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TREATY

OF ENERGY. INTRODUCTION.


	Thermodynamics or Energetics.



Theoretical physics represents by means of quantities the properties of the bodies it studies. The methods of measurement allow to make correspond, with a more or less great approximation, each intensity of a property to a particular determination of the quantity which represents this property. By the methods of measurement, each physical phenomenon corresponds to a group of numbers, each physical law to one or more algebraic relations between various quantities, each set of concrete bodies to a system of quantities, to an abstract and mathematical scheme.

Theoretical Physics has, unceasingly, to solve the following problem From given physical laws draw new physical laws; either it proposes to show that these last laws, already known directly, are only consequences of the first ones or it proposes to announce laws that the experimenter has not yet noticed.

To deal with this problem, Theoretical Physics combines the given laws, which are particular to certain physical properties and to certain bodies, with rules derived from general principles, which it assumes to be true for all physical properties and for all bodies

For example, she wants to show that. if we know the law of saturated vapor pressure of a liquid, the laws of eompressibility



The law according to which the heat of vaporization varies can be determined; for this purpose, it combines the first times according to the rules of the principle of the conservation of energy and of Carnnt's principle, principles which it supposes to be applicable to all bodies and to all their properties. G is the system of these general principles that we propose to expose.

For a long time, physicists assumed that all properties of bodies were reduced, in the last analysis, to combinations of figures and local motions; the general principles to which all physical properties must be subjected were, then, none other than the principles that govern local motion, principles that compose Rational Mechanics. Rational Mechanics was the code of the general principles of Physics.

The reduction of all physical properties to combinations of figures and motions, or, according to the name in use, the mechanical explanation of the universe, seems to be condemned today. It is not condemned by a priori, metaphysical or mathematical reasons. It is condemned because it has been until now only a project, only a dream, and not a reality. In spite of immense efforts, physicists have never succeeded in conceiving an arrangement of geometrical figures and local motions which, treated according to the rules of rational mechanics, gives a satisfactory representation of a somewhat extended set of physical laws.

Is the attempt to reduce all of Physics to rational Mechanics, an attempt that has always been in vain in the past, destined to succeed one day? Only a prophet could answer this question affirmatively or negatively. Without prejudging the meaning of this answer, it seems wiser to give up, at least temporarily, these efforts, so far fruitless, towards the mechanical explanation of the Universe.

We shall therefore attempt to formulate the body of general laws to which all physical properties must obey, without assuming a priori that these properties are all reducible to the geometrical figure and to local motion. The body of these general laws will then no longer be reduced to rational mechanics.



In truth, the geometrical figure and the local motion remain physical properties; they are even those properties which are the most immediately accessible to us. Our body of general laws will have to apply these properties and, applied to these properties, it will have to give us back the rules which dominate the local motion, the rules of rational Mechanics. Rational Mechanics must therefore result from the body of general laws that we propose to constitute; it must be what we obtain when we apply these general laws to particular systems where we only take into account the figure of the bodies and their local motion.

The code of the general laws of Physics is known today under two names : Thermodynamics and Energetics.

The name Thermodynamics is closely connected with the history of this science; its two most essential principles, Carnot's principle and the principle of the conservation of energy, were discovered while studying the motive power of fire engines. This name is further justified by the fact that the two notions of work and quantity of heat are constantly at play in the reasoning by which this doctrine is developed. The name Energetics is due to Hankine (' ); the idea of energy being the first one that this doctrine has to define, the one to which most of the other notions it uses are connected, this name seems no less well chosen than the name Thermodynamics.

Without deciding whether one of these two terms should be considered preferable to the other, we will use them both as equivalent.


	On the logical meaning of the principles of Energetics. We must not forget the logical character of the principles that we are going to formulate and group ( i.



(') J. Macu>oiin Kankink, Outlines of tlw Science of Energclics {Glasgow Philosophical Society l'roceedings. Vol. III, n" (5, a May iS5f>). - J. Macquokx RANKtNF, Misceltaneous scientific Pa/xtrs, p. -o.).

(J) We limit ourselves here to give a very concise summary of what we



have, ueveioppe in 1 following work: La thĂ©orie physique, soit objet et sa structure, Paris, 1906. This work can be seen as a kind of logical introduction to the present treatise.

These principles are pure postulates; we can state them as we please, provided that the statement of none of them is contradictory in itself and that the statements of the various principles do not contradict each other.

The character of a good physical theory is the following: by applying this set of principles to formulas which represent exact experimental laws, one derives new formulas which, in their turn, represent other exact experimental laws.

The experimental control of all the principles of Energetics is thus the only criterion of truth of this doctrine. This control can, moreover, only be carried out on the whole of the principles of Energetics taken in its integrity or, at least, on very extended parts of this whole. It would be impossible to submit to the control of the experiment one of these principles, taken in isolation, or even a small number of these principles. Any experiment, however simple, invokes, in its interpretation, very numerous and very diverse principles. We will have many occasions to recognize this in the course of this presentation. The experimental control can therefore only concern the set of ultimate consequences of the theory; it assesses whether or not this set of consequences gives a satisfactory representation of the experimental data; but as long as the theory has not produced the set of its final consequences, one should not call upon this control, because this call would be premature; In the course of its exposition, a physical theory is free to choose the way it likes, provided it avoids any logical contradiction; in particular, it does not have to take into account the facts of experience; it is only when it has reached the end of its development that its ultimate consequences can and must be compared with the experimental laws.

To say that the principles of Energetics are pure postulates



and that no logical constraint limits our right to choose them arbitrarily, this does not mean that we will formulate them at random. On the contrary, we shall be very closely guided in the choice of these statements, knowing full well that it would be enough to modify anything in them for the experimental verification of the consequences to become faulty in some place. This guidance is assured by the knowledge we have of the past of Science. Principles have been formulated which have been found to be in gross contradiction with experience; other principles have been substituted for them, which have obtained a partial, but still perfect, confirmation; they have then been modified, corrected, ensuring by each change a more exact agreement of their corollaries with the facts. We are assured that the garment whose forms we cut will fit exactly the body it is to cover because the pattern has been tried on and retouched many times.

Each of the principles that we will state does not therefore include any logical demonstration; but it would include a historical justification; we could, before stating it, enumerate the principles of different form that had been tried before it, that could not be modelled exactly on reality, that had to be rejected or retouched until the whole system of Energetics was adapted in a satisfactory way to the whole of the physical laws. The fear of an excessive length will forbid us to expose this historical justification.



CHAPTER I.

PRELIMINARY DEFINITIONS.

I. Of absolute time and absolute motion.

We will assume Geometry and Kinematics; we will borrow from these sciences all the information we need.

Kinematics uses the two words time and motion; we will also use these two words when we deal with Energetics; they will not have exactly the same value in these two doctrines; it is important to specify here in which sense we will use them.

Although the consciousness provides us with a certain notion of equal times, this notion is not precise enough to serve for the construction of a science; we have to refer to the measure of time given by a certain clock, either natural or artificial; the choice of this clock is limited by only one condition it is that the times that it marks as equal appear also equal, or more or less, to our conscience but the information provided by our conscience and by the conscience of our fellow men are, in this respect, so little precise and so little concordant that they leave the choice of this clock an extreme latitude.

As for movement, all that the senses and memory allow us to observe is that with time, the relalive position of the various bodies that surround us experiences certain changes or, in other words, that these bodies are in movement with respect to one of them taken as a term of comparison. We can choose a certain reference trihedron invariably linked to the body which serves as term of comparison : experience, completed by abstraction, will allow us to determine, at



At each moment, the coordinates of any material point we want to consider, these coordinates being related to this reference trihedron.

Experience, even with the help of abstraction, only provides us, as far as time is concerned, with the notion of time relalij to a certain clock, arbitrarily chosen, and, as far as motion is concerned, with the notion (motion, relalij to a certain reference trihedron, arbitrarily chosen. These two notions are sufficient to construct Kinematics. Let us take any theorem of Kinematics, for example the following theorem:

When a point describes a circle of radius R, with a uniform motion of which u> is the angular velocity, the acceleration is, at each instant, directed from the point to the center of the circle and has the value Rio2.

It is clear that we will not be able to judge that a point describes a circle, unless we relate its motion to a certain reference trihedron (for example, to a trihedron that is invariant to the Sun), and that we will not be able to declare that the motion of this point is uniform, unless we follow this motion by reading the time on a certain clock (for example, on a clock that is set to the motion of the stars and that gives the sidereal time). The velocity and acceleration referred to in the statement of the theorem will be the velocity and acceleration relative to this reference trihedron and to this clock.

Let us now change our reference trihedron and our clock; let us take, for example, a trihedron invariably linked to the Earth and read the time on a sundial. Let us consider a point which, relative to our first reference trihedron and our first clock, was moving with a circular and uniform motion and was thus in the conditions required for the previous theorem to be applicable to it; it will move, relative to our new reference trihedron and our new clock, according to a completely different law; its motion will no longer be n-i circular nor uniform, so that the previous theorem can no longer be applied to it.

But this theorem will still be true. If we take



a point whose motion, relative to our new reference trihedron and to our new clock, is a circular, uniform motion of radius 11 and angular velocity Ě� w, the acceleration, relative to this reference trihedron and to this clock, will still be directed from the point to the center of the circle and will have the magnitude Roj

What we have just said about this theorem can be repeated for all the theorems of Kinematics, which allows us to state the following proposition

The statement of a proposition of Kinematics would have no sense if one did not suppose that before stating it one had made a choice of a certain clock which serves to measure time and of a reference trihedron to which the movements are related; but the exactness of this proposition is independent of the way in which this double choice was made; it is not altered if one replaces this choice by another.

This proposal can be stated more briefly as follows

The notions of time relative to a certain clock and of motion relative to a certain reference trihedron are sufficient to constitute Kinematics.

The same is not true of the science whose principles we are going to expose.

Let us take, for example, the following theorem, consequence of the laws to which we will be led

The center of gravity of an absolutely isolated body moves in a rectilinear and uniform motion.

Obviously, to judge that the trajectory of a point is rectilinear, we must relate the position of this point to a certain reference trihedron, and to judge that this trajectory is described by a uniform motion, we must suppose that time is given by a certain clock. Let us imagine that we have taken a reference trihedron invariably linked to the Sun, a clock giving the sidereal time, and that, with this choice, the preceding law is verified for a certain absolutely isolated body.



Let's change the reference trihedron and change the clock. Let us take, for example, a trihedron invariably linked to the Earth and a sundial.  The point which, relatively to the first trihedron and to the first clock, moved with a rectilinear and uniform motion, describes now, relatively to the new trihedron and to the new clock, a complicated trajectory following a complicated law. But, on the other hand, the change of reference trihedron, and of clock does not prevent the considered point from remaining the center of gravity of the studied body and does not prevent this body from remaining an absolutely, isolated body. This change therefore leaves the point in question in the conditions where it must be for the stated theorem to be applicable to it. So, speaking about change of trihedron: of reference and of clock, the stated theorem, which was true, has become false.

By generalizing this remark, we arrive at the following consequence

The accuracy of the laws of Energetics is not independent of the choice of the clock to which the time is related and of the reference trihedron to which the levels are related. If we suppose that all these laws are exact with a certain choice of the clock and the trihedron, many of them will become false, in general, when we make a choice of a new clock that is not set on the first one and of a new trihedron that is not invariably linked to the first one.

Of the clock to which we suppose the time related when we affirm the exactitude of the laws of the Energetics, we say that it measures the absolute time or that it is an absolute clock! he lrihedron of reference to which we suppose the related movements is said trihedron absolutely, fixed; any movement, related to this lrihedron and to this clock is said absolute movement: a body whose position with regard to this lrihedron is independent of the time is said in absolute rest.

We can therefore say that qne,/w definition, absolute clock and reference trihedron absolutely fixed its/the clock and reference trihedron with respect to which the principles of Energetics are assumed true.



This definition would suffice if Energetics were only to be a logically arranged algebraic and geometrical construction. But this is not the purpose of Energetics; Energetics must be a physical theory. In other words, the propositions which compose this mathematical construction must be equivalent in an approximate way to the experimental laws, provided that one establishes in a suitable way an approximate correspondence between the elements of the mathematical construction and the physical properties accessible to the experiment.

Therefore, we have to answer the following two questions

What is the concrete system whose deformations measure in an approximate way the absolute time, which realizes approximately the absolute clock?

What) is the concrete body which can be regarded as being more or less at rest, to which the absolutely fixed trihedron of the abstract theory can be regarded as almost invariably bound?

According to the principles that we recalled a moment ago, the answer to these two questions should be directed by the following rule

The concrete variable system that will be made to correspond to the abstract absolute clock of the theory, the concrete body that will be made to correspond to the absolutely fixed abstract body of the theory will have to be chosen in such a way that the propositions of r Energetics provide a sufficiently approximate representation of the experimental laws.

This principle shows immediately that the choice of the absolutely fixed trihedron and the absolute clock is subordinated to three conditions `:

i" The mathematical constitution of the energetic system is considered to be fixed, not only in its general principles, but also in its ultimate consequences, which are the only ones comparable to experimental laws

-V It is also assumed that the measurement methods are fixed, which alone allow a physical property to be matched,



accessible to observation, to each of the mathematical elements that are used to build the theory;

3" In other words, the degree of approximation with which the abstract propositions of Energetics are required to represent the experimental laws is assumed to be fixed.

For example, the ancients considered the Earth as the absolutely fixed body to which absolute movements must be related; this assumption could be maintained, but on the condition of adopting an energetic system quite different from the one we are going to expose and much less simple than this one.

So far, the branch of Energetics which deals with the movements of celestial bodies (Celestial Mechanics) has agreed satisfactorily with the laws of observation by taking sidereal time as absolute time; however, very precise observations point to some disagreements. There are two ways to make these disagreements disappear: either change the absolute clock and look at the sidereal day as slightly variable; or change one of the hypotheses on which the branch of Energetics that deals with celestial motions is based.

In short, the choice of the concrete clock which must correspond to the abstract absolute clock, and of the concrete trihedron which must correspond to the abstract absolutely fixed IriĂ¨dro, is a part of the overall operation which consists in comparing the whole system of physical theory with the whole system of experimental laws. As we have often stated, no part of this operation can, logically, be separated from the others; they must be supposed to be done all at once, all at once; only the necessities of exposition and of I teaching compel us to break up the comparison of the theory with the experiment cl to present separately the various fragments of it, to the detriment of logical Ě�rigueur.

It is by virtue of this method, and by anticipation, that we will state the following proposals

In most applications of V Kncrin''li<fue and to the degree of approximation habit does Ile me nor required, we can treat



the time salerai as concordant with the time absolved, and the absolutely fixed trihedron as a trihedron to which the system of the so-called fixed stars is invariably linked.

It should be noted that we do not say, as some authors do

The absolute time is, by definition, the sidereal time; the absolutely fixed trihedron is, by definition, a trihedron invariably linked to the fixed stars.

Such definitions would be unacceptable. A definition is, by nature, an identity; it is rigorously exact or it is not. Now, the system of fixed stars is not an absolutely rigid system; the various stars experience relative displacements, clearly visible in the changes of shape of the double stars; however small these displacements may be in relation to the dimensions of the whole system, they are sufficient to render null and void a definition which would consider this system as rigid. Similarly, Celestial Mechanics, the application of Energetics to the motion of celestial bodies, assumes that the mutual actions of the fixed stars are very small, but not zero; this proposition would be an absurdity if the system of fixed stars were, by definition, invariably linked to the immobile trihedron; for then, by definition, the force exerted on each star would be zero.

In the same way the question to know if the sidereal time is or not variable would be a nonsense for who would have defined the sidereal time as the absolute time: we have seen, on the contrary, which sense it was appropriate to attribute this question.

I. mistake of the authors who proposed similar definitions is to have believed that the absolute clock and the absolutely fixed trihedron must necessarily be identified with a certain concrete clock and a certain concrete trihedron.

Contrary to this erroneous opinion, we know that the physical theory is a purely ideal construction, whose elements have no relation in nature with the concrete objects; it is intended to give an approximate image of reality, and, for that, it is enough that each of the ideal elements which compose it corresponds in an approximate way to a concrete object.



The absolute clock and the absolutely fixed trihedron are a purely ideal clock and a purely ideal trihedron, having no existence outside the theorist's understanding; for the theory to fulfill its purpose, it is sufficient that when we compare the propositions of the theory with the experimental laws, we know how to make the absolute clock correspond approximately to a certain concrete clock and the absolutely fixed trihedron to a certain concrete trihedron. We have seen that this was possible (' ).


	Of Bodies and Mixtures or Combinations.



Ě� In what follows, we will represent a body as a linearly connected space filled, in a continuous manner, by some matter.

The notion of matter is reduced, moreover, in our mathematical scheme, to this

When we say of two three-dimensional figures C and C' that they are two distinct positions of a" same body, we admit that there exists between each point M of the figure C and each point M' of the figure C' a certain univocal correspondence which we express by this sentence The matter which was in M, whereas the body occupied the position C, is in M' when it occupies, the position G.

We shall not discuss whether bodies are really continuous or whether they are formed of disjointed parts separated by the void; whether these disjointed parts have finite dimensions, although very small, or whether they are mere points. All these questions about the real constitution of bodies are not matters of physics, but of metaphysics; they have given rise to lively debates between the various philosophical schools.

Physics only tries to build, by means of mHionsjempruntL'es to MatheinatKiue- a logical system which ,w~r~ ~w.r~i.r,n~r~ :n, v~x.n, provides an approximate image of the laws relative to bodies. For r .t<.t~M~4~,<M.~T~<~ ;u .xc~a;~ ,a- (') The debates to which the question of absolute motion has given rise from antiquity to the present day can be found in the following work P.  Duhkm, Le mouvement absolu et le mouvement relatif (Revue de Philosophie, 7", S' et 9* annĂ©es, 1007-10,09).



To construct such a system, we are entirely free to represent a body, which our senses perceive as continuous, either by a continuous distribution of matter in a certain space, or by a discontinuous collection of very small atoms. This last mode of representation has been adopted by a good number of theorists of Physics; Poisson, in particular, replaced it in a systematic way, because he believed to see in it the expression of the real constitution of bodies. Without wishing to examine here all the objections to which this way of treating physics comes up against, there is at least one that we can point out now. The formulas to which it leads first of all always contain sums extended to a very large number of disjointed masses, very small and very close together; In order to make these formulas manageable for analysis and, at the same time, to derive results that can be translated into experimental language, it is necessary, by means of an approximation calculation, to replace these sums by integrals extended to continuous spaces, by spreading out, as it were, the disjoint masses that we had imagined, so that their matter fills the intermediate gaps; in this way, after the fact, we restore the continuity to the matter that we had initially denied it. Now this conversion of sums into integrals is a very delicate and scabrous mathematical operation; it is difficult to carry it out well if one wants to avoid tedious lengths; moreover, it always implies a lot of gratuitous hypotheses about the order of magnitude of the molecules and their intervals. All these difficulties are avoided by representing the matter as continuous. Since this mode of representation leads, in all parts of Physics, to simpler, clearer and more elegant theories than the atomic and molecular representations, we will adopt it in preference to the latter, without claiming to assert anything by it that would praise the real constitution of bodies.

Let us consider two bodies A, 13 which, at a certain instant t, occupy spaces a, b, having no common parts. These two bodies are not always and necessarily housed in distinct spaces; the matters which form them can at an instant t' distinct from t, posterior or anterior to l, provide a continuous body



unique C, occupying, the space c; this takes place in such a way that each element w of the space contains, at the instant, l a part of the matter which, at the same instant t, formed the body A. and also a part of the matter which, at the same instant t, formed the body B; the first of these two parts occupied, at the instant i, an element of volume v of the space a and the second occupied, at the same instant t, an element of volume v' of the space b

In the case we have just defined, we say that the body C results either from the mixture or from the combination of bodies A. and B.

Many physicists refuse to admit the possibility of combination or mixture as we have just defined it; they regard as impossible that intimate penetration by which the matter which fills each volume element of the continuous body C comes from the confusion of the matter contained in one element of the continuous body A and the matter contained in one element of the continuous body H. It is this impossibility that they call impenetrability of matter.

For these physicists, the words mixture, combination represent, in fact, only appearances.

When we think we see the two bodies A and B merging into a new body C, the extremely small parts of which the discontinuous whole constitutes each of these two bodies remain, in reality, distinct from each other; the small parts of body A simply interpose themselves with the small parts of body B, without the space occupied by one of the parts of body A having any common domain with the space occupied by one of the parts of body B. When sea salt dissolves in water, the molecules of sea salt interpose themselves with the molecules of water without penetrating them; in sulfur dioxide, each atom of sulfur is flanked by two atoms of oxygen, but these atoms do not merge.

In reality, do things happen in accordance with the latter theory, which is the opinion of the Atomic and Cartesian Keoles (' ), or in accordance with the former, which is

(' ) See, on this subject P. Duiiem, Le mixte et la combinaison chimique, essai sur l'Ă©volution d'une idĂ©e. Paris, n)Q-



the peripatetic doctrine? This question belongs to Metaphysics and not to Physics. In order to constitute a symbolic representation of natural laws, which is its own object, theoretical Physics is free to adopt either the one or the other mode of representation of mixture and combination; we shall choose the first one because in all circumstances it gives rise to simpler reasoning and more elegant calculations. Let us consider a body C formed by the mixture of two bodies A and B. The matter which, at the instant t, fills the volume element w of body C is composed of a part p of the matter which formed body A and a part q of the matter which formed body B. At another instant t' these two parts p and q are not necessarily united to each other within the same volume element; the matter which constitutes part p can fill a volume element w' where it is either free or united to a part q', different from q, of the matter of body B; at the same time, the matter which constitutes part y can fill another volume element "'" where it is either free or united to a part p", different from p, of the matter of body A.

Thus, when a body C is a mixture of two bodies, the matter which fills each volume element of this body is formed by the confusion of two parts borrowed from two different bodies and these two parts can be animated by different movements so that at each point of the mixture, at each instant, there may be reason to consider two different speeds, each of these two speeds being relative to one of the bodies which constitute the mixture.


	Of the body or system of bodies isolated in space. It is a question of Metaphysics, not of Physics, to know whether the Universe is unlimited or limited, and, if it is limited, what the limits of the Universe are. The physicist does not prejudge this question; but, at the moment of constructing the mathematical system by which he claims to represent the experimental laws, he recognizes first of all that it would be impossible for him to logically embrace, in his reasoning, an infinity of





body filling, an unlimited space. Also, when he formulates the principles of Energetics or combines them to draw consequences, he is careful not to include in his reasoning a single body or a limited set of bodies, and he assumes that the space that extends outside these bodies is absolutely deprived of all matter, that it is the pure space of the geometers. This is what he means when he says that he is dealing with a body or a system isolated in space.

We repeat, this space which surrounds an isolated system is the pure space of the geometers; we must not conceive there any body endowed with physical properties, whatever they are; but we can conceive there all the figures which we will want to draw; we can, for example, place there the trihedron of reference to which will be related the absolute movements of our isolated system.

It is not a question here of discussing whether the vacuum can be conceived as real or realizable; there is no doubt that, in the mathematical scheme intended to represent the sets of bodies that we will study, it is allowed to consider:

i" Regions at the various points of which we will make correspond quantities intended to represent various physical properties; these regions will be theoretical bodies

2" Legions to which no property other than those of geometric space will be given; these regions will be theoretically empty.

When he then seeks to compare such a theory with sensible reality, the physicist cannot, it goes without saying, find an exact correspondence between them.The most commonly accepted physics teaches that, even if we could remove from the space contiguous to a given body all the solid, liquid or gaseous bodies that we can grasp directly or indirectly, so as to make the physical void in this space, this space would still be filled by a certain body that we call ether.  The physicist f"k cannot therefore, between the corollaries of the theory and the mental experi- al^w"/ W'<_ laws, look for anything other than an approximate V"'ĂŻ .) and partial concordance.



When it is a question of confronting with reality a theory, necessarily founded on the consideration of an isolated system, the physicist lets himself be guided by the following principle, which he admits by virtue of an intuition that cannot be justified a priori, but from which it is not possible to escape

Let us suppose that we want to represent theoretically the physical properties of a body or of a system of bodies A. We can draw a closed surface S which contains not only the system A, but also a certain number of other bodies; if the surface S is large enough, by reasoning about the set of bodies it contains as if this set were absolutely isolated in space, we will obtain a sufficiently approximate representation of those properties of the system A which we propose to study. This is what is expressed by saying that, when one proposes to represent theoretically the properties of a system, one can surround this system with a surface large enough for the consideration of the bodies outside this surface to be negligible.

Whenever we want to apply the theories of Energetics to a real system, we will have to draw the surface. S or, in other words, to enumerate the bodies, foreign to the system studied, whose consideration cannot be neglected in the study of this system.

In this enumeration of the foreign bodies to be taken into account or, if one prefers, in the drawing of the surface E, one will have no other guide than the preceding principle; In each case, therefore, one must choose the surface S in such a way that, by treating the bodies it contains as if they were isolated in space, and by applying to them the rules that Energetics formulates for such a set of isolated bodies, one obtains a sufficiently approximate representation of those that one proposes to include among the experimental laws relating to the system studied A. We can see that, like the choice of the absolute clock and the absolutely fixed trihedron, the drawing of the surface S is subject to three conditions

i" The mathematical constitution of the energy system is considered as fixed;



a" It is also assumed that the rules which make each of the mathematical notions of which this system is composed correspond to each of the data of the experiment;

3" Finally, we suppose fixed the experimental laws that we want to represent by means of the abstract propositions of Energetics, and we know the degree of approximation that this representation must reach.

The first two conditions are self-evident. Let us insist for a moment on the third.

We cannot propose to represent theoretically all the experimental laws relative to a given system; such a project would be meaningless; it is clear that we do not know all these laws, and that we will never be able to claim that none of them remain to be discovered.

But, moreover, one does not even try, in general, to compose an arrangement of mathematical symbols that represents all the laws that experience has already revealed about the system that one is studying; such an arrangement would be of a complication that would exceed the power of our reason; one limits oneself to looking for the representation of this or that group of laws, momentarily disregarding the other laws to which the system studied is subject.

Now, depending on whether, for a given system, one intends to construct a representation of such and such a group of laws or of such and such another group, it may be permitted or forbidden to neglect such and such a foreign body, so that the drawing of the surface S may vary. Here, for example, is sea water. If we only wish to represent the laws which, in salt marshes, govern the formation of the various salts to which this water may give rise, we shall be permitted to disregard gravity and even atmospheric pressure; we shall be able to leave earth and air out of our considerations; we shall be able to consider sea-water and the salts which are born of it by precipitation as forming a system isolated in space; the surface S will then be the surface which bounds the whole of this water and these salts. This sea water is agitated by the swell or by the lapping; if we wish to represent the laws which govern these phenomena, we



Our surface will then contain not only the waters of the sea, but also the earth; but it will leave out the celestial bodies, of which we will be able to make abstraction.

It will not be the same if we intend to represent the flux and reflux laws; in the latter case, the surface S will have to contain the Sun and the Moon; but it can exclude the stars. Thus the surface S which, for a given concrete system, separates the foreign bodies that must be taken into account from those that can be neglected, varies with the group of experimental laws that we propose to represent theoretically.

It also varies with the degree of approximation required in the representation of a given group of laws.

In this way, it will be possible to require that the theoretical representation of the laws that govern the precipitation of salts or their dissolution take into account the variation that the salinity of the waters of the sea experiences because of the depth of the place where the phenomenon studied occurs. It will be necessary now to take into account the gravity and to draw the surface S so that it encloses the Earth.

In the same way, one could be led to analyze the precipitate produced with such a precision that one would be able to appreciate the minimal changes of composition determined by the variations of the atmospheric pressure; to represent theoretically these phenomena, one could not make abstraction of the atmosphere; one would have to include it in the surface intended to enclose the isolated system of which the water of the sea is a part.

A. The state of a system.

Let us consider a set of bodies isolated in space. This set of bodies can, from one instant to the next, change' its position, its shape, its consistency, its chemical constitution, its electric state, its magnetic state elc. Let us consider it as it is at the instant t. At this moment, its various parts possess certain properties, present certain qualities. To each of these properties or qualities, by appropriate methods of measurement, Physics makes correspond either an arithmetical number,



not affected by sign; or an algebraic number, affected by sign; /<-" or a vector, which is equivalent to three alge "i <Ě�*Ě�'-' bricks. Energetics then seeks to establish between all these 'Ě�'-Ě� numbers algebraic relations which, by means of the rules of correspondence laid down between these various numbers and the physical properties of the system, will be the translation of as many experimental laws linking these properties to each other.

The numbers which symbolize the properties of a system can be defined in very different ways; no general rule can be laid down in this respect. The (iĂ©oinĂ©lrie. for example, teaches us in what way we can, by defining certain quantities, in limited or unlimited number, determine the shape and the position of each of the material parts which (-(impose the system. Other quantities, which represent physical or chemical properties, are defined in the course of the various theories of which Physics is composed; such are the solid electric density, the superficial electric density, which are algebraic numbers; the electric flux, the intensity of magnetization, the dielectric polarization, which are vectors; the concentration of a solution, which is an arithmetic number, etc. In this very Chapter, we shall show how Physics is led to define one of these numbers, particularly important, the temperature, in the next Chapter, we shall meet another one, the mass.

In the study of a system, it can be interesting to consider several numbers that their very definition links one to the other; thus, one can have to speak of the mass of a homogeneous body, of its volume, of its density, whereas by definition, the density of a homogeneous body is the quotient of its mass by its volume. These numbers, linked to each other by their very definition, are said to be dependent.

Numbers that represent the properties of a system at a given time are independent if the definition of each of them implies no necessary relation between the value of this one at the time, and the value of each of the others at the same time t. Thus, the volume and the mass of a body are two independent numbers. In the same way, the components of the electric lux in each poim of a conducting body and the electric density, solid or



surface, at the same point of this conductor, are independent numbers; without contradicting either the definition of the electric density or the definition of the electric flux, one can, at the isolated instant t, attribute arbitrary values to the first and to the three components of the second.

In what we have just said, it must be observed that, when we speak of dependence between various quantities, we only mean a logical dependence arising from their very definition, and not a physical dependence expressed by a relation intended to represent an experimental law; so that logically independent quantities could very well be physically dependent; to give them arbitrary values would be an operation which would have nothing contradictory, but which would not be in accordance with natural laws.

Let's explain this remark with an example.

A system formed of oxygen and hydrogen, partially combined in the state of water vapor, occupies an invariable volume; it is brought to the temperature 9; x is the ratio of the mass of water vapor that it contains to the mass of water vapor that it would contain if the combination were as complete as possible. This definition of x simply forces this number to be between o and i, without establishing any relation between the value of the ratio x and the value of the temperature 6; x and 8 are two independent numbers.

However, it could be that the experiment provides us (' ) with the following law At each temperature, the composition of the system is well determined. Such a law would be translated into a relation of the form x=f(Â§); it would establish a physical dependence between the two numbers x and 0, without eliminating their logical independence.

Let us suppose that the physical properties of a system at time t are represented by various independent numbers; between these numbers, there is, as we have just said, no relation arising from their very definition.

(!) We do not pretend that it provides us with it in reality. It is a fiction that offers us a simple example.



But it could be that by virtue of the definition of these various numbers, there existed one or more relations between the values of some of these numbers and the derivatives with respect to time of some others.

Here are some examples

iÂ° The system is formed by a certain number of material points M, M', The physical properties of this system are supposed to be represented by the coordinates x, y, x', of these points and by the components il, <>, "', "', of their velocities. These are all independent numbers; their definitions allow to choose arbitrarily their values.  But between the values of the components of the velocities and the derivatives with respect to time of the coordinates, there are relations, since we have by definition

dx dy y dz dx'

u - - - v - -7- > w = -7- i u - -y- > dt dt dt dt

2" The system is a polarized dielectric. Its physical properties at the moment are known when we give ourselves the components A, H, C, of the polarization at each point (x, y, z) and the components u, v, n> of the displacement flux at the same point. These numbers A, H, C, u, v, ir are independent numbers; they can be assigned any value without contradicting their definitions. But these same definitions lead to relations between the components of the displacement flux and the derivatives with respect to time of the polarization, because they teach us that we have at OH dC
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dt iif. Ot

3" The system is a good electrically conductive body. To represent its physical properties at the instant t, we have to consider Ja superficial electric density E at each point of the surface which limits the conductor, the solid electric density e at each point (x. y, :) of the volume which it occupies, finally the components u, c, <v of the (lux. electric at the same point (x,y, z). These are all independent numbers. But the values m, c, w of the components of the electric flux are not independent of the derivatives with respect to time of the electric densities E, e. In



In this case, we have, by definition, at any point (x, y, z) and at any time.

Or Ov to the' of

(1) -=0,

Ox ijy Oz OC

Uc moreover, if we lead to a point on the timed surface of the conductor, a point where the surface density has the value E, the normal towards the interior of the space occupied by this conductor, and if z, [4, y are the cosines of the angles that this normal makes with the coordinate axes, we have
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When independent numbers are such that there is a relation between the values taken by some of them, at a certain instant, and the values taken, at the same instant, by the derivatives of some order of the others with respect to time, we will say that there is a second order dependence between these numbers. t is well understood that this second-order dependence must be, like the first-order dependence, a purely logical dependence, deriving, as in the examples we have cited, from the very definition of the numbers by which the properties of the system are represented; it must not result from a relationship intended to represent a physical law.  Let us take, for example, a homogeneous mixture of oxygen, hydrogen and water vapor; fi is the temperature and p the density; x is the ratio of the mass of water vapor contained in the mixture to the mass of water vapor that it would contain if the combination were pushed as far as possible.

iNot only are the numbers fi, o, x independent numbers, but there is no second-order dependence between them; without contradicting their definitions, one can not only give them arbitrary values, but also give values Y- Ě� dx do d()

arbitrary a -r-y ~r-, -r-

dt cil dt

However, we will be led to formulate this law: The speed of combination is determined when we know the temperature, the density and the degree of combination of the system. This law will be expressed by a relation of the form

(lx fy x ).

~=/(~~).



But this relation will not be a dependence of second order, because it does not result from the simple delinquency of the three numbers fĂŻ, p, -r- it has for goal to represent the results of the experiment.

When numbers representing the physical properties of a system have no dependence between them, neither of the first order nor of the second order, we say that they are absolutely independent.

Once these definitions have been made, we can indicate which conditions must be fulfilled by the numbers so that we can say that these numbers define Y state of a given system at a given time l.

These conditions are as follows

T i" The numbers considered represent physical properties of the given system at time t; time t is not considered as such a property: these numbers vary in a continuous way with their first derivatives with respect to l exist and are always finite;

These numbers are, by their definition, absolutely independent of each other cl absolutely independent of t\ If other nonibr. also represent properties (physical of the same system inManl. t, either these new Ě�numbers have some relation of the first order to the previous ones; or these new numbers are related to some derivative .with respect to t of the first ones or vice versa, which constitutes a relation of the second order.

Let us take, for example, a solid conductor, immobile and electrified; we can say that its calibration at time t. is determined by In solid electric density e at each point (.r, r, :Ě�) of the volume it occupies and by the surface density E at each point of the surface which limits it.

Indeed i" The numbers e. E. represent properties of the conductor at the instalment

a" their definition, these numbers are absolutely independent between them and independent* of time t

-We are led to consider another physical property of the same body at the moment, namely the electric Jhu' in each



point; but the components u, e, "v of this llux are related to e and E by the second order relations (i) and (a).

Let us also take as an example the homogeneous mixture of oxygen, hydrogen and water vapour which we spoke about a moment ago; we could not say that the state of this mixture is determined by its density o and its degree of combination x; we have indeed to consider a third physical property of this mixture, the temperature, represented by the number (), and this number is absolutely independent of the numbers p and x; we can say, on the contrary, that the state of this mixture is determined by the three numbers j, 0, x.

Apart from the restrictions we have just mentioned, General Energetics gives us no indication as to how to choose the properties that define the state of a system. In each of the Chapters of Physics, one fixes, by means of hypotheses particular to that Chapter, the quantities which will serve to define the state of the system which one proposes to study; once this state is thus determined, one applies to it the rules traced by general Energetics.

In order to determine which are the physical properties that must be used to define the state of a system, we have no other guiding principle than the knowledge of the object that the physical theory proposes to build, by means of mathematical notions, a kind of scheme that represents, with a given approximation, the laws to which a certain set of concrete bodies is subjected.

As we have already explained in the preceding paragraph, we do not propose, in general, to construct a mathematical scheme which represents, at once, all the known physical laws to which the set of concrete bodies under consideration is subject; such a scheme would, in general, be frighteningly complicated. We simply propose to represent with a certain approximation some of these laws, while ignoring the others.

This makes it possible not to include in the definition of the state of the system the representation of all the physical properties which could appear there. We only consider some of these properties, ignoring the others. We obtain from



In this way, a simplified scheme is created which represents with a certain approximation a certain number of laws among those which govern our concrete set. If, later on, one proposes either to represent the same laws with a greater approximation, or to represent, in addition, some of the laws from which one had, at first, made abstraction, one is naturally led to make use of a new mathematical scbeine more complicated than the first one; one takes back then, to form the new definition of the state of the system, some of the physical properties which one had neglected in the first definition.

Let us suppose, for example, that we want to represent the laws of electrical distribution on a conductor made of an alloy of copper and tin. To represent the state of such a conductor at a given moment, we could give us not only the solid electric density at any point of the volume occupied by the conductor and the superficial electric density at each point of the surface, but also, at any point of the conductor, the density of the material, its chemical composition and its temperature.

Nevertheless, physicists have recognized that many of the laws of electrical distribution can be represented with a fair degree of approximation without including the last three quantities in the definition of the state of the system, and by simply determining this state by knowing the two electrical densities.

If, however, we want the approximation with which these laws are represented to exceed a certain term, we are obliged to give up this definition, simplified to the extreme, of the state of the system.  Let us imagine, however, that we stick to this definition. Then, between the corollaries of the theory and the results of the experiment, which has been made very precise, a host of disagreements appear - differences in potential on contact, thermo-electric effects, etc. To make these disagreements disappear, to establish a more exact concordance between the experimental laws and their theoretical representation, one appeals to a more complicated mathematical scheme; one takes back, in the definition of the stall, of the system, the physical properties which one had initially abandoned : the density of the matter, the chemical composition, the temperature.



There is, we guess, no a priori principle t j 1 that decides whether, in the definition of the standard of a system, one must include this physical property or whether it is permissible to disregard it; the success of the mode of definition adopted, the satisfactory agreement between the consequences of the theory and the teachings of experience, is the only character to which we can recognize that we have been right in adopting such a definition in preference to another.

It can also happen that a certain physical property is considered, in one branch of theoretical physics, as one of the essential characteristics of the state of the studied systems, and that in another branch of theoretical physics, this same property is completely ignored.

Thus, the branch of theoretical physics called Rational Mechanics, when defining the state of a material system, entirely neglects the chemical constitution or the temperature of the various bodies which compose this system; it only takes into account the positions occupied in space by the different parts of these bodies. This very simplified definition of the state of a system allows it, however, to give a satisfactory representation of a very large number of experimental laws. Conversely, another branch of theoretical physics, Chemical Mechanics, draws a similar picture of a very large set of experimental facts, taking into account the chemical constitution of the bodies and their temperature, but completely disregarding the shape of each of them and the position they occupy in space.

It goes without saying that neither the simplified scheme used by Rational Mechanics nor the one used by Chemical Mechanics can suffice to represent all experimental laws: there are many laws which cannot be represented unless we include, in the definition of the state of the system, both the physical properties which Rational Mechanics neglects, and those which Chemical Mechanics disregards.

It is by abstractions of this kind that Theoretical Physics can, in a great number of cases, define state of the system it proposes to study by means of nn number limited, and Ě�even of a small number of quantities.



Let us suppose, for example, that we are studying the dissolution of sea salt in water. The solution does not have, in all its parts, the same density, the same concentration, the same temperature; the density and temperature also vary from one point to another of the salt crystals.  However, Chemical Mechanics manages to represent a good number of laws relating to salt dissolutions, and this with an approximation which is sufficient, in most cases, for the physicist and the chemist, by disregarding all these differences, by not taking into account the shape of the bodies, nor their position in space; It can then define the state of the system it is studying by a very small number of quantities : the mass of the water, the mass of the solid salt, the mass of the dissolved salt, the densities of the solid and the liquid, both supposed to be homogeneous, and finally the temperature of the whole, considered to be the same at all points.

This abbreviated definition of the state of the system will not suffice to represent all the laws to which our saline dissolution is subject; to obtain a more perfect theoretical representation of this system, we will have to define the state of the system by making known the density, the concentration, the temperature at each point; this standard will then be defined by an unlimited number of quantities. We can generalize what the analysis of this example has taught us.

In a very large number of cases, the state of the systems whose Energetics has to Irai 1er is defined by means of a limited number of quantities.

However, such systems are, in general, too simple to be able to represent in this way all the laws that we want to study, and with all the desirable approximation; we will be, therefore, forced. to obtain a more perfect agreement between theory and experiment, to consider systems whose state will be defined in another way; we will divide by thought each of these systems into infinitely small elements: the definition of the state of the whole system will result from the definition of the state of each element and of the position it occupies in the whole; this last definition will be given, for each element, by means of a limited number of magnitudes; in such a way that the definition of the whole system will depend on an unlimited number of magnitudes.



When a system is defined in this way, we can say that it is composed of an infinite number of infinitely small systems, the state of each of which depends on a limited number of quantities. The study of systems whose state is entirely defined by a limited number of quantities is, therefore, the obligatory preliminary to the study of systems whose state is fixed only by an infinity of numbers. This is why, in this presentation of General Energetics, we will first and foremost focus our attention on systems whose state is defined by means of physical properties of a limited number.


	Holonomic links.



Let us imagine that we have defined a first state of a certain system by giving arbitrarily chosen values to the quantities, in limited or unlimited number, which represent certain physical properties.  In order to define another state of the same system, will it be possible to give other entirely arbitrary values to the same quantities?  Sometimes this will be possible; but ordinarily, the arbitrary choice of numerical values which serve to define the first state will impose certain conditions on the numerical values which serve to define the second state, and this, by virtue of the very definition of the physical properties to which these values are attributed. Let us take some examples

ĂŻ" The system studied is a compressible fluid. To define a first state of this fluid, we can arbitrarily fix the volume it occupies, the density and the temperature at each point of this volume.  When we propose to define a second state of the same fluid, we can no longer use it as freely. It follows from the fundamental definitions of Energetics that the total mass of the same fluid remains invariable in whatever state it is. If, therefore, we designate by du> an element of the volume occupied by the fluid and by o the density of the fluid which is in this element, the integral p rfw, extended to the whole volume occupied by the fluid, must have, in the second state, the same value as in the first.



2" The isolated system we are studying is an electrified conductor. To define a first state of this conductor, we can arbitrarily give ourselves the value of the solid electric density e at each point of the volume it occupies and the surface density E at each point of the surface that limits it. We no longer have the same arbitrariness when it comes to defining a second state of the same conductor. The fundamental principles of electrostatics teach us that the total electric charge of an isolated conductor remains invariant, by definition, whatever the changes experienced by this conductor. If, therefore, we designate by

du> an element of the volume occupied by the conductor, e the solid electric density at a point of this element, dS an element of the surface which limits the conductor, E the surface electric density at a point of this element, the expression

e c/co -4- lĂ® dS,

where the first integral extends to the volume occupied by the conductor and the second to the surface which limits it, must take in the second state of the system the same value as in the first.

