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TREATY

ENERGY.

CHAPTER XII.

THE MOTION OF UNIFORM TEMPERATURE SYSTEMS. 1. Definition and general properties of the virtual work of viscosity ( ).

We have studied the General Statics. The systems for which it gives the conditions of equilibrium are not, without doubt, absolutely arbitrary; however, they are susceptible of affecting very different forms.  We will now approach General Dynamics, which deals with the laws of motion of these same systems. The word motion takes here, of course, the very general meaning we gave it in Chapter 1, paragraph 9 (t. J, p. 4H i; (') The laws of General Dynamics. such as they are exposed here, have not been indicated by us in the following text:

Commentary on the Principles of Thermodynamics. Third The General Equations of Thermodynamics, Chap. Il (Journal of Pure and Applied Mathematics, '\K series, t. X. iHo.4. PP- ̃i"-1- seq. ). See, on the same subject

Ladislas Natanson, Sur' les lois des jiliénomènes irréversibles (Bulletin of the Academy of Sciences of Cracow, March i8y(S. p. 117: Zeilschrift fur physikalische Chemie, Bd. XXI, 1S9O'. p. io.3). -- Ladisias Nataxson. On the llier nwcinetic properties of thermodynamic potentials ( Bulletin of i Academy of Sciences in Krakow. 1B97, P* 24t< Zeifschrift fur p/tysilatische Chemie, Bd. XXIV. 1897, p. ?>i>:>). - C.ews Hklm, Oie Energelik nach ihrer geschichtlichen EnUvickelung, VIlIler Theil, IIter Abschniil, Leipzig, iSq^, pp. 343-347). ).
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it does not simply designate local motion, although it implies local motion as a special case. When a system is in imm\nent, there is ordinarily no reason why its <li\ erses parts, which may heat up or cool down from one instant to the next, should be, all of them always, equally hot at the same instant. When, therefore, we want to represent the properties of a system in time, we must usually consider the temperature as a variable quantity, at the same point, from one instant to another, and, at the same instant, from one point to another.

However, we will start by studying very simplified systems defined by the following convention

At the same moment, the temperature has the same value in all the points of the system; this value can, moreover, vary from one moment to another.

It is clear that the theoretical systems defined by this convention will be, in general, too simplified to be able to represent with any approximation any concrete system; but their study will prepare us for the examination of more complicated systems capable of representing reality more closely. Let us therefore take such a system, and let (J ) be its temperature at the instant uniform temperature in the whole system. Let us suppose that this system is in motion and that it does not experience, during the period of time during which we will study it, any sudden change of bond or any instantaneous modification. Finally, let us assume that this system has been given a normal definition, and let us denote by e (t) its state at time t, disregarding the temperature.

In the state (e, 2f), the system has an internal thermodynamic potential ^(e, 2f). If we wanted to express that the system is maintained in equilibrium in this state by the external actions which solicit it, we would have to write that one has, in any virtual modification from this state [Chap. IX, equality (1 i')j, ( 1 ) 7- -> -i/ o, :J) to$(e, 2rj -o.

d) G = *3(e,3) - ûJ,

E being the virtual work of the external actions.



This equality (i i) summarizes all the laws of equilibrium of the system we are studying; can we extend it in order to obtain a formula that would summarize all the laws of motion of the same system?

For the very particular systems studied by Rational Mechanics, we know (Cliap. ï; 8 t I p. r>J\'x i a principle that allows us to pass from Statics to Dynamics; it is the Pi!ii\cri>E nu iVAi.kmbiokt consists in this To Hier from the laws of Equilibrium of a system the laws of motion of this same system, it is enough to replace the external actions that solicit this system by V set of external actions and inertia actions

The first idea that comes to mind is to extend d'Alembert's principle, which we know to be correct in a very particular case, to the general systems we want to study. Let us make this extension, and see if it is legitimate. By virtue of this extension, for any virtual modification imposed on the system from the state it has at time t, we must have the equality

(̃>.) E + t = 3J(e.Si -7 ( e. Sr i Sîr,

-: being the virtual work of the inertia actions.

This equality can be put in another form. In order to maintain the system in equilibrium in the state considered, it would be necessary to apply to it certain external actions; in the virtual modification to which equality (2) refers, these actions would perform a certain amount of work G', and we would have, according to equality (1), ̃m? àtf ""

î;' ô

rice

so that equality (a) can be written

(3j ç-e'-+-T = o.

We will name, in all virtual modification, work of the effective actions the excess of the work g of the external actions that act really on the system on the work of the external actions that would be able to maintain it in balance.



i* chain (o can then be stated as follows

In any virtual modification imposed on the system by any of the states it passes through during soli motion, the work of the effective actions and the work of the actions (V inertia give a sum equal to o.

Among the virtual modifications we are dealing with is the infinitesimally small real modification that the system undergoes when leaving the state under consideration; in this modification, the preceding proposition is applicable. Now, in a real modification, the work of the actions of inertia is equal [Chap. 111, equality (3); t. I, p. i 16] to the decrease of the living force

-

(!¡) clt clt.

Equality (3 ) then becomes

C- dfi

.) ) il- dt.

In any real and infinitely small modification, the work of the effective actions is equal to the increase of the living force; this proposition extends itself to a finite real modification.

Let us suppose, in particular, that the motion of the system is a permanent regime; periodically, each of the elementary masses that compose the system returns to the same position, and it returns there with the same speed; the period of this return is the same for all these masses; periodically, therefore, the living force takes back the same value, so that we can state the following proposition

During a period of motion of a system in steady state, the work of the effective actions is equal to o. There are systems for which we can admit the accuracy of such a law, such as, in particular, all the systems whose motion can be represented by rational mechanics. For such systems, this law is a corollary of the law of conservation of living force. But it is also a great



In many systems to which this law is not applicable, such as the machine tools used by industry to represent the properties of such a machine in a steady state, we are obliged to admit that the work of the effective actions, during a period of motion, is positive and not zero. Equality (2) cannot therefore be kept as a general law of motion; it must be modified.

(6; S + ^^J^a,

~(e, at:~

in which the term A will be called the virtual work of viscosity. A series of assumptions will determine the form of this term. We will begin, first, by specifying how the virtual change in the system will be defined.

The motion of the system is determined (Cliap. I, §9; t. I, p. 5a) by the knowledge of general velocities, in limited or unlimited number; let u, v, u>, be the values that these velocities actually have at the instant t.

Let L', V, W be other velocities, any velocities, which could be imparted to the system, taken in the state that it presents at instant l, without opposing the links that are imposed on it at this same instant; these velocities U, V, W, will be called virtual velocities of the system at instant

Let s be any infinitely small time, let us posit (7) Uô = tp, Ve = 4-, We = If the system were, during time 1, animated by velocities L, V, W, it would undergo a certain change of state; this change of state is determined by infinitesimally small quantities, in limited or unlimited number, a, b, c, These quantities a, h, c, are determined when the quantities a", -i, y, are; they are, in the general sense which we give to this word (t. I, p. '!<>), (onctions linear and homogeneous of the quantities es, à, y, Thus. a set of virtual velocities determines a virtual modification says. system, and it is quite obvious i\u any virtual modification can always be, at least in some way, determined in this way. One says then that this virtual modification is defined by a set of virtual speeds.



A remark is necessary here If we simply gave ourselves a virtial modification of the system, it would not always suffice to join to it an indication of an infinitesimal time during which this modification would be supposed to be accomplished in order to deduce a set of virtual velocities; we have seen ( (iliap. I, Sj"): I. I, p. ;>;> en eflet, that the knowledge of the general velocities entailed the knowledge of the derivatives with respect to time of all the quantities on which the state of the system depends, but that the reciprocal of this proposition was not always exact. If the virtual velocities U, V, W, are chosen so that the set U, - V. - W, is still a set of virtual velocities, we say that L V, W, form a set of reversible virtual velocities. The virtual modification determined by the quantities cp, 6, y, is then a reversible virtual modification.

If the system, of uniform temperature, has received a normal definition, we shall suppose that the derivative with respect to time of the temperature, - =£?', is one of the general velocities, the other general velocities, which we shall continue to designate by M, r, ne, being independent of this one and of the temperature !J; this is always possible, since no linking condition contains either the temperature S or its variation 32? (l. I, p. "5o). The knowledge of a set of virtual velocities will then determine the virtual variation SS? of the temperature, and the quantities ", 'b, y, from which results the knowledge of the virtual modification experienced by the state e of the system.

With these preliminaries in mind, we will formulate the following hypothesis Hypothesis I. - A system of uniform temperature, normally defined, is animated by a movement during which there is neither an instantaneous modification nor a sudden change in the nature of the bonds.

A virtual modification is imposed on this system, determined by means of a set of reversible virtual speeds.

We then have the equality

(6) S -+̃ t -+- SV = S 9{e, 5) é 7He; "rj) 55.



i" The [virtual A work of ciscositi- is an Inicairr and homogeneous Junction of the quantities o.cr. s. y, '/- ̃ ̃ ̃

̃i" II. depends on the state e said system, its temperai pull !i and the general velocities "xj u. c. <r, (end in determine the motion

̃ >" It does not depend on the position that the system oc<:upe in space, at the instant considered

j" lin any real modification of the system, it is zero or negative.

For this hypothesis to be consistent with what we already know, it is necessary that the work of viscosity A presents certain characteristics; the existence of each of these characteristics can be seen as a corollary of the preceding hypothesis.

i" Let us consider a system whose general velocities are zero, as the temperature of this system is uniform, there exist, according to Jes suppositions (Chap. M, § 1 t. J, p. "65), s, external actions capable of maintaining it in equilibrium. Imposing on this system a virtual modification defined by any set of reversible virtual velocities, the work S of the external actions capable of maintaining the system in equilibrium must verify the equality ( i so that, for this system in equilibrium, the equality (()) must be reduced to the equality ( i ). Now, for a system in equilibrium, the virtual work of inertia is identically zero, so the virtual work of viscosity ,R must be identically zero. But this work, which does not depend on external actions, could not be modified when we replace the external actions which really act on the system by external actions capable of maintaining it in equilibrium. We therefore arrive at this conclusion The ruthless work of viscosity is identically zero when the general n/esses that drive the system are all zero.

̃a" Suppose that the virtual velocities imparted to the svstystem are such that the resulting virtual change is reduced to a simple displacement in space. We should then have [Chap. IV, equality (38); I. 1, p. i%]



"The work of viscosity is null in any virtual modification which reduces to a simple displacement of the system. The work of viscosity is null in any virtual modification which is reduced to a simple displacement

3" Let us suppose that all the virtual speeds of the system are null, except the speed with which the temperature varies 3s the virtual modification experienced by the system is reduced to a simple change of temperature o.;7 One has thus. in this case.

-i r- to iie, Sri ,"

o?(e,3j= -?>3.

Moreover, as the definition of the system is normal, this virtual modification does not cause any external work £=u. It does not impose any displacement on the various elementary masses that constitute the system, so that the virtual work of the inertial forces is zero -=o. The equation ( t>) then requires that we have ,fl=o.  Hence this proposition In a virtual change that is reduced to a simple change in temperature, the work of viscosity is zero.

The most general virtual modification of the system can always be broken down into two others

A modification, of duration s, during which the temperature varies with any virtual speed, while the other virtual speeds are zero

A modification, of the same duration s, during which the temperature remains invariant, while the virtual velocities other than the velocity of variation of the temperature are arbitrary. The virtual work of viscosity in the total modification is the sum of the values taken by this same work in each of the two partial modifications. Now, according to what has just been demonstrated, the virtual work of viscosity is zero in the first modification; we can therefore say that in any virtual modification, the work of viscosity is independent of the change of temperature which accompanies this modification



Let us consider one of the systems without passive resistance studied by rational mechanics. For any reversible virtual modification imposed on such a system, we have j Chap. equality (35 iis); t. I, p. :>.oi\

(7) k-T^SL,

U being the internal energy of the system.

The temperature does not enter into consideration in the definition of the systems studied by Rational Mechanics; the internal potential of such a system does not depend on the temperature .3 (t. I, p..Vi), so that we have

d 3(e,3)

dâ = o.

and that the general relation [Chap. IX, equality i :>. ) t. I. p. J(i8| 5 4 ( e 3 i - F( '3) ^- à ii e. 3) - \j\r. Z)

F (.7) <~

simply becomes

§ (e, 3 ) - U le. 3 )̃

I/equality (6) thus becomes

For it to be consistent with equality (7), it is necessary and necessary that we have

.:R = o.

lin lot/the reversible virtual modification of one of the systems without passive resistance that studies the Rational Mechanics, the work of your viscosity is null.

Hyi'othksk 11 (Hyi'Othksk de i.ohi) R.yleh;m ) ( '). - Lord Kavlcigti i). the first, stated this livpolhe^e for a ^ystrmr tioionome defined by a limited number of variables j Lord Hayi.kigh.  Sonic Gènerat Theorems reluting to Vibrations Proceedings of (lie Lonrion Aïatheina tient Society, vol. IV, 1 7 3 Scieiili/ic f'apers by J.-W. Sriurrr. baron Kayijiiuh, vol. I, p. 170) - J.-W. Sthutt, baron Kayi.kiuii, Tlieory of Sound, 1. 1. § K>j. 1.



motion of the system, and <.jui was named i-om/i io.\ DissH'A'i'iMî of the system this quantity is defined by the following property

Let L, V, VV be a set of reversible virtual velocities and let z be an infinitely small time, the quantities sUo-cc,?, ôV=' .\V~

determine a virtual change (fui corresponds to a work A of the viscosity.

Let, on the other hand, À be any infinitely small number. The links which subject the system at the instant t would remain, if we took the system in the same state that it presents at this instant and if, to the velocities M, v, ir, which animate it " this instant, we substituted by the thought of the velocities h 4- o", i' + oc, w-ow, the quantities o", oc, oir, having the following values

or = XU, ow = XV, 8w = XW,

By this substitution, the dissipative function, which had the value i, would take the value c -+- oi.

Between A and Si, we have the relation

(8; A = - E S'i.

It is clear that this definition does not entirely determine the dissipative function. Having a first dissipative function of a system, one can immediately find a second one; it suffices to add to the first one any quantity which depends on the system's calibration, but which does not depend on its motion. We can take advantage of this indeterminacy to state this convention which completes the definition of the dissipative function The dissipative function is null when all the general velocities are null.

The already known properties of the virtual work of the viscosity will make us know corresponding properties of the dissipative function

i° The viscosity work done in one virtual change has a value independent of the position that the system occupies



in (space; therefore, the equality (8) entails this consequence If the general velocities <|which animate the system experience! any small inlinimenl. \If the general velocities <|which animate the system experience any small inlinimenl variations, without the spread of the s vs! cinc being changed, the dissipative function grows of an (|uantity which does not depend on the position of the system in the space. Now, the dissipative function of a system taken in a given frame and animated by a given motion can be considered, by virtue of the preceding eon\cntion, as the sum of the increases that this same function experiences when the general velocities grow, by infinitesimal degrees, from their present value, the state of the system remaining constantly identical to its present state. We can state this proposition

The dissipative function of a system is independent of the position that this system occupies in space.

2" Let us consider a set of virtual velocities L, Y, W. such that the virtual modification they define is reduced to a displacement of the whole system; we know that the corresponding viscosity rate is nui; therefore, according to equality (8), the dissipaliw; function of the system does not vary when the general velocities increase by

S" = XU, Si' = XV, Sip = /,W,

In other words, the dissipative function of the system does not change when, without changing the state of the system, we alter its general motion by adding an ensemble motion of infinitely small velocities. Hence, reasoning as in the previous paragraph, the following proposition

In two circumstances, the same system is in the same state, but it is animated by different motions; the second motion can be obtained by composing with the first one a certain overall motion of the system; in these two circumstances, the dissipative function of the system has the same value.

This proposition can be stated as follows The value of the dissipative function does not depend on the l, absolute motion of the system.



(..this proposition, joined to equality i 8 ), leads to a new corollary which is the following

In a virtual modification ffuclconque. the work of mucosity is independent of the overall movement that actually animates the system.

Let us imagine that the virtual modification imposed on the system is reduced to a variation o!5 of the temperature; let T be the virtual speed of the change of temperature, linked to 3.C? by the equality oSr = îT; all the other virtual speeds are null. We know that under these circumstances, the virtual work of viscosity is equal to o.

Equality (8) then teaches us that the dissipative function does not vary if we subject the heating rate = to any infinitesimal increase 3 S' = aï while leaving the state of the system and the rest of its motion unchanged. Hence the following proposition

The value of the dissipalive function of a system does not depend on the heating rate 3' =

In any virtual modification, the work of viscosity has a value independent of the value that the real speed of heating takes, in the system, "the moment considered.

Many physicists regard the assumption that there is a dissipative function as very arbitrary, and refuse to adopt it.  Although this hypothesis is often very convenient, there is no compelling reason to accept it. One can, moreover, reject it while keeping, as first and distinct hypotheses, the last two corollaries that we have deduced from it. In the remainder of this paper, we shall always be careful to distinguish between propositions which presuppose the existence of a dissipative function and those which presuppose only the two hypotheses, much less restrictive, of which we have just spoken. Hypothesis lll (Hypothesis aim'hoxim ati v ]-). In a large



The virtual work of viscosity is, in the general sense of the term, a linear and homogeneous function of the velocities generated by this molecule (t. i, p. 4° >- n'"J.

Let us consider, in particular, the real modification experienced by the system in the infinitely small time dl, and the work of viscosity which corresponds to it. According to the preceding hypothesis, this work is a linear and homogeneous function of the general velocities which animate the system at time l: it is also, moreover, of the infinitely small quantities which determine the modification experienced by the system in time dl or, these last quantities, in their turn, are linear and homogeneous functions of the general velocities one can therefore state the following proposition:

If, without changing the state of the system at time t, we multiply by the same number all the general velocities which animate it at this moment, we multiply by the square of this number the work which the viscosity accomplishes, really in the time dt. (lest what we express again by saying that this work is a homogeneous function and of the second degree of the general speeds. Let us now see what conclusions we can be led to if we combine the third hypothesis with the second. The third hypothesis, together with equality (8), easily gives us this proposition If we maintain the calibration of a system invariant, and if we impose infinitely small increases on the general velocities which animate it, the dissipative function of this system experiences an increase which, on the one hand, is a linear and homogeneous function of the general velocities of this system, and which, on the other hand, is a linear and homogeneous function of the infinitely small increases undergone by the velocities.

This being said, let us consider two operations imposed on the same system.

n these two operations, the system keeps the same invariable calibration.



hu the first of these operations, the a their V>, V. m. of the general velocities grows from the initial values I nu tes ('aies a o j il s< j n a des \aleurs finules it, s\ iv, \u cour" of this operation, the function dissipalne, that starts from the value <>, promoted a total increase equal to hi \aleur that this onction takes when the state of the system is the given state and when the general velocities have, the values a, c, w,

In the second of these operations, the general velocities also all start from the value where their variation is regulated in such a way that they take the values Ivt), Kv, Kcc, where K is any fixed number, when they take, in the first operation, the values f), Kv, W, their final values are therefore Km, Kr, Kcc, with this second operation, the dissipative function experiences a total increase equal to the value which is appropriate to this function for the given state of the system and for the values Km, Kv, Riv, of the general speeds.

When in the first operation, the velocities V, oK, oW grow by oV, oK, oW', in the second operation, the velocities Kt, K<>, KW, grow by Kciy, KoÇ, Ko\^ Therefore, the proposition just demonstrated teaches us that an infinitely small increase taken by the dissipation function in the first operation corresponds, in the second, to an increase K- times greater.

True for each of the infinitely small increases of the dissipative function, this proposition is still true for the total increase, and it justifies the following conclusion When all the general velocities which animate a system are multiplied by the same number, without changing the state of this system, the dissipative function of the system is multiplied by the square of this number; this is what we have agreed to express by saying that the dissipative function of a system is a homogeneous function of the second degree of the general velocities which animate this system.

Let us consider a system whose general velocities at time t are m, v, w, The real modification that this system experiences in time dt is identical to the virtual modification that one would obtain 'if one took, for virtual velocities



real r, iv. themselves, and, for time iiilmmieul small the time dl

Let us propose (J evaluate If- work A of the \iscosite during and* time.

In this bu l. without changing the lethal, of the Mstènie. let us impose the^ increases AM, /.r. iv where A is an abstract number mlinimenl small, to the general velocities c. ipative undergoes an increase oc and, according to 1 equality ( H), ,f\ =- %^dt.

i.

But the increase imposed on each of the velocities u. c, ir. was obtained by multiplying each of them parf'i ).), which has the effect of multiplying <> by (i + À )- or, since a is înfimmeiil small, by (i +2).); thus we have oi = aÀi, and I <ablé previous becomes

(9) A - - 2 i dl.

This is the relation, which exists between the work done by the viscosity in a real elementary modification and the value of the dissipative function of the system at the beginning of this mod.ijicot.ion.

The correctness of this relationship assumes that both the approximate and Lord Raylei^h hypotheses are accepted. lin any real change, the viscosity work is zero or negative; therefore, the dissipative function is always zero or positive

(10) i o.

The correctness of this proposition depends on the same assumptions as the correctness of the previous proposition.

i. The viscosity in a holonomic or non-holonomic system that depends on a limited number of quantities

The preceding considerations are of great generality, we will examine what form they take when we



applies to more specific systems than those mentioned in the previous paragraph.

Let us therefore imagine a system, normally delineated, whose general motion is determined by means of a limited number of velocities, namely the heating velocity and n other velocities, independent of your first and independent of each other. Let us suppose, first of all, that it is the real motion of this system the real speed of sinking will be = Sf' the n other real speeds will be designated by q't, q[,, q'ir

Let us then assume that it is an \irtual motion; the virtual velocity of heating will be denoted byT, andthe other virtual velocities by Q,, ()̃>, (,)".

If s is an infinitely small time, the ("-f- i ) infinitely small quantities

eT = SSr, eQi = </i, îQi=ç/2, - zQ,,--</u determine the most general virtual change in the system; it follows from the assumptions made that q,, q2, ̃ qn are normal variations.

Our first hyi'othesk and the corollaries that are deduced from it then take the following form

i° The virtual work of viscosity is of the form (it) ,'R = fe, S, q\, q'a)qx

-+-f,,(e, 2r., y, q, q'n)qn-

The quantity fi is called the viscosity action relative to the infinitely small quantity qi.

2" Each of the viscosity actions is independent of the position <jue the system occupies in space.

3" An overall displacement of the system must result in zero work of the viscosity, so that the action is zero if a non-zero value of qi, /joins with all zero values of the other quantities q, q2, <", determines a simple overall displacement of the system.

\Equalities

ïj - O, q - O, q o, q n i)



lead to the equalities

0, /2 = (J, 0.

5" We have the inequality

(12) J\<i'+fîq'ï-r- ̃ --r/"?"=.^

Let us now see the consequences that our second hypothesis produces in the present case.

If the quantities 2r', q\ q'n grow respectively by aT, XQi ÂQ") where ~k is an infinitely small number, without any change in the calibration c and the temperature 3, the dissipative function undergoes a certain increase oi; the value of the dissipative function depends on the state e, and it is, moreover, a function of the variables 2", 2r', <y'(, q'lt we have therefore

oi> = m~, t + 44- Qi H-+ 4-t-Q")5"

~~y, ~7"

If the system experiences a virtual change

0:= ET, </j=EQt, ?,;=EQ,

where is an infinitely small time, the work of viscosity has the value

= (/iQi-i-nQ")£.

These two equalities, together with equality (8), show us that we must have

*T+^Qt-H.+ |1Q1-iiQ,.

o~ dq 1 dg"

As a result, in the first place, it follows that

ai

d: o,

so that the dissipative function &, is independent of the heating rate Sf' and that our second hypothesis can be stated as follows

11 there is a dissipative function

i-(e,S, <7i, - - q')<

D. II. C'



at which the riscosity actions are Unes by the kidneys/ions (,̃!) f --ÏL f -1

u'3 d~l', ~'-' u9a

<>q\' J" ̃Jg'n

It follows, moreover, from these relations that the actions of riscosity are independent of the speed of heating ?j' b'.n bringing them closer to a proposition demonstrated a moment ago, we can draw this new conclusion

If a non-zero value of the quantity qt, together with zero values of all other quantities q t, qn and o.tï, corresponds to a simple overall displacement of the system, the dissipative function and the viscosity actions are independent of the velocity q't

We know, in fact, that the action of viscosity y, is null in this case.

Our third hypothesis is as follows

We have

t /i = - Vn (e, Z)>l\ ̃ - V, (e, "3 )<]'",

04) { f /" = - V,,i(e, "à)q\ -- V,(e, ~3)q'n.

The quantities V,/(e, "b) are called viscosity coefficients.

Equalities (i3) require that these coefficients verify the relations

(15) V,(e.2j) = Vji(e,?S).

Moreover, if we observe that the dissipative function must, by convention, cancel when we have

q\ = o, q '" - <>,

we see that this dissipative function is given by the equality ( 16) h = [ V,(e, 5)q\ ̃ .-+- V,,(e, ^.iy' \". In this equality, (2) represents a symbolic square such that |V,-O,3-)p)=V"(e,20, [V/(e,2r)Vy-(e,SJ)J = V//fe,S).



According to the equality ( i i ), the real lr;n;jil accomplished by the viscosity during the time dl has the value

= i/, ,f-f,,fj'nldt.

According to the equalities (i/) and (if)), this real work of the riscosilé has for expression

( g bis ) .'H = - :> C- dt

Therefore, by virtue of the same equals and ifij, we can state the following proposition

The quadratic form in X,, X,,

fV,(e,2r)X1 -+- \'n{e,'3)Xn[-> ci

can only be zero or positive.

Exkmplk. - Niscosile actions in a body undergoing homogeneous deformation.

The most general virtual modification of a body susceptible to homogeneous deformation is decomposed, as we have seen (Chap. III. §3; t. J, p. i?>"): into two other modifications.

The first one, which consists in a simple displacement of the whole, is defined by the three components a, jï, y of an elementary translation and by the three components À, v-, v of an elementary rotation.

The second, which is accompanied by an infinitesimally small variation oS of the temperature, consists of a pure deformation defined by three elementary dilations e{, <-̃. e:i and three elementary slippages g,, g2, g3.

The most general virtual motion of such a system thus depends on thirteen virtual velocities which are

Three components A, B, C of a translation speed; Three components L, M, N of a rotation speed

Three expansion rates E,, l'2, li3

Three sliding speeds (1,, G2, G:i.

To these thirteen virtual speeds, correspond thirteen wiesses



that we will respectively designate by

x ?'i Y> *'> ,u'> v'>

.J'

1


	ea, n'2' ~s~



If we apply here what has been said in general, we see that the dissipative function of the body is a quadratic form of the six variables e\, e' e,v g\, g'2, g'3 it depends, in addition, on the temperature of the body and its state of deformation, but not at all on its position in space.

Let us assume, in particular, that the body is always isotropic at the instant under consideration. This is what happens if the body is a fluid; in this case, in fact, its state, at each instant t, is entirely defined by its density p and its temperature 3, and these properties do not imply any notion of direction. This is also the case if this body never experiences more than infinitely small deformations from an initial state where it is isotropic; in this case, at each instant, it is not isotropic, but infinitely close to being isotropic.

Let us then, denoting by m the volume of the system, ('7) 5:0 = Zm,

and we propose to determine the form of the function z(e',e'i,e'3,g'l,g'.i,g'3)

in an isotropic medium.

If we notice that the six speeds

e'i, e'j, e'3) g\, g' g'3

obey, in a change of coordinates, the same formulas as the six components of an infinitesimally small deformation, we see that the problem we propose to treat is algebraically identical to a problem we have previously examined (Chap. X, § 1, first example; t. I, p. 4o8); this problem is the determination, in a very slightly deformed isotropic body, of the part of the internal potential which is quadratic with respect to infinitesimally small deformations.

Recall equality (26) from Chapter X, and also equality (27) from Chapter X.



lity (11) of Chapter XI (t. I, p. 464 )j without the need to repeat calculations already made, we can state the following proposition

Let à and p. be two coefficients that depend only on the state of the isotropic body at time t we have

(18) JI Z = '(e\ -+- e', -s-e'j2

:>.

-+- [related? -+- eV' m- e'32 -ig'f ̃>£ -i- ̃i.g'f )

or even

( 3 X H- 2 M

(19) /=, g_(e'1+e'îH_e'3)!

-h:| pe'2 - e', )2-+- ( e'3 - e ,)'(-( e', e'2 )2-+-C>^V2 -4-6^ -+- G^ |. For a fluid, the state of the system at time t is defined by its density p and its temperature 2r; X and [^ are therefore functions of these two variables

(20) X = X(p, 2r), jjl = jx(p, S).

For a primitively isotropic body with very little deformation, the state of the system at time t differs infinitesimally little from that which it would have if it were brought without deformation to the temperature S? which is its temperature at time t, so that X and pt. are functions of the single variable 2r

(21) X=.X(2f), -Jt= ap).

The dissipative function must never be negative, and the same applies to the Z function. For this, it is necessary and sufficient that we have (22) ) |X ri o, 3X-4-2UÎO. o

That these conditions are sufficient follows obviously from equality (19). We shall, by means of the same equality, prove that they are necessary.

Admit that you have

(23) e'| + e'j + cj = o,

is to admit that the body does not experience any cubic dilatation between the instants 1 and t,-+r dl.



Admit that you have

l2:i) ) and e,~ es,

é'i - gï = Si °>

is to admit that between the instants t and t-dt, the body expands while remaining similar to itself.

To admit finally that we have both equalities (u3) and (24) is to admit that between the instants t and t ̃+- dt, the body moves without experiencing any deformation.

Having said this, let us first show that u. cannot be negative. If it were negative, we could imagine that the body was, at time t, animated by a motion that verified equality (28) without verifying all the equalities (24); then, according to equality (19), Z would be t negative, which cannot be.

Let us similarly show that (3 ). -+- " ,u) cannot be negative. Indeed, if this quantity were negative, we could attribute to the system, at time t, a motion that would verify the equalities (24), but not the equality ('.<3). Therefore, equality (19) would show that Z has a negative value.

The actual work of viscosity during time dt has the value, according to the equalities (9) and (17),

O.5) ,'A =- -iixsdt.

Therefore, the equality (r 9) leads easily to the following conclusions

1" If we have the two inequalities

( 26 ) [A > o, 3 X -4- ̃}. UL > O,

the work done for the viscosity between the irzstunt.s e<!<(- clt is certainly negative, unless, during this time, the body does not é/~r~ouve atccune ~lPfor~matinrz;

body does not feel any iléformatinn;

20 If Von a

('>̃-) jjl = o, x>o,

the work done by the riscosity between the instants t and t+dt is negative, unless the body does not undergo, during this time, any cubic dilatation

3" If we have

(aS) \x> 'if- w = o, ,|



the work of viscosity between the instants l and is negative, unless, during this time, the body does not remain similar to itself

4° Finally, if Von a

(2(j) [JL = 0, - 0,

the body is free of any viscosity.

Consider a virtual change defined by the three dilations e,, e2, e:i and by the three slips g,, g2, g^. If we put

[ <>Z ~Z 9 cïL y ùZ y

( 3o) i ] from. from,, i toe,

) 1 2 ri~2 ~~y~;

the work of viscosity in this virtual modification will have the value

( 3 1 ) ffi = ( Ci e, + C2 Ci ̃+- t3 e3 -+̃ (ji gx -+- <|'2 g% -t- {js g* )ro.

The six quantities

6iw, L^vy, tjw,

~1>1 M. \'2l'iJ', çj,jl'iJ'

are, here, the viscosity actions.

