i , x 2» . . . , ^ n ) 

L[u) = 0, 

it might be easier to solve the η  + 1 dimensional problem 

L[v] + H[v] = 0, 

for v(x, ζ ) = υ (χ ι ,Χ 2, · . . , xn, z), where H[] is a differential operator with 

respect to z. Then, when υ ( χ , ζ ) is known, u(x) can be obtained by either 

(1) an appropriate integral over z, or (2) taking ν  to be independent of z. 

v(0, x, z) = / ( x ) , vt{0, x, z) = g(x). 

E x a m p l e 

Suppose we are given the two-dimensional wave equation 

(97.1) 

with the initial conditions 

(97.2) 

where χ  = {x,y). We might choose to instead solve the three-dimensional 

wave equation 

with the initial conditions 
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The three-dimensional wave equation has the well-known solution (see page 

429) 

v(t, x , z) = ctM\g\ + 1 (ctM[f\), (97.3) 

where M[·] is a functional defined to be the average value of its argument 

on a circle of radius ct; i.e., 

M[h(x,y,z)] := \ 2 / hdS 
Anc

z

r Js(t) 

1 ρ 2ΐ Γ  

= « - ö / / h(x + ct sin 0 cos φ , y + ct sin 0 sin 0 , z -h ct cos 0) 
47 rc

z
r 7 0 Jo 

χ  sin 0 d0 ά φ , 

(97.4) 
where 5 ( t ) is the surface of a sphere with origin at (x, y, z) and radius ct. 

To solve the two-dimensional wave equation (97.1), we merely utilize 
the fact t ha t / and g are independent of the variable z. Performing some 
algebraic manipulations, (97.4) becomes 

M[h{x,y)] = - ± - ( [ , ( 9 7. 5 ) 
L V

 2nctJ J y/ c 2 t 2 _ { x_ Q 2 _ { y_ v )2 '

where a(t) is the interior of the circle: (χ  — ζ )
2

 + (y — η )
2

 = c
2

t
2

. Using 
(97.5) in (97.3) results in the solution to (97.1) and (97.2). 

N o t e s 

[1] This method is also called Hadamard's method of descent. 

[2] If the descent step was applied once again, the solution of the one-dimensional 
wave equation, wtt = c

2

wxx, could be obtained from (97.3) and (97.5). 

[3] Note that a line source, in three dimensions, might be viewed as a point 
source in two dimensions. 

[4] One reason that odd space dimensional problems are sometimes easier than 
even dimensional problems is Huygen's principle. Huygen's principle (see 
Garabedian [4] or Chester [2]) states that the wave equation in an odd num-
ber of space dimensions only depends on the initial data (and its derivatives) 
on the perimeter of the domain of dependence. See the section on exact 
solutions of the wave equation (starting on page 429). 
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98. Diagonalization of a Linear 

System of PDEs 

A p p l i c a b l e t o A linear system of part ial differential equations in two 

independent variables, of the form + Aux = 0, where A is a constant 

matrix. 

Y i e l d s 

A set of uncoupled equations. 

Idea 

By diagonalizing the coefficient matrix, the equations can be uncou

pled and then solved. 

P r o c e d u r e 

Given the linear system of differential equations 

u t + Aux = 0, (98.1) 

we change the dependent variables to decouple the system. If the matr ix A 

is nxn and has the eigenvectors {vi,v2,...,vn) (which we assume to be lin

early independent) , then we define the matr ix S by S = ( v\ v2 ... vn ) . 

Changing variables in (98.1) by u = S w results in Swt + ASwx = 0, or 

wt + A w , = 0, (98.2) 

where A = S
_1

AS is a diagonal matr ix. The equations in (98.2) are now 

decoupled and can be solved separately for {wi(x, t), w2(x, t),..., wn(x, t)}. 

After they have been found, u may be determined from u = Sw. 
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E x a m p l e 

Given the system of linear part ial differential equations in two inde

pendent variables 

dui t dui t du2 

dt dx dx ' 

du2 du± + 8^ 2 = 0 

dt dx dx ' 

(98.3) 

we define the vector u = |
 1

 ) and the matr ix A = ( ? J so tha t 
\ u 2 J \1 Sj 

(98.3) may be wri t ten in the form of (98.1). 

The eigenvalues of A are λ  = 7 and λ  = 10 with the corresponding 

eigenvectors: v\ = ( 1, — 1 )
T

 and v2 = (2 , 1 )
T

. Hence the matr ix S 

is given by 5 = ^ which has the inverse S
- 1

 = ^ 1/3 1/3 ) ' 

Making the change of variables u = Sw turns (98.1) into (98.2) with Λ  

defined by 

Λ  = S"
1

 AS, 

_ (1/3 - 2 / 3 \ (9 9 \ / 1 2\ 

- \ l / 3 1/3 A 1 S j \ - 1 l)> 

• ( ϊ ϊ ) · 

The equations in (98.2) can then be separated to obtain 

dw\ IQ^
W

I _ q 

dt dx 

dw2 + = 0 

dt dx 

These equations have the solution 

w1(x,t) = f(x-10t), 

w2(x,t) = g(x - It), 

where / and g are arbi trary functions of their arguments. Knowing w we 

can determine u to be 

t i i f o t) = Wl(x, t) + 2w2(x, t) = f(x - 10t) + 2g(x - It), 

u2(x, t) = —wi(x, t) + w2(x, t) — —f(x — 10t) + g(x — It). 

Knowing the general form of the solution, any initial conditions for u\(x, t) 

and u2(x,t) could be utilized. For example, if we had 

Ί Ι Λ (Χ ,Ο ) = 3 s in2x . 
' (98.5) 

u2(x,0) = 0, 
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f(x) + 2g(x) = 3 s in2x , 

-f(x)+ g(x) = 0, 

and so f(z) = g(z) = s'm2z and the final solution can be writ ten 

ui(x,t) = sm(2x - 20t) + 2sin(2x - Ut), 

u2(x, t) = - sin(2x - 20t) + sin(2x - Ut). 

R e f e r e n c e s 

[1] S. J. Farlow, Partial Differential Equations for Scientists and Engineers, 

John Wiley & Sons, New York, 1982, Lesson 29 (pages 223-231). 

99. DuhamePs Principle 

A p p l i c a b l e t o Linear parabolic and hyperbolic part ial differential 

equations. 

Y i e l d s 

An integral representation in terms of the solution of a more tractable 

part ial differential equation. 

Idea 

To solve a parabolic part ial differential equation with a t ime varying 

source function and time varying boundary conditions, only a parabolic 

partial differential equation with a constant source te rm and constant 

boundary conditions needs to be solved. 

P r o c e d u r e 

Suppose we have the parabolic part ial differential equation for it(x, t) 

—u(x,t) = L[u(x,t)] + F(x,t), 

u(y,t) = G(y,t), f o r f > 0 ,

u(x,0) = H(x), 

where £»[·] is an elliptic operator in χ  and y denotes a point on the boundary. 

Note tha t (99.1) has a time dependent source function F ( x , t) and t ime 

then utilizing (98.4) in (98.5) produces 
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u(x,0) = H(x), 
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Note tha t (99.1) has a time dependent source function F ( x , t) and t ime 

then utilizing (98.4) in (98.5) produces 
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dependent surface conditions G (y , t). Instead of solving (99.1) for u (x , t), 

we choose to solve the parabolic part ial differential equation 

— v ( x , t, τ ) = L[v(x, t, τ )) + F ( x , r ) , 

t ; (y , t , r ) = G ( y , r ) , for t > 0, 

U ( x , 0 , t ) = # ( x ) , 

(99.2) 

for ν ( χ , ί , τ ) . Note tha t the variable of integration in (99.2) is t, while 

the source te rm and the surface conditions depend upon the parameter r . 

Hence, the equation for ν ( χ , ί , τ ) has (effectively) a constant source te rm 

and constant surface conditions. Thus , it should be easier to determine 

v(x, ί , τ ) t han it was to determine u (x , t). 

Knowing the solution of (99.2), the solution to (99.1) can be writ ten 

as 

d t
1 

u(x,t) = —J v ( x , t - r , r ) d r . (99.3) 

This is easily derived from manipulations of the Laplace transforms of 

equation (99.1) and (99.2). See any of the references for details. 

E x a m p l e 

Suppose we want to solve the equations describing the tempera ture of 

an initially cool, insulated rod with a tempera ture f(t) specified at one end 

for 0 < χ  < 1, 0 < t < oo, 

t i(0,t) = 0, for 0 < t < oo, 

u(l,t) = / (<) , for 0 < t < oo, 

u(x,0) = 0, for 0 < χ  < 1. 

Instead of solving (99.4) for u(x, t) we solve 

vt = v x x, for 0 < χ  < 1, 0 < t < oo, 

v ( 0 , t , r ) = 0, for 0 < t < oo, 

v ( l , i, r ) = / ( r ) , for 0 < t < oo, 

υ ( χ , Ο , τ ) = 0, for 0 < χ  < 1, 

(99.4) 

(99.5) 

for v(x, t, r ) . By separation of variables (see page 419) the solution of (99.5) 

is found to be 

v(x,t,r) = / ( r ) 
2 ^ ( _ i ) " 2 2 β  

x + - > - — — e "
n π

 *sinn7TX 

n = l 
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°, (99.6) 

where we defined Τ  = t — τ  in the above. If, for example, f(t) = e *, then 

(99.6) may be simplified to yield 

u(x, t) — χ  — e 1 - - Σ  ( (

"
i r S i n

2 T W^e-
2

^ - e-Λ ) 

N o t e s 

[1] The procedure for hyperbolic partial differential equations is analogous to 

the procedure for parabolic partial differential equations. Consider, for 

example, the hyperbolic equation 

utt + L[u] = b(x,t), 

(where L[] is uniformly elliptic) with the boundary conditions 

u(x, 0) = ut{x, 0) = 0. 

If υ ( χ , ί , τ ) is defined to be the solution of 

vu + L[v] = 0, for t > r , 

ν (χ ,τ ,τ ) = 0, 

v t( x , r , r ) = 6(x,r) , 

then we have u(x, t) = v(x, i, r ) dr. 

Using this formulation, it can be shown that the solution to utt — 

c
2

V
2

u — F(x,y, z , t ) , is given by 

u(x,y,z,t) = ±.J J J
 Ε {ξ

>
η

>
ζ

>Γ *-
Γ /<:)

 ά ξ ά η ά ζ , (99.7) 

£

2

- H ?

2

- K

2

< c

2

t

2 

where r
2

 = (χ  - ξ )
2

 + (y - η )
2

 + (* - C)
2

- The integral in (99.7) is called 

the retarded potential. 

which, for notational convenience, we choose to write as v(xy t, r) = f(r)g(x, t). 

Using (99.3), the solution for u(x,t) can then be writ ten as 

d (l 

u(x, t) = — / v(x, t-τ ,τ ) dr 

d (
l 

=

 di J f(
T

)9(x^-r)dr 

i 
f(t-T)g(x,T)dT 

vi Jo 
= f(0)g(x,t)+[ f(t-T)g(x,T)dT, 

Jo 
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100. Exact Equations 

A p p l i c a b l e t o Quasilinear part ial differential equations. 

Y i e l d s 

An exact solution. 

Idea 

Some quasilinear part ial differential equations can be integrated di-

rectly. 

P r o c e d u r e 

Consider the quasilinear part ial differential equation 

If this equation satisfies the exactness condition Mx = Ny, then an implicit 

solution to (100.1) will be given by 4>(x,y,u) = 0, where 

M{x,y,u)ux = N(x,y,u)uy. (100.1) 

Μ  = φ ] Ν  = φ χ . (100.2. α -6) 

To determine the function φ , integrate (100.2.a) to obtain 

(100.3) 

Then, using (100.2.b) we have 
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φ  = / M dy + g{x, u) = W + g(x, u). 

From (100.2.b) we have φ χ  = gx = Ν  = xu, or g = \x
2

u + h(u). This 

leads to the general implicit solution: 

φ  = \ (y
2

 + x
2

u) + ft(tz) = 0. 

Choosing, for example, h(u) = + b results in the explicit solution 

• < , „ ) ~ i ± 4 . 
α  Η - χ  

N o t e s 

[1] The above example is from Benton [1]. 

R e f e r e n c e s 

[1] S. H. Benton, Jr., The Hamilton-Jacobi Equation, Academic Press, New 

York, 1977. 

101. Hodograph Transformation 

A p p l i c a b l e t o Quasilinear part ial differential equations, a single equa

tion or a system of equations. 

or 

g(x,u) = J jMxdy^) dx + h{u), (100.4) 

where h(u) is an arbi t rary function. Using (100.4) in (100.3) results in the 

final solution. 

E x a m p l e 

Consider the equation 

yux = xuuy, 

for which M = y and Ν  = xu. This equation is exact since Mx = 0 = Ny. 

From (100.3) we have 
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Y i e l d s 

A new formulation of the original equations. 

I d e a 

In a part ial differential equation it may be easier to solve the equation 

with the dependent and independent variables switched. 

P r o c e d u r e 

This procedure works on a quasilinear equation or a system of such 

equations. Tha t is, every term of each equation must have one and only 

one first derivative term, and there can be no higher order derivative terms 

in the equations. 

Consider the case of two dependent variables (u, v) in two independent 

variables (x, y). Suppose L[u, υ ] = 0 represents the equation(s) to be solved 

for u(x,y) and v(x,y). This equation is transformed to the "hodograph" 

plane by writing χ  = x{u,v) and y = y{u,v) and transforming L[u,v] = 0 

into a new equation H[x, y] = 0. In this new equation, χ  and y are t reated 

as the dependent variables. 

The solution obtained will, in general, be implicit. After the solution 

is obtained in the hodograph plane, the transformation must be checked to 

ensure t ha t it is not singular. 

E x a m p l e 1 

Suppose we have a pair of nonlinear equations arising from gas dy

namics (from Whi tham [9], page 182) 

vy + uvx + bvux = 0, 

1 „ (101.1) 

V 
Uy + UUX + TVVX = 0, 

where b is a constant. Because the equations in (101.1) are quasilinear, the 

method of characteristics can be used to solve them. However, it is difficult 

to use tha t method directly. 

The hodograph transformation can be used on (101.1) by inverting 

u(x,y), v(x,y) to find (see, for example, Kaplan [6], on how to change 

variables in this manner) 

x

u — ~
v

yl J->
 x

v — Uy/J, (101 2) 

yu = vx/J, yv = -ux/J. 

In (101.2), J is the Jacobian of the transformation, J = uyvx — vyux. Using 

(101.2) in (101.1) results in the equations 

Xu - uyu + bvyv = 0, 

1 (101.3) 
Xv - uyv + -vyu = 0. 

0 
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Because the original equations were quasilinear, the Jacobian factors out of 

the equations (assuming it never vanishes) and does not appear in (101.3). 

The equations in (101.3) are now quasilinear in the dependent variables 

(x ,y ) . They may easily be solved by the method of characteristics, the 

details may be found in Whi tham [9]. 

E x a m p l e 2 

An equation tha t arises in transonic small disturbance theory is 

Φ χ φ χ χ  - Φ υ ν = 0. (101.4) 

Using a := φ χ  and b := φ υ , equation (101.4) can be writ ten as the system 

of quasilinear equations: 

dy - b x = 0, -aax + by = 0. 

Using the Hodograph transformation, these equations simplify to: 

Xb-ya = 0, ayb - xa = 0, 

with J = xi>ya — ybXa- Combining these equations results in the familiar 

Tricomi equation: ay^b — yaa = 0. 

N o t e s 

[1] The hodograph transformation is frequently used in fluid mechanics for 

problems with unknown boundaries. In many situations, the boundaries 

become fixed in the hodograph plane. 

[2] The transformation will be non-singular if the Jacobian of the transforma

tion, J , does not vanish in the region of interest. 

[3] Ames [1] shows that the nonlinear equations describing a vibration problem 

ut - vx — 0, vt - F
2

(u)ux — 0, 

become, after applying the Hodograph transformation, the linear equations: 

Xv - yu = 0, xu - F
2

(u)yv — 0. 

[4] Whitham [9] (page 617) shows how the Born-Infeld equation 

( l — u
2

) uxx + 2uxutuxt — ( l + u
2

x) utt = 0 

may be linearized with the Hodograph transformation. 

[5] This technique can also be applied to ordinary differential equations, a 

differential equation for y(x) is inverted to become a differential equation 

for x(y). See page 308. 
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102· Inverse Scattering 

A p p l i c a b l e t o Nonlinear evolution equations, a single equation or a 

system. 

Y i e l d s 

A reformulation into an inverse problem, which can sometimes result 

in an exact solution. 

Idea 

By rewriting the evolution equation, some natura l eigenfunction prob

lems emerge. 
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P r o c e d u r e 

An evolution equation for u(t,x) = u(t, x\,..., xm) may be writ ten in 

the form 

ut = K(u), (102.1) 

where K( ) denotes a nonlinear differential operator in x. For a system of 

equations, the u in (102.1) represents a vector of unknowns ( u i , . . . , un). 

The procedure is to write (102.1) in the Lax pair form (this is often 

the hardest part of the procedure) 

Lt = i[L, A] = i(LA - AL), (102.2) 

where L and A are linear differential operators in χ  whose coefficients are 

polynomials in u and its χ  derivatives. Here, Lt refers to differentiation 

of u (and its derivatives) with respect to t in the expression for L. See 

Example 1 for how (102.2) is to be interpreted. Note tha t , if A were a 

Hamiltonian, then (102.2) would be a Heisenberg equation. 

A straightforward calculation now shows tha t 

ί φ λ ί  = (L - Χ )(Α φ  - ΐ φ ι ), 

for arbi trary </>(£, x) and λ . If we assume tha t φ (ί  = 0 , x ) and X(t) are an 

eigenfunction-eigenvalue pair for L, tha t is 

L</> = \φ , (102.3) 

and if the eigenfunctions fyj(t,x)} evolve in time as 

ι φ ί  = Α φ , (102.4) 

then the eigenvalues will be independent of t ime (i.e., Xt = 0 ) . 

Hence, the t ime evolution of the eigenfunctions can be determined 

from (102.4). Using the eigenfunctions {0j(£,x)}, an inverse problem 

must be solved; the operator L must be determined from knowledge of 

its eigenfunctions. Since L depends on u, this might lead to a solution for 

u. For some problems, the time evolution of the eigenfunctions can be used 

in the Gelfand-Levitan linear integral equation (see Faddeyev [7]), which 

may (sometimes) be solved to determine it(£,x). 

Given equation (102.1) and the initial conditions u(t = 0 , x ) , the 

procedure can be summarized as 

(A) Find the Lax pair representation of the evolution equation(s). 

(B) Using u(t = 0 , x ) , evaluate L at t = 0 and then determine the 

eigenvalues { λ ^} and the initial values of the eigenfunctions {</>j(0, x ) } . 

These are the solutions to (102.3). 
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dx
2 

V dx
3

 dx dxj 

(102.5.O-6) 

This may be verified by calculating 

L(A(ip)) = i(3ipuxxx + 12ψ χ η χ χ - 3ipuux + 15ψ χ χ υ ,χ  - 6ψ χ υ ? 

"f" 10lpxxxll ^ψ χ χ χ χ χ ^) ι  

A(L(yj)) = i(Atpuxxx + 12ψ χ ι ι χ χ - 9ipuux + lbipxxux - 6ψ χ υ ? 

"f* 10l/jxxxU ^ψ χ χ χ χ χ ^) ι  

(LA - AL)xj) = -i (uxxx - 6uux) φ  

(102.6) 

where ψ  = φ  (χ ) is an arbi trary function. Using (102.5.a) and (102.6), we 

then determine 

U =

 ~
U u

 (102.7) 
[L, A] = [L(A(-)) - A(L(-))] = -i (uxxx - 6uux). 

When (102.7) is used in (102.2), the KdV equation is the result. 

a Lax pair is given by 

E x a m p l e 1 

For the KdV equation 

Note tha t {</>j(t),x} is called the scattering data. Even if step [4] can

not be carried out, useful information may be obtained from the scattering 

data . 

(C) Find the t ime evolution of the eigenfunctions by solving (102.4). 

(D) Determine u(t, x ) by solving an inverse problem; i.e., using {(t>j(t, x ) } 

as the solutions to (102.3), determine L for t > 0. 
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E x a m p l e 2 

For the s ine-Gordon equation 

uxt = smu, 

the scattering equations (which determine the initial values of the eigen

functions) for the vector eigenfunction (φ , ψ )
Ύ

 may be writ ten as 

τ ( Φ \ - Λ  dx 2dx I (Φ \ _ λ (Φ \ 

W/ I Ι »Η  _9_ U/ U/' V 2 dx dxi 

while the evolution equations for the vector eigenfunction may be writ ten 

as 

{d_ f Φ \ = AfΦ \ = ]_ (cosu s i n u \ ί φ \ 
dt \ψ  ) \ψ  J 4 λ  \ s inu - cosu J \φ  J ' 

N o t e s 

[1] The formulation of inverse scattering presented here is not the only possible 

formulation. There are other formulations, which may be easier to carry out 

on specific problems. 

[2] The paper by Case and Kac [5] discusses a discrete inverse scattering prob

lem; their problem illustrates many of the ideas from scattering theory 

without all of the mathematical difficulties. 
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103· Jacobi's Method 

A p p l i c a b l e t o First order part ial differential equations with three or 

more dependent variables. In the special case tha t the dependent variable 

appears explicitly in the equation, then it also applies to equations with 

two dependent variables. 

Y i e l d s 

An explicit solution if a certain step can be carried out. 

I d e a 

Given a part ial differential equation for z (x) = z{x\, x2,... ,xn), if the 

set of η  first derivatives {pi = dz/dxi \ i = 1 ,2 , . . . , n} are explicitly known, 

then z(x) may be found by integrating the Pfaffian differential equation: 

dz = pidxi + · · · + pndxn. Jacobi 's method determines the {pi} from a 

given part ial differential equation. 

P r o c e d u r e 

Let us presume tha t the given part ial differential equation for ζ  = 

z(x) = z(xi,... ,xn), with η  = 3, is of the form 

F ( x , p ) = 0, (103.1) 

where pi = dz/dxi. If we could find two other equations, tha t have the 

same solution as (103.1), of the form { F 2( x , p) = 0, F 3( x , p ) = 0} , then 

we might be able to determine {p\ = p i ( x ) , . . . ,pn = Pn(x ) } by combining 
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these three equations. Then we could find z(x) by solving the Pfaffian 

differential equation (see page 326) 

dz = pi dxi H h pn dxn. (103.2) 

So, we need to determine { F 2 , F 3} in such a way tha t their solutions 

are the same as the solution to (103.1). This requirement results in (see 

the section on compatible systems, page 39) 

[ F t F 2] ~ y (2L^l _ dFdF^) = 

r-i \dxi dpi dpi dxi J 
l

-
x

 (103.3) 
[ F , F 3 ] = 0 , 

[ F 2 , F 3 ] = 0 . 

where [, ] is the usual Poisson bracket. The characteristic equations for F 2 

(or F 3) , from (103.3), can be wri t ten as (see page 368) 

dxi _ dpx _ dxn _ dpn ^ ^ 

dF OF QF " dF ' 

dp ι  dxi dpn dxn 

(These are also known as the subsidiary equations.) Hence, the procedure 

is to solve (103.4) for F 2( x , p) = 0 and F 3( x , p ) = 0. It must be then 

be verified tha t [ F 2, F 3] = 0. Then solving {F = 0 , F X = 0 , F 2 = 0} for 

Pi = Pi(x) and integrating (103.2) results in a solution to (103.1). 

E x a m p l e 

This example is from Piaggio [3]. Suppose we have the following 

nonlinear part ial differential equation in three independent variables 

π / , dz n 2 dz 
0 = F ( x , p ) = 2xlX3— + Sxl— + 

/ dz\
2

 dz 

\dx2J dxz dx!
 a

dx2 \dx2J dxz (103.5) 

= 2 x i x 3p i -f 3xjp2 + p 2 p 3 , 

The subsidiary equations in (103.4) can be writ ten as 

dx\ dpi dx2 dp2 dx3 d p 3 

—2xix3 2 x 3p i —3x3 — 2 p 2p 3 0 —pi 2xiPi + 6 x 3p 2 

(103.6) 

Prom the first equality in (103.6) we have 

F 2( x , p ) =ρ ι χ ι  - Α χ  = 0 , (103.7) 
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where A\ is an arbi t rary constant . Prom the fourth te rm in (103.6) we 

have 

F 3 ( x , p ) = p 2 - A 2 = 0, (103.8) 

where A2 is another arbi t rary constant. Clearly, [F 2, F 3] = 0 for our chosen 

F2 and F 3 . Combingin (103.7) and (103.8) with the original equation, 

(103.5), we find tha t 

P3 = —4 (2Aix 3 + 3A2x
2

3). (103.9) 

In equations ( 103.7)-( 103.9) we have found expressions for the {pi}. Hence 

dz = pi dx\ + p2 dx2 + p 3 dx% 

= — dx\ + A2 dx2 — ^ ö ( 2 A i x 3 + 3A2xh d x 3, 
X\ A2 

which can be integrated to yield the solution 

ζ - Α χ  log χ ι  + A2x2 - (Axx\ + A2x\) -h A3, 

where A3 is another arbi t rary constant . 

N o t e s 

[1] If the given partial differential equation has only two independent variables 
and if the dependent variable ζ  is explicit in the partial differential equation, 
then we can transform the partial differential equation into the form of 
(103.1). For example, if we have F(x,y,z,p,q) = 0 (where, as usual, 
ρ  = dz/dx, q = dz/dy), suppose that u(x,y,z) = 0 is an integral of this 
equation. If we define u\ = du/dx, U2 = du/dy, uz = du/dz, then we 
can write ρ  = —ui/u3,q = —U2/U3. Using these definitions for ρ  and q in 
the original equation yields an equation of the form f(x,y,z,u\,U2,uz) = 

/ ( x , p ) = 0. 

[2] When this method is specialized to two independent variables, it is often 
called Charpit's method. See Chester [2] or Piaggio [3] for details. 

[3] When η  > 3, then the only change in the procedure is that we must now 
determine {F2, F3,..., Fn} and use these (with F) to solve for the {pi}. 
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104. Legendre Transformation 

A p p l i c a b l e t o Part ial differential equations in one dependent variable 

tha t are not of the form F (uXl, uX2,..., uXn ) = 0. 

Y i e l d s 

An alternative formulation of the original problem. 

Idea 

A surface in space may be described by a point or as an envelope of 

tangent planes. Changing variables from one representation to the other 

may facilitate finding a solution. After a solution is obtained, it can be 

transformed back to the original variables. 

P r o c e d u r e 

We illustrate the technique for two independent variables, the notes 

show how the technique may be extended to η  independent variables. 

Given a function u(x,y), we change to the new variables ι ν (ζ ,η ) by the 

transformation 

w(C, η ) + u(x, y) =χ ζ  + yr\, (104.1) 

with the following definitions 

ux = ζ , ν ϋ ζ  = χ , uy = η , ν ο η  = y. (104.2) 

From (104.1) and (104.2) it is easy to derive tha t 

UXy ~~ UyX JW^yj, 

Uyy = JWÇÇ, 
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where J is the Jacobian of the transformation. The Jacobian may be 

expressed as 

J
 =

 UXXUyy — (UXy) = ' ~2 · 

To be able to transform from the {u, x, y} variables to the {w, £, η } vari

ables, the Jacobian must not vanish. If J φ  0, then the surface is said to 

be developable. The solutions with J = 0 are said to be non-developable so

lutions. The non-developable solutions are not obtainable by the Legendre 

transformation. 

S u m m a r y 

For the part ial differential equation of at most second order in the 

variables {u, x , y } , 

F (X, t/, U, UX, Uy, UXX, UXy, Uyy) = 0, (104.3) 

we make the Legendre transformation to obtain the new equation 

F (ν υ ζ , ν ο η ι ζ ν υ ζ  + η ν υ η  - w, C , r / , Jwvr], -Jw^, Jwcc) = 0, (104.4) 

in the new variables {ν υ ,η ,ζ }. 

Sometimes equation (104.4) is easier to solve than equation (104.3). 

After equation (104.4) is solved to determine ν υ (η , ζ ) , we must change back 

to the original variables. Changing from the {ν υ <η , ζ } variables to the 

{u, x, y} variables can be done (due to the implicit function theorem) but 

may be difficult. 

E x a m p l e 

Consider the nonlinear part ial differential equation 

uxuy = x, (104.5) 

which we want to solve for u(x, y). The Legendre transformation of (104.5) 

is (using the transformations in (104.1) and (104.2), or using (104.4) di

rectly) 

wc = ζ η . (104.6) 

This has the solution 

™ ( C , r ç ) = h C
2
 + / ( r ç ) , (104.7) 

where /(η ) is an arbi trary function of η . We have now finished solving 

the differential equation. Since we have the solution in terms of the new 
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where A is an arbi trary constant, then (104.11) becomes 

y = (\x
2

 - A ) ± U = *-Z2A. (104.12.a-6) 

Solving (104.12.a) for η  and using this expression in (104.12.b) produces 

u{x,y) = ^2y(x
2

-2A). 

Now tha t we have an explicit solution, we must check tha t the Jacobian 

does not vanish. In this example, J φ  0. 

variables, all tha t remains is to transform to the old variables. This change 

of variables will utilize the η )(ζ ,η ) tha t was found. 

Using (104.6) and ν υ ς  = χ  (from (104.2)) we have 

χ  = η ζ . (104.8) 

Differentiating (104.7) with respect to η  and using y = wv (from (104.2)) 

yields 

w = K 2 + /,fa)- ( 1 0 4 · 9) 
Using (104.7)-(104.9) in (104.1) produces the equation 

u = χ ζ  + yj] - u / ( C η ) = η ζ
2

 + η /'{η ) - /(η ). (104.10) 

Solving (104.8) for ζ , and then subst i tut ing tha t result in (104.9) and 

(104.10) produces 

[ (104. l l .a-6) 

u = — + η /'(η ) - / ( η ) . 
V 

This is a parametric representation of the solution u(x,y). All of the 

developable solutions of (104.5) are completely characterized by (104.11). 

Given any /(η ) we can, in principle, find η  = η (χ , y) from (104.11.a). Using 

this value for η  in (104.11.b) then gives u as a function of χ  and y. 

To illustrate this, if we choose 

http://104.ll.a-6
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N o t e s 

[1] Observe that 

u =

 °y+ 2 ^
χ 2 + ( 7

' (104.13) 

where C and D are constants, is also a solution to equation, (104.5), but 
this solution is not contained in (104.11) for any / (n ) . This is because the 
solution in (104.13) is non-developable ( J = 0). 

[2] The Legendre transformation may be naturally extended to partial differ
ential equations in η  variables. The transformation (from ι ι ( χ ι , # 2 , . · . , # n ) 

to u/(Ci, Ci? · · · » Cn)) and its inverse is given by 

u(x\,X2, . . . , X n) = w(Cl,Cl> · · · >Cn) + S l f t + ^ 2 ( 2 + hXnCn, 

Wçl = Χ ι , Wç2 — Χ ι , - - , wçn = xn. 

See Courant and Hilbert [3] for more details. 

[3] Clairaut's equation, u = xux + yuy -h f(ux,uy), under the Legendre trans
formation, becomes the simple equation w = —/(C?

7
?)-

[4] The Legendre transformation is an example of a contact transformation (see 
page 206). 

[5] The Legendre transformation is an involutory transformation; that is, the 
Legendre transformation applied twice results in the original equation. 

[6] The Legendre transformation is used in mechanics when transforming from 
the Lagrangian formulation to the Hamiltonian formulation (or vice-versa). 
See Goldstein [5] for details. 

[7] The Legendre transformation is used in thermodynamics when transforming 
the fundamental equation from internal energy (canonical variables are spe
cific volume and specific entropy) to the Gibbs function (canonical variables 
are pressure and temperature), or to enthalpy (canonical variables are pres
sure and specific entropy), or to the Helmholtz function (canonical variables 
are specific volume and temperature). For more details of this application, 
see Kestin [6]. 

[8] If the Legendre transformation is applied to a partial differential equation of 
the form F(ux,uy) = 0, then the algebraic relation F(£, η ) = 0 results. Since 
ι υ (ζ ,η ) cannot be determined from this equation, this class of equations 
cannot be solved by the use of the Legendre transformation. 
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105. Lie Groups: PDEs 

A p p l i c a b l e t o Linear and nonlinear part ial differential equations. 

Y i e l d s 

Similarity variables tha t may be used to decrease the number of inde

pendent variables in a partial differential equation. 

Idea 

By determining the transformation group under which a given partial 

differential equation is invariant, we can obtain information about the 

invariants and symmetries of tha t equation. This information, in turn , 

can be used to determine similarity variables tha t will reduce the number 

of independent variables in the system. 

P r o c e d u r e 

Some background material about Lie Groups may be found in the 

section "Lie Groups: ODEs" (start ing on page 314). We will utilize terms 

tha t have been defined in tha t section. 

We illustrate the general technique on one part ial differential equation 

in two independent variables. Suppose we would like to solve the partial 

differential equation 

N(u,x,y) = 0, (105.1) 

for u(x,y). We first determine a one parameter Lie group of transforma

tions, under which (105.1) is invariant; then we use this group to determine 
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dx 

dx 

dx 

dy 

dy_ 

dx 

dy 

dy 

l-e{Xx+Xuux) + 0(e
2

), 

-e{Xy + XuUy) + 0(e
2

), 

(105.5) 

-e(Yx + Yuux) + 0(e
2
), 

l-e(Yy + Yuuy) + 0(e
2

). 

similarity variables. We suppose tha t the group has the form 

û = u + eU(u,x,y) + 0 ( ε
2
) , 

χ  = χ  + eX(u, x, y) + 0 ( ε
2
) , (105.2) 

y = y + eY(u,x,y) + 0(e
2

). 

We want this group to leave equation (105.1) invariant; t ha t is, 

N(x,y,u) = 0, (105.3) 

or, equivalently, 

u(x, y) = û(u, x, y; ε ) . (105.4) 

If we utilize the transformations in (105.2), then the chain rule produces 

From (105.5), it is conceptually easy (though algebraically intensive) to 

determine how derivatives in the {ïï, x , y} system transform to derivatives 

in the {u, x, y} system. For instance, 

Now the group is determined (i.e., {£/, X , Y} are determined) by requiring 

(105.3) to be satisfied. 

After the group has been determined, a solution to (105.1) may be 

found from the invariant surface condition 

(105.6) 

(105.7) 
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which is just the first order term of (105.4) when tha t equation is expanded 

for small values of ε . The solution of (105.7) leads to similarity variables 

tha t reduce the number of independent variables in the system. Note tha t 

(105.7) is quasilinear and tha t the subsidiary equations may be wri t ten as 

d u

 -
 dx

 -
 dy

 (105.8) 
U(u,x,y) X(u,x,y) Y(u,x,y)' 

E x a m p l e 1 

Suppose we wish to analyze the heat equation 

(105.9) 

We take ü~y = ΰ χ χ  and subst i tute for the derivatives from (105.6). We also 

subst i tute uy for uxx (from (105.9)). This leads to a large expression tha t 

must equal zero (for an idea of how the expression looks, see note number 5 

on page 318). 

Equat ing to zero the coefficients of {u, ux,uy,u
2

,uy, uxy, uxuy, uxuxy} 

in this expression leads to eight simultaneous equations involving {C/, X , Y}. 

The solution to these equations will determine the transformation group. 

Three of these equations are 

Yu = o, 

uxiiy 
xu = o, 

UXUXy Uuu = 0. 

These equations produce: X(u,x,y) = X(x,y), Y(u,x,y) = Y(x,y) and 

U(u,x,y) = f(x,y)u + g(x,y), where / and g are functions to be deter-

mined. Using this simplification for {[/, X , F } , the other five equations 

become 

Υ χ  ~ 0, /χ χ  fy = 0, 

2XX -Yy=0, gxx -gy=0, (105.10) 

Xy Χ χ χ  "f" 2 / x = 0. 

If we take g = 0 (just to simplify the algebra), then the equations in 

(105.10) may be solved to determine the transformation group 

X = 2ciy + Ac2xy + c 4 + c 5x , 

Y = 4c2y
2

 + 2c5y + + c 6, (105.11) 

U = — (cix + c2(x
2

 + 2y) + c 3) u. 

where { c i , . . . , c e } are arbitrary constants. Now tha t we have found a 

transformation group, similarity variables may be found. 
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-c3u c5x 2c5y 

Two solutions to these equations are 

χ  u 
constant = ——, constant = — , 

where a = —Cs/2c5. Prom these similarity variables we propose a solution 

of the form 

η  = Κ η) =

 ψ ·
 ( 1 0 5

·
1 2) 

Using this form in equation (105.9), we find tha t h satisfies the ordinary 

differential equation h" = ah — \η η '. Every solution to this equation 

will generate a solution to the equation (105.9), in the form u{x,y) = 

y
a

h (*)· 
Spec ia l C a s e 2 

If we take c\ = c 2 = C4 = C5 = 0 in (105.11), then the subsidiary 

equations (from (105.8)) become 

du dx dy 

-c3u 0 c 6 

Two solutions to these equations are 

u 

constant = x, constant = — τ - , 

e
ßy 

where β  = —C3/CQ. From these similarity variables we propose a solution 

of the form 

Using this form in equation (105.9), we find tha t k satisfies the ordinary 

differential equat ion^" — ßk~= 0. Every solution to this equation will 

generate a solution to the equation (105.9), in the form u(x,y) = e@
y

k(x). 

Spec ia l C a s e 1 

If we take c\ = c 2 = C4 = ce = 0 in (105.11), the subsidiary equations 

(from (105.8)) become 

du _ dx dy 
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E x a m p l e 2 

Consider similarity solutions of Laplace's equation in two dimensions: 

V
2

u = uxx + uyy = 0. To find the Lie group of transformations tha t 

leaves this equation invariant, we consider the group defined in (105.2). 

After extensive algebra we find tha t , to lowest order, {X, Y, U} may be 

expressed as 

X = di •+ d^x — d±y + d5(x
2

 — y
2

) + 2dQxy + (cubic terms), 

Y = d2 + d3y + d 4x -f 2d5xy + d6(y
2

 - x
2

) + (cubic terms), (105.13) 

U = d7u + V(x,y), 

where V(x, y) is any solution to V
2

V = 0 and {d\,d2,..., d-j) are arbi trary 

(complex) constants. The similarity solutions to V
2

u = 0 may now be 

determined from the subsidiary equations in (105.8). We will take V = 0, 

and investigate two possibilities for the other parameters in (105.13). 

Spec ia l C a s e 1 

If we presume tha t the only nonzero parameters in (105.1) are d\, d2, 

and c?7, then the subsidiary equations become 

Using the equation specified by the second equality sign, we determine tha t 

d2x — d\y =constant . Using the equation specified by the first equality 

sign, we determine tha t ue~
dlX

l
dx

 =constant . Hypothezing a solution of 

the form u(x,y) = e
d7X

/
dl

 f(d2x — diy), and then requiring tha t V
2

u = 0, 

leads to a constant coefficient ordinary differential equation for / : 

Spec ia l C a s e 2 

If we presume tha t the only nonzero parameters in (105.1) are ds and 

c?7, then the subsidiary equations become 

These equations can be solved to determine tha t : u(x,y) = 2 /
m

^ ( n ) , η  = 

y/χ , where m = d-jjdz- By requiring V
2

u = 0 to hold, we find the following 

ordinary differential equation for #(77): 

du dx 

dju d\ 

{di + d
2

) / " - 2d1d2d7f + d
2

f = 0. 

dx dy _ du 

d$x d$y d7u 

(η
2

 + η
4

) g" -f 2η  (m + η
2

) g' + m ( m - 1)^ = 0. 
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N o t e s 

[1] Lie group analysis is the most useful and general of all the techniques 

presented in this book. 

[2] There are other techniques for determining the group under which a given 
partial differential equation is invariant. A list of techniques is given in 

Seshadri and Na [12]. 

[3] If u(x,y) is a solution of (105.9), then the following transformations also 
represent solutions: 

T 2 : 

x + 2cy Ί  

> x/(l - Acy) 

• y/(l - icy) 

u —• e u 

T 4 : 

T 5 : 

χ  —• X + c 

2c 

y e y 

(105.14) 

Te : y y + c 

(x-2ay) e~
2c5

y
 N 

— C 4

' ϊ  Γ Τ Τ Τ Τ  -
 c

6 
+ 4C2i/ 1 +

 4 c

2 y 

See Olver [7] (pages 120-123) for details. 

These transformations were all obtained from the group in (105.11). For 

example, the similarity variable η  - in (105.12) is equivalent to trans-

formation T 5 . 

If u — m(x,y) is a solution of the equation in (105.9), then another 
solution is given by (using all of the transformations listed in (105.14)) 
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[4] Using Lie groups to find symmetries of partial differential equations can 
be computationally intensive. Algorithms have been developed for com-
puterized handling of the calculations. A computer package in REDUCE 
is described in Schwarz [11], a package in FORMAC is in Fedorova and 
Kornyak [5], and a package in MACSYMA is in Rosencrans [10]. 

[5] The general equation of nonlinear heat conduction takes the form m = 

(K(u)ux)x. For this equation: 

(A) If K(u) is constant, then the symmetry group is infinite dimensional; 

(B) If K(u) = (au + 6 ) ~
4

/
3

, with α  φ  0, then there is a five-parameter 

symmetry group; 

(C) If K(u) = (au + b)
m

, for m φ  — | and α  φ  0, then there is a four-

parameter symmetry group; 

(D) If K(u) = ce
au

, then there is a four-parameter symmetry group; 

(E) If K(u) does not have one of the forms mentioned above, then there is 
a three-parameter symmetry group. 

[6] A new technique for finding symmetries of partial differential equations, that 
are not point symmetries nor Lie-Bäcklund symmetries, may be found in 
Bluman, Reid, and Kumei [3]. 

[7] Olver [7] derives the complete symmetry group for many partial differential 
equations, including the: heat equation, wave equation, Euler equations, 
and Korteweg-de Vries equation. Ames and Nucci [1] studied the: Burgers' 
equation, Korteweg-de Vries equation (1 and 2 dimensions), Hopf equation, 
and Lin-Tsien equation. 

[8] The section on similarity methods (beginning on page 424) shows how to 
find similarity variables of a specific form. The techniques in this section 
are, of course, much more general and will determine all possible similarity 
variables. 
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A p p l i c a b l e t o Laplace's equation (V
2

u = 0) in two dimensions with 

u(x) prescribed on a circle; i.e., the Dirichlet problem in a disk. 

A simple extension of the Cauchy integral formula (from complex 

variable theory) allows the solution for Laplace's equation in a circle to 

be wri t ten down analytically. 

P r o c e d u r e 

If u(r, Θ ) satisfies 

106· Poisson Formula 

Y i e l d s 

An exact solution, given by an integral. 

I d e a 

V
2 1 1 

0, for 0 < r < R, (106.1) u — u rr + - u r + —ZUQQ 

r r 

and 

u(R,e) = m , 

then u(r, Θ ) for 0 < r < R is given by 

for 0 < θ  < 2 π , (106.2) 

2π  
R

2

- r
2 

u\ 
R

2

 - 2 Ä r c o s ( 0 - < / > ) + r 
^ί {Φ )ά φ . (106.3) 

This is known as the Poisson formula for a circle. 
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u(x) prescribed on a circle; i.e., the Dirichlet problem in a disk. 

A simple extension of the Cauchy integral formula (from complex 

variable theory) allows the solution for Laplace's equation in a circle to 

be wri t ten down analytically. 

P r o c e d u r e 

If u(r, Θ ) satisfies 

106· Poisson Formula 

Y i e l d s 

An exact solution, given by an integral. 
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V
2 1 1 

0, for 0 < r < R, (106.1) u — u rr + - u r + —ZUQQ 

r r 

and 

u(R,e) = m , 

then u(r, Θ ) for 0 < r < R is given by 
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2π  
R

2

- r
2 

u\ 
R

2
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E x a m p l e 

If we have 

V
2

u = 0, u(R,6) = sin Θ , 

then 
2π  R2 _ r2 

R - 2Rr cos(0 - φ ) + r 
• sin 0 d 0 

r 
= - s i n l 9 , 

where the integral was carried out by using the method of residues. 

N o t e s 

[1] By use of conformai mappings, Laplace's equation in two dimensions for a 
non-circular region can often be changed to solving Laplace's equation in a 
circular region. Poisson 's formula can be used for this new problem, and 
then the mapping can be used to find the solution for the original geometry. 
See the section on conformai mappings (page 376) for more details. 

[2] The solution of (106.1) and (106.2) could also have been obtained by the use 
of Fourier series (see page 293). By this technique the solution to (106.1) 
and (106.2) becomes 

η (τ ,Θ ) = y + Σ  (£ ) (
a

n cos η θ  + bn sin η θ ), (106.4) 
n = l 

where {an,bn} are defined by: 

an = - [ / (0)cosn0d0, bn = - / sin η θ ά θ . (106.5) 

Note that this same solution would have been obtained by utilizing separa-
tion of variables. In Farlow [2] and Young [6] it is shown that the Poisson 
formula in (106.3) may be derived from the solution in (106.4) and (106.5). 

[3] The Neumann problem for a disk 

V
2

i ; = 0, ^(R,e) = g($), (106.6) 

may be converted to the Dirichlet problem (equations (106.1) and (106.2)) 
if we define 

/(*)= / 9(Φ )*Φ , 

Jo 

r ( * . v ) 

0

 (106.7) 

v(x, y) = J (uy dx - ux dy), 

see Young [6] for details. Note that the periodicity requirement of f(9) 

requires that g(ß) satisfy (from (106.7)) / g(<j))d<j) = 0. This must be 
Jo 

satisfied if there is to exist any solution to (106.6). This requirement is 
related to the alternative theorems on page 14. (Note that the solution to 
(106.6) is indeterminate with respect to a constant.) 
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V
2

w = 0, 

w(R,9) — f(ß), w bounded at r = oo, 

is given by 

(106.8) 

W { r

'

6 ) =

 - h l P2 o D : L ^ , Λ . - , ( 1 0 6 . 9 ) 
R

2

- r
2 

R
2

 - 2Rr cos(0 - 0) + r
2 

which is valid for r > R. See Kantorovich and Krylov [4] for details. 
[5] Other exact solutions to Laplace's equation are also known. For example: 

(A) If V
2
tt = 0 in a sphere of radius one and u(l, θ , φ ) = f(9, φ ), then 

r
2

* l-r
2 

u(r, θ , φ ) = j - [ [ / ( θ , Φ )
 A

 ' — - sin θ  dS ά Φ , 
4 7 Γ

Λ  Jo ( l - 2 r c o s 7 + r
2
)

3 /2 

(106.10) 
where cos 7 := cos θ  cos θ  + sin θ  sin θ  cos(</> — Φ ). 

(B) If V
2

u = 0 in the half plane, y > 0, and ix(x, 0) = / (x ) , then 

ti(x,y) = i y 
/ Wy

 (106.11) 
( * - * r + y 

(C) If V
2
u = 0 in the half space, ζ  > 0, and u(x, y, 0) = f(x, y), then 

u(x,y,z) = £ Γ  Γ  -
 / ( C y ?)

 iTsTâ**?. 

(106.12) 

(D) If V
2

u = 0 in the annulus, 0 < a < r < 1, and u(l,9) and u(a, 9) are 

given, then an explicit solution is given by Villat's integration formula. 

See Iyanaga and Kawada [3] for details. 
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χ  

Figure 107.1 Domain in which equation (107.1) is solved. 

107. Riemann's Method 

A p p l i c a b l e t o Linear hyperbolic equations of the second order in two 

independent variables. 

An exact solution in terms of the solution to the adjoint equation. 

The solution of a non-characteristic initial value problem in two di

mensions can be found if the adjoint equation with specified boundary 

conditions can be solved. 

P r o c e d u r e 

Suppose we have the hyperbolic part ial differential equation 

where u(x, y) is specified on the boundary Γ , which is not a characteristic. 

(See Figure 107.1.) Note tha t any linear hyperbolic equations of second 

order in two independent variables can be wri t ten in the form of (107.1). 

We wish to find u(S) = u(C, 77), where S represents an arbi trary point 

and is indicated in Figure 107.1. If we assume tha t the initial curve Γ  is 

monotonically decreasing, then we can write the solution as 

Y i e l d s 

Idea 

L[u] = uxy + a(x , y)ux + b(x, y)uy + c(x, y)u = / ( x , y), (107.1) 

u(C, η ) = \R(P', C, VHP) + \R(Q', C, r))u{Q) 

(107.2) 

D 
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where 

B[u, v] — (avu + \vuy — \ Vyu) dy + (-bvu + \ v u x 

(note tha t B[u, v] includes the differential terms dx and dy) and R(x, y; £, η ) 

is the Riemann function defined by 

In this formulation, PS is a horizontal segment and QS is a vertical segment 

tha t contain the domain the dependence D. The derivation of this formula 

is more detailed than the format of this book allows. See Garabedian [6] for 

a full description. A simple motivation for the Riemann function is given 

in Kreith [8]. 

E x a m p l e 1 

Suppose we have the part ial differential equation 

where —oo < α  < oo, 1 < /? < oo, and f(a) and g(a) are given functions. 

If we change variables in (107.1) from {w,a,ß} to {u, x,y} by 

(see the transformation on page 139), then equation (107.4.a) becomes 

Rxy - aRx - bRy + (c- ax - by)R = 0, 

(107.3) 

Ä(C,i?;C,i7) = i-

a
2

Wßß - ß
2

waa = 0, 

w(a,l) = / ( α ) , 

wß(a,l) =g(a), 

(107.4.a-c) 

u. >xy 
(107.5) 

The boundary conditions in (107.4) transform to 

(107.6) 
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a > 0 

-> 

a < 0 

Figure 107.2 Domain in which equation (107.4) is solved. 

where — o o < s < o o . By manipulations of (107.6), we can derive 

(*' ;) = \ (107.7) 

The domain in which (107.5) and (107.7) are to be solved is shown in 

Figure 107.2. 

To solve (107.5) and (107.7) we use Riemann's method. Comparing 

(107.5) to (107.1) we determine: a = 0, b = -l/2x, c = 0, / = 0. Hence 

the solution (from (107.2)) becomes 

ti(C, η ) = $R(P; C, VHP) + ±Ä(Q; C, vMQ) 

- j \^\
Ru

y ~ \
R

yu)

 dV - {^~tc  \
(107.8) 

All tha t remains is to find the Riemann function. From (107.3), R(x, y; C, η ) 

satisfies 

Rxy + 2^Ry
 =

 °' 

ß(C,y;C,r/) = l , 
(107.9.a-d) 
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Since (107.9.a) can be integrated directly with respect to χ  and then with 

respect to y, the general solution to (107.9) is easily seen to be of the form 

R(x, y; ζ , η ) = Μ  (χ ; ζ , η ) +
 Κ

^
η

\ (107.10) 
yjx 

for some Μ (χ ;ζ ,η ) and some Κ (φ ,ζ ,η ). Using (107.10) in the boundary 

conditions in (107.9), the solution is found to be 

(107.11) 

Using (107.11) in (107.8), we can find ν >(ζ ,η ) and hence w(a,ß) for any 

values of a and β . 

E x a m p l e 2 

The Riemann function for the part ial differential equation 

(107.12) 

(when k is a constant) is 

where IQ is the usual modified Bessel function of order zero. Hence, the 

solution to (107.12) with the boundary conditions 

is given by 

ux = yj(x) when y = 0, 

uy — φ (χ ) when χ  = 0, 
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N o t e s 

[1] Essentially, the Riemann function is a type of Green's function, the connec

tion is made in Zauderer [11]. What we have called the Riemann function 

is sometimes called a Green's function or a Riemann-Green function. 

[2] If the operator L[u] in (107.1) is self-adjoint then we have the reciprocity 

principle: R(x,y; ζ , η ) = R((, η -, x,y). 

[3] Numerical methods for solving hyperbolic equations that use the Riemann 

function are generally referred to as Godunov-type methods. A comparison 

of some Godunov-type methods with more classicial methods may be found 

in Woodward and Colella [10]. 

[4] Copson [3] suggests that the Riemann function may often have the form 

k=o
 { K

'
} 

where Τ  = (χ  — ζ )(y - η ). When this is the case, then only the coefficients 

{Gk} must be found. Copson [3] gives several examples of this approach. 

[5] The technique presented here may be extended to higher order equations, for 

which the Riemann tensor must be determined. See Courant and Hilbert [4]. 
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108. Separation of Variables 

A p p l i c a b l e t o Most often, linear homogeneous part ial differential 

equations. 

Y i e l d s 

An exact solution, generally in the form of an infinite series. 

I d e a 

We look for a solution to a part ia l differential equation by separating 

the solution into pieces, where each piece deals with a single dependent 

variable. 

P r o c e d u r e 

For linear homogeneous part ial differential equations, t ry to represent 

the solution as a sum of terms where each term factors into a product 

of expressions, each expression dealing with a single independent variable. 

For nonlinear equations, t ry to represent the solution as a sum of such 

expressions. In all cases, not only must the equation admit a solution of 

the proposed form, bu t the boundary conditions must also have the right 

form. 

In more detail, suppose tha t L[u] = 0 is a linear part ial differential 

equation for u(x) tha t has the form L[u] = where the Li[u] are 

differential operators. We look for a solution of this part ial differential 

equation in the form 

l i ( x ) = u{x1,X2,-',Xn) = Χ ΐ (Χ ΐ )Χ 2{Χ 2).··Χ η (Χ η ), 

where the functions {Χ χ ,Χ 2,... ,Xn}
 a re

 to be determined. By using 

the above form in the original equation and reasoning about which terms 

depend upon which variables, we can often reduce the original part ial 

differential equation into an ordinary differential equation for each of the 

Xi. In carrying this out, arbi trary constants will be introduced. After the 

resulting ordinary differential equations are solved, the arbi trary constants 

can generally be found by physical reasoning. 

Since superposition can be used in linear equations, any number of 

terms (of the form shown above) will also be a solution of the original 

equation. Also, if each of these terms is multiplied by some constant, and 

then added together, the resulting expression will also be a solution. Hence, 

the final solution will frequently be a sum or an integral. 

This sum will have unknown constants in it, due to the constants 

allowed in the superposition. These constants will be determined from the 

initial conditions and /o r the boundary conditions. 
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The only time tha t we can be sure tha t we have found the most general 

solution to a given ordinary differential equation by this technique is when 

there exists a "completeness theorem" for each of the ordinary differential 

equations tha t we have found. 

E x a m p l e 1 

Suppose we wish to solve the heat equation in a circle 

du 

"Et 

„ 2 1 d ( du\ 1 d
2

u 

for u(t, r, Θ ). We try to separate variables in (108.1) by proposing a solution 

of the form 

ti(t, r, Θ ) = T{t)R{r)G{e). (108.2) 

Substi tut ing (108.2) into (108.1) (and simplifying) yields 

J_d_ ( dR\ 

rR dr \ dr J 

1 d
2

Q 1 dT 

r2e d0
2

 Τ  dt 

-~-j7=0- (108.3) 

By the assumption in (108.2), only the third te rm in (108.3) has any 

dependence on the variable t. Since the other terms cannot have any t 

dependence, it must be tha t the third term also has no t dependence. 

Therefore, this te rm must be equal to some (unknown) constant; i.e., 

1 dT 
— —— = —λ  = some unknown constant . (108.4) 
Τ  dt 

The minus sign in (108.4) is taken for convenience later on. Using (108.4) 

in (108.3) and simplifying we find 

r^d_f dR\ 

R dr V dr J 
+ r

2

A + | ^ = 0. (108.5) 

The third term in (108.3) is the only one tha t could depend on Θ , but we 

easily see tha t it cannot depend on θ  because the first two terms in (108.5) 

could not cancel out any θ  dependence. Therefore we must conclude tha t 

Ö~c^~
 =

 ~ ^
 = a n o

^
e r u m m o wn

 constant. (108.6) 

Using (108.6) in (108.5), we find 

d ( dR\ , 
p + r

2

X)R = 0. (108.7) 
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Note tha t we have, at this point, found ordinary differential equations tha t 

describe each of the terms in the solution proposed in (108.2). 

But , in doing so, we have introduced two arbi trary constants; λ  and p. 

Solving the ordinary differential equations in (108.4), (108.6), and (108.7) 

yields 

T(t) = Ae~
xt

, 

θ (θ ) = £ s i n ( v W + Ccos(v^(9) , (108.8) 

R(r) = DJ^VXr) + EY^yfir), 

where {A,B,C,D,E} are arbi t rary constants, and {J*,Y*} are Bessel 

functions. By superposition, the most general solution to (108.2) can now 

be wri t ten as 

u(t, r, θ ) = ί  dX ί  dp e~
xt

 \B(X, ρ ) sm(y/p0) + C(A, ρ ) cos(y/ρ θ )] 
J— oo J—oo 

x [D(\,p)J^{VXr) + E(X,p)Y^(V\rj\, 

(108.9) 

where {J5,C, D,E} may now depend on λ  and p. Now physical reasoning 

must be used to evaluate { B , C , D,E}. 

For example, if the heat equation, (108.2), is being solved in the entire 

circle, then it must be tha t the solution is periodic in θ  with period 2 π . 

Tha t is, u(t,r,6) = u(t,r,6 + 2 π ) . This constraint (which is equivalent to 

θ ( ο ) = θ ( 0 + 2 π ) ) , placed on (108.8), restricts y/p to be an integer. Hence, 

in this case, the most general solution has the form (using n
2

 = p) 

/

CO oo 

If the point r = 0 was included in the domain of the original problem, 
then we would require E(X,n

2

) = 0 since Yn(r) is unbounded at r = 0. 
Likewise, only those values of λ  > 0 will be physically realistic. Hence, in 

this case we find 

Λ Ο Ο  CO 

u(t,r,6) = I dX^2e~
Xt

 B(X, n
2

) sin η θ  -h C(A, η
2

) cos η θ  \jn(y/Xr). 
J o

 n=0 

(108.10) 

More conditions could be placed on the coefficients depending on the exact 

form of the initial conditions and boundary conditions. 
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where β  is another arbi trary constant. The solution in (108.16) may not be 

the most general solution to (108.11). For nonlinear equations, it is very 

difficult to determine if the most general solution has been found. 

N o t e s 

[1] Note that the solution in (108.10) could also have been obtained by use of 

Fourier series (see page 293). The form of the solution in (108.10) (i.e., the 

e~
xt

 term) suggests that a Laplace transform might be an appropriate way 

to analyze (108.1). 

[2] Carslaw and Jaeger [4] have the decompositions (similar to (108.9)) for many 

heat conduction problems. 

[3] If the equation L[u] = 0 can be separated into ordinary differential equations 

when w(x) =
 U l

^
X l

^
U 2

^
2

^ —
u

n ( x n) ^ Β ,φ  1, then the equation is said 

to be R separable. 

Solving (108.14) and (108.15) we have determined tha t a solution to (108.11) 

is given by 

(108.15) 

and then 

The left-hand side of (108.13) must be independent of χ  (since the right-

hand side is), hence we can set 

Using (108.12) in (108.11) results in the equation 

(108.13) 

(108.12) 

(108.11) 

to solve. We might propose a solution of the form 

E x a m p l e 2 

Suppose we have the equation 

 and
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[4] Moon and Spencer [10] list 11 common orthogonal coordinate systems in 
which both Laplace's equation and Helmholtz's equation separate. These 
coordinate systems are rectangular, circular cylinder, elliptic cylinder, par
abolic cylinder, spherical, prolate spheroidal, oblate spheroidal, parabolic, 
conical, ellipsoidal, and paraboloidal. Also included are the exact decompo
sitions that are obtained (similar to (108.9)). 

The above analysis is repeated for 21 different cylindrical coordinate 
systems that are obtained by translating an orthogonal map in a direction 
perpendicular to the plane of the map. The above analysis is again carried 
out for 10 different rotational coordinate systems that are obtained by 
twirling an orthogonal map in a plane, about an axis. In each of these 31 
coordinate systems, Laplace's equation or Helmholtz's equation separates 
(or is R separable). 

[5] A necessary and sufficient condition for a system with two degrees of free
dom, with the Hamiltonian if = \(px + py) + V(x,y), to be separable in 
elliptic, polar, parabolic, or cartesian coordinates is that the expression 

(Vyy ~ Vxx)(-2axy - b'y -bx + d) 

+ 2Vxy(ay
2

 — ax
2

 + by — b'x + c) 

+ Vx(6ay + 36) + Vy(-6ax - 3b') 

vanishes for some constants (a, 6, b', c, c', d) φ  (0,0,0, c, c, 0). The values of 
these constants determine in which of the above four coordinate systems the 
differential equations separate. 

For three degrees of freedom, a similar expression has been devised 
that determines in which of 11 different coordinate systems the equations 
separate. For more details, see Marshall and Wojciechowski [8]. 

[6] The Hartree-Fock approximation is a technique for approximating the eigen
functions w(x) and eigenvalues λ  of the partial differential equation 

-V
2

u + / ( x ) t i = \u, (108.17) 

when / ( x ) is a prescribed function. The technique consists of approximating 

/ ( x ) by 
/ ( χ ) ~ / ΐ ( Χ ΐ ) / 2( Χ 2 ) ' ' ' fn(Xn). 

If / ( x ) has the form shown above, then equation (108.17) can be solved by 
separation of variables. The solution will be of the form 

l l ( x ) = Ui(xi)u2(X2) ' · ' Un(Xn), 

λ  = λ ι + λ 2 + · · + λ η . 

In the Hartree-Fock approximation, a variational principle is used to deter
mine what the "best" {fj(xj)} are. See Fischer [5] for details. 

[7] Miller [11] contains a group theoretical approach to the method of separation 
of variables. For many linear differential equations, the separated solutions 
are easily related to the Lie algebra generated by the equation. 
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109. Similarity Methods 

A p p l i c a b l e t o Linear or nonlinear part ial differential equations. Also 

systems of differential equations. 

Y i e l d s 
An equation with one fewer independent variables. 

Idea 

Sometimes the number of independent variables in a part ial differ

ential equation can be reduced by taking algebraic combinations of the 

independent variables. 



4 2 4 I I . B E x a c t M e t h o d s for P D E s 

R e f e r e n c e s 

[1] F. M. Arscott and A. Darai, "Curvilinear Co-ordinate Systems in which the 

Helmholtz Equation Separates," IMA J. Appl Mathematics, 2 7 , 1981, 

pages 33-70. 

[2] Ε . K. Blum and G. J. Reid, "On the Numerical Solution of Three-Dimensional 

Boundary Value Problems by Separation of Variables," SIAM J. Numer. 

Anal, 2 5 , No. 1, February 1988, pages 75-90. 

[3] W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and 

Boundary Value Problems, Fourth Edition, John Wiley & Sons, New York, 

1986, Chapter 10 (pages 513-580). 

[4] H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Clarendon 

Press, Oxford, 1984. 

[5] C. F. Fischer, "Approximate Solution of Schrödinger's Equation for Atoms," 
in J. Hinze (ed.), Numerical Integration of Differential Equations and 

Large Linear Systems, Springer-Verlag, New York, 1982, pages 71-81. 
[6] J. Hainzl, "On a General Concept for Separation of Variables," SIAM 

J. Math. Anal, 13 , No. 2, March 1982, pages 208-225. 
[7] L. Kaufman and D. D. Warner, "Algorithm 685: A Program for Solving 

Separable Elliptic Equations," ACM Trans. Math. Software, 16, No. 4, 
December 1990, pages 325-351. 

[8] I. Marshall and S. Wojciechowski, "When is a Hamiltonian System Separa
ble?," J. Math. Physics, 2 9 , No. 6, June 1988, pages 1338-1346. 

[9] P. Moon and D. E. Spencer, Field Theory For Engineers, D. Van Nostrand 
Company, Inc., New York, 1961. 

[10] P. Moon and D. E. Spencer, Field Theory Handbook, Springer-Ver lag, New 
York, 1961. 

[11] W. Miller, Jr., Symmetry and Separation of Variables, Addison-Wesley 
Publishing Co., Reading, MA, 1977. 

109. Similarity Methods 

A p p l i c a b l e t o Linear or nonlinear part ial differential equations. Also 

systems of differential equations. 

Y i e l d s 
An equation with one fewer independent variables. 

Idea 

Sometimes the number of independent variables in a part ial differ

ential equation can be reduced by taking algebraic combinations of the 

independent variables. 
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P r o c e d u r e 

The idea of this method is to find new independent variables (called 

similarity variables) tha t are combinations of the old independent variables. 

The differential equation, when wri t ten in the new variables, will not 

depend on all of the new variables. 

One technique for discovering the correct new variables is to choose 

temporary variables to be a parameter to some (unknown) power times the 

old variables. After writing the equation in terms of the temporary vari

ables, the powers can be found by requiring homogeneity in the parameter . 

New variables are then constructed from the old variables in such a way 

tha t the parameter does not enter. 

E x a m p l e 1 

Suppose the following linear part ial differential equation 

du u d
2

u , f\t\ •* \ 

m
+

Y t = ^
) 

for u(t, z) is to be simplified from being a function of the two independent 

variables {t, z} to being a function of only one independent variable. We 

define the temporary variables u', z', and the parameter λ  by 

u = u Λ , 

* = * 'A m, (109.2) 

z = z'\
n

, 

for some unknown values of η  and m. In these temporary variables, 

equation (109.1) becomes 

£ Λ ' - - 4 Α - - , | * Α — . (.09.3) 

For the parameter λ  to be eliminated from (109.3), we require tha t the 

exponents of λ  in each te rm of (109.3) all be the same. Tha t is, 1 — m = 

1 — 2n. This equation has the solution m = 2n. At this point we know 

tha t there are similarity solutions of (109.1), but still must determine what 

they are. Using m = 2n in (109.2), the change of variables becomes 

u — u'\, 

t = t ' \
2 n

, (109.4) 

ζ  = z'\
n

. 
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Combining the original independent variables {t,z}, we form a new inde

pendent variable {η } whose transformation from the old variables to the 

temporary variables does not depend on λ  (we use (109.4) here): 

= ^ = X_ 

Now we have to propose the similarity solution. We look for a solution of 

the form 

u(t,z) = v(^J =ν (η ). (109.5) 

When the form of (109.5) is used in equation (109.1), the equation becomes 

d
2

v dv 
2ν —^+η —-ν  = 0, (109.6) 

ά η  α η  

which is now an ordinary differential equation. Every solution of (109.6) 

will generate a solution of (109.1). 

E x a m p l e 2 

Consider the following nonlinear part ial differential equation: 

du u „du d
2

u 

m + 2l + ßuTz=^ ( m 7 ) 

for u(t, z). This equation differs from (109.1) by the ßuuz term. We wish 

to simplify this equation from being a function of the two independent 

variables {t,z} to being a function of only one independent variable. After 

we do this, we will find a solution for the β  = 0 case. We define the 

temporary variables u', ζ ', t', and the parameter λ  by (109.2). In these 

temporary variables, equation (109.7) becomes 

du' ι  _ u' λ  m ,du' ο  « d
2

u' Ί o „ , 

W
x + 2Ύ χ  + ß u

d 7
x

 =
 v

w ?
x

 ·
 ( m 8) 

For the parameter λ  to be eliminated from (109.8), we require tha t the 

exponents of λ  in each term of (109.8) all be the same. Tha t is, 

l - r a = 2 - n = l - 2 n . (109.9) 

The equations in (109.9) have the unique solution: n = — 1 , m = —2. At 

this point we know tha t there is a similarity solution of (109.7). Using 

n = — 1 , m = —2 in (109.2) changes the variables to {u = u'X, t = t'\~
2

, 
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2 ν ^ + (η -2β 9)-±=0. (109.13) 

Every solution of this ordinary differential equation will lead to similarity 

solutions of (109.7). In the special case of β  = 0 (when equation (109.7) 

becomes the identical to (109.1)), the general solution to (109.13) is given 

by 

where A and Β  are arbi t rary constants . This results in the solution 

«(«.*) = ^ A + Beiî (-β =) 

to (109.1). Note t ha t this similarity solution could not have been obtained 

from (109.6), since the scalings in (109.5) and (109.11) are different. 

ζ  = z'\~
1

}. Combining the original independent variables {t, z}, we form a 

new independent variable {η } whose transformation from the old variables 

to the temporary variables does not depend on λ : 

Combining the original dependent variable {u} with the original indepen

dent variables {t, z}, we can also form a new dependent variable {w} whose 

transformation from the old variables to the temporary variables does not 

depend on λ : 
t t' 

w = -u= —u'. (109.10) 
ζ  ζ  

Now we have to propose the similarity solution. By solving (109.10) for u, 

we are led to the assumption 

u(t,z) = ^ w ( ^ ) = jw(V). (109.11) 

When the form in (109.11) is used in equation (109.7), the equation be

comes 

2ν η —^- + (4i/ -h η
2

 - 2β η
2

ν ο ) + (1 - 2ßw) w = 0. (109.12) 
ά η  α η  

If we define g(n) by g{n) = η ν ύ (η ), then equation (109.12) becomes 
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N o t e s 

[1] In general, a partial differential equation may have some similarity solutions 

and some solutions that are not similarity solutions. 

[2] This method is sometimes called the method of one parameter groups, due 

to the single parameter λ  that was used in (109.2). 

[3] This method is derivable from Lie group methods (see page 404). 

[4] To solve a differential system (differential equation(s) with boundary condi

tion^)), the boundary conditions as well as the equation(s) must admit the 

similarity variable. 

[5] This method also applies to systems of ordinary differential equations. If 

^ = f(x, u) is a system of first order ordinary differential equations for 
ax 
u = ( H I , . . . ,un), and if there exists a one parameter group of symmetries 

of the system, then there is a change of variables (y,w) = Ξ (χ ,ι ι ) which 

takes the system into - r — = g(y, w i , . . . ,wn-i). Hence, the original system 
dy 

reduces to a system of η —1 ordinary differential equations for (wi,..., wn-i) 

together with the quadrature wn(y) = Jgn(y,w\{y),..., wn-i{y)) dy. 

[6] For some systems there are natural similarity variables. For instance, in a 

two-dimensional problem with radial symmetry, the variable r (where r
2

 = 

° °
2

 + 2 /
2

) should be a similarity variable if the original equations were written 

in terms of χ  and y. Similarly, in a radially symmetric three-dimensional 

problem, the variable ρ  (where p
2

 = x
2

 + y
2

 + z
2

) should be a similarity 

variable. 

[7] For diffusion equations, similarity solutions are often of the form f(x/y/t) 

or t
a

f(x/Vt). 

[8] The partial differential equation F ^tx,u, — ,
 =

 0, for u(x,t), has the 

similarity variable w — tx. Considering u = u(w), we find the equivalent 

ordinary differential equation F (w,u,uw,uw) = 0. 
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110· Exact Solutions to the 

Wave Equation 

A p p l i c a b l e t o The η -dimensional wave equation. 

Y i e l d s 
An explicit solution in terms of an integral. 

I d e a 

An exact formula is available for the η -dimensional wave equation 

utt = V
2
u . 

P r o c e d u r e 

The η -dimensional wave equation 

d
2

u 9
2

u d
2

u . Λ  _ 

β ?
 = ν

" = & 7 + - + ^ ' ( m i ) 

with the initial da t a (we use χ  = ( # i , . . . , x n) ) 

tx(0, x ) = / ( x ) , ut(0, x) = 0(x) , (110.2) 

has two different (but similar) forms of the solution, depending on whether 

η  is even or odd. When η  is odd the solution is given by 

(n-3)/2 
ι  ( ft / ft \ ^

n

-
d

) /
z 

^-ï^zrMm) ' ^ - Ί  ( 1 1 0 S , 

where <j[h;x, £] is defined to be the average of the function fo(x) over the 

surface of an η -dimensional sphere of radius t centered at x. Tha t is 

α ;[ Λ ; χ , ί ] = - ί - / ft(0,C)Äl, 
Vn\t) J (t) 

where \ζ  — x |
2

 = t
2
, an(t) is the surface area of the η -dimensional sphere of 

radius t, and d£l is an element of area. (Note tha t an(t) = 2 π
η
/

2
ί

η _ 1
/ Γ  ( | ) . ) 

When η  is even the solution to (110.1) and (110.2) is given by 

(110.4) 
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R(t) \ft
2

 C? Cf 

where R(t) is the region {(&, ζ 2) | Ci + Cf <
 t

 }· 

Spec ia l C a s e 3 

When η  = 3, the above formulae produce the Poisson solution (also 
known as the Kirchoff solution) 

dt 

where 

/•27Γ  /»7T 

d / \ 
u(x,t) = — (tu;[/;x,£]J -f *c^[p; x, t], 

a;[ft;x, £] = — / / h(x\ + ί  sin θ  cos 0 , # 2 + t sin 0 sin 0, £ 3 + t cos 0) 

χ  sin 0 ά θ  d<p. 

E x a m p l e 

A string stretched in the shape of a sine wave and then released from 
rest will have the ampli tude u(x,t), where 

Uff — U X Xi 

u(x, 0) = s'mx, 

ut(x,0) = 0. 

By virtue of (110.5), this has the solution u(x, t) = ^ ^sin(x—£)+sin(a:-K)^. 

where ω [ Λ ; χ ,£] is defined as above. Since the expression in (110.4) is 
integrated over p, the values of / and g must be known everywhere in 
the interior of the η -dimensional sphere. 

Spec ia l C a s e 1 

When η  = 1, the above formulae produce the D'Alembert solution 
(see Chester [1]) of the equation utt = c

2

uxx: 

-ι  -ι  rX+ct 

u(x, t) = - [f(x - et) + f{x + ct)] + yJ _T 9(0 ά ζ . (110.5) 

Spec ia l C a s e 2 

When η  = 2, the above formulae produce the Parseval solution 

t *\
 1 9

 ί  f / ( * l + 0 ^ 2 + C2) „ Ar 

u M

 = ^mJ J u _ C 2 _ c ,
 d C l dG 

R(t) \
l

 ^ 1 S2 
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Vtt — C Vxx, 

v(0,i) = 0, for 0 < t < oo, 

v(x,0) = /(*), for 0 < χ  < oo, 

vt(x,0) = 9(x), for 0 < χ  < oo. 

This equation has the solution (see Farlow [2], page 143) 

r ι  [/(, + *) + /(, + ± c:: 

U[/(*+rf)-/<*-*)] + è£-? 
τ τ ; /Γ -,Τ  ff(C) <*<, for χ  > ct, 

2 ^ - · - ' * v ~ -/J • ^ / ^ « Κ Κ » f o r x < c * . 

[2] Another useful fof mula for the solution of the inhomogeneous wave equation 

d
2

u d
2

u d
2

u d
2

u _ , . 

W~d?~d?~d?~ 

with the homogeneous initial conditions: 

u(0, x, y, z) = 0, it t(0, x, y, z) = 0. 

The solution is given by 

u(t,x,y,z) = iJIJ Ε { ί

-
Ρ

^
ξ )

 α ζ α η ά ξ , 

with ρ  = ^ ( χ  - ζ )
2
 + (y - τ /)

2
 + (ζ -ξ )

2

. 

[3] Another useful formula is for the solution of 

d
2

u _ d
2

u d
2

u d
2

u 

u(0,x,y,z) = f(x,y,z), 

ut(0,x,y,z) = g{x,y,z), 

where λ  is an arbitrary constant. The solution is given by 

u(t,x,y,z) = — <<*;[/; x,t] + λ  / p
2

u[f]x.,p]I(\t
2

-\p
2

)dp 
I Jo dt ^ 

+ ί α %;χ ,*] + λ  / p
2
u;[0; χ , ρ ] / ( λ *

2
 - λ ρ

2
) dp, 

Jo 

/o 

*2 \ 2 \ 

where J(a) := lO(y/a)/y/a~ and Jo is the usual modified Bessel function. 
[4] The solutions given in (110.3) and (110.4) may be derived from one another 

by the method of descent (see page 382). 

N o t e s 

[1] The name "D'Alembert solution" is also applied to the solution of the wave 
equation in a semi-infinite domain 
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A p p l i c a b l e t o Linear part ial differential equations on an infinite interval 

tha t have different types of boundary da ta on different par ts of the interval. 

Y i e l d s 

An exact solution. 

Idea 

In some linear part ial differential equations, we would like to take a 

Fourier transform, but cannot because the type of boundary da t a changes 

along the boundary. The Wiener-Hopf technique is to take a Fourier 

transform anyway and allow par t of the da t a to be "missing." Solving 

the problem (using Liouville's theorem) we determine the "missing" da ta 

and the solution simultaneously. 

P r o c e d u r e 

Sometimes a linear part ial differential equation has a form amenable to 
a Fourier transform, but the boundary conditions would seem to preclude 
it. For example, the reduced wave equation 

in two dimensions may suggest the use of a Fourier transform in x. But, if 

the boundary conditions are given by, say, 

111. Wiener-Hopf Technique 

V
2

0 + fc
2 

Φ  = ο , (111.1) 

θ φ {χ ,0) 

dy 
= 0 for χ  > 0 

(111.2) 

Φ  is continuous for χ  < 0, 

then it is not clear how to take such a transform. Generally, we would 
require δ φ /dy to be known for all x, before we could take a Fourier 
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tha t have different types of boundary da ta on different par ts of the interval. 

Y i e l d s 

An exact solution. 

Idea 

In some linear part ial differential equations, we would like to take a 

Fourier transform, but cannot because the type of boundary da t a changes 

along the boundary. The Wiener-Hopf technique is to take a Fourier 

transform anyway and allow par t of the da t a to be "missing." Solving 

the problem (using Liouville's theorem) we determine the "missing" da ta 

and the solution simultaneously. 

P r o c e d u r e 

Sometimes a linear part ial differential equation has a form amenable to 

a Fourier transform, but the boundary conditions would seem to preclude 

it. For example, the reduced wave equation 

in two dimensions may suggest the use of a Fourier transform in x. But, if 

the boundary conditions are given by, say, 

111. Wiener-Hopf Technique 

V
2

0 + fc
2 

Φ  = ο , (111.1) 

θ φ {χ ,0) 

dy 
= 0 for χ  > 0 

(111.2) 

Φ  is continuous for χ  < 0, 

then it is not clear how to take such a transform. Generally, we would 

require δ φ /dy to be known for all x, before we could take a Fourier 
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transform. The solution technique is to assume tha t Ο φ /dy is known for 

all χ  and then take a Fourier transform. The quanti ty Θ φ /dy for χ  < 0 will 

be determined when the final solution is determined. 

The solution procedure uses Liouville's theorem, one form of which is 

If E(z) is an entire function (i.e., E(z) is analytic in the finite 

\z\ plane) and if E(z) is bounded by a constant as \z\ —> oo, 

then E(z) is identically constant. 

(See, for example, Levinson and Redheffer [4].) 

The difficult par t of the solution procedure will t u rn out to be the 

"factorization" step. Tha t is, given the functions Α (ω ), Β (ω ), C(u) (all 

analytic in the str ip a < Im a; < /?), find functions Φ +( ω ) , Φ _( α ;) satisfying 

Α (ω )Φ +(ω ) + Β (ω )Φ -(ω ) + C(u>) = 0, (111.3) 

where 

(A) Equat ion (111.3) holds in the strip: a < Im ω  < β . 

( Β ) Φ +(α ;) is analytic in the upper half plane: α  < Imo;. 

(C) Ψ _ ( ω ) is analytic in the lower half plane: Ι π ι ω  < β . 

We will continue to use the following s tandard notat ion: a subscript 

of " + " ("—") indicates a function tha t is analytic in the upper (lower) half 

plane a < Ι π ι ω  (Ι τ η ω  < β ). 

E x a m p l e 

Suppose we have the linear part ial differential equation exterior to the 

half line (y = 0, χ  > 0) 

Φ Χ Χ  + Φ Υ Υ  - φ χ  = 0, (111.4) 

with the boundary conditions 

0 —> 0 as r = y/x
2

 + y
2

 —• oo, 

φ  = e~
x

 on y = 0, χ  > 0. 
(111.5. α -6) 

We define the Fourier transform of φ (χ , y) by Φ (ω , y) = φ (χ , y)e
tuJX

 dx. 

ν 2 π  
If we assume tha t φ χ  —y 0 as r —• oo, then (111.4) can be Fourier t rans-

formed (by multiplying by e
lu)X

 and integrating with respect to x) to yield 

^ 1 - ( ω
2

- ί ω )Φ  = 0. (111.6) 
dy 
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ω ) + T-̂ —1 e x p f - l i / l V ^ - z o ; ) , (111.9) 
ν 2 π  1 - iu\ \ / 

where the square root branch is specified by Re \/ω
2

 — ι ω  > 0. 

Once we determine U(ω ), we can (in principle) invert (111.9) by taking 

an inverse Fourier transform. This would yield (/>(#, y). Finding U(LJ) is 

the hard part of the calculation. 

Since the solution of the original problem (and its derivatives) must 

be continuous across y = 0 (for χ  < 0) we define a function f(x) by 

f(x) := φ ν {χ ,ΰ +) -φ υ (χ ,0~), 

(111.10. α -6) 
0 for χ  < 0, 

v(x) for χ  > 0, 

where 0
+

 (0~) indicates a vanishingly small quanti ty tha t is greater (less) 

than zero and v(x) is an unknown function. Taking the Fourier transform 

of ( l l l . lO .b ) produces 

F M : = - ! = Γ  f{x)é»*dx 
V 2n J

- ~ (111.11) 

= - = I v(x)e
iux
dx, 

If we extend the definition of φ (χ ,Ο ) in (111.5.b) to be 

^={euZ) l<l: (nL7) 

where u(x) is unknown, then we can transform (111.7) to find 

Φ (ω , 0) = ϋ (ω ) + -L —V, (111.8) 
ν 2 π  1-ι ω  

where U{u) is the Fourier transform of u(x), i.e., 

1 f° 
υ (ω ) = - = I u(x)e

lu)X

 dx. 
V2 π  J - o o 

The solution of (111.6) (which is an ordinary differential equation in 

y) and (111.8), which vanishes as \y\ —• oo, is 
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while the Fourier transform of ( l l l . l O . a ) produces 

Ρ (ω ) = Φ ν (ω ,0+)-Φ ν (ω ,0-) 

= - 2 U{u) + 
1 

\ / 2 π  1 -
y/ ω

2

 — ί ω , 
(111.12) 

where the solution in (111.9) has been used. 

Using our subscript convention (and the definition in (111.11)), we 

note tha t F (ω ) = F+(u), where, for instance, we could take a = 1/3. We 

now assume tha t U(u) = U-(u), for, say, β  = 2 / 3 . This places a constraint 

on u(x) t ha t has to be verified at the end of the calculation. 

By algebraic manipulations of (111.12) we can obtain (this s tep should 

not be trivialized, it is the hardest s tep in the calculation) 

2y/Ü \ / π ( 1 — iuj) 
= U-(u)y/u — i + 

y/ω  — i — \J—2i 

λ /2 π (1 - τ ω ) 

(111.13) 

If we define Ε (ω ) to be the left-hand side of (111.13), then Ε (ω ) is 

entire. This is because the left-hand side and the right-hand side of (111.13) 

overlap in the str ip a < Ι π ι ω  < β , and these two functions are analytic 

in their respective half planes. Hence, one side of (111.13) supplies the 

analytic continuation of the other side. 