3' A system is a homogeneous mixture of oxygen, hydrogen and water vapor. To define a first state of this system, we can arbitrarily give the masses m, 7 "z2, M, of hydrogen, oxygen and water vapor that it contains; but masses m, in[2.  M' of oxygen, hydrogen and water vapor will be able to define another state of the same system only if these masses verify the relations

17.887/'2M'= 17.88/ni-H 2M,

17.88 ni', + i5.88M' = 17.88/".,+ i5.88M.

These relationships are derived from the fundamental laws of Chemistry which serve to define the mathematical patterns that Chemical Mechanics deals with.

The various examples we have just cited have a common character, which would be found in a large number of



other examples; this character can be described in a general way in the following form

We assume that the physical properties whose evaluation must determine a state of the isolated system under study are chosen. We give ourselves successively two sets of numerical values of these physical properties, sets which are not necessarily infinitely close to each other.

For these two sets of numerical values to define two different states of the same system, it is necessary and sufficient that the numerical values of one or more expressions, formed exclusively by means of the physical quantities which serve to define the state of the system, and, therefore, not explicitly containing time, do not change when the second set is substituted for the first.

If we express that each of the expressions in question retains, in any state of the system studied, the value that it took in a first state of this system, we obtain a certain number of equalities. By generalizing somewhat a denomination introduced by H. Hertz (' ), we shall say that each of these equalities is one of the holonomic linking conditions which determine the constitution of the material system we are dealing with. Among the systems that we have cited as examples, the first has a constitution that is determined by a single holonomic linking condition, which is

Ci dm Ě�-= coiist. S L.

The constitution of the second is also determined by a single holonomic linkage expressed by the equality

e du) -r- lĂŻ dii = const.

Finally, the constitution of the third depends on two holonine bonds which are 1,

17.88/".! Ě�:Ě�Ě� J.M = Ci,

1 7. 88 m"-r- i-'),K8M = G,,

C| and C.j being two constants.

(',1 H. IIkutz, Die J'ri/icipien der Mechanik in neuem Zusammenhange dargestelll, n" 1:23, p. gt; Leipzig, 189'^



Let us consider, in particular, a system whose calibration is defined by the knowledge of the numerical values .'ÂŁ,, x-2> xn taken by a limited number n of physical properties, and let us suppose that the constitution of this system depends on a certain number m, less than of holonomic links it will be equalities of the following form

(xu xĂ®t xn) = ci,

(3) 7Jl .f'- x xz> ~) = C:,

{) <> xu xn) = Cj,

1 /"i(#i, .r2, - - xn) = C/;I;

Ct, Ci, Cm are /" constants whose numerical values will be known as soon as a first state of the studied system is known.

This first state being given, we will not be able, to obtain another state of the same system, to take arbitrarily the n numerical values. xy, 1 XII but we will be able to choose arbitrarily/? = n m of them, and the (n - p) others will be then determined by the equations (3). ).

If therefore the state of a system is defined by the evaluation of a limited number a of physical properties, and if the constitution of this system is determined by m holonomic linking conditions, once a first state of this system is known, any other state of the same system can be determined by assigning determined numerical values to p z=z n - m quantities that can vary in an independent way.

The systems whose state is thus determined by a limited number of independent variables are the simplest that general Energetics has to study; applied to such systems, the principles of this science take a particularly clear and easy to handle form; therefore the study of such systems is of great importance.


	Non-holonomic links.



is systems whose constitution is not entirely determined by holonomic connections.

We still assume that we know which "physical" properties are



s, in limited or unlimited number, must be evaluated in order for a system state to be defined.

By choosing a certain set of numerical values of these physical properties, a first state of the system has been defined.

We give ourselves, of the same physical properties, a new set of numerical values which is not infinitely close to the previous one, and we ask ourselves if this new set defines or not a second state of the same system; for the systems which we now want to consider, we do not immediately possess a criterion which allows us to answer this question.

But, in the case where the second set of numerical values is infinitely close to the first one, we have an independent criterion, called time, which allows us to declare if these two sets of numerical values define or not two states, infinitely close to each other, of the same system. We then say that the constitution of such a system depends on non-holonomic links.

Let us show how non-holonomic connections can occur in a system whose state is defined by the evaluation of a limited number of physical properties.

Let us suppose that a first state of the studied system is defined when we arbitrarily give ourselves the numerical values x,, x->, x,, of n physical properties suitably chosen. Let #,+ 3a?,, x2 + 8a?a, .xn -+-oxn, be n numerical values infinitely close to the previous ones; in general, they cannot be considered as defining, for the same system, a second state infinitely close to the first. For them to define a second state, infinitely close to the first, of the same system, it will be necessary and sufficient that the n infinitely small variations Sa?,, Ăąx2, Zx,, verify m linear and homogeneous relations AI Ă´x,+A2 A~ 0.~2- --)- An 2xn-o. 0, ( +7 I B, Ă´^i+B, $Xz- Ě�+- B,, Ă´xa = o,

[ M, Ă xt -+Ě� M2 8a: s -f- .Ě�+- M,, Ă xn = o,

whose coefficients Ai, B, M,- have given values



when the state of the system isldetim. The number m is, of course, less than the number n.

It may happen that the coefficients A, B, M,- are given as functions of x,, x-2, xn and that the first members of the relations (4) are immediately integrable, that is, they are the total differentials of m functions/ /o, Jm of .ri, x2, - - j xn

At dx, -+- A2 dx2~H- A,, dxn = df, (xu x2, xn), ),

f5) B, dxi-h BidxĂŻ-h.+- BK dxn= df2 (x,, x-2, .x,,), M] dx, Ě�+Ě� Ma dx^-r- .>- M,, dxn= dfm(Xj, x,, xn).

In this case, relations (4) are equivalent to relations (3), and the constitution of the system depends exclusively on holonomic links.

It may still happen that, without being immediately integrable, each of the first members of the relations (4) admits an integrating factor in this case, there are 2 m functions F(, F2, ÂĄm, ft.fĂŻ; Ě� Ě� Ě� Ě�. jm of .r, ,Ă®2. x, such that we have

Fi (A, dxi-+- A3 (tej-'r-4- A,, dxn) = dfu

I F, ( B, dxx + B., dx, -h B,, dxn ) = df2, .1' ( M, dx, -1- M, c/a-j -h MH cfen ) = dfm.

In this case again, relations (4) are equivalent to relations (3), and the constitution of the system depends exclusively on holonomic links.

But there is nothing forced about the assumptions we have just made; it may well happen that the first member of at least one of the relations (4) is not immediately integrable and that it does not admit an integrating factor: the corresponding relation cannot be put in the form (3); among the links which determine the constitution of the system will be at least one link which will not be a link.

It is of course possible that the constitution of the system depends on several non-holonomic links, it is even possible that none of the links that fix this constitution is holonomic. The case where the links that fix the constitution of a system are not holonomic is



(l) C. Neuman.n, Grundzuge der analy tisclien, Mechanik, insbesondere der Mechanik starrer Kb'rper. Zweiler Anikel (Berichte der Sachs.  Gesellscliaft der Wissenschaften: Mathematiscli-physische Classe, 5 March 1888, p. 32). See, on the same subject.

Vierkandt, Ueber gleitende und rollende Bewegung (Monalshefle fur Mathematik uiid Physik, Bel. III, 1892, p. 47). J. Hadamard, Sur les mouvements de roulement ( MĂ©moires de ta SociĂ©tĂ© des Sciences physiques et naturelles de Bordeaux, 4 sĂ©rie, t. V, 1890, p. 397). .1. Hadamard, Sur certains systĂ¨mes d'Ă©quations aux diffĂ©rentielles totales (ProcĂ¨s-verbaux de la SociĂ©tĂ© des Sciences physiques et naturelles de Bordeaux, annĂ©e 189:1-1890, p. 17). -KoiiTEWEO, Nieuw Archief, 1899. - Caicvallo, ThĂ©orie du mouvement du monocycle et de la bicyclette (Journal de l'Ecole Polytechnique, '> sĂ©rie, VÂ° caliier, i960, p. 119, and VI cahier, 1901, p. 1). - P. Appell, Les mouvements de roulement en Dynamique (Collection Scientia, Paris, 1899; the two Notes of M. Hadamard are reproduced in this work). - P. Appell, TraitĂ© de MĂ©canique rationnelle, 2' Ă©d, t. Il, Paris, 1904, p. 363.

The systems whose constitution depends exclusively on holonomic connections have the character of very exceptional systems. However, for a very long time, mechanics have only dealt with these last systems, and it is very late that their attention has been drawn to systems whose constitution depends on non-holonomic links. The existence of such systems was first pointed out by M. C. Neumann (' ).

As an example of a non-holonomic system, we will choose the one whose study led C. Neumann to his important remark.

This system is formed by two solid bodies, subject to touching each other constantly at one point; moreover, it is assumed that the passage from one state to another always takes place, in this system, without any sliding of the bodies in contact.

Let's see first what numbers will have to be known for a state of the system to be defined.

Let us denote by C and Ci our two invariant solid bodies. The position of body C in space can be fixed by means of six quantities; there are many ways to choose these six quantities; for the rest of our presentation, it is not useful for us to stop at a specific choice; it is enough that we designate these six quantities by

qu qu <i, qu, q&, q$-



On the body C, let's draw a system of orthogonal curvilinear coordinates formed by the lines

u = consi., n v = const.

Similarly, on the Ci body, let's draw a system of orthogonal curvilinear coordinates formed by the lines

Mi = const, fi = const.

In a given state of the system, the point of contact of the two bodies has certain coordinates u, v on the first surface, and certain others ul} v, on the second surface.

Let us consider, from this point of contact, the curve Ă§= const. in the direction in which u is increasing, and the curve (a, = const. in the direction in which u is increasing; the tangents to these two curves are two half-lines drawn in the tangent plane common to the two bodies. We shall designate by ty the angle of these two half-lines. 11 It is clear that the knowledge of the eleven quantities g,, <?!, c/3, q.it qt,. q^, il, v, uu "- 6

Completely delineates a stall from the system.

Let us now see how we will express this condition that the passage from one state to another always takes place without any slippage.

If we make our system pass in a continuous way from one state to another, the point of contact of the two bodies describes a line LĂ  on the surface of body C and a line L| on the surface of body C|. When it occupies the position A on the line L, this point of contact occupies the position { on the line Lf when it occupies the position 13 on the line it occupies the position B, on the line L,, etc. For there to be no slippage in the relative movement of the two bodies, it is necessary and sufficient

i" That at the moment when two corresponding points, such as A and A|. are in coincidence, the two leagues AB and, A B are tangent to each other;

y." Let two arcs that match on lines L and L,, such that arcs A 13 and A|B,, are always the same length.



It is clear, moreover, that for this equality to take place for any corresponding arcs, it is necessary and sufficient that it takes place for infinitely small corresponding arcs.

Consider a state where our two bodies touch at A. Let us take their common tangent plane at A and, in this plane, let us draw (./<>-_ >)

The half line AU tangent to the line v = const. The half line AV tangent to the line Il = const. The half line AUt tangent to the line vt = const. The half line AVt tangent to the line u, = const. Each of these half lines is conducted in the direction of Fig. i.

the variable coordinate that corresponds to it. The angle UAV is right and so is the angle U( AV|. The angle UAU( 1 is the angle at.

Let us suppose that the system passes to an infinitely close state; the point of contact comes to the surface of the body C, in a position B, of coordinates u -+- or, v + ov; it comes, to the surface of the body C,, in a position B, of coordinates u, -+- o",, r, oc,. The two arcs AB, AB, have the same length and are tangent to each other at point A; to express that it is so, is to express that the change of state considered was not accompanied by any slip. But, for it to be so, it is necessary and sufficient that the projection P of the point B on the common tangent plane coincides, to the nearest infinitesimal of the second order, with the projection P, of the point B, on the same plane; or else, by designating by Aa, AjĂŻ the coordinates of the point P with respect to the axes UAV, and by Ax" AJ3( the coordinates of the point P, referred to the axes U, AVi,



that we have the two equalities

A a = A 2[ cos'i - A pi sin 'l,

("') Âˇ Ax=AxJcos.1--ASÂˇsin.!i, if

A j3 = AĂŻ! sin i h- A [it cosi.

On the other hand, an infinitely small linear element connecting, on the surface of the body C, the point (u, v) to the point (a -f- du, Ă§-+-rlv) has a length ds given by the equality

ds2- f2 clta=-r 1 dv=,

where/, g are two real and positive functions of u and v, functions which depend on the shape of the body C. In the same way, an infinitely small linear element connecting, on the surface of the body C, the point (m,, p,) to the point (ut -+- du,, c, -t-di',) has a length ds, given by the equality

ds\=f\du-Â±-fr\de\,

where g, are two real and positive functions of u,, v,, which depend on the shape of the body C,.

If we neglect the smallest infinitesimals of the second order, we can easily see that we have

Ax =/( ", v ) or A j3 = g ( u, v)cĂ§,

Axi = /,(",, ii|)Ă®i(h AS, = gi(uu C|)oc,.

Conditions (7) then become

(8) f(u,v)Zu - f,(ui, vrfcostySui + gtiut, p,)sin <(/ SĂ§>, = o, g(u, V ) OC /< M|, C|) Sin il" 0 "l - g{lll; Vl) COSll" 8('i = O. These are the conditions under which the two groups of numerical values

7l> 72l (h- ']:-' </5'- <7'h v, "1. ^l

and

Ă§r, -v- ?,< ^2-t- 39-2, qj-tyi ?4-+-2?4, q-o-T-0qs, y64-6y6, a +- Sm, r -+- 8f. K[-f- 3i*i, ("t -+- S''i, i + 5^

can define two infinitely close states of the same system. However, it is obvious that these conditions of connection cannot be integrated either immediately or with the help of integrating factors : they are therefore, as we had announced, non-holbnomic connections.

Let's generalize this remark.



We will have to consider systems to which their constitution imposes links of some form. These links will be expressed by relations between the quantities which define a state of the system and the infinitely small variations of these quantities.

These relations will be linear and homogeneous with respect to these variations. By this we mean that if two distinct sets of variations, taken from the same state called a system, verify these relations, they will still be verified by a third set where each variation, is the sum of the corresponding variations taken from the first two sets. Each of these relations can moreover include a limited number of terms or contain one or more integrals, simple or multiple, each of which is equivalent to an infinity of terms. These relations are said to be non-integrable if they cannot be replaced by the same number of relations in which only the quantities which define the state of the system appear, and not their variations; we will then say that these relations express non-holo/iomic links; the system whose constitution entails such links will itself be called a non-holo/iomic system.

It would be sufficient to differentiate the equations expressing holonomic links to obtain relations similar in form to those we have just considered; only, the new relations would be integrable, while the previous ones were not.

In summary, the holonomic or non-holonomic links that we will consider will be expressed in the form of relations, integrable or not, between the quantities that define the state of the system and the infinitesimally small variations of these quantities with respect to these last variations, these relations will be linear and homogeneous in the general sense that we have just defined. Let us prevent to the particular case of a system whose state is entirely defined when we know the numerical values xt x", X,, of a limited number tĂ® of physical properties.  To pass from a state of this system to an infinitely close state of the same system, we will not be able, in general, to take arbitrarily ÂŁ es "infinitely small variations Ăąx,, 3#2, 3 xn of the quantities



Xi, XĂ®, xn, since conditions (4) must be satisfied. But we may assign arbitrary infinitesimally small values to p = n - m of the quantities $xt, Ăąx2, Ě�--; ĂŻ>x, the equations (4) will then tell us what numerical values to assign to the ni others so that the two sets XU X-2, Xn,

a?i + 8a?i, x*Ă®>xÂ±, xn-Â±r>Xn,

represent two infinitely close states of the same system. As the conditions (3), diiferentiated, take the form (4), this remark remains equally true for a system whose constitution depends exclusively on holonomic links. We can therefore state the following general proposition Let us consider an isolated system whose state is entirely defined by the evaluation of a limited number of physical properties; let us suppose, moreover, that the bonds which fix the constitution of this system are or are not holonomic. A first state of this system being given, we will be able to determine any state infinitely close to this one (by choosing arbitrarily the values of a certain limited number of infinitely small quantities). We will say that these quantities are the variations ikdĂ©r-ji.NnA.vjKS qczi derternzirzerzi any change of infinitely small state of the studied system.


	Bilateral and unilateral connections.



But we have not immersed all the forms that the conditions of connection which express the constitution of a system can take; we have, in fact, assumed that these conditions have the form of equalities; we can very well find cases where this is not the case; let us cite a few simple examples.

Let. Ji .x.y, z) = o the equation of the surface (limit our



solid. This surface divides space into two regions, one where f(x,y,s) is positive, the other where f(x,y,s) is negative. Let us assume that this last region is the one occupied by the solid. Then the coordinates of our moving point will always be subject to the condition.

/(Ě�*-, y, s)Ă o.

a" Two moving points M, (x,, yt, z, ) and M2 (x->,y", z.,) are connected to each other by a flexible, but inextensible wire of length l. The distance M| M2 can be equal to or less than l, but it can never exceed l, so that the constitution of the system leads to the condition

l1- (*2- ^i)2-(/2- /i)!- (-Ă®- -i)'o.

3" A system is formed by a mixture of ice and liquid water; m, is the mass of the ice and m-, the mass of the liquid water; the constitution of the system requires that the sum of these two masses has an invariable value M, which gives a connection expressible by an equality

/"i + /?l2 = M-

But this constitution also requires that neither of the two masses mi, m2 is negative, which gives the two conditions, not reducible to equalities,

/"[ = O, /2:. O.

Up to now, we have assumed that we had a criterion for recognizing whether or not two infinitely neighboring states belonged to the same system; but we have admitted, at the same time, that this criterion consisted solely of equalities; the examples we have just cited will show us that, in some cases, inequalities can also be included in a similar criterion. Let us take up these examples one by one.

i" Let M (x, y, 0) be a position of our moving material point; under what condition can the position M'(.r + Sx1, y-y, z -f- S s) be regarded as a second possible position of the same material point?

For M' to be a possible position of this material point, it



It is necessary and sufficient that at this point the function f of the coordinates is positive or zero.

Let us suppose, first of all, that the first position M is on the surface of the impenetrable solid body, so that (x,j :) is zero.  For M' to be, to the nearest infinitesimal of the second order, a possible position of the material point, it will be necessary and sufficient that Sa?, oy, oz verify the condition

<>f\ Ă f df " "

Sx H - - oy -r- - oz d. o.

Ă´x Oy Oz

If, on the contrary, the point M is not on the surface of the impenetrable solid, B#, Ă»y, 8s can be taken arbitrarily. 2Â° Let us take an initial position M, [x, y,, z,) and M2(x2, y- zu) of our couple of points, and let us suppose that at the moment when they are thus placed, the wire which connects them is perfectly taut. MiM2 is then equal kl. Let us then consider a second position, infinitely close to the preceding one, M'( (xt + S^ y, -+Ě� oy{, z, -+- os, ) and M', (^2 + 8-^2) y-i+ toy. z-, + Ă´52) of the same pair of points. M', M'2 cannot outperform l, so M|Ma, so we must have

O2- x\ ){fixt- 8a7, )-4- (y^-yi)(oyi - Sy1)-h(z2 - zl)(Sz,- Ă”2,)So. If the wire connecting the two points M|,M2 is not perfectly taut, there is no need to impose any condition on the variations Zxs, 8y,, o; ox2, oy,, oz-

3" Let us take an initial state where the mass of ice is null; from this state, this mass, which cannot become negative, cannot decrease; so that, to pass to a close state, it is necessary necessarily that one has 1

2m! Ă˘ o.

Let us take in the same way a state, initial where the mass of the liquid water is null; to pass to a close state, it is necessary necessarily that we have

0.

Neither of these conditions is necessary if, in the initial state, the system contains both water and ice.



4" To these examples, let us add a fourth where we immediately encounter a criterion of the form we are dealing with: i and 2 are two bodies, at least one of which is deformable; they are not miscible with each other. In a certain initial state, they touch each other all along a certain surface S. Let M be, in this state, a point of the surface S; Mt (x,, y,, s,) and M2(.x2, y-2, z->) two points infinitely close to the point M, taken one inside the body i and the other inside the body 2: n, and n2 the two half-normals in M to the surface S, directed one towards the inside of the body 1, the other towards the inside of the body 2; ci. J3,, y, the director cosines of /), a2, |32, y2 the director cosines of "2-

Let us now consider a second state close to the previous one; the material point which was in M| has come in

M',(a?1 + Sa?,,71-i-fi/z1-f-3.s,)

the material point which was in M2 came in

M 's (x2 -+- oa-i, y-, -h oy. ss - Sz, ).

In the vicinity of the point M, the two bodies 1 and 2 could have remained in contact; they could also have separated from each other; but they could not have been compenetrated, since they are supposed to be immiscible; hence the condition, required at any point M of the surface S, a, o-r(-+- 3, o/i- -'1 OS! a" ox, 3, 0/ y2 rj-,>0.

This condition would no longer apply if, in their initial state, the bodies and 2 had no point of contact.

There are systems constituted in the following way Their states can be classified in two categories;

If we take for initial state an elat of the first category and if we impose on the properties of the system infinitely small variations, so that these variations determine a second state, infinitely close to the first one, of the same system, it will be necessary and sufficient that they verify certain conditions of linkage, holonomic or nonholonomic, expressed by equalities.

But if we take as initial standard a state of the second category, it will be necessary, with these conditions of connection expressed by eq-



lities, join some other linking conditions of the form /=", # = <>.

In these conditions, g, are expressions formed by means of the properties (which define the state of the system and the infinitely small variations of these properties; with respect to these variations, they are linear and homogeneous, in the broad sense that we gave above to these words (p. 4Â°) - If, in particular, the state of the system is entirely defined by the values of a limited number of quantities x,, ,~2- these conditions are of the form

F, 8a?, 4- F2 ex, -h 4- Fn Sx,,Z o,

Gi Ixi -+- Go S:c2 ~r- -(- G,, Ă®.r,; o,

F(, G|, having known values when the state of the system is known.

We will call the links we have just considered unilateral links; links expressed by equalities, whether holonomic or not, will be called bilateral links.

The difference between these two kinds of connections will become even clearer with the following remark

Let us suppose that from a given initial state, a bilateral connection is verified when we impose infinitely small variations on the properties of the system; it will still be verified if, from the same state, we impose on the same properties variations equal and directly opposite to the previous ones.

It may not be the same for a unilateral linkage; let us suppose that from a given state of the system, certain variations imposed on the properties of this system make f take a positive value; they will verify the condition of unilateral linkage/^o; variations equal in absolute values to the previous ones, but of opposite signs, would make/ negative and would not verify this condition anymore.

This is expressed by saying that, for a system subject only to bilateral connections, any infinitesimal change of state, consistent with the constitution of the system, is reversed.



sand, while for a system subject to one-sided bonds, there are infinitesimally small non-reversible calibration changes.

The possibility of one-sided connections was first pointed out by Fourier ( ), then by Gauss (-).


	Virtual modifications of a system.



Let us imagine that a continuous sequence of states of the same isolated system has been formed; let us fix our attention on these various states in the order that allows us to pass from one to the other in a continuous manner; to designate this quite intellectual operation to which we subject the mathematical scleme that must serve us to represent a set of concrete bodies, we say that we impose on the system a virtual modification. In the course of a virtual modification, according to what has just been said, the numerical values of the properties which serve to define a state of the system vary in a continuous way, but, in general, their variations are not arbitrary; they must be such that the various states of which we consider the sequence can be considered as states of the same system; in other words, they are subject to the connections, holonomic or not, which result from the constitution of the system.

This restriction is the only one to which a virtual modification is subject; the variations of the numerical values of the variables which serve to define a state of the system must be compatible with the conditions which logically result from the definition of this system, but with these conditions only. In particular they may well contradict the experimental laws governing the system.

(') FouniER, MĂ©moire sur la Statique contenant la dĂ©monstration du principe des vitesses virtuelles et la thĂ©orie des moments (Journal de l'Ecole Polytechnique, V* cahier, 1798, p. 20. - Ĺ’uvres de Fourier, t. II, p. /|77). ('Ě�) Gauss, Ueber ein neues allgemeines Grundgetelz der Mechanik ( Crelle's Journal, BJ. IV, 1829. Gauss, Werke, Bel. V, p. -?. in note). - Principia generalia theoriĹ“ jĂ®gurĹ“ Jluidoruni in statu Ĺ“quilibrii (Nouveaux MĂ©moires de GĹ“ttingue, t. VII, "i83o. - Gauss, WerkĂ©, Ud. V, p. 35). - Letter of GAUSS to Miinius cited in G. Neumann, Ueber das Princip der virtuellen oder facullativen Verruckungen (Beric/Ue der K. SĂ chsischen Geseltschaft der IVissenschaften zu Leipzig Mathernatiscli-pliysische Classe, 8 March 1S86).



This is the set of concrete bodies that our abstract and mathematical system aims to represent.

This remark being essential, let us clarify it by an example. Let's take the mixture of oxygen, hydrogen and water vapor which has been used many times as an example; let's suppose it is maintained in an enclosure of invariable volume.

At least for temperatures above a certain limit, there is a condition of equilibrium of the system, a condition expressed by a relation between the ratio x and the temperature fj ~=/(6).

If, at a certain temperature 0, x has, in the mixture, a value lower than /(G), it necessarily occurs, within this mixture, a combination of oxygen and hydrogen, so that x necessarily increases. If, on the contrary, at this same temperature 0, x has, in the mixture, a value higher than /(11), it surely occurs, within this mixture, a dissociation of the water vapor, which makes x decrease.

These propositions are intended to represent the experimental laws to which the concrete gas mixture of which our abstract system is the figure is subjected; but they do not follow logically from the sole definition of this abstract system; they are not binding conditions; therefore, in the constitution of virtual modifications, the physicist does not have to take them into account; he can, for example, starting from a system where x has a value lower than /(0), arrange mixtures infinitely close to each other, so that x goes down from one mixture to the next; he can consider a continuous sequence of mixtures where x goes up and up from a value higher than /(&) he thus obtains two virtual modifications, although in reality no modification can be observed which is represented by any of the changes of state produced in such a sense.

We can thus see that a virtual modification can very well present us with a continuous sequence of states that no real modification could go through, because, in doing so, it would violate certain experimental laws that govern the bodies studied.

On the contrary, in any real change, the system runs through



a continuous sequence of states; this continuous sequence of states of a same system constitutes a virtual modification of this system; thus any real modification corresponds to a well determined virtual modification.


	Of the local movement and the general movement.



The word motion has, in modern scientific language, a precise meaning; it means exclusively that phenomenon by which, from one moment to the next, the same body occupies different places in space.  It is only in Peripatetic Philosophy that the word motion takes on a much broader meaning and that it applies to a host of changes of a very diverse nature; Peripatetic Philosophy characterizes with an epithet the particular motion by which, from one instant to the next, the same body comes to occupy different places; it names it local motion.

In this Treatise, we will give to the word motion a very general meaning, analogous, but not identical, to the one it takes in the Peripatetic Philosophy, so, like this Philosophy, we will take care to designate by the precise term of local motion, the simple change of place in space, from one instant to another.

The local motion will not be, for us, the only motion to be considered; whenever the properties by which the state of a system is defined vary from one instant to another, we will consider this system as being in motion; now, a system can be in such a motion although it is not animated by any local motion. We will cite two examples.

Ě� i" A surface invariable in shape and position delimits a constantly homogeneous mixture of oxygen, hydrogen and water vapor the total mass M, of free or combined hydrogen, the total mass M2 of free or combined oxygen, the volume V occupied by the mixture, the content x of water vapor, the temperature are the magnitudes which completely define a state of the system. By defining the constitution of this system,



each of the first three takes the same value in any state of the same system; the last two vary arbitrarily. Without any part of this mixture, which is constantly homogeneous, changing its location in space, a combination of oxygen with hydrogen or a dissociation of water vapor can occur from one moment to the next, which causes x to increase or decrease; the mixture can heat or cool, which causes 6 to increase or decrease. We say then that the system is the seat of a chemical movement and of a thermal movement, although ĂŤ! no local movement occurs there.

2Â° A conductor, of invariable figure and position, is electrified. The solid electric density at each point of the volume it occupies, the superficial electric density at each point of the surface which limits it or of the surfaces of discontinuity which divide it, completely define its state.

Without any part of this conductor moving in space, the electric distribution can vary from one moment to the next; the electric density can, at different times, not have the same value at the same point. So, without being animated by any local motion, the system is the seat of an electric motion.

Many philosophers and physicists have maintained, and still maintain, that the only motion really existing in the material Universe is local motion; they will therefore assert that the changes of elal of which we have just spoken are only apparently free from local motion; that in reality they resolve themselves into local motions hidden from our senses. They will maintain, for example, that the combination or dissociation by which, in our homogeneous mixture, the content of water vapor varies, is nothing other than a local motion by which certain atoms of hydrogen approach or move away from certain atoms of oxygen; that the heating or cooling which causes the temperature to vary is produced by an increase or decrease in the average speed of the said disordered motion which agitates the gaseous molecules

They will claim that any change in the electrical distribution on a conducting body is ultimately reduced to the flow.



of a certain lluidc or to the transport (If certain. corpus-cules.

Those who are more sceptical or more cautious, do not consider as certain the reduction of any change of state to local motion, may nevertheless wonder if such and such a phenomenon, which we consider to be known not to be a local motion, would not resolve itself into a motion too tenuous to be accessible to our senses, or, at least, if this phenomenon would not be linked to some imperceptible change of place. Such objections or doubts have their origin in a confusion.

We must be very careful to distinguish between, on the one hand, the real and concrete bodies whose properties we propose to represent, but not to explain their nature, and, on the other hand, the abstract system, composed of mathematical notions, which must provide us with an image of the properties of these concrete bodies. The very nature of concrete bodies remains unknown to us; therefore, when we observe a change of state free of any local motion perceptible to the senses, directly or through the intermediary of instruments of observation and measurement, we can neither affirm nor deny that this change of state is linked to a hidden local motion.

But if the e mliinc structure of-, concrete bodies i ( happe us, the structure of the mathematical scheme, the sole object of our icusonnenw/its, is, on the contrary, perfectly Ě� onnue to us, <<n <c s< heme is c\t hisivemenl a < onsli m lion of our mind; we can therefore, with enlieie certainty, affirm that such < haiigement d ( lai of this e seheme Psi absolutely e\empl of any < highly of heu of the bodies which < omposenl

Dailleuis. les propnctcs m.itht maliques de ce s( heine n'onl d'autre objet que de i cpre-enlei h s pi opi ictes des coi ps concrets, mi degrĂ© d'approximation qui- comporte la constatation de ces derniĂ¨res au moven des iiish unients de mesure. Lois mĂŞme, doni qu'un ceilam (hautement d'Ă©tat des corps concrets serait i "du<hblea un mouvement local, ou serait lie Ă  un certain mouNeinent local, si ce mouvement local est liop tenu pouri ĂŞtre icioniiii comme lel p.n nos inslrumenl- de mesure, ce changement d'Ă©tat concret pourra ĂŞtre iej)iĂ©sentĂ© d'une m.iineie satisfaisante par un



change <l Ă©tal qu'Ă©prouve lo schĂ¨iue abstrait, ce Jerjiifr changement Ă©tant exempt de toul mouvement local.

Let us admit, for example, that a change of electric clistri Imln -ti noi t J'elĂ®'et perceptible d a certain displacement Ă©prouw'. within the conductive mass, by- corpuscles too small so that no instrument can make them sensitive. It is not -vie: iiullenienL absurd to try to represent. with a satisfactory approximation, the laws of the electric distribution to the movrij of the mathematical sehĂ©me which we have defined; however, in <Ě� sebĂ¨me, a change of electric distribution does not entail any local movement.

Quittons, pour un instant, le mou\eui(;nl gĂ©nĂ©ral et revenon. au iiioii\ fjiicu I local.

Or ^ail what is the delinilion of the iles-e in such a mou\'ciiicnL. of what we noniiiicniiis dorĂ©ii>i\Hiil the local ri.tesse. 1 .a malicre cpii. at I in^laul is in an element of volume (Im which Mi'x. _)". z i is a point, relrou\c, at I instant (/ -- dt) <'ii an element of (1 \oluiue c/d)' aiiipiel ap|)arlieul the 1 point M'i'.z- y:'}. If we [)Ose

./- - /Ě� ii dl. y' -) -i'< -rwdt.

a, c, ir will be, at the moment, the components of the velocity of the matter which is at the point M at this same moment. If the point JVI is in the middle of a mixture of several eoi|i>, this definition leads (^ 2. p. i(iiĂ  > to consider as many local vilesscs dillV-renlos "(u'u've got distinct components in the mixture.

It is not necessary that the local \ilesse.s of a body are always continuous of they can, for isolated values of/, undergo discontinuities; thus, when one treats in Mechanics of the shock of the m\ariable solids. one supposes that at I mstiinl of the shock the speeds vary in a discontinuous way. When we know, at a certain moment, the local velocities of all the small material parts, mixed or not, into which we can decompose the system, we will agree to say that we know the local motion of this system at this moment.



To generalize this definition we would say that we determine the general motion of a system at a certain instant when to n the knowledge of the state of this system at this instant, we will join the evaluation of certain physical properties, in limited or unlimited number, that we will name the general speeds at this instant. 1 1

The choice of the physical properties that can be considered as general velocities of a system is subject to certain restrictions that we will formulate with precision. In the first place, all the local velocities must be determined when the state of the system and the general velocities are determined or, in other words, when the state and the general motion of the system are determined.

Each of the local velocities must be expressed as a linear and homogeneous function of the general velocities, these words being taken in the sense which was defined above (Â§ 6, p..jo).

Secondly, the knowledge of 1 Ă©tal and of the general motion of the system must lead to the knowledge of the first derivatives with respect to time of all the quantities which define the state of the system.

These first derivatives must also be expressed as linear and homogeneous functions of the general speeds. We see that if, without changing the system's ideal, we multiply all the general velocities by the same number, all the local velocities and all the first derivatives with respect to time of the quantities which define the state of the system are multiplied by this number.

Finally, the general velocities can, like the local velocities, be discontinuous for certain values of Provided that these restrictive conditions are met, we remain free to choose as we please the physical properties which will play the role of general velocities and which will define the general motion of the system.

Let's give some examples of such a choice:

i" Let us consider a solid body, whose lethality is entirely defined by the position it occupies in space. The velocity ( u, c, n>)



of any point i y. z) of this solid is. at I instant given by the formulas

II = O. -r- \LZ V Y

r = ji - vi - }.

tr = Ě� -- /.j' - |j. ;r.

where a. ji, y, Ě�}Ě�Ě� v "(>ul six foundations of the single \ariable y., jb, y are ies components of a translational velocity imposed on the solid; are the angular velocities of three rotations made respectively about the three coordinate axes. The components u. c, ir of the velocity are linear and homogeneous functions of the six quantities a, jĂŻ, y, A, [/ v. It is the same for the first derivatives with respect to time of the six quantities which fix the position of our solid in space, and this in any way we want to determine this position. The six quantities ?.. |i. y, a, a, v can be taken as general velocities; they determine the general motion of the system which is, moreover, a simple local motion.

Ě�> the enclosed vessel, imariablc in shape and position, encloses a lethal compressible fluid of the system is assumed to be completely unbound when the density p and temperature of the lluid at each point i.f, y, z\ of the volume enclosed by the vessel are known. Let r, iv be the components of the local velocity at the point ('aâ„˘, y, z) and at 1 instant if we observe that we have, at any point and at any instant, in \erluity of the theorem of Kinematics well known under the name iVĂ©qualion of continuity..

(a) il: - lit z u -'- i -f- ilt --L ;p) H - Ăą( !r 0 w) - o.

01 ij.r ily 0.Z

we see, (pawn to) look at the four functions of x.y, t u, v; ~s~; cl6

Ě� .lit

as the general viles>es which determine the general motion of the system: this motion is no longer a simple local motion it implies a thermal motion.



-'Ě�>" They uu conductor, invariant of form cl of po-iIiuii. that is electrified.

The state of. this conductor is enhĂ¨remenl delini when one knows the solid electric density c. in, any point of the volume which it occupies cl the superficial electric density Y. in any point of the surlace ijiii the limit.

In the arena, the local velocities are identically zero at each point of the conductor.

Let a. i>, u\ be the components of the electric flux at the point (x. Y.) and at the instant These quantities are related to the electric densities e. \L by the equalities

1)11 /A" <)w Oe

1 ) _1.- -.= (1.

Ă´x ijy rice Ot

n ~)';

( Ě�> j 7, ~u '^f ti- - (),

01.

l)Ă¨-> then, it is easy to see that the jht.i of cmuliirliini rlfi-irii/iir can be taken as a general velocity capable of defining the general iiioiuc'Ă®iful of the system; this mou'cinenl. is, here, an electric niouemenl piiremeiil, enliĂ¨remenl evempt of local motion.  {" Let us take a polarized dieleciri(pie, but ui\arialile of form, position, temperature ele. 1,'Ă©liU of this body will be enliĂ©i'1nii'iiL ili'iLcii'ininĂ´ when we eonnailron>, in chacpie point of the \oIliiiii: that it occupies, the three components 15, C of the intensity d<; polarization. From then on, we can visibly take for general \ites>e, the fln.i of (Icplai-emcnl whose components- are ~- -~

Ě� iii m ai

The general movement thus determined -.era. coinme te precedent, ilaleinenl exempt of local movement.

No-. we said (that the ito-i1-. ^enerilc" had to be clioisii' in such a way that it- verifies the following condition When we multiply all the general velocities by the same number, the first derivatives* with respect to time of your test properties which define an elal of the system are multiplied by this number; it is the same for all the local velocities.



This number can be o. J J <:> s therefore, mm- can state the." following propositions

If all the "general velocities" cancel each other out at a certain moment, it is the same, at this moment, for all your "local velocities" and for the first differences with respect to time of all the properties which define the state of the system.

If the general speeds remain all constantly null. it is, of it, of same of all the vjtesses ttmisffimĂ¨* all the physical properties which define 1 Ă©tal. of the svstĂ¨me keep constant values, so that I Ă©tal of the system remains invariable.

'In Mechanics, where one will only irai te of local motion, where, consequently, the state of a svstystem is entirelydefined when one knows the place occupied in Ě�J'space by each of its parts. one says that a system is in equilibrium when all local velocities are constantly zero: the state of the svstystem is then invariable.

We will extend this term and say that any system is in equilibrium when all the general velocities v are constantly zero. In a system in equilibrium, the local velocities are all" constantly zero and the system remains invariant.

The local velocities could be all null although the general velocities would not be all equal to o. If we consider, for example, an electric conductor immobile in space, the electric velocities of which it is the seat may well not be zero.l n such a system, where the" local velocities are all constantly nulljs, but where eeiaine" \it"""e" general dillerent of o, n e>l |>a." in Ă©(|mlibre it is said < rest. The ii s\s|Ă¨inc eu rest is free of local motion, mai" il u e "l no evempl of general motion the mol repus oppose the term motn'emenl local, as the word equilibrium s nppose .m term general motion. l.

We have said that the knowledge of the general velocities (levai nĂ©eessatremenl entail the knowledge of the first derivatives with respect to time of all the properties that define the system. The reciprocal is not necessarily true. There are systems for which it is true.



For example, for a solid body moving in space, the knowledge of the derivatives with respect to time of the six parameters that fix its position leads to the knowledge of the six general velocities a, JĂŻ, Vj Ă€, u, v.

For example, again, in a stationary dielectric, the knowledge of the derivatives with respect to time of the components of the polarization leads to the knowledge of the displacement flux which has precisely these derivatives as components.

In such a system, if we cancel the first derivatives with respect to time of all the properties that define the state of the system, we cancel by the same fact all the general velocities the system cannot remain in an invariant state unless it is in equilibrium.

I Many systems do not enjoy this property. For a compressible tluid, enclosed in an invariant surface, to keep an invariant state, it is necessary and sufficient that the density p and the temperature 0 keep, at each point, values independent of time; the second condition entails the equality at o of the Ide l d. dp general velocity - but the first condition, which cancels -y-> does not require that the components ", v, w of the local velocity be zero; it only requires, by virtue of legality (9), that these components verify the relation

to! pu) d(ov) d(aw') = o.

(1 01 - - h i-! - H - - == o.

dx dy dz

In the same way, for an immobile electrified conductor to remain in an invariant state, it is necessary and sufficient that the solid electric density e at any point of the volume it occupies and the surface density E at any point of the surface which limits it keep values independent of t; this condition leads to the equalities of Ă \i


	=0, - = o



dt tot

but it does not require that the components u, v1 w of the electric flux cancel out at any point; it only requires, by virtue of equalities (1) and (2), that these components verify the equation of the tov Ow

(it) - -H h -- = o

v Ox <)y dz



at any point on the line occupied by the conductor, cl I equation ( 1 a u -- fi v -+- y w =

in loul poiul of the surface which limits it.

When TĂ©tai of a system remains independent of time, although the general velocities are not all zero. one says that this system is in uniform regime thus the conditions ( i i) ) and (12) express that our electrified conductor is the seat of uniform electric flows the condition f' 10), that our fluid is moved of a flow uni form

It can be assumed, in such systems, that the properties intended to define the state do not keep values independent of time, but that the same is true of the general velocities; the calibration and the general motion of the system remain both invariant. The system is then said to be in a steady state. Thus a compressible fluid, enclosed in a light surface, is in a steady state if the temperature 0 keeps, at each point, an invariable value and if the components u, c, w of the velocity, functions of x, r, z, but not of t, verify at any point the condition (10).

Thus, a conductor is traversed by a permanent electric flux if the components u, c, w of this flux are independent of t and verify the conditions (1 1) and (12). Let us return to systems constituted in such a way that the knowledge of the derivatives with respect to time of all the properties that define the stall leads to the knowledge of all the general velocities. Suppose, moreover, that the state of the systems we are going to discuss depends on a limited number of variables. Whether the system is holonomic or not, we have seen (p. 4') that any infinitely small change of state can be determined by the arbitrary choice of a limited number p of infinitely small quantities Ă®| -". ÂŁ/ Once these p quantities are known, we know by linear relations the infinitely small variations Â§#1, Zx->, 0.7; of the n quantities .- x-Â± r,, which fix, the state of the system.

Let us consider the real change of calibration that the system experiences between the instants t eu (t.<U.)\ this change corresponds it certain values infinitely. small Ă®.j sp, values that we



we will refer to as

z\ dt, = dl. z], dl.

I.) after. this ijin \ieul it Ă¨lre dil, the knowledge of the p quantities limes Ă®r ĂŻ. z determines, to the moven of linear equations el | Ě� ihx d.r, d.v,, homogeneous, the ilenxcrs - j- > -r^t - -> > el., by hypothesis, the a (II l dt t dl 1 l

knowledge of these latter quantities enlranie the knowledge of loti te-, the general vilesses. The determination of the independent quantities Ă®'(, e. Ă®#J is thus equivalent to the determination of the system's velocity. From then on, there is no reason why we should not take as general velocities the p quantities z\ e' z PiH'ini the systems we have just been talking about are, as a more particular case, the liolonomous systems whose state depends on a limited number of physical properties. Any infinitely small change of state of such a system is determined by the variations oy,,oy->, ovp of a limited number/" of independent variables y, )>, v p. To define the motion of such a system, the quantities

c/)i dy-i dv

y'x if7 Ji ~dT' Ě�Ě� ~tr

can hardly be taken as general speeds.

The two categories of systems of which we have just spoken l' are the simplest < pie the Energetics can consider; therefore their study would have for us a very special importance. 10. Independent systems i

Let us consider a system S isolated in space. Let us assume (pion a ehe .exactly

i" < What are the physical properties whose evaluation delineates (-completeinenl a state of the system S

(') We have, for hi first time, ilĂ©lini hi nolion of inde/icndant systems in It'crit suiv;ail CoititnenUfii'e to the principles of lit 7'/iermodyna/ni(/ur f "1 Part Le principe dĂ© la conservation de l'Ă©nergie, Cliap. I. art. 5 (Journal de ''Ě�MathĂ©matiques pures el appliquĂ©es, \n sĂ©rie, t. VIII, rSt)(j p. >So).