The equalities ( 18) and (3o) give

i Ci = - À < e\ h- < -h é'3 ) - a nje'i.i 2 ~t cj'i = - 4 f*#i

(3a) -; £l = -(c\ -h (%4- é'3) - ai-tëj, 1 (j'2 = - 4n^'2,

J i;(e'+-e'j-eâ) -zf~e' ~s=-4N-s~

( £.3.=-- - Xfe^ + d'j-l-e')- a[xe'3, (,3 = - 4 jj.

Let o.r. oy, oz be the components of the virtual displacement of a point of the system; we will have [Chap. III, equalities (4o bis); t. 1, P. ,38] 0 î.r "i oy 1 to 8.3 1

V p x' oy r) Ô.~

ox L ày C os

I el = 1 to toz to 5y

(33J -2 ~2 ()y V,I..

(33) l, Jôx ih' dô~ oz )' ),

a d,~ Ox y

r/i)oy it) 8a?\

3 dx toy J



Let Uf r, (v be the components of the real velocity of the same point; we will also have

says ov dw

'3 dz'

(34) I I dw dv i du dw\ i I ov du 2 d dz Let's say

| oi-- Vj, oj = - Vj, iL:j = - 71i

)Çi=- -2Ti, C,'s=:2tj, Ç)'j=- ax3.

Equalities (3i), (34) and (35) will give us

of Ov dw of

V ox Oy Oz ) dx

\c'a' t~ ~3/ o~

(du dv df dw dv

dx t(y Oz j dy

n v /(^/< dv ,dv 0w\ + 2 dw

̃> - A - -+̃ - ) -t- 2 u -

(,6) V^ ^K "yW OZ z

( 36; dw Ov

\ày oz}

{ from dw

= P\ûï te)'

dv dv du

̃ z*{dx- +jp,r

The deformation undergone by the body between instants t and [t-dt) being homogeneous, the six quantities v,, v. v3, :T|, ~2, "a have values independent of x, v, z.

Equalities (3i), (33) and (35) give the following form to the virtual work of viscosity

,n CI ten dèx to Sx

(37) ,ft. - I v, - - -t- T3 - h T2 - 7^-

J àx dy ôz

d oy (J ûy to oy

dx dy d~

d 8= ô~ d r,z d Ss\

-i- ~1 -j- .~z -T- ~a _àa' an~,

~dx~ "2 ~dy~ 'r^3~d7/ OT'

integration extending to the entire body volume.

This formula, in turn, can be transformed as we have transformed the analogous formula in Chapter III (t. I, p. i'Sg).



Let

dS an element of the body surface,

n the normal to this element, directed towards the interior of the body. ", b, c the cosines of the angles that this normal makes with the three coordinate axes.

Let's put

p = v, a -4- z3 b -+- "-> c,

(38) ~.=-T3~-t-r-,C,

P~ = T2" +X|4 + V;;C,

and we can write

;( 3g) Si = i (p.c ôx -+- /v 3j -4- ?- ) rfS


	According to this formula, the actions of viscosity are equivalent to a pressure, of components px, py, pz, applied in each point of the surface that limits the body.



By virtue of equalities (34), equalities (18) and (19) take the following forms

"X' [du ùv dwy 2

(~0) Z = a dx dy atz ]


	d.ï- 0~ (~~



[[àuy [ch'Y [dw*

+(~.I Cau (1,IP)\ 2 )2

r_ dx i),y' + dz

[ dw :àt> [du 'àa'Y 2 - ( àv tiuY'

j 'J :7J'

:\Ul) 7 3X:H- dP àwy

(4r) Z° E; Cdx'oly~üz~ 2

nr/de': àwy 2 [dw àuy /du àv y [(. ` ~y, dz r +(. d d.r 2 + r3x ` d,y- l

̃ ^J^~ Iz) +\Jz~ lx) "r'\lx'~ ày) Ï [dw àvy 3 [du àa>Y = 3 /£p_ '2'


	r \d?'



Equalities (36) and (J\o) allow us to express Z,, as a function of v(, v2, v", t:, ,.t2, t3, in the following form:.<*?>. z= 4!(a>V|H "Vt+vf

̃ .1 'i j ̃ - ̃ ̃ _)- ;/j 1 u, ̃ (v j 1 v g V*^ - ïij i> -î- ̃> i " :-r- S"| ̃ )̃ ':̃:̃: -ss :-




	The equations of motion of a uniform temperature system. The additional relation. The usable energy. The equality



(~~(e.~)~

((il (j A =o,l (a. 3 ) oZ

~.7

represents the general law of motion of a normally defined system.  Let us see what form this equation takes when applied to the systems whose viscosity was studied in the previous paragraph.

The most general virtual modification of such a system is determined by the variation oSf of the temperature and by the n independent variations q,, q2, r/n; we then have

i G = Ai^, -+- A.2qi-h.+- A,,</",

(43) < X - J, q,-h J2 92-t-4- l,, qn,

I A =/, q-+-.fi ^î-H.i-fn qn-

Ap, Jp, fp are, respectively, the external action, the action of inertia and the action of viscosity relative to the variable q p the action of inertia 1P can always be put in the form indicated by M. Appel!  [Chap.IH, equalities (12); t. I, p. i 19].

On the other hand, the virtual change that the state e undergoes apart from the temperature is entirely determined by the n independent variations qt, </2, q, so that we have ~~t~)~ h~8,-= ~S~(<3')yt+.+~(e~)?, (44) 3^(e,37) d (!' J) 53r -r- -1>t(e, 2r> y, + .+ <K(e, 5)?, o5

Let us carry over into equality (6) the expressions (/j3) and (44); let us write that this equality, where 32f no longer appears, must take place whatever qt, q>, ̃ ̃ c/", and we will find the following n equalities

A J -t- .-=0,

(45) >

~i.. rA.t-~t-r't-n=o. o.

These /i equalsil(;s are, in general, relations between the n speeds



fl\i ̃̃̃̃> 'l'ai ^the n accelerations q' q "n, the state e of the system and the temperature 2r.

To the case we have just studied, let us substitute an even more particular case. Let us suppose that the system studied is a holonomic system whose state is entirely defined by the temperature ? and by the n independent normal variables a,, a2, a. Let us suppose, moreover, that the motion of the system is entirely determined by the knowledge of the (n + 1 ) velocities e., d'S; d% of.

- =U' i = dï' ̃ dt'

We can write

J - jfai, "h, )

and, in the above, substituting for < qn the quantities Sa,, oaH we will have

d-f <)$

(idi ), i= - > ̃̃-̃> r "I'h = - --

0'7.1 rc

The equalities (15) will then take the form

f~ da W

"-) ̃̃^--̃

(47 ) .d~

f A " -4- .}" -" r~ = °-

d x,~

In these equalities (47)) the external actions A, A,, are functions of a,, a, whose form depends on the state where the bodies foreign to the system under study are, at the moment. The inertial actions J,, .)", <|iie one can, put in the form proposed by La^range [(jhap. 111, equalities (28); t. l, p. i'>-4|, depend, in general, on the .""̃ variables a,, a, a'(, a;j', a", a, However, in the particular case where the variable a;, would be a sani inertia variable, the ip action would be identically zero, they other inertia actions would be independent of the variables a/M a' a.'

The viscosity actions depend on the variables S, a,, a, "'," ̃ ̃-. V

Knlin the partial derivatives of the internal potential are, like this potential, functions of the variables S, and, aH.



From these equalities (47) we can conclude the following proposition If we give ourselves

t" The values of the normal variables a,, %n at an initial time tlt,

2" The values, at the same instant, of those velocities a' <xn which do not refer to variables without inertia, 3" The state where the foreign bodies are, " at each instant, has system,

4" Finally THE temperature 2f AT WHICH THE SYSTEM IS, AT ALL TIMES, RAISED,

The motion of the system is determined.

The equations (47) then form, for the n unknown functions x, (t), a,;(i), a system of n simultaneous differential equations; these differential equations are, in general, of the second order; they are only of the first order with respect to the function a.p (t) if the variable a.p is without inertia.

The preceding proposition is still correct if, instead of giving oneself directly the relation between the temperature 2r and the time t, one gives oneself a relation between the temperature 2? and the n other normal variables a,, aH, or between the temperature Et, its derivatives up to a certain degree, the variables a,, a, and their derivatives up to a certain order with respect to t. It is no longer so if we look at the functions 2f(£), a.\t), ""(<) as ("4- 1) independent unknown functions.

In other words, the thermodynamic principle posed in the paragraph is not sufficient to determine the motion of a holonomic system that is taken in a given initial state, animated by a given initial motion, and that Von subjects to the action of foreign bodies whose state is at each instant known; to the equations of motion, provided by this principle, it is necessary to join a nki.ation if ̃pplémkntairk.

The necessity of an additional relation cannot be highlighted with as much clarity in the case where the system, defined by a limited number of variables, is no longer holonomic, nor in the more general case where its calibration depends on an unlimited number of variables in the first of these two cases.



which we have developed elsewhere (Chap. V, § 3, second case) but it will be necessary to assume that the n quantities q\, q. ̃̃̃,(/" are analytic functions of t. In these various cases, however, the necessity of the additional relation is not in doubt.

However, a remark (' ) should be made about the necessity of this additional relationship.

Let us take up the case of a holonomic system defined by a finite number of variables, the case to which equations (4~)- Temperature 3 can appear in these equations only through the actions of viscosity /'(, fn and the derivatives di <)i interrle.'

partial - > -- - of the internal potential.

X1 ~x,~

For these derivatives to be independent of temperature, it is necessary and sufficient that the internal potential § be the sum of a function of the temperature alone 2f and a function of the variables a,, n. Now, it is precisely the form of the internal potential that characterizes an isothermal-isentropic system | Chap. IX, equality (a3); t. I. p. 3-(i We can therefore state the following proposition

Let us consider a holonomic, isothermal-isentropic system whose viscosity actions are zero or independent of temperature; from a given initial state and initial motion, we can, without the help of any additional relation, determine the motion that the system takes under the action of external bodies whose state is at each given instant; exception IS MADE, HOWEVER, OF THE LAW ACCORDING TO WHICH THE tkmi'éhature varies; the additional relation intervenes only to determine this law.

This proposition can be extended to a non-holonomic system if we suppose the quantities q , q. q'n to be analytic functions of t, provided we use the reasoning we used earlier [Chap. V, § 3, second case; vol. 1, p. 208].

(') P. Duiihm, Sur l'équation des forces vives en Thermodynamique et les relations de la Thermodynamique avec la Mécanique classique (Bulletin de la Société des Sciences physiques et naturelles de Bordeaux, séance du a3 décembre 1897). L'intégrale des forces vives en Thermodynamique (Journal de Mathématiques pures et appliquées, 5" série, l. IV, 1B98, p. 5).

1



For an isothermal-isentropic system, the internal potential differs from the internal energy only by a function of the temperature (t. I, p. 37G). Therefore, in your equations (47), we can replace the partial derivatives of the internal potential by the partial derivatives of the internal energy. If we compare the equations thus modified with equations (45) of Chapter V (t. 1, p. 207), we recognize the correctness of the following proposition

If a holonomic isothermo-isenlropic system is free of viscosity, the equations governing the motion of this system, except for the variation of its temperature, have the same form as the equations given by Lag range for purely mechanical systems.

In an analogous way, one can easily see that in the case where the system is not holonomic, the equations of motion would have the form indicated by M. P. Appell for purely mechanical systems [Chap. V, equations (52); t. 1, p. 209]. These last theorems justify the following proposition: From the point of view of the Dynamû/ue, the systems studied by Rational Mechanics can be considered as special cases of the tropical isothermal systems devoid of viscosity; but the operations which suffice to complete the study of the motion of the former must be completed, for the latter, by the determination of the law according to which the temperature varies; this last determination rests on the use of the supplementary relation.

Let us now resume the study of any of the systems to which equality (6) is applicable; let us write this equality for the real change which the system experiences between the instant and the instant t-flt, and integrate it between any two instants £0, t,. If we remember [Gliap. 111, equality (3); t. I, p. 116] that in any real change, the work of inertia is equal to the decrease (Ko- K, ) of the living force, we see that the result obtained may be put in the following form

(~8) S+<'R.-<-K.-K,-)-~(<S,)-~(<5t)-)- '2r'~=o. (48) ç.-+-&-i-K0-Kl-i-Z(e0,îla) - tf(eu?:1)-+- f tlSillly dt==o. o o ô:J G is the total external work during the considered change;



ft is the total work of viscosity that accompanies the same modiiication.

In the particular case where the external work depends on a potential Q, this equality can be written

(49) Qo - £2, -+- <'il -+- Ko- K,

-t- 3(e0, .'(.) - J(ei, Ji) -+- - 3 dl - o.

1, 0 c~

In a real modification, the work of viscosity is always zero or negative; therefore, for the equalities (48) and (4g), we can substitute the inequalities j

(5o/ G + Ko- K,-i--f(e,, Joj - i(e,,Hr,)-t- T 'llA£±±lv dt >o,

(5))~ '- '?j'dt'U). The sign of equality is reserved for the case when the system is devoid of viscosity or when the viscosity of the system, although remaining, does not perform any work in the considered modification; this is what happens, for example, if this modification is reduced to a simple displacement of the whole.

Suppose that there exists a quantity A (e, 2?) such that the equalities and inequalities (4%), (49), (5°), (5") can be replaced by the equalities or inequalities

(57) V.-hA -+-K0-K,-t- .\r<0) A(e,,3r,) = o,

(V5) Uo - fi, -h A Ko- K,-h A(e0, &0) - A (ej, 2r, ) - o,

(5.1) K- Ku--K|-t-A(e(,,2r0) - A ("!,&,) î o,

(55) Qo- iîi-t- Ko- K, -f- A(c0, ju) -i- A(e,, 2r, ) £ o.

We will say that the system admits a usable enkrgy e£ ^mc A (e,2s) is this energy.

Let us first see what is the reason for this determination. A number of systems are employed by industry in order to force external actions to do negative work; such are the machines which are used to lift a burden; the mechanical effect, useful to the industrialist, which such a system produces by transforming itself is the quantity - G.

Other systems are used so that their transformations



increase the living force of one of their parts; such are the various ballistic machines; the useful mechanical effect of a similar modification is then the increase (Kt - Jv0) of the living force.

We are thus led to give the name J useful mechanical effect of a modification to the sum

(56) s ™ - fc ~f- K] - Ko

of the external work changed sign and of the increase of the living force.

Equalities or inequalities (5a) and (54) can be written as (57) e = A(e0, &")- A(e,, Sf,) -w"

(58) e < A(e,) - A<et,^t).

In a system which admits a usable energy, the useful mechanical ejf'et of a modification is at most equal to the decrease experienced by the usable energy; it is equal to this decrease if the modification does not entail any work of the viscosity.

When a system admits a usable energy, one can, as far as it is concerned, answer the questions which constitute the problem of PERPETUAL MOVEMENT.

Under the common title of the problem of perpetual motion, we bring together two essentially distinct questions: the problem of perpetual motion and the problem of perpetual motion. Let us imagine that a system is independent of the external bodies whose action it undergoes, and that these bodies keep an invariable state; this hypothesis includes as a particular case that the system would be isolated in space. Let us suppose that the modification experienced by this system is a closed cycle, and that at the end of this modification, the system resumes not only its initial state, but also its initial motion. The state of the system, its motion and the state of the foreign bodies being, at the end of the modification, identical to what they were at the beginning, the system will undergo this modification a second time. This modification will be able to be repeated indefinitely, so that we will have realized a perpetual mobile ¡



The external work depends on a potential; this potential ii(e') is determined by the knowledge of the system's only elut'' l', apart from the temperature. At the end of the considered cycle, this potential takes back the same value as at the beginning; it is the same of the usable energy A(<?,3\i; quanta n the living force, it also takes back, at the end of the modification, the same value as at the beginning, since the movement takes back its initial determination. Legality (53), applied a perpetual mobile, becomes whose'

A - o.

If we limit ourselves to considering systems which admit a usable energy, a perpetual motion can only be obtained by a modification of a system devoid of viscosity (such as one of the systems studied by rational mechanics) or by a modification free of any viscosity work (such as a displacement of the whole) of any system.

If a system, subjected to any foreign bodies, can describe a closed cycle and, during this cycle, produce a useful mechanical effect whose value is positive, this system, describing the considered circle, constitutes a perpetual motor.

Now, the inequality (58), applied to a closed cycle, becomes

e O.

So no, system admitting a usable energy can provide a, perpetual engine.

Suppose that the existence of an external potential and a usable energy is accompanied by the absence of viscosity; we will then have, by virtue of equality (53 ), the equality

A ( <;", b, -f- ii, -=- Ko = A ( e, 5, ) -+- Û, -t- K,

Or, for the entire duration of the motion, the equality t"><)) A ( <̃. S j --̃- <> -t- K = const.,

which is called Ikoiation or. The living kohck.

The various terms in this equation depend on the state of the system and its motion, i.e. its general velocities; but they do not depend on the accelerations; we can t L D. 11. 3



therefore say that the equation of the jorec vive cous

therefore say that the ec~ucr,tioiz <A' lc ,urce v~c~e eon,stiltce tcne ictté;;rrECle first cle.s laws cltc /?!0//t'<?/"' 6~M .s,y.slénze.

These various theorems highlight the importance of the usable energy; they legitimize this question; In what) case does a system admit a usable energy'!

The comparison of the equalities or inequatities.s (~s5), <4~ (;')0), ( '') to the equalities or inequalities (~2), (53), (;')0, shows that. for there to be a usable energy A ( e, it is necessary and sufficient that we can write

(60) ~(eo,~u)-(Pt.~t)+~ r 'd~(e..?),. .5'clt-A(eo,:n)w-~(e~m)~ 1 ~.7

In other words, it is necessary and sufficient that the expression be integrable without the need, in order to perform this integration, to know in finite form the laws of motion of the system derived from equality (6).

It may happen, first of all, that this expression is integrable simply by virtue of the definition of the system; for this it is necessary .1 suifr d l 'f' 1 i d~ (e, ?1) and it is sufficient that, by virtue of this definition, the quantity --~ is zero or that it is a function of the temperature alone. To say that it is zero is to say that the internal potential does not depend on the temperature; it is to say, therefore, that the notion of temperature does not intervene in the definition of the system, as it happens for the systems studied in Rational Mechanics. If, in fact, the state of a system is not independent of temperature, this system has a normal heat capacity and, according to Helmholtz's postulate (t. 1, p. 263), this capacity is positive; if we designate by U(e, 21) the internal energy of the system, this condition is expressed by the inequality

~U(<7) >0.

r),j' > o.

Equality [Chap. IX, equality (12); vol. I, p. 368]

U { .r (" ~r) F (::1) ~):~F(e.j

U( e~ 3~ ~,(e' ~i_ _.w~



transforms this inequality into this one

F"(S?) 0 ${e, ?j ) iP i(e, 3 j

~¿; > f,

F'<~7 "- >

̃ f. rfrf ( e S- l

(it could not be checked if ̃* was. constantly null. 'A?

If the internal potential is independent of the temperature, we verify the equality (60) by posing

A = -1

But, in this case, the internal potential is identical to the internal energy Ll(e)', so we can also pose

(6c) A. = U(e).

In order for the system to be a function of temperature alone, it is necessary and sufficient that the internal potential be the sum of a function of temperature alone and of a quantity that depends only on the state of the system, apart from the temperature; in other words, it is necessary and sufficient that the system be isotliermo-isentropic (t. T, p. H77). If one then posits

(lia; -f(<?, &) = -]>(&) - W(e),

we can satisfy equality (60) by taking

(63) :V = W(C).

In summary, the systems that, by virtue of their definition, admit usable energy are

i° Systems, such as those studied in Rational Mechanics, whose state is defined without temperature being a factor; these systems admit their internal energy as usable energy.

2" Tropical isolkermo-isen systems; these systems admit as usable energy the temperature-independent part of their alternating potential or, what amounts to the same thing, of their internal energy.



It may happen that the quantity

(/ î I C. ï I

2 dt

is integrable not by virtue of the definition of the system itself, but by virtue of the additional condition which must be added to equality (6) to complete the determination of the motion of the system.

This will happen, first of all, if the additional condition consists in expressing that the temperature remains constant during all the duration of the modification; in such an isothermal modification, 2?' will be identically null and the equality ((j<>) will be verified if we take

(64). .V(e,:2r) = $.(e, %')̃

If the modification is not isothermal, £?' is not zero then, for - - r~- d'à to be integrable, it is necessary and sufficient that the additional condition transforms r' into a function of the temperature Sf alone; we have, moreover [Chap. IX, equality (16); t. I, ia" a, os à$(e,?S)

so that the previous condition can still be stated as follows It is necessary and sufficient that the additional relation is of the form (<i<5) S(c, S) aj(^)-

In this case, let us denote by ^(Sf) a function such that

dâ

l/equality ((><)') will be verified if Ton takes for usable energy (68) A ( c, Jj ) - -1 { c, "3 ) -t- W{ 5 ).

A particular case implied in the previous one is the one where the additional relation states that, in the considered modification, the entropy remains invariant

(R(j) ,II S(e, "5) t. ̃



The equality (fi-) allows, then to take

-(̃-(&) = iF(S). ).

Equality (68) gives

(e, ?j) = 3(e, ?j ) -+- 'l V(?j)

or else, by virtue of equality (69),

A ( e, Sr ) = ? ( e, Sr -+- F ( Sr ,1 S C e, 'b )

or finally, by virtue of equality (17) in Chapter IX (t. 1, p. '̃'>-̃)), (10) A(e,27)^U(e,Sr).

In summary, any system can admit a usable energy provided that the additional relation has tune of the following two flours:

1" The temperature of the system remains invariant during the whole duration of the movement in such an isothermal modification, the role of usable energy is played by the internal thermodynamic potential (f).

20 During the whole duration of the motion, V entropy remains equal to a function of the temperature alone. In this second case, this particular case is included. During the whole duration of the motion, the entropy of the system remains invariant; in such an isentropic modification, it is the internal energy that plays the role of usable energy.i x. cl I seems to have shown the first that the effol ni i le of an isollmrmiqiic modification could never surpass the decrease (the uni- crrlaine magnitude which he called to ion Entropy (.1. (Ii.khk .Maxwm.i.. Theory uf ffeal, p. i8lj, London. 1^71). The notion gcni:rali- and the name Available Energy were introduced into Physics by

<>i!ibs. without giving, moreover, the analytical definition of this quantity |J. ii.t.aiii> Cir.n.s, On ci Representation Uy Surface* nf Ihe Tlierniorlynnmic f'ro/ier/ies nf Substances ( Transactions of llte Conneeticut Xe.ndenty of Arts niul .Suences, vol. II. lH7:'i p. '|O'')J- Maxwell, in the quali-ieiiie edition of his Tltcoi y nf Ileat, adopted the name Ava'dable. Energy; of a nianierr scinlilalilc. Hermann von Helinholtz gave l,i magnitude -T =-. l l-fSr)S the name (free energy (frète Energie) and ta magnitude U - -T - h" (jj) S the name <enrri;ie bound 1 L-i'bitm/ene Energy). ),



These systems, which we shall call ADiABATiocKs systems, are those systems of which no real modification can cause a release of heat from o. It is sufficient, in eU'el, to refer to the general definition of the quantity of heat [Chap. IV, equality (4); t. 1, p. 107) and to notice that in a real modification, the work of the inertial actions is equal to the decrease in the living force, to see that this additional relation is equivalent to this proposition In any real modification of an adiabatic system, the useful mechanical effect is equal to the decrease in the internal energy.  We can therefore say that the internal energy plays, for such an adiabatic system, the role of usable energy, with this nuance that here, the decrease of the usable energy gives the very value of the useful mechanical effect, and not an upper limit of this effect. The properties of the usable energy are, in this case, similar to those of the usable energy, in the first case, for systems without viscosity.

The existence of the usable energy, in this case, has been signaled for a long time by the physicists who deal with Ballistics they gave him the name of explosive potential of the system. 4. Quantity of heat released by a system in motion. Inequality of Clausius.

Suppose that a system undergoes a change, real or virtual, during which its internal energy undergoes an increase oli (e, .;?), while the external work done has the value F. and t is the value of the work of inertia. This system gives off a quantity of heat which has the value Chap. fV, equality (4); t. 1, p. 107]

(71) Q (T -l U(c.S).

We have, moreover [Chap. IX, equality (ia'): t. 1, p.>
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degree of the division into cubes, we will have the inequalities

| tlj-HGjl < r,".

| Os- "G? I < <\ ".


	-----̃--- - i



| t>).- M G), | <r,!t,

Ça, Gp, G\ being the respective values of the function G (x, y, z) at points Ma, Mp, M>, arbitrarily chosen inside the cubes a, [3, À.

Moreover, since the function G (x, y, s) varies continuously in the vicinity of the point M, and since the points Ma, Mp, M> are, like the point Mi, interior to the volume mi, one will always have been able to choose in advance this volume ro,- small enough to have

|Ga-G,|On

1 G~ G¡ 1 < T"

̃ ̃ "I

|G).-G,|<-1.

These two groups of inequalities give us the inequality ~x+ ~`>(3+..  :+'iO7,- N uGc < r~ N tc,

where N designates the number of small cubes, of volume u, which the volume ro contains, As the total volume Nu of these small cubes cannot exceed the volume mi, the preceding inequality leads to this one

(12) It^-f- t)p - .+-").- N "G,-| <2r,ra,

Equalities and inequalities (9), (10), (11), (12) show us that, provided that the volume ra,- is less than a certain limit and that the division into cubes has reached or exceeded a certain degree, one has certainly

(13) |U/- N'MG(|<4*)rc,.

One can always push the division into cubes far enough so that the residual volume

tejj, -i- rav -+- = r-fj - N m

is as small a fraction of the volume of ro as one can imagine, enough



far, therefore, so that we have

~i. cî,- - N u r,

(li; - 5T"<|G7Î"

Inequalities (13) and (i4) show us that we can always assign an upper bound to the volume mi, and a lower bound to the degree of division into cubes, such that we have (15) Ui- G,ra,- < 5rt3/,

and this regardless of the shape of the volume mi.

But neither of the two members of this inequality (i5) depends in any way on the degree to which the division of the system into small cubes has been pushed; if we therefore put 5ti = 9, we can, from this inequality, derive the following proposition Whatever the shape of the volume mi that surrounds the point Mi, we can always assign to this volume an upper limit such that we have

(16) - -&(Xi,yhZi) <0,

~t

9 being a positive quantity, as small as we want, given in advance.

This proposition is equivalent to the theorem we wanted to prove

When the volume mi tends to fade at the Mi point in PAS{J,

sant PAR UNE SUITE quelcoa'qdk de l'ow.Mi-is, le rapport - tend vers une limite finie et déterminée. G/, which depends only on the position that the point Mi occupies inside one of the bodies P. l> !y' of the system, and which varies in a continuous way when the point Mi moves inside the same body. This theorem immediately leads to the following corollary When we increase indefinitely the number of parts i, a, n into which the system is divided, in such a way that the dimensions of each of these parts all tend towards zero, the sum

u,+u,+.+ un



tends to a finite limit which is independent of the adopted subdivision law, and we have

(17) lim(U,-t- Us ̃+-+- Un) = CG(x,j,.z)dw,

dm being a volume element of the system, (x, y, z) a point of this element and the integral extending to the whole volume of the system,

We shall now, by a similar analysis, prove that if two volumes ro/, roy tend to vanish one at the point Mi, the other at the point My, the ratio - -^- tends to a limit whose value depends on the position of the two points Mi, My, but does not depend on the shapes through which the volumes ro,, mj pass in contracting.

Let us suppose, first of all, that we have adopted a particular mode of subdivision of the system, for example, the subdivision into cubes already considered. We can suppose that this division is pushed far enough so that the two points Mi, My are contained in two distinct cubes. Two of these cubic divisions, both of volume u, then contain one the point Mi, the other the point M/; let ̃ jj be the value, for these two cubes, of the quantity analogous to W,-j. By virtue of the third hypothesis, when these two cubes tend to vanish one at point Mi, the other at point My, the ratio- will tend to a finite and determinate limit; we may write

lim~~

(18) lim = Ftx,, yh zh xhyj, zj) = F /y,

F being a uniform function of the coordinates x^yi, 2, of the point M,- and of the coordinates x.j, yj, Zj of the point M'y. By the very definition given here, the value of this function does not change if Ton swaps the first coordinates with the second. Moreover, this function varies in a continuous way with these coordinates as long as each of the points Mi, My remains within the same body P or Jv or P" this body being able moreover not to be the same one for the point Mi and for the point My.

This being said, let's take around the points M", My two volumes



any nj, ro/ to which the quantity V/y corresponds. Let us divide them into cubes of volume u. The volume ra, contains the N, cubes a, (i, and the residual volumes rs^, rov, rop. The volume mj contains the N/ cubes a, 6, and the residual volumes mm, wn, rar. We will obviously have

(19) Wij = .|/aa -4- 'V -+---̃ + 'l'a/ -H '*̃"," -+- xV "n -4- -t- "far '~a + ~pA -i-4- - li%~m-i- 1TJ'r~a.-F-f- ~j,.

-4-'̃)>" +"l-Xé +.+ v},l + tTr},nt'+' V)~ -(-<- W).


	^jj.a + V,,ft + -4- Wy., ̃+̃ Wv.m -+- Wy. ̃+-̃+- W^



̃+̃ 'Fvo ̃+̃ V,{, + -4- Vv/ -4-"Fv,,t -4- Wvn +.+- Vv,

-+-

̃4- Wpa -4- Wph -+- + Wp, -+- Wpm H- >Fpn -+-+ "rp,.

CI d ,W"'111 Ilri il d 1.. Î' Each of the quantities - - > ---) - tends to a finite limit ~2tTÜrrz 7Liûr

when the volumes u, rxsm, nsr tend to zero, this limit perhaps depending on the series of forms by which the volumes mm, mr tend to zero. So far as we push the division into cubes, we will have

| TM4-+ W\r |< K,Nt-M(tijm-H.+ mr),

Ki being a positive quantity.

Similarly, if we push the division into cubes, we will have |VV -i- + Wp/|<Ky-NyM(nT,J.-+-H-TOp),

|1I>'" + ---̃+̃ 11>I < V-SWV- ̃+-̃-+- mp)(Tssm -(- 4- mr),

Kj, y being two determined positive quantities.

N,- u N; a

But > - - are two ratios which cannot exceed the unit; one can, on the other hand, push far enough the division into cubes so that the two ratios

TOa ^V - - - 4- TTirj Ta, -4- TTTyj -4- + TiT/.

L y üJj

are as close to zero as we want.

Whatever the two volumes ro, m/, one can assign to the degree of subdivision into cubes a lower limit from



which we will surely have the inequalities

I `~:C/li-iw.+ Y- I C -,LSIaJf

(M) ~l~a -- .+ iVP~ l C 7,a;Lijr I ~fN.nx+. --F' lŸFrl iüfiLTj~

ri being a positive quantity, as small as we want, given in advance.

On the other hand, by virtue of the inequality (18), one can always push the division into cubes far enough so that one is assured of having

l |'V'-F"""2!<^"2,

(2t)

(ai) f ) |.i), -\<u-- |< ,tu>.

l 'f)j P, 1 < ~M".

The function Ka", in these inequalities, refers to two points Ma, Ma, taken one inside the cube a, the other inside the cube a.

The function V pq varies continuously with the position of the two points Mp, M,, to which it refers without having to worry about the degree to which the subdivision into cubes is supposed to have reached, so we can take the two volumes mi, xsj small enough to be sure to have

| F,- F'Vl <'1.

in any way that the point Mp is located in the volume tn, and the point iVl? in the volume wj.