If we now assume tha t 

(A) F+(u) —• 0 as \ω \ —• oo in Ima; > /?, 

(B) u)U-(u) —• 0 as \ω \ —y oo in Im a; < a , 

then Ε (ω ) —• 0 as \ω \ —• oo. By Liouville's theorem we can conclude tha t 

Ε  (ω ) = 0 and so from (111.13) 

U(U) = U-(UJ) = -
1 

Vu 

\/ω  — i — \/—2i 

— ι ω  

Using this in (111.9) and taking an inverse Fourier transform yields φ (χ , y). 

N o t e s 

[1] The Wiener-Hopf method was originally formulated for the solution of 

integral equations. 

[2] The problem in (111.1) and (111.2) is analyzed in more detail in Carrier, 

Krook, and Pearson [1]. The same problem, with an incident oblique wave, 

is solved in Davies [2]. 
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[2] B. Davies, Integral Transforms and Their Applications, Springer-Verlag, 
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pages 447-466. 

[4] N. Levinson and R. M. Redheffer, Complex Variables, Holden-Day, Inc., 
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[5] B. Noble, Methods Based on the Wiener-Hopf Technique, Pergamon 

Press, New York, 1958. 



III 

Approximate Analytical Methods 

112· Introduction to 

Approximate Analysis 

Sometimes an exact solution cannot be obtained for a differential 

equation and an approximate solution must be found. Other t imes, an 

approximate solution may convey more information than an exact solution. 

There are essentially two types of approximations: 

[1] those tha t give an approximation over a range of the independent 

variable, and 

[2] those tha t give an approximation only near a single point. 

Approximations of the second type are more common. 

This section of the book is not broken up into methods for ordinary 

differential equations and methods for part ial differential equations since 

most of the methods can be used for either type of differential equation. 

Listed below are, in the author ' s opinion, those methods which are 

the most useful when approximating the solution to ordinary differential 

equations and part ial differential equations. These are the methods tha t 

might be tried first. 

4 3 7 
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M o s t Use fu l M e t h o d s for Differential E q u a t i o n s 

• Collocation 

• Dominant Balance 

• Graphical Analysis: The Phase Plane 

• Least Squares Method 

• Lyapunov Functions 

• Newton's Method 

• Per turbat ion Method: Method of Averaging 

• Per turbat ion Method: Boundary Layer Method 

• Per turbat ion Method: Regular Per turbat ion 

• W K B Method 

113. Chaplygin's Method 

A p p l i c a b l e t o An initial value problem for a single first order ordinary 

differential equation. 

Y i e l d s 

Improved upper and lower bounds on the solution. 

Idea 

Using an upper and lower bound on the solution, a set of tighter bounds 

can be constructed. 

P r o c e d u r e 

For an equation of the form y' = f(x,y), y(xo) = yo the method is 

derived from the following theorem (due to Chaplygin): 

If the differential inequalities 

u'(x)-f(x,u(x))<0, 

v'(x)- f{x,v(x)) > 0 ,

hold for χ  > x0, with u(x0) = y0 and v(x0) = i/o, then 

u{x) < y(x) < v{x) (113.2) 

holds for all χ  > XQ. 

The procedure is to determine (or "guess") a u(x) and a v(x) tha t 

satisfy (113.1). Then there are two different techniques available for com-

puting {ui(x),vi(x)} such tha t 

u(x) < ui(x) < y(x) < vi(x) < v(x). (113.3) 
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For each of the two techniques, the functions {ui(x), v\(x)} will be different. 

The functions obtained, {ui(x),vi(x)}, will also satisfy (113.1), and the 

process may be i terated. 

T e c h n i q u e O n e 

Let Κ  be the Lipschitz constant of the function f(x,y). Then if 

{ui(x),vi(x)} are defined by 

ui(ar) = u(x) + Γ  e-
K
^-

f)
 [f(t, u(t)) - u'{t)] dt, 

JXQ 

Vl(x) = v(x) - Γ  e-
K
(*-» [v'(t) - f(t,

then (113.3) will be satisfied. 

T e c h n i q u e T w o 

For this technique, it must be t rue tha t d
2
f/dy

2
 is of constant sign in 

the region of interest. Once this has been established, define {M(x), N(x), 

M(x), N(x)} by 

M(x)y + N(x) = f(x, u(x)) +
 / (

* ' " f
 (

^
( g ))

 (y - u ( x ) ) , 

v[x) — u(x) 

M(x)y + N(x) = f(x, u{x)) -h fy(x, u(x)){y - u{x)). 

(113.4) 

(Note t ha t bo th sides of each equation are linear in the indeterminate y.) 

Then define u\(x) to be the solution of 

y' = M(x)y + N(x), y(x0) = y0. (113.5) 

Finally, define vi(x) to be the solution of 

y' = M(x)y + N(x), y(x0) = y0. (113.6) 

Wi th these definitions for ui(x) and v\(x), (113.3) will be satisfied. Note 

tha t the equations in (113.5) and (113.6) can be solved by the use of 

integrating factors (see page 305). 
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satisfy the constraint in (113.3). Using the second technique, we note that 

d
2

f/dy
2

 and so we can use the results in (113.4), (113.5), and (113.6). It 

is straightforward to calculate 

M ( x ) = ^ x
3

, M ( x ) = § x
3

, 

N(x) =x
2
- §±x

6

, N(x) = x
2
 - | x

6

. 

Solving the equations in (113.5) and (113.6) we find 

Ul(x) = e*
4
/

6
 Γ  {z

2

-lz
6
)e-

z
*/

6
dz, 

J

° rx (113.7) 

Vl{x) = e
7
^/40 / (z2 _ ^ 6 ) e-7z

4
/40 ^ 

Jo 

N o t e s 

[1] The above example is from Mikhlin and Smolitskiy [4]. 
[2] The solutions in (113.7) may be Taylor expanded about χ  = 0 to find that 

«i (*) = b 3 + è* 7
 + öj^ö*

11
 + ° Ο *12). 

M ly (113.8) 

If only the terms shown in (113.8) are kept, then these approximations 
satisfy (113.1). Hence, they also satisfy (113.3). It can be shown that , 

[3] Another useful inequality (see McNabb [3]) is a small generalization of the 
following: 

If tt(£), v(t), and f(t,w) satisfy sufficient smoothness condi-
tions on [a, b], if u(a) < v(a), and if u' — f(t, u) < v' — f(t, v) 
for a < t < 6, then u(t) < v(t) on [a, b]. 

[4] This procedure can be implemented numerically. 

First observe tha t u(x) = x
3

/ 3 and v(x) = l l x
3

/ 3 0 satisfy the con-

ditions of Chaplygin's theorem, so tha t (113.2) holds. Using the first 

technique, we recognize tha t Κ  = Λ / 2 in the region of interest, so tha t 

the functions 

when χ  is in the range 

E x a m p l e 

Suppose we wish to bound the solution to the equation 
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R e f e r e n c e s 

[1] C. Fabry and P. Habets, "Upper and Lower Solutions for Second-Order 

Boundary Value Problems with Nonlinear Boundary Conditions," Nonlin-
ear Analysis, 10, No. 10, 1986, pages 985-1007. 

[2] V. Lakshmikantham and S. Leela, Differential and Integral Inequalities, 
Academic Press, New York, 1969, pages 64-69. 

[3] A. McNabb, "Comparison Theorems for Differential Equations," J. Math. 
Anal. Appl, 119, 1986, pages 417-428. 

[4] S. G. Mikhlin and K. L. Smolitskiy, Approximate Methods for Solutions of 
Differential and Integral Equations, American Elsevier Publishing Com-

pany, New York, 1967, pages 9-12. 

114. Collocation 

A p p l i c a b l e t o Ordinary differential equations and part ial differential 

equations. 

Y i e l d s 

An approximation to the solution, valid over an interval. 

I d e a 

An approximation to the solution with some free parameters is pro-

posed. The free parameters are determined by forcing the approximation 

to exactly satisfy the given equation at some set of points. 

P r o c e d u r e 

Suppose we are given the differential equation 

(114.1) 

(114.2) 

for 2/(x) in some region R, with the boundary conditions 

on some port ion of the boundary of R. We choose an approximation to 

y(x) t ha t has several parameters in it, say y(x) ~ w ( x ; a ) , where a is a 

vector of parameters . This approximation is chosen in such a way tha t 

it satisfies the boundary conditions in (114.2). The unknown parameters 

are determined by requiring the approximation to satisfy (114.1) at some 

collection of points. 
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E x a m p l e 

Suppose we wish to approximate the solution to the ordinary differen

tial equation 

N[y]=y" + y + x = 0, 

2/(0) = 0, 2/(1) = 0, 

by the method of collocation. We choose to approximate the exact solution 

by 

y(x) ~ w(x) = aix(l — x) + a2x(l — x
2

)- (114.) 

Note tha t w(x) satisfies the boundary conditions for y(x). Using this 

approximation we find 

N[w(x)] = - α ι ( 2 - χ  + x
2

) - a2(5x + x
3

) + x. 

Now we must choose the collocation points. We choose the two points 

χ  — 1/3 and χ  = 2 / 3 . Requiring N[w(x)] to be zero at these two points 

results in the simultaneous equations 

- f f a i- § f a 2 - | = 0 , 

§ " 2 - 1 = 0 . 

The solution to these equations is a\ = 9/416, a2 = 9/52. Hence, our 

approximation of the solution of (114.3) is 

2 / ( x ) ~ ^ x ( l - x ) + ^ x ( l - x
2

) . (114.4) 

sin χ  
Note tha t the exact solution to (114.3) is y(x) — ——- — x. The maxi-

s i n l 
mum difference between the approximate solution in (114.4) and the exact 

solution in the range 0 < χ  < 1, occurs at χ  ~ .7916 where the error is 

approximately .00081. 

N o t e s 

[1] This method is an example of a weighted residual method. 

[2] This method is often implemented numerically. 

[3] The COLSYS computer program (in FORTRAN) utilizes collocation to 
solve boundary value problems. See Ascher, Christiansen, and Russell [1] 
for details. 
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115. Dominant Balance 

A p p l i c a b l e t o Linear and nonlinear differential equations. 

Y i e l d s 

An approximation to the solution valid in a region. 

Idea 

A differential equation with many terms in it might be well determined 

by only a few of those terms. 

R e f e r e n c e s 
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location for Boundary Value Problems," IMA J. Num. Analysis, 11 , No. 1, 

January 1991, pages 7-20. 
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P r o c e d u r e 

If there are M terms in a differential equation, t ry solving the differ-

ential equation in a region by only considering 2 (or 3, or 4, . . . , or M — 1) 

terms to be important in tha t region. Discard all the other terms and solve 

this differential equation with fewer terms. After a solution is obtained, 

check tha t the discarded terms are actually smaller than the terms tha t 

were retained. 

E x a m p l e 

Suppose we have the equation 

r3/2 
y 

16x 2 ' 
(115.1) 

and we would like to find an approximate solution as χ  —• 0. To determine 

the solution uniquely in this region, we must specify some information 

about y(x) as χ  —• 0. In this example we choose the condition: y —• 0 as 

χ  0. 

There are three different two-term balances of (115.1) tha t we can take; 

tha t is, the first two terms in (115.1) can be taken approximately equal, the 

first and third terms can be taken approximately equal, or the second and 

third terms can be taken approximately equal. These possibilities yield the 

following two te rm balances: 

or 

or 

- 1 6 z
2

' 

2

 3 
3/9 2/ — - 1 6 x

2

' 

which requires tha t \y"\ > 

which requires tha t \y"\ ^> 

which requires tha t \y"\ <C 

16x
Â 

2y
f 

r3/2 

16x
2 

, (115.2) 

, (115.3) 

. (115.4) 

We will investigate each of these in turn. The solution to (115.2) is 

2/1 (x) = A + B Jexp^--^^ dx, 

where A and Β  are arbi trary constants. Note tha t this solution violates 

the condition in (115.2) since 

^3/2 exp 
16x

2 as χ  —• 0. 
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Therefore (115.2) is an inconsistent balance. 

The solution to (115.3) is 

3 

2 / 2 W = - τ τ  l o g x - f Cx + D, 
l b 

where C and D are arbi t rary constants . But this solution cannot satisfy 

y —• 0 as :r —• 0, so it must also be discarded. 

The solution to (115.4) is 

3 

where we have already used the fact t ha t y —• 0 as χ  —• 0. For this solution, 

the condition in (115.4) is satisfied, since 

= « IL?
 88 X

^ ° -

Hence, we have found a consistent balance. We conclude tha t 

3 
y(x) ~ — — as a; —• 0. 

N o t e s 

[1] Even if a consistent balance has been found, the solution associated with that 

balance may be unrelated to the true solution of the differential equation(s). 

This is because a consistent balance has apparent consistency, but not 

necessarily genuine consistency. Another set of words that express the same 

ideas are honest methods and dishonest methods. See Keller [2] or Lin and 

Segel [4] for more details. 
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116. Equation Splitting 

A p p l i c a b l e t o Differential equations. 

Y i e l d s 

An exact solution, but usually not the most general form of the solu

tion. 

Idea 

By equating two par ts of a differential equation to a common term, 

we may be able to find a fairly general solution to the given differential 

equation. 

P r o c e d u r e 

Separate a differential equation into two (or more) terms such tha t a 

general solution is available for one of the terms. Use the other term(s) to 

restrict this general solution. 

E x a m p l e 

Suppose we have, from fluid dynamics, the s t ream function form of 

the boundary layer equations to solve for Φ (χ ,υ ): 

Φ υ Φ χ υ  - Φ χ Φ ν ν = V$yyy. (116.1) 

We split this equation by choosing both the right and the left-hand sides 

of this equation to be identically equal to zero. Tha t is, we break (116.1) 

into the two simultaneous equations 

V$yyy = 0. 

Any solution of (116.2) is also a solution of (116.1). Note tha t the converse 

is not t rue: a solution to (116.1) may not satisfy (116.2.a) or (116.2.b). 

Hence, the solution tha t is obtained from (116.2) will not be the most 

general solution. 

The general solution to (116.2.b) can be easily found since it is essen

tially an ordinary differential equation in the independent variable y. The 

solution of (116.2.b) is 

Φ ( χ , y) = a(x)y
2

 + b{x)y + c(x), (116.3) 

for arbi trary coefficient functions a (x) , b(x) and c(x). Using (116.3) in 

(116.2.a) we conclude tha t 

{2ay + b)(2ya
f

 + b') - (a'y
2

 + b'y + c')(2a) = 0 (116.4) 
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must hold for all values of χ  and y. Hence, a(x), b(x) and c(x) can be 

restricted by equating the coefficients of y
2

, y
1

, and y° in (116.4) to zero. 

This results in 

coefficient of y
2 

coefficient of y
1 

coefficient of y° 

laa! - 2aa! = 0, (116.5) 

(2α δ ' + ba') - 2ab' = 0, (116.6) 

bb' - 2ac' = 0. (116.7) 

Now we solve the equations appearing in (116.5), (116.6), and (116.7). 

Equat ion (116.5) can only be valid if a(x) is a constant, say A. Then 

equation (116.6) is valid for any b(x) and equation (116.7) can be rewrit ten 

as 

{b
2

)' -±Ac' = 0. (116.8) 

b
2

(x) 
Equat ion (116.8) can be integrated to determine c(x) = ———Y D, where 

D is an arbi t rary constant of integration. Now, using what we have found, 

the solution in (116.3) becomes 

Φ (χ , y) = Ay
2

 + b(x)y + + D^j , (116.9) 

for arbi t rary A, D, and b(x). 

N o t e s 

[1] The above example is from Ames [1]. 

[2] Note that, for the equations in (116.2) we could have found the general 

solution of (116.2.a) and then used (116.2.b) to restrict it. The general 

solution of (116.2.a) is Φ (χ , y) = F(y -h G(x)), where F and G are arbitrary 

functions. Using this solution in (116.2.b), and determining conditions on 

F and G, results in the solution in (116.9). 

R e f e r e n c e s 

[1] W. F. Ames, "Ad Hoc Exact Techniques for Nonlinear Partial Differential 

Equations," in W. F. Ames (ed.), Nonlinear Partial Differential Equations 

in Engineering, Academic Press, New York, 1967, pages 59 and 65-69. 

[2] M. E. Goldstein and W. H. Braun, Advanced Methods for the Solution of 

Differential Equations, NASA SP-316, U.S. Government Printing Office, 

Washington, D.C., 1973, page 109. 

[3] G. B. Whitham, Linear and Nonlinear Waves, Wiley Interscience, New York, 

1974, page 421. 
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117. Floquet Theory 

A p p l i c a b l e t o Linear ordinary differential equations with periodic 

coefficients and periodic boundary conditions. 

Y i e l d s 

Knowledge of whether all solutions are stable. 

Idea 

If a linear differential equation has periodic coefficients and periodic 

boundary conditions, then the solutions will generally be a periodic func-

tion times an exponentially increasing or an exponentially decreasing func-

tion. Floquet theory will determine if the solution is exponentially increas-

ing (and so "unstable") or exponentially decreasing (and so "stable"). 

P r o c e d u r e 

Suppose we have an n- th order linear ordinary differential equation 

whose coefficients are periodic with common period T. The general tech-

nique is to write the ordinary differential equation as a first order vector 

system, of dimension η  (see page 118), and then solve this vector ordinary 

differential equation for any set of η  linearly independent conditions, for 

0 < t < T. 

This yields a propagator matr ix B, such tha t y(t + mT) = B
m

y(t), 

where m = 1,2,... . Hence, to determine the stability of the original prob-

lem, we need only determine the eigenvalues of B. If any of the eigenvalues 

are larger than one in magnitude, then the solution is "unstable." 

As an example of the general theory, we consider second order linear 

ordinary differential equations of the form 

y" + q(t)y = 0, (117.1) 

where q(t) is periodic with period T, i.e., q(t + T) = q(t). We can write 

(117.1) as a vector ordinary differential equation in the form 

where y(0) = ^^QJ ^ 1S known in principle. We now define u(t) and v(t) 

to be the solutions of 

(« ' ( ' ) )
 =

 (-°(t) o) (« '(?)) ' ( A ) )
 =

 ( o ) '
 ( 1 1 7

'
2 ) 
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and 

Then, by superposition, y(t) = A(t)y(0) = ( j ^ ^ v\t)) E q u i v a~ 

lently, y ( T ) = fly(O), where Β  = A(T). Hence, y (2T) = By(T) = B
2

y(0), 

y(3T) = B
3

y ( 0 ) , etc. The eigenvalues of Β  are needed to determine 

stability. By the usual calculation, λ  will be an eigenvalue of Β  if and 

only if \B — XI\ = 0. We calculate, 

\B-XI\ = 
u(T) - λ  v{T) 

u'{T) υ '(Τ ) - X 

= λ
2

 - X[u(T) + v'(T)] + [u(T)v'(T) - u'(T)v(T)]

= λ
2

 - λ Δ  -h 1, 

where we have defined Δ  = u(T) + v'(T), and we set u(T)v'(T)-u'{T)v(T) 

equal to one since the Wronskian of equation (117.1) is identically equal to 

one. Solving (117.4) for λ , we determine tha t λ  = | Δ  ± yj^Δ
2

 — 1, and 

so we conclude 

(A) If | Δ | < 2, then, for bo th values of λ , we have | λ | < 1 and so all 

of the solutions to (117.1) are stable. 

(B) If | Δ | > 2, then there is least one value of λ  with | λ | > 1 and so 

the solutions to (117.1) are unstable. 

E x a m p l e 

Suppose we have the equation 

y" + f(t)y = 0, (117.5) 

where f(t) is a square wave function of period Τ  

/ (t + r) = / ( t) = ( - l 0 < t < T / 2 , 

V

 1 1

Note tha t f(t) is not continuous. This does not change any of the analysis. 

We can solve (117.5) and (117.6) by using f(t) = —1 and solving for 

{u(t),v(t)} in the interval 0 < t < T/2. Then we set f(t) = 1 and solve 

for {u(t),v(t)} in the interval T / 2 < t < T , using as initial conditions 

the values calculated when we took f(t) = — 1 . See the section on solving 

equations with discontinuities (page 219). 
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The solutions of (117.2) and (117.3) are found to be (for Γ / 2 <t<T) 

v(t) = (cosh r sin r + sinh r cos r ) sin t + (cosh r cos r — sinh τ  sin r ) cos t, 

(117.7) 

and 

u(t) = (sinh r sin r + cosh r cos r ) sin £ + (sinh r cos r + cosh r sin r ) cos t, 

(117.8) 

where r = Γ / 2 . Wi th (117.7) and (117.8), we determine Δ  to be 

Δ  = u(T) + v'(T) = 2 cosh τ  cos τ . (117.9) 

The conclusion is tha t the solutions to (117.6) will be stable or un-

stable depending on whether the magnitude of Δ , as given by (117.9), is 

greater than or smaller than two. Different values of Τ  will give different 

conclusions. For example 

(A) If T = 1 7 or Τ  = e
2

, then | Δ | > 2 and some unstable solutions to 

(117.5) exist. 

(B) If T=l or Γ  = π , then | Δ | < 2 and all to the solutions to (117.5) 

are stable. 

N o t e s 

[1] Mathematicians call this technique Floquet theory, while physicists call it 

Bloch wave theory. Solid state physicists use this technique for determining 

band gap energies. 

[2] Note that the periodicity of f(t) in (117.5) does not, by itself, insure that 

y(t) has a periodic solution. If, however, f(t) is periodic and has mean zero, 

then equation (117.5) will have a periodic solution of the same period. 

[3] The linear system y' = B(t)y is said to be noncritical with respect to Τ  

if it has no periodic solution of period Τ  except the trivial solution y = 0. 

Otherwise, the system is said to be critical. 

R e f e r e n c e s 

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, 

National Bureau of Standards, Washington, DC, 1964, Section 20.3 (pages 
727-730). 

[2] G. Birkhoffand G.-C. Rota, Ordinary Differential Equations, John Wiley & 
Sons, New York, 1978, pages 325-326. 

[3] E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equa

tions, McGraw-Hill Book Company, New York, 1955, pages 78-81. 

[4] H. S. Hassan, "Floquet Solutions of Nonlinear Ordinary Differential Equa-
tions," Proc. Roy. Soc. Edin. Sect. A, 106, 1987, No. 3-4, pages 267-275. 

[5] W. Kaplan, Operational Methods for Linear Systems, Addison-Wesley Pub-
lishing Co., Reading, MA, 1962, pages 472-490. 
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[6] D. L. Lukes, Differential Equations: Classical to Controlled, Academic Press, 

New York, 1982, Chapter 8, pages 162-179. 

[7] W. Magnus and S. Winkler, Hill's Equation, Dover Publications, Inc., New 
York, 1966, pages 3-10. 

[8] B. D. Sleeman and P. D. Smith, "Double Periodic Floquet Theory for a 
Second Order System of Ordinary Differential Equations," Quart. J. Math. 
Oxford. Ser., 37, No. 147, 1986, pages 347-356. 

118. Graphical Analysis: 

The Phase Plane 

A p p l i c a b l e t o Two coupled autonomous first order ordinary differential 

equations or an autonomous second order ordinary differential equation. 

Y i e l d s 

A graphical representation of the solution. 

I d e a 

The qualitative features of the solution of two coupled autonomous first 

order ordinary differential equations may be ascertained from the phase 

plane. 

P r o c e d u r e 

Suppose we have the set of two coupled autonomous first order ordi-

nary differential equations 

^ = / ( * , ! , ) , f =g{x,v). (118.1) 

As t increases, x(t) and y(t) will describe a pa th in (x, y) space. This will 

not be the case at those points {xo,yo) where 

f(xo,Vo) = 0, g{xo,yo) = 0. 

At these points the value does not change with t: x(t) = x$ and y(t) = yo-

These points are called critical points. (They are also called equilibrium 

points or singular points) . 

To analyze the motion near a single critical point, we linearize (118.1) 

about t ha t point. By a linear change of variables, we can place the critical 
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[6] D. L. Lukes, Differential Equations: Classical to Controlled, Academic Press, 

New York, 1982, Chapter 8, pages 162-179. 

[7] W. Magnus and S. Winkler, Hill's Equation, Dover Publications, Inc., New 
York, 1966, pages 3-10. 

[8] B. D. Sleeman and P. D. Smith, "Double Periodic Floquet Theory for a 
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118. Graphical Analysis: 

The Phase Plane 

A p p l i c a b l e t o Two coupled autonomous first order ordinary differential 

equations or an autonomous second order ordinary differential equation. 

Y i e l d s 

A graphical representation of the solution. 

I d e a 

The qualitative features of the solution of two coupled autonomous first 

order ordinary differential equations may be ascertained from the phase 

plane. 

P r o c e d u r e 

Suppose we have the set of two coupled autonomous first order ordi-

nary differential equations 

^ = / ( * , ! , ) , f =g{x,v). (118.1) 

As t increases, x(t) and y(t) will describe a pa th in (x, y) space. This will 

not be the case at those points {xo,yo) where 

f(xo,Vo) = 0, g{xo,yo) = 0. 

At these points the value does not change with t: x(t) = x$ and y(t) = yo-

These points are called critical points. (They are also called equilibrium 

points or singular points) . 

To analyze the motion near a single critical point, we linearize (118.1) 

about t ha t point. By a linear change of variables, we can place the critical 
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point at the origin (x, y) = (0,0) . Near a critical point at the origin, (118.1) 

can be writ ten as 

^ = α χ  + fcy+ / ( x , y ) , 
7 (118.2) 
dy , ~/ \ 
— = cx + dy + g(x,y), 

where / ( x , y ) = o(\x\ + \y\) and # (x ,y ) = o(\x\ + \y\) as χ  -+ 0, y -> 0. 

We assume tha t a, 6, c,d are real numbers and they are not all equal to 

zero. If we discard the / and g terms in (118.2) and look for solutions of 

the form 

x{t) = Ae
xt

, y(t) = Be
x

\ 

then we find tha t λ  must be an eigenvalue of the matr ix . Tha t 

is, λ  must satisfy 

λ
2

 - (α  + d)\ + {ad - be) = 0. (118.3) 

There are five different types of behavior tha t can be observed near the 

critical point (0,0) , based on the roots of (118.3). If the roots of (118.3) 

are: 

(A) Real, distinct, and of the same sign, then the critical point is 

called a node. (See Figure 118.1.a for a typical picture.) Note 

tha t the symmetry axes are determined by the eigenvectors of the 

2 x 2 matr ix shown above. 

(B) Real, distinct, and of opposite signs, then the critical point is 

called a saddle point. (See Figure 118.l .b for a typical picture.) 

(C) Real and equal, then the critical point is again a node. (See 

Figure 118.l.c for a typical picture.) 

(D) Pure imaginary, then the critical point is called a center. (See 

Figure 118.1.d for a typical picture.) 

(E) Conjugate complex numbers, but not pure imaginary, then the 

critical point is called a spiral or a focus. (See Figure 118.1.e for 

a typical picture.) 

In each of the figures, an arrow points in the direction of increasing t. 

For each case illustrated, there exist systems in which the arrows are 

pointing in the opposite direction t han what we have illustrated. Each 

solution of (118.2) (corresponding to different initial conditions) describes 

a single trajectory. Every trajectory must either 

(A) go to infinity, or 

(B) approach a limit cycle (see page 63), or 
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For this equation, the eigenvalues satisfy (118.3), which we write in the 

form λ
2

 — Τ λ  + Δ  = 0, where Τ  is the trace of the matr ix (T = a + d) and 

Δ  is the determinant ( Δ  = ad — be). The eigenvalues, and the qualitative 

picture of the phase plane, can be deduced from Τ  and Δ . Figure 118.2 

shows the type of behavior to expect for different values of Τ  and Δ . The 

curve Figure 118.2 is given by de te rminan t= ( t race)
2

; only centers can 

occur along this curve. 

E x a m p l e 1 

Consider the simple linear differential equation system 

If the solution goes to infinity, then the solution is said to be unstable, 

otherwise it is said to be stable. 

(C) tend to a critical point. 

Figure 118.1 The different types of behavior in the phase plane: (a) and (c) 
are nodes, (b) is a saddle point, (d) is a center, and (e) is a spiral. 
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determinant 

N

 x stable 

N spiral 
\ 

\ 

stable 
node 

/ 

unstable ' 
spiral 

unstable 
node 

> trace 
saddles 

Figure 118.2 The different types of behavior in the phase plane, as a function 
of the trace and determinant of the 2 x 2 matrix. 

E x a m p l e 2 

Consider the nonlinear autonomous second order ordinary differential 

equation 

d
2

x ^dx ο  

—γ  + β — + ω
2

 s inx = 0, (118.4) 
dt dt 

which can be wri t ten as the coupled system 

dx 

f (118.5) 
d

y a 2 · — = —fjy — ω  s inx . 
dt 

For the equations in (118.5) there are infinitely many critical points at the 

locations {χ  = η π , y = 0 | η  = 0 , 1 , 2 , . . . } . To analyze the behavior near 

the point (Α :π , 0) the new variables y = y, χ  = χ  — kn, are introduced. In 

these new variables, the system in (118.5) can be approximated by 

dx _ 

M (118.6) 

| = - ^ + ( - l ) ^
2

x , 

when χ  and y are bo th small. Prom (118.3) the characteristic equation for 

(118.6) becomes 

\
2

+ β \ + ω
2

(-ΐ γ  = 0 , 

with the roots 

-ß+^/ß
2
 + (-l)

k
+Hw

2
 -β  - ^β

2

 + (-l)
k

+Huj
2 

λ ι  = - - , λ 2 = 

If we now assume tha t β  > 0 and β
2

 > 4 α ;
2

, then 
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y 

X 

Figure 118.3 . Phase plane for the equation in (118.4). 

(A) For k even, λ ι  < 0 and \ 2 < 0. Hence, the point is a node. 

(B) For k odd, λ ι  > 0 and X2 < 0. Hence, the point is a saddle point. 

W i t h this information, we can draw the phase plane for the system in 

(118.5) (see Figure 118.3). Since the system in (118.4) is dissipative (i.e., 

the total "energy" decays), all of the different possible solutions approach 

one of the nodes in infinite t ime. The trajectories in the phase plane clearly 

show this. 

[1] In the above, we have presumed that the critical points are isolated] that is, 
each critical point has a neighborhood around it in which no other critical 
points are present. 

[2] If, in (118.2), ad — be were equal to zero, then second degree (or higher) 
terms in the Taylor series of / and g would be required to determine the 
behavior near that critical point. See Boyce and DiPrima [2] for details. 

Had—be φ  0, then the solution curves of the nonlinear system in (118.1) 
will be qualitatively similar to the solution curves of the linear system in 
(118.2), with the single exception that a center for (118.2) may be either a 
center or a spiral for system (118.1). 

[3] A second order autonomous ordinary differential equation can always be 
written as a first order system, (see page 118). Also, the general equation 
of first order M(x, y) dx + N(x, y) dy = 0 may be written as a system in the 
form of (118.1); i.e., 

N o t e s 

— = N(x,y), 
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[4] The point at infinity may be analyzed by changing variables by 

χ  -y 
Xi = 2 ' yi = 2 . : 

χ  + y ,2 ' 

and then analyzing the point (0,0) in the xi,yi-plane. This corresponds to 

the substitution z\ — 1/z, when ζ  = χ  + iy is treated as a complex variable. 

[5] Kath [8] describes a method that combines phase plane techniques with 

matched asymptotic expansions. This method can be used to analyze second 

order, nonlinear, non-autonomous, singular boundary value problems. 

[6] Two different graphing programs for showing phase planes on a Macintosh 

computer are DEGraph and Phase Portraits. A review of these programs 

is in Hartz [4]. A program that runs on IBM personal computers (and 

compatibles) is Phaser; see Margolis [9] for a review. 

R e f e r e n c e s 
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Scientists and Engineers, McGraw-Hill, New York, 1978, pages 171-197. 

[2] W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and 

Boundary Value Problems, Fourth Edition, John Wiley & Sons, New York, 

1986, pages 456-486. 

[3] E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equa

tions, McGraw-Hill Book Company, New York, 1955, Chapter 15 (pages 
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[4] D. Hartz, "DEGraph and Phase Portraits," Notices of the American Math
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Stud. Appl. Math., 72 , 1985, pages 221-239. 

[9] M. S. Margolis, "Phaser," Notices of the American Mathematical Society, 

37, No. 4, April 1990, pages 430-434. 

[10] D. Wang, "Computer Algebraic Methods for Investigating Plane Differential 

Systems of Center and Focus Type," in E. Kaltofen and S. M. Watt (eds.), 

Computers and Mathematics, Springer-Verlag, New York, 1990, pages 9 1 -
99. 
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119. Graphical Analysis: 

The Tangent Field 

A p p l i c a b l e t o First order ordinary differential equations. 

Y i e l d s 

A graphical representation the solutions corresponding to different 

initial conditions. 

The qualitative features of the solution of a first order ordinary differ

ential equation may be ascertained from the tangent field. 

P r o c e d u r e 

Given a first order ordinary differential equation in the form 

the procedure is to draw small line segments in the (x, y) plane, such tha t 

the line segment tha t goes through the point (xo, yo) has the slope /(#o> 2/ο )· 

Note tha t a slope of m corresponds to an angle of t a n "
1

 m. After a region 

of (x, y) space has been covered with these small line segments, it should 

be apparent how the solution curves of (119.1) behave. An approximate 

solution may then be drawn by "connecting up" the line segments tha t 

originate from a given point. 

Constructing the tangent field by hand is often facilitated by the 

method of isoclines. In this method, a few curves of the form / ( x , y) = C, 

with C being a constant, are constructed. Along each one of these curves, 

dy/dx is equal to the constant C. Hence, at every point on these curves, 

the small line segments all have the same slope. 

E x a m p l e 1 

Suppose we have the nonlinear ordinary differential equation 

It is straightforward to construct the tangent field, which is shown in 

Figure 119.1. 

Every solution of (119.2) must be tangent to whatever line segments it 

passes near. For example, if (119.2) had the initial condition y(0) = 1, then 

Idea 

(119.1) 

(119.2) 
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y ^ 

Figure 119.1 Tangent field for the equation in (119.2). 

the solution can be approximately traced by star t ing at the point (0,1) and 

drawing a line tha t remains tangent to the line segments. For this equation 

and initial condition, y tends to zero as χ  tends to infinity. This behavior 

can be seen in Figure 119.1. 

E x a m p l e 2 

Given the differential equation 

^ = 2x + y, (119.3) 

we find tha t the isoclines are the straight lines 2x + y = C. Figure 119.2 

shows the isoclines, with small line segments superposed, as well as three 

solutions to (119.3). 

The exact solution to (119.3) is 

y = 2(1 -x) + Ae~
x

, 

where A is an arbi trary constant. The linear behavior for χ  > 0 and the 

exponential behavior for χ  < 0 can be identified in this figure. 
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y A 

Figure 119.2 Tangent field for the equation in (119.3). 

[1] Consider drawing a small circle Γ  in the (x,y) plane that surrounds the 

point (xo,yo). Traversing the circle counter-clockwise, the direction field 

will change. In every case, the change in angle must be a multiple of 2π : 

[angle]r = 2π Ι τ , where 7r is an integer called the index of the vector field. 

The index may be positive, negative or zero. 

If Γ  surrounds no critical points, then the index is zero. If Γ  surrounds 

a saddle point, then the index is —1. If Γ  surrounds a center, spiral, or node, 

then the index is - 1 . If Γ  surrounds more than one critical point, then the 

index is the sum of the indices for each critical point. 

[2] Equation (119.1) sometimes arises from the autonomous system {x = F(x, y), 

dxi G(x u) 1 
y = G(x, y)}, via -y- — ; ' . In this case, we have 7 r = — 

dx r (x, y) 2π  

See Jordan and Smith [3] for details. 

[3] Hand construction of the tangent field produces only qualitative information. 

More information can be obtained when a computer is used to generate the 

tangent field, 

R e f e r e n c e s 

[1] C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scien

tists and Engineers, McGraw-Hill, New York, 1978, pages 148-149. 

[2] W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and 

Boundary Value Problems, Fourth Edition, John Wiley & Sons, New York, 

1986, pages 34-35. 

[3] D. W. Jordan and P. Smith, Nonlinear Ordinary Differential Equations, 

Clarendon Press, Oxford, Second Edition, 1987, Chapter 3. 
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120· Harmonic Balance 

A p p l i c a b l e t o Nonlinear ordinary differential equations with periodic 

solutions. 

Y i e l d s 

An approximate solution valid over the entire period. There is a 

specified procedure for increasing the number of terms and, hence, for 

increasing the accuracy. 

Idea 

Harmonic balance is a way of looking for periodic solutions in non

linear systems by trying to fit a t runcated Fourier series and choosing 

the frequency, ampli tude, and phases so tha t any error occurs only in the 

discarded harmonics. 

P r o c e d u r e 

Suppose we have a differential equation of the form 

f(x,xuxtt,t) = 0, (120.1) 

and we wish to find a periodic solution of period Γ . We look for an 

approximation to (120.1) in the form of a t runcated Fourier series 

Ν  

x(t) ~ y(t) := do + ^ dj cos jut + bj sin jut, 

where ω  = 2 π / Τ . The unknowns to be determined are {ao,dj,bj \ j = 

1 , . . . , TV} and possibly T. 

If Τ  is known, then we require the 2N + 1 unknowns to satisfy the 

2N + 1 algebraic equations 

/ f(y,yt,yu,t)smkujtdt = 0, 
J o

 (120.2.a-6) 

f{y,yt,yu,t) cos kutdt = o, 

for jfe = 0 , 1 , . . . , i V . 

If the period Τ  is unknown, then there are 2N + 2 unknowns to be 

determined. To find algebraic equations for these unknowns, we require 

(120.2) to hold for k = 0 , 1 , . . . , Ν  and, say, (120.2.a) for k = Ν  + 1. 
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E x a m p l e 1 

Given the equation 

d
2

x ( dx \
2

-ά Ψ
 + χ + α

Κ Έ )
 = s i n i

'

where α ; is a given constant, we search for a 2π  periodic solution. If we 

take Τ  = 2π  and Ν  = 2, then we are assuming tha t 

x(t) ~ y(t) = ao + a i cos £ + a2 cos 2£ + + b\ sin £ + &2 sin 2t. (120.4) 

Using (120.3) and (120.4) in (120.2) produces the set of simultaneous 

algebraic equations 

a (4&2 + b\ + 4 a
2

 + a\) + 2 a 0 = 0, 

oc{bib2 + a i a 2) = 0, 

a (b\ — a
2

) — 6a2 = 0, 

2a {a\b\ — a2bi) — 1 = 0, 

3&2 + aaifti = 0. 

These equations have the unique solution {α ο  = - ( a
2

/
3

 Η - 3
4

/
3

) / 2 ( 9 a )
1

/
3

, 

a i = 0, a 2 = l / 2 ( 3 a )
1

/
3

, 61 = - 3
1 / 3

/ a
2

/
3

, b2 = 0} . Hence, the approxi

mation (for Ν  = 2) becomes 

/ 3 \
1 /3

 1 (3a)
1/3 

x ( t ) ^ - ^ J s i n ^ ^ ^ ( c o s 2 t - 3 ) - ^ - i - . (120.5) 

Note tha t this approximation indicates the qualitatively correct behavior, 

at least for small values of a. When a is small, equation (120.3) is a 

harmonic oscillator being forced near resonance. This would lead to a 

large magnitude solution, which is what (120.5) indicates. 

E x a m p l e 2 

Given the equation 

d
2

x 
—ö- + x = c(x

2
 + cos t), 

dt
2

we choose Ν  — 1 and look for solutions of period Τ  = 2 π . Using the 

approximation 

x(t) ~ y(t) = ao + α χ  cost + 61 sin£, 

we find tha t 61 = 0, a\ = —l/2ao, and ao = c
1

/
3

2 ; / 2 , where ζ  satisfies the 

cubic equation c
4

/
3

z
4

 — 2z
3
 + 2 = 0. Here, the analytical solution for a 0 is 

available (implicitly), but is not very informative. However, if we assume 

tha t \c\ 1, then it can be shown tha t a 0 = 1 + — + 0 ( c
8

/
3

) 
Ό  
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E x a m p l e 3 

The requirements in (120.2) are not the only way in which to obtain 

useful approximations. Consider the Duffing equation, x + χ  = ε χ
3

, with 

i ( 0 ) = 0. If we presume tha t χ  = Acosust, then 

χ  - ex
3

 = A cos ω ί  ( l - \eA
2

) - \eA
3

 cos Sut. 

If we disregard the last, higher order, term, then we may write χ  — ε χ
3

 « 

x ( l — f ε Α
2

) . Wi th this approximation, the original equation becomes 

χ  — ( l — | ε Α
2

) χ  « 0. Since we have presumed tha t χ  = A cos ut, we can 

immediately identify the frequency: ω
2

 « 1 — \ε Α
2

. Hence, to leading 

order, our approximate solution becomes χ  « A cos ( l — | ε Α
2

) t. 

N o t e s 

[1] This technique is known in the engineering literature as the describing 

function method. 

[2] Strictly speaking, this method may also be used to obtain approximations 

to differential equations that do not have periodic solutions. 

[3] This technique applies, in principle, to equations in which there is no small 

parameter. However, it may prove that the algebraic equations generated 

by (120.2) are not solvable in closed form unless a perturbation expansion 

is used (as in Example 2). 

[4] Mees [6] has a very extensive bibliography, separated into categories (ap

plications, theory, background theory, Hopf bifurcation, and harmonic bal

ance). 

[5] When this method is implemented numerically, it is known as the spectral 

method. See the section beginning on page 759 or see Gottlieb and Orszag [2] 

for details. 

R e f e r e n c e s 

[1] A. A. Ferri, "On the Equivalence of the Incremental Harmonic Balance 
Method and the Harmonic Balance-Newton Raphson Method," J. Appl. 

Mech., 53, June 1986, pages 455-457. 
[2] D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods: 

Theory and Applications, SIAM, Philadelphia, 1977. 

[3] F. R. Groves, Jr., "Numerical Solution of Nonlinear Differential Equations 
Using Computer Algebra," Int. J. Comp. Math., 13, 1983, pages 301-309. 

[4] I. Huntley and R. M. Johnson, Linear and Nonlinear Differential Equations, 

Halstead Press, New York, 1983, Chapter 12 (pages 166-168). 

[5] K. S. Kundert, G. Β . Sorkin, and A. Sangiovanni-Vincentelli, "Applying 
Harmonic Balance to Almost-Periodic Circuits," IEEE Trans. Microwave 

Theory and Tech., 36, No. 2, February 1988, pages 366-378. 
[6] A. I. Mees, "Describing Functions: Ten Years On," IMA J. Appl. Mathe-

matics, 32, 1984, pages 221-233. 
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121. Homogenizat ion 

A p p l i c a b l e t o Microscopic" differential equations. 

Y i e l d s 

Macroscopic" differential equations. 

I d e a 

By averaging microscopic differential equations, differential equations 

for macroscopic quantit ies may be determined. 

P r o c e d u r e 

In many fields, the ( "microscopic" ) equations of motion contain more 

information than is needed by a practi t ioner solving a specific problem. 

For instance, in a fluid flow problem, it may be tha t only the mass flow 

is required, not a detailed analysis of the flow field. Consequently, it is 

of interest to take an "average" of the "microscopic" differential equations 

to obtain a set of differential equations tha t describe the "macroscopic" 

quantit ies of interest. 

The average taken could be a t ime average, a space average, an en-

semble average, or an average of some other type. 

In the homogenization method, it is usually assumed tha t there is a 

fast t ime (or a short length) scale, on which the "microscopic" differential 

equations vary. The dependence on this fast scale is usually assumed to be 

either periodic or random. In mechanics problems, the small length scale 

is often the length scale of the inclusions or heterogeneities. 

Often, a formal procedure for analyzing problems via homogenization 

is by a multi-scaling procedure (see page 524). 

E x a m p l e 1 

As an example of the general procedure, consider the elliptic problem 

in some domain Ω . The equation in (121.1) probably came from a system 

of the form 

(121.1) 

(121.2) 

via Hamilton 's equations. In (121.1) and (121.2), it is now assumed tha t 

α ^ ( χ ) is of the form α ^ χ / ε ) and tha t a^-(x) is periodic in x , with the 



4 6 4 III A p p r o x i m a t e A n a l y t i c a l M e t h o d s 

period in the X{ variable being L{. A formal two scale procedure can be 

defined by (see page 524) 

x% 
V% = —, 

ε  
u(x) = u 0( x , y ) + e u i ( x , y ) + £

2

u 2( x , y ) + · · · , 

p ( x ) = p°(x , y) + ε ρ *( χ , y ) + ε
2

ρ
2

( χ , y) -f · · · , 

where ρ  = (ρ ι , Ρ 2> · · ·)· In this case, we choose to define the average of 

some arbi trary function of χ  and y to be 

x) :=
 1

 / A(x, y) dy. (121.3) 

We integrate over y in (121.3) to average over the high frequency compo-

nent of a function tha t depends on bo th χ  and y . For our example, it is 

straightforward to show tha t 

dp
0 

-£-/<*>· 

where p° = (p?,P2, · . .)· Now, if an a ^ ( x ) can be found such tha t 

f i = 4 ( x ) ^ , (121.5) 

then afj(x) is said to be the homogenized coefficient, and equations (121.4) 

and (121.5) are the homogenized equations. 

E x a m p l e 2 

For a more detailed example, consider the equation 

•- - Σ  £ («· (f ) £ j
 +

 * (f) "·) - 'M <
m 6

> 

where a<j(y) and ao(y) , with y := χ / ε , are periodic on the unit cube Y. 

We assume tha t the solution can be expanded in the form 

ue = u0 ( x , - ) +eux ( x , - ) + . . . 

\ eJ V el (121.7) 
= u 0( x , y ) + e t i i (x ,y ) + . . . . 
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where 

Al="Ce(ay(y)e)' 
%

i3 

A3 = 

If we define an averaging operator by 

M

^
 = W\IY ^ 

then it can be shown tha t the equation A\v = h will have a unique solution 

only if M [h] = 0 (see the section on alternative theorems, page 14). This 

condition, applied to (121.8.b), indicates tha t UQ = uo(x) . This fact 

simplifies (121.8.b) to 

where Pi j(x) := M [aij] — M E dzj 
aik

dy~k L k 

Using the chain rule (i.e., dXi becomes dXi + -dVi), using (121.7) into 

(121.6), and equating powers of ε  results in 

Α Χ Η Ο  = 0, 

AiUi = A2uo, (121.8. a-c) 

Aiu2 = A2ui + A3u0 + /, 

Using separation of variables on this results in u i ( x , y ) = 

where Zk(y) is the unique periodic solution of 

Equat ion (121.9) is known as the cell problem. 

To finally obtain a solution, we require from (121.8.c) tha t M[A2U\ + 

A3U0 + / ] = 0. This results in 

(121.9) 
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N o t e s 

[1] Homogenization techniques are often used in fluid mechanics (two phase flow 

in particular), electric field theory, and solid mechanics. 

[2] Homogenization is often the method used in ad hoc "mean field" theories, 

"effective media" theories, and "averaged equations." 

[3] Homogenization seems to be related to renormalization group theory. Renor-

malization group methods study the asymptotic behavior of a system (i.e., 

the macroscopic behavior) when the scale of observation is much larger than 

the scale of microscopic description, see Goldenfeld, Martin, and Oono [5]. 

[4] In Persson and Wyller [7] it is shown that, for a sample problem, homoge-

nization is equivalent to Whitham's averaged Lagrangian method. 

[5] Averages, denoted by (·), are generally required to satisfy "Reynold's rules" 

when / and g are random or periodic functions and c is a constant. It is 

also often required that 

be satisfied for functions / that are "well behaved." 

R e f e r e n c e s 

[1] M. Avellaneda, "Iterated Homogenization, Differential Effective Medium 

Theory and Applications," Comm. Pure Appl. Math, 60, No. 5, September 
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[2] A. Bensoussan, J. L. Lions, and G. Papanicolaou, Asymptotic Analysis for 

Periodic Structures, North-Holland Publishing Co., New York, 1978. 

[3] J. M. Burgers, "On Some Problems of Homogenization," Quart. Appl. 

Math., 35, No. 4, January 1978, pages 421-434. 

[4] J. Ericksen, D. Kinderlehrer, R. Kohn, and J.-L. Lions (eds.), Homogeniza

tion and Effective Moduli of Materials and Media, Springer-Verlag, New 

York, 1986. 

[5] N. Goldenfeld, Ο . Martin, and Y. Oono, "Intermediate Asymptotics and 

Renormalization Group Theory," J. Scientific Comput., 4, No. 4, 1989. 

[6] E. W. Larsen, "Two Types of Homogenization," SIAM J. Appl. Math., 

36, No. 1, February, 1979, pages 26-33. 

[7] L. Persson and J. Wyller, "A Note on Whithams Method and the Homoge-

nization Procedure," Physica Scripta., 38, 1988, pages 774-776. 

[8] E. Sanchez-Palencia, "Homogenization Method For the Study of Composite 

Media," in J. D. Murray (ed.), Asymptotic Analysis, Springer-Verlag, New 

York, 1984, pages 192-214. 

< / + <?> = </> + <<?> 

«f)g) = (f) (g), 

(c) = c, 
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[9] M. Vogelius, "A Variational Method to Find Effective Coefficients for Peri-

odic Media. A Comparison with Standard Homogenization," in R. Burridge, 

S. Childress, and G. Papanicolaou (eds.), Macroscopic Properties of Dis

ordered Media, Springer-Verlag, New York, 1982. 

122. Integral Methods 

A p p l i c a b l e t o Linear and nonlinear part ial differential equations. 

Y i e l d s 

An approximation of the solution. 

Idea 

A sequence of physical approximations may lead to an approximate 

solution. 

P r o c e d u r e 

There are generally three separate steps in using the common integral 

approximation techniques: 

(A) A physical boundary (either na tura l or imposed mathematically) 

is assumed to be at some finite distance. 

(B) A weak form of the equations is assumed to hold, up to the 

boundary described above. 

(C) The form of the solution is guessed by the method of undetermined 

coefficients. 

These concepts will be made clear in the following example. 

E x a m p l e 

Suppose we want to approximate the solution of the linear parabolic 

part ial differential equation 

ut = auxx, for χ  > 0, t > 0, 

u(0,x) = u0, (122.1.a-c) 

g « , 0 ) = / (* ) , 

where f(t) is some prescribed function. Note tha t the value of u(t,x) 

(which physically might represent a temperature) is initially UQ. For the 

first approximation, we suppose tha t there is a finite distance ß(t) which 

varies with t ime, beyond which the tempera ture is still UQ. 
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R e f e r e n c e s 

[1] W. F. Ames, Nonlinear Partial Differential Equations, Academic Press, New 
York, 1967, pages 271-278. 

[2] T. R. Goodman, "Application of Integral Methods to Transient Nonlinear 
Heat Transfer," in T. F. Irvine, Jr. and J. P. Hartnett (eds.), Advances in 

Heat Transfer, Academic Press, New York, 1964, pages 51-122. 
[3] D. S. Riley and P. W. Duck, "Application of the Heat-Balance Integral 

Method to the Freezing of a Cuboid," Int. J. Heat Mass. Transfer, 20, 
1977, pages 294-296. 

123. Interval Analysis 

A p p l i c a b l e t o Ordinary differential equations and partial differential 
equations. 

Y i e l d s 

An analytical approximation with an exact bound on the error. 

Idea 

Initially, we bound the solution between an upper and lower bound. 
Then, iterating a contraction mapping we generate a sequence of approxi-
mations in which the upper bound decreases and the lower bound increases. 

P r o c e d u r e 

We use the interval notat ion [a, b] to indicate some number between the 
values of a and b. We allow the coefficients of polynomials to be intervals. 
For example, the interval polynomial 

Q(x) = l + [2 ,3]s
2
 + [ - l ,4 ] : r

3
, 

evaluated at the point χ  = y means tha t 

min (1 + η ν
2

 + ζ υ

3

) < Q(y) < max ( l + η ν
2

 + (y
3

). 

-1< ζ <4 -1<<<4 

There exists an algebra of interval polynomials. For example 

(x + [2,3]x
3

) + ([1,2}x + [1,4]x
3
) = [2,3]x + [3, 7}x

3

, 

([1,3] + [ -1 ,2]x)
2

 = [1,9] + [ -6 ,12 ]* + [0,4]x
2
. 
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If P(x) and Q(x) are interval polynomials, then at any point y we can 
write P(y) G [PL,PU],Q(V) € [QL,QU]- We say tha t P(x) contains Q{x) 

on some interval [c,d] if PL < QL and Q(/ < Pu for all y G [c, d]. This is 
denoted by: Q(x) C P ( x ) . 

To approximate the solution of an ordinary differential equation, we 
search for a contraction mapping (see page 54) tha t has the form: Pk+i = 

F[Pk], where F[-] is a functional, Pk+i C Pk, and Pk tends to the solution 
of the differential equation as k —• oo. 

E x a m p l e 

Suppose we want to approximate the solution of 

for values of χ  in the interval [0,1/4] . Equat ion (123.1) can be wri t ten as 
the equivalent integral equation 

It is easy to see tha t the solution of (123.2) must lie in the interval [1,2] 
when χ  € [0,1/4] . This is because y' is always positive, so y cannot be 
smaller t han 1 (which is what y(0) is) and if it is assumed tha t y(zo) = 2 
for some ZQ G (0 ,1 /4 ) , then a contradiction can be reached by using (123.2). 
We now define the i teration sequence (the contraction mapping) by 

for k = 0 , 1 , 2 , . . . , which is just Picard 's integral formula (see page 535). 

We s tar t the sequence off by PQ(X) = [1,2] and then calculate 

2/(0) = 1, (123.1) 

(123.2) 

l + [l ,4]x, 

Ps(x) 

PA(X) 

l + z + [ l , 4 ] x
2

+ [ i f ] x
3

, 

1 + χ  + χ
2

+ χ
3
 + [1,2] χ

4
 + · · · , 

1 -h x -h χ
2

 + x
3

 -h χ
4

 + [1,1] χ
5

 + · · ·. 
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It is easy to show tha t Pk+i(x) C Pk(x) and tha t {Pk(x)} converges to the 
exact solution y(x) of (123.1). Note tha t , from the Pfc(x), exact estimates 
of the solution are available. For example, from P2{x) we find, 1.141 < 
1/(1/8) < 1.198. 

N o t e s 

[1] The exact solution to the system in (123.1) is y(x) = 1/(1 — x), which has 
the Taylor series: y{x) = 1 + χ  + x

2

 + χ
3

 + χ
Α

 + · · ·. 

[2] The techniques presented in this section can be implemented numerically. 
Interval arithmetic packages are available in Algol (see Guenther and Mar-
quardt [6]), FORTRAN (see Yohe [13]), and PASCAL (see Rail [10]). 

[3] The book by Eijgenraam [4] contains some worked examples. 
[4] To avoid dealing with polynomials of large degree, as in the example, we 

could observe that 

for χ  in the interval [0, \]. This allows us to replace x
n

 by x
m
, with a 

coarsening of the bounds. 
[5] The real power of this method is that it can be applied to differential 

equations whose coefficients are given by intervals. For example, this would 
be the case in a problem where a parameter appearing in a differential 
equation is known only approximately. 

[6] The paper by Ames and Nicklas [2] describes the solution of elliptic partial 
differential equations, using interval analysis to solve the finite difference 
equations produced by a numerical approximation. Schwandt [10] addresses 
the same issue, but with the use of a vector computer. 

[7] When solving ordinary differential equations numerically, using interval tech-
niques, the error bounds often exhibit spurious exponential growth due 
to the differential equation solver used. Numerical methods have been 
developed that prevent spurious exponential growth of the intervals for linear 
systems, see Gambill and Skeel [5] for details. 

[8] The journal Interval Computations is a useful reference. 
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124. Least Squares Method 

A p p l i c a b l e t o Ordinary differential equations and partial differential 
equations. 

Y i e l d s 

An approximation to the solution. 

Idea 

A variational principle is created for a given differential equation, 
and then an approximation to the solution with some free parameters 
is proposed. By use of the variational principle, the free parameters are 
determined. 
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124. Least Squares Method 

A p p l i c a b l e t o Ordinary differential equations and partial differential 

equations. 

Y i e l d s 

An approximation to the solution. 

Idea 

A variational principle is created for a given differential equation, 

and then an approximation to the solution with some free parameters 

is proposed. By use of the variational principle, the free parameters are 

determined. 
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P r o c e d u r e 

Given the differential equation 

N[u] = 0, (124.1) 

for ix(x) in some region of space i?, with the homogeneous boundary con

ditions 

B[u] = 0, (124.2) 

on some portion of the boundary of i£, we define the functional 

J[v{x)] = J ( jV[ t ; (x) ] )
2

dx. (124.3) 

Notice tha t J[v(x)] > 0, for all functions v(x). 

The solution to (124.1) and (124.2) clearly satisfies J[u] = 0 since the 

integrand is identically equal to zero in this case. Hence, the solution to 

(124.1) and (124.2) represents a minimum of the functional «/[·]. 

Now we choose an approximation to u(x) tha t has several parameters 

in it, say u(x) ~ i t ; ( x ;a ) , where a is a vector of parameters . This 

approximation is chosen in such a way tha t it satisfies the conditions 

in (124.2). The parameters in w(x;a) are determined by minimizing 

J[w(x, a ) ] ; i.e., by solving the simultaneous system of equations 

J[v(x)] = [ (υ " + ν  + xf dx. 
Jo 

We choose to approximate the solution of (124.5) by 

E x a m p l e 

Suppose we wish to approximate the solution of the two point bound

ary value problem 

(124.4) 

(124.5) 

(Note tha t the exact solution of (124.5) is y(x) - x.) In this case 

we may dehne J\v(x)\ to be 

u(x) ~ w(x) — a\(x — x
2

) + a2(x — x
3
) . 
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This approximation has been chosen in such a way tha t the boundary 

conditions for u(x) are satisfied. Using w(x) in the functional results in 

J[w(x)] = - j - [707a? + 2 1 2 1 a i a 2 + 2200a
2

; - 385a x - 7 8 4 a 2 + 70] . 

Forming (124.4) for k = 1,2, we determine tha t a.\ and a2 must satisfy the 

simultaneous algebraic equations 

^ i = ^ [ 1 4 1 4 a 1 +2 1 2 1 a 2 - 3 8 5 ] = 0, 

dJ\w(x)] 1 r 

- ^ = 2 Î ô [ 2 1 2 1 a 2 + 4400a 2 - 7 8 4 ] = 0. 

These equations have the solution: { α ϊ  = 2tti37 — -0181, a2 = ~ 

.1694}. The function w(x), with these values, becomes our approximation. 
The greatest difference between the exact solution and the approximate 
solution, in the range 0 < # < 1 , i s a t x ~ .5215 where the difference is 
approximately .0016. 

N o t e s 
[1] Note that for the functional in (124.3) there may exist, in general, several 

different functions {vfc(x)} that satisfy J[vfc(x)] = 0. 
[2] This method is similar to the Rayleigh-Ritz method (see page 554) in that 

an approximation is utilized in a variational equation. 
[3] This method is an example of a weighted residual method, see page 699. 
[4] This technique is often implemented numerically. 

R e f e r e n c e s 
[1] C. L. Chang and M. D. Gunzburger, "A Subdomain-Galerkin/Least Squares 

Method for First-order Elliptic Systems in the plane," SIAM J. Numer. 
Anal, 27, No. 5, 1990, pages 1197-1211. 

[2] L. Collatz, The Numerical Treatment of Differential Equations, Springer-
Verlag, New York, 1966, pages 184 and 220-221. 

[3] M. Hanke, "On a Least Squares Collocation Method for Linear Differential-
Algebraic Equations," Numer. Math., 54, No. 1, 1988, pages 79-90. 
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125. Lyapunov Functions 

A p p l i c a b l e t o Ordinary differential equations and partial differential 

equations. 

Y i e l d s 

Bounds on the solution in phase space. 

Idea 

Even without solving a given differential equation, sometimes we can 

restrict the solution to be in a certain port ion of phase space. 

P r o c e d u r e 

Given a differential equation, find a non-negative functional of the 

solution, which has a non-positive derivative. Then the solution of the 

differential equation will remain in a region described by the functional and 

the initial conditions. Most often, the functional will involve the dependent 

variable and some of its derivatives. 

E x a m p l e 1 

Suppose we wish to bound the solution of a damped harmonic oscillator 

with β  > 0. In this case, we define the Lyapunov functional to be 

Since L[] is a sum of squares, it cannot be negative. Differentiating £,[·] 

with respect to t produces 

where we have used the original differential equation (125.1) to replace the 

xtt t e rm in (125.2.b). Since β  is positive, Lt is non-positive. Therefore, 

L['\ is a non-increasing function of t. Hence, 

xtt + ßxt + ω
2
χ  = 0, 

x(0) = A, xt{0) = B, 
(125.1) 

L[x(t), x t( t ) , xtt (*), t] = ω
2
χ

2
{ϊ ) + x

2
(t). 

Lt[x, xu xtu t] = (ω
2
χ

2
 + x

2

t)t 

= 2uj
2
xxt + 2xtxtt 

= ~2ßxl 

(125.2.a-c) 

Λ
2

( ί ) + ι ? ( ί ) = L[x{t),xt{t),xu(t),t] 

<L[x (0 ) ,x 4(0 ) , a :« (0 ) ,0 ] 

< α Λ τ
2

( 0 ) + χ
2

( 0 ) (125.3) 

< ω
2

 A
2

 + Β
2 

< a prescribed constant. 
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Vt= [ututt + c
2

uxuxt) dx 
Jo 

= / [ut(c
2

uxx) + c
2

uxuxt]dx 
Jo 

= c
2

 [utuxx + uxuxt] dx. (125.5.a - c) 

Integration of the second te rm in (125.5.c) by par ts yields 

L x=L 

Vt=c
2

 / [utuxx - uxxut] dx + c
2

uxut 
J o

 x=0 

= c
2

 [ u x(L , t)ut(L, t) - u x( 0 , * W ( 0 , t)], 

or, using the initial conditions in (125.4), 

Vt = 0. 

We conclude tha t V(t) = V(0), for all values of t. This s ta tement is 

essentially an "energy" s ta tement : the energy (described by (125.5)) carried 

by a wave (described by (125.4)) remains constant . 

Therefore, we have found an upper bound for ω
2

χ
2

(ί ) + x
2

{t), without 

solving the original equation. 

E x a m p l e 2 

Suppose we have the wave equation on a finite domain (0 < χ  < L) 

(125.4) 
ux(0, t) = ux(L, t) = 0, u{x, 0) = g(x), 

where c is a given constant and g{x) is given. In this case, we choose the 

Lyapunov functional to be 

V{t)=l-j\u2

t+c
2

ul]dx. (125.5) 

Since V(t) is the integral of a non-negative quantity, V(t) is also non-

negative. Differentiating V(t) with respect to t produces 
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N o t e s 

[1] Lyapunov functionals are often devised from physical considerations. The 

Lyapunov functionals in both of these examples represent the "energy" of 

the system in a mathematical way. 

[2] Finding Lyapunov functionals is, in general, a difficult task. It is often 

made easier by considering conservation laws: energy, momentum, etc. The 

"energy" in example one is not held constant, because of the dissipation due 

to the β  term. If β  = 0, then Lt = 0 and so (125.3) becomes 

u
2

x
2

(t) + x
2

t(t) = ω
2

A
2

 + B
2

. 

In this case, the energy is constant. 

[3] There is a constructive method, due to Zubov [9], for obtaining Lyapunov 

functionals for systems of ordinary differential equations. The procedure 

requires the solution of a partial differential equation, which is derived from 

the given system of ordinary differential equations. See Hahn [3] (pages 

78-82) or Willems [8] (pages 42-43) for details. Hahn [3] gives an example: 

A Lyapunov function for the system {x+ = —x + 2x
2

y, y = —y} is L = 

[4] A different constructive method is described in Oguztöreli et al. [6]. A 
detailed algorithm is given for systems of ordinary differential equations of 
the form: {x = f(t,x,y), y = g(t,x,y)}. The Lyapunov function for a 
modification of the Mathieu differential equation, χ  = (a + 2ß cos 2t)x + 
ex

2
, is derived for the region [x

2
 + y

2
 < p

2
), where ρ  is a sufficiently small 

number. 

[5] Suppose we have the nonlinear system x' = f(x), with f(0) = 0 and the Jaco-

bian matrix J (x) = — . If a constant, symmetric, positive definite matrix Ρ  

can be found, such that P J ( x ) + J
T

( x ) P is negative definite, then V = x
T

P x 

is a Lyapunov function (with V' = x
T

 { J [j
T

(zx)P + PJ(zx)\ dz} x). 

If Ρ  is chosen to be the identity matrix then V = x
T

x will be a 

Lyapunov function if all of the eigenvalues of the matrix J(x) + J
T

( x ) are 

negative. This is known as Krasovskii's theorem. 

[6] Burton [2] describes how Lyapunov functions may be constructed for delay 

differential equations. 

[7] "Lyapunov" is sometimes written "Liapunov." 
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126· Equivalent Linearization 

and Nonlinearization 

A p p l i c a b l e t o Nonlinear ordinary differential equations. This technique 

is most frequently used for ordinary differential equations with periodic 

solutions. 

Y i e l d s 

An approximate periodic solution. 

I d e a 

We model the given equation by a linear or nonlinear equation for 

which the exact solution can be found. 

P r o c e d u r e 

Suppose we want to approximate the solution to the nonlinear ordinary 

differential equation 

D[x(t),t] = 0, (126.1) 

where D[-] is a differential operator. We represent the initial conditions 

and boundary conditions for x(t) as #[#(£)] = 0,
 a n

d assume tha t x(t) is 

periodic on some interval, say for t from 0 to T. We do not need to know 

Τ  a priori. 
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Τ  a priori. 
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We model (126.1) by choosing a D*[-] t ha t has properties tha t are 

"similar" to the properties of D[-]. This can be done by any technique. To 

allow some generality, we assume tha t D* [·] depends on a set of parameters 

α  = ( α ϊ , c * 2 , . . . , an). Now we look for a solution y(t; a ) of 

D*[y{t; a ) , t; a ] = 0, B[y(t; a ) ] = 0 (126.2) 

tha t is periodic on the interval [0,T]. We will approximate the solution 

to (126.1), x(t), by the solution to (126.2), y(t;ct). For this to be a good 

approximation, the error made must be small. We define the error made 

in using y(t; a ) for x(t) to be 

£(t,a) :=D[y(t;a),t]. 

The claim is tha t x(t) ~ y(t; a) if the "total error" is "small" in some sense. 

The "total error" could be measured as 

1 r
T 

α ) |
2

 dt "mean square error,
1 

or 

or 

1 f 
— / |£(£,a)\dt "mean modulus," 
Τ  Jo 

m a x | £ ( £ , a ) | "extremum." 

The "total error" can be minimized by choosing the a . This is accom-

plished by differentiating the total error with respect to and setting the 

resulting expression to zero (for i = 1 , 2 , . . . , ή ). Solving these simultaneous 

algebraic equations yields the desired values of the a^. 

E x a m p l e 1 

Suppose we wish to approximate the periodic solution of the nonlinear 

ordinary differential equation 

D[x(t), t)] = x" + ax + bx
3

 + cx
5

 = 0, 

x(0) = A, x'(0) = 0. '
3 ) 

Here {a, 6, c, A} are all known, fixed constants. We choose to approximate 

the solution of (126.3) by the solution of the linear ordinary differential 

equation 

D*[y(t),t;u] = y" + u;
2

y = 0, 

2/(0) = Α , ι / ( 0 ) = 0,  '
 } 
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for some (unknown) value of u. In this example, the vector of unknown 

parameters α  is the single variable u. 

The solution to (126.4) is 

y(t) = A cos ut. (126.5) 

The error in using (126.5) for the solution of (126.3) is 

S(t,u) = D[y(t),t], 

= y" + ay + by
3

 + q /

5

, 

= (α  — ω
2

) cos ut + bcos
3

 ut + c cos
5

 ut. 

We choose, in this example, to minimize the mean square error. Hence, we 

define the total error, E(u), by 

ε (<*) = ψ  Îm,w)\2dt 
i

 Jo
 (126.6) 

= — / [(a — ω
2

) cos ut + 6 cos
3

 ut + c c o s
5

 ut]
2

 dt. 
Jo 

Now, what is T? For equation (126.3), we do not know the t rue period 

of the solution. But , we are using the solution of (126.4) to approximate 

the solution of (126.3). And, for equation (126.4), the solution has period 

Τ  = 2π /υ  (see (126.5)). Hence, to evaluate (126.6), we use Τ  = 2π /υ  to 

obtain 

E(u) = [128a;
4

 - (160c + 1926 + 2b6a)u
2

 + 63c
2

 + (1406 + 160a)c 

+ 806
2

 + 192afe + 128a
2

] /256 

(126.7) 

Now, the goal is to minimize the to ta l error. If (126.7) is differentiated 

with respect to u, and the resulting equation is solved for u, then 

ω

2

 = a + \bA
2

 + §c ,4
4

 or υ  = 0. (126.8) 

Therefore, an approximation to the solution of (126.3) is found by using 

(126.8) in (126.5): 
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E x a m p l e 2 

Suppose we wish to approximate the periodic solution of the undamped 

Duffing equation 

D[x(t),t] = x" + ax + bx
3

 = Β  cos ut, (126.9) 

where {a, b, Β ,ω } are all known constants. We choose to model the equa-

tion in (126.9) by the nonlinear equation 

D*[y(t),t] = y" + ay + by
3

 = 7c n ( ^ , fc), (126.10) 

where cn(ryi, k) is the Jacobian elliptic cosine function with modulus fc. 

The a and b in (126.10) are the same as the a and b in (126.9). The three 

remaining parameters in (126.10) tha t are at our control are {7, 77 , fc}. The 

solution to (126.10) is known to be (see the lookup solution technique, on 

page 148) 

y(t) = ßcn(Vt,k), (126.11) 

where β , η , η , and fc are related by 

bß
3

 + (a-v
2

)ß = -y, k
2
 = £r. (126.12) 

These equations determine β  and fc (in principle) in terms of 7 and 77. For 

the period of the forcing function in (126.10) to match the period of the 

forcing function in (126.9) (which is 2π /ω ) we also require 

( 1 2 6. 1 3) 
π  

where K(k) is the complete elliptic integral of the first kind with modulus 

fc. We will use (126.13) to determine 77 . This leaves us with one adjustable 

parameter , 7, with which to effect the minimization of the total error. 

Now we calculate 

£( t,7) = D[y(t)] = Β  cos ut - 701(17*,  (126.14) 

If we choose to use the mean square error, with Τ  = 2π /ω , we find tha t 

the total error is minimized for 

T - , B *"? . - » ( g & l ( 1 * 1 . ) 
2 \E(k) - k'

2

K(k)] V 2K(k) J ' 

where E(k) is the complete elliptic integral of the second kind and fc', given 

by fc'
2

 = 1 — fc
2

, is the complementary modulus. 

Using (126.13), (126.14), and (126.15) in (126.11) results in the final 

approximation to the steady s ta te periodic solution of (126.9). 
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N o t e s 

[1] Note that in example 1 the effective frequency of the approximate solution 
depends on the initial conditions. This is generally expected in nonlinear 
problems. 

[2] For example 2, the approximate solution y(t) correctly tracks the frequency 
change of the solution when the magnitude of the forcing function is changed. 
More details on this example may be found in Iwan and Patula [4]. 

[3] This technique also works well for stochastic equations. In this application, 
the definition of the total error should include expectations taken over all of 
the random variables. This is sometimes called "statistical linearization." 
See Beaman [1] for details. 

[4] This technique extends naturally to systems of equations. In this case there 
will be an error associated with each equation {Ei(t, a ) } , and we can define 
the total error by E(t,a) = ]T\ \Ei(t, a ) |

2

. 
[5] This technique can also be used for problems that do not have periodic 

solutions. The technique often used in this case is to minimize the integral 
of | £ |

2

 from 0 to oo. 
[6] Differential operators representing differential equations may also be lin-

earized directly, without minimizing some error functional. We have the 
definition: 

The operator A[-] is linearizable at uo if there exists a bounded 
linear operator £,[·] such that A[u] — A[UQ] = L[h] + r, with 

I M I 
lim 777-77 = 0, when h = u — UQ. 
Λ - > Ο | | Λ | | 

See Stakgold [10] for details. 
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127. Maximum Principles 

A p p l i c a b l e t o Linear ordinary differential equations and linear partial 

differential equations. 

Y i e l d s 

Upper or lower bounds on the solution. 

Idea 

By the use of a maximum theorem, we can find bounds on certain 

types of equations. 

P r o c e d u r e 

There are many theorems applicable to specialized equations and bound-

ary conditions, tha t lead to bounds on the solutions. Maximum principles 

exist for all types of part ial differential equations (hyperbolic, elliptic, and 

parabolic) as well as for ordinary differential equations. We choose to 

illustrate two theorems. 

E x a m p l e 1 

A theorem from advanced calculus is: 

A continuous real-valued function on a bounded closed inter-
val attains its maximum and minimum on the interval. 

We will use this theorem to bound the solution to an ordinary differential 

equation. Consider the equation 

e
x

y" + x{\ - x)y' = (1 + x
2

)y, (127.1) 

when \y(a)\ < M and \y(b)\ < M. We claim tha t , for all χ  in the finite 

interval [a, b], y(x) is bounded in magnitude by M . 

Suppose tha t y(x) exceeded M in some region within the interval [a, b]. 

Then there would be maximum value of y on the interval; say it occurs at 
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A p p l i c a b l e t o Linear ordinary differential equations and linear partial 

differential equations. 

Y i e l d s 

Upper or lower bounds on the solution. 

Idea 

By the use of a maximum theorem, we can find bounds on certain 

types of equations. 

P r o c e d u r e 

There are many theorems applicable to specialized equations and bound

ary conditions, tha t lead to bounds on the solutions. Maximum principles 

exist for all types of part ial differential equations (hyperbolic, elliptic, and 

parabolic) as well as for ordinary differential equations. We choose to 

illustrate two theorems. 

E x a m p l e 1 

A theorem from advanced calculus is: 

A continuous real-valued function on a bounded closed inter

val attains its maximum and minimum on the interval. 

We will use this theorem to bound the solution to an ordinary differential 

equation. Consider the equation 

e
x

y" + x{\ - x)y' = (1 + x
2

)y, (127.1) 

when \y(a)\ < M and \y(b)\ < M. We claim tha t , for all χ  in the finite 

interval [a, b], y(x) is bounded in magnitude by M . 

Suppose tha t y(x) exceeded M in some region within the interval [a, b]. 

Then there would be maximum value of y on the interval; say it occurs at 
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the point χ  = c. Since y is a maximum at χ  = c, we require y'(c) = 0 

and y"(c) < 0. But this, with (127.1), implies tha t e
c

y"{c) = (1 + c
2

)y(c). 

This cannot be correct, the right side is positive but the left side cannot 

be. Hence, y does not exceed M in the interval. It can similarly be shown 

tha t y cannot be less t han —M. Hence \y(x)\ < M for χ  in the interval. 

E x a m p l e 2 

In Ames [1], is the theorem: 

Let u(x) be a solution of the ordinary differential equation 

L[u] = u" + H(x, u, υ !) = 0, for a < χ  < δ , 

Bi[u] = -u'(a) cos θ + u(a) sin θ  = 7 1 , (127.2) 

B2[u] = —u'(b) cos φ  + u(b) sin φ  = 7 2 , 

where 0 < θ  < π / 2 , 0 < φ  < π / 2 , θ  and φ  are not bo th zero, Η , 

Hu, Hui are all continuous, and Hu < 0. 

If zi and z2 satisfy 

L[z\) < 0, for a < χ  < ft, 

B i [ * i ] > 7 i , (127.3) 

B2[zi] > 7 2 , 

L[z2] > 0, for a < χ  < 6, 

B i [ * 2] < 7 i , (127.4) 

B2[z2] < 7 2 , 

then we can conclude 

z2(x) < u(x) < z i (x ) , (127.5) 

for a < χ  < b. 

Hence, the solutions to (127.3) and (127.4) form bounds on the solution of 

(127.2). 

As an illustration of this theorem, suppose we want to approximate 

the solution of the ordinary differential equation 

u" - v? = 0, for 0 < χ  < 1, 

u(0) = 0, 

u ( l ) = 1. 
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This is in the form of (127.2) with α  = 0, 6 = 1 , θ  = φ  = π / 2 , η χ  = 0, 

7 2 = 1· We note tha t z\(x) = χ  satisfies (127 .3) because 

z'l - z \ = - x
3

 < 0, 

*i(0) = 0, 

*i ( l ) = I-

We now search for a z 2 ( x ) of the form x
Q

. Using z 2 ( x ) 

yields 

a{a - l ) x
a

~
2

 - x
3 a

 > 0, 

Β λ [ζ 2] = 0 i î a > 0 , 

B2[z2) = 1. 

Because of (127.6.b), we restrict our search to a > 0. Wi th this assumption, 

χ 2 ( α + ι ) < ι  for x between 0 and 1. Hence, (127.6.a) will be satisfied if 

a ( a - 1) > 1. (127.7) 

We choose a = (1 + v
/

5)/2, so tha t (127.7) is satisfied. Hence, we can 

conclude, from (127.5) 

x(i+>/5)/2 < u ( x j < Xj for 0 < χ  < 1. (127.8) 

N o t e s 

[1] Any value of a larger than (1 4- \ /5)/2 would also have yielded a bound for 

u(x) in (127.8). The best bound corresponds to the minimal value of a, 

which was the one used. 

[2] Some of the "classical" maximum principles are (see Sperb [7], pages 12-21 

or Protter and Weinberger [5]) 

(A) If u(x) is non-constant and satisfies u" + b{x)u' > 0 in an interval, and 

b(x) is bounded, then u(x) attains its maximum on the boundaries of 

the interval. 

(B) If u(x) is non-constant and satisfies u" + b(x)u
f

 + h(x) > 0 in an 

interval, and b(x) and h(x) are bounded, and h < 0, then a non-

negative minimum of u{x) can occur only on the boundaries of the 

interval. 

(C) If the elliptic operator !,[·] has bounded coefficients and ix(x) satisfies 

the inequality 

^ = Σ Μ * ) ^ + Σ Μ * ) ^ 0 

in some bounded domain D, then u(x) cannot assume its maximum at 

an interior point of D unless u(x) is identically constant. 

= x
a

 in (127.4) 

(127.6.a-c) 



127. M a x i m u m P r i n c i p l e s 4 8 7 

in D χ  (Ο ,Τ ), where Ζ ) is a bounded domain and Τ  < oo, then u(x) 

can attain its maximum only for t = 0 or on 6\D. 

[3] A theorem in Durstine and Shaffer [3], applicable to ordinary differential 

equations and partial differential equations, states: 

Let L[-] and B[-] be linear differential operators such that the 

equation 

L[u] + φ (χ ) = 0, in a domain D, 

Bj [u] = Xj;, for j = 1,2,..., q on 6\D, 

has a unique solution iz(x), and the Green's function does 

not change sign in D. If tui(x) and W2(x) satisfy 

L[wk] + 0(x) = £fc(x),
 in

 A 

Bj[wk] = Xj, forj = 1,2,...,g on o\D, 

and 

(A) e\j62 is continuous, 

(Β ) ε \ does not change sign in Z), 

(C) either 1 > M > — > ra or M > — > ra > 1, 
ε ι  ε ι  

then 

"
1 +

 Ί ϊ ϊ ^ τ
< ω ( χ ) < ,

' '
1 +

 - ^ Γ · 

[4] A theorem in Hille [4], applicable to first order ordinary differential equa-

tions, states: 

Let F{x,y) and G(x,y) be continuous in a region D (which 

contains the initial data) and suppose that F(x,y) < G(x,y) 

everywhere in D. Let y(x) and z(x) be the solutions of 

y = F(x,y), y(x0) = yo, 

ζ  = G{x,y), z(x0) = y0. 

Then, in the region where y(x) and z(x) are defined and 

continuous 

z(x) < y(x), for χ  < xo, 

y(x) < z(x), for x0 < x. 

(D) If £,[·] is a uniformly elliptic operator with bounded coefficients and 

u(x, t) satisfies the inequality 

r r , du v -^ , ν  d
2

u t χ ^τ  , \ du du 
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[5] A theorem in Ding [2] states: 

Consider the equation x + g(x) = p(t) with 

(A) p(t) is continuous and 2π  periodic, 

(B) g{x) is continuously differentiable and satisfies: 

ι . 9Î
X
) lim^i^oo = oo. 

1 1

 X 

If p(t) is an even function, or if p(t) is odd and g(x) is an even 
function, then all solutions of this equation are bounded. 

R e f e r e n c e s 

[1] W. F. Ames, Nonlinear Partial Differential Equations, Academic Press, 
New York, 1967, page 181. 

[2] T. Ding, Boundedness of Solutions of Duffing's Equation, IMA Preprint 
Series #58 , University of Minnesota, Minneapolis, Minnesota, 1984. 

[3] R. M. Durstine and D. H. Shaffer, "Determination of Upper and Lower 
Bounds for Solutions to Linear Differential Equations," Quart. Appl. Math, 
16, No. 3, 1958, pages 315-317. 

[4] E. Hille, Lectures on Ordinary Differential Equations, Addison-Wesley 
Publishing Co., Reading, MA, 1969, pages 87-88. 

[5] M. H. Protter and H. F. Weinberger, Maximum Principles in Differential 
Equations, Springer-Verlag, New York, 1984. 

[6] M. J. Sewell, Maximum and Minimum Principles, Cambridge University 
Press, New York, 1987. 

[7] R. Sperb, Maximum Principles and Their Applications, Academic Press, 
New York, 1981. 

[8] A. Varma and W. Strieder, "Approximate Solutions of Non-linear Boundary-
Value Problems," IMA J. Appl. Mathematics, 34 , 1985, pages 165-171. 

128· McGarvey Iteration Technique 

A p p l i c a b l e t o First order ordinary differential equations. 

Y i e l d s 

A sequence of approximations to the solution. 