Ě�> What are the links, holunomes or not, which deeoiilenl of the constitution of this thread sxsleme allow to recognize -j two infinitely neighboring states -ont elals of this same svslĂ¨me: -i" What are the general velocities- which define coniplĂ¨temenl the general motion of this svslĂ¨me.

Let us imagine that your bodies which form the system S can, by means of a certain surface, be separated into two groups, S, S,. Let us imagine that the properties:, defining the state of the system S. the bonds characterizing its constitution, the general speeds determining its generative motion can be arranged in two groups Ě� of properties, bonds, speeds, which we will name the group G, and the group (i2.

Let's admit finally

i" (hic the properties, the bonds, the ileiles.-es which compose the group d, jjiii>sr-iil Ă¨lre defined- cl evaluated- without that it is garlic no allusion to the set of bodies S. nor to the properties, bonds and vilesses which compo^enl the group (,

a" That the properties, bonds and velocities which compose the group (;2 pnissciil Ă¨lrc defined and Ă©\;duĂ©i:^ without any mention of the en^endile of body S,, nor of the properties, bonds and velocities which eomposenl the group (i,.

Under these conditions, it is clear that we could conceive the body set S, isolated in the space and define the state, fix the conslitiuiou, clĂ©lcrniiuer the general imuncmeul of this system isolates S| to the minfiii of the properties, bonds and speeds that form the group G, that we could, in the same way, look at the set of bodies S2 as im system i-olated from space and look at the properties, links and \iies-e- generated that form the group G" as detinissanl the elal, the coii-liluiion and the general motion of the s^ system-So.

It is what we will formulate by saying that each of the -detFX syslt'.mi's S,, S., prit/ rlrr, conceived known isolates in U space, lont en gm-danl l'Ă©lat. In constitution and moineincnt uĂ©ncral that it presented within the system S.

We will then say that the two systems S{, S.y are independent of each other.



The most general virtual modification of the system S consists in attributing to the properties which bind the state of this system the most general infinitely small variations which are compatible with the conditions of connection which characterize the constitution of this same system.

We see then that in a similar modification, the physical properties, suitable to fix the state of the system S, which have it part of the group G, will experience the most general infinitesimal variations that are compatible with the bonds of the same group in the same way the physical properties, suitable to define the state of the system S, which appear in the group G^ will experience the most general infinitesimal variations that are compatible with the bonding conditions belonging to the same group. Now, the first set of variations obviously defines the most general virtual modification of the system S, while the second set of variations defines the most general virtual modification of the system S2.

We can therefore state the following proposition If an isolated system S can be decomposed into two independent systems S,, S2, the most general virtual modification of the system S can be considered as resulting from the coexistence of the most general virtual modification of the system S, isolated in space, and the most general virtual modification of the system S2, also isolated in space.  Let us clarify these considerations by some simple examples. iÂ° Let us consider a system S formed by two of these rigid solids S,, S2, which are considered by the rational mechanics; these two bodies are supposed not to touch each other at any point. The state of this system is supposed to be entirely defined when we know the place occupied in space by each of the two bodies S,, S2 it is thus defined by twelve independent variables, six of which fix the position of the body S, and the other six the position of the body S2 the first derivatives with respect to time of these twelve variables can be taken as general velocities. Obviously the two bodies S,, S2 form two independent systems.

2Â° The system S is formed by two solids S,, S2, subject to



constantly squint. To define the state of such a system, we operate as in Â§ 6 (p. 'Ml): we choose a first system of curvilinear coordinates orthogonal (m,, i() to the surface of the body S, a second system of curvilinear coordinates orthogonal (u->, v->) to the surface of the body S2. The state of the system is then defined by means of eleven variables, namely the six parameters c/i, , fj3, <y.(, rj;n ye which fix the position of the body S, in J space; your two coordinates u,, c, of the point of contact at the surface of the body S,, the two coordinates m2, r2 of the same point at the surface of the body Ss, finally the angle <l that make, in this point, the lines coordinates u,, u- Now, if the first six variables can be conceived without having to consider the body S2, it is not the same of the last five to which one cannot attribute any sense without considering at the same time the two bodies S,, S2. These two bodies do not form two independent systems. 3" IjC system S is formed by two bodies S(, S2, mobile, deformable and immiscible, which touch each other along a deformable surface S.  When the system S passes from one state to a neighboring state, the parts of the two bodies S,, S2 that are adjacent to the surface S must move in such a way that they remain contiguous, but without compenetrating.  This condition is expressed by a bond that is easy to form.

Let be:

M a poi ut of the surface 2,

M,, Mo two points, infinimcnl neighbors of the point M, taken the one inside the body S,, I other inside the body S2- The normal in Ma to the stii-facc 1 l'ail the angles a,, \iu -y, with the axes of coordinates if one directs it towards the interior of the body Si and the angles a^, [jj. y2 if one directs it towards the interior of the body S2. The material points which are in ~\l,. M2 in the first stall, and y yes the coordinates Ě�rl v,, :t. -C^, )'". ^2, come in JVl' M!, in the second state el have the coordinates ii + Sj: J'i -!Ě�- or, -|- 3;, x2 -J-- o,r.2, y-, oj' ;2 -j- o:2.

The connection in ([uestion is then expressed by the equality

CdsĂŻ, ?./-, -;- cusSi o/! -+- cos-'i o:t -> co "j" Sx-, cos'J" Sj's cos-2 oĂ´, = o. It is clear that one cannot write it without considering the




These two bodies do not form two independent sterns.

In a virtual modification of the system S, taken in isolation, the surface, whose displacement would be arbitrary, would sweep a certain space V| of a modification of the system S2. taken in isolation, the surface would sweep a certain space V| nothing prevents that the two volumes V^ have a common part VV. In this case. the coexistence of the two virtual modifications considered could not be regarded as forming a virtual modification of the system S; because, at the end of this modification, a volume. W would be occupied at the same time by a part of the body S, and by a part of the body S2, which cannot be, since these two bodies are not miscible. Let us say again that the two bodies S, Sj cannot be considered as two independent systems.

.Ě�j" We give ourselves in space an indeformable surface t which we call a mold; if a body comes to apply itself to the surface -r by placing itself on the side of this surface, we say that it takes X imprint in relief if it places itself on the side y. of the surface r on which it applies itself, we say that it takes YempreiiUe in hollow.

It is assumed that the isolated system SI is, in whole or in part, bounded by a surface ĂŻ, which is, by definition, undeformable and immovable, and which is the impression in relief of the surface t that the isolated system Sa is, in whole or in part, haunted by a surface -2 which is, by definition, undeformable and immovable, and which is the impression in depression of the surface t.

To form the system S, we join I \in to I aulre the two s\films S|. S. in such a way that the two MirIViees -); 1. form only one surface ĂŻ, (pion admits to be immobile el. indĂ©formable by definition.

It can be seen that the system S can, here, be looked at as formed by two independent systems S,. So. The most ^(ineral) virtual modification of the system S, taken alone, must leave the surface still the most general virtual modification of the system S2, taken alone, must leave the surface still 12 the most ^general virtual modification of the system S must leave the surface still



immobile la Ě� suri ace 1' it is clan1 that this last modilication canL be regarded as resulting from the first two. This decomposition of such a system S into two systems i 1 1 f f " 'Ě� - pendants S,, S,; will be -useful to us at the /in of this Chapter <ÂŁ I I. p.- 71 1. '.)" The system S is a polarized dielectric body. invariant of (orme el.ide position in I space J Ă©tal of this body csl determined when we give ourselves, arbitrarily, moreover, the three com])osants A$ B, C of the polarization at each point of the volume it occupies: the mou\emcnl ^eneraj of c1 -WĂ¨nie is determined by the knowledge of the three component-. i>. A, of the displacement index at each point.

l)econipo.M>n> this corp> S in two bodies S2, which are also indefdrmublos and immobile-

We can say that the elal el I moin cm eut of the system S sonl cntiĂ¨reinenl defined when we give ourselves, on the one hand, the compohaulcs of the polans.ition el of the llux of dt'pl.iceincnL in any. point of the body S(, on the other hand, the components of the polarization el. of the llnx of displacement in ioul point of eorp-. ,S;. It is clear that the two bodies S, Sj form two independent systems. 6Â° The body S is an eli-cli-ized conductor. inxariable of form and position, which we will decompose into two parts S,, S., whose form and position are invariable. To delimit the state of this s\sicm S, it is sufficient to know the cleclric densities, solid or superficial, in each poi ni, of the parts S|,S2: butl So that two states of electrification can be re^ai'di's two states diU'Ă©i-enl.s of the same s\s|eme S, it is necessary cl il suflil (pie the electric charge lolal soil the same in both cases: il (aul el il .suflil, in other words, that the "expr<'ssion <-<h; Ě� I

It is clear that the very statement of such a condition requires the simultaneous consideration of the two bodies S, S. such that (|ii they are welded to each other to form the system S. It is clear that the very statement of such a condition requires the simultaneous consideration of the two bodies S, S. such (|ii they are welded to each other to form the system S. The two



bodies S,, S.j cannot be considered as two independent systems.

The most general virtual modification of the system S, taken in isolation, is, on this body, any change of electric distribution which leaves invariable the total charge Q, the most general virtual modification of the system S2, taken in isolation, is, on this body, any change of electric distribution which leaves invariable the total charge O2 the coexistence of these two virtual modifications gives us therefore any change of distribution on the body S which leaves to the part S, an invariable charge Q, and to the part S2 an invariable charge Q2 but it does not give us the most general virtual modification of the system S, because this one consists in a change of electric distribution subject only to leave invariable the total charge of the system S, that is to say the sum (.), + Q2 of the charges of the parts S,, S2. Suppose we want to study the properties of a set of bodies S,. According to what we said earlier (Â§ 3, p. 18), we must begin by placing this set of bodies inside a surface S large enough for us to treat the bodies S, as if the bodies outside the surface ĂŻ did not exist in other words, we must reason as if the bodies which the surface S comprises formed an isolated system in space.

Now, besides the bodies S, the surface S contains, in general, other bodies S2. If the two sets S,, S2 form two systems independent of each other, we will say that the set S, is a material system independent of the foreign bodies S2 whose action it undergoes.

We will often use, in the following, the shorter term material system; but always, at least until further notice, we will have to imply that this system is independent of the bodies which act on it.

It is easy to see that we can extend to a system independent of the bodies acting on it all that we have said, in the three preceding paragraphs, about the state, the connections, the virtual modifications and the motion of a system isolated in space.

If we refer to the way we introduced the



notion of system isolated in space, one is necessarily led to pose the following postulate: it is the same for the system S, to be put only in the presence of the system of foreign bodies So or to be put in the simultaneous presence of the system S2 and of another finite system G whose all parts are infinitely distant from the systems S, and S2.


	Temperature.



Among the quantities which are used to define the state of a system, there is one which plays, in Energetics, a very particular role; this quantity is the temperature; we are going to show now how this quantity can be defined. This study will have, moreover, the advantage of showing us how the physicist can make certain numbers correspond to the physical properties of a material system.

Our organs give us the sensation of hot and cold bodies, of bodies that are hotter or colder than each other.  This sensation of hot or cold, of more or less intense heat or of more or less intense cold, we regard as the sign of a certain quality which affects the bodies and which affects them with more or less intensity; we admit that a body is hot, when it is hotter or less hot than another; that it is cold, when it is less hot than our own body. This quality of bodies which we designate by the words: to be hot, to be more or less hot. our faculties of abstraction and generalization do not delay in attributing to it characters which our organs are unable to perceive.

We can appreciate the degree of heat of bodies only in so far as these bodies are neither too hot nor too cold beyond a certain limit, in one sense as in the other, our organs would be damaged or destroyed, our finger would be burned or frozen: we conceive, nevertheless, that beyond these limits the bodies continue to be more or less hot the ones than the others. Comparing, our sensations of hot and cold with those experienced by our fellow men, we find disagreements sometimes we find equally hot two bodies which another finds unequally hot or vice versa; we are thus I). 1.Ě� Ě� Ě� ,5 ;>



lead us to admit that the sensitivity of our organs

led to admit that the fiisi J >ili t -'- of our organs is fallible and limited that, without being identical, the degrees of heat of two bodies can be close enough so that we cannot distinguish them.

t he hot body can mill on our organs only by the pallie of its sur! ace which is in contact with these organs, and this surface has always an extent which cannot be reduced below a certain limit the time during which we praise this surlace has always a certain duration. Nevertheless, we admit that the quality designated by 1 adjective hot belongs to the parts which are inside the body as well as to the superficial parts, that it belongs to each of the infinitely small parts into which the imagination can cut the body, and that it belongs to it during each infinitely small part of the duration; (It is thus relative to each point and to each instant that at one and the same instant it may vary gradually from one point to another that at one and the same [joint it may vary continuously from one instant to another.

These words "hot fire" thus express a property of each of the infinitely small parts into which bodies can be supposed to be divided.  What is, in itself, this property? Is it reduced, by its very nature, into quantitative elements? These are questions that Physics has neither to solve nor even to examine. Provided by the set of intellectual operations we have just analyzed, the notion of heat appears to us as purely qualitative; it appears as susceptible of being reproduced identical to itself, of becoming more or less intense; it is not susceptible of addition; It is clear that we would be stating nonsense if we said that the heat intensity of boiling water is the sum of the heat intensity of boiling alcohol and the heat intensity of boiling ether; we do not conceive of any process that would allow us to associate these last two heat intensities with each other in such a way that the first one results from this association.

The intensity of heat not appearing to our reason as susceptible of addition, it could not be question of measuring your various intensities of heat the operation which one names measurement has, indeed, its reason of being in the addition.



But, if we ni' can measure this property imn quaul ilalive, this pure 1'(~ <j ual t li'r we t~i it can locate the various intensities of it, e esl-Ă -ttare their iaire correspond to algebraic numbers that. without (black rushed the various intensities of that quality no relation of nature, will be the signs of it el. for l' so to speak, the numbers of order.

We can, in fact, conceive the existence of an algebraic number which satisfies the following conditions

iÂ° Kn each point of the body and at each moment, this number has a determined value, po>ilive. null or negative. a reliable in a continuous way of a poinl ir I < mire and of an in-lanl to laulre - Kn deu\ poinl.- Ă©giilenuMil hot, this number has the same value

,i" Kn two unequally hot points, it of \aleurs did'Ă©rente-. the greatest' value cnrre-pondanl to the hotter point. If one knew the values taken by a similar number at the different points of a set of bodies, and this at a given moment, one would know, at a given moment, if the degree of heat varies from one point to another of this set and in which direction it varies. One would know, for a given point, if the degree of heat at this point varies from one moment to another, and in which direction it varies.

This number whose dner-c- values are used not to measure, but to quote Or it the inlen-ity- diverse.- of the quality (pie we name the heat, is called the temperature The deliiiition of the temperature leaves to a high degree. the choice of this numerical expression. Let us imagine, in it t. that one has. in a first way. made correspond a scale of number- to the div erse- mien- island- of the quality named heat; let be any number of this scale. 

-H" The (onction /'(/.)"> varies in the same direction as the variable 0.



It is clear that the number W can, as well as the number fi, be taken as the temperature proper to identify the intensities of heat. We conceive therefore as logically possible, 1 e and eela in an infinite number of ways, the establishment of a correspondence between each intensity of the quality called heat and each value of a variable number, value which is the temperature corresponding to this intensity. This is enough for us to include temperature among the elements of which the mathematical schemes on which we reason are composed, without the risk of using an empty word. In fact, it is exclusively this temperature, conceived in an abstract way, that will be discussed in our reasoning.

But we do not propose simply to unroll mathematical reasonings logically linked together; we want the results of our mathematical deductions to be compared with the experimental laws that govern concrete systems, laws that these results are intended to represent. From then on, it is not enough for us to know that to the quality called heat, which manifests itself at every moment in every point of a body, we can make correspond a number called temperature, the greater the intensity of this quality. We still need to know a real way to establish this correspondence. We must be able to solve the following two problems: A concrete body being brought to a determined intensity of heat, find, with a sufficient approximation, the temperature which must represent this intensity of heat. A temperature being given, to realize a concrete body which is endowed with the corresponding intensity of heat. Our perceptions of heat and cold have allowed us to recognize the possibility of this correspondence, but, at first sight, they appear to us as much too coarse and much too fallible to allow us to realize it with some certainty and some precision. If, therefore, we wish to classify bodies into categories, each of which corresponds to a given degree of temperature, so that all the bodies in the same category are equally hot, and that from one category to another the intensity of heat varies in the same direction as the temperature.



If we want to recognize with precision, when a concrete body, more or less hot, is given to us, in which category it must be classified it is necessary for us to give up the direct and immediate use of our sense of the hot and the cold it is necessary for us to resort to another sense, more precise, such as the sight, and that indirectly, by the intermediary of an instrument, the tlterniomĂ¨lrc. The recourse to an instrument, in this case as in all the others, is imposed to us by the conviction that our senses are limited and fallible we will not be surprised to see this conviction intervening at each moment, in the rules which govern the choice and the use of this instrument.

The justification of the use of the thermometer rests, in the first place, on a law which is one of the fundamental postulates of energetics. This law is conceived, first of all, on the occasion of certain direct perceptions; but after we have formulated it in a general way, we attribute to it a certainty very superior to that of the perceptions acquired by the sense of heat and cold; when we find it in disagreement with these perceptions, we conclude that these are misleading, and we make use, to rectify them, of the very law we have postulated.

The most common observations teach us that if we bring two bodies into contact with each other, one of which is hot and the other cold, and if, moreover, we pinch these two bodies under such conditions that the foreign bodies do not seem to exert any appreciable influence on them, the cold body heats up and the hot one cools down; the volume of each of them varies, so that the state of the system of which they are composed does not remain constant. According to these observations, for an approximately isolated system to remain in an invariable state, it must be equally hot at all its points. This is true, moreover, only of a system that seems to us comparable to an isolated system. For example, a metal bar, one end of which is immersed in boiling water vapor and the other in melting ice, reaches a substantially invariable state; one end of this bar is, however, hotter than the other, but it is quite clear that we cannot assimilate this bar to an isolated system; that we cannot, in studying it, disregard



If one \ouhn( ineor|ioref this bar had an isolated system, at the very least it would be necessary to include in this system boiling water, and the "melting ice but, then, such a system would not keep an invariable standard any more. (the various obsen alions, due to the direct use of our senses, are sufficient to suggest the following statement:

For //ii' an isolated system, whose parts are continuous, keeps an invariable state, it is necessary that all the material parts which compose this system are also hot.

This law, as we have said, obliges us, in certain cases, to correct the data of our sensations. We sometimes encounter an assembly of bodies which seems to us to be comparable to an isolated system, whose state does not undergo any appreciable change from one moment to the next, and whose various parts, however, do not seem to us (''cheerfully hot. If we touch, for example, a piece of wood and a piece of steel in flow with each other, which do not seem to us to experience any noticeable influence of the neighboring bodies, and whose state seems to us invariable, it often happens that we find the steel much colder than the wood. We continue, however, to assert that they are equally hot, placing less confidence in the immediate data of our sensations than in the preceding proposition.

If, now, we appeal to the notion of equilibrium, which has been so delineated, let us make use, as we have the right to do, of a temperature whose determination is conceived in an abstract way, but not yet realized in a concrete way, we will be able, from the preceding proposition, to derive this one, which is one of the fundamental o.vrwLrrs of the Knerg'Ă©tique

l'nur qu'un systĂ¨me isolĂ©, dont toutes les parties sont conJiaues. soit en Ă©quilibre, il faut que la tempĂ©rature ait la ~~tzze walenrw.zi tott.s se.s jloi~zt.)'. (fue la tempĂ©l'atun' ait la \nĂ¨me rĂ˘leur en tous ses points.

(lotte law leads to the solution of the Thennometiric problem in a case, particular certainly, but nevertheless quite extended by hypotheses that we will not examine here. one manages to extend the solution to certain other cases.



We will not ".first expose this solution by reslanl in- I.- domain lh"'""nt[iie we will speak, for the moment, only d-1 bodies and schematic instruments, characterized by abslrujl.es properties just now., we will see how, or can pass from this theoretical domain to the practical domain, and treatj- of real instruments and concrete bodies.

Let's suppose, first of all, that we have a certain system T, the thermometer, characterized by the following properties

iÂ° To each value of the temperature corresponds, for the isolated system T, one and only one equilibrium state such that the system 1 has, in all its points, the temperature 0.

Among the properties of the system T in equilibrium which are susceptible of measurement, there is at least one which is observable with a sufficient precision and which is represented by a quantity 0, increasing function, of the temperature 0.

It results then from what we said that. to locate the temperature of the isolated svslĂ¨me T, in each one of its standards-- of equilibrium, we will be able to make choice of the number (-> which dies the considered property this property will be said the jjropiiĂŞtĂ© thcriiioinĂ©triquc. of the thermometer 'I'. cl W will be named the lA'm/x'ralurr Luc on the I herniontctre T.

Let us consider now, one after the other, a number of isolated systems L, L', and let us suppose that each of these systems is in equilibrium; the temperature is therefore the same at all points of each of these systems; it can, however, be the same for several systems. PomoiiHinu- know the values (-). (-)', <Ě�)", of the temperature, read on the thermometer rl which must locate the heat intensities of these various svslĂ¨mes

This will be possible if each of these >v-,|Ă¨nu."> has the properties that we will describe for one of them.

Ă®" The system L is partly limited by an invariable Mirtaee which is. the mold in hollow of a certain surface 1. while the ihcri.iomĂ¨lre T is partly limited by another invariable surface which is the mold in relief of the same surface ĂŻ.



Ě�> By making these two surfaces coincident, we can associate the two systems ĂŻ and U in such a way that their together form an isolated system S, and the two parts T, L of the system S are independent of each other (Â§ 10, p. fia).

3" When the system S is in equilibrium, the two parts T, L are, as we already know, brought to a uniform temperature which is the same for both. Moreover, the two systems T, U are then in states which would be equilibrium states for each of them taken in isolation.

4" Conversely, let us consider an equilibrium state of the isolated systemT and an equilibrium state of the isolated system L. and let us suppose that the uniform temperature of each of these two systems is the same for both of them; by associating these two systems in the above-mentioned way, so that within the system S, each of the two systems ĂŻ, l is in the considered state, we obtain an equilibrium state of the isolated system S.

These last two suppositions would not make sense if we had not previously admitted that the two systems T, U form, within the system S, partial systems independent of each other; they are often expressed in a less precise way by saying that the i-eiitzioiz of the system U and of the thermometer T, when they are at the same temperature, does not disturb the state of equilibrium of each of them.

Henceforth, let us suppose given a state of equilibrium of the system U isolated, and let us propose to determine what is the temperature of this system.  Let us seek by trial and error the temperature ai, to which it is necessary and sufficient to bring !<- thermometer T so that the latter, isolated in equilibrium at this temperature!, may, by association with the system l in equilibrium, form a system S also in equilibrium this temperature, the value 0 of which we shall know as read on the thermometer T, will be precisely equal to the temperature of the system L when it was isolated in equilibrium the problem posed will thus be solved. Most often, we operate in such a way that the problem solved differs a little from the previous one:

We associate the system T and the system U and, when the system S that they form together is in equilibrium, we observe the



value that it is convenient to attribute to the temperature of the system l taken within the system S in equilibrium. But, according to the leaked assumptions, one can separate system L from system 1 by keeping it exactly in the state it was in system S, and one obtains an equilibrium state of the isolated system U in this state, I system U has the temperature (-) just determined. The temperature of the isolated system is not obtained in this way in a given state of equilibrium, but an equilibrium state is obtained for the isolated system l.i. which corresponds to a known value of the temperature.

The preceding considerations describe a method for solving, at least in a particular case of a certain extent, the problem of ĂŹbermomelria; but the solution they propose is still purely abstract, to practice it, it will be necessary to make real bodies correspond to the system T, to the systems l U', U", From then on, this new question arises How will we recognize that the real bodies whose correspondence we establish with the system T, with the systems U, U', l have concrete properties approximately represented by the abstract properties of the system T, of the systems l U', l. .?

This operation, like all those whose aim is to appreciate the degree of resemblance of a certain concrete object with one of the elements, mathematically defined, of the energetic system, is not exclusively governed by the rules of active Logic; modes of reasoning, half unconscious, difficult or even impossible to analyze, and which can be classified under the name of experimental allions, are employed at every moment. Let's suppose, for example, that the concrete apparatus of which the system T must provide the abstract scleme is this instrument which we call a mercury thermometer; to consider it as absolutely isolated in space and, at the same time, to make its temperature vary, here is a perfectly conceivable abstract operation, but it seems difficult to imagine a concrete operation which corresponds to it; how then will we recognize that our mercury thermometer possesses, at least approximately, the characteristic properties of a system T?

iWe will take a number of bodies: a mixture of water



<-! of ice, of water more or less hot, etc., which our senses noii- allow to arrange in a kind where each term is sĂąremenl hotter than (e preceding. We will admit that each of these concrete bodies behaves, at least roughly, in relation to the mercury thermometer, as each of the systems behaves in relation to the system T: in other words, we will admit that the mercury thermometer, joined to each of these bodies in such a way as to form a connected system which seems to be more or less isolated, will be in equilibrium in the same way as if it were isolated and brought to the temperature of this body.  We will thus have the moven to know how our mercury thermometer would behave if it were isolated and if it took successively your equilibrium stages which correspond to increasingly higher temperatures. Although ([ne roughly approached, since our senses alone served to appreciate the equality or the inequality of temperature between the> bodies to which we successively associated the thermometer, this study allows us to recognize that the instrument possesses approximately these two properties:

iÂ° The level of mercury in the thermometer stem depends only on the temperature to which the instrument is brought. The level of mercury always rises with the temperature.

This same study, made on a water thermometer, would have allowed us to recognize that the level of the water dropped when the instrument was taken out of the melting ice and plunged into water a little less cold, and that it rose again when the instrument was put into warm water: this observation would have led us to refuse the character of thermomelographic property to the height of the liquid in the stem of a water thermometer. After the simple use of our senses has made us recognize, in a roughly approximate way, that the mercury thermometer possesses the two properties previously stated, we admit that it possesses them with a rigor far superior to that which our senses can recognize; then, we are going to make use of these properties of the mercury thermometer to rectify the perceptions that our senses provide us with or to acquire knowledge that exceeds their range.



Thus, noting that in the stem of a thermometer surrounded by melting ice, the level of mercury remains sensddemenl the same in all circumstances and throughout the duration of the ludion, we will conclude that the melting temperature of the ice e-,t a constant.

We will be able to recognize in this way that a certain number of bodies (that we suppose, moreover, to behave with respect to the mercury thermometer as the systems l l t behave with respect to the system 1 are bodies of fixed temperature. By means of two of these fixed temperatures, we will realize the mercury centigrade thermometer.

It is by basing ourselves on this property, revealed by the vulgar experiment To each temperature corresponds one and only one level of mercury in the stem of the thermometer, that we established this law The melting ice is. carried to an invariable temperature. But once this law has been obtained, we consider it more certain than the property of the thermometer which made us discover it: we do not use this law to examine to what point the thermometer has the property of which it is about. We find that the mercury does not return to the same level each time the thermometer is immersed in melting ice, and we conclude not that the melting point of the ice is variable, but that the level of the mercury does not depend only on the temperature to which the thermometer is brought, but also on other circumstances. It is, moreover, by londant us on the lixiĂ®Ă© of certain temperatures, that of the melting ice, for example, lisilĂ© which we, was rĂ©\ Ă©lĂ©e by thermometers alleelĂ©s of the definition of which we have just spoken, that we will manage to disentangle the laws of this tlĂ©plnn1-ment, of the point o", and to recognize the effectiveness of the process-, which have for object to alfranchir the thermometers.

More perfect thermometers will then allow us to recognize that the temperature of a mixture of water and ice is not absolutely fixed and to imagine movens suitable to increase its fixity, which will lead us again to perfect the mercury thermometer, and so on.

We therefore follow a method of successive experimental approximations in which, by virtue of an intuition that- the



Pure logic would be very embarrassed to justify, each new law is, regarded as more exact than the already known law which was used to establish 1 this method leads the physicist to carry out a concrete thermometer more and more similar to its abstract ideal, the system T.

If we are not in possession of such a thermometer, each use that we want to make of it will have to be preceded by new hypotheses. In particular, we will have to suppose that the concrete system whose temperature we want to take is approximately, with respect to our real mercury thermometer, what one of the systems L, l l is with respect to the system T. If, for example, we want to use the mercury thermometer to take the melting point of phosphorus, that is to say the temperature of a system in equilibrium formed by solid and liquid phosphorus, we will have to admit that the contact of the thermometer does not disturb this equilibrium, does not change the melting point of phosphorus.

If we want to determine the temperature of a liquid subjected to a certain pressure by immersing the reservoir of the mercury thermometer in it, we will have to examine the following question: can the liquid and the thermometer be assimilated to two independent systems joined by a rigid surface? Should we not, on the contrary, take into account the fact that their surface of contact is deformable; that, consequently, these two bodies are not two parts, independent one from the other, of the system that forms their whole? Should we not, therefore, consider the pressure exerted by the liquid on the thermometer's reservoir, a pressure which results from this dependence? To answer this question, we can and must call upon complicated and distant branches of Energetics, such as the theory of elasticity. We may still have this doubt: can the system formed by the thermometer and the body whose temperature we want to take be assimilated to an isolated system, a system which cannot be in equilibrium unless it is brought to the same temperature at all its points? Should we not, on the contrary, take into account the contact of the thermometer's stem with the cold air, a contact by which the temperature of the mercury contained in the stem is not equal to the temperature of the mercury contained in the tank?



In these two circumstances, the physicist will say that he has corrections to the indications of his thermometer, corrections intended to eliminate causes of error. What does he mean by these words? He means that by assimilating his thermometer and the body whose temperature he wishes to take to the abstract systems T and I that we have defined, he would give a schematic representation of reality that is too simplified, and that by reasoning on this unajt: too simple, he would soon obtain corollaries whose disagreement with the data of experience would be very apparent; he then represents the concrete whole of the thermometer and of the body whose temperature he wishes to take by a new scheme, more complicated than the preceding one, where the body and the thermometer are no longer represented by two independent systems, where their whole is no longer assimilated to an isolated system in space thanks to the more numerous resources that this greater complication provides him with, he endeavors to constitute an image that closes more closely to reality. Considerations similar to those we have just developed concerning the determination of temperature could be taken up again each time we propose, by means of an instrument, to substitute a numerical symbol for a certain physical, qualitative or quantitative property; this substitution always results from very complex mental operations, very difficult to analyze, and which can never be reduced to the sole rules of deductive Logic.



CHAPTER II.

The principle of conservation of energy.

I. The Work and the Energy.

The principle of Conservation of Energy.

We know (p. 4) that the principles of Energetics are not susceptible of any a priori demonstration; provided that we avoid any contradiction between the terms which serve to state a principle, and also any contradiction between this principle and its congeners, we are free to denounce!If the set of principles, thus arbitrarily stated, gives consequences which represent the experimental laws with sufficient precision, our principles are good and must be kept; if not, at least one of them must be rejected or modified.

If we were to take into account the requirements of Logic, we could formulate the principle of the Conservation of Energy as a postulate of our good plan, referring the reader who wishes to be taught about the value of this postulate to the applications which mark the concordance of the energetic system with the data of observation. The requirements of pure Logic are not the only rules that can reasonably direct our judgments; pure Logic leaves us free to choose the postulates of Energetics as we please; it does not follow that we should choose them at random, which would mean that if the consequences of these randomly chosen principles were to agree with the facts, as we have recalled in the Introduction, the formulas that we propose for the principles of Thermodynamics would be in agreement with the facts.



found today very minutely lixĂ©es. thanks to innumerable tests, has trial and error infinitely varied- which "c are continued during back -lĂ©ele-.

The best way to explain the principle of energy here would be to retrace, at least in broad outline, the history of the trials and tribulations by which the human mind has succeeded in giving this principle its present form. If summarized as we suppose it, such a historical exposition, which would have to be renewed for each principle, would exceed the limits of this treatise.

One has custom, then. to resort to another form of justification ( ) one seeks to lead the spirit, in a gradual way, to the statement of the principle which one wants to propose to him, by presenting to him successively various simpler proposals and whose acceptance seems to him more natural and easier one morcelle. Cil quelque sorte. Ni\hĂ¨polĂ¨-.e that it would hesitate to admit all of a block, so that it had then-e more easily seize the various fragments by a successive comprehension.

Such a method is d'.iulanl better than it has more analogy with the historical method (pu; the various preliminary judgments of which. successively, one proposes the acceptance to the content, resembleenl more to the various facets of the total truth that the iui maiii li' has successively glimpsed: that thus the steps made by the reason (the student are, in short. more similar to the way .followed by the collective reason of HiuinanitĂ©.

But in the course of a preparation for the acceptance of a principle there is a very serious danger of which it is necessary to guard against with the greatest care, an error which it is necessary to dread above all your t this error would consist in taking the introduction to a hvpollie.se for the demonstration of a M;nlĂ© to confuse the gradual step which leads us step by step to the principle which we want to formulate with a deduction which. of theorem", in theorems, assures us

(') I/e|>oio cl 11 principle of ia Cou^matiori of I Km'i'gie that flotum!<Ě� this Chapter is only lo dc\ck>|>prmenl l( (Oliii cjur us ;tvi the written -niwuit Commentary aii.r jiriiici/ir\ ilv l\. He (Journal de MathĂ©matiques. '|* sĂ©rie, t. Vlil, iScc. p. >St) cl Mm



of the certainty of a conclusion; to believe that your preliminary propositions which prepare the definitive statement of a principle are self-evident axioms and certain by the common knowledge.

Let us therefore affirm from the outset that the considerations whose development we are going to read are a simple preparation for the statement of the principle of the Conservation of Energy that they prove nothing either for or against the truth of this principle.

We can, by our efforts, produce in a system a certain transformation or help this transformation; we can move a body, throw it with a certain speed, break it, deform it, and crush it by the mutual friction of its various parts. We can, on the contrary, use our efforts to put an obstacle in the way of the transformation that a system undergoes, to hinder this transformation; we can stop or slow down a body in motion, prevent it from deforming. We then say that we have done a certain work, that we have accomplished a certain work. Although often in an obscure and imprecise way, we recognize in the most diverse works that man's muscular strength can accomplish a character that allows us to classify these works in order of increasing value. Two works of different nature may seem to us to be equivalent and deserve the same salary to the two workers who accomplished them; or, on the contrary, one of them seems to us to be worth more than the other and to deserve a higher salary. Everyday experience teaches us that we can substitute a machine for our own action, for that of our fellow men, for that of animals, that is to say, an assembly of inanimate bodies capable of producing or helping the modification that we produce or that we help, of hindering the modification that we hinder. The wind or water mill crushes the grain that in the past the woman or the slave would have crushed in a mortar; that, later, the beast of burden would have crushed by turning the millstone. Gunpowder throws a stone as a man would have thrown it with a slingshot; only it throws a bigger stone, and farther. One of the practical objects, and the principal one, of Mechanics and Physics has been precisely, from the origin of these sciences, to recognize which are the various bodies that can be substituted for the others.



The science of mechanics has been called the Science of Mechanics since the beginning of the 20th century. It is the science of mechanics that has been called the Science of Mechanics, and it is the science of mechanics that has been called the Science of Mechanics. Mechanics was first called the Science of Mechanics.

The work that we would have accomplished if we had acted ourselves on the system that is being transformed, we consider as accomplished by the body or by the assembly of bodies that we have substituted for ourselves or for our fellow men. If two machines accomplish different works, but which would have deserved the same wages to the workers in charge of executing them, these two machines appear to us as producing equivalent works, one of them, on the contrary, seems to us to accomplish a work which is worth more than the work of the other, if the sum of the wages which it saves us is higher.

This notion of work accomplished by bodies foreign to a system while this system is undergoing a certain modification, we transport it even to the case where the modification undergone by the system is of such a nature that neither our personal action nor that of our fellow men can either help or hinder it; we transport it, for example, to the generator of electricity which decomposes sodium chloride. The work accomplished by these foreign bodies is supposed to represent the work that would be accomplished by an operator constituted differently from us and capable of bringing to the considered modification the help or the hindrance that the foreign bodies bring.

Thus, when a system is transformed in the presence of foreign bodies, we consider these foreign bodies as contributing to this transformation either by causing it, helping it or hindering it; it is this contribution that we call V work accomplished, in a transformation of a system, by the bodies foreign to this system; two different works can have the same value, or one can be worth more than the other.

These notions of a work accomplished by bodies foreign to a system, in a transformation of this system, and of the value of such a work are, up to now, for us, very obscure, very vague, and above all very deeply impregnated with anthropomorphism. I.).- ĂŻ. J 6



To penetrate them, to specify them, to free them from this anthropomorphism is not the competence of Physics, it is the object of the ell'orls of Metaphysics, whose various Leoles discuss and solve in different senses this problem of the communication of corporeal substances. The goal that Physics proposes to reach is quite different : it proposes to represent the value of the various works by a numerical symbol, in such a way that by treating this symbol according to the rules of Algebra, it can give precise answers to the following questions

Since a machine is capable of producing a certain modification in a certain system, what other machines can be substituted for it to accomplish the same modification within the same system?

A machine being able to produce, in a certain system, a certain modification, what modification can it produce in another system?

To create a mathematical symbol suitable to represent the value of a work, we will form an expression which satisfies certain conditions which we will agree to impose to it; these conventions, we will not establish them randomly we will choose them in such a way that they offer the image of the simplest and most salient characters which the notion of work presents or, at least, that they agree without difficulty with these characters. All the preceding considerations dealt with the concrete data of our perceptions and the non-scientific notions of which they provoke the formation in our mind : our language had thus necessarily the imprecision of any speech intended to express the common knowledge. If, for example, we spoke of a material system and of bodies foreign to this system, we were speaking of them in the sense in which everyone understands these words. Henceforth, we shall deal with mathematical symbols; we shall therefore, in our reasoning, attach ourselves to precision and rigor; we shall use the terms we shall use only in the sense in which they have been defined. In particular, a material system will always be, unless otherwise indicated, a system independent of the foreign bodies that act upon it, these words having the meaning that has been defined previously (Chap. I, Â§ 10). We will say that a modification of a system is determined



when we know the initial instant l0 and the final instant lf of this modification, and when we know, for each instant. from the instant tQ included, to the instant t{ included, what is the state and what is the general motion of the system.

11 would not always be enough, to determine a modification, to say what is, at each instant, the state of the system the knowledge of the movement of this system could very well not result from it.

Suppose, for example, that at each instant of a given period of time, the electrical distribution on a conductor is known, the currents that pass through this conductor will not, for that reason, be entirely determined; if a first system of currents compatible with the variation imposed on the electrical distribution is known, an infinite number of analogous systems will be known in order to obtain one; in fact, it will be sufficient to superimpose on the first system any system of uniform fluxes (Chapter I, Â§9, p. ĂŻ>~), the latter being able to vary from one moment to the next in an arbitrary manner.

Let us suppose that we give ourselves a series of states of the system, determined by means of a variable t that we continue to nornrn time; to each value of t, included between t0 and tt, corresponds a state of the system and only one this state varies in a continuous way when t increases from to and that in such a way that all the links imposed on the system remain unceasingly verified; finally, at each instant l, the set of general velocities is determined; these velocities vary in a continuous way with l or present discontinuities for isolated values of L and in finite number. We have then a determined modification to the meaning which has just been attributed to this word.

Can this change be considered a real change?

If we were to stick to the grammatical meaning of the words, the answer would be an emphatic no. What we have just defined, in fact, is a sequence of stalls and movements of a mathematical system and not of a set of concrete bodies.

If there is reason to ask the question that we have just formulated, it is that it must be understood in the following sense i'eul-on meet a real modification of a concrete system which is



Is it approximately represented by the abstract modification (the mathematical scheme as we have just determined it? If yes, we will agree to give to this abstract modification the name of real modification.

The meaning of our question being thus clarified, let us see what answer we should make.

From what we have said about the choice of quantities suitable for determining the state and motion of a system, we are sure that all real modifications are to be found among the modifications determined as we have just indicated. But the reciprocal of this proposition is neither obvious nor certain. A modification of a system being determined in this way, it is not certain that we can place the system in the presence of foreign bodies such that this modification is realized.

Henceforth, when we have determined a modification as we have just indicated, we will say that we have imposed an ideal modification on the system; the modifications likely to become real are surely included among the ideal modifications.

One of the main problems of Energetics consists precisely in this question An ideal modification of a certain system being given, can we place this system in the presence of foreign bodies such that this modification is realized? Our object will be, in the course of this treatise, to lay down rules which will allow us to answer this question.

For the symbol that we propose to create under the name of accomplished work, in a modification imposed on the system, by the bodies foreign to this system, to be able to appear in the statement of such rules, it is obviously necessary that this symbol is defined not only for the real modifications, but also for the ideal modifications. Only on this condition will it be possible to state rules of this form For such an ideal modification to be realizable under such conditions, it is necessary that (' ) An ideal modification must not be confused with a virtual modification; a virtual modification is composed of states of the system which do not follow one another in time; so that the change of state which constitutes a virtual modification is not linked to a movement; in the virtual modification, the notion of speed has no place.



the corresponding work presents such a character. Our conventions will have (Jonc to relate not only to the real modifications, but also to the ideal modifications.

An ideal or real modification can be instantaneous. If, in fact, the state of a system is subject to vary always in a continuous way with l, it is not the same for the general motion the general velocities can, for isolated values of t, present discontinuities at the instant when similar discontinuities occur in the system, this one is the seat of an instantaneous modification.  The shock is an instantaneous change. An instantaneous modification is determined if we know the state of the system at the instant when it undergoes this modification, its general motion immediately before, and its general motion immediately after.

Let us consider a modification M, real or ideal, accomplished between the instant and the instant V. Let us suppose that at the instant T, between x and t', the general motion of the system does not experience any discontinuity.  Let us call, at this instant, e the state of the system and {/. its general motion. We can say that the modification M consists of a first modification M, accomplished between the instants t and T, which brings the system to the state e and to the motion ja, followed by a modification Mo, accomplished between the instants T and which takes the system in the state e and with the motion p. that it had at the end of the modification M,.

It would no longer be possible to say the same if, at time T, the motion of the system underwent a sudden change. Let e be an infinitesimally small duration. Let us call the motion of the system at time T - set ul' its motion at time T + s'. The change can be decomposed as follows

1" A modification M|, accomplished between the instants c and T, which brings the system to the state e and to the motion <x a" An instantaneous modification m, accomplished at the instant T, or the system has the state e; this modification takes the system animated by the motion u. and brings it to the motion a'

i" A modification M,, accomplished between the instants T and t' This modification takes the system in the state e and, animated by the motion u.



Let us consider two modifications, real" or ideal. M. M' of the same system, and let us suppose that these two modifications have, between them, the following relations

iÂ° If the first modification lasts from instant l0 to instant tt> the second lasts from instant t.o +- to instant tt -~r t 2" Let t be any instant of the time span between tu and t{ and let t' = t -+- t.

At time t, in the modification M, the system has a state e and a motion u; at time t', in the modification .M', the system has a state e' and a motion p. These states and motions are related to the same absolutely fixed trihedron T.

If to the absolutely fixed trihedron T, one substituted another absolutely fixed trihedron T', whose position with respect to the first one is independent of t, the state e' would be transformed into a state identical to the state e, the motion p.' would be transformed into a motion identical to y..