This result, compared to the inequalities (21), shows us that we can always take the two volumes mi, mj small enough, and push the subdivision into cubes far enough so that we are sure to have the inequality

| i/*a -h H- -ht N Ny u'2 F,7. | < 2 r, N,- Ny a"

As we have, by the way,

N,w£ct, Ny"|ray,

this inequality leads to this other one

(22) \<>aa H-S- <j^i/- N/Nya "F/y| < 2T)W,-roy. I). - II. 9 ;)



The equality (19), joined to the inequalities (2o) and (22), gives us the following result

We can always take the two volumes nr/, ray small enough, and push the subdivision into cubes far enough so that we are sure to have the inequality

(a3) ) <F,V- N/N,-a "F,v | < S^m/mj.

Moreover, the volumes mi, ray being given, one can always push the division into cubes far enough so that one has m,- i\/M C ~- N~M C v:

mi vi Fij 1 mj vi Fij

and, therefore,

( >4 ) Fijmimj- N, u" F,7 | < ïjnj/ro,

inequality which, joined to the inequality ('>->:>), gives the new inequality

(~.3) W,y- F,y~t~y <~ 6T)!U,!ny.

One can therefore always, around the two points Mi, My, cut out volumes mi, roy- small enough, then, once these volumes are chosen, subdivide them into cubes numerous enough, so that the inequality (23) is verified.

But neither of the two members of this inequality depends any more on the degree to which the division of the system into infinitely small cubes has been pushed. If therefore we set 67) = 9, we can state the following proposition

jVI, My being two points of the system and fJ a positive quantity, as small as one wants, given in advance, one will always be able to assign to the volumes nr(-, mj which contain respectively the points M, My, an upper limit such that one has

(26) ^F^v,2/) <<>, r i F(X¡'Yi, Zi, Xj,Jlj, 1 < 1),

whatever the figure of these two volumes wt, m/. This proposition is equivalent to the theorem that we wanted to establish

When the two volumes -m, mj tend respectively to



s1 vanish at the two given points Mi, My, passing through A SINGLE sequence OF FORMS, the ratio - - tends to a Mi Mj

This limit depends in a uniform and symmetrical way on the coordinates of the point Mi and the coordinates of the point M y ; it varies in a continuous way with these coordinates, provided that neither the point Mi nor the point My crosses one of the surfaces which delimit the bodies P, P', P",

This theorem established, we will propose to prove the following theorem

The function F (x,y, z, x',y', z') is of such a nature that the integral

I F(x,y,z,x',y', z')dm'

makes sense even if the point (x, y, z) is part of the domain to which the integration extends.

This proposition is by no means self-evident, because if we know that the function F (x, y, z, x', y', z') is finite and determinate for any pair of points M (x, y, z) and M.' (x'y'z!), it is by no means proven or assured that this function tends to a finite and determinate limit when the point M' tends to the point M by any path.

Around the point M, (x,y, :̃), one can always, by virtue of Fig. i.

our fourth hypothesis, draw a surface S (fig- i) small enough to have

(6a) | W]a4- W,p-K ..4- Wa < tnn,



7n, being a volume, interior to the surface S, which contains the point M,; raa, rap, ra> volumes which, with the volume rs, form a connected domain, domain which fills, in whole or in part, the space interior to the surface S; and E a positive quantity, as small as one will want, given in advance.

Inside the surface S, let us draw another surface S'; we can always take the volume bj, small enough to be completely contained in the surface S'. Let ma, mx be other volumes which, together with the volume w(, complete the surface S'. Let ro^, rnv, ra? be the volumes that fill the space U between the surfaces S and S'. The previous inequality gives us

l 'Vlo.+.+ WIÀ+ 'VI¡J.+"'+ 'l'lp 1 < SIDI

and also ecrl

and also

|Wla-t-+ >|><£7IT1.

These two inequalities provide us with a third (27) Wl|x-4-+ V,p | < 2 6BJ,.

But, by virtue of the proposition expressed by inequality (25), and by designating by 0 the positive quantity -^> that is to say, a positive quantity, as small as we like, given in advance, we can always take the volumes mi, to^ rop small enough for us to be assured of the inequalities

pftjJ.-Fjp.T!J<6mtnJjjL,

°: °; °. .0 o.,

l^'ip- FipBiinipl < OroriBp..

From these inequalities, observing that

~-<t- nTp== U

and remembering that 0 = -A" we deduce the new inequality

(28) M-'ia-t-- ̃ --<- Vip- (Fi^-h.. -+ FtpCp)rai < "Si. But the point M, is not part of the space U; no matter where the point (x', y, z') is in the space U, the function F(x,,y,, z,, a:1 y' z') remains finite and continuous. So when



the dimensions of the volumes tn^, rap all tend to o, the sum

Flu~u. '"t" F,pap

tends to the integral

f F(a7,,y,, W x,Y, z') dm'.

~u

In other words, once the surfaces S and S' are chosen, we can always take the volumes -mv., .rss? small enough to have the inequality

(29) FjiaW,! -+- + Flptap- F(xuyuzux',y', z')dm' < e. '~tj

The inequalities (27), (28) and (29) give the inequality

(3o) fv(xuyuzux',y',z')dw'<

J\i

where nothing depends anymore on the dimensions of the volumes w^, rap. We can therefore state the following proposition

Around the point M, one can always draw a closed surface S small enough for V inequality (3o) to be verified, e being a positive quantity, as small as one wishes, given in advance, and the integral extending to the space U comprised between the surface S and any surface S', interior to the surface S and surrounding the point M.

Now, according to a well-known proposition of P. du Bois-Reymond, this theorem is equivalent to the one we were proposing to prove.

Let M( be a fixed point of the system; w{ a subdivision of the system, in which point M is located, m2, w3. ron the other volumes into which the system has been divided. Let us propose to evaluate the limit towards which the ratio \F, -h- \y -t->r tends,

ml

when the dimensions of the volumes nr,, ra2, ra,, tend to a



in any way towards zero, at the same time as their number grows beyond any limit.

Let us surround the point M, (xt, yu a,) of a closed surface S. Let ra,, nj2, ro; be the subdivisions of the volume U inside the surface S. Let ra,n, tsh be the subdivisions of the part E of the system which is outside the surface S.

By virtue of the fourth assumption, we can always take the area S small enough to have

(3i) |Wi,-f- *" + + v1/|<era1,

e being a positive quantity, as small as one wants, given in advance, and that whatever the parts nr(, mi into which the volume U has been divided.

On the other hand, we can always, according to the inequality (25), take the volumes cj, rsm ran small enough to have e

I ^Iw - F 1 m TSt W m I < -g" TÏTi Wm

"

I ^i" - the ui^i ™,i | < ^n,raB)

Ki,n, F,B referring to the point Mt and to points Mm, Mn, taken within the volumes roOT, us,

Having moreover

E = T3m-+- + ran,

we deduce the inequality

(32) | V, ,"-+-+- M- "- (F,£njOT-+-HF1)lroB)m, | <tTat. We can also make the volumes mm, xnn small enough so that we have

(33) Fimra,+-F,BBTn- fF(xt,y1,zl,x',y,z')dxa' < e. Finally, according to the theorem we just proved, when the surface S tends, by any sequence of forms, to vanish at the point Mt (x^y,, z, ), the integral

F(xi,yt, zu^, y') dv'

I E



tends uniformly to a finite and determinate limit

(34) W(.z-|,jKi. si) = ¥(xuyu zu x',y\ z')dm'

In this equality, the integral extends to the whole system. We can therefore make all the dimensions of the surface S small enough so that we are sure to have

(35) i'F(xuyl,zux',y, z')dm'- W(a?,,jKi, . "i) < e. Putting together the inequalities (3i), (3'i), (33) and (35), we see that we can surround the point M, with a small enough surface S, and divide the system into parts, small enough that we are assured of having the inequality

Ï!î±i^±i^±^_W(*I>J,I)|<4..

a

But, in this last inequality, nothing depends on the dimensions of the surface S, so that we can state the following proposition

If we keep fixed the point M, (# y,, z,) which the volume ns,, contains and if we make the dimensions of all the parts rsu ro2, rsn into which the system is subdivided tend to zero, the ratio

.h tlttn ~y. ~irna+.+~P'ta'

ml

tends to W (xuyK, z{).

.11 It is now easy to evaluate the limit towards which the sum

(5) aX= W12-4-V,3-t-i-lï'i"

V,, -4- y,, + .+- W,

̃4-

-t- "!̃", -4- U'n2 -+- -H Vn,"_i

when the dimensions of all the volumes Toi, to2, ts,, into which the system has been divided are made to tend to zero.

Let M, (.",, y,, s,), M2 (x2, y^, s2), be,



M,, (xn, y, zn) of the points taken respectively, in any way, inside the volumes tb,, ra2 "". According to the previous proposition, we can take all these volumes small enough so that we are sure to have the inequalities

s

|V,t- V,, +.+ Vtn n - W(a?,, yu 5,)ra, <

|V!1+f!!+.+ ¥îa - W(u;.2, y.u z^wz | < ^ra,, 2,

E

| Wrtl+ "̃"+ .H- <*̃"," - "Wr(a?n,^", ",,)TOn| < |j w/(,

where e is a positive quantity, as small as we want, given in advance, and where

U = 751, -+- CT2 -+- -4- Wn

is the total volume of the system.

The inequalities we have just written lead to this one ̃ -i\ - W(a?,, yu "i)njt - W(a- yt,zt)mt- - W(a;", JK,M sn)rart| < s. On the other hand, we can push the division of the system far enough so that we are sure to have the inequality

W(a?i, y,, zOnjj-t- W7a72, ^2, :,)'J( + .+ W(i,, r".-3n)CI" t/ ]

where the integral extends to the entire volume of the system.

These two inequalities provide the following proposition When we increase indefinitely the number of parts 1 2, n into which the system is divided, in such a way that the dimensions of these parts all tend to zero, the quantity X tends to a given limit given by the equality (36) litnX= f\ix, y, z)dm,

where f integral extends to the entire volume of the system. Whatever the number of parts 1, 2, n into which the system has been divided, the internal energy of the system keeps the same



value and this value is given by the equality

(3) W = Ui- Uj -+-+̃ Un-+-X.

The limit towards which the second member of this equality tends, when the number of subdivisions 1,2, n grows beyond any limit, at the same time as all the dimensions of each of them tend towards zero, cannot differ from the fixed value of the first member. Hence, equalities (17) and (36) show us that the internal energy of the system considered can be expressed in the form

(37) W=fG(x,y,z)dr3+±Jw(x,y,z)dm

or, by virtue of equality (34), in the form (38) 111 = f G(x, y, z)drn-h f F(x, y, z, x', y', z') dm dm'. In these equalities, all integrations extend to the entire volume of the system.


	Internal potential and entropy



of a continuous system (')-

Let us now take a system that is similar to the one just studied, except for what will be said.

On the previously studied system, the distribution of temperatures was arbitrary; the one that will now occupy us will be decomposable by thought into a limited number, but arbitrary moreover, of bodies each of which will be brought to a uniform temperature. Nothing will prevent us from attributing the designations P, P', P", in such a way that each of the bodies P, P', P*, is of uniform temperature.

The system we have just defined will then be one of those studied in the previous chapter; it will admit not only an internal energy, but also an internal potential and an entropy.

(' ) P. Duhem, Le potentiel thermodynamique et la pression hydrostatique, Chap. I[ (Annales de l'École Normale supérieure, 3* série, t. X, 1893, p. ao6). ).



Suppose we divide it into /( parts />(, /;a, />", and let .3i, 2fj, 2rn be the uniform temperatures of these n parts; each of these various parts could be considered independently of the (n - i) others it would then admit a certain internal potential; let §K (e,,2f,), #2 {e,,, 2ra), $n(en, be these partial potentials and -if the total potential of the system we will have the equality [Chapter XIII, equality (5)]

(3g) i = §x(eu 3rt)-4- §ï{ei, 2r2) -+-)- #"("", &)+ X. The quantity X which appears in this expression of the internal potential is identical to the one which appears in the expression (3) of the internal energy of the system previously studied. This last quantity X, in fact, does not depend at all on the distribution that the temperature affects on the system, so it remains the same whether the parts p,, pi} .p" are subject to the non-uniform distributions of the temperature represented by the symbols 2f,, 3i, 3r", or whether they correspond respectively to the uniform temperatures 3, £f2, 2r"-.

Let i be one of the parts/),, p.2, .p,n and suppose that all its dimensions tend to o, so that its volume ro< tends to vanish at the point M; about the quantity §i(ei, Sr,-), we will make the following assumption

The ratio e"">1' remains finite and tends towards a limit Mi

determined, when the volume parcel nrt- tends to vanish at the point Mi by a determined mode of subdivision of the system; when the point Mi moves in a continuous way inside one of the bodies P, P, P", this limit varies in a continuous way.

The quantities lF,-y which, by virtue of equality (zj), appear in the expression of the quantity X are identically those considered in the preceding paragraph; they therefore remain subject to the assumptions that we made about them in that paragraph.

Therefore, following a deduction similar to the one explained in the previous paragraph, we will arrive at the following result



To each point M (x, y, s) of the system corresponds a quantity H(x, y, z), continuously variable when the point M moves inside one of the bodies P, P', P\ and such that we have

(40) i= fti(x,y, 2)~ t .lz ~W(x, y, z)dcr or

(40 i=J H(x,y,z)dxs-h j F(x,y,z, x',y',z')ftwdm'. In these two formulas, all integrations extend to the entire volume of the system.

We will further specify these expressions of the internal potential S, but after we have specified more particularly than we have done so far the mode of definition of the system.

What we are about to say is relative to the state, apart from the temperatures, of the normally defined system; whether the temperature, therefore, is uniform on each of the bodies P, P', P", or whether it affects, in each of these bodies, any distribution, our propositions will remain equally true. When the state of one of the bodies P, P', P" is known, we will admit that we know not only the figure of this body and its position in space, but also, at each point of this body, a certain number of elements which we will call the properties of the body at this point; we will admit that these elements can always be distributed in four categories which are the following

i° The names of the chemical elements which enter in the composition of an infinitely small volume surrounding the point considered

a" A certain trirectangular trihedron which defines the orientation of the matter at the considered point; this trihedron can be indeterminate in certain particular cases the studied body is then said to be isotropic; in the general case, where the definition of the state of the system involves the knowledge of this trihedron, the body is said to be anisolropic.



3° Certain point quantities such as, for example, the density of the body at the point considered, such are the numbers which fix its chemical composition at this point.

4° Certain directed quantities; such would be, for example, the intensity of magnetization at the point considered.

If this point moves inside one of the bodies that we have designated by P, P', P", these various elements vary in a continuous way.

The quantities which are among these elements can be, by their very definition, subject to vary only between certain limits: the absolute value of the intensity of magnetization cannot exceed a certain value which characterizes the state of saturation; the density can only take on positive values; but these restrictions are the only ones which weigh on the various elements relative to each of the points of a body P, and here is precisely what we mean by this

To define a first state of a body P, it is necessary and sufficient that we give, besides its figure and its position in space, the determination, in each of the points of this body, of the properties considered, this determination being only subjected to remain, for each of these properties between the limits that its definition assigns to it, and to vary in a continuous way from one point to another of the same body.

For the same body to occupy, with the same internal state, two different positions, it is necessary and sufficient that in these two positions, it has the same figure, that at the corresponding points of these two superimposable figures, the various properties considered have the same magnitude and, if they are affected by a direction, that they are oriented in the same way with respect to the figure to which they relate. When the properties in question have been chosen with all the arbitrariness just mentioned, with a view to defining a first state of a certain body P, they cannot always be taken with the same degree of arbitrariness, when we wish to define another state of the same body, as we have already noticed in Chapter i'!r, § li (t. I, pp. 3o seq.).

For example, if the body P is a magnetized body, we can, in order to define two different states of this same body, assign, in



first, at each of its points, a magnetization of any intensity and direction, then, in a second place, at each of these same points, another magnetization of any intensity and direction. On the other hand, if, in a first state, one has attributed an arbitrary value to the density p at each of the points of the body, one will not be able, in a second state, to leave the same degree of arbitrariness to the value of p at each of the points of the body; the integral pcfo, extended to the whole volume of the body, represents its mass; in the two states of the body, it must have the same value.

We do not claim that all conceivable systems verify the conditions that we have just enumerated in an electrified system, for example, we have to consider a quantity, the superficial electric density, which does not have a value at each of the points of the system, but only at each of the points of certain surfaces, along which it varies in a continuous manner. Such systems, and this is only what we intend to affirm, are excluded from our present analysis; this one is limited to the systems which verify the enumerated conditions. Let us consider a body p, which is one of the bodies P, P', P", or a part of one of these bodies; the temperature and the properties which normally define the state of the body p vary, in general, from one point to another of the body p or M one of these points. We can imagine a body p' having the same figure as the body/?; we can suppose that the body/?' is brought to a uniform temperature identical to the temperature of the body p at the point M; we can suppose in the same way that each of the properties which intervenes in the definition of an isolated state of the body p' has the same determination at any point of this body and that this determination is precisely the one which affects the same property at the point M of the body p. We will then say that the body p' is a homogeneous body whose properties are precisely the properties which the body p presents at the point M.

It may well be that the body p1 cannot be considered as being the body p, taken in another state; these two bodies/? and/?' may, for example, not have the same mass. Once these preliminaries have been made, let us return to the case where each of the bodies



P, P, P", which compose the system, is a body of uniform temperature where, consequently, the system admits an internal potential given by the equalities (4o) and (41)- Let us introduce a challenge

i° Let us consider two bodies P, Pl, homogeneous or not, which have the same physical and chemical properties, one at the point M, the other at the point M'; these properties are supposed to vary in a continuous way in the vicinity of the points M, M'; let us consider two identical closed surfaces and identically oriented with respect to the two trihedrons of orientation of the matter in M and in M'; let p, be the bodies delimited by these two surfaces; let rs be the common value of their volumes; let ,7, S' be the internal potentials of the bodies p, p'. 1

2" M,, M2 are two points of a system they are respectively in parts p,, p., each of which has a uniform temperature; the physical and chemical properties vary in a continuous way in the vicinity of the point M, and in the vicinity of the point M 2 W,2 is the mutual potential of the two parts /> p2, whose respective volumes are nr(, îtt.j.

M' M'2 are two points of another system the distance M,M2 2 is equal to the distance M, MU. The two points M' M'2 are in parts p'2 of the system; the set of the two parts p\,p', is geometrically superimposable to the set of the two parts pi, p2. n this superposition, the point M, would come in M| and the point M!, would come in M.-x; the trihedrons of orientation of the matter at the points M' Mj, would be superimposed respectively to the trihedrons of orientation relative to the points M,, M2.

In each of the two parts //2, the temperature is uniform it may not have, in part p, the same value as in part p, nor in part p'2, the same value as in part p2. In the vicinity of each of the points Mi, M'9, the physical and chemical properties other than temperature vary in a continuous manner. The physical and chemical properties other than temperature are, at point M'n the same as at point M, they are, at point M'2, the same as at point M2.

Let W be the mutual potential of the two bodies p,, P2, and W be the mutual potential of the two bodies/ p'2.



We will say that the materials that form your bodies p pl, p.z

are respectively in the same ALLOTROPIC STATE as the materials of which the bodies p, pu p2 are formed, if the following two propositions are true

i° The dimensions of the body p can be assigned limits

such that we are assured of having

(42) \§ - 8'\<ers,

t being a positive quantity, as small as we want, given in advance.

2° We can assign to the dimensions of the two bodies p,, p^

upper limits such that one is assured of having

(43) | xi-;2 - "fiiK^iB,,

e being a positive quantity, as small as we want,

given in advance.

Suppose, for example, that the bodies p, p' are both

composed of oxygen and hydrogen; that they both have the chemical composition corresponding to the formula H2O; that they have the same density p and the same temperature Sf, one at point M, the other at point M'. The proposition which corresponds to the inequality (42) will be exact if, within the two bodies p, p', oxygen and hydrogen are mixed in the gaseous state; it will still be exact if these bodies are both formed of water vapor or both of liquid water; it will not be exact if oxygen and hydrogen are mixed in one of the bodies and combined in the other; it will not be exact if one of the bodies is formed of liquid water and the other of water vapor.

Similarly, in the case where the two bodies p, p' are unique, the

If the two gases were both oxygen gas, the preceding proposition would be correct if they were both in the state of ordinary oxygen or both in the state of ozone; it would be incorrect if one was oxygen and the other ozone.

To deduce the consequences of inequality (42), let us give the

part p the shape of a cube which has its center at the point M and whose edges are respectively parallel to those of the trirectangular trihedron which defines the orientation of the matter at the point M. The figure of this body p and, consequently, of the body p' will be entirely



defined when we know the quantity ttj (which measures its volume). Moreover, within the body/?', let us place a homogeneous matter whose allotropic state and properties are identical to the allotropic state and properties of the matter at the point M of the body p; the uniform orientation of the matter, within the body p' is then determined by the figure of this body. The internal potential S' of the cube/"' cannot depend on the position that this cube occupies in space; it can only depend on the following elements

i° The volume m;

a" The chemical composition of the body at point M

3° The allotropic state of this body

4° The point quantities (including temperature) that are used to define the state of matter at point M;

5° The components along the axes of the orientation trihedron of the vectors which are used to define the state of the matter at the point M. We can take the volume nj small enough so that we are sure to have, by virtue of the equality (4'),

m H < s,

m

e being a positive quantity given in advance.

This inequality, combined with inequality (42), gives - - H I < 2S.

ra I

We see that the ratio tends to the limit H when all the dimensions of the volume ro tend to zero; H does not depend on m ; this limit can, therefore, only depend on the form of the function S' and on the quantities other than ts on which -7' depends. We thus obtain the following conclusion The quantity H {x,y, z), relative to a point M (x,y, z), is a function

î" Of the temperature £r in this point

-i° Point quantities that appear in the definition of the state of the system at this point;



3' Of the three composites along the axes of the orientation trihedron of each of the vectors that are among the properties of the system at this point.

The form of this function depends on the chemical composition and the allotropic state at the point {oc, y, z).

In the particular case where the system is isotropic, the orientation trihedron is indeterminate; the variables enumerated in the third article must therefore enter into the expression of H only by combinations independent of the choice of the axes of this trihedron, so that the third article must be modified as follows: "Of the magnitudes of the vectors which are among the properties of the system at the point M, and of the angles which these vectors form between them.

We will designate by a, 'fi, the variables which enumerate, in the preceding statement, the articles y." and we can write (U) lUr.r, z) = vCs.z, 3, .),

the form of the function s varying with the chemical composition and the allotropic state of the matter at the point (x,y,z).

To deduce the consequences of the inequality (43), let us take the two points M(, M for centers of two cubes pt, p~> constituted as the cube p which was considered in the preceding demonstration.

The function "r'ls, mutual potential of the two homogeneous cubes /?' /̃/", must not depend; on the absolute position that the system formed by the set of these two cubes occupies in space it must not depend either on their respective temperatures 3,, 2i2 the variables that determine W\2 are therefore the following

î" The chemical composition of each of the two cubes; a" The allotropic state of each of them

3" The volumes eu,, ra., of the two cubes

4" The point quantities (other than temperature 3,) which are used to define the properties of matter at point M( the point quantities (other than temperature which are used to define the properties of matter at point M2; 1). 11. 1. v,,



The components according to the trihedron cV orientation at the point M, of the vectors which are used to define the properties of the matter in this point the components according to the trihedron of orientation at the point M2 of the vectors which are used to define the properties of the matter in this same point;

6° The mutual distance M(Ma= of the center.s of the two pu p-i\ cubes

70 The parameters that determine the angles that the axes of the two orientation trihedra make with each other, and the angles that these axes make with the line M, M2.

If the matter is isotropic within one of the two cubes pt, p-2 pu within both, this enumeration must undergo some modifications.  If, for example, the cubes pt, p2 are both isotropic, the trihedron of orientation relative to each of them is undetermined in the preceding enumeration, we must not find anything that depends on the choice of this trihedron; we must therefore modify the fifth and seventh items in the following way

5" The magnitudes of the vectors which serve to define the properties of the matter at the point M, the angles that these vectors J have between them; the analogous magnitudes relative to the point M". The parameters which fix the orientation, with respect to the line M, j\I2 of the two systems of vectors considered in the fifth article.

Around the two points [,, M- one can always take the two cubes pK, p., small enough so that one is assured to have the inequality


	

	

	1 S.











this inequality, combined with the inequality (-'13), allows to write this one

TTTj 77T-2 1 C~2c.

From this last inequality, we can easily deduce that the quantity K,2 depends on the same elements as except for the two volumes ro,, roa or, in other words, that the function F(2 .> depends only on the elements which appear in the ar-



The form of this function varies with the chemical composition and the allotropic state of the matter at points MH, M2. Among the elements enumerated in articles 2" and 3", some are related to the point M we will designate them by a,, jï, some are related to the point M2 we will designate them by a. $. We will designate by a, b, the elements enumerated in article 70. We can translate the previous statement by the formula

(45) Fn=y,J,rn, xi, $u a2, £2, a, b, .)., the form of the function y depending on the chemical nature and the allotropic state of the matter at points M(, M2.

Equalities (34), (4o), (4i), (44) and (4;~>) then give us these two expressions of the internal potential of the system (46) 1 î /%(&. a. 3, i dm -+- I \Y(x, y, z ) dm

(46) with

I /"

f W(.r, y. z i - j /( r, a, £, a', $' u, b, .) drs' (47) = y î> =- ?- ̃̃1dm

f /(/a- f' ̃-̃' a''? ---". ^---^rfiilrf'S'

'1.;It."

In these expressions, all the integrals extend to the whole system.

By hypothesis, the system can be decomposed into a limited number of parts P, P', P", whose temperatures Sr, 2r', 3", are separately uniform. Its internal energy 11 and its entropy S are then given by the equalities (7) and. (8) of the previous chapter

m f VCri) dJ- VCrj'] È*. ÏJJD. -

V(à) d~3 l'-(3f') c& F(2r") dSr

1 ai t dg 1 fJi

11 = F'(3) J& F' (S') F'(Sr") dQ?

It is easy to see, then, that the internal energy of the system is



susceptible of the following two expressions

(-- (.[,,0. (. t)~7 1 ,1 (no' "i (.É8j 'N(=v~[~(;a,x.~i,)-F,(~) d~ ~dra+2.1 ~V(x,v,z)dn, ([,. 1<'(;) dy.y~, x, ~1~ 1

LIC)) '!Il- ,(:1, 'X, .)- d~ (Ti!

"- - I 7{r, 'Xsri.a\'i', a, b, .) dm dm'

+- 2 t., A r,<,v~a,J,a, 1 '),)C'fi1 UJ,

while the entropy is given by the formula

(50 ~=-f---

(50 .5 = J F'(J) ors

These formulas assume that the system is composed of a limited number of parts, but any number of parts, each of which is brought to a uniform temperature. Let us now propose to extend them to a system made up of parts in each of which the temperature varies from one point to another in a continuous way. The function U*( 2, relative to two material parts pt /?2, has a value which is independent of the distribution of the temperatures in each of the two parts pi, p->; we can easily conclude that the function remains the same, whether or not the temperature is distributed in a uniform manner in the vicinity of the two points to which it refers.

Let, on the other hand, be a point M in the vicinity of which the temperature Sf is uniform or not; let a, [ii, be the elements which, together with the temperature S. delineate the standard of the matter at the point M. We can always surround the point M with a volume ro filled with a homogeneous matter having everywhere the allotropic state and the properties that the system has at the point M; taken in isolation, this volume, whose temperature is uniform, has an internal potential S1 when the volume ro tends to vanish at the point M, the ratio - tends uniformly, according to what we have seen, towards cp (3, a, t3, .). Consequently, even if the temperature is not uniform at the point M, the function ïï>(!b7, a, y, ) has, at this point, a definite value, and this value is independent of the temperature distribution in the vicinity of this point.

Hence this first proposition The second members of the equalities (47) to (;>o) keep a well determined value if we



assumes that the system is composed of parts such that in each of them, the temperature varies continuously from one point to the next.

Let us consider such a system. We can look at its calibration as the limit of a second variable state defined as follows In this second state, the state (apart from the temperatures) is the same as in the first;

The system is broken down into a number of parts, each of which is heated to a uniform temperature;

The uniform temperature of this part has the same value as the temperature in the first state at a certain point of the corresponding part;

The number of these parts grows beyond any limit at the same time as the dimensions of each of them tend towards zero. In this second state, the system constantly admits an internal potential, an internal energy, and an entropy; this potential, this energy, and this entropy are, at each instant, given by the equalities (47) to (5o); these three quantities tend respectively towards determined limits; these limits are given by the values that the second members of the equalities (47) to (5o) take when the system is considered in its first state.

We shall say that these limits are the internal potential, the internal energy and the entropy of the system taken in its first state; or else that the internal potential, the internal energy and the entropy of a system formed of a limited number of parts in each of which the temperature varies from one point to another in a continuous manner, are given by the equalities (47) to (5o). This proposition constitutes a DEFINITION with respect to the internal potential and entropy, and a hypothesis with respect to the internal energy; for such a system, in fact, the latter quantity was already delineated, while the first two were not. It would be wrong, moreover, to demonstrate this proposition by means of the following principle When the state of a system tends continuously towards a limit state, the internal energy varies continuously and A tends towards the internal energy of the limit system. In fact, the successive states Vc^V ucl'1k that we have attributed to the system do not follow each other in a continuous way.



Let's give some examples to which the previous analysis can be applied

First example. - Compressible fluid ('). - A fluid is an isotropic medium; its state at each point is entirely and normally defined by the temperature 2? and the density p; this is the general definition of a fluid.

We will denote by c//" = pc/tn the mass of the element of volume dm.

The quantity that we have designated by y can only depend on the two variables o and 2f. We will pose.

(Si) ?(&, p) = p.Ç(p,S).

The density p being a point quantity and the medium being isotropic, the quantity y can only depend on the variables r, p, o'. Let us write

(>̃>-) ) X.(' P. ?') = ??'ty(r, p, ?')̃

Equalities (46) to (5o), together with these equalities (5i) and (52), will allow us to write the expressions for the internal potential, internal energy and entropy of a fluid; these expressions are

t i = I Z(p,?!)drn-i- I {x,y,z) am

(at'i) < with

f I ( x, y. z) = I r ij/l/1, p, ù')dm'

or

( 53 bis) S - I l(p,5) dm -{--II <b(p, p\ /-) dm dm',"-/["'-"'- f^^] - :<>*- (5i) ~t-J [~(P,â)-F:(~) dâ ,dm+2 J V .x z) dt?i out well WC;;) d:J 2.

< "),i bis) XI --= fltjo, Sr) - (£j ^^P;5'] rfm r- T fty(p,o',r)dindm', (5~ g_ 1 ~(P.~)~


	.7 F'(&, dSr



(') P. Dihikm, Le potentiel t/iermodynamir/ue et la pression hydrostatique, Chap. III (Annales de l'École Normale supérieure, A* série, t. X, i8g3, p. ai3 ).



The function ̃{/(/-, p, p1') cannot depend on r in an entirely arbitrary way; indeed, these integrals must make sense; and for this, it is necessary and sufficient that the integral

(x,y, z) - I <{ r, p, p') dm' - j p' ii ( r, p p' ) dm'

has a meaning. This condition can still be stated as follows Given any point M inside the system and a quantity s, positive and as small as we want, we can always surround the point M with a surface S small enough to have L

\fp'^(r,p,p')dml <e.

the integral extending to the volume between the surface S and any surface S, interior to the surface S, and also surrounding the point M.

If this condition is fulfilled, not only do formulas (53 ), (53 bis), (54) and (54 bis) make sense, but also all the<5 hypotheses made in the course of this Chapter are surely verified, so that the use of formulas (53) to (55) is legitimate. So let us see what the previous condition imposes on the function '-('S"°')-

Let us take the point M for center of a sphere of radius equal to the unit; let do> be a superficial element of this sphere; a ray led from the point M to a point of the contour of the element of meets the surfaces S', S in points whose distances to the point M are respectively IV, R we can then give to the preceding condition the form

I I o' r ty(r, p,?')dr du < e.