Idea 

The method consists of generating a sequence of functions by a recur-
rence relation. The initial function used is arbitrary. 
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Tn(x,y) = -J f(x, 
v) L

^ r » - i ( x , l dx. (128.2) 

m / \ 
1 χ

2

 I χ
3 

P r o c e d u r e 

Given the first order ordinary differential equation 

^ = / ( * . » ) . (
1 2

8 - 1 ) 

we choose To(x, y) = To(y) to be an arbi t rary function of y. Then we define 

the sequence of functions {Tn(x, y)} by the recurrence relation 

If we form S n( x , y) = Λ χ .υ ), then Sn(x,t) = constant is an approxi

mate implicit solution to (128.1). As η  increases, Sn{x,y) will converge to 

the t rue solution of (128.1) if 

E x a m p l e 

Suppose we wish to approximate the solution of the nonlinear ordinary 

differential equation 

In this case, (128.2) becomes 

(128.3) 

We choose To(y) = y (recall tha t To is only a function of y). Prom (128.3) 

we can calculate 
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Note tha t we have not used any constants of integration in evaluating the 

{ T n} . This par t of the analysis is independent of whether we choose such 

constants, or not. We can now calculate Ss(x,y) as 

S 3 ( x , 2 / ) 

3 

= £ T f c( x , y ) 

k=0 

_ 120y
6

 - 6 0 x
2

y
5

 - I20xy
4

 - 40x
3

y
3

 - 4 s
2

 ( 4 s
3

 + lb)y
2

 - 6 5 s
4

 y - 6 0 s
3 

120y
5 

Now, for the first t ime, we use the initial condition: y(0) = 4. The implicit 

approximation to the solution of (128.1) is then given by 

5 3 ( χ , 2 / ) = 5 3( χ ο , 2 / ο ) = 53(0,4) , 

or 

120?/
6

 - 60sV - I20xy
4

 - A0x
3

y
3

 - 4 s
2

( 4 s
3

 4- I5)y
2

 - 6bx
4

y - 6 0 s
3

 _ 

120y
5

 " 

(128.4) 

For any value of s , equation (128.4) is a polynomial in y. Thus, for any 

χ  we can solve for y. For this example, it turns out tha t the difference 

between the implicit solution given by (128.4) and the numerical solution 

is less t han 2% for 0 < χ  < 20. 

N o t e s 

[1] The above example is from Mcgarvey [1]. 

[2] This approximation technique may converge in cases where Picard approx

imations (see page 535) diverge. 

[3] For certain classes of equations, error estimates can be obtained for this 

technique. 

R e f e r e n c e s 

[1] J. F. McGarvey, "Approximating the General Solution of a Differential 

Equation," SI AM Review, 24, No. 3, July 1982, pages 333-337. 
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129. Moment Equations: Closure 

A p p l i c a b l e t o A stochastic differential equation or a Fokker-Planck 

equation (which is a second order parabolic part ial differential equation). 

Y i e l d s 
A system of ordinary differential equations from which different mo-

ments may be determined. 

Idea 
Interpreting the solution of the Fokker-Planck equation as a probabil-

ity density, ordinary differential equations may sometimes be found for the 

moments of the random process. 

P r o c e d u r e 
The solution of a Fokker-Planck equation is the probability density 

P ( x , t) of a random process (see page 254). For an Α Γ -dimensional random 

process χ  = ( χ ι , x2,..., XN), the Fokker-Planck equation has the form 

1 = 1 M
 = 1 J 

where the coefficients {c*} and {α ^·} are, in general, functions of t and x. 
All of the coefficients are determined by the stochastic differential equation 

tha t created (129.1). 

The expectat ion of a function of x, say / ( x ) , is defined to be the 

integral of / ( x ) t imes P ( x , £), integrated over all values of x. Tha t is, 

E[/ (x( i ) ) ] = J/(x)P(x,t)dx. 

Note tha t this expectation is a function of t. If equation (129.1) is multi-

plied by / ( x ) , and integrated over all values of x, there results 

l E [ / ( x ( t ) ) ] = - £ / / ( x ) A ( c j P ) d x+ £ / / ( x )_ ^ ( a yp ) d x. 

1 = 1 1 , ^ = 1
 J 

(129.2) 

Often, we may be able to integrate the right-hand side of (129.2) by par ts 

to obtain an ordinary differential equation for E [ / ( x ) ] . 
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for the probability density P(t,x, z) (see page 254). Suppose we desire the 

expected value of x(t): 

/

oo roo 

/ xP{t,x,z)dxdz. 

-oo J — oo 

Multiplying (129.4) by x, and integrating from — o o to o o with respect to 

both χ  and z, produces 

jE[x(t)) = -E[x(t)} + E[z(t)}, (129.5) 

where we have made the physically reasonable assumptions tha t \x\P(t,x, z) 

—> 0 as \x\ —• o o , and both \z\P(t,x,z) —• 0 and | z | P z( t , x, z) —• 0 as 

|z| —• o o . These assumptions were required to carry out the integrations 

by par ts in the right-hand side of (129.2). 

Note tha t (129.5) involves the expected value of z. To obtain an 

equation for Ε [2], (129.4) can be multiplied by ζ  and then integrated to 

obtain 

jE[z(t)] = - 2 E [ z ( t ) ] . (129.6) 

Prom (129.3.b) and (129.3.d), the initial conditions for (129.5) and 

(129.6) are 

E[x(0)] = 0, E[z(0)] = 1. (129.7 .0-6) 

Alternately, these initial conditions can be obtained directly from the initial 

conditions in (129.4) by taking expectations. 

E x a m p l e 

The system of stochastic differential equations 

dx . x 

— +x = z, x(0) = 0, 
α τ  (129.3.a-d) 

-^+2z = N(t), *(0) = 1, 

where N(t) is "white Gaussian noise" corresponds to the Fokker-Planck 

equation and initial condition 

f = | [ ( x - 2 ) P ] + 2| [ , p | + ^ [ p | , ) 

P ( 0 , x , z ) = « ( z ) « ( * - 1 ) , 
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If (129.6) is solved with (129.7.b), then (129.5) can be solved with 

(129.7.a) to determine the expectation of bo th x(t) and z(t) 

E[z(i)] = e -
2 t

, 

E[x(i)] = i ( e -
<

- e -
2 t

) . 

If the second order moments (i.e., {E[x
2

(£)],E[x(£)2(£)],E[z
2

(£)]}) are 

desired, the equations comparable to (129.5) and (129.6) are 

/ E [ z
2

] \ / - I 2 0 \ / E [ z
2

] \ / 0 \ 

- E[xz] = 0 - 3 1 E[xz] + 0 , 
dt

\E[z*]J \ 0 0 4 / \ E [ ^ ] j \2j 

/ E [ z
2

] \ / 0 \ 
E[xz] = 0 , 

W
2

) J t =0 W 

where we have dropped the explicit dependence on t for clarity. These 

equations were obtained by multiplying (129.4) by each of x
2

, xz, and z
2

, 

and then integrating with respect to χ  and z. 

N o t e s 
[1] Another procedure for determining ordinary differential equations for the 

moments is described on page 494. 

[2] It is not always the case that the system of ordinary differential equations 

for the moments will close (that is, there will be m equations for the m 

unknowns). For example, the stochastic differential equation 

where N(t) is white noise, corresponds to the Fokker-Planck equation 

Θ Ρ  .dP d 3 s m d
2

? 

Ε Ϊ  = -
χ

Ε χ -^Τ χ
[{χ

^
Χ  + ε χ ) Ρ

^ ^ ' 

In this case, the equations for the first moments become 

j t m =E[x], 

^E[x] = - E[x] + E[x] - eE[x
3

]. 

Therefore, knowledge of E[x] requires knowledge of E[x
3

]. In this example, 
the system of ordinary differential equations that determine E[x

3

] involves 
the quantity E[x

5

], etc. However, if ε  is small, then perturbation techniques 
may be used to approximately solve the moment equations. 
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[3] For systems that do not close, two "closing" approximations that are com-

monly used are (see Boyce [3]): 

(A) Gaussian closure (also called "cumulant discard"), 

(B) correlation discard. 

In the Gaussian closure technique, a high odd cumulant of the probabil-

ity density is set to zero. This procedure yields an equation for E[x
k

] in terms 

of {E[x
J

'] I 0 < j < k}. Correlation discard is generally used for equations 

that have "colored noise" forcing terms. In this approximation technique, 

some high power of the dependent variable in the stochastic differential 

equation and the "colored noise" is assumed to be uncorrelated. 

Crandall [4] contains a review of non-Gaussian closure techniques. See 

also Ibrahim, Soundararajan and Heo [5]. 

[4] For determining the moments of random functions denned by partial differ-

ential equations, see, for instance, Wan's paper [6]. 

R e f e r e n c e s 
[1] S. A. Assaf and L. D. Zirkle, "Approximate Analysis of Non-Linear Stochas-

tic Systems," Int. J. Control, 23, No. 4, 1976, pages 477-492. 

[2] R. V. Bobrik, "Hierarchies of Moment Equations for the Solution of the 

Schrödinger Equation with Random Potential and Their Closure," Teo-

reticheskaya i Matematicheskaya Fizika, 68, No. 2, August 1986, pages 301-

311. 

[3] D. C. C. Bover, "Moment Equation Methods for Nonlinear Stochastic Sys-

tems," J. Math. Anal. Appl, 65, 1978, pages 306-320. 

[4] W. E. Boyce, "Random Eigenvalue Problems," in A. T. Bharucha-Reid (ed.), 

Probabilistic Methods in Applied Mathematics, Academic Press, New York, 

1968, pages 1-73. 

[5] S. H. Crandall, "Non-Gaussian Closure Techniques for Stationary Random 

Vibration," Int. J. Non-Linear Mechanics, 20, No. 1, 1985, pages 1-8. 

[6] R. A. Ibrahim, A. Soundararajan, and H. Heo, "Stochastic Response of 

Nonlinear Dynamic Systems Based on a Non-Gaussian Closure," J. Appl. 

Mech., 52, December 1985, pages 965-970. 

[7] F. Y. M. Wan, "Linear Partial Differential Equations with Random Forcing," 

Stud. Appl. Math., 51 , No. 2, June 1972, pages 163-178. 

130· Moment Equations: 
Itô Calculus 

A p p l i c a b l e t o A set of stochastic differential equations. 
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Y i e l d s 

A system of ordinary differential equations from which different mo-

ments may be determined. 

Using Itô calculus, a set of ordinary differential equations may be 

determined tha t will describe the moments of a random process. 

P r o c e d u r e 

In the I tô calculus, there are two different types of differential elements. 

There are dt terms, which are small; and there are dß terms (Brownian 

motion terms) , which are random. Brownian motion is the integral of 

white noise; i.e., ß(t) = f^n^ds, when n(s) is white noise. 

We assume the s tandard scaling: Ε  [(d/?)
2
] = dt, where the Ε [·] op-

erator represents an expectation taken over the random variables in the 
system. The Brownian motion terms also have mean zero: E[dß] = 0. 

Suppose tha t x\(t) and x2(t) are random processes described by the 

two stochastic differential equations 

Idea 

dxi 

~dt 

dx2 

~dt 

= a1(t) + b1(t)n(t), 

= a2(t) + b2(t)n(t) 

(130.1) 

or 

dx\ 

dx2 

ax{t)dt-Ybi{t)dß, 

a2(t)dt + b2(t)dß. 

Itô 's lemma states tha t 

d (xix2) = xi dx2 + x2 dx\ + b\b2 dt. (130.2) 

This relation is different from the result in the classical calculus by the 

inclusion of the last term. This relationship may be used to determine 

moment equations for a random process. 
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dt
2 

1,(0) = 1, 2/'(0) = 0, 

- j n(t)y = 0, 

dy 
where n(t) is white noise, we can define ζ  = — and so obtain the coupled 

dt 
system of stochastic differential equations 

dy = zdt, i/(0) = 1, , 
, ' 130.3 

dz = ydß, z(0) = 0.  ' 

Using Itô 's lemma repeatedly on (130.3), we can derive the following 
relations 

d(y
L
) = Ly

L
~

1
zdt, 

d{Z") =
 K

t
K

-
l

\
2

z « -
2

d t + Kz^ydß.
) 

Δ  

If we define the TV + 1 different iV-th order moments by 

G%(t) = Ε  [y
N

-
M

(t)z
M

(t)] , M = 0 , 1 , . . . , Ν , 

then, from (130.4), we obtain the set of coupled ordinary differential equa-

tions 

— - (N - M)GN + GN 

for {Gjy (t)}. For example, if we choose Ν  = 2, then we obtain the system 

d / G ° \ / 0 2 0 \ (GÏ 
± \G\ ]= 0 0 1 \\Gl I , (130.5) 
d t
 \G

2
J \ 1 0 0 

with the initial conditions 

The eigenvalues of the matr ix in (130.5) are the three cube roots of two. 
Hence, each of {G^G^G

2
*} grows exponentially in t ime. 

E x a m p l e 
Given the stochastic differential equation 
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N o t e s 

[1] Note that the Fokker-Planck equation corresponding to (130.3) is 

where P(y, z, t) represents the joint probability density of y and ζ  at time t. 

[2] The coupled ordinary differential equations that are derived for the mo-

ments in this section are identical to the equations obtained by the method 

described on page 491. 

R e f e r e n c e s 

[1] Z. Schuss, Theory and Applications of Stochastic Differential Equations, 

John Wiley & Sons, New York, 1980. 

[2] V. A. Kulkarny and B. S. White, "Focussing of Waves in Turbulent Inho-

mogeneous Media," Phys. Fluids, 25, No. 10, 1982, pages 1770-1784. 

A p p l i c a b l e t o Some nonlinear second order part ial differential equations 

with two independent variables. 

Y i e l d s 

An exact solution. 

Idea 

Application of some algebraic identities and then the use of equation 

splitting permits some nonlinear par t ia l differential equations to be solved. 

P r o c e d u r e 

Monge's method works for some differential equations of the form 

\y
2

Pzz-zPy = Pt, 

P(y,z,0) = 6(y-l)6(z), 

131. Monge's Method 

dxdy 
+ T 

dy
2 

or 

Rr + S s + Tt = V, (131.1) 

for ζ  = z(x,y) where, as usual, r = z x x, s = zxy, t = zyy, ρ  = zx, q = zy, 

and {R, S, Τ , V} may be functions of {p, q, x, y, z}. 
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dp = pxdx + Pydy = r dx + s dy, 

dq = qxdx + qydy = sdx + t dy. 
(131.2.a-6) 

Solving (131.2.a) for r and (131.2.b) for t, and then using these values in 

(131.1), we obtain 

[R dpdy + Tdqdx-V dy dx] -s[R {dy)
2

 -Sdydx + T {dx)
2

] = 0. 

(131.3) 

By use of equation splitting (see page 446) we look for the simultaneous 

solutions to 

Any solution of (131.4) is also a solution of (131.3). 

Such a solution is called an intermediate integral and will depend on 

an arbi trary constant or function. If we can find two such integrals, say 

where A and Β  are arbi trary constants, then we may be able to solve for 

{p = p{x,y,z), q = q{x,y,z)}. If we could, then we might be able to 

integrate the Pfaffian differential equation (see page 326) dz = pdx + qdy 

to determine ζ  = z{x, y). 

E x a m p l e 

Suppose we have the part ial differential equation 

9 d
2

z Λ d
2

z d
2

z dz „ .
y
äJ-

2y
dXlTy

 +
 äy* = dy-

 + 6
y>

which can be wri t ten as: y
2
r — 2ys + t = ρ  + 6y. Therefore, we have 

{R = y
2

, S = -2y, Τ  = 1, V = p + 6y}. The two equations in (131.4) then 

Rdpdy Λ - Τ dqdx — V dy dx — 0, 

R {dy)
2

 -Sdydx + T {dx)
2

 = 0. 
(131.4.a-&) 

f{x,y,z,p,q) = A, g{x,y,z,p,q) = B, 

become 

y
2

 dp dy + dqdx — {p + 6y) dy dx = 0, 

{ydy + dx)
2

 = 0. 
(131.6.a-6) 

Equat ion (131.6.b) can be integrated to obtain 

2x + y (131.7) 

First , note tha t we can write 
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dx dy dz 

y - 1 -Sy
2

 + φ (2χ  + y
2

) 
(131.9) 

Prom the first equality in (131.9) we recover the integral in (131.7). 

Using (131.7) in the second equality in (131.9) yields 

dy dz 

- 1 -3 ν * + φ (Α Υ  

with the solution ζ  — y
3

 + ν φ (2χ  + y
2

) = B, where Β  is another arbi t rary 

constant. 

Hence, a general integral of (131.5) is 

Φ  (ζ  - y
3

 + yφ {2x + y
2

), 2x + y
2

) = 0. 

This leads to a general solution of (131.5) 

ζ  = y
3

 - ν φ (2χ  + y
2

) -h ψ (2ζ  + y
2

), 

where φ  and ψ  are arbi t rary functions of their arguments . 

N o t e s 

[1] Because equation splitting was used in going from (131.3) to (131.4) the 

solution obtained in (131.13) is not the most general solution. 

where A is an arbi t rary constant . Dividing (131.6.a) by dx (or, equivalently, 

by {—ydy) from (131.6.b)) we obtain 

-y dp + dq-(p + 6y) dy = 0, 

which can be integrated to yield —py + q — 3y
2

 = —φ (2χ  + y
2

), or 

y ^ - ^ + 3y
2

 = <l>(2x + y
2

), (131.8) 

where φ  is an arbi t rary function. Equat ion (131.8) is an intermediate 

integral, and the only one tha t equation (131.6) has (due to the double 

root appearing in (131.6.b)). 

Since we do not have two intermediate integrals, we can not proceed 

with the derivation in the Procedure. However, we can solve (131.8) directly 

to obtain a solution of (131.5). 

Since (131.8) is quasilinear, the method of characteristics (see page 

368) may be used. The subsidiary equations are 
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R e f e r e n c e s 

[1] W. F. Ames, "Ad Hoc Exact Techniques for Nonlinear Partial Differential 

Equations," in W. F. Ames (ed.), Nonlinear Partial Differential Equations 

in Engineering, Academic Press, New York, 1967, pages 60-65. 

[2] A. R. Forsyth, Theory of Differential Equations, Dover Publications, Inc., 

New York, 1959, Volume 6, pages 202-208. 

[3] H. T. H. Piaggio, An Elementary Treatise on Differential Equations and 

Their Applications, G. Bell & Sons, Ltd, London, 1926, pages 181-187. 

[4] I. N. Sneddon, Elements of Partial Differential Equations, McGraw-Hill 

Book Company, New York, 1957, pages 131-135. 

132. Newton's Method 

A p p l i c a b l e t o Par t ia l differential equations and ODEs. 

Y i e l d s 

A sequence of approximations to the solution. 

Idea 

When a Newton iteration is applied to a nonlinear differential equation, 

each step of the iteration requires tha t a linear differential equation be 

solved. 

P r o c e d u r e 

We illustrate the general procedure on an ordinary differential equa

tion. Suppose we wish to approximate the solution to the first order 

ordinary differential equation 

G(y',y,x) = 0, 
, n (132.1) 

2/(0) = 2/0, 

for y(x) when G(y',y,x) is a nonlinear function. 

If an approximate solution of (132.1), say yk(x), is known, then G{y', y, x) 

could be expanded about yk(x) to obtain 

G{y',y,χ ) ^ G(y'k,yk,x) + Gy(y'k,yk,x)(y - yk) + Gy>(yk,yk,x)(y' - y'k), 

(132.2) 

to leading order. For the solution to (132.1), G(y',y,x) = 0 and so (132.2) 

becomes 

(y
f

 - y'k)Gy>(?/fc, yk, x) + (y - yk)Gy{y'k, yk,x)~ -G{yk, yk,x). 
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e'kGy' + ekGy = - G , 

e*(0) = 0, 
(132.3) 

is solved for the "correction term" ek(x), then defining 

îte+i(z) = yk(x) + ek(x) 

should yield a bet ter approximation, yfc+i(x), to y(x). 

Equat ion (132.3) can be solved exactly by the use of integrating factors 

(see page 305). However, it only needs to be solved approximately because 

the higher order approximations (i.e., 2 / f c+2 , 2 / ^ + 3 , . . . ) will correct errors 

made in solving (132.3). 

Spec ia l C a s e 

In the special case tha t the original equation is linear in y' and hence 

of the form 

then the definition of yk+i may be succinctly represented as 

i / i+i - fy(
x

iyk(x))yk+i = f(x,yk{x)) - fy(x,Vk(x))vk(x), η

y*+i(0) = yo-

E x a m p l e 

Suppose we are looking for an approximation, near χ  = 0, of the 
solution to the nonlinear ordinary differential equation 

For this problem we recognize tha t f(x,y) = —y
3
 and so (132.4) becomes 

G(y',y,x) = y'-f{x,y) = 0, 

0, 

1, 

which has the known exact solution 

y(x) = ( l + 2 χ ) -
χ
/

2 

= l - * + f s 2 - § s 3 + f z 4 - f , ¥*
5

 + -. 

tffc+i + 3yjfe2/*+i = 2yl 

|/fc+i(0) = l . 
(132.5) 

Therefore, if the linear ordinary differential equation 
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If we star t with y0 = 2/(0) = 1, then, from (132.5) 

y[ + 3yi = 2, 

yi(0) = l , 

with the solution 

yi(x) = l{2 + e-
3

*) 

= 1 - χ  + f x
2

 - f x
3

 + · · · . 

If we use the approximation j/i ~ 1 — x, then the equation for y2 (from 

(132.5), with jfc = 1) is 

y'2 + 3(1 - x)
2

y2 = 2(1 - x )
3

, 

»2(0) = 0, 

with the solution 

y2(x) = - 2 β -
χ 3 + 3 χ 2

~
3 χ

 ε
χ 3

-
3χ 2+3χ

(χ  - l )
3

 dx + lj 

We see then tha t yi(x) has the first 3 terms correct, while y2(x) (which 

only used the first order information in y\(x)) has the first 5 terms correct. 

N o t e s 

[1] For symbolic manipulation of the formulae appearing above, Geddes [4] 

discusses the number of correct terms at each step. 

[2] Most often, this iterative method will be implemented numerically and not 

performed analytically. This is because, by hand, it is often easier to find a 

Taylor series solution directly (see page 548) than to use Newton iterates. 

Rice and Boisvert [7] have a numerical example of using Newton's method 

to solve an elliptic equation. 

[3] Error estimates for Newton's method (applied to first order equations) can 

be found in Mikhlin and Smolitskiy [6]. 

[4] When Newton's method is numerically applied to nonlinear boundary value 

problems, the method is often called quasi-lineanzation. This is the same 

algorithm that is obtained when multiple shooting is used (see page 631), 

and the number of rays becomes very large. See Stoer and Bulirsch [8] or 

Bellman and Kalaba [3] for details. 

[5] Geddes [4] showed that the number of correct coefficients in a power series 

solution obtained by this method, when applied to an explicit first order 

nonlinear ordinary differential equation, more than doubles at each step. 
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133. Padé Approximants 

A p p l i c a b l e t o Any type of function (whether it comes from a differential 

equation or not) . 

Y i e l d s 

An approximation formula generally valid over an interval, and, often, 

information about whether singularities exist. 

Idea 

A Taylor series can be manipulated to produce information about the 

existence of singularities. 
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P r o c e d u r e 

When a power series representation of a function diverges, it indicates 

the inability of the power series to approximate the function in a certain 

region. A theorem of complex analysis states tha t if a Taylor series of 

a function diverges, then tha t function has singularities in the complex 

plane. A Padé approximant is a ratio of polynomials tha t contains the 

same information tha t a t runcated power series does. Since the polynomial 

in the denominator may have roots in the region of interest, the Padé 

approximant may accurately indicate the presence of singularities. 

Suppose we have found the k-th order Taylor series solution to a 

differential equation (see page 548) 

y(x) = a0 + a\X + a2x
2

 H l· akX
k

. (133.1) 

The ( Λ Γ , M) Padé approximant, Pj^(x), is a ratio of polynomials, with the 

polynomial in the numerator having degree Ν  and the polynomial in the 
denominator having degree M: 

p N( , _ Bp + Bix + - - · + BNx
N 

AQ + Axx + · · · + AMx 
(133.2) 

with Ν  + M + 1 = k. Wi thout loss of generality, we take Ao = 1. The 
remaining N + M + 1 coefficients {Α χ , A2, . . . , AN, B 0 , B\, ..., BM} are 
chosen so tha t the first JV + M + 1 terms in the Taylor series expansion of 
PM(X) match the first Ν  + M + 1 terms of the Taylor series in (133.1). 

It often happens tha t PM(X) converges (as TV, M —• oo) to the true 
solution of the differential equation, even when the Taylor series solution 
diverges! 

Usually we only consider the convergence of the Padé sequence {PQ(X), 

Ρ /
+ 1

( χ ) , P 2

J + 2
( x ) , . . . } having Ν  = M + J and J held constant while 

M —y oo. The special sequence with J = 0 is called the diagonal sequence. 

E x a m p l e 1 
Suppose we wish to approximate the solution of the ordinary differen-

tial equation 

y' = y
2
, 2/(0) = 1. (133.3) 

Since (133.3) is separable (see page 341), the solution to (133.3) can be 
found to be y(x) = 1/(1 — x). If we tried to find the Taylor series of y(x), 
directly from (133.3), we would obtain 

y(x) = 1 + χ  + x
2
 + x

3
 + x

A
 + (133.4) 
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1 

1 — X 

1 

1 — X 

1 

1 — X 

Therefore, the diagonal sequence of Padé approximants recovers the exact 

solution to the differential equation, from only a few terms in the Taylor 

series. Of course, this is an exceptional example. 

E x a m p l e 2 

Suppose we wish to approximate the solution of the ordinary differen

tial equation 

2 / ' = l + i/
2

, 2/(0) = 0. (133.5) 

Since (133.5) is separable, the solution to (133.5) can be found to be y(x) = 

t a n s . If we tried to find the Taylor series of y(x), directly from (133.5), 

we would find 

ν {χ ) = χ  + Ύ  + Ί Ϊ  + Ί Ϊ 5+'·'· ( 1 3 3 · 6 ) 

Note tha t the exact solution has singularities at χ  = ± ( 2 η + 1 ) π / 2 , while the 
Taylor series approximation does not appear to show this behavior. Using 
(133.6) we can compute the first few elements of the diagonal sequence 

3 - x
2

' 

3 _ x(x
2
 - 15) 

3 ( )
~ 3 ( 2 x

2
- 5 ) ' 

4 _ 5 * ( 2 1 - 2 *
2
) 

4 [
 > - ζ

4
- 4 5 ζ

2
 + 105 ' 

Note tha t these Padé approximants have singularities where the denomi

nator vanishes: 

(A) For P | (
x

) i these singularities are at χ  ~ ±1 .7 . 
(B) For P

3
( x ) , these singularities are at χ  ~ ±1.58. 

This geometric series is convergent, of course, only for |x| < 1. The solution 
has a singularity at χ  = 1, but this fact is not readily apparent from the 
expansion in (133.4). 

The diagonal sequence of Padé approximants corresponding to (133.4) 

is 
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(C) For P±{x), these singularities are at χ  ~ ±1.5712, and χ  ~ ±6 .5 . 

We observe tha t these Padé approximants are a t tempt ing to recover the 
singularities of the exact solution at χ  — ± π / 2 and χ  — ± 3 π / 2 . 

Because the Padé approximants have these singularities, they produce 
an accurate numerical approximation of the exact solution, over a wide 
range of values. 

N o t e s 
[1] Padé approximants are not always better than a Taylor series representation. 

In fact, it may happen that the Padé approximants diverge while the Taylor 
series converges. 

[2] Padé approximants are also called rational function approximations. 
[3] Prendergast [8] proposes a technique to find the Padé approximants for the 

solution of a nonlinear differential equation, without first finding the Taylor 
series. Martin and Zamudio-Cristi [6] address the same issue, but for a 
smaller class of equations. 

[4] In Bender and Orszag [1] is a discussion of computational techniques for 
computing Padé approximants numerically. 

[5] A two-point Padé approximant is one that utilizes Taylor series informa-
tion about two different points. Often these points are chosen to be zero 
and infinity. For two-point Padé approximants the coefficients in equation 
(133.2) are chosen so that both Taylor series will be matched. See Bender 
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A p p l i c a b l e t o Nonlinear differential equations tha t have a periodic 

solution and a small parameter . 

Write the solution of a given differential equation as a function with 

slowly varying par ts . Then average those slowly varying par ts over a 

complete cycle. 

P r o c e d u r e 

We illustrate the method on a per turbed harmonic oscillator. Suppose 

we have the equation 

134. Perturbation Method: 

Method of Averaging 

Y i e l d s 

An approximation to the solution, valid over an entire period. 

I d e a 

(134.1) 

Note tha t , when ε  = 0, equation (134.1) is a harmonic oscillator. The 
solution to (134.1), when ε  = 0, is therefore: y(t) = Acos(t + Θ ) (where 
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A and θ  are constants) . If ε  is very small, we might expect a similar 

"looking" solution, so we assume tha t the solution to (134.1) is given by 

y(t) = acos(* + 0), (134.2) 

where a(t) and 9(t) are "slowly varying" (another expression often used is 

"nearly constant") . Differentiating (134.2) with respect to t yields 

% = -asin(t + Θ ) + ^ cos(* + Θ ) - a^- cos(* + 0). (134.3) 
dt dt dt 

If a and 0 are "slowly varying," then da/dt and ά θ /dt will be "small" 

compared to a. Hence, we set the derivative of y(t) to be 

^ = - a s i n ( * + 0). (134.4) 

Comparing (134.3) to (134.4), it is clear tha t we have made the assumption 

^ cos(t + 0) - a^- cos(* + 0) = 0. (134.5) 
at at 

This gives one equation relating the two unknowns, a(t) and 9(t). Differ-

entiating (134.4) and using (134.4) and (134.1) results in the expression 

sin(t + Θ ) - a^- cos(i + 0) = ef (acos{t + 0), - a s i n ( t + Θ )). (134.6) 
dt dt 

The two equations in (134.5) and (134.6) can be solved to yield the relations 

^ = ef (a cos(£ + 0), - a sin(t + Θ )) sin(£ + 0), 

dl ε
 ( 1 3 4

·
7 ) 

— = - / ( a c o s ( t + 0 ) , - a s i n ( * + 0))cos(t + 0). 
dt a 

The equations in (134.2) and (134.7) are still exact. The change of variables 

from {y,y'} to {a ,0} (by use of (134.2) and (134.5)) has been carried out 

without any approximation being made. The assumptions made have been 

motivated by the smallness of ε , bu t the system is still exact. 

Now we use the "slowly varying" feature of a and θ  to make the 

required approximation. If a and θ  are "slowly varying," then the values of 

da/dt and ά θ /dt should not change much over a single period of the solution. 

Hence, if we replace the right-hand sides of (134.7) by their averages over 
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where 

/0 

1 f
2

* 
F(a) = — / / ( a c o s ( * + 0 ) , - a s i n ( * + 0))sin(* + 0)d0, 

2 π  J0 

ι  r
2

* 
G(a) = — / (a cos(* + 0), - a sin(* + 0)) cos(* + 0) d0. 

2τ τ  Jo 

(134.9) 

The prescription is to evaluate (134.9), then to solve (134.8). Knowing a(t) 

and 0(£) we can evaluate (134.2) and so recover an approximation to y(t). 

E x a m p l e 1 

For the Van de Pol oscillator 

we identify / (y, y') = (y
2

 — l)y'. Evaluating (134.9) with this / results in 

F(a 

find 

a a
3 

F(a) = - — — and G(a) = 0. This, in turn , allows us to solve (134.8). We 
2 8 

where α ο  = α ( Ο ),0ο  = 0(0). Note tha t as t —• oo the approximation in 

(134.2) tends to a sinusoidally varying function of magnitude two. 

E x a m p l e 2 

For Duffing's equation 

dt
2 + y + e y

3

 = o, 

we identify / (y, y') = y
3

. Evaluating (134.9) with this / results in: F (a) = 

0 and G (a) = | a
3

. This, in turn , allows us to solve (134.8). We find: 

a(t) = o 0, 0(t) = 0 O 4- fage*. 

one period, then the solutions for a(t) and 6{t) should not be changed very 

much. Therefore, we approximate the solution of (134.7) by the solution of 

£ = eF(a), | =  (134.8) 
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N o t e s 

[1] This method is also called the method of Krylov-Bogoliubov-Mitropolski. 

[2] There are many ways in which averaging techniques can be applied to 
differential equations; we have only illustrated one technique. Another useful 
technique is the method of averaged Lagrangians, see Whitham [8]. This 
technique is applied by finding the Lagrangian corresponding to a given 
differential equation (see page 57), assuming an expansion of the Lagrangian 
that contains slowly-varying functions and a small parameter, and, at each 
order of the small parameter, solving the differential equation corresponding 
to that term of the Lagrangian. 
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[7] J. A. Sanders and F. Verhulst, Averaging Methods in Nonlinear Dynam-
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135. Perturbation Method: 

Boundary Layer Method 

A p p l i c a b l e t o Differential equations with a small parameter present, 

for which regular per turbat ion series are inadequate. 
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Y i e l d s 

This singular per turbat ion technique yields an expansion of the solu-

tion in terms of the small parameter . 

I d e a 

If a regular per turbat ion series cannot match all the boundary condi-

tions in a differential equation, there may be one or more regions where 

the solution is rapidly varying. 

P r o c e d u r e 

Given a differential equation with a small parameter ε  a t t empt to find 

a solution in the form of a regular per turbat ion series (see page 528). Call 

this the "outer" solution. If the "outer" solution cannot match all of the 

initial conditions or boundary conditions, then a t t empt to place "boundary 

layers" (regions of rapid variation) near one or more of the boundaries. 

Inside of each boundary layer, the solution will vary smoothly (in a 

stretched variable) from the value of a "outer" solution to the value on the 

boundary. If multiple "outer" solutions exist, then there may be internal 

boundary layers (called "shocks"). These internal boundary layers will 

change the solution smoothly from one "outer" solution to another. 

E x a m p l e 

Consider the constant coefficient ordinary differential equation 

where ε  is a number much smaller t han one. Initially we look for an "outer" 

solution in the form of a regular per turbat ion series (see page 528) 

Using (135.2) in (135.1), and sett ing the coefficients of different powers of 

ε  to zero, produces the sequence of equations 

(135.1) 

y = 2/outer = yo + eyi + ε
2

2 / 2 + · · · . (135.2) 

(135.3. α -6) 

with the boundary conditions 

2/o(0) = 4, y 0( l ) = 5, 

lfc(0) = 0, 2/ i ( l ) = 0, f o r i = 1 ,2 ,3 , . 
(135.4.a-6) 
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The most general solution of (135.3.a) is 

y0(x) = Ce~
x

 (135.5) 

for some constant C. This solution cannot satisfy both of the boundary 

conditions in (135.4.a); so we suspect the existence of a boundary layer. 

First , we search for a boundary layer near χ  = 0 . If it is not possible 

to place one there, then we would a t t empt to place one near the other 

boundary, at χ  = 1 . Since a change of order one is expected to take place 

in a thin χ  region we scale χ  so tha t the width of the thin region becomes 

of order one (in the new variable x) 

x=~. (135.6) 
ε  

(In other problems, the scaling may be different; it may be tha t χ  = χ /ε ^, 

where β  is an integer or a fraction.) Using the new independent variable 

in (135.6), the equation in (135.1) may be writ ten as 

d
2

v dy J +  i
+£

y=°- <
135

-
7

> 

The solution of this equation is called the "inner" solution. If we search 

for a regular per turbat ion series solution to (135.7), in the form of (135.2), 

then the sequence of equations begins 

d
2

yo + dyo =0 

dx
2

 dx ' 
d2

yi + ^ = _ y 0) (135.8. α - δ ) 
dx

2

 dx ' 

Using the general solution to ( 1 3 5 . 8 . a ) we have 

2 / inner(£) = yo(x) + 0(e) = D + Ee~* + Ο ( ε ) , ( 1 3 5 . 9 ) 

where D and Ε  are constants. 

Since we have assumed tha t the boundary layer is at χ  = 0 , the "inner" 

solution in ( 1 3 5 . 9 ) must satisfy the boundary condition at χ  = 0 , i.e., 

2 / inner(0) = 4. The "outer" solution does not extend to χ  = 0 (since the 

boundary layer is present) but does extend to χ  = 1. Hence the solution 
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in (135.5) must satisfy the boundary condition at χ  = 1; i.e., 2 /outer( l) = 5. 

Evaluating (135.5) and (135.9) at their respective boundaries results in 

2/outer(x) = 5 e
1

-
x

- h O ( e ) , 
(135.10) 

yinneT(x) = (*-E)+Ee-
x

 + 0(e). 

To determine the constant E, we need a "matching principle." The "match-

ing principle" is needed to ensure continuity of the solution as it changes 

from dinner to i/outer- Since the transit ion occurs for χ  just larger t han zero, 

we require 

lim î / innerOc) = lim 2 / o u te r ( z ) . 
X-+0+ x->0+ 

Writing 2/inner in terms of x, and assuming tha t ε  is arbitrarily small, this 

s ta tement can be wri t ten as 

J i m 2 / inner(£) = Um J /outer(») . (135.11) 

x—oo
+ 

Sometimes this is called an intermediate expansion since the matching 

occurs on an intermediate scale. Using the solutions from (135.10) in 

(135.11), we determine tha t Ε  — 4 — 5e. 

Finally we need to combine dinner and Pouter together to obtain a 

uniformly valid approximation, t/Uniform? over the entire interval: χ  € [0,1]. 

The uniform approximation is defined to be the sum of 2/inner plus 2 / 0u t e n 

minus the overlap value. Tha t is 

2/uniform = 2/inner + 2/outer ~ value in (135.11) 

= fee + (4 - 5e)e~* | + [5e
1

"*] - [5e] + Ο  (ε ) 
1

 „
 J

 (135.12) 

= (4 - 5 e ) e
_ x

 + 5 e
1 _x

 + Ο  (ε ) 

= ( 4 - 5 e ) e - *
/ e

 + ö e
1
" * + 0 ( ε ) . 

Figure 135.1 has graphs of the exact solution of (135.1) and the approximate 

solution given by (135.12) for ε  = . 1 . 
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exact 

Figure 135.1 A comparison of the exact solution of (135.1) with the approxi-

mation in (135.12) for ε  = .1 . 

N o t e s 

[1] The exact solution to (135.1) is given by 

y(x) 
1 

— [(4e
r2

 - 5) e
r ix

 + (5 - 4 e
r i

 ) e
r2X

], (135.13) 

where r\ — ( - 1 - y/1 - 4ε ) /2 ε  and τ ι  — ( - 1 -f y/1 - 4ε ) /2 ε . For small 

values ο ί ε , r i « — l / ε  and τ ι  « —1. Using these approximations in (135.13), 

and expanding everything to leading order, results in (135.12). 

[2] If the example were carried to second order in ε , then we would have found 

2/outer = [öe
1
"*] + ε  [5(1 - x)e

1

~
x

] + 0 ( ε
2

) , 

2/inner = [öe + (4 - 5e)e~*J + ε  [öe ^1 - e " ^ - 5eï -h (4 - 5e)îe"^j 

+ 0 ( ε
2

) , 

2/uniform = [ ö e
1
"

1
 + (4 - 5c)(l + x)e~

x/e
] -h ε  [ ö e ^ ^ l - χ ) - e

l

~
x/e

] 

+ 0 ( ε
2

) . 

[3] In the example, we could have expected trouble initially. The original 

equation is of second order, and so needs two boundary conditions. But the 

first order term in the regular perturbation series, (135.3.a), is a differential 

equation of first order, so it would be unlikely to match the two boundary 

conditions. 
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[4] If it were not possible to match the "inner" and "outer" solutions in (135.11), 
then we would have tried to put a boundary layer at χ  — 1. To do this, we 
scale χ  so that it has a large variation near χ  = 1, say χ  = (1 - x) je. Using 
this new distance scale, the leading order terms in the "outer" and "inner" 
solutions would have the form of (135.5) and (135.9). 

Now, however, the outer solution would extend to χ  = 0 (so that 
2/outer = 4e~

x

) , while the inner solution would extend to χ  = 1 (so that 

2/inner = (5 — E) + Ee~
x

). At this point, we find that we cannot perform 
the necessary matching. We have: l i m ^ ! - y 0u t e r ( # ) = 4 e

_ 1

 but 

r 5, if Ε  = 0, 
lim_ y inner (x) = J i m î / inner ( î ) = < CO, if Ε  > 0, 

^
χ

 I - o o , if £ < 0. 

We conclude that there is no boundary layer near χ  = 1, at least with the 
scaling χ  — (1 — χ )/ε . 

[5] Sometimes a boundary layer can appear in the middle of the region of 
interest. As an example of a "shock" or an "interior transition layer," 
consider the problem ey" +xy' = 0 with the boundary values y(—1) = 1 and 

y(l) = 2. The solution to this problem is y(t;e) = i ^3 + 

Note the following limits which indicate the non-uniformity of convergence: 

lim lim y(t]e) = 2, 
χ —0+ e—0+ 

lim lim y(t; ε ) = 1, 
x->0- ε —0+ 

3 
lim y(t; ε ) = -. 

χ —>0 Δ  

er f (x /2Vê) \ 

erf (1/2 V F ) ) ' 

[6] For certain forms of simple equations, it is possible to predict the existence 
of boundary layers and other phenomena for generic boundary conditions. 
Table 135 shows the behavior that can be expected from the equation 

ey -p(x)y -q(x)y = g(x), a<x<b , 1 Q K 1„ N 
r \ tu\ a (135.14) 

y(a) = a, y(b) = β  

when ε  is small and positive. For each case there are simple examples which 
exhibit the predicted behavior. 

For non-generic boundary conditions, other solutions are possible. For 
example, (135.1) fits case (a) in Table 135, which predicts the existence of a 
boundary layer near χ  = 0. However, if the boundary conditions for (135.1) 
had been y(0) = y(l) = 4, then the solution would have been y(x) = 4, with 
no boundary layers present. 
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conditions on p(x) type of solution 

p(x) φ  0 on a < χ  < b: 

(a) p(x) < 0 
(b) p(x) > 0 

Boundary layer at χ  = a 

Boundary layer at χ  = b 

p(x) = 0: 
(c) q(x) > 0 

(d) q(x) < 0 
(e) q(x) changes sign 

Boundary layers at χ  = a and χ  = b 

Rapidly oscillating solution 
Classical turning point 

ν ' Φ  Qi P(fy — 0
 o n

l y at χ  = 0: 
(f) p'(0) < 0 

(g) p'(0) > 0 

No boundary layers, 

interior layer at χ  = 0 
Boundary layers at χ  = a and χ  — 6, 
no interior layer at χ  = 0 

Table 135. Possible behaviors for equation (135.14). 

\ 
B' 

\ 

N shock layers
 N

 N 

\ occur in this region^ 
\ 1 ' 

\ / 

\ / 

\ / 

\ / 

\ / 

right bounday layers 
occur in this region 

left bounday layers 

occur in this region 

corner and transition layers 
occur in this region 

F igure 135.2 Different possible solutions to (135.15) for varying boundary 
conditions. 

[7] A classic example showing the dependence of the solution on the boundary 
conditions is in Kevorkian and Cole [3], Section 2.5. This nonlinear equation, 

ey" + yy'-y = 0, 

y(0) = A, y(0) = B, 

has the solution behaviors shown in Figure 135.2. 
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[8] There are many matching principles that can be used to determine the 
unknown constants in the "inner" and "outer" solutions. One that is used 
in Van Dyke [9] (page 64) is 

The η -term expansion of the inner solution (written in the 
outer variables) to m-terms is equal to the the m-term ex-
pansion of the outer solution (written in the inner variables) 
to n-terms. 

[9] Sometimes there can be multiple boundary layers at a single boundary. That 

is, there are several layers of boundary layers (each with a different scaling) 

before the "outer" solution is matched to the value at the boundary. 

[10] There exist special numerical procedures that can be used for equations that 

have boundary layers. See, for instance, Miranker [5]. 

[11] Lo [2] presents a technique for calculating many terms in an asymptotic 

expansion. The computer language MACSYMA is used to perform the 

asymptotic matching at each stage. 

[12] This method is sometimes called the method of matched asymptotic expan

sions. 
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136. Perturbation Method: 

Functional Iteration 

A p p l i c a b l e t o Differential equations with a "small" te rm and homo-

geneous initial conditions or boundary conditions. Without the "small" 

term, the differential equation must be a linear and have a known Green's 

function. 

Y i e l d s 

A sequence of approximations. 

Idea 

If the given equation is only a "small" per turbat ion from a linear equa-

tion (with a known Green's function), then we may obtain an equivalent 

integral equation. This integral equation may be expanded methodically. 

Diagrams are often used to keep track of the terms. 

P r o c e d u r e 

We will illustrate the general technique on a specific class of part ial 

differential equations. Suppose we have the differential equation 

^ = H(t, χ , 3 χ )φ  + V(x, Ο χ )φ  + A(x), 

φ (0,χ ) = 0, 0( t ,O) = 0 ( M ) = O, 

for the unknown φ (ί ,χ ), where Η  and V are functionals. Let us presume 

tha t , in some sense, H V ^ H «C If the solution G(t,x;y) of 

dG 
-=H(t,x,dx)G + 6(x-y), 6 2) 

G(0, x; y) = 0, G(t, 0; y) = G(t, 1; y) = 0, 

is known, then the solution to (136.1) can be wri t ten as the equivalent 

integral equation 

4>(t,x)= f G{t,x;y)[A{x) + V(x,dx)<l>(t,x)]x=ydy 
J o

 χ (136.3. α - δ ) 

= φ 0(ί , x)+ I G(t, χ ; y)V(y, θ ν )φ (ΐ , y), dy 
Jo 

where φ ο {ί , χ ) := /J" G(t, x; y)A{y) dy. This is because G(t, x; y) is a Green's 

function (see page 268) and superposition can be used (note tha t the 
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boundary conditions in (136.1) and (136.2) are homogeneous). If <j)(t,y), 

as determined by the r ight-hand side of (136.3.b), is utilized in the integral 

in (136.3.b), then we obtain 

φ (ί ,x) = <f)0(t, x) + / G(t,x; y)<f>o(t, y) dy 
Jo 

+ [ dy [ du [G{t,x;y)V{y,dy)][G{t,y;u)V(u,du))(t>{t,u). 
Jo Jo 

(136.4) 

If (f)(t, u ) , as determined by the r ight-hand side of (136.3.b), is utilized in 

the double integral in (136.4), and the process repeated, then we find 

φ {ί , χ ) = φ 0(ί , x) + / G(t , x; 2/)</>o(*, y) dy 
Jo 

+ / dy f du [G(* ,x ;y )V(y ,ô y) ] [G( t ,y ;u)V( t i ,ô t t) ]0o( i ,u ) 
Jo Jo 

+ [ dy f du f dv [G(t,x;y)V(y,dy)}[G(t,y;u)V(u,du)} 
Jo Jo Jo 

[G(t,u;v)V(v,dv)]<l>o(t,v) + ---. 
(136.5) 

Hence, we have produced a "natural" expansion of the solution to (136.1). 
Since writing the integrals in (136.5) becomes tedious, diagrams are often 
utilized. In a fairly obvious notat ion we may write (136.5) as 

4>(t, χ ) = φ ο (*>
x

) +
 F

i +
 F

2 + Ή  + · · · , (136.6) 

where each Fi is represented by a diagram in Figure 136.1. The dia-

grams used in this method are never anything more than a shor thand 

notat ion for mathemat ical expressions. For each specific problem in which 

diagrammatic techniques are used, the diagrams must be appropriately 

defined. In this example, a node on a diagram corresponds to the operation 

[G(£, · ; — )V(—,9_)] and each line indicates an integral. 

E x a m p l e 1 

We now show how functional i teration method can be used to ap-

proximate the solution of an ordinary differential equation, with a small 

parameter present. Given the differential equation with boundary condi-

tions for φ (χ ) 

ί ? = ε [1~Φ ΐ

 (136.7) 

0(0) = <A(i) = ο , 
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φ  - Φ ο  + y + 
γ  

u + 

y 

γ  

+ 

Y 

Figure 136.1 Diagrammatic representation of the solution in (136.6). 

we first note tha t the exact solution is given by 

, / \ , r- cos >/ε  — 1 . /— 
= 1 — cos yjex Λ  — 7 = — sin ν ε χ , 

sin 

= t ( ^ ) - , ! ( î ^ | ^ ) + o ( A 
(136.8.0-6) 

The Green's function tha t we need, G(x;y), will satisfy the equation 

G(0) - G ( l ) = 0, 

and is given by (see the example for the Green's function method, page 
271) 

- 1) for 0 < χ  < y, 

L) for y < χ  < 1. 

The differential equation in (136.7) can then be writ ten as an integral 
equation, using this Green's function, as 

where 

φ (χ )=ε  ί  0(χ ^)[\-φ ^))ά υ  

Jo 

= ε φ ο (χ ) - ε  G(x\ ν )φ (ν )dy, 
Jo 

φ 0(χ ) := [ G{x;y)dy 
Jo 

= x(y-l)dy+ y(x 
Jx Jo 

(136.9.0-6) 

l)dy 

χ  — χ  
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If the value of φ (χ ) (as defined by the r ight-hand side of (136.9.b)) is 

inserted for the function 0(y) in (136.9.b), the na tura l expansion arises 

φ (χ ) = ε φ 0(χ ) - ε
2

 I
 G

(
x

! y)</>o(y) dy 
J o

 (136.10) 

+ ε
3

/ G(x;y) G(y;ζ )φ 0(ζ )dzdy - 0 ( ε
4

) , 
Jo Jo 

which can be represented by 

φ (χ ) = φ ο (χ ) + Fi + F2 + F3 + - - -, 

where the {F{} are given in Figure 136.1. In this example, a node on a 

diagram corresponds to multiplying by G(a;ß) (for some specific a and 
β ) and each line segment indicates an integration. It is easy to evaluate 
the first few diagrams, tha t is, to evaluate the first few terms in (136.10). 
The approximation obtained from (136.10) is identical to the expansion in 
(136.8.b). 

E x a m p l e 2 
The reason for finding a Green's function is so the solution of the 

original differential equation may be wri t ten in terms of an integral (as 
in (136.3.b) or (136.9.b)). For a first order equation, though, an integral 
representation can be found immediately. We now analyze a nonlinear first 
order differential equation to indicate more fully how the diagrams may be 
used. Consider the nonlinear ordinary differential equation 

§ = / ( * ) + β ( ί ) Λ  

z{0) = 0. 

in which the nonlinear te rm (i.e., the g(t) function) is "small." This 
equation may be integrated directly to obtain 

* ( * ) = / / ( r ) d r + / g(r)z
2
(T)dr. (136.11) 

Jo Jo 

If the value of z(t) from the left-hand side of (136.11) is used in the right-
hand side, then 

*(*)= i*f(T)dT+ f g(r)\ Γ /(rOdrJ dr 
Jo Jo Uo J 

+2

1!
9{τ )

 [Io f{Ti)dTi] [/Tff(r2)z2(r2)dr2 

9(τ 2)ζ
2
{τ 2)ά τ λ  dr. 

dr (136.12) 

Jo Uo 
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( x 

Figure 136.2 Rules for creating diagrams and interpreting them for example 2. 

A "natural" per turbat ion expansion would be to keep the first two 

terms in the right-hand side of (136.12), and assume tha t the last two 

terms are "small." If \z(t)\ «C 1 then this may well be the case since the 

last two terms involve \z\
2

 while the first two terms involve \z\. 

The functional i teration technique can be used to derive (136.12) and 

the higher order extensions from diagrams. We need two sets of rules: one 

set of rules describes how the diagrams may be computed; the other set 

of rules describes how the diagrams are to be turned into mathematical 

expressions. If we use the rules in Figure 136.2, (where H( ) denotes the 

Heaviside function), then the first two steps in the diagrammatic solution 

to z(t) (from (136.11)) are given by the diagrams in Figure 136.3. 

Note tha t the third and fourth diagrams in Figure 136.3 represent the 

same mathematical expression since they are topologically equivalent. The 

purpose of the Heaviside function is to restrict the range of integration. By 

careful inspection, the mathematical expressions associated with the last 

set of diagrams will be seen to be identical to (136.12). 

N o t e s 

[1] In the physics literature, the Green's function is sometimes call the propa-

gator. This is usually written in terms of a path integral, G = J e
lS

^
h

, where 

S is the action, defined to be the integral of the Lagrangian. The diagrams 

produced in this context are sometimes called Feynman diagrams. 

[2] When nonlinear equations are approximated by this technique, as in example 

2, keeping track of the terms in the expansion that are of the some order 

is greatly facilitated by some shorthand notation. The diagrams presented 

above perform such a task. 

[3] In more complicated problems, the diagrams will have several different types 

of line segments and several different types of nodes. 

[4] Often an "algebra of diagrams" is created, so that diagrams can be added, 

subtracted and multiplied, without recourse to the mathematical expression 

that each diagram represents. This would require amplification of the rules 

that were used in example 2. 

— H(t-r) 
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*(*) = 

Figure 136.3 Two steps in the diagrammatic expansion of (136.11). 

[5] Presented in this section has been just one type of functional iteration, there 

are many others. For example, Picard iteration (see page 535) is a functional 

iteration method. Another method is a decomposition method frequently 

used by Adomian [2]. 

[6] This technique is particularly important in problems in which there is no 

"small" parameter. In these cases, the formally correct diagrammatic expan-

sion may be algebraically approximated by exactly summing certain classes 

of diagrams. See Mat tuck [6] for details. 
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137. Perturbation Method: 

Multiple Scales 

A p p l i c a b l e t o Nonlinear differential equations tha t have a small pa-

rameter present. 

Y i e l d s 

An approximation to the solution. 

Idea 

This is a singular per turbat ion technique, applicable to problems for 

which regular per turbat ion techniques fail. The assumption in this tech-

nique is tha t the solution depends on more than one "length" (or "time" ) 

scale. 
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A p p l i c a b l e t o Nonlinear differential equations tha t have a small pa

rameter present. 

Y i e l d s 

An approximation to the solution. 

Idea 

This is a singular per turbat ion technique, applicable to problems for 

which regular per turbat ion techniques fail. The assumption in this tech

nique is tha t the solution depends on more than one "length" (or "time" ) 

scale. 
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P r o c e d u r e 

We presume tha t the solution depends on two (or more) different 

length (or time) scales. By trying different possibilities, we determine 

what these length scales are. These different length scales are t reated 

as dependent variables when transforming the given ordinary differential 

equation into a part ial differential equation, but then the length scales are 

t reated as independent variables when solving the equations. 

The dependent variable is then expanded in a regular per turbat ion 

series (see page 528), where each functions in the series depends on all of 

the different length scales. The different orders of ε  are collected, and the 

sequential set of part ial differential equations are solved. 

As these equation are solved, the requirement is tha t each successive 

te rm must vanish no slower (as ε  tends to zero) t han the previous term. 

E x a m p l e 

Suppose we have the ordinary differential equation 

for y(x; ε ). We immediately recognize tha t (137.1) is likely to be a singular 

per turbat ion problem. This is because, when we set ε  equal to zero, the 

equation becomes a first order differential equation, and it is very unlikely 

tha t the solution of this equation (which depends on a single constant) will 

match bo th boundary conditions. 

We first need to determine what the proper length scales are for this 

problem. We guess tha t , for this problem, the proper length scales are 

u := χ  and υ  := χ /ε . If we had guessed incorrectly, then we would not be 

able to carry out all of the calculations. First , equation (137.1) must be 

d 
writ ten in terms of these new variables. Writing — as 

We now propose the expansion of y(x; ε ) as a regular per turbat ion series 

in the dependent variables u and ν  

ε </" + 2 / ' = 2, 

2/(0) = 0, 2/(1) = 1, 
(137.1) 

the equation in (137.1) becomes 

(137.2) 

y(x; ε ) = y0(u, v) + ε y1(u, ν ) + ε
2

2 / 2 ( ^ , ν ) + · · ·. (137.3) 
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Using (137.3) in (137.2) and equating the different powers of ε  results in 

an infinite sequence of equations, of which the first three are: 

<*·>= < ™ 
ou

1

} · ^ · ,
 d

v* = 2d V
 d

vi
 d2

yo 
[ }

 ' dv
2

 dv dudv du du
2

 ' 

The first part ial differential equation can be solved to determine 

y0(u, v) = A(u) + B(u)e~
v

, (137.5) 

where A(u) and B(u) are arbi trary functions of u. The second equation, 

(137.4.b), then becomes 

^ 1 + ^ 1 = 2- A'(u) + B'(u)e-\ (137.6) 

which has the solution 

v) = [ 2 - i 4
,

( u ) ] t ; + vB'{u)e-
v

 + Z?(u) + £ ( u ) e "
v

, (137.7) 

where D(u ) and E(u) are arbi trary functions. Now we use our solvability 

condition, which states tha t the higher order terms will vanish no slower 

than the lower order terms. For yi(u, v) (as given in (137.7)) to vanish no 

slower than y0(u,v) (as given in (137.5)) we require tha t 2 — A'{u) = 0 

and B' (u) = 0. Otherwise, for χ  φ  0 and ε  <C 1, the terms in y\ would be 

larger than the terms in yo (since, in this case, ν  ^> 1). 

Using these two constraints, we determine tha t A(u) = 2u + Ao and 

B(u) = where A0 and B0 are constants. Hence, the first order solution 

becomes 

y0(u,v) = (2u + A0) + B0e-
v

. (137.8) 

Going back to the original variable (i.e., x ) , the leading te rm in the solution 

for y(x;e) is (from (137.3) and (137.8)) 

y(x; ε ) « y0(x) « (2x + A 0) + Β 0β ~
χ /ε

. 

This expression can be matched to bo th of the boundary conditions in 

(137.1) to determine tha t 

y(x; ε ) « 2x - (l - e~
x

'
£

^ . (137.9) 
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Figure 137. A comparison of the exact solution to (137.1) (given by (137.10)) 

and the approximate solution in (137.9), when ε  = .5. 

The exact solution to (137.1) is given by 

ν (χ ;ε ) = 2 χ -
1

~
β

_
Χ

ι

/ ε

ε . (137.10) 
1 - e

 /ε  

Hence we see tha t the approximate analysis has correctly obtained the first 

t e rm in the expansion as ε  tends to zero. Figure 137 has a comparison of 

(137.9) and (137.10) when ε  = .5. 

N o t e s 

[1] It was not really necessary to solve equation (137.6) for y\ to obtain the 

constraints on A(u) and B(u). By analysis of the equation for yi, with 

an eye towards obtaining solutions that do not grow with v, the same 

conditions could have been obtained. This is an important procedure in 

more complicated problems where explicit solutions are not easy to find. 

See the section on alternative theorems, beginning on page 14. 

[2] Any problem that can be solved by matched asymptotic expansions can also 

be solved by multiple scales, although the procedure may require more work. 

[3] The method of multiple scales does not result in an answer that is valid over 

an indefinitely long range. If, for instance, the two scales are χ  and ε χ  then 

the solution is valid, generally, for χ  = 0(ε ~
1

). 

[4] In Rubenfeld [7], there is an account of why the method of multiple scales 

sometimes gives incorrect results. 

[5] In Fateman [3], there is a description of a MACSYMA program that will au

tomatically utilize the method of multiple scales to approximate the solution 

of differential equations. 

[6] The method of multiple scales is often called "two timing." 

[7] The choice of length scales depends on the particular problem. For some 

problems three (or more) length scales may be appropriate. Each length 

scale may have a complicated dependence on the parameter ε . 
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138. Perturbation Method: 
Regular Perturbation 

A p p l i c a b l e t o Differential equations with a small parameter . 

Y i e l d s 

A series of terms of decreasing magnitude tha t approximate the solu-
tion of the original differential equation. 

Idea 

When an equation is changed by only a small amount, the solution 
will often only change by a small amount . 
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Then, using (138.2) in (138.1) we obtain 

(y'o + ey" + •••)+ Φ ό  + ε » ί  + · · · ) + (î/o + eyi +•••)= 0, (138.3) 

J/o(0) + ej/i(0) + e2y2(0) + --- = 1, 

^ ( 0 ) + ε ^ ( 0 ) + ε
2
^ ( 0 ) + · · · = 0. 

Equat ing powers of e in (138.3) to zero produces the sequence of equations 

O ( e
0
) : 2/0' + y0 = 0, 

!fo(0) = 1, (138.4) 

yo(0) = o. 

Ο ί ε
1
) : y" + yi = -y'0, 

tfi(0) = 1, (138.5) 

j/i(0)
 = 0. 

The solution to (138.4) is 

tto(x) = cosx . (138.6) 

Using (138.6) in (138.5) we must now solve the equation 

y" + Vi = s inx , 

Vi (0) = 1, (138.7) 

vi(o) = o. 

where ε  is a number whose magni tude is much smaller t han one. We 
suppose tha t the solution to (138.1), y(x;e), can be expanded in a power 
series in ε  as follows 

(138.2) 

(138.1) 

P r o c e d u r e 
Expand the dependent variables in a power series depending on the 

small parameter in the problem. Subst i tute this series into the original 
equation, the boundary conditions and the initial conditions. Expand all 
of the equations, equate the terms corresponding to different powers of the 
small parameter , and solve the equations sequentially. 

E x a m p l e 
Suppose we have the equation 
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exact 
approximate 

> 

Figure 138. Comparison of the exact solution and the two term approximation 
to equation (138.1), when ε  = .25. 

The solution to (138.7) is 

2/1 (x) = | ( s i n x — xcosx). (138.8) 

Therefore, the solution for ν (χ ;ε ) is approximately (using (138.6) and 

(138.8) in (138.2)) 

ν (χ ;ε ) = cosx + | ( s i n x - x c o s x ) + 0(ε
2

). (138.9) 

We could continue this process indefinitely and calculate as many terms as 

were needed to obtain a desired accuracy. Figure 138 is a comparison of 

the first two terms of (138.9), when ε  = .25, with the exact solution. 

N o t e s 
[1] The exact solution to (138.1) is given by 

2/( χ ; ε ) = —,
 £

 e
 ε χ

^
2

 s in | χ  + e
 ε χ /2

 cos I χ  

which can be expanded for small ε  to yield 

y(x; ε ) = cosx + ^(sinx — xcosx) + 0 ( ε
2

) . 

[2] This method will not work on all equations that have a small parameter. As 
a simple example, consider 

*y" + y = 0, y(0) = l, y(l) = 2. (138.10) 

In this example, the first order equation (corresponding to equation (138.4)) 
is 

yo = 0, y(0) = l, y(l) = 2. 

Clearly, this equation has no solution. Hence the original expansion, (138.3), 
must not be adequate to represent the solution of (138.10). 
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[3] In deriving equations (138.4) and (138.5) from (138.3), it was implicitly 
assumed that each of |yi(x)|, |yi(

x

)l» and |yi'0r)| are O(l) . Observe that 
this will not be the case when χ  = 0 ( 1 / ε ) (see (138.8)). Hence, we conclude 
that only when χ  « Ι / ε  can (138.9) be a good approximation to the solution 
of (138.1). If an approximation to the solution is desired over a larger range 
of χ  values, then the method of multiple scales might be used (see page 524). 
Secular terms is the name given to terms that become large and prevent a 
perturbation expansion from being valid. 

[4] If the solution to a differential equation is not analytic at ε  = 0, then 
the solution can not be expanded in the form of (138.2). Often, the best 
procedure is to utilize an expansion of the form 

y(x; ε ) = y0(x) + μ ι (ε )ν ι (χ ) + μ 2(ε ^2(χ ) + ..., 

and then determine the scaling functions {μ *} as the {yi} are determined. 
It is frequently the case that the {μ »} are given by terms of the form 
{ε

η

\ο ζ
η ι

ε }. Terms with m φ  0 are sometimes called switchback terms (see 
Lagerstrom and Reinelt [4] or Van Dyke [7]). 

[5] The functional iteration method described on page 518 produces the same 
terms that would be obtained by a regular perturbation expansion. The 
benefit of the diagrammatic method is that it allows easier manipulation of 
the terms. 
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y(t; ε ) = cosujt + ε  
3 t . 
- — sin cut 
Su 32ω  

cos 3ω ί  — cos ω ί  + 0(ε
2

). 

139. Perturbation Method: 

Strained Coordinates 

A p p l i c a b l e t o Differential equations tha t have a small parameter 

present. 

Y i e l d s 

An approximation to the solution, valid on a long time scale. 

Idea 

A regular per turbat ion expansion may give the correct answer, but at 

the wrong location. By scaling the dependent variable and one or more 

of the independent variables by the small parameter , the solution may be 

approximated at the correct location. 

P r o c e d u r e 

If the regular per turbat ion solution to a differential equation has secu

lar terms, but the original equation has bounded solutions, then the regular 

per turbat ion approximation is not valid for large values of the independent 

variables. One way to obtain a solution tha t is valid for longer scales is by 

"straining the coordinates" ; tha t is, expanding the dependent variable and 

one or more of the independent variables in terms of the small parameter . 

To completely specify the arbi trary functions and constants tha t arise, 

use the maxim: "Higher order approximation shall be no more singular 

than the first." 

E x a m p l e 

Suppose we wish to approximate the solution to the nonlinear differ

ential equation 

d
2

y ο  ι  

- ο ¥ +
ω υ  = £ υ

' (139.1) 

2/(0) = 1, 2 / (0 ) = 0. 

This equation can be integrated once by first multiplying by y'. The re

sulting first order differential equation can be integrated in terms of elliptic 

functions. The explicit solution indicates tha t the solution is periodic. 

If a regular per turbat ion technique is a t tempted , then the resulting 

equations can be solved in the usual manner (see page 528) to determine 

tha t 
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t = t ( T; ε ) = τ  + eti(r) + 0 ( ε
2

) , 

y = ν (τ ; ε ) = y0(r) + eyi(r) + 0(ε
2

) 
(139.2. α -6) 

Noting tha t the derivative with respect to t can be replaced with a deriva

tive with respect to r by 

(where a prime (') denotes differentiation with respect to τ ) , we find tha t 

(139.1) can be turned into a sequence of equations, with each equation 

involving the next 2/fc(r) term. The first two equations are 

d

 2/0 . 2 η  
" T T + ω  yo = ο , 

α τ  
(139.3) 

The boundary conditions are similarly expanded. We find 

y0(0) = 1, ^ ( 0 ) = 0, 

l,i(0) + *i(0)̂ (0) = 0, (139.4) 

(̂0)-ΐ Κ 0)̂ (0) + ί ι(0) + ̂ (0) = 0. 

Now we proceed to solve the equations sequentially, just as in the regular 

per turbat ion method. The first equation in (139.3) with the first pair of 

boundary conditions in (139.4) yields 

2/0 ( τ ) = C O S C J T . (139.5) 

Using this value for yo0")j the next equation in (139.3) (which is for yi(r)) 

becomes 

—*± + ω

2

ν ι  = I cos3a;r + (§ - 2ω Η [) cosur - u>t" s'mur. (139.6) 
UT 

Note tha t the second te rm in this solution becomes unbounded as t in

creases. Hence, secular terms are present. 

In the method of straining, bo th the dependent variable and the inde

pendent variable are expanded in terms of ε . For this example, we presume 

the expansion has the form 
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To prevent yi(r) from having any secular terms, this equation cannot be 

forced at resonance. This means tha t the right-hand side of (139.6) cannot 

have any terms tha t are solutions of the homogeneous equation. To keep 

the right-hand side of (139.6) from having any coster or sinur terms, we 

choose 

0 - 2 < Λ ; ) = Ο  or i i = £ 2 · (139.7) 

If we now solve (139.6), there will be no secular terms. Utilizing (139.7) in 

equation (139.2.a) results in 

3ε  

or 
/ 3e \ 

* + · • 

Using this last expression for r in (139.5) results in our final form of the 

first order approximation 

= cos I LJ — —— ) t yo(t) 

N o t e s 

[1] Another common application of this method is to differential equations 

whose solutions are well behaved, but approximations by a regular perturba

tion scheme produce singular terms. For example, the differential equation 

du 
(χ  Λ -eu)— + u = 0, u(l) = 1, (139.8) 

α χ  

has a solution that is well behaved at χ  = 0, but the regular perturbation 

series u(x; ε ) = uo(x) + ε η \(χ ) + . . . yields uo = x
- 1

, u\ = \ (χ ~
λ

 — x ~
3

) , 

and higher order terms which are even more singular at χ  = 0. Apply

ing strained coordinate techniques results in the exact solution of (139.8): 

u(x) = ( - χ  + >Jx
2

 + 2ε  + 2 ε
2

) / ε . This solution shows that u{x) cannot be 

expanded in a power series in ε  near χ  — 0. 

[2] The paper by Roberts and Shipman [6] concerns itself with equations of the 

form 
d%i [f(x) + ey] fa + q(x)y = r(x) 

on the interval 0 < χ  < 1, with y(l) = c, when the method of straining does 

not work. 

[3] This technique is a useful tool in many areas including the theory of bound

ary layers and the structure and propagation of shock waves. 

[4] This technique is also known as the Lighthill method, the Lindstedt method, 

and the Poincaré-Lighthill method. 
[5] The computer language MACSYMA has a package for automatically imple-

menting this technique, see Len [3] for details. 



140 . P i c a r d I t e r a t i o n 535 

R e f e r e n c e s 

[1] C. Comstock, "The Poincaré-Lighthill Perturbation Technique and Its Gen

eralizations," SIAM Review, 14, No. 3, July 1972, pages 433-446. 

[2] M. E. Goldstein and W. H. Braun, Advanced Methods for the Solution of 

Differential Equations, NASA SP-316, U.S. Government Printing Office, 

Washington, D.C., 1973, pages 306-311. 

[3] J. L. Len, "Perturbation Solution of ODEs in MACSYMA: Lindstedt's 

Method," MACSYMA Newsletter, 5, No. 2, April 1988, pages 6-9. 

[4] M.J . Light hill, "A Technique for Rendering Approximate Solutions to Phys

ical Problems Uniformly Valid," Z. Flugwiss., 9, 1961, pages 267-275. 

[5] A. H. Nayfeh, Perturbation Methods, John Wiley, New York, 1973, Chap

ter 3 (pages 56-109). 

[6] S. M. Roberts and J. S. Shipman, "An Iteration Perturbation Technique," 

J. Comput. Physics, 16, 1974, pages 285-297. 

[7] G. Whitham, "The Flow Pattern of a Supersonic Projectile," Comm. Pure 

Appl. Math, 5, 1952, pages 301-348. 

[8] M. Van Dyke, Perturbation Methods in Fluid Mechanics, Parabolic Press, 

Stanford, Calif., 1975, Chapter 6 (pages 99-120). 

A p p l i c a b l e t o Differential equations, a single equation or a system. 

We can write an ordinary differential equation as a fixed point for

mula. If we have a s tar t ing guess, we can iterate the equation to find an 

approximate solution to the original equation. 

P r o c e d u r e 

Suppose we have the first order ordinary differential equation 

with the initial condition y(xo) = 2/ο · This equation can be wri t ten as an 

integral equation in the form 

140. Picard Iteration 

Y i e l d s 

A sequence of approximations to the solution. 

I d e a 

(140.1) 
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We can write an ordinary differential equation as a fixed point for

mula. If we have a s tar t ing guess, we can iterate the equation to find an 

approximate solution to the original equation. 

P r o c e d u r e 

Suppose we have the first order ordinary differential equation 

with the initial condition y(xo) = 2/ο · This equation can be wri t ten as an 

integral equation in the form 

140. Picard Iteration 

Y i e l d s 

A sequence of approximations to the solution. 

I d e a 

(140.1) 
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Note tha t (140.1) already incorporates the initial conditions. If we had a 

guess of y(x), say 2 / 1 ( x ) , then we might be able to improve our guess by 

forming y%{x) as follows 

îfc(ff) = î/o + / / ( î / i W , ζ ) dz. 
J xo 

Then, knowing 2 /2(x), we could form 2/3(2;) by the same technique. We can 
continue this process indefinitely, each t ime using the formula 

yn+i{x) = yo + / / (Vn(z),z) dz. (140.2) 
JXQ 

What we take for y\{x) is arbitrary; it is often easiest to take yi(x) = 2/0· 

E x a m p l e 

Suppose we have the following ordinary differential equation 

dy 2 , 2 

with y(0) = 1. We can write the iteration formula, (140.2), in this case, as 

y n+ i ( a ; ) = l + / [z
2
 + yn(z)

2
]dz. 

Jo 

If we take yi(x) = 1, then we find 

2 / 2(x ) = l + x+ 3
U 

y3(x) = 1 •+• x + x
2
 + f x

3
 + · · · , 

2 /4(x) = 1 + X + X
2

 + f x
3
 + § Z

4
 + · · · , 

2/5(2;) = 1 + χ  + x
2
 + f x

3
 + | x

4
 + x

8
 + 

(140.3) 

The Taylor series solution of this problem (see page 548) begins 

2 / (x ) = 1 + χ  + x
2
 + f x

3
 + | x

4
 + f x

5
 + · · · . 

Hence, each successive approximation in (140.3) appears to have one more 
correct term. 
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N o t e s 

[1] The successive approximations found by this method are not guaranteed to 

converge. 

[2] This method can also be used on systems of first order ordinary differential 

equations. For example, the scheme corresponding to the system 

dy 

dt 

dz 

dt 

• f(y,z,t), 2/(0) = yo, 

g(y,z,t), *(0) = z 0, 

yn+i(t) = yo + / f(yn(t),zn(t),t)dt, 
Jo 

zn+i(t) = zo+ / g(yn(t),zn(t),t)dt. 
Jo 

[3] Picard iteration can be applied to ordinary differential equations of n-th 

order, without first writing the equation as a first order system. For example, 

the second order ordinary differential equation 

2 / " = / M * ) , 2 / ' « ) , 

y(a) = A, y(b) = B, 

has the convenient iteration scheme 

2/n+iOr) = A + (x- a)y'n(a) + I (x - t)f (t,yn(t),yn(0) dt 

J a 

where yoOr) = A + (x - a){B - A)/(b - a). 

[4] It is also possible to approximate some partial differential equations by this 

technique. For example, the elliptic equation V
2

i t = / ( x,y,it , ^ ) 
y ax ay J 

has the natural iteration formula V
2

i t n = / ( x,y, un-i, ^
u

™~
1

 ? d î X n - ι  \ 
\ dx oy ) 

See Iyanaga and Kawada [2] for the technical conditions on when this itera-
tion scheme will converge to the solution of the original equation. Rice and 
Boisvert [4] illustrate this technique with the use of ELLPACK. 

is
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141. Reversion Method 

A p p l i c a b l e t o Forced nonlinear ordinary differential equations. 

Y i e l d s 

A local approximation. 

Idea 

To derive the method, we assume a certain parameter is small and 

develop a per turbat ion expansion in tha t parameter . In practice, we use 

the formulae obtained by this method when the parameter is equal to one. 

P r o c e d u r e 

Suppose tha t the general nonlinear differential equation whose solution 

we wish to approximate near the initial value is given by 

DlV + D2y
2

 + · - · + D5y
5

 + · · · = Η φ {χ ), (141.1) 

where the [Di] represent differential operators. We seek y = y (χ ), where 

k is a constant and φ (χ ) is a known forcing function. For this method to 

work we require tha t D\ φ  0. 

We assume tha t y(x) is analytic and k is sufficiently small so tha t the 

solution to (141.1) can be expanded in a power series in k. Tha t is, we take 

y(x) = a\{x)k + a2(x)k
2

 + as(x)k
3

 + · (141.2) 



538 III A p p r o x i m a t e A n a l y t i c a l M e t h o d s 

R e f e r e n c e s 

[1] W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and 

Boundary Value Problems, Fourth Edition, John Wiley & Sons, New York, 

1986, pages 97-103. 

[2] S. Iyanaga and Y. Kawada, Encyclopedic Dictionary of Mathematics, MIT 

Press, Cambridge, MA, 1980, page 998. 

[3] M. Lai and D. Moffatt, "Picard's Successive Approximation for Non-Linear 

Two-Point Boundary Value Problems," J. Comput. Appl. Math., 8, No. 4, 

1982, pages 233-236. 

[4] J. R. Rice and R. F. Boisvert, Solving Elliptic Problems Using ELLPACK, 

Springer-Verlag, New York, 1985, pages 79-82. 

[5] G. F. Simmons, Differential Equations with Applications and Historical Notes, 

McGraw-Hill Book Company, New York, 1972, pages 418-422. 

141. Reversion Method 

A p p l i c a b l e t o Forced nonlinear ordinary differential equations. 

Y i e l d s 

A local approximation. 

Idea 

To derive the method, we assume a certain parameter is small and 

develop a per turbat ion expansion in tha t parameter . In practice, we use 
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DlV + D2y
2
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 + · · · = Η φ {χ ), (141.1) 
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We assume tha t y(x) is analytic and k is sufficiently small so tha t the 
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2

 + as(x)k
3

 + · (141.2) 
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Using (141.2) in (141.1) and equating powers of k results in an infinite 

sequence of equations for the {α <(χ )}. This sequence of equations begins 

D I Û I = φ (χ ), 

D\d2 — -D2a\, 

Dxa3 = -[2D2aia2 + D3a\), 

Dxa4 = ~[D2(al + 2a1a3) + ZD3a\a2 + D±a\]. 

The reversion method is to assume the solution to (141.1) can be repre

sented in the form of (141.2) when k = 1 and the coefficients are given by 

(141.3). 

E x a m p l e 

Suppose we have the following nonlinear ordinary differential equation 

dv ο λ  

— - j - av* = x, v(Q) = vo, 
ax 

and we seek an approximation near χ  = 0. Changing variables to y = v — vo 

changes the equation into 

^ + 2v0ay + ay
2

 = x - avg, 2/(0) = 0, (141.4) 
ax 

which simplifies the initial condition. Comparing (141.4) to (141.1), we 

make the identifications 

d 
Di = — + 2v0a, D2 = a, 

dx 

k = 1, φ (χ ) = χ  — av^. 

Prom (141.3.a), we obtain the following equation for α χ : D\a\ = φ (χ ), or 

( i x
 +

 2v^°^j a

i =
 x

 - txvo- (141.5) 

Since v(0) = 0, we will take a i (0) = a 2( 0 ) = · · · = 0. The solution to 

(141.5), with a i (0) = 0, is 

χ  e- 2 v 0 * x _ 1 -2v0*x_1 
a

i — ^ 1 Ö—Ö h avn , 

2v0a 4^0« 2v0a 

which was obtained by using a Laplace transform (see page 300). 
The function a2 can be determined from equation (141.3.b) 

( d o \ ο  / X e-2vo<*x_i - 2 ν 0 α χ _ ι γ  

— -h 2υ 0α  )a2 = aa\ = al - - h — — + α ν ζ  , 

with α 2(0) = 0. This can also be solved by using Laplace transforms. 

Proceeding in this way, many terms in the series (141.2) can be evaluated. 
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142. Singular Solutions 

A p p l i c a b l e t o Nonlinear ordinary differential equations. 

Y i e l d s 

A singular solution. 

Idea 

Singular solutions may exist where the implicit function theorem does 

not hold in differential algebraic equations. 

P r o c e d u r e 

The algebraic ordinary differential equation 

(142.1) 

(142.2) 

can often be solved for the t /
n

) te rm to determine tha t 

or 

or 

By the implicit function theorem, if ?/,...,V
{n)

) Φ  0, then the 

solutions in equation (142.2) are the only solutions possible. However, at 

those points where (x, y, y ' , . . . , y^) = 0, there exists the possibility 

of singular solutions. 
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[2] The extension of equation (141.3) can be found in Orstrand [1], which lists 

formulae for the first 13 terms. 

R e f e r e n c e s 

[1] C. E. Van Orstrand, Philosophical Magazine, 19, 1910, page 366. 

[2] L. A. Pipes and L. R. Harvill, Applied Mathematics for Engineers and 

Physicists, McGraw-Hill Book Company, New York, 1970, pages 653-665. 

142. Singular Solutions 

A p p l i c a b l e t o Nonlinear ordinary differential equations. 

Y i e l d s 

A singular solution. 

Idea 

Singular solutions may exist where the implicit function theorem does 

not hold in differential algebraic equations. 

P r o c e d u r e 

The algebraic ordinary differential equation 

(142.1) 

(142.2) 

can often be solved for the t /
n

) te rm to determine tha t 

or 

or 

By the implicit function theorem, if ?/,...,V
{n)

) Φ  0, then the 

solutions in equation (142.2) are the only solutions possible. However, at 

those points where (x, y, y ' , . . . , y^) = 0, there exists the possibility 

of singular solutions. 
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If the y(
n

^ t e rm is eliminated from the two equations 

OF 

F(x,y,y',...,yW) 

r

-?(x,y,y',...,y
{n)

) 

then an equation of the form 

H(x,y,y',...,y
{ 

r(n-l) (142.3) 

results. This is called the p-discnminant equation. I ts solution(s) describe 

the singular loci 

After equation (142.3) is solved to determine possible singular so

lutions, it must be verified tha t they are, in fact, actual solutions to 

the original equation (142.1). Typically, the solution to (142.3), being 

a differential equation of (n — l ) -s t order, will only involve η  — 1 arbi t rary 

constants. 

E x a m p l e 

Given the nonlinear first order ordinary differential equation 

y, y') = xy'
2

 - 3yy' + 9 x
2

 = 0, (142.4) 

it is straightforward to compute 

(142.5) 

Eliminating the y' t e rm between (142.4) and (142.5) results in 

y = ± 2 x
3 / 2

. (142.6) 

In this case, bo th of the solutions in (142.6) satisfy (142.4). Note tha t the 

singular solutions in (142.6) do not depend on any constants, even though 

(142.4) was a first order differential equation. 
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N o t e s 

[1] The general n-th order ordinary differential equation, linear in the n-th 

derivative term, 

U(x,y, » ' , . . . , y
( n

"
1 )

) y
( n)

 + V(x, y,y',...,y^) = 0, 

has the singular solution y = z(x) if z(x) satisfies both of 

U(x,z,z',...,z
(n

-
1)

) = 0) 

V(x,z,z',...,z<
n

-
1)

) = 0. 

[2] Another way to determine singular solutions of the differential equation 

f{x,y,y') = 0 is to obtain the general solution 0(x,y, C) = 0 (where C 

is an arbitrary constant) and then formally eliminate C between the two 

equations 

φ (χ ,ν ,Ο ) = 0, 

g ( * , y , C ) = o. 

The resulting equation, which only involves χ  and y, is called the c-discriminant 

equation. 

For example, the differential equation y'
2

 + 4 — 4y = 0 has the general 

solution y(x) = 1 + (x — C )
2

; hence φ (χ ,y,C) = y — 1 — (χ  + C)
2

. Forming 

the c-discriminant results in the singular solution y = 1. 

[3] In general (see Piaggio [7]), the p-discriminant equation will contain the 

envelope of the solutions, the cusp-locus and the tac-locus squared. The 

c-discriminant equation will contain the envelope of the solutions, the cusp-

locus cubed and the node-locus squared. Of these, only the envelope is a 

solution to the original differential equation. 

[4] Some envelope solutions of differential equations may be found by use of Lie 

groups, see Bluman [1]. 

[5] For polynomial functions, the algebraic elimination in the computation of 

the c-discriminant (or the p-discriminant) can be done by the use of resul

tants (see page 46). 
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York, 1964, pages 83-91. 
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[5] W. Kaplan, Ordinary Differential Equations, Addison-Wesley Publishing 

Co., Reading, MA, 1958, pages 330-337. 

[6] G. Murphy, Ordinary Differential Equations, D. Van Nostrand Company, 

Inc., New York, 1960, pages 74-80. 