We will express this last character by saying that at each instant t' of the modification M', the state e' and the motion jjt/ of the system are deduced from the state e and the motion p. at the corresponding instant t of the modification M by a displacement cl 'ensemble in space, this displacement remaining the same during all the duration of each of the modifications.

We will say that the two modifications M, M' are the same modification, acconiplied at different times of the duration and in different places of the space.

Let us suppose that at a certain time and in a certain place, a system experiences a modification in the presence of certain foreign bodies; let us suppose that at another time and in another place, the same system experiences the same modification in the presence of other foreign bodies; a quantity would certainly not seem to us to be capable of providing a mathematical symbol of the notion of work accomplished by the foreign bodies if it did not, in these two circumstances, take on the same value; we are thus naturally led to lay down the following convention First convention. - The mathematical symbol intended to represent the value of the work accomplished, in a modi/ica-



The real or ideal lion of a system, by the bodies foreign to this system, will be determined all the times that one knows the nature of the system and the modification that it underwent; it will not change if one limits oneself to changing the time and the place where the modification was produced as well as the foreign bodies in whose presence it was accomplished.

We are also led to require of the symbol we want to construct that it represents as equivalent the works accomplished by the foreign bodies in two modifications of the same system if these two modifications take the system in the same state, animated by the same motion, and if, however different they may be, they both leave it in the same state and animated by the same motion.  Hence this second convention

Second convention. The mathematical symbol which 'Ě� represents the value of the work accomplished by foreign bodies during a real or ideal modification of a system, is determined when the state and motion of said system at the beginning of the modification, the state and motion of the system at the end of the modification are known.

This agreement has one consequence

The value of the work accomplished in a real or ideal modification that brings the system back to its initial state and its initial movement must be represented by the same symbol -.{that the work accomplished in a system whose state and movement do not vary, not it is natural to represent this last Work by the symbol o.

The following conventions are more arbitrary in character; they are dictated by the desire to endow our symbol with the most usual, simplest and easiest to handle algebraic properties.

Third convention. - The mathematical symbol that represents the notion of work belongs to a category of mathematical notions capable of a commutative and associative operation, named addition and represented by the sign -+-.



Fourth convention. - Let us assume that a given system has undergone, in various circumstances, real or ideal modifications, M, M2, M, during which bodies foreign to the system have performed works represented by the symbols G,, G2, G, Let us suppose, moreover, that we can arrange these modifications in a certain order {for example, the order M,, M2, M,,) in such a way that the final state and the final motion of the system in any one of these modifications are respectively identical to the initial state and to the initial motion in the next modification. One can then imagine that the system undergoes a single modification [/ real or ideal, which consists of the modification M(, followed by the modification M2, followed by the modification Mn. Soity the symbol of the work done by the foreign bodies during the modification. We agree to take for y the sum of the symbols G,, G2, G,

Let's bring this convention closer to our second convention. Let us suppose that the successive modifications M,, M2, M" bring the system back to its initial state and to its initial motion; we must have

Gj -h G2 -+-+ G" = o.

This equality immediately teaches us that the symbols G|, Go, G" cannot be simple arithmetic numbers without a sign; but it does not prevent us from taking an algebraic number with a sign to represent the work accomplished, during a modification of a system, by bodies foreign to this system. Hence this new convention

Fifth CONVENTION. The work accomplished, during a real or ideal modification of a system, by the foreign bodies of this system will be represented by an algebraic number affected of sign.

This convention leads to the following consequence The modifications of which a system is susceptible can be classified in two categories. Any modification of the first category is considered as corresponding to a production work



the corresponding work is represented by a positive number. Any modification of the second category is considered as corresponding to a work of destruction; this work of destruction is represented by a negative number.

It goes without saying that once the works of various kinds have been classified into two categories, intended to be represented by numbers of opposite signs, we remain free, until further notice, to choose as we see fit the category which is supposed to be composed of works of production and which will be represented by positive numbers.

Two real or ideal modifications of the same system are said to be opposite if the initial state and the initial motion of the system in one of these modifications are respectively identical to the final state and the final motion in the other, and vice versa.

If M, M' are two opposite modifications of a system, we can look at the succession of the modification M and the modification M' as a unique modification which brings the system back to its initial state and to its initial movement. Let us designate by G, G' the values of the works accomplished in these two modifications M, M' we should have

G -4- G' = o.

The works accomplished in two opposite modifications of the same system are represented by equal numbers of opposite signs.

This algebraic proposition is a fair translation of that proposition, stated in ordinary language and which follows naturally from the notion of work The work produced in a certain modification is destroyed in the opposite modification. From now on, it will be useless for us to distinguish, in our language, a work from the algebraic number^ which symbolically represents that notion; to the number we will give the same name, work, as to the notion of which it is the image.

Suppose that a real or ideal modification makes a given system go from an initial state e, and an initial motion a, to



a final state e-> and a final motion u2. According to our second convention, the algebraic value of the work accomplished, during this modification, by the bodies foreign to the system is entirely determined by the knowledge of the two states e,, e> and of the two movements p. a2. We can represent this value by the symbol

G(ei, i^i es, \x.2). ).

We know that two opposite modifications correspond to equal works of opposite signs; this proposition is now expressed by the equality

G(e2, Lt2; <?i, |j.i) = - G(ci, e2, H-s).

Let us consider successively three states e,, e-2, e3 of the same system, respectively associated to three motions p.<, p.2, pus According to our fourth convention, the work accomplished in one modification that leads the system from state e, and motion u.| to state e3 and motion u3 is the sum of the work accomplished in a first modification, leading the system from state e, and motion p., to the state e-, and to the motion p.2, and of the work accomplished in a second modification, leading the system from the state e2 and the motion p.2 to the state e3 and the motion u.3. This proposition is expressed by the equality

(1) G(e,, a, e:), ;a3) - G(el, ;j, e2, f*,) -h G(e2, }Ji2 e3, jjij).  This general relation will allow us to specify how G(ei, ,a, e2, a2) depends, on the one hand, on e,, 'J. and, on the other hand, on c2, a2.

Let us make clioix, once and for all, from a certain normal state e0 of the studied system and from a certain normal motion u0 the work G(e0, ;j.o e, u) accomplished in a modification, real or ideal, which leads the system from the normal state en and from the normal motion ia0 to an arbitrary state e and to an arbitrary motion p. depends only on the state e and on the motion u., since the normal state eo and the normal motion a0 are chosen once and for all.

We will pose

(Ě�>) G(e0![J-a) e, |jl) = Y.(e. \x)



and we will say that E (V, y.) is the value of V total energy, of the system taken in the e-standard and animated by the motion y..

Our equality (i ) allows us to write

G(ĂŞ'u. p.o; e,, jj.,) = O(eoi H-o - ei> !J-i) G(ei, i-1-! Ě� s", ;J-2 )

or, by virtue of equality (2),

(3) G(e1, rj., e2, ij..2) = lÂŁ(e2, jj.2) - J^ ( e; jjli).

The work accomplished, in any real or ideal modification of a system, by the bodies foreign to this system is equal to the excess of the final value that the total energy of the system takes on the initial value of the same quantity. The value of the total energy corresponding to a given state e and a given motion |j. depends on the choice of the normal state and the normal motion, that is to say E (e, u) this value when we take for normal state the state e0 and for normal motion the motion (u.o) orE'(e, p.) the new value of the energy when we take for normal state the state e'o and for normal motion the motion [/". Equality (1) gives us

G(e0, [x0; e, \x) = G(e0, |x0; e'o, \x.'a ) -+- G(e'o, e, ix)

or, by virtue of equality (2),

K(e, p) - E'(e, jj.) = G(e0, JJ-o ei, ni)-

U/i change of normal state and normal motion changes the value of the energy relative to any state e and to any motion ;jl. The difference between the two values taken, before and after this change, by this energy depends neither on the state e nor on the motion [jl.

This proposition can be expressed by saying that the total energy of a system is determined to within one constant. Here is now a new convention that it seems quite natural to introduce

Sixth convention. - If a modification, real or ideal, causes an infinitely small variation of the quantities which determine the state and the general movement of a system,



the work done, during this modification, by the bodies foreign to the system is infinitely small. If we apply equality (3) to the case where the state e-> is infinitely close to the state e, and where the motion jjl2 is infinitely close to a, and if we take into account the previous convention, we obtain the following corollary

The total energy of a system varies continuously when the quantities which determine the state and the general motion of the system vary continuously. This is another of the characteristics that we intuitively attribute to the notion of work that the following convention seeks to express

Seventh convention. - Let ÂŁ be a system which consists of several independent parts S, S', infinitely distant from each other.  Any modification 311, real or ideal, of the system 2 results from the simultaneous production of a modification M of the system S, a" a modification M' of the system S', The work done in the modification 3ĂŹL of the system 2 is the sum of the work that would be done in the modification M of the system S, of the work done in the modification M' of the system S',

Let

e, t/. any state and motion of the system S; e0, |o.0 its normal state and motion;

E(e, sx) its total energy.

Let us adopt analogous notations for the systems S', When the systems S, S', are respectively in the states e, e', and animated by the motions jj., u', the system S is in a certain state s and is animated by a certain motion m; similarly, the states e0, e'B, and the motions u0, u.'(J, of the systems S, S', determine a certain state s0 and a certain motion m0 of the system S. Soi.tF (g0, /n0 s, m) the work done by the bodies foreign to the system S, in a modification where this system passes from the state s0



and motion m0 to the state s and motion m. By virtue of the previous convention and the definition of the quantities E e, ai. ). VJ (<?', a'), we have

r(e0, '"<>; ÂŁ, ni) = E(e, u) -+- E'(e', ;j.' } -h.

Now let us suppose that we take for normal state of the system S the state e0 and for normal motion of the same system the motion m0 we will have

r(e0, mo; E, m) = C(e, m),

C(e, m) being the total energy of system 2. The previous equality will thus become

ÂŁ(ÂŁ, m) = E(e, fi) + E'(e', [!Ě�') + ----

If a system S is composed of several independent parts S, S', infinitely distant from each other, the total energy of the system 2 is the sum of the total energies of the systems S, S', provided that the system S is considered to be in its normal state and animated by its normal motion when each of the systems S, S', is in its normal state and animated by its normal motion.

In the case where a material system is isolated in space, where, therefore, there are no foreign bodies in this system, we cannot attribute any other value than o to the work accomplished, during any modification of the system, by the foreign bodies. If one observes, moreover, that the Ĺ“u\rc is given by equality (3), one is led to formulate the following hypothesis

PlU-NCIPI-: OF THE GoASEKVATlOi* OF I. E.NKUGi K. jLoi'SqU Any system, isolated in space, experiences any real change, the total energy of said system keeps an invariable value.

This proposal is different from all those which we have stated in what precedes. These, in fact, had an arbitrary character which we underlined by naming them conventions, and not hypotheses. In the final analysis, we are



well free to consider an expression of the form GiC], u, eS) >-i ) = K(e2, \u ) - V.( e\, ;j.i )

and to give it the name we wish to give it, for example the name tf work accomplished by bodies foreign to the system, during a real or ideal modification of this system. But when we state that there is a quantity, depending on the state and the motion of the system, which remains invariable in any real modification accomplished within the isolated system, we formulate a proposition that we are no longer free to admit or reject at our whim; If the disagreement were to break out between one of these consequences and an experimental law, we would have to reject either the hypothesis we have just stated, or one of the hypotheses which, combined with this one, have provided the consequence denied by the facts. 2. First restriction Exclusion of systems analogous to Mac Cullagh's ether.

We have just stated the principle of the Conservation of Energy, giving it the greatest possible generality; in reality, in the exposition of Energetics which follows, we do not keep this great extension; we will indicate by what restrictions we are led to diminish this extension. We have seen (p. 86) what is meant by saying that the state and motion of system S' are derived from the state and motion of system S by a simple displacement in space.  We will say that "any modification, real or ideal, is reduced to a simple displacement of the system in space, if the state and the motion of the system at the end of this modification are derived, by simple displacement, from the state and the motion at the beginning of the modification. We shall examine what we can say about the work done by bodies foreign to the system in a modification that is reduced to a simple displacement in space.



We propose this theorem

If a modification, real or ideal, of a system is reduced to a simple displacement of the system in space, V work accomplished, in this modification, by the bodies foreign to the system depends on the displacement experienced, but does not depend on the initial state of the system nor on its initial motion. Let e,, e2 be any two states u. a2 any two movements of the system.

Let <?' (u.'( be a state and a motion which are drawn from the state e, and from the motion p.| by a simple displacement in space: this state and this motion would become respectively identical to the state e( and to the motion (u, if they were related not to the absolutely fixed trihedron T, but to another absolutely fixed trihedron: T.

Let e'2) [j/2 be a state and a motion which are drawn from the state e-, and from the motion p.2 by the same displacement in space. i.e. by substitution of the same trihedron T' for the same trihedron T.

We have equality

Gi'fi], jjl i e\ \i.) -t- GCff, ("j. ,uĂ» ) - f< (""i, [-M ej, (*") -t- G(e2, ,u.j e! u', j. because both members of this equality represent

G(>i, ;/Ě�;).

But our first agreement involves legality

G('"i; ;j.i [x, > - ("-( c\, \x[ t>i, ;ji', ).

We will thus have the equality

G ( c i ;ji i e >. ) Ě�Ě�- G ( e y." e' \j. '" )

which is equivalent to the stated tliĂ´orĂ´mc.

From this proposition we deduce a corollary concerning the form of the total energy of a system.

Let

eo, uo the normal state and normal motion of the system e, a any state and motion of this system



eu, e', u!u, jj.' the states and movements which are deduced from the states e0, e and the movements u0, a, for a certain overall displacement.

The previous equality will give us

G Ce, u; e', \i' ) - G(e0, 'M e'o, n'o )

or

E(e'> I-O - E(e, n) = E(ei, n'o ).

The second member depends on the displacement in space that we have considered, but not on the state e, (u of the system. We can therefore state this theorem

By a simple displacement in space, the energy of the system experiences a variation which depends on the nature of this displacement, but which depends neither on the state of the system nor on its movement.

To account for the laws of Optics, Mac Cullagh ( ) proposed to endow the various ethereal media with the following property

To impose on a mass of ether a displacement in space which consists simply in a translation, one would have no work to perform; but to impose on it a displacement involving a rotation, one would have to perform a certain work. A similar hypothesis has been taken up by Padova(2) and by M. Reifl'(3), in order to explain electrical and optical phenomena.

This hypothesis is not in contradiction with what precedes, provided that one is careful to safeguard this proposition The work accomplished when a determined rotation is imposed on a determined mass of ether does not depend on the state of this mass

(') MAC Cullaoh, An Essay towavds a dynamical Tlteory of cryslalline reflection and refraction ( Transactions of the Jioyal Irish Academy, t. XXI, y Dec. 1839. - The Collected Works of James MAC Cullaoh, p. i45; Dublin and London, 1880).

(' ) Padova, Una nuova interpretasione dei fenomeni elettrici, magnetici e luminosi (Nuovo Cimento, 3" sĂ©rie, t. XXIX, 1891, p. a-ij).

(3) Rkiff, Elasticitiit und ElektricUĂ˘t Freiburg-in-Urisgau und Leipzig, i8<)3.



in particular, it is independent of the temperature and density of the ether.

But the theories we have just discussed cannot accommodate such a restriction; it would result, in eH'et, that the optical or electrical properties of the various transparent or dielectric media would be independent of the density and temperature of these media, which is not.

The theories of Mac Cullagh, Padova and M. Reiii could only be compatible with the principle of conservation of energy if we renounced our first convention, which seems very difficult to do.

In general, the following postulate is accepted in Energetics, which we will adopt from now on

Postulate. - No work is accomplished by bodies foreign to a system in a modification, real or ideal, that is reduced to a simple displacement of the system in space. In other words the total energy of a system does not change as a result of a simple displacement of this system in space.


	Second restriction Exclusion of electrified systems. Potential energy and kinetic energy.



We will now limit our research to systems for which the following restriction is verified

Resthiction. - The work accomplished during a modification, real or ideal, of the system by the bodies foreign to this system is the sum of two terms

The first term depends on the change of state of the system, but not on the change experienced by the motion; the second term depends on the change experienced by the local motion of the system and does not depend on either the change of state of the system or the change experienced by the general motion.

Let us designate, in general, by e, jx, X the state, the general movement n. - I. c



The previous restriction means that we can write an equality of the ton ( i Ci('i, ;j-i e", [j., 1 = \'(e\, e2 1 -f- O(Xi), e2 1 -f- O(Xi), e2 1 -f- O(Xi), e2 1 -f- O(Xi)). The previous restriction means that we can write an equality of the ton ( i Ci('i, ;j-i e", [j., 1 = \'(e\, e2 1 -f- O(Xi,Xii.

Let e0 be the normal state of the system; as a general normal motion p.o., let us take a motion free of local motion, i.e. a state of rest of the system; let us agree to represent by K = 0 the absence of local motion, Let us posit

jP("..Ă´ = O(e).

( Q(oTX; =K().).

Let us remember, moreover, that

(1) G(e0, ;jli, <?, ;j. } = E(e. ;jl). ).

Inequality (4) will give us

(fi> E(e, ;j.) = {j{ej -+- K(Ă€;.

The total energy of a system is the sum of two terms. The first of these terms depends on the calibration of the system, but not on its local motion nor on its general motion. The second of these terms depends on the local motion of the system, but not on its rtal or general motion. The first term li {e) is called the internal or potential energy of the system in state r.

The second term K(Ă€) is called the kinetic or current energy of the system with the local motion Ă€.

From the above, we immediately know a number of properties of the internal energy U(V) and the potential energy K (Ă€).

/internal energy varies in a continuous manner when the te~andettrs that </e/<?y'/M</te/!< the state of the ~<e/Me ĂŻ;<x/'K; cl'ez~zĂ© continuously. The kinetic energy varies in a continuous 1 manner when the local velocities vary in a continuous i manner.



| The internal energy does not change with a simple displacement J of the system in space.

"A change in the normal standard changes the value of i V internal energy corresponding to a given state e of the system; the increase in this value depends on the change imposed on the normal standard, but does not depend on the standard e. By definition, the kinetic energy is zero when all local velocities are zero, which is the case when the system is at rest. If a system S is composed of several independent parts S, S' infinitely distant from each other, the internal energy of the system 2 is equal to the sum of the internal energies of the systems S, S', provided that the normal standard 1 of the system ĂŻ is defined as the set of normal states of the sslcm.es S, S',

The kinetic energy of the system ÂŁ is equal to the sum of the kinetic energies of the systems S, S',

The proposition that we have just formulated under the name of restriction is very clearly distinguished from the conventions and hypotheses that preceded it; these, we were quite naturally led to pose by the characters that we intuitively attribute to the notion of work: this one, on the contrary, seems very arbitrary; it seems to us quite admissible that certain systems do not submit to it.

This is, indeed, what happens. In order to represent the laws of electrodynamics and reeclromagnetism, physicists are led to suppose that the systems in which there are electric conductors, polarized dielectrics and electric currents are not subject to the previous restriction; in such systems, the total energy is not reduced to the sum of the internal energy and the kinetic energy: it contains, in addition, a third term, the electrokinetic energy.

By placing the previous restriction, by limiting our analysis to the systems that are subjected to it, we leave out of our studies a lot of possible systems and, in particular, all the systems that contain polarized conductors, polarized dielectrics and currents. For such systems, it will be necessary to develop a difl'e-energetic



It is a very different and much more complicated than the one we are about to present.


	Determination of the form of the kinetic energy. The notion of mass.



We shall now propose to determine the form of the quantity K(). ), by means of what we already know and of conventions that it will seem natural to us to lay down; suggested by our observations concerning real modifications, these conventions will be formulated for any real or ideal modification. The kinetic energy of a system does not depend on the state of this system.

This being said, let us consider any system, animated by any local motion, and let us suppose, first of all, that this system does not contain any mixture. The local motion is determined by the knowledge of the three components u, v, w of the local velocity at each point.

By thinking, let us break down our system into an infinite number of infinitely small material elements, let us isolate them from each other and disperse them in space in such a way that each of them is infinitely distant from all the others. This operation certainly alters the state of the system; but it does not alter its kinetic energy, if care is taken to preserve for each material element, after the operation, a velocity identical in magnitude and direction to the velocity it had before the operation. But after this operation, the kinetic energy of the system is equal to the sum of the kinetic energies of the various parts, infinitely distant from each other, which compose it; we are thus reduced to determining the form of the kinetic energy of an infinitely small material part.

Let u, c, w be the three components of the velocity of an infinitely small material part, the kinetic energy of this part will be a function of the three variables u, v, ">, k(u. "', w). The form of the function k does not depend on the state of the considered particle; for a given particle, which neither loses nor gains matter, this form remains invariable whatever modification



that the particle experiences. It is this form that we have to determine.

Let us consider a body C, of finite dimensions, and let us suppose that the various infinitely small parts c, c', c", which compose it are all animated by a velocity of the same magnitude and of the same direction; let u, c, w be the components of this velocity; we shall say that the body C is animated by a translational motion of which (m, v, w) is the velocity.

The kinetic energy of the body C will have the value, according to what precedes,

/-(m, v, ii-1) -t- k' (u, v, "') -+- />"(", v, "') -Ě�= X(;t, c, n1). J.

So the kinetic energy of a body moving in translation is a function of the three components of the speed of this movement, a function that does not change its form as long as each of the infinitely small parts that make up the body remains formed of the same material.

s. From the preceding equality, one sees that if one divides the system C into several systems C,, G^ that if one designates by X, (u, v, \v), N-2 (/ c, tri the respective kinetic energies of the systems C,, Ga, animated by the same translation speed, the kinetic energy (u, c, ir) of the system C animated by the same translation speed will be the sum of the kinetic energies of the systems C,, C2,

(7) X(w, e, if) - \i(m, i\ <"-)Ě� Xji'u, p, "<)- The form of the function (u, v, "-) which is suitable for a given body does not change when the state of that body is modified in any way. We can therefore suppose that we distribute the matter which forms it in concentric spliteric layers, of finite or infinitely small thickness, in such a way that all the material elements crossed by the same sphere concentric to these layers are identical to each other.

Let's take this body at rest, and let's animate it with a certain translation speed V in a certain direction D. The work accomplished in this real or ideal modification is equal to X(u, c, h1,), u, r, "- being the projections on the axes of the absolutely fixed trihedron T of the segment V carried in the direction D



Let's take this body at rest and let's animate it with hi same translation speed but in another direction I)'. The work accomplished in this second modification, real or ideal, is equal to V(w', "' ir'), u! (- ir'elantles projections on the axes of the trihedron T of a segment equal to V carried in the direction D'. But one can obviously choose a fixed absolute trihedron T' with respect to which the straight line D' is oriented exactly as the straight line I) with respect to the trihedron T. fia second modification, brought to the trihedron T', will be identical to what is the first one, referred to the trihedron T. Therefore, both modifications, according to our first convention, correspond to the same work (u, t', <v ) = X( u v\ w'). j.

The function X (", v, w) does not depend separately on the three components u, v, w of the translational velocity that drives the body, but only on the magnitude V of this velocity. From now on we will call it y (V).

Eighthcoj* viv-nt jojĂŻ. - In any real or ideal modification which consists in taking a body at rest and imparting to it a speed of translation without in any way changing its stall, the work accomplished by the foreign bodies is always of the same sign.

We are free, up to now, to choose the category of works that will be represented by positive numbers; from now on we will count positively the covers that we have just defined.' The function '/(V), null forV = o, is positive for any other value of V.

Ninth cohvkkxiok. - Let us consider two systems S and S'. If the bodies foreign to each of these systems perform the same work to communicate to each of them, starting from rest and keeping an invariable state, the same speed of translation V they perform ctĂ™Mi the same work to communicate to each of them the same speed of translation V, whatever this last one is.



Kji other words, the equality

V 1 1 )

cannot be verified for a value of without I Ă¨ive for loule>.  The kinetic energy of a system varies continuously when the local velocities.1-; vary continuously; therefore, the function y() is a continuous function of By means of the two preceding propositions, it becomes easy to prove the following theorem:

ThkouĂ¨me. - Let S. S' two arbitrary systems; y < V ), y'(V) the kinetic energies of these two systems animated of the same speed of translation the ratio ,y depends on the nature of the two systems S and S', but not on the speed V.

Let us assume, in ell'et, the ratio o(\ ) = variable with Let us assume, in Ă®-IleL, the /t) (

as Jes two terms y (i. y'() it will be a continuous function of V; consequently, for values of as close to each other as we want, it will pass through commensurable values. So let Vo be a value of for which

n .il u'

i > " ) a

n and n' being two numbers inlier>.

Let us take a system C formed by the union, operated in any way, of /( sv<ths identical- to the system S. The system C will have, according to the equation ( 7 1, for a translnrion speed V, a kinetic energy

--/<Y!<-

Let us take, in the same way, a slĂ¨iiit* ('/ formed by the meeting of n systems identical to S'. For a translation speed V, the system G' will have a kinetic energy.

.i1:- n~1.

We will have, therefore,

V'i Vo 1 - v v>' ) 'Ě�-Ě� N - 7/ v" ) = Â°-



l) 'according to the previous convention, this equality entails, that) whether e is the equality

v(V) = v'(V)

which can be written

/V)

V") 'n

or

p(V) = p(V0).

Therefore, assuming that p(V) varies with V one would be led to conclude that p(V) is independent of V. This contradiction demonstrates the stated theorem.

Let us take a given body;V which we will name the standard body; let us designate by V (Y) the kinetic energy of this body animated by the translation speed;oThis body has a kinetic energy x(~)-

Let's put

(8) z(V) = >ir(V).

With respect to the number M introduced in this equality, the above allows us to assert the following propositions: i The number M does not depend on the speed V.

It is independent of the position, of the figure, of the state of each of the two bodies C and A; provided that each of these two bodies remains formed of the same matter, this number keeps an invariable value.

3Â° The number M. relative to a set of bodies is equal to the sum of the analogous numbers relative to each of these bodies. 4' For any body, the number M is positive.

5" For an infinitely small body, it is infinitely small. 6Â° For the standard body A, the number M is equal to i. If the standard body A is chosen once and for all, the number M characterizes the body C; we say that this number is the mass of the body C compared to the standard A.

to be able to apply to concrete reality the notion of mass, acquired here in an abstract way, it will be necessary, in the first place, to choose the concrete body to which one will make correspond the mass i this concrete standard, to be represented in a satisfactory way by the abstract standard, must not experience any sensible loss,



nor any appreciable gain in matter, physicists have agreed to consider a certain metal ingot, deposited at the Central Office of Weights and Measures, as representing not the unit of mass, but the body whose mass is represented by the number 1000. This ingot and all bodies having the same mass as it are given the name of kilogram. The name of gram is reserved for the body whose mass is represented by the number i, i.e. the theoretical standard of mass.

What we have just said shows us how, once a standard of mass has been chosen, we can, by thinking, make each body of the mathematical scheme on which we are reasoning, correspond to a number which is its mass; but this is not enough for us; we still need, when the standard A and the body C are given to us, not in an abstract way in our theoretical scheme, but in a concrete way in reality, to determine in an approximate way the number which will represent the mass of body C. If we take into account the third character presented by this number, we can easily see that this experimental determination can always be reduced to the following operation: To recognize if two different bodies, given in a concrete way, have or not the same mass.

By the preceding definition, two bodies have the same mass if the external bodies have to perform the same work in order to pull each of them from rest and, without changing its state, throw it with a certain speed of translation V, the same for both. We will therefore consider two bodies as having the same mass, if, in order to throw them with the same speed, we have to make the same effort; but it is clear that if we only made use of this principle and of the direct appreciation of equal efforts with the help of our muscular sense, the comparison of masses, impossible to carry out when it would be a question of bodies that are too big or too small, would be. even for the average bodies, of an extreme imprecision; It was recognized that the efforts which it was necessary to make to throw various bodies with the same speed were arranged appreciably in the same order as the efforts which it was necessary to make to raise these bodies from the ground to a same height above the ground; so that the bodies of same mass were also bodies of same weight.



It had, moreover, been previously recognized that two <or|

It was, moreover, previously recognized <|iie two bodies to which our muscular sense attributes the same weight, placed in the two pans of a balance whose two halves were as identical "pie possible, put it substantially in equilibrium: attributing this law more accuracy than to the sensitive perceptions which had made it discovered, the balance had been looked upon as an instrument much better suited than our muscular sense to appreciate the equality of weight of two bodies, and, therefore, their equality of mass. i# These primitive, very simple weighings contributed to the discovery or verification of a certain number of laws of Mechanics and Physics; but these laws, in their turn, served to perfect the balance, and so on. The comparison of masses has given rise to the use of that method of successive approximations which we described in the previous chapter in connection with the mercury thermometer; so that today, in order to justify the use of the precision balance as an instrument suitable for determining the masses of concrete bodies, it is necessary to appeal to the most diverse theories of Physics, and that, on the other hand, there is almost no theory of Physics which can be submitted to the control of experience without making use of the precision balance. This fact would be considered as a vicious circle in the eyes of the one who would pretend to submit the comparison between physical theory and experience to the laws of deductive Logic, but these laws only govern the analysis of the mathematical symbols whose arrangement constitutes the theory.

Equality (8) shows us that, in order to determine the form of the function y ( V ) relative to any body, it is sufficient to determine the form of this function for the standard body, i.e. to determine the function r ( V ).

This determination will depend on a new convention. We know that the function F (V ), null for = o, is positive for any value of. It seems to us, moreover, quite natural to admit that the work F(V) necessary to launch the mass standard with the speed V is all the greater as the speed V is itself greater. But this information is not enough to specify the form of F(V).

The simplest hypothesis that could be made would be to



assume 1* ( V ) proportional to Y. It was natural that this assumption should be made; it was made explicitly by Descartes: it was recognized that the Mechanics founded by Descartes on this assumption could not agree with the facts; thus informed by the history of Physics, we shall avoid making this assumption about the subject of (V).

To determine J'( we will pose a different convention this convention, although it seems rather easily acceptable. is by no means an obvious proposition whose admission is imposed in the xvi'! century, for example, in i'Opus novum de propo/lionibus, Cardan taught that it is inexact. Here is this convention

Tenth cosvfjvtiojv. - Ě� In order to launch with a translation velocity V, in a direction D, a body of invariable state., speaking of rest, it. is necessary to accomplish a certain work; if the body elail primitively animated by a translation velocity r/uelco/u/ue L in a direction ^perpendicular to the direction D, it would be necessary to accomplish the same work in order to impart to it a translation velocity V\ resulting from the velocity l) along the direction A and the velocity V along the direction I).  This convention expresses that we have

y< )- l ).

all laws (pawn a

""Jt ~\V~=:U~-

Let us note that the first statement remains true whatever the d), t/X, when we replace l by ( l d { and by ( V ~i-d.W '). We can easily find the equality

i '( t I i d /{\ )

t <l\

C <'1' must: have' 1') l cyt `~~V This equality must take place thatK be l and V: '-jh- <?* doue, proportional to what no" already know of y (V) allows us then to ai'l assert that, for your body, the function y (V i is the product of Y- by a positive factor.



We have not, up to now, chosen the unit of work, that is to say the positive work represented by the number 1. Conforming to a usage which the history of Mechanics reports, we can agree to take as the unit of work the work accomplished when the standard of niasse is launched with a speed of translation represented, with the help of the units of length and time which we have previously chosen, by the number y/a. From then on, it is easy to see that we have

V*

r(V) = T

2

and, by means of equality (8), that we have, for any body, i11 V=

(9) ;<V)^-

The unit of work is defined by what we have just said when we know the units of length, mass and time; if we take these units as fundamental units, the dimensions of y(VVand, therefore, the dimensions of any work can be immediately derived from the formula (g); these dimensions are represented by the symbol ML'T "2.

In the C.G.S. system of units, where the unit of time is the sexagesimal second of the mean hour, where the unit of length is the centimeter, and where the standard of mass would have a mass of one gram, the unit of work takes the name of erg (ĂŻpvov, work). Before continuing with the consequences of the formula (()), it is good to insist on the very arbitrary character of this determination of dcÂŁ(V).

As we have said, the only properties that seem very natural to us to attribute to the function I' ( V ) are the following The function Ti'V) is always positive:

It is cancelled with V

It grows as the

The convention that we have added to this one to obtain equality (9) is so little needed that it has long been considered inaccurate. We could therefore, without absurdity, get rid of it. There are 11



would, for example, not be absurd to admit for F (V ) the form e

\2 ~J[,o(V)J,

nv,i= lif, -i-Ă§fV)],

the function 'f ( V ) being null for V = o, constantly increasing with V when V would vary between o and a certain limit <>, infinite for V = \'}, and meaningless for the values of V which would exceed the critical value X1.

The equality < (j) would then be replaced by the equality

MV2

bis) X(V) = - [1 + ?(V)J.

Here are then the characteristics of the work necessary to launch a body with the speed V

iÂ° As long as the speed V would be lower than the critical value "<?, it would be necessary, to launch the body, to accomplish a positive work all the greater as the speed V would be greater; 2n For weak values of V, this work would be appreciably the same one as in an Energetics where one would admit the exactitude of the formula (9);

3" No finite work could launch the body with a speed equal to the critical speed x?

4Â° It would be L impossible to give any body a speed higher than the critical speed p.

In recent years, some physicists have been led to formulate such hypotheses; they have admitted that the critical speed was identical to the speed of light in the ether. We will not follow them in this attempt, which seems to us premature. We will simply point out that there is nothing absurd or shocking about it.

Let us add that a good number of theorems, which will be demonstrated in this work by means of formula (9), would remain exact if we substituted formula (9 bisi for it; of this number are those which we will establish at the end of this paragraph. Let us consider a system in motion; let us suppose that we can decompose it by thought into an infinity of infinitely small parts, each of which remains constantly formed of the



menu: malian: in the course of the modifications that the system can undergo; each of these parts will then have a well determined mass, independent of time, and inlinimeiH small. If we designate by dm the mass of one of these parts and by u. c, w the components of the velocity at a point of this element, the kinetic energy of this part will have for value, according to the equality ( 9), -iu-v- ~w-)dm: and as the kinetic energy of a system is equal to the sum of the kinetic energies of its various parts, this energy will have for value

i !<) ) K - 1 J I ( u1 Ě�- V1 -h- w- ) dm

2L

the integration extends to all the elements that make up the system.

Leibnitz had called the quantity (m2 -f- c- -f- w- ) dm the vice force of the system; it has become customary to call the quantity j (iĂ» ~{- v- + ir2) dm the vice force. We can, therefore, state this proposition The kinetic energy of a system is reduced to its living force.

To obtain this result, we have made a restriction; we have assumed that the system could be decomposed into infinitely small parts, each of which was formed unceasingly of the same matter and was animated, at each instant, by a single velocity. In general, this restriction is no longer verified if the system contains a mixture of two or more bodies. In this case, in fact, the various materials which, at a given instant, are united in the same element of volume, are found, at another instant, in elements of different volume.  If, therefore, we want equality ( 10) to extend to systems containing mixtures or combinations, it is important to lift the previous restriction. To achieve this, we note that the kinetic energy of a system is not changed by imposing any modification on it, provided that after this modification each of the infinitesimally small material parts that compose it has kept the speed that animated it before the modification.

This being said, we propose to determine at this moment the energy



kinetic of a system containing a mixture of two bodies i and 2. Considering it in the state it is in at instant l, we decompose it by thought into an infinity of infinitely small parts that we isolate from each other. Some of these parts are a mixture of the two bodies i and ->. In each of these parts, we separate the two bodies i and a in such a way as to form two distinct particles; then, we animate each of these two particles, isolated from each other, with the speed with which it was animated within the system.  The kinetic energy of the system at time t is equal to the sum of the kinetic energies of the dispersed particles.

But, after this operation, the system no longer contains any mixture; to each of these particles, we can apply the considerations developed in the above.

Let us suppose that, in the system, at the instant t, the element of volume diĂą contains a part of the matter i, animated by the velocity ("t, vt, nu), and a part of the matter a, animated by the velocity (a2, ">2, ">-,).  The preceding operation will draw from this element two particles: one, formed of the body i, will have for mass dm, and for kinetic energy -(u~, + v'\ +w) dmi the other, formed of the body a, will have for mass dm, and for kinetic energy (u'i ~j- < ~i~ iv'i) dm*. The element rioj will thus introduce, in the kinetic energy of the system at the instant l, the term

( u (' -7- o Ě� | ) dm i -;- - ( n r, --Ě�Ě� v | -}- iv |) dm%

The various elements into which we can decompose the system at time t will provide the kinetic energy with analogous terms; we will have, therefore,

(m) K = i ( iri -h } - (c; ) dni\ -+- ("; -+- r; (i1; )din. each of the two integrals.s being the volume elements into which we can decompose the system. This formula leads to an important consequence. Let us consider a mixture of two bodies i and 2; let us suppose that each of the elementary parts of body i and each of the parts



of the body 2 are animated by the same translational motion of speed V. ĂŽWe will have

/('] -i- V\ Ě� w\ = II", -r- t>1 -i- w\ = V2.

If M|, M 2 are the total masses of each of the two mixed bodies, we will have

.Mi = dnii, .M 2= drn-2.

and, therefore, J, \'ll- J~dnt,> 112= (,dnx2.

K =i(Mi-VI2)V2.

But, in this case, the system can be decomposed into infinitely small parts, each of which neither loses nor gains matter during the modification; each of these parts has a single velocity and, for all of them, this velocity has the same value V. To this system, we can apply all that we have said about systems that do not contain a mixture; it will have a total mass M and its kinetic energy will be given by the formula K= -MV*. 2.

-i.

By identifying the two expressions of K, we find the equality M,-i- Wi- M.

The mass of a mixture or combination is equal to the sum of the masses of the combined or mixed bodies. The various conventions that we have laid down lead us to the following form of the total energy of a system, a form that results from the equalities (6) and ( 10),

( 1 Ě�>. ) '('-) I-1,1 = '-Ě� I 'Ě� < 'Ě�Ě� '-' Ě�+- w'1 ) d'n- We know, moreover, that this form of energy is a restricted one; in adopting it, we reject out of the domain we intend to explore the laws of electricity and magnetism, for the study of which it is not suitable.

Moreover, we admit that the internal energy U(e) does not vary



not by a simple displacement in space; by this, we exclude from our reasoning the consideration of systems such as Mac Cullagli's elher.

By using this restricted form of energy, the principle of the Conservation of Energy is also susceptible of a more particular statement than the one we had previously formulated; here is this statement which, from now on, will be the only one used in our reasonings

Restricted Form of the Principle of Conservation of Energy In any real modification of an isolated system, the equality (i3) U(e)4- ( H.2-t- i>2-S- <c-) dm = const.

is verified.

Concerning this physical hypothesis, the first one we encounter, we can already notice that it supposes the consideration of absolute motion, in the sense we have previously given to these words (Chap. I, Â§ 1, p. 9).

Let us suppose, in fact, that the preceding hypothesis is exact when we choose a certain clock and a certain absolutely fixed trihedron ĂŻ; let U(e) be the internal energy defined by relating the state of the system to the trihedron T; let K be the living force of this system, the speed of each part being compared to this absolutely fixed trihedron T. If our system is isolated, the sum U(e)-j-K will have a value independent of time

Let us imagine now that, without changing the clock, we choose a new absolutely fixed trihedron T', this trihedron T' being mobile with respect to the trihedron T; let e' be the state of the system referred to this new trihedron, l'(e') the internal energy defined by means of this new trihedron, K' what becomes of the living force when the velocities are referred to this trihedron T'. The change of the reference trihedron does not prevent the system from remaining isolated l-'(<*) -f- K' must therefore keep a value independent of But the internal energy of a system taken in a given state does not depend on the absolute position of the system in 1 space, i.e. on its position relative to the absolutely fixed trihedron, it is obviously the same to say that its value does not change l.).j- I. Ě� 8



by changing the absolutely fixed trihedron; or :i so Life) = Life").

It would be necessary, therefore, for the accuracy of the principle of the conservation of energy to be independent of the choice of the absolutely fixed trihedron, that the difference K' - K had a value independent of and that ([iiel que fĂ»t le systĂ¨me considĂ©rĂ© et quels que fussent les deux IriĂ¨dres T et T'. But it is visible that it is not, so...

To be sure, let us take a very simple example. Let us imagine that the system is reduced to an infinitely small body of mass m its living force, referred to the first trihedron T, has the value ^- s referred to the second trihedron T', it has the value V, V are, in these expressions, the velocities of the small body, referred either to the trihedron T, or to the trihedron I. We will then have lv'_ K = --(V'- V). t.

->.

It is clear that we can take a tihedron T' animated, with respect to the trihedron T, by a motion such that K' - K becomes any function of time



CHAPTER III.

TKAVAIL AND LKS ACTIONS.


	Inertia Work and Inertia Actions.



Let us consider any system, and be, dm one of the elementary masses which compose this system; at the instant t., a point of this mass has coordinates .r, y. z-.

The vector whose components are

dKr dĂŻy d?z

-^dm- ~-dÂŁd'"> -dĂ«dm

has been called, since d'Alembert, the ineiTtie force applied to the mass dm at the moment

Let us take the system with IVial, h1 motion and the accelerations that it has at the instant L, and, of this polKt of departure, let us impose to him a virtual modification infinitely pelilo in this modification, the coordinates .r, y. of the mass dm undergo infinitely small variations tox. oy. o;. The expression

Ă‡ icf-x il* y >l-z

(I) -Ě�-Jim* -itt--"y --nr>)dm .7 J

is, by definition, the virtual work of the inertial forces applied to the system or, more briefly, the virtual work of inertia.

Among the virtual modifications of which the system is susceptible, there is one which corresponds to the real modification undergone by the system in time dt: by this particular virtual modification, we have

ilx l > ilv l t/~

O.r =1 wire. 0>' -7- dt. OZ - -r-dl

dt J dt dl l



and, therefore,

f/d2x dx diy dy dsz dz\ ,i

'> ,f ( dt= dt T clt`= clt + clt= ~t ) clnz. dj

~J \~dF Tl + ~dt "dl ~7& dt ) **Ě�

On the other hand, according to equality (10) of the previous chapter (p. 1 10), the kinetic energy or living force of the system has the value t ('C/c~x\' /cly``= (clz)z~ J~'

('J.) ,,J (~ clt -r-' dt + ~t clnz. The reconciliation of these two formulas immediately gives dK

(3 ) -

In any infinitely small real modification, the work of inertia is equal in absolute value and of opposite sign to the variation experienced by the living force.

The above is entirely general.

Let us now consider a system whose virtual modification is entirely determined (p. 40) by the knowledge of n arbitrary infinitely small quantities, i.e. <7i, Ă§/i, qn

these n independent variations.

In the real modification that the system experiences in time dt, these n variations take values that can be designated by

by (,\dt, q'tdl, q'ILdt,

r/{, q\, <" being n finite quantities.

The virtual variations experienced by the coordinates of a material point of the system will be given by equalities of the form

i o.v - a,)/, + "2y2-r-+ a,,q,

( ,'i ,1 < 0)' = b q -i- b-Ă® (/, -H bn q ",

I os = c,7i- Cjr/j -+ cnqn.

The velocity components of the same point will be given by



even equalities

dx

~t = ~)?t--2+.?7~

( <v b 'b l 1

( ) c~t =~f <?' - ?~

=C 1 q'l

~7 C;y, - C~-- C,,<

In these equalities, the coefficients ai, bi, ci are determined, for each point (x, y, z) of the system, when the state of this system is known.

According to equalities (2) and (5), the living force of the system is (6) K= (a; y, + ~y a--"" y;, )-~

+(b~ yiT ~~9=-+ b,tcl;t)~=

+(c~ yi+ C2~(-T- c,ty~a)`=~ dnz.

It is visible that this living force is a quadratic form </Mf<x/a!6/M c~ y;, this ,fĂ´rnze, null when these n va<~ic~bles are null, cannot jcznzais c?tre neyative, whatever the attributed values and these variables.