The first integral extends to the considered sphere.

This inequality will be verified if, given in advance a positiv quantity, as small as we want, we can impose on R a value small enough for us to surely

(56) p'î.>(r, o,?')dr < v,,

the



R' being any length smaller than ti, and the lengths r all being counted on any vector ray from the point M.

In turn, this condition will surely be verified if, for any point M of the system, we can assign iz[l a sufficiently small vacuum so that we have the inequality

h

(p<'i), )'

where r is any length, less than R, counted on any vector ray from the point M, where p is a constant, and where K is a positive constant.

On the contrary, it is easy to cite cases where condition (56) would no longer be verified; this is what would happen, for example, if we had

ty(r,p,?') = K (p = 'l>), ),

K and p being two constants. It would be impossible to adopt such a form for the 'L' unction without all the propositions established in this Chapter becoming false.

It will not be forbidden to admit that the mutual potential of two elements which approach each other grows as fast or faster than the inverse of the cube of their distance, as long as this distance remains superior to certain limits; but it will not be necessary to suppose that this law remains exact up to the smallest values which can be conceived.

Thus, in certain theories of Physics, in particular in the study of capillarity, one is led to formulate the following hypothesis When the distance of two elements becomes less than a certain length A, which is very small, and which is called the radius of molecular activity, the absolute value of the mutual potential, which is negative, grows faster by the effect of the approach of the two elements than the inverse of a high power of the distance. This hypothesis is compatible with the use of the preceding theorems and their consequences only if we limit their application to a certain value of the distance; this value can be, moreover, much smaller than the radius of molecular activity.



The general case that we have just taken as an example includes a much simpler particular case that is the one where the function ̃} no longer depends on the densities p. p' at the two points M, M' to which it refers, but only on the distance /̃ between these two points

7 ) = 6(;-). J.

This case is what we will call the Newlonian case 11 implies another even more particular case, the one where we have (58) k

(58) ) <} = 7-'

He

/;- being a positive constant; the fluid to which a similar hypothesis refers is the one considered in celestial mechanics when one wants to study the figure of a liquid or gaseous planetary mass.

The general case where i depends on p and p' is, on the contrary, the one we would have to deal with if we wanted to pursue the consequences of the hypotheses proposed by Pioche, by Faye, by Résal, to explain the figure of the comets' tail.

Di;uxii?.iu kxkmi'lk. - Rigid body ai handled ('). - It is agreed (t. l, p. yj) that we must leave out of our analysis the study of electrical and magnetic phenomena; this study, in fact, depends on a Dynamics distinct from that which is exposed in this Work.  However, if we were to develop this study, we would be led to the conclusion that the study of magnetic equilibrium derives from principles quite similar to those we are presenting here, and that a magnetized body admits of an internal potential, an energy, and an entropy to which the preceding formulas are applicable.

On the other hand, the formulas relating to a magnetized body are particularly suitable for giving an example of the case where a (') P. Dl'iikm, Théorie nouvelle de l'aimantation par influence fondée, sur la Thermodynamique, Chap. l (Annales de la Faculté dus Sciences de Toulouse, l. II, t), 1888) - Leçons sur l'Ê/ectricité et le Magnétisme, Livre IX L'aimantation par inffuen.ee et la Thermodynamique, t. II, 189Ï, Cliap. 1, p. i5g. - On pressures in dielectric or magnetic media (American Journal of Mat hematies, Vol. XVII, 189a, p. n~). J.



directed magnitude is among the properties of the body at each point; we will therefore, here, establish these formulas.

We will limit ourselves, moreover, to the following very simple case 'An isotropic magnetized body is of rigid form: its state is entirely and normally defined when we know, at each point, the temperature 2f and a certain vector, V magnetization.

If we denote by DM the intensity of the magnetization, the function a> can only depend on St and DTl

(59) <p = <?(£r,OIL). j.

On the other hand, the calculation of the function on which the mutual potential of two magnetic elements depends derives from the following assumptions

Any magnetic element dm can be, for this calculation, replaced by a southern magnetic pole M,, of mass u, and by a northern magnetic pole M2, of mass - p.;

The direction M2M, coincides with the positive direction l of the magnetization;

The length M2M, = dl is infinitely small, and arbitrary by the way

The quantities p., dl, 3ÏL are linked by the relation

fi- dl = :)li dm;

If M, M', are two poles of masses p., p. belonging to two different elements, dm, dm: they provide the mutual potential of these two elements a term of the form

Ic EAÛ

MM'

where k is a positive constant.

These hypotheses, let dm, dm' be two magnetic elements let M,, !YL, be the two poles, of masses u and - p., which correspond to the first; let Mj, M' be the two poles, of masses u.' and [/, which correspond to the second; we will have tiiTJ utu - /". ''-j-^ r" t^^zzz^ --i i - -

Mi M', MîM'j Mj M', Mi M',



Let us denote by /- the distance M2 M. we will have

M, 2 =- r + d~ cll, M7~Tt'==/'+-

ÂÎTmV = r+^dl-+-%dï~ 4r7v dl dl.

</<! dl il; <r"

If we put these values in the previous formula together with those of u, ia', we will find

~lÇ~r,Zaz' a3T~

r dlcll''

Let us denote by x,y, your coordinates of the point M2, which is any point of the element dm;

By a; y', z' the coordinates of the point M'2, which is any point of the element dm'

By X, W'o, G the components of the DU magnetization.

By &> ilb', S' the components of the magnetization OR'. We will have

£(2.1 tJ'l d2y,

v A c*j; dx Ox toy ox Oz  rf2

-+- w\"v - + ̃"'.m! - r-, -h D!>ej - -^7

tiy dx Oy Gold ày oz

d"-' 1 tf'I 1 *I

-H £-o' +3 il!)' v- -H S© /̃


	dz dx +' Hz dy + àz oz J



The variables on which the function y depends are those on which it can depend according to the previous considerations. Let's put

(61) ), >ix, y, z) - I tA.r4 -+- il!)' -A -h B' - j dxs', (6.)~ l + d + da

the integration being clcndant to the whole volume of the system; we will easily find that the formulas (47), (49)> (5°)i (^9) and (60) give us, for the expressions of the internal potential, the internal energy and the Tenlropy of a rigid magnetized body, the expressions



following

(6., ~Tr-.('a'lt)d~ :-2~ç-r3x ~tiardy, +: ~z~da, J s r)x r)y Oz I

(63) = f[?&,M><^]. F (') d.~


	l. ,l C d~l +'U' d~ c'3 d'C~ dr.s.



̃2 'te <y<""-<!

(64) t-'(:1 j d-~ ( d~ :ll`~ ~da.

F'(:1)

These expressions, however, can only be adopted if certain conditions are verified; these conditions, which have been formulated in a general way in the course of the present chapter, are here visibly equivalent to the following At any point M(x,y,z) inside the magnet, the integral \'> (x,y,z) ct a finite and determinate value, and the same is true of its partial derivatives o'O i'j'O t)X> i i i - ̃ - - > -r- > -t- - let us find, therefore, that these latter conditions are, in Ou- dy 1)3

Indeed, verified.

Let S be the surface which limits the magnet. Let us surround the point M (x, y, z) with a closed surface c Let u be the volume between the surfaces S and z. Let us consider the integral, certainly finite and determined,

/y ài. ô{- di-\

(05, Vr.^ ^u'^ + Ub'^ + S' y '~V

If the surface a- contracts in a way: to vanish at the point M, passing through any series of shapes, it is necessary to prove that this integral O tends to a finite and determined limit.

Let dS\ d?' be elements taken respectively on the surfaces S and t.  In one or the other of these elements, let us lead a half-normal towards the interior of the volume u; let a', fi', y' be the s cosines of the angles that this normal makes with the axes of coordinates we can write

'() -t., x 11., (~' v. ^t rl:i'- r -~1~ x F3 (3 -+- v' -t dQ' "')." j {' /OA,' d\W I àZ'\ 1 1 /77ÎT 'J. d'il

s, r a

/d~' dtl! ~\t

.I" C.d~ dy dz ) r drs

./" à* àf dz 1 r



When the surface <r tends to vanish at the point M, the first integral of the second member keeps an invariant value. It is easy to show that the second integral tends uniformly to zero, while the third integral, according to the well-known theory of the electrostatic potential function, tends uniformly to a finite limit which is the integral

d w' c'n:)' U!>' ~e"\ <

) i T - -i T dm

ox dy dy j r

extended to the entire volume of the magnet.

We thus learn that the function V(x, y, z) has a finite and determined value at any point of the magnet, and, in addition, that this function can be written

( Mi ) \V( X, Y, Z ) =- - r\ y:-+- m/ï'-r- -f S'y' db ,e.

CI S,

/d~' dd! d~' ) r


	t -+- - -+- -r~r ) -dm



J Or i)y oz r

According to this formula, the function <'(.r,y,z) is similar to the potential function of a fictitious electric distribution, both solid and superficial; at any point M(x,y,z) of the volume of the magnet, this distribution would have the solid density

/f)jL, a of

Ox ûy oz j'

at any point of the surface that limits the magnet, it would have a surface density

̃ (,l,a + Hiijs I- S -y).

The properties of the electrostatic potential function teach us that the three partial derivatives -^7. j- > - have, at each point inside the magnet, finite and determined values, the use of formulas (6a), (63), (64) is thus completely justified.

:). General equation of motion of a continuous system. Viscosity in such a system ( ).

Now that we have defined the internal potential of a (') Pierre Iilmikm, llechcrches sur l'Hydrodynamique; première Partie, Sur



system whose temperature varies from one point to another with continuity, there is no longer any difficulty in extending to such a system the general equation of motion given by equality (9) of the preceding chapter.

Let's consider a virtual modification of the system and suppose it is defined as follows

We give, in each point of the system, the virtual velocity relative to the variation oSf of the temperature and a certain number of other virtual velocities among these, are the three components U, V, W, of the local virtual velocity other virtual velocities can also be found there; these last ones, that we will designate by L, M, do not involve any local movement, no change of figure nor of position of the various parts of the system; such would be, for example, the virtual velocity relative to a variable without inertia.

To the virtual speeds U, V, W, L, M, correspond real speeds u, v, <v, m',

Within the same body, all the virtual velocities and, in particular, all the real velocities vary from one point to another in a continuous manner. If there is a surface through which certain real or virtual velocities can undergo a sudden variation, the portions of matter that this surface separates remain the same during the entire duration of the system's motion, so that they can be considered as two different bodies; this assumption excludes the consideration of waves of the first order in relation to velocities or shock waves, which must, in all circumstances, be the object of a direct study, based on special hypotheses (' ).

If two bodies (Jilférents du système sont en contact, they touch each other at any point of a certain surface; if they are not welded all along this surface, at least one of them is in contact with the other. (') Of the method by which one will be able to pose these hypotheses and deduce the consequences, one will find an example completely developed in our liée hure lies sur l'Hydrodynamique, première série, Paris, igo3 deuxième Partie, Chapitre l, pp. 6">-i 17 [Annales de la Faculté des Sciences de l'oulouse, :> série, t. III, 10,'n, p. 079 )



is deformable in a continuous way; it can only slide on the other along the contact surface.

Let S be such a surface, nor one of its points, P, P' the two bodies touching along this surface S, n the half-normal to the surface S in /", this first half-normal being directed towards the interior of the body P, n' the half-normal at the same point, this second half-normal being directed towards the interior of the body P'.

Let M, M' be two points, one of which is inside the body P and the other inside the body P' at the first of these points, let (u, v, 'w) be the local real velocity and (U, V, W) the local virtual velocity ("', v', w'), (U', V, W) represent analogous quantities relative to the second of these points.

If the two bodies P, P' are welded together along the surface S, we have, at any point m of this surface, the equalities u - m', v =- v\ w = w'

U = U', V = V, VV = W.

Otherwise, we have the condition

U cos(",.r) V cosf/î. j) -t- W cos(n, si

U' cos( /('. x) -+̃ V KOfi(n',y) -t- W cos(n', z ) = o

which leads, in particular, to this one

cos(/t, x) -1- v cos( n, y) -+- w cos(/i, -)

-i- a cos("', x) -t- (-' cos( ii'y) +̃ w' cos( rt', z) = o.

With these preliminaries in mind, we will formulate the following hypothesis

In any modification of the system from the state it presents at any time t of its motion, we have the equality

(67) G - /̃ + *" = 5Î - f 52r dm,

7;7

in which

G is the external virtual work,

t, the virtual work of inertia,

and 11 the virtual work of viscosity.



With respect to this last work, we will keep the hypothesis made in the previous chapter and expressed by the equality ( 10) of this chapter.

(G8) 1i = {R -+- <ft' H-,iR" -+-+- R,-t~ R2-+- R3 + SI, S\J A", being the virtual workings of the intrinsic viscosities of the bodies P, P', P", and R, R2, R, being the virtual workings of the viscosities particular to the various surfaces S|, S2, Sa, /?by which these bodies touch each other.

To these hypotheses one may, if one wishes, add the LORD Rayleigh hypothesis, formulated as it was in paragraph 3 of the preceding chapter (pp. 72-73).

Let us first deal with the form of the quantities R(, R2, R3, We will have to change almost nothing from what was said in the previous Chapter (p. 77) to obtain the equality (24) and the inequality (a5) of this Chapter.

If therefore we denote by  and W the components of the virtual velocity ( U, V, W) along two rectangular directions taken in the tangent plane in m to the surface S, then along the same directions, by <ï>' and W the components of the velocity (U', V, W), by 9 and 'i the components of the velocity (u, v, w), finally by "' and ̃V the components of the velocity (u',  *') -i-eci'- V)]rfS, In this formula, II and 0 are two quantities which depend on (cp - a') and (ij< - <V) in such a way as to have continuously, during the course of the motion,

(70) 11c a - cp') e(Jj - V) <o.

Moreover, the two quantities II and (-) depend on the state of the two bodies P, P' which touch each other along the element c/S, We will complete this information by the following hvimithLse The two quantities II and H depend on the state of the body P only by the magnitudes 3, a, (i, which relate to a point M, taken inside the body P, in the vicinity of the element dS" and by the angles which form with the trihedron of orientation dn



the matter at point M the normal n to the element dSt and the two rectangular axes to which the velocities <ï>, a and W, if, are related.  They depend on the state of the body P' only by analogous quantities relative to the point M', taken at C inside the body P', in the vicinity of the element dSt.

Let us now consider the intrinsic viscosity of the body P. We can decompose this body into any number of parts, each of these parts can, as we know, be considered as an independent system, which will allow us to define its intrinsic viscosity. The various parts of the body P remaining welded together during the whole duration of the motion of the system, the virtual work of the intrinsic viscosity of the body P will be the sum of the virtual works of the intrinsic viscosities of its various parts, so small and so numerous as we suppose them.

Let M be a point inside the body P, p a part of the body P, cut in such a way that it contains the point M, tir the volume of the part p, r the virtual work of the viscosity intrinsic to the part/" in a virtual modification of the system, s the infinitesimal fictitious time which serves to define this modification. We will admit the following hypothesis

When the part p tends to vanish at the point M passing through a determined sequence of shapes, the ratio - tends towards a determined limit X which varies in a continuous way with the position of the point JYl inside the body P.

Since the intrinsic viscosity of part p is equal to the sum of the intrinsic viscosities of the subdivisions that can be made in it, it is easily demonstrated that the limit r is independent of the series of figures through which part p passes to vanish at point M.

We see, therefore, that the virtual work of the intrinsic viscosity of the body P can be given by an equality of the form (71) ,'ïl = I tdm.

where the integral extends to the entire volume of the body P.

D. - II.: !̃̃̃̃̃ ';̃ 1.



Let us now specify the nature of the quantity l\

Around the point M, let us take a part p likely to vanish at this point; let rs be the volume of this part. Let us take a part/ of the same figure as the part/ formed of a homogeneous matter whose nature, allotropic state and properties are identical to the nature, allotropic state and properties which allocate, at the point M, the matter/". To the part p', we will attribute a virtual motion thus defined

Each of the non-local velocities L, M, has the same value at all points of part p; this value is the one that this velocity takes at point M of part p.

If M' is the point of the part p' which is homologous to the point M of the part p, the local virtual velocities have the same values U, V, W at the point M and the point M'.

Let M be another point of the part p, where the local virtual velocity is (U,, V,, W, ); let M' be the point of the partp' which is homologous to the point M|, and let (U'l( V' W',) be the local virtual velocity which we imagine at the point M' We will choose this velocity so that we have at any point M,,

ha) tUÎZ,Ut|<",' ^zlll<e, Ï^L=^ll<e, 7?-) -------g---~< ----< -------2---- MM, MM; MM,

e being a positive quantity fixed in advance.

To the part p' we will assign a real motion that analogous conditions link to the real motion of the part/? We will then formulate the following hypotisk

If r and r1 are respectively the virtual works of the intrinsic viscosities of the two parts p, we can take the common volume ro of these two parts small enough to be sure to have the inequality

<*"> l^-|<r"

(73) .E: 1 T"

where 7) is a positive quantity, as small as we want, given in advance.

Moreover, by virtue of equality (7 ), we can always take



the volume m small enough to ensure that we have (74) |4-r|<Y1'

r being the value that this quantity takes at the point M one can thus, by virtue of equalities (73) and (74), take ro small enough so that one is assured of having r

^-r|<2ï)-

This inequality tells us that r is the limit towards which the ratio tends - when the part p' tends to vanish at Em

point M' by passing through any sequence of shapes. This limit, obviously, can depend neither on the volume rs nor on the figure that the part/)' affects.

On the other hand, it is clear that a system of local virtual velocities (U', V, W) can be assigned to the part p' by assigning it an infinitely small homogeneous deformation whose expansion velocities and sliding velocities are given by the equalities

dV E, toW

(~5> Vjx = -r - ) Lv - - J Vjz = - -

(7:>) ôx r /dV dW\ " - dy i/W àV\ 1 àz fdXJ d\ (75,)". =" .(dV -)- --- ) y 2- -ix- -+- -- ); u' 2 y + "- ) ̃2 \àz dy I x\ôx âz ] G" 2 \dy + àx j and combining it with an overall displacement of the part p', formed by an infinitesimally small translation whose virtual velocity has the components u'

U, V, W,

and an infinitely small rotation whose virtual speed has the following components

f Caw av~ ~aU awl 1 (av dU)

2 dy dz ) ->. \dz àx 2 dx dy )'

These local virtual velocities will certainly verify the conditions expressed by the inequalities (72).

We will check in the same way the conditions, analogous to the inequalities (72), imposed on the quantities u', v' w' which play, for the part



p', the role of real velocities, attributing to this part p', as real motion.

1 A homogeneous deformation where the three expansion velocities and the three sliding velocities are given by the equalities

of dv dw

x -t er û3'' e- = -

(76) x ôjc i I àv ûw\ y Oy i !àw àu\ dz i [du dv ~x- t (dl' dw~ g~- t Cdw du\ g, 1 ~du dv ~2~ 2° An overall displacement whose translational velocity has as components

u, v, w,

and whose instantaneous speed of rotation has as components i Idw dv\ i /du dw\ i làv àu\

Cdw dv\ 2- (~7- dsvl t /dv Ty)

̃i \ày dzj' 2\dz dx 2 \dx ày

Let's remember now

i° That the virtual work of viscosity /-' of the body p' is identically zero in any virtual modification which reduces to an overall displacement of this body;

2° That this work does not change in value if one composes with the real movement of the body p another real movement consisting in a simple overall displacement of this body.

We will then easily arrive at the following result The quantity V is of the form

(77) r = (XL -+- OR. M -+-

-~E.x-y~-zE~-2T:G.-2TyGy-XT~Gï).

The quantities i^, OU, vx, vyi vz, -zx, Tj, tz, depend i° on the values taken at point M by the non-local velocities ,"',

2° The values at the same point of the three expansion velocities ex, e'y, ez, and the three sliding velocities g'x, g'}, g'z 3° The temperature £f at the same point;

4" Of the orientation of the matter at this point;



5u Of the quantities a, [ï, which define, at this point, the nature and the state of the body.

In addition, at any point in the system and at any time, the condition

(78) £,r-hCKLm'+-

~xe'x - -jye'y-vze'z- zxxg'x- izygy - i'-zg'z%o 0

is verified.

Let's apply the formulas we have just established to an EXAMPLE.

This example will be provided by the fluid body.

The state of this body is defined when we know, at each point, the density p and the temperature 2f it always remains isotropic. Moreover, the only velocities that we have to consider, both in a virtual displacement and in a real motion, are the local velocities.

This last particularity reduces equality (77) to the form (79) r = - (v.rEJ;+vyEJ,-hvjEs-+-2Ta:G.e+2TyGrH-aT3Gj). The first peculiarity, together with the approximate hypothesis and Lord Rayleigh's hypothesis, allows us to give the quantities v, T, the form already indicated in Chapter XII, equalities (36):

x of the dv tow\ of the

v a dx -t- dy + dz + 2 dx:'

\àx ôy 6,) *àx

l vx, -4- to- z

~=~~+~'

The two coefficients À dp: are functions of p and 3; at any point in the fluid and at any time, they verify the conditions [Chapter XII, condition (22)]

<8') n(p,2r)>o, 3X(p,2r)-+-2n(p,3r)io. We could, now that the equation of motion of the system has been obtained, extend to this system the considerations on usable energy that were outlined in the previous Chapter; we could also extend Hamilton's principle to it; these



extensions presenting no difficulty, we leave it to the reader to make them.


	Amount of heat released by the system.



First form of the Clausius inequality.

The quantity of heat Q released in a real or virtual change of the system is defined by the equality [Chap. IV, equality (4) t. I, p. i57]

(8a) Q = S-hx - SI,

where the letters have their usual meaning.

Equalities (/fj) and (49) give easily

0 W = S S - - - - ̃ - rr1 o3 dxn

J àSl m

J F(~)~Up FI(~) d~(~' d~R~ ..)~ ~nz,

the first integral of the second member extending to all the elements r/ro of the volume occupied by the system, the second to all the elementary masses dm = pdm which compose it.

If we now invoke equality (67) which, at each instant, is verified in any virtual displacement of the system, we find the following equality

(83, q_(S), [_l5.s£-m] *". According to equality (5o), we can write the entropy of the system as

(84) S= /%(&,",?, .)dm,

on the condition that we put J

(85):(& .), (~) dcp(°.1; x; ~3, .) ,t" pF'(':1)

s (2r, a, p, ) dm is then the entropy of the elementary mass dm.  By using equalities (84) and (85), equality (83)



becomes

(86) Q-t- f F(2r)8î(&, 2,3, .)rf/n. = - W.

This equality is true for any virtual or real modification.  In particular, is it the real modification experienced by the system between the instants t and (t ̃+̃ dt)l In this case, the work H of the viscosity is null or negative, and the equality (86) is transformed into the condition

(87) Q +^F(5)rf'f5')rfM>

dt

which is a generalization of one of the Clausius inequalities.  Let us assume, in particular, that the system can neither release nor absorb heat; this assumption includes, as an even more particular case, the one where the system is isolated in space. The previous condition becomes

(88) ~r~(~~ds(~1, ~t~3, ..-)dm>o.

Since K(Sr) is essentially positive, this condition leads to the following proposition

When a system of temperature my UNIFORM experiences a modification, adia/^atique, and that this modification is not isentropic for each of the elementary masses of the system, there is certainly a part of these masses whose entropy grows in this modification. Moreover, for each of the elementary masses to keep an invariable entropy, it would be necessary that the modification was example of any work of viscosity.

It is not allowed, until now, to affirm that the total entropy of a system of NON-uniform temperature cannot decrease in any real modification.


	Mutual actions of two parts of the system.



Let's divide the system in any way into two parts that we will respectively designate by the indices i and By virtue of the equality i'), we can write

(89) i^i.H-f.-Hj,



i?,, 4r2 being respectively the internal potentials of parts i and a, and J|2 being given by the formula

(9°) Ji2= 3C('"> aii 3t, aj, Pj, .a,b,) cfo, efo2, where one of the integrals extends to all elements dm, of part i and where the other integral extends to all elements c/nr2 of part 2.

In any virtual modification of the system, the internal potential experiences a variation given by the equality

(91) Sf = 8i, -h 8i2 -t-ôJiî.

We admit that the function y and its partial derivatives remain finite and continuous as long as the distance /- does not tend to zero; but these quantities can, nevertheless, grow beyond any limit when r tends to zero. It follows that the expression of 3J)2 is easy to form in a general way when parts 1 and 2 do not touch each other at all; it is then, to the nearest sign, the virtual work of the mutual actions of parts 1 and 2. In the case, on the other hand, where these two parts are contiguous, the expression of this quantity may give rise to difficulties which depend on the form of the function y. We shall have an idea of the difficulties which may arise by examining a case*particular ('). This case will be that of the compressible fluid to which equality (5a) and equalities (53) and (53 bis) refer.

Let M, (x{, y,, 3,) be a point inside body 1 and, therefore, outside body 2. Let us consider, at this point, the quantities

v C m>\ P11 Pi) tor

(90.) Y,(i,ri,i) " = -j[ f to>b(r, Jr p., p,) ^yx^dm" dr

l /p.,a..) t)~

Ç 0(r. p,, os) dr

~)=-~---~---

dr zi

(93) "M?". ̃) **lr'?u p2) p, "fa,,

.2 opi

(':) p. ~attFnr, Le~ote~atiel tlaermo,dyaarnique et la pressioit laydrostategye, ( ) P. OutiBM, Le potentiel thermodynamique et la pression hydrostatique, Cliap. III {Annales de l'École Normale supérieure, 3" série, t. X, i8y3, p. 2i3).



where the integrals extend to all elementary volumes of part 2.

These quantities exist certainly in all the space outside the body 2 they vary in a continuous way with the coordinates x,, y,, 5) of the point M, moreover, if we pose

(94) Vi(xuyt,*i) = ty(r, plt ?2)o2 efo2,

~2

we have

I dVs x h "p*

= X2-,)i

av 2 Y, IP2

(95) ~---

dV2 Zz dp2

ÔV2 ==_z Z2 ~;¡"'2

àz, 2 ds,

Do these various propositions remain correct when the point Mt is placed on the surface of separation of bodies 1 and 2?  Do they remain constantly correct if we suppose that body 1 is surrounded on all sides by body 2 and that it tends to vanish at one of its points? These are questions that would be impossible to answer if we did not make certain assumptions about the function 'l(r, p, 0').

PitKMiÈiiE HYPOTHÈSE. Let M(x, y, z) be any point of the system; let M' (a; y', z') be any other point of the whole system or of a given part of the system, part 2 for example; let (x, y, z) be a function which remains finite in the whole extent of the system whatever this function is, we can always surround the point M with a small enough sur/ace S so that we have

(96) d'J(r'. P,, P'> <

~96) a(~ ~;Y', y )= or c~in G E,

s being a positive quantity, as small as one wishes, given in advance; the integral extends to all the elements dm' of the system which are included between the surface S and another surface S', interior to S, and which also surrounds the point M, or else to those of these elements which belong to part 2.

Second hypothesish. We can always circle the point M



of an over/under area S small enough to have

(97) (.> J,~(r'~a,J)dni`<<i~

7| being a positive quantity, as small as one wishes, given in advance; the integral extends to all the elements dm' of the system which are included between the surface S and a surface S' defined as in the preceding hypothesis, or else to those of these elements which belong to part 2. It could very well happen that these assumptions are not verified or that one of them is not verified.

Suppose, for example, that the function A(r, 0, p') is of the form

(98) +('p.?') = !)'

p being a positive number.

If p is less than 3, this form can be adopted as we have seen in paragraph 2 (p. 102). A demonstration very similar to the one we gave in this paragraph will prove that condition (97) is verified for any value of p less than 3: but the same may not be true of condition (96); this one, which can be written

(99) p fH^y')f~ hrr?'< <£>

will certainly be verified in the case where p is less than 2, but if p were equal to or greater than 2, it would be sufficient to take '(' z') 1

~)=77(~'

then the considerations which will be developed in the continuation of this Chapter would cease to be applicable to the system, while all that precedes would continue to be able to be affirmed of this same system.

In condition (96), which we will now assume to be true, we are allowed to give the function X(a?', y1, z') each



of the three determinations

àr Or dr

dx <ty toz

Therefore, our hypotheses easily lead to the following results

Each of the three quantities X.2(x,,y,,, z,), Y2(x),,Xi,s,), Z2(xt, y,,, zt), defined by the equalities (g2), and the quantity X2(x,,y,, z,), defined by the equality (g3), exist, whether the point M, (x, y,, z,) is outside of the part 2 of the system, on the surface which bounds this part or inside V of this part; when the point M((a?,, y,, z,) moves in any way in a region of space where pi is a continuous function of x,,y,, z{, these four quantities vary continuously.

This proposition remains true in the case where part a comprises the entire system, in which case we would denote the four functions under consideration by the symbols Xi, Y, '̃'ii <&>i-

If part 1 reduces to an infinitely small volume that tends to vanish at point M.(x, y, z), the quantities M2(^( ,yt>z{), Y^x^y^z,), Zt(xuxt, z,), A-i(xt,yuz,), relative to any point Mi (x,,y,, z{) of this volume, tend respectively and in a uniform way to Xi(x, y, z), Yj(x,y, s), Zt(x,y,z), Xi(x,y,z).

We will again subject the system studied to a new restriction

Troisikme ii-YPOTiiksE. Let

M,(x,,y,, s.) a point of the studied system;

S a closed surface that surrounds the point M,

M', (a; y\, z) a point inside the surface S and infinitely close to the point M 1

M' (a;,)' z') is any point of the system (or of the part 2 of the system) which lies inside the surface S; If the point M, (x,, y,, z,) lies in a region where the density p,= p(a- y,, s,) varies in a continuous way, and



where its partial derivatives -) `~ existzt el derneurent t d.x, ~[ dal

fdrzic.s, orz peczt prerzclre the sut face S restricted enough to be assured of having

(100) U~i

M,M', Il

f;'rz this inequality, is a positive quantity, as small as we want, given in advance, and we have

U ( x ~>m, z O =Ut= ~('r,,p),p')~

( 10 1) I UOxi'Yi,zu)=Un=.l .) U', = '~(r'i,Py,P~)dnt', = M~F, 7', = M', M\

It is not idle to postulate explicitly this hypothesis, because it would still be easy to show by examples that certain forms attributed to the function 'L(/ p, p') would put it in default.

From the three hypotheses we have just formulated, we will deduce the following consequence

If, in the vicinity of the point Mj~t, -), the density pt(~t,~j, z, ) admits partial derivatives of the first order which are° fcrzies, the function V~ (x,~ y,, z, ) admits, too, partial derivatives of the first order, and the orz a '~i av2 ~1

LaV,2, > dx

.oz, i

(g5'bis) dV2 _Yz-Qd°' 1

(,~j~ < .:=: 2-û-t)2~'

d -

dz, ~t~)

This proposal extends cztc cases where the part 2 is confused with the whole system.

Let us take, around the point M,(Xli y,, z,), a surface S restricted enough so that the condition (too) is verified whatever the point 1V1?1 infinitely close to the point MI, which we take inside this surface. Let us choose this point 1V1' on a parallel



to the x-axis led by the point M (we will pose x'- X\ = Aa;

so that we will have

Aa?, | = M, M,.