[7] H. T. H. Piaggio, An Elementary Treatise on Differential Equations and 

Their Applications, G. Bell & Sons, Ltd, London, 1926, Chapter 6 (pages 

65-79) and pages 192-201. 

143· Soliton Type Solutions 

A p p l i c a b l e t o Par t ia l differential equations with wave-like solutions, 

often part ial differential equations with only two independent variables. 

Y i e l d s 

Knowledge of whether solitons can be present. 

I d e a 

See if there is a solitary wave solution to the part ial differential equa

tion. This indicates the possibility tha t the equation has solitons for 

solutions. 

P r o c e d u r e 

A solitary wave is a localized, traveling wave and many nonlinear 

part ial differential equations have solutions of this type. A soliton is a 

solitary wave tha t exhibits particle-like behavior. The particle-like prop

erties include stability, localizability, and finite energy. A soliton is best 

described, however, in terms of its interaction with other solitary waves. 

We say tha t an equation possesses solitons when two or more colliding 

solitary waves do not break up and disperse but , instead, become more 

solitary waves. 

In this technique we change variables in such a way as to make such 

a solitary wave more apparent . If the original part ial differential equation 

were in the independent variables χ  and t, we search for a solution of the 

form u(x — ct). Here c represents the wave speed; if c > 0 (c < 0), then 

u(x — ct) represents a wave traveling to the right (left). Note tha t many 

part ial differential equations have solitary waves as solutions; most of these 

part ial differential equations do not exhibit soliton behavior. 
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often part ial differential equations with only two independent variables. 

Y i e l d s 

Knowledge of whether solitons can be present. 

I d e a 

See if there is a solitary wave solution to the part ial differential equa-

tion. This indicates the possibility tha t the equation has solitons for 

solutions. 
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A solitary wave is a localized, traveling wave and many nonlinear 

part ial differential equations have solutions of this type. A soliton is a 

solitary wave tha t exhibits particle-like behavior. The particle-like prop-

erties include stability, localizability, and finite energy. A soliton is best 

described, however, in terms of its interaction with other solitary waves. 

We say tha t an equation possesses solitons when two or more colliding 

solitary waves do not break up and disperse but , instead, become more 

solitary waves. 

In this technique we change variables in such a way as to make such 

a solitary wave more apparent . If the original part ial differential equation 

were in the independent variables χ  and t, we search for a solution of the 

form u(x — ct). Here c represents the wave speed; if c > 0 (c < 0), then 

u(x — ct) represents a wave traveling to the right (left). Note tha t many 
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part ial differential equations do not exhibit soliton behavior. 
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E x a m p l e 

One representation of the Korteweg-de Vries (kdV) equation is given 

by 

ut + auux + u x xx = 0. (143.1) 

We change the independent variables from {x,t} to {77, ζ } via (see page 

139) [η  = t, ζ  = χ  — ct.}. This change of variable turns (143.1) into 

uv - + auuç + = 0. (143.2) 

If we now presume tha t (143.1) admits a wave-like solution, we can then 
take w(r/, C) = υ (ζ ) = v(x — ct). By assuming this functional form for 

ΐ χ (τ 7,ζ ), equation (143.2) becomes 

cvç + σ υ ν ζ  + υ ζ ζ ζ  = 0. (143.3) 

Equation (143.3) is an autonomous ordinary differential equation. Hence, 

the order can be reduced by one (see page 190). In fact, for the equation 

in (143.3), the exact solution can be obtained. 

Equat ion (143.3) can be integrated with respect to ζ  to obtain 

—cv + \σ ν
2

 + ν ζ ζ  — A, 

where A is an arbi trary constant. This last equation, when multiplied by 

can be integrated again to obtain 

-\cv
2

 + \σ ν
3

 + {ν ζ )
2

 = Av + B, (143.4) 

where Β  is another arbi trary constant. Equat ion (143.4) can be solved 

algebraically for υ ζ  and then this first order ordinary differential equation 

can be integrated in terms of elliptic functions (see Abramowitz and Ste-

gun [1]). 

Hence, we have shown tha t the KdV equation has solitary waves 

as solution. For a soliton type solution to exist for (143.1), it must be 

determined tha t a solution of (143.4) exists tha t is localized (i.e., differs 

appreciably from zero only in a bounded region). Finally, to actually show 

tha t the KdV has solitons, the interaction of these solitary waves must be 

investigated. From a much deeper analysis (see, for example, Whi tham [9]) 

it is possible to show tha t the Korteweg-de Vries equation possesses solitons 

as solutions. In fact, the KdV equation can have, as its solutions, any 

number of solitons. 
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N o t e s 

[1] The technique that we have presented is no more than using similarity 

variables (see page 424) to obtain a solution of a specific form. Of course, 

the boundary conditions must admit a traveling wave solution, as well as 

the equations. 

[2] The wave speed (c in the Example) often must be determined as part of the 

solution. In the above example, it would be determined by the boundary 

conditions (as would A and B). Typically, in nonlinear problems, the 

velocity is amplitude dependent. 
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144. Stochastic Limit Theorems 

A p p l i c a b l e t o Linear differential equations tha t contain a small param-

eter and a random forcing term of a certain form. 

Y i e l d s 

A Fokker-Planck equation. 
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N o t e s 
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the equations. 
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144. Stochastic Limit Theorems 

A p p l i c a b l e t o Linear differential equations tha t contain a small param

eter and a random forcing term of a certain form. 

Y i e l d s 

A Fokker-Planck equation. 
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Idea 

Some equations do not have a "white noise" forcing term and so a 

Fokker-Planck equation cannot be directly constructed (see page 254). 

However, it is often t rue tha t random forcing terms behave like "white 

noise" in some asymptotic limit. Hence, in this limit, a Fokker-Planck 

equation can be constructed. 

P r o c e d u r e 

If F ( x , t, r ) is a "sufficiently random" mean zero function then, as ε  

tends to zero, the form 

behaves, in a certain sense, like a "white noise" te rm (see Papanicolaou and 

Kohler [4]). Using the "white noise" equivalent of (144.1), a Fokker-Planck 

equation can be obtained in the variables {x , i). 

Hence, the prescription is to change a given equation into the form 

of (144.1) and then obtain and analyze the corresponding Fokker-Planck 

equation. 

E x a m p l e 

Using the geometric optics approximation to the wave equation, the 

scaled position and velocity of a ray in a weakly random medium satisfy 

after a ray has traveled a long distance in the random medium. Here 

F{ ) is a random function with mean zero (it represents the wave speed 

per turbat ion at any point) . Assuming a "mixing condition" on F, which is 

a s tatement about how random F( ) is, the theorem in Papanicolaou and 

Kohler [4] can be used in the limit of ε  going to zero. 

Using this theorem, it can be shown tha t the probability density of 

the solution to (144.1) converges weakly to the solution of the following 

Fokker-Planck equation 

1

 dv
2

 dx dt ' 

where the number 7 is defined by η
2

 = - J0°° E[F(0, y)(F(0,0)] dy, and Ε [·] 

is the expectation operator. The details of the derivation are beyond the 

scope of this book. More details of this example may be found in Kulkarny 

and Whi te [3]. 

(144.1) 

dx 

~dt 

d
2

P dP dP 
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N o t e s 

[1] There are many different limit theorems that yield a "white noise" limit. 

For example, Keston and Papanicolaou's paper [1] is concerned with random 

differential equations of the form 

dx 1 

-dl = ?
v

> 

[2] The theorems in Papanicolaou and Kohler [4] and in Keston and Papan

icolaou [1] have many technical requirements that must be satisfied. The 

"mixing condition" requirement has been verified for only a few physical 

process. 

[3] For some limit theorems, the Fokker-Planck formalism can be eliminated 

completely. For example, in Khas'minskii [2] it is shown that the solution 

to the problem 

dx 

— = eF(x, t, ω , ε ), x(0) = x0, 

in an interval of order 0 (1 / ε ) , can be uniformly approximated by the solu-

tion to the problem — = eF(x), x(0) — xo, where 
dt 

ι  r
T 

F(x) := lim - / E[F{x,t,u^)]dt, 
T

->°°
 1

 Jo 

if the stochastic process F(x, t, ω , ε ) satisfies the law of large numbers for 

fixed x. 

[4] Pardoux [5] finds a white noise limit of a partial differential equation. 
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[6] C. Van Den Broeck, "Stochastic Limit Theorems: Some Examples from 

Nonequilibrium Physics," in L. Arnold and P. Kotelenz (eds.), Stochas

tic Space-Time Models and Limit Theorems, D. Reidel Publishing Co., 

Boston, 1985, pages 179-189. 

[7] B. White and J. Franklin, "A Limit Theorem for Stochastic Two-Point 

Boundary Value Problems of Ordinary Differential Equations," Comm. 

Pure Appl. Math, 32 , 1979, pages 253-276. 

145· Taylor Series Solutions 

A p p l i c a b l e t o Initial value problems, bo th ordinary differential equa

tions and partial differential equations. 

Y i e l d s 

An approximation to the solution near a point. 

Idea 

For an initial value problem, a Taylor series expansion can give an 

approximate solution. 

P r o c e d u r e 

We will illustrate the general procedure on a first order linear ordinary 

differential equation. Suppose we have the differential equation 

y'(x) = F(x,y), (145.1) 

(where ' indicates differentiation with respect to x) with the initial con

dition y(a) = yo, where F(x,y) is a known function. Evaluating (145.1) 

at χ  = a, we can determine y'{a) = F(a,yo). Differentiating (145.1) with 

respect to x, and using the chain rule, results in 

y"(x) = Fx{x,y) + Fy(x,y)yx. (145.2) 

Now equation (145.2) can be evaluated at χ  = a to explicitly determine 

y"(a) = Fx{a, y (a)) + Fy(a, y{a))yx(a) 

= Fx{a, y0) + Fy(a, yQ)F(a, y 0) , 

where we have used y'(a) = F(a,yo). 

We can continue this process of differentiating (145.1) and evaluating 

the result to determine the n- th derivative of y(x) at the point χ  = a. The 
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For an initial value problem, a Taylor series expansion can give an 

approximate solution. 

P r o c e d u r e 

We will illustrate the general procedure on a first order linear ordinary 

differential equation. Suppose we have the differential equation 
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dition y(a) = yo, where F(x,y) is a known function. Evaluating (145.1) 

at χ  = a, we can determine y'{a) = F(a,yo). Differentiating (145.1) with 

respect to x, and using the chain rule, results in 
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Now equation (145.2) can be evaluated at χ  = a to explicitly determine 

y"(a) = Fx{a, y (a)) + Fy(a, y{a))yx(a) 
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result will only involve the part ial derivatives of F(x, y) and the numerical 

values a and 2/0· Knowing these values allows us to construct the Taylor 

series expansion of y(x) about χ  = a by use of 

»(*) = y(a) + ^ ( χ - « )
Ι

 + ^ - α )
2

 + φ ( Ι - α ) 3

 + · · · . (145.3) 

E x a m p l e 

Suppose we wish to approximate the solution of the nonlinear initial 

value problem 
/
 2 2 

y =x -y , 
y(0) = 1. 

Prom (145.4) it is straightforward to compute 

(145.4.a-6) 

y" = 2x- 2yy', 

y"' = 2-2{y')
2

-2yy', 

y"" =-62/2/"-22/2/'",

Using (145.4.b), we evaluate (145.4.a) and then (145.5) sequentially, at 

χ  = 0, to determine 

»'(0) = - i , 

y"W = 2, 

2/" '(0) = " 4 , (145.6) 

y""(o) = 20, 

Using the values from (145.6) in (145.3), with a = 0, the solution of (145.4) 

for y(x) near χ  = 0 is given by 

2 ο  4 ο  20 4 
y = l - s + - s

2

- - s
3

 + ¥ *
4

 + . . . 

= 1 - χ  + x
2

 - \x* + | x
4

 + · - -. 
3 6 
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N o t e s 

[1] This method may be applied to higher order equations, and systems of 
equations. 

[2] The method of series solution (see page 342), when used at an ordinary 
point, also yields a Taylor series solution. 

[3] The Taylor series worked out by this method can be used to compute 
Padé approximates to the solution. These Padé approximates may give 
information about singularities of the exact solution (see the section on 
Pade approximants, page 503). Fernandez, Arteca, and Castro [3] have 
developed a different technique for determining the location of singular 
points by postulating a form of the singularity. 

[4] A direct representation of the Taylor series may be obtained by implicit 
differentiation. We find that the solution to the differential equation y' = 

f{t,y), with y(0) = 0 has the Lie-series representation 

See Igumnov [6] for a computationally efficient way to determine y(t) from 

(145.7) when f(t,y) has a known Taylor series. Finizio and Ladas [4] also 

have a numerical scheme on pages 293-298. 

[5] The numerical technique of analytical continuation (see page 623) combines 

Taylor series at several different points to approximate the solution of a 

differential equation in a large region. 

[6] A FORTRAN program for solving ordinary differential equations by the use 

of Taylor series may be found in Chang and Corliss [1]. 

[7] Taylor's theorem has been generalized in a way in which the general term 

is a fractional derivative (see Osier [8] for details). 
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146. Variational Method: 

Eigenvalue Approximation 

A p p l i c a b l e t o Differential equations with eigenvalues to be determined. 

If we guess approximate eigenfunctions, then we will obtain approxi

mations to the eigenvalues. The "better" we guess the eigenfunctions, the 

bet ter the estimates of the eigenvalues will be. 

P r o c e d u r e 

While the procedure is quite general, we will discuss it in the spe

cific context of a Sturm-Liouville equation. Suppose we have the S t u r m -

Liouville equation on the interval [a, b] 

with p(x) > 0, s(x) > 0, and y(a) = y(b) = 0. If we expand y(x) as 

Y i e l d s 

Estimates for the eigenvalues. 

Idea 

L

[y] = ~r P W T -
 s

(
x

)y = ~Ar(x)t/ , (146.1) 

oo 

(146.2) 

n = l 
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where the {φ η (χ )} are an arbitrary set of complete functions tha t vanish 

at χ  = a and χ  = b, and the {cn} are constants, then the {cn} must satisfy 

oo 

] T ( A m n - XRmn) cn = 0, (146.3) 

71=1 

for m = 1 , 2 , . . . , where 

Amn = / \ρ (χ )φ
,

τ η(χ )φ
,

η (χ ) + 8{χ )φ π ι{χ )φ η (χ )] dx, 
J

\ (146.4) 

Rmn= / Τ (χ )φ τ η(χ )φ η (χ )ά χ . 

Ja 

Equat ion (146.3) is obtained by subst i tut ing (146.2) into (146.1), multi

plying the result by </>m(x), integrating with respect to χ  from a to 6, and 

using integration by par ts . If the {φ η (χ )} are the eigenfunctions of the 

operator in (146.1), then the matrices A and R are diagonal matrices and 

the eigenvalues {λ *} are easily obtained. 

If, instead of (146.2), we use the finite sum 

Ν  

71=1 

where the {ψ η (χ )} are chosen to satisfy the boundary conditions, then 

(146.3) becomes 
Ν  

Σ  (Ämn - XRmn) Cn = 0, (146.5) 
n = l 

for m = 1 ,2 , . . . , TV. In this equation, A and R are given by (146.4) with 
0fc(x) replaced by ipk(x)> For (146.5) to have a non-trivial solution, λ  must 
satisfy 

\A-\n\ = 0 (146.6) 

where A is the matr ix formed out of the Amn and Ί Ζ  is the matr ix formed 
out of the Rmn- If the fyk(x)} tha t we have have chosen are "close" to 
the actual eigenfunctions of (146.1), then the {λ &} obtained from (146.6) 
will be "close" to the eigenvalues { λ ^} of (146.1). 

It is always t rue tha t the smallest λ  from (146.6) is larger than the 
smallest λ  of (146.1). 

file:///A-/n/
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E x a m p l e 

Suppose an approximation to the smallest eigenvalues of the S t u r m -

Liouville system 

v

" r :
X y

\ , (146.7) 

y ( - l ) = y ( l ) = 0, 

is desired. Equat ion (146.7) has the same form as (146.1), with p(x) = 1, 

s(x) = 0, r(x) = 1, a = — 1 , and 6 = 1. We guess tha t y(x) can be well 

approximated by 

y(x) = c i ( l - x
2

) , 

which is (146.3) with Ν  = 1 and φ χ (χ ) = (1 - x
2

)- Using (146.4) we 

calculate 

An = ( - 2 z ) ( -
_ ν  . 8 
2 x ) d x = - , 

x
2

) ( l - x
2

) c t e = 
16 

15* 

(146.8) 

(146.9) 

Using (146.8) and (146.9) in (146.5) yields the eigenvalue equation for λ , 

§ — γ | λ  = 0, and therefore, λ  = 2.5. For this example, it turns out tha t 

the smallest eigenvalue is exactly λ  = π
2

/ 4 ~ 2.467, which corresponds to 

the eigenfunction φ (χ ) = cos (7rx /2 ) . 

N o t e s 

[1] The above example is from Butkov [1]. 

[2] For the Sturm-Liouville equation in (146.1), it can be shown that 

(-pyyx) + / (p(y')
2

 + sy
2

) dx 

α  Ja 

Ja 

ry
2

 dx 

This is known as the Rayleigh quotient. This can be used to estimate the 
lowest eigenvalue since 

λ ι  < min 
u(x) 

(—puux) + / {p(u)
2

 + s i x
2

} dx 
a J a 

J 
Ja 

ru
2

 dx 

where λ ι  represents the smallest eigenvalue, and the minimization is taken 
over all continuous functions that satisfy the boundary conditions associ
ated with (146.1) (but not necessarily the differential equation itself). See 
Haberman [2] for details. 
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[3] There are similar relations for for the eigenvalues of partial differential 
equations, which are also called the Rayleigh quotient. (See Butkov [1] 
for details.) 

For example (see Haberman [2]), for the Helmholtz equation in a bounded 
region, V

2

i t + \u = 0 there is the relation 

- <j> u Vu - n ds + Jj \Vu\
2

dxdy 

λ  = 

dxdy 

R e f e r e n c e s 

[1] E. Butkov, Mathematical Physics, Addison-Wesley Publishing Co., Reading, 
MA, 1968, pages 573-586. 

[2] R. Haberman, Elementary Applied Partial Differential Equations, Prentice-
Hall Inc., Englewood Cliffs, NJ, 1983, pages 172-176 and 224-226. 

[3] H. F. Weinberger, Variational Methods for Eigenvalue Approximation, SIAM, 
Philadelphia, 1974. 

[4] E. Zauderer, Partial Differential Equations of Applied Mathematics, John 
Wiley & Sons, New York, 1983, pages 450-483. 

147. Variational Method: 

Rayleigh-Ritz 

A p p l i c a b l e t o Differential equations tha t come from a variational 

principle. 

Y i e l d s 

An approximation valid over an interval. 

Idea 

The variational expression from which a differential equation is derived 

can be used to approximate the solution. 



554 III A p p r o x i m a t e Ana ly t i ca l M e t h o d s 

[3] There are similar relations for for the eigenvalues of partial differential 

equations, which are also called the Rayleigh quotient. (See Butkov [1] 

for details.) 

For example (see Haberman [2]), for the Helmholtz equation in a bounded 

region, V
2

i t + \u = 0 there is the relation 

- <j> u Vu - n ds + Jj \Vu\
2

dxdy 

λ  = 

dxdy 

R e f e r e n c e s 

[1] E. Butkov, Mathematical Physics, Addison-Wesley Publishing Co., Reading, 

MA, 1968, pages 573-586. 

[2] R. Haberman, Elementary Applied Partial Differential Equations, Prentice-

Hall Inc., Englewood Cliffs, NJ, 1983, pages 172-176 and 224-226. 

[3] H. F. Weinberger, Variational Methods for Eigenvalue Approximation, SIAM, 

Philadelphia, 1974. 

[4] E. Zauderer, Partial Differential Equations of Applied Mathematics, John 

Wiley & Sons, New York, 1983, pages 450-483. 

147. Variational Method: 

Rayleigh-Ritz 

A p p l i c a b l e t o Differential equations tha t come from a variational 

principle. 

Y i e l d s 

An approximation valid over an interval. 

Idea 

The variational expression from which a differential equation is derived 

can be used to approximate the solution. 



147. Var iat ional M e t h o d : R a y l e i g h - R i t z 555 

P r o c e d u r e 

Most equations of mathemat ical physics and engineering arise from 

a variational principle (see the section on variational equations, page 88). 

For example, the first variation of 

An] = j J Κ  + u

l + 2u

f)
 d x d

y , ί
147

·
1

) 
D 

(also known as the Euler-Lagrange equation associated with (147.1)) is 

given by 

6J = uxx + Uyy - f = 0. 

Hence, the solution to 

uxx + Uyy = / , in the region D, 

u = g, on the boundary of D, 

is given by tha t function u(x,y) t ha t equals g on the boundary and mini-

mizes (147.1). 

The Rayleigh-Ritz method is to determine the functional tha t a dif-

ferential equation comes from, and then to find an approximate minimum. 

This is done by choosing a sequence of functions {φ ι , φ 2,..., φ η } and then 

forming 

uN(x, y) = α ι φ ι (χ , y) + α 2φ 2(χ , y) + · · · -h α η φ η (χ , y), (147.2) 

where the {α »} are unknown. Of course, the {φ ^ must be chosen in such a 

way tha t the boundary conditions are satisfied. Now, the {a^} are chosen 

in such a way tha t the functional will be minimized. Specifically, using 

(147.2) in (147.1) (or the appropriate variational principal), the {a*} are 

chosen by solving the simultaneous system of equations given by 

d r , 
— J[uN] = 0, for i = 1 , . . . , N. 
Oui 

This will often be a simultaneous system of polynomial equations. 

If the {φ ί } in (147.2) are chosen "well," then UN will tend to u as 

η  —• oo. 
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E x a m p l e 1 

Suppose we wish to approximate the solution to the following Poisson 

equation in the unit square 

for Π  <r 

on χ  = 

The above equation comes from the variational principle 6 J = 0, where 

(147.4) 

We choose to approximate u(x, y) by a linear combination of 

Note tha t each of the {φ ι } vanish on the boundary of the square, and so 

U3 will also (as (147.3.b) requires). 

Using (147.2) (with Ν  = 3) in (147.4) results in the minimization of 

the function 

Differentiating (147.5) with respect to each of α χ , and as results in the 

linear system of equations 

(147.5) 

with the solution: {α χ  = \i = 0, as = 0} . Using these values in 

(147.2) yields an approximation to the solution of (147.3). 

Note tha t the exact solution to the problem in (147.3) can be found 

by finite Fourier transforms (see page 293) to be 

[ s i n h 7 n / + sinh(7r(l — y)) — s i n h 7 r ] . (147.6) 

Figure 147 has a comparison of the exact solution (147.6) and the approxi-

mate solution found above. This figure compares the values of u ( . l , y) and 

us(.l,y) as y varies from 0 to 1. 
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Figure 147. A comparison of the exact solution in (147.6) and the approximate 

solution in (147.2), when χ  = .1 . 

E x a m p l e 2 

A variation of this method, due to Kantorovich, is to choose the {(f>k} 

to depend only on y and to allow the {α &} to depend on x. For example, 

to approximate the solution of the Poisson equation 

uxx + uyy = - 2 , for 0 < χ  < 1, 0 < y < 1, 

u = 0, on χ  = 0, χ  = 1, y — — 1 , y = 1, 

which corresponds to the first variation of 

J

[
u

\ = [ J i
u

l +
 u

l - ±u) dxdy, 
Jo J-i 

we choose 

(147.7.a-&) 

(147.8) 

(147.9) u(x,y) « v(x,y) = f(x)(y
2

 - 1). 

where f(x) is unknown. Using (147.9) in (147.8) results in 

which must now be minimized. The first variation of (147.10) yields the 

following differential equation for f(x) 

f " _ 5 f _ 5 
J 2J — 2' (147.11) 

The function f(x) must satisfy / ( 0 ) = / ( l ) = 0 for (147.7.b) to be satisfied. 

Solving (147.11) with these boundary conditions results in 

f(x) = — 1 -f cosh α χ  + 
/ 1 — cosh α  \ . 

\ sinh α  / 
sinh α χ , (147.12) 

where α  = VTÖ/2. Combining (147.12) with (147.9) results in the final 
approximation to (147.7). 
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N o t e s 

[1] Example 2 is from Casti and Kalaba [2]. 

[2] The Rayleigh-Ritz method also works for ordinary differential equations. 

For example, the variational principle corresponding to J[u] = f^Ky')
2

 + 

y
2

] dx is 6J = y" + y = 0. 

[3] This method is an example of a weighted residual method, see page 699. 

[4] This technique is often implemented numerically. 

R e f e r e n c e s 

[1] E. Butkov, Mathematical Physics, Addison-Wesley Publishing Co., Reading, 

MA, 1968, pages 573-586. 

[2] J. Casti and R. Kalaba, Imbedding Methods in Applied Mathematics, Addison-

Wesley Publishing Co., Reading, MA, 1973, pages 68-69. 

[3] S. J. Farlow, Partial Differential Equations for Scientists and Engineers, 

John Wiley & Sons, New York, 1982, Lesson 45 (pages 362-369). 

[4] L. V. Kantorovich and V. I. Krylov, Approximate Methods of Higher Anal-

ysis, Interscience Publishers, New York, 1958, Chapter 4 (pages 241-357). 

[5] S. G. Mikhlin and K. L. Smolitskiy, Approximate Methods for Solutions of 

Differential and Integral Equations, American Elsevier Publishing Company, 

New York, 1967, Chapter 3 (pages 147-269). 

[6] I. Stakgold, Green's Functions and Boundary Value Problems, John Wiley 

& Sons, New York, 1979, pages 539-544. 

[7] E. Zauderer, Partial Differential Equations of Applied Mathematics, John 

Wiley & Sons, New York, 1983, pages 470-483. 

148. WKB Method 

A p p l i c a b l e t o Linear differential equations. 

Y i e l d s 

A global approximation. 

Idea 

The solution of an ordinary differential equation near an irregular 

singular point is often in the form of an exponential. Conversely, an 

exponential will often be a good approximation to an ordinary differential 

equation (even one without an irregular singular point.) 
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P r o c e d u r e 

If a given ordinary differential equation does not have a small parame-

ter in it, multiply the highest order derivative te rm by a "small" parameter 

ε
2

. This tu rns the equation into a singularly per turbed differential equa-

tion. Later, we will set ε  equal to one, and recover the original equation. 

Given a singularly per turbed linear ordinary differential equation (of 

any order), look for a solution of the form 

y(x) ~ exp 
1 °° 

δ  n 

n=0 

(148.1) 

where we consider δ  = δ (ε ) to be a small number. 

The technique is to use (148.1) in the original equation and then apply 

dominant balance (see page 443) to determine a differential equation for 

So(x). Solve this equation for So(x). Then, using this solution for SQ(X), 

apply dominate balance again to determine the next largest term. This 

will be a differential equation for the unknown S\(x). Solve this equation, 

and then i terate this procedure to determine several of the {Si(x)}. 

In order for the W K B approximation to be valid on an interval, we 

require tha t <$
n

S n+i < 1 as δ  —» 0 and tha t Sn+i(x)/Sn(x) be a bounded 

function of χ  on the given interval (for η  = 1 ,2 , . . . ) . If these do not 

hold, the expansion procedure is not valid. Note t ha t if we have δ  = 

1, the constraints on {Si} become constraints on the interval where the 

approximation is valid. 

Spec ia l C a s e 

For the singularly per turbed linear second order ordinary differential 

equation 

e
2

y" = Q(x)y,
 (148.2) 

with Q(x) φ  0, we use (148.1) in (148.2) to determine 

Ç (S'0f + ?Çs'QS[ + ^<?£ + . · · = Q(x),

where the exponential t e rm common to bo th sides has been factored out. 
The largest terms in (148.3) are ( S £ ) V / < 5

2
 and Q(x). Since Q(x) is 

presumed to be of order one, we must have δ  = ε  and (S'0)
2

 = Q(x), 

or 
r

x

 , 
(148.4) S0(x) = ± j* 
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y(x) ~ d [Q(*)r
1/4exp(i f y/W) 

+ C2 [Q(x)}-
1/4

 e x p ( - J f \fW) , 

(148.6) 

for some constants C\ and C2. If a higher order approximation was desired, 

it is easy to derive tha t 

S2(x) 
Q" HQ')

2 

8 Q
3 /2

 3 2 Q
5

/
2

J 
dt. 

53(ι)_ϊ β ^ +w 
since all of the equations for the higher order {Si(x)} are of first order. 

In Marie and M. Tomic [11] it is shown tha t (148.6) is the correct 

asymptotic result if / ° ° y/Qdt = oo and / ° ° Q
,2

Q~
5

/
2

 dt < oo
. 

E x a m p l e 

Given the Airy equation 

y" = xy, (148.7) 

we introduce a small parameter ε
2

 and write (148.7) as e
2

y" = xy. This is 

now an equation of the same form as (148.2), with Q(x) = x. Hence, the 

approximation in (148.6) (with ε  = 1) yields 

y(x) ~ C 1 x -
1

/
4

e x p ( | x
3

/
2

) + C 2 x -
1

/
4

e x p ( - | x
3

/
2

) . (148.8) 

If we had included the 5 2( x ) term, the approximation would be 

»(*) ~ dx-^expUx
3

'
2

) ( l + A x- 3 / 2 ) 

(148 9) 
+ C 2X -

1

/ 4 e X P( - § X
3

/
2

) ( l - A x- 3 / 2 ) . 

In bo th (148.8) and (148.9) the approximations are valid only as χ  —• oo. 

Using δ  = ε  and (148.4) in (148.3), and applying dominant balance again, 

yields a first order differential equation for Si(x) 

2S'0S[ + su = 0, 

which can be integrated directly to yield 

S1(x) = -l\ogQ(x). (148.5) 

Using (148.4) and (148.5) in (148.1), we determine the leading order ap-

proximation to the solution of (148.1) to be 
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N o t e s 

[1] WKB stands for G. Wentzel, H. Kramers, and L. Brillouin. This method is 
also sometimes called the WKBJ method, or the Jeffreys method. 

[2] The eigenvalue problem z" + X
2

V(x)z = 0 with y(0) = y(l) = 0 can also be 
analyzed by the WKB method. Using (148.6) we can write the approximate 

solution as z(x) = A(x)sm f
x

 y/V(t) dt + φ (χ )^. The eigenvalues 

are determined by where the oscillatory function vanishes. To leading 

order it can be shown that the eigenvalues satisfy An — ~T~ Î as 71 • 0 0 , 
L 

where L = JQ y/V(t) dt. A new correction to this formula is in Lindblom 
and Robiscoe [8]. 

[3] Ludwig [9] illustrates how the WKB method may be applied to partial 
differential equations. 

[4] The WKB approximation results in an asymptotic series. Hence, as more 
terms are taken in (148.1), the result may diverge. 

[5] WKB is a singular perturbation technique, and boundary layer theory (see 
page 510) may be derived from it

. 
'So O r ) [6] The approximation y(x) ~ exp 

δ  

approximation. The approximation y(x) ~ exp 

called the physical optics approximation. 

is often called the geometrical optics 

S0(x) 

δ  + 5i(z) is often 

d
n

y 
[7] For the linear ordinary differential equation of degree η  ε ^ - η  = Q(x)y, the 

dx 

physical optics approximation is given by y(x) ~ exp 

δ  = ε
1 /η

 and 

^ E ) + 5 i ( x ) with 

So = ω  J
X

[Q(x)]
1/n

dt, Si = L - ü l o g Q ( a O , 

where ω  is any of the n-th roots of unity (i.e., ω
η

 — 1). 
[8] In regions where Q(x) does not vanish, the classical WKB solutions of 

(148.2) in (148.6) are valid. Points where Q(x) is equal to zero are called 
turning points or transition points, the solutions in (148.6) are not valid 
at these points. However, the Langer connection formula shows how the 
solution on each side of a turning point may be connected. 

Consider (148.2) when Q(x) has a single, simple zero at χ  = 0, and is 
monotonically increasing everywhere. We presume the boundary condition 
y(oo) = 0, to avoid the exponentially growing solution in (148.6) when 
χ  —• oo. Consider a region that contains a turning point. Dividing this 
region into three smaller regions (with the turning point in the center region), 
asymptotic approximation may be obtained in each region. (Use WKB in 
the two outer regions, linearize Q(x) in the center region and write the 
answer in terms of Airy functions). By appropriate matching (see page 
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510), the arbitrary constants in these three solutions can be related. Hence, 
a uniformly valid approximation is given by: 

yuni{(x) = CS
1

0

/6

Q(x)-
1/i

M 
2/3" 

where So(x) = f* y/Q(t) dt and C is an arbitrary constant. 

Many extensions to this simple formula have been found. The ordinary 

differential equations considered can be of higher order, there can be multiple 

turning points, and the turning point need not be simple. Wazwaz [17] 

considers a singular perturbation problem for a second order ordinary dif-

ferential equation with two interior points of second order. 

[9] Note that WKB approximations to the two linearly independent solutions 

to ε ν " + a(x)y' + b(x)y = 0 have the form 

y i( x ) c C le x p [ - y * M A ] , 

as ε  —• 0
+

. See Example 4 in section 10.1 of Bender and Orszag. 

[10] Fedoryuk [4] considers the equation ε ν " + f(x,y) = 0. 
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IV.A 

Numerical Methods: Concepts 

149. Introduction to 

Numerical Methods 

Numerical analysis is a rapidly growing field, with new techniques 

being developed constantly. Presented in the last section of this book are 

some of the more commonly used methods. 

The section has been separated into three par ts 

[1] Introductory material about numerical methods. 

[2] Methods which can be used for ordinary differential equations and, 

sometimes, also part ial differential equations. When a method in this 

par t can be used for a part ial differential equation, there is a star (*) 

alongside the method number. 

[3] Methods which can only be used for part ial differential equations. 

For some of the numerical methods presented in this section, a FOR-

T R A N computer program has been given, when a short program could 

be writ ten. None of the codes have been optimized for speed. To econ-

omize on space, many of the comments tha t would normally appear in a 

well-documented computer code have been removed. When a FORTRAN 
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566 I V . A N u m e r i c a l M e t h o d s : C o n c e p t s 

computer code is given, the output is also indicated. These codes were 

executed using F O R T R A N 77. 

Below are some useful comments when solving differential equations 

numerically. 

[1] Use prepared software packages whenever possible. Numerical codes 

are available for solving nearly any type of non-stiff ordinary differen-

tial equation. See page 570. 

[2] When writing a computer program, always test it on problems for 

which you know the solution, either analytically or from a different, 

reliable computer code. 

[3] When choosing a numerical scheme to approximate the solution to a 

differential equation, it is useful to balance the roundoff error with the 

t runcat ion error of the machine being used. A higher order method 

will not give more accurate answers if the major component of the 

error is due to roundoff. Likewise, performing calculations in "double 

precision" will not give more accurate answers if the major component 

of the error is due to the discretization scheme. 

[4] Perform numerical calculations with as many digits of precision as is 

reasonable for efficient execution. Single precision ari thmetic on the 

CYBER, which uses 64 bits, is usually sufficient. On some of the IBM 

computers, however, double precision is required to obtain the same 

accuracy. 

[5] The s tandard way to determine if a numerical scheme is implemented 

correctly and the mesh sizes are small enough to justify the a priori 

error estimates is to reduce the size of the mesh and re-run the cal-

culation. The resulting a posteriori error estimates should agree with 

the a priori error estimates. 

[6] As a rule of thumb, to calculate a first derivative by forward differences, 

the roundoff error and the t runcat ion error will be approximately 

equal (and so accuracy will be high) if the difference in values used 

is the square root of the number of significant digits. For example, 

if your computer is working with 20 decimal digits of precision, then 

an accurate numerical approximation to the derivative of y(t) will be 

obtained by [y(t) - y{t + At)]/At for At ~ 1 0 "
1 0

. 

[7] Note tha t several of the methods described in earlier par ts of this book 

may be readily implemented numerically. For some of those methods, 

references have been given tha t refer to numerical implementations. 

No mention of those methods is made in this section. 

[8] Listed below are, in the author ' s opinion, the most useful methods 

appearing in this last section. These are the methods tha t might be 

tried first, when a numerical approximation is required. 
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M o s t Use fu l M e t h o d s for O D E s 

• Boundary Value Problems: Box Method 

• Boundary Value Problems: Shooting Method* 

• Continuation Method* 

• Euler 's Forward Method 

• Finite Element Method* 

• Predictor-Corrector Methods 

• R u n g e - K u t t a Methods 

• Stiff Equations* 

• Weighted Residual Methods* 

M o s t Use fu l M e t h o d s for P D E s 

• Continuation Method* 

• Finite Element Method* 

• Weighted Residual Methods* 

• Elliptic Equations: Finite Differences 

• Elliptic Equations: Relaxation 

• Hyperbolic Equations: Method of Characteristics 

• Hyperbolic Equations: Finite Differences 

• Method of Lines 

• Parabolic Equations: Implicit Method 

• Pseudo-Spectral Method 

150. Definition of Terms 

for Numerical Methods 

A - s t a b l e A linear multistep method is A-stable if all solutions of the 

difference equation generated by the application of this method to the 

scalar test equation, y! = Xy, tend to zero as χ  —• oo for all complex λ  with 

Re λ  < 0 and for all fixed step sizes h with h > 0. Note tha t an explicit 

mult istep method cannot be A-stable. 

C o m p u t a t i o n a l m o l e c u l e A computat ional molecule is a pictorial rep-

resentation of a finite difference scheme for a part ial differential equation 

in two independent variables. In such a figure, the circles indicate which 

points are related by a difference scheme; the value being determined by the 

difference scheme is often shown shaded. For example, the computat ional 

molecule for the so-called "five-point star" approximation to the Laplacian, 
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Figure 150. Computational molecules for two different approximations. 

V
2

Uij ~ \ + ^ i j ' + i +
 u

i-ij + is shown in Figure 150.a. 

The computat ional molecule for the following explicit finite difference ap-

proximation tO Uf = uxx 

is shown in Figure 150.b. 

C o n s i s t e n c y of a f inite difference s c h e m e A method is consistent 

if the t runcat ion errors tend to zero as the mesh is refined (i.e., as the 

characteristic scales in the mesh {Ax, At, . . . } tend to zero). There are 

two types of consistency: 

C o n d i t i o n a l l y c o n s i s t e n t If the t runcat ion errors only tend to zero 

if {Ax, At, . . . } tend to zero in a certain way. For example, it may be 

required tha t (Ax)
2

 < At. 

U n c o n d i t i o n a l l y cons i s t ent If the t runcat ion errors tend to zero no 

mat te r how {Ax, At, . . . } , tend to zero. 

C o n s e r v a t i v e s c h e m e A conservative numerical scheme is one in which 

the "total energy" described by the differential system is conserved during 

the integration of the system. 

Difference s c h e m e A difference scheme is an approximation of a deriva-

tive te rm at a point by a collection of values near the point. 

C e n t e r e d s c h e m e A centered scheme is symmetric about the point 

at which the derivative is being approximated. For example, y'(x) ^ 

O n e - s i d e d s c h e m e A one-sided scheme only uses values from one side 

of the point at which a derivative is being approximated. Examples 

are forward and backward difference schemes. 

y(x + ft) - y(x - ft) 

2ft 
, when ft <C 1. 
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Forward dif ference s c h e m e A forward difference scheme is a one-

sided difference scheme tha t uses points "ahead" of the point tha t 

is being approximated. For example, y'{x) ^ ^—yj^l^ when 
h 

Λ < 1. 

B a c k w a r d difference s c h e m e A backward difference scheme is a 

one-sided difference scheme tha t uses points "behind" the point tha t 
y(x) — y{x — ti) 

is being approximated. For example, y'{x)   ̂ , when 
h 

Expl ic i t m e t h o d An explicit method is one for which there is an explicit 

formula, at a point, for the value of the unknown terms appearing in the 

differential equation. 

Grid A grid is a set of points, called mesh points, on which the solution of 

a differential equation is approximated. If the points are uniformly spaced, 

then we have a uniform grid; otherwise we have a non-uniform grid. See 

page 606. 

Impl ic i t m e t h o d An implicit method is one for which there is not an 

explicit formula, at a point, for the value of the unknown terms appearing 

in the differential equation. Generally a nonlinear algebraic equation must 

be solved to determine the value at a given point. 

M e s h See Grid. 

Order o f a numer ica l m e t h o d See page 573. 

S t e p s ize See page 573. 

Stiff e q u a t i o n s Stiff equations are differential equations tha t are ill-

posed in a computat ional sense. There are many different definitions of 

stiffness, two common ones are 

(A) A system of differential equations is said to be stiff on the interval 

[0, T] if there exists a component of a solution of the system tha t 

has a variation on [0,T] t ha t is large compared with 1/T. 

(B) A system is stiff if there exists more than one scale, with a great 

difference in size, on which the solution evolves. For instance, 

the system of differential equations y ' = A y (where A is a con-

stant matr ix with eigenvalues λ ^( Α )) is stiff if max* |Ai(A)| ^> 

mini I Κ  (A) |. 

T r u n c a t i o n error See page 573. 
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151. Available Software 

A p p l i c a b l e t o Differential equations tha t are to be approximated 

numerically. 

Idea 

When numerically approximating the solution to a differential equa-

tion, it is best to use commercially available software whenever possible. 

The routines commonly available for ordinary differential equations are 

adequate for nearly all types of problems. The routines commonly available 

for part ial differential equations are not as well developed. For linear 

problems with no singularities, however, the available software is very good. 

There are a mult i tude of commercially available computer libraries and 

isolated computer routines available. A taxonomy for differential equation 

software has been developed as par t of the GAMS project at the National 

Inst i tute of Standards and Technology [6]. GAMS [5] has bo th a taxonomy 

of computer routines and a listing of some available software. Excerpts 

from GAMS may be found star t ing on page 586. 

Since good software is readily available, we paraphrase the admonition 

tha t Byrne and Hindmarsh [8] give: 

. . . if you are using a 10-line solver for differential equations 

. . . you should consider using one of the programs referenced 

in this section. There is now commercially available "soft-

ware" for differential equations with no error control, a user-

specified step size, and no warning messages. We advise 

against using such programs, even on a small computer. The 

reasons are straightforward. For all but trivial problems, 

such programs cannot be sufficiently reliable for accurate 

computational results. 

When using a prepared software package, it is always useful to test the 

package on problems similar to the one tha t you will use the package for. 

There are many collections of test problems for this purpose. 

For example, Rice and Boisvert [20] describe 56 elliptic part ial dif-

ferential equation test problems defined on rectangular regions. Most of 

these problems involve some parameters; by selecting certain values for 

those parameters , 189 specific problems are identified. These problems are 

classified with respect to operator type (Poisson, Helmholtz, self-adjoint, 

constant coefficients, general), boundary conditions (Dirichlet, Neumann, 

mixed), and features of the solution (entire, analytic, singular, peak, oscil-

latory, boundary layer, wave front, singularities, irregular, discontinuities, 

computationally complex). 
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N o t e s 

[1] Given a new problem to solve numerically, it is often attractive to design 

new software for this class of problem. However, it is usually more efficient 

to transform the problem and use well-tested codes. See, for example, 

Shampine and Zhang [22], 

[2] Addison et ai. [2] present a decision tree to assist in the process of selecting 

an appropriate algorithm for the numerical solution of initial value ordinary 

differential equations. The decision tree can be used in an interactive man-

ner. Where possible, the recommended software routines are in maintained 

libraries that have been extensively tested. Addison et al. [3] contains a 

decision tree for boundary value problems. 

[3] Periodically there are reviews in the literature of software applicable to a 

specific type of differential equation. See the references. 

[4] The books by Press et al. [19], contain collections of FORTRAN, PASCAL, 

and C codes for both ordinary differential equations and partial differential 

equations. 

[5] Some common FORTRAN routines (other than those listed in GAMS [5]) 

include: DASSL, DISPL1, LSODE, ODEPACK. These routines are avail-

able through the National Energy Software Center, Argonne Laboratories, 

Argonne, Illinois 60429. 

[6] Many scientific software routines, including those for differential equations, 

may be obtained for free (via electronic mail) from a variety of computer 

networks. To obtain instructions on how to obtain this software, send the 

mail message "send index" to the following Internet or uucp addresses: 

netlib@research.att.com 

uunet !research!netlib 

See the article by Dongarra and Grosse [12] for details. 

[7] Even though it is possible, using spreadsheet programs to numerically ap-

proximate differential equations is not recommended; see Enloe [14]. 

[8] Software for small computers is summarized in Penn [18] and Teles et al. [23]. 
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152. Finite Difference Methodology 

A p p l i c a b l e t o Differential equations. 

Y i e l d s 

A finite difference scheme tha t can be used to numerically approximate 

a given differential equation. 

P r o c e d u r e 

For the first order ordinary differential equation y' = f(x, y) consider 

the general multistep (or fc-step) method 

k k 

N[vn,Vn+i, Vn+k] := Σ  A

3
V

n+J ~ h Σ  ßjf(
X
*+Ji

 V
n+j)

 =
 ° > ί

1 5 2

·
1

) 

j=0 j=0 

where a0 Φ  0, η  = k, fc + 1 , . . . , and vn is an approximation to y(xn) (where 

xn = nh and h is a small number called the step size). We presume the 

constants {o^} and {/%} are known. 

If β ο  φ  0, then the scheme is an implicit difference method. If ßo = 0, 
then the scheme is an explicit difference method. For explicit methods, 
equation (152.1) can be solved for vn in terms of the other quantit ies in 
equation (152.1). 

The exact solution to the equation y' = f(x,y) will not, in general, 
satisfy N[yn, yn+x,..., yn+k] = 0 (here, yn = y(xn)). If h < 1, then a 
Taylor series can be employed to show tha t 

2 / n + j = Vn + jhy'n + ——y„ + · 
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Using this expansion, a Taylor series can be taken of N[yn, yn+\, · · · , 2/n+fc] 
to obtain 

k k 

A%n, 2 / n + i , . . . , yn+k] = ^ ctjyn-j - h ^ β ό ί (χ η -ό , yn-0) 

j=o j=o (
1 5 2

·
2

) 

= / i
p + 1

Ä n + 0 ( , V +
2
) , 

for some numbers ρ  and Rn. 

If ρ  > 1, then the method is said to be consistent. If a method is 

consistent, then ρ  is called the order of the method. We say tha t "the 

method is p-th order accurate." The term h
p+1

Rn is called the truncation 

error. A theorem of numerical analysis states tha t there exist methods of 

order ρ  = 2k. 

The first and second characteristic polynomials of the method in (152.1) 

are defined as p(x) and σ ( χ ) , where 

j=0 

If (152.1) is consistent, then it follows tha t p ( l ) = 0 and p'{\) = σ (1) . 

If ρ  > k + 2, then the method will always be unstable (stability for 

ordinary differential equations is defined on page 613). Specifically, if k is 

odd, then ρ  = k + 1 is the largest ρ  such tha t there is a stable method. 

Also, if k is even, then ρ  = k + 2 is the largest ρ  such tha t there is a stable 

method. If a difference method is stable and is of p- th order accuracy, then 

— Vnl = o(h
p

) in any finite interval, 0 < χ  < L. 

Many finite difference formulas are tabulated on page 578. For exam-

ple, for Euler 's method and the trapezoidal rule, k = 1. For Simpson's 

rule, k = 2 and ρ  = 4. To obtain a discretization for a differential 

equation, it is possible to obtain a finite difference formula for every term 

in the differential equation and then combine these formulas in the obvious 

manner. (Just replace each term in the differential equation with its finite 

difference approximation.) However, combining formulas in this way for 

part ial differential equations—without understanding the underlying phys-

ics of the problem and the approximations—can quickly produce results 

tha t are unrelated to the t rue problem (see also page 25). 
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E x a m p l e 

There are many procedures for generating finite difference formulas for 

the terms appearing in differential equations; we illustrate one straightfor-

ward method. Suppose we want to find an approximation to f'(xo), given 

the values f(xo — h) and f(xo + h). We write 

f'(xo) = af(x0 - h) + ßf{xo + h) + e ( x 0; Λ ), (152.3) 

where a and β  are constants to be determined, and e(xo; h) represents the 

error term. Taking a Taylor series of the right-hand side of (152.3) (and 

using /o to represent f(xo), / ό  f °
r
 f'(

x

o)i etc.), we find 

+ß 

fo - hf0 + £fS - γ  fö' + 0(h
4

) 

/ ο  + ^ + ̂  + ϊ
Λ

" + 0 ( / ί 4 ) + e(x0;h). 

If we choose a = —β , then this simplifies to 

fo = ß 2 / ^ + γ / £ " + 0 ( Λ
4
) + e(x0',h). 

h
2 

Finally, if we choose β  = l/2h, then we obtain / ό  = /o + -rf" + 0{h
3

) + 
6 

e(a?o; Λ ). Hence, e(#o; Ό  = 0(h
2

). Pu t t ing all of this together, we have the 
finite difference approximation 

f'(x0)=
f{X0 + h

\ h

f { X 0

-
h )

+ O ( h > ) . 

This formula could be used to approximate the ordinary differential 
equation y' = y

2

, on a, uniform mesh, by 

U(XQ + h) — U(XQ — h) _ 2 

2h 
= u (ar0), 

where ix(x) « 2/(x). Using x 0 '·= nh and u n := u(nh) in this formula, we 

find
 U y i

"
t
"

1
^ ^

M n
~

1
 = u^. This can be manipulated into the explicit formula: 

^ n + i = w n_ i + 2hul. 
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N o t e s 

[1] Observe that a difference scheme can be stable and still not be consistent. 

Stability and accuracy are two entirely different concerns. 

[2] The Dahlquist relations are 

ρ  ρ  

Σ
α

ί ί * = - * Σ Α /
_ 1

· (
1 5 2

·
4

) 
j = 0 j = 0 

If they hold for k = 0 , 1 , . . . ,p, then we have (compare with (152.1)) 

ρ  ρ  

Σ  ay v(* - jh) = Σ  AV(* - i
h

) +
 0

 (
h P + 1

) • 

3=0 j=0 

[3] Finite difference schemes can be looked up (see page 578 or Isaacson and 
Keller [5]) or they can be constructed as needed (see Lapidus and Pinder [9] 

or Ganzha, Mazurik, and Shapeev [2]). 

[4] When approximating a differential equation on a bounded interval, the limit 
h —• 0, η  —• oo, nh fixed, is of interest. If the local error of a discretization 
scheme (as determined by (152.2)) is 0 ( / i

p + 1
) , then the global error (the 

error at the end of the integration) will be 0(h
v

). 

[5] Obrechkoff methods utilize derivatives of y in forming the finite difference 
scheme. The fc-step Obrechkoff method using the first ra derivatives of y 

may be written 
k m k 

Σ
 a

jy^j = Σ
h %

 Σ  fay ni * · 

j = 0 i = l j=0 

See Lambert [8] for details. 

[6] Often, a differential equation will have invariants that remain constant dur-
ing the evolution of the differential equation. For example, in a conservative 
system the energy should remain constant. A numerical scheme should be 
used that insures that these invariants remain constant; see Gear [3]. 

[7] State-of-the-art software packages for ordinary differential equations do not 
use a single discretization scheme with a fixed step size. Rather, they vary 
their order (i.e., they choose from a collection of discretization formulas) 
and they vary the step size. Ideally, the optimal step size and order are 
determined at each step; this is an important aspect of the code's efficiency 
(see page 690). 

[8] A detailed derivation and example of Euler's method are given on page 653. 

[9] To determine if a finite difference scheme for a partial differential equation 
is stable, see either the Courant consistency criterion (page 618) or the Von 
Neumann stability test (page 621). 
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[10] There are other types of finite difference approximations that are not in the 
form of (152.1). See, for example, the cosine method (see page 640), the 
predictor-corrector method (see page 679), or the method of Runge-Kutta 
(see page 684). 

[11] There are many useful theorems in numerical analysis concerning methods 
for specific equations. For example: a method for ut = ux with non-negative 
coefficients cannot have an accuracy of ρ  > 1. See Iserles and Strang [6]. 

[12] Energy propagation under dispersive partial differential equations travels 
with the group velocity. Even if an equation is non-dispersive, any finite 
difference approximation to it will be dispersive. Hence, study of the group 
velocity is an important part of the analysis of a finite difference scheme. 
See Trefethen [11] for details. 
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153. Finite Difference Formulas 

A p p l i c a b l e t o Differential equations tha t will be solved by the method 

of finite differences. 

Idea 

A table of finite difference formulas for some common grids and com

mon equations can be useful. 

P r o c e d u r e 

Given a differential equation to be approximated by finite differences, 

and a grid (see page 606) on which the solution is desired, replace every 

derivative by a finite difference approximation to tha t derivative. Standard 

finite difference formulas presume tha t there is an underlying uniform grid 

with a grid spacing of h. (In two dimensions, the uniform grid spacing is 

commonly taken to be h in one direction, and k in another direction). 

In the s tandard formulas for ordinary differential equations for the 

system y' = f (# ,y ) , we use the shor thand notat ion xn := rr0 + nh, yn

 := 

y ( x n) , fn := f ( x n , y n) , and v n « y n . 

In the s tandard formulas for part ial differential equations for the sys

tem L[z] = f(x,y,z) (where L[] is a two-dimensional differential operator) 

we use the shorthand notat ion xn := XQ + n/ ι , yn := yo + nk, x n , m := 

( ^ n ? 2 / m ) >
 z

n , m "
= z

( ^ n ? 2 / m ) ? i n , m · ~ f*(^ri5 Vmi Zn,m)i and V n ?m ä Zn̂ m. 

In this section we include tables of formulas for the following cases: 

[1] One Dimension: Rectilinear Grid 

[2] Two Dimensions: Rectilinear Grid 

[3] Two Dimensions: Irregular Grid 

[4] Two Dimensions: Triangular Grid 

[5] Formulas for the ODE: y' = f{x,y) 

[6] Explicit formulas for the P D E : aux + ut = 0 

[7] Implicit formulas for the PDE: aux + ut = S(x, t) 

[8] Formulas for the PDE: F{u)x + ut = 0 

[9] Formulas for the PDE: ux = uu 
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O n e D i m e n s i o n : R e c t i l i n e a r G r i d 

The following is a list of finite difference formulas, of different accura

cies, for a grid with uniform spacing. 

Formulas for the first derivative: 

/ ' ( * 0) = £ - Ζ Λ + 0( Λ ) 

f'(xo)=-
h +

 %-
3fo

+0(h*) 

/ ' ( x o ) = ~
/ 2 + 8 / l

m

8 /

-
1 + /

-
2 +0(h*) 

Formulas for the second derivative: 

rll ( \ fi — 2 / l + fo . 
/ ( * o ) = - 2 + 0(h) 

η  

f"(x0)=
fi

-
2f

y
f

-
1

 +o(h
2

) 

f » { x o) = - / 3 + 4 / a - 5 / i + 2 / , + 0 ( / i 3) 

/ " ( x „ ) = - Λ  + 1 6 Λ - 3 0 Λ  + 1 6 / - Ι - / - , + o ( f t4 } 

I2/I 

Formulas for the third derivative: 

/ " ' ( X o) = / s - 3 / 2 + 3 / 1 - / 0 + 0 ( f c) 

r/ / / / \ _ / 2 - 2 / 1 -h 2 / - 1 - / - 2 n/ , 2 \ 

/ —z + °(
h

) 

Formulas for the fourth derivative: 

/ <
4

> ( * o ) =
 / 4

~
4 /3 + 6

{
2

"
4 /l + /

° + Ο (Λ ) 
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U2 

\e2h 

63h u3 

V
2

/ (X0 ,0 ) : 
12Λ ' 

(-60/o,o + 16(/i,o + /ο , ι  + / - ι , ο  + /o , - i ) 

- ( Λ , Ο  + /θ ,2 + Z-2,0 + /0 , -2 ) ) + 0(h
4

) 

T w o D i m e n s i o n s : Irregular G r i d 

Nonuniform grids may be the only way to numerically solve some 

practical problems involving part ial differential equations. For example, a 

non-uniform grid may be required near the boundaries of a domain. Also, 

adaptive grids and moving grids are sometimes more useful t han a fixed 

grid (see page 606). The following finite difference formulas refer to the 

parameters defined in Figure 153.1. 

Figure 153.1 Spacing on an irregular domain. 

T w o D i m e n s i o n s : Rec t i l inear G r i d 

The following is a list of finite difference formulas, of different accu

racies, for rectangular grids with uniform spacing. Other formulas can be 

obtained from the last list by simply holding one variable constant. 
Formulas for first order part ial derivatives: 

Formulas for second order part ial derivatives: 

Formulas for the Laplacian: 
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b c 

χ  

/ / \ / \ \ 

Figure 153.2 Definition of the coordinate system for a triangular domain. 

Formulas for first order part ial derivatives: 

du 

dx 

du 

dy 

X

0 , 0 

X

0 , 0 

U2 — U4 

η (θ 2 + θ 4) 

U3 - U\ 

+ 0{h) 

+ 0{h) 

Formulas for second order part ial derivatives: 

d
2

u 

dx
2 

d \ 

dy
2 

V
2

u 

X

0 , 0 

X

0 , 0 

Ui - Up U3 - Up 

01 (01 + 0 3 ) 03(01+03) 

U2 - Up _^ U4 - Up 

dx
2 

02(02 + 04) 02(02 + 04 ) 

+ 

+ 0 ( / i ) 

+ 0 ( / i ) 

d
2

u d
2

u 

dy
z 

Ui 

X

0 , 0 

+ 
U2 U3 U4 

01(01 +03) 02(02 + 04) 0l(01 + 0
3
) 02(02 + 04) 

-{ek + ek)U0\+o{h) 

T w o D i m e n s i o n s : Tr iangular G r i d 

Sometimes it is easier to perform computat ions on a uniform trian

gular grid (see Figure 153.2). If we represent the three directions on the 

triangular grid as {a, b, c} , then we can compute the part ial derivatives: 

du 

da 

d^u 

da
2 
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du u - i f 2 ^ + 2 ^ - ^ 
«« = 5 Ï »

 Uyy

-3{db*
+2

dc* da
2

)' 

u - 2 !h „ 2 2 / a
2

« d
2

u d
2

u\ 

See Gerald and Wheatley [6] (section 7.9) for a worked example using 

triangular coordinates. 

S c h e m e s for t h e O D E : y' = f(x,y) 

Some common difference formulas for the ordinary differential equation 

y' = f{x,y) are: 

Adams-Bashforth, order 2: vn - vn-i = \h [ 3 / n- i - fn-2] 

Adams-Bashforth, order 4: vn - vn-i = j^h [ 5 5 / n- i - 5 9 / n- 2 + 3 7 / n- 3 - 9 / n- 4 ] 

Adams-Moul ton, order 4: vn - vn-i = j^h [ 9 / n + 1 9 / n- i - 5 / n - 2 + fn-3] 

backward Euler: vn - vn-i = hfn 

Euler's method: vn - vn-i — hfn-i 

leapfrog: vn+i - vn-\ = hfn 

midpoint rule: vn - vn-i = \h(fn + fn-i) 

Simpson's rule*: vn - vn-2 = \h(fn + 4 / n_ i + fn-2) 

trapezoidal rule**: vn - vn-i = \h(fn + / n - i ) . 

Of these methods, Euler 's method and the leapfrog method are ex

plicit; all the others are implicit methods. 

* Also known as Milne's method. 

** Also known as Heun's method and as the Adams-Moul ton method of 

order 2. 

These relations may be inverted to yield 
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Expl i c i t formulas for t h e P D E : aux + ut = 0 

Below we list named explicit difference formulas for the part ial differ

ential equation aux + ut = 0. DuChateau and Zachmann [3] (page 450) also 

list the local t runcat ion error for each of these methods. In this listing, h is 

the uniform χ  spacing, and k is the uniform t spacing. The approximation 

to u(xn, tj) = U(XQ + nft, to + jk) is represented by unj. 

Forward in t ime, forward in space (FTFS) : 

Forward in t ime, centered in space (FTCS) (unstable): 

Forward in t ime, backward in S D a c e (FTBS): 

Lax-Friedrichs method: 

Lax-Wendroff method: 

Impl ic i t formulas for t h e P D E : aux + ut = S(x,t) 

Below we list named implicit difference formulas for the part ial differ

ential equation aux + ut = S(x,t). DuChateau and Zachmann [3] (page 

460) also list the local t runcat ion error for each of these methods. In this 

listing, h is the uniform χ  spacing, and k is the uniform t spacing. The 

approximation to u(xn,tj) = U(XQ + nh, to + jk) is represented by u n j, and 

Snj is used to represent S(xn,tj). 

Backward in time, backward in space (BTBS): 

Backward in time, centered in space (BTCS): 

Crank-Nicolson: 

Wendroff method: 
1 
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Formulas for t h e P D E : F(u)x + ut = 0 

Below we list named difference formulas for the partial differential 

equation F(u)x + ut = 0 (see DuChateau and Zachmann [3], page 475, 

for more details). In this listing, h is the uniform χ  spacing, k is the 

uniform t spacing, and the ratio of these is s = k/h. The approximation to 

u(xn,tj) = u(xo + nh, to+jk) is represented by unj and F m >n := F (um,n). 

A star superscript indicates an intermediate result (and F* := F(un)). 

Finally, an := Fn = F'(un). 

Note tha t some of the left-hand sides of the last listing can be obtained 

from this listing by taking F(u) = au. 

Centered in t ime-centered in space (unstable): 

Unj + 1 — Unj — 7}S (Fn+lj — Fn-lj) 

Lax-Friedrichs method: 

Unj + 1 = \ (Un+l,j + Un-ij) — | s (Fn+\j + Fn-\j) 

Lax-Wendroff method: 
+ 1 = Unj — 2$ (Fn+ij — Fn-ij) 

+ [a n+i /2,j (Fn+ij - Fnj) - a n_ i / 2 )j (Fnj - F n_i ,j)] 

Richtmeyer method: 
U
n+l/2 - \ (un+l,j + Unj) ~ \ (Fn+lJ ~ Fnj) 

UnJ + 1 = Unj - S ( F * + 1 /2 - F*_i) 

MacCormack method: 

Un = Unj - S (Fn+lj - Fnj) 

Unj + 1 = \ [Unj +Un-S(FZ- F*_x)] 

FTBS upwind method (use when F'(u) > 0): 

Unj + l = Unj + S (Fn-\j - Fnj) 

F T F S upwind method (use when F'(u) < 0): 

Unj + l = Unj — S (Fn+lj — Fnj) 

Formulas for t h e P D E : ux = uu 

Below we list named difference formulas for the part ial differential 

equation ux = utt. Lapidus and Pinder [9] discuss each of these methods 

in some detail. In this listing, h is the uniform χ  spacing, k is the uniform t 

spacing, and ρ  is defined to be ρ  = h/k
2

. The approximation to u(xn,tj) = 

u(xo + nh, to + jk) is represented by unj. 

Classic explicit approximation: 

Un+lj = (1 - 2p)unj + p(unj + l + Unj-\) 

DuFort-Frankel explicit approximation: 
(1 + 2p)un+lj = 2p (Unj + l + Unj-l) + (1 - 2p)un-\j 

Richardson explicit approximation: 

U n+ l , j - Un-lj ~ 2p(unj + l + Unj-l) + fyunj = 0 
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Backward implicit approximation: 

(1 + 2p ) l tn+l , j - p ( ^ n + l , j + l + U n + l , j - l ) = Unj 

Crank-Nicolson implicit approximation: 

2 ( / 9 + l ) u n+ l , j - p ( W n + l , j + l + « n + l , j - l ) = 2(1 - p)un,j + p (unj+i + Un,j-l) 

Variable weighted implicit approximation (with 0 < θ  < 1): 

(1 + 2p6)un+ij = p(l - Θ ) (un, j+l + UnJ-l) + P# (l / n+l , j + l + ^ n + l . j - l ) 

+ [ l - 2 p ( l - 0 ) ] u n , j 

N o t e s 

[1] Fornberg [4] has a simple recursive technique for determining finite difference 

formula of high order. 

[2] For problems with periodic boundary conditions, it is possible to obtain 

finite differential formulas that are of infinite order; see page 759. 

[3] All of the discretization methods used should be of comparable order. That 

is, if one term in an equation has a discretization error of 0(h
2

), then there 

is no reason for another term to have a discretization error of 0(h
4

). 

[4] Note that nonuniform grids may give rise to a number of consistency/stability 

phenomena that have no counterpart on uniform grids. 
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f Identification of commercial products does not imply recommendation or 

endorsement by NIST. 

• CMLIB 

• Collected Algorithms of the ACM 

• ELLPACK 

• IMSL 

• NAG 

• NMS 

• PLOD 

• PORT 

• Scientific Desk 

• SCRUNCH 

P r o c e d u r e 

When numerically approximating the solution to a differential equa-

tion, it is best to use prepared software whenever possible. As described 

on page 570, there are a mult i tude of commercially available computer 

libraries and isolated computer routines for this purpose. A taxonomy for 

differential equation software has been developed as par t of the GAMS 

project at the National Inst i tute of Standards and Technology (NIST) [1]. 

GAMS [2] has bo th a taxonomy of computer routines and a listing of some 

available software. In this section we print par t of tha t manual . 

In the "Taxonomy" section we indicate the subject headings under 

which software has been classified. In the "Excerpts" section we give the 

text tha t appeared in GAMS [2], in a format similar to the original. For 

each topic the applicable routines in a specific library are described. (The 

author thanks Dr. Ronald Boisvert of NIST for making this text available 

electronically.) 

The following computer libraries are referred to in the "Excerpts" 

sectionj\ Their inclusion does not consti tute an endorsement. Nor does 

it necessarily imply tha t unnamed packages are not worth trying. 

Y i e l d s 

Software appropriate for a specific problem. 

A p p l i c a b l e t o Differential equations. 

154. Excerpts from GAMS 
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N o t e s 

[1] In the excerpts section, ACM TOMS stands for ACM Trans. Math. Software. 

[2] Software is not listed for all the taxonomy classes that have been established. 

[3] The GAMS manual refers to the libraries PDELIB and the "IMSL Sub-

program Library." PDELIB is an internal name at NIST that is not known 

elsewhere, and no source code is available. The "IMSL Subprogram Library" 

consists of old routines that IMSL no longer supports. Hence, all references 

to each of these libraries have been deleted in the excerpts section. 

R e f e r e n c e s 

[1] R. F. Boisvert, S. E. Howe, and D. K. Kahaner, "GAMS: A Framework for 

the Management of Scientific Software," ACM Trans. Math. Software, 11 , 

No. 4, December 1985, pages 313-355. 

[2] R. F. Boisvert, S. E. Howe, D. K. Kahaner, and J. L. Springmann, Guide to 

Available Mathematical Software, NISTIR 90-4237, Center for Computing 

and Applied Mathematics, National Institute of Standards and Technology, 

Gaithersburg, MD 20899, March 1990. 

[3] CMLIB—this is a collection of codes from many sources that NIST has 

combined into a single library. The relevant sublibraries are: 

(A) BVSUP, see M. R. Scott and H. A. Watts, "Computational Solutions of 

Linear Two-Point Boundary Value Problems via Orthonormalization," 

SIAM J. Numer. Anal, 14, 1977, pages 40-70. 

(B) CDRIV and SDRIV, see D. Kahaner, C. Moler, and S. Nash, Numerical 

Methods and Software, Prentice-Hall Inc., Englewood Cliffs, NJ, 1989. 

(C) DEPAC: Code developed by L. Shampine and H. A. Watts. 

(D) FISHPAK: Code developed by P. N. Swarztrauber and R. A. Sweet. 

(E) SDASSL, see L. R. Petzold, "Differential/Algebraic Equations Are Not 

ODE's," SIAM J. Sei. Stat. Comput, 3, No. 3, 1982, pages 367-384. 

(F) VHS3: Code developed by R. A. Sweet. 

[4] ELLPACK, see J. R. Rice and R. F. Boisvert, Solving Elliptic Problems 

Using ELLPACK, Springer-Verlag, New York, 1985. 

[5] IMSL Inc., 2500 Park West Tower One, 2500 City West Blvd., Houston, TX 

77042. 

[6] NAG, Numerical Algorithms Group Limited, Wilkinson House, Jordan Hill, 

Oxford OX2 8DR, UK. 

[7] NMS—this is an internal name at NIST. The code is from D. Kahaner, 

C. Moler, and S. Nash, Numerical Methods and Software, Prentice-Hall 

Inc., Englewood Cliffs, NJ, 1989. 

[8] PLOD, see E. Agron, I. Change, G. Gunaratna, D. Kahaner, and M. Reed, 

"Mathematical Software: PLOD," IEEE Micro, 8, No. 4, 1988, pages 56-

61. 

[9] PORT, see P. Fox et al, The PORT Mathematical Subroutine Library 

Manual, Bell Laboratories, Murray Hill, NJ, 1977. 

[10] Scientific Desk is distributed by M. McClain, NIST, Bldg 225 Room A151, 

Gaithersburg, MD 20899. 
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[11] SCRUNCH—these are old, unsupported codes in BASIC. The codes are 

translations of FORTRAN algorithms from G. Forsythe, M. Malcom, and 

C. Moler, Computer Methods for Mathematical Computations, Prentice-

Hall Inc., Englewood Cliffs, NJ, 1977. 

T a x o n o m y 

11. Ordinary Differential Equations (ODE's) 

I I a . Initial value problems 

H a l . General, nonstiff or mildly stiff 

I l a l a . One-step methods (e.g., Runge-Kutta) 

H a l b . Multistep methods (e.g., Adams predictor-corrector) 

H a l e . Extrapolation methods (e.g., Bulirsch-Stoer) 

I l a 2 . Stiff and mixed algebraic-differential equations 

l i b . Multipoint boundary value problems 

I l b l . Linear 

I l b 2 . Nonlinear 

I l b 3 . Eigenvalue (e.g., Sturm-Liouville) 

l i e . Service routines (e.g., interpolation of solutions, error handling, test 

programs) 

12. Partial differential equations 

I2a. Initial boundary value problems 

I2a l . Parabolic 

I2ala . One spatial dimension 

I2a lb . Two or more spatial dimensions 

I2a2. Hyperbolic 

I2b. Elliptic boundary value problems 

I2b l . Linear 

I2bla . Second Order 

I 2 b l a l . Poisson (Laplace) or Helmholtz equation 

I 2 b l a l a . Rectangular domain (or topologically rectangular in the co-

ordinate system) 

I 2 b l a l b . Nonrectangular domain 

I2b la2 . Other separable problems 

I2b la3 . Nonseparable problems 

I2blc . Higher order equations (e.g., biharmonic) 

I2b2. Nonlinear 

I2b3. Eigenvalue 

I2b4. Service routines 

I2b4a. Domain triangulation (search also class P) 

I2b4b. Solution of discretized elliptic equations 

E x c e r p t s 

Ha: Initial value problems for ordinary differential equa

tions 
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PLOD Interactive Program 

PLOD An easy to use interactive system on a personal computer for 

the solution of initial value problems for ordinary differential 

equations. The user can change initial conditions, intervals, pa-

rameters, etc., and examine various plots on the terminal. Little 

programming needed. 

I l a l a : One-step methods (e.g., Runge—Kutta) for general, 

nonstiff or mildly stiff initial value problems for or

dinary differential equations 

Collected Algorithms of the ACM 

DMRODE: a subprogram for the automatic integration of func-

tional differential equations, such as retarded ordinary differential 

equations, Volterra integro-differential equations, and difference 

differential equations. (See K. W. Neves, ACM TOMS 1 (1975) 

pp. 369-371.) 

GERK: A FORTRAN subprogram to solve nonlinear systems of 

ordinary differential equations when it is important to have a 

global error estimate. Integrations are performed on different 

mesh spacings, and global extrapolation is applied to provide an 

estimate of the global error in the more accurate solution. The 

integrations are done using Runge-Kutta-Fehlberg methods of 

4th and 5th order. (See L. F. Shampine and H. A. Watts, ACM 

TOMS 2 (1976) pp. 200-203.) 

M3RK: A FORTRAN subroutine for solving initial value prob-

lems for nonlinear first order systems of ordinary differential equa-

tions which originate from semi-discretization of parabolic partial 

differential equations. M3RK is based on stabilized, explicit 

three-step Runge-Kutta formulas of order one and two, and de-

gree 2 through 12. (See J. G. Verwer, ACM TOMS 6 (1980) 

pp. 236-239.) 

CM LIB Library (DEPAC Sublibrary) 

Solves a system of first order ordinary differential equations with 

arbitrary initial conditions by a Runge-Kutta method. 

IMSL MATH/LIBRARY Subprogram Library 

Solves an initial value problem for ordinary differential equations 

using the Runge-Kutta-Verner fifth- and sixth-order method. 

NAG Subprogram Library 

D 0 2 B A F Integrates a system of first order ordinary differential equations 

over a range with suitable initial conditions, using a Runge-

Kutta-Merson method. 

A497 

A504 

A553 

D E R K F 

I V P R K 
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H a l b : Multistep methods (e.g., Adams predictor-corrector) 

for general, nonstiff or mildly stiff initial value prob

lems for ordinary differential equations 

Collected Algorithms of the ACM 

A658 ODESSA: A FORTRAN ordinary differential equation solver (a 

modification of LSODE) with explicit simultaneous sensitivity 

analysis. (See J. R. Leis and M. A. Kramer, ACM TOMS 14 

(1988) pp. 61-67.) 

CMLIB Library (CDRIV Sublibrary) 

C D R I V 1 Numerical integration of complex initial value problems for ordi-

nary differential equations, Gear stiff formulas. Easy to use. 

D 0 2 B B F Integrates a system of first order ordinary differential equations 

over a range with suitable initial conditions, using a Runge-

Kutta-Merson method, and returns the solution at points speci-

fied by the user. 

D 0 2 B D F Integrates a system of first order ordinary differential equations 

over a range with suitable initial conditions, using a Runge-

Kutta-Merson method, and computes a global error estimate 

check. A stiffness check is also available. 

D 0 2 B G F Integrates a system of first order ordinary differential equations 

over a range with suitable initial conditions, using a Runge-

Kutta-Merson method, until a specified component attains a 

given value. 

D 0 2 B H F Integrates a system of first order ordinary differential equations 

over a range with suitable initial conditions, using a Runge-

Kutta-Merson method, until a user-specified function of the so-

lution is zero. 

D02PAF Integrates a system of first order ordinary differential equations 

over a range with suitable initial conditions, using a Runge-

Kutta-Merson method. A variety of facilities for interrupting 

the calculation is provided. This routine is relatively complicated 

and is recommended only to experienced users. 

D02YAF Integrates a system of first order ordinary differential equations 

over one step, using Merson's Runge-Kutta method. 

Scientific Desk PC Subprogram Library 

I1A1A Integrates a system of neqn first order ordinary differential equa-

tions of the form dy(i)/dt = f(t,y(l),y(2),.. .,y(neqn)), where the 

y(i) are given at t (Runge-Kutta-Fehlberg method). 

SCRUNCH Subprogram Library 

RKF45 Runge-Kutta-Fehlberg method for the integration of a first order 

system of ordinary differential equations. In BASIC. 
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C D R I V 2 Numerical integration of complex initial value problems for ordi-

nary differential equations, Gear stiff and Adams formulas, root 

finding. 

CDRIV3 Numerical integration of complex initial value problems for ODEs, 

Gear and Adams formulas, implicit equations, sparse Jacobians, 

root finding. 

CMLIB Library (DEPAC Sublibrary) 

D E A B M Solves a system of first order ordinary differential equations with 

arbitrary initial conditions by a predictor-corrector method. 

CMLIB Library (SDASSL Sublibrary) 

SDASSL Solves the system of differential/algebraic equations of the form 

g(t,y,y
/

)=0, with given initial values. 

CMLIB Library (SDRIV Sublibrary) 

SDRIV1 Numerical integration, initial value problems, ordinary differen-

tial equations, Gear stiff formulas. Easy to use. 

SDRIV2 Numerical integration, initial value problems, ordinary differen-

tial equations, Gear/Adams formulas. 

SDRIV3 Numerical integration, initial value problems, ordinary differen-

tial equations, implicit equations, sparse Jacobians. 

IMSL MATH/LIBRARY Subprogram Library 

IVPAG Solves an initial value problem for ordinary differential equations 

using an Adams-Moulton or Gear method. 

NAG Subprogram Library 

D 0 2 C A F Integrates a system of first order ordinary differential equations 

over a range with suitable initial conditions, using a variable 

order, variable step Adams method. 

D 0 2 C B F Integrates a system of first order ordinary differential equations 

over a range with suitable initial conditions, using a variable 

order, variable step Adams method, and returns the solution at 

points specified by the user. 

D02CGF Integrates a system of first order ordinary differential equations 

over a range with suitable initial conditions, using a variable 

order, variable step Adams method, until a specified component 

attains a given value. 

D02CHF Integrates a system of first order ordinary differential equations 

over a range with suitable initial conditions, using a variable or-

der, variable step Adams method, until a user-specified function 

of the solution is zero. 

D02QAF Integrates a system of first order ordinary differential equations 

over a range with suitable initial conditions, using a variable 

order, variable step Adams method. A variety of facilities for in-

terrupting the calculation are provided. This routine is relatively 

complicated and is recommended only to experienced users. 



592 I V . A N u m e r i c a l M e t h o d s : C o n c e p t s 

NMS Subprogram Library 

SDRIV2 Numerical integration, initial value problems, ordinary differen-

tial equations, Gear/Adams formulas. 

Scientific Desk PC Subprogram Library 

I1A2 Numerical integration of initial value problems for ordinary dif-

ferential equations, implicit equations, sparse Jacobians, root 

finding. 

I1A2E Numerical integration of initial value problems for ordinary dif-

ferential equations, Gear stiff formulas; easy to use. 

I1A2F Numerical integration of initial value problems for ordinary dif-

ferential equations, Gear/Adams formulas, root finding. 

H a l e : Extrapolation methods (e.g., Bulirsch-Stoer) for gen

eral, nonstiff or mildly stiff initial value problems for 

ordinary differential equations 

IMSL MATH/LIBRARY Subprogram Library 

I V P B S Solves an initial value problem for ordinary differential equations 

using the Bulirsch-Stoer extrapolation method. 

PORT Subprogram Library 

ODES Solves an initial value problem for a system of ordinary differen-

tial equations. Easy to use. 

ODES1 Solves an initial value problem for a system of ordinary differen-

tial equations. Allows great flexibility and user control. 

I la2 : Stiff and mixed algebraic-ordinary differential equa

tions 

Collected Algorithms of the ACM 

A534 STINT: A FORTRAN subprogram for integrating a set of first or-

der ordinary differential equations using stiffly stable, cyclic com-

posite linear multistep methods. (See J. M. Tendier, T. A. Bickart, 

and Ζ . Picel, ACM TOMS 4 (1978) pp. 399-403.) 

A658 ODESSA: A FORTRAN ordinary differential equation solver (a 

modification of LSODE) with explicit simultaneous sensitivity 

analysis. (See J. R. Leis and M. A. Kramer, ACM TOMS 14 

(1988) pp. 61-67.) 

CM LIB Library (CDRIV Sublibrary) 

CDRIV1 Numerical integration of complex initial value problems for ordi-

nary differential equations, Gear stiff formulas. Easy to use. 

C D R I V 2 Numerical integration of complex initial value problems for ordi-

nary differential equations, Gear stiff and Adams formulas, root 

finding. 
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C D R I V 3 Numerical integration of complex initial value problems for ODEs, 

Gear and Adams formulas, implicit equations, sparse Jacobians, 

root finding. 

CMLIB Library (DEPAC Sublibrary) 

D E B D F Solves a system of first order stiff ordinary differential equations 

with arbitrary initial conditions by Gear's method. 

CMLIB Library (SDRIV Sublibrary) 

SDRIV1 Numerical integration, initial value problems, ordinary differen-

tial equations, Gear stiff formulas. Easy to use. 

SDRIV2 Numerical integration, initial value problems, ordinary differen-

tial equations, Gear/Adams formulas. 

S D R I V 3 Numerical integration, initial value problems, ordinary differen-

tial equations, implicit equations, sparse Jacobians. 

NAG Subprogram Library 

D02EAF Integrates a stiff system of first order differential equations over 

a range with suitable initial conditions, using a variable order, 

variable step method implementing the backward differentiation 

formulas. 

D02EBF Integrates a stiff system of first order ordinary differential equa-

tions over a range with suitable initial conditions, using a variable 

order, variable step method implementing the backward differen-

tiation formulas, and returns the solution at points specified by 

the user. 

D02EGF Integrates a stiff system of first order ordinary differential equa-

tions over a range with suitable initial conditions, using a variable 

order, variable step method implementing the backward differ-

entiation formulas, until a specified component attains a given 

value. 

D02EHF Integrates a stiff-system of first order ordinary differential equa-

tions over a range with suitable initial conditions, using a variable 

order, variable step method implementing the backward differen-

tiation formulas, until a user specified function of the solution is 

zero. 

D02EJF Integrates a stiff system of first order ordinary differential equa-

tions over a range with suitable initial conditions, using a variable 

order, variable step method implementing the backward differen-

tiation formulas, until a user-specified function, if supplied, of the 

solution is zero, and returns the solution at points specified by 

the user, if desired. 

D 0 2 N B F Forward communication routine for integrating stiff systems of 

explicit ordinary differential equations when the Jacobian is a 

full matrix. 

D 0 2 N C F Forward communication routine for integrating stiff systems of 

explicit ordinary differential equations when the Jacobian is a 

banded matrix. 
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D 0 2 N D F Forward communication routine for integrating stiff systems of 

explicit ordinary differential equations when the Jacobian is a 

sparse matrix. 

D 0 2 N G F Forward communication routine for integrating stiff systems of 

implicit ordinary differential equations coupled with algebraic 

equations when the Jacobian is a full matrix. 

D 0 2 N H F Forward communication routine for integrating stiff systems of 

implicit ordinary differential equations coupled with algebraic 

equations when the Jacobian is a banded matrix. 

D 0 2 N J F Forward communication routine for integrating stiff systems of 

implicit ordinary differential equations coupled with algebraic 

equations when the Jacobian is a sparse matrix. 

D 0 2 N M F Reverse communication routine for integrating stiff systems of 

explicit ordinary differential equations. 

D 0 2 N N F Reverse communication routine for integrating stiff systems of 

implicit ordinary differential equations coupled with algebraic 

equations. 

D02QBF Integrates a stiff system of first order ordinary differential equa-

tions, over a range with suitable initial conditions, using a vari-

able order, variable step Gear method. A variety of facilities 

for interrupting the calculation are provided. This routine is 

relatively complicated and is recommended only to experienced 

users. 

D 0 2 Q D F Integrates a stiff system of first order ordinary differential equa-

tions, over a range with suitable initial conditions, using a vari-

able order, variable step method based on the backward differen-

tiation formulas (BDF). A variety of facilities for interrupting the 

calculation are provided. This routine is relatively complicated 

and is recommended to experienced users only. 

NMS Subprogram Library 

SDRIV2 Numerical integration, initial value problems, ordinary differen-

tial equations, Gear/Adams formulas. 