From equalities (5), we derive

d2x dai da~ darr

dt'= ~7 yz +.+ ~t 9;z

<~<7', i d9 s ~<7,, a

l, dt2 = al ~t a~ dt ~+ a.e dt

dt,v d'&j d~2 <~K

dt= = dt y~ dt y2 T.+ ~,t y"

7 tF-1 ,~< 2 + Lldg' + v;d~+.+ b~lcdt~,

dz z dc, dc2 W lca

dtz = dt y' dt 92+.+-

<~<7', <~< <

c 1Il c'- dt +: c,r ,ĂŽt

The coefficient a, depends, for each material point of the system, on the state of this system at time t; in a virtual modification of the system, it experiences a variation that can be put in the form

8a'i==st,t<irt-)-Xta</2-+'X),ty,



the coefficients a,y are determined for each point of the system, when the state of this system is known. In particular, we have cLcr,

-jj = auy, -Ě� --- Ě� - y-tn'7,

Therefore, we can say that in each of the second members of equalities 17). the first line is a quadratic form of the variables q[ q'n cl the second a linear form of the n variables

dq\ d(i' " 'l'

'i^i/T' v*=dr' Ě�Ě�Ě�' <h<cu-

Substitute the expressions! 4) of o.r, or, 0: el the expressions (7) of-- - '- in the expression (1) of the virtual work of inertia; dVl dt- al1 l

we will find

(8) = V/i~ Ji'/i Ě�Ě�Ě� - J"<7"-

by putting

CX I dcii dt' n "

t 1l t 'L ( clc4, Ii _du,t 'l~r-cylcl'~"-1' Ě�= - [ [-^Vi+-dy'/>r-t'i'li '-Ě�Ě�Ě�Ě�+""'J") "i ^dT'/i'+'" Ě� ~dT <l + Ě� - Ě� + fr "j Â°l

cll'~l'1~ clt,'l;Wli='c".yt,I dna,

pt by defining ,T2, JH by analogous equalities. By definition, .1/ is the inertia action relative to the independent variation cji.

It is clear that this action is the sum of two terms, one of these terms is a quadratic form of the variables # f/2, </" the other is a linear form of the variables q'[, ql_, q "n to know the coefficients of these two forms, it is sufficient to know the state of the system; it is not useful to know its motion. We can give an interesting expression for the inertial actions, which is due to M. P. Vppell ('").

(!) l>. AppkiiL. Accounts i-endax, 1. CXX.1X. [>[.. :i\ \o cl /|5g; 7 August, -.>8 August cl 11 September 1899. - Cre/le's Journal fiir reine und angewandte Mathematifc. Bd. GXM. - Journal de MathĂ©matiques pures el appliquĂ©es, 5" sciie, l. VI, iijoo, p.>. - TraitĂ© 'de MĂ©canique rationnelle, ->" Ă©dil. l. Il- i()'>'i, [)- '>



Consider the expression

(l0) ('J[[dF) ^-[HF) ^(sf) \dl" which differs only, from the force vivo K pyr the substitution of Ě� (ten d'y di s\ i dx dy dz\ facccleral.on ( -- j a la v,tesse (^ ÂŁ. Ě�%); let us subsl.tu it to the components of the acceleration their \alors (7); we will find

1 dat dan " r (") (j=7,) ( ~JTCll' 'Ě�Ě�-Ě�Ě� -jj-'J"-i-al(/l-l-- ">-</") i I db\ dbn "

~dT(/l~i~ ~dT' -ii</i + -J- b "9")

I of, of,, I

t dt cla clt cl" c~rli-_ cmgn J Jclnr.

("5T f/ Ě�Ě�Ě�'i "dT q" H" Cl r/ 'Ě�Ě�" c "q") J

It is enough, then, to compare the equalities ( <) and (1 1 ) to find the first of the equalities

d(i to(, J OC,

dr/l <>< Oc/1 Il

the others are established in a similar way.

These relations (11'. lead to an important theorem.

It is enough tle compare the equalities (()) and (11) to recognize that the coefficients of q]'1 and r/" in Ě�expression G are respecliveinenl equal to the coefficients of tjf and q) (jj in expression K. From then on, it is visible that the determinant of the coefficients of q <][, q'n drtns the n inertia actions J 1 ..12, .l" It is the product of (- 1)" by the discriminant of the form 'J.K, quadratic in q. q qn. As this form is positive, its discriminant is positive, so that the preceding determinant, always different from o, has the sign of ( - 1)". s Let us give an example of these various considerations. Let us suppose that the system under study is reduced to a solid body incapable of deforming, but capable of moving in space in an arbitrary way. Let us suppose, moreover, that the lethal of this body is entirely known when we know the position it occupies.



The virtual change Ă®nhniment small in the position of this body can be determined by means of six infinitely small quantities, namely the three projections a, j3, y of an infinitely small translation on the axes O.r, Oy, Os of an absolutely fixed trihedron, and three infinitely small rotations A, u, v around these same axes; the components ox, oy, oz of the virtual displacement of the material point of which x, y, are the initial coordinates will have for expressions 1

Sa- = a -h- <xz -y,

f>3) 8y = p + v" - Xz,

f Ă´z = y -+- Ă€ y - \i.x.

In ia change, real or ideal, which occurs between the instants l and l-hdt, the components of the elementary translation have the values a' dt, j3' dt, y' dt, and the elementary rotations are a' of, 'jJ dt, -/dt. The components of the velocity of the point of coordinates x, y, z are

i x' = a' -+- ijt'; - 'y,

(14) .=~-)~,

The living force of the solid body is

K = ( Ě�Ě�Ě�- \J.' z - 'i' Y)- - (P'-i- v'.r - V z )- -f- (y'+ Ă€ '>" - l-1')2] <1- Let us posit.

i M = fdm,

] M = rf/n, .M r, = | y dm, M Ă‡ = fz dm, i-v=l<.r'1 :if//". I, = j(z2-i-!)d.m, !-== Ă‡ix^-r-y^dm, \y-= J yz dm, \i-.v- I z.v dm, Mxy= I xy dm. M will be the total mass of the body Ă§, r,, ÂŁ, will be the coordinates of its centra of gravity; l.r, lv, I- will be its moments of inertia in relation to the same axes.

It is easy to see that the living force of the solid takes the form



."-"= 2" -h ;j." - v "j- -i- ;j.' y' - v'i'-i- /(/ x -{- \x y~r-'i'z) - (Ă€'2-(- \x- -+- v'2 )x, (1-) y" = S"-i- v "1 - Ă€" z -r- Ě� oc' - Ă€'- ij.\X'a; -+- ijl'_k -f- v') - ( Ă€'- Ě�+- [i. + v'2 )y, [ z"- Ě�+ l'y- /- >- |A'a'-+- -/().' x -+- |x>-l- v'a) - (X'r- |i'2 + v'2)js. Ě� If one then i'ornicates the inertia actions either directly or rather by the method of Mr. P. Appell, one obtains the following results.

5 l l l. iA 111.t'

(16) K = (a'2-f- ĂŻ'2~ v'2 ) j
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I, 1.) Ir I- f.)

h H Ě� ;j. -i -/
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	Mv-|JLV-i- M;^v'+ M.n-X'jx'.



This quantity is indeed a quadratic form of the six quantities a', fS', Ě� Ă€', p', v'.

Let's put

r/<ÂŁ^ o"^ ."_^L

dt' 'J dt' ilt'

= ~Ă l IX = ~dĂŻ' = W

The equalities (i4) will give us

3;"= a"-f- [-> a - 'y-+- \x' z' - v y'

y" = p "+ v"^ - Ă€" .3 -+- v' - Ă€' z'.

z" = '+- ~i" y - ->" x -+- X'^y' - ij.' a?'

or, by virtue of these same equalities (i/), j,

Ja = - Ma"- M(Ă‡|i"-ĂŻ.v")

I - M(|j.y- v'p'i - Al(r/>ĂŻ(}Ji'-HĂ‡v')X' + M E(X;i-+- ji'2-hv'2). 0") I ,IX = - i.r X" + M.v ;jl" -h .M.r: v" + M ( r3"- r, y" )

[ + ( I, - I ) >/-/ -v (. M.r, v' - !\l.r: ,u')X'-+- M_v: (v'2 - [x'2 ).

The four actions of inertia .1; JY. J^, Jv are derived from the previous ones by permutations.

In general, to study the motion of a solid, we do not use an absolutely fixed trihedron, but a trihedron invariably linked to the solid with respect to this trihedron, we will obtain, by



a similar method, anologous equations to the previous ones (' ).

Let us return to the general case of a svslĂ¨me whose most general virtual modification depends on a limited number of independent variations.

It may happen that the action of inertia corresponding to an independent variation is identically null, that is to say, whatever the motion of which the system is animated; the corresponding variation then takes the name of variation without inertia. For q, for example, to be a variation without inertia, it is necessary and sufficient, by virtue of the first equality (ta), that --Ě� be identically null or that G be independent of q'1 { moreover, according to equality (i i), for (Ă® to be independent of q" whatever the motion of the system, it is necessary and sufficient that we constantly have

a, o, l~, o. CI = o.

If we refer to the equalities (4), we can see that these conditions are equivalent to the following one A variation without inertia is the one whose value has no influence on the magnitude of the virtual displacement of the various points of the system.

We could, for example, consider a rigid solid body uniformly magnetized; a virtual modification of this solid body could be defined by means of the six infinitesimal quantities a, jĂŻ, y. a, y., v (pie we have just studied and by the ariations 8-1. ioil'-i. oÂ© of the components of its magnetization intensity. The components Sx. S y, Ă z of the displacement of any material point belonging to the solid would still be given by the equalities (io) where oA- 8it! oÂŁ: o-U Ă´ifc. oÂŁ would thus be variations without inertia.

Among the sternes whose most general virtual variation is determined by the knowledge of a limited number of independent variations, we find, in particular, systems whose state depends on a limited number of independent variables. Suppose, in fact, that the state of a system is determined by the n a ri a Mes independent/?! ,/>-- p, a virtual modification (l) I'. Al'[*Bi.i..  Train! rtr Afc'rmiif/ue rational, Ě�>" l'-tlit. t. II. p. 'i;f|.



of this sequence will be known when we know! Ira les \aleurs pri>es par les n quantitĂ©s infiniment petites

Vl =~ Vl 'h- = ''Pi- Ě�Ě�Ě�: 'h, '>"Ě�

The expression 18) of the inertia iravuil can be written (19) ^.1,0/J, la5/>2H-i-.l" 5/",

.)i, Jo, p<U\ent here s obtained by a process that La^ran^e has devised.

The eoordoids x. y, z- of each of the material points belonging to the system are functions of/),?. .[)": so we have

z '/-?' O.i' <)x

( 20) ;w- rJ/y /<-<+-- /<"

'J/'l <>/<Ě�! "Pu

and 'analogous expressions for r'. :Ě�'

We will also have

(2.1) :{' O~ /1'; - .L---y~-)' Op, ,)p, dp,,

with

Ě�"-Ě� l <)-X IJ-.T X~l <)-Ě�)Ě� 1 - ~7~ ij

In 1 equality (aa), the summation extends to all distinct combinations of the indices i. Ě�> two by two.

The (|UiintilĂ©>_T/ z" have tic- analogous expressions-.

Imi verlu of the equalities i Ě�> i cl ( v.(i the force viyc peul s"<;crire I f\ O.r il.r ij.i- d.r - ~~J V-.Ă´/r, 7^ /Ě�Ě�Ě� itjrj'-} Ě�Ě�Ě� rf' (23 ~Lv~t rl/7_ rl~7,e 'r~ l v

the [)or'it.-> rem|ilaĂ§ant deu\ terms that are analogous to the one that is written and that deilui>enl by sub^lilulion of the leltre y or the leltre :Ě� to the letter .r.

Similarly, we \erlu il<'s Ă©yalilĂ©s i m) cl {->->. i, on u

C i <hr ii.r tir ''-' VA) l'J .: Ě�Ě�Ě�Ě�-ĂŻp-"" '-Ě�Ě�Ě�Ě�) Ě�-Ě� <"Ě� (,24)' ~JL' pi < p; F.) dm,

The first equality (->) gives us ulor-

(',>j) -Âˇ =- L~ <



On the other hand, Pt''ga)it('('3) gives us the following equalities OK K d.~r c).

~=~ (,~1,, d~>_ ~--

)2.r

T~T/'r"--.-T-(-- /)-)- 1

.~t '2

u1C yr /d.7' dr

--==) ([ --- --- /-r- --- ----t. rl d rr " " d~r

(.'W) ~t lli'i .1_ [ ~Jhn,i+ rJpt l~c/ /~r`+ ,J:r ~~<L '~- /t).r rix da~

\~pr frt~ djy l'Z- ..+ r~~a p

d=ar 2 1_

()pi 1) -:Âˇ-Âˇ-- 2 Pl -1- l~,r rlnt.

1 ')' ~Pt~M J

The comparison of the equalities (a5), (a6) and (27) gives irrlll1(~diately the first of the equalities

dK cl

J, = d~~ olt dp~~

dK rl ĂąK

(28) O)IJ2 clt '1)-2

,)Il clt -

The others are obtained in a similar way.

These are Lagrange's formulas. We will have many opportunities to use them.

tt follows from what we said above that the determinant of the coefncients of /)' .p;, in JÂˇ,J2, J,, is always different from zero.


	Mutual actions between two independent systems (!).  Let us consider a system S, which can be Implemented into two independent systems Sa, SL.'



Any state of the system S is determined by the knowledge of a (1) P. DUIlEM, Corrtmenlaiee acex principes de la ?7te/'7t:o~a/K;fe/ f Partie, Le pritaĂ§ipe de la conservation de l'Ă©aengie, Chap. III, art. 1 et 2 (7oM/'y:a~<<eA~:</temf<~Me.s, /)* sĂ©rie, t. VIII, i8g2, pp. 3oS et seq.)



certain state A of the system S, considered in isolation and of a certain standard. B of the system S/, considered in isolation.

The system Sa, taken in isolation in state A, would admit an internal energy U"(A); the system Sa, taken in isolation in state B, would admit an internal energy Ua(B). The internal energy U of system S depends on both states A and B; without making any assumptions, we can write

(Ě�>)~) U = U"(A ) -+- U,,(B) 4- Wab( A, B).

The quantity Wai,(A, B) is what we will call the mutual potential energy of the two systems S", Sa, taken respectively in the states A and B.

About this quantity, we have two pieces of information, the first of which results from the seventh convention of the previous chapter (p. ()3); here it is

If we agree to choose for the normal state of the system S a state where the two systems S, S4 are infinitely distant from each other and where each of them is in its normal state, the quantity Wat cancels itself whenever the two systems SK, S4, are infinitely distant from each other, whatever the state of each of them.

The second information results from the postulate introduced in Â§ 2 of the preceding Chapter (p. ()-) it can be formulated as follows The mutual potential energy of two systems Sn, S& may well depend on the relative position of these two systems, but not on the absolute position that their set S occupies in space.

Let us consider an arbitrary modification of the system S. We know (p. (io) that it is composed of a virtual modification m,, of the system S, and a virtual modification m;, of the system S/

l'ar as a result of the single modification itta. One (A) experiences a variiilion oCV,(A), while M" ^A, B) experiences a variation ^'" H* ( A B) similarly, as a result of the modification m; Ui(B) experiences a variation 3U;,(B), while Waj(A,B) experiences a variation o,, M' 1 II). It follows from equality (29)



that in any virtual modification of the system S. we have Ě� '!<> ol = Ă® L"( A) -+- o,( U'ai< A, B) - 51 hi ?,) -Ě�- S/, >r"/,i A. I: >. t Let us consider the two systems S,, and S/ taken in the states A and and deprived of any motion without imposing on the system S^ any modification, and without communicating any motion to either of the two systems, let's impose on the system SK the useful virI modification rna. The work accomplished by the bodies foreign to these two systems is reduced here to oU, since the kinetic energies of the two systems remain constantly zero, and oL itself is reduced to

oU"(A)--5aH-aA(A!).

Let us now take the system S", out of the presence of the system S/ and still without movement, let us impose on it the same virtual modification. The work accomplished by the bodies foreign to the system is then reduced to

3t.A).

It is no longer of the same value as the previous one; it surpasses it by the amount

(it) S,, = -oaM-a,,iA., B).

The presence of the system S* had therefore for ell'el to decrease of the quantity That the work that the foreign bodies must accomplish to impose to the system A the modification /" from there, the following definition

The i/uanUty (?", defined by the equality (,'Si). <;st, the work done, an the modification, virl tir Ile in,, of the system, Sa,by the actions that the system S/, exerts on the system S, L)c even, the quantity Zi,, defined by the equality

(il bis) & = - o*>ra/,( A. lii,

is the work ellccluded, in the virtual modification "/ of the system Si, by the actions that the system S,, exerts on the system S/ The equalities (3i) and (3i hi.i) added member to member give

(:-> G,, Ě�-< =- o M'a,,i a. l!_i.



When two independent systems S, S/, experience, in the presence of each other, any virtual modifications, the work done by the mutual actions of these two systems is the changed sign of their mutual potential energy.

Doubting the laws that the virtual trauul of certain actions will be, in any virtual modification, the changed sign of a certain quantity entirely determined by the knowledge of the state of the system which undergoes these actions and of the state of the bodies which exert them, we will say that, for these actions, this quantity is) a potential. We can therefore state the following proposition

The mutual actions of two independent systems admit a potential which is equal to the mutual potential energy of these two systems:

If the system S/, is a system incapable of experiencing any variation, SjJ. is necessarily zero, and the inequality (02 ) reduces to fg y0.?;at,~t.l, 1

Pc= - o H "r A, Bi.

If a system is placed in the presence of foreign bodies of which it is independent and which cannot experience any change of state, the actions (/u. it undergoes on the part of these foreign bodies admit a jiotenliel; this potential is equal to the mutual potential energy of the system and the foreign bodies. If the two systems S, S/, -,onl inliiiimcnl away-; an deliul of the virtual modification m, they are it still .'i ta end, because this modification, which leaves immobile the sv.^lĂ¨ine S/ change inliuimciil little the position that the system S, occupies dan* I space '" ( li ). null at the end as at the beginning of the modification m, u' en Ă©prou\r no variation as soon as, C,, is null.

IJ where this proposal

At the end of any rirlial modification it a t}:i/riue S, the actions exerted on this system by another system S/ independent of the first one and infinitely distant from him. do not carry out any work.



This proposition can also be stated in this less precise form

Two independent systems, infinitely distant from each other, have no effect on each other.

Suppose that the modifications ma, m/ simply change the position in the space of the set S of the two systems S, Sb, without changing either the internal state or the relative position of these two systems. Since a simple displacement of the set does not change xl'ai, (A, 13), equality (3a) gives us

5a _t- 6Ă© = o.

The mutual actions of two independent systems do not produce any work in a virtual modification which is reduced to a displacement in space of the whole of the two systems.

This proposition may be regarded as the general statement of the law OF the ecaliity of action AND reaction. Let us now imagine that the most general virtual modification of the system Sa is determined by means of a limited number n of independent variations at a2, an. We will obviously have

(">-) Sa - - o,, 'I""fc(. B) = A, a, -+- A2a2-H.+- knan. By definition, Ai is the action, relative to the variation a, that the system S4, taken in state 13, exerts on the system S", taken in state A.

About such an action, we can immediately state some propositions

Each of the actions (fue the system Sb exerts on the system S,, can depend on the state of each of these two systems and their relative situation but it is independent of the motion of each of these two systems and of the absolute position that their set occupies in space.

All actions of the system Sb on the system Sa are equal to zero when the two systems are infinitely far apart.






When a given system Srt undergoes a given virtual modification ma in the presence of another given system S/ the virtual work E,, of the actions exerted by the system S4 on the system SI, is determined without ambiguity; but it is not the same for the actions A,, A2, X, It can happen, in fact, that instead of using, to define the modification m,t, the n independent variations a, "2, an, one makes use of n other independent variations a'% ci' ciH to these new variations will correspond new actions A' A,, A'n; but, in any virtual modification of the system Sa, one will have the equality A, "1 + A2a2-h A,,Ĺ“ = \a\ -4- \2a'.2~h A;,"; which we will express by saying that the actions A,, A2, A, on the one hand, and the actions A'j. A' A'in on the other hand, form two equivalent groups.

The numerous problems of force composition have no other purpose than to replace a group of actions by an equivalent group.

Suppose that the state of the system Sa is determined by means of n independent variables 0' a- Ě� a, in which case we can take

"i = oa, a, = oa,, an - oa,

The quantity W* (A, B) can then be considered as a function of the variables y.t, a2, a, the form of this function depending, moreover, on the nature and state of the system Sr, >]--"( A, B ) = VAfa,. as, %n). l.

The equality (.'}.'{) will become

t~ J~`r, '& d-'r, A [ oa. H- .Ă‚2 -;a2 Ě� -}- A,, ia,, - Ě� ( - oa, -+- - oa, -+- -f- - oa,, ') ,a.l.0~14-- As o~-)-)-:A,t jC j (JCL't O'J. n I This equality is a pure definition, identically true whatever oa,, 3a2, oaw it therefore requires that we have f3~) ~Vt a t1==r ~n 1 c)V,, (3.~) ~xt dx~ d

When the state of a, system is determined by a limited number of independent variables, the action, relative to one Ě�P.' - I. Ě�Ě�!Ě� - ii .)



of these variables, exerted by another system is, to the nearest sign, the partial derivative with respect to this same variable of V mutual potential energy of the two systems. Let us suppose that the state of the system S/, is also determined by a limited number p of independent variables [j,, [i2, fi/ The mutual potential energy of the two systems will then be a function of the (/'( +/>) variables y.s, a, rfi,, r(ip Va4(A,B) = \V(aI) .a", fi,, .3,,).

Equalities (3i) and (3i bis) will become

( /d~V ÂˇJW

dxt ~la,i

(d~V dW

s* - (,^p7 OĂŻii"Ě� sp; Â°P";

ÂˇII r,

They will give equality

(jw ÂˇJW r)~V ~o rJW ~Q ')'

Z-`,u+<^i~= Jx 07.Âˇ+.+-O'l "+"DÂ°?1+'+-Âˇ),) Â°pp 1 n ,t ,p

When the systems Sa, S4 are both determined by a limited number of independent variables, the virtual work &a of the actions of the system Sj on the system Sa and the virtual work E<> of the actions of the system Sa on the system S/, have as their somnze the total differential of a function of the variables that determine the stall of each of both systems.

This theorem is not true of each of the two virtual works ÂŁ", ÂŁ4 taken in isolation, unless one of the two systems Sa, S4 remains in an invariant state; the virtual work of the actions it exerts on the second system is then the total differential of a function of the variables that determine the state of this second system.

',). Examples of various actions.

Most of the quantities that we have had to consider up to now are the magnitude of a work, energy, internal energy, kinetic energy or living force, work of inertia, work of the mutual actions of two systems, are quantities of the same kind.



We can add them to each other or subtract them from each other. If we relate to arbitrary units these three kinds of quantities, the lengths, the times and the masses, and if we attribute to them respectively for symbols of dimensions the letters L, T, M, all the quantities that we will enumerate have the same symbol of dimensions, and this symbol is, MlrT "2, as the expression of one of them immediately shows. of the living force.

The quantities that we have named actions can, on the contrary, be quantities of various kinds; each of them must be of such a kind that, multiplied by the corresponding variation, it gives a product of the same kind as an energy the kind to which it belongs depends therefore on the kind of the variation to which it corresponds; when this one is determined, that one is also determined.

What we say must be understood as well as the actions of inertia as the actions exerted by an independent system; these two kinds of actions are, in eu'et, magnitudes of the same kind when they relate to the same variation.

The nature of the various actions to which a material system can be subjected, whether they are actions of inertia or actions exerted by an independent system, is thus known when we know the independent variations which determine a virtual modification of this same system.

Let's support these generalities with some examples.

Pis i-au i;r i:\kvipj.i:. - Poinl material.

11 often happens that, in the study of the movement of a body, we make abstraction of the volume and the shape of this body and that we look at ourselves as sufficiently informed when we know. at each moment, the position of one of the points of the body; in such a case, we represent this concrete body, small or big (it can be very well the Sun), by a very simplified system which is reduced to a variable mathematical point in space such a system is called material point

A virtual modification of such a system is reduced to a change in the position of this point; such a virtual modification can be defined by the infinitely small variations Ă´x, oy, Zz



These coordinates being related to an absolutely fixed trirectangular trihedron.

If this material point is in the presence of any independent system, the actions exerted by this system on the material point will perform a virtual work

& - Xox -h oy -+- 7. os.

The actions X, Y, Z do not only depend on the state of the system that exerts these actions and on the position that the material point occupies in relation to this system; they also depend on the coordinate axes to which this point and this system are related. On the contrary, according to what we have seen in the previous paragraph, the virtual work S must not depend on them.

Let A be the infinitely small segment whose components are ox, Sy, os; the segment A is determined in size and direction for each virtual displacement of the point M, independently of any coordinate system. Let F be the vector whose components are X, Y, Z. The work G can be written

G = FAcos(F, Ă ).

It is clear that the magnitude and direction of the vector F must depend exclusively on the state of the system S and the position of the point M with respect to it. A definition, which we will give in a completely general way, will teach us the name that should be given to the vector F.

Let us consider any system S. Let M be a point associated with this system in such a way that, when the system S is in a known calibration, we know where the point M is located. This point may always be located within the same material element of the system S; it may, on the other hand, be located within different material parts in the various states of the system S; it may, finally, be external to the matter that forms the system S; it does not matter.  Any virtual modification of the system S leads to a certain displacement A of the point M.

Consider any work that relates to the most general virluole modification of system S, and assume that



this work contains a term of the form

FA cosfF, A),

where F is a vector whose magnitude and direction do not depend on the virtual modification imposed on the system S. We will say that this term is the work of a force, represented in magnitude and direction by the vector F, and that the point M is the point of application of this force.

Note that this definition is consistent with the definition of the inertial force given at the beginning of paragraph I of this Chapter (p. i i5).

This definition shows that any force is such that its product by a length represents a work or an energy: all the forces are thus magnitudes of the same, kind cjui mil for symbol of dimensions MLT "2.

In the C. G. S. system of fundamental units, where the unit of work is the erg, the unit of force is called the dyne. With this definition, we can say that the actions exerted on a material point by a system independent of this point are reduced to a force which has this point as its point of application. The size and direction of this force depend exclusively on the size of the acting system and the position of the material point with respect to this system.

l.)r.i;xii;viE i-.xiĂŻmi'j.e. - (.'o/>s solid invariant.

Let's study a solid whose "standard" is completely defined when we know the space it occupies. T he virtual modification of such a svsl.Ă¨me is entirely determined (p. Ă®ad) by the knowledge of the components a, [i, -'of a certain virlual translation and by the components A, ij., v of a certain virtual rotation, this translation and this rotation being both related to (uncertain IriĂ¨drc Lrireetangle < )./Ě�, Or, ():Ě�. The virtual work of the actions exerted on this solid body by a system which is independent of it will therefore be of the form

( 3-) ,) C a Y 3 -i Ě� Z 7 -t- ]. - M ;jl -i-

In this expression, the six actions L. M. N do not only depend on the size of the acting system and the position that the solid body occupies with respect to this system, but also on the position of the body itself.



depend, moreover, on the trirectangular trihedron Ox, Oy, Oz that we have chosen as reference trihedron.

It is easily shown in Kinematics that the magnitude and the direction of your resultant translation A of which a, jĂ®J, y are the components that the magnitude " of the elementary rotation of which A, u, v are the components; finally that the direction, represented by the same letter <o, of the axis around which this rotation takes place depend only on the virtual displacement imposed on the solid and on the choice of the point 0 which is used as origin of the trihedron of reference; these diverse elements do not depend on the orientation of the axes of this trihedron. Let us denote by F and G the two vectors whose components are respectively X, Y, Z and L, M, N, observing that the magnitude and direction of each of these two vectors are independent of the virtual displacement imposed on the solid. Equality (35) can be written

(S6) k = I~ :1 cos( I', ~) -r- GMCOS(G, w).

The two vectors F and G will depend in magnitude and direction on the state of the acting system, on the position of the solid with respect to this system and on the choice of the point O.

Let us consider a point Invariably, linked to the solid and whose initial position coincides with the point 0, taken as the origin of the reference trihedron. It follows from the formulas (io) that in any virtual displacement of the solid, this point undergoes a displacement identical in magnitude and direction to the translation A. Therefore, in the second member of equality (36), the first term FA cos (F, A) can be considered as the virtual work of a force I1' applied to this point. It remains to interpret the second term G m cos ( 'G, w), which is what the following general definition will lead us to. Let us consider a system S. Let us suppose that any virtual modification of the system S determines a certain elementary rotation, the magnitude of which will be designated by to, about a certain axis which we will also designate by M, this axis passing through a point O independent of the virtual modification imposed on the system. Let us imagine, on the other hand, that we have to study a certain work relative to this virtual modification, and that this work contains a term of the form G cocos (G, co), where G is a certain vector, coming from the point O, independent in magnitude and in direction of the inodi-



fical work imposed on the system. We will say that the term (jii)Cos(G,w) is the virtual work of a torque G applied to the system and that the direction of the vector G is the direction of Y axis of this torque.

Any rotation is an angle. The magnitude of a torque is therefore such that its product by an angle represents work or energy.

If we consider angles as constituting a fundamental species of magnitude, so that they can be related to an arbitrary unit, right angle, degree or grade, we must assign to angles a certain dimensional symbol, A. The dimensions of a pair will then have the symbol ML-ĂŹ~ A~(. If, on the other hand, as assumed in formula (i3) and all those derived from it, an angle is measured by placing it at the center of a circumference and taking the ratio of the intercepted arc to the radius of the circumference, the angle is an abstract, dimensionless number. The torque has, then, the same dimensions as a work or an energy or, again, as the product of a force by a length; in this case, the magnitude of this torque is often called the moment.

We now see that in the second member of equation (3(3) the second term is the virtual work of a torque G applied to the solid.

We can therefore state the following theorem

The actions exerted on a solid body by a system independent of this body are composed of

1" i Of a force whose point of application, arbitrarily chosen, is invariably linked to the solid body; a" Of a torque whose axis passes through this same point. The magnitude and direction of the force and the torque depend on the system acting, on the position of the solid body in relation to this system and on the position, in relation to this solid, of the point where the force must be applied.

It is very easy, moreover, to show that the magnitude and direction of the force do not depend on the point where it is to be applied: very easy also to show how the



The size and direction of the torque depend on the choice of this point; we will not stop at these classical considerations.

We will limit ourselves to noting that what we have just said about the actions exerted on a solid body by a system independent of this body can be repeated almost verbatim about the actions of inertia given by the equalities (i 8 ). These actions, too, are reduced to a force, with components Ja, Jp, ,ly, whose point of application coincides with the origin of the coordinates, and a pair of components h, J^, Jv.

Third example. - Completely homogeneous defonnable body.

We are not going to study a rigid solid anymore, but a body that is likely to deform as it moves. However, we will suppose that this body, initially homogeneous, remains homogeneous in all its deformations, and here is what we mean by that

Let us trace, in different regions of this body taken in its initial state, two infinitely small rectilinear segments M, N, AL N. equal and parallel to each other; any deformation of the body will impose on these two segments the same variation of length and the same change of orientation, so that they will be transformed into two other segments M'j N' M', N, equal and parallel to each other. Such a deformation may seem very peculiar and, therefore, not very interesting to study in detail; this appearance will disappear if we observe that the formulas to which this study leads are precisely those which must be applied to each infinitely small element of a body, when this one is deformable in any way.

Let be thus a virtual modification infinitely small of the studied body; the point whose initial coordinates are x, y. z undergoes a displacement whose components are o.r, oy, os wherex, oy, oz are functions of x, y, z.

Let x^ y,, z, be the coordinates of point M( xt-dx, y, -i- dy, z, -+- dz those of point N, ,2, y. z-j, those of point M2 the coordinates of point M2 will be x-2-L,-d.i\ y%dy^ zt-dz. The virtual modification must impose the same variation to the



two projections of the segments M, i\ AL Na on each of the three coordinated axes, which is expressed by the equalities

ten, ten, ten, o.r, d ox., n o.r., dx, -dx-i dy, dy J dz, dz = dx., dx dv2 ~-dy~. dz,, dz. rdr, t/j~, dw, day Jr2 J:2 doy, ()ivt (>Zy, doy., dov" doy., -_ - dx H - dy H - dz -- (JM (/y _t --z ,/z dx, (IY\ dz, dx2 <)}'<, oz-, n Ă´z, c) ~.z, d r,z, d ~.zz d ĂŽ; d "i dx torJzl dy -i <)CjZ, dz = dĂ´z, dx r)M, dy - d oz., dz. <Jx, dy, dz, dx., dx-, dz.. These equalities must take place whatever dx. dy, dz. y,, s,, x2, y2, z2. We immediately deduce that the partial derivatives of ox, S y, oz are independent of .z\ y, :Ě�. or that o.r, oy, S are linear functions of .r, y, z

i Zx = a -ĂŻ- Ct X -+- (l,i}f <l|3":

( 37 ) Ě� oy = fi a21 -f- e2y ars z,

I oz - y - "3, a; -h aiÂ±y c3z.

These formulas can be written a little differently. Let's put "32 "23= '>^I ('iĂ®-r- "33= ,s'l

"13-"31 = -'Ě� H, "13-+-"31 == Ă®.i'Ă®i

" 2 1 "12= Ě�> V (l 5 | -4- rt 2 = Ě�>. ,A'.i

and the formulas (37) may be replaced by the following o.r - g, x -i- o2. oy - - 0|j' Ě� oiy, oz = 0, z - o,z. 1 op1 u= a ;j. - vjk, QJ}' = P - '?' ),z,

OK) Ă®,i= --Ě�- >.r- ;j..r,

(3R)/, O.r Ě�- C| -H A'}' +- ^2-3,

~.?'=~~-9~-)~,

Oj = Ě� A' -:- A'i,"' -r-"3^-

The most general virtual modification which can impose on a body a homogeneous deformation is thus decomposed into two other modifications; the first modification {Ăą,x. 5, y, o,z) imposes on the body an overall displacement which does not deform it; the second {o-^t. o-, y, o.2 i alone involves a deformation. The properties of this deformation have been established by Cauchy and by LamĂ©; they have. made the three quantities e,, <%Ě�. ''s l(;



name it (the elementary dilatations, and to the three quantities g,, g- g-, The name of elementary slips.

The virtual displacement that we propose to study is therefore determined by the twelve infinitesimal quantities

'"Ě�-. ?. 'Ě�' ĂŻ>- *'Ě�Ě�

Cl,  3-

We shall suppose, moreover, that the system is brought to a uniform temperature & and that, to complete the determination of your most general virtual modification of the system, it is still necessary to give the variation 32f of this temperature.

In such a virtual modification, the actions exerted on the body studied by an independent system, will perform a virtual work whose form will be given by the following equalities : ĂŞ = Ei+ Sj-h 6 35,

(3<)) ) Gi= Xoc -+Ě� Yp -+- Z-; + LĂ€ + Mjj. -t- Nv,

E2= Eand -+- E2e2-l- E3e:t+ G,,4r1 -+- G.f- G3^3.

Of [ thermal action. 0 we shall say nothing for the moment; in a future Chapter (Chap. VI, p. 2.55), we shall have to consider it again.

The actions which contribute to produce the virtual work G, are known to us by the study of the preceding example we know that they are reduced to a force, of components X, Y, Z, whose point of application coincides with the origin of the co-ordinates, and to a couple of which L. M, M are the components and whose axis passes by this same origin.

It remains to study the actions that contribute to produce the work P.

Let m be the initial volume of the studied body. Let's say

II K,=.-- N,i3ÂŁ, l':a==- .u. K3 = - N,,c7,

| G| - 2 TiTĂŽT, Gi - iĂ®.W. Ci3 = - 2T3TO.

Let us observe, moreover, that the equalities (.->8) give

f) fy.ĂŻ: ')';)' Ă™ 0.5

e, ~x r) n.`,Y' e.= = C~ u fj~ - ) f) <Jz!'J. t 0==--; e~=--, ~3=--, 1

l 1 e, .- c^.r ej=- oy e3=- Ă´z -

i 1 <) r,z rfo)'\ 1 /0r,.r 1) oz 1 <) Ăąy i)Ă”.r\ r ~J_~3 ~r3 rl.. 07~ h a l I /r) d.. Ă´r, T J dx Ă´.u. ) Â° (I >, /.d rJ.x n,Y + I~ ~Jif



and we can easily see that the virtual work C2 can be written r/ ,r~

') f~2 1 dx -i- r3 d,y ~F- 1 r/~

T '1^- Ě� N Â°-%L - T 'Jy

T3 da' rly ~J~

Ă  os Ă´a (J os oz v o os

r T., - '[- -- v3 a~.

d, (Vi' rtz

the integration extending to the volume of the system. This formula, in turn, can be transformed.

Let n be, at a point of the initial surface of the body, the normal directed towards the interior of this body; let us denote by a, b, c the cosines of the angles that this normal makes with the axes of coordinates, and let us pose

Ě� P.l.= N1a-l-T36 + T,c,

(4'2) 5 Py=T3<n-N2&-f-T,c,

I P. = T2a-4-T,6-i-N:ic.

We can easily see that equality (4i) can be written (43) S2 = f{ Px Ă¨x + Pr ojk -+- P- o^ ) c/S,

the integration extending to the whole surface of the body. Let us imagine a system and a surface S linked to this system, so that in a determined virtual modification of the S3rstĂ¨ine. each point M of the surface S experiences a well determined virtual displacement A. Let us suppose, moreover, that to this virtual displacement there corresponds a certain virtual work, the cause of which does not matter to us here, and that this virtual work is given by the formula import j)-~is here, and, that this work 1 1

fj.{) 5 -- I oAcos(<Ă». )dS,

o being a vector whose magnitude and direction are determined at each point M of the surface S. We will say that this work is the work of a certain pressure exerted on the surface S and that " represents in size and direction this pressure at the point M of the surface S.

This shows that the product of a pressure by a length



cl by an area represents work; in other words, a pressure is a quantity of the same kind as the ratio of work to volume; the dimensional symbol for such a quantity is ML 'T

We arrive at the same result by noticing that the work f, given by equality (44), can be interpreted as the work of forces, each of which corresponds to each of the elements c/S of the surface S, has for point of application a point of this element, for direction of the pressure", and for magnitude s dS. We see that the product of a pressure by a surface gives a quantity of the same kind as a force.

According to this definition, the virtual work t2, given by equality (43), is the work of a pressure applied to the surface which limits the body under study. This pressure is represented, at each point of this surface, by the vector P whose components are the three quantities l\t:, Pr, Pz defined by the equalities (4o) and (4^). Together with the thermal action Â©, the force X, Y, Z and the torque L, M, N, this pressure completes the set of actions that a foreign body can exert on a homogeneous deformable body. Fourth example. - Phase of chemical mechanics. Chemical Mechanics is satisfied, in a great number of cases, to give, of the bodies which it studies, an extremely simplified representation. It treats each of these bodies as homogeneous and brought to a uniform temperature. Klle does not take into account either the figure it is in or the position it occupies in space.  Klle supposes it to be entirely defined by the volume m it occupies, by the temperature 3 to which it is brought and sometimes also by certain variables which indicate its chemical state. If it is, for example, a mixture of oxygen, hydrogen and water vapor, we must, to determine it completely, indicate the ratio of the mass of water vapor that it really contains to the mass that it would contain, if the combination were pushed as far as possible.

Such a system has received from (Ă®iblis the name of phase which is universally adopted today. Let's consider a phase whose standard is delineated by three



independent variables" its volume tt, its temperature !ĂŹ7 is a variable x indicating its chemical state.

Such a phase can still be defined by other variables. Let oj be its specific volume and M its mass, related to the volume m by the relation

m - M ni.

By definition, the mass M is invariable, so that in any modification, real or virtual, we have

orp = M 5(o.

We can, therefore, substitute the variable w for the variable ra, and define the state of the phase by means of its specific volume w, its composition x and its temperature .

This new definition leads to the following question Given two phases, which are formed of the same substances taken in the same proportion, which have the same chemical composition, the same specific volume and the same temperature, but which have different masses, what relationship is there between the internal energies of these two phases?

This question can be answered by making use of the following principle, which was formulated in Chapter n (Â§ 3, p. gi)) If a system S is composed of several independent parts S, S', infinitely distant from each other, the internal energy of the. system S is equal to the sum of the internal energies of the systems S, S', provided that the normal state of the system S is defined as the set of the normal states of the systems S, S',

Let us therefore consider a phase of mass M, of specific volume , x. S?) or, abbreviated, by U (M). Let us suppose that the mass M is the sum of two other masses M,, :VL: M =M, -4- \T2. Let us divide the phase of mass M in two other phases of masses M,, M2; then, by keeping to each of these two phases the specific volume d>, the composition x and the temperature !5, let us move away it? infinitely one from the other. Since,



In the definition of a phase, no account is taken of either the ligure which allecte. or the position which its various parts occupy in space, this operation in no way alters the stall or, therefore, the internal energy of the total phase. But, by virtue of the preceding principle, this internal energy is now the sum of the internal energies of the two partial phases, so that we have the equality

UCMi-4-M3) = L" ( AI ) -+- U(M2).

This equality is equivalent to the following proposition:

When the state cl' a phase is defined by the specific volume. The chemical composition and temperature of this phase, the value of the internal energy of this phase is proportional to ii its mass.

It should be remembered that the correctness of this proposition is subject to a condition: The normal state of the phase of mass M must be constituted by the set of normal states of the partial phases of masses M,, M2.

This condition will obviously be fulfilled if we adopt the following convention, which, moreover, naturally comes to mind

To define the normal state of a phase, a certain, normal specific volume  are chosen; care is taken to keep w(), .(Ě�" and .:?" the same values regardless of the mass of the phase.

The proposition that we have just formulated constitutes one of the essential properties of h phase studied by Chemical Mechanics; this proposition immediately follows from the very definition of the phase, and it was appropriate to establish it first. iWe shall now come to the examination of the various actions that a phase may undergo on the part of independent systems. For this purpose, we shall assume, as we did at first, that the state of the phase under study is delineated by the total volume ro, the chemical composition x and the temperature S.



If such a phase is placed in the presence of an independent system, it can experience certain actions; to the three variables ra, ?S, x can correspond three actions that we will designate respectively as II, 0, X. The virtual work of these actions is i 45) G = - nĂ´n+B oS? -+- X <Jx.

<") is [ thermal action of the independent system;

X is the chemical action of the same system.

Two of the fundamental HYPOTHESES of Chemical Mechanics, hypotheses to which we will return in detail in Chapters VI and VII (p. 200 and p. 270), can be formulated as follows When a phase is defined by its volume, its temperature and a certain number of chemical variables, none of the independent systems studied in Chemical Mechanics exerts on this phase either thermal or chemical action. The previous virtual work then takes the very simple form (4G) G =- n om.

Another form can be substituted for this one, which is easier to interpret.

Let

dS an element of the surface which limits the phase

M a point of the element c/S

n the normal to the element dS, led by the point M and directed towards the interior of the phase

A the displacement of the point :J in a virtual modification of the phase.

iWe will have

cm - A cos( re, A) c/S,

so that equality (45) becomes

(.\Qbis) P- = /llicos(/?., )dS.

Compared to equality (44), this equality (46) teaches us that



the actions exerted by an independent system on a phase are reduced to a pressure applied to the surface which limits this phase; everywhere normal to this surface, it has everywhere, if one counts it according to the normal towards the interior, a same t'aie ur II.