We can write

Vi(a?i,J'i,ii) = U(ar1,-Xi,*1) -H W(xu yu a, ),

Vs(a?t + kxuyu i) = U(.r, -+- h.xuyu z,) -+- W(>, -+- à.xt,yu ,), the function ~SSf {xK,y^, z, ) being defined by an equality analogous to the equality (ioi) which defines the function JJ(x,,yt, s,), but with this difference that in the function W(ar1 yu zt ), the integral extends to all elementary masses dm! of the system (or part 2 of the system) which are outside the surface S. The previous equalities give us this new equality ^9(^1-+- Aa?1,iyi.g|) -Vj(a-|,7i. zt)

10~ 'x

Vi(~i- A.r, Y\, Si ) - Ufrhji.^i)

=

i W(.r, Aa;i V\ zt ') ̃ Wl'.r, x, zx ) -

A37,

By hypothesis, we have the inequality

(i o3) V(x,-h \r,.y,. z,) - }lri,ruz,)

10 toxl < E,

On the other hand, the function W(.z'(, y\,zi ) surely admits, with respect to x, a derivative which can be calculated according to the rule of dilferentiation under the sign we can thus take M,M'( small enough so that we are assured to have

(io4 ) j -jr Wi dm oxi J a~-, dx,

_£i f^!lilhlldin: <g.

~) J dPI 111 E,

the integrals extending to all elementary masses dm' of the system (or of the part a of the system) which are outside the surface S.



But, by virtue of the assumptions which entail the existence of the functions Xo, *X>2, we could, in advance, choose the surface S small enough so that we are assured of having the two inequalities ~(,p~)~ < a,

(.05) j J °ri °Xi clm-+ 1 2 1<" c,

(10:) ) tolL x f^Jllllï2dm'+^ <e,

ÛXi J Op,

the integrals having, in these two inequalities, the same meaning as in the inequality (io/j).

Equality (102), together with inequalities (io3), (104) and (io5), shows us that we can always surround point M with a rather small surface S and, inside this surface, on a parallel to point M, take a point M', close enough to point M, so that we are sure to have the inequality

1 06) Vj(a?i+ àxuyu z,) - V2(.rt, yu zt)

(tog) IVsOx,,+'~xt,.Y,,z,)-Vs~~T,Y,>zt)

AXI

-t-X2~a-t,~i,-St)-t-(~t,~i,~t)-~ 1< 4e,

4 s being a positive quantity, as small as we want, given in advance.

Now the value of the first member of this inequality (to6) does not depend in any way on the shape of the surface S, so it suffices to say that this inequality is verified for any value of Axi sufficiently small in absolute value. This proposition then justifies the first of the three equalities (g5 bis). The last two are susceptible of a similar justification. Let us now consider the quantity

(107) J 12 = j i/(r,çuo%)dmxdmt,

particular form of the quantity J,2 defined by the equality (90).  Let us look for the variation it experiences in a virtual modification of the system.

In such a modification, the elementary mass dm, remains invariable a point of this mass undergoes a displacement of which ô"(, oyt, 8s, are the components; its density undergoes a variation 3 p 1 The elementary mass dm2 gives rise to ana-



logues. It is then easy to see that

(to8) ~J,2 .l, 0. f -- -;-a/7t.t-0~ f -----"/M: l W

/t'

"t-Û~! /-------ût//t:

--i- 2 dr ~zl dl)Z2


	ôP, - din., d,7t,



-4 2 d;- '7

f t oa'2 < - -- dnzl+ ~X2 < -- dnz,

.7.; 2 1 < ~-2 c'

-)-0~! /----dTK)

1

-)- ôP z, d~ ) dnzZ,

1 p- 7

or by virtue of the equalities (92) and (g3), and similar equalities obtained by permuting the indices 1 and 2,

(109) SJ~=-~[X2(.rt,~),~i)Sa-t

-Yz(xu.Yt, zt)~.Yt+ Zz(xaY~, zt) 8z,

-t(a'i)8ptj~"t 1

-/[X~)M~

2

-t-Y)(~8~t-Zi(~2,~s)S~

-)- J~t(~)~2~ ~2) °p2] dinz.

We will say that the elementary mass dn2, experiences, from the pctz^t of part 2 dzc system, a force of which X2 dm,, Y2 <~M), Z~ drri, sozzt the components, and an action dt9~ dçzt, which tends to acc/'o~g~<Xf~e/t<e. The mass elemerztczire dm2' experiences, from the ptcrtie r, analogous actions. The quantity rJJ,2 is the sum of the virtual work of the actions thus exerted by /<Xjc'6t/'<t'ea ~M/e~ various elements of part t and of the work f<<M6~<r/~(XC</o/e.ce/'ceM~aA' the part i on the various element~ of part 2.

We would have the same for the whole system,

10) `~'J ~~(r'P'P~)dmdrri

=-y[X,(~)Sa--+-Y,(.<)o~+Z,(~)8~

d + o4~a{x, y, z) sP~ dnr,



each of the integrals extending to all the elementary masses of the system. The quantities Xidin, Y,- dm, "Lidrn are said to be components of the force, internal to the system, which solicits the elementary mass dm; similarly, idm is called the action, internal to the system, which tends to increase the density of this ele.ment.

We have just, in a particular case, found the form of the quantity S Jf and, for this, we had to subject the system under study to certain hypothetical restrictions. We shall now return to general considerations and, for this purpose, formulate, about the systems we are going to study, hypotheses such that 5J(2 takes a form similar to the one we have just determined.

Let i and 2 be the two parts into which the system is supposed to be divided in a virtual modification imposed on the system, a point M of the elementary mass dm experiences an infinitely small displacement of which ôx, oy, Sa are the components. We will suppose that we have made, concerning the studied system, hypotheses such that we can write

(1 m) oJis -- J\ (Xtoxi-i- Y2 ojKt -+- Z2 3", -+̃ FjXi-H H" fi! -h. --) dmt ~t


	I (X, 8a?s-t- Y, 8/2 -i- Z, S.aï-4-F,X2H- H^-K ..)dm2.



In this integral, Jes quantities p., are infinitely small quantities in limited number these quantities are supposed entirely known, when one knows how vary, in the considered virtual modification

r° The orientation of the matter at a point of the element dm a" The point quantities, other than temperature, which appear in the definition of the system at this point;

3° The three components along the axes of the orientation trihedron of each of the vectors that appear in the definition of the system at this point.

It can happen that some of the infinitely small quantities X |ji, are independent of the quantities 8a?, S_y, ùz and their derivatives it can also happen that some of these quantities are



related to the distribution of the quantities ùx, 3/, àz in the space occupied by the system.

Thus, in the particular case we have just studied, there is only one quantity analogous to a, ;j., that is the quantity -> d3x Ooy àoz'\

ta, which has the value - i i I f)x Oy - ~- dz )̃

o ¡)x c~ d~/

Similarly, in the study of elasticity, one may have to introduce, among the quantities 1, [x, the three dilations ex, ey, ez and the three slippages gx, gr, gz at a point of the element dm or these six quantities are given by the equalities [Chap. III, equalities (4o6"), t. J, p. i38]

P;x to S x ùZy OZz y

ex=L-~-, ev= - - > ez=--> >

<),c tty toz

i /ôoz r)%y\ ` I /dô.r ùoz\ f to oy to 
  
    Unknown 
    
  




  













small so that inequality (go) leads to inequality (91) but then it will lead a fortiori to condition (90), so that the stability of the third form will be assured.

The stability of the third form can thus be considered as a consequence of either the stability of the first form or the stability of the second form. Hence the following corollaries Any condition which is sufficient to ensure that a system has second-form thermal stability is also sufficient to ensure/' third-form thermal stability any condition which is sufficient, by means of the choice of a certain function <ï> (0, se, y, s), to ensure that the system has first-form thermal stability is also sufficient, by means of the choice of the same function  (%, x, y, z), to ensure that it has third-form thermal stability. Any condition necessary for the system to possess, by choosing a certain function $(Q,x,y,z), the thermal stability of third form, is also necessary for it to possess, by choosing the same function $ ((-),x,y,s), the thermal stability of first form it is also necessary for it to possess the thermal stability of second form.

In the foregoing, we have constantly considered the stability of thermal equilibrium; we could have considered exactly the same stability, with respect to a perturbation of the initial conditions, of a thermal motion corresponding to given boundary conditions; it would have sufficed, in all our definitions and in all our reasoning, to substitute for the equilibrium temperature S {x,y,z) the temperature 2r(x)tr, z, t) which corresponds to this motion. All the propositions demonstrated in this paragraph extend to the stability of a thermal motion.


	Sufficient condition for the stability of the thermal equilibrium and motion.



If we adopt the first definition of stability and determine the gap by means of the function <ï> (0) = (")2, we can state the following theorem



It is sufficient that the quadratic form (10) is a positive definite form for any thermal motion corresponding to given boundary conditions to be a stable motion; this theorem applies, in particular, to thermal equilibrium.

From what we have seen in the previous paragraph, we can substitute the function pv(-)- for the function 02 to determine the gap.  Assuming therefore that the form (10) is a positive definite form, we need to justify the following proposition Since any positive quantity A is given, we can find a positive quantity Ao small enough so that the inequality < ~ô clr~ 5 a1~>

verified at time /", leads, whatever t is, to the accuracy of the condition

U = fy-'Q- dm ̃ A.

We can rewrite here, as we can see, the equalities (73) and (80), which give us

~u of ()e ," de\

(94 ) dt ° a (F.~ ~® + Fy + F~ d~ ) da

(94) jj¡ .i r)x + F Y dy + F z dm

or, according to the notation introduced by equality (81), (95) §=-

The quadratic form (10) being a positive definite form, E can never be negative and can never be positive the quantity U can thus, for no value of t, exceed its initial value so that it can never exceed the given quantity A, it is enough to take for Ao a quantity at most equal to A. The stated proposition is thus demonstrated.

From what we saw in the previous paragraph, the condition formulated is still sufficient to ensure the stability of the equilibrium and motion, if we use the third form to define this stability.




	Necessary condition for the stability of the equilibrium



and thermal movement.

The preceding theorem admits of a kind of reciprocal; but the demonstration of this reciprocal is subordinated to a certain assumption about the form of the conductivity equations, although this assumption is frequently admitted, we have been anxious not to formulate it until now, in order to better show that all that precedes is independent of it. Here is this assumption Hypothesis. Between the nine conductivity coefficients of a medium, we have the three relations

(96) B3=Ca, C1=A3, A,= B,

which reduce them to six (').

If we compare equalities (1) and (4o), we can easily see that equalities (96) are equivalent to the following equalities

(97) dV dD =-2 y~ àD

{97) à^iîx' , "0 2/y' .&~ 2/ï'

dT- dT- d~r

ox oy oz

(' ) After having written, by means of nine distinct coefficients, the equations of the conductivity of heat in an anisotropic medium, Lamé introduces the equalities (96) which he considers as characterizing what he calls symmetrical equality. To suppose the existence of these three identities or of this symmetrical equality," he says, "is thus to restrict the generality of the question treated, as if one were establishing, hypothetically, three new relations between nine coefficients which, generally speaking,1 can all be distinct. Nevertheless, as this restriction seems to be in agreement with physical phenomena, for almost all crystalline media, it is appropriate to treat the case it implies in particular. "(Lamé, Leçons sur la théorie analytique de la chaleur, Première Leçon, § VIII, i86i, p. i 1 )'. G.  -G. Stokes, on the contrary, admitted at once, as entirely general, the equalities (96). [G. -G. Stokes, On the Conduction 0/ Hèat in Crystals ( Cambridge and Dublin Mathematical Journal, Vol. VI, Nov. i85i, p. 2i5; Mathematical and Pliysical Papers. Vol. III, p. so3)]. G. Kirchhoff does not introduce the relations (96) between the nine coefficients of conductivity! which he leaves independent of each other (G. Kirchroff, Vorlesungen iiber die Théorie der Wârme, 1894,: p. 9, !fi-bo). M. Boussinesq admits the existence of nine distinct coefficients of conductivity, which are reduced to six in the case where the medium admits three rectangular planes of metrie and in this case only ( J. BoussiNESQ, Théorie analytique de la chaleur, t. I, 1901, p. n5 et 126).  ). M" W. Voigt shares this opinion (W. Voigt, Thermodynamik, Bd. I, 190'i, pp. 23-24; Lehrbuch der Kristalphysik, 1910, p. 370).



Once this hypothesis is admitted, we will prove the following theorem (*)

If the quadratic form (10) is likely to take negative values, all the thermal movements that can occur on the system are unstable for initial perturbations that do not alter the boundary conditions. This is particularly true for thermal equilibrium. This proposition is valid for all three forms of stability definition; it only assumes that the deviation is determined by means of the function

<1'(B, x.y.z) = 62.

According to what we said in the previous paragraph (p. 20a), we only need to establish this theorem by adopting the third definition of stability. In addition, we can substitute the function (")2 for the function pyB-, which leads us to define the deviation at time t by the value of the expression

(7-1,1 U = f 07 1)2 dm.

-t- is given by the equality (fp), from which we derive

dï] dE <y2H 0 toE to* 6 toE ^6 0

df ( ~ïïë ôJ'Jt ~^àë dydt + ~oë dz àt ™'

dt2 J dx dx dt + ày 0y )t + ~ùz of J dw.

Now, the equalities (76), (Si'j and (96) lead to the equalities

J2L- ,F 0K ,F dE ,F

.d~ aT~.x-, d0 --zFy.,

()-- 0- ()-

ùx r)y nz

analogous to the equalities (97) we have

~U ~/c- J2o- c. d ~e

(s~) d2 IJ = a. (F.~dxdc-+t^a,-dr+r~dzda~<t~s

(î'8; IF = \i V'o-^t + ^-êy-Jt + ¥>ô77t) d™

". fj

/dF.. dF,.

.iéT dTi,x dTz dl~ )

4~1 r~t ( âx d~; .J. d~.

(') Hicri-e Diiiiem, On the equilibrium, temperature of an invariable body and the



But, at any point of the surface a-, and whatever t is, we have either

equality (79), or equality (80); at any point inside the system, we have equality (77); equality (98) can thus be written

(99) -& = ij ?̃' (ji) dm-

1 results from this equality (99) that -r- cannot be negative for

no value of t - can, for any value of t, be a decreasing function of t.

S. Ib .d l,' f d du

If the perturbation given at time t = o causes -r- to take a

positive value U'o, du will remain, whatever t is, at least equal to U'o and the quantity U will grow beyond any limit at the same time as t.

Now, if the quadratic form (io) can take a negative value (i.e., a positive value), then it is possible to take a positive value (io).

tive, one can, and in an infinite number of ways, impose a perturbation on the system that makes the initial value U'o of -?-̃ positive. Let us denote by P (X, Y, Z) the quadratic form (to).

Suppose that at a certain point m of the system, and for a

certain group S, r,, of values of X, Y, Z, we have

(100) P(Ê,i],Ç)<o.

We can always assume that we have

S2 ~2 S2 I l,

which will allow to look at ç, as the directing cosines of a certain half-line d coming from the point m.

For continuity, we can surround the point m with a

domain W at any point where the inequality (100) is verified. In this domain, we have

(101) P(~5)=-L,

L being a positive and finite quantity.

stability of this equilibrium (Journal de Mathématiques pures et appliquées, 6" série, t. I, J90D, p. 7^). The following demonstration is imitated from those given by M. Liapounoff and M. Hadamarcl for mechanical equilibrium, demonstrations which we will discuss in Chapter XVII.

Chapter XVII.



In this domain, if we give X, Y, Z all the possible values linked together by the relation

X2-+- Y2-t~ yj - i,

the absolute value of P(X, Y, Z) admits an upper bound K (102) |P(X, Y.Zj|<K.

Inside the domain VV, let us construct a closed surface as follows

By: the point, m (fig. 2), let us lead a plane area fl normal to the half-line d and limited by a convex contour

Fig. 2.

Let us project the area H orlhogonally on two planes parallel to the plane TI, equidistant from the plane II, and situated at a distance A from the latter; let II, l'l2, be the two projections.

Let us then take a semicircle of radius A and move it in such a way that its center describes the contour t of area II, while its plane remains constantly normal to this contour

We will name c the volume generated by this semicircle; /̃ will be the shortest distance from a point (x,y, z) of the volume c to the contour l; r will be between o and A furthermore, if we denote by a, j'i, the directing cosines of this shortest distance, oriented from the contour 1 to the point (x, y, z-), we 11. II.



will have

'~L- -~ ~-

(10"") i dr x, dr = 0, dr

dx J 1-' c)~ ¡'

We will designate by V the volume of the right cylinder which has for bases II,, lti. If (.x, y, is a point of this cylinder, we will designate by 3 the distance from the plane H to this point, distance counted positively in the direction of the half-line d; we will have

dd r dô d? r

(IO4J - = =Y), - = t.

y àx oy -:q, àz

We will name '^(3) a function that verifies your following properties

The function 'i(o) is defined between the values at and A of the variable in this interval, it is a finite and continuous function of o, as is its first derivative 'V(2); its second derivative, Y is finite.

In this interval, the function 'i(o) is an even function of 3.

We finally have

( 6'(i) = o, 6'(- i) = o. ()

j ~(~=0, ~(-0,

¡ ~'(~) = 0. ~'(- ~) = f.

If (z,y, z) is a point of the volume V, we will pose at this point

doii) H,, -lit).

y being ijan independent quantilé of x, y, s; we will thus have, at this point, by virtue of the equalities (iu/j),

d8~ '(a)' d80 l' (a) d l'

(-07; .-ô£=-7.W>1 -jf = ̃¥<). ^^yA'(5)K. If (x, y, z) is a point of the volume v, we will pose, at this point,

(106 bii) eo_- y ̃{/(̃;-

we will have, at this point, according to the equalities (io3), dHu d80 () dHo

(~o; bis) ~x = ~'(~ = ,i,~(,.)3 ,1' ( 1'1 '(.



Finally, at any point of the system, outside the volumes V and v, we will pose

(106 ter) 0O = o

and, therefore,

de0 <#>" e>e,,

v (ro7 ter) <jx = o, oy = o. - dz - = o.

rlx 0, dy ci~ 0.

If we take into account the equalities (ioo), we will easily see that the quantities (-)", - -A - are continuous in the whole range 1 ôx <)y ùz

of the system; as for the partial derivatives of the second order of €>", they admit certain surfaces of discontinuity, but they are everywhere finite. The legitimacy of the various equalities we have used could have been revoked in doubt if these conditions had not been fulfilled.

The value of ]'o is derived from equality (<)̃)) by virtue of equalities (107), (10- bis), (107 ter), this value is as follows (.08) Ui ==-"/." j fwtf)*P(l,-rl.r)dV + /'[4-'(/-)J1P(a,p,v)rfJ. ( >A ~v

In the quantity between brackets, the first term is surely negative, by virtue of the inequality (102) the sign of the second term is unknown. But we shall see that we can arrange A in such a way that the first term surely gives its sign to the quantity in brackets.

Without changing either the point in or the area 11, let us replace the distance A by a new distance A, = where p is a positive number and greater than 1. Using this distance, let us construct two volumes Y,, p,, analogous to the volumes V, v.

To any point M of the volume V, we will make correspond a point M, of the volume V, which has the same projection on the plane H, and which is at a distance o, = this transformation will make corres-

to the element dV of the volume V an element dV, = - of the t~j P

volume V,. 1)

To any point M of the volume c, we will make correspond a



point MI of the volume f) which has the same projection on the contour and which is at a distance r, 0 from it to the element dv of the volume v, this transformation will make correspond an element clv, of the volume v,, and it is easy to see that dv, = } P°t, being a quantity always greater than i when the contour is convex, as we have supposed.

To the function we will substitute a new function A, (6,), such that

<~(0t)==~(o).

To the quantity U, will correspond an analogous quantity (U.)t==-2~j/'[~(o~]~P~(~i:)~V~f)~(~)]~Pt~,p,Y)~, ¡ v, ,Jv, which the preceding remarks allow to write

(u.)~jy[~'(8)pp.(~r~)~v+~y~'(7.)]~L Between braces, the first term is negative by virtue of condition (ior), its absolute value cannot be less than the quantity L J'[~'(~"=dv

L/'[<(3)j~V

which does not depend on p.

The second term has an unknown sign; but, by virtue of condition (~02), its absolute value cannot exceed the quantity 1

h~[Y'(r)~idv

where the coefficient of does not depend on 1,.

p

It is therefore sufficient that we take

IC J, [v'(i,))'-dv

1~ ~[~L',(~)1=dv'

v

so that the quantity (U;))I is definitely positive. Leaving aside the now useless index a, we see that we can choose the distance A and the function so that



that the perturbation defined by the equalities (106), (106 bis), (106 1er) makes U'o take a positive value, and this whatever y is. Such a perturbation will determine a deviation U at time t which will grow indefinitely with t.

But, on the other hand, however small the positive quantity a0 may be, we can choose y small enough so that this perturbation verifies, at any point, the condition

0gao'

It is therefore certain that the thermal motion of the system is unstable for certain appropriately chosen initial perturbations, as we had announced.


	Additional relations relating to the motion of fluid bodies.



The study of thermal equilibrium and motion in an invariant system has provided us with a first and important application of the principles laid down in the first two paragraphs of this Chapter; we shall give a second application by deducing from this study the additional relations that must be written in order to determine the laws of motion of a fluid system.

Let us first consider a continuous fluid and, at time t, a point (x, y, z) inside this fluid.

A fluid being an isotropic medium, we must, at the point (x,y,z) and at the instant write the equality (3i), after having replaced L there by the value which is appropriate to this particular case. The point (x,v,z) is in an element of volume dis, whose mass is c/m= prfnr and entropy <sdm; in time dt, the intrinsic viscosity of this element performs a work V dm, and, according to equality (167) of the preceding Chapter, this element gives off a quantity of heat

:= - F(?j)p f-Ç- dl -+- r dm.

Comparing this equality with equality (21) gives (109) fLrf( = l'(2r)?^rf( + t.



The function a (i~, .°.~) can be transformed into a function ~(~, 2r) if the specific volume M ==-- is substituted for the density.

dcr(p,5') l (/~((D,5) l

(l~~lt~~)dt ds(dt~)clt.

Moreover, if we designate by /(M,5), y(w,3') the heat of expansion and the specific heat under constant volume of the fluid, the equalities (76), (77), (78) of Chapter X (t. I, p. 423) give F ds(w, ~) l 0..) dw ,( lu> ch

f ) dt ( ) dt '( ) ~t

or, because of the equality

dw do

dt' i ;2 dt,

(-0) )' ~,(c~)da(p,~) l(co,~) do + ca, _d'~

110 ..J. dt pj dt Y( ) ctt

If we designate, moreover, by u, v, w the components of the velocity of the fluid at the point (x, y, z), at the time t, the well-known formulas give

dp op <)p op dp

dt dt 1 ox + v dy + oz'

( I z > ) dâ d2r ï3~ eu

dt dt+udx+~~d Twda'

~=-d7~

if Z dm is the dissipative function of the viscosities intrinsic to the f/E! element, we will have, according to equality (25) of Chapter XII, (n2) r==-2Z</<,

and according to equality (40) of the same Chapter,

of the df ()w\~

(n3) Z=--L:--(--+---+--r-

2 dx y +

o ~) L/du)'-+ /w )'-+ Cdw\Z

[ (FX FY 7)-7

1 (dw dv\~ i ~dz~ dw)a

y 7 J + z + dx

r /dv av dMYI

2 (7;, Ty)

~2\d~ d,Y lj



By virtue of equalities (109), (110), (111), (112), equality (31) becomes

d/

) - K--)-(--(K-)-+--(K-)

(~~ d~/ < z

l (dp dp <)p do

-+- ( - -i- "H - r- Ct-ic )'

p Ot -i- Ox u ôy v Oz l

(àjj dri (fy à?j


	57 - - 1 - - a + - h - - w -+- >.L = o.



7, + (J-x u toy- 1 ,z w -+- Z = O.

Ot <lx dy Oz ]

Z being given by the equality (1 i3).

This relation was first given by G. Kirchliofr('); but the illustrious physicist had admitted it without attaching it to any precise definition of the quantity of heat given off by each part of a viscous system. The assumption made by G. Kirchhofl' was therefore revoked by M. C. Neumann (2), who gave the additional relation a form analogous to that which would be produced by the equality (1 i/j) if the dissipative function Z were removed.

The form proposed as general by M. C. Neumann coincides, of course, with the one proposed by G. Kirchkoff in the case where the fluid is devoid of viscosity. It is to this case that G. Kirchhoff had limited himself, in an older work (3).

Fourier had already tried to form, in the hypothesis of caloric, an analogous relation (' ).

Let us now take a point situated on the surface S)2 by which two different fluids 1 and a are contiguous to each other and slide over each other. At this point we must write the equality (32); (') G. KntciniOKF, Vorlesungen iiber die Tkeori.a der Wàrme, herausgegeben von D' Max Planck, XI1' Vorlcsung, § 3, Leipzig, r 89^ p. 118.

(') C. ÏS'bumann, Ueber die Beivegung der Wàrme in compressibeln oder riuck incompressibeln FliisûgkeUen, §1, equality (i3) {Berichte der Sdchsischen Gesellschaft der Wissenschaften zu Leipzig, 8 January i8<)4).

(3) G. Kutciiitoi'F, Ueber den Rinjluss der Wtirmeleitung in einein Gase au/ die Schallbewegung ( Pngge.ndorfp% Annalen der Physik und C hernie, lîd. CXXA1V, 18W. - Kiiigiiiioff, Gesanimeltc Abhandlungén, Berlin, 1882, p. 54o). ).

(*) PouniKR, Mémoire d'Analyse sur le mouvement de la chaleur dans les fluides, read at the Académie des Sciences on September 1850 (Mémoires de l'Académie des Sciences, t. XII, iS33, pp. 5o7-i3o; Œuvres de Fourier, published by G. Darboux, t., II, Paris, 189", pp. ïip-Gi/i ).



moreover, the equalities (26) of Chapter XIII teach us that H and <d have for expressions, whatever the bodies 1 and a, ( 1 15 ) < ( II = - £(, - i) - 011 OF1-"F,

| e = - has (, - ,)- 3t.("Ti-v2),

4^, Oit, X being functions of the state of the two bodies in contact, which verify the conditions [Chap. XII, conditions (27)] f~O, .~=0,

(l £X - 01t2âo.

In the surface element dSt->, during the time dt, the real work of the viscosity is


	[ £ ( <1>, - j j2 -J- ï Oit (<î>! >t>, C T - M ̃ ) -4- X ("F 1 - <l-8 )2 ] rfS l2 rf;. The isotropy of the two fluids requires that the magnitude of this work depends on the magnitude of the relative velocity of which (<I'i -



2) and pF, - M "2) are the components, but not of the direction that this velocity affects in the tangent plane to the surface S)2- It is necessary and sufficient for this that we have

(~ r7) ~==~=/(pt,p2,3),

( Oit = 0,

/(pi> pat 2f) being a viscosity coefficient that can only be zero or positive.

Equalities (iiî), (116), (-) give equality (Sa) the form u.8) K,J^Ks^-+-/(p1,p2,&)[(1-i!) "M-(:*F1-W3)î] = o which can still be written, as can be seen without difficulty,

(iiSbis) Ki h K3

2

-r-/(p,.p,, &)[(".,-"2)M- (t'('2)2+ (IV!- ".,)"] = 0. This relation is due to G. Kjrcliholl' (' ).

( ) G. Kirchiioff, Vorlesungen iïber die Théorie der Wàrme, herausgegeben "on D' Max Planuk, Leipzig, 189^, XI" Vorlesung, § i, p. 121,



CHAPTER XVI.

THE STABILITY OF THE EQUILIBRIUM AND THE CONDITIONS THAT ARE SUFFICIENT TO ENSURE IT.

i. Recall the concept of usable energy and the circumstances in which such energy exists. Classification of these circumstances.

The study of the stability of the thermal equilibrium, much simpler than the study of the stability of the mechanical equilibrium, naturally prepares the latter, which will now occupy us.

The only systems and motions for which we can approach the study of the stability of mechanical equilibrium are those for which there is usable energy; let us therefore briefly recall here what these systems are and what these motions are.

first of all, there are (Gliap. XII, § 3, p. 35) systems which admit a usable energy whatever the additional conditions imposed on them and even when no additional conditions are given. Such systems can only be composed of two kinds of bodies

i" Bodies whose definition does not take into account the temperature

2" Bodies of which each, taken in isolation, is a tropical hermo-i se n isoI system.

The usable energy of such a system is the sum of

t" Of the internal energy of each of the parts of the first category;



̃j." Of the temperature-independent term contained in the internal energy of each of the parts of the second category 3" Of the potential of the mutual actions of the various parts of the system.

It should be noted that in such a system, the study of the motion is entirely independent of the study of the variation of the temperature. The study of the mechanical stability will therefore not lead to any conclusion concerning the thermal stability, which should be studied separately.

Secondly, there are systems that admit usable energy by virtue of the additional conditions imposed on them.

These systems can be classified into three categories. Systems of the first category may contain parts similar to those that form systems whose usable energy exists by itself; these parts then contribute to the usable energy a contingent similar to that which they would provide in a system where the usable energy would exist by itself. In order not to complicate our statements unnecessarily, let us suppose that these parts do not exist.

Jn system of the first category can then contain only two kinds of parts (Chap. XII, § 3, p. 3^, and Chap. XIII, §4, p. 8,):

i° Parts, each of which has a uniform temperature that remains invariant during the whole duration of the motion; -j.° Parts, each of which has a uniform temperature, but variable from one moment to the next, and an entropy whose value depends only on this temperature.

Among the parts of the latter kind, we must include, in particular, any part of uniform temperature whose entropy remains invariant during the whole duration of the motion. This case, however particular it may be, is the only one which, in applications, offers any interest. Also, in order not to complicate our presentation unnecessarily, we shall leave aside the general case and limit ourselves to considering this particular case.



The usable energy is then the sum:

i" The internal potential of each of the first parts; 2" The internal energy of each of the second parts; 3° The potential of the mutual actions of all these parts. The methods explained in Chapter XIV allow, moreover, to extend these propositions to a system whose temperature would vary from one point to another in a continuous manner, provided that the parts which compose it can be classified as follows

i" Elementary masses, each of which keeps an invariable temperature during the whole movement;

2° Elementary masses, each of which keeps, during the whole duration of the movement, an invariable entropy.

Each of these masses must be, in addition,

Or independent of the rest of the system;

Or welded to the rest of the system;

Or in contact with the rest of the system by a surface along which the slides are free of any viscosity. The formation of the usable energy is still given by the rule which was formulated a moment ago, provided that we take, where appropriate, the word sum in the sense of integral. The existence of systems of the second category follows from the remark made at the end of paragraph 3 of Chapter XII, pp. 3^-38) and from the generalization that can be made of this remark by means of the methods explained in Chapters XIII and XIV. A system of the second category is a system which cannot, in any virtual modification, give off heat. This system is independent of external bodies, or it is welded to them, or finally, if it slides in contact with them, this sliding is free of any viscosity.

The usable energy of such an adiabatic system merges with the internal energy of the same system. Moreover, in this case, the useful mechanical effect of a real modification is always exactly equal to the decrease that the usable energy experiences by the effect of this modification.

One can obviously build a category system



mixed by associating to a system of the first category one or more bodies each of which is in the same conditions as an adiabatic system of the second category. It will not be necessary to insist on the subject of these mixed systems, the study of the systems of the first two categories will easily teach us what to say about them.

Among the systems that admit usable energy by virtue of the additional conditions imposed on them, there is a third category; the systems of this third category are defined as follows

The heat is propagated exclusively by conductivity; the terminal surface of the system has only two kinds of areas

i° Areas by which the system confines to the vacuum or to bodies deprived of conductivity;

a" Areas along which the same invariable temperature S^ prevails.

Moreover, among these areas, there is none along which the system slides with viscosity on the external bodies. In this case, if we denote by ^l the internal energy and by JS the entropy of the system, the usable energy has the value [Chap. XV, equality ( 57 j]

(1) é =11 -F(2roiS.

If the areas of the first category exist only at the terminal surface of the system, the absolute temperature F(2f0) can be taken arbitrarily; in particular, it can be taken to be equal to o, so that the usable energy can be reduced to the internal energy. The three categories of systems to which we have recognized a usable energy by virtue of the supplementary relations must be very carefully distinguished from each other; we shall mark the essential reason for this distinction.