Scientific Desk PC Subprogram Library 

I l A2 Numerical integration of initial value problems for ordinary dif-

ferential equations, implicit equations, sparse Jacobians, root 

finding. 

I1A2E Numerical integration of initial value problems for ordinary dif-

ferential equations, Gear stiff formulas; easy to use. 

I1A2F Numerical integration of initial value problems for ordinary dif-

ferential equations, Gear/Adams formulas, root finding. 

lIb!: Linear multipoint boundary value problems for or
dinary differential equations
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CMLIB Library (BVSUP Sublibrary) 

B V S U P Solves boundary value problems for a linear system of ODEs using 

superposition, orthogonalization, and variable step integration. 

NAG Subprogram Library 

D 0 2 G B F Solves a general linear two-point boundary value problem for a 

system of ordinary differential equations using a deferred correc-

tion technique. 

D 0 2 J A F Solves a regular linear two-point boundary value problem for a 

single n(th) order ordinary differential equation by a Chebyshev 

series using collocation and least squares. 

D 0 2 J B F Solves a regular linear two-point boundary value problem for a 

system of ordinary differential equations by a Chebyshev series 

using collocation and least squares. 

D 0 2 T G F Solves a system of linear ordinary differential equations by least-

squares fitting of a series of Chebyshev polynomials using collo-

cation. 

I l b 2 : Nonlinear multipoint boundary value problems for 

ordinary differential equations 

Collected Algorithms of the ACM 

A569 COLS YS: FORTRAN subroutine for solving nonlinear multipoint 

boundary value problems for mixed order systems of ordinary 

differential equations. Based upon spline collocation at Gauss-

ian points using a B-spline basis. Approximate solutions are 

computed on a sequence of automatically selected meshes until 

a user-specified set of tolerances is satisfied. (See U. Ascher, 

J. Christiansen, and R. D. Russell, ACM TOMS 7 (1981) pp. 223-

229.) 

IMSL MATH/LIBRARY Subprogram Library 

Β  V P F D Solves a system of differential equations with boundary conditions 

at two points, using a variable order, variable step-size finite-

difference method with deferred corrections. 

Β  V P M S Solves a system of differential equations with boundary conditions 

at two points, using a multiple shooting method. 

NAG Subprogram Library 

D02AGF Solves the two-point boundary value problem for a system of 

ordinary differential equations, using initial value techniques and 

Newton iteration; it generalizes subroutine D02HAF to include 

the case where parameters other than boundary values are to be 

determined. 

D02G A F Solves the two-point boundary value problem with assigned bound-

ary values for a system of ordinary differential equations, using a 

deferred correction technique and a Newton iteration. 
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I l b 3 : Eigenvalue (e.g., Sturm-Liouville) multipoint bound

ary value problems for ordinary differential equa

tions 

Collected Algorithms of the ACM 

A537 CHARMA: A FORTRAN subprogram for calculating the charac-

teristic values of Mathieu's differential equation for odd or even 

solutions. (See W. R. Leeb, ACM TOMS 5 (1979) pp. 112-117.) 

NAG Subprogram Library 

D 0 2 A G F Solves the two-point boundary value problem for a system of 

ordinary differential equations, using initial value techniques and 

Newton iteration; it generalizes subroutine D02HAF to include 

the case where parameters other than boundary values are to be 

determined. 

D 0 2 H B F Solves the two-point boundary value problem for a system of ordi-

nary differential equations, using initial value techniques (D02PAF) 

and Newton iteration; it generalizes subroutine D02HAF to in-

clude the case where parameters other than boundary values are 

to be determined. 

D 0 2 K A F Finds a specified eigenvalue of a regular second order Sturm-

Liouville system defined on a finite range, using a Pruefer trans-

formation and a shooting method. 

D 0 2 K D F Finds a specified eigenvalue of a regular or singular second order 

Sturm-Liouville system on a finite or infinite range, using a Prue-

fer transformation and a shooting method. Provision is made for 

discontinuities in the coefficient functions or their derivatives. 

D02KEF Finds a specified eigenvalue of a regular or singular second or-

der Sturm-Liouville system on a finite or infinite range, using a 

Pruefer transformation and a shooting method. It also reports 

values of the eigenfunction and its derivatives. Provision is made 

for discontinuities in the coefficient functions or their derivatives. 

D 0 2 H A F Solves the two-point boundary value problem for a system of 

ordinary differential equations. 

D 0 2 H B F Solves the two-point boundary value problem for a system of ordi-

nary differential equations, using initial value techniques (D02PAF) 

and Newton iteration; it generalizes subroutine D02HAF to in-

clude the case where parameters other than boundary values are 

to be determined. 

D 0 2 R A F Solves the two-point boundary value problem with general bound-

ary conditions for a system of ordinary differential equations, 

using a deferred correction technique and Newton iteration. 

D02SAF Solves a two-point boundary value problem for a system of first 

order ordinary differential equations with boundary conditions, 

combined with additional algebraic equations. It uses initial value 

techniques and a modified Newton iteration in a shooting and 

matching method. 
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l i e : Service routines for ordinary differential equations 

(e.g., interpolation of solutions, error handling, test 

programs) 

Collected Algorithms of the ACM 

A546 SOLVEBLOK: A FORTRAN subprogram for solving almost block 

diagonal linear systems. Such matrices arise naturally in piece-

wise polynomial interpolation or approximation and in finite el-

ement methods for two-point boundary value problems. (See C. 

de Boor and R. Weiss, ACM TOMS 6 (1980) pp. 88-91.) 

A603 COLROW and ARCECO: FORTRAN subroutines for solving 

certain almost block diagonal linear systems by modified alter-

nate row and column elimination. Such systems arise when solv-

ing boundary value problems for ordinary differential equations. 

COLROW is designed for systems whose blocks all have the same 

dimension; ARCECO is designed for systems whose blocks may 

have different dimensions. (See J. C. Diaz, G. Fairweather, and 

P. Keast, ACM TOMS 9 (1983) pp. 376-380.) 

A648 NSDTST and STDTST: FORTRAN routines for assessing the 

performance of initial value solvers for stiff or nonstiff systems. 

(See W. H. Enright and J. D. Pryce, ACM TOMS 13 (1987) 

pp. 28-34.) 

NAG Subprogram Library 

D 0 2 N R F Enquiry routine for communicating with D02NMF or D02NNF 

when supplying columns of a sparse Jacobian matrix. 

D 0 2 N S F Setup routine which must be called by the user, prior to an 

integrator in the D02N subchapter, if full matrix linear algebra 

is required. 

D 0 2 N T F Setup routine which must be called by the user, prior to an inte-

grator in the D02N subchapter, if banded matrix linear algebra 

is required. 

D 0 2 N U F Setup routine which must be called by the user, prior to an 

integrator in the D02N subchapter, if sparse matrix linear algebra 

is required. 

D 0 2 N V F Setup routine which must be called by the user, prior to an 

integrator in the D02N subchapter, if backward differentiation 

formulas (BDF) are to be used. 

D 0 2 N W F Setup routine which must be called by the user, prior to an 

integrator in the D02N subchapter, if the BLEND formulas are 

to be used. 

D 0 2 N X F Optional output routine which the user may call, on exit from an 

integrator in the D02N subchapter, if sparse matrix linear algebra 

has been selected. 
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I2al : Parabolic partial differential equations 

Collected Algorithms of the ACM 

A553 M3RK: A FORTRAN subroutine for solving initial value prob-

lems for nonlinear first order systems of ordinary differential equa-

tions which originate from semi-discretization of parabolic partial 

differential equations. M3RK is based on stabilized, explicit 

three-step Runge-Kutta formulas of order one and two, and de-

gree 2 through 12. (See J. G. Verwer, ACM TOMS 6 (1980) 

pp. 236-239.) 

D 0 2 N Y F Diagnostic routine which the user may call either after any user-

specified exit or after a mid-integration error exit from any of the 

integrators in the D02N subchapter. 

D02NZF Setup routine which must be called, if optional inputs need re-

setting, prior to a continuation call to any of the integrators in 

the D02N subchapter. 

D02QQF Sets up interrupts for use in D02QDF. 

D 0 2 X A F Interpolates the system of first order ordinary differential equa-

tions from information provided by the Runge-Kutta-Merson 

routine D02PAF. 

D 0 2 X B F Interpolates one component of the solution of a system of first 

order ordinary differential equations from information provided 

by the Runge-Kutta-Merson routine D02PAF. 

D02XGF Interpolates the solution of a system of first order ordinary differ-

ential equations from information provided by the Adams routine 

D02QAF or the Gear routine D02QBF. 

D 0 2 X H F Interpolates one component of the solution of a system of first 

order ordinary differential equations from information provided 

by the Adams routine D02QAF or the Gear routine D02QBF. 

D02XJF Interpolates components of the solution of a system of first order 

ordinary differential equations from information provided by the 

integrators in the D02N subchapter (or by the routine D02QDF). 

D 0 2 X K F Interpolates components of the solution of a system of first order 

ordinary differential equations from information provided by the 

integrators in the D02N subchapter (or by the routine D02QDF). 

It provides C
1

 interpolation suitable for general use. 

D02ZAF Calculates the weighted norm of the local error estimate from 

inside a MONITR routine called from an integrator in the D02N 

subchapter. 

PORT Subprogram Library 

ODESE Standard error subprogram for the routine ODES1. 

ODESH Default HANDLE routine for ODES. Used to access the results 

at the end of each integration time step. 
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I2ala: Parabolic partial differential equations in one spa-

tial dimension 

Collected Algorithms of the ACM 

PDEONE: Solution of systems of nonlinear parabolic partial dif-

ferential equations in one space dimension using the method of 

lines. (See R. F. Sincovec and Ν . K. Madsen, ACM TOMS 1 

(1975) pp. 261-263.) 

PDECOL: A FORTRAN subprogram for solving coupled systems 

of nonlinear partial differential equations in one space and one 

time dimension. The solution method uses finite element colloca-

tion based upon piecewise polynomials for spatial discretization. 

The time discretization is performed by general-purpose software 

for ordinary initial value problems. (See Ν . K. Madsen and 

R. F. Sincovec, ACM TOMS 5 (1979) pp. 326-351.) 

IMSL MATH/LIBRARY Subprogram Library 

Solve a system of partial differential equations of the form Ut = 

F(x,t,U,Ux,Uxx) using the method of lines with cubic Hermite 

polynomials. 

NAG Subprogram Library 

Integrates a single linear or nonlinear parabolic partial differential 

equation in one space variable, using the method of lines and 

Gear's method. 

Integrates a system of linear or nonlinear parabolic partial differ-

ential equations in one space variable, using the method of lines 

and Gear's method. 

Integrates a system of nonlinear parabolic partial differential equa-

tions in one space variable, using the method of lines and Gear's 

method. This routine provides quite general facilities; for simpler 

versions see D03PAF (for a single equation) or D03PBF (for 

simple systems). 

I2a lb: Parabolic partial differential equations in two or 

more spatial dimensions 

Collected Algorithms of the ACM 

A565 PDETWO/PSETM/GE ARB : A FORTRAN package for solving 

time-dependent coupled systems of nonlinear partial differential 

equations that are defined over a two-dimensional rectangular 

region. (See D. K. Melgaard and R. F. Sincovec, ACM TOMS 7 

(1981) pp. 126-135.) 

A621 BDMG: A FORTRAN subprogram with low storage requirements 

for two-dimensional nonlinear parabolic differential equations on 

rectangular spatial domains with mixed linear boundary condi-

tions. (See B. P. Sommeijer and P. J. van der Houven, ACM 

TOMS 10 (1984) pp. 378-396.) 

A494 

A540 

M O L C H 

D03PAF 

D 0 3 P B F 

D 0 3 P G F 
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I2a2: Hyperbolic partial differential equations 

Collected Algorithms of the ACM 

A540 PDECOL: A FORTRAN subprogram for solving coupled systems 

of nonlinear partial differential equations in one space and one 

time dimension. The solution method uses finite element colloca-

tion based upon piecewise polynomials for spatial discretization. 

The time discretization is performed by general-purpose software 

for ordinary initial value problems. (See Ν . K. Madsen and 

R. F. Sincovec, ACM TOMS 5 (1979) pp. 326-351.) 

A565 PDETWO/PSETM/GEARB: A FORTRAN package for solving 

time-dependent coupled systems of nonlinear partial differential 

equations that are defined over a two-dimensional rectangular 

region. (See D. K. Melgaard and R. F. Sincovec, ACM TOMS 7 

(1981) pp. 126-135.) 

I2bla: Second order linear elliptic boundary value prob

lems 

ELLPACK Program Library 

ELLPACK Solves linear elliptic partial differential equations in general do-

mains in two dimensions and in boxes; a variety of boundary 

conditions are handled. Users write programs in the ELLPACK 

language (FORTRAN extension), which allows them to declare 

elliptic problems and to select from a large library of modules to 

solve them numerically. Results can be tabulated or plotted; the 

solution is also available as a FORTRAN function for postpro-

cessing. 

I 2 b l a l a : Poisson (Laplace) or Helmholtz equation on a rec

tangular domain (or topologically rectangular in the 

coordinate system) 

Collected Algorithms of the ACM 

A527 GMA, GMAS, and KPICK: FORTRAN subroutines for linear 

systems arising from five-point discretizations of separable or con-

stant coefficient elliptic boundary value problems on rectangular 

domains. A Dirichlet, Neumann, or mixed boundary condition 

may be independently specified on each side of the rectangle, 

or periodic boundary conditions may be specified on opposing 

sides. Implements the generalized marching algorithm. (See 

R. E. Bank, ACM TOMS 4 (1978) pp. 165-176.) 
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A541 

A543 

A651 

H S T C R T 

H S T C S P 

HSTCYL 

H S T P L R 

H S T S S P 

H W 3 C R T 

H W S C R T 

H W S C S P 

H W S C Y L 

H W S P L R 

H W S S S P 

HS3CRT 

FISHPAK: FORTRAN subroutines for solving separable ellip-

tic partial differential equations. Drivers are available for the 

Helmholtz equation in Cartesian, polar, surface spherical coordi-

nates, cylindrical and interior spherical coordinates. In addition, 

subprograms for solving systems of linear equations resulting 

from finite difference approximations to general separable prob-

lems are included. (See P. N. Swarztrauber and R. A. Sweet, 

ACM TOMS 5 (1979) pp. 352-364.) 

FFT9: A FORTRAN subroutine for the Dirichlet problem for 

the Helmholtz equation on a rectangle. The program is based 

upon 4th and 6th order accurate 9-point finite difference approx-

imations and fast Fourier solution techniques. (See Ε . N. Houstis 

and T. S. Papatheodorou, ACM TOMS 5 (1979) pp. 490-493.) 

HFFT: FORTRAN routines for solving the Helmholtz equation 

on bounded two- or three-dimensional rectangular domains. (See 

R. F. Boisvert, ACM TOMS 13 (1987) pp. 235-249.) 

CMLIB Library (FISHPAK Sublibrary) 

Solves the Helmholtz or Poisson equations in two dimensions in 

Cartesian coordinates on a staggered grid. 

Solves a modified Helmholtz equation in spherical coordinates 

with axisymmetry using a staggered grid. 

Solves a modified Helmholtz equation in cylindrical coordinates 

on a staggered grid. 

Solves the Helmholtz or Poisson equation in polar coordinates on 

a staggered grid. 

Solves the Helmholtz or Poisson equation in spherical coordinates 

on the surface of a sphere using a staggered grid. 

Solves the Helmholtz or Poisson equation in three dimensions 

using Cartesian coordinates. 

Solves the Helmholtz or Poisson equation in two dimensions in 

Cartesian coordinates. 

Solves a modified Helmholtz equation in spherical coordinates 

with axisymmetry. 

Solves a modified Helmholtz equation in cylindrical coordinates. 

Solves the Helmholtz or Poisson equation in polar coordinates. 

Solves the Helmholtz or Poisson equation in spherical coordinates 

on the surface of a sphere. 

CMLIB Library (VHS3 Sublibrary) 

Sets up and solves the standard seven-point finite difference ap-

proximation on a staggered grid to the Helmholtz equation in 

Cartesian coordinates with a variety of possible boundary condi-

tions. 
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IMSL MATH/LIBRARY Subprogram Library 

FPS2H Solves the Poisson or Helmholtz equation on a two-dimensional 

rectangle using a fast Poisson solver based on the HODIE finite-

difference scheme. 

FPS3H Solves the Poisson or Helmholtz equation on a three-dimensional 

box using a fast Poisson solver based on the HODIE finite-difference 

scheme. 

I 2 b l a l b : Poisson (Laplace) or Helmholtz equation on a non-

rectangular domain 

Collected Algorithms of the ACM 

A572 HELM3D: A FORTRAN subroutine for solving the Dirichlet prob

lem for the Helmholtz equation on general bounded three-dimensional 

regions. Based upon second order accurate finite differences; the 

resulting linear system of equations is reduced to a capacitance 

matrix equation that is solved approximately by a conjugate 

gradient method. (See D. P. O'Leary and O. Widlund, ACM 

TOMS 7 (1981) pp. 239-246.) 

A593 CMMEXP, CMMIMP, and CMMSIX: FORTRAN subroutines 

for solving the Helmholtz equation on bounded nonrectangular 

planar regions with Dirichlet or Neumann boundary conditions. 

Solution is based upon the Fourier method extended to non-

rectangular regions using the capacitance matrix method. (See 

W. Proskurowski, ACM TOMS 9 (1983) pp. 117-124.) 

A629 LAPLAC: A FORTRAN subroutine for the interior Dirichlet 

problem for Laplace's equation on a general three-dimensional 

domain. Based on integral equation techniques. (See Κ . E. Atkin

son, ACM TOMS 11 (1985) pp. 85-96.) 

NAG Subprogram Library 

D03EAF Solves Laplace's equation in two dimensions for an arbitrary 

domain bounded internally or externally by one or more closed 

contours, given the value of either the unknown function or its 

normal derivative (into the domain) at each point of the bound

ary. 

I2bla2: Other separable second order linear elliptic bound

ary value problems 

Collected Algorithms of the ACM 
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A527 GMA, GMAS, and KPICK: FORTRAN subroutines for linear 

systems arising from five-point discretizations of separable or con-

stant coefficient elliptic boundary value problems on rectangular 

domains. A Dirichlet, Neumann, or mixed boundary condition 

may be independently specified on each side of the rectangle, 

or periodic boundary conditions may be specified on opposing 

sides. Implements the generalized marching algorithm. (See 

R. E. Bank, ACM TOMS 4 (1978) pp. 165-176.) 

CMLIB Library (FISHPAK Sublibrary) 

SEPELI Solves separable elliptic boundary value problems on a rectangle. 

SEPX4 Solves separable elliptic boundary value problems on a rectangle 

with constant coefficients in one direction. 

I2bla3: Nonseparable second order linear elliptic boundary 

value problems 

Collected Algorithms of the ACM 

A637 GENCOL: A FORTRAN subprogram for linear second order 

elliptic problems with general linear boundary conditions on non-

rectangular two-dimensional domains. Solves the problem using 

collocation with bicubic Hermite polynomials. (See Ε . N. Houstis, 

W. F. Mitchell, and J. R. Rice, ACM TOMS 11 (1985) pp. 379-

412 and 413-415.) 

A638 INTCOL and HERMCOL: FORTRAN subprograms for linear 

second order elliptic problems on rectangular two-dimensional 

domains. HERMCOL allows general linear boundary conditions 

while INTCOL requires uncoupled boundary conditions. Prob-

lems are solved using collocation with bicubic Hermite polyno-

mials. (See Ε . N. Houstis, W. F. Mitchell, and J. R. Rice, ACM 

TOMS 11 (1985) pp. 379-412 and 416-418.) 

I2b4: Service routines for elliptic boundary value prob-

lems 

Collected Algorithms of the ACM 

A499 CONOPT: A subprogram which determines the contour scanning 

path for a two-dimensional region. The path is designed to 

help accelerate the propagation of edge effects when solving two-

dimensional partial differential equations using iterative methods. 

(See W. Kinsner and E. D. Torre, ACM TOMS 2 (1976) pp. 82-

86.) 

A625 A FORTRAN subprogram which relates a general two-dimensional 

domain to a rectangular grid laid over it. (See J. R. Rice, ACM 

TOMS 10 (1984) pp. 443-452 and 453-462.) 
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I2b4a: Domain triangulation for elliptic boundary value 

problems (search also class P) 

NAG Subprogram Library 

D 0 3 M A F Places a triangular mesh over a given two-dimensional region. 

The region may have any shape, including one with holes. 

I2b4b: Solution of discretized elliptic equations 

Collected Algorithms of the ACM 

A512 FACTOR, RHS, and SOLVE: FORTRAN subroutines for solv-

ing symmetric positive definite periodic quindiagonal systems of 

linear equations. (See A. Benson, and D. J. Evans, ACM TOMS 

3 (1977) pp. 96-103.) 

A527 GMA, GMAS, and KPICK: FORTRAN subroutines for linear 

systems arising from five-point discretizations of separable or con-

stant coefficient elliptic boundary value problems on rectangular 

domains. A Dirichlet, Neumann, or mixed boundary condition 

may be independently specified on each side of the rectangle, 

or periodic boundary conditions may be specified on opposing 

sides. Implements the generalized marching algorithm. (See 

R. E. Bank, ACM TOMS 4 (1978) pp. 165-176.) 

A541 FISHPAK: FORTRAN subroutines for solving separable ellip-

tic partial differential equations. Drivers are available for the 

Helmholtz equation in Cartesian, polar, surface spherical coordi-

nates, cylindrical and interior spherical coordinates. In addition, 

subprograms for solving systems of linear equations resulting 

from finite difference approximations to general separable prob-

lems are included. (See P. N. Swarztrauber and R. A. Sweet, 

ACM TOMS 5 (1979) pp. 352-364.) 

CMLIB Library (FISHPAK Sublibrary) 

Solves block tridiagonal systems of linear algebraic equations aris-

ing from the discretization of separable elliptic partial differential 

equations. 

Solves certain complex block tridiagonal systems of linear equa-

tions arising from the discretization of separable elliptic partial 

differential equations. 

Solves certain complex block tridiagonal systems of linear equa-

tions arising from Helmholtz or Poisson equations in two-dimen-

sional Cartesian coordinates. 

Solves certain block tridiagonal systems of linear equations aris-

ing from Helmholtz or Poisson equations in two Cartesian coor-

dinates. 

Solves block tridiagonal linear systems of algebraic equations aris-

ing from the discretization of separable elliptic partial differential 

equations in three dimensions. 

BLKTRI 

C B L K T R 

C M G N B N 

G E N B U N 

POIS3D 
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POISTG Solves block tridiagonal linear systems of algebraic equations aris-

ing from the discretization of separable elliptic partial differential 

equations. 

CMLIB Library (VHS3 Sublibrary) 

P S T G 3 D Solves certain block tridiagonal systems of linear algebraic equa-

tions that arise in finite difference approximations to three-dimen-

sional Helmholt ζ  equations on a staggered grid. 

NAG Subprogram Library 

D 0 3 E B F Uses the Strongly Implicit Procedure to calculate the solution 

to a system of simultaneous algebraic equations of five-point 

molecule form on a two-dimensional, topologically-rectangular 

mesh. (Topological means that a polar grid, for example (r,theta), 

can be used, being equivalent to a rectangular box.) 

D03ECF Uses the Strongly Implicit Procedure to calculate the solution 

to a system of simultaneous algebraic equations of seven-point 

molecule form on a three-dimensional, topologically-rectangular 

mesh. (Topological means that a polar grid, for example, can be 

used if it is equivalent to a rectangular box.) 

D 0 3 E D F Solves seven-diagonal systems of linear equations which arise 

from the discretization of an elliptic partial differential equation 

on a rectangular region. This routine uses a multigrid technique. 

D 0 3 U A F Performs at each call one iteration of the Strongly Implicit Pro-

cedure. It is used to calculate on successive calls a sequence of 

approximate corrections to the current estimate of the solution 

when solving a system of simultaneous algebraic equations for 

which the iterative up-date matrix is of five-point molecule form 

on a two-dimensional, topologically-rectangular mesh. (Topolog-

ical means that a polar grid, for example (r,theta), can be used, 

being equivalent to a rectangular box.) 

D 0 3 U B F Performs at each call one iteration of the Strongly Implicit Pro-

cedure. It is used to calculate on successive calls the sequence of 

approximate corrections to the solution when solving a system of 

simultaneous algebraic equations for which the iterative up-date 

matrix is of seven-point molecule form on a three-dimensional, 

topologically-rectangular mesh. (Topological means that a polar 

grid, for example, can be used if it is equivalent to a rectangular 

box.) 
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Figure 155.1 Two common computational grids, for rectilinear coordinates and 

for polar coordinates. 

155. Grid Generation 

A p p l i c a b l e t o Ordinary differential equations and partial differential 

equations. 

Y i e l d s 

A grid on which a differential equation may be numerically approxi-

mated. 

P r o c e d u r e 

When a differential equation is going to be approximated numerically, 

the points at which the values of the dependent variable will be determined 

must be specified. This collection of points forms the grid, or mesh. 

The most common computat ional grids are those in rectilinear coor-

dinates or polar coordinates (see Figure 155.1). These can be used when 

the domain of a problem naturally fits one of these geometries. For other 

domains, an appropriate computat ional grid must be determined. There 

are many ways in which to construct a grid for a specific equation on a 

specific domain. 

There are many considerations tha t go into choosing a grid for a 

specific problem. The grid should be easy to generate, and the algebraic 

equations used on the grid (usually finite differences or finite elements) 

must be easy to generate. (On page 581 we have indicated how finite 

difference approximations may be found on triangular grids.) For finite 

element methods, it is common to use tr iangulated grids, or grids composed 

of simple objects like triangles and rectangles. See example number 3 in 

the section on finite element methods (on page 662) for an example. 

Ideally there should be many grid points where the solution (or its 

derivatives) are rapidly changing. Some grids naturally lend themselves to 

grid refinement in certain regions; this can be useful in adaptive techniques. 
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Figure 155.2 A domain, a possible grid on that domain, and a refined grid on 

that domain. 

E x a m p l e 1 

For domains tha t can be described by combinations of simple geo-

metric regions, a grid may be easy to find. See Figure 155.2 for a simple 

computat ional grid for a domain tha t can be conveniently decomposed into 

a rectangle and a semicircle. In this figure we have also illustrated how the 

grid may be modified if it is found tha t the solution shows great variation 

in the upper left region of the domain. 

E x a m p l e 2 

There are many ways in which a grid may be found for a domain. 

Figure 155.3, taken from Rice [8], shows six different grids for a single 

irregularly shaped domain. The first three grids (A,B,C) show different 

possibilities: 

• Grid A is a simple tr iangulation of the domain. 

• Grid Β  is a uniform rectilinear grid on the domain. 

• Grid C is a uniform rectilinear mapping, logically mapped to the 

domain. 

The second three grids (D,E,F) indicate how the the first three grids can 

adapt to some difficulties near the right boundary. 

N o t e s 

[1] One of the greatest obstacles in generating numerical solution to fluid dy-

namics problems is the difficulty in geometrically describing complex con-

figurations with computational grids. 

[2] Conformai mappings are frequently used to construct computational grids 

(see page 376). 

[3] The multigrid method (see page 673) uses a sequence of grids, of varying 

coarseness, to approximate the solution of a differential equation. 
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156. Richardson Extrapolation 

A p p l i c a b l e t o Approximation techniques for differential equations. 

Y i e l d s 

A procedure for increasing the accuracy. 

P r o c e d u r e 

Suppose tha t a grid with a characteristic spacing h is used to nu-

merically approximate the solution of a differential equation. Then the 

approximation u(x; h) at the point χ  in the domain will satisfy 

u(x; h) = </(x) + Ä m( x ) f t
m
 + 0 ( f t

m + 1
) , (156.1) 

where y(x) is the t rue solution to the differential equation, m is the order 

of the method, and the other terms represent the error (see page 573). 

If the approximation scheme is kept the same, but the characteristic 

spacing of the grid is changed from h to k, then 

u(x; k) = 2/(x) + Rm(x)k
m

 + 0 ( f c
m + 1

) . (156.2) 

Equations (156.1) and (156.2) can be combined to yield the approximation 

/ , ,x k
m

u(jc;h) - / i
m
w(x;fc) , . Λ / 1 1 τη  1 1 W 1X 
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Note tha t v(x; Λ , fc) is one more order accurate than either u(x; h) or 

u(x; fc). This process may be i terated to increase the accuracy even more. 

In some cases, the order of the method, and hence ra in (156.1), will 

be unknown. The Richardson extrapolation method may still be used, by 

either estimating ra numerically, or by using the Shanks transformation. 

The Shanks transformation uses three successive terms of the form AN = 

AQC + ah
n

 to est imate A^ via 

- ^ n + l ^ n — 1
 —

 AN 

A
n
+i + AN— ι  — 2An 

This transformation may also be iterated; see Bender and Orszag [1] for 

details. 

E x a m p l e 1 

Given the differential equation 

g = v, „(o) = i, 

we might choose to approximate the solution by Euler 's method 

w
n

+i;/i = (1 + h)u
n]h,

 U
0]

h = 1
, 

where un]h — y(nh), and the step size satisfies h 1. Observe tha t our 

notat ion explicitly shows the dependence of the approximation on the grid 

size. Doing a detailed analysis we can determine tha t 

u n ;h = y(x)- ( | ) / i + 0 ( / i
2

) , (156.3) 

where χ  = nh and hence (here we choose fc = h/2) 

U2n;h/2 = y(x)-(^)^+0(h
2

). (156.4) 

Combining (156.3) and (156.4) results in 

wn.h := 2un.h - u2n]h/2 = y(x) + 0(h
2

), 

which is a numerical approximation tha t is second order accurate. Since h 

was reduced by a factor of 2 in going from (156.3) to (156.4), η  had to be 

increased by a factor of 2 to maintain the same physical point, x. 
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h Uh;R Uh;RR Uh;S Uh;SS 

0.200 1.45847 

0.100 1.43792 1.41738 1.41198 

0.050 1.42646 1.41499 1.41420 1.41376 1.41420 

0.025 1.42043 1.41441 1.41421 1.41411 

0.012 1.41735 1.41426 1.41421 

Table 156. Numerical approximations to the solution of (156.5). More accu-
rate results are obtained by applying Richardson extrapolation and the Shanks 
transformation to this data. 

E x a m p l e 2 

Suppose we have the differential equation 

dy ty 

dx t
2

 + 1 
2/(0) = 1. (156.5) 

The exact solution to (156.5) is y(t) = \/l + 1
2

. Hence, y(l) = \f2 « 

1.41421. Approximating (156.5) by use of Euler 's method with a step size 
of ft, we can obtain an approximation to the solution at t = 1, Uh « 2/(1)· 
As ft decreases, this approximation should becomes bet ter . 

In Table 156 we show the values of Uh tha t are obtained when the ft's 
are made successively smaller by a factor of two. Even though the last value 
is not very close to \ / 2 , we can improve the accuracy by using transforma-
tions. The first application of Richardson extrapolation is defined by (since 

Euler 's method is first order accurate) Uh-R := —^—
U

™L χ η β  second ap-

plication of Richardson extrapolation is defined by U^RR := ^
UH

'
R

^—^
2/L,I?

. 

The first application of the Shanks transformation is defined by 

U>2hUh/2 - u\ 
U>h:S · = 

U2h + u h /2 - 2uh 

The second application then uses the numbers u^s in the same formula to 

obtain u^ss- As expected, the transformed values are much closer to the 

t rue value of 2/(1)· 
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N o t e s 

[1] In the example just presented, the quantity Ri(x) could be explicitly de-
termined. However, to utilize this method, this value does not have to be 
known explicitly. 

[2] To numerically approximate the solution to y' = f(x,y), the modified 
midpoint method determines y(x + nh), given y(x), by 

zo = y(x), 

zi - z0 + hf'(x,z0), 

Zm+i = Zm-i + 2hf'(x + mh, z m) , for m = 1,2, . . . , η  - 1, 

y(x + nh) ~ \[zn + zn-i + hf'(x + nh,zn)\, 

where h is a small step size. This method is of second order, but has an error 
that only involves even powers of h. Hence, each Richardson extrapolation 
of this method increases the order by two. See Press et al. [8] for more 
details. 

[3] Richardson extrapolation is often referred to as deferred approach to the 

limit. 

[4] This method also works for non-uniform grids if every interval is subdivided. 
[5] Some functions are not well approximated by polynomials, but are well 

approximated by rational functions (see the section on Padé approximants, 
page 503). Instead of using a polynomial fit for the error term (as in (156.1)), 
a rational function approximation could be made—this is the basis of the 
Bulirsch-Stoer method. See Press et al. [8] for more details. 
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Differential Equations," SIAM Review, 27, No. 4, December 1985, pages 
505-535. 

[5] R. Fößmeier, "On Richardson Extrapolation for Finite Difference Methods 

on Regular Grids," Numer. Math., 55, 1989, pages 451-462. 

[6] E. Isaacson and H. B. Keller, Analysis of Numerical Methods, John Wiley 

& Sons, New York, 1966, pages 372-374. 
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[8] W. H. Press, B. P. Flannery, S. Teukolsky, and W. T. Vetterling, Numerical 

Recipes, Cambridge University Press, New York, 1986, pages 83-86 and 
563-568. 

[9] L. F. Richardson, "The Approximate Arithmetical Solution by Finite Dif-
ferences of Physical Problems Involving Differential Equations," Philos. 

Trans. Roy. Soc. London, Ser. A, 210, 1910, pages 307-357. 

157. Stability: ODE Approximations 

A p p l i c a b l e t o Ordinary differential equations. 

Y i e l d s 

It is straightforward to determine if a finite difference scheme is stable. 

Idea 

If a finite difference scheme is stable, then a locally good approximation 
yields a globally good approximation (provided the differential equation— 
is well-posed). 

P r o c e d u r e 1 

Difference schemes for ordinary differential equations may be stable 
or unstable. The definition closely parallels the definition for the stability 
and well-posedness of a differential equation. A stable difference scheme is 
one in which small changes in the initial and boundary da ta do not change 
the solution greatly. An unstable difference scheme is one tha t shows great 
sensitivity to the initial and boundary data . 

To determine if the difference scheme for an ordinary differential equa-
tion is stable (or zero-stable), we apply the scheme to the equation y' = 0 
(which has only a constant solution) and determine if the finite difference 
approximation stays bounded. Suppose we have the following difference 
scheme for the first order equation y' = f(x,y): 

where vn is an approximation to y(xn) (and xn = nh for η  = 1 ,2 , . . . ) . 
Applying the above scheme to the test equation is equivalent to using 

(157.1) 
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f(x,y) = 0 in (157.1). This results in 

ρ  

Y^ajV^j = 0. (157.2) 
j=o 

The method is said to be stable if all solutions of (157.2) are uniformly 
bounded for all η  and all initial da t a {v0, V\,.. . , Vp-\}-

The difference equation in (157.2) has solutions of the form vn = X
n

. 

Using vn = λ
η
 in equation (157.2) results in the characteristic equation for 

λ  
ρ  

λ
η
ρ ( λ ) = Σ  Α

3

Χ Η

~

0

 = ° · (

1 5 7

'

3

) 

3=0 

It is easily shown tha t the method is unstable if any of the roots to (157.3) 
have magnitudes greater than one, or if there is a multiple root whose 
magnitude is equal to one. 

P r o c e d u r e 2 

Sometimes "stability" is defined in terms of how the approximate 
solution to the equation y' = Xy behaves. Using f(y,x) = Xy and then 
vn = λ

η
, we are led to the stability polynomial. The stability polynomial 

associated with (157.1) is defined to be n(r;h) = p(X) — / ι σ ( λ ) , where h 

represents hX and p(x) and σ (χ ) represent the first and second character-
istic polynomials (see page 574). Using the stability polynomial we have 
the following definitions (see Lambert [10] for details): 

The method in (157.1) is said to be absolutely stable for a 
given h if, for that h, all the roots of π (τ \Κ ) satisfy \rs\ < 1 
for s = 1 ,2 , . . . , ρ , and to be absolutely unstable otherwise. 
An interval (a, b) of the real line is said to be an interval 

of absolute stability if the method is absolutely stable for all 
h £ (a, b). 

The method in (157.1) is said to be relatively stable for a 
given h if, for that h, the roots of 7r(r; h) satisfy \rs\ < | n | 
for s — 2,3, and to be relatively unstable otherwise. 
An interval (a, b) of the real line is said to be an interval 

of relative stability if the method is relatively stable for all 
h e (a, b). 

Using these definitions, we define the method in (157.1) is said to be 
absolutely/relatively stable in a region Ί Ζ  of the complex plane if, for all 
h € 11, the roots of the stability polynomial n(r; h) have the required 
associated property (defined above). 
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Using the notion of stability in a region, we define the following types 

of stability: 

• a method has Α -stability if {hX \ Re(hX) < 0} C TZ. 

• a method has A (a)-stability if {hX \ —a < π  — arg(/iA) < a} C TZ. 

• a method has Ao-stability if {hX \ Im(hX) = 0, Re(/iA) < 0} C TZ. 

A picture of the region TZ is known as a stability diagram. When 
approximating a differential equation on a bounded interval, the limit η  —• 

oo, h fixed, is of interest. The stability diagram will indicate allowable 
values for h. 

E x a m p l e 1 

Euler 's method for the ordinary differential equation y' = f(x,y) 

consists of the approximation: v n+ i — vn = hf(xn,vn). To determine 
if this method is stable, we apply this method to the equation y' = 0 to 
determine the difference scheme 

vn - Vn-l = 0. (157.4) 

Using vn = λ
η
 in (157.4) results in the characteristic equation 

p(A) = λ
η
 - λ

η
"

1
 = 0, 

which has the roots λ  = 1 and λ  = 0 (with multiplicity η  — 1). Since the 
only root with magnitude one, λ  = 1, has multiplicity one, and all the other 
roots have magnitudes less t han one, Euler 's method is a stable method. 

E x a m p l e 2 

Applying Euler 's method to the equation y! = f{x,y) = Xy we com-
pute 

V n + 1 = Vn + hfn 

= Vn + hXvn 

= (l + h)vn. 

Hence, the region of absolute stability is given by TZ = {h \ 

see Figure 157.a. 

Applying Euler 's backwards method to the equation y' = 

we compute 

2 / n + l = 2/n + hfn+i 

= yn + / iAy n+i 

= yn 

1 - 7 Γ  

1 + < 1} , 

f(x, y) = Ay 
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Im Λ  ^ Im h φ  

Reh θ  Re7ï 

h = h(2 + 3i) 

Figure 157. Stability diagrams for Euler's method in (a) and Euler's backwards 
method in (b). Region of absolute stability is shown shaded. 

see Figure 157.b. 

Stability diagrams can be used to determine allowable step sizes. If 
we were to integrate the ordinary differential equation y' = (2 + 3i)y 

using Euler 's method, then the maximum allowable (real) step size tha t 
will produce an absolutely stable method is h = ^ , see Figure 157.a. 
Stability diagrams are also used to qualitatively compare different difference 
schemes. 

[1] Observe that a difference scheme can be stable and still not be consistent. 
Stability and accuracy are two entirely different concerns. 

[2] For a stability analysis of second order ordinary differential equations, see 
Gear [6]. 

[3] Generally, the sequence of methods, {one step methods, iteration methods, 
implicit methods}, demonstrate progressively better stability. That is, it is 
generally true that larger step sizes can be taken for implicit methods than 
for explicit methods. 

[4] Karim and Ismail [8] present five different ways in which to determine the 
stability of a difference scheme. They all lead to the same conclusion, but, on 
certain classes of equations, some methods are easier to apply than others. 

[5] A detailed derivation and example of Euler's method is given on page 653. 
[6] To determine if a finite difference scheme for a partial differential equation 

is stable see either the Courant-Friedrichs-Lewy consistency criterion (page 
618) or the Von Neumann stability test (page 621). 

[7] There are are many useful theorems in numerical analysis concerning the 
stability of methods for specific equations. For example, an A-stable method 
cannot have accuracy ρ  > 2. See Dahlquist [3]. 

Hence, the region of absolute stability is given by TZ = < h 

N o t e s 
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[8] A consistent method is called stiffly stable if (1) for some constant D < 0, 
all solutions of the difference equation generated by the application of this 
method to the scalar test equation, y' — Xy, tend to zero as η  —> oo for all 
complex A with Re A < D and for all fixed step sizes h with h > 0 and (2) 
there is an open set S whose closure contains the origin and the method is 
stable for hX G S. Here, h represents the grid spacing. 

[9] There are many other types of stability that have been defined. A partial 
ordering of some common types of stability is 

algebraic stability => Euclidean AiV-stability strong ATV-stability 
weak yliV-stability =$> ^-stability 

See Butcher [2] for details. 

R e f e r e n c e s 
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158. Stability: 

Courant Criterion 

A p p l i c a b l e t o Hyperbolic part ial differential equations. 

Y i e l d s 

A statement about whether or not a difference scheme may converge 

to the exact solution of a hyperbolic equation. 

The "numerical domain of dependence" for a hyperbolic equation must 

include the actual domain of dependence in order for the numerical approx

imation of the solution to converge to the t rue solution. 

P r o c e d u r e 

A hyperbolic part ial differential equation has characteristics (see page 

368). Generally, the dependent variables will satisfy ordinary differential 

equations along the characteristics. These characteristics will propagate 

from the curves along which the initial da t a is given to every point in 

the domain. Given a specific point at which the solution is desired, the 

characteristics through tha t point must be determined. 

If a numerical scheme for a hyperbolic equation a t t empts to compute a 

numerical approximation to the solution at a point, then all of the relevant 

characteristics must be present, or the method may not converge to the 

correct solution. 

E x a m p l e 

Suppose we have the wave equation 

for u(x,t) where the constant c represents the wave speed. The initial 

conditions for (158.1) are assumed to be 

We define vnj = u(tn,Xj) where t n := nAt and Xj := jAx. If a 

second order centered difference scheme is used, then (158.1) might be 

approximated as 

Idea 

2 

uu — c u x x, 
(158.1) 

u(x,0) = f(x), 

u t( x , 0 ) = g(x). 
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A 
t or η  

C- : χ  — ct = constant 

s < — χ  — ^rjt = constant 

χ  or j 

Figure 158.1 Characteristics (indicated by dashed lines) that are included in 

the numerical domain of dependence (shown shaded). 

which can be manipulated into the explicit formula 

Hence, the value of w n+ i j depends on {tin,j+fc | Λ : = 0, ±1 } and u n- i , j -

Applying (158.2) to itself, we see tha t the value of un+ij depends on 

{un-ij+k I k = 0, ± 1 , ± 2 } . Applying (158.2) again, we see tha t the value 

of un+ij depends on {un-2j+k \ k = 0, ± 1 , ±2 , ± 3 } . 

In general, the value of un+ij will depend on the points {uo,j+k I k = 

0, ± 1 , . . . , ± n } . These points along the initial curve (where the initial da ta 

is given) describe the numerical domain of dependence. See Figure 158.1. 

The characteristics of (158.1) are the two curves (shown dashed in the 

figures) 

where Xi is any point on the initial curve. Hence, the value of u(tn,Xj) will 

depend on the values of u(0,Xk) for x^ = Xi — ct and Xk = x% + ct. 

If these values are not included in the numerical domain of dependence, 

then the numerical approximation will, generally, give the incorrect answer. 

This is simply because the numerical approximation does not use the da ta 

tha t is important in solving the problem. 

The two different possible scenarios are shown in Figure 158.1 and 

Figure 158.2. In Figure 158.1, the characteristics are included in the 

numerical domain of dependence (i.e., ί  —— J is less than one). Because 

of this, the method may converge to the exact solution. In Figure 158.2, 

the characteristics are not included in the numerical domain of dependence 

(158.2) 

C_ : χ  — ct = Xi, 

C+ : χ  + ct = Xi, 
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t or η  

C- : χ  — ct = constant 

/ 

/ x — ^tjt = constant 
/ 

x or j 

Figure 158.2 Characteristics (indicated by dashed lines) that are not included 
in the numerical domain of dependence (shown shaded). 

(i.e., ( —— J is greater than one). Because of this, the method cannot, in 

general, converge to the exact solution of (158.1). 

In summary, for this example, if Ax and At are chosen so tha t 

[1] This condition is also known as the Courant-Friedrichs-Lewy or CFL con
dition. 

[2] Of course, more complicated hyperbolic problems will require a more de

tailed analysis. 

[3] Another test that can be used to determine the stability of a finite difference 

scheme for partial differential equations is the Von Neumann stability test 

(see page 621). 

[4] To determine if the difference scheme for an ordinary differential equation 
is stable, see page 573. 

R e f e r e n c e s 

[1] J. L. Davis, Finite Difference Methods in Dynamics of Continuous Media, 

The MacMillan Company, New York, 1986, pages 45-47. 

[2] D. Gottlieb and E. Tadmor, "The CFL Condition for Spectral Approxima

tions to Hyperbolic Initial-Boundary Value Problems," Math, of Comp., 56, 

No. 194, April 1991, pages 565-588. 

[3] E. Isaacson and Η . B. Keller, Analysis of Numerical Methods, John Wiley 

& Sons, New York, 1966, page 489. 

N o t e s 

1, then the method cannot converge to the exact solution. 

: 1, then the method may converge to the exact solution. 
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159. Stability: Von Neumann Test 

A p p l i c a b l e t o Finite difference schemes for part ial differential equations. 

Y i e l d s 
Knowledge of whether the difference scheme is stable. 

P r o c e d u r e 

The Von Neumann test determines if the difference scheme for a part ial 

differential equation is stable. For difference schemes with constant coeffi

cients, the test consists of examining all exponential solutions to determine 

whether they grow exponentially in the t ime variable even when the initial 

values are bounded functions of the space variable. 

If any of them do increase without limit then the method is unstable. 

Otherwise, it is stable. 

This test can also be applied to equations with variable coefficients 

by introducing new, constant coefficients equal to the frozen values of the 

original ones at some specific point of interest. 

E x a m p l e 

If the parabolic equation 

Uf —— Uxx 

is discretized via 

ut ^ jj- |u (x , t + k) - u(x, £)j , 

uxx ~ ^2 \u(x + h,t) — 2u(x, t) + u(x — h, £)j , 

and vm,n is used to represent n (m / i , nfc), then the recurrence relation 

k 
% , n + l = ^ m , n + ~2 (

U
m + l , n ~ 2 u m, n + Î X m- l , n) (159.1) 

is obtained. To investigate all possible bounded exponential type solutions, 

we choose 

um,n = e
i m e

e
i n X

. (159.2) 

Substi tut ing (159.2) into (159.1) results in the relation 

which must be satisfied for λ  and Θ . It can be shown tha t the imaginary 
par t of λ  will be non-negative (and hence the method is stable) if 

k ^ 1 
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N o t e s 
[1] A stability test for hyperbolic partial differential equations is the Courant-

Friedrichs-Lewy consistency criterion (see page 618). 
[2] To determine if the difference scheme for an ordinary differential equation 

is stable, see page 573. 
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The MacMillan Company, New York, 1986, pages 47-50. 
[2] P. R. Garabedian, Partial Differential Equations, Wiley, New York, 1964, 

page 469 and page 477. 
[3] D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods: 

Theory and Applications, SIAM, Philadelphia, 1977, pages 48-50. 
[4] E. Isaacson and H. B. Keller, Analysis of Numerical Methods, John Wiley 

& Sons, New York, 1966, pages 523-529. 
[5] L. Lapidus and G. F. Pinder, Numerical Solution of Partial Differential 

Equations in Science and Engineering, Wiley, New York, 1982, pages 170-

179. 



IV. Β  

Numerical Methods for ODEs* 

160· Analytic Continuation 

A p p l i c a b l e t o Initial value ordinary differential equations, a single 

equation or a system. 

Y i e l d s 

A numerical approximation in the form of a Taylor series. 

I d e a 

If the Taylor series of a function is known at a single point, then the 

Taylor series of tha t function may be found at another (nearby) point. This 

process may be repeated until a part icular value is reached. 

* Some of the methods in this section can be used for part ial differential 

equations as well. These methods are indicated by a s tar (*). 

6 2 3 
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P r o c e d u r e 

Given a system of initial value ordinary differential equations, the 

method is to replace each dependent variable present by a Taylor series 

centered at a certain origin. The coefficients in each Taylor series are re-

garded as unknown quantit ies. The ordinary differential equations are used 

to obtain a set of recurrence relations from which the unknown coefficients 

may be calculated. 

Thus, a formal power series solution may be determined to an initial 

value problem and the series will be convergent in some region about the 

origin. Then, the t runcated power series are evaluated at some point within 

the region of convergence. At this new point, initial values for the system 

are obtained from the already obtained Taylor series. Using these initial 

values, the recurrence relations then yield a second series solution valid in 

a region about the new origin. 

This procedure can be i terated and the solution at a given point may 

be determined via a sequence of Taylor series. This algorithm is a numerical 

version of the process of analytic continuation. 

E x a m p l e 

Suppose we have the system of ordinary differential equations 

y' = y
2

 + z, 2/(0) = 1, 

z' = z
2

, z{0) = 1. 

This system can be rewritten as the differential/algebraic system 

2 L ι  2 a = υ  , ο  = a + ζ , c = ζ  , 
, I , (160.1) 

y =b, Ζ  =C, with 6 = 2, a = c = y = z = l when t = 0. If we define the Taylor series 

coefficients { a ^ \ z ^ } by the expansions 

k=0 k=0 

oo oo 

c(t) = Σ
 c

k\t -tj)"' »(*) = Σ  ^ ( t " * , · ) * , (160.2) 
k=0 k=0 

oo 

*(*) = Σ  
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then, using (160.2) in (160.1), the following recurrence relations can be 

obtained 

71 = 0 

c? = t&*VU, ι ί
0

 = *?>/(*+ D,

n=0 

z f c

Ü)
 = < £ > / ( * + 1)· 

The initial conditions give the s tar t ing values: {j = 0, to = 0, = 
c
o°^

 = = z
o°^

 =
 1> &o°̂

 =
 2} . To determine the Taylor series about the 

point to = 0, equation (160.3) is i terated for k = 1 , 2 , . . . , M. The number 
of terms in each Taylor series required for a specified numerical accuracy 
M may be determined dynamically or fixed beforehand (if an appropriate 
analysis has been done). 

Then a new point t\ is chosen. A Taylor series for each of a, 6, c, y, 
and ζ  is then found about this new point by taking j = 1 and determining 

the initial conditions from. 

M M 

The recurrence relations in equation (160.3) are then iterated again. This 

process can be repeated indefinitely. 

N o t e s 

[1] In Holubec and Stauffer [5], a Frobenius series is continued instead of a 

Taylor series. This works particularly well on ordinary differential equations 

with regular singular points. 

[2] A FORTRAN computer program that generates the recurrence relations and 

then solves the system is described in Corliss and Chang [3]. 
[3] Sometimes several hundred coefficients are required with this method to 

obtain an accurate answer. This is especially true when the expansion point 

for the Taylor series is near a singularity. 

[4] Holubec and Stauffer [5] have a discussion on the appropriate step size to 

take at each stage in the calculation. 

[5] Interval bounds (see page 470) for the Taylor series coefficients are discussed 

in Moore [7]. 

[6] This technique has been extended to parabolic equations in Chang [1]. 
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161· Boundary Value Problems: 

Box Method 

A p p l i c a b l e t o Boundary value problems for ordinary differential equa-

tions. 

Y i e l d s 

A numerical approximation of the solution. 

Idea 

Using finite differences, the solution to a boundary value problem is 

determined (simultaneously) everywhere on the interval of interest. 



626 I V . B N u m e r i c a l M e t h o d s for O D E s 

R e f e r e n c e s 

[1] Y. F. Chang, "Solution of Parabolic Partial Differential Equations," in B. 

L. Hartnell and H. C. Williams (eds.), Proceedings of the Sixth Manitoba 

Conference on Numerical Mathematics, Utilitas Mathematics Publishing, 

Winnipeg, Canada, 1977, pages 127-134. 

[2] Y. F. Chang, "Solving Stiff Systems by Taylor Series," Appl. Math, and 

Comp., 3 1 , 1989, pages 251-269. 

[3] G. Corliss and Y. F. Chang, "Solving Ordinary Differential Equations Using 

Taylor Series," ACM Trans. Math. Software, 8, No. 2, June 1982, pages 
114-144. 

[4] G. Corliss and D. Lowery, "Choosing a Stepsize for Taylor Series Methods for 

Solving ODE's," J. Comput. Appl. Math., 3 , No. 4, 1977, pages 251-256. 

[5] A. Holubec and A. D. Stauffer, "Efficient Solution of Differential Equations 

by Analytic Continuation," J. Phys. A: Math. Gen., 18,1985, pages 2141-

2149. 

[6] A. Holubec, A. D. Stauffer, P. Acacia, and J. A. Stauffer, "Asymptotic 

Shooting Method for the Solution of Differential Equations," J. Phys. A: 

Math. Gen., 2 3 , 1990, pages 4081-4095. 

[7] R. E. Moore, Interval Analysis, Prentice-Hall Inc., Englewood Cliffs, NJ, 

1966, Chapter 11. 

161· Boundary Value Problems: 

Box Method 

A p p l i c a b l e t o Boundary value problems for ordinary differential equa

tions. 

Y i e l d s 

A numerical approximation of the solution. 

Idea 

Using finite differences, the solution to a boundary value problem is 

determined (simultaneously) everywhere on the interval of interest. 
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P r o c e d u r e 

We will illustrate the procedure on the general second order linear 

ordinary differential equation. The same technique can be used, with 

only slight modifications, to systems of higher order ordinary differential 

equations, with the boundary da ta given virtually anywhere in the interval 

of interest. 

Given the second order linear ordinary differential equation 

(161.1.a-6) 
a(x)y" + b(x)y' + c(x)y = d(x) , 

V(XL) = VL, y(xu) = yu, 

we introduce the variable z(x) = y'(x) and write (161.1) as the system 

(161.2) 

Now we choose a grid, not necessarily uniform, on the interval ( ^ , χ ι / ) , 

say XL = χ  χ  < x2 < · · · < XN = xu- At each one of the grid points, some 

finite difference scheme is chosen to approximate the equations in (161.2). 

The scheme used can vary from point to point. For instance, if Euler 's 

method is used for every point, then 

+ (zfc+i - Xk) 

ζ  
d-cy bz (161.3) 

to first order, where yk = y(xk), zk = z(xk), and similarly for {ak, bk, c*, dk}. 

From (161.1.b) the values yi = y^ and y Ν  = yu are known. 

To determine all of the {zfc}, and the remaining {y^}, all of the 

relations in (161.3) ( that is, for k = 1 , 2 , . . . , N) should be combined into 

one large matr ix equation. First , for ease of notation, define hk = Xk+i—Xk, 

ek = dk/dki fk = Ck/a>k and gk = bk/dk- In these new variables, equation 

(161.3) may be writ ten as 

= Uk + hkzk, 

2fc+i = zk + hk (ek - fkyk - gkzk). 

Combining all of the equations in (161.4) results in 

(161.4) 

/yi\ 
f

 0

 \ 
/
 1 

hi - 1 0 0 0 Zl hiei 

Λ ι / ι  - 1 + higi 0 1 0 0 2/2 0 

0 0 1 h2 
- 1 0 z2 

— h2e2 

0 0 h 2 / 2 - 1 + ^202 0 1 2/3 0 

\ ! / 

\ z N / \hNeN / 

file:///hNeN
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To this matr ix equation should be added two more rows, one corresponding 

to y ι  = yL and one corresponding to y Ν  = yu- Wi th these two rows, 

there results an 2N χ  27V matr ix equation. This equation can be solved 

to determine a numerical approximation to the solution at all of the grid 

points. 

E x a m p l e 

The second order linear ordinary differential equation 

y" + y = 3, 

2/(0) = 3, 
(161.5) 

has the solution y = 3 — sin χ . We will use the box method to numerically 

approximate this solution. Writing (161.5) as a system results in 

-(y) = ( z V 
dx\z) \ Z - y J 

(161.6) 

We choose a uniform grid: xn = (n — l)h for η  = 1,2,3,4 with h = π / 6 . 

Defining yn = y(xn) and zn = z(xn), then, using Euler's method, (161.6) 

may be approximated as 

2/n+l = 2/n + hzn, 

Zn+i = zn + h(3 - y n ) . 

Combining all the equations in (161.7) for η  = 1,2,3,4 results in 

(161.7) 

h - 1 0 0 0 0 Z\ 

h - 1 0 1 0 0 0 0 2/2 3h 

0 0 1 h - 1 0 0 0 Z2 0 

0 0 h - 1 0 1 0 0 2/3 3h 

0 0 0 0 1 h - 1 0 Z3 0 

V o 0 0 0 h - 1 0 l) Vi \3hJ 

Then the following two rows are added, to incorporate the known values of 

2/(0) and 2/(tt/2) 

fVi\ 

Zl 

2/2 

O O O O O I 0 J I 2 / 3 

Z3 

2/4 

\ z j 

(i • 0 ) · 

file:///Z-yJ
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The FORTRAN program in Program 161 numerically approximates 

the solution to the above equation. Note tha t this program uses a linear 

equation solver LSOLVE, whose source code is not listed. The output of the 

program is 

HERE IS THE APPROXIMATE SOLUTION: 

3.000 -0.701 2.633 -0.701 2.266 -0.509 2.000 -0.124 

HERE IS THE EXACT SOLUTION: 

3.000 -1.000 2.500 -0.866 2.134 -0.500 2.000 0.000 

The values for yn are only accurate to one decimal place in this exam

ple. Pu t t i ng more points in the interval would decrease the error, as would 

using a higher order method in place of Euler 's method. 

P r o g r a m 161 

DIMENSION ARRAY(8,18),SOLN(8),RHS(8),NR0W(100) 

PI=3.1415926 

NP0INT=8 

H=PI/2.* 2./FL0AT(NP0INT-2) 

DO 10 J=l,NPOINT 

DO 10 K=1,NP0INT 

10 ARRAY(J,K)=0.0 

C CREATE THE MATRIX 

ARRAY(1,1)=1.0 

RHS(1 )=3.0 

ARRAY(NP0INT,NP0INT-l)=l.O 

RHS(NPOINT )=2.0 

J=l 

20 J=J+1 

IF( J .GE. NP0INT ) GOTO 30 

C HERE IS THE Y-EQUATI0N 

ARRAY(J,J-1)=1 

ARRAY(J,J )=H 

ARRAY(J,J+1)=-1 

RHS(J )=0 

J=J+1 

C HERE IS THE Z-EQUATI0N 

ARRAY(J,J-2)=H 

ARRAY(J,J-1)=-1 

ARRAY(J,J+1)=1 

RHS(J )=3.0*H 

GOTO 20 

C SOLVE THE MATRIX SYSTEM 

30 CALL LSOLVE(NPOINT,ARRAY,SOLN,RHS,NROW,IFSING,NPOINT) 

WRITE(6,5) (SOLN(J),J=1,NPOINT) 

5 FORMAT(' HERE IS THE APPROXIMATE SOLUTION:\/, 8 (lx,F8.3) ) 

C COMPUTE THE EXACT SOLUTION FOR COMPARISON 

J=l 

DO 40 JJ=l,NP0INT/2 

S0LN(J )=3.0-SIN( H*FL0AT(JJ-1) ) 

S0LN(J+1)= -C0S( H*FL0AT(JJ-1) ) 

40 J=J+2 

WRITE(6,15) (S0LN(J),J=1,NPOINT) 

15 FORMAT(' HERE IS THE EXACT SOLUTION:',/,8(lx,F8.3) ) 

END 
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N o t e s 

[1] In our example, if the two rows corresponding to the boundary terms were 

added to the matrix equation at the correct locations, the resulting matrix 

will be banded. 

[2] This technique is recommended for stiff boundary value problems because 

many points can be added where the solution undergoes large changes, and 

different discretization schemes may be used in different regions. 

[3] For nonlinear equations or nonlinear boundary conditions, this method can 

be used iteratively by linearizing the nonlinear terms at each step. 

[4] Other techniques for solving boundary value problems include collocation 

(see page 441), shooting (see page 631), and invariant imbedding (see page 

669). 

[5] Scott and Watts [7] have a collection of computer programs in FORTRAN 

for solving two point boundary value problems. Ascher et al. [1], Daniel [2], 

and Mattheij [5] all have discussions of different techniques that can be 

applied to boundary value problems. Also, see the section beginning on 

page 586. 
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162. Boundary Value Problems: 

Shooting Method* 

A p p l i c a b l e t o Nonlinear boundary value problems for ordinary differ

ential equations. 

Y i e l d s 

A numerical approximation to the solution. 

Idea 

Using Newton's method, the correct initial conditions for a boundary 

value problem can be determined. Knowing the initial conditions, the 

differential equations can be numerically integrated in a straightforward 

manner. 

P r o c e d u r e 

The general procedure can be illustrated by studying a second order 

ordinary differential equation. Suppose we wish to numerically approxi

mate the solution y(x) of the equation 

L(y",y',y,x) = 0, 

i,(0) = 0, i ,(i) = A,  ·
; 

where A is a given constant . The differential equation L( ) = 0 may or may 

not be a linear differential equation. If z(x; a) is defined to be the solution 

of 

L(z",z',z,x)=0, 

(162.2) 

ζ ( 0 ; α ) = 0, z '(0;a) = a,

then y(x) will be equal to z(x;a) for one or more values of a. Of course, 

if L( ) = 0 were a linear equation, then there would be a single value of a . 

The parameter a in (162.2) must be determined so tha t 

z(l;a) = A. 

Since (162.2) is an initial value problem, it is straightforward to integrate 

it numerically from χ  = 0 to χ  = 1. See, for instance, Euler 's method 

(page 653). To use the shooting method, we integrate (162.2) numerically 

for some arbi trary initial guess for a , say «o- lï z(l;cto) = A, then y(x) = 
z(x; ao) and we are done. 

If z(l; a0) φ  A, then a new value of a must be chosen, say OL\. Equat ion 

(162.2) is then integrated for this new value of a. The process of choosing 
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new values for a is repeated until the value of z(l;a) is sufficiently close 

to A. If the new a ' s are chosen well, then z(l; a) will converge to A and a 

numerical approximation to (162.1) will have been obtained. One way to 

choose the sequence of a ' s is by Newton's method 

z(l;an) - A 
(162.3) 

A numerical way to implement (162.3) might be 

z(l;an) - A 

[z{l;an + ε ) - ζ ( 1 ; α η ) ] / ε ' 

where ε  is a small number. 

E x a m p l e 

Suppose we have the nonlinear second order ordinary differential equa

tion 

y" + 2(y')
2

 = 0, 

2,(0) = 1, 2/(1) = 1. 

_ ι  (162.4) 

Since (162.4) has no explicit dependence on y, the "dependent variable 

missing" method (see page 216) can be used to solve this equation exactly. 

By this technique, the solution of (162.4) is found to be 

= l + i l o g ( l + i ^ x ) . 

Hence, y'(0) = (1 - e ) /2e ~ - .31606 . 

By use of the shooting method, a computer program should "discover" 

tha t y'(0) ~ - .31607 . The FORTRAN program in Program 162 utilizes 

finite differences to determine y
f

(0) for (162.4). The equation in (162.4) is 

turned into the two first order ordinary differential equations 

— = ζ  
dx 

dz _ 2 2 

dx ' 

and then integrated by the use of Euler 's method (see page 653). 

An initial guess of y
f

(0) = 0 is used in the program. The successive 

approximations of y
f

(0) appear below: 

ITERATION NUMBER 0 VALUE OF Y'(0)= 0. 
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ITERATION NUMBER 1 VALUE OF Y' (0) = -0.50000050 

ITERATION NUMBER 2 VALUE OF Y
3 

(0) = -0.49857452 

ITERATION NUMBER 3 VALUE OF Y
3 

(0) = -0.49102421 

ITERATION NUMBER 4 VALUE OF Y
3 

(0) = -0.46366318 

ITERATION NUMBER 5 VALUE OF Y
3 

(0) = -0.40465858 

ITERATION NUMBER 6 VALUE OF Y
3 

(0) = -0.34199798 

ITERATION NUMBER 7 VALUE OF Y
3 

(0) = -0.31799014 

ITERATION NUMBER 8 VALUE OF Y
5 

(0) = -0.31608113 

ITERATION NUMBER 9 VALUE OF Y
3 

(0) = -0.31607109 

Note tha t the computer program required a large number of steps in 

the interval [0,1] in order to achieve the accuracy shown (this is part ly 

because we used Euler 's method, which is of low order). 

P r o g r a m 162 

Y0=1.D0 

Y1=.5D0 

YP0=0.D0 

C PERFORM A NEWTON ITERATION 9 TIMES 

DO 10 NEWT=1,10 

WRITE(6,5) NEWT-1,YP0 

5 FORMAT(' ITERATION NUMBER',14,> VALUE OF Y>'(0)=',F13.8) 

10 YP0=FNEWT0N(YO,Yl,YPO) 

END 

C THIS FUNCTION PERFORMS ONE NEWTON STEP 

FUNCTION FNEWT0N(Y0,Y1,YP0) 

EPS=.000001D0 

YP01=YP0 

YP02=YP0+EPS 

Z1=YAT1(Y0,YP01) 

Z2=YAT1(Y0,YP02) 

FNEWT0N=YP0-(Z1-Y1)*EPS/(Z2-Z1) 

RETURN 

END 

C THIS FUNCTION DETERMINES Y(l); WHEN Y(0) AND Y'(0) ARE GIVEN 

FUNCTION Υ Α Τ Ι (Υ Ο ,Υ Ρ Ο ) 

N=20000 

DX=1.D0/DFL0AT(N) 

Y=Y0 

YP=YP0 

C THIS IS THE ACTUAL INTEGRATION LOOP 

DO 10 J=1,N 

Y = Y + DX * YP 

10 YP= YP + DX * ( -2.D0*YP**2 ) 

YAT1=Y 

RETURN 

END 
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N o t e s 

[1] If this method is applied to a linear equation, the value ofy'(0) will converge 

to the correct value in a single step. 

[2] It is also possible to simultaneous integrate along several rays at once. This 

is called the method of multiple shooting. See Stoer and Bulirsch [8] or 

Diekhoff et al. [1] for details. 

[3] A test case that is often used to test computer codes for boundary value 

problems is Troesch's problem 

See Roberts and Shipman [7] for a solution of this equation. 

[4] For a listing of computer software that will implement the method described 

in this section, see page 586. 
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η  sinh ny = 0, 

0, y(l) = l. 

1972. 
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A p p l i c a b l e t o Any type of equation at all: algebraic or differential, a 

single equation or a system. 

Y i e l d s 

A numerical approximation to the solution. 

I d e a 

We embed a given problem into a problem with a continuation pa

rameter σ  in it. For one value of σ  (say σ  = 1) we obtain the original 

equations, while for a different value of σ  (say σ  = 0) we have an "easier" 

problem. We solve the simpler problem numerically and then slowly vary 

the continuation parameter from 0 to 1. 

P r o c e d u r e 

After setting up the problem as described above, we define a metric 

tha t tells how well a function satisfies the problem when the continuation 

parameter is between 0 and 1. First , we numerically solve the easier 

problem (at σ  = 0). Then the continuation parameter σ  is increased by a 

small amount , and a solution is found by using Newton's method (this is 

accomplished by making the metric as small as possible). We increase σ  

some more, and repeat this s tep until we have arrived at σ  = 1. 

E x a m p l e 

Suppose we wish to solve the following boundary value problem for 

yxx + ey = 0, 2/(0) = 1, y(n/2) = 0. (163.1) 

We embed (163.1) into the problem for υ  = υ (χ ;σ ), 

υ χ χ + (1 - σ )υ  + ae
v

 = 0, ν ( 0 ; σ ) = 1, υ ( π / 2 ; σ ) = 0. (163.2) 

Note tha t when σ  = 1, the problem for ν  (χ ; 1) becomes identical to the 

original problem tha t we wanted to solve, (163.1). Note also tha t , when 

σ  = 0, the problem for v(x\ 0) becomes 

v(x; 0)xx + v(x; 0) = 0, v(0; 0) = 1, ν ( π / 2 ; 0) = 1, 

with the solution v(x;0) = cosx. 

The technique is to solve (163.2) numerically on a grid of values from 

0 to π / 2 . We will s tar t with σ  = 0 and v(x;0) = cosx and then increase σ  

by a small amount and allow υ (χ ; σ ) to change accordingly. 

163. Continuation Method 
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We choose to solve (163.1) at the Λ Γ +1 grid points: {xn = hn | for η  = 

0 , 1 , 2 , . . . , Ν } where h = π /2Α Γ , and we define v° to be the numerical 

approximation to v(x; σ ) at the n- th gridpoint. We take ν ζ  = 1 and = 0 

so tha t the boundary conditions to (163.2) are always satisfied. 

Now we must define the metric. We choose 

h
2 + ( 1 - σ ) < + σ β < . (163.3) 

We choose this metric since, when ε £ is close to zero, (163.2) will be 

approximately satisfied. This metric was obtained by simply applying a 

centered second order difference formula to (163.2). 

The procedure is now as follows (with σ ο  = 0, k = 0): 

(A) Increase σ  by a small amount δ σ  (i.e., σ ^+ ι  = σ & 4- δ σ ). 

( Β ) Find {ν °} by making ε £* ~ 0. This is best accomplished by Newton's 

method. Tha t is, we keep iterating 
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t han some predefined constant (based on the machine's numerical 
capabilities). 

Note tha t the Jacobian and the { ε £} all depend on the values of 

{
v

n
k

}m- The initial values for { ^ * } 0 will be given by {υ ^'
1

}. If δ σ  

is small enough, then Newton's method should converge. 

(C) If Gk φ  1, go back to step (A). 

(D) If Ok = 1, then we have found a numerical approximation to the 

solution of (163.1). 
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N o t e s 

[1] There are computer codes available that solve (A) through (D). The only 

input needed for them is the definition of the { ε £}. 

[2] Continuation methods can be used to track different solution branches of 
a problem with bifurcations. If the Jacobian ever becomes singular (i.e., 
det J = 0), a bifurcation point is likely. The null space of the Jacobian will 
indicate which directions are possible for the different solution branches. 

[3] It is not uncommon in practice to find that the iteration in (163.3) will not 

converge unless δ σ  is very small (at least initially). The better continuation 
programs available will automatically determine δ σ , making it as small as 
is needed, but also increasing it when possible to speed up the calculation. 

[4] Rheinboldt [3] has the FORTRAN listing for a continuation package. 

[5] The method of invariant embedding (see page 669) is a specific type of 
continuation method. 

[6] Continuation methods are also known as homotopy methods, 
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N o t e s 
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i - Q U '
 n + 1

 i - Q U ' 
Now, dividing (164.1) by y' produces 

Idea 

By finding a simple recurrence pa t te rn , we can express the logarithmic 

derivative of the solution to an ordinary differential equation in terms of a 

continued fraction. 

P r o c e d u r e 

Suppose we have a linear second order ordinary differential equation 

in the form 

y = Qo(x)y' + Pi(x)y"- (164.1) 

If (164.1) is differentiated with respect to x, then we obtain 

v' = Q i ( x ) v " +  (164.2) 

where 

If (164.2) is differentiated with respect to x, then we obtain y" = Q2{x)y"'+ 

Pz{x)y"" where Q2 =
 1

 ,
2

, P3 = -—tj t - This process can be 
1

 —

 Qi 1 ~ Qi 
repeated indefinitely to obtain 

2 /
( n)

 = Qn(x)y
(n+1)

 + P „ + 1( x ) j /
( n + 2)

 (164.4) 

With Qn=
Qr1^K,Pn+l=

 Pn 
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where we have used (164.3) for the third equality and (164.4) (with η  = 3) 

for the fourth equality. 

We can extend the continued fraction in (164.5) indefinitely. If it 

terminates, then it represents the reciprocal of the logarithmic derivative 

of the solution to (164.1). If it does not terminate , then it will converge if 

the following three conditions are satisfied: 

(A) Pn —• P , Qn —• Q as η  —• oo. 

(B) The roots {pi , P 2 } of p
2

 = Qp + Ρ  are of unequal modulus. 

(C) If \p2\ < M , then l i m _ | y W | i / « < { ^
 jj j*j * jj. 

E x a m p l e 

Suppose we wish to find a continued fraction expansion for the recip-

rocal of the logarithmic derivative of the equation 

xy" - xy' - y = 0. (164.6) 

Comparing (164.6) with (164.1) we identify Qo{x) = — x, Pi(%) = Using 

these values in (164.4), it is easy to show tha t Qn = 1 — x/(n + 1) and 

Pn — x/n. Using these values, the part ial sums for the continued fraction 

can be evaluated as 

for 1 term: 

for 2 terms: 

for 3 terms: 

for 4 terms: 

_
 χ 2

 +
 2 

χ  

x
3

 -h 5x 

< ΐ 6 4

·
7 ) 

χ
3

 + Ix ' 

x
5

 -h 14x
3

 + 33s 

" x
4

 + 1 2 s
2

 -h 15 ' 

The information in (164.7) can be used to approximately evaluate y/y'. 

N o t e s 

[1] This technique has rarely been extended, with any generality, to any types 
of differential equations other than linear second order ordinary differential 
equations. There has been a generalization to "matrix continued fractions" 
in Risken [7]. In Bellman and Wing [2], continued fractions are used to 
represent the solution to a Riccati equation. 

[2] By taking partial sums of the continued fraction in (164.5), successively 
better approximations may be found. Rarely, though, can convergence be 
checked. See Field's paper [3]. 

[3] Continued fractions have been used recently to obtain high accuracy ap-
proximations to eigenvalues and functions of mathematical physics, see Bar-
nett [1] or Gerck and d'Oliveira [4]. 
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165. Cosine Method* 

A p p l i c a b l e t o Second order linear autonomous equations of a special 

form. 

Y i e l d s 

A finite difference scheme from which a numerical approximation to 

the solution may be obtained. 

Idea 

An exact representation of the solution is found. This exact represen-

tat ion is discretized to obtain an approximate numerical scheme. 
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The first two values of w can easily be found (see page 548) 

(165.2) 

where the differential equation itself has been used to compute the higher 

order derivatives of u. The number of terms kept in this series should 

correspond to the accuracy of the rat ional approximation used for the cosine 

function. 

P r o c e d u r e 

Suppose the following second order linear autonomous equation 

u" + Au = 0, , 

u(0) = u o, u'(0) = v 0

is given for u(t) , where A is a positive definite symmetric matr ix. The 

solution to (165.1) has the exact representation 

u(t + k) + u(t -k) = 2cos ( f c A
1 / 2

) u ( t ) , 

where fc represents a t ime step. Note t ha t the cosine of a matr ix is another 

matr ix. See Moler and Van Loan [2] for how the exponential of a matr ix 

may be computed. 

The approximation scheme for (165.1) is based on the use of a rational 

function to approximate the cosine term: 

cos (kA
1

/
2

) ~ R (kA
1

'
2

) = Q-
1

 (kA
1

'
2

) Ρ  (kA
1

'
2

) . 

Once a rat ional function has been chosen (i.e., Ρ  and Q have been picked), 

we define the approximation to u(tj) to be Wj (where tj = jk). The 

recurrence relation for Wj is then given by 

or
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E x a m p l e 

Suppose we have 

0 - ° · 

u ( 0 , . ( . J ) . « . > - ( $ ) . 

(165.3) 

Here A 

• a 0 

is symmetric and positive definite (its eigenvalues are 

one and three). 

The exact solution of the system in (165.3) can be found by converting 

it into the following first order system 

( ν ) - ( - A 0(v)' 

/ u ( 0 ) W u o \ 

where J is the two by two identity matr ix and u ' = v . The solution of this 

new system (see page 360) is 

/ cost + 2sin(>/3*) \ 

- c o s * + 2sin(\ /3*) | 

- s i n t + 2>/3cos(>/3i) I 

\ s i n i + 2 v

/

3 c o s ( > / 3 i ) / 

To use the cosine method we need to approximate the cosine function. 

The (2,2) Padé approximant (see page 503) to the cosine function is 

cos(z) ~ 
12 - 5 z

2 

12 + * 2 ' 

so tha t 

Q (kA
1
^ = 1 2 / + k

2
A, 

Ρ  (kA
1

'
2

} = 1 2 / - bk
2

A. 

From this we obtain our discretization scheme 

w i +i = - W j - i + 2 (12 / + fc
2

A)
_1

(12/ - bk
2

A)wj 

' -15fc
4

 - 96fc
2

 + 144 -72 ib
2

 λ  

-72k
2

 -Ibk
4

 - 96k
2

 + 144 J
 Wj 

(165.4) 
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where a = — — 5 — - 5 - . 
3(fc

2

 + 4)(fc
2

 + 12) 

The F O R T R A N program in Program 165 implements the above scheme 

with k = .25. To evaluate w i , we utilized the first five terms in (165.2). We 

choose to compare the output from the numerical approximation scheme 

to the exact solution when t is a multiple of 5. Even for t as large as 30, 

the results are accurate to two decimal places. 

AT TIME 5.00 W(J) = 1.6667 1. ,0993 

EXACT* 1.6680 1. ,1007 

AT TIME 10.00 W(J) = -2.8364 -1. ,1584 

EXACT* -2.8373 -1. ,1592 

AT TIME 15.00 W(J) = 0.7422 2. .2617 

EXACT* 0.7403 2. ,2596 

AT TIME 20.00 W(J) = 0.2361 -0. ,5798 

EXACT* 0.2413 -0. .5749 

AT TIME 25.00 W(J) = -0.2625 -2. ,2450 

EXACT* -0.2680 -2. .2504 

AT TIME 30.00 W(J) = 2.1371 1. .8281 

EXACT* 2.1386 1. .8301 

P r o g r a m 165 

IMPLICIT DOUBLE PRECISION (A-H,0-Z) 

REAL*8 W(0:1000,2),MAT(2,2),K 

K=.25D0 

TIME=K 

SQRT3=DSQRT(3.D0) 

C SET UP THE INITIAL CONDITIONS 

W(0,1)= 1.D0 

W(0,2)*-1.D0 

W(l,l)= 1 + K*2*SQRT3 - K**2/2.D0 - K**3*SQRT3 + K**4/24.D0 

W(l,2)*-1 + K*2*SQRT3 + K**2/2.D0 - K**3*SQRT3 - K**4/24.D0 

C SET UP THE MATRIX FOR THE RECURSION 

ALPHA = 2.D0/C 3.D0*(K**2+4)*(K**2+12) ) 

MAT(1,1)= ALPHA * ( - 15*K**4 - 96*K**2 + 144) 

MAT(1,2)= ALPHA * ( - 72*K**2 ) 

MAT(2,1)= MAT(1,2) 

MAT(2,2)= MAT(1,1) 

C LOOP IN TIME 

DO 10 J=2,120 

TIME=TIME+K 

W(J,1)= -W(J-2,1) + 

W(J,2)= -W(J-2,2) + 

C COMPUTE THE EXACT SOLUTION ALSO 

IF( MODU,20) .NE. 0 ) GOTO 10 

EXACT1= DCOS(TIME) + 2*DSIN(SQRT3*TIME) 

EXACT2= - DCOS(TIME) + 2*DSIN(SQRT3*TIME) 

WRITE(6,5) TIME,W(J,1),W(J,2),EXACT1,EXACT2 

5 FORMAT(' AT TIME»,F7.2,' W(J) ,2F9.4,/,18X,'EXACT*',2F9.4) 

10 CONTINUE 

END 

MAT(1,1)*W(J-1,1) 

MAT(2,1)*W(J-1,1) 

MAT(1,2)*W(J-1,2) 

MAT(2,2)*W(J-1,2) 
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166. Differential Algebraic Equations 

A p p l i c a b l e t o Differential algebraic equations, which are differential 

equations in the form 

F ( x , y , y ' ) = 0. (166.1) 

Often, F( ) is nonlinear in the y' term, or F( ) contains a collection of dif

ferential and algebraic equations. A special subcase of differential algebraic 

equations is s tandard ordinary differential equations, in the common form 

y' = f ( * , y ) . 

Y i e l d s 

A numerical approximation to the solution. 
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Idea 

Differential algebraic equations are more difficult to solve than stan-

dard ordinary differential equations. These equations are invariably solved 

exclusively by numerical means. One common numerical technique is to 

use the backwards Euler method. Tha t is, (166.1) is approximated by 

and then the resulting system of nonlinear equations is solved for y l 5 then 

y 2, etc. 

Many special purpose codes have been writ ten for these systems; see 

the references. There are, however, a few analytic solution techniques for 

differential algebraic equations, as the examples show. 

E x a m p l e 1 

Algebraic differential equations arise, for instance, in the analysis of 

mechanical systems. Each component in a mechanical system will have 

equations of motion, as well as physical constraints (depending on how the 

given component is a t tached to other components in the system). It is 

these physical constraints tha t become algebraic constraints. 

For example, consider a pendulum consisting of a point mass m, under 

the influence of gravity g, suspended by a massless rod of length I from an 

a t tachment point taken to be χ  = 0, y = 0. The equations of motion are: 

χ  = ν Ύ  

y = vy, 

vnux = —χ λ , 

mu'y = -yX - g, 

x
2

 + y
2

 = l
2

. 

(166.2) 

Here X(t) is the rod tension and vx(t) and vy(t) are the χ  and y velocities. 

E x a m p l e 2 

The differential equation 

y = / ( y ' ) = (2/')
5

 + (3/')
3

 + y' + 5 (166.3) 

for y(x) is an example of a differential algebraic equation. It is impossible 

for (166.3) to be analytically wri t ten in the form y' = g{x,y). 

However, it is possible to solve differential equations of the form y = 

f(y') parametrically. The solution may be writ ten as 

y = /( ί ), x= / r V ' W Ä + C, 
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where C is an arbi trary constant. Hence, equation (166.3) has the solution 

E x a m p l e 3 

If a differential algebraic equation is of the form χ  = f{y'), then the 

solution may be wri t ten parametrically as 

where C is an arbi trary constant. Thus, the equation χ  = (y
f

)
3

 — y' — 1 

has the parametric solution 

E x a m p l e 4 

If a differential algebraic equation is of the form f(y') = 0, and there 

exists at least one real root of f(k) = 0, then y = kx+C is a solution (where 

C is an arbi trary constant) . Thus, the equation (y')
5

 — 6(y')
2

 — 8 = 0 has 

the solution y = 2x + C. 

N o t e s 

[1] If y is a solution to an algebraic differential equation, then y is called 

differentially algebraic. If u and ν  are differentially algebraic functions, 

then so are u + v, uv, u/v, uov, i t "
1

, du/dt and JQ u(s)ds. Hence, all of 

the elementary functions (such as the rational functions, e
x

, t a n
- 1

, Bessel 

functions, etc.) are differentially algebraic. Note that the Gamma function 

(T(x) = J0°° t
x

~
1

e~
t

 dt) is not a differentially algebraic function. 

The Shannon-Pour-El-Lipshitz-Rubel theorem roughly states that the 

outputs of general purpose analog computers are differentially algebraic 

functions. See Rubel [17]. 