CĂŻ.N'QCJik.viK example. - Homogeneous fluid of elementary thermodynamics.

We have taken as an example a phase whose definition includes only one chemical variable x; it is clear that one can deal with more complicated phases depending on two, three, n chemical variables; to such phases, the reader will extend without any difficulty what has just been said.

A particularly simple case is that where the chemical constitution of the phase studied is not susceptible to change; the definition of the phase does not include any chemical variable; it is completely given by the volume ro' and the temperature S. Such a phase constitutes what is called the homogeneous fluid of elementary thermodynamics. For such a fluid, the external work is necessarily of the form

G = II ors -+- 6 S2r.

An iivi'O l'irksK kosdawkstii.k, which will be studied in Chapter VI (p. afj.'i), teaches us that, for a lluid defined in this way, Ythermal action (-) is 'zero, so that the previous work reduces again to the form

1 tf ~-= || O!7T.

The action that foreign bodies exert on a homogeneous fluid as defined by elementary thermodynamics is reduced to a normal and uniform pressure applied to the boundary surface of this fluid.

i. Mutual actions of several independent systems. Let us imagine that a complex system S is formed by a limited, but arbitrary, number of independent parts S,, S2, S, Let e,, e- en be the states of each of these parts consi-



I cosembie of these states constitutes state of the system S.

The internal energy of the system S can be written

(.17 ) U(>|, e-", en) - L,(ei) l'->( e->) -r-4- l'n(en) MYfi!, e2, c,,),

W cancelling when the systems S,, S2, S,; are infinitely far from each other.

M' is the mutual potential energy of the systems S,, S^, S, About this quantity, one always admits, in all the branches of the Energetics, the following hypothesis:

JiYPoxnk.SK. - U mutual potential energy of any number of independent systems is equal to the sum of the mutual potential energies of the associations formed by grouping these systems two by two in all possible ways. (This statement is equivalent to the equality

(48) W(ei,e",ell)=^Wl,,l(el,,e,l),

where p, q are any two of the indices i, a, ", and where the summation extends to all distinct combinations of these indices two by two.

Let us follow the consequences of this hypothesis.

Let nii be a virtual modification of the system S,. At the same time as we impose this modification on this system, let us leave invariable the states e2, e,, of the systems S2, S, By this modification, the quantities ll", x]',l, experience variations 8, M", o, M-'ip, and the equality { /|8) allows to write

o, q. = 'Vr,, +-ĂŽ, M.

But this equality, in its turn, is equivalent to this one:

1 i<)) G, - ĂŠ,2-i- Ě�Ě� C,

where C, is, in the modification mK. the virtual work of the set of actions exerted on the system S, by the set of systems S..", S, and where F, is the virtual work, relative to the memeinodi-



lication, of the actions that the system S/; would exert on the sluggish system S, if these two systems were alone in the presence of each other. We can therefore state the following proposition:

When a system undergoes any virtual modification in the presence of several independent systems, the actions exerted by these last systems on the first one perform a certain work; on the other hand, if each of these last systems were alone in the presence of the first one, the actions that it would exert on this first system would perform, in the same modification, a certain work; the algebraic sum of the works such as the latter represents the first work. Let us suppose that the virtual modifications of the system Si are determined by means of a limited number of independent variations a, b, A. These variations correspond to the actions A, B, L exerted on the system S, by the set of systems S2, Sn, so that

E, = Aa + BA+.+ L/.

On the other hand, if the system Sp existed alone in the presence of the system S, it would exert on this system the actions An, Bp, Lp, and we would have

5,= ,a + B/,6-v- + IJ),i.

The equality (.{()) can therefore be written

X a -~ĂŻĂ®f/ -Ě�Ě�+-!>/- (\h. -+- \tl )k

j ^-(H!i.-|{,(^4-(L2^r-La)/.

(Since this equality must take place whatever a, b, we have A =1 A2- A,

(Sn) B B2 -i- B,

B.~B'cd. 1

L -r- -Ě� L,

When a system is placed in the presence of several other independent systems, each of the actions it undergoes is the algebraic sum of the analogous actions it would undergo from the



of each of the acting systems, if he were in the presence of this one system.

Let's apply these considerations to some examples. Piiemikii kxkmpi.k. - System of material points. Let us consider, in the first place, a system of n material points Mi M2, M, The changes of J'eLal of each of them are entirely defined by the variations that the coordinates of this point undergo, coordinates related to an absolutely fixed reference trihedron.

The quantity Wpq(ep, eq) will therefore depend only on the following variables the coordinates xp, yp, zp of the point Mp, and the coordinates xq, yq, zq of the point Mq. But, on the other hand, we know that this quantity must depend only on the relative situation of the two points Mp, Mq, and not on the absolute position that their set occupies in space.  Now, the only functions of xp,yp, zp, Xq,yq, Zq that are entirely determined by the relative situation of the two points Mp, M? are their distance rpq and any function of this distance. We can therefore write (5i) Wpqiep, ev) - fpĂ§('t). j.

The form of the function fpq can depend, moreover, on the quantities which characterize the nature of the two points Mp, Mq and remain invariant in all their displacements, such as the masses of these two points.

We know that the action exerted by point My on point Mp must be reduced to a force; according to the formula (ai), the components of this force will be


	/-,>Ě�)-_ d f (r )Ă˘r>">



rlx/t "f~l~l'9,)' (~7' cl 'n`nl'r~)x -'x

/a/

('<Ě�'Ě�) d

I 1 'II ;> ( -' I ,"!

ri z,,- s,,

*'p - f J i"/1 i "i -y

II VI I ,1,/

Similarly, the action of the point M.p on the point M(/ is reduced to a



force applied to point Dl~, whose components are llv cl -fl,ĂŽ~I,r1)-- r,, _c,,

x" f" (1') !'pr!

Ci. bis) Y, -- -- ( r,, ) ~--

j dr/"I l~I,~

f 7 d r/' :[' .r"

-7- y/-----

clr! !'l,y

The force exerted by the point llr~ on the point INIP is directed as the line i1'Iy M~; it has the magnitude

~5'i) F -

(53) ~7~'?'7-

The force exerted by the point ~IP on the point Mq is equal to the previous one and directed in the opposite direction.

The determination of given by the formula (5t)~ allows to write

(34) y =~.ĂŽnn( IÂ°vr,),

the summation extending to all the distinct combinations of the indices o, z, Iz two by two.

Let's put

( )5) V7'=/t(~l) -t-(~2) +.)-(~~). It is easy to see that equality (54) can still be written (M) r ,'If 1(V,+v2+.j- Vn).

The components Xp, Yp, Zp of the force applied to point Mp, which represents the action exerted on this point by the (/t-;) other points, will obviously be given by the equalities ~7) JV,r Y=-~i L r)1' ,r

i''7,) Yn=- dxp 1 ~Y, l' Jzi, < d~' This example contains, as a very particular case, the problem that celestial mechanics deals with when it studies the motions of the stars by reducing each of them to a simple material point. To approach this problem, it is sufficient to particularize this



that we have just said by posing the equality

( 'jo ) j/nj ( /u/ ) =Ě�- K

where K is a positive constant and where /np, m(j are the masses of the two points M^, M,r The force Fpi/ that each of these two points exerts on the other is then given by the equality

(39) Fw = _K^,

r~n i

from equality (53); this equality (09) expresses Newton's law.  Let's put

(6OI II -+- "U 1

(60) 1 i> -Ă®/> 11 j>

The quantity (j^, has been given the name of potential junction at the geometric point (xp,ypy zp) of material points M(, M2, M,, other than the point M.p.

Comparing equalities (55), (58) and (60) will give (61) V,, = - K/T^U,

Equality (55) will then become

(62) 'I" = ('"i Ui -i- HiiLT2 + .+ mn[]n),

2

while the equalities (5^) will become

63 X, K ~Up p e'U,, Z K dU" (63) X^K,", ĂŹ,,= K "3, Z,,= Km; "-<'p Yre <

These formulas are of continual use in the study of universal gravitation.

SECOND EXAMPLE. System of infinitely small elements of variable density (').

(') We have introduced, for the first time, the actions of which it is going to speak: here, in the following text Le potentiel thermodynamique et la pression hydrostatique, Chap. III {Annotes de l'Ecole Normale supĂ©rieure, 3Â° sĂ©rie, t. X, i8f)3, p. ai 3).



Let's now turn to an example a little more complicated than the previous one.

The system studied is still composed of a limited number of bodies, the position of each of them in space is supposed to be determined by the knowledge of one of its points: but we suppose that, in order to completely define the state of any of these bodies, we must join to the coordinates of one of the points belonging to it the values of the density and temperature which are both assumed to be universal in all of this body. Such an example seems, at first sight, quite artificial, but certain theories of celestial mechanics, such as the explanation of the figure of the tail of comets, have led physicists to consider continuous media, each element of which can be assimilated to one of the bodies we have just defined.

Let us therefore be

p the index of one of these bodies;

Mp one of its points;

xpi Y pi zp the coordinates of point M/;

pp body density p;

zip its temperature.

The quantity '?/> ?qi 'pi ^q-

On the other hand, it cannot depend on the absolute position of the set of two bodies /> and </ in space, but only on the relative situation of these two bodies: this amounts to saying that it depends on the six variables xp,yp. zp,Xq. y, :-q only through the intermediary of the distaftce r,,q of the two points Mp, Mr/. We can therefore put -

(K4) ",(<'Ě� e,, i -",( /-" oq, & ?s,t).

It goes without saying that the function J'pi/ has a form that depends on the nature of the two bodies p and q , which can, therefore, depend on the masses of these two bodies.

If the body undergoes any virtual change, the actions it experiences from the body will perform a virtual work 1

( 7-/>q *=,.- 'V/ ''?/> e/ ?^i-



with

= Â°I' = ifj'u. -La Ě�(

or, ox,, Or, /'Ě�'",

.ri> ''ri"/'y

(GG y <{ÂŁpX 'HjĂŻt "fl "l tlLZlJit, J J' orM Oz,, Or, /;",

"Spi

"I- Sa, 7,

X/;f/, t, 'Ăąpq are the components of a force applied to the point Mp, directed from M(/ to M/7, and, having for magnitude - - "- this ri7'o

force is equal and directly opposite to the analogous force that the body p exerts on the body q

To interpret the nature of the action, let us observe that its virtual work is

~1,,r8~7,

If one designates by rop the volume of the body p whose mass m,, is invariable, one draws from the equality op- - the relation

m g,

Ă® "'n Ě�-

l,gty= --?- 0~/),

l, mj,

which allows us to give the previous virlucl work the form 1 ?" "fl "l '-?"

~z ot;r Ă´r.sp- da ~z 'ovt7,~

If we refer to what we said in the previous paragraph (p. ) when studying the body that Chemical Mechanics calls phase, we see that the action &,pv is equivalent to a normal and uniform pressure, applied to the surface of the body, this pressure having for magnitude

H ) nr7,

"<~7~

iloclie and, after him, ave and l\Ă©sal have tried to explain the



The energy of each element of the comet underwent a force variable in magnitude with the density PI' of the element, but none of these authors seems to have suspected the existence of the pressure 11/)(/ which necessarily results from this hypothesis. The mutual yotential energy of the bodies studied will be "~ 't" .ft "n

the summation extending, to all combinations/?, of the indices z, iz keyux a deu~.

Let us pose, as before,

l tiĂ§t ) ~`p = ftu +.ĂŽn~ + +,fn,=.

and we will still have

(7Â°) ~==~.(V,-t-Vii--V,,).

Let us assume all bodies i a, n immobile and invariable, except the body p. By the Intermediary of distances 7'~i,7,,s, /'Pli V will be a function of the coordinates .r~ 3~, of the point i~l, moreover, this quantity will be a function of pp and 2~ In a virtual modification of the only body p, the actions exerted on this body by the other bodies i, 2, 11 efleettieront a work

''7 i~t,= 1,; oa~-t- ÂĄp'O}'Âˇ)7r ~t, M, ~t~ (j~~ 0:7, and we will have

1~, Ăą~'t,

1 t, ~V L,

~4,'

ZI)

(;) <1. Z" =-- L1 S'"

JV

~=-

These actions are composed of a thermal action 6~, the



[we will see later (p. '>) 9) that it is null] :Ě�> of a force, of components X^, Y p, Z/M applied to the point M/; 3" of a normal and uniform uni' pressure applied to the surface of the body p. this pressure having for magnitude

}... iry, d\

(7:J) thread,

(/J> mf, 0?,, r,



CHAPTER IV.

THE QUANTITY OF HEAT t ). ).


	Quantity of heat released by a system



into a real modification of this system.

Let us take, as in the paragraph of the preceding chapter (p. i 2.4), a system S formed of two independent parts S", S/, let us suppose that this system is isolated and that it undergoes a real change; let us apply to this change the principle of conservation of energy [Chap. II, equality (i3)].

Equality (29) of the previous chapter makes us know the internal energy of our system S as for the kinetic energy of this same system, it is equal to the sum K,t-+- K.4 of the living forces of both systems S, S/ The sum

lj,( 1 A ) Ě� U/,( H ) *" (' A H ) -i- Ka -+- Kb

must, during a modification 1 of the system S, keep an invariable value. If we designate by d the differential of a function of time, we must have

(i) d lia (A) -t- ilK-a- d\b( M) r/K/4- dVub(A, B) = o. r <~Wf~ (A, B) can be decomposed into two terms.. If the state A underwent a modification identical to that which it undergoes in time <7i, without 1 state 13 experiencing any modification, W,,i, would experience a variation daWai,\ in the same way, if the state (M All that is going to be said, in this Chapter, mii1 the quantity of heat is the 'levcluppeincnl of what we indicated in our Commentary to the principles of Thermodynamics; 1"' part: The Principle of Conservation of Energy, Chap. III (Journal de Malhcmaliquos pures et appliquĂ©es, sĂ©rie, 1. VIII, iSĂ§jm, p. lioS).



H would experience a modification identical to that which it experiences in time dt, without the state A experiencing any modification, xVai, would experience a modification d/, lFrtA- It will be obvious that d Wuh( A, B ) = dH Va,( A, IJ) -i- dh >ra6( A: H ).

Moreover, if one designates by Ea the work of the actions of the system Si on the system S" during the real modification that the system Sa experiences in time dl, by G" the work of the actions of the system So on the system S" during the real modification that this last system Sj experiences in the same time, one will have [Chap. III, equalities (3i) and (3i bis)]

eo = - da V "a ( A, B ), E/, = - d,, Wah ( A B ) ).

Equality (i) can therefore be written

(Ě�i.) d]a{X) -h Ă»!K" - GM-t- cHJ/,( B) - dK/ Ca = <>. l oses

(3) ( Ga- rfUK(A) rfKa= Q",

( 1 G/, d UA ( B ) ^Ka = Qa,

Let us examine the meaning of the first of these equalities.

dUa (A) + d&a represents the work accomplished by the bodies foreign to the system Sa in the real modification that this system experiences in time dl. The considered equality shows us that, in general, this work does not represent the work done by the external actions of the system S, to reproduce this work, it is necessary to add the quantity Q" that we will name the heat released by the system Sa during the real modification that it undergoes in the time dt.

It is not necessary to try to justify the denomination thus introduced, by some comparison with the meaning of the word heat in the current language; to cook our sensations of hot and cold cl. the notion that Thennodvnamiquo names (juanliiĂ© of heat there is not, today, any more any link; to find such a link, it is necessary to go back very high in the history of Physics; the progress of Science completely, dissolved this link; it is proud that the usage has, nevertheless, preserved the name of quantity of heat which, when one takes it in the direction of the current language, for



introducing it in Thermodynamics reasonings, generates dangerous confusions.

By its definition, the quantity of heat is a quantity of the same kind as a work its dimensions are ML- T~2 if one adopts the C. G. S. system of fundamental units, the quantities of heat are measured in ergs.

Let us suppose, for a moment, that the system Sa is isolated, the system Si, not existing in this case, the work <Za of the actions of the system S* on the system Srt would be identically zero on the other hand, the principle of conservation of energy [Chap. II, equality (i3)| would require that in any real modification of the system Sa, the sum {]" (A) -+- K.a would keep a constant value, so that r/'L,, ( A) + dKn would be null the first equality (3) would thus become

Q" = o,

which would give this theorem: In any real modification of an isolated system, the amount of heat released by this system is equal to o.

The quantity Q$, given by the second equality (3), is the quantity of heat released, in time dt, by the system S*. On the other hand, the equalities (a) and (3) give

Q"-t-Q/,="Ě�

When, two independent systems whose set is isolated in space experience, in the presence of each other, two simultaneous changes wt.v.i.i.v.s, the amount of heat released by one. of these systems is equal in absolute value and opposite sign to the amount of heat released by the other.


	Quantity of heat released in a virtual change.  Heat coefficients of a system.



Let us now take the system S, in the state A where it is at the instant t, and,. from this state, let us impose on it any virtual modification in this modification, the internal energy of the system Srt experiences a variation 3L'(A); the actions of inertia to which the same system is subjected at the instant t perform a



virtual work ~H; finally the actions exerted on the svstystem Sw by the foreign bodies S, perform a virlual work E". Let us posit <i) Qa=Cu-rt"-3UoiA). ).

In a real modification of the system S", the work -:" of the inertial actions would be equal in absolute value and, of opposite sign to the differential diL,, of the living force, so that the equality (4) would give back the first of the equalities (3). This is why we say that equality (4) defines the quantity of heat released by the system Sa in the virtual modification considered.

It is necessary to observe that the propositions demonstrated at the end of the preceding paragraph, true for the quantity of heat released in a real modification, are not, in general, true for the quantity of heat released in a virtual modification.

On the contrary, the proposals we are going to establish will be true for any virtual modification and, in particular, for any real modification.

Let us consider a system S formed of several parts independent of each other; to simplify the exposition, without diminishing its generality, we shall suppose that the system S is t formed only of two such parts which we shall designate by. S"(, S;.

Let S be the set of foreign bodies in the system S. Let cr be the isolated system formed by the union of the systems S,, S2, ĂŻ or S, ĂŹ.

Let Lt, l;2, V be the respective internal energies of systems S|.  S2, S. The internal energy of system S will be <5) V = U,-i- r, -r-MY..

The internal energy of the system will be

(C>) "= U - V -r- ="= l, l.T- V- :->[-, j^i. Let m, be any virtual modification of the system S, and any virtual modilication of the system S- By the modification m,, varies from ol the inertial actions of the system S, eiVecluent a virlual work cnlin, by the ell'et of this only modification, thevslĂ¨mes S;, and 1' remaining invuriu-



The actions of the Si system on the part of all the bodies that are foreign to it, i.e. on the part of the S2 and S systems, carry out a virtual work. The actions of the system Si on behalf of all the bodies that are foreign to it, i.e. on behalf of the systems S2 and S, perform a virtual work

(7) G,= - 5,2-3,. i.

The system S, thus releases, in this virtual modification m, a (|uantity of heat

(8) Qi= Ei-s-t, - oUi = -i - 3U| - Si'ĂŻ'iĂ®- Si'i. Let /n- be a virtual modification of the system S2; by this modification, the energy U2 of the system S2 undergoes a variation oLU and the inertial actions of the same system perform a virtual work t2 ; finally, by this single modification m2, in which neither the system St nor the system S undergo any change, ^Fi2 and 'b undergo variations 32*F,2, o^Ă©. The actions that the system S2 undergoes from the systems S, and S perform a virtual work

(7a) G2 = - o,Wi,- 6,0/.

The system S2 therefore releases, in the virtual change m-2, the amount of heat

(8 bĂą) Q2=G2^T2_ 3U2 = -2- 3U2- oj^Ă®- S, ii. Let us now consider the system S formed by the set of the two independent systems S.. S2 by associating the virtual modification /"i of the system! St and the virtual modification m2 of the system S2, we obtain a modification ni which is the most general virtual modification of the system S. By this modification /m, the internal energy ( of the system S ('obviously proves a variation

(O) oL" Ě�-=Ě�- oU,3l.o1>r,Ă”2W12,

while the inertial actions of the same system perform a virtual work

(10) -:=--- -I-

Kn this only modification m. the system S remaining invariable,



Ě� experiences a variation

(M) 2,H.i = rVi.-f-'Vi.

Finally, the actions exerted on the system S by the bodies S foreign to this system perform a virtual work

(v>.) XL-- o,i.

The amount of heat released by the system S, in this virtual change m, has the value

Q = G -+- -: - oU

Or, by virtue of the equalities (9), (Ě�10), (i 1) el (12), (i3) Q = -.1 - SU, -3,V12 -Ă”.'J/

-- 3U2 - Sj "F,,- 3,6.

If we compare this equality (i3) to the equalities (8) and (8 6 /,"'), we find the relation

(it) Q = Qi + Q2-

The quantity of heat released, in any virtual modification, by a system formed of several independent parts is the algebraic sum of the quantities of heat released by these various parts during the virtual modifications, relative to each one of them, of which the virtual modification of the whole system consists.

All of the above concerns extremely general systems. iWe will now particularize the system under study and assume that any virtual change in this system is determined by a finite number n of independent variations y,, q. (Ě�/"

The variation that the internal energy L experiences in a similar modification can be put in the form

Ilij 31- - 1-1 y 1-- I>Ă®'/Ă® -H- -r- L,,(jrB,

L), Lj; - - - ĂŻj" being n quantities which are determined when the state of the system is determined.

The virtual work of inertia has the expression [Cliap. 11], also



lity (8)J

( '[<)) = Ji "yi -+- i>i -r- Ě�Ě�" </",

J,, J2, i,,, being the inertia actions relative to the variations y,, y. .(/".

linlin the virtual work of the actions exerted on the system by the external bodies can be written [Chap. III, equality (33)].

(17) t = A 7 1 A2qr,-f-- Ě� X,,q,n

,\i, A2, A" being the external actions relative to the variations q,, r/o, - <7"-

The amount of heat released by the system in virtual modification considered,

Q

can be written as

(18) Q = - (Ri<7i+ R,q2 -+-Ě�Ě�Ě� H- lĂ® "fyn), i;

by posing ~1 1,1 t1, -.t~,

R, = Lj - Ai - Ji,

(,c)) 1 a 1

^n - Jn j*/j "ii-

These quantities R| R2l .- - Ě�Ě�> R" are called the calorific coefficients of the system.

The determination of the calorific coefficients of the system does not only suppose the knowledge of the state of this system and, of the external actions which solicit it, it also supposes the knowledge of all the local accelerations on which depend the actions of inertia, I(, J^, .1,

Just as a quantity of heat is a quantity of the same kind as a quantity of heat, so the heat coefficient relative to a certain variation is a quantity of the same kind as the action relative to the same variation.

Suppose, in particular, that the system under study depends on a finite number of variables pu p2, Ě� Ě� Ě� />" we will then have ?! = ~t, </2 = '/<t == ~t.

The internal energy l will be a function of the variables/?, p. .>",



THE QUANTITY 1>E CHALKL'tt. I <> n can write

so that we can write

dU OR <>[

1:l0) 1.1=- 1.2=, 1.=""p, 0p,_ <)p,i

Moreover, in this case, the actions of inertia will be given by Lagrange's formulas [Chap. J1J, equalities ( a H ) j The equalities (i<)) will thus become

/><Ě� U - Ki h ÂŁ/ ÂŁK

(Jp, i 1 (II Op\

H. at(U- K) d_ oY^

(Ě�m) <>p, dt op'

d(U - l) .). d toK l~

ly ,~l ~c `i,c tLL nJpie -

o~p~a H ~o~p)t'

'Ě�). Calorimetry and determination of the Mechanical Calorie Equivalent.

The foregoing allows us to indicate the principles of a method by means of which one can compare the quantities of heat released by various systems under various modifications. The system studied will be designated by the letter S; it will be independent of the external bodies E which act on it. In the case of these systems S, 1', we will have to admit a certain restrictive condition, which is Ja following

Pitic.uiiT.E condition. - The systems S and S are such that the work done in any modification of the system S by the actions of the system S on the system S is completely known when the initial state e( and the final state e. of the system S are known.

(Ě�ii)? - ()(<Ě�",).

This condition is one that we will often encounter in the following; it therefore deserves that we stop for a moment.

The quantity 0(^'1,ro), introduced by this condition, certainly verifies the identity

(-Ě�-Ě�'i) 0(6,. <"Ă®)-0(ÂŁ'", <) = 0('"i, Ci).

1). 1. Ě� Ě�Ě�Ě� Ě� n



This being, let us choose a normal state eu of the system S, which, once chosen, will always remain the same the work 0 (e0, e) necessary, to lead the system S of this normal state <?" it Ull any state e will depend only on this last state e; we will pose

li) 0< c0, e) - - <>(')

and we will say that Ă›(e) is the external potential of the system S taken in the <? state.

The identity (a'5) will then give us without difficulty

(?.5) Q(e,,<:t) = Q(el) - Q(e2).

The work done in any modification of the considered system by the external actions that solicit this system is the excess of the initial value of the external potential on its final value.

lin reproducing a reasoning given in Chapter II (p. 91) about energy, we will justify the following proposition A change in the choice of the normal standard has the effect of adding to the external potential a quantity which, in any change of state of the system, keeps an invariable value. Equality (a5), which is true for any change, is true, in particular, for an infinitesimally small change; we can therefore, for such a change, write

(Ě�Ě�>.<>> S - - 0 Q(e).. 'Ě�

The virtual work of the external actions applied to the system is equal to the variation undergone by this quantity which depends only on the state of the system

In Chapter II, the flax of paragraph 2 (p. 1 3o), we pointed out that this was not so in general; but it is possible to conceive of a system S and foreign bodies S so arranged that this proposition is applicable to them.

Let us suppose, for example, that the system S is one of those systems that Chemical Mechanics calls phase. If ra is the volume, the virtual work of the external actions is reduced to



[Chap. 111, (Ě�"ality (46)] to

( Ě�>) G = - II im,

II being the normal and uniform pressure which represents here the external actions.

The second member of equality (27) is not, in general, the variation of a function 0 of the variables m, x, 2r which determine the state of the phase; but equality (26) can be found true in certain particular cases.

It is true, for example, if the volume m of the phase is bound to remain invariant in this case, in fact, ors is constantly zero and equality (26) is verified by taking

(9.8)' Q = o.

It is still true if the external bodies are arranged in such a way that they keep the magnitude of the pressure fl exerted on the phase invariant in this case, the equality (26) is verified by taking

(29) O = IIto.

Returning to the condition we have posed, we see that it can be stated by saying that the external actions to</which the system Ă© A bound S is subjected must admit a potential.

If we denote by Q the total quantity of heat which the system S gives off in a real change where it passes from the state e< to the state e2, and where the living force is zero at the beginning as well as at the end of the change, we shall have, according to the equalities (3), (22) and (aa), C\o) Q = U(",) Ě�-"-ÂŁ>(>,) - V(e,J - Q(es).

This quantity of heat will therefore only depend on the initial and final states of the system S. It will keep the same value in any way that, subjected to the same actions, the system passes from the same initial state taken without living force, to the same final state, also taken without living force.

It is such quantities of heat that we are going to compare between them.

For this purpose, we will make use of a C-system, 'which we



Let us dominate the calorimeter and that we will suppose subjected;'i certain conditions which are the following ones

Second condition. - The foreign bodies exert on the calorimeter actions that depend on a potential o>. Third condition. - The state of the calorimeter depends on a single variable, the calorimetric property. This is susceptible to an experimental numerical determination. This variable is, for example, a temperature in the water calorimeter, a mass of water in the ice calorimeter, etc.  The internal energy u and the external potential oj of the calorimeter C are then two functions of the single variable y. If we pose (3.) V(y) = "(y)-+-'o(v), 1),

the quantity of heat released by the calorimeter when the calorimetric variable changes from y to y2, so that the living force is zero at the beginning and at the end of the change, has the value

(3a) ? = V(Yi)-V(y,)-

Fourth condition. - The calorimeter C is partly bounded by an undeformable surface which is the indentation of a certain area, while the system S is partly bounded by an undeformable surface which is the relief of the same area.

We can then, as we have seen (p. (>:->.), associate the two systems G and S in such a way that they are contiguous along these two surfaces now merged into one and yet remain independent. This operation is designated by the words We plunge the system S into the calorimeter. Thus associated, the system S and the calorimeter C must be subjected to the following conditions:

Fifth condition. - The actions of the foreign bodies S on the systems S and C continue to admit for respective potentials the quantities il and w.



Sixth condition. - The mutual actions of the system S and the calorimeter C are zero.

Seventh condition. - The amount of heat released in any real change by the set of systems S and C is zero.

Eighth condition. - The system S being taken without living force in the initial state e, is associated with the calorimeter taken without living force in an initial state y, which sf.ua the same in all the experiments. Under these conditions, a real modification can bring the system S to the state ez without living force; at the same time this modification brings the calorimeter to a certain final state y", with zero living force.

Ninth condition. - The initial and final values y, and y_> (the calorimetric variable are close enough to each other that we can write the approximate equality (33) V(Y,)-V(Yi)= ^(ĂŻ.-YiJ-

With the 5th, 6th and 8th conditions, the system S gives off, in the considered modification, the quantity of heat Q, while the calorimeter gives off a quantity of heat q, given by the equality (3a) but, with the (f condition and the equality (33), this quantity of heat can be written

,3.1) ,/=_J(ĂŻt_Tl),

On the other hand, the condition leads to equality

Q -Ě�- q = o.

So we will have, according to 1 equality (34),

(35) tl cl V' ~t, ( ) t.~f "YO~

Let us now suppose that the system C, taken in the same initial state yi, is associated with a system S' fulfilling conditions analogous to those to which the system S has been subjected. Suppose that the modification of system S' is accompanied by a



modification of the calorimeter C and that this one makes pass the calorimetric variable of the value y, to the value y!, the modification of the system S' will have released a quantity of heat Q' given by the equality

(". b'. ()' i i

('i ĂŻ 6is j Q-=~-2(~). l.

';ĂŻ

Equalities (35) and (35 bis) will give

(:~6) v !i - Yi

." '< Yt

The calorimetric variable y being, by hypothesis, a quantity whose value can be determined experimentally, the second member of this equality (36) will have a measurable value. The calorimeter C will thus allow us to determine the ratio of heat quantities such as Q, Q', to one of them chosen once and for all.

This quantity of heat, chosen once and for all, and to which all the others should be related by means of the calorimeter, is called the calorie. To define the calorie, we suppose that the system S is a phase, formed of liquid distilled water, of mass equal to i gram, subjected to a constant pressure whose value is defined in Hydrostatics under the name (Y atmosphere). We imagine that the temperature of this phase is lowered from + iÂ°C. to oÂ°C, while its initial volume and its final volume are those that it must take to remain in equilibrium at these temperatures under the pressure of i atmosphere.

The concrete calorimeters, used in the practice of the laboratories, realize only in a roughly approximate way the ideal calorimeter that we have just defined. By various corrections, based either on direct hypotheses, or on the teachings of various physical theories, one tries to decrease the difference between their indications and those which would give the ideal calorimeter. We leave it to the reader to find out by what sequence of ideas, in each particular case, one is led to admit that a real calorimetric operation verifies appreciably the various conditions enumerated above. The calorimetric method whose outline we have just traced will be transformed into a method suitable for measuring the quantities of



This number K should be called the mechanical equivalent of the calorie. This number K should be called the mechanical equivalent of the calorie, but it is often used as the mechanical equivalent of heat.

Let's see how I can determine the mechanical equivalent of the calorie.

Let us imagine a system S, independent of all external bodies, and constituted as follows:

1" This system Sue can, during the modifications it undergoes, release no quantity of heat

2" The system S is subjected to two groups, independent of each other, of external bodies. The first group 1 exerts on the system S actions which admit a potential Q. The second group exerts on the system S actions which, by some mechanical theory which will be explained later, we can calculate the work in any modification of the system S; 3" These various actions can determine, within the system S, a modification which takes this system without living force, in the state <?i, and brings it, also without living force, in the state e- Let B be the work accomplished, in this modification, by the actions which the system exerts on the system S, or let L be the internal energy of the system S.

(S-) ĂŞ -i- lif>,)~ ÂŁ>{>, j_ lif, - I2(c2) = 0. This done, t,

i" We remove the external system g

:> We give back to the S-system the possibility to give off heat;

3Â° [You I plunge in a calorimeter.

We assume that, under these conditions, the system S, taken without living force in the state i'->, returns to the state <'t with zero force vne.

The system S will then release a quantity of heat given by the equality

Q



This equality, compared to the equality {'Ě�'->-), will give

C = Q,

so that the quantity of heat Q will correspond to a given number G of work units.

On the other hand, the indications of the calorimeter will allow us to recognize that this same quantity of heat corresponds to a number q of calories.

We will obviously have

G

(1 = ls,

so that the preceding experiment will allow to determine E. Joule and various other observers have carried out experiments of which what has just been said traces the abstract plan these experiments have led to the following results

i" The mechanical equivalent of the calorie is a positive number

a0 If we take the erg as the unit of work, this number has approximately the value

E = 424.10".


	Fundamental property of heat quantity. General laws of Dynamics and Statics.



The quantity of heat relative to a real or virtual change has a very general property which is attributed to it by the following Hypothesis

Hvi'oĂŻhksk. - Let a system, isolated or not, but independent of the foreign bodies which act on it, and without contact with any of them.  In any infinitely small modification, real or virtual, which consists in a simple displacement of the system in space, the quantity of heat released is nu tic.

This assumption leads to an equally general consequence.  Let us refer to the definition of the quantity of heat,



given by the equalities (3) (|>. i 55), and observe that the internal energy of a system does not vary when this system experiences a simple ensemble displacement we obtain the following theorem:

When a system, isolated or not, but independent of foreign bodies and without contact with any of them, undergoes a real or virtual change which is reduced to a displacement of the whole, the sum of the work of the external actions and the work of inertia is zero

(38) E + t = o.

The most general modification that can be reduced to an overall displacement is decomposed into an elementary translation parallel to a certain axis, and into an elementary rotation around a certain axis; or, in other words, to three translations a, p, y along the three axes of coordinates Ox, Or, 0:, and to three rotations a, p, v around these axes.

In such a modification, we can write

(3g) S = X i. -+- Y S -+- Z v -+- LĂ€ -4- M jx -+- \v,

X, Y, Z being, as we have seen (pp. i34-i35), the components of a force, and L, M, N the components of a couple, it is to this force and this couple that the actions of the external bodies on the system would be reduced if this one were transformed into a rigid solid, incapable of experiencing any other change of state than a change of position in space.

On the other hand, in such a modification, the displacement of the material point whose initial coordinates are x, y, z has as components

?ix = a - u. z - -/Ě�)Ě�,

oy - [ĂŻ -f- v x - >> z.

oz = Ě�' - a y - \xx.

By substituting these values in the expression of the work of inertia [Chap. IJ[, equality (i)]

~l

= -.7 (~ f'x + dt= ~~rl dt= Â°") clru,

we find

('<<Ě�>) -Ě� = Jaa-JpĂŻ -H.IV-1'-+- JyĂ€-f-J^ii-t-JvV,



with

,~dt'~driz, .1,3=-.rplt drm, ,1"=-

1 J) = t\y-, z~r-\ dm.

( i ) dtj y dt dt

d (Ě�( d.T dz\

d <~

Âˇ J 11 = t I z -, x -7- dm

11 dtj dt dl dt J

d ri dy dx\

J`~ clt~l^Cx clt y dt > clnt.

h> = -7CtJ{x-Tt-rdĂŻ)din-

By virtue of equalities (3g) and (4o), equality (38) becomes (X -h Ja)a-(Y - J "j)3 -r-(Z-r-Jr)T

-i- ( L -Ě�-Ě� h )X - (M J|A) {J. -+- ( N + ,lv )-> == o.

Since it must take place whatever a, [j, y, A, ;ji,'v are, it resolves into six equalities which, by means of the equalities (Ě�'iy-)t can be written

</ r dx dnz, d r dy dnz d r dz clnt d dx y d f Z d f d2,,

dt,~ dt ~=-T ~-7- ~===-7- ~J (l <J l' <<J </< d r elz cly

(l,3) L==- ~J~~ <))'--~-- dnz,

dz

M==- < j~- a~.

= -dt)\di-a--dt)dm-

~J f<< <</

N ==- ~~T-r' f</7:.

`~ dt x~ dt 3~ dt J dnz.

The vector with components -?dm, dm. -dm, se



name the quantity of motion of the elementary mass dm. The quantities

dz dy\

JT-- -~--- f~

V dl of 1

I dx dz

clm dl

</</

I dy du-

( x -, Y ~r dm

dl J dl ]

are said to be moments about the axes Ox, Oy, Oz- of the momentum of the elementary mass dm. With these denominations, the equalities (43) give the following propositions

Given a system independent of the foreign bodies acting on it and without contact with any of them, we calculate the actions exerted by these foreign bodies as if the system were a rigid solid. These actions are then reduced to a force F, applied to an arbitrarily chosen point O, and to a torque G.

iÂ° The component of the force F stcivccrzt any directiorz .~ixe is equal to the derivative by the contribution to time of the projection on this direction of the sum of the quantities of motion of the system.

-2Â° The component called torque G in any direction from the point () is equal to the derivative with respect to time of the sum of the moments with respect to the same axis of the quantities of motion called

These propositions are exactly equivalent to the Hypothesis stated at the beginning of this paragraph.

These propositions are rightly called the laws of Dynamics. They apply, in fact, to all systems to which the principle of conservation of energy applies, in the restricted form given in Chapter II, equality (i3.i, and they are the only laws of Dynamics that do not imply some new restriction. From these laws we can easily draw some general corollaries relating to Statics.



If a system is in equilibrium, the local velocities are all constantly zero, so are all the local accelerations and, speaking, the work of inertia in any virtual modification; therefore, we will have, for any system in equilibrium

J X = O, J (j = O, Jy = O,

h.~ o, J,j. = o, Jv = o,

so that the equalities (43) will become

(1{. jX = o, o~ Y = o, Z=o,

( L = o, M = o, N = o.

Let's consider an independent system, with external bodies acting on it and without contact with any of them. Let's determine the actions it experiences from these bodies as if it were a rigid solid. These actions are then reduced to a force applied at an arbitrarily chosen point O and to a torque if the system is in equilibrium, this force and torque are both zero.

This proposal constitutes the only gehialk law of Statics.

The quantity of heat released in an instantaneous modification. We have implicitly excluded, in all that precedes concerning the quantity of heat, the consideration of instantaneous modifications; we have, however, in our preliminary definitions (Chap. 1, Â§ 9, pp..j i -5a), admitted that the systems studied could be subjected to such modifications; in such a modification, the state of the system varies continuously, but the general or local velocities can undergo a sudden discontinuity.

There is no difficulty in extending to an instantaneous change the notion of the amount of heat actually released in a gradual change.

Equalities (3), in fact, extend easily to a finite modification free of any instantaneous modification; let us suppose that such a modification makes a system pass from a certain state



from a certain initial state o to a certain final state i for each of the elementary modifications which compose this finite modification, let us write the first equality (3), deleting the index a which has become useless, and let us add member by member all the equalities thus obtained; we find the new equality

G + Uo-l^-f-K,,- K, = Q,

where Q is the quantity of heat released in the finite modification considered; where G is the work done, during the same modification, by the actions of foreign bodies; where Uo, Ko 0 are the initial values of the internal energy and the living force of the system; where, finally, U(, K| are the final values of the same quantities.

This equality remaining true whatever the duration of the considered modification, it is natural to take it as definition of the quantity of heat released in an instantaneous modification.

Now, the state of the system or, better, the quantities that define this state always vary, from one instant to the next, in a continuous manner; their variation is therefore null in an instantaneous modification; consequently, in an instantaneous modification, the internal energy of the system does not vary and the work of the external actions is null, so that the preceding equality reduces to

(V>) K0-K,=t--Q.

The quantity of heat really released by a system in an instantaneous modification of this system is equal, by definition, to the decrease undergone by the living force of the system. The very definition of the quantity of heat released in a virtual modification supposes that Ton knows not only the state of the system at the beginning of this modification, but also the acceleration of each of the elements of the system at the moment when it is in this state; without knowing this acceleration, one could not form the expression of the virtual work of inertia. The definition of this quantity of heat only makes sense as long as these accelerations have finite and determined values. Now, let us consider



It can happen that in zero time, certain local velocities undergo finite variations, so that, for certain elements of the system, the word acceleration no longer means anything. It is therefore not possible, in general, to speak of the quantity of heat that a system gives off in a virtual change, when this virtual change has as its starting point precisely the state that this system is passing through at the moment when it experiences an instantaneous change.

We shall introduce into our theory a quantity which will play, for a virtual modification resulting from a state where the system experiences an instantaneous modification, the role that the quantity of heat plays for an ordinary virtual modification; this expression, we shall create arbitrarily, in virtue of the principle that definitions are free; the remainder of the theory will prove that it was useful to call upon this new notion. But, before giving this definition, we shall present some remarks concerning the bonds to which a system is subjected when it experiences an instantaneous modification. In it, an instantaneous modification corresponds, in general, to an abrupt change in the conditions of bonding to which the system is subjected; and, in this respect, several cases can be distinguished:

i" Let <o, be the time when the instantaneous change we propose to study occurs; let E be the state of the system at that time <(,.  When time t tends to l0 by values less than t0, the motion of the system tends to a limit motion [i. which we may name the motion immediately before the instantaneous change.  Let us assume, for an instant, that the system remains animated by this motion between the instants /<, and (to- dt), dt being positive. At the instant (to-dt), the system would reach the standard s. It may happen that the change from state E to state s is a virtual change compatible with the bonds that govern the system from time la. In this case, if the motion of the system changes abruptly at time <0, it is not by the mere effect of the change in the binding conditions; this latter change, in fact, would be compatible with the continuity of motion.



Let us quote an example of this first case

A material point M moves, until 1 instant /0, on the surface S which limits an immobile solid G; the orientation of the tangent plane to the surface S varies in a continuous way; at the instant ta, the point M leaves the surface S to move freely in the space outside the body C.  At the instant tn, there is an abrupt change in the nature of the links to which the point M is subjected; but this change of links is not sufficient to force the velocity to vary abruptly; without contradicting these links, the velocity could remain continuous.

2" In a great number of cases, the modification which would consist in taking the system from the state E to the state z would be incompatible with the bonds to which the system is subjected from the instant^ the sudden change experienced, at the instant l0, by these bonding conditions is sufficient to impose a discontinuity on the motion of the system. But, in this case, two different circumstances may arise.

Let e be the state where the system was at the instant (f0 dl), dt being posilil. It may happen that the modification by which the system would return from Tetai E to the state e is among the virtual modifications compatible with the links that govern the system from the instant l0. These links, incompatible with the continuity of motion, would be compatible with an exact reversal of the direction of motion. Whenever this is the case, we will say that the instantaneous modification studied is a shock.

The collision of two rigid solids is, in fact, an example of a similar modification.

A cylindrical column of solid sulfur is in contact with a cylindrical column of liquid sulfur; the latter gradually freezes in contact with the solid sulfur; at the instant (tg - dt), the liquid column has an infinitely small height dh at the instant /", the liquid has completely disappeared. From this moment on, no more liquid sulfur can be formed; the solidification rate cannot remain positive; the new bond that comes from the total disappearance of the liquid requires that the movement of the system



varies abruptly. But, without contradicting this connection, we can imagine that part of the solid sulfur is melted, so as to reproduce a liquid column of height dk, which would bring the system back to the state it was in at the moment ( t0 - dt); we are dealing here with a shock.

'Ě�'>" It may happen that the modification by which the system would pass from state E to state ĂŞ is incompatible with the bonds that govern the system from instant tn, just as the modification that would lead the system from state Ă‹ to state s; in this case, we will say that the sudden change that has occurred, at instant /0, in the bonds that subjugate the system consists in the establishment of a new adhesion.