For the systems of the first category, the supplementary relations do not contain the time, nor any of the speeds with which the various quantities which characterize the state vary



of the system they satisfy conditions all similar to those which have been imposed on the links. Also, a virtual modification being given, one can, without knowing anything about the real motion of the system, recognize if this virtual modification verifies or not such and such additional condition, one can, for example, recognize if it leaves invariable the temperature of such and such part of the system or the entropy of such and such other part. Thus, for the systems of the first category, one can, without contradiction, consider, from a given state of the system, all the virtual modifications which verify the additional relations.

This is not the case for systems in the second or third category.

Let us consider, first of all, the systems of the third category and, to make our remark more striking, let us take a particular example; let us address, for this purpose, a compressible and conducting fluid. The additional relation which must be verified, at each point (x,y, :) of this fluid and at each instant t, is the equality (i /) of the preceding chapter. Now, if we designate, at this point and at this instant, by ?3 the temperature, by p the density, by u, c, w the components of the velocity of the fluid, the additional relation in question depends on de dt and on the partial derivatives of the first and second order, with respect to x, y and z, of u, v, w. If all these quantities have a meaning for a real motion of the fluid, they have none when one supposes that the displacement of the fluid is a simple virtual modification; it is therefore possible to subject a motion, supposed real and accomplished in time, to verify the additional relation in question; but one cannot, without absurdity, say that a virtual modification verifies it or does not verify it.

Let us now consider a system of the second category. In truth, we know what the quantity of heat released in an infinitely small virtual modification imposed on a system from a given state is, when the local acceleration of each of the elementary masses of the system is also given. If we designate, indeed, in this virtual modification, by 6 the work of the external actions, by T the work of the actions



of inertia and by 0U the increase of the internal energy of the system, this quantity of heat Q is given by the equality j [Chap. IV, equality (4); t. 1, p. if>~]

(2) Q = £-i-T-8U.

If, therefore, we consider a system taken in a given state and animated by given local accelerations, we will be able to express that in an elementary virtual modification imposed on the system from this state, the quantity of heat released is equal to o, if only the infinitesimals of the first order are to be considered, if, in other words, it is the same to say that the quantity of heat released is null or that it is an infinitesimal of an order higher than the first. But, if it were a problem where one had to take into account the infinitely small quantities of the second order with respect to the elements of the modification, one would not know, in general, what these words mean. Expressing that the quantity of heat released is equal to o.

This impossibility can still be manifested in the following form

In general, one cannot attach any meaning to the words quantity of heat released in a finite virtual change imposed on a system.

Indeed, to constitute a finite virtual modification, one operates in the following way One chooses an independent variable A at each of the values À, included between two limits /.", {, one makes correspond a state E (â) of the studied system, in such a way that X varying in a continuous way from Ao to A(, the state E(X) undergoes a continuous change compatible with the conditions of linkage imposed on the system.

For a virtual change defined in this way to be matched by a quantity of heat released, so that we can, in other words, extend equality (2) to it, it would be necessary that for each value of a, we match not only a state E(À) of the system, but also a set of local accelerations allowing us to determine the actions of inertia.

This is done in a very special case, in the case of the virtual modification that is called reversible modification.



In this case, in fact, each value of a is associated with a state of equilibrium of the system, and hence with a set of local accelerations which are all equal to o. We can therefore, without contradiction, speak of the quantity of heat released in a finite reversible change.

We can also, and for a similar reason, speak of the quantity of heat released in a finite virtual modification, reversible or not, of a system without inertia.

But, in general, it would be nonsense to formulate a sentence such as the following One considers a set of finite virtual modifications imposed on the system from a given state, and, among these modifications, one chooses those which do not give off heat.

"1. condition that ensures the equilibrium of a system endowed with usable energy. Application to systems that are subject to unilateral connections.

We will limit our analysis to systems which admit a usable energy either by themselves or by virtue of additional relations. We will suppose, moreover, that these relations are of such a nature that we can recognize if a virtual modification verifies them or not. We will be able to consider, without contradiction, from a given state of the system, the set of virtual modifications which verify the additional relations.

Placed in this given initial state, with an initial local motion also given, the system takes a certain real motion; this motion corresponds to one of the virtual modifications of the set just defined.

Let us impose on the system, from the initial state considered, a finite virtual modification subject to additional conditions.  To do this, let us take a certain quantity X, continuously variable from a certain value Xo; to each value of this variable, let us attach a certain state of the system, which varies continuously with X and which, for X = Xo, coincides with the given initial state.

When X goes from the initial value Xo to a value that is



At the same time, the external actions perform work which we will denote by t( A). Let us calculate the quantity S(À)-H A().o) - A(X),

and let us suppose that this quantity has a negative value for all the values of which are sufficiently close to Ào. We will agree to say that at the beginning of the considered virtual modification, the external work is lower than the increase of the usable energy.

It is easy to see that the system, placed without any local velocity in the considered initial state, cannot take any real movement which makes it go through precisely the same sequence of states as the considered virtual modification.

If, in fact, the system could take such a real motion, it would be, at the initial instant t0, in the initial state which corresponds to the value Xo of the variable A, and, at a certain instant t, in the state which corresponds to the value X of this same variable its living force, null at the instant t0, would have, at the time t, the value 'ST. By virtue of the essential property of usable energy, '<£ - E(À) would be at most equal to A(À0) - A so that we would have

t,SG(X)-hA(A(,) - A(X),

which is impossible, since the second member of this inequality is surely negative, while the first cannot be. We can therefore formulate this proposition:

A system, placed without any local velocity in an initial state, cannot take a real motion such that at the beginning of the corresponding virtual change, the external work is less than V increase of the usable energy. From this proposition, we can immediately deduce this other theorem `

From a given initial state, we consider the set of virtual modifications that verify the additional relations; if, at the beginning of each of these virtual modifications, the external work is less than the increase of



the usable energy, the system, placed without any local velocity in this state and subjected to these additional relations, remains in equilibrium.

For example, a system whose uniform temperature is kept constant will surely remain in equilibrium in a state where it is placed without any local velocity if, at the beginning of any virtual isothermal change from that state, the external work is less than the increase in the internal potential.

A system of uniform temperature whose entropy is given and constant, surely remains in equilibrium in a state where it is placed without any local velocity if, at the beginning of any virtual isentropic change from this state, the external work is less than the increase of the internal energy.

The proposition from which we deduced the previous theorem will provide us with another important theorem about systems subject to one-sided connections.

Let us imagine that in a certain initial state E(À0), corresponding to the value Xo of the variable a, the system is subjected to binding conditions, some of which are one-sided. Let us impose on it the virtual modification that we obtain by varying the quantity À in a continuous way. Let us consider the state E(À ) which corresponds to a value of À, infinitely close to Ào. In the state E(a), the system is supposed to be subjected to binding conditions, each of which is infinitely close to one of the binding conditions to which the system was subjected in the state li( A,,), so that the modification j u:<K&ë co/M"~es ~'<?~<'ra< (~M n2oins ù sorz début, the elablissement of no new binding. But it may be that some of the one-sided binding conditions to which the system was subject in the state E(a0) no longer correspond to any of the binding conditions to which the system is subject in the state Ii(X);these one-sided bonds have been broken by the passage from the state E(to0) to the state E(À).

For example, two bodies that were touching each other in the K(^o) state, are separated in the E(À) state. From the state E(À), one could impose on these two bodies virtual displacements that would tend to bring them closer to each other; displacements infinitely close to these could not be imposed on them from the state E(X0),



because, as a result of these displacements, the two bodies would be compenetrated these last displacements must therefore be forbidden by means of a binding condition, whereas no corresponding binding condition is imposed on the body taken in state E(X). Another example The state E (),) is formed by two phases, a mass of water and an infinitely small mass of ice; in the state E(X0), the whole system is in the water state. From the state E(Xo), the mass of the ice, which is zero, cannot, in any virtual modification, experience a decrease. This is a one-sided binding condition which has no analogue in the E(X) state. The circumstances we have just described can occur at any distance from Xo. We will then say that the virtual modification in question begins by breaking certain unilateral bonds imposed on the system in its initial state.

Obviously, one can in an analogous way define what is meant by a real movement which starts by breaking certain unilateral links imposed on the system in its initial state.

Let us return to the consideration of a virtual modification. Let À and X' be any two values, both different from Xo, of the quantity X. It may be that the passage from the state E(X) to the state E(X') breaks certain unilateral bonds imposed on the system in the state E(X); it may be that this is the case whatever X is and whatever X' is.

In this case, the virtual change imposed on the system will be accompanied by a continuous break of unilateral links.

A very simple example is the following

The system contains a fluid body which bathes a solid body. At any point of the area E along which the two bodies are in contact, there corresponds a unilateral condition of connection by which are excluded the virtual displacements which would lead to the mutual compenetration of the two bodies. We consider a virtual modification in which the area 2 is gradually reduced, so that an infinitely small increase given to X corresponds to the drying up of an infinitely small part of this surface. In this infinitely small variation of X, the imilate bonds are broken.



lines to which the system was subjected at each of the points of the thus dried part of the area S.

We will not consider, in our reasoning, such virtual modifications. When a virtual modification begins by breaking certain unilateral links, we will admit that ), can deviate by a finite amount from the initial value Xo without any other unilateral link being broken. Similarly, if a real motion begins by breaking some one-sided bonds, we will admit that this motion continues for some time from the initial instant without any other one-sided bond being broken.

Under these conditions, any modification, real or virtual, which begins by breaking certain unilateral links, continues, first of all, by remaining constantly subject to the same links. We can therefore apply to it all the theorems previously demonstrated.

In particular, the concept of usable energy can be applied to it.

Let us suppose, then, that the system, after breaking the unilateral links which are, in fact, broken at the beginning of the studied modification, admits a usable energy either by itself, or by virtue of the supplementary relations; let us suppose, moreover, that it falls into the first of the three categories which were distinguished at the beginning of the preceding paragraph.

Let us assume, moreover, that the usable energy that we have to consider is a quantity linked to the state of the system in such a way that it varies in a continuous manner when the system, taken at first in the initial state where all the unilateral bonds are established, experiences a virtual modification which begins by breaking some of these bonds. The hypotheses made and the theorems demonstrated assure us that it is indeed so for the various kinds of systems considered in the course of this work. All the functions which are likely to appear in the expression of usable energy, internal energy, potential of mutual actions, internal potential, entropy, experience a continuous change of value when the state of the system varies in a continuous way.

We can, therefore, state the following proposition



From an initial state in which it is subject to certain unilateral links, a system experiences a virtual modification that begins by breaking some or all of these links; moreover, at the beginning of this modification, the external work is less than the increase in usable energy; placed without any local velocity in this initial state, the system cannot take on a real motion that corresponds to this virtual modification. Let us suppose that all the virtual modifications which come from the initial state considered and which begin by breaking some unilateral linkage cause the external work to take, at their beginning, a value lower than the increase of the usable energy; the system, placed without any local velocity in this initial state, will not be able to take any movement which begins by breaking one or more unilateral linkages; if it takes a certain motion, this motion will continue, at least during a certain finite time, without breaking any linkage, but then, during this time, we will not change anything to the possibility or impossibility of this motion if we remove from all the links of the system the possibility of breaking, which makes all the unilateral links bilateral. We thus obtain the following theorem:

A system which admits of itself a usable energy or a system which belongs to our first category remains surely in equilibrium when one places it without local velocity in a state where the following conditions are fulfilled After one has made bilateral all the bonds to which the system is subjected, the state considered is a state of equilibrium.

a" At the beginning, of any virtual modification coming from this state, compatible with the supplementary relations, and which starts by breaking some unilateral bond, the external work is lower than the increase of the usable energy. From a given state of such a system, let us consider the set of infinitesimally small virtual modifications which begin by breaking some unilateral bond or, in other words, the set of non-reversible virtual modifications which are compatible with the supplementary relations for each of



for these modifications, let us calculate the expression G of the external work, reduced to the infinitesimal ones of the first order, and the expression SA of the infinitesimal increase of the first order of the usable energy let us suppose that, for all these virtual modifications, the difference (G SA) has a negative value any finite virtual modification which will be compatible with the supplementary relations and which will begin by breaking some unilateral connection will surely make take, at its beginning, a negative value to the excess of the external work over the increase of the usable energy. The previous theorem thus leads to this one

A system which admits of itself a usable energy or a system which belongs to our first category remains surely in equilibrium in a certain state where one places it without any local speed when the following conditions are fulfilled

i" The system would remain in equilibrium in this state if all links were made bilateral

2" In any elementary virtual modification, compatible with the supplementary relations, and not reversible, we have (3) G- S.\<o.

Let us indicate what form this theorem takes when applied to various kinds of systems.

1° SYSTEMS IN THE DEFINITION OF WHICH NO ACCOUNT IS TAKEN OF THE TEMPERATURE. These systems admit of themselves a usable energy, and this energy is identical to their internal energy U; this internal energy, moreover, also plays the role of internal potential (t. 1, pp. 3-i-3^:>.).

Let us make bilateral all the links to which the system is subjected this operation done, for the system to be in equilibrium, it is necessary and sufficient [Chap. VIIL, equality (8), t. I, lo. 3aa] that the quantity (S - SU) is null in all the elementary virtual modifications of which the system is susceptible; now the elementary virtual modifications of which the system is susceptible after all the links have been made bilateral, are the reversible virtual modifications of which it was susceptible



Before this operation we obtain the following theorem For a system in the definition of which no account is taken of the temperature is in equilibrium in a certain state, it is enough:

i° That equality

(4) ̃ © - SU = o

is verified by all the reversible virtual modifications coming from this state;

a° That the unequal

(5) S - oU<o 0

is verified by all the non-reversible virtual modi fications coming from this same state.

Among the systems whose definition does not take into account any notion of temperature are the systems formed by invariable solids whose connections are free of any passive resistance.

In Chapter V, the theorems of Rational Mechanics had led us, with respect to these systems, to this much more complete proposition [Chap. V, condition (i i io), t. I, p. 241] For a system of invariant solids, subject to connections without passive resistance, to be in equilibrium in a certain state, it is necessary and sufficient that any virtual modification resulting from this state verifies the condition

(6) 5 - oU go.

20 System nrc uniform temperature AND INVARIABLE. - Such a system admits a usable energy, which is its internal potential -f

On the other hand, if the system is subject only to bilateral connections, the equilibrium condition of this system is as follows [Chap. IX, equality (11), t. I, p. 368]

In any virtual isothermal change, the external work fs is equal to the increase oî? of the internal potential.

We can therefore state the following proposition For



The equilibrium of a system whose unijorme temperature is maintained invariable, it is enough:

1 That any virtual, elementary, isothermal and reversible modification verifies the condition

(7) 5-"# = o;

2° That any virtual, elementary, isothermal and non-reversible modification verifies the condition

(8) G-SÎ<o.

3° A SYSTEM OF UNIFORM TEMPERATURE WHOSE ENTROPY IS KEPT INVARIABLE. The usable energy of such a system is identical to the internal energy.

Assuming that the system is subject only to bilateral connections, we obtain the condition of equilibrium by expressing [Chap. IX, equality (75), t. I, p. 397] that in any elementary and isentropic virtual change, the external work is equal to the increase SU of the internal energy.

We can therefore formulate the following proposition A system of uniform temperature is certainly in equilibrium in a state where the following two conditions are met

i° In any virtual, elementary, isentropic and reversible modification, we have the equality

(9) ` P - SU = n.

2" In any virtual, elementary, isentropic and non-reversible modification, we have the inequality

(10) G - Su < 0.

An attempt has been made to complete the conditions which are sufficient to ensure the equilibrium of a system of uniform temperature. We have tried to transform them into necessary and sufficient conditions analogous to condition (6), which is relative to systems of invariant solids subjected to connections without passive resistance; these conditions would then take the following form

For the equilibrium of a system of uniform temperature, it



It is sufficient that in any virtual, elementary and isothermal modification, we have

(11) ç;-3-5=o.

For the equilibrium of a system of uniform temperature, it is necessary and sufficient that in any virtual, elementary and isentropic modification, we have

(12) s-su^o.

J. Willard Gibbs, for example, took this last condition, or at least what it becomes for an isolated system, and made it one of the fundamental postulates (' ) of his theory.

We can see that the necessary and sufficient conditions we have just stated are far from being fully justified.

Let's give a very simple application of the propositions we have just demonstrated; let's show what one of them teaches about the homogeneous fluid considered by elementary thermodynamics.

This fluid is enclosed in a surface <s, and the external actions to which it is subjected reduce to a normal and uniform pressure fi applied to the surface t. If the volume V enclosed by the surface n grows by oV, the external work done is 6=- JI3V.

On the other hand, if M is the mass and m the specific volume of the fluid, the internal potential is [Chap.X, equality (i-i), t. I, p. 4 '4] $ = M sp(t". &

In any virtual isothermal modification, it experiences an increase in

~¿ d~plw.~)

o.f = M - oto.

from}

Consider a state where the fluid fills the entire surface u, so that iV'lw = V.

(') J. Wh.i.a.hd Girbs, On tke equitibrium of helerogeneous substances, conditions (a) and (12).



From this state, the fluid can experience two kinds of virtual isothermal changes

1" Reversible modifications in which the fluid continues to fill the entire volume surrounded by the surface o in these modifications, we have

SV = M Sto.

2" Non-reversible modifications in which the mass of the fluid is hollowed out; if we denote by v the sum of the volumes of these cavities, we have

oV = M or -+- v.

Moreover, in an elementary modification, can be an infinitesimal of the first order; this is what will take place, for example, if two parts of the fluid that were touching each other along a certain finite area separate from each other in such a way that their mutual distance becomes, along this area, an infinitesimal of the first order.

We can therefore formulate the following proposition For the equilibrium of the elementary fluid studied in Thermodynamics, it is sufficient that we have, whatever Soj and whatever the positive and infinitely small value of c,

r~1 o,

U +dW ,0to1 = 0,

Mrn+(M!ir|Sc,>_4-u>>o,

I. 0"> L J

conditions that are equivalent to the following

"He ûai O), S)

(\o) M =- -1-- "

(13) OM

04). :̃:̃. It >(>

Equality ( i3) is the condition of equilibrium which had offered itself to us [Chnp. equality (4-;>). '̃ L [>- 4'4] as necessary and sufficient when we assumed the fluid mass incapable of cavities and, therefore, susceptible to only reversible virtual modifications. The consideration of non-reversible virtual modifications allows us to



join condition (i4)> but only as a sufficient condition.

If we admit that the condition ( i 1 ) is necessary and sufficient for the equilibrium of a system of uniform temperature, we would deduce this proposition

For a homogeneous fluid mass to be in equilibrium at a given temperature, it is necessary and sufficient that the external pressure be a POSITIVE or NULL quantity linked to the specific volume w and the temperature 2r by the equality ( 1 3). This proposition, as we can see, is not fully proven. 3. Ballistic energy and its use in statics. We shall particularize more than we have done up to now the system we propose to study; not only shall we suppose that this system admits a usable energy, either by itself, or by virtue of additional relations, but we shall also suppose that the external actions depend on a potential.

Let 6 be this potential. In any real or virtual modification, the work done by the external actions is equal to the decrease of this potential; therefore, the useful mechanical effect of a real modification is equal to the sum of the increases experienced, in this modification, by the living force and by the external potential. Let C be the living force of the system at the instant t the condition which defines the usable energy can be transformed into the following 40, ~B

fi5) d~ctt< ~Bdt,

(l5> -dïdt = --dïdl^

B being the sum of the usable energy and the external potential

(iB) B = A-+-Q.

According to condition (i5), no real modification can give to the living force of the system an increase which exceeds the dinzinution experienced by this sum. This proposition leads us to give the quantity B, of which our statements and



our reasonings will make a constant use, the name to! Ballistic energy of the system. We will treat, in this Chapter, only the systems for which there is a ballistic energy.

It is clear that this quantity can be considered even for a system whose various states would be defined without taking into account the position occupied by each of the parts of the system, or even without this position being able to undergo any change; in such a system without inertia, the living force would be constantly zero; the condition ( i5) would become

~B

(1-) dB

dt

so that the ballistic energy could not grow in any real change.

There is no need to explain the various forms that ballistic energy takes for the various categories of system listed in paragraph 1; equality (16) makes these forms immediately known.

Among the systems endowed with ballistic energy, let us consider only those where the usable energy exists by itself, or those of the first category, i.e. those for which it is possible to recognize whether a virtual modification verifies or not the additional relations. To all these systems, we can apply the following proposition

If a state of the system is such that any finite virtual modification, coming from this state and subject to the additional relations, starts by increasing T ballistic energy, the system, placed without any local velocity in this state, surely remains in equilibrium there.

In fact, in order for the system not to remain in equilibrium in this state, it would have to experience, from this state, a certain real modification.

This real modification, which is included in the number of virtual modifications of which the system is susceptible, would certainly begin by increasing the ballistic energy B; as long as t



would remain sufficiently close to the initial moment of the -movement

would be positive.

On the other hand, at the initial instant, all the local velocities are zero, and so is the living force; since this one can never take negative values, c-r- must be zero or positive for all the values of t which are sufficiently close to the initial state.

From the initial instant, therefore, until a certain value of t, d9d cZ B

-jj would be greater than -r-, which cannot be for any real modification.

The stated theorem is established.

We have assumed that any virtual modification from the considered state would increase the ballistic energy. It could happen, in some cases, that besides these virtual modifications, the system could experience some that would start by leaving the ballistic energy unchanged.  These cases deserve to be studied in particular. Let us suppose, first of all, that none of the finite virtual modifications that leave the ballistic energy invariant could occur without determining some changes of location of the system or of some of its parts.

In these circumstances, the previous theorem remains true, and it is hardly necessary to modify its demonstration. Any real modification, in fact, which could draw the system from the state in which we placed it without imparting any local velocity, would begin by increasing the ballistic energy or by leaving it unchanged; it would also begin by increasing the living force or by leaving it identically null; but it could not last a finite time, however small, without varying either the ballistic energy or the living force; it would therefore certainly begin by increasing the sum of the ballistic energy and the living force, which, by virtue of condition (i5), is impossible. It is easy to find an example of these circumstances Let us consider an isolated system, removed from the action of any foreign body. As external potential, we can assign to this system any constant, zero for example; the ballistic energy is then reduced to the usable energy.



The latter does not depend on the absolute position that the system occupies in space. A real modification which would consist in a simple displacement of the whole would not change the value of the ballistic energy; but, in such a modification, the living force would not be zero, in general.

A system removed from any external action will therefore be in equilibrium if it has no local velocity and if V usable energy begins to grow in any modification that is not reduced to a simple overall displacement. Here is a second example

The system consists of a compressible fluid maintained at a uniform and constant temperature. The usable energy of this fluid is none other than its internal potential, which is given by the equalities (53) or (53 bis) of Chapter XIV.

The external actions to which this fluid is subjected are of two kinds

1" The pressures applied to the surface which limits it; a0 The actions exerted on the various elementary masses which compose it.  With respect to these last actions, we shall suppose that they are of a nature quite similar to those which the various parts of the fluid exert on each other. In this fluid, let us imagine a siationary vortex displacement such that each elementary mass is replaced, in the infinitely small volume that it occupied, by an equal mass. Such a modification leaves unchanged the position and the figure of the volume occupied by the fluid, as well as the density at each point of this volume. It therefore leaves the value of the internal potential unchanged. Moreover, it causes an external work equal to o, so that, if there is an external potential, it does not vary it; but this modification, which leaves the ballistic energy unchanged, necessarily displaces some parts of the fluid.

A compressible fluid which admits a ballistic energy is therefore certainly in equilibrium if we place it without local velocity in a calibration such that the ballistic energy starts to increase



in any modification other than a stationary vortex displacement.

Let us now suppose that certain finite virtual modifications imposed on the system from the state under consideration possess the double property of leaving the value of the ballistic energy invariant and of not changing the position of any part of the system. Under these circumstances, it is not impossible that the system, placed at first without initial velocity in the state under consideration, will experience a real modification which corresponds to one of these virtual modifications; however, such a real modification will only be possible if it is of such a nature that the sign of inequality can be erased from condition (i5).

Let us cite an example where the various circumstances we have just mentioned are realized.

Let us take a normally defined system which is formed of isothermal-isentropic bodies and which is independent of external bodies.  Let us assume that in this system the temperature is distributed in some way.

To form the usable energy of such a system, we take the part of the internal energy that is independent of temperatures the system being normally defined, the external potential is independent of the temperatures of the various parts of the system a change experienced by the distribution of temperature does not change the value of ballistic energy.

On the other hand, as the system is normally defined, this change in temperature distribution does not cause any change in the position occupied by each of the parts of the system.

A virtual change that consists exclusively of a change in temperature distribution thus offers us an example of the circumstances we have described.

Moreover, the condition ( 1 5) is imposed on any real modification of the system; but it must be written in the form of inequality only for a modification accompanied by viscosity work for a modification free of any viscosity work, it must be written in the form of equality.

But a real change where the temperature distribution



varies alone, without any part of the system changing its shape, position or state, does not cause any viscosity work. We can therefore formulate the following proposition Suppose that the ballistic energy of an isothermal system in a certain state increases, starting from this state, in any sufficiently small virtual modification, except for the virtual modifications that only alter the temperature distribution the system, placed without local velocity in this state, cannot experience any other real modification than a change in the temperature distribution without any change in the shape, position or state of any of its parts. We can say that the system is in equilibrium if we disregard the purely thermal movements, simple changes in the temperature distribution. 4.  Stability of the equilibrium of a system that depends on a limited number of variables. Definition of this stability.

We will, for the moment, restrict the generality of our analysis.

We will assume that the state of the system studied is completely known when the values taken in this state by a limited number n of variable quantities xK, w2, .#" are known; we will also assume that these quantities vary in a continuous way in any continuous modification of the system. These variable quantities may be independent of each other; they may also be linked together by certain linking conditions, holonomic or non-holonomic, whose number is less than n.

We will assume that the links thus imposed on the system are all' bilateral.

We will also assume that the local motion of the system, taken in a given state, is fully determined when a limited number p of velocities v, t>2 vp, are known, these velocities being independent of each other or being linked together by a number less than p of holonomic or non-holonomic relations.



Let us consider a state of equilibrium of the system. In this state, x't x% vc-n take certain well determined values to the variables x, x<> xn, let us substitute, to define any state of the system, the excesses of the values that they take in this state on the values that they take in the state of equilibrium let us keep the letters x, x2 x,, to designate these excesses. With this convention, the considered equilibrium state will be defined by the equalities

(18) a7!=o, xt-o, xn=o.

In what case can we say that this equilibrium is stable? Let us suppose that we give (" + p) positive quantities A,, As, A", U,, 1, Us, Vit>,

arbitrarily chosen by the way.

h' equilibrium will be said to be stable if one can always find (n .-+- p) other positive quantities

ai, œ2, """!, a", up.

such as the conditions

M animai, \x-1\^a, \xn\ = a,

(1.) ~xl~=~ti, IX21~a2' --, Ix'n~`-an. 9 (Ifil^Bi, |"-S|H", \vP\éup,

verified at time t0, entail, whatever the time t, posterior to to, that we consider, the accuracy of the conditions zo) | a?! [ < /Vi, \x-l.l, \xa-gkny

20) iPi| gU,. 1, | p, | g U, K,|g*v

If we cannot always find positive quantities a,,d2, an, u,,u3, up, such that this proposition is correct, the equilibrium of the system is not stable.

The values taken at time t0} by the quantities

xu xn,

fl, V-i, Vp.

determine what is called the initial perturbation of the system. They must naturally correspond to a possible state and a possible local motion of the system. Let's predict what it is



must be understood by these terms and. first of all, by the words possible state.

t is possible that the quantities xt a?2 x,, are linked together by a certain number of holonomic conditions, resulting from the very definition of the system, and expressed by equations between x, x% xn. For a set of values of x, x2, xn to determine a POSSIBLE STATE of the system, it is necessary and sufficient that these values verify the equations by which the holonomic links are expressed.

It does not follow that from the equilibrium state of the system to the state at time 1 0 determined by the perturbation, it is possible to pass through no real movement of the system or even through any virtual modification. In such a case, we are assured that the holonomic links would remain constantly saved; but it could happen that the non-holonomic links or the additional conditions would not be saved. Let's clarify this point with two examples.

Let us consider, first of all, a system formed by two solid bodies which are subject to constantly touching and rolling over each other without any sliding. The effect of the perturbation will be to place these two bodies in contact with each other, giving them a disposition close to that which they have in the state of equilibrium; but we will not examine whether, from the state of equilibrium to this perturbed state, we can pass through a rolling process free of any sliding.

Let us consider, secondly, a system whose real movements are subject to a certain additional relation; in these movements, the entropy of the system must keep an invariable value. The perturbation will place the system in a state close to the equilibrium state; but it may happen that the entropy of the system which has undergone this perturbation differs from the entropy of the system in equilibrium; in this case, it would not be possible to carry out this perturbation by means of a real motion or even a virtual modification which verifies the additional relation.

When the system is placed in a possible state, so that the quantities ct, v. vl, define a possible local movement, it is necessary and it su j fit that they are compatible with the



holonomic or non-hotonomous linking conditions and, if applicable, with additional relations.

What we have just said about the state of the system after the perturbation leads us to adopt, in some cases, instead of the broad definition of stability that has just been given, another more restricted definition.

Suppose that the additional conditions imposed on the system, or only some of these conditions, are expressed in the following form Some quantities f, ,/̃> determined when the state of the system is determined, remain invariant during motion

(ÊJti) = consL, fi = const. //= const. This assumption is verified, for example, if the system is made up of several bodies, each of which is brought to a uniform temperature, and if each of these bodies is bound to keep either an invariable temperature or an invariable entropy. In this case, instead of imposing on the perturbation the sole condition that the state of the system at time /." is a possible state, we can, in addition, impose on it the condition that in this state, the quantities fi, f-ï, have respectively the same values fiO'Ai //o as in the equilibrium state. We then say that we subject the perturbation to verify the additional relations or some of the additional relations In this case, the conditions (21) teach us that the equalities

i'22) J-f\Q, fl~fl(l> fl-flo

must be verified both at time to and at any time t, subsequent to i0; these equalities (22) are finite term equations between x, xt, xn If therefore the perturbation is subject to verify the additional relations or some of the additional relations imposed on the system, these relations become entirely, assimilable to holonomic linking conditions.

It is quite obvious that "/i equilibrium state of a system could be stable when Von. subjects the initial perturbation



to check the additional relations, and not any more when we free the perturbation from this restriction. One can imagine that one makes use, to define the state of the system, of other variables than the variables xK,x>, .x,, and, to delineate the local motion, other velocities than the velocities r, v->, vp In the passage from one of the modes of definition to the other, one can make use of the holonormal binding conditions, if there are any; one can also, in the case where the initial perturbation is subject to verification of the supplementary relations and where these thus become assimilable to liolonomy binding conditions.It is therefore not necessary that the two definitions correspond to the same number of variables, to the same number of speeds.  Let us imagine, then, that in the second definition, the state of the system is determined by m variable quantities y, y2 ym and by r speeds w, w-2, wr. Let us suppose, moreover, that in the state of equilibrium, the quantities y, ,y2, ,ym cancel out like the quantities X, X'2 X,

It is easy to see that, if the equilibrium of the system is stable according to either of the two definitions, it is still stable according to the other definition, provided that we can formulate the following two propositions

i" As long as the absolute values of the quantities

.ri, X, X, l'|. l-'o. <'p

do not exceed certain limits, the knowledge of the values of these quantities assigns finite and determinate values to the quantities z, y" "1> ~re~

Y. Vi, ym. ifi. "':>, "V,

The latter values vary continuously with the former.