[2] Differential algebraic equations of the form 

x= f*
4

 + §*
2

 + log* + C, 

y = t
5

 + t
3

 + t + 5 . 

u = f(u,v,<), 

0 = g(u,v,<), 

are said to be in semi-explicit form. 
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[3] A class of algebraic differential equations that are often studied are systems 

of the form 

where A and Ε  are given matrices. In the cases of interest, A or Ε  (or both) 

are singular. For example, the system 

is an algebraic differential equation in the form of (166.4). 

[4] Consider (166.4) when sE — A is a regular matrix pencil (i.e., aet(sE — A) 

is not identically zero). (If s Ε  — A is not a regular matrix pencil then 

(166.4) is not well posed.) In this case, non-singular matrices Ρ  and Q 

can be found (see Gantmacher [5]) so that, with y = Qz = ( z i , Z 2 )
T

 and 

h(t) — Pg(t) = ( h i , h 2 )
T

, equation (166.4) then takes the form 

where Ν  is a nilpotent matrix of degree η  (i.e., N
n

 = 0 and i V
n _1

 φ  0). 

This is known as Kronecker canonical form. The degree η  defines the index 

of the problem in (166.4). The index is equal to the size of the largest 

Jordan block for the eigenvalue zero (λ  = 0) of Ε  — Χ Α . If the index is zero, 

then Ε  is non-singular and the system is easily solved numerically. Systems 

with an index greater than 1 are algebraically incomplete which means that 

the existence and the uniqueness of the solutions are not guaranteed. For 

example, the equations in (166.2) are of index 3. 

As another example, the differential algebraic equations (see Roche [14]) 

are of index 1 if (pg/dz)
 1

 exists and is bounded in the neighborhood of 

the exact solution. 

[5] In Gear and Petzold [7] is the following algorithm in which the index of the 

problem in (166.4) can be reduced to zero by successive differentiations: 

(A) If Ε  is non-singular, go to (F). 

£ y ' = Ay + g(*), 

y(0) = y 0, 
(166.4) 

2/2 = y ι  + 0O&), 

0 = 1/2 + h(x), 

ζ Ί  + Czi = h i ( t ) 

Nz2 + z 2 = h 2( i ) 

y = f(y, z) 

o = p(y,̂ ) 

(B) Find non-singular matrices Ρ  and Q such that PEQ = 

with ϋ ?ι ι  having full rank. 
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(C) Make the variable substitution y = Qz and multiply the equations 

from the left by Ρ  giving 

(D) Differentiate the lower part of the system to arrive at the new 

(E) If the "£"' matrix for the new problem is singular, consider the 

new problem as the original problem and go to step (B). 

(F) Done. 

The index of the original problem is equal to the number of times the 

above loop must be executed. 

To indicate how much different the solution to algebraic differential equa-

tions can be from standard ordinary differential equations, consider the 

following theorem in Rubel [15]: 

Given any continuous function φ  on ( — 0 0 , 0 0 ) and any posi-

tive continuous function e(t) on ( — 0 0 , 0 0 ) , there exists a C°° 

solution of the algebraic differential equation 

with \y(t) - φ (ΐ )\ < e(t) for all t G ( - 0 0 , 0 0 ) . 

Hence, any continuous function is a "valid" numerical approximation 

to a solution of the above equation! 

A FORTRAN program for approximating the solution to differential alge-

braic equations of index 1, 2, and 3 is described in Hairer et ai. [8]. This 

program is freely available via electronic mail. For a listing of computer soft-

ware that will implement the method described in this section, see page 586. 

problem 

ο  /4 // / / / /2 A /4 / / /2 nn a i3 / /2 m im 

32/ y y -4y y y + 6y y y y 
0 . /2 n4 im 10 / 3 // 111Z ΟΛ  il / /3 ml 10 ni

+24y y y -Yly y y - 29y y y + 12y = 0 

6 4 8 

[6] 

[7] 
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167· Eigenvalue / Eigenfunct ion 

Problems 

A p p l i c a b l e t o Sturm-Liouville equations. 

Y i e l d s 

A numerical method for determining the eigenvalues and eigenfunc

tions of a regular Sturm-Liouville problem. 

Idea 

The Sturm-Liouville operator can be well approximated numerically 

by a simple discretization. This leads to a set of simultaneous equations, 

which can be represented as a matr ix eigenvalue problem. The eigenval

ues and eigenvectors of this matr ix will approximate the eigenvalues and 

eigenfunctions of the Sturm-Liouville problem. 

P r o c e d u r e 

Suppose we wish to numerically approximate the eigenvalues and eigen

functions of the Sturm-Liouville system (see page 82): 

(ρ (χ )ν 'Υ  + Q{X)V =
2/(0) = 0, y(l) = 0, 

for χ  e [0,1]. We will illustrate how the method of finite differences can 

be used to approximate the eigenvalues and eigenvectors. Equat ion (167.1) 

can be approximated by 

D- ( p n+ i / 2 # + un) +qnun = \hUni 

(lo7.z) 
u0 = 0, uN = 0, 

where η  = 1 , 2 , . . . , Ν  — 1; h = 1/N; un ~ y{nh); and a function with a 

subscript of η  corresponds to an evaluation at χ  = hn. Also, the forward 

and backward differencing operators are defined by: D-fn := {fn—fn-i)/h 

and D+fn := ( / n+i — fn)/h. It can be shown tha t (see Keller [8] or Isaacson 

and Keller [7]) 

\X-Xh\<Ch
2

, 

where C is some (unknown) constant. Therefore, for a sufficiently small /i, 

the collection of { λ ^} will closely approximate the collection of eigenvalues 

{ λ } . The system in (167.2) is equivalent to the linear system of equations 

Aufc = h
2

Xhuh, (167.3) 
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where = («1,. - i )
T

 and A is the symmetric matr ix 

(h P3/2 0 0 · · · 0 o \ 

P3/2 h Ρ δ /2 
0 · · · 0 0 

0 

PS/2 h Pl/2 0 

0 

0 0 PN-5/2 ÎN-2 PN-Z/2 0 0 0 

0 PN-Z/2 IN-I 
PN -1/2 

V ο  0 

0 0 PN-1/2 
IN J 

(167.4) 

where fm := h
2

qm - (pm-\/2 + P m + i / 2 ) - Hence, the eigenvalues of (167.4), 

scaled by h
2

 (see (167.3)), will approximate the eigenvalues of (167.1). Note 

tha t Ufc, the eigenvector of (167.4) corresponding to λ ^, is an approximation 

to the eigenfunction corresponding to λ &. The eigenvalues and eigenvectors 

of (167.4) can be computed by s tandard numerical techniques. As Ν  

increases, more eigenvalues and eigenvectors are found and the accuracy of 

the lower order eigenvalues (and their associated eigenfunctions) increases. 

E x a m p l e 

Consider the simple Sturm-Liouville system 

y" + y = Xy, 

y(0) = 0, 2/(1) = 0. 

For this system, the eigenfunctions and eigenvalues are given by 

yn(x) = s inn7nr, 

λ η  = 1 
2 2 

η  π  , 

(167.5) 

(167.6) 

for η  = 1,2, Hence, the two eigenvalues with the least magnitude are 

λ ι  = 1 - π
2

 ~ - 8 . 8 6 and λ 2 = 1 - 4 π
2

 ~ -38 .47 . To utilize the numerical 

technique presented above, we compare (167.5) with (167.1) to determine 

tha t p(x) = 1 and q(x) = 1. 

If Ν  = 3 (so tha t h = 1/3), then the matr ix in (167.4) is given by 

-17/9 1 0 

1 - 1 7 / 9 1 

0 1 - 1 7 / 9 J 

(167.7) 

The eigenvalues of the matr ix in (167.7) are approximately - 1 . 9 and - . 4 9 . 

When scaled by h
2

, the estimates of the smallest eigenvalues of (167.5) 

become λ ι  and λ 2 ~ - 1 7 . 0 . 

For Ν  = 10 the est imates are λ ι  ~ - 7 . 1 and λ 2 ^ - 3 0 . 7 , while for 

Ν  = 50 the estimates are λ ι  ~ - 8 . 5 and λ 2 c^-36.9 . As Ν  increases, the 

estimates become bet ter . If a higher order scheme were used to discretize 

(167.2), then smaller values of Ν  would be required to obtain a given 

accuracy. 
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N o t e s 

[1] Of course, Sturm-Liouville systems other than the one in (167.1) can be rep

resented by the simple discretization in (167.2). More complicated boundary 

conditions may lead to a non-symmetric matrix in (167.3). 

[2] Many other techniques have been used to approximate the eigenvalues and 

eigenfunctions of differential systems. These methods include finite ele

ments, Galerkin methods, invariant embedding, Prüfer substitution, shoot

ing, and variational methods. See page 551 of this book, Keller [8], or 

Cope [5]. 

[3] For a listing of computer software that will implement the method described 

in this section, see page 586. 
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168. Euler's Forward Method 

A p p l i c a b l e t o Initial value systems of first order ordinary differential 

equations. 

Y i e l d s 

A numerical marching scheme tha t is first order accurate. 

A forward difference approximation to a derivative can be easily ma-

nipulated into a numerical scheme. The technique in this section is the most 

elementary finite difference approximation—other techniques are found on 

page 573. 

P r o c e d u r e 

Given the first order system 

where y and f are vectors, we numerically approximate dy/dt by 

[y(t + At) — y(t)]/At, where At is a small step size. This numerical 

approximation is first order accurate. Using this approximation, (168.1.a) 

can be rewrit ten as 

Hence, to integrate (168.1) we i terate (168.2) and use the initial conditions 

from (168.1.b) for 

y(*o) = y0> 

y(t0 + At) ~ y(* 0) + Δ * f[ t 0, y 0(*o)] , 

y(t0 + 2 Δ *) ~ y(t0 + Δ *) + Δ * ί [ * 0. + At,y0{t0+ At)], 

y(t0 + 3 Δ *) ~ y(t0 + 2 Δ *) + At f[ t 0 + 2 A * , y 0( * 0 + 2 Δ *)], 

I d e a 

f[*,y(i)]. 
(168.1.a-6) 

y ( i + Ai ) = y(*) + A*f[*,y( i ) ] . (168.2) 
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E x a m p l e 

Suppose we want to approximate the value of y(l) when y(t) is defined 

by 
dy ty 

dt i
2

 + l' 
»(0) = 1. (168.3) 

Since this equation is separable, the exact solution is known to be y(t) = 

s/ï+tï. We can use this exact solution to compare the accuracy of the 

numerical approximation. The FORTRAN code in Program 168 uses Eu-

ler's forward method to numerically approximate the solution of (168.3). 

The code uses a step size of At = 0.1. The output from this program is 

listed below, with the exact solution alongside for comparison. The error 

in the calculated value for y(l) is about 1.7%. 

T= 0.100 Y= 1.00990 EXACT SOLUTION* 1.00499 

T= 0.200 Y= 1.02932 EXACT SOLUTION* 1.01980 

T= 0.300 Y= 1.05765 EXACT SOLUTION* 1.04403 

T= 0.400 Y= 1.09412 EXACT SOLUTION* 1.07703 

T= 0.500 Y= 1.13789 EXACT SOLUTION* 1.11803 

T= 0.600 Y= 1.18809 EXACT SOLUTION* 1.16619 

T= 0.700 Y= 1.24390 EXACT SOLUTION* 1.22066 

T= 0.800 Y= 1.30458 EXACT SOLUTION* 1.28062 

T= 0.900 Y= 1.36945 EXACT SOLUTION* 1.34536 

T= 1.000 Y= 1.43792 EXACT SOLUTION* 1.41421 

If the number of steps were increased (so the step size decreased) 

then the accuracy would improve. For example, if (in the above example) 

NDIV were increased to 100, the calculated value of y(l) would be 1.41672. 

Hence, the error in the calculated value for y ( l ) would decrease to about 

0.17%. 

P r o g r a m 168 

NDIV=10 

TINIT=0.D0 

TEND* 1.D0 

DELTAT*(TEND-Τ IΝ IΤ )/DFLOAT(NDIV) 

T=0 

Y=l 

C THIS IS THE INTEGRATION LOOP 

DO 10 J=1,NDIV 

T=T + DELTAT 

Y=Y + DELTAT * YPRIME(T,Y) 

EXACT=DSQRT(1+T**2) 

WRITE(6,5) T,Y,EXACT 

5 F0RMATO T = \ F6.3,' Y=>, F8.5,' EXACT SOLUTION*' ,F8.5) 

10 CONTINUE 

END 

C THIS FUNCTION SPECIFIES THE DIFFERENTIAL EQUATION 

FUNCTION YPRIME(T,Y) 

YPRIME* T*Y / (T**2+l) 

RETURN 

END 
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N o t e s 

[1] This technique is the easiest to use and program of all the numerical methods 

presented in this book. A major drawback is that the step size At may have 

to be very small for accurate numerical values. 

[2] There is also a method known as Euler's backward method. For this implicit 

method, the difference scheme is given by 

y(t + At) ~ y(t) + At f[t, y(t + At)]. (168.4) 

In general, equation (168.4) will be nonlinear in y(t+At). Hence an iterative 

scheme (such as Newton's method) must be employed to find y(t + At). 
[3] The stability properties of Euler's forward and backward methods are com-

pletely different. Consider applying each method to the scalar differential 

equation y! = —cy, y(0) = yo, where c is a positive constant. For Euler's 

forward method we have 

y(t + At)~y(t) + Aty'(t), 

= y(t)-cAty(t), 

= (1 - cAt)y(t), 

= yo(l-cAt)
t/At

. 

While for Euler's backward method we find 

2/(* + Δ *)~</( ί ) + Δ *</'(* + Δ ί ) , 

= y(t)-cAty(t + At), 

(168.5) 

*/(*) (168.6) 
l + cAi ' 

Vo 

(l + c A t )
t / A t

' 

Note that the approximation in (168.5) diverges in an oscillatory fashion 

when At > 2/c, while the approximation in (168.6) is stable for any value 

of At. In particular, if c ^> 1 (so that the problem is stiff, see page 690) 

then At may have to be very small for Euler's forward method to be stable, 

while a larger value of At can be used with Euler's backward method. 

[4] As an indication of the different convergence properties of Euler's forward 

and backward methods, consider the equation: y = - 6 y + 5 e
- t

. Figure 168 

shows the exact solution (y = e
- t

) and approximations obtained by using 

Euler's forward method (At = .3 and At = .1) and Euler's backward method 

(At = .3). On this problem, Euler's backward method is better than Euler's 

forward method for a fixed step size. 

[5] As always, ordinary differential equations of higher order can be written as 

a system of first order equations (see page 118). 
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Figure 168. Different numerical techniques applied to y = —6y + 5e *. 
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169. Finite Element Method* 

A p p l i c a b l e t o Differential equations tha t arise from variational princi-

ples. Principally ordinary differential equations and elliptic part ial differ-

ential equations. 

Y i e l d s 

A numerical scheme for approximating the solution. 

P r o c e d u r e 

The finite element method is one version of the method of weighted 

residuals (see page 699). The present method is characterized by having 

"local elements." The finite element method has a specialized vocabulary, 

several of the terms appearing below will be defined in the example. 

Given a differential equation tha t comes from a variational principle, 

and a domain in which the equation is to be solved, the steps are as follows: 
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Figure 168. Different numerical techniques applied to y = —6y + 5e *. 
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169. Finite Element Method* 

A p p l i c a b l e t o Differential equations tha t arise from variational princi-

ples. Principally ordinary differential equations and elliptic part ial differ-

ential equations. 

Y i e l d s 

A numerical scheme for approximating the solution. 

P r o c e d u r e 

The finite element method is one version of the method of weighted 

residuals (see page 699). The present method is characterized by having 

"local elements." The finite element method has a specialized vocabulary, 

several of the terms appearing below will be defined in the example. 

Given a differential equation tha t comes from a variational principle, 

and a domain in which the equation is to be solved, the steps are as follows: 
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[1] Discretize the domain into simple shapes (these are the "finite ele-

ments") . Define a basis function 0fc(x) on each of the finite elements. 

These basis functions should have bounded support . 

[2] Assemble the stiffness matr ix and the load matrix. These only depend 

on the finite elements chosen and not on the differential equation to 

be approximated. 

[3] Write the given differential equation as a variational principle. Approx-

imate the unknown in the variational principle by a linear combination 

of the functions defined on the finite elements; i.e., u(x) ~ w/v(x) := 
c

fc0fc(x)- I
n

 this last expression, the {c*;} are unknown and must 

be determined. 

[4] Construct element stiffness matrices and load vectors, element by 

element. Then assemble these together into the global stiffness matr ix 

A and the global load vector f. 

[5] Relate the minimization in the variational principle to the minimiza-

tion of the quadrat ic functional 

When A is symmetric (as it frequently is), the minimization of (169.1) 

will occur when c is the solution of the system: Ac = f. In general, A 

will not be banded or tridiagonal, but it will be sparse. If the original 

differential equation was nonlinear, then A = A(c) or f = f(c). 

There is a large l i terature on the finite element method. We choose 

to illustrate the basic ideas on simple examples: the first two examples are 

constant coefficient second order linear ordinary differential equations, the 

third example is for Laplace's equation. These examples show the major 

steps involved, without the details tha t a sophisticated implementation 

requires. 

E x a m p l e 1 

Suppose we have the constant coefficient second order linear ordinary 

differential equation 

on the interval 0 < χ  < 1. For simplicity, we take p(x) and q(x) to be 

constants. For this equation, we take the natural boundary conditions 

I[uN] = c
T

Ac - 2c
T

f . (169.1) 

u(0) = u(l) = 0. (169.3) 
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Xk-i Xk 

Figure 169.1 The "hat functions" in (169.5). 

form 

If we use I[v] to represent the "energy" of the system, then we may 

I[v] = f [p(v
f

{x))
2

 + qv
2

(x) - 2f(x)v(x)] dx. (169.4) 
Jo 

It is straightforward to show tha t the first variation of I[v] (see page 88) 

yields (169.2) and (169.3). Hence, I[v] will be minimized when ν  = u. 

Now we set up a uniform grid of Ν  + 2 points on the interval 0 < χ  < 1 

(i.e., xn = nh with h = 1/(N + 1) for η  = 0 , 1 , . . . , N + 1). We define the 

interval (x^^fc+i) to be "finite element number fc." We choose as basis 

functions on the finite elements the functions (j>k(x) defined by 

<t>k{x) = { 

( χ  - Xk-i 

h 

Xk+i - x 

l o , 
h 

, for Xk-i <x<Xk, 

, for Xk < x < Xk+i, 

otherwise. 

(169.5) 

These are the "hat functions" shown in Figure 169.1. Note tha t 

i for Xk-i < x < Xk, 
η  

for xk < χ  < 

0, otherwise. 

Now we approximate the function tha t minimizes (169.4), u(x), by a 

linear combination of the </>fc(x). We take 

Ν  

u(x) ~ uN(x) := ^ c f c0 f c( x ) , (169.6) 

fc=i 

where the unknowns {c^} must be determined. Once the {c^} are known, 

then the approximation to u(x) at any point can be found from (169.6). 
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UN(x) = Ck(j)k(x) + Ck+l<t>k+\{x), 

Using UN(X) for v(x) in (169.4) results in 

N

 rxk+i 

J

I
U

N] = Σ  [P(
U

'N)
2

 + Q
U

N - dx, 
k=0

 J X

* 

: = Σ Κ  + / Γ  + / Ι ] , 
fc=0 

(169.8) 

where 

^ : = P ( ^ )
2

 ώ  = ( c fc c f e +1 ) Kk ) , 

4
m

 := £
k +1

 q(m)
2

 dx = (ck c k +1 ) K £ ( ^ ) , 

r
x

k+i 

l{ := / 2f(x)uN(x)dx 
Jxk 

by virtue of (169.7). Here K\ is the element stiffness matrix, and if™ is 

the element mass matrix, they are defined by 

K k

- h \ - \ i j '
 Kk

 ~ τ { ι  2 ) · 

If ρ  and g were not taken to be constants, then these element matrices 

would not be so simple. A numerical integration would have been required 

to find the entries in these matrices. 

A numerical integration is required to determine l[. If, on finite 

element number fc, f(x) is approximated by f(x) ~ fk<l>k(x) +fk+i<l>k+i{x), 

then we find l\ = ^ffĉ  {^^
k

 ^ » where the element load vector is defined 

The system can now be assembled, element by element. Tha t is, we 

write a single matr ix equation representing (169.8). For this example, we 

find tha t 

I[uN] = c
T

(K + M ) c - 2 f
T

c , (169.9) 

Hence, on finite element fc (i.e., for Xk < x < Xk+i) 
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where c = (c x, c 2 , . . . , c N)
T

, f = - ( / 0 + 4 / i + / 2 , Λ  + 4 / 2 + / 3 , . . . , JN-2 + 

4 / j v - i + /JV)
T

i and the global stiffness matrix Κ  and the global mass matrix 

M are defined by 

Κ  = 

(
 2 

- 1 

0 

0 

0 

V ο  

M = 
qh 

- 1 

2 

- 1 

0 

0 

0 

/ 4 1 

1 4 

0 1 

0 0 

0 0 

Vo ο  

0 

0 

1 

1 

0 

0 

2 

- 1 

0 

0 

0 

0 

- 1 

2 

- 1 

0 0 \ 

0 0 

0 0 

1 0 

4 1 

1 4 / 

0 

0 

0 

- 1 

2 / 

To minimize the expression in (169 .9 ) , c should be chosen (since Κ  + 

M is a symmetric matr ix in this example) to satisfy the matr ix equation 

(K + M ) c = f. This is a tridiagonal system of equations. It may be solved 

by s tandard numerical linear algebra routines. 

E x a m p l e 2 

This example shows more of the details for a specific application of the 

finite element method. Suppose tha t we wish to approximate the solution 

of the ordinary differential equation 

u" - v! = e
x

 (e-
x

u
f

)' = 0, 

u(0) = 2, u(4) = 1 + e
4

, 
(169 .10) 

whose exact solution is u(x) = 1 + e
x

. From page 88, we see tha t the 

variational principle associated with (169 .10) is just 6J = 0 where 

J[u] := f 
Jo 

e~
x

 {u'y dx. 

To use the finite element method on the problem in (169 .10 ) , we choose 

to use three elements: the intervals [0 ,1] , [1 ,2] and [2 ,4] . We choose the 

polynomial basis functions 
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boundary conditions: / ( 0 ) = 2, Λ (4) = 1 + e
4 

continuity conditions: / ( I ) = ff(l), / ' ( I ) = <?'(!), 

9(2) = h(2), fl'(2) = ft'(2). 

on element [0,1], basis function is f(x) = a + β χ  + 7 z
2

, 

on element [1,2], basis function is g(x) = δ  + ε χ  + Çx
2
, (169.11) 

on element [2,4], basis function is h(x) = η  + θ χ  + tx
2

. 

After { α , β , 7, ε , C, η , 0, are determined, we will have found an approxi-

mate solution, v. The equations needed to satisfy the boundary conditions, 

and for our approximation, and its first derivative, to be continuous on the 

interval [0,1], are 

(169.12) 

Subject to the constraints in (169.12), we want to minimize J[v], Using 

our chosen set of finite elements and basis functions, we have 

J[v]= f
1

 e~
x

 {ff dx + f e~
x

 (g
f

)
2

 dx + f e~
x

 {ti)
2

 dx 

JO Jl J2 
= (4e - 8 ) 7

2

 + 4/Î7 + (8e
2
 - 4e)C

2
 + 4 β

2

ε ζ  + ( e
2

 - e )0
2 

+ 4e
2

M9 + (8e
2

 - 4e)^
2

 + ( e
2

 - e)e
2

 + (e - l ) / ?
2 

To minimize this last expression, subject to the constraints in (169.12), 

we use Lagrange multipliers. The expression obtained after Lagrange mul-

tipliers are introduced is differentiated with respect to each of the variables 

to obtain a linear system of 15 equations (9 equations due to the 9 variables 

in (169.11) and 6 equations due to the Lagrange multipliers). This system 

can be solved to determine the basis function on each element: 

f(x) = - 3 . 4 5 0 8 z
2

 + 5.3673z -h 2, 

g(x)= 4 . 1 8 3 6 z
2

- 9.9014z-h 9.6343, 

h(x) = 8.8416z
2

 - 28.5337z + 28.2666. 

Figure 169.2 has a comparison of the exact and approximate solutions. 

At points midway on the elements we find: 

u(.5) = 2.65, u(1.5) = 5.48, u{3) = 21.09. 

/ ( . 5 ) = 3.82, 0(1.5) =
 4

·
2 0

'
 Λ

( 3 ) =
 2 2

·
2 4

> 

A more accurate approximation could have been obtained by increas-

ing the degree of the basis functions, or by increasing the number of 

elements. 
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50 π  

0 1 Ί  ô X 

Figure 169.2 Exact solution and finite element approximation to (169.). 

F igu re 169.3 Finite elements used in Example 3. 

E x a m p l e 3 

Suppose tha t we want to approximate the solution to 

V
2
i t = 0 in the rectangle 0 < χ  < 2, 0 < y < 1, 

i i(x,0) = / ( x ) , 

u(x, 1) = h(x), 

u ( l , y ) = j ( y ) , 

w(2,y) = g(y). 

(169.13) 

For this problem we choose we use three finite elements; two of these 

elements (I and II) are triangles and one (III) is a square (see Figure 169.3). 

On the different elements we choose to use the following polynomial func-

tions to represent the solution: 

ui 

un 

um 

= an + Û12# + 0132/ + α ΐ 4 ^
2

 -I- Û152/
2
 + α ΐ 6#2Λ  

= α 2 ι  + a22X + Û232/ + û24^
2
 -I- Û252/

2
 + ^26^2/ + <*wx

3
 + a 2s y

3
, 

= Û31 + Û32# + Û332/-
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Now we must specify how the parameters in these approximate solu-

tions are to be determined. Using a subscript to denote evaluation at a 

node on Figure 169.3, we choose to approximately satisfy the equation and 

boundary conditions on the individual elements as follows: 

On element I: 

On element II: 

ui 

uu 

uu 

PA 

On element III: 

V
2

w / / 

um 

94, 

he, 

/ 2 , 

Λ , 

0, 

/ i , 

Ui 

V
2

i i / 

uu 

Un 

Pa 

<75, 

0, 

h, 

^6, 

um 

um 

Ρ * 

h, 

h7. 

To connect the elements, we choose the following conditions: 

ui 

un 

du ι  

dx 

= un 
Ρ * 

Ρ ί ο  

Pe 

Ρ β  

um 
Pia 

dun dui 

dn p* dn 

dun _ dum 

dn 
Pia 

dn 

du m 
dx 

Pe 

(169.14) 

(169.15) 

where η  s tands for the normal. 

To actually carry out the solution technique, we choose the boundary 

conditions: {/(x) = x
2

, g(y) = 4 + y - y
2

, h(x) = x
2

, j(y) = y - y
2

}. For 

these values, (169.13) has the exact solution: u(x,y) = x
2

 + y — y
2

. Solving 

the linear equations in (169.14) and (169.15), we obtain the approximate 

solution: 

ui = - 2 y
2

 + (10 - 4x)y + 2x
2

 + χ  - 6, 

un = Sy
3

 + 23y
2

 + (8x - 23)y + 2 4 x
3

 - 107x
2

 + 156x - 72, 

um = 
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N o t e s 

[1] Nearly every part of the finite element procedure that has been presented 

in example one can be generalized. 

(A) The basis functions do not have to be piecewise linear, but could be 

piecewise quadratic, cubic, or higher order (they were chosen to be 

quadratic in example two). 

(B) For physically two-dimensional structures, the "finite elements" can 

be triangles, quadrilaterals, or polygons with more sides (they can be 

tetrahedrons, cubes, or more complicated structures for three-dimensional 

structures). However, the smoothness conditions across the boundaries 

may be difficult to formulate. 

(C) Even in one dimension, the "finite elements" do not have to represent 

intervals of equal length (as in Example 2). 

[2] The approximation to the solution in (169.6) will only be C°, since the 

basis functions chosen in (169.5) are piecewise linear. The cubic Hermite 

approximation results in a C
1

 approximation by choosing the following two 

basis functions per finite element: 

1> 

otherwise, 

C*(*) = < 

^ (x - xk) ( l + ~J~) ' for x
k
-i < χ  < Xk, 

(x - Xk) ( l - '
 for

 ^fc-
1

 ^
 x

 ^ 

[ 0, otherwise, 

These basis functions are continuous with their first derivatives at the nodes 

(endpoints of the intervals). See Figure 169.4. Using these functions, an 

approximation of the form 

Ν  

u(x) ~ uN(x) := ^2
 d

kVk(x) + ekCk(x) 

k=i 

is supposed, where the constants {dk,ek} must be determined. 

on element I, maximum error 

on element II, maximum error 

on element III, maximum error 

Comparing this approximate solution to the exact solution, we determine 

the maximum errors to be 
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y Φ  

ι  

ο  
Xk-i 

Figure 169.4 The functions for the cubic Hermite approximation. 

[3] In higher dimensions, smoother approximations are found analogously. Basis 

functions are chosen that are continuous (with several of their derivatives) 

at the nodes of the "finite elements." The nodes could be the vertices of a 

square (or cube), or some of the vertices and some points along the edges 

on the square (or cube). 

[4] Both Mackerle and Predriksson [7] and the book edited by Brebbia [3] have 

comprehensive listings of available software that numerically approximate 

the solutions of differential equations by finite elements. 

[5] Incidentally, by integrating by parts and using the boundary conditions in 

(169.3), it can be shown that (169.4) is equivalent to I[v] = (v, L[v])—2 (/, v), 

where (g, h) := JQ

X

 g(x)h(x) dx. 

[6] In some finite element programs, the discretization errors are controlled by 

letting the diameter of the largest element h approach zero. This is called 

the h-version of the finite element method. In the p-version of the finite 

element method, the mesh is fixed while the degree of the polynomials on 

the elements is increased (this is also called the global element method). In 

the hp-version, both limits are considered simultaneously. See Babu§ka [2] 

for details. 

[7] Mackerle [6] contains a very large annotated bibliography. 
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170· Hybrid Computer Methods* 

A p p l i c a b l e t o Ordinary differential equations and partial differential 

equations. 

Y i e l d s 

A numerical approximation to the solution. 

I d e a 

Sometimes the advantages of bo th digital and analog computers can 

be used simultaneously on a single differential equation. 

P r o c e d u r e 

A hybrid computer is one tha t combines bo th digital and analog com-

puting devices. Generally, in such a configuration, the analog computer is 

used to perform tasks tha t are very time consuming on a digital computer. 

The analog computer is constructed, generally by the user, out of capac-

itors, operational amplifiers, resistors, and other electronic components. 

The numbers in an analog computer are represented by electrical quantities 

such as voltage and amperage. 
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A numerical approximation to the solution. 

I d e a 

Sometimes the advantages of bo th digital and analog computers can 

be used simultaneously on a single differential equation. 

P r o c e d u r e 

A hybrid computer is one tha t combines bo th digital and analog com

puting devices. Generally, in such a configuration, the analog computer is 

used to perform tasks tha t are very time consuming on a digital computer. 

The analog computer is constructed, generally by the user, out of capac

itors, operational amplifiers, resistors, and other electronic components. 

The numbers in an analog computer are represented by electrical quantities 

such as voltage and amperage. 
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/(*) Θ  
Α /Ν  

d
2

X 

„ dx 

-
a

w 

-bx
2 

-fdt -fdt -fdt -fdt 

χ α  

x
2 

x ( - 6 ) square x ( - 6 ) square 

F igure 170. A block diagram for the analog solution of the differential equation 

d
2

x dx 
^ + bx

2

 = f(t). 

As an example of use, a part ial differential equation can often be 

approximated by a large number of ordinary differential equations (see, for 

example, the method of lines, on page 740, or the Rayleigh-Ritz method, 

on page 554). Rather t han introduce additional approximations in finding 

solutions of these ordinary differential equations, an analog computer may 

be used. 

In other problems, the analog computer is used to evaluate integrals 

as they arise. These integrals are often multi-dimensional and would be 

computationally intensive on a digital computer. 

The digital computer is nearly always used to control the solution 

procedure and to determine the discretization and the overall error. 

E x a m p l e 

The block diagram in Figure 170 shows how the differential equation 

fx 

dt
2 

dx 

It 
^ + a^r + bx

2

 = f(t) 

might be solved by an analog computer . Each of the blocks in this figure 

is easily implemented by electronic components. 

The blocks tha t perform the multiplications will generally have the 

numerical values of a and —b specified by potentiometers. These values 

may be changed by adjusting the potentiometers by hand. Or, these values 

could be changed by a digital computer . 
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N o t e s 

[1] For an example of a hybrid nonlinear parabolic equation solver, see El-

Zorkany and Balasubramanian [3]. 

[2] Recently, hybrid computers have been introduced that do not require the 

user to "plug" components together; the specification of the analog part of 

the machine is performed on the digital part of the machine. 
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171. Invariant Imbedding 

A p p l i c a b l e t o Most often, two point boundary value problems for 

ordinary differential equations. 

Y i e l d s 
A new formulation as an initial value problem. 

I d e a 

Invariant imbedding is a type of continuation method (see page 635). 

For the usual problems tha t are t reated, the length of the interval of interest 

is considered to be the continuation parameter . Hence the endpoint in a two 

point boundary value problem is t rea ted as a variable. By differentiating 

with respect to this variable, an initial value problem can be created. 

P r o c e d u r e 

The general technique involves some subtleties, so we choose to illus-

t ra te the technique on a class of two point boundary value problems. More 

details can be found in Casti and Calaba [3]. Suppose we have the system 

of ordinary differential equations 

dx 
— = a(t)x(t) + b(t)y(t), 

^ = c(t)x(t) + d(t)y(t) + f(t), 

with 

α ι χ ( Ο ) + a 2y ( 0 ) = 0, 

a3x(T) + a4y{T) = 1, 

(171.1) 

(171.2) 

on the interval t G [0,T], where the {o^} are constants and {a, 6, c, d} are 

continuous functions. If we think of the endpoint Τ  as being a variable, then 

the solution to (171.1) and (171.2) can be writ ten, by use of superposition, 

as 

x(t) = x(t, T) = u(t, T) + p(t, Γ ) , 

y(t) = y(t,T) = v(t,T) + q(t,T),

where the functions {u, v ,p , q} are defined by 

du(t,T) 

dt 

dv(t,T) 

= a(t)u + b(t)v, α ι ΐ ι (0 , Τ ) + α 2 υ ( 0 , Τ ) = 0, 

= c(t)u -h d(t)v + / ( * ) , a 3u ( T , Γ ) + a4v(T, T) = 0, 
dt 

(171.4) 



6 7 0 I V . B N u m e r i c a l M e t h o d s for O D E s 

and 

= a(t)p + b(t)q, alP(0, T) + a2q(0, T) = 0, 

d τ )
 (171'5) 

= c(t)p + d(t)q, a

3

p(T, T) + a

4

q(T, T) = 1
. 

Using algebraic manipulations, the systems in (171.4) and (171.5) can be 

wri t ten as initial value systems by the introduction of four new variables. 

Define the functions {r, s, m, n} to be the solutions to the following non-

linear ordinary differential equations: 

r'(t) = b{t)s(t) + [a(t) - a3b{t)s(t) - a4d(t)s(t)]r{t) - [a3a(t) + a4c(t)]r
2

(t), 

s'{t) = c(t)r(t) + [d(t) - a3a(t)r(t) - a4c{t)r(t)]s(t) - [a3b(t) + a4d(t)]s
2

(t), 

m'(t) = a(t)m{t) + b{t)n(t) - \[a3a(t) + a4c{t)]m(t) 

+ [a3b{t) + a4d(t)]n(t) + / (*)}r(i) , 

n'{t) = c{t)m(t) + d(t)n(t) + f(t) - | [ a 3a ( i ) + a4c(t)]m{t) 

+ [a3b(t) + a4d(t)]n(t) + f(t)}s(t), 

(171.6) 

where ' denotes differentiation of a function with respect to its single 

argument (i.e., the variable t). The initial values for {r, s ,m , n} are given 

by 

a 1r ( 0 ) + a 2 5( 0 ) = 0, m(0) = 0, 

a 3r ( 0 ) + a 4s ( 0 ) = 1, n(0) = 0. 

Note tha t we must have α ι α 4 — α 2α 3 ψ  0 if r (0) and s(0) are to be 

determined from (171.7). Using {r, s, m, n), the equations for {p, q, u, v} 

can now be wri t ten as 

= -{r(T)[a3a(T) + a 4c ( T ) ] + s(T)[a3b(T) + a4d(T)]}P(t,T), 

= -{r(T)[a3a(T) + a 4c (T) ] + s(T)[a3b(T) + a4d(T)]}q(t,T), 

du(t, T) 

dT 

= -{m(T)[a3a(T) + a 4c ( T ) ] + n(T)[a3b(T) + a4d(T)\ + f(T)}p(t,T), 

dv(t,T) 

dT 

= -{m(T)[a3a(T) + a4c(T)} + n(T)[a3b(T) + a4d(T)} + f(T)}q(t,T). 

(171.8) 
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The initial conditions for {p, q, u, v} may be writ ten as 

p(t,t) = r(t), q(t,t) = s(t), 

u(t,t) = m(t), v(t,t) = n(t). 
( 1 7 1 . 9 ) 

Suppose tha t the solution of the original system, ( 1 7 1 . 1 ) and ( 1 7 1 . 2 ) , 

is desired at the set of abscissas £ 2 ^ 3 , · · · , ^ Λ Γ } , where tjy = T*, and 

T* is the interval length of interest. The numerical technique is to nu-

merically integrate the equations in ( 1 7 1 . 6 ) for {r, s , ra, n } , from t = 0 

to t = T*. Hence the values of {r, s , r a , n } will be known at the points 

{ Î 1 ^ 2 î * 3 î · · · 

Now fix £ = ti in ( 1 7 1 . 8 ) and ( 1 7 1 . 9 ) . Integrate the resulting equations 
(with respect to Γ ) from Γ  = tx to Τ  = Γ * . This will yield {p(*i ,T*), 

q(tuT*), Μ ( * Ι , Γ * ) , ν ( ί ι , Γ * ) } . If these values are used in ( 1 7 1 . 3 ) , then 

x(ti,T*),y(ti,T*) will be determined. Of course, this is the same as 

x ( t i ) , y(ti). Hence, χ  and 2/ have been determined at the first point of 

interest, t\. 

To obtain χ  and y at t = ti, evaluate ( 1 7 1 . 8 ) and ( 1 7 1 . 9 ) at t = t 2 and 

integrate the resulting equations with respect to Τ  (from t2 to T*). Repeat 

this for each of t = £3, t = £4, 

E x a m p l e 

Suppose we want to tu rn the boundary value problem 

into an initial value problem. Using the above notation, we find tha t {a\ = 

a 4 = 1, a2 = a3 = 0 , a(t) = d(t) = f(t) = 0 , b(t) = c(t) = 1 0 , Γ * = 1 0 } . 

The system in ( 1 7 1 . 6 ) becomes 

dx 

~dt 

dy 

dt 
lOx, 

10y, x(0) = 0 , 

2/(10) = 1 

r' = 1 0 ( 5 - r
2

) , 

a' = 1 0 ( 5 - 1) , 

rn = 10 (n — rar), 

ri = 10ra ( l - 5 ) , 

( 1 7 1 . 1 0 ) 

with the initial conditions: r ( 0 ) = 0, 5 ( 0 ) = 1, ra(0) = 0, n ( 0 ) = 0. It is 

easy to see tha t n(t) = 0, m(t) — 0, s(t) = 1, al though these equations 

could have been integrated if this had not been observed. The system in 
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(171.8) becomes 

dp{t,T) 

dT 

dq(t,T) 

dT 

- 1 0 r ( T ) p ( t , T ) , 

- 1 0 r ( T ) g ( t , T ) , 

(171.11) 
du{t,T) 

dT 

dv(t,T) 

dT 

- 1 0 m ( T ) p ( t , r ) , 

- 1 0 m ( T ) g ( t , T ) , 

with the initial conditions: p(t,t) = r(t), q(t,t) = s(t), u(t,t) = m(t), 

v(t,t) = n(t). From the above observation, we conclude that q(t,t) = 1, 

u(t,T) = 0, v(t,T) = 0. Using (171.3) we find: x(t) = x(t,10) = p(t, 10) 

and y(t) = y(t, 10) = q(t, 10). Let us suppose that we want to know the 

values of χ  and y for t = 2 ,4 ,6 ,8 ,10 . The procedure to follow is 

(A) Integrate r(t) from t = 0 up to t = 10 using (171.10). Hence, r(2), 

r(4), r(6), r(8), r(10) will all be known. 

(B) Set p(2,2) = r(2) and g(2,2) = 1. Integrate (171.11) for ρ ( ί , Γ ) 

and g(*,T) from Τ  = 2 to Τ  = 10. Then {p(2,10), g(2,10)} will 

be known and hence {x(2) ,y(2)} will be known. 

(C) Set p(4,4) = r(4) and g(4,4) = 1. Integrate (171.11) for p(t ,T) 

and g(t ,T) from Γ  = 4 to Γ  = 10. Then {p(4,10), g(4,10)} will 

be known and hence {#(4), y(4)} will be known. 

(D) Repeat steps (2) and (3) for t = 6, t = 8, and t = 10. 

[1] The paper by Scott [9] lists several different ways in which boundary value 

problems may be converted into stable initial value problems. 

[2] Imbedding methods can be used for more than just boundary value prob-

lems. This technique can also be applied to nonlinear variational problems, 

unconstrained nonlinear control processes, constrained control processes, 

and Fredholm integral equations. Imbedding methods have also been used 

in hyperbolic and parabolic partial differential equations. 

[3] Wasserstrom [11] discusses how imbedding methods can be analyzed as 

continuation methods (see page 635). 

[4] Other names for the invariant imbedding approach are "field method," 

"factorization method," "method of sweeps," "compound matrix method," 

and "Riccati transformation." In this last method, matrix Riccati equations 

(see page 335) are developed. See Ascher et al. [1] for details. 

N o t e s 
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A p p l i c a b l e t o Ordinary differential equations and part ial differential 

equations. 
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Y i e l d s 

A numerical approximation technique. 

I d e a 

After differential equations are discretized for the purpose of approxi-

mating the solution numerically, some linear algebraic operations must be 

performed. Frequently, a system of linear equations may need to be solved 

(e.g., see pages 626, 716, and 726). If the system of linear equations is large 

(e.g., when a fine discretization grid is used), then iterative methods are 

often used to solve the linear equations. 

Multigrid methods are iterative methods for solving systems of linear 

equations arising from differential equations. Generally, different grids are 

used, with only a few iterations per grid. The last approximation on one 

grid becomes the first approximation on the next grid. 

P r o c e d u r e 

We sketch the approximation process using the following ordinary 

differential equation as motivation: 

u"(x) — au{x) = —f(x) 

u{0) = 0, = 0. 
(172.1) 

Consider approximating the solution of (172.1) on a uniform grid 

with a spacing of h (e.g., Xj = jh and Vj « U(XJ)). Call this grid Ω
Λ

. 

Using (vj-i — 2VJ + t^+i ) /h
2

 as an approximation to U"(XJ), (172.1) can 

be wri t ten as 

_1_ 

h
2 

/ 2 + σ / ι
2 

- 1 

- 1 

2 + ah
2 

0 

- 1 
\ 

0 

V 0 

2 + ah
2 

- 1 

- 1 

2 + ah
2

 ) 

( *l \ 
V2 

\VN-I/ 

h 

Î2 

\fN-J 

(172.2) 
(Here a superscript indicates the spacing on the or simply as A

h
w

h
 = î

h
. 

underlying grid.) 

The solution of the linear system in (172.2) can be approximated by 
any of the s tandard iteration methods, such as Jacobi 's method or the 
Gauss-Seidel method (see Golub and Van Loan [5]). Typically, these 
iterative methods begin to stall ( that is, the convergence rate decreases) 
when smooth error modes are present. Since a smooth mode on a fine grid 
looks less smooth on a coarser grid, it is advisable to move to a coarser 
grid. I terat ing on this coarser grid will more effectively reduce the error 
term. The values on this coarse grid are then fed back to the fine grid. 

file:///fN-J
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To illustrate the process, let iff
1

 be the linear operator tha t performs 

restriction and maps a vector from Ω
Λ

 to Ω
2 / ι

. (For instance, every other 

value in the vector could be chosen.) Similarly, let Ι % Η  be the linear operator 

tha t performs interpolation and maps a vector from Ω
2 /ι

 to Ω
Λ

. Let us 

use the te rm "Relax on" to mean "iterate some number of times using a 

s tandard technique such as Gauss-Seidel." Here, then, is how a multigrid 

method might be implemented: 

Relax on A
h

u
h

 = f
h

 with an input initial guess ν  

Find the residual: r
h

 := A
h

u
h

 - f
h 

Move to a coarser grid: f
2h

 := lff
l

r
h 

Relax on A
2h

u
2h

 = f
2h

 with the initial guess \
2 h

 = 0 

Find the residual: r
2h

 := A
2h

u
2h

 - f
2h 

Move to a coarser grid: f
4h

 := /
4

£ r
2 /l 

Relax on A
4h

u
4h

 = î
4h
 with the initial guess v

4h
 = 0 

Find the residual: r
4h
 := A

4h
u

4h
 - f

4h 

Move to a coarser grid: f
8h
 := Ι ***

4

*
1 

Solve A
2kh

u
2kh

 = î
2 kh

 for u
2
*

71
 (which we call v

2
**) 

Revise approximate solution on Ω
4 / ι

: v
4h

 <— v
4h

 4- 7
4

^ v
8h 

Relax on A
4h

u
4h

 = î
4h
 with the initial guess v

4h 

Revise approximate solution on Q
2h
: \

2 h
 <— \

2 h
 + / ^ v

4
'

1 

Relax on A
2h
u

2h
 = f

2h
 with the initial guess v

2h 

Revise approximate solution on Ω
Λ

: v
h

 <— v
h

 + l2h
y2h 

Relax on A
h

u
h

 = f
h

 with the initial guess v
h

. 

The overall effect is tha t an approximate solution to the system on the 

to-grid is input at the top , and a refined approximation to this solution is 

output at the bot tom. 

N o t e s 

[1] The multigrid method is applicable to linear algebraic equations. Its impor-

tance for differential equations comes about because differential equations 

can be approximated by solving linear algebraic equations. 
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173. Parallel Computer Methods 

The physical basis for most differential equations is a local and asyn-

chronous model. Hence, it should be possible to numerically approximate 

a partial differential equation by processors tha t are loosely coupled. 

There are three major ways in which software for differential equations 

can exploit parallelism: in coding a method so tha t it can be performed 

simultaneously on several processors, in splitting variables (in a multi-

variable system) between processors, and in using parallelism in perform-

ing the needed algebraic computat ions (i.e., solving algebraic systems of 

equations). We illustrate one parallel technique; it uses the first of these 

methods. 

P r o c e d u r e 

Parallel computers may be used to quickly obtain numerical approxi-

mations to differential equations. 

Idea 

Numerical approximations to the solutions. 

Y i e l d s 

A p p l i c a b l e t o All types of differential equations. 
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A p p l i c a b l e t o All types of differential equations. 
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E x a m p l e 

This example for a two processor MIMD machine is from Iserles and 

N0rsett [7]. The Butcher-array is a convenient way in which to represent all 

of the information in a R u n g e - K u t t a method for the equation y ' = f(#, y ) , 

y(x0) = y 0 (see page 684). The Butcher array for a four-stage, fourth order 

R u n g e - K u t t a method is 

1 
2 

1 
2 0 0 0 

2 
3 0 2 

3 0 0 

1 
2 

5 
2 

5 
2 

1 
2 0 

1 
3 

5 
3 

4 
3 0 2 

3 

- 1 3 
2 - 1 3 

2 

Because of the specific sparsity s t ructure of this Butcher array, we can 

efficiently implement this technique on two processors. Given the value 

y n , to find the approximation at the next t ime step, y n + 1, the steps are as 

follows: 

[1] Use an iteration technique (perhaps Newton-Raphson) to solve the 

equations 

(A) £i = f (tn + \h,yn + for £i on processor 1, 

(B) £ 2 = f {tn + § ^ , y n + | / i ^ 2 ) for £ 2 on processor 2. 

[2] Copy the value of £i to processor 2, and copy the value of £2 to 

processor 1. 

[3] Use an iteration technique (perhaps Newton-Raphson) to solve the 

equations 

(A) & = f (tn + | f c , y n + h (—§€1 + f & + 5É3)) for & on proces

sor 1, 

(B) & = f {tn + \h,yn + Λ  ( - | ί ι  + f&> + f & ) ) for ξ 4 on proces-
sor 2. 

[4] Copy £4 to processor 1 and then form the est imate at the next t ime 

value: y n +1 = y n + h (§(£ 2 + &) - €1 - &)· 

N o t e s 

[1] Many parallel computers can quickly perform matrix operations, such as 
solving a system of linear equations. Hence, these machines may be used to 
quickly approximate the solutions to differential equations by using methods 
(such as finite differences and finite elements) that produce large systems of 
linear algebraic equations. 

When solving differential equations numerically, it is not uncommon to 
have large computational needs. For example, a 50 χ  50 χ  50 grid with 5 
degrees of freedom per grid point, such as might be obtained from Euler's 
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equation in fluid dynamics, will lead to matrices of size Ν  = 625,000 and a 

bandwidth m « 25000. Even though sparse matrix techniques may be used, 

the complexity of the problem is very high. 

However, Rice [14] makes the point that linear algebra approaches are 

only tangentially relevant to solving partial differential equations and are, 

in fact, often misleading. Numerical analysis of differential equations begins 

with the equation itself, not with a discretized version of the equation. 

[2] All types of processors have been used to numerically approximate the 

solutions to differential equations. 

(A) By a simple replication of hardware, many Monte Carlo simulations 

can be performed simultaneously (see pages 721 and 752). This is 

particularly useful for SIMD machines. 

(B) Lattice gas methods (which use cellular automata) are a method of 

parallel computation; see page 737. Use of cellular automata to nu

merically approximate the solution of differential equations has also 

been considered in Boghosian and Levermore [3]. 

(C) It is also possible to build a specialized VLSI circuit to integrate a 

specific set of differential equations. A special purpose computer for 

high-speed, high-precision orbital mechanics computations has been 

built; see Applegate et al. [1]. This was used to demonstrate that the 

orbit of Pluto was chaotic; see Sussman and Wisdom [16]. 

It is also possible to construct systolic arrays that solve a class of 

equations very quickly; see Megson and Evans [10]. 

[3] The technique described in Garbey and Levine [5] numerically approximates 

hyperbolic equations by using both characteristics and cellular automata. 
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174· Predictor-Corrector Methods 

To integrate an ordinary differential equation from a point xn to a 

new point xn+\ = xn + h, a single formula may be used to predict y n+ i . 

Alternately, the value of y
n
+i could be predicted by one formula, and then 

tha t value could be refined by an iterative formula (the "corrector"). 

I d e a 

A sequence of numerical approximations. 

Y i e l d s 

A p p l i c a b l e t o Ordinary differential equations of the form y' = f(x,y). 
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P r o c e d u r e 

For the first order ordinary differential equation y' = f(x,y), suppose 

tha t the values of χ  and y are known at the sequence of m + 1 points 

{xn-m,..., x n _ i , xn}. Then the values of y' are known at those same points 

(since y
1

 is determined from χ  and y via y' = f(x,y)). An interpolatory 

polynomial of degree m can be fitted to m + 1 values of χ  and y'. This 

polynomial can be used to predict the value of y' in the interval ( x n, χ η + ι ) · 

This, in turn , can be used to predict the value of yn+i by a numerical 

approximation of the relation 

Such a formula is called an "predictor." 

A modification of this step can be repeated. The values of χ  and y' are 

now known at the ra + 1 points { x n _ m+ i , . . . , x n , χ η + ι } · A polynomial can 

be fit through these points, and then the quanti ty in equation (174.1) can 

be re-computed. This formula, which furnishes a new estimate of 2/n+i, is 

called a "corrector." The corrector may be used repeatedly. 

E x a m p l e 

One set of predictor-corrector equations is the Adams-Bashfor th pre

dictor formula 

(174.1) 

2/n+i
 =

 Vn ~t~ (55i/; - 5 V „ - i + 37y'n_2 - 9y'n_3), (174.2) 

and the Adams-Moul ton corrector formula 

(174.3) 

where h is the difference between adjacent χ  points (The χ  points are 

assumed to be equally spaced). These equations are fourth order accurate. 
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E x a m p l e 

The F O R T R A N program in Program 174 uses the method in (174.2) 

and (174.3) to approximate the solution to the differential equation 

l - i - x + J, v(D = o. 

Since the solution of (174.3) is given by y(x) = x( logx — χ - h i ) (determined 

by integrating factors), it is easy to see tha t the values produced: 

STEP NUMBER= 4 X= 1.60 Y= -0.2080 

STEP NUMBER= 5 Xs 1.80 Y= -0.3820 

STEP NUMBER= 6 x= 2.00 Y= -0.6137 

STEP NUMBERS 7 x= 2.20 Y= -0.9054 

STEP NUMBER* 8 X» 2.40 Y= -1.2588 

STEP NUMBER" 9 x= 2.60 Y= -1.6756 

STEP NUMBER* 10 x= 2.80 Y= -2.1570 

STEP NUMBER* 11 x= 3.00 Y= -2.7041 

STEP NUMBER- 12 x= 3.20 Y= -3.3179 

STEP NUMBER* 13 x= 3.40 Y= -3.9991 

STEP NUMBERS 14 x= 3.60 Y= -4.7486 

are all correct to the number of decimal places given. 

Note tha t the program required tha t the values of y be given for χ  = hj 

where j = 1,2,3. These "starting" values were obtained by using a R u n g e -

K u t t a method tha t was fourth order accurate (these calculations are not 

shown). 

P r o g r a m 174 

REAL*4 X(100) ,Y(100) ,YP(100) 

C DEFINE THE INITIAL VALUES (FOUND BY RUNGE-KUTTA) 

H=.2 

X ( l ) s 1. 

Y ( l ) = 0. 

YP(1)= F ( X ( 1 ) , Y ( 1 ) ) 

X(2)= X ( l ) + Η  

Y(2)=-0.02121 

YP(2)= F ( X ( 2 ) , Y ( 2 ) ) 

X(3)s X(2) + Η  

Y(3)=-0.08894 

YP(3)= F ( X ( 3 ) , Y ( 3 ) ) 

X(4)= X(3) + Η  

Y(4)=-0.20799 

YP(4)= F ( X ( 4 ) , Y ( 4 ) ) 

C HERE IS THE INTEGRATION LOOP 

DO 10 N=4,14 

NP1=N+1 

X(NP1)= X(N) + H 

Y(NP1)= PREDIC(X,Y,YP,N,H) 

YP(NP1)= F(X(NP1),Y(NP1)) 

Y(NP1)= C0RECT(X,Y,YP,N,H) 

Y(NP1)= C0RECT(X,Y,YP,N,H) 

10 WRITE(6,5) N,X(N),Y(N) 

5 FORMAT (
1

 STEP NUMBER=\I3, ' X=>,F5.2,» Y s \ F 8 . 4 ) 
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END 

C THIS FUNCTION HAS THE PREDICTOR 

FUNCTION PREDIC(X,Y,YP,N,H) 

REAL*4 X(100),Y(100),YP(100) 

PREDIC=Y(Ν ) + H/24.*(55.*YP(N)-59.*YP(N-1)+37*YP(N-2)-9.*YP(N-3)) 

RETURN 

END 

C THIS FUNCTION HAS THE CORRECTOR 

FUNCTION CORECT(X,Y,YP,N,H) 

REAL*4 X(IOO),Υ (Ι Ο Ο ),Υ Ρ (Ι Ο Ο ) 

C0RECT=Y(N) + H/24.*(9.*YP(N+l)+19.*YP(N)-5.*YP(N-l)+YP(N-2)) 

RETURN 

END 

C THIS FUNCTION HAS THE RIGHT HAND SIDE OF THE DIFFERENTIAL EQUATION 

FUNCTION F(X,Y) 

F=1.0-X+Y/X 

RETURN 

END 

N o t e s 

[1] The corrector formula could be iterated as many times as is necessary to 

insure convergence. This is called correcting to convergence. In general, 

however, if more than two iterations are required, then the step size h is 

probably too large. 

[2] Given the equation y' = f(x, y), let Ρ  indicate an application of a predictor, 

C a single application of a corrector, and Ε  an evaluation of the function 

/ in terms of known values of its arguments. Correcting to convergence 

can then be represented by P(EC)°°. See Lambert [8] for an analysis of 

P(EC)
m

 and P(EC)
m

E, where m is a fixed number. 

[3] Note that the predictor-corrector method is a finite difference scheme that 

is not a linear multistep method (as defined on page 573). 

[4] To obtain the starting values so that the predictor-corrector pair can be 

used, Runge-Kutta methods can be used first. This was done in the example 

above. When this is done, the Runge-Kutta method used should be at least 

as accurate as the predictor-corrector formula used. See Gear [4] for details. 

[5] For the same accuracy, using a predictor-corrector pair to integrate a first 

order ordinary differential equation generally requires fewer evaluations of 

the function f(x,y) than a Runge-Kutta method would. 

[6] One set of commonly used predictor-corrector equations is "Milne's method" 

2/n+l = yn-3 + γ  ( 2 y n ~ 2/n-l + tyn-2) , 

2/n+l = 2/n-l + I (y'n+1 + ^Vn + Vn-l) · 

These equations are also fourth order accurate. Milne's method is not 

recommended since it is subject to an instability problem, in which the 

errors do not tend to zero as the step size h is made smaller. See Gerald 

and Wheatley [5] for details. 
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[7] The Adams-Bashforth formulas are a family of linear multistep methods 

that are often used as predictors for the equation y! = f(x,y). The fc-step 

fixed-stepsize Adams-Bashforth formula 

k 

yn = î / n - l + h^jTßjf(Xn-j,yn-j), 

is equivalent to yn = yn-i + f
Xn

 pn(s)ds, where pn{x) is the unique 
** xn — 1 

polynomial of degree k — 1 that interpolates f(xn-j,yn-j) at xn-j for 

.7 = 1, . . . ,*; . 

[8] For a listing of computer software that will implement the method described 

in this section, see page 586. 
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175. Runge-Kutta Methods 

A p p l i c a b l e t o Initial value systems of first order ordinary differential 
equations. 

Y i e l d s 

A numerical approximation to the solution of an initial value system. 

Idea 

Given an ordinary differential equation and an initial value, the value 
of the dependent variable may be found at the next desired value of the 
independent variable by calculating several intermediate values. 

P r o c e d u r e 

Given the first order ordinary differential equation 

y
f

 = f(x, y)i y(xo) = yo, (175.1) 

the value of y(x) at the point xo + ft may be approximated by a weighted 
average of values of f{x,y) taken at different points in the interval xo < 

χ  < xo + ft. The classical Runge -Ku t t a formula is given by 

y(x0 + ft) = y(x0) + s (*i + 2fc2 + 2fc3 + fc4), (175.2) 

where 
ki = hf(x0,y0), 

k2 = hf{x0 + \h,yo + 5 * 1 ) , 

&3 = hf(x0 + \h,y0 + \k2), 

fc4 = hf(x0 + ft, y0 4- k3). 

(175.3) 

This approximation to y{xo+h) is fourth order accurate. After y(xo+h) has 
been determined, the same formula may be used to determine y(xo + 2ft). 
This process may be repeated. 

The Butcher array is a convenient way in which to represent all of 
the information in a Runge-Kut t a method for the equation y' = f (x ,y ) , 
y(x0) = y 0- Specifically, the s-stage Runge -Ku t t a scheme (which uses s 

intermediate values) 

s 

Yn+i = y n - f f t ^ ^ k i , 
i=l 

ki := f (xn + Cih, yn + ft ^ a ^ k , \ , 

6 8 4 
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1, and Ci = $ ^ = i
 a

*i ^or

c\ an Û12 * * * au 

c8 asi a82 ' ' ' a>88 

j b
T

 or bi 62 · · · b8 

Note tha t an explicit R u n g e - K u t t a scheme has = 0 for j > i 

(sometimes these zeros are omit ted) . See Butcher [5] (page 163) or Dekker 
and Verwer [9] for details. The explicit method in (175.3) has the Butcher 
array (with 5 = 4) 

0 0 0 0 0 
1 
2 

± 0 0 0 

1 
2 0 \ 0 0 

1 0 0 1 0 

1 1 1 1 
6 3 3 6 

E x a m p l e 1 

The program in Program 175 calculates a numerical approximation to 
the solution of the equation 

!/
;
 = l - x + - , 2/(1) = 0, (175.4) 

χ  

using the method in (175.3). It uses a s tep size h of . 1. The value of y(2) is 
found to be approximately y(2) = - .6134. The exact solution of equation 
(175.4), determined by integrating factors, is y(x) = x(\ogx — x +1). Hence 
y(2) = 2 ( l o g 2 - l ) ~ - . 6 1 3 7 . 

P r o g r a m 175 

H=.l 

X= 1. 

Y= 0. 

DO 10 J=l,10 

Y=RUNGE(X,Y,H) 

X=X+H 

10 WRITE(6,88) X,Y 

88 FORMAT(* X=',F6.2,' Y=',F7.4) 

END 

C THIS FUNCTION PERFORMS ONE INTEGRATION STEP 

FUNCTION RUNGE(Χ ,Υ ,Η ) 

FK1=F(X, Y) 

FK2=F(X+H/2.,Y+H*FKl/2.) 

FK3=F(X+H/2.,Y+H*FK2/2.) 

FK4=F(X+H, Y+H*FK3) 

where h := x n+ i - xn, ]Γ \&» = 
represented in the tabular form 

for each j, is



686 I V . B N u m e r i c a l M e t h o d s for O D E s 

RUNGE=H*(FK1+2.*FK2+2.*FK3+FK4)/6. 

RETURN 

END 

C THIS FUNCTION HAS THE RIGHT HAND SIDE OF THE EQUATION 

FUNCTION F(X,Y) 

F=l.-X+Y/X 

RETURN 

END 

E x a m p l e 2 

The derivation of a Runge -Ku t t a method is instructive since it indi
cates the arbi trary degrees of freedom tha t exist in Runge -Ku t t a methods. 
Given the equation y' = f(t,y), and using yn := y(tn) and t n — nft, to 
find a 2-stage Runge -Ku t t a scheme we assume a discrete approximation 
scheme of the form 

2/n+i = Vn + aki + bk2, 

*ι  = Λ / ( * η , » η ) , (175.5) 

k2 = hf {tn + aft, yn + ßki), 

We want to find {a, b, α , β } to make the order of this scheme as high as 
possible. From (175.5) we can explicitly write yn+i and then find a Taylor 
series expansion: 

2/n+i = 2/n + ahf (tn, yn) + bhf (tn + aft, yn + ßhf (tn,yn)), 

= yn + (a + 6)ft / n + ft
2
 (abft + / 3 6 / y/ ) n + Ο  (ft

3
) , 

where a subscript of η  denotes evaluation at the point {tn,yn). From 
y' = f(t,y) we can directly construct a Taylor expansion in t to find: 

. 2 

2/n+l = yn + ft/n + y + 0,(ft
3

) , 

ft
2 

= 2/n + ft/n + y ( / t + / „ / ) „ + Ο  ( f t
3

) , 

(175.7) 

since %- = / t -h j y % = ft + / « / . Comparing (175.7) to (175.6), we find 
a t ar 

the 3 equations 

a + b=l, ab = \ , ßb = \, 

for the 4 unknowns { α ,6, Since these equations are undetermined, 
there are infinitely many second order Runge -Ku t t a schemes in the form 
of (175.5). 

Fourth order Runge -Ku t t a methods result in 11 equations for 13 un
knowns; 2 of the unknowns may be chosen arbitrarily to achieve some goal. 
For example, we used a fourth order Runge -Ku t t a method with a specific 
sparsity pa t te rn in the Butcher array to allow a parallel implementation in 
the section on parallel methods (see page 676). 
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E x a m p l e 3 

To obtain accurate numerical results when using any method, an esti
mate of the local error must be obtained. This could be done by the stan
dard technique of recomputing the answer with the step size halved; but 
this requires lots of additional computat ion. The Runge-Kut ta -Fehlberg 
method is a fifth order method tha t uses 6 functional evaluations and allows 
an est imate of the error by re-using the same points: 

h = hf(xn,yn), 

[1] If / ( # , y) does not depend on y, then the solution of the initial value problem 
y' = f(x), y(xo) = yo, is just the integral y(x) = yo+J*Q f{t) dt. The Runge-
Kutta method in equation (175.2) then corresponds to the approximation 
of y(x) by means of Simpson's rule. 

[2] There are several Runge-Kutta methods for first order equations. For 
example, the following scheme for equation (175.1) 

is of second order accuracy. A commonly used fourth order accurate method 
for first order ordinary differential equations (different from the one in 
(175.3)) is Gill's method; see Abramowitz and Stegun [1] formula 25.5.12. 

[3] There are also implicit Runge-Kutta methods, see Burrage and Butcher [4] 
or Chapter 34 of Butcher [5]. 

[4] There are also Runge-Kutta methods for ordinary differential equations of 
orders two through ten. See, for instance, Section 2.4 of Collatz [8] or 
Abramowitz and Stegun [1]. For example, a Runge-Kutta scheme for the 
second order equation 

ML h Λ  

4104 ""U ' 
4104

 M
 40 ^ ) ' 

N o t e s 

y(x0 + h) = y(x0) + \ (fci + k2), 

ki = hf(xo,yo), 

k2 = hf(x0 + h,yo + fci), 

(175.8) 

y" = g(x, y, y), y(xo) = yo, y'(xo) = vo, 
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ki = hg (x 0,yo,üo), 

k2 = hg (x 0 4- \h,yQ 4- \hvo 4- \hk\,vQ 4- \k\) 

fc3 = hg (xo 4- \h,yo 4- §/wo + |/ifci,^o 4- \k2) 

ki = hg(xo+ / i , y 0+ /wo 4- \hk$, vo 4- k3) 

(175.9) 

and 
y(x0 + h) = yo + hv0 4- (fci 4- 4- £ 3 ) , 

y ' (x 0 + h) = v0 4- £ (fci 4- 2fc2 4- 2fc3 4- fc4). 
(175.10) 

This scheme is numerically fourth order accurate. 
[5] There are also Runge-Kutta methods for systems of first order ordinary 

differential equations (see Abramowitz and Stegun [1]). For example, the 
system 

y = ra(x, y, 2), ζ  = n(x, y, z) 

of ordinary differential equations may be numerically approximated by first 
calculating 

k\ = hm (xo,yo, 20), 

= hn (xo, 2/0, zo), 

k2 = hm (xo 4/i,yo4fci ,2;o + / i ) , 

J2 = hn(xo + /i,yo 4- fci,2o 4- i i ) , 

and then the updated values are 

(175.11) 

y(x 0 + Λ ) = y(xo) 4- \(ki 4- fo), 

2 ;( Xo + / l) = 2 ( X o) + I ( Z 1+ / 2) . 
(175.12) 

This formula is second order accurate. See Dekker and Verwer [9] for details. 
[6] The book by Butcher [5] has a very comprehensive account of Runge-Kutta 

methods (it includes 96 pages of references!). 
[7] The Butcher array can represent all multilinear methods for approximating 

differential equations. For instance: 
(A) The backward Euler method y n+i = yn 4- hf(tn 4- / i ,y n+i) has the 

Butcher array (s = 1) 

(B) The trapezoidal rule y n+i = y n 4- -[f(tn 4- y n) 4- f(tn 4- h,yn+i)] has 

the Butcher array (s = 2) 
0 0 
1 1 

2 2 

1 1 

2 2 

is given by 
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[8] Pseudo Runge-Kutta methods use not only the stages of the current step, 
but also the stages of the previous step. For example, for the equation 
y' = f(x,y) the method has the form: 

s 

i=l 

Ki,n = hf I xn + rriih,yn + \ijKj,n-i + ^ \ijKj,n J 

See Caira et al. [7] for details. 
[9] To find software that implements this method, see the section beginning on 

page 586. 
[10] To obtain a Runge-Kutta method with a desired order, a minimum number 

of stages (i.e., function evaluations) are required. From Butcher [5] we have: 

desired order: 1 2 3 4 5 6 7 8 
minimal number of stages: 1 2 3 4 6 7 9 11 
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176. Stiff Equations* 

A p p l i c a b l e t o Stiff differential equations; i.e., equations tha t evolve on 
more than one scale. 

Y i e l d s 

A numerical approximation technique. 

Idea 

Since stiff equations evolve on different scales, the techniques used to 
numerically approximate the solution should change as the different scales 
become important . This is because the stability aspects of a numerical 
technique often change as the equation changes (see page 613). Consider, 
for example, the definition of stiffly stable on page 617—as the eigenvalues 
of the problem change a method may no longer be stiffly stable. 

P r o c e d u r e 

When trying to numerically approximate the solution to a stiff dif
ferential equation, the step size used in the discretization process should 
be variable, becoming very small when needed. The discretization formula 
should also change in different regions to reflect the different type of local 
solution (i.e., exponential growth, exponential decay, algebraic growth, 
etc.) 

The step size should be made as small as is needed to obtain a desired 
accuracy, but it should be increased whenever possible to reduce the total 
number of computat ions. The step size should not be allowed to get so 
large, though, tha t the discretization technique becomes unstable. 

A good choice of step size can be determined by monitoring the change 
in the solution of the differential equation. For any single step, the change 
in the function being approximated and all of its derivatives should not 
become too large. 
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176. Stiff Equations* 

A p p l i c a b l e t o Stiff differential equations; i.e., equations tha t evolve on 

more than one scale. 

Y i e l d s 

A numerical approximation technique. 

Idea 

Since stiff equations evolve on different scales, the techniques used to 

numerically approximate the solution should change as the different scales 

become important . This is because the stability aspects of a numerical 

technique often change as the equation changes (see page 613). Consider, 

for example, the definition of stiffly stable on page 617—as the eigenvalues 

of the problem change a method may no longer be stiffly stable. 

P r o c e d u r e 

When trying to numerically approximate the solution to a stiff dif-

ferential equation, the step size used in the discretization process should 

be variable, becoming very small when needed. The discretization formula 

should also change in different regions to reflect the different type of local 

solution (i.e., exponential growth, exponential decay, algebraic growth, 

etc.) 

The step size should be made as small as is needed to obtain a desired 

accuracy, but it should be increased whenever possible to reduce the total 

number of computat ions. The step size should not be allowed to get so 

large, though, tha t the discretization technique becomes unstable. 

A good choice of step size can be determined by monitoring the change 

in the solution of the differential equation. For any single step, the change 

in the function being approximated and all of its derivatives should not 

become too large. 
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Ί -

Ο  5 10 a: 

F igu re 176. The solution to (176.1) and (176.2) is y(x) = e
ex

 + e~
x

. 

E x a m p l e 

Suppose we have the ordinary differential equation 

d
2

y jdy 

dx 
^ 2 + ( l - e ) 3 Z - e » = 0. (176.1) 

with the initial conditions 

2/(0) = 2, y
f

(0)=e-l, (176.2) 

where ε  is a small positive number. The solution to (176.1) and (176.2) is 

y(x) = e
£ 

(176.3) 

which has a steep decrease from χ  = 0 to χ  ~ —loge, and then has a 

gradual increase, see Figure 176. 

When using a simple discretization scheme (such as, say, Euler 's method) , 

a small s tep size is required in the region from χ  = 0 to χ  ~ — log ε  to resolve 

the exponential decay. After tha t region, however, the step size should be 

increased since the solution is no longer rapidly varying. 

The F O R T R A N program in Program 176 implements this numerical 

idea. It uses Euler 's method and a variable step size, when ε  is .01. The 

parameter TOL determines how much the solution is allowed to change at 

any step. Note tha t the change in the solution is defined to also include 

the change in the value of the derivative. We have chosen TOL = .01. 

A few lines of the output of the program are shown below 

AT TIME= 

AT TIME= 

AT TIME= 

AT TIME= 

AT TIME= 

AT TIME= 

AT TIME= 

0.005 
0.317 
0.327 
1.001 
1.021 
1.685 
1.724 

DELTAT= 

DELTAT= 

DELTAT= 

DELTAT= 

DELTAT= 

DELTAT= 

DELTAT= 

0.0049 
0.0049 
0.0098 
0.0098 
0.0195 
0.0195 
0.0391 

Y(T) = 

Y(T) = 

Y(T) = 

Y(T) = 

Y(T) = 

Y(T) = 

Y(T) = 

1.9952 
1.7307 
1.7237 
1.3761 
1.3691 
1.2005 
1.1937 

EXACT 

EXACT 

EXACT 

EXACT 

EXACT 

EXACT 

EXACT 

VALUE= 1.9952 
VALUE= 1.7312 
VALUE= 1.7243 
VALUE= 1.3776 
VALUE= 1.3707 
VALUE= 1.2025 
VALUE= 1.1958 
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AT TIME= 2. .349 DELTAT= 0.0391 Y(T) = 1, .1170 EXACT VALUE= 1, .1193 

AT TIME= 2. ,427 DELTAT= 0.0781 Y(T) = 1, .1105 EXACT VALUE= 1, .1129 

AT TIME= 2. .974 DELTAT= 0.0781 Y(T) = 1, .0788 EXACT VALUE= 1, .0813 

AT TIME= 3. .130 DELTAT= 0.1563 Y(T) = 1, .0728 EXACT VALUE= 1.0755 

AT TIME= 3. .599 DELTAT= 0.1563 Y(T) = 1.0613 EXACT VALUE= 1, .0640 

AT TIME= 9. .849 DELTAT= 0.3125 Y(T) = 1, .1034 EXACT VALUE= 1, .1036 

AT TIME= 10, .161 DELTAT= 0.3125 Y(T) = 1, .1068 EXACT VALUE= 1, .1070 

During the program execution, the step size, DELTAT, has increased 

from .0049 to .3125. Hence, large steps were taken where the solution is 

not rapidly changing. 

P r o g r a m 176 

IMPLICIT DOUBLE PRECISION (A-H,0-Z) 

TEND=10.D0 

EPSL0N=.01D0 

T0L=.01D0 

DELTAT=TEND 

0LDCHG=1.D0 

T=0.D0 

Y=2.D0 

YP=EPSL0N-1.D0 

C DECREASE THE SIZE OF THE TIME STEP 

10 DELTAT=DELTAT/2.DO 

20 IF ( DELTAT .GT. .5D0 ) GOTO 10 

CALL STEP(Υ ,YP,DELTAT,EPSLON,YN,YNP) 

CHANGE= DSQRT((Y-YN)**2 + (YP-YNP)**2) 

IF( CHANGE .GT. TOL ) GOTO 10 

IF( CHANGE .GT. 2.D0*0LDCHG ) GOTO 10 

C STORE AWAY THE NEW VALUES 

Τ  = Τ  + DELTAT 

Y = YN 

YP= YNP 

OLDCHG=CHANGE 

VAL=EXACT(T,EPSLON) 

WRITE(6,5) T, DELTAT, Y, VAL 

5 FORMAT(' AT TIME=\F7.3,> DELTAT=',F7.4, 

1 ' Y(T)=
,

,F7.4, ' EXACT VALUE=',F7.4) 

C INCREASE THE SIZE OF THE TIME STEP 

DELTAT=2.D0*DELTAT 

IF( Τ  .LT. TEND ) GOTO 20 

END 

C THIS SUBROUTINE UPDATES Y AND Y' BY EULER'S METHOD 

SUBROUTINE STEP(Υ ,YP,DELTAT,EPSLON,YN,YNP) 

IMPLICIT DOUBLE PRECISION (A-H,0-Z) 

YN = Y + DELTAT*( YP ) 

YNP= YP + DELTAT*( EPSLON*Y - YP*(1.DO-EPSLON) ) 

RETURN 

END 

C THIS FUNCTION COMPUTES THE EXACT SOLUTION TO COMPARE AGAINST 

FUNCTION EXACT(T,EPSLON) 

IMPLICIT DOUBLE PRECISION (A-H,0-Z) 

EXACT=DEXP(EPSLON*T)+DEXP(-T) 

RETURN 

END 
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N o t e s 
[1] In the example shown, we can use the same discretization scheme throughout 

the region of interest—only the step size needs to be adjusted for efficient 

computation. In other problems, different discretization schemes will be 

needed in different regions. 

[2] If the new independent variable χ  = ε χ  is introduced, then the solution in 

(176.3) may be written as y(x) = e
x

 + e~
x

^
€

. In this representation of the 

solution it is clear that there is a "boundary layer" near χ  = 0; see the 

section on boundary layers (page 510). 

[3] For an example of how the stability of a method may change as the solution 

of a differential equation evolves, see the stability analysis for Euler's method 

on page 655. In the example there, as the value of the positive constant c 

becomes smaller, the step size must also become smaller to ensure stability. 

[4] Sometimes non-stiff methods can solve stiff problems, without any special 

difficulty, except that they can be prohibitively expensive. 

[5] Changing the length of the step size leads to accurate solutions to stiff initial 
value ordinary differential equations and for partial differential equations 
that may be solved by a marching technique. For boundary value ordinary 
differential equations, or for elliptic partial differential equations, the analo-
gous technique is to numerically solve the equations on a non-uniform mesh. 
This mesh should be fine where the solution is rapidly changing, and coarse 
elsewhere. 

[6] It is not true that the eigenvalues of the matrix A(t) in the system 

% = A(t)y (176.4) 

determine whether the system is stiff or not. For example, the matrix 

. -1 - 9 cos
2

 6*+ 6 sin 12* 12 cos
2

 6* + - sin 12* . 
A(t) =\ g J (176.5) 

2 
- 12 sin

2

 6* + - sin 12* - 1 - 9 sin
2

 6* - 6 sin 12* 

has the constant eigenvalues —1 and —10, but the solution to (176.4) is 

2t ( cos 6* + 2 sin 6* 
y

 °
i e

 V 2cos6*- s in6* ) . r - i 3 t ( sin 6* - 2 cos 6* λ  
+ 26

 ^2s in6* + cos6* J ' 

where C\ and C2 are arbitrary constants. Clearly the exponentials e
_ <

 and 
e~

l0t

 are not present in the solution. Also, the solution may blow up as * 
tends to infinity. Even so, the eigenvalues of the linearized problem are often 
the most useful piece of information available regarding the conditioning of 
the system. This example is from Dekker and Verwer [4] (page 11). 
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[7] If is defined by η  = | |y | |
2

 = y
H

y , then, using (176.4), -g = y
H

 (A + A
H

) y . 

If λ  max represents the largest eigenvalue of A 4- A
H

 then η ( ί ) < η ο β
χ  m a x t

. 

Hence, the eigenvalues of A + A
H

 allow bounds to be determined for y{t). 

For the matrix in (176.5), the eigenvalues of A + A
H

 are 4 and —26. 

[8] An equation is often realized to be stiff only after the differential equation 
has been numerically integrated. There are tests that can be performed 
during the integration procedure to determine if the equation is stiff. See, 
for example, Gear [6] or Shampine [9]. 

[9] For a recent review of software for stiff equations, see Byrne and Hind-

marsh [2] or Chapter 4 of Aiken [1]. 

[10] For a listing of computer software that will implement the method described 

in this section, see page 586. 
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x' = b(x) + a(x)n(t), 

x(0) = y, 
(177.1) 

where n(t) represents white noise. There exist several numerical approxi

mations for the quanti ty x{T), where Τ  = mh, his & (small) t ime step, and 

Γ  is a fixed t ime of order one. Three common numerical approximations 

of (177.1) are 

£ ( * * + i ) = x(tk) + bkh + aky/h akl 

x(0) = 2/, 

i ( i j b + i ) = x(tk) + bkh + akVh ζ * , 

*(0) = y, 

x(0) = y, 

(177.4) 

where tk = kh and a subscript of k means evaluation at the k-th point, e.g., 

bk = b(x(tk)). The {ak} are independent random variables tha t take on 

the values -hi and —1 with probability 1/2, while the {Çk} are independent 
Gaussian random variables with mean 0 and variance 1. 

Each of the approximations in (177.2)-(177.4) has a different mean 
square error for a single step. If Ε [·] represents the expectation operator, 

then 

E[(x(h) - x{h))
2

} = 0(ft), 

E[(x(h) - x{h))
2

] = 0(h
2

), (177.5) 

E[(x(h)-x(h))
2

] = 0(h
3

). 

177. Integrating Stochastic Equations 

A p p l i c a b l e t o Stochastic differential equations. 

Y i e l d s 

A numerical approximation. 

Idea 

The "white Gaussian noise" t e rm in a stochastic differential equation 

can be numerically approximated in many different ways. 

P r o c e d u r e 

Suppose we have the stochastic differential equation 
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Hence, (177.4) is the most accurate if a sample of x(T) is desired. 

However, if the mean of a function of x(T) is required, then each of 

the three approximations in (177.2)-(177.4) is first order accurate. Tha t 

is, each of E[f(x(T))], E [ / (x (T) ) ] , and E[f(x(T))} is equal to E[f(x{T))] + 

0(h), for general functions / . This next approximation, 

z(tk+i) = z{tk) + (b - ^a^j H ^ a + ||(ff|J h 

[Ida 1 db Ida 1 ~d
2

a\ ^,-

A db ldb 1 2< 9
2

6 \ f9 

*(0) = 1 / , 
(177.6) 

has the bet ter error estimate: E[ / (z (T) ) ] = E[f(x(T))] + 0{h
2

). Note tha t , 

in (177.6), we have allowed b and σ  to be functions of bo th t and x. 

E x a m p l e 

Suppose we have the stochastic differential equation 

x' = x + n(t), x(0) = l , (177.7) 

where n(t) is white noise, and we want to est imate E [ x
2

( l ) ] . The Fokker-

Planck equation corresponding to (177.7) is (see page 254) 

dt " dx
( ) +

2 d x
: 

with P(0,x) — δ (χ  — 1). By using the method of moments (see page 491), 

the ordinary differential equation tha t describes E[x
2

( t ) ] is given by 

jV[x
2

(t)} = 2E[x
2

(t)} + 1, E[z
2

(0)] = 1, 

with the solution E[x
2

{t)] = (3e
2t

 - l ) / 2 . Therefore, E [x
2

( l ) ] = (3e
2

 -

l ) / 2 2^ 10.58. This is the value tha t our numerical approximation should 

produce. 

To implement the method in (177.3), the FORTRAN program in 

Program 177 was constructed. The program takes the results of NTRIAL 

trials and averages these values together. Note tha t the program uses a 

routine called RANDOM, whose source code is not shown, which returns a 

random value uniformly distributed on the interval from zero to one. 

A similar program was wri t ten which implemented the methods in 

(177.2) and (177.4). The results are indicated in Table 177. It should be 

observed tha t the numerical results are increasingly accurate when the step 

size h is decreased. 
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Table 177: 

Numerical comparison of different approximation techniques for 

equation (177.7). 