Here is an example of such an instantaneous modification: Ci, C2 are two solid bodies; until the instant l0, these two bodies are independent of each other at the instant ta, they collide from the instant t0, they are supposed to be unable to separate, so that they must now move while remaining invariably linked to each other.

Having made these remarks on the changes of links in an instantaneous modification, let us come to the definitions we wish to introduce.

Let us divide the system we want to study into infinitely small material elements and let dm be the mass of one of these material elements. This element is animated by a local velocity of which u, v, (v are the components; according to what we said in the Ăš previous paragraph, this element has a momentum of which the components are ndni, v dm, w dm.

Let's suppose that at the instant ln the system is the seat of a sudden modification, that is to say a sudden change of motion.

When t tends to ln by values less than *", u, Ă§, w tend to certain limits ". e,, <v, when t tends to t" by values greater than ÂŁ", tt, c, "- tend to other limits u. l'o, fv-j the differences

ll-l 11-2, l't - (-2. H'| (I "2 IS'J

are the components of the velocity lost, at time t0, by this



elementary mass dm the <[uanlil.es

("i - ii,) dm, (Pi - v%)dm, (">i - wĂ®)dm

are the components of the momentum lost by the same mass.

After the instant l0, the system is subject to certain bonds; starting from the state E that it takes at the instant read, let us impose on it a virtual modification M compatible with these bonds; a point of the elementary mass dm undergoes, in this modification M, a displacement of which Ă´x, oy, os are the components; the quantity (46) a =Ě�/[(",-"i)o.T + (fi - VĂŻ)oy-Â±- (w,- w>2) oz) dm, where the integration extends to all the elementary masses that compose the system, is called The virtual effect of the kinetic beads for the virtual modification M.

For a virtual modification resulting from a state that the system presents at the time of a sudden modification, the virtual work of the kinetic losses plays the same role as the virtual work of the inertial actions in an ordinary virtual modification. The importance of the quantity we have just defined is immediately apparent from the following proposition

If, for all the elements of the system, we know the components "i, c,, (ĂŻ-'i of the local velocity immediately before the sudden change; if we gave, in addition, the value of I virtual effect of the kinetic losses for all the virtuals from the state E that the system takes in this sudden change we know, for each of the elements of the system, the components u<Â±, v", w-> of the local velocity immediately after the sudden change.

Let us assume, in fact, that one possesses the knowledge predicted by this statement and that, however, the local motion of the system immediately after the sudden change is not unambiguously determined one could, immediately after the sudden change, imagine at least two general motions, |j.o and [>!Ě� of the system, both of which are compatible with the knowledge implied by the statement and with the connections at which the system is i)..- .1. Ě�.Ě�Ě�Ě� i2



subjected from the instant t0 where the sudden modification occurred; in the first of these movements, your elementary mass dm would have a velocity of components u. v-2, w-2 in the second, it would have a velocity of components u[,,, i\ "- By hypothesis, in any virtual modification imposed to the system from the gauge E, we would have

| (u-2 - "i )ox-i- (v2 - Ci) oy -+- ("'" - wl ) oz | dm


	I Ku'ĂŻ - "j ) oa; -h ( v'.1 - vt) oy -+- ( "/2 - ">, ) cz ] dm



or

( 47 ) I. ( Ma - "" ) ox -- ( v'% - c2) oy -+- ( w', - w, ) oz ) dm = o Suppose that from state E and time t0, the system is animated by the motion ij. during the positive time dt; at time (<0 .+ dt), the system would reach a state F; the passage from the state E to the state F would be a virtual modification M compatible with the bonds to which the system is subjected from the instant to, since the motion u is supposed to be compatible with these bonds; in this modification M, we would have

8a." = M" dt, 5y = v2 dt, os = w2 dl,

so that equality (47) Ě�> applied to this modification would become

(i8j |O', - K. ) lu -4- ( v', - vi)i'-((v' - wi)tv2]dm-o. In the same way, starting from the state E and the instant i0, let us suppose that the system is animated by the motion u/ during the positive time dt; at the instant (/" -r- dt), the system would change to a new state F'; the passage from the state E to the state F' would be a virtual modification M' compatible with the bonds to which the system is subjected at the instant /(, in this modification M', we would have

o.r - u!ĂŻ dt, oy = v[, dt, oz = w', dl,

so that the equality (-^7) would become

(/J8 bis) [("'2-"j)a'+-(p's - ("j v't ("''2 - ivt)w'2 | dm - o.



The equalities (j8) and ( -{S bis), subtracted member by member, give the equality

[("'Ě�> - "a )'! -i- ( v'ĂŻ - vÂ± ')- -+- ( w' - iv2 )- ] dm = o.

This last equality requires that we have, for any material element belonging, to the system,

II' = U-2, i' = (>2, (I., = 11'

so that the stated theorem is proved.

Among the virtual modifications that can be imposed on the system from the state E taken at the instant to, in a sudden modification, there is one that deserves special attention; it is the modification really experienced by the system between the instants read and (tB -+- dt) in this modification, we have

,x = "2 dt, tjy = v-i dt, oz = w dt,

so that we can write the equality (4^)

(4g) i a = i: dt

with

'Z I | ( a, - iti)u-i-T- (f-'i - c>)i'2-v- (wt - iĂŻ'i) "'Ă® J dm.

But it is obvious that this last equality can be written: i >o) Ě�' - = ( (tf c'y -i- w'[ ) dm - ( u\ -+- c| -+- tv|) dm - j [(u,- il-,)1 i i>j- i'o )- (">i - Ě�"'2)Ă®]c?w.

The effect of the kinetic perlas in. the real modification that the system experiences between the epoch ln of a sudden modification and the epoch (t0 -dl), is obtained by multiplying by dt the excess of the living force lost in the sudden modification over the living force due to the velocities lost in the same modification. Let us suppose that the system studied is one of those whose state is entirely determined by the knowledge of a limited number of quantities. The most general virtual modification that the system can undergo is that of the



can experience from state K, taken in a sudden modification, can be determined by means of n infinitely small quantities (/t, 172, qn) which can well be subjected to certain unilateral connections but which will not depend any more on any bilateral connection.

\The virtual reflection of the kinetic losses can then, in one way and one way only, be put in the form

~=C~[-<~f/j--C,tt/

C|, C2, .C,, being quantities independent of q,,q-2, .(/n. The quantities Ci, Ca, G,, are the kinetic pearls relative to the variables qt, qn, q,

In many cases, the virtual itt of the kinetic losses plays a role analogous to that played by the quantity of heat released in a virtual modification. Thus, we will formulate the following hypothesis, similar to the one given in the previous paragraph

1 1 ypothesis. - A system, isolated or not, but independent of external bodies and without contact with any of them, experiences an instantaneous modification E is the state that it takes in this modification from this state, one imposes on it a virtual modification which is reduced to a displacement of the whole in V space: for such a modification Ce (virtual Jet of the kinetic pearls is zero.

A such modification, a point of the svslĂąme experiences a displacement whose components are

r,x =- a -Ě�-Ě�). z - v y.

c~=~~v;r-A~,

oc =-- y -1- \y - - ;ji.r.

a, 3, y are the components of an infinitely small translation and ), ;jl. v the components of an infinitely small rotation. According to the equality ( {(i), Tellet of the kinetic losses in this modification will be

end 1 3 t= A.ĂŻ-4- "?-+- C-h F X 'Ě� C: H v,



by putting

A = ( ut - u-y) dm,

F = {"'i- \v,)}' - (i>,- Vi)z]d/n,

or even

i.,) i A = u i dm - u.a dm (n) I F = ( tvt y - i-, z) dm - ( wty - v,s) dm, For the effect of the kinetic losses cr to be zero in any modification of this kind, that is to say whatever a, [j, y, A, p., v, it is necessary and sufficient that the six quantities A. B, C, F, G, H are separately zero, which gives these two groups of equalities "i dm = I n" dm,

(53) i J v, dm = J I v-ydin,

[ I r (t\dm- I r n'ndin,

u I )(W\y- v\ z)dm- j (wĂ®y- v, z) dm,

(r>) Ě� j i ii\ z - il-] x) dm - l ( ui z - id x) dm. j { i-, x - u i y) dm - j ( i\ x - u,y) dm.

The first group is equivalent to the following theorem:

If a system independent of foreign bodies and without contact with any of them experiences a sudden change, each of the three components, along three axes of rectangular coordinates, of the quantity of motion of the system keeps an invariable value.

The second group is equivalent to the following theorem:

When an independent system without any contact with foreign bodies experiences a sudden change.



the momentum of the system with respect to each of the three coordinate axes remains invariant. These two propositions are the j.ois gknĂ©uai.es dks modifications instanĂŻa.vkks they apply to all systems to which your general laws of Statics and Dynamics formulated in the preceding paragraph apply, and they are the only ones that apply to the sudden modifications of all these systems, without exception.



CHAPTER V.

MECHANICS OF INVARIABLE SOLIDS AND RATIONAL MECHANICS.


	Mechanical properties of systems formed by solids independent of each other.



The hypothesis formulated in paragraph 4 of the preceding chapter has provided us with two laws that we have named general laws of Dynamics, because these laws apply to all systems for which the principle of conservation of energy admits the restricted form indicated in Chapter I. If we further particularize the systems to which we apply it, this hypothesis will be able to provide us with much more complete information about them.

Consider, in particular, a system defined as follows

It is formed by a more or less large number of bodies independent of each other, and having no contact with each other.

Each of these bodies is either a material point, or a rigid solid whose various material elements keep, one with respect to the other, an invariable relative position.

The state of each of these bodies is entirely determined when we know the position it occupies in space.

Such a system is a set of invariant and free solids.

Most of the systems in which celestial mechanics seeks to represent the motion of the stars or of some of them fall into this category. The same is true of the sets of material points by which Poisson and a good number of his successors are represented.



The Physical Mechanism, proposed by Poisson and adopted by many geometers, admits that these systems are the only ones that the physicist should consider; they are, in any case, the simplest he can deal with.

Let us denote by S the studied system and by S|, So, S, the various invariant solids which compose it.

When we simply move the system Si in space, without changing its state, the internal energy L< of this system keeps an invariable value, as the displacements in question are the only changes of state of which the system Si is susceptible, the internal energy U,- is necessarily the same as the internal energy of the system Si taken in its normal state; it is therefore equal to o.

Therefore, according to the equality (20,) of Chapter III, the internal energy U of the system S has the value

( 1 ) U = W.

The internal energy of a set of free solids is reduced to C. the mutual potential energy of these bodies.

The most general virtual modification of which a set of free solids is susceptible consists in any infinitely small displacement imposed on each of the bodies which constitute it. According to the hypothesis formulated at the beginning of paragraph 4 of the preceding Chapter (p. 168), each of them gives off, in such a displacement, a quantity of heat equal to o. On the other hand, according to a theorem demonstrated in the preceding Chapter (p. 15c), the amount of heat released, in a virtual modification, by a system formed of several independent parts is equal to the sum of the amounts of heat released, in the same modification, by each of these parts. We can therefore state the following proposition:

The quantity of heat released by a set of free solids in any virtual modification is equal to ci o. Now, this quantity of heat is defined by the equation ( S ) of the previous chapter, which can be written, neglecting the index



become useless,

Q = G-t-t-SL:

Ci is the virtual work of the external actions, t the work n-tucl of the inertial actions, oL the virtual variation of the internal energy of the system.

But, according to equality (1), the internal energy l." of a system of free solids is reduced to the mutual potential energy W of these bodies.

The previous equality thus becomes `

(2) and s>F = o.

In any virtual niodification of a system of free solids, the sum of the work done by the external actions and by the actions of inertia is equal to the increase in the mutual potential energy of these solids.

If we observe that - Ă´V is the virtual work of the mutual actions of these solid bodies, we can still state this proposition as follows

n any virtual modification of a system of free solids, the sum of the virtual works of the external actions, the mutual actions of the solids and the inertial actions is equal to o.

The equality ('-(), to which these propositions are equivalent, is the I-OUMULK rOMIAUCSĂŹAU: DE LA Uy.NAMIQ.UE DES SOI.IDKS J.imtHS that Lagrange obliterated, in his Analytical Mechanics, by combining the principle of Alcinberl with the principle of virtual displacements.

It can be shown, in fact, that this formula is sufficient to completely equate the problem of motion of a system of free solids.

Let us start with a remark: The state of a system of free solids is entirely determined by a limited number of independent variables.



This state is, in fact, determined by the knowledge of the position that each of the solids occupies in space; now, this position is determined by six independent variables; we can, for example, define the position of a solid in space by means of the coordinates, referred to the fixed trirectangular trihedron O.r, Oy, 0.3, of a given point G of this solid, and of the three Euler angles that three rectangular lines G S, Gr>, GĂ‡, coming from the point G and invariably linked to the solid, make with three other lines, also coming from the pointG.and respectively parallel to Ox, Oy, O: A system formed by a certain number of free solids is thus such that its state is determined by the values of independent variables six times more numerous than the solids which compose it. If this system contains material points, each of these points will correspond to three independent variables instead of six.

This being said, let us apply equality (2) to a system defined by independent variables pi, p2, pn. Let A, A>, A,, be the external actions and J,, J2, JB the inertial actions relative to these variables the mutual potential energy W will be a function of />(, /^2, 1 Pn- Equality (2) can then be written 1.1,+J, pl Ă´pi+ _1=+Jz- ~2 Ă´~y

(-)~ (~)~ 2

dW

-<t-A~J~---o~~ = o.


	Ě�Ě�+ (Ě�Ě�Ě� Ă´jrJÂ°Pa =0-



lille will have to take place whatever the virtual modification imposed on the system, i.e. whatever op{, 8/j2) Ă´p,i- It ecpnvaudi'a thus to the n equalities

~1~ dW

A| J[ = o,

.~t

d~F

A 2 --- J2 - -- - o.

(,).); Ă”pĂ®

A,, J .M f).

and. n-- hr - "Ě�

->Pu

These equalities can be written a little more explicitly, using the expressions of J,, J2 )" given by the eq-



lities (28) cl 11 Chapter 111

<)(W - K) d i)

AI (Jpi lit dp] = (J.

Ăą(W - K) d "K

(.i ) '2 Ă´fĂŻ 11 dpZ~-Â°'

l ,)(\l'-K);(. d OK

1/ "Pu cit. dp'

These equations, which are exactly equivalent to the relation are the IjAGIIANGE EQUATIONS FOR I.K MOVEMENT n'vN SYSTEM 1)1; FREE SOLIDS.

Let us suppose that the external actions At A2, A" which act on the system emanate from bodies whose state is given at each instant t and that we know, moreover, how these actions depend on the state of the system studied Ai, A2, A" will be, from then on, given functions ofy; p. p,, and of The equalions (4 ) are, according to what we have seen in Chapter 111, paragraph 1 (p. i 2/\ ), a system of n differential equations of the second order with respect to the n unknown functions of t that arey>(,/?2, .]), These equations are linear in p "t p]n and, according to what we have seen in Chapter 111, paragraph 1 (p. i?-4), the determinant of these quantities is always different from o so that one can always assume the equations (,{) solved with respect to Ě�Ě�Ě�Ě�, p "ir

From then on, the general theory of systems of differential equations teaches that a system, such as the system (4), cannot admit two distinct integrals, if we give ourselves, at one instant, the values of p2, pn and p'n. Now, to give oneself, at instant lB. the values of p2, pn, is to give oneself the state of the system at this instant; to give oneself, at the same instant, the values of p'n, is to give oneself all the local velocities of the system, and to give oneself the general motion of the system, which is merged here with the local motion. We can therefore state the following theorem

When we give ourselves, at an instant, the state of motion of a system of free solids, the condition (a) determines unambiguously, at any instant, the state and the motion of this system.



The condition ( Ě�>. ) thus exhausts the role that the Energetics must play in the study of the systems of free solids it reduces that study to a question of Analysis.

In order to demonstrate that the condition ( a) is sufficient to equate the problem of motion of a system of free solids, it was essential to define the state of this system by means of a limited number of independent variables, so that the condition (a) was reduced to a system of differential equations. But, once this demonstration has been given, nothing prevents us from giving up this way of defining the system under study, nothing prevents us, for example, from determining the most general virtual modification of this system by means of n independent variations. Let us consider a system of free solids which is in equilibrium, where all accelerations are zero, and, consequently, so are all inertial actions; condition (a) thus becomes, for such a system

(5) ÂŁ - 3>F = o.

In any virtual modification imposed on a system in equilibrium formed by free solids, the work of the external actions is equal to the variation of the mutual potential energy of the bodies which compose the system.

Conversely, if a system of free solids, subject to the action of invariable foreign bodies, is placed, without initial motion, in a state where any change in the island verifies the preceding condition, this system will certainly remain in equilibrium in this state

To prove this proposition, it is enough to notice that by keeping an unchanging state, the system will constantly verify condition (a), and to remember that this condition cannot be verified in two different ways.

The two propositions, reciprocal to each other, that we have just elaborated constitute, for a system of free solids, the HIJir.IPK DES nĂ‰IM.ACKMEVrs VIHTL'KI.S.

Let us apply this principle to a system formed by a single free solid; W being then identically zero, condition (5) will reduce to i~ - o; moreover, G will be given by equality (35) of Chapter .111.



Condition (5) will therefore become

\a-h Y&-rZ-;+ LĂ€ M;j. - K v = o.

For it to be verified whatever the virtual modification considered, i.e. whatever a, [3, y, Ă€, p., v, it is necessary and sufficient that we have.

(6) (X = o, Y = o, Z=o,

( L = o, M = o, N = o.

These six equalities are the necessary and sufficient conditions for the equilibrium of a free solid body; they express that the force and the torque to which the external actions exerted on this body are reduced are both null.

The comparison of equalities (2) and (5) leads to the following proposition

At each instant, the state of a system in motion is such that the system would remain in equilibrium if it were placed there without velocity, if the foreign bodies were maintained in the state they are in at that instant, if, finally, to the actions these bodies exert, we added fictitious external actions precisely equal to the actions of inertia at that same instant. This proposition constitutes, for a system of free solids, the l'iUA'cu'i-: ni-: h'A.i.h.mbkkt.


	Definition of the sets of subject bodies



to connections without passive resistance.

The systems we are going to study will still be formed of rigid solids; sculemenlc.es solids will not be free and independent of each other.

l)eu of these solids will be able, for example, to touch each other.

In a point of the surface of such of them will be able to be fixed either a flexible and. inextensible lil, or a rigid line; the other extreme-



This line or thread can be fixed or glued to a point on the surface of another body belonging to the system; this line or thread can slide on a fixed point, on a fixed surface or on the surface of one of the bodies of the system.

A material point or a solid body belonging to the system can be subjected to constantly touch a fixed point, a fixed line or a surface (ixed on such a line or on such a surface, a solid belonging to the system can be subjected to roll without sliding or to slide without rolling.

These six quantities will no longer be able to vary in an entirely arbitrary manner; they will be subject to unilateral or bilateral, holonomic or non-holonomic connections, as explained in paragraphs o, 6 and 7 of Chapter 1. All these links will have this common feature that, in order to define them, it is impossible to appeal to any notion foreign to Geometry.

According to the nature of the links to which we have assumed our system to be subject, time will not be explicitly included in these linking conditions. It would not be the same if we suppose, for example, that two solid bodies belonging to the system are connected by a rod whose length, variable from one instant to another, has, at each instant, a known value; that a solid body belonging to the system is subject to remain always in contact with a line or a surface whose figure and position are, at each instant, known... We consider it useless to complicate our exposition by the consideration of connections where time would appear explicitly.

The various intermediaries, wires, rods, points, lines, surfaces, which can be used to establish these connections, will be supposed, in what follows, to be subject to a first rkstkfc.ĂŻio.n

The fixed points, the rigid lines, the fixed surf-axes, the flexible wires that bind some of the solid bodies of which the system is composed do not have to be taken into account in the calculation of the internal and kinetic energy



of the system, nor in the calculation of the mutual potential energy of the system and the foreign bodies.

This is expressed by saying that these intermediates establish purely geometrical connections between the various bodies of the system.

In order to define the systems we propose to study, we will not be satisfied with this first restriction, we will soon formulate a second one which will complete the definition. But some preliminary remarks will be necessary. The position occupied in space by the various solid bodies which form the system can be determined by means of the variables /), r2, Ě�/-", the number n of these variables being equal to six times the number of solid bodies plus three times the number of material points.

Let us suppose, first of all, that these solids are linked together in such a way that they form a holonomic system, the links being, moreover, unilateral or bilateral, these links are of the form

| ,i Oi, 'Ě�->, - - - '-")^o,

( f-i ('-i, ''2, -- rn)ko,

(7) Jm(rt, r2, r,,)-so.

/~(~t, ''2, ~~=0.

The number m of these linking conditions is, of course, less than n.

Let's consider an initial state in which the conditions

,i Ci) ''2, Ě� - 'Ě�") = ",

(8v ) /Ă®('-li ''2: Ě�-Ě� r,,) = O,

(8

/"('-!> '2, - - 'V) = O

are -verified, and, from this state, let us consider a real or virtual movement of the system.

To give oneself such a movement is to give oneself the expressions of /'i, /'s, /Ě�" as continuous functions of the same variable t which. for a real movement, will be the time t taking a certain value /0, /Ě� /-2, /Ě�" take on the values which characterize



Fetat r.'i). Then, by virtue of conditions ('-) and (8), we have, for any positive value of (t- <0),

(dA + Ml ,--+ dfl,(t t

rl+ r2+. nt)lt-t "j

fJl'l ~l-z d~


	C (_ 't)f, r, r + t)/ z -+ ~)f, l'a ) ft)



1"" 1 i I 'i i - Ě� - i n

J I /'J/'l ." 4 'Ě�> i" r m r T to''< fit J 1 1 (< - '>-

\0rt < (V/-n J Ě�>.

-h io,

(<)) { t

~-)~

-l'I i*, +,+ -;Âˇ- tll't ) (1 10)

\oi'\ 0r% Or n J

+r /` t~fez. Jl t~ tt +. -j_ (%%n ez r r,7

yJl, t Jr~ drez

,+, \'J''l ^2 Orn J 2

l, elr t 1 ~l'~ (." l J 2

-i- ĂŽO.

Under these conditions, the exponent (2) designates a symbolic square formed according to well-known rules; the quantities in parentheses have the values they take for t = tu. If, for positive and sufficiently small values of ( t t0), all the conditions (g) reduce to equalities, none of the bonds expressed by the conditions (-) is broken at the beginning of the considered motion. This motion, on the contrary, will begin by the breaking of some bonds if at least one of the conditions (Ă§) reduces, however small ( t - 10), to an inequality. Now suppose that the system is not h'olonomous, but suppose that the bonds to which it is subject are bilateral; these conditions will require that we ail, in a real or virtual motion from I mstanl /0. and whatever t, tli /- Ě�"3/"" -Ě� -t- it,, r'n - 0,

(ui) | />i /Ě� -i- 1>, r1., -;- - hn /- - o,

Âˇ(LIl "I -+. a2 -Âˇ-; + a"

('Ă“)

The number ni of these conditions is less than n. These conditions having to be linked whatever the value of (, we can write them



in the following form

(a-, r's -+- --i- a y r'% -- .H- an /Ě�'" )

r J da, ~<x.~ dcl,t

Ii [/ dat 1 da-i daa )'


	\dT ''- + ~^T + Ě� - ~H "57 'Ě�



( a, /- -i- "2 'Ě� -+-+ "" >"") (< - /o)

-f- O,

(ii) y ( /t~j-+- ~r~- t', ti)

I.. V '---Ě� rf< '"y

,r y dt clt 2 T. ~t l'ir

-r 1. 2 -r. -;ÂˇÂˇ

-+-( I, r, + h r'j -+-Ě�+- /"/-) U - A))


	= o.



In these equalities, the quantities in parentheses have the value II I <6f) cllf~ that they take for l=l0. The -p-, -Ě� -derivatives therein are linear and homogeneous forms of r\, /Ě� r'n; the coefficients of these forms depend on the state e0.

To say that the non-holonomic system is subject to one-sided binding is to say that conditions (1 Ă®) must be replaced, for positive values of (t - - tQ), by conditions of the following form

("i /Ě� -i-"2 ;Ě� + a,, i- ) l

F da, da-i dan


	|. -7ĂŻrr^nrv^drr")



-+- ( " i r\ -4- "j r\ Ě�+Ě� -H "" /- ) .(< - /")

Ě�4- = 0,

(.2) i ( ~t-t- ~2+.+- 1,,

~r

[ ( cCt dl2 ''z+.+ clt j.")

-+- ( /| '| -t- '2 'Ě�'" -+---- -H In r'n )(t - t") F

-+- S O.

The motive considered will break, at its beginning, some of the bonds imposed on the system, if, however small the positive value of (t - ÂŁ0), at least one of the conditions (12) is a



inequality otherwise, the movement will start by saving the links imposed on the system.

The conditions (g) can be considered as a particular form of the conditions (i?) so we can reason exclusively about them.

Once these preliminaries have been established, we will come to the statement of the second restriction by which the definition of the systems studied must be completed, but for this purpose, we will first examine only a part of these systems. We shall suppose that the various solids are not in contact with each other; the only connections existing in the system will be purely geometrical connections. It is conceivable that they could be removed at a given moment without modifying the position of any of the solids which form the system.

Let us consider the real motion of our system between the instant to and the instant (l0 +/i), being an infinitely small positive quantity. 11 makes the system pass from the state co to the state e. Let a material element, of mass dm, belonging to the system Mo is a point of this element in the state e0, M a point of the same element in the state e.

Let's take the system at the instant tg, in the same state and with the velocities it had immediately before the instant t0. Let's suppose that at this instant to, we remove all the links that were holding it in place; it will be composed, from this instant on, of a set of free solids that will move in accordance with the laws previously established; at the instant (ln -+-), the system will be in a certain state f; the material element dm will be surrounding a point N. By definition, the quantity MiN dm will be the constraint that in its real motion, the system experienced from the links.

Let's take the system again at time /0, in the same state cu let's impose on it a virtual displacement compatible with the bonds when the variable t will take the value (l0 -+Ě� h), the system will be in the state g; the element dm will occupy a position to which the point P belongs. The quantity PN dm. will be, by definition, the constraint that the bonds impose on the system during the virtual motion considered. Ě�Ě�



We propose to study links that verify not only the first restriction previously stated, but also this SECOND uesthiction

The constraint that the system experiences, from the links, during its real displacement is less than the constraint that it would experience in any other virtual displacement from the same .state

(i3) f UN' dm < CpN2 dm.

This is what we will express by saying that the studied links are free of passive resistance.

This definition is due to Gauss (f); what follows is the development of the ideas put forward by this great geometer and completed by Heinrich Hertz (-),

Let us consider a displacement, real or virtual, compatible with the bonds that restrain the system from the instant t0 suppose that in this displacement, the initial values ate^ <lrÂ± drn ~df' ~dT are not all equal to the initial values of r'i /Ě�'" in the motion of the system made free, initial values identical, by hypothesis, to the values that the same quantities took, in the real motion of the system, immediately before the instant the PN segment will then be, in general, an infinitely small length of the same order as h the PN constraint dm will be an infinitely small quantity of the order of h'1. Suppose, on the contrary, that in a certain displacement, real or virtual, the initial values of d' d'~2; - `l' berespective- virtual, the initial values of -j~, - Ě� - " -^ be respectively equal to the values that r\,r' r'n took, in the real motion of the system, immediately with the instant l0 such a displacement will prolong, beyond the instant l0, the real motion

(') C. -K. Gauss, Ucber ein lieues allgemeines Grundsatz der Mechanik (Crelle's Journal fiir clic reine u/id angcwandte Matheniatik, H(l. IV, 1819. - Gauss, Werke, Hd. V, p. 33).

(' ) IIkinhicii IIehtz, Die Principien (1er Mechanik in neucm Zusammcnhange e dargestelU; Leipzig, i8(j/|.






before;'i this instant, without the velocities experiencing, at instant tu, any abrupt variation. Obviously, for such a displacement, the segment PN will always be an infinitesimal one at least of the second order with respect to h the corresponding constraint PN dm will be an infinitesimal quantity at least of the order of li'.

The second constraint will therefore always be smaller than the first.

Hence the following theorem

When, at instant l0, a system of solids is subject to purely geometrical connections and free of passive resistance, the real motion after instant ta continues the real motion before instant tn, without the velocities experiencing any sudden variation at instant t0, whenever such a continuation is not incompatible with the connections, i.e. whenever there is at instant t0 neither shock nor introduction of new connections.

Let's exclude, for the moment, the case where there would be a shock or the introduction of new links; we will find it in a next paragraph.

Furthermore, let us assume for the moment that the real motion at the instant read does not break any bonds for values of t sufficiently close to /". the equalities (i t) are verified. We will examine later how it is possible to recognize whether or not the real motion breaks certain one-sided bonds at the instant to.

In this real motion, the point Mn has, at time t0, a velocity (.z'y, ;') and an acceleration (x" y", z'1) the segment M,,M has for components, taking into account the infinitesimals of the second order,

x' h -h - y1 h -H -L- h z h -H li-

2 z

If, at time /0, all the links had been removed, the velocity of the point Mo would still have been (x1, y', z'), but its acceleration would have been different; let us designate it by (; y, ÂŁ") the components of



M0N segment are

Ă§" -) ~J

.~n7 l, y~,z + h_, ~r~ + =lt=.

J. 2

The MSN segment, infinitely small of the second order, has the following components

d4) r" -x'h= .r"- ~l ~-ll/

V. -2 ->.

Let us consider a virtual displacement which, at the moment ÂŁ", can break certain unilateral bonds. This displacement is not subject to the conditions (11), but to the conditions (ia). If this displacement does not correspond to the same initial velocities as the two preceding displacements, it occurs with a positive and infinitesimally small constraint of the second order, whereas for the real displacement, the constraint is an infinitesimally small one of at least the fourth order; the second constraint is therefore certainly smaller than the first. Therefore, we only have to look for the necessary and sufficient conditions for the real displacement to correspond to a lesser constraint than all the virtual displacements having the same initial velocities as it.

Let's take one of these virtual trips.

The initial values of

di'f drn dx dy dz clt ri, dt 7 Ă˘, ~lt x~' ,lt -J' clt ~d7 = ri' ---' IT^ ~dl=zX' ~aĂ®=y' TU = are the same for this virtual displacement as for the real displacement; it is different for the second derivatives (#/Ě�, d" dx d\y d*z Z

~d~F' > dt* ~dU"' ~~d~F' Ht?'

We will denote them, for the actual displacement, by /Ě� r "n, x", y", Z,

and, for the virtual movement, by

r'+m,, /- -m, x" H- X, y" Ě�+- jjt, z"-h<i.

With these notations, the segment Mo P will have as components tf'/n-ĂŻ-ii/ 2, ~lt h2, the Z v la= li~2 '? :J. 2



and the MP segment will have the following components

(.5) fi. hz '_` /z=.

l l ',1-

Let us first see what conditions the quantities d],7~n~ are subject to.

The real change must verify conditions (i i) for any positive and sufficiently small value of (t-to); thus, in particular, at time <",

(16) a, r~ -r aI rz-ĂŻ-+ a,Zr;l= 0,

(17) dctl ),y + da~ da, r;t

(1/) dt dt dt

-+- <tj + a= r'2 +.+ a,t rÂ°;Z = o.

The virtual modification must verify the conditions (12); moreover, the initial values r'" r:" y are the same as in the real modification, so that the condition (~6) is still verified, and we have

( da, da2 dan

(~8) dt I~t dt 1~2 +.+ clt I~ -)-?)(' -t- ~i) -+- <r<.j(/t-n!2) -)- <t(7')-~n)~o.

L dce, a'ftf C~~ f/6t,t,, endent only on the state The quantum--t -,-' 'yT- depend only on the state The quantity ~t ~t dt p

of the system and of the "i' r2, they have therefore the same value in the conditions (17) and (18), so that these lead to the condition

n9)' ~1~-)-~2~-T-)-~H~M~O.

This condition (19) and the other similar conditions that can be established in the same way lead to this proposition Let 3/'j, 3/'2, 3/ infinitely small variations of r,, rs, P, subject to the conditions

)<.tt8/')--e[~S/t-)-Ĺ’,t8/t~o,

p, L1 G)'t~-+ ~g Ă”I'2r.+ G,t Ă”I'n.Of

( 20) t;&t3/-t-S/'2-<+&3/'nĂ«o.

j /[S/'j-i-/2S/'2-<t-S/t~O; o.

is a positive quantity, infinitely small of the same order as



01'j, n' and having the dimensions of the square of a time: cjj, m2, mi, will necessarily be of the form

'r7,=.-y95.=- Ă´r, Ă´r2 Ă´r'a (21) mÂˇ==7' n7~===:--? '? ~--' Let us now look for the form of the quantities ĂŻ" v.

Let us consider a point linked to one of the solids which compose I system, and let x, ,y-, be its coordinates if the variables n,, 1'2' m,t experience the infinitely small increases o/~ ~iÂ°_, o/'n, x, grow of ux, Ă´y, & and we have j o.r=\tO/-t-~X2S/)-r-X,;S/'n,

2 Âˇ S~=Y)S/T-Ys3/'2-)-Y,,S/

Ă´z Z, Ă´r, + Z2 Ă´r~+.+ Z,t Ă´r".

For a given point of the system, the coefficients Xi, Yi, Zi are functions of j'il nz,

These equalities (a2) lead to the following equalities, which must take place in any real or virtual modification, whatever t

d.x, drt 1 X2 dr.= dr~.t

c t ~~j dt + 2 t 1.+ 1,~ clt

y ~Y Y

('23) dY lr dr, -I- Y- d,,2 ~+ Y" dr~n, (23) dt dt dt dz dr_ dr"

d Z, dt + Z= dt -+-r ~rt dt

These equalities (23), having to take place whatever it involves in their turn the equality

d~  ~~t d- dt= r" d3, ~Zr, dX~ drl ~X,tt~

~t .,dt + ~t ~t + dt dt

and two analogous equalities. ~1~, dY~ dAn

In this equality (2~), the quantities --) "7~ are, b dt { t di for each point of the system, determined functions of r,, )' i du, dr._ - dr"

and dt dt ''dt,



At time tn, let's apply the equality (a4) <"> your real modification; we will have

( Ě�>. '>) x" - i r\ -h X 2 r\ -+- -+- X " /-

afXi dX-, dx"


	lĂŻTr > + -dt 'Ě�--+ Ht r-



Let's apply it to the virtual modification in the same way; plie will become {Ě�)&) x"-+- X = X,(/;i ra, ) -+- X2( /-"-+- ra, J-+-+ X,, (/-'), + ro,,) rfX, f/X, rfX,


	-rfT' + "5Tr* +-+ -5T'"-



In the equalities (2.)) and (26), the coefficients Xi and - have the same value; these equalities, subtracted member by member, thus give the first of the equalities

i Ă€ = X1m1-+-X2ro.2-i-XHro,

( 97 ) [i = Yjbjj 4- Y, nij + .+- Y,, rar;l

[ V=/inTi-i-/2 ^2 4- -T~ Ltl TĂŻĂŻ,,

The other two are established in a similar way. The consideration of equalities (21), (22) and (?7) leads to the following proposition

Let o/'i, 2r2, or,,, be the infinitely small variations of /- r-2, /(, compatible with the conditions ('_>.o), which, by the equalities (21), give the values of nr,, nr2. m,, these variations determine an infinitely small virtual displacement of the system in this displacement, any point of the system describes an infinitely small path whose components ox. oy, Ăąz are related to the values of p., v which are appropriate to the same point by the equalities

(?.8) Zx = ÂŁĂ€, oy - fx, 0: = !-

Consider the MiNI* triangle whose three sides are infinitesimals of the second order. In this triangle, we will have 2 -2, 2 _0

V\ 2 = -+- Ml "2 - -JiM~YMĂŹĂŹ cos i\ MP



or, by virtue of (i/j) and (i5),

( 29 ) PN = MN 2 H- ( X Ě�+- v )

-^i(r-x" + (v1--y)u-i-(r-^)v|.

Multiplying the two members of this equality \mrdin and Ă®neglecting them for the whole system we will obtain an equality that the equalities (28) easily put in the form

(3o) fĂŻ>NS dm /^MĂŹ\2 dm

~r~7, I ( ^x'2 Ě�+Ě� fy'2 -+- 2-z2 ) dm


	2E I [f- a:") Ix Ě�+Ě� (r/'- y") $y 4- (t" - z") oz\ dm |



This equality (3o) leads to the following consequence For the inequality (i 3) to be always verified, it is necessary and sufficient that any infinitely small displacement compatible with the conditions (ao) verifies the condition

(31) I (t"-ss")Ă´x-+-(-t,y")5y-i-(^-z")is]din<o. Let condition (3 i) suffice, by means of equality (3o), to ensure i~ the inequality

f ĂŻ'\ dm - r^vTv2 dm > o,

This is quite obvious if we observe that s is essentially positive; that it is necessary for this object is what we shall prove.

Suppose, in fact, that we can imagine an infinitely small displacement, compatible with the conditions (ao), and such that 1 1 *"- .t") o.r -r-(r" - /")oj + ('3'")o;]f/"(

has a positive value c this value will certainly be an infinity of the same order as oj\ Ă˘y, os.



At the same time,

( (jX1 - 3/! + cz1 ) dm

will have a positive value 6-, infinitely small and of the same order as ox'i oy-, oz~.

s is an infinitely small quality, subject only to being positive and of the same order as or, or- or, or ox, oj', bone nothing prevents us from taking

v=

ÂŁ>iĂ®.

(S

Therefore, in the second member of equality (3o), the quantity between j will have the same sign as its second term which is negative, and we will have

fÂĄR2 dm - iYFN3 dm < o.

Thus condition (3i) is necessary for condition ( i3) to be always verified.

In other words, if a set of solids, subject to purely geometrical connections and free of passive resistance, is in motion if we are sure that this motion does not break any of the unilateral connections imposed on the system, condition (3i) is true at each instant and for all the infinitely small virtual displacements that verify condition (ao). Condition (3i) can be put in a somewhat different form.

We have

( 3a) f(:c" 'Lr -+- y" oy -+- z" oz) dm = -

t being, in the considered virtual displacement, the work elVcctuĂ© by the inertia actions which solicit the system during its real movement.

We also have

(33) f(fĂ§"?,x Ě�> oy 4- Ă‡" 5s ) dm = - 0.

being the work that would be done, as a result of the same movement



virtual, the inertial actions to which the system would be subjected during the motion it would take if we broke, at time tn, all the links.

By means of equalities (32) and (33), condition (3i) can be written

(34) --6 = o.

On the other hand, in the virtual modification considered, the external actions that the system undergoes perform work G and the internal energy of the system increases by SU; E and SU have the same value as if the purely geometrical connections did not exist. Moreover, any virtual displacement subject to the conditions (20) is among those that the solids of the system could experience if they were completely free. Equality (2) then teaches us that we have C, () ~t,j = 07

Ă§-f-O - SU- o,

so that condition (34) becomes

(35) Xs -4- -z - SU ĂŻ o.

It can also be written in a slightly different form. According to the equality (4) of the previous chapter, the first member is the quantity of heat Q released by the system during the virtual displacement considered, the condition [(35) can thus also be written

(3<>) Q = o.

These new forms under which the condition of least constraint is put, by which we had first defined the geometrical links free of passive resistance, will allow us to extend this definition, and thus make it applicable to a system where various solids are in contact with each other. Here, then, is the form in which we will put this definition:

Let us consider a system of solid bodies which can be subject to geometric connections and which can also be in contact with each other; the connections imposed on this system will be said to be EXEMPT from PASSIVE RESISTANCE if the following hestisictioss are verified



rÂ° Au u corcrs du M")Mt'e/M<?M< du sy.stĂ¨rzze, les ~-itesses cles eliuer., If we take the system at an instant when there is no break in the bond, and if we impose on it, from the state it then presents, an infinitesimally small virtual displacement compatible with the bonding conditions, the quantity of heat it gives off in this virtual displacement is zero or negative (iĂ»bis) Q^o.

The quantity of heat released in a virtual modification being defined by the equality (4) of the previous chapter, we see that our last restriction can be formulated as follows

In any virtual modification imposed on the system from any of the states it passes through in its motion, we have

( j ĂŻ bis ) S -t- - 0 U o.

The systems we have just defined are very simplified abstract schemes; we are obviously free to create such schemes and to apply to them the principles of Energetics from the point of view of Logic alone; this study cannot be illegitimate; practically speaking, it can be useful or useless; it will be useful if the abstract properties of such schemes, such as they derive from the principles of Energetics, represent with a sufficient approximation the real properties of certain concrete systems, and this is what happens.

This study of the energetic properties of solid body systems, when the links that hold them together are free of passive resistance, is properly the Mp.CAJVlQUH HATIOJO'KI.LK

;i. Equations of motion of a system of solids subjected to connections free of passive resistance. Among the virtual modifications of which the system is susceptible are, in particular, the reversible modifications, i.e.



i.e. those which verify the linking conditions (ao), transformed into equalities or made bilateral.

Let us consider a reversible virtual modification; for such a modification, (G-+-T - oU) cannot be negative, because, by reversing this modification, we would obtain a new virtual modification, compatible with the linking conditions (20), for which (G+- - SU) would be positive, which would contradict condition (35 bis). Hence this corollary

In any virtual modification compatible with the BILATERAL unbound conditions, we have the equality (37) G+- - 8U = o.

We will show how this theorem determines the motion of the system.

For this purpose, we shall first notice that if no link is, at time t, broken by the system, the real modification, accomplished between times t and (t + dl), is among the reversible virtual modifications.

Secondly, we will distinguish two cases, the first of which is the most particular and simple, but also the one most frequently encountered in practice.

Pke.m 11:11 CAS. After we make them two-way, the links the system is subject to are all holonomic.

If m. is the number of these bonds, they can be replaced by the m equations

/l Cl. ''2: - --; '"il) = O.

(38) /,</Ě�-" .") = o,

x 'f:

//"Ci- D'2, /Ě� /Ě�") = "

between the n. variables r, /Ě� /Ě�" m es!, of course, less than n.

Let .v be the positive difference (n - /n); we can choose s independent variables pt, /;2, />, such that the equalities (38) equate to



to equalities

't =g\ (Pu pu Ě�- Ps),

i ><) ) l''l = gĂŻiP\, Pi, - - M Ps),

'-"= gn(P\, Pi, -Ě� Ps)-

According to what we have said, the real modifications of the system. during the lapse of time during which we propose to study them, are all subject to the links made bilateral this amounts to saying that to each of the states really crossed by the system during this lapse of time, corresponds a set of values of /Ě�, r", /-" which are drawn from the equalities (3Ă§>) by a suitable choice of values of p,,p- .v From the state that the system presents at time t, a state that thus corresponds to a certain set of values of p,,pa, .)." we imagine a virtual modification subject to the bonds made bilateral [these are the only virtual modifications to which we had to apply equality (3^)]; such a virtual modification necessarily leads the system to a new state that is defined by means of the equalities (3q) and a new system of values, infinitely close to the previous ones, of the variables /> /?2, ps.

Therefore, all the states of the system that we will have to consider can ('Ire defined by means of the s independent variables p,, p-2, Ě�Ě� ps-

In particular, the internal energy of the system can be defined in terms of p,, />2.>

</iol U - (-(/ p, p.,).

The virtual work of the internal actions can be written ( il.l te = Pi^pi r-iOJ72~i~h'('s^p,,

lJi Po, Pj being functions of p, p. ps, whose form depends on the state taken, at the considered moment, by the foreign bodies of the system.