-2" Both the absolute values of the quanlitrs

Yt, y s, - /,", "- n>2, "v

do not exceed certain limits, the knowledge of the values of these quantities assigns finite and determined values to the



quantities

XI' :c2, .f, ft, v~ i~

e£ these values vary in a continuous way at the same time as those.


	Stability of the equilibrium of a system that depends on a limited number of variables {follows). Condition which is sufficient to ensure this stability.  Lagrange's and Lejeune-Dirichlet's theorem. Let us consider a system defined as in the previous chapter; the state of the system is entirely determined by the knowledge of a limited number of quantities .r, x-> ,x, the local motion is entirely determined by a limited number of velocities tii l'jj vp. This system is, moreover, subject to certain bilateral binding conditions, holonomic or non-holonomic. Finally we admit that its motions may be subject to some additional relations of the form



(21) - const, /s= consl., //=const. We will assume that the system, by itself or by virtue of the additional relations, admits a usable energy B. Let us consider a certain state Eo of the system, a state that we can always assume corresponds to the values

(18) h Xi - O, X-, -. O 1 Xn = O

of the quantities x, .r._> x, Let us denote by/,0,/20, fi0 the values that/, f-, ̃̃ take in this state.

Among all the possible states of the system, let us consider those for which the equalities

('-ta) /i = /ich fi=fto = //o

are verified; to each of these states corresponds a value of the usable energy; let us suppose that, among these values, the one that f usable energy takes in the Eo state is a minimum the Eo state is an equilibrium state of the system supposedly subjected to



additional conditions (21), and this steady state is stable.

First of all, it is certain that the state Ëo is an equilibrium state. If we consider, in fact, from this state Eo, any virtual modification which verifies the supplementary relations (21), these relations can, for this modification, be replaced by the equalities (22); from then on, it is clear that this virtual modification will start by increasing the usable energy. According to what has been said in paragraph 3, the system, placed without any local velocity in the state .1%, will surely remain in equilibrium there.

It is the stability of this equilibrium that we have to prove. We will do this first by assuming that the perturbation is subject to verify the additional relations. By this we mean that the initial state in which we place the system is a possible state where the equalities (22) are verified.

To prove that the equilibrium of the system is stable, it is always allowed, after the positive quantities A,, A2, An have been given, to substitute smaller quantities for them. Therefore, by virtue of the minimum condition imposed on the ballistic energy B, one can always take these quantities small enough so that the following proposition is surely correct

In any possible state, other than the equilibrium state Eo, which verifies the first line of conditions (20) together with conditions (22), the ballistic energy has a value B greater than the value Bo that it takes in the Eo standard.

Let us suppose that in a possible state of the system, the conditions (:>.o) of the first line and the equalities (22) are verified and that, in addition, at least one of the conditions (20) of the first line is verified there, in the form of an equality; we shall say that this state is a state e. Since the state En cannot be included in the number of states e nor be infinitely close to a state s, any state s makes the dillercuee (B -130') take a positive value which is not infinitely small; that is to say the lower limit, surely positive, of these various positive values.

Let us consider a possible state of the system where the conditions of the first line (30} and the conditions of the second line (aa) are verified; let us associate to it a movement where the conditions of the



second line (20) are also verified, and suppose that at least one of these conditions is verified as an equality; we will say that we have formed a motion a of the system. It is clear that a motion p. can coexist with a state s. To each of the motions ia, corresponds a positive value of the living force and the set of these positive values admits a lower limit, surely positive, 0.

The limits a, a2, - - ̃ cin, ut, u2, - - up were taken respectively lower than the limits A, A2, An, U(, U2, Up, so that the conditions (20) are surely verified at the beginning of the motion; moreover, as the perturbation is subject to saving the additional relations, the conditions (22) are verified in the initial state and during the whole duration of the motion; therefore, for the conditions (20) to cease to be verified from a certain instant, it would be necessary that at this instant, the system's calibration was a state E or that its motion was a motion ;jl.

If we prove that the quantities a,, a2, aH, ul} u2, up can be chosen small enough so that the state of the system can never become a state e and so that its motion can never become a motion a, we will have proved that the state J.'>o is. a stable equilibrium state.

When the state of the system is a state e, its ballistic energy is at least equal to (li0 -+- |3) and its momentum at least equal to o; when the system has a motion p., its ballistic energy is at least equal to Bo and its momentum to 0. Let us denote by x the smaller of the two quantities |3, 0. If the system reaches a state under motion y., the sum (B+£) relative to this system takes a value at least equal to (Bo + x). But, by virtue of condition (i5) which characterizes ballistic energy, the sum (B -+- C) cannot grow in any real motion; if, therefore, the initial value of this sum is less than (Bo ̃+̃ a), the system can never reach either a state e or a motion u..

Now, one can obviously take the quantities a(, "2) an so small that any state in which the conditions (19) in the first line are verified causes B to take a value less than (Bo+ -j; one can, moreover, take the quantities u,, u2, ̃ ̃, up so small,



that any move where conditions (19) are verified causes <£ to take a value less than -- The stated proposition is therefore proved.

The demonstration, however, is subject to an essential restriction We have assumed that the initial perturbation was subject to the additional relations. We shall seek, now, to get rid of this restriction. But, in doing so, we shall leave aside a generality which, without much advantage, would extremely complicate the statements and the demonstrations; the reader will easily see how one would extend to all possible cases the reasoning which we are going to present in a somewhat particular form.

We will assume that the system studied consists of two bodies or two sets of bodies C, C. each of which is maintained at a uniform temperature.

The body C, whose temperature is 2? and entropy S, will be forced to experience only isentropic movements. The body C, whose temperature is S', will be able to experience only isothermal movements.

The system is normally defined; its state, apart from the temperatures, is completely determined when we know n quantities j: a?2, x, independent of each other or linked by a certain number of bilateral, holonomic or non-holonomic linking conditions.

In the equilibrium state K(l, the quantities S?, S, 2?' have respectively the values .t70, S, 5j'o; the quantities # x^ x,, are all equal to o.

Applied to this case, the definition of stability given in the previous paragraph takes the following form

Given (/; -i~ 1 - />) any positive quantities A,, As A, T, U 1, [J,, U,

one can always find (n -+- 2 + p) other positive quantities a,, at, a, iiy, "2, up.

small enough that the conditions

(a3) |rj |?.",, |.ra|'>2 ~x'~e~`a-~> jSr-So~ ~'-3, (a3 bis) ;Pi!l "i. |i'ï|i "i. - '\Vp\£up,



verified at the initial time tu, lead, whatever t is, to the accuracy of the conditions

(24) l^l-ÎAj, ||£A,, \xn\kn, | 2r - 3r0 1 T, {%\bis) IdlaU,, |c2||Li2, K| 5 U, fl is to show that such a stability follows from the following assumption The value Bo that the ballistic energy B takes, in the state Eo, the ballistic energy B is a minimum among the values assigned to it by the various possible states of the system in which the body G has an entropy equal to So and the body C a temperature equal to 2r'o. To prove the stability of the equilibrium of the system, it is always permissible to replace the quantities A,, A2, A, T by smaller quantities; one can therefore always assume these quantities to be small enough for the following proposition to be correct In any possible state, other than the state Eo, which verifies the conditions

.iT

(a5) I^JSAi, larsI^Aj, | xn | An, - %\ill, (95) ff/ S = S0, 5'=% 3T

2) S = So, :1'= :1~, ... the quantity ( H - Bo) is positive.

From this proposition, we deduce two corollaries i° Let us consider the set of possible states, which we will name the states 7], where all conditions

li ISA,. l| ;a, |"i;a"

are true, where at least one of them is verified as an equality, and where we have, in addition,

~3T '~T

1 'o 1 j y ^5 Sq. C5 3 ()

None of these states is either the Kn state or infinitely close to the ̃]<!" stall.

For these states, therefore, the difference ( J3 - Bo ) admits a lower limit surely positive Tll>.

̃a" Consider the set of possible states, which we name-



Let's see the states -/̃ where the conditions are verified

l^i| = Ai, IX2ISA2, XI,

T ;JÏ

2 -.I,~ -:Jo;c-, 2

2 2

OC C'C

0 = 00, J - .j 0

None of these states is either the Eo state or infinitely close to the Eo state.  For these states, therefore, the difference (B - Bo) admits a surely positive limit il!"'.

This being said, we notice that the system cannot be unstable, unless it presents at a certain time t, after l0 Let be a state e where conditions (a4) and (24 bis) are verified, and where at least one of the conditions (24) is verified in the form of equality;

Let there be a motion a, where conditions (24) and (24a) are verified, and where at least one of the conditions (24a) is verified as an equality.

If we show that it is possible to choose the quantities ai, a2, an, T, T', ut, u~, i iii,

small enough that the system can acquire neither a state s nor a motion u, we will have demonstrated the stability of the equilibrium state Eo.

Let us notice, first, that in any state e, the living force <£ of the system is zero or positive; that in any motion jj., it is positive and at least equal to some positive quantity ("). As we can always substitute for the quantities A,, A ;>. - An, T, other smaller quantities; as, in the course of the motion, the difference (2?' - Sf()) remains invariable and, therefore, verifies unceasingly the condition

|3r--Sii|â-

as, finally, we can take the quantity t'as small as it will please us, we can make that any possible elal, where the conditions

''1 [ II A, ^A, a:n<X,

|a-&u|=T. |£f'-2fo|S-'

are verified is as close as we want to the state Ëo and



as the ballistic energy B varies continuously with the state of the system, we can make sure that in none of these states the absolute value of ( B - -Bo) exceeds-- Hence, we will be assured of the correctness of this proposition If, at iastunt t, the system presents a motion u, the value of (B + <£-) at this instant will be at least equal to ( B" -1-7- )-

Let us consider the form of the ballistic energy of the system. If we denote by U the internal energy of body C, by J' the internal potential of body C, by 1F the potential of the mutual actions of the two bodies G and C', by Q the external potential, we will have

B = L'+ §' -r- V-hQ.

U depends on the temperature Sf, S' on the temperature £7'; W and Q are independent of these two temperatures; if we therefore vary & by rfâ and Et' by <£?', without modifying, for the system, the state apart from the temperatures, B will grow by

̃-̃ n> llV' /=- à^' /&'

03 03'

Moreover, if we denote by the normal heat capacity of the body C and by S' the entropy of the body C', we shall have [Chap. VI, equality (1 1), and Chap. IX, equality (ifi); t. I, p. 260 and p. 3ya] d(J ^L__F')S-

u3 03 S'.

It is clear that, if we consider all possible states that verify the conditions

a'uAi, :'¡ '\2, XII Ail

J 1 1'" < H 1 <

2 .:J-Jo:t,

we will be able to find four positive ([nantites] L, M, L', M', such that we have, for all these states

L M,

d.J

(28) d:1

(.8) THE M-.

W, "4-, -M'.



We also have [Chap. IX, equality (53), t. I, [ -'xjo] dA = L,

02 F (it)

so that we can, for the same states, find two positive quantities m, such that we have

(̃29) H^-tm.

('29) l_m.

f).'J d;;

In the initial perturbation, the entropy S of the body C has taken the value (So + AS0); the temperature S' of the body C has taken the value (Sf^ -f- AS7(j); these two quantities keep, during all the duration of the movement, these initial values.

Let us imagine that at the instant t, the system presents a state 2. Without changing the state, apart from the temperatures, starting from the values of x,, #-> xni let us bring back the temperature of the body C from the value (3'0 -+- A2^) to the value S, moreover, let us make pass the temperature of the body C from the value S? that it has in the state e to a value p such as the entropy passes from the value (S,, + AS0) to the value So for it, we will have to give to the value that determines the equality (3o) AS0 = -rdZ.

Jf p OS

To the state s, we will thus make correspond a new and well determined state e' of the system; this state will still be a possible state, because the binding conditions, supposed to be independent (the temperatures (p. 64), are as well verified in the state s' as in the state e; let us study this state s'.

We can always arrange the quantities ",, a2, a, in such a way that the absolute value fie AS0 is as small as we want; we can make, in particular, that we have I~so,i=t,r. T

'2

Equality (3o) then gives us

p T

Kn the state e, |3 - 2f0 1 was, according to the conditions (24), at most



equal to T; therefore, in the state j 1 - is at most equal to -; moreover, if, in t'states, - 3~ happened to be equal to T, in the state, '1 -~o 'l' T D' l

is at least equal to T Hence this conclusion

We can make the quantities a,, a2, a", small enough so that the state s' which corresponds to any state e is either a state -t,, or a state -tl'. If therefore we designate by your smaller of the two quantities 11h and by B' the ballistic energy of the system in the state s' which corresponds to any of the states E, we surely have

3 B'Bo+~'

Let B be the value of the same ballistic energy in the state e to which this state e' corresponds. By the equality (26), we have B-B~r~~+r"

P v~ +~; :J,

p '5~

Using conditions (28), we derive from this equality the condition

~B-B'~M~-3't-t-M' l,

Moreover, equality (3o) and condition (2g) give us (~So~?1; l,

We have therefore

13 B'il < j ~S~ l

We can always take the quantities ai, ([2, cc", r, small enough so that 1 AS, ~~ô are quantities as small as we like; so we can take the first quantities small enough that we have,

nlyos~ +~n`~~â'

1 "'2

and, therefore,

13 B'

2-

which, together with equality (3i), allows us to write ~N B > Iju't



Since the living force of the system can never be negative, we arrive at the following proposition If, at time t, the system has a state t, the value of (B + C) at this time will be at least equal to ( Bo + )

i;

It will now suffice to repeat the demonstration we gave in the case where the perturbation was subject to the supplementary relations; it will prove that the initial perturbation can be limited so that the system never reaches either a state s or a motion p.; the equilibrium state considered is therefore stable.

The preceding demonstrations all concern a system affected by inertia. If the system studied is a system without inertia, we must, of course, modify the definition of stability by deleting all that concerns local velocities; once this is done, it is easy to repeat the previous demonstrations by also deleting all that concerns the living force and local motions; these demonstrations become all the more simple.

Let's apply the proposition just demonstrated to some particular cases.

1° SYSTEMS WHOSE DEFINITION TAKES NO ACCOUNT OF THE TEMPERATURE.  - A system of this kind admits of itself a ballistic energy; this ballistic energy is the sum of the internal energy and the external potential. We can therefore state the following proposition

In the definition of a system, whose state depends on a limited number of quantities, no account is taken of the temperature of its various parts. This system is subject to certain bilateral, holonomic or non-holonomic connections; moreover, it is subject to certain external actions which depend on a potential.

In a certain state of this system, the sum of the internal energy e and the external potential takes a smaller value than in any state, close to the first one, where the holonomic binding conditions are also verified. This first state is guaranteed to be a stable equilibrium state.

This theorem applies, in particular, to DE



SOLID SHOTS ASSUMPTED TO "KS LIAISONS S.-VNS HÉSISTA.NCË PASSIVE that considers the rational Mechanics.

It is in this particular case that the theorem had been stated and proved by Layrange (' ). Since Lagratige's demonstration was not fully rigorous, Lejeime-Dirichlet perfected it (2). These two authors assumed, moreover, that the system was exclusively subject to holonon connections. The Lejeune-Dirichlet demonstration is the type on which the one we have just read was built.

2" Isothermal systems. - A system, depending on a limited number of is subject to bilateral, holonomic or nonholonomic bonds, is subjected to external actions which depend on a potential; it is carried, in all its mass, at a uniform temperature which remains constant in any real modification.

In a certain state of this system, the sum of the internal potential and the external potential is smaller than in any other state, close to the first one, where the holonon bonds are respected, and where the temperature is the same as in the first state. This first state is certainly a stable equilibrium state. 3" Tropical iskjv systems. A system, depending on a limited number of quantities, is subject to bilateral, ho lo no me or non-holonomic connections; it is subject to external actions which [depend on a potential; in all its mass, it is brought to a uniform temperature; in any real modification, the entropy of this system keeps an invariable value. In a certain state of this system, the sum of the internal energy and the external potential is smaller than in any other state, close to the first, where the holonomic bonds are respected and where V entropy has the same value as in the first state. This first state is, for the system, a stable equilibrium state. Remark. - There remains for us to make a last remark, which we will expose by supposing that the system is a (') Laoaanqe, Mécanique analytique, Première Partie, section III. C) Lejkune-Dihiculet, t/eber die Stabilitàt des Gleichgewichts (Crelle's Journal, lid. XXXII, I8.'1'i, p. 85).



holonomic defined by a limited number of independent variables; we will leave it to the reader to generalize it.

Among the variables that determine the state of the system, there may be one or more that are not included in the expression of the ballistic energy.

Let us imagine, for example, that no external body acts on the system. As the internal energy, the internal potential, the entropy of a body are quantities which do not change when I simply change position in space, we see that the ballistic energy of the system will no longer depend on the absolute position occupied by this system; six variables, which serve to fix this position, will thus cease to appear in the expression of the ballistic energy.

Let us suppose that in a certain state of the system, the ballistic energy, co.\sip>ï:iiF::K AS i-o.\<:ti:on of the only variables that fk;ube.\t, is, a minimum this standard is still, for the system, a stable equilibrium? By repeating the preceding demonstration, we will be able to prove that it is still a stable equilibrium, provided that we modify in a suitable way the definition of stability.

In the new definition, we will not assign limits, unbridgeable whatever they are, to the absolute values of all the variables that define the state of the system; we will assign them only to the absolute values of the variables that appear in the ballistic energy. According to such a definition, the absolute value of one of the variables of which the ballistic energy is independent could grow beyond any limit without compromising the stability of the system.

Consider, for example, the case of a system subtracting the action of any external body.

To say, in the new sense of the word, that such a system is in stable equilibrium in a state Eo where the ballistic energy, considered as a function of the variables on which it depends, is minimum, is to say this

One can give the system an initial state so little different from the Ko-calibre and give it a local motion so small, that the figure, the disposition, the internal state of the system is different: always as



that the various local velocities remain always lower, in absolute values, than such limits that one will want, assigned in advance.

But this does not mean that the position of the system in space will always remain as close as one would like to the position it occupies in Eo; on the contrary, it may happen that after a sufficiently long time, the position of the system differs greatly from the one it occupied in Eo.

Let us imagine, for example, that the initial local motion imparted to the system assigns a certain velocity to the center of gravity; the center of gravity will continue to move uniformly with this velocity; no matter how close to o this velocity of the center of gravity may be, one will always be able to assign an instant t, so far away from the instant ta that the distance between the position of the center of gravity at the instant t and the position that this center of gravity occupied in the state Eo exceeds such a length as one wishes.

In this case, to say that the system is in stable equilibrium in state Eo is not to say that, thanks to the smallness of the initial perturbation, the state E at time t will remain, whatever t, as close as one wishes to the state Eo; it is to say that to the system, taken in state E, it will always be sufficient to impose a certain displacement of the whole in space in order to bring it to a state as close as one wishes to the state Eo.


	Extension, to a continuous system, of the Lagrange and Lejeune-Dirichlet theorem.



We will examine whether the previous proposition can be extended to a continuous system, and what precautions are required for this extension to be legitimate (' ).

f1) M. Liapounoff seems to have been the first to point out the difficulties of extending the Lejeune-Dirichiet proof to a system defined by an unlimited number of variables. His very brief remarks were contained in a thesis published in Russian in i8P'i; in îgofj, this thesis was translated into French by M. É. Davaux [A. LtApouNOFF, Sur la stabilité des figures ellipsoïdales d'équilibre d'un liquide animé d'un mouvement de rotation, translated from the Russian by M. Edouard Davaux, Chap. J. § (Annales de la Faculté des Sciences de Toulouse,").' série, t. VI, iy<4).] Without knowing the research of M. Liapounoff,



Let's imagine a system, made of one or several continuous masses that we divide by thinking into elementary masses. The state of the system is supposed to be known when we know, for each elementary mass dm

t" The position of one of its points; this position is itself determined by means of three coordinates x, y, z, continuously variable when I point moves in a continuous way; these coordinates can be rectangular Cartesian coordinates; they can also be coordinates of a different system;

a" The values of other variable quantities whose number is limited; to fix the ideas, we will suppose that to each element dm correspond two such quantities which we will designate by the letters v., 3.

Let Eo be a first state of the system; in this state, the quantities x, y, 3. M, 3 have, for the mass dm, values x0, ya, z0, afc, |ï0. Let E be a second state of the system; in this state, the quantities x, y, z, a, |i have, for the mass dm, values x, y, z, a, 3. What do we mean when we say that the state fo is close to the state E,,?

This proposition is susceptible of an infinite number of different meanings.

Let us designate by X, Y, Z, .13 symbols by which certain functions of a variable are represented, and let us suppose that these functions have the following properties

Each of these functions is an even function of the variable it relates to; it cancels out at the same time as this variable; it is an increasing function of the absolute value of this variable; it grows beyond any limit at the same time as this absolute value.

we had, on several occasions, insisted on these difficulties [P.  DuhKsi, Sur la stabilité de l'équilibré relatif d'une masse fluide animée d'un mouvement de rotation, § r>. (Journal de Mathématiques pures et appliquées, 5' série, t. VII, hjoi pp. 335-3.58) Recherches sur l'Hydrodynamique, première Partie, Cliap. II, § 3 (Annales de la Faculté des Sciences de Toulouse, 2' série, t. III, 1901); Sur la stabilité, pour des perturbations quelconques, d'un sy.stème animé d'un mouvement de rotation uniforme, Introduction (Journal de Mathématiques pures et appliquées, 5* série. t. VIII, tqos, p. 5) ].

I :i> n. s<,



Given positive quantities y., a, b, as small as we want, but fixed in advance, we can, in a first se.\s, say that the state E is close to the state Eo if the conditions (3.. 1) A(a -ao)irt, Bf^ - ^ji^ 1 A(x .-xo) :cz, 13(~N°)._b f¡

are met.

For this to be the case, it is necessary and sufficient that each mass dm has, in the state Ë of the system, a position and a state close to the position and the state that it affects in the state Eo of the system. In this first sense, two neighboring states Eo, E, still remain neighboring, if Von substitutes to the functions X, Y, Z, À, B other functions endowed with the same properties.

This first meaning is not the only one that can be given to the words State neighboring the Eo state.

Given positive quantities rt, Ç, a, b, as small as we want, but fixed in advance, we can, in a SECOND sek.s, say that the state E is close to the state Eo, if the conditions

(32) ~X(.~-~)~t~~ /Y(~-M$ï,, f Z (z <3>> \J /X O -r-xo) r dmit, J fx (y- jko ) r dm r, J fz(z-z0) dm < X, ( I f j ,V(a - a0 i dm a, I ('i ;ï0) dm ^6 b

are verified.

For this to be the case, it is not necessary that each mass dm have, in the state E of the system, a position and a state close to the position and the state it has in the state Eo of the system. For certain elementary masses, the difference between the first position and the second position, between the first state and the second state, can be as large as one wishes, provided that the total of these elementary masses forms a sufficiently small total mass. In this second sense, two states of the system can be infinitely close, although the same elementary mass is not assigned either to two infinitely close positions or to two infinitely close states, but the elementary masses for which this is the case must form an infinitely small mass or a certain finite number of infinitely small masses.

In this SECOND MEANING, two states that are neighbors through a



certain choice of foundations X, Y, Z, A, 13 could be no more if, to these functions, one substituted other functions X' Y', Z', A', B', endowed with analogous characters. Neighbors, for example, when we take

X(a? - a?0)= - "":, YCr - r") = \y - y" '̃< Z(z-zo) = \z - z<)', A(a-ao) = | a-ao|, B( jî £") = | 3 S" |,

they might not be anymore if we take

X-(x-x0) = (x-x0)\ V{y-yis) = (y-y(sf, Zl(z-zn) = (z-z")*, A'(a-ao) = (a - ao)!, B'(3 (Jo) = (£ 30)s.

Two states of the system, which are close to each other in the phemikh sejNs, are also close to each other in the si com> sense, and this whatever the forms adopted for the functions X, Y, Z, A, B; but the reciprocal of this proposition is not exact. Two neighboring states of the system in the first sense of the word correspond, as we know, to neighboring values of the internal energy, of the internal potential, of the entropy, of the ballistic energy. We will always suppose the functions X, Y, Z, A, B, chosen in such a way that we are assured of the exactness of the following proposition

In two states of the system, neighboring in the SECOND meaning of the word, the internal energy, the internal potential, the entropy, the ballistic energy take similar values.

We reject the use of functions X, Y, Z, A, B which would not verify this condition.

What we have just said about two neighboring states can be repeated about two neighboring local movements.

Let u, v, w be the three components of the local velocity of a point belonging to the elementary mass dm. One can, for example, IN A FIRST skns, say that the two local motions ja0; u. are neighboring, if they correspond to two states Eo, E, neighboring In the phkmieil sense of the word, and if one has, in addition, for any elementary mass dm,

I - it-o L 'f I '-' - i'o | "-- - "> | S i,

tp, '}, y being three positive quantities, as small as we want, given in advance.



Either

4=7 ( h- + v"- -+- iv* ) dm

the living force of the system, and let us designate by <£0 what it becomes when the velocities u, v, w are substituted by "0, va, w0. We can, in a second sense, say that the two local motions u0, u. are neighboring if they correspond to two states Eo, E, neighboring in the second sense of the word, and if we have, in addition, |"-"0|SK,

K being a positive quantity, as small as we want, given in advance.

How shall we define the stability of an equilibrium state? We will say that a state Eo of a system is a stable equilibrium state if it is sufficient, at time t0, to place the system in a possible state sufficiently close to the state Eo, with a possible local motion sufficiently close to V immobility, in order to be sure that at any time t, after t0, the state of the system remains as close as we want to the state Ett, and the local motion of the same system as close as we want to immobility.

In this statement, the words possible state, possible local movement, have the meaning that has been defined in paragraph 4.

But it is necessary that a definition is free of ambiguity.  The various possible meanings of the words state Neighbor, neighboring movement can make him take several different meanings; among these possible meanings, let us choose two and specify them

i° Given positive quantities, as small as we want, ~X-, .J, < -t., \l!>, t), <?, $>, we can find other positive quantities r,, Ç> a, b, ", - A, small enough for the conditions

,rj) \x -xo\t\ )' -JolUr,, | s - -s0 1 Ç, y (3:1) 1 |"-a(l|S". (f" |{J-p,|£6, b, ~o =~,

(33 lus ) | u | s, -y, |w||t!



verified at time ta, lead, at any time t, after t0, to the accuracy of the conditions

(3{) j I^U-X-, \r-yi)\<zt \z-zn\ ¡ 1 1 (% (%0 l "t" 1 ~o 1 1\

(3/i bis) \u\^V), \v\'à<?, \w\W.

If this is so, the Eo state is a stable equilibrium state in the FIRST MEANING OF THE word.

2° Given positive quantities, as small as Von wants, V), <?, ïg>, X, U!>, K, we can find other positive quantities, rh Ç, a, b, k, small enough so that the conditions

(35) I X(.r - xo)dmi f, J fy<y-ro)dm^r), J fz(z - z0) dm < l, f j A(a - io)dm%a, fli( JJ - jî0) rfm < 6, (35 taxes) $</c,

verified at time /", lead, at time t, after t9, to the accuracy of the conditions

(36) i J fx(x - xo)dmlX, J fY(y - yo)dmï%. J fz(z - zo)dm^, (3s b~~) J A(x-xu)dm-~~(R-h~o)rz~m<ü!

C3G ^is) i E^K.

If so, the Eo state is "/? e'<a< of stable equilibrium at SECOND ski\s r/" mol.

Between these two senses, there would be place for a mixed sense. E" CE skks mixtk, the correctness at time te, of conditions of the form (33) and (33 bis), would entail at any time t, after the, the correctness of conditions of the form (36) and (36 bis). The remarks previously made lead easily to this consequence

If an equilibrium state of the system is stable in either the first or second sense, it is certainly stable in the mixed sense.



The meaning of the word minimum has distinctions" similar to those of the meaning of the neighbouring word.

Let us imagine, for example, a continuous system which admits a ballistic energy W. What do we mean when we say that this ballistic energy is minimum in a certain state Eo of the system, where it takes the value Mo? `I

In a first MEANING, which is the usual MEANING, we will say that the quantity fP takes, in the state Eo, its minimum value J3O, if we can find positive quantities ç, r, 'Ç, a, b small enough so that we have the inequality

"8 - Bo > o,

whenever the state E, to which correspond the values x, y, z, a, {3, is a possible state and the conditions \x - a?0 1 S, \y-y"\1kr,, l-s - *o|âç.

1 - a" i i a, - %\lh b

are verified in all elementary masses dm of the system, without (/nevertheless the first members of these conditions are all zero.

It is in this sense, let us note, that the word minimum is taken when one makes use of the calculus of variations to find such a minimum.

Here is a SECOND MEANING of the word minimum

Let us suppose the functions X., Y, Z, A, B chosen in such a way that in two stages of the system infinitely close to each other xv SECOND sis* OF THE WORD, the quantity fB takes two values infinitely close to each other. If we can find posi'ive quantities [j., Ç, ", b small enough so that (13 - f30) is positive whenever the state E, to which the values x, y, z, a, [i, correspond, is a POSSIBLE state, and that the conditions

(%{x-xa)dmÇ_^ f(.y-yo)'d'nïrh J'L(z - z,) dm g Ç, f A(a-i,)rf "i=a, fB($-%)dmïb

are verified without, moreover, all the first members



are zero, we say that the quantity fB is, in the si:<:o.m> skjns nu mot, minimum, in The state Eo, where it takes the value Wo. 11 esl easy to see that, if the quantity is minimum, in the state It is easy to see that, if the gi~a~)deur Î3 is minlin~iiii, in the state Ë, in the second sense of the word, it is still minlin~iiii, a fortiori, in the first sense of the mol; but the reciprocal of this proposition is not exact in general.

It follows that the conditions given by the calculus of variations as necessary for a quantity to be, in the first sense of the word, a minimum in a certain state, are still necessary for it to be a minimum in the second sense of the word. On the other hand, the conditions which are sufficient to ensure the first of these two minima may well no longer be sufficient to ensure the second. It goes without saying that, if the value I3O taken in the state Eo by the quantity lî$ were an absolute minimum, it would be a relative minimum both in the first sense of the word and in the second sense of the word (' ). We will propose to establish the following theorem A system admits a ballistic energy M either by itself or by virtue of additional relations These additional relations can be of finite number or constitute one or more infinite sets; but they are all given in the form of equations in finite terms analogous to the equations (ai). If for two states E, E', which are also possible, the constant values of the second members of these additional conditions are the same, we shall say that we can substitute the state VJ for the state IL without violating the additional relations

In a certain state Eo, the ballistic erzergy takes, a value 3&Q which is the minimum Au skco.n" si-s nu MOT, provided that, among the neighboring stalls of the stall Eo, one considers only those which are possibi.ks and such that 'the replacement of the state Eo by the state fi leaves verified the additional relations.

The Eo standard is then, for the system, a stable equilibrium state \u sfccojvn sk.\s i>r mot.

(') One will find this remark used in the following work P.  Duiibm, Sur Ui stabilité et les petits mouvements des corps fluides, Cliap. I (Journal de Mathématiques pur-es et appliquées, 5' série, t. IX, igo3, p. ïi'i). ).



This proposal assumes that the initial perturbation imposed on the system .respects the additional relations.

We will leave it to the reader to extend it in case this restriction is not verified. He can do so by imitating the reasoning given in the previous paragraph and that which will be given in the following paragraph.

To prove this proposition, we give ourselves positive quantities AJ, ;)", Z>, X, tl!> called to appear in the inequalities (36), and we notice that the stated proposition will be true ajorlio/'is'i we prove it after replacing these positive quantities by other positive quantities.smaller we can therefore assume them to be small enough so that (ÎB - f30) is positive in any possible state E, other than the state Eo, which it is permissible to substitute for the state Eo without violating the supplementary relations, and where the conditions (36) are verified.