NTRIAL h Eqn. (177.2) Eqn. (177.3) Eqn. (177.4) 

1000 .25 8.14 8.40 11.19 

1000 .2 8.61 8.74 11.11 

1000 .1 9.62 9.30 10.59 

1000 .05 10.00 10.16 10.87 

5000 .25 8.14 8.40 11.19 

5000 .2 8.51 8.36 10.60 

5000 .1 9.46 9.35 10.59 

5000 .05 9.97 10.18 10.90 

P r o g r a m 177 

C THIS PROGRAM IS A NUMERICAL IMPLEMENTATION OF EQUATION (3) 

NTRIAL=1000 

H=.05 

NTIME=20 

XINIT=1. 

SUMX2=0. 

C HERE IS THE INTEGRATION LOOP 

DO 10 NSTEP=1,NTRIAL 

X=XINIT 

DO 20 K=l,Ν Τ Ι Μ Ε  

20 X=X + X*H + SQRT(H)*ZETA() 

10 SUMX2=SUMX2 + X**2 

AVERAG=SUMX2/FL0AT(NTRIAL) 

WRITEC6,*) AVERAG 

END 

C THIS FUNCTION RETURNS A GAUSSIAN RANDOM VARIABLE 

FUNCTION ZETA() 

DATA TWOPI/6.2831853/ 

Y1=RAND0M( DSEED ) 

Y2=RAND0M( DSEED ) 

ZETA= SQRT( -2.*AL0G(Y2) ) * C0S( TW0PI*Y1 ) 

RETURN 

END 

N o t e s 

[1] Gaussian random variables may be generated from uniformly distributed 

random variables by the classical technique of Box and Muller [1]. This 

technique has been used in the function ZETA in Program 177. 

[2] Since low numerical accuracy is obtained by this technique, a computer 

program does not need to work with extended precision arithmetic (such as 

double precision). 

[3] Milshtein [9] and [8] describes (177.2), (177.3), (177.4), and presents a 

derivation of (177.6). He also includes a numerically fast implementation of 

(177.6) using Runge-Kutta methods. 
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[4] Sun [13] presents a numerical method for approximating the solution to 

equations of the form —(pu')' + (q + r\)
2

u = f, when p, q and r are all 

functions of the independent variable and both λ  and / are random terms. 
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178. Weighted Residual Methods* 

A p p l i c a b l e t o Ordinary differential equations and partial differential 

equations. 

Y i e l d s 

By introducing approximations, this method changes the numerical 

calculation of: 

(A) an ordinary differential equation to the numerical calculation of a set 

of algebraic equations, 

(B) a part ial differential equation to the numerical calculation of a set of 

ordinary differential equations. 

I d e a 

We approximate the solution by taking a linear combination of an 

arbitrarily chosen set of functions. The coefficients of the functions, which 

may be constants or functions themselves, are unknown. We may use 

any of a number of schemes to find the numerical values for the unknown 

coefficients. 

P r o c e d u r e 

We will illustrate the general technique via a specific example. Suppose 

we have the following part ial differential equation to solve 

m - N[u] = 0, for x G V, t > 0, 

u(0, x) = v (x) , for x G V, (178.1.a-c) 

u(t, x) = / (£ , x ) , for χ  € 5 , 

where N[-] is a differential operator in χ  and S is the boundary of V, the 

region in which we seek the solution. 

We choose a y(t,x) and some set of functions {ui{t, x ) } with the 

properties 

y(t,x) = / ( t , x ) , for x G S, 

Uj(t,x) = 0, for x G 5 , 

and then form a trial solution by superposition 

M 

u T( * , x ) = y ( i , x ) + 5^c i( i)t i i( i ,x) . (178.2) 

Note t ha t the trial solution has been constructed in such a way tha t it 

automatically satisfies (178.l.c) but not (178.1.a) or (178.l .b) . If we use 
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the trial solution in the original differential equation, (178.1.a), then the 

right-hand side will not be equal to zero, but will be equal to some residual 

RE given by 

RE(Ut) = (uT)t - N[uT]. (178.3) 

Instead of this definition of RE, we might equally well have taken the 

square of (178.3). Likewise, the boundary condition, (178.10.b), will not 

be satisfied, but there will be a residue RB given by 

M 

RB(UT) = v ( x ) - 5Ι ^(0)ι χ ^(0, x ) . 

J = l 

Now we choose M weighting functions, {WJ(X)}. It is the choice of the 

weighting functions tha t defines the method. For example 

Galerkin: Wj = Uj, 

Collocation: Wj = <$(x — x^), 

least squares: Wj = ^ Ε ( ^ Τ ) , (178.4) 
OCj 

subdomain method: w3; = { ^ w ! / ' 
^ υ , χ  ψ  Vj, 

where {x^ | j = 1 , 2 , . . . , M} is a set of M points in V tha t must be chosen 

when collocation is used, and {Vj} is a set of disjoint regions whose union 

is equal to V tha t must be chosen when the subdomain method is used. 

Next, an inner product is defined by 

(w,z)= [ w(x)z(x)dV, (178.5) 
Jv 

or something similar. Then, finally, the unknown coefficients {cj(t)} will 

be determined from the two conditions 

(WJ, RE(uT)) = 0, for j = 1 , 2 , . . . , M ,

( ^ · , Α Β ( Μ Τ ) ) = 0, for j = l , 2 , . . . , M . 

Condition (178.6.a) generates M simultaneous ordinary differential equa

tions for {cj(t) I j = 1 , 2 , . . . , M } , which will generally be nonlinear. Con

dition (178.6.b) generates M simultaneous algebraic equations for {CJ(0) \ 

j = 1 , 2 , . . . , M } , which will generally be nonlinear. 

The procedure is as follows. We solve (178.6.b) for the initial con

ditions for the {cj(t)}. Using (178.6.a) we can then solve the ordinary 

differential equations to determine the {cj(t)} for all values of t. Using 

these values in (178.2), we have found an approximation to (178.1). 
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E x a m p l e 

Suppose we wish to approximate the solution to the equation 

ut = N[u] = u
2

 + u x xi for 0 < χ  < 1, t > 0, 

u(0,x) — s i nx = v(x), 

u(t,0) = 0, 

ti(t, 1) = 1. 

We choose y{t,x) = χ  and Uj(t,x) = sinjnx. Our trial solution then 

becomes the first M terms in a Fourier sine series 

M 
ut (i, x) = x + ] ζ  (*) sin ,7'π χ . 

Approximating x) by ut(£, the errors in the equation and the bound

ary conditions are 

M 

RE(V>T) = Σ
 c

i W sin .?π χ  -

M 
Ί  2 

x + ^2
 c

i W sinjVx 

M 
~ X ] j

2

7 r
2

C j W s i n ( ^ x ) , (178.7. α -6) 

M 

RB(V>T) = s inx — ^2
 c

jW s i n j > x . 

These two equations are in χ  and 2. Ideally, we would like to have bo th 

expressions in (178.7) vanish identically. Since this is not possible (for all 

χ  and all t) we choose one of the four methods described in (178.4). Using 

the chosen method, we will obtain ordinary differential equations for the 

{cj(t)} and algebraic equations for the {CJ(0)}. When these equations are 

satisfied, the expressions in (178.7) will be "close" to zero. 
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N o t e s 

[1] It is also possible to choose the {ui(t,x)} to satisfy the differential equation 
in (178.1), but not the boundary conditions. In this case, the integral 
in (178.5), which defines the inner product, becomes an integral over the 
boundary. 

[2] See the separate sections on least squares method (page 473), finite element 
method (page 656), Rayleigh-Ritz method (page 554), and collocation (page 
441). 

[3] Within the Galerkin framework, it is possible to generate finite elements, 
finite difference, and spectral methods. 

[4] This method can also be used to change the numerical calculation of an 
ordinary differential equation to the calculation of solving algebraic equa
tions. The sequence of steps are the same as for partial differential equations, 
with the difference that both sets of equations in (178.6) will be algebraic 
equations. See the finite element method (page 656) for a worked example 
involving an ordinary differential equation. 
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IV.C 

Numerical Methods for PDEs 

179. Boundary Element Method 

A p p l i c a b l e t o Most often linear elliptic part ial differential equations, 

often Laplace's equation. Sometimes parabolic, hyperbolic, or nonlinear 

elliptic equations. 

Y i e l d s 

An integral equation. The solution of the integral equation is used in 

an integral representation of the solution. 

I d e a 

The problem of solving a part ial differential equation within a given 

domain can be transformed into one solving an equivalent integral equation 

on the boundary of the domain. The unknown in the integral equation will 

be the "charge density" on the boundary of the domain. 

7 0 3 
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P r o c e d u r e 

Suppose we have Laplace's equation (general linear elliptic equations 

have results analogous to those listed below) 

V
2

u ( x ) = 0, (179.1) 

with the Dirichlet or Neumann da ta 

du 
o r

 an 
= </(x), ( 1 7 9 . 2 . a - 6 ) 

s 

where S is the boundary of the domain. Define ψ (χ ; y) to be the free space 

Green's function of (179.1). Tha t is, V
2

^ ( x ; y ) = 6(x — y ) , where y is an 

arbi trary point inside the domain. Using Green's theorem, the solution to 

(179.1) and (179.2) can be represented in any of the following forms: 

t x ( x ) = / σ (ζ )</>(χ ; z) dz, (179.3) 

u(x) = / 
Js 

s M z ) ^ U (179.4) 

«(x) = / 
Js 

, ( . W x ; . ) + C ( . ) ^
( X ; > )

' 
dn 

dz. (179.5) 

In these equations, σ ( ζ ) and n(z) represent surface densities of the "single-

layer" potential , μ ( ζ ) and ζ (ζ ) represent the surface densities of the "double-

layer" potential , ζ  represents a point on the. boundary, and η  represents the 

outward pointing normal. If σ ( ζ ) , μ ( ζ ) , or n(z) and ζ ( ζ ) were known, then 

u(x) could be computed via one of the above three equations. Note there 

is not a unique way to represent the solution by (179.5); there is a "degree 

of freedom" in this formulation tha t may be used for other purposes. 

It turns out tha t the single-layer potential is continuous across the 

boundary 5 , while the double-layer potential has a j u m p of ß{y). This is 
because, as χ  tends to the boundary point Ρ  from the inside of the domain, 

« ( P ) = - | μ ( Ρ ) + J μ ( ζ ) Α ΐ ^ dz. (179.6) 

Using (179.6) a variety of boundary integral equations may be obtained. 

For example, using (179.4) to represent the solution to the Dirichlet 

problem, if we allow the point χ  to approach the boundary, we determine 

from (179.6) tha t 

/ ( y ) = - | M ( y ) + / s M ( - ) ^ Ä . 
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After a(y) is obtained by solving the above integral equation, the value of 

u(x) may be computed from equation (179.3). 

E x a m p l e 

Consider Laplace's equation in the upper half plane, V
2

u = 0 for 

—oo < χ  < oo and 0 < y, with the boundary conditions 

uy(x10) = 0 — oo < χ  < 0, 

u y(x, 0) — ku(x, 0) = 0 0 < χ  < oo. 

where A; is a constant. The Green's function, ν
2

φ  = δ (χ  — £)6(y — r/), in 

the upper half plane is 

ψ (χ ,ν ι ξ ,η ) = - 7 ^
l o

s V(
x

~ O
2 +

 (y~^
2

~^
 l o

s > / ( * - 0
2

 + (y + *?)
2

» 

so tha t , on y = 0, we have ψ (χ ,0;ξ ,η ) = log Ux — ξ )
2

 + η
2

). When 
27Γ  

we actually have Laplace's equation, as we do in this example, (179.3) can 
f du(z) be simplified to u(x) = — / —-— φ (- κ ; ζ ) ά ζ . Using the known values of 

Js °
n 

u
n

 and
 φ

 in this expression
,
 we find 

k f°° 
η ) = 2 ^ Jq u(x, 0) log ((χ  - ξ )

2

 + η
2

) dx. (179.7) 

If we define φ (χ ) := u(x, 0), then evaluation of (179.7) at η  = 0 results in 

k Γ °° 
φ (ξ ) = - φ (χ )\ο Ε \χ -ξ \ά χ . 

π  Jo 

After this integral equation is solved for φ (χ ), the solution is given by 

(179.7). 

This Fredholm integral equation of the second kind can, in principle, be 

solved for μ ^ ) . After μ ^ ) is obtained, the value of u(x) may be computed 

from equation (179.4). 

If (179.3) has been used to represent the solution of the Neumann 

problem, then, after finding the normal derivative of (179.4), the following 

integral equation for a(y) results 
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N o t e s 

[1] The representation of the solution in (179.5) would be most appropriate if 

the boundary conditions were mixed. 

[2] This technique has also been applied to the biharmonic equation in several 

applications. See Ingham and Kelmanson [7] for details. 

[3] After the boundary integral equation has been formulated, it is often solved 

numerically. Some numerical techniques for these equations can be found 

in Banerjee and Butterfield [1]. In practice one finds that the solution to 

the original elliptic equation could have been determined by solving a large 

sparse matrix system, while the boundary element method often requires 

that a smaller, dense, matrix system be solved to determine the potential. 

A worked example is shown in Lapidus and Pinder [8]. 

[4] The principle advantage of the reformulation in this section is that the 

dimensionality of the problem is reduced. As in the above example, a two-

dimensional partial differential equation becomes a one-dimensional integral 

equation. 

[5] For problems in infinite domains, the behavior at infinity is (usually) au-

tomatically included in the boundary element formulation. Hence, there 

is no need for a "remote" boundary simulating an infinite distance. See 

Margulies [10]. 

[6] The boundary element method has also been applied to parabolic equations; 

see Zamani [12] or Duran, Cross, and Lewis [5] for more details. It has also 

been applied to some hyperbolic equations, see Chapter 12 (pages 191— 

199) of Brebbia [2]. For an application to nonlinear elliptic equations, see 

Chapter 4 in Ingham and Kelmanson [7]. 

[7] The boundary element method and the finite element method have several 

features in common. See Chapter 9 (pages 141-158) of Brebbia [2] for a 

general account of the similarities and differences. 

[8] The presentation here has been for the indirect boundary element method. 

In this formulation, an integral equation for the potential must be solved, 

and then the solution to the original equation is given by an integral. It is 

also possible to directly determine an integral equation whose solution also 

satisfies the original equation. This is called the direct boundary element 

method. For example, given Laplace's equation, V
2

</> = 0, if we define the 

Green's function G(x;y) by V
2

G = £(x — y), then by Green's theorem 

This integral equation can be solved directly for φ . 
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180· Differential Quadrature 

A p p l i c a b l e t o Nonlinear part ial differential equations, a single equation 

or a system. Most often, partial differential equations in two independent 

variables. 

Y i e l d s 

A system of ordinary differential equations whose solution approxi

mates the solution of the original part ial differential equation(s). 

I d e a 

All of the derivatives with respect to one or more of the independent 

variables are replaced by a sum involving the dependent variable. 

P r o c e d u r e 

To illustrate the general technique, we show how it works on a class 

of partial differential equations. Suppose we have the partial differential 

equation for u(t, x) 

ut = g(t, x, u, ux, uxx), o 

u(0,x) = h(x), 

on t > 0, —oo < χ  < oo. Instead of solving (180.1) for all values of x, we 

choose a finite set of χ  values at which the solution will be determined, say 

S = {XJ I j = 1 , . . . , N}. We now presume tha t the first derivatives with 

respect to x, at the points in <S, can be wri t ten as a linear combination of 

the values in S. Tha t is 

Ν  

ux(t,Xi) ~ ^2,aiju(t,Xj). (180.2) 

Viewing (180.2) as the linear transformation ux = Au, it seems natural to 

approximate uxx = Aux = A
2

u, or 

Ν  Ν  

uxx(t,Xi) ~ ^2Y2
a

ik
a

kMt,Xj). (180.3) 

fc=lj=l 

Utilizing (180.2) and (180.3) in (180.1) results in the system of ordinary 

differential equations 

Ν  NN 

t,xi,u\^aiju
j

,^2^2aikakju
J

 J , 

j=i k=lj=l 
u*(0) = h(xi), 
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for i = Ι ,.,.,Ν , where u
l

(t) := u(t,Xi). These initial value ordinary 

differential equations may be integrated numerically by any scheme. 

Note tha t this method is similar to the method of lines (see page 740), 

except tha t the are not chosen in such a way tha t (180.2) represents 

a finite difference approximation to the derivative. The are instead 

chosen so tha t (180.2) is exact for all polynomials of degree less t han or 

equal to Ν  — 1. Tha t is, the α ^· satisfy the linear system 

Ν  

kixif-
1

 = Y^aij{xj)
k

 (180.4) 

for k = 1 ,2 , . . . ,AT. 

E x a m p l e 

We choose to numerically approximate the solution to the nonlinear 

part ial differential equation 

ut = uux, 

u{0,x) = fix
2

, 

which has the exact solution u = .2(x + ut)
2

, or 

_ [1 - (0.4)te] - y/1 - (0.8)te 
(

 ' ' - ( Ö l j ? ' 

The program shown in Program 180 uses twenty χ  values in the interval 

from 0 to 1. Note tha t the source code for the linear equation solver 

(LS0LVE) is not shown. Some results of the program are shown below: 

THE TIME IS NOW: 0.5000 

HERE IS THE APPROXIMATE SOLUTION AT THIS TIME VALUE: 

0.0005 0.0020 0.0046 0.0083 0.0132 0. 0192 0. .0264 

0.0348 0.0446 0.0556 0.0681 0.0820 0. 0974 0. ,1143 

0.1328 0.1530 0.1750 0.1985 0.2241 0. 2620 
HERE IS THE EXACT SOLUTION AT THIS TIME VALUE: 

0.0005 0.0020 0.0046 0.0083 0.0132 0. 0192 0. .0264 
0.0349 0.0446 0.0557 0.0682 0.0822 0. 0977 0. .1147 
0.1334 0.1538 0.1760 0.2000 0.2260 0. 2540 

THE TIME IS NOW: 0.7500 

HERE IS THE APPROXIMATE SOLUTION AT THIS TIME VALUE: 

0.0005 0.0021 0.0047 0.0085 0.0135 0. 0198 0, .0274 

0.0365 0.0470 0.0591 0.0729 0.0885 0. 1060 0. .1255 
0.1471 0.1712 0.1977 0.2255 0.2687 0. 5368 

HERE IS THE EXACT SOLUTION AT THIS TIME VALUE: 

0.0005 0.0021 0.0047 0.0085 0.0135 0. 0198 0. .0275 
0.0365 0.0471 0.0593 0.0732 0.0889 0. 1066 0. .1263 
0.1484 0.1728 0.2000 0.2301 0.2634 0. 3002 

At t = .75, with the last value shown excluded, the relative error in the 

approximate solution is not more than 4%. 
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P r o g r a m 180 

DIMENSION X(50),U(50),UNEW(50),A(50,50),C0RECT(50) 

DIMENSION SAVE(50,50),C0EFF(50,50),RHS(50),NR0W(50),S0LN(50) 

C SET UP THE PARAMETER VALUES 

N=20 

TIME=0 

DELTAT=.05 

NSTEP=15 

C SET UP THE X POINTS 

DO 10 J=1,N 

10 X(J)=FL0AT(J)/FLOAT(N) 

C SET UP THE COEFFICIENT MATRIX 

DO 20 K=1,N 

DO 20 J=1,N 

20 SAVE(K,J)=X(J)**K 

C FOR EACH I, DETERMINE A_[IJ] BY SOLVING A SYSTEM OF EQUATIONS 

DO 40 1=1,Ν  

DO 30 K=1,N 

RHS(K)=K*X(I)**(K-1) 

DO 30 J=1,N 

30 COEFF(J,K)=SAVE(J,K) 

CALL LSOLVE(Ν ,COEFF,SOLN,RHS,NROW,IFSING,50) 

IF( IFSING .NE. 1 ) STOP 

DO 40 J=1,N 

40 A(I,J)=SOLN(J) 

C SET UP THE INITIAL CONDITIONS 

DO 50 J=1,N 

50 U(J)=UO( X(J) ) 

C THIS IS THE LOOP IN TIME 

DO 100 L00PT=1,NSTEP 

TIME=TIME + DELTAT 

WRITE(6,5) TIME 

C ITERATE EACH ONE OF THE EQUATIONS ONE TIME STEP 

DO 70 J=1,N 

SUM=0 

DO 60 K=1,N 

60 SUM=SUM + A(J,K)*U(K) 

70 UNEW(J)= U(J) + DELTAT * U(J) * SUM 

DO 80 J=1,N 

80 U(J)=UNEW(J) 

C WRITE OUT THE APPROXIMATE ANSWER, AND THEN THE EXACT ANSWER 

WRITE(6,*) ' HERE IS THE APPROXIMATE SOLUTION AT THIS TIME VALUE:' 

WRITE(6,15) (U(J), J=1,N) 

DO 90 J=1,N 

90 CORECT(J)=EXACT(TIME, X(J) ) 

WRITE(6,*) ' HERE IS THE EXACT SOLUTION AT THIS TIME VALUE:' 

100 WRITE(6,15) (CORECT(J), J=1,N) 

5 FORMAT(' THE TIME IS N0W:',F10.4) 

15 FORMAT( 30( IX, 7(F9.4,1X) / ) ) 

END 

C THIS FUNCTION HAS THE INITIAL CONDITIONS 

FUNCTION UO(X) 

U0=.2*X**2 

RETURN 

END 

C THIS FUNCTION HAS THE EXACT SOLUTION 

FUNCTION EXACT(T,X) 

TEMP=( 1.0 - (0.4)*T*X ) - SQRT( 1.0 - (0.8)*T*X ) 
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EXACT=TEMP / ( (0.4)*T**2 ) 

RETURN 

END 

N o t e s 

[1] Note that the coefficient matrix in (180.4) is a Vandermonde matrix. 

[2] It is not clear that having the χ  values uniformly spaced produces the most 

accurate results. In Bellman, Kashef, and Casti [1], the χ  values are chosen 

to be the roots of Legendre polynomials. 

[3] In Bellman, Kashef, and Casti [1], a simple error analysis is performed. It 

Kh
N

~
l 

is shown, for example, that the error in (180.2) is less than ^ — — if the 

mesh has a uniform spacing of h and if \u^
N

\x)\ < Κ  in the domain of 

interest. 

[4] In Civan and Sliepcevich [2] a weighted sum of terms (similar to the approx

imation in (180.2)) is used to approximate the second derivative terms (such 

as in (180.3)). This reduces the computational complexity of the coding. 

R e f e r e n c e s 

[1] R. Bellman, B. G. Kashef, and J. Casti, "Differential Quadrature: A Tech

nique for the Rapid Solution of Nonlinear Partial Differential Equations," 
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[2] F. Civan and C. M. Sliepcevich, "Solution of the Poisson Equation by 

Differential Quadratures," Int. J. Num. Methods Eng., 19, 1983, pages 711-

724. 

[3] F. Civan and C M . Sliepcevich, "Differential Quadrature for Multi-Dimensional 

Problems," J. Math. Anal. Appl., 101 , 1984, pages 423-443. 

[4] F. Civan and C. M. Sliepcevich, "On the Solution of the Thomas-Fermi 

Equation by Differential Quadrature," J. Comput. Physics, 56, 1984, pages 

343-348. 

[5] G. Naadimuthu, R. Bellman, K. M. Wang, and E. S. Lee, "Differential 

Quadrature and Partial Differential Equations: Some Numerical Results," 

J. Math. Anal. Appl, 98, 1984, pages 220-235. 

181. Domain Decomposition 

A p p l i c a b l e t o Elliptic second order part ial differential equations in 

non-regularly shaped domains. 

Y i e l d s 

An iterative solution procedure. 
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EXACT=TEMP / ( (0.4)*T**2 ) 

RETURN 

END 

N o t e s 

[1] Note that the coefficient matrix in (180.4) is a Vandermonde matrix. 
[2] It is not clear that having the χ  values uniformly spaced produces the most 

accurate results. In Bellman, Kashef, and Casti [1], the χ  values are chosen 
to be the roots of Legendre polynomials. 

[3] In Bellman, Kashef, and Casti [1], a simple error analysis is performed. It 
Kh

N

~
l 

is shown, for example, that the error in (180.2) is less than ^ — — if the 

mesh has a uniform spacing of h and if \u^
N

\x)\ < Κ  in the domain of 
interest. 

[4] In Civan and Sliepcevich [2] a weighted sum of terms (similar to the approx
imation in (180.2)) is used to approximate the second derivative terms (such 
as in (180.3)). This reduces the computational complexity of the coding. 
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181. Domain Decomposition 

A p p l i c a b l e t o Elliptic second order part ial differential equations in 
non-regularly shaped domains. 

Y i e l d s 

An iterative solution procedure. 
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Figure 181.1 The domain for equation (181.1). 

Idea 

If the geometric domain in which a part ial differential equation is to 
be solved can be wri t ten as the union of two (or more) regularly shaped 
domains, then it may be possible to write a recurrence relation for the 
solution. 

P r o c e d u r e 

Suppose we wish to numerically approximate the solution to the elliptic 
equation 

N[u] = F (x, y, ÎX, ux, uy, u x x, u x y, uyy) = 0 (181.1) 

in the domain B = B\ U B2 (see Figure 181.1). We presume this is a 

Dirichlet problem, with the initial da ta , / ( x , y ) , given on the boundary of 

B. 

Define the par t of the boundary of B\ (Θ Β χ ) tha t is also a boundary of 
Β  to be a; the rest of the B\ boundary of Β χ  will be denoted by a . Likewise, 
define the par t of the boundary of B2 (dB2) tha t is also a boundary of Β  

to be β \ the rest of the B2 boundary of B2 will be denoted by β . 

The solution procedure is to first solve (181.1) only in B\. Then, using 
this solution, we solve (181.1) only in the domain B2. This is used to find 
a new solution of (181.1) in B\, and then the process is repeated. 

Initially, the da t a on the arc ä is chosen so tha t the da ta on dBi is 

piecewise continuous. Tha t is, let U i ( x , y) be the solution of (181.1) with 

the boundary conditions 

u\{x,y) 
-{ 

on a , f{x,y) 

φ (χ , y) on ä , 

where φ (χ , y) can be chosen in many different ways. After u i (x , y) is deter
mined, let vi(x,y) be the solution of (181.1) with the boundary conditions 

vi(x,y) 
-{ 

f{x,y) 
u±(x,y) 

on β , 

on β . 
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y A 

u = o 
2 

u = g(y) 

u = f(x) 

u = 0 u = 0 

0 > 
0 u = 0 1 2 

Figure 181.2 The domain for equation (181.5). 

Then an iterative sequence of solutions to (181.1) is formed, {uk(x, y), 

vk(x,y) I fc = 1, 2, . . . } with 

Under fairly general conditions, these functions will converge to the solution 

of (181.1). Tha t is, the limiting Uk{x,y) will be the solution to (181.1) in 

the region S i , while the limiting Vk{x,y) will be the solution to (181.1) in 

the region B2. 

In Kantorovich and Krylov [6], five assumptions are given tha t are 

required to assure the convergence of the above sequences. They are: 

(A) Equat ion (181.1), with its boundary conditions, has a unique 

solution. 

(B) If F[u] = F[u*] = 0, and u* > u on the boundary of the domain, 

then u* > u everywhere in the domain. 

(C) With in the domain, the solution to (181.1) is bounded by the 

values of u on the boundary of the domain. 

(D) A convergent sequence of uniformly bounded solutions to (181.1) 

converges to a solution to (181.1). 

(E) The boundary da t a is, at least, piecewise continuous. 

Generally, non-pathological examples should satisfy these conditions. 

E x a m p l e 

Suppose we want to solve Laplace's equation in the L-shaped region 
shown in Figure 181.2. For brevity, we define the following portions of the 
boundary 

on a , 
on a , 

on β , 

on β . 
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Γ χ  = {χ  = 2,0 < y < 1} U {0 < χ  < 2, y = 0} U {χ  = 0,0 < y < 1}, 

Γ 2 = {χ  = 0,0 < y < 2} U {0 < χ  < 1, y = 0} U {0 < χ  < 1, y = 2} . 

Then the mathematical problem we wish to solve is 

V
2
u = 0, 

u = 0, on Γ ι , 

u = 0, on Γ 2, (181.2) 

u = / ( x ) , on {1 < χ  < 2, = 1}, 

w = 0(2/), on {χ  = 1,1 < j / < 2}. 

For this example, we break up the original domain into two rectangles, one 
vertical and one horizontal; the overlap region being the unit square. We 
start with 

W = 0, 

U\ — 0, on Γ ι , 

u i = / ( x ) , on {1 < χ  < 2, y = 1}, 

ui = 0(x), on {0 < χ  < 1, y = 1}. 

Then our iteration sequence becomes 

V
2

vk = 0, 

vk = 0, on Γ 2, 

v fc = txfc_i(l,y), on {x = 1,0 < y < 1}, 

f̂c = g(y), on {x = 1,1 < y < 2}, 

for k = 1, 2 , . . . , while 

V
2
u f c = 0, 

Ufc = 0, on Γ ι , 

(181.3) 

(181.4) 

uk = / ( x ) , on {1 < χ  < 2, i/ = 1}, 

uk = vk(x, 1), on {0 < χ  < 1, y = 1}, 

(181.5) 

for k = 2 , 3 , . . . . 

In this case, because of the simple geometry, we can analytically write 

down the solution to (181.4) and (181.5) by the use of Fourier transforms 

(see page 299). Note first, if we define fn(x) := w n(x , 1) = J^fcLi fnk sin knx, 

then un(x, y) = > . , J\—7—- sinh kny sin knx . Similarly, if we define the 
^ s i n h ( ^ / 2 )

 y J
' 
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expansion gn(x) := vn(l,y) = Σ ™=1 gnk sinkny, then we obtain the result 
oo 

Vn(xiV) = . w^
fc

 / r tv s i nhknx s in fc7rt/ . Using these expansions in 
k=l ' 

(181.4) and (181.5), we can readily determine tha t 

fnk = Bk + Aka9n-l,s-> 

Z
1

 (181-6) 

9nk =Ck + ^2 Akafn-1,81 

8=1 

where 

Bk = J f(x)sm(knx/2)dx, 

Ck = J g(y) s'm(kny/2) dy, 

2 
A k a = -

ns
2

 + k
2 s sin (γ )

0 Ο 8 ΐ 1

(τ )-^
Ο 8

(τ )
8 ί η 11

(τ ) 

In practice, the two recurrence relations in (181.6) would be i terated until 
a s tat ionary value was obtained. 

N o t e s 

[1] This method is usually implemented numerically, with little analysis done 
on the equations. For the above example, the equations in (181.3)-(181.5) 
would be approximated numerically by an elliptic equation package. 

[2] This method also works for coupled systems of elliptic equations. For two 
unknowns, a guess is made for one of the unknowns, and one of the equations 
is used to solve for the other unknown. Knowing this second unknown, the 
first unknown is approximated numerically by the other equation, and the 
process is repeated. See Rice and BoisverttherefG for some examples. 

[3] The procedure illustrated in this section is called Schwarz's method, it is 
only one of several different domain decomposition methods (see Glowinski 
et al [5]). 

[4] In Chan, Hou, and Lions [3] it is shown that the convergence rate of the 
Schwarz alternating procedure, for general second-order elliptic equations, 
is independent of the aspect ratio for L-shaped, T-shaped, and C-shaped 
domains. 
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182. Elliptic Equations: 

Finite Differences 

A p p l i c a b l e t o Elliptic partial differential equations. 

Y i e l d s 

A numerical approximation of the solution. 

Idea 

By use of finite differences, a simultaneous system of equations may be 
determined. The solution of this algebraic system (which is often a linear 
system of equations) yields a numerical approximation to the differential 
equation. 
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182. Elliptic Equations: 

Finite Differences 

A p p l i c a b l e t o Elliptic partial differential equations. 

Y i e l d s 

A numerical approximation of the solution. 

Idea 

By use of finite differences, a simultaneous system of equations may be 

determined. The solution of this algebraic system (which is often a linear 

system of equations) yields a numerical approximation to the differential 

equation. 
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2/1 = b 

χ ι  = α  χ  Ν  = Α  χ  

Figure 182.1 The numerical grid on which the problem is to be solved. 

P r o c e d u r e 

The method is simply to use finite differences everywhere, and solve 

the resulting set of simultaneous equations. Since elliptic equations are 

boundary value problems, the solution at all points in the domain must be 

determined simultaneously. 

We choose to illustrate the method on a second order elliptic equation 

of the form 

OLU
XX
 + ßuyy = / ( x , y, u,  uy), (182.1) 

where a and β  are functions of χ  and y. We suppose tha t equation (182.1) 

applies inside a rectangle with a < χ  < A, b < y < B, and tha t the 

boundary conditions for (182.1) are 

(/ ( y ) , on χ  = a, 

g(y), on χ  = A, (182.2) 

h(x) , on y = Β , 

UU UU ο  , ν  , v ^ + ^ + u 3 = j ( x ) , on y = 6, (182.3) 

where {fig,h,j} are all known functions. 

We first define a grid t ha t fills the geometric domain (see page 606). 

For the rectangular geometry given, we choose a rectangular grid with an 

χ  spacing of h and a y spacing of k (where h = (A — a)/(Ν  — 1), and 

k = (B — b)/(M — 1)). Here, N(M) is the number of grid points in the χ  

(y) direction. See Figure 182.1. 

Let the numerical approximation to u(x,y) be given by Vij ( that is, 

Vij 2^ u(a + ih,b + jk)). We can then choose virtually any finite difference 

A 

y 

y M — Β  1 — Ι — Ι  1 
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approximation to the derivatives appearing in (182.1). For instance, one 

second order approximation to (182.1) would be 

(182.4) 

For each i and j , (182.4) represents an algebraic equation among the 

{vij}. Now the boundary conditions must be incorporated. The boundary 

conditions in (182.2) can be writ ten simply as 

voj = f(b + jk), for j = l , 2 , . . . , M , 

vNtj=g{b + jk), for j = l , 2 , . . . , M , (182.5) 

Vi,m = h(a + ih), for i = 1 , 2 , . . . , N. 

The boundary condition in (182.3) can be wri t ten as 

—
L

- j ^ — - -h - + (^j)"
3

 = j ( α  + ih) for ζ  = 1 ,2 , . . . , Ν . 

(182.6) 

If equation (182.4) is evaluated for j = 1 , 2 , . . . , M and ζ  = 1 ,2 , . . . , AT, 

and (182.5) and (182.6) are included, there results a simultaneous system 

of equations for the {υ ^}. There are as many equations as there are 

unknowns. This system may then be solved numerically. 

If the original elliptic equation (182.1) and the boundary conditions are 

linear in the independent variable, then the resulting system of equations 

will be linear. For our example, equation (182.6) is not linear (note the 

{vij)
3

 term) since there is a u
3

 t e rm in (182.3). The most common type of 

elliptic systems have linear equations and linear boundary conditions. For 

this type of elliptic system, a s tandard linear equation solver may be used. 

If the system of linear equations is too large to solve directly, an iterative 

method may be used (see page 726). 

u(0,y) = y, u{l,y) = y
2

, 

u(x,Q) = 0, u(x , 1) = 1. 
(182.8) 

E x a m p l e 

Suppose we have the linear elliptic equation 

(182.7) 

ο η 0 < χ < 1 , 0 < y < 1 with 
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0 

A 

1 1 1 1 

1 
3 V23 ^33 

1 
3 

2 
3 V32 

4 
9 

0 f 0 
r 0 

o è I ι  x 
Figure 182.2 The grid on which (182.8) is solved. 

If we choose Μ  = Ν  = 4 (so tha t h = k = 1/3), then there are 16 
points {vij I 1 < i < 4 ,1 < j < 4} at which to determine an approximation 
to u(x,y). The points {vij \ i = 1 or i = 4 or j = 1 or j = 4} are 
determined directly by the boundary conditions in (182.8). Hence, the 
only unknowns tha t need to be determined are {^22? ^23? ^32? ^33}· See 
Figure 182.2. If (182.7) is discretized as 

+ (jk + i ) 2 W 2 y + ^ - i = χ  + ^ , 
AC 

then the equations for the unknown {v^} may be wri t ten as 

/ 57/9 - 1 6 / 9 - 4 / 3 0 \ / ν 2 2\ / ~
5
/ 9 

- 2 5 / 9 25/3 0 - 4 / 3 | [ v2s \ I 24/9 
- 5 / 3 0 7 - 1 6 / 9 v32 I ~ I - 2 2 / 2 7 

V 0 - 5 / 3 - 2 5 / 9 9 / \v33J \ 68/27 

The equations in (182.9) have the solution (correct to the number of decimal 
places listed) v22 ^ 0.0131, v23 0.3791, v32 ^ -0 .0265 , v33 ~ 0.3419. 

. (182.9) 
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N o t e s 

[1] The above example is from Ames [1]. 

[2] The computer language ELLPACK (see Rice and Boisvert [6] is a high level 

language that allows linear elliptic problems in two or three dimensions to 

be entered in an elementary way. The program generates a discretization 

scheme based on user preference. The geometry in two dimensions can be 

nearly arbitrary, with holes and other cutouts available. For example, to 

solve the problem in the example, the entire ELLPACK program would be 

EQUATION. (X+1)*UXX+(Y+1)**2*UYY=1.0 + U 

BOUNDARY. U=Y ON X=0.0 

U=Y**2 ON X=1.0 

U=0.0 ON Y=0.0 

U=1.0 ON Y=1.0 

GRID. 4 X POINTS 

4 Y POINTS 

DISCRETIZATION. 5 POINT STAR 

SOLUTION. LINPACK BAND 

OUTPUT. TABLE(U) 

PLOT(U) 

END. 

The use of ELLPACK for two and three dimensional problems is highly 

recommended. 

[3] Picard iteration (see page 535), Newton's method (see page 500), and Monte 

Carlo methods (see page 721) can also be used to numerically approximate 

the solution to elliptic problems. 

[4] Boisvert and Sweet [4] have a comprehensive listing of currently available 

software for solving elliptic problems. For a listing of computer software 

that will implement the method described in this section, see page 586. 
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[4] R. F. Boisvert and R. A. Sweet, "Mathematical Software for Elliptic Bound

ary Value Problems," in W. R. Cowell (ed.), Sources and Development of 

Mathematical Software, Prentice-Hall Inc., Englewood Cliffs, NJ, 1984, 

Chapter 9 (pages 200-263). 

[5] W. R. Dyksen and C. J. Ribbens, "Interactive ELLPACK: An Interactive 

Problem-Solving Environment for Elliptic Partial Differential Equations," 

ACM Trans. Math. Software, 13 , No. 2, June 1987, pages 113-132. 

[6] J. R. Rice and R. F. Boisvert, Solving Elliptic Problems Using ELLPACK, 

Springer-Verlag, New York, 1985. 

[7] Ε . H. Twizell, Computational Methods of Partial Differential Equations, 
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183. Elliptic Equations: 

Monte Carlo Method 

A p p l i c a b l e t o Linear elliptic part ial differential equations. 

Y i e l d s 

A numerical approximation to the solution of a linear elliptic part ial 

differential equation at a single point. 

I d e a 

Simulation of the motion of a random particle may be used to approx-

imate the solution to linear elliptic equations. 

P r o c e d u r e 

The steps for this method are straightforward. First we give an overview, 

then a more detailed presentation. 

First , approximate the given elliptic part ial differential equation by a 

finite difference method. Rewrite the finite difference formula as a recursive 

function for the value of the unknown at any given point. Then interpret 

this recursive formula as a set of transit ion probabilities tha t determine the 

motion of a random particle. 

Now write a computer program tha t will allow many (say K) particles 

to wander randomly around the domain of interest, based on the transit ion 

probabilities found from the difference formula. Simulate particles one at 

a t ime, with every particle s tar t ing off at the same point (say the point z) . 

(A) If the boundary da t a are of the Dirichlet type (i.e., the value of the 

unknown is prescribed on the boundary) then when a particle reaches 

the boundary, s top tha t particle and store away the value on the 

boundary. Begin another particle at the point z. 

(B) If the boundary da t a are not of the Dirichlet type (say Neumann 

or mixed boundary conditions) then, when the particles reach the 

boundary, they will be given a finite probability to leave the boundary, 

and re-enter the domain of the problem. If the particle leaves the 

boundary, then continue the i teration process. If it does not leave the 

boundary, then the value at the boundary is stored away, and a new 

particle is s tar ted off at the point z. 

The simulation is finished after all Κ  particles have been absorbed 

into the boundary. If the original elliptic equation has Dirichlet boundary 

conditions, then an approximation to the solution, at the point z, will be 

given by the average of all the values obtained (recall, when the particles 

s top at the boundary they obtain a value). 
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If the given elliptic equation does not have Dirichlet boundary condi-

tions, then an equation given below will show how to obtain an approxi-

mation to the solution. In this lat ter case, the approximate value of the 

solution depends on the entire history of the particle. 

In more detail, we now describe how the technique may be applied to 

the linear second order elliptical part ial differential equation 

L[u] = F{x,y), (183.1) 

with the operator L[-] defined by 

L[u] := Auxx + 2Buxy + Cuyy + Dux + Euy, 

where {A, B, C, D , E) are all functions of {x, y}. The operator L[-] may be 

discretized to yield the approximation 

L[u] ~ Aij 

+
 2 B

i j 

+ Dij 

( Δ * )
2 

W j + l j + l ~
 v

i,j + l ~
 v

i+lj + 

(Ax)(Ay) 

( A y )
2 

(183.2) 

Δ χ  
-h Eij 

Ay 

where x; = xo + ί ( Δ χ ) , Î/J = 2/0 + υ » ·̂ = u(a>i,yj), and a subscript 

of z, j means an evaluation at the point ( x ^ , ^ ) . If the { Γ ν } and Q i j are 

defined by 

Ti , j - i 

QiJ 

(Ax)(Ay) 

+ ( Δ χ )
2

 ( Δ χ ) ( Δ </) Δ χ  J ' 

2Bij 
+ 

( A y )
2

 ( Δ χ ) ( Δ » ) Ay J ' 

l(Ax)
2 

(AxY 

^A*ij
 2 B

h j ι  ^Cij FjJ 

JÄxY ~ (Ax)(Ay) lÄyf ~Äx~ ~Äy~ 



183 . El l ipt ic E q u a t i o n s : M o n t e Car lo M e t h o d 723 

then, using (183.2), equation (183.1) may approximated as 

or (dividing through by Qij and defining pij := ^ij/Qij), 

Vij = Pi+ljVi+ij -hPi+l j - j - l^t+lJ- i - l - h P i , j +i V i , j +i 

+ Pi-ijVi-1J -rPij-iVij^ -
(183.3) 

Since the operator L[«] has been presumed to be elliptic, then Ax and 

Ay may be chosen small enough so tha t each of the p's are positive. The p 's 

also add up to one, and we interpret t hem as probabilities of taking a s tep 

in a specified direction. Specifically, equation (183.3) can be interpreted as 

follows: If a particle is at position at step JV, then 

(A) with probability P i j + i the particle goes to (i, j + 1) at step JV + 1. 

(B) with probability Pij-i the particle goes to — 1) at step N -h 1. 

(C) with probability Pi+ij the particle goes to (i + 1, j ) at s tep JV + 1. 

(D) with probability Pi-ij the particle goes to (i — at s tep Ν  H-1. 

( Ε ) with probability p i+i j + i the particle goes to (z + 1 , j + 1 ) at step N+l. 

Now, suppose a particle s tar ts at the point Po := z, and undergoes a 

random walk according to the above prescription. After, say, m steps it will 

hit the boundary. Suppose tha t the sequence of points tha t this particle 

visits is (Ρ ο ,Ρ ι ,Ρ 2,... , P m) - Then, an unbiased estimator of the value of 

u(z) for the following elliptic problem 

L[u] = F(x, y), for all points x, y in the domain R, 

In practice, several random paths will be taken, and the average taken to 

estimate u(z) 

where ( P Q
5

, P f , . . . , P ^ f c) , represents the pa th taken by the fc-th random 

particle. 

u φ (χ , y), for all points x, y on the boundary dR, 

is given by 

(183.4) 
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u = 6 

F igure 183. The domain in which Laplace's equation is solved. 

E x a m p l e 

Suppose we wish to numerically approximate the solution to Laplace's 

equation in an annulus. We have V
2

u = 0 for u(r, Θ ) with the boundary 

conditions t i ( l ,0) = 4 and w(3, Θ ) = 6. (See Figure 183.) We will approxi-

mate the value of u(z) , when ζ  := (r = 2, θ  = 0). The exact solution for this 

problem is u(r) = 4 + 2 log r/ log 3, so tha t u(z) = 4 + log 2 / log 3 ~ 5.261. 

To approximate the solution to this problem numerically, we will follow the 

steps outlined above. We will use the rectangular variables χ  and y, ra ther 

than the polar coordinate variables r and Θ . 

Using a s tandard second order approximation to the Laplacian, we 

find 

v u _ h2 - υ , (183.5) 

where Vij := u(hi,hj) and Equat ion (183.5) can be manipulated 

into 

(183.6) 

We interpret (183.6) probabilistically as follows: If a particle is at position 

(z, j) at step iV, then 

(A) with probability 1/4 the particle goes to (z, j + 1) at step TV + 1. 

(B) with probability 1/4 the particle goes to (i, j — 1) at step Ν  + 1. 

(C) with probability 1/4 the particle goes to (i + 1, j ) at step Ν  4 - 1 . 
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(D) with probability 1/4 the particle goes to (i — at step N + 1. 

The FORTRAN program in Program 183 was used to simulate the 

motion of the particles according to the above probability law. The output 

of tha t program is given below for u(r = 2, θ  = 0). As more points are 

taken, the approximation becomes bet ter . 

NUMBER OF PARTICLES= 1000 APPROXIMATI0N= 5.3440 

NUMBER OF PARTICLES= 2000 APPROXIMATIONS 5.3330 

NUMBER OF PARTICLES* 3000 APPROXIMATION* 5.3200 

NUMBER OF PARTICLES* 4000 APPROXIMATION* 5.3195 

NUMBER OF PARTICLES* 6000 APPROXIMATION* 5.3030 

NUMBER OF PARTICLES* 7000 APPROXIMATION* 5.3023 

NUMBER OF PARTICLES* 8000 APPROXIMATION* 5.2958 

NUMBER OF PARTICLES* 9000 APPROXIMATION* 5.2944 

NUMBER OF PARTICLES*10000 APPROXIMATION* 5.2914 

Note tha t the program uses a routine called RANDOM, whose source code 

is not given, which returns a random value uniformly distributed on the 

interval from zero to one. 

P r o g r a m 183 

STEP*.10 

SUM=0. 

DO 10 IWALK=1,10000 

X=2.0 

Y*0.0 

20 X=X + SIGNCSTEP, RANDOM(DUMMY)-.5 ) 

Y*Y + SIGNCSTEP, RANDOM(DUMMY)-.5 ) 

R=SQRT( X**2+Y**2 ) 

IF( R.LT.3 .AND. R.GT.l ) GOTO 20 

C WHEN A PARTICLE HITS THE BOUNDARY, SUM THE VALUE 

IF( R .LE. 1) SUM=SUM+4 

IF( R .GE. 3) SUM=SUM+6 

IF( M0D(IWALK,1000) .NE. 0 ) GOTO 10 

APPROX=SUM/FLOAT(IWALK) 

WRITE(6,5) IWALK,APPROX 

5 FORMAT(' NUMBER OF PARTICLES*',15,' APPROXIMATION*',F7.4) 

10 CONTINUE 

END 

N o t e s 

[1] If further accuracy is required, the options are: 

(A) Increase the number of random particles. 

(B) Make the mesh discretization finer (i.e., reduce h). 

(C) Do both of the above. 

If the number of random particles is not very large then (B) will not help 

much, and if the mesh is very coarse then (A) will not help much. Generally, 

the variance of the answer (a measure of the "scatter") decreases as the 

number of trials to the minus one half power. 

[2] Since low numerical accuracy is obtained by this technique, a computer 

program does not need to work with extended precision arithmetic (such as 

double precision). 
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[3] Sadeh and Franklin [8] present several worked examples. 
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i d e a 

The finite difference scheme for an elliptic equation can be interpreted 

as a local condition on the value of the solution. This local condition leads 

naturally to an iterative numerical procedure. 

Y i e l d s 

A numerical approximation to the solution. 

A p p l i c a b l e t o Elliptic equations, most often Laplace's equations. 

184. Elliptic Equations: 

R e l a x a t i o n 
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i d e a 

The finite difference scheme for an elliptic equation can be interpreted 

as a local condition on the value of the solution. This local condition leads 

naturally to an iterative numerical procedure. 

Y i e l d s 

A numerical approximation to the solution. 

A p p l i c a b l e t o Elliptic equations, most often Laplace's equations. 

184. Elliptic Equations: 

R e l a x a t i o n 
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P r o c e d u r e 

Given an elliptic equation, choose a finite difference formula to ap

proximate the equation on a grid in the domain of interest. This formula 

can be manipulated into a relation between the value of the unknown at a 

point and the values of the unknown at neighboring points. Hence, once 

values have been assigned to every point in the grid, this formula can be 

used iteratively to upda te the value at every point. When the values stops 

changing (to some specified precision), an approximate solution has been 

found. 

E x a m p l e 

Suppose we want to approximate the solution to Laplace's equation 

on a square 

V
2

u = 0, 

u{0, y) = 0, u(l, y) = 0, for 0 < y < 1, (184.1.a-c) 

u{x,0)=0, u(x,l) = l, for 0 < χ  < 1. 

If we choose a grid with a uniform χ  spacing of Ax and a uniform y spacing 

of Ay, then (184.1.a) can be discretized as 

{Ax) {Ay) 

(184.2) 

where Vij := u(i Ax,j Ay), for i = 1 , 2 , . . . , 1/Ax and j = 1 ,2 , . . . , 1 /Ay. 

Equat ion (184.2) can be manipulated to yield 

2(1 + λ
2

) 
( λ

2

 + V i j - i ) + t>i+i,i + V i - i j ) (184.3) 

where λ  := Ay/Ax. Prom (184.3), we see tha t Vij can be replaced by a 

weighted average of the values at the neighboring points. Note tha t this is 

only t rue for points interior to the boundary. 

The numerical technique is this: initialize the values at all points in the 

grid (one common choice is to use the averaged value of the independent 

variable on the boundary) , then systematically apply (184.3) to all the grid 

points until the solution converges. In theory, the points to be updated 

can be chosen in any order. In practice, some choices result in faster 

convergence. 

The F O R T R A N program in Program 184 carries out this prescription 

for the problem in (184.1). In this program, h = .2, k = .2, and the number 

of iterative updates required before the approximation did not change more 
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t han EPS (set to .0001) was 16. The output from the computer program is 

given below 

NUMBER OF ITERATIONS REQUIRED: 16 

0. 1.0000 1.0000 1.0000 1.0000 0. 

0. 0.4545 0.5946 0.5946 0.4545 0. 

0. 0.2234 0.3294 0.3294 0.2234 0. 

0. 0.1097 0.1703 0.1703 0.1098 0. 

0. 0.0454 0.0718 0.0719 0.0454 0. 

0. 0. 0. 0. 0. 0. 

The symmetry of the solution was to be expected. 

The exact solution to (184.1) can be determined by separation of 

variables (see page 419). The solution is 

As can be verified, the numerical approximation is accurate to two decimal 

places. 

P r o g r a m 184 

REAL*8 V(6,6) 

C INITIALIZE THE GRID 

DO 10 1=2,5 

DO 10 J=2,5 

10 V(I,J)=.25D0 

C HERE IS THE BOUNDARY DATA 

DO 20 K=l,6 

V(K,1)=0.0D0 

V(K,6)=1.0D0 

V(1,K)=0.0D0 

20 V(6,K)=0.0D0 

C PERFORM THE ITERATIONS 

EPS=.0001D0 

NUM=0 

40 NUM=NUM+1 

IFLAG=0 

DO 30 1=2,5 

DO 30 J=2,5 

VNEW= ( V(I+1,J) + V(I-1,J) + V(I,J+1) + V(I,J-1) ) / 4.DO 

IF( DABS(V(I,J)-VNEW) .GT. EPS ) IFLAG=1 

30 V(I,J)=VNEW 

C DETERMINE IF ANOTHER ITERATION IS REQUIRED 

IF( IFLAG .EQ. 1 ) GOTO 40 

WRITE(6,5) NUM 

5 FORMAT(' NUMBER OF ITERATIONS REQUIRED:', 15) 

DO 50 J=l,6 

50 WRITE(6,15) (V(I,7-J),1=1,6) 

15 FORMAT( 7(1X,F9.4) ) 

END 
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N o t e s 

[1] The equations in (184.2) can be combined into one large system of linear 

equations, and then iterative methods can be applied to this system. Each 

different iterative method for a linear system can be interpreted as a relax

ation method directly on the grid values. 

[2] Depending on the equation to which this method is applied, and on the 

ordering in which the updated values are obtained, this technique is called 

(A) successive over-relaxation (SOR) method, 

(B) Jacobi or simultaneous iteration scheme, 

(C) Gauss-Seidel or successive iteration scheme, 

(D) alternating-direction-implicit (ADI) method, 

(E) Liebmann's method. 

In the ADI method, the finite difference approximation to Laplace's 

equation may be written 

V
2

ii ~ 

,(2n) 
2u 

(2n) (2n) 
U, 

(2n+l ) 

-Li 
-2u\ 

(2n+l ) , e i( 2 n + l ) 

*,3 

(Ax)
2 

(Ay)
2 = 0. 

The superscripts indicate the iteration number. Hence, the updating is done 

alternately by rows and columns in the array of values. 

[3] This method, when applied to the elliptic equation L[u] = 0, can be in

terpreted as an approximation to the solution of the parabolic equation 

ut = L[u]. By iterating until the solution stops changing, the steady state 

solution of the parabolic equation is obtained. This interpretation allows 

error estimates to be obtained for this method (see Garabedian [4]). 

[4] For a listing of computer software that will implement the method described 

in this section, see page 586. 
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185. Hyperbolic Equations: 

Method of Characteristics 

A p p l i c a b l e t o A single hyperbolic equation, or a system of hyperbolic 

equations. 

Y i e l d s 

A numerical approximation scheme. 

Idea 

The method of characteristics (see page 368) can be used directly to 

create a numerical scheme to integrate hyperbolic equations. 

P r o c e d u r e 

To simplify the analysis, we will illustrate the method on the second 

order hyperbolic part ial differential equation 

+ bUXy + CUyy + d = 0. (185.1) 

In (185.1), the functions {a ,6 ,c ,d} are assumed to depend on {x,y, u, ux, 

uy}. Wi th the usual definition of ρ  := ux and q := uy, equation (185.1) 

may be rewrit ten as the system of equations 

Ε ι  := apx + bpy + cqy + d = 0, 

E2 := Py -Qx = 0. 

If we define Ε  = Ε ι  + λ £ 2 , then Ε  may be wri t ten as 

Ε  = [apx + ( λ  + b)py] + (cqy - \qx) + d = 0. 

This, in turn, may be writ ten as 

E =

 T s
{ p + ß q) +

 =°'
) 

along the curve defined parametrically by 

àx λ  dy % , c _ . 

— =
α

 =
 , JL

 =
 \ + b=

 -
, (185.3) 

as μ  ds μ  

if such a curve exists. For consistency in (185.3), we must choose μ  to 

satisfy α μ
2

 — bμ  -4- c = 0, tha t is, 
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Define { μ ι , μ 2} to be the distinct real roots given in (185.4) (if the 

roots are not distinct and real then (185.1) is not hyperbolic), and define 

Xi = —α μ ί . Then equations (185.2) and (185.3) can be wri t ten as 

-Τ " (p + ßiQ) = — (d — q^Y^) on the curve C i , 
ds \ ds J 

^ (p + ß2q) = - (d - Q-fj^j on t ne
 curve C 2, 

where the characteristic curves C\ and C 2 are defined by 

dx dy 
on C\\ — = a, — = A i - h 6 , 

ds ds 
dx dy 

on C2: — = a, — = λ 2 + b. 
ds ds 

(185.5) 

(185.6.a-ft) 

These two characteristics curves have slopes tha t vary from point to point. 

These curves are generally not orthogonal. Knowing {a, 6, c, d} allows us 

to determine { μ ι , μ 2} and so { λ ι , λ 2} can also be determined. Therefore, 

the characteristics curves can be calculated numerically. 

Now, if fci := p -h ßiq and fc2 := ρ  Η - μ 2# were known at some common 

point R (these values arise naturally from (185.5)), then p(R) and q(R) 

can be found by inverting these relations, tha t is 

q(R) = , 

p { R) ^ i f a - W f a 

μ ι  - ß2 

The numerical procedure is now a straightforward application of the 
method of characteristics. First , the characteristic curves (see (185.6)) 
are identified, at some point, by evaluating (185.4). Then the equations 
for ki and k2 are integrated a short distance along the characteristics, by 
using (185.5). From the values of fci and k2, values for ρ  and q may be 

determined by use of (185.7). Finally, knowing ρ  and q, the value of u(x, y) 

can be determined. 

In more detail: 

(A) Given values at the points Ρ  and Q (see Figure 185.a), we will deter-

mine the values of all the parameters at a new point R. 

(B) Determine R by integrating along characteristic C\ from Ρ  and along 

characteristic C2 from Q until the curves intersect. 
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P Q Ρ  Q 

χ  χ  
(a) (b) 

Figure 185. Depiction of the characteristics for a typical calculation. 

(C) Integrate fci := ρ  + μ ι ς  from Ρ  to R and then integrate k2 := ρ  + μ 2α  

from Q to ß . Knowing {ki,k2}
 a n

d {μ ι ,μ 2} at R allows q(R) and 

to be obtained from (185.7). 

(D) Now du = uxdx + uydy = pdx + öd?/, and so (approximately) u ( # ) = 

u(P) + p{R)(xp - XR) + q(R)(yp - yk) and also t*(Ä) = u(Q) + 

P(R)(XQ — XR) + q(R)(yQ — yR). If these two formulae do not agree 

on the value of u(R), then an average may be taken. 

(E) Now tha t u and its derivatives are known at the point Ä, the process 

can be continued to the points {5, T , . . . } (see Figure 185.b). 

[1] Another way to derive an equation equivalent to (185.2) is to use the rela
tions dp = uxxdx + uxtdt and dq = uxtdx + uttdt with (185.1). This results 
in the equation 

Comparing this equation to (185.2) the characteristic directions μ  are im-

mediately seen to correspond to — . 

ax [2] This technique also works (in principle) for higher order equations. If the 

given hyperbolic equation has η  independent variables, then the polynomial 

equation describing the characteristic directions will be of n-th order, and 

there will be η  different characteristic directions. (In our example, there 

were only two characteristic directions, given by (185.4).) 

[3] The procedure presented here can be made more concise by use of matrix 

notation. With a matrix formulation, equation (185.3) becomes the charac-

teristic polynomial for the eigenvalues of some matrix and the characteristic 

directions in (185.5) become the eigenvectors ofthat same matrix. 

N o t e s 

( · ( = ) * - · ( = ) • « ) - o 
a 

dp dt dq 

dx dx dx 
= 0. 
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[4] This technique can be readily modified to work with systems of hyperbolic 
equations. 

[5] This technique is sometimes considered to be superior to using finite differ-
ences directly since it utilizes the mathematical structure of the solution. 
However, this is not always clear: following characteristic surfaces in higher 
dimensions is difficult, and the method of characteristics has trouble with 
shocks. 

[6] If the independent variables are changed from {x, y} to {η , ζ } via 

, - 6 + v/6
2

 - 4ac 

C = ψ  * + y, 

—b — y b
2

 — Aac 

η = Υχ  x + y, 

then (185.1) will have the form η η ζ  = φ (μ , υ ,η ,υ ,ζ ,η , ζ ). See page 33 for more 

details. 
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186. Hyperbolic Equations: 

Finite Differences 

A p p l i c a b l e t o Hyperbolic part ial differential equations. 

Y i e l d s 

A numerical approximation scheme. 

I d e a 

Finite differences can be used directly to numerically approximate the 

solution of a hyperbolic part ial differential equation. 
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[4] This technique can be readily modified to work with systems of hyperbolic 
equations. 

[5] This technique is sometimes considered to be superior to using finite differ-
ences directly since it utilizes the mathematical structure of the solution. 
However, this is not always clear: following characteristic surfaces in higher 
dimensions is difficult, and the method of characteristics has trouble with 
shocks. 

[6] If the independent variables are changed from {x, y} to {η , ζ } via 

, - 6 + v/6
2
 - 4ac 

C = ψ  * + y, 
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186. Hyperbolic Equations: 

Finite Differences 

A p p l i c a b l e t o Hyperbolic part ial differential equations. 

Y i e l d s 

A numerical approximation scheme. 

I d e a 

Finite differences can be used directly to numerically approximate the 
solution of a hyperbolic part ial differential equation. 
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P r o c e d u r e 

The technique is to replace all of the derivatives appearing in the given 
hyperbolic part ial differential equation by finite difference approximations. 
By rearranging the terms in this new equation, an explicit recurrence 
formula can generally be obtained. 

A stability analysis can be performed on this recurrence relation to 
determine the step sizes tha t will insure convergence of the numerical 
approximation to the true solution. 

A frequent problem encountered with this method is having enough 
star t ing values to begin iterating the recurrence relation. Start ing values 
can generally be obtained by performing manipulations of the original 
equation. 

E x a m p l e 

The hyperbolic equation 

u tt - a
2

u xx = 0 (186.1) 

on the interval 0 < χ  < L, for t > 0, with the initial and boundary 
conditions 

u(0,t) = u(L,t) = 0, 

u (x , 0 ) = / ( * ) , ( l g 6 e 2) 

du, Λ\ / χ  

— (χ ,Ο ) = g(x), 

can be numerically approximated directly by finite differences. 
We choose a uniform grid of M + 1 points in the χ  direction (i.e., 

Xi = ih for i = 0 , 1 , 2 , . . . , M with h := L/M). We choose the step length 
in the t variable to be k and define tj := jk. We also choose to use the 
following centered difference formulas for uxx and utt 

Wij+i = 2(1 - X
2

)wij + \
2

(wi+ij + Wi-ij) - Wij-i, (186.4) 

(186.3) 

Each of these formulae is second order accurate. If we define Wij := 

u(xi,tj), then using (186.3) in (186.1) results in 

This last equation can be solved for W i j + i to define the recurrence relation 
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witi := u{xi,t{) 

= u{xi,k) 

, du, Λ Χ k
2

 d
2

u, 
~ u(x<,0) + h—fa,0) + —-^(xi,0) + ..., 

where this last formula is second order accurate if we retain only the terms 
shown (higher order approximations can also be obtained). Now utt is 
known in terms of u x x from equation (186.1), and u(x, 0) is known in 
terms of f(x) from equation (186.2). Therefore, equation (186.4) can be 
simplified to yield 

OL
2

k
2 

witl Wi,0 + kg(xx) + ^ y - / " ( x i ) . (186.6) 

Spec ia l C a s e 

The FORTRAN program in Program 186 numerically approximates 
the solution of the hyperbolic equation 

for 0 < χ  < 1, 0 < t, 

for 0 < t, 

for 0 < χ  < 1, 

for 0 < χ  < 1. 

This system has the analytic solution u(x, t) = sin7rxcos37ri. 

The program utilizes M = 10 and the value of k was chosen to be .02. 
The solution obtained for t = 1 at the points Xi = Ai (for i = 0 , 1 , . . . , 10) 
is 

0. -0.3082 -0.5862 -0.8069 -0.9485 -0.9973 
-0.9485 -0.8069 -0.5862 -0.3082 0. 

By comparing these values to the exact solution, we observe tha t the 
numerical approximation is correct to two decimal places. 

u x x Quxx — 0, 

u(0 , t ) = t i ( l , t ) = 0, 

u(x, 0) = β ί η π χ , 

ut(x,Q) = 0, 

for i = 1 , 2 , . . . , (M — 1) and j = 1 , 2 , . . . , where λ  := ak/h. The initial 

conditions and boundary conditions, from (186.2), can be represented as 

« ^ = „ ^ = 0 , i = L2 

W,o = f\Xi), ζ  = 1 , 2 , . . . , M . 

Now comes the problem of s tar t ing the recurrence relation off. Suppose 
we wish to i terate equation (186.4). The values we first compute are 
the {WÎ , 2 } , but these require knowledge of which is not given in 
(186.5). The procedure for obtaining this da ta is to perform a Taylor series 
expansion of u ^ i . We find tha t 
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P r o g r a m 186 

REAL W(100,100) 

C HERE ARE THE INITIAL VALUES 

ALPHA=3. 

FL=1. 

M=10 

H=FL/FLOAT(M) 

FK=.02 

N=1./FK 

FLAMBD=ALPHA*FK/H 

C0NST=2.*(1.-FLAMBD**2) 

C SET UP THE INITIAL/BOUNDARY VALUES IN THE MATRIX 

DO 10 J=1,N+1 

W(1,J)=0. 

10 W(M+1,J)=0. 

DO 20 1=2,M 

XI=(I-1)*H 

W(I,1)=F(XI) 

20 W(I,2)=W(I,l)+FK*G(XI)+FK**2*FPP(XI)/2. 

C HERE IS THE RECURRENCE RELATION 

DO 30 J=2,N 

TT=J*FK 

DO 40 1=2,M 

40 W(I,J+1)=C0NST*W(I,J)+FLAMBD**2*(W(I+1,J)+W(I-1,J))-W(I,J-1) 

30 WRITE(6,5) J,TT,(W(K,J+l), K=1,M+1) 

5 FORMAT(' AT TIME STEP \I4,> (Τ =',F7.3,')>/,4(lX,6(F9.4)/) ) 

END 

C THESE FUNCTIONS COMPUTE F(X) , F"(X) AND G(X) 

FUNCTION F(X) 

F=SIN(3.1415927*X) 

RETURN 

END 

FUNCTION G(X) 

G=0. 

RETURN 

END 

FUNCTION FPP(X) 

FPP=-(3.1415927)**2 * SIN(3.1415927*X) 

RETURN 

END 

N o t e s 

[1] A stability analysis shows that equation (186.4) is stable if λ  < 1. 
[2] If the k

2

 term in equation (186.6) had been neglected, then the method 
would only have been a first order method. 
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187. Lattice Gas Dynamics 

A p p l i c a b l e t o Par t ia l differential equations tha t physically arise from 
the motion of "particles." 

Y i e l d s 

A numerical approximation methodology. 

Idea 

Part ia l differential equations are usually derived from some micro-
scopic dynamical system. It may be possible to simulate the dynamical 
system directly, without first formulating differential equations. 

P r o c e d u r e 

We will illustrate the basic ideas behind this method for the case of 
a fluid. By considering the interacting particles tha t make up a fluid, and 
using continuum theory, the usual Navier-Stokes equation can be derived 
(see, for example, Hasslacher [10]). This equation describes the evolution 
of the fluid. To numerically approximate the solution to this equation, the 
equation is discretized, and the resulting algebraic equations are solved on 
a computer. 

Since a computer will be used to solve a discrete problem, it may be 
easier (and faster) to directly simulate the motion of the original, discrete 
particles. The resulting simulation can mimic all of the effects tha t fluid 
systems have. By considering only local interaction laws in the simulation, 
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[6] L. N. Trefethen, "Instability of Difference Models for Hyperbolic Initial 

Boundary Value Problems," Comm. Pure Appl. Math, 37, No. 3, May 1984, 
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187. Lattice Gas Dynamics 

A p p l i c a b l e t o Par t ia l differential equations tha t physically arise from 

the motion of "particles." 

Y i e l d s 

A numerical approximation methodology. 

Idea 

Part ia l differential equations are usually derived from some micro-

scopic dynamical system. It may be possible to simulate the dynamical 

system directly, without first formulating differential equations. 

P r o c e d u r e 

We will illustrate the basic ideas behind this method for the case of 

a fluid. By considering the interacting particles tha t make up a fluid, and 

using continuum theory, the usual Navier-Stokes equation can be derived 

(see, for example, Hasslacher [10]). This equation describes the evolution 

of the fluid. To numerically approximate the solution to this equation, the 

equation is discretized, and the resulting algebraic equations are solved on 

a computer. 

Since a computer will be used to solve a discrete problem, it may be 

easier (and faster) to directly simulate the motion of the original, discrete 

particles. The resulting simulation can mimic all of the effects tha t fluid 

systems have. By considering only local interaction laws in the simulation, 
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Figure 187.2 All possible motions and interactions on the rectilinear grid in one 

time step (up to rotations). 

we are led to use cellular au tomata to describe the dynamics of the part i-

cles. Methods have been found for constructing cellular au tomata tha t are 

microscopically reversible (and thus support a realistic thermodynamics) , 

obey exact conservation laws, and model continuum phenomena. 

E x a m p l e 

We will illustrate one possible set of interaction laws tha t can be used 

to simulate gas dynamics; this model goes by the name of HPP. We consider 

a rectilinear array in which a particle may be present in a cell (indicated 

by a dot) , or it may be absent (indicated by a blank). At each "time step," 

the grid is considered in 2 χ  2 blocks. The blocking alternates between 

even and odd time steps (see Figure 187.1). At any time step, a particle 

in a cell is considered to be moving towards the center of the 2 x 2 block 

(see Figure 187.1). Hence, a particle in the upper left corner will move to 

the lower right corner in one time step. On the next time step, since the 

blocking has changed, this particle will once again be in the upper left of 

its new block. Hence, it will continue moving on a diagonal path . 

The particles travel straight, with one exception: when exactly two 

particles coming together from opposite directions collide, they bounce 

apart in the other two directions. These interactions are particle-conserving, 

deterministic, and invertible. In Figure 187.2 we have indicated all possible 

interaction possibilities (up to rotat ions). Wi th the information presented, 

it is possible to construct a full-scale simulation of a gas. 
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N o t e s 

[1] It should be noted that, for some regimes, a lattice gas may fail to well 

approximate the Navier-Stokes equation and yet be closer to the actual 

physics than the Navier-Stokes equation itself. 

[2] It is possible to amplify the simple example above by having many particles, 

interaction effects between the different particles, exclusion rules, etc. 

[3] The example above is for a rectilinear grid. The articles by Hasslacher [10] 

describe the use of hexagonal grids. 

[4] Papatheodorou and Fokas [12] have shown that "discrete soliton" type be-

havior is possible in cellular automata. 

[5] Using special purpose hardware, simulation in lattice gas dynamics can be 

performed very quickly. See Margolus, Toffoli, and Vichiniac [11]. 
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[10] B. Hasslacher, "Background for Lattice Gas Automata," "The Simple Hexag-
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[14] T. Toffoli, "Cellular Automata as an Alternative to (Rather than an Ap-

proximation of) Differential Equations in Modeling Physics," Physica D, 

10, 1984, pages 117-127. 

[15] T. Toffoli, "Information Transport Obeying the Continuity Equation," IBM 

J. Res. & Dev., 32 , No. 1, January 1988, pages 29-36. 

[16] T. Tonegawa, M. Kaburagi, and J. Kanamori, "Ground State Analysis of the 

Lattice Gas Model with Two Kinds of Particles on the Triangular Lattice," 

J. Phys. Soc. Japan, 59, No. 5, 1990, pages 1660-1675. 

[17] S. Wolfram (ed.), Theory and Application of Cellular Automata, World 

Scientific, Singapore, 1986. 

A p p l i c a b l e t o Elliptic, hyperbolic, and parabolic part ial differential 

equations. 

Y i e l d s 

A system of part ial differential equations with one fewer independent 

variables. 

The basis of the method is substi tut ion of finite differences for the 

derivatives with respect to one independent variable, and retention of the 

derivatives with respect to the remaining variables. This approach changes 

a given partial differential equation into a system of part ial differential 

equations. 

P r o c e d u r e 

We will illustrate the general method on a second order elliptic part ial 

differential equation. Say the given equation is 

188. Method of Lines 

Idea 

(188.1) 

in a domain Ω , where {A, B, C, D, E, F, G} are all functions of χ  and y. 

Since (188.1) is assumed to be elliptic, the necessary da ta for (188.1) are 

given on the boundary of Ω . 
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188. Method of Lines 

Idea 
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2/2 

2/1 

2/0 

Figure 188.1 Subdivision of the domain to solve (188.1). 

If we choose to discretize in the y variable, then we draw lines parallel 

to the χ  axis, with a constant distance, ft, between adjacent lines. (See 

Figure 188.1.) Say the lines are specified by 

y = yk = yo + kh, k = o, l,..., N. 

Then we set y = yk in (188.1) and use finite differences for the derivatives 

with respect to y. For example, we can use 

du 

dy 

d
2

u 

dxdy 

dy
2 

y=yk 

y=Vk 

~ -[uk+i(x) - uk(x)], 

(188.2) 

y=yk 

~ ^ 2 K + i ( ^ ) - 2uk{x) + Ufc- l (x)] , 

where uk(x) is an approximation to u(x, yk). Using (188.2) in (188.1) (with 

y = 2/fc)
 w e

 obtain a first order differential equation involving the unknown 

functions {uk-\, uk, uk+i}. By taking k = 0 , 1 , . . , , TV, we obtain a system 

of first order ordinary differential equations for the Ν -1-1 unknown functions 

{UQ(X),UI(X),...,UN(X)}. 

If (188.1) is elliptic and Ω  is convex, then the equations will consti-

tu te a two point boundary value system. Any s tandard (numerical) two 

point ordinary differential equation system solver can be used to solve this 

system. 
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u = a(t) u = ß(t) 

XQ X\ X2 u = η (χ ) XN 

Figure 188.2 Subdivision of the domain to solve (188.3). 

E x a m p l e 

Suppose we have the following parabolic equation for u(x, t) 

ut = u x x, 

u(0 ,x) = η (χ ), 

u(t ,0) = a( t ) , 

u ( t , l ) =/*(*)· 

(188.3.a-d) 

If we choose to discretize in the χ  variable, then we approximate u(t, xn) by 

v n( i ) , where xn — η /Ν  := η  Ax. Then we can approximate the derivatives 

with respect to χ  in (188.3.a) by finite differences to obtain 

/ . x Vn+l(t) - 2vn(t) + Vn-l(t) 

d t
V n [ t)

 - ( Δ χ )
2 (188.4) 

for η  = 1 , 2 , . . . , Ν  — 1. The initial conditions and boundary conditions in 

(188.3) can be wri t ten as 

v n( 0 ) = η (η Δ χ ), 

v0(t) = a(t), 

vN(t) = ß{t). 

for n= 1 , 2 , . . . , Λ Γ - 1, 

(188.5) 

(See Figure 188.2.) 

If an explicit scheme (say forward Euler 's method) is chosen to numer-

ically approximate (188.4), then the simple formula 

vn(t + At) = vn(t) + 
At 

[ v n +i ( t ) - 2vn(t) + v n- i ( * ) ] (188.6) 

results. This formula can be i terated with (188.5) to find a numerical 

approximation to the solution of (188.3). 
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If, instead, we choose to discretize (188.3) in the t variable, then we 

would approximate u(tk,x) by wk(x), where tk := kAt. Approximating 

the t derivatives in (188.3) by finite differences, we obtain 

wk(x) - wh-i(x) d
2 

At
 =

 1?™^

with the corresponding initial and boundary conditions 

w0(x) = η (χ ) 

w m( 0 ) = a(m At), for m = 0 , 1 , . . . 

wm(l) = ß(m At), for m = 0 , 1 , . . . . 

Note tha t (188.7) is a constant coefficient ordinary differential equation for 
the dependent variable wk(x). Hence, the explicit solution can be obtained 
and the differential system can be replaced by an algebraic system. 

N o t e s 
[1] This method is sometimes called the generalized Kantoravich method. 
[2] Observe that the recurrence relation in (188.6) could have been obtained di

rectly by applying finite differences to both the χ  and t derivatives appearing 

in (188.3). This is not a clever use of the method of lines. 

A better approach would be to use a computer package to solve the 

initial value system in (188.4) and (188.5). This package could use an 

implicit method for the t derivative, and it could adjust the step size as 

necessary to reduce the error. 

[3] For a listing of computer software that will implement the method described 

in this section, see page 586. 
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the Solution of Partial Differential Equations," Appl. Math, and Comp., 22, 
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189. Parabolic Equations: 

Explicit Method 

A p p l i c a b l e t o Parabolic part ial differential equations. 

Y i e l d s 

An explicit numerical scheme. 

Idea 

Marching in time is the easiest way to solve a parabolic equation. For 

this explicit method, the t ime steps must be small. 

P r o c e d u r e 

Suppose we have the parabolic differential equation 

ut = L(u,x,t), 

u(t0,x) = / ( x ) , 
(189.1) 

for u(x,t), where L(u,x,t) is uniformly elliptic. The easiest way to solve 

(189.1) is by the use of "marching," which is an explicit method. 

An explicit numerical approximation is determined by taking a forward 

difference in the t variable in (189.1), and having no other terms tha t 

involve future time values. For example, we can approximate u(x, t) by 

v(x,t) where v(x,t) satisfies 

v(t + At, x) = v(t, x) + AtL(v(t, x ) , x, t), ^ l 89 2̂ 

v{t0,x) = / ( x ) , 

and L( ) is any reasonable finite difference approximation to L(v(t, x ) , x, t) 

tha t does not involve v(t + Δ £ , χ ) (if it did involve this term, then the 

method would be implicit). 
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The main drawback of this method is tha t At must often be very small 

for the method to be stable. If | Δ χ | is the smallest discretization step in 

the evaluation of L(y(t, x ) , x , £ ) then we require 

At = 0 ( | Δ χ |
2

) 

for (189.2) to be a numerically stable technique. More precise restrictions 

on At can be derived from the exact form of L(u (£ ,x ) ,x , t), and the nu-

merical approximation used for the derivatives. 

E x a m p l e 

Suppose we want to numerically approximate the solution to the dif-

fusion problem 

u% = uxx, 

t ' ° !
 =

 ° ' ( 1 8 9 A M ) 
«(*,1) = 1, 

u(0,x) = 0, 

for t > 0 with 0 < χ  < 1. From the method of Fourier series or separation 

of variables (see page 293 or 419), we find the analytic solution of (189.3) 

to be 

, x 2 ^ ( _ i ) » - -
' sin π η χ . 

π  ' η  
n = l 

This exact solution will be used to ascertain the accuracy of the numerical 

solution. 

To numerically approximate the solution to (189.3), we use a grid of 

Ν  points between 0 and 1: {xn \ xn = (η  — 1 ) Δ χ , η  = 1 , 2 , . . . , iV}, where 

Ax = l/(N — 1). We define vn(t) to be the approximation of u(t, x) at the 

n- th grid point: vn(t) ~ u(t,xn). 

The initial conditions in (189.3.d) can be represented as 

t / m(0) = 0 , m = 0 , l , 2 , . . . , i V , 

while the boundary conditions in (189.3.b,c) can be represented as 

vi(t) = 0, vN(t) = 1. 

The equation (189.3.a) can be discretized as 

vm(t + At) = vm(t) + At ( ^
+ l ( < )

- ^ 2

) +

 ^ -
l W

) , (189.4) 
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which has utilized a centered second order scheme for the u x x t e rm and a 

first order forward difference scheme for the ut term. 

The FORTRAN program in Program 189 implements the above scheme 

for Ν  = 21 and At = .001. We choose to compare the output from the 

program to the exact solution, for t = .1 and χ  = .5. The exact solution is 

t*(.l,.5) ~ .2637. 

Table 189 shows the approximate value of u ( . l , .5), for several different 

choices of Ν  and At. From these values we conclude 

(A) As Ν  increases, the accuracy of the numerical solution increases. 

(B) As At deceases, the accuracy of the numerical solution increases. 

The difference equation in (189.4) was the example used to demon-

strate the Von Neumann stability test (see page 621). It was determined 

there t ha t the method will be stable only if At/(Ax)
2

 is less t h a n one. 

Table 189: 

Approximate value of ti(.l,.5) for different Ν  and At. The exact 

value is tx(.l,.5) ~ .2637. 

Ν  Δ χ  At At/(Ax)
2 

t/(.l,.5) 

5 .25 .05 .80 .6400 

5 .25 .01 .16 .2745 

11 .10 .005 .50 .2628 

11 .10 .001 .10 .2640 

21 .05 .001 .40 .2639 

P r o g r a m 189 

REAL*8 X(1000),V(1000) 

DELTAT=.001D0 

NTIME=100 

N=21 

DELTAX=1.D0/DFL0AT(N-1) 

C INITIALIZE THE GRID 

DO 10 J=1,N 

X(J)=DFL0AT(J-1)*DELTAX 

10 V(J)=0.D0 

V(N)=1.D0 

T=0.D0 

C THIS IS THE LOOP FOR THE NUMBER OF TIME STEPS 

DO 20 J=1,NTIME 

T=T+DELTAT 

C UPDATE THE GRID 

CALL UPDATE(V,DELTAX,N,DELTAT) 

C OUTPUT THE ANSWER 

20 WRITE(6,5) T, (X(K),V(K),K=1,N) 

5 FORMAT(' THE TIME IS=',F8.4,900(/10X,2F12.5) ) 

END 

C THIS SUBROUTINE INCREMENTS THE SOLUTION BY ONE TIME STEP 

SUBROUTINE UPDATE(VI,DELTAX,Ν ,DELTAT) 

REAL*8 VK1000) ,V2(1000) 

RAT10=DELTAT/DELTAX* * 2 
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DO 100 J=2,N-1 

100 V2(J)=V1(J) + RATI0*( V1(J+1) -2.DO * V1(J) + Vl(J-l) ) 

DO 200 J=2,N-1 

200 V1(J)=V2(J) 

RETURN 

END 

N o t e s 

[1] For a listing of computer software that will implement the method described 

in this section, see page 586. 

R e f e r e n c e s 
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Media, The MacMillan Company, New York, 1986, Chapter 4 (pages 167-

193). 

[3] D . J . Evans and A. R. B. Abdullah, "A New Explicit Method for the Solution 

dll f)

2
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of ^ = 4- Int. J. Comp. Math., 14, 1983, pages 325-353. 
ät β χ  dy 

[4] S. J. Farlow, Partial Differential Equations for Scientists and Engineers, 
John Wiley k Sons, New York, 1982, Lesson 38 (pages 309-315). 

[5] C. F. Gerald and P. O. Wheatley, Applied Numerical Analysis, Addison-
Wesley Publishing Co., Reading, MA, 1984. 

[6] R. D. Smith, Numerical Solution of Partial Differential Equations: Fi-
nite Difference Methods, Third Edition, Clarendon Press, Oxford, 1985, 
Chapters 2 and 3 (pages 11-174). 

[7] Ε . H. Twizell, Computational Methods of Partial Differential Equations, 
Halstead Press, John Wiley & Sons, New York, 1984, pages 200-265. 

[8] W. H. Press, B. P. Flannery, S. Teukolsky, and W. T. Vetterling, Numerical 
Recipes, Cambridge University Press, New York, 1986, pages 635-640. 

190. Parabolic Equations: 

Implicit Method 

A p p l i c a b l e t o Parabolic part ial differential equations. 