The living force K will be a positive definite quadratic form in i Ps' 'orme whose coefficients will be functions of



/>\i PĂŻ) Ě� Ě� -ifs- [Ě�-(' virtual work of inertia could be written ( 4v.) T = J, S/"| -I- J j 3/"2 H- -f- Js Ops,

and, according to the equalities (28) of Chapter 111, we have

(43) 2~~ ~dp, d~l 'dpT2'

To say that equality (3^) must take place for any virtual modification compatible with the links made bilateral, is to say, by virtue of equalities (4Â°)i (40 and (4a)Ă® that one must have, whatever S/3(, S/"2, vpSj

14i) (Pt~J,- d() ~Py-`p2+J~- dL1 ~P~+. ÂŁ44) .1+ dn, l 2+ 2- Â°P2+'" .(P~j.)~. = o.

This equality (44) is equivalent to s equalities which can be written, by virtue of the equalities (43).

(V>) < d "pi dt Op, ==O>

't--(~

These equations have the same form as equations (4); they are the KyuA'j.'fo.NS nr. LĂ˘chante roiiii j.ic mou\i:mknt n'iis systĂ¨am; j>k soi.rnr.s soumis a des liaisons hoj.o.\omes purkmekt "komktriquks ET IIKNUĂ‰ES DE KĂ‰SIS'I.'A.\C.IĂŹ PASSIVE.

Let us suppose that the external aclions P, P2, Ps which solicit the system emanate from bodies whose state is known at each instant t, so that V2, Pf are given functions of pt, p>, ps and t; let us suppose that Von is assured of the permanence of the links during a certain period of time.

ÂŁK d cM

I' opi dt dp\

Ă K d dK

J

dK d Ă»K

s Ă p~s d~t dpl

V topsj

d(K - U) d oK

pÂˇ+ <.)/>( < d/> =0,

P. (J(K - L Ě�) d OK

f d r, '"(K-l 1 d OK



lumps; the equations (iĂ‡>) will determine unambiguously the motion of the system during this period of time if the state of the system and its motion are given at the initial time. Skcojxo case. We will now suppose that the links to which the system is subject, and which we have made bilateral, are not all bilateral. These links, whose number will again be designated by m, will be of the form "i o/'i -r- a-i or-, -)-+- an S/ = o,

( ,(. bi S/ -h b2 3/'2-t- 17,t Ă”l'Jt =: 0.

li o/'i -+- l-i or-i -t- -+- /" Â§/Ě�" = o.

11 Ă•/'Âˇ+ 120/'2+"'+ ln a/'n= o.

The coefficients of or, or", Zru will have, in these equalities, known values when the state of the system is known. By means of these equalities, one will always be able to express the n variations o/'|, Ă´i\, or,, in linear and homogeneous functions of s = n - m independent infinitely small quantities qt, q2, .qs, by the equalities

I S/-t = a] q, -t- Â°n < -+- j, qs,

('J7) 1 <5/-2 .= a2 g-i-H ?j<7j-h.Ě�+Ě� atqs,

o/'u = a,, gr, + p,,<jr3 + .+- da9f,Ă§.

In these equalities, the coefficients of < c/2, are known when the elal of the SNSl.th is known.

Let us consider the real modification experienced by the system between the instants t and [t -+- dt) this modification being necessarily with the number of virtual modifications rem ersaljlt's, it corresponds to certain values of rl,, cl- qs which we will designate by r/ c/f (7', l'/f q. dt by y", q" y| we will designate the derivatives of q\, q\ with respect to

The derivatives /Ě� r'.2, r'H of /-B, /" with respect to the variable are related to the quantities q\ c/ <y| by the relations I /Ě� = a, < -H P, 7', -!Ě� i- 7, <

(18; ] /Ě�= *.y'I-t-?l7i- '"

l ''" = a,, < + |i,, (/ - -i- s,, y;

which are derived from the equalities {').



According to what we have seen in paragraph y. of Chapter III (p. Ja8), the virtual work of the external actions can be put in the form

( 49) ÂŁĚ� = A, < -i- A2 < - .+ A.,y,

Each of the actions A,, A2, As will be determined when Ton knows at the l'ois the state of the system and the state of the foreign bodies in whose presence it is if we assume given the state of these bodies at each instant, A(, A2, A,, will depend on the value of time and the stall that the system presents at instant l. We may similarly write, in any virtual modification, (50) SU = M) q i -i-"2 Ă‡t -+Ě� - Ě� - -+- us fjxi

ut, u->, us having known values when the calibration of the system is known.

Finally, by virtue of equalities (8) and (ta) in Chapter III, the virtual work of inertia has the expression

/dG dG Ă™G

(:u) t ~l, ~r + ~f,~ g._+.+ rlg:~ g

Condition (3^) of this chapter must be verified for any virtual modification subject to the bilateral links, i.e. we must have the equality r;G\ Ă¨G\

111 "t J ) gr + (~1z- tcz- ~gG" > gz+..

Ă G\


	(A,Ms-- Jry, tl.



whatever c/ q". qs, or that we must have the s equalities 'A-"-=o

4 toG

()fJi

As - Ms - - rr - f",

(r>.) 1 0q\

Ă™G

A.<-".--=:o.

These are the equations DE M. Appell l oim the mouviĂ®mknt of ujv I). r.



.BIS SOLID SYSTEM SUBJECTED TO PUHEME.NT GEOMETRIC LINKS, BUT 2X0 JX H0L0K0MES.

These equations are no longer, like Lagrange's equations, differential equations; the quantities q\, g' c/s appear in them, as well as their derivatives with respect to time; but the coefficients of these various quantities have values which depend on the state of the system, and this state cannot be determined by means of s quantities of which q\, q' q\ would be the derivatives with respect to time.

We will show, however, that if we give ourselves, at the initial instant t0 of a certain period of time, the state and motion of the system, the equations (52) unambiguously determine the motion of the system during the whole period of time, provided, however, that we admit the following assumption The quantities r,, r2, rH are analytic functions of t throughout this period of time, including the instant t0To prove this theorem, it is sufficient to prove that the values taken, at the instant t0, by the derivatives of various orders of 7- r.>, rn with respect to the variable t are determined without ambiguity.

We already know, by hypothesis, at time t0, the values of ;Ě� 7-o, ri, and of r\, r'2, r'n.

The equalities (48), differentiated with respect to t, give n equalities of which the first is

(53) r\= %xq\ -H $xq\ -t-+ j,^

d%i d$\ dut


	<Ji~dt^qi~dl"Ě�'---fIs~dĂŻ'



y. (3,, t, are s quantities which depend on the state of the system; --~) du, are thus linear and homogeneous functions -r~, - jp> - - - > - jj- are thus linear and homogeneous functions of q\, q, q's functions whose coefficients depend on the state of the system; one will thus know, at the instant t0, the values of /Ě� /- /- provided that at this same instant, one knows the values of q\ q' q\

Now equations (5a) are true, in particular, at the time ta they are s linear equations in q'\ q[t, q'j: the determinant of these



s quantities, in these equations, is none other than the product by ( - i f of the discriminant of the double ?.K of the living force, considered as a quadratic form in q\ q[t, q\ this discriminant is essentially negative, since the living force is a positive definite form of q\, q'o, q's; hence, the determinant considered is! surely different from o the coefficients of the unknowns and the known terms depend on the state of the system, q\ q'.n q\ and t on t. These equations thus make known unambiguously the values of q' q' Ě�Ě�-Ě�,q "s at the instant t0. Hence, at the same instant, the quantities/ i\, r "n are determined.

By differentiating with respect to t the equalities such as (53), we will obtain n new equalities thanks to which the values of /- ./Ě�Ě� r"'n will be known at the instant t{), provided that we know, at this same instant, the value of q", q' q "s.

Moreover, by differentiating the equations (52) with respect to t, we obtain s linear equations in q" q' q" the determinant of the s unknowns in these equations is still the product by ( - i)-* of the discriminant of the form 2K; the coefficients of the unknowns and the known terms have values which depend on the state of the system, on q" qt, on q" q' and on t these equations thus make known, at the moment, the values of the s quantities q"[, q".v < and, consequently, the values of the n quantities /- /- /|f. Continuing in this way from one step to the next, we will prove the stated proposition.

This proposition leaves room for a very serious doubt. When we give ourselves, at the initial instant of a certain lapse of time, the state and the motion of the system, we know that the system cannot, during this lapse of time, take two distinct motions where /Ě�", /Ě�" are expressed as analytic functions of t but we do not exclude the possibility of one or more motions where /Ě�", /Ě�" would be expressed by functions of that would not be analytic for I. = to.

If 1, ojv is suitable DE fai m; abstraction ni-: c.v. noniK, we can say that the condition (%), applied to bonds made bilateral, is sufficient to determine coinpli'lemcnl the motion of a /1 system of solids subject to ko lo no me s or non liolonomous bonds, provided that we are given the initial state and the initial motion of this system.



Ě�i. Lagrange multipliers. Linking actions. The doubt we have just pointed out can be removed provided the system satisfies a certain condition; moreover, this condition need only be applied to it if some of the solid bodies which compose it are in contact with each other; if. the connections are purely geometrical, what we are about to say is true without restriction.

In order not to weigh down our presentation by displaying a useless generality, let us first reduce our system to two solid bodies Ci, C2 which touch each other and which we will suppose independent of any foreign body.

This system admits a certain internal energy L this internal energy varies in a continuous way when the relative situation of the two contiguous bodies G(, C2 varies in a continuous way. Let us take, on the other hand, these two bodies G,, C2 disjoint from each other; they then form a system composed of two independent parts, and these two parts are two rigid solids; the internal energy of this new system is equal, by virtue of equality (i), to the mutual potential energy W of the two disjoint solids. ||

We will be able to move continuously these two disjoint solids until they come into contact with each other in this continuous modification, the internal energy of the system must vary continuously M' must therefore have a limit U, hence this proposition

When two solids, initially disjoint, gradually move until they come to squint at each other, their mutual potential energy tends towards a certain limit which varies continuously with the relative position of the two bodies in contact; this limit of V mutual potential energy of the two bodies dBjMĂ»in'ttyis the internal energy of the system of the two solids coivtig^^

This proposition does not imply any new condition imposed on the system we are studying if a quantity W, determined by the mutual position of the two disjoint solids, does not hold for the system.



The conventions concerning internal energy would forbid us to take this quantity as an expression of the mutual potential energy of the two solids.

Let us suppose, for example, that one of our two solid bodies is reduced to a material point M, while the other remains a solid C of finite dimensions.

(54) iP= /ĂŠ-afo,

I 'Ě�'Ě�

where ii'

drs is a volume element of body C;

/Ě�, the distance from a point of this element to point M a constant;

p, a quantity which has a finite value at any point of the body C. Such an expression can be admitted if A has a value less than 3; in this case, indeed, it is easily shown that W tends to a finite limit when the point M comes to lie on the surface of the body C and that this limit varies in a continuous way with the position of the point M on this surface.

On the contrary, if is equal to or greater than 3, the quantity W, given by equality (54)? grows, in general, beyond any limit when the point M is placed on the surface of the body C; this quantity is then unsuitable to represent the mutual potential energy of a solid and a material point.

Here is now a condition which does not follow from the above, so that some systems, not excluded from the above, may well not verify this condition The position of the two solids, disjoint from each other, can be defined by means of ->. independent variables 1-2, ~<2 ) the erzeo~-ie /~e/?"'c~e 7~!M<KC//<? }.' of these,cleux, solids is a function of these Ă®a variables we will assume, in what follows in this paragraph, that the i 2 derivatives byĚ� dM' OH' il~ <)>r

leagues -r-, - "---) tend to limits determined ri ~~l 2 -r2

when the two solids are approaching each other until they come into contact.



This condition can also be stated as follows When the two solids come close to each other until they come into contact, their mutual actions tend towards certain limits.

(,)his condition does not necessarily follow from the previous one, this is what an example will show.

Let us take the system formed by the solid C and the material point M, and suppose that their mutual potential energy is given by the equality (54); the position of the solid can be determined by means of 6 independent variables rB and the position of the material point can be determined by means of its coordinates x, r', z. Consider the three quantities

dx J 7-X-t-i Ox

----- = -- < ---- -- clrs,

t ~)l1' /-).1 dr

V) ) I - = - A - - - dm.

( i i ĂŹ y cha.

.,)) toW r a Ăąr dm,


	= - A - ÂŁ- dm-



d-s ~.),+i

If is less than 2, it is easy to show that these quantities tend to finite and definite limits when the point M tends to the surface of the body C but, in this same circumstance, they generally grow beyond any limit if X is equal to or greater than a.

We can consider a system formed by a solid and a material point whose mutual potential energy is given by the equality (54), the constant Ă€ satisfying, moreover, the condition '<~<3.

Such a system will not be subject to the condition that we have just stated; the considerations that we are going to develop will not be applicable to it.

Let us become the system formed by the two solids C,, C2 in contact.

To these two solids, let us impose a finite displacement D that leaves them constantly in contact.

Let's imagine that this move consists in varying the quantity t from to to l, in the formulas

r 'Ě�| =/]!'), r, =/j!/l, li, /-> -/l.(7).



In this displacement, the internal energy of the system experiences an increase ( U( - IJO j.

Let us imagine that we disjoin the two solids C,, C2, while leaving them infinitely close to touching each other; to these two solids, let us impose a displacement, A which differs infinitesimally little from the displacement D, but which leaves them constantly disjoined. Let us assume that this displacement is obtained by varying L from t" to I in the formulas

''1= ?i(<0> rĂ®=<aĂ®(l,), /-,-!= oi,((. A), where X is a variable parameter let's assume that this parameter tends to o,

<)0j dr~2 d'f12

"p,, 9l, ?", Ě� f -ji-

tend respectively, whatever t is, to

f f f df\ dfi dfu,

/i, ---, Jn, dt> d(> -Ě�Ě�Ě�> f dt

In this displacement A, the mutual potential energy of the two solids experiences an increase (Wt - ^"n)- We have obviously r'WĂ W do, 1 Ă˘W dis, dW don\

t=J,. (^tr + ^if + -4-Irr'-

'1. dr t dt + dr2 di +.+ d~ dt ~'t.

When the displacement A tends to the displacement D, Wo has limit Uo cl. W, has limit U, so let T. c r- (}Ir R

Lim- - == - K|, >AtaZ = - "i2i

0rt drvi

the previous equality will become, in the limit,

n n y t, (I~' +R~dt2 Il (~fl2 di.

UI-Uo (~+R,t-R,

In other words, in any virtual modification that leaves the two bodies C(, G> in contact, we have

(Ě�)G ) SU = - ( Ri o/-t --y- R2 o/-2-H.i- Ru orn). Let us consider a system composed of solids, in number



subject to purely geometrical connections if some of these solids are in contact with each other, let us assume that the restriction we have just specified is verified. Let us propose to express that the condition (3^) is verified for all the virtual modifications compatible with the links of the system, after these links have been made bilateral. The virtual work G of the external actions can always be put in the form

( :>; ) Â© = Qi 3/ -+- Q2 on -+-+ Q" 5rn.

If the state of the foreign bodies in the system is given at each instant, Q(, Q2, Q" will be given as functions of t and >'l, '"a> Ě� -) l'n.

By an equality similar to equality (56), we may write (58) oU = - (Ri 07-f- R, 3/-J -+-+ R" ?/Ě�"),

R,, R2, R;/ being functions of r,, r-2, /Ě�"- Finally, we have

~')()) -c 2

with

dK d Ă K

JFX~ 7Ă»'dĂ®Jl'

r)K d dK

(60) 2 tor, dt dr'2'

dK d dK

""j~

By means of equalities (37), (58), (5g) and (60), equality (37) becomes

(61) RI ~K d <)K.

W dt

" <)K d dK

(Q2 R2 dK d' dh

iir2 dt Ă i\ I


	T



"dK d dK"

-1-(~rt+~ri-f-Ă›K -dt dh~GJnt,=O.



This equality (34) must take place not regardless of o/ or-or, but for any system of values of or, or-j. or, " which verifies the m linking conditions

ax o/'i -r-"2 o/v - .+- ",, o/j = o,

'/6 ] 61 0/+- 6j O/-o~t- A;, 07-,"= O,

(.11)

[ li S/'i -+- /2 or., - -t- lit o/ = o.

According to the theory of linear equations, it is the same to say

11 exist neither quantities or, jĂ®, A, independent of 3/ Ă»r2, orn, such that by adding member by member the equation (61), the first equation (46) multiplied by a, the second equation (46) multiplied by [3, the last equation (46) multiplied by X, one obtains an identically true equality, whatever are S 8 ;- ,or

The quantities a, [3, are called Lagrange multipliers

If we put

lĂŻi = aa, -+- J36, -4- -h- A/],

(6a) ns = art2 -+- p 62 -+-; -4- Ă€ /2,

1T,,= aa,, Ě�+- fift,i-+- >",

the proposition we have just stated will be equivalent to the n equalities

"dK rf toK

Q1 + Rl + 1,i._=0,

d/'j <" d/'j

or,

(03) QV__ k,-h II.h- = o,

2 t ur2

" :<jk aie

Q;+-R<t-t-n<t-â€“â€“-r;â€“=o-

d/'M ,t d/ a

These equalities are sufficient to show us that II,, II.!!" represent actions each of which relates to one of the variables /Ě�t, /'j, /-" we give these quantities the name of linking actions,

K|, R;>, Il,, represent, according to the equations where they appear.



either the actions that the various solids composing the system would exert on each other if they were free, or the limits towards which these actions tend when some of these bodies come to touch each other; it is, in particular, this last meaning that is admitted in equations (63). In any case, we can give these quantities R(, R.2, R" the name of actions inside the system.

With these denominations, equations (63) lead to the following proposition

The equations of motion of a system of solids subjected to purely geometrical connections can be written in the same form as the equations of motion of a system of free solids, provided that to the actions, both internal and external, which really stress the system, we add the fictitious actions of connection.

Let us read the properties of these linking actions. Here is a first one

In any virtual modification compatible with the system links, made bilateral, the link actions do zero work.

Indeed, for any system of values of o/1,, o/'2, or,, which verifies the equalities (46), we have

M'>1,' III S/-i Ho 3/ -+-+- fi,, or,, = o,

as can be seen by replacing II(, IF* Il,, by their definitions (62).

The boundary conditions (46), applied to the real change of which the system is the seat between instants t and (t-i-dt), give the equalities, verified at each instant of motion, I ", r\ -r- <72 /Ě� -i- a,, r), = o. We

b, r\ -i- b, r\ bn >Ě�' - o,

-li.T I>r4+.T.l,t

/- h r' -t- -i- /" ;- = o.

Differentiate these equalities with respect to l; we find from



new equalities, verified at each instant of the movement. ", r\ -+- a2 r\ -+- an /-""

1 dat dat dan

}' dl dl 2 Ě�- dl >ll~ o>

(66) < j a 'i + ?.'-!+Ě�Ě�Ě� /"'-

( c?/i c?/" dl,,

,+- `lt dt 2 dĂŻl'll=o.

The coefficient a, is a function of /- ri} /Ě�"; -j-i is thus a linear and homogeneous function of /Ě� r'2, r'H; the first member of each of the equalities (66) is thus the sum of a linear form in r"{, ri, /Ě� and a quadratic form in r[?" r'n the coefficients of both of these forms are functions of r{, r2) /;"

Let us consider, on the other hand, the equalities (63) the first member of each of them contains, besides the sum (Q,- + Rj-+II/), a quadratic form in /Ě� r'^ r'H and a linear form in r "t, r "2, r "n. If we take these equations as linear equations in ';Ě� their determinant is the product by ( - i)" of the discriminant of the double 2 K of the living force considered as a quadratic form in /- ;- /Ě�' it is thus a function of i' /'2, rn essentially different from o. One can 'then solve these equations (63) with respect to /'j. /- /-- in the form

(6/ ) '- = pi, r\ = pS) ;Ě� = p". Each of the quantities p(, p2) - - -> on is the sum of a linear form with respect to the quantities

Qt + RI 4- n" Q,+R,n,, Q,R,,+n,, and of a quadratic form in /- /- r'H the coefficients of these two forms are functions of r2, /'"Ě� Let us carry over the expressions (()-) of r "t, /- into the eqs (66); let us observe that R,, lia, R,, are functions of /Ě�(, r", /Ě�" that, according to equations (62), II, Il2, H,, are linear forms in a, [ĂŻ, Ă€; we will obtain new equalities the first member of each of these equalities will consist of



Ă®" Of a linear, but not homogeneous, function of Qt, q,, Q", a, 3, a;


Of a quadratic form eu /Ě� /- ;".



the coefficients of these functions will depend on /- r-2, Ě�--, /'"- These new equalities constitute a system of m linear equations with respect to the m Lagrange multipliers a, [3, we will be able to solve them by contributing to these multipliers each of which will become the sum of a linear function with respect to Qj, Q2, Q,< and a quadratic form in /- i\, r'n. If we transfer these expressions of a, [3, .)" into the equalities (62), we will obtain new equalities which will justify the following proposition

Each of the linkage actions is the sum of a linear, but not homogeneous, function of the external actions Q,, Q2, and a quadratic form in /Ě� )- r'n the coefficients of these functions are known functions of /'(, r2, r,

If we transfer the expressions of O,, JT2, that we have just obtained into the equalities (67), we obtain equations about which we can say cec,i

Each of the second derivatives ;Ě� /-" rn of r,, /'2, -- rn with respect to and the variable t. is equal to the sum 1" D' a linear and non-homogeneous function of the external actions O,, Q", (v),,

a" Of a quadratic form in r\, /- r'u. The coefficients of these two forms are functions of /-, r2, Ě� Ě� r, This proposition, brought together with the properties of differential systems, leads to the following theorem

Let there be a lapse of time during which the bonds imposed on the system certainly do not undergo any abrupt change. The state of the external bodies is assumed to be known at all times during this period, so that the external actions Q,, Q. Q,, are known functions of /Ě� /-i, /Ě�" and t.



If we give ourselves, " the initial insluitt., the state of the system and, consequently, the values of r,, r.2, rn, and the initial motion, which entails the knowledge of the values of /Ě� r' r'n, the motion of the system is unambiguously determined during the whole period of time considered.

This important result does not exhaust the consequences that Ton can draw from the method of Lagrange multipliers; up to now, in it, we have been content to express that condition (3-) must be verified in all the virtual reversible modifications that can be imposed on the system; we will now express that all virtual modifications, reversible or not, are subject to condition (35 bis). If we take the system at any instant of its motion, provided that this instant does not correspond to any sudden change in the conditions of connection, to any sudden modification, equations (63) are verified at this instant. Let (or,, S/-2, or,,) be a virtual modification, reversible or not, imposed on the system from the state it is passing through at this instant; let us multiply the two members of equations (63) respectively by or,, Ăąr-2, S/ let us add member by member the results obtained, taking into account the equalities (07), (58), (5g) and (60) which are exact for any virtual modification, reversible or not; we will find the equality, applicable also to any virtual modification,

(68) e-4-l-r - eui-H nt 6/hiI23/-o-t- Il,, o/ = o. Using this equality (68). the condition (35 bis) becomes (O9) n, Ă«r,~h II2 S/-2-+-H fl,, or,o.

In any virtual modification imposed on the system, the work of the linking actions must be zero or positive. We already know that, by the very definition of linking actions, the work of these actions is zero in any reversible virtual modification. The condition we have just stated will therefore only provide us with new information if we apply it to non-reversible virtual modifications.



Here is a case where it will give us a useful indication Consider a system in motion and suppose that it is subject to certain unilateral linkages, to which bilateral linkages may also be added; at each instant t, let us calculate the virtual work of the linkage actions for all the non-reversible virtual modifications that can be imposed on the system up to the instant t0, we find that this work is always zero or positive. On the contrary, at times after tfn if we assume that the motion of the system, still subject to the same binding conditions, continues according to the same equations (63), we would find that the work of the binding actions is negative for some non-reversible modifications imposed on the system. From what has just been said, such a consequence would constitute an impossibility; from our calculation we would have to conclude that the motion of the system cannot continue, after instant tu, to be subject to the same binding conditions, and that at least one of the unilateral bindings imposed on the systems is broken, at the latest, at instant t0.

Let's give a very simple example of the above Let a material point M, of mass m and rectangular coordinates x, y, z, which moves on the surface of an impenetrable and immobile body be

(70) f(x,y,z) = o

the equation of this surface, and imagine that the impenetrable body fills the region of space where the inequality f(x, y, -s)<o is verified.

In any virtual displacement of the material point, we necessarily have

(7,) ^to+^-H^O.

v/ Ox Ă»y J dz dz Z z 0.

The internal energy of the system, which is composed of a single material point subjected to a purely geometric connection, is constantly zero; the external actions are reduced to a force, with components X, Y, Z, applied to the material point; the inertial actions are reduced to another force, applied to the same point, and whose components are - mx" ->ny", - mz'. The condi-



lion ( 3^) is written <Jonc here

(,>Ě�) (X - mx" ) Sa; -i- (Y - niy" ) 'JJ' -r- ('/Ě�Ě� - niz" ) oz - o. It must govern all the reversible -nodificalions of the system in other words, equality (72) must be verified whenever ox, oy, oz verify the equality

( <V tof of

(-s) -f- oa? -+- -Ě� oy Ě�+- -- os = o.

(te Ăąy Oz

11 It is necessary Ă§and sufficient for that that by adding member to member the equality (72) to the equality (7'i), multiplied beforehand by a suitably chosen factor, one obtains an identity verified whatever ox, oy, os are. If we pose, then,

(7G) 11,~=).Jfr tfy-i,z~f~ )~=/ 1 c*a? x toy Oz we must have, at each instant,

X -+- l\x - mx'-o,

('->) Y - i- Il, - my" - a,

Z -+- II- - mz" - o.

Let [A be the positive quantity defined by the equality

(76) ;i w+W) ^(sij-

(.~6) 1.1.2 = ox + -)Â° +

Let N be the normal to the surface of the impenetrable body, this normal being led to the unlimited space which surrounds this body be y. 3, y the cosines of the angles that this normal N makes with the axes of the coordinates; we will have

(7-) _r 8=~ t Jf

(77) a = - ---, B = - > - t~> <J. Ă x (i. Oy y. dz

so that the equalities (74)' can be written

(78) Hc-lixx, H,. = Ă€.i.ÂŁ, lĂŻ-=l<

The action of connection is reduced to a force applied to the material point, and normal to the surface on which it is located, counted positively in the sense that the material point could leave this surface, this force has the value ~).<j..



Any reversible change consists of a displacement on the surface of the impenetrable body; in such a displacement, the virtual work of the binding force is zero; we knew that it had to be so.

Let us now express that this same virtual work is zero or negative in any non-reversible virtual modification. Such a modification consists of a displacement A imposed on point M in a direction that does not make an obtuse angle with the normal j. In such a modification, the work of the binding force is Ă€;j.Acos(N, A); since A is an absolute value and cos(N, A) can take any value between o and i, this work would certainly take negative values if the product Ă€ja were negative: this product must therefore be positive or zero. The binding force applied to a material point moving on the surface of an impenetrable body can never be directed towards the interior of this body.

Let us imagine, then, that our point moves on the surface of the impenetrable solid and, at each instant, let us determine the binding force to which it is subjected as long as we find this force directed towards the outside of the solid. We can admit that the point continues to move on the surface of this body; but this hypothesis becomes inadmissible from the moment when the binding force, determined in this way, would be directed towards the interior of the impenetrable body; from this moment, we are obliged to admit that our point leaves the surface of the body and moves in the surrounding space.

.'i. The conservation of the living force.

As in the two previous paragraphs, let us limit our study to a period of time during which the links to which the system is subjected do not experience any sudden change, during which the system is free of any sudden modification.

As we noted in paragraph 2, a. each element, between the instants t and (l + dt), of such a time span



time, corresponds a real modification which is among the virtual reversible modifications of which the system is susceptible at the moment The real modification in question is thus subject to the condition ( Ě�'>')Ě�

But, in any real modification, the work of the inertial actions is equal to the decrease of the living force: legality (3~) thus becomes, for the real modification considered,

(79) Ă‡ = il i i K ,1.

When a system of solids, subjected to connections free of passive resistance, undergoes a change during which the motion that drives it and the connections to which it is subjected do not undergo any sudden change, the work done during a certain time by the external actions is equal to the increase in the total energy during the same time.

This proposition is known as 1.0.1 01: i.\ co.vskuvatiojv OF the vivk force: the reason for this denomination is found in a corollary that we will demonstrate.

Let us suppose that the foreign bodies to whose action our system is subjected remain absolutely invariant, while the system is moving.  In this case, the work E of the external actions exerted on the system is (''gai (p. i3o) to f/, designating by 'I' the mutual potential energy of the system and of the foreign bodies, The equality {'<Ě�)'> could be written

d['\" -+- U h- K) = o.. |

It will express that the value of the sum (<&+- li + K) does not change during the modification.

This being the case, let us imagine that at the instant the studied motion brings the system back to the exact position and state it was in at the instant /" the soniine($+,L) will take back at the instant the value it had at the instant t0, so it will be the same for the living force K.. Hence the following theorem

A system, formed of solids subjected to connections without passive resistance, is isolated or subjected to the action of invariable foreign bodies.  If a movement, free of sudden modification and abrupt change in the connections, makes it



/To make the same stall, at two different times, it cotnmunit/ue him, at these two times, the same living force. (>. Of the rupture of the bonds.

In the foregoing, we have constantly studied the motion of a system during a period of time in which no break in the linkage occurred. We will now investigate when such a break can occur and according to what laws.

Up to time t0) the system is assumed to be subject to m links, some of which are unilateral,

ai o/'i -H a> or2-i- an orn = <>,

1; ~3r~ ) br oi-i - bt 3/2 -H. -+- bnorn>(>.

80 ) Ă´rl+ l~ ~l' l,t Ă´uyt-o.

l\ o/'i -H- IĂŻ o/i - - ln oru i. o.

The general velocities y' r. r'H thus verify, for any value of t before tn. the M equalities

( a, r\ -+- a, t\ -Â±- H- "" r'u = o,

H J blr-h6ir'i~rbnr'n=:o.

[ h i\ -i- r'3 -i- -t- larn = o.

In particular, it follows that the limits /- r "n, taken cfir, d^ri d1)- e, by Ě�~[pr>~TjĂŻ'> when t tends to lu by values inside t0, verify the relations

rtet\ da" dan

~~dt'dt 'Ě�Ě�Ě� ~~dt'

+- "!/Ě�'[-- a, /t-- aHr "Hz=u,

db, dĂąs r~ -+- db,, = o.

~dtri^dt'1~dt'"

(8"0

1 <ll\ says dln

lit'1' rffr*H ~d7r"

| -H h r\ - h r", -t- -r- /" r "n = o.

l 1.. (t= l'~ <<2 _CZ= l',t At these limit values r,, r.r rn of -Ttr> -r^i -r-f cori-es-



We will show by the work that these actions efl'ecl'ieni in any virtual placement subject to the conditions (!So). Let us now suppose that at the instant /". the svstrme breaks any one of the unilateral links to which it was subjected, for example. the first of the links (fol, and that. from the instant t0. it moves, at least for some time, while remaining subjected to the other links " 80).

We know (p. igti) that at time t0 the general velocities /- /Ě� /-" undergo no discontinuity, but the general accelerations may be otherwise. Let us therefore denote by; " u h <Ě� h 1 dir\ dlr-< d'2' p' the limits toward which tend -777' ---" -jpr when t tends to t(l by values greater than tv. H is clear that we will have

da% rf "ĂŻ da,,

~dT''i'+"dr' 2 Ě�Ě�W"

-r"\ fĂ®" -T- "" p'. -- CI,, p' ().

f/Ăąi db2 M"

~dfri~~d7ri dl ''Ě�- Il

(83) 'Ě�-

dlx dl. dl,,

~dT''1^ ~dJ' Ě�' di

-r- h? "l Ě�+Ě� U ?ĂŻ -Ě� /" ?'" t).

Ě� da due dl ai of 1 n. r

The quantities -jf'-jf'i 77 depend only on /- /- /-". 7- r! r'n: each of them has therefore the same value in the equalities (82) and in the conditions (83).

v " rf5/ d*r, d-r,, At values ?). p" of-^7T' -JjT1 ~di^ coiiesl>oiulent inertial actions -> ĂŻ2, ->". JXWe will denote by G the work of these actions in a virtual displacement compatible with the conditions (80).

From the conditions ( 82) and (^80). we get

f ffi<'?',-f-o,(~-r'~--<!"('/"-r,,) m,

/*r\ 1 ^(p" /)-4- /'2iĂ§'. - ":i-f-/>(?f;, - /Ě� = < ("'l) <

t '"(p'i - ''ĂŻ) = /i(?s- ''s >-- t>,( :" - 'Ě�"")- o.



These conditions lead to the following consequence If we designate by an infinitely small positive quantity, the equalities

(8)1 or-,- --([Ě�>[ - '-), or, - -.( Ă®j - r'^ ). or,t Ě�= i ('/" -r],) define a virtual displacement compatible hic with the conditions (Ho); in this displacement, the first of the bonds (Ho) may be broken, while the others are surely maintained, livaluons. in this displacement \irlucl, the value of the (lillĂ©rence (86) - 0 = (.1, - -Ě�)!) or, -f- ( Js- -")j) or., ( Sn- )H ) or, Let t

(87) K= 2 l'/y/V,

go J

where the summation extends to all values 1, a, of the index 1 and of the index t'expression of the living force of the system. We can easily see that we can write

I OO) ( Ji = -(Pn /--+Ě� F>1S r+.nr'n)-r-ll, /-Ě�>i = (Pu p'i h- i'u :A -+- .m- !'<"?;; -+- h,

H being a function of /Ě�(, r. rn ex of /- /- /Ě�" which has same value' in both formulas.

Equalities (85), (86), (87) and (88) then give the equality .( 89) " = *>] P/7(?ĂŻ- 'V 1 '?} 'y)-

Let us follow the consequences of this equality.

At time t0, the system is subjected to all the links (80); the virtual displacement (85) is perhaps, for such a system, a non-reversible displacement.

Ă‡1. h- z - SU f o.

After the instant lQ, the system is only subject to the last (m - 1) conditions (80) the virtual displacement (8:V) is surely, for such a system, a reversible displacement, so that we have

5 -+Ě� 0 - 6U = o.



G cl ol represent the same quantities in these two conditions, so that we can write

(<)(>) - 0 ->.

But the form K, given by I equalized ( 8~), is a positive definite lorin in /Ě� /- r lt. From then on, equality (8<)j is only compatible with the condition (<)<>) (jue if we have

I == f 1 '-> ? i Ě� Ě� Ě� ?

At the moment when a system breaks a unilateral link, not only the general velocities, but also the general accelerations do not undergo any sudden variation; the velocity and acceleration of each of the points of the system do not experience, because of this break, any discontinuity; the trajectory of each point after the break is in agreement with the trajectory before the break, in such a way that the two trajectories have not only the same tangent, but also the same curvature.

the equalities (88) give us then

J i = 2> i

so that for any virtual displacement compatible with the conditions (80) we have

(i)O = 0.

Consider, in particular, a virtual displacement that breaks the first link (8o) and respects the other (m i ), i.e. a virtual displacement that verifies the conditions "i 5;'i + "4 5/j -r .-- "" o/ > o,

(" I b\ o/-| - bi or2 -T-. - Ě�+- />" or,,- o.

~)I)

~(Il'

/|0/'|-r- /o 0/ ;.-+- /" G/ = O.

For I system such as it is at the instant after /" and so close to /", this displacement is a virtual reversal displacement to which applies the condition

Âˇ: -j-- fi -U =0.



But at the instant read, the equality (()o)esl, xerilized; we can thus affirm that one has, for any displacement \irlurl subjected to the conditions ( () i i. the equalized

< \yi) Ă‡ - H -Ě� o.

Hence the following proposals

It is impossible for a moving system to break any of the unilateral links to which it is subject as long as the quantity (S-j-t - ol,:) remains negative for all non-reversible virtual displacements.

For the system to break one of the unilateral bonds to which it is subject, the quantity (ÂŁĚ�-+--- olT') must be zero in any non-reversing virtual displacement that breaks that one bond and keeps all the others. Let us take, in particular, a system to which the method of Lagrange multipliers is applicable.

When t tends towards l" by values lower than tu. the actions of connection tend towards certain limit values which we will name their values immediately before the instant. to and which we will continue to designate by IT a H2 IF, Let us consider a stall taken by the system at an instant previous to tu and as close as we want to t0 from this state, let us impose on the system a virtual modification, reversible or not remersable; we will have, in this modification,

l 08 ) ĂŞ -f- - 5U -4- II, or, -4- II, Ă´/-j .h 11,, ->/-" = o. Therefore, the previous proposition can be stated as follows

For a system to break a one-sided linkage at a given time, the virtual work of the linkage actions must be zero in any virtual displacement that breaks this linkage and respects all others.

This proposition can be put in another form.  Let us consider any virtual displacement which breaks one of the unilateral links imposed on the system, for example the first link (Ho), and which respects all the others; we have for a



Here displacement,

ll\ 0/ -7- r.l-i ',l-Â± "" 0/ ().

Oi Ă´/ - h, '>Ě�> - h,, '>" - (i.

o/1, or" /" '>" - o.

The (m - i) equalities i|iu are among ct;> conditions (';>-> joined to the equalities (<>2), show (|iie, for the considered virtual deptacenK-ut.

(94 "i o/'i - i)2 0/-J-+- .i- II,, o/ = "i "1 "'i - "1 or, - a,, <jfn 1. This equalisation then allows us to state the previous proposition in this new form

For the system to be able to break, at a certain instant, one of the unilateral links to which it was subjected. The Lagrange multiplier for this link must be cancelled at that moment.

Equality (9/1) leads to yet another corollary.

We have seen, in the preceding paragraph, that we have, in any<: virtual modification, reversahle or not, imposed on the system. (69) 1 1 1 3/-i -+- lf-2 5/-2 - .f- II,, o/ o.

Therefore, equality (94)) joined to the first condition (<.)Ě�'>). requires that we have


	:O.



\If we take care to write the conditions of unilateral links imposed on the system in such a way that the breaking of a link has the effect of making the first member of the corresponding condition positive, no La-grange multiplier relating to a unilateral link can take a negative value.

The two propositions we have just mentioned lead to the following corollaries

The unilft.tera.le bonding conditions being written as assumed in the previous statement, we assume that at a certain



If, at any instant, all of Ut grange's multipliers related to these unilateral links are positive, the system will certainly move without breaking any unilateral link, and this until one of Lagrange's multipliers related to these links is cancelled; let us suppose that at the instant t(l. one of these multipliers cancels; suppose, moreover, that it becomes negative at instants after t0, if, at these instants, one were to force the system to continue its motion without breaking any unilateral link at the instant ln, the system will surely break the link for which the Lagrange multiplier cancels.

If, for example, the first link (80) is unilateral and if we have, at time l0,

dt

a = 0, dl < o,

this link will surely be broken at time t0.

If we apply this proposition to the case of a moving point on a surface, a case already treated in the previous paragraph, we can state this theorem

For a point, moving on the surface of an impenetrable body, to leave this surface at a certain irasturtt t", <7 /r<K< and it is enough

iÂ° That the binding force applied to the material point cancels at this instant

2" That it goes towards the outside of the impenetrable body at the instants after l0, in case one would imagine that the point, at these instants, continues its movement without leaving the surface of the body.


	Instant changes.



We have assumed up to now that the system does not experience any instantaneous modification during the studied motion; it is this restriction that we must now remove by searching for the circumstances in which an instantaneous modification occurs and the laws it obeys.



We already know (p. 19'") that no instantaneous modification can occur within the systems we are studying. We also know (p. y.aj/i) that the breaking of a bond does not cause any discontinuity in the motion of the system.

It remains, therefore, that the only circumstances in which the system can experience an instantaneous modification are those in which a new unilateral or bilateral link is introduced into the constitution of this system.

In order to avoid very uninteresting complications, we will assume that the instant when we introduce a new bond condition into the constitution of the system is not, at the same time, the instant when another bond is broken. We can therefore, without changing anything in the motion of the system, suppose that in the vicinity of the instant /" where we introduce a new bond, all the other bonds are bilateral. We will write these other bond conditions in the form

l>i o/'i -t- I), or, - bn Ă´/ = o,

(9-ĂŻ) -- l\ Ol'i -t- l-i 0i:> -r- -r- /" --; Or,, - O.

Ir fJl~l'Y /< C/'2 - -r- l,t 0/ -= I1.

As for the linking condition introduced, it can be unilateral or bilateral.

Let l0 be the instant when this link is introduced, and let us consider the modification [J. which would consist in bringing back the system from the state it presents at the instant (" to the state it presented at the instant (/" - h), ), //being an infinitesimally small positive quantity; this modification ul is the inverse of the real modification undergone by the system between the instants (to'-h) and tt)] this real modification was compatible with the conditions of linkage (<>5): as these are bilateral, they will also permit the modification u. Therefore, for the modification p. to be a virtual modification of the system, it is necessary and sufficient that it be compatible with the link introduced at time l0. At time (t0 - ). the system was not subject to this binding.  The modification <j. breaks this linkage. For it to be compatible with it, it is necessary and sufficient that this linkage can be broken.



If we now refer to the definitions that were <-!<Ě� given at the end of the previous chapter (pp. 17Ă”-176). we can formulate the following proposition

The instantaneous modification is a shock if the linkage whose introduction has determined it)' is unilateral it consists in the establishment of a new adhesion, if this linkage is, bilateral.

In the first case, this connection will be expressed by the condition ( 1)0 I U\ 5/'i "2 Ă®''2 - - Ě� - -- "h ''l'a O.

In the second case. it will be expressed by the condition 1 ~r;) O "j~-j-".iO/</n~M*

\e will continue to say that the links in question, both those which subjected the system at time /" and those whose introduction occurred at time t(), are links without passive resistances, if, for any virtual displacement from the state that the system takes at time ÂŁ0. they satisfy the condition of least constraint expressed by the inequality (10)

Let us look for the necessary and sufficient condition for this to be the case and, for this purpose, let us give some notations. [ 1 1. f' d't When t tends to tn by vators less than t0, -jj> -jji dt cli

-7^ tend to limits which we will denote by rn\ the components of the velocity of a point of the system tend to limits which we have already agreed (p. 176) to denote r by Ě� w)7 1 vt, iv,.  1 Ě� '1 d-rx When t tends to t0 by vareĂąrs greater than /0, > '-- tend to limits which we shall designate by R' R2, R, Since the real change accomplished between the instants tn and (/." -t- h) is certainly compatible with the conditions (()."> ) 1 and with one of the conditions (f)t>^ or (97 ), <"n a

al H, - a~ li 2 <'" 1- > CI.

u b, R', r; bn r;, =

/,r; /2R,-f- - /r;, = o.



The first condition (98) reduces to an equality if ta, introdiiilt' link is bilateral.

At the same time, when tends \er.s /" by values suptricuro to lln the components of the speed a point of the system tend towards limits that we already agreed i p. iHii to represent by "2, i'2, w".

From then on, the segment M0M will have as components it-.lt. v-j.li. tVoh. If, at the time /", we were to remove all the links that hold the system together, which assumes that none of the links come from the mutual contact of two solids of the system, the velocity of each point would remain continuous, so that the components of the segment M 0 i\ are u,/i. v,h, a, h. Finally, we denote by A,r, Ajk, A^ the components of the segment M, these are the components of the displacement undergone by the point imtially located in Mo, while the system undergoes any virtual change.

Equality

I'1 ~f~ M P 2M~>Y))'")s~F' fi

allows to write

.{ 99) f P^2 dm - r ~Ă›N~ dm


	(u2h~ ix)' 1 (Ě�- -Ě� A)' "5- t"% A3)!] o?m



-i.lt I ( ti* - "1 1 ( u,/i - A. ) - 1 c5 - i| )( f" h - \y -(."'; Ě� it-| 1