Y i e l d s 

An implicit numerical scheme. 
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DO 100 J=2,N-1 
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END 
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Harper & Row, Publishers, New York, 1989. 

[2] J. L. Davis, Finite Difference Methods in Dynamics of Continuous 

Media, The MacMillan Company, New York, 1986, Chapter 4 (pages 167-

193). 

[3] D . J . Evans and A. R. B. Abdullah, "A New Explicit Method for the Solution 

dll f)

2

11 IL 

of ^ = 4- Int. J. Comp. Math., 14, 1983, pages 325-353. 
ät β χ  dy 

[4] S. J. Farlow, Partial Differential Equations for Scientists and Engineers, 
John Wiley k Sons, New York, 1982, Lesson 38 (pages 309-315). 

[5] C. F. Gerald and P. O. Wheatley, Applied Numerical Analysis, Addison-
Wesley Publishing Co., Reading, MA, 1984. 

[6] R. D. Smith, Numerical Solution of Partial Differential Equations: Fi-
nite Difference Methods, Third Edition, Clarendon Press, Oxford, 1985, 
Chapters 2 and 3 (pages 11-174). 

[7] Ε . H. Twizell, Computational Methods of Partial Differential Equations, 
Halstead Press, John Wiley & Sons, New York, 1984, pages 200-265. 

[8] W. H. Press, B. P. Flannery, S. Teukolsky, and W. T. Vetterling, Numerical 
Recipes, Cambridge University Press, New York, 1986, pages 635-640. 

190. Parabolic Equations: 

Implicit Method 

A p p l i c a b l e t o Parabolic part ial differential equations. 

Y i e l d s 

An implicit numerical scheme. 
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Idea 

An implicit scheme will numerically approximate the solution of a 

parabolic equation and allow large t ime steps to be taken. 

P r o c e d u r e 

Suppose we have the parabolic differential equation 

u(*o,x) = / ( x ) , 

for u(x, t), where L(u, x , t) is uniformly elliptic. We desire an implicit differ-

ence scheme tha t will numerically approximate the solution to (190.1). An 

implicit method is one in which the value of u(t + At, x) is not determined 

explicitly by the value of u(t,x), but instead uses bo th u(t + At, x) and 

u(t, x ) . 

For simplicity, we only discuss the case of a single space dimension. 

The difference scheme will utilize a uniform grid, with a spacing of Ax in 

the χ  direction and a spacing of At in the t direction. Define vn j to be an 

approximation to u(tn,Xj), where t n = η  At and Xj = jAx. 

To discretize (190.1) in t, we choose to use a forward difference in the 

t variable. Tha t is, 

/ . χ
 v

n+l,j 
Ut(tn,Xj) =

 J

-
At 

Now the χ  derivatives will be approximated, at any point, by values at t ime 

t n and at t ime £ η + ι · Tha t is, 

Ux(tn,Xj) = (1 - λ ι )
 J

— + Λ ι  Αχ  » 

uxx(tn, x3) = (1 - A a )
W l

" ^ y
 + W l 

(Ax) 

+ λ 2

 (KxJ* ' 

(190.2) 

where λ ι  and λ 2 are any real numbers between zero and one. For any such 

values, the scheme in (190.2) will be consistent. Note tha t if λ ι  = λ 2 = 1, 

there is only dependence on the values at a previous t ime step and an 

explicit method is recovered. If neither λ χ  nor λ 2 is equal to one, an 

implicit difference scheme results. 

An implicit scheme often has the advantage tha t t ime steps can be 

taken tha t are much larger t han the t ime steps tha t can be taken for an 

explicit method. More precise restrictions on At can be obtained from the 

form of L(v,x,t) and the values chosen for λ ι  and λ 2 in (190.2). 
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E x a m p l e 

Suppose we want to numerically approximate the solution to the dif-

fusion problem 

u>t — u x x, 

W M

;
 = 0

' (190.3 .a- d) 

u(0,x) = 0, 

for t > 0 with 0 < χ  < 1. From the method of Fourier series or separation 

of variables (see pages 293 or 419), we find the analytic solution to (190.3) 

is 

2 ^ (-I)
71

 2 2 
u(t, χ ) = χ  + - > - — — e

_ 7r n 1

 sin π η χ . (190.4) 
π  ^—; η  

71=1 

This exact solution will be used to determine the accuracy of the numerical 

solution. 

To numerically approximate the solution to (190.3), we use a grid of 

Ν  points between 0 and 1: {xn \ xn = (η  — 1 ) Δ χ , η  = 1 , 2 , . . . , AT}, where 

Ax = 1/(N — 1). The initial conditions in (190.3.d) can be represented as 

while the boundary conditions in (190.3.b,c) can be represented as 

(190.5) 

(190.6) 

We choose to discretize the equation with Ai = Ä2 = 1/2; this produces 
the Crank-Niçois on scheme. The annroximation to (IQO.S.a.) is therefore 

which can be manipulated into 

where we have defined ρ  = At /(Ax)
2

. 

Note tha t for a given value of n, (190.7) is an algebraic equation for 

v n + i j and two of its spatial neighbors. Hence, equation (190.7) cannot be 

used alone to determine v n+ i j - Instead, a system of equations must be 
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solved simultaneously. Utilizing (190.5) and (190.6), this system may be 

writ ten as 

/
 1 

0 

0 

V ο  

0 0 

-p 2 + 2/9 -p 

0 

0 

-p 2 + 2p 

0 

0 

- p 2 + 2p — ρ  ι  ι  ϋ η + ι , τ ν - ι  

0 0 1 / V vn+hN I 

(
 0

 \ 
PVn,l + (2 - 2p)Vn}2 + P^n,3 

/™n,2 + (2 - 2p)vnj + p V nA 

pvn,N-2 + (2 - 2p)vn,N-i + /9î;n, iv 
\ 1 

Because this system of linear equations has a banded matr ix of width three, 
the system can be solved very efficiently. 

The FORTRAN program in Program 190 implements the above scheme 
with Ν  = 21 and Δ £ = .01. Note tha t this program uses a matr ix solver, 
LS0LVE, whose source code is not shown. We choose to compare the output 
from the program to the exact solution (given in (190.4)), for t = .1 and 
χ  = .5. The exact solution is u ( . l , .5) ^ .2637. 

Table 190 shows the approximate value of u ( . l , .5), for several different 
choices of Ν  and At. From these values we conclude 

(A) As Ν  increases, the accuracy of the numerical solution increases. 

(B) As At deceases, the accuracy of the numerical solution increases. 

Table 190: 

Approximate value of tt( . l , .5) for different Ν  and Δ ί . The exact 
value is ti(.l,.5) ~ .2637. 

Ν  Δ χ  Δ ί  At/{Axf ü( .1 , .5) 
5 .25 .01 .80 .2526 
11 .10 .01 1.00 .2508 
11 .10 .005 .50 .2569 
21 .05 .01 4.00 .2507 
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P r o g r a m 190 

DIMENSION FMAT(100,100),RHS(100),V(100),X(100),NROW(200) 

N=21 

DELTAT=.01 

NTIME=5 

DELTAX=1./DFLOAT(N-l) 

RH0=DELTAT/DELTAX**2 

C INITIALIZE THE VECTOR AT T=0 

DO 10 J=1,N 

X(J)=DELTAX*(J-1) 

10 V(J)=0 

T=0. 

DO 20 JTIME=1,Ν Τ Ι Μ Ε  

T=T+DELTAT 

C SET UP THE RIGHT HAND SIDE 

RHS(1)=0. 

RHS(N)=1. 

DO 30 J=2,N-1 

30 RHS(J)= RH0*V(J-l) + (2.-2.*RH0)*V(J)+RH0*V(J+l) 

C SET UP THE MATRIX 

DO 40 J=1,N 

DO 40 K=1,N 

40 FMAT(J,K)=0. 

FMAT(1,1)=1. 

FMAT(N,N)=1. 

DO 50 J=2,N-1 

FMAT(J,J-1)=-RH0 

FMAT(J,J )=2.+2.*RH0 

50 FMAT(J,J+1)=-RH0 

C SOLVE THE MATRIX EQUATION 

CALL LSOLVE(Ν ,FMAT,V,RHS,NROW,IFSING,100) 

C PRINT OUT THE ANSWER 

20 WRITE(6,5) T, (X(K),V(K),K=1,N) 

5 FORMAT(' HERE IS THE SOLUTION AT TIME=>,F8.4,/,90(10X, 2F12.5/)) 

END 

N o t e s 

[1] Observe from Table 190 that the numerical method used resulted in rea-

sonable approximations when At/(Ax)
2

 was as large as 4. Using the Von 

Neumann test (see page 621), it can be shown that the Crank-Nicolson 

scheme is unconditionally stable for any value of At/(Ax)
2

. 

[2] Another way to interpret this solution technique is as a sequence of elliptic 

problems, with one problem being solved at every time step. For example, 

given the parabolic system 

ut = L[u] + / (x,<) , on R, t > 0, 

u = p(x, t), on dR, t > 0, (190.8.a-c) 

u = uo(x), onRUdR, t = 0, 

we can take a forward difference in t to obtain ut(t) ~ —^—AQ^ 

which allows (190.8) to be rewritten as
 U

^ ~ ^ ~
 Δ

^ ^ L[u(t)] + / ( x , t). 
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This is an elliptic equation for u(t), in which u(x, t — At) plays the role 

of a nonhomogeneous forcing term. Hence, the successive time values of 

u(x, t) may be determined by solving a sequence of elliptic problems. The 

boundary conditions for each elliptic problem come from (190.8.b), while 

the first value of u(x.,t) is given by tio(x). 

Rice and Boisvert [5] present the template of an ELLPACK program 

that will numerically approximate the solution of parabolic equations by 

sequentially solving elliptic equations. 

[3] For a listing of computer software that will implement the method described 

in this section, see page 586. 

R e f e r e n c e s 

[1] P. DuChateau and D. Zachmann, Applied Partial Differential Equations, 

Harper & Row, Publishers, New York, 1989. 

[2] J. L. Davis, Finite Difference Methods in Dynamics of Continuous 

Media, The MacMillan Company, New York, 1986, Chapter 4 (pages 167-

193). 

[3] S. J. Farlow, Partial Differential Equations for Scientists and Engineers, 

John Wiley & Sons, New York, 1982, Lesson 38 (pages 309-315). 

[4] C. F. Gerald and P. O. Wheatley, Applied Numerical Analysis, Addison-

Wesley Publishing Co., Reading, MA, 1984. 

[5] J. R. Rice and R. F. Boisvert, Solving Elliptic Problems Using ELLPACK, 

Springer-Verlag, New York, 1985, pages 111-120. 

[6] R. D. Smith, Numerical Solution of Partial Differential Equations: Fi

nite Difference Methods, Third Edition, Clarendon Press, Oxford, 1985, 

Chapters 2 and 3 (pages 11-174). 

191. Parabolic Equations: 

Monte Carlo Method 

A p p l i c a b l e t o Linear parabolic part ial differential equations. 

Y i e l d s 

A numerical approximation to the solution of a linear parabolic part ial 

differential equation at a single point. 

Idea 

Simulation of the motion of a random particle may be used to approx-

imate the solution to linear parabolic equations. 
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This is an elliptic equation for u(t), in which u(x, t — At) plays the role 

of a nonhomogeneous forcing term. Hence, the successive time values of 

u(x, t) may be determined by solving a sequence of elliptic problems. The 

boundary conditions for each elliptic problem come from (190.8.b), while 

the first value of u(x.,t) is given by tio(x). 

Rice and Boisvert [5] present the template of an ELLPACK program 

that will numerically approximate the solution of parabolic equations by 

sequentially solving elliptic equations. 

[3] For a listing of computer software that will implement the method described 

in this section, see page 586. 

R e f e r e n c e s 

[1] P. DuChateau and D. Zachmann, Applied Partial Differential Equations, 

Harper & Row, Publishers, New York, 1989. 

[2] J. L. Davis, Finite Difference Methods in Dynamics of Continuous 

Media, The MacMillan Company, New York, 1986, Chapter 4 (pages 167-

193). 

[3] S. J. Farlow, Partial Differential Equations for Scientists and Engineers, 

John Wiley & Sons, New York, 1982, Lesson 38 (pages 309-315). 

[4] C. F. Gerald and P. O. Wheatley, Applied Numerical Analysis, Addison-

Wesley Publishing Co., Reading, MA, 1984. 

[5] J. R. Rice and R. F. Boisvert, Solving Elliptic Problems Using ELLPACK, 

Springer-Verlag, New York, 1985, pages 111-120. 

[6] R. D. Smith, Numerical Solution of Partial Differential Equations: Fi-

nite Difference Methods, Third Edition, Clarendon Press, Oxford, 1985, 

Chapters 2 and 3 (pages 11-174). 

191. Parabolic Equations: 

Monte Carlo Method 

A p p l i c a b l e t o Linear parabolic part ial differential equations. 

Y i e l d s 

A numerical approximation to the solution of a linear parabolic part ial 

differential equation at a single point. 

Idea 

Simulation of the motion of a random particle may be used to approx-

imate the solution to linear parabolic equations. 
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P r o c e d u r e 

The steps for this method are straightforward. First we give an overview, 

then a more detailed presentation. 

First, approximate the elliptic par t of the given parabolic part ial differ-

ential equation by a finite difference method. Rewrite the finite difference 

formula as a recursive function for the value of the unknown at any given 

point. Then interpret this recursive formula as a set of transit ion prob-

abilities t ha t determine the motion of a random particle. By creating a 

finite difference scheme for the t ime derivative in the differential equation, 

a natural t ime scale will be associated with every step of the particle. 

Now write a computer program tha t will allow many (say K) particles 

to wander randomly around the domain of interest, based on the transit ion 

probabilities found from the difference formula. Simulate the particles one 

at a t ime, with every particle s tar t ing off at the same point (say the point 

z). If the t ime step is At, and the solution is desired at t = T , then 

the particles will be allowed to wander randomly, but for no more than 

Μ  := Τ I At steps. 

(A) If the boundary da t a are of the Dirichlet type (i.e., the value of the 

unknown is prescribed on the boundary) , then when a particle reaches 

the boundary, stop tha t particle and store away the value on the 

boundary. Begin another particle at the point z. 

(B) If the boundary da t a are not of the Dirichlet type (say Neumann 

or mixed boundary conditions) then, when the particles reach the 

boundary, they will be given a finite probability to leave the boundary 

and re-enter the domain of the problem. If the particle leaves the 

boundary, continue the iteration process. If it does not leave the 

boundary, the value at the boundary is stored away, and a new particle 

is s tar ted off at the point z. 

(C) For parabolic equations there is also the possibility tha t the particle 

will not reach the boundary in M steps. If the particle has not reached 

the boundary in M steps, then record the position tha t is finally 

reached. Using the initial conditions of the problem, there is a value 

associated with the point reached. Then begin a new particle. 

If the parabolic equation was homogeneous, a numerical approximation 

to the solution at the point ζ  will be given by an average of the Κ  values 

stored away. If the given equation was not homogeneous, then an equation 

given below is used to obtain an est imate of the solution at the point z. In 

this case, all points on the pa th tha t the particle traversed will be utilized. 
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In more detail, here is how the technique may be applied to the linear 

parabolic part ial differential equation in the domain R 

ut = L[u] + F(x, y, t), x,y e R, and t > 0, 

u = φ (χ , y, t), x, y e dR, and t > 0, (191.1.a-c) 

u(x,y,0) = g(x,y), x,y eR, 

with the operator L[-] defined by 

L[u] := Auxx + 2Buxy + Cuyy + Dux + Euy, 

where {A, B, C, D, E} are all functions of {x,y,t}. The operator L[-] may 

be discretized to yield the approximation 

L[u] ~ Aij ^ "
< +1

 J > ~
 2 t ,

y >
 + ν <

- ^ > ( A s )
2

) ) 

9 R ^ ^ i + l , j + l , n — Vj,j+l,n ~ ^ i + l , j , n + Vi,j,n \ 

+ 2 B

" \ (Ax)(Ay) J 

. /
 v

t + l , j , n ~~
 v

i,j,n \ . jp ί
 v

i,j+l,n ~
 v

i,j,n \ 

+ D i

* v )
+ E i

* V ^ ) ' 

where x{ = x0 + ί ( Δ χ ) , ^ = î/ο  ί η  = η ( Δ ί ) , ^ > = y,, tn), 

and a subscript of i,j,n means an evaluation at the point (xi,yj,tn). If 

the { Γ ν >. } and Q » j , n

 a re

 defined by 

Γ ί +ΐ ,^ + ι , η  

f̂ i,̂  — l,n 

Qij,n 

2Bij^n 

(Ax)(Ay) 

Aij^n 2Bij^n Dij^n 

(Ax)
2

 ~ (Ax)(Ay) Ax 

(Ay)
2

 (Ax)(Ay) Ay J ' 

ί ( Δ χ )
2 

( Δ χ )
2

] ' 

2AijiTl 2BijiH 2Cij^n Dijn Eij^n 

JÄxJ ~ (Ax)(Ay) JÄyY ~Äx~



1 9 1 . P a r a b o l i c E q u a t i o n s : M o n t e Car lo M e t h o d 755 

and then ut is approximated by 

( 1 9 1 . 1 . a ) may be discretized as 

u(x, y, t + At) - u(x, y, t) 

At 
, the equation in 

( Δ ί ) r j +1 

+ r, i — lj,n^i—l,j,n 

( 1 9 1 . 2 ) 

If we now choose At := 1/Qij,n, and define pij}Tl = T ^ n / Q ^ n , then 

( 1 9 1 . 2 ) can be wri t ten as 

Note tha t p 's add up to one. We interpret them as probabilities of taking a 

step in a specified direction. Specifically, if a particle is at position (i, j , n) 

at step n, then 

(A) with probability p » j + i , n the particle goes to (z, j + 1 ) at step η  + 1. 

( Β ) with probability p < j - i , n

 t ne

 particle goes to (ij - 1 ) at step n -h 1 . 

(C) with probability P i + i j > the particle goes to (i + 1 , j) at step n -h 1 . 

(D) with probability P i - i j , n the particle goes to (i - 1 , j ) a t step n -h 1 . 

(E) with probability p<+i, j+i , n the particle goes to (i + 1 , j + 1 ) a t step 

Now, suppose a particle s tar ts at the point P0 := ζ  and undergoes a 

random walk according to the above prescription. We allow this particle 

to wander until a t ime of Τ  has elapsed. If Qij,n is constant, then At is 

a constant, and we only need to count the number of steps taken. Either 

the particle will hit the boundary after, say, Ν  steps, or it will not hit the 

boundary at all in M steps. Suppose tha t the sequence of points t ha t this 

particle visits is (Po> P\, P2, · · · ? PN), and Ν  = M if the boundary has not 

been reached. Then, an unbiased est imator of the value of u(z) for the 

parabolic problem in ( 1 9 1 . 1 ) is given by 

Σ
Ν

 F(Pj) ^ ( 0(P/v, £JV)> if the particle reached the boundary, 

_o Q(Pj) \ 9(PN), if the particle did not reach the boundary. 

( 1 9 1 . 3 ) 

In practice, several random pa ths will be taken, and the average taken to 

estimate u(x, y, t). 

~^~Pi—lJynVi—lJ,n PiJ — l,nVi,j — l,n 

n + 1 . 
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_
 U

i+l,j ,
 u

i-l,j ,
 u

t , j + l , ^ t , j - l / 1 Q1 ftx 

t ü . i . n + 1 - — + — 4 — + — + — ^ — . (191.8) 

We interpret (191.8) probabilistically as follows: If a particle is at position 

(z, j) at step n, then 

E x a m p l e 

Suppose we wish to numerically approximate the solution to the dif-

fusion equation in the unit square, at a single point. Suppose we have the 

part ial differential equation 

ut = V
2

u , (191.4) 

for u(t, x, y) with the boundary conditions 

u(t, x, 0) = u(t, x, 1) = 0, 

u(*,0,y) = u ( t , l , y ) = 0 , (191.5) 

u ( 0 , x , y ) = 10. 

The exact solution to (191.4) and (191.5) is 

1 6 ~ e- [ ( 2 n - l )
2

+ ( 2 m - l )
2

] t 

u(x,2/,*) = - 2 }2 (2m - l ) (2n - 1)
 S hl

 ^
2 m

 "
 S hl

 ^ " ' 
n, m = l V A / 

(191.6) 

which was obtained by separation of variables (see page 419). Using (191.6) 

we can determine tha t u(.6, .6, .5) ~ 5.354. We choose the point ζ  = (.6, .6) 
and t ry to numerically approximate the solution to (191.4) and (191.5) at 
the point ζ  when t = .5. We will follow the steps outlined above. 

Using the s tandard second order approximation to the Laplacian, we 
find 

rj2
 u

i+l,j,n H" Uj — l , j ,n ^ i , j + l , n "H
 u
i,j — l,n ~ ^

u
i,j,n ^ 

v u - - 2 - u, 

where U i , j , n · = u(hi, hj, n(At)) and h «C 1. Using our above approximation 
to the time derivative, we find tha t (191.4) may be approximated as 

^ i , j , n + l ~" ^ i , j , n
 u

i+lj,n H~ Uj—l,j,n ~h Uj , j -H ,n — Ι , η  ~ ^ i , j ' , n 

or (defining 7 = At/h
2
) 

^ i , j , n + l = 7 [ U i + i j , n + ^ i - l , j , n + W»,j + l ,n + ^ i , j - l , n ] + Wi,j ,n( l ~
 4

7 ) -

(191.7) 
If we choose 7 = 1/4, then (191.7) simplifies to 
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(A) with probability 1/4 the particle goes to + 1) at step n + 1. 

( Β ) with probability 1/4 the particle goes to (z, j — 1) at step n + 1. 

(C) with probability 1/4 the particle goes to (i + 1, j) at s tep η  + 1. 

(D) with probability 1/4 the particle goes to (i — at s tep n + 1. 

The F O R T R A N program in Program 191 was used to simulate the 

motion of the particles according to the above probability law. A total of 

NSIM random particles were s tar ted off. The outcome of tha t program is 

given below. As more pa ths are taken, the approximation becomes bet ter 

(recall t ha t the exact value is approximately 5.35). Obtaining many decimal 

places of accuracy requires a very large number of simulations. 

Note tha t the program uses a routine called RANDOM, whose source 

code is not shown, tha t returns a random value uniformly distr ibuted on 

the interval from zero to one. 

P r o g r a m 191 

NSIM=30000 

TIME=.500 

XH0LD=.60 

YH0LD=.60 

C CHOOSE THE STEP LENGTH 

STEP=.02 

C THE STEP LENGTH DETERMINES THE TIME STEP 

DT=4.*STEP**2 

C DETERMINE THE NUMBER OF TIME STEPS ALLOWED 

M=TIME/DT 

SUM=0. 

DO 30 IWALK=1,NSIM 

C START OFF A NEW RANDOM WALK 

X=XH0LD 

Y=YH0LD 

NSTEP=0 

10 NSTEP=NSTEP+1 

C DETERMINE IF WE HAVE TAKEN M STEPS YET 

IF( NSTEP .GT. M ) GOTO 20 

C UPDATE THE POSITION 

X=X + SIGN(STEP, RANDOM(DUMMY)-.5 ) 

Y=Y + SIGN(STEP, RANDOM(DUMMY)-.5 ) 

C IF THE PARTICLE ESCAPES THE BOX, START A NEW PARTICLE OFF 

IF( X.GT.l .OR. X.LT.O ) GOTO 40 

IF( Y.GT.l .OR. Y.LT.O ) GOTO 40 

C OTHERWISE TAKE ANOTHER STEP 

GOTO 10 

C TIME HAS RUN OUT WITH THE PARTICLE STILL IN THE GRID 

20 SUM=SUM+10 

40 IF( M0D(IWALK,10000) .NE. 0 ) GOTO 30 

APPR0X=SUM/FL0AT(IWALK) 

WRITE(6,5) IWALK,APPROX 

30 APPROX=SUM/FLOAT(NSIM) 

STEP,DT,M: 0.03000 0.00360 138 

AVERAGE AFTER 10000 PARTICLES IS 

AVERAGE AFTER 20000 PARTICLES IS 

AVERAGE AFTER 30000 PARTICLES IS 

4.7320 

4.7845 

4.7847 
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WRITE(6,5) NSIM,APPROX 

5 FORMAT(' AVERAGE AFTER',16,' PARTICLES IS: ',F10.4) 

END 

N o t e s 

[1] If further accuracy is required, the options are 

(A) Increase the number of random particles. 

(B) Make the mesh discretization finer (i.e., decrease h). 

(C) Do both of the above. 

If the number of random particles is not very large, then (B) will not help 

much, and if the mesh is very coarse, then (A) will not help much. Generally, 

the variance of the answer (a measure of the "scatter") decreases as the 

number of trials to the minus one half power. 

[2] Since low numerical accuracy is obtained by this technique, a computer 

program does not need to work with extended precision arithmetic (such as 

double precision). 

[3] Sadeh and Franklin [5] contain several worked examples. 

[4] If the time at which the solution is desired is so large that all of the particles 

end up at the boundaries, then the quantity really being calculated is the 

steady state solution to the parabolic equation. 

[5] If a parabolic equation is interpreted as a Fokker-Planck equation (see 

page 254), then Itô equations can be associated with the parabolic equation. 

The Itô equations may be numerically integrated by the technique described 

on page 695. 

[6] Another type of Monte-Carlo approach for parabolic equations, using cel-

lular automata, is described in Boghosian and Levermore [2]. 
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192. Pseudo-Spectral Method 

A p p l i c a b l e t o Most commonly, hyperbolic equations with periodic 

boundary conditions. 

Y i e l d s 

A numerical scheme for calculating the spatial derivatives. 

Idea 

A numerical finite Fourier transform can be used to obtain difference 

schemes tha t are of infinite order. 

P r o c e d u r e 

On a uniformly spaced grid {xi,x2, · · · ,XN}, with xi+\ — Xi = h, a 

numerical approximation to du/dx at the point xk tha t is second order 

accurate is 
du 

dx 
X=Xk 

where uk := u(xk). A numerical approximation tha t is fourth order accu-

rate is given by 

du 

dx 
- ^ (ufc+i - ufc-i) - (y>k+2 - U k - 2 ) · 

X

=

Xk 

A numerical approximation tha t is sixth order accurate is given by 

du 

dx 

Methods of arbi trary high order may be constructed. For higher order 

methods, more points surrounding the point xk will be utilized. In the 

limit, the following centered difference scheme of infinite order accuracy is 

obtained 

du 

~dx~ _ f - ί  jh 

°° 2 f—1V
+1 

X=Xk j=l 
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°° 2 f—1V
+1 

X=Xk j=l 
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Eventually, when implementing methods of progressively higher order, 

the value of u(x) at a point Xk+j, with k + j > N, will be required. If we 

assume tha t u(x) is periodic, with period iVTi, then u(xi) = U(XÏ+N). By 

periodicity, then, the value at Xj+k is the same as the value at Xj+k-N-

Hence, methods of arbitrarily high order may be constructed, and only the 

values {ui, u2,..., u^} will be utilized. 

Alternately, given u(x) a Fourier transform may be taken to determine 

1 r°° 
u(u>) = - = / u(x)e

lu,x

dx. (192.2) 
ν  2 π  J-oo 

Once determined, ΰ (ω ) may be multiplied by —τ ω , and then an inverse 
transform taken to yield 

du _ -l_ Γ  

dx y/27T 7-c 
ί ω ΰ {ω )β -

ί ω χ
 ά ω . (192.3) 

An informally derivation of this s ta tement is simple, consider differentiating 

the formula u(x) = —^= u(uj)e~
luJX

 ά ω  with respect to x. 

Hence, the first derivative at every point in a domain may be computed 
by taking a Fourier transform, multiplying by —τ ω , and then taking an 
inverse Fourier transform. By discretizing (192.2) and (192.3), the Fourier 
transforms can be performed by "fast Fourier transforms" (FFTs) . The 
F F T is a fast numerical technique for determining the finite Fourier trans
form of a function tha t is defined on a set of equally spaced grid points. 

Hence, the derivative at every point in the grid can be computed by 
taking an F F T , multiplying by the discrete analogue of ί ω , and then taking 
an inverse F F T . This approach yields the same numerical scheme given in 
(192.1). 

Using either technique, a highly accurate finite difference scheme is 
generated. This scheme may then be used to numerically approximate the 
ux t e rm appearing in a differential equation. 
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E x a m p l e 

Suppose we have the hyperbolic equation for u(x,t) 

du _ du 

dt dx
1 

for t > 0 on 0 < χ  < 1 with the periodic boundary conditions 

u(Q,t) = u(l,t), 

and the initial conditions 

(192.4) 

(192.5) 

u(x, 0) = sin27nr. (192.6) 

The solution of this system can be determined by the method of 

characteristics (see page 368) to be u(x, t) = sin 2π (χ  — £)J. We will use 

this exact solution to compare against our numerical scheme. 

The pseudo-spectral method dictates tha t we take the derivatives of 

the periodic component (x in this example) by F F T s . We choose to use a 

one sided explicit difference scheme for the time derivative term. Of course, 

a more accurate derivative expression for the du/dt t e rm would result in a 

more accurate numerical approximation (see Gott l ieb and Türkei [7]). 
A F O R T R A N computer program is given in Program 192 tha t finds 

a numerical approximation to the solution of (192.4), (192.5), and (192.6). 
For comparison purposes, the exact solution is also printed out. Note tha t 
the program calls a subroutine (called FFT(N,V,SIGNI)), whose source code 
is not given, to perform the fast Fourier transform. This routine is input 
a complex-valued vector V and returns the same vector, where the values 
have been modified by 

1 
2ni(j - l)(fc - 1) 

SIGNI 

Ν  

The last few lines of the program output are shown below 

HERE IS THE SOLUTION AT TIME 0.001000 
x= 0 Y(APPR0X)= 0.0010 Y(EXACT)= -0.0063 
x= 0 1250 Y(APPR0X)= 0.7078 Y(EXACT)= 0.7026 
x= 0 2500 Y(APPR0X)= 1.0000 Y(EXACT)= 1.0000 
x= 0 3750 Y(APPR0X)= 0.7064 Y(EXACT)= 0.7115 
x= 0 5000 Y(APPR0X)= -0.0010 Y(EXACT)= 0.0063 
x= 0 6250 Y(APPR0X)= -0.7078 Y(EXACT)= -0.7026 
x= 0 7500 Y(APPR0X)= -1.0000 Y(EXACT)= -1.0000 
x= 0 8750 Y(APPR0X)= -0.7064 Y(EXACT)= -0.7115 
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P r o g r a m 192 

IMPLICIT DOUBLE PRECISION (Α -Η ,Ο -Ζ ) 

REAL*8 V(IOO),X(100),EXACT(100) 

C0MPLEX*16 VV(100),DERIV(100) 

N=8 

DELTAT=.0001D0 

NTIME=10 

H=l.DO/DFLOAT(N) 

PI=3.141592653589D0 

W0=l.D0/DFL0AT(N/2-l) 

C INITIALIZE THE VECTOR WITH THE INITIAL CONDITIONS 

DO 10 J=1,N 

X(J)=DFL0AT(J-1)*H 

10 V(J)=DSIN( 2.DO * PI * X(J) ) 

C HERE IS THE LOOP IN TIME 

DO 20 L00P=1,NTIME 

TIME=LOOP*DELTAT 

C TAKE THE FOURIER TRANSFORM OF THE V VECTOR 

DO 30 J=1,N 

30 VV(J)=V(J) 

CALL FFT(N,VV, l.DO) 

C MULTIPLY BY (I WO) 

NBY2=N/2 

DO 40 J=1,N 

40 DERIV(J)= VV(J) * DCMPLX(0.D0,1.D0) * DFL0AT(-NBY2-1+J) * WO 

C TAKE THE INVERSE FOURIER TRANSFORM 

CALL FFT(N,DERIV,-l.DO) 

C USE THE DERIVATIVE VALUES TO UPDATE THE MESH VALUES 

DO 50 J=1,N 

V(J)=V(J) + DELTAT*DREAL( DERIV(J) ) 

50 EXACT(J)=DSIN( 2.D0*PI*( X(J)-TIME ) ) 

20 WRITE(6,5) TIME, (X(K),V(K),EXACT(K),K=1,N) 

5 FORMAT(' HERE IS THE SOLUTION AT TIME',F9.6,/, 

1 8(2X,'X=>,F8.4,> Y(APPROX)=',F8.4,' Y(EXACT)=',F8.4/)) 

END 

N o t e s 

[1] To calculate higher order derivatives, higher powers of (ΐ ω ) should be used to 

multiply ί ι (ω ). See any book on Fourier transforms, for example, Butkov [2]. 

[2] Note that the method, when applied to partial differential equations, re

quires that the grid be uniform in every spatial variable in which a FFT is 

to be taken. 

[3] This scheme has also been applied to elliptic and parabolic equations, but the 

results are not much better than using a relatively low order finite difference 

scheme. 

[4] Comparing this method to finite differences; the pseudo-spectral method 

(the finite difference method) uses a global (local) interpolation of a func

tion, then an approximation of a derivative is made from this interpolatory 

function. 
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[5] Spectral methods are really more general than the limited exposition given 

here. Theoretically, spectral methods expand the unknown quantities in 

a series of orthogonal functions; these functions, in turn, result from the 

solution of a Sturm-Liouville problem. In practice, one considers either a 

Fourier expansion (as we have done here)-usually for periodic problems-or 

an expansion in terms of orthogonal polynomials. The Chebyshev polyno

mials are often used as they are amenable to the fast Fourier transform, 

but also admit more general boundary values than those allowed in Fourier 

series. 
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Mathematical Nomenclature 

C
p

[ a , b] The class of functions tha t are continuous and have ρ  continuous 

derivatives, on the interval [a, b], 

H(x) The Heaviside function or s tep function, it is defined by 

(χ  ( 0 if χ  < 0 , 

H(x) := / δ (χ ) dx = < 1 / 2 if χ  = 0 , 
J

- ° ° I 1 if χ  > 0 . 

Ο  We say tha t / ( x ) = 0(g(x)) as χ  —> xo if there exists a positive 

constant C and a neighborhood U of xo such tha t | / ( x ) | < C |^ (x) | 

for all χ  in U. 

ο  We say tha t f(x) = o(g(x)) as χ  —• xo if? given any μ  > 0 , there 

exists a neighborhood U of xo such tha t | / ( x ) | < μ |<7( χ )| for all χ  

in U. 

ρ  When ζ  — z(x, y), then ρ  = zx\ when y = then ρ  = yx. 

q When ζ  — z(x, y), then g = zy. 

r When ζ  = z(x, y), then r = z x x. 

s When ζ  = z(x, y), then 5 = zxy. 

t When ζ  = z(x, y), then t = zyy. 

6ij The Kronecker delta, it has the value 1 if i = j and the value 0 if 

* Φ  j -

ε  This is often used to represent a small number, assumed to be 

much less t han one in magnitude. 

6(x) The delta function, it has the properties tha t δ (χ ) = 0 for χ  φ  0 , 

but 6(x) dx = 1. 

°° 765 
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dS If S is a region or volume, then dS denotes its boundary. 

V The space-t ime gradient operator, it is defined by V = [V,d/dt]. 

V
2

 The Laplacian, it is defined by V
2

0 = d iv (g rad^) . 

φ  The vector Laplacian, it is defined by φ  ν  = grad(div ν )—curl curl v. 

• d 'Alembert operator, it is defined by • = d
2

/dt
2

 — V
2

. 

[L, H] The commutator of the two differential operators L and H. See 

page 3. 

{u,v} The Lagrange bracket of the two independent variables u and v. 

See page 7. 

[/, g] The Poisson bracket of the two functions / and g. See page 10. 

{y,x} The Schwarzian derivative of y with respect to x. See page 11. 



Differential Equation Index 

This index only refers to named differential equations tha t have ap

peared in the text . A more complete index may be found on page 773. 

A 

Abel, 149 

adjoint, 14, 128, 187, 414 

Airy, 118, 134, 151, 158, 286, 310, 

347, 560 

Anger functions, 151 

associated 

Mathieu, 155 

spherical harmonics, 252 

autonomous, 2, 17, 63, 190, 230, 

338, 451, 544 

averaged, 466 

Β  

backward Kolmogorov, 257 

backwards heat, 6, 95 

Baer, 151 

wave, 151 

Beltrami, 169 

Benjamin-Bona-Mahony, 161, 162 

Bernoulli, 149, 194, 309, 333 

Bessel, 151 

modified spherical, 151 

modified, 151 

Bessel (continued) 

spherical, 151 

wave, 151 

biharmonic, 159, 247, 249, 380, 706 

binomial, 150 

birth and death, 266 

Blasius, 158 

Bôcher, 151 
Bonhoeffer-van der Pol, 168 
boomeron, 169 
Born-Infeld, 162 
boundary layer, 146, 172, 446 
Boussinesq, 159, 161 

modified, 162, 163 
Briot and Bouquet, 150 
Brusselator, 168 
Buchstab, 214 
Buckmaster, 163 
Burgers, 45, 161, 366, 368 

non-planar, 161 
Burgers-Huxley, 163 
Busemann, 159 

7 6 7 
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C 

Differential E q u a t i o n I n d e x 

Ε  

Eckart, 152 

Eckhaus, 163 

ellipsoidal wave, 152 

elliptic, 33, 91, 95, 144, 190, 273, 

472, 502, 537, 656, 703, 711, 

716, 721, 726, 740, 752 

elliptic, functions, 150, 168 

elliptic, integral, 152 

Emden, 152 

modified, 152 

Emden-Fowler, 152, 320 

equidimensional, 4, 230, 233, 338 

equivalent, 126 

Ernst, 161 

error function, 152 

Euler, 89, 150, 170, 219, 235, 340, 

356, 678 

Euler-Darboux, 159 

Euler-Lagrange, 5, 59, 89, 555 

Euler-Poisson-Darboux, 159 

evolution, 43, 368, 393 

exact, 238, 240, 243, 278, 305, 389 

extraordinary, 261 

F 

Falkner-Skan, 158 

ferromagnet, 170 

field, 170 

first Pöschl-Teller, 156 
Fisher, 161, 163 
Fitzhugh-Nagumo, 170 
Fokker-Planck, 254, 275, 491, 494, 

497, 545, 696, 758 
forward Kolmogorov, 257 
fractional, 258 
Fuchsian, 6, 348 
full Brusselator, 168 
functional, 214 

G 
Gardner, 163 
Gegenbauer functions, 152 
general confluent, 152 
generalized 

Benjamin-Bona-Mahony, 162 

Cahn-Hilliard, 163 
Calogero-Degasperis-Fokas, 163 
canonical, 348 
Carleman, 169 
Cauchy-Riemann, 169, 307 
Caudrey-Dodd-Gibbon-Sawada-Kotera, 

163 
Chaplygin, 159 
characteristic strip, 374 
Charpit, 374 
Cherwell-Wright, 214 
chiral field, 170 
Clairaut, 144, 150, 163, 196, 197, 

219, 313, 403 
comparison, 51 
complete elliptic integral, 152 
complex Lorenz, 169 
confluent, 152 
constant coefficient, 204, 235, 360 
Coulomb wave, 151 
coupled, 4 
cylindrical KdV, 161 
cylindrical Toda molecule, 169 

D 
d'Alembert, 313 
damped sine-Gordon, 166 
Davey-Stewartson, 170 
deformed KdV, 164 
degenerate, 96 
delay, 4, 30, 209, 478 
derivative nonlinear Schröedinger, 

165 
deviating argument, 214 
Dickman, 214 
differential algebraic, 49, 540, 644 
differential-delay, 214 
differential-difference, 214 
diffusion, 95, 159, 273 
Dirac, 170 
discontinuities, 219, 449 
dispersive long-wave, 169 
double sine-Gordon, 166 
Drinferd-Sokolov-Wilson, 170 
Duffing, 21, 29, 152, 462, 482, 509 
Dym, 163 
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generalized (continued) 

Burgers-Huxley, 163 

Fisher, 163 

hypergeometric, 158 

Kadomt sev-Pet viashvili-Burgers, 

161 

KdV, 161, 164 

Weinstein, 160 

Ginzburg-Landau, 163 

Gross-Neveu model, 170 

H 

Halm, 153 

Hamilton, 27, 49, 57, 105, 168, 463 

Hamilton-Jacobi, 58, 163 

Harry Dym, 163 

heat, 6 

Heine, 153 

Heisenberg ferromagnet, 170 

Heisenberg, 150, 394 

Helmholtz, 79, 159, 302, 423, 554 

Hermite polynomials, 153 

Heun, 153 

Hill, 153 

Hirota, 164 

Hirota-Satsuma, 170 

homogeneous, 6, 122, 276, 307, 317, 

328, 330, 340, 342, 355, 357, 

419, 534, 753 

homogenized, 464 

hyperbolic, 3, 33, 95, 190, 273, 373, 

374, 386, 414, 429, 618, 703, 

730, 733, 740, 759 

hypergeometric, 153, 158, 348 

hyperspherical, 153 

ι  
Ince, 153 

infinite order, 325 

integrals of the error function, 152 

isobaric, 340 

Itô, 758 

J 
Jacobi elliptic functions, 168 
Jacobi, 150, 153 

Κ  

Kadomtsev-Petviashvili, 161 

-Burgers, 161 

modified, 164 

Kaup, 171 

KdV, 44, 45, 161, 395, 544 

Burgers (KdVB), 162 

cylindrical, 161 

deformed, 164 

generalized, 161, 164 

modified (mKdV), 45, 164 

modified modified, 164 

Schwarzian, 164 

spherical, 162 

super, 171 

transitional, 162 

variable coefficient, 162 

KdVB, 162 

Kelvin functions, 153 

Khokhlov-Zabolotskaya, 161 

Klein-Gordon, 159, 164, 368 

Klein-Gordon-Maxwell, 170 

Kolmogorov, 257 

Korteweg-de Vries, see KdV 

Kowalevski's Top, 168 

Kramers, 160 

Kummer, 103, 153 

Kupershmidt, 164 

Kuramoto-Sivashinsky, 162 

L 

Lagerstrom, 153 

Lagrange, 57, 150, 197, 311, 352 

Laguerre, 154 

Lambropoulos, 160 

Lamé, 154 
wave, 154 

Landau-Lifshitz, 171 
Lane-Emden, 154 
Langevin, 256 
Laplace, 6, 8, 33, 95, 100, 144, 158, 

160, 228, 249, 281, 282, 288, 
376, 411, 423, 703, 706, 713, 
724, 726 

Lavrent'ev-Bitsadze, 160 
Legendre, 154 

associated, 253 
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Legendre (continued) 

wave, 154 

Lewis regulator, 154 

Liénard, 65, 154 

Lin-Tsien, 162 

linear Boussinesq, 159 

linear, 204 

linearized, 28, 452 

Liouville, 154, 164, 171, 368 

logarithmic Schröedinger, 165 

Lommel functions, 154 

long-wave, 162, 169 

Lorenz, 168, 169 

Lotka-Volterra, 169 

Löwner, 150 

M 

macroscopic, 463 

magnetic pole, 154 

massive Thirring model, 172 

Mathieu, 155, 478 

associated, 155 

modified, 155 

matrix, 171, 237, 335 

Liouville, 171 

Riccati, 335, 672 

Maxwell, 171 

Maxwell-Bloch, 171 

metaparabolic, 9 

microscopic, 463 

mixed differential-difference, 214 

mixed type, 34 

mKdV, see KdV modified 

modified 

Bessel, 151 

Boussinesq, 162, 163 

Kadomtsev-Petviashvili, 164 

KdV, 45, 164 

Mathieu, 155 

modified KdV, 164 

molecule, Toda, 169 

Molenbroek, 165 

moment, 491, 494, 696 

Monge-Ampère, 165 

Morse-Rosen, 155 

Ν  
nth order, 132, 185 
Nahm, 169 
Nambu-Jona Lasinio-Vaks-Larkin 

model, 171 
Navier, 171 
Navier-Stokes, 146, 171, 737 
Neumann polynomials, 155 
neutral, 214 
non-planar Burgers, 161 
nonlinear 

Klein-Gordon, 164 
Schröedinger, 165 

ο  
oblate wave functions, 156 
Onsager, 158, 160 
Orr-Sommerfeld, 159 

ρ  
Painlevé, 155 
parabolic cylinder, 156 
parabolic, 33, 145, 190, 254, 272, 

273, 296, 386, 420, 625, 703, 
740, 744, 747, 752, 759 

Pfaffian, 289, 326, 397, 498 
phi-four, 165 
Plateau, 165 
Pohlmeyer-Lund-Regge model, 172 
Poisson, 160, 172, 249, 556, 557 
Poisson-Boltzmann, 156 
poly tropic, 156 
porous-medium, 165 
Pöschl-Teller, 156 
potential, 33, 273 
Prandtl, 172 
predator-prey, 192 
products of Airy functions, 158 
pseudoparabolic, 9 

Q 
quasilinear Klein-Gordon, 164 
quasilinear, 10, 308, 315, 368, 389, 

390, 499 
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R 

R separable, 422 

radial wave functions, 156 

Rayleigh, 156 

wave, 165 

reduced Maxwell-Bloch, 171 

regularized long-wave, 162 

relativistic wave, 248 

Renyi, 214 

retarded arguments, 214 

Riccati, 150, 250, 332, 335, 353, 

639 

Riccati-Bessel, 156 

Riemann, 156, 348 

Rössler, 31 

s 
Sawada-Kotera, 165 

scale invariant, 278, 317, 338 

scattering, 396 

Schröedinger, 45, 160 

derivative nonlinear, 165 

logarithmic, 165 

nonlinear, 165 

Schwarzian derivative, 164 

Schwarzian KdV, 164 

second Pöschl-Teller, 156 

semi-differential, 261 

separable, 276, 277, 278, 331, 340, 

341, 419, 504 

sigma-model, 172 

sine-Gordon double, 166 

sine-Gordon, 45, 166, 366, 396 

sinh-Gordon, 45, 166 

sinh-Poisson, 166 

solvable for x, 349 

solvable for y, 350 

spherical Bessel, 151 

spherical harmonics, 160, 252 

spherical KdV, 162 

spheroidal wave functions 

oblate, 156 

radial, 156 

stiff, 359, 569, 655, 690 

stochastic, 254, 491, 494, 545, 695 

strongly damped wave, 166 

Struve functions, 157 

Sturm-Liouville, 75, 83, 114, 121, 

225, 551, 650 

subsidiary, 315, 373, 398, 406, 499 

sunflower, 214 

super KdV, 171 

symmetric top, 157 

Τ  
Tchebycheff, 157 
Thirring model, 172 
Thomas, 162 
Thomas-Fermi, 157 
3 + 1-dimensional Toda, 172 
Titchmarsh, 157 
Toda molecule, 169 
Toda, 169 
total, 12, 208, 329 
transitional KdV, 162 
Tricomi, 160, 392 

u 

ultrahyperbolic, 34 
ultraspherical, 157 
unnamed, 150, 158, 159, 162, 166, 

167, 172 

V 

Van der Pol, 64, 1-57, 509 
variable coefficient KdV, 162 
variational, 88, 555 
vector Poisson, 172 
vector, 358, 360 
Veselov-Novikov, 172 
Von Karman, 171 

w 
Wadati-Konno-Ichikawa-Schimizu, 

166 
Wanger in, 157 
wave, 33, 160, 273, 429, 477, 618 

Bessel, 151 
Coulomb, 151 
ellipsoidal, 152 
functions oblate, 156 
functions radial, 156 
Rayleigh, 165 
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wave (continued) 

relativistic, 248 

strongly damped, 166 

Weber functions, 157 

Weber, 157 

Weierstrass function, 150 

Weinstein, 160 

Whittaker, 157 

Whittaker-Hill, 158 

Y 

Yang-Mills, 172 



Index 

A 

A-stability, 567, 615 

Ao-stability, 615 

A(a)-stability, 615 

absolutely stable, 614 

absolutely unstable, 614 

action, 522 

Adams-Bashforth method, 582, 

683 

Adams-Bashforth predictor, 680 

Adams-Moulton corrector, 680 

Adams-Moulton method, 582 

ADI method, 729 

adiabatic invariants, 1 

adjoint operator, 75, 286 

adjoints, 187 

affine group, 317 

aggregation of particles, 267 

algebraic, see differential algebraic 

Algol, see programs 

alternating-direction-implicit method, 

729 

alternative theorems, 14, 226, 275, 

412, 465, 527 

analytic continuation, 435, 550, 623 

analytic functions, 1 

annulus problem, 380, 413 

apparent consistency, 4, 445 

approximate methods, introduc

tion, 437 

asymptotic expansion, 1 

7 7 3 

asymptotic series, 1, 561 

asymptotically stable, 82 

attractor, 27 

Lorenz, 30 

Rössler, 31 

auto-Bäcklund transformation, 365 

averaged Lagrangians, 466, 510 

averaging method, 507 

Β  
Bäcklund transformation, 45, 365 

backward 

differences, 569, 650 

Euler method, 582, 645, 655, 688 

implicit approximation, 585 

Banach space, 54 

band gap energy, 450 

basis, 98 

beam deflection, 337 

Bendixson theorem, 66 

Bernoulli system, 32 

Bessel transform, 303 

bifurcation diagram, 20 

bifurcations, 2, 16, 637 

bilinear concomitant, 76, 187, 286 

Bloch wave theory, 450 

bound on solution, 438, 470, 484 

boundary conditions: 

Dirichlet, 2, 91, 721 

first kind, 2 

generic, 515 
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boundary conditions: (continued) 

homogeneous, 2, 279, 518 

linear, 223, 268 

mixed, 2, 706 

natural, 67, 89, 657 

Neumann, 2 

none, 96 

periodic, 83, 448, 759 

second kind, 2 

separated, 83 

third kind, 2 

unmixed, 83 

boundary element method, 703 

boundary integral equation, 704 

boundary layer method, 510, 561, 

693 

boundary layer, 2, 510 

boundary value problems, 2, 95, 

502, 626, 631, 669 

bounds on solution, 476 

box method, 626 

Bromwich integral, 211 

Brownian motion, 495 

Buchstab function, 214 

Bulirsch-Stoer method, 506, 612 

Butcher array, 677, 684 

c 
c-discriminant, 542 

canonical 

forms, 35, 70, 101, 647 

transformation, 57, 105, 208 

canonoid transformation, 107 

Cauchy 

integral formula, 411 

problem, 3, 6 

theorem, 211 

Cauchy-Kowalewski theorem, 52 

caveat, 25 

cell problem, 465 

cellular automata, 678, 738, 758 

center manifold, 193 

centered differences, 569, 636, 734, 

742, 759 

CFL condition, 620 

chain rule, 259 

changing variables in PDEs, 139 

chaos, 26, 678 

Chaplygin method, 438 

Chaplygin theorem, 438 

characteristic 

equation, 38, 204, 210, 236, 614 

polynomial, 574, 614 

strips, 374 

surfaces, 38 

characteristics, 3, 26, 36, 368, 374, 

391, 398, 414, 618, 730 

Charpit method, 399 

classic explicit approximation, 584 

classification of equations, 33 

closure of equations, 493 

CMLIB, 586 

Cole-Hopf transformation, 367 

collocation, 441, 700 

COLSYS, 442 

combinatorial methods, 45 

commutator, 3, 8, 353, 766 

compatible systems, 39, 398 

complementary solution, 352 

complete integrability, 329 

complete set of functions, 3, 76, 79, 

224, 270 

complete system, 3 

completeness theorem, 3, 79, 84, 

223, 420 

complex variables, 411 

composition, 208 

compound matrix method, 672 

computational molecule, 567 

computer libraries, 586 

computer programs, see programs 

computer-aided solution, 197 

conditionally consistent, 568 

conformai mappings, 376, 412 

connection formula, 561 

conservation 

form, 3, 44 

laws, 43, 92 

conservative 

function, 59 

schemes, 568 

systems, 27, 57 

conserved density, 44 

consistency, 3, 568, 585 

consistent balance, 445 
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consistent scheme, 574 

contact transformation, 107, 206, 

318, 403 

continuation method, 623, 635, 

669, 672 

continued fractions, 637 

contour integral, 211, 284 

contraction mapping, 56, 470, 535 

control theory, 337 

convolution theorem, 272, 301 

convolution, 301, 323 

coordinates:: 

cylindrical, 140, 274 

elliptic cylinder, 140, 302 

orthogonal, 139 

spherical, 274 

triangular, 581 

correcting to convergence, 682 

correctors, 680 

correlation discard, 494 

cosine method, 640 

cosine transform, 293 

Courant condition, 618 

Courant-Priedrichs-Lewy condi

tion, 620 

Crank-Nicolson method, 583, 585, 

749 

critical 

points, 23, 63, 70, 103, 451, 459 

system, 450 

values, 23 

crowding phenomenon, 380 

cubic Hermite approximation, 664 

cumulant discard, 494 

curl, 142, 326 

curve of parabolic degeneracy, 34 

cycle, 63 

cylindrical coordinates, 140, 274 

D 

D'Alembert operator, 766 

D'Alembert solution, 430 

Dahlquist relations, 576 

Darboux transformation, 108 

DE in a (an) 

annulus, 413 

disk (exterior), 413 

DE in a (an) (continued) 

disk, 411 

half plane, 413 

half space, 413 

sphere, 413 

deferred approach to the limit, 612 

definitions, 1, 567 

degenerate problem, 96 

degree of a differential equation, 4 

delta function, 6, 255, 268, 275, 

294, 301, 765 

dependent variable missing, 216, 

317, 632 

descent method, 382, 431 

describing function method, 462 

determined, 4 

developable solution, 401 

diagonal sequence, 504 

diagrammatic technique, 518 

Dickman function, 214 

difference schemes, 569, 618 

differencing operator, 650 

differential 

equations, see index on page 767 

forms, 4, 45, 329 

inequalities, 52 

quadrature, 708 

resultants, 43, 46, 250 

differentially algebraic, 646 

differentiation method, 218 

direct boundary element method, 

706 

Dirichlet 

boundary conditions, 2, 91 

data, 721, 753 

problem, 4, 95, 411, 704, 712 

dishonest methods, 445 

disk problem, 380, 411 

dispersion, 577 

dissipation function, 59 

dissipâtive systems, 27 

divergence of a vector (div), 142 

divergence, 27 

domain decomposition, 711 

dominant balance, 443, 559 

doubly connected domains, 380 

DuFort-Prankel method, 584 

Duhamel's principle, 386 
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dynamical systems, 57 

Ε  

effective media, 466 

eigenfunctions, 4, 75, 86, 108, 223, 

251, 270, 294, 301, 394, 423, 

551, 650 

eigenfunctions, approximation ,87 , 

650 

eigenfunctions,expansions, 76, 223 

eigenvalues, 4, 34, 70, 75, 83, 224, 

251, 270, 361, 385, 394, 423, 

448, 452, 478, 496, 551, 561, 

569, 639, 650, 693, 732 

approximation, 87, 551, 650 

problem, 394, 552 

eigenvectors, 360, 385, 452, 732 

generalized, 363 

electronic mail, 571 

electrostatics, 282, 380, 466 

elemental Riccati systems, 337 

elliptic 

cylinder coordinates, 140, 302 

functions, 320, 532, 544 

integrals, 73 

operator, 4 

ELLPACK, see programs 

embedding, 669 

enthalpy methods, 264 

envelope of solutions, 197 

equation 

classification, 33 

closure, 493 

see separate index, 767 

splitting, 446, 497 

equilibrium points, 451 

equivalence problem, 128 

equivalent linearization, 479 

ergodic systems, 31 

error estimates, 502 

error, 576 

essentially self-adjoint, 80 

Euler 

kernel, 285 

method, 582, 610, 615, 627, 631, 

632, 645, 653, 691, 742 

transformation, 144 

exact error bounds, 470 

exact methods, introduction, 147 

excerpts, 586 

existence theorems, 17, 50, 54, 94 

expansion theorem, 210 

explicit method, 569, 573, 619, 734, 

748 

exponential generating functions, 

265 

exponents 

Lyapunov, 28 

of the singularity, 11, 344 

extended group of transformations, 

208 

exterior calculus, 45, 329 

exterior problem, 413 

F 

factoring 

equations, 218, 245, 350 

operators, 43, 242, 246, 335 

factorization method, 251, 672 

fantastic theorem, 648 

fast Fourier transform, 760 

Feynman diagrams, 522 

FFT, 760 

field method, 672 

field of Liouvillian functions, 202 

Figures, 18, 20, 21, 22, 26, 29, 30, 

31, 262, 280, 282, 287, 370, 

378, 379, 414, 416, 452, 453, 

455, 457, 458, 513, 516, 519, 

522, 527, 530, 556, 568, 580, 

581, 606, 607, 615, 619, 620, 

655, 658, 661, 662, 664, 667, 

691, 712, 713, 717, 719, 724, 

731, 738, 741, 742 

finite difference formulas, 578 

finite differences, 472, 573, 613, 

626, 677, 702, 716, 733, 744, 

747, 759 

finite element method, 656, 677, 

702, 706 

finite transforms: 

cosine, 293 

Fourier cosine, 293 

Fourier, 556, 759 

Hankel, 293 
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finite transforms: (continued) 

Hilbert, 294 

sine, 293 

first integral, 5, 59, 78, 103, 192, 

240, 243, 284 

first order ODEs, see ODEs: 

first order 

five-point star, 568 

fixed point existence theorems, 54 

fixed point formula, 535 

flip bifurcations, 21 

Floquet theory, 448 

flux, 44 

fold bifurcations, 21 

forced ODEs, see ODEs: forced 

FORMAC, see programs 

formally self-adjoint, 76, 83, 127, 

128, 189, 248 

FORTRAN, see programs 

forward differences, 569, 650, 744 

fouling transformations, 107 

Fourier 

cosine transform, 293, 299 

series, 271, 412, 422, 745, 749 

sine series, 229, 701 

sine transform, 293, 299 

transform, 113, 210, 256, 299, 

303, 432, 556, 715 

Fourier-Bessel series, 294 

fractal, 28 

Fréchet derivative, 6, 17 

Fredholm 

alternative theorem, 14 

integral equation, 131, 705 

free boundary problems, 12, 146, 

222, 262, 469 

Frobenius series, 346, 625 

front fixing methods, 264 

front tracking methods, 264 

functional iteration, 518, 531, 535 

fundamental: 

matrix, 6, 359 

set, 98 

solution, 98 

system, 358 

theorem, 315 

G 

Galerkin method, 700 

GAMS, 586 

Gâteaux derivative, 6 

Gauss-Seidel method, 674, 729 

Gaussian 

closure, 494 

noise, see white noise 

random variables, 697 

general solution, 6, 12 

generalized 

coordinates, 57 

eigenvectors, 363 

functions, 303 

Green's function, 275 

Kantoravich method, 743 

generating functions, 57, 105, 210, 

265 

generation of grids, 606 

genuine consistency, 4, 445 

geometric optics approximation, 

546, 561 

Gill's method, 687 

global element method, 665 

global error, 576 

global transformation group, 314 

Godunov methods, 418 

Goursat problem, 62 

grad., 142 

gradient, 142 

graphical analysis, 451, 457 

Green's function, 6, 16, 55, 132, 

222, 229, 257, 268, 280, 281, 

294, 301, 418, 487, 518, 704 

Green's theorem, 704 

grid generation, 606 

grid, 569, 674 

groups: 

affine, 317 

global transformation, 314 

Lie, 208, 314, 404, 428 

magnification, 316 

of transformations, 208 

one parameter, 428 

transformation, 314, 404 

translation, 317 

group velocity, 577 
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H 

Hadamard's method of descent, 

383 

half plane problem, 413 

half space problem, 413 

Hamilton-Jacobi theory, 57 

Hamiltonian, 57, 105, 423 

natural, 9 

systems, 27 

Hankel function, 273 

Hankel transform, 293, 299 

harmonic balance, 460 

harmonic functions, 6 

harmonic oscillator, 461, 476, 507 

Hartley transform, 299 

Hartree-Fock approximation, 423 

Heaviside calculus, 324 

Heaviside function, 273, 522, 765 

Helmholtz conditions, 60 

Hermite approximation, 664 

Hermite transform, 302 

Heun method, 582 

Hilbert number, 65 

Hilbert transform, 294, 299, 303 

hodograph transformation, 6, 113, 

264, 310, 318, 390 

homogeneous boundary conditions, 

see boundary conditions: 

homogeneous 

homogeneous solution, 10, 352 

homogenization, 463 

homotopy method, 637 

honest methods, 445 

Hopf bifurcation, 23 

Hopf-Cole transformation, 367 

HPP model, 738 

Huygen's principle, 383 

hybrid computer methods, 666 

hydrodynamics, 146, 264, 282, 370, 

380, 446, 466, 737 

hypercomplex algebra, 248 

ι  
ill-posed problems, 6, 94, 569 

images, method of, 279 

imbedding, see embedding 

implicit function theorem, 540 

implicit method, 569, 573, 655, 

687, 747 

improperly posed problem, 94 

IMSL, 586 

inconsistent balance, 445 

independent variable missing, 317 

index of a problem, 647 

index of a vector field, 459 

indicial equation, 343 

infinite order difference scheme, 

759 

infinite series, 223 

infinitesimal 

operator, 307, 319, 340 

transformations, 315 

initial conditions, sensitive depen

dence, 28 

initial value problems, 7, 78, 95, 

414, 548, 653, 684 

inner product, 75 

inner solution, 512 

integrability conditions, 329 

integrability, 45, 326 

integrable combinations, 283 

integral 

equation, 55, 130, 394, 435, 518, 

535, 703, 705 

method, 467 

representation, 268, 284, 290, 

294, 295, 301, 356, 357, 386, 

411, 429, 703 

surfaces, 329 

transform, 210, 290, 295 

integrating factors, 15, 80, 188, 

194, 207, 217, 247, 278, 305, 

311, 326, 327, 331, 439, 501, 

681, 685 

interchange variables, 111, 308, 391 

interior transition layer, 515 

intermediate expansion, 513 

intermediate integral, 498 

intermittent, 30 

Internet, 571 

interpolatory polynomial, 680 

interval analysis, 55, 470, 625 

interval of absolute stability, 614 

interval of relative stability, 614 
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Kronecker canonical form, 647 

Kronecker delta, 255, 266, 765 

Krylov-Bogoliubov-Mitropolski 

method, 510 

Karman-Pohlausen method, 469 

L 

L2 function, 7 

ladder method, 253 

ladder of solutions, 252 

Lagrange bracket, 3, 7, 766 

Lagrange multipliers, 661 

Lagrange-Charpit method, 376 

Lagrangian, 57, 522 

averaged, 466, 510 

derivative, 7 

Laguerre transform, 302 

Langer connection formula, 561 

Laplace 

kernel, 285 

method, 284 

transform, 210, 259, 267, 300, 

324, 387, 422, 469, 539 

Laplacian, 7, 142, 568, 766 

lattice gas, 678, 737 

Lax pair, 394 

Lax-Priedrichs method, 583, 584 

Lax-Wendroff method, 583 

leapfrog method, 582 

least squares method, 473, 700 

Legendre 

transform, 293 

transformation, 208, 318, 400 

Leibniz's rule, 7 

Levinson-Smith theorem, 66 

Lewis regulator, 66 

Liapunov, see Lyapunov 

Lie: 

algebra, 8, 320, 353, 423 

bracket, 8, 353 

derivative, 27 

groups, 92, 192, 208, 216, 232, 

235, 253, 278, 307, 314, 340, 

404, 428 

theorem, 315 

Lie-Bäcklund symmetries, 45 

Lie-series representation, 550 

introduction to 

approximate methods, 437 

exact methods, 147 

numerical methods, 565 

invariant 

adiabatic, 1 

embedding, 337, 637, 669 

manifold, 194 

of a DE, 45, 126, 128, 314, 404, 

576 

surface condition, 405 

inverse problems, 61 

inverse scattering, 393 

inverse transformation, 112 

involution, 59 

involutory transformation, 111, 403 

irregular domain, 711 

irregular singular point, 11, 346, 

558 

isoclines, 457 

isolated cycles, 65 

iterative solution, 500, 535, 711 

Itô calculus, 495 

Itô lemma, 495 

j 
Jacobi 

identity, 8 

iteration scheme, 729 

method, 42, 397, 674 

Jacobian, 17, 39, 71, 373, 391, 401, 

478, 636 

Jeffreys method, 561 

Jordan block, 647 

Joukowski transformation, 380 

κ  
/^-transform, 300 
Kalman-Bucy filter, 337 
Kantoravich method, 743 
kernel, 285, 290, 295 
Kirchoff solution, 430 
Kirchoff transformation, 144 
Kontorovich-Lebedev transform, 

300 
Krasnoselskii's theorem, 56 
Krasovskii's theorem, 478 
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Liebmann method, 729 

Lighthill method, 534 

limit cycle, 8, 63, 452 

limit-circle case, 84 

limit-point case, 84 

Lindstedt method, 534 

linear DEs, see ODEs: linear 

and see PDE: linear 

linear differentiable operators, 74 

linearizable operator, 483 

linearization, 452, 479 

linearizing an equation, 8 

linearly independent 

functions, 13, 98 

solutions, 14, 249, 352 

Liouville 

formula, 98 

normal form, 115, 121, 123 

theorem, 27, 59, 432 

transformation, 114, 117, 134 

Liouville-Green transformation, 

116, 134 

Liouvillian functions, 202 

Liouvillian solution, 202 

Lipschitz condition, 8 

Lipschitz constant, 8, 439 

LISP, see programs 

Liénard theorem, 65 

local error, 576 

loci, singular, 541 

look up technique, 148, 181 

Lorenz attractor, 30 

lower bounds, 484 

lowering operators, 253 

Lyapunov exponent, 28 

Lyapunov function, 476 

M 

MacCormack method, 584 

MACSYMA, see programs 

magnification group, 316 

manifold, 193 

mapping, conformai, 376 

marching method, 653, 744 

Markov process, 257 

matched asymptotic expansions, 

456, 517, 527 

matching principle, 513 

matching, 562 

matrix 

exponential, 98, 362, 641 

nilpotent, 647 

pencil, 647 

maximum principle, 8, 484 

Mayer method, 329 

Mayer system, 41 

McGarvey iteration, 488 

mean field theory, 466 

mean value theorem, 8 

Mehler-Fock transform, 300 

Meijer transform, 301 

Mellin transform, 300 

Mellin transformation, 288 

Mellin-Barnes integral representa

tion, 289 

mesh generation, 606 

mesh, 569 

method (method of) 

averaged Lagrangians, 466 

averaging, 507 

characteristics, 33, 256, 267, 315, 

368, 391, 499, 730, 761 

collocation, 441, 700 

continuation, 635, 669, 672 

descent, 382, 431 

dishonest, 445 

elimination, 120 

explicit, 573 

homotopy, 637 

honest, 445 

images, 279 

implicit, 573 

isoclines, 457 

least squares, 473, 700 

lines, 709, 740 

most useful, 317, 409 

multigrid, 607, 673 

multiple scales, 463, 524 

one parameter groups, 428 

parallel, 677 

P{EC)
m

, 682 

renormalization group, 466 

reversion, 538 

shooting, 631 

steps, 210 
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method (method of) (continued) 

sweeps, 672 

undetermined coefficients, 354 

weighted residuals, 656, 699 

metric coefficients, 139 

microcomputer packages, 201 

midpoint rule, 582 

Milne method, 582, 682 

MIMD machine, 677 

mixed boundary conditions, 2 

mixing condition, 546 

mixing systems, 31 

modified 

Green's function, 275 

midpoint rule, 506, 612 

Prüfer transformation, 122 

Monge method, 497 

Monte Carlo method, 678, 721, 752 

most useful methods, 317, 409 

moving boundary problems, 262 

moving critical points, 103 

multidimensional 

Fourier transform, 303 

Hilbert transform, 303 

multigrid method, 607, 673 

multiple scales, 463, 531 

multiple shooting, 502, 634 

multistep methods, 567, 573 

Ν  
natural boundary conditions, 67, 

89, 657 
natural Hamiltonian, 9 
near-identity transformation, 9, 70 
nearly constant functions, 508 
Neumann 

boundary conditions, 2 
problem, 9, 95, 412, 704 

neutrally stable, 19 
Newton method, 500, 631, 632, 

635, 655, 720 
Niemark bifurcations, 21 
nilpotent matrix, 647 
NMS, 586 
node, 452 
noise, see white noise 
nomenclature, 765 

non-developable solution, 401 
non-isolated cycles, 65 
non-uniform grid, 569 
noncritical system, 450 
nonlinear, 9 

ODEs, see ODEs: nonlinear 
PDEs, see PDEs: nonlinear 
superposition, 353 

nonlinearization, 479 
nonoscillatory, 84 
norm, 75 
normal form, 9, 70, 115, 121, 123, 

126 
v—transform, 302 
null space, 637 
numerical domain of dependence, 

619 
numerical methods, introduction, 

565 

Ο  
ο , 452, 765 
Ο , 512, 765 
Obrechkoff methods, 576 
ODEs: 

exact, 238 
first order, 197, 206, 238, 276, 

305, 341, 349, 350, 438, 457, 
488, 653, 684 

forced, 356, 538, 545 
fourth order, 77, 79, 135 
homogeneous, 120, 342 
infinite order, 325 
IVP, 669 
linear, 8, 97, 108, 118, 120, 122, 

124, 128, 130, 187, 223, 243, 
268, 284, 290, 295, 305, 330, 
341, 342, 352, 356, 360, 448, 
484, 558, 637 

nth order, 132, 185, 347 
nonlinear, 8, 16, 26, 218, 240, 

349, 460, 479, 538, 540 
of a certain form, 46, 148, 181, 

190, 194, 196, 204, 216, 230, 
235, 254, 276, 311, 332, 335, 
338, 438 

polynomial, 46, 104 
quadratic, 335 
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ODEs: (continued) 

second order, 83, 108, 114, 117, 

120, 122, 124, 128, 130, 181, 

197, 206, 240, 244, 342, 637, 

640 

system, 4, 39, 57, 97, 118, 265, 

283, 360, 448, 451, 491, 494, 

653, 699, 708 

third order, 78, 100, 135, 242 

with discontinuities, 219, 449 

with periodic coefficients, 448 

with periodic solution, 460, 479, 

507 

one parameter group, 314 

one-sided difference scheme, 568 

one-sided Fourier transforms, 303 

operational calculus, 322 

operators raising and lowering, 253 

orbital mechanics, 678 

order of a difference scheme, 574, 

759 

order of a differential equation, 10 

ordinary generating functions, 265 

ordinary point, 11, 343 

orthogonal 

coordinates, 139 

family, 75 

functions, 75 

vectors, 10 

orthogonality, 224 

oscillatory, 84 

outer solution, 511 

ρ  
p-discriminant, 541 

Padé approximant, 10, 503, 550, 
612, 642 

Painlevl9 e 
property, 104 
transcendents, 103, 155 

parabolic degeneracy, 34 
parallel computation, 676, 737 
parallel Runge-Kutta method, 677 
parameter, small, 507, 510, 518, 

524, 528, 532, 558 
parametric solution, 311, 646 
Parseval solution, 430 

particle method, 737 
particular solution, 10, 352, 357 
PASCAL, see programs 
path integral, 522 
PDEs: 

exact, 389 
first order, 397 
in two variables, 79, 308, 374, 

376, 400, 414, 497, 543, 708 
linear, 99, 187, 223, 268, 290, 

295, 352, 384, 386, 419, 432, 
484, 558, 752 

nonlinear, 111, 136, 365, 497, 708 
of a certain form, 148, 414 
second order, 711 
system, 4, 39, 136, 265, 373, 384, 

740 
P(EC)

m
 method, 682 

Pedal transformation, 208 
periodic coefficients, 448 
periodic solutions, 460, 479, 507 
permutable operators, 250 
perturbation methods, 507, 510, 

518, 524, 528, 532 
Pfaffian form, 329 
phase diagrams, 24 
phase plane analysis, 63, 451 
phase space, 476 
Phaser, 456 
physical optics approximation, 561 
Picard iteration, 56, 471, 490, 523, 

535, 720 
pitchfork bifurcations, 21 
PLOD, 586 
POINCARE, 24 
Poincaré-Bendixson theorem, 31 
Poincaré-Lighthill method, 534 
point 

bifurcation, 16 
critical, 23 
regular, 23 
singular, 558 
transition, 561 
turning, 515, 561 

Poisson 
bracket, 10, 42, 59, 398, 766 
commute, 59 
formula, 411 



I n d e x 7 8 3 

Poisson (continued) 

integral, 282 

solution, 430 

theorem, 59 

PORT, 586 

positive definite operator, 84 

power series, 261 

predictor-corrector method, 679 

principal values, 294, 303 

probability density, 491 

programs: 

Algol, 472 

ELLPACK, 537, 720, 752 

FORMAC, 43, 45, 202, 410 

FORTRAN, 442, 472, 550, 625, 

629, 630, 633, 643, 648, 654, 

681, 685, 692, 697, 710, 725, 

728, 736, 746, 751, 757, 762 

LISP, 21 

MACSYMA, 73, 104, 142, 193, 

198, 202, 232, 347, 410, 517, 

527, 534 

MAPLE, 199 

Mathematica, 201 

muMATH, 200 

other, 381 

PASCAL, 472 

REDUCE, 45, 143, 192, 200, 410 

SMP, 199 

prolongation, 315 

propagator matrix, 448 

propagator, 522 

Prüfer transformation, 120, 122 

pseudo Runge-Kutta method, 689 

pseudo-spectral method, 759 

Q 
quasi-linearization, 502 

quasiperiodic, 30 

R 

radiation condition, 11, 273 

raising operators, 253 

rational function approximations, 

506, 641 

Rayleigh quotient, 79, 553, 554 

Rayleigh-Ritz method, 475, 554 

reciprocity principle, 274, 418 

recurrence relation, 488 

REDUCE, see programs 

reduction of number of variables, 

424 

reduction of order, 187, 216, 230, 

233, 315, 330 

reformulation of a PDE, 33, 111, 

136, 144, 148, 290, 295, 377, 

390, 543, 703 

reformulation of an ODE, 46, 57, 

70, 101, 105, 108, 114, 117, 

118, 120, 122, 124, 128, 130, 

133, 148, 190, 194, 206, 216, 

233, 235, 284, 290, 295, 308, 

322, 332, 338, 360 

regular 

perturbation method, 511, 525, 

528, 532, 538 

points, 23 

singular point, 11, 343, 625 

Sturm-Liouville problem, 84 

values, 23 

relatively stable, 614 

relatively unstable, 614 

relaxation method, 718, 726 

removing first derivative terms, 145 

renormalization group method, 466 

Renyi function, 214 

residue method, 412 

resonance, 534 

resultants, 46, 312, 372, 542 

retarded potential, 388 

reversion method, 538 

Reynold's rules, 466 

Riccati system, 337 

Riccati transformation, 318, 335, 

672 

Richardson extrapolation, 506, 609 

Richardson method, 584 

Riehtmeyer method, 584 

Riemann 

function, 415 

mapping theorem, 380 

method, 414 

Ρ  function, 11 
Riemann-Green function, 418 
Robbins problem, 11 
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Runge-Kutta 

methods, 682, 684, 697 

parallel, 677 

Runge-Kutta-Fehlberg method, 

687 

Rössler attractor, 31 

Rössler funnel, 31 

s 
saddle point, 452 

scattering data, 395 

Schrauder fixed point theorem, 54 

Schwartz-Christoffel transforma

tion, 377 

Schwarz method, 715 

Schwarzian derivative, 11, 128, 133, 

766 

Scientific Desk, 586 

SCRUNCH, 586 

secular terms, 531, 533 

self-adjoint, 76, 83, 90, 100, 136, 

418 

essentially, 80 

problems, 74, 225, 274 

semi-explicit form, 646 

semi-infinite domain, 431 

sensitive dependence on initial 

conditions, 28 

separation of variables, 58, 83, 85, 

229, 387, 412, 419, 728, 745, 

749, 756 

series solution, 25, 342, 550 

Shanks transformation, 610 

Shannon-Pour-El-Lipshitz-Rubel 

theorem, 646 

shock, 11, 370, 511, 515, 733 

shooting method, 502, 631 

SIMD machines, 678 

similarity 

method, 424 

solutions, 262, 318, 543 

transformation, 208 

variables, 404, 425 

Simpson's rule, 582, 687 

simultaneous iteration scheme, 729 

sine transform, 293 

singular 

loci, 541 

perturbation problem, 257 

perturbation technique, 511, 524, 

559 

points, 11, 343, 451, 558 

solution, 12, 196, 534, 540 

Sturm-Liouville problem, 84 

slot notation, 141 

slowly varying functions, 508 

small parameter, see parameter, 

small 

software libraries, 570 

software testing, 570 

solid mechanics, 466 

solid state physics, 450 

solitary wave solutions, 543 

solitons, 543, 739 

solution matrix, 98 

solution, developable, 401 

solvable subalgebra, 319 

Sommerfeld radiation condition, 11 

SOR method, 729 

spectral method, 462, 702 

sphere problem, 413 

spherical coordinates, 274 

spiral point, 452 

spreadsheets, 571 

square integrable, 296 

stability, 12, 19, 80, 94, 448, 453, 

585, 613, 621, 745 

analysis, 19, 70, 736 

diagram, 615 

in a region, 614 

of a difference scheme, 614, 618, 

621, 655, 751 

polynomial, 614 

stable, 82 

starting values, 682 

statistical linearization, 483 

Stefan problems, 12, 264 

step function, 765 

step size, 573, 610, 653 

stiffly stable method, 617 

stochastic limit theorems, 545 

strained coordinates, 532 

strange attractor, 28 

stream function, 146 
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strongly stable, 82 

structure constants, 319 

Sturm-Liouville 

operator, 83 

problem, 294, 301, 763 

theory, 82 

subalgebra, 319 

subcritical bifurcations, 21 

subdomain method, 700 

successive iteration scheme, 729 

successive over-relaxation method, 

729 

supercritical bifurcations, 21 

superposition, 12, 205, 268, 279, 

280, 352, 419, 449, 519, 669, 

699 

supersonic flow, 264 

switchback terms, 531 

symmetries of a DE, 314, 404 

systems 

Bernoulli, 32 

C, 32 

conservative, 27 

dissipative, 27 

elemental Riccati, 337 

ergodic, 31 

Hamiltonian, 27 

K, 31 

mixing, 31 

of DEs, see ODEs: systems 

and see PDEs: systems 

Riccati, 337 

systolic arrays, 678 

Τ  

Tables, 191, 231, 234, 236, 273, 

292, 299, 310, 515, 611, 697, 

746, 750 

tangent field, 457 

taxonomy, 85, 586 

Taylor series, 10, 214, 267, 346, 

472, 502, 503, 536, 548, 573, 

623, 735 

tensor, 45, 418 

testing software, 570 

theorems: 

alternative, 14, 226, 275, 412, 

465, 527 

Bendixson, 66 

Cauchy, 211 

Cauchy-Kowalewski, 52 

Chaplygin, 438 

completeness, 3, 79, 84, 223, 420 

convolution, 272, 301 

existence, 17, 54 

expansion, 210 

Fredholm alternative, 14 

fundamental, 315 

Green's, 704 

implicit function, 540 

Krasnoselskii, 56 

Krasovskii, 478 

Levinson-Smith, 66 

Lie, 315 

Liouville, 27, 59, 432 

Liénard, 65 
mean value, 8 
Noether, 92 
Poincaré-Bendixson, 31 
Poisson, 59 
Riemann mapping, 380 
Schrauder, 54 
Shannon-Pour-El-Lipshitz-Rubel, 

646 
stochastic limit, 545 
Tihonov fixed-point, 56 

thermodynamics, 403 
Tihonov fixed-point theorem, 56 
topological equivalence, 73 
topological group, 208, 320 
total derivative operator, 315 
transcritical bifurcations, 21 
transformations: 

auto-Bäcklund, 365 
Bäcklund, 45, 365 
canonical, 57, 105, 208 
canonoid, 107 
Cole-Hopf, 367 
contact, 107, 206, 318, 403 
Darboux, 108 
Euler, 144 
fouling, 107 
group, 314, 404 
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transformations: (continued) 

hodograph, 6, 113, 264, 310, 318, 

390 

infinitesimal, 315 

integral equation, 130 

inverse, 112 

involutory, 111, 403 

Joukowski, 380 

Kirchoff, 144 

Legendre, 208, 318, 400 

Liouville, 114, 117, 134 

Liouville-Green, 116, 134 

Mellin, 288 

miscellaneous, 133 

near-identity, 9, 70 

Pedal, 208 

Prüfer, 120, 122 

Riccati, 318, 335, 672 

Schwartz-Christoffel, 377 

Shanks, 610 

similarity, 208 

Von Mises, 146 

transforms: 

Bessel, 303 

fast Fourier, 760 

finite Fourier sine, 293 

finite Fourier, 556, 759 

finite Hilbert, 294 

Fourier cosine, 299 

Fourier sine, 299 

Fourier, 210, 256, 299, 303, 432, 

715 

Hankel, 293, 299 

Hartley, 299 

Hermite, 302 

Hilbert, 299, 303 

integral, 210, 290, 295 

K, 300 

Kontorovich-Lebedev, 300 

Laguerre, 302 

Laplace, 210, 259, 267, 300, 324, 

387, 422, 469, 539 

Legendre, 293 

Mehler-Fock, 300 

Meijer, 301 

Mellin, 300 

ι /, 302 
one-sided, 303 

transforms: (continued) 
Weierstrass, 300 

transition point, 561 
translation group, 317 
trapezoidal rule, 582, 688 
triangular coordinates, 581 
trivial solution, 12 
Troesch problem, 634 
truncated Fourier series, 460 
truncation error, 574 
turning points, 12, 515, 561 
two timing, 463, 527 

U 
unconditionally consistent, 568 
undetermined coefficients, 204, 467 
uniform convergence, 229 
uniform grid, 569 
uniformly asymptotically stable, 82 
uniformly elliptic, 4, 388, 744, 748 
uniformly stable, 82 
uniqueness, 50, 94 
unstable solution, 17, 448 
unstable, 82 
upper and lower bounds, 438, 484 

ν  
variable weighted implicit approxi

mation, 585 
variation of parameters, 271, 356, 

363 
variational 

derivative, 5 
equations, 555 
method, 551 
principle, 68, 88, 423, 473, 554, 

656 
vector fields, 353 
vector Laplacian, 7, 143, 766 
vector system, 358, 360 
Villat's integration formula, 413 
VLSI techniques, 678 
Volterra integral equation, 130 
Von Mises transformation, 146 
Von Neumann stability test, 621, 

746, 751 
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W 

wave-like solutions, 543 

weak solution, 12, 467 

Weber formula, 300 

Weierstrass transform, 300 

weighted residual method, 442, 

475, 558, 656, 699 

Weiler's canonical form, 103 

well-posed problems, 6, 13, 94 

Wendroff method, 583 

white noise, 254, 492, 495, 545, 695 

Wiener processes, 258 

Wiener-Hopf technique, 432 

Wirtinger derivatives, 249 

WKB method, 134, 346, 558 

Wronskian, 13, 97, 249, 271, 275, 

357, 449 