Among all these states E, let us consider those where at least one of the conditions (36) is verified in the form of an equality, and let us name them the states z. The 1% stall is not among the e-states, and it is not infinitely close to any of them. It follows that the values of (13 - $") relative to the various states s are all positive and that none of them is infinitely close to o; they admit a positive lower limit C. When the system is in a state s, the sum (jD + <E) is certainly at least equal to(B, + C).

To one of the states E, considered a moment ago, where the conditions (36) are verified, let us join a local motion whose living force is equal to K; we will obtain what we will call a motion [a.  When the system is animated by a motion v., its ballistic energy S is at least equal to JB0, and the sum (JD -+- (£) is at least equal to (î$0 +K).

Let L be the smaller of the two quantities Cet K,

We can choose the quantities <j, p., Ç, a, b, Ic, such that

i" Let them be respectively smaller than the quantities '.)1 L

-T., :T, i. îlb, -

20 That in any possihlk state e, whose substitution for the state Eo does not disturb the additional relations, and where the conditions (35)



and (35 6/V) are verified, we have

33 - i\ < ̃

From the first of these two conditions, we can easily conclude that at no instant t, none of the conditions (36) and (36 bis) can cease to be verified, unless at a certain instant t between the initial instant and the instant t, the system has passed either through a state s, or through a motion u; at such an instant the value of (fi + <£) would have been at least equal to (j@o + M- On the other hand, the second of these two conditions assures us that at the initial instant, the sum (13 -+-<£.) is smaller than (B,+ L).

For conditions (36) and ('Mi bis), surely verified at the initial time, to cease to be all verified at time l, it would be necessary that the value of the sum (ÎP + <£.) be greater at time t than at the initial time, which is impossible. The stated proposition is thus proved.

In order to establish this proposition, we have admitted that The additional relations imposed on the system are such that one can recognize whether or not a virtual modification verifies all these additional relations. This proposition can be extended, however, to certain cases where one cannot recognize whether a virtual modification verifies all the additional conditions, but one can recognize whether it verifies or not some of these conditions.

Let us consider, for example, a system within which heat propagates by conductivity. Let us suppose that the surface of this system is maintained, in whole or in part, a fixed and uniform temperature £fn that the part of this surface which would not be maintained at the temperature 2r0 melted to the vacuum or to a non-conductive medium.

1*2 ta 1 1 given a virtual modification of this system, we cannot ask ourselves whether it agrees with these conditions or not

On the system, the heat is propagated only by conductivity



Some (the boundary surface confine to non-conductive x-media.

Such a question would not make sense.

On the other hand, we can ask ourselves if this virtual modification leaves the temperature of the surface that we want, in fact, to maintain at constant temperature.

It is clear that any real modification of the system will necessarily correspond to a virtual modification subject to this partial additional condition.

If the system considered does not slide on the external bodies, or if it slides on their surface, but without viscosity, it will admit a usable energy given by the theorem of M. Gouy. If, in addition, it is subjected to external actions which derive from a potential Q, it will admit a ballistic energy

33 = © + Q = 1i{-hQ - F(2ro)S.

11 It is easy to see that demonstrations similar to those we have developed in paragraphs 3 and 4 allow us to state the following propositions

In a system, heat is propagated exclusively by conductivity;

A part S of the surface of this system is maintained at an invariable temperature &0 i

The rest of this surface is empty or non-conductive bodies

In no part of this surface does the system slide with viscosity on the neighboring bodies.

In a state Eo, where the surface S is brought to the temperature So, the system is certainly in equilibrium if any virtual modification which comes from this calibration and which leaves the surface S at the temperature 3(l begins by giving the external work a value lower than the increase experienced by the function t~6i-F~~oj~.

Suppose, moreover, that the external actions derive from a potential function il.

For all the disturbances that do not affect the temperature 2r0 of the surface S, the standard Ë,, is a stable equilibrium state,



at the second SENS m; word, if this state, compared to all the possible neighbouring states which leave the surface S with the same temperature S, makes V take on ballistic energy e 'Ô = M -+- Q - F(2r<,)S

a minimum value.


	Equilibrium and stability of the equilibrium of an adiabatic system without inertia.



ïall that (|iii is going to be said in this paragraph follows from a proposition that was proved in paragraph 3 of the previous Chapter (p. aa5). Let us recall this proposition.

In a certain system, the propagation of heat is done exclusively by conductivity. This system is confined on all sides to the vacuum or to bodies that are not conductors of heat, if it slides on one of these bodies, this sliding is exenzpt of viscosity.

In any real modification of such a system, the variation of entropy 55 is zero or positive [Chap. XV, conditions (45)]: ]

(' 3, -) ~g =Q, >

( 3' ) S*- o'

In any real modification of such a system, the amount of heat released is necessarily zero.

Let us now suppose that the system considered is without inertia, which can happen in two ways, either because each of the masses that compose it keeps an invariable form and position, or because in the definition of this system, one does not take into account the positions occupied by the masses that form it. In any real or virtual modification of the system, the quantity of energy released is then equal to the sum of the external work and the decrease of the internal energy. Among all the virtual modifications of which our system without inertia is susceptible, let us consider those in which the external work is equal to the increase of the internal energy;



Let us call them virtual adiabatic modifications. Any real modification of the system will necessarily correspond to a virtual adiabatic modification.

On the other hand, condition (3-) tells us that no real change in the system can correspond to a virtual adiabatic change if this change leads to an increase in entropy.  We thus obtain the following theorem A system is without inertia, the propagation of heat is done exclusively by conductivity;

This system borders on the vacuum or on bodies without conductivity if it slides on these bodies, this sliding is devoid of any viscosity.

This system certainly remains in equilibrium in a certain state, if any virtual adiabatic change, coming from this state, starts by decreasing the entropy of the system.

This proposition can be applied, in particular, to a system isolated in space in this case, any real or virtual modification of the system corresponds to an external work equal to o we thus obtain the following theorem

Let us consider a system isolated in space, devoid of inertia, and where heat propagates only by conductivity. For a given state to be the equilibrium state of this system, it is sufficient that any virtual modification, resulting from this state, and which leaves the internal energy of the system unchanged, starts to decrease the entropy.

Instead of this proposition, Gibbs stated the following one (') For V equilibrium of an isolated system, it is necessary and sufficient that any virtual modification which leaves its internal energy invariant begins by decreasing its entropy or by leaving this entropy an invariable value.

Even if we restrict this proposition to systems without inertia and on which heat propagates only by con(') .F. WiLL.iiui Gibbh, On Ike equilibi-ium, of heterogeneous substances, condition (i).



In the case of an isolated system, considered by Gibbs, the additional relation imposed on the virtual changes is written in the whole form. In the case of an isolated system, considered by Gibbs, the additional relation imposed on the virtual modifications is written in the whole form. For such a modification to be adiabatic, it is necessary and sufficient that the internal energy keeps an invariable value. This is not the case, in general. To express that a virtual modification of a system without inertia is adiabatic, it is necessary to write that in each element of the modification, the external work is equal to the increase of the internal energy. However, this condition takes the finite form if the external actions to which the system is subjected depend on a potential : in this case, for a modification to be adiabatic, it is necessary and sufficient that the sum (Ht + Q) of the internal energy and the external potential remains invariant during this modification.

For a system subjected to such external actions, the previously demonstrated proposition can be put in the following form

A system without inertia and within which heat propagates only by conductivity is confined on all sides either to the vacuum, or to non-conducting bodies if it slides on these latter bodies, this sliding is without viscosity; the external actions to which this system is subjected depend on a potential

Let Eo be a state of the system, \l0, £j0, Lïa the values of the energy, internal, of the entropy and of the external potential in this state

Let E be any one of the possible states close to the state Eo, where the sum (Xi -j- 0) of the internal energy and the external potential has the same value (II,, -j- 12o) as in the state Eo. Let £> be the entropy of the system in this state E.

If&o is a maximum (in the sense of the word) among the values of Ô defined in this way, the system considered certainly remains in equilibrium in the state E,>.

To this first proposal, we can add a second one



Under these conditions, the state Ko is a stable equilibrium state, in the second sense of the word, provided that the initial perturbation leaves the sum (11 + (2) the value (tt0 4- 00) that it has in the state Eo.

Let us suppose, in fact, that the state of each of the elementary masses dm is defined by the temperature 3 and by other normal variables in finite number, two for example, a, [ï. Let us choose functions T (2r - 2f0), A (a - a0), B ([i - |i0), which must serve, in the second sense of the word, to define a possible state close to the state Eo.

Positive quantities JU, i)!>, ©, as small as we want, being given in advance, we have to prove that we can take other positive quantities a, b, c, so small that the conditions

(38) fTÇà - Z^di/i^-z, /A(a- -xa)dm^a, f'B(p - Ç,0) dm^b, verified immediately after the initial perturbation, lead, whatever t, to the conditions

(3<J) fTÇ5 - %)dm = i), ^Ui-iju/m^l, fïHQ-^dmtW". We can, first of all, assign to the quantities 0, X, itii, values small enough so that in any possible state, other than the state E(), where these conditions (3q) are verified, the entropy has a value certainly greater than k*0.

Let us consider the set of possible states where the conditions (>'5g) are verified and where at least one of them is verified in the form of an equality. Let us call these states the states s the state Eo is not found among the t-states, nor is it infinitely close to them, because we cannot, by means of t-states, constitute a continuous sequence having the state Eo as its limit. If we therefore take the set of values of entropy that correspond to the î states, we are sure that these values will admit an upper limit, certainly smaller than J50. Let us denote this limit by (,i "i0 - S), S being a positive quantity.

The quantities t, a, b are respectively less than or at most equal to the quantities (-), -V., vU, so that the conditions (3c)) are



verified at the initial instant of motion. In order for these conditions not to be satisfied at a certain instant t, the system would have to have passed through a z-calibre between the initial instant and the first instant t. Its entropy would then have been at most equal to (S, S).

No real modification of the system can make its entropy decrease : the system will never be able to go through a î-calibre, if, at the initial time, its entropy has a value higher than (ôo-S).

Now, we can give the quantities t, a, b such small values, that the initial state of the system is as close as we want to the state Eo, hence, that the initial value of the entropy is as close as we want to So. We can therefore limit these quantities t, a. b in such a way that the initial value of the entropy is greater than (So - S), which will surely prevent the system from ever reaching a state z. The stated proposition is thus demonstrated.

We will now show that the previous proposition remains true even if the initial perturbation does not leave the sum ("li + tî") with the value (1do + 12o) that it has in the Eu state.

This demonstration, however, will be subject to the following condition

The functions T, A, B have been chosen so that to neighboring props of the system, correspond neighboring values of each of the two quantities

y <K. ) -'- o'/H,

)~{dm' f 'ïïfe'1

<' J F(~)

where y is the normal specific heat of the 'elementary mass dm.

As in the various demonstrations given previously, we notice, first of all, that we can always replace the given quantities (-), -l., n!> by smaller quantities. Designating, therefore, by 0, a positive quantity analogous to B, we can take for the quantities ©, fà,, vl,, ïlb



values small enough to ensure that the following conditions are met

i" 11 exist two positive and finite quantities c and K, such that in any possible state where the conditions

(40) T(S - %0)dmle-hGu

(4o) f k(a - at,)dmSX, A$(£ $*)dm±\k are verified, we have

(40 c<J'{dm,

(4.) K > F(t J dm.

2e In any possible state, other than the state Eo, where the conditions (4o) are verified, and where, in addition, the sum (M -+-Q) has the same value (Ht0 + û0) as in the state Eo, the entropy of the system is lower than So.

We can also define a positive quantity p small enough so that the condition

(43) |&3r|L.p,

verified at any point of the system, leads to the following consequences

i" If the first condition (39)

[r(5-)dm<.8 E)

is verified, the condition

(ii) yT(2f-S0)f/mie-He,

is also verified.

2" If the first condition (3()) is verified as an equality

/T(S - S?o) dm = 0,



we certainly have

(45) f'rÇz'-Z^dmiBî,

02 being a positive quantity, less than ("), which we can, moreover, give ourselves arbitrarily in advance.

Let us consider the set of some possible states (£f',a, j3) of the system, which we will name the z-states and which we will characterize in the following way

i° In any state e', the sum (ll' + O') has the same value (111(0 + (0)) as in state I~o

(3) In any event, the

Or condition (44) is verified as an equality or inequality, while at least one of the conditions f\ ( a - a0 ) dm A, B ( p - £0 ) dm it!

is verified as an equality

Or condition (44) and the two conditions we have just written are verified as equalities or inequalities, but, in addition, condition (45) is verified.

All these states e' satisfy the conditions (4o) after 2r' has been substituted for S. Moreover, the state Eo is not found among the s' stalls, and one cannot, with their help, form a continuous sequence of states which admits for limit the state lï(l. It is thus certain that there exists a positive quantity S such that one has, for any s' stall,

(46) S'?S0- 2.

Nothing prevents us from substituting a smaller quantity for p, we can always, from now on, suppose that we have the unequal

V

(4?) ?<7k'

Let us designate by e the state of the system immediately after the perturbation, and by m, w, s the values that II, Q and i5 take in this state it is c[air that we can impose to the, quantities t, a, b of D. - J[. 21



upper bounds respectively less than (̃), -A-, ii!>, and such that one surely has

(/j.8) | M -t-Ol-llu- ii.jlvC?,

V

(49) \s - S" < -

The conditions (3t)) are then verified at the initial instant of the motion of the system and we will see that they will never cease to be verified.

For them to cease to be so, it would be necessary that at a certain instant t, the system should pass through a certain state s where at least one of the conditions (,̃'${)) would be \erilized in the form of equality; in this state, moreover, the sum (XI + iï), which remains constant during any real modification of the system, would have the same value (u + (') j as it had at the beginning of the motion; we shall see that the passage of the system through such a state would be impossible.

Without changing anything in Tetat, disregarding the temperatures that the system would then present, and, consequently, without changing anything in the value of U, let us increase all the temperatures 3 by the same quantity (3' - 3) that brings the sum (III + 12), equal to (m -+-<->), to the value ( \J0 + 12O)- We will have l(0 -i- Qo - u - ("=/ y cfô dm,

which, by virtue of conditions (/\i) and (48), will easily give us

(')) |3'-&|<?.

From then on, it is easy to see that the system will have been brought back from the state z to a state t', where its entropy will have a value 15' verifying the condition (/(()).

Moreover, as the binding conditions do not depend on temperature, the state s' is, like the state s, a possible state. On the other hand, 15 being the value of the entropy of the system in the state the equality

S' - S = - '- d'il dm,

F(2r)

together with the inequalities (4a) and (^J), shows that (15' - 15) is at



more equal in absolute value to Ko and is, therefore, less than 1:

in absolute terms, to -

We are therefore assured of the inequality

s < s0 --

2

This inequality, together with inequality (4(j)) gives us S - s < o.

The actual adiabetic change that would have made the system go from state e to state s would therefore have decreased the entropy of this system, which is impossible. The stated stability is thus demonstrated.

G. Robin had stated (-) this proposition For a system, confined to the vacuum or to bad conducting bodies, to be in stable equilibrium, it is necessary that the value of entropy Ô is, in this state, a minimum among all the other values of entropy which correspond to the same value of the sum (fl + Q).

Moreover, the considerations developed by this author seem to indicate that he considered this condition not only as necessary, but also as sufficient. This counterpart is only demonstrated by the foregoing; moreover, it is demonstrated only for a system without inertia and on which heat propagates only by conductivity; Robin had not pointed out these restrictions.


	The dependence that exists between several of the previously established stability conditions.



A continuous system or one dependent on a limited number of variables is brought, in all its extent, to the same temperature. In a state Eo, where this temperature draws has the value the total potential ($-Q)a minimum value among all (') G. Robin, general thermodynamics, the notice, 1901, p. i!\S.



those corresponding to the same temperature value 30.

We already know that this state Eo is, for the system, a stable equilibrium state if we subject the temperature to keep an invariable value.

I say that it is still a stable state, if we maintain invariable not the temperature, but the entropy of the system.

To prove this proposition, it is sufficient to prove that the state Eo makes the sum (U+Û) take a minimum value among those which correspond to the same value of the entropy S.

Following a notation often used, let us designate by (e. S) any state of the system normally defined the state Eo will be represented by (e0, Sr0).

11 is to find that in any state (e, £r), possible sufficiently close to the state (e0, 3U), and subject to verify the equality (5b) S(e, 3) = S(e0" ^o),

we have the inequality

(m,) U(e, 2r)-r- Q(e)> L' (e0, 30) -4- lî(e0 !̃

By hypothesis, we can take the state e close enough to the state e0 so that Ton has

(jî) L'(e, 30)- F(30)S(e, £?")-+- Q ( e ,i


L:(e, 2?0) - F (3"; S('e0, 2r0) + !î(e0).



If we denote by C the normal heat capacity of the system, we can write

U(e,2r) - U(e. 2r0) = '^0 C t/3,

"0

S(e,3)- S(e,30)= ttV.

J~L, F(.)

These two equalities, together with equality (:jo), transform inequality (5a) into the following

U ( e, 3) -+- Q") > i: (eOl 3U) + Q(and, ) + F(30) f - i- L-l C d3. ~3.  ,F ('~o) l' (;; )



If we observe

i° That the absolute temperature F (2ï) is a positive and increasing function of Si

2" That the normal heat capacity C of the system is, by virtue of Helmholtz' postulate (t. l, p. a63), an essentially positive quantity,

We see that the quantity

~)/"fp~1~

,5r. F(:1} Fi:1}

zero in the case where S = 2ro> is positive in any other case.  The previous inequality thus leads to the inequality (5i) which establishes the stated theorem,

We gave this theorem in 1894O; the proof that we had then proposed, less general than the previous one, concerned only systems defined by a limited number of independent normal variables. Later, we extended it to the case of a fluid (2). Less general then than the demonstration which has just been given, our former demonstrations were also less convincing.

To this theorem, we will join a second one

The state Eo is still a state of stable equilibrium, if instead of maintaining invariable the temperature of the whole system, one maintains only invariable the temperature of the surface which limits it or of a part A of this surface, while the remainder of this surface is confined to non-conductive bodies, and that, on the system, the heat propagates exclusively by conductivity.

The system being normally defined, let e be a state, apart from the temperatures, and S a continuous distribution of (') P. Di-iii'.M, Commentary to the Principles of Thermodynamics, Third Part. The General Equations of Thermodynamics, Cliap. IV, § (Journal de Mathématiques pures et appliquées, 4" série, t. X, 1894, p. I73).

(2) P. Dimikm. On the isentropic stability of a fluid (Comptes rendus, l. CXXX.II, 5 February 1901, p. 2i'|). ).



temperatures in the mass of the system; (, 21) will designate a complete state of this system. The stated proposition will certainly be demonstrated if we prove that, whatever the temperature distribution denoted by 5, the inequality (~2) leads to the inequality (53) ~(c, ~)-F(&.)$(e,5)-U(f)


U(eo, ;;0) F(:1o) S(eo, :10) + Q(eo).



Now, if we designate by the normal specific heat at a point of the element ct'm, and by S the value that the temperature takes, at the same point, in the distribution we will have ~if(e,:y-U(e,~o)-rJ ) ~.(d~~lm,

k~(e, â~ S(e, ~o)' ---

H (~) )

We can therefore write

~(e,&)-F(:3r.)9(~)

U(~S.)+F(~.)S(6,S.)=F(&.) ['~-----1~ L~("~) r(~)j

According to Helmholtz's postulate (t. 1, p. a63), the normal specific heat there is essentially positive; the quantity f

Jo LF(5") F(:1) r

zero if S'=2fo, is positive in any case. The previous equality thus becomes

(54) H((f,&)-F(S.)B(e,:&)-~U(e,3'.)+F(~(,)S(e,&(,)~o. Given this condition (54), Inequality (52) leads to Inequality (53), which establishes the stated theorem.

We have just shown that inequality (52) leads to inequality (53), whatever the continuous distribution of temperatures designated by the sYlnbole3', and without this distribution being assumed to take the uniform and constant value ~o at the various points of the area A.

We can therefore assume that the distribution associated with state e, is any of the distributions that satisfy equality (55) w(e,~)-t-a(e)=:U(eo,2ro)~-a(<'o).



But the inequality ('53), where F(S0) is positive, will then become (50) Sv e, !j) < S( t?oi ^o)- ).

The state Eo gives therefore to the entropy a maximum value among all those which can correspond to the same value of the sum (t( -j- 0). From then on, we can state the following proposition

If the system is without inertia; if its mass transmits heat only by conductivity; if, finally, it borders on all sides on the vacuum or on non-conducting media, tetai E, is still, for this system, a state of stable equilibrium. This theorem had been stated by G. Robin ( ) but this author, by simply copying the calculation by which we had demonstrated the first of the preceding theorems, had in no way proved the accuracy of this last proposition. Mr. E. Jouguet has indicated a more convincing demonstration (2).


	Stability of the equilibrium of a holonomic system



defined by a limited number of independent variables. The application of the previously proved theorems to holonomic systems defined by a limited number of independent variables leads naturally to maxima and iniuima problems of a function of several independent variables.

Consider, for example, a system of uniform temperature, normally defined by its temperature 2f and by it other independent variables y. <̃>, a,, this system is subject to external actions which derive from a potential Q, a function of a,, a2, a, while the internal potential $ is a function of a,, a>, a, S1. Let  - -f -|-iï be the total potential.

If the temperature S? is kept invariant, the system (') G. ItoniN, General Tlw.rmodynaitiiijae, p. 1.^7-148.

(2) É. Joi;guet, Sur la stabilité de l'équilibre, {Procès- verbaux de la Société des Sciences ji/iysit/ues et naturelles de Bordeaux, 23 July t<jo3).



will surely be in stable equilibrium in a state where the equalities eM> to 6"

(67) - = o, --=0, - =0 t~

dOCj c~

are verified and where the form, quadratic in oa,, oa2, oa, (;i8) d~-i~ (ôx,)°-+ d2~ (ôx2)+.+ d2~t~ (ôx.,)z+a d'(J) ôxt%.x~ <58> l^l)+-+ ^(^)^ -I

is a positive definite form.

Let us denote by U and S the internal energy and the entropy of the system. Assuming that V entropy is kept invariant, the equilibrium will surely be stable in a state where the sum (U + O) will have a minimum value among all those which are compatible with the same value of entropy.

Instead of the normal variables a(-, a2, .a", 3r, let us adopt here the entropic variables a,, a2, a, S. The internal energy U(a, a2, a, 2f) will become [Chap. X, § 8, t. I, p. 45 1] a function W(at, a2) a, S) of the new variables; the external potential, which did not depend on the temperature 2r, will remain the same function ù(u.{, a2, "") of the functions a,, or, x, Let us posit

(5çi) Z(ai,as, a, S) = W(x,, 2, a, S) U(x,, aâ, a"). The system whose entropy is kept invariant will surely be in stable equilibrium in a certain state, if, in this state, the equalities

to 'L d'L o'A

( 60 ) = O, -r- =0, = o dxl dx_ = ~x,t =

are verified, and if, in addition, the form, quadratic in 80^, oa2, Sa,

(6,) g(^l)2.J|(^)2 + .|(^)^.V_|A_Sa;.5ay v'J.. oij

is a positive definite form. G.r

is a positive definite form.

Conditions (57) are equivalent to conditions (60), as can be easily verified.

The transition from normal to entropic variables transforms the internal potential J (ai, a2, .aH)3f) into a function



P (a,,a2, a, S), and we have [Ghap. X, equality (i 58), t. 1, p. 45a] ]

(f.2) r W = W-S^-

The same change of variables transforms the total potential  (a^ a2, an, 3) into a function X(a,, a2, a, S); if we observe that  = Q, and that the external potential Q depends on the variables a,, a2, a alone, the equalities (09) and (G2) give without difficulty

(63) X = Z-Si-

We have obviously

to <?X toX toS

d%i dxt dS cfaj

or else, by virtue of equality (63),


	^L s d'Z -4- - -\



t l

But, on the other hand, the equality [Chap. X, equality ( 1 5 ) t. 1, p. 45 1]

w

can be written as

(64) KO) = T=g.

(64) ~(s) = T = ds'

It gives us the identity

()'/ Z c^Z as

riSoa,"̃ dSi don ~°'

through which the previously established equality becomes the first of the identities

"'!- dZ c>'l> o'L to dz (6fi)'. dstt dxi' dy2 dx<' - dx;t c<T(,, - From these identicals follows the announced i^iaivalence between conditions (5~j and conditions ((io).

The identities (66) give equalities of the form

d2  à* Z à'L à$_

OoLida./ Ot.1ô%j <)x, t)S dxj



which, in turn, allow to write

di d' ~t? 't' (~) -t,Ox1)~` i,~x2')°_ Z (~Jx,t)9v' -Gx~~xJ dxi dx~ r9x,y da~ ~xi

~l

_a2z ()2 Z ()2 z " ,r-r Z

= 1 ( ôx~ j=- 1 (O'l..2) -+.+ (O'l.¡¿)2+ 2 cxt dx'1 dx., T dx,t dx~ ,Jx~

~ï

/d3Z dz' d=`l.


	trixt dS ~xt dxx,li ~~x~ + r)x" dS 8x, l` )



/~S~ os dS )\

X -- OKi -r- -- 0X3 -)- -t- rlJ o7"

t z

This equality shows us that the quantity

d~Z d2 d°-7 z d=L z

(68) )2 Z )2 TU Z .( ¡J2 Z (' 2 r,2i r,2j (68) (f~CGl~2+~~ (~^J.2~2-i-i- Z (fx,t~ +~Z ~x(Gx~ dx1 da., dx,y i.r dx~ dxj

A~Z ~Z d "Z '(~

d2z ôx1 + d~! ô'x;+.. -4- r)~Z ûx,y ôS


	T---rOX,-)-----O~-t-(------<.K,tOS



\dKjdb dS d~~tt oS Ô'l.2 +-, dx,,d!~ dS O'l." 0

becomes, in any isothermal modification, equal to the quantity (58); moreover, in any isentropic modification, it reduces to the quadratic form (6)).

On the other hand, identity (65) and analogous identities give us the identity

)~Z ~xl+ d=Z ~~x2+.+ l bxa

~s~~

dS (,l'X¡ dS dxz dS dx,y

2 dS~ dS~

7)s2 -,- ~Kt -t- -- ~x2+.+ ~- ÛK,t ) == 0,

~b~\<)2t t)x~ ()~,t

which reduces, for any isothermal modification, to the equality d2z yes d~r 1)2 ~Z ,)>,

-75––o~t-LT~–2-t-m–~M-–~–~=f).

~S~t ~S~2 ~Sdx,, J.s"

By means of this equality, the form (68) can, for any isothermal modification, be expressed in the two following ways at2 Z dzL z. d=/ Z (}2 Z

(69) ~(8.,)~~(s~)~(e~Y- ql dK~\ <~X ~y /z ~x ~z '~x, ~3s~dS~S~ z 2

(70) ~(3~)~~(S~)~(3.+~~S. dai dxz r)x~y dx; dx~

Sz(ôS)'.



Moreover, for any isentropic modification, these two forms (09) and (70) reduce, like the form (68), to the quadratic form (61).

We can therefore state the following theorem

A system which is subject to modifications of one and only one of these two species, isothermal modifications or isentropic modifications, is certainly in stable equilibrium if the conditions of equilibrium are verified and if any one of the three quadratic forms (68), (69), (70) is positive for all the modifications of the species considered. By !e passage from the normal variables to the entropic variables, the temperature Sf becomes a certain function T (c.(, a.n, .a,S). The identities (66) then give us identities of the form d2Z d2* o "2 dx

d%i di.j <)-j.j 63. j On; t/2r to%j

which, in turn, allow to write

d_2Z ~z- d"-Z )2 ~z z

(~ai)~+ (ôa2)z+.+- Z (ôun)2+2~ ôxz ôx~

=~'(~<- to d2<î> ()- (1, "


	V ~--r oar-h - - 6a2 -t- H- - ôan



t dx dt " ih


< -OXi -+- -- -O22 + .t- -p- Sa,, j.



.dai c*2 <^"

This equality shows us that in any isentropic modification, where 2 ïV .d~

dz dx dx NC.

-.oajH- - oa2 + .+- - oa,, = 0 J,

C'X) ~xz d

the shape
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If, in a certain state, V ballistic energy of the system is a maximum, recognizable by the fact that the terms of the second degree, in the Taylor series development, give a negative definite form, the state E cannot be a stable equilibrium state.

By a suitable change of variables, we will be able, here again, to define the state of the system studied by means of n independent variables q2,q2, q,t, all equal to o in the state Eo, and such that the living force <£ and the ballistic energy B can be written in the forms (-) and (;.)). Our supposition will then become this The n quantities S,, S; S,, are negative.

With respect to viscosity actions, we will admit the existence of a dissipative function -i'. We will suppose that this dissipative function can be put in the following form (29) £ .= *+/,

in which ff> is a quadratic form, with constant or zero coefficients, of the n velocities q\, </[, q'tl f can be written as a sum of two terms; the first term has the aspect of a linear and homogeneous form with respect to qt,q-2, .qn, quadratic with respect to q\ ,<" ---"; the second term has the aspect of a homogeneous and third degree form with respect to q[,, q'tl; but the coefficients of these forms are not constants; they are functions of q2, q, q q'.>, q',r With respect to these functions, we will suppose that they remain finite, as well as their partial derivatives of the first and second order, when the quantities q,, q- q, q\, q' qn all tend towards o.  The viscosity action V,- relative to the variable (p has the value - -jj-7- We can therefore write, by virtue of equality (29), J'~j dg.

(3o.) v, = -^l + v,.

(3.) or/

d'un système visqueux [Comptes rendus, t. CXXXY, 1" décembre 1902, p. jjSf)); Stabilité et viscosité (Mémoires de la Société des Sciences physiques et naturelles de liordeaux, (i" série, [II, i(|o3, p. i>r). }.



< will be able to be decomposed into two terms; the first will have the aspect of a linear and homogeneous form with respect to the quantities qj, linear and homogeneous with respect to the quantities q'j) the second term will have the:aspect of a quadratic form with respect to the quantities q' but the coefficients of these forms will be functions of the quantities c~ q~, and these functions, as well as their partial derivatives of the first order, will remain finite when all quantities qj, q tend to o.

We will not make here V approximate assumption that the dissipative function S is a quadratic form of the quantities qi.

One of the fundamental assumptions of the theory of viscosity states that the dissipative function S' cannot become negative for any system of values of the quantities qi,q'i, so that the quadratic form  cannot become negative for any system of values of the quantities q In THE PRESENT DEMONSTRATION, WE WILL MAKE NO USE OF THIS UENSEIfriNMENT RELATING TO THE SIGN OF <!>, so that our conclusion will be valid not only in the hypothesis, the only one physically realized, where the actions of viscosity tend to oppose the motion, but also in the hypothesis where the system would be the seat of actions of the same form as the actions of viscosity, and which, however, would tend to second the motion.

Let's formulate the equations of motion of the system; the first of these equations, given by Lagrange's procedure, is the following

/1. Il. Il. c. d~ (i H- 'f.i)7i + "'ti'Ji^ ̃ winqn =_ S,9i- -r-7 - -j- -+- vi f~, <~j

i =- n J ~n

Ln ~~f'y f

~+.21~ ~c(, ~l~lj~

~Zj~ J

/=:) 1 j..=t

By a reasoning similar to the one which, in the previous paragraph, provided the equalities (10), we will show that these equations, solved with respect to q\, q" q "n. give n equalities of which here is the first

<)

(3i) t ?̃;= - s,- -+̃",.

oql

Each of the quantities x,, or, a,, has the aspect of a qua-



dratic of in variables  - - -> * ̃ ̃ -i </" j but the coefficients of this form are themselves functions of these variables; these coefficients remain finite, as do their first-order partial derivatives, when these 2/1 variables all tend to o.

Consider the quantity L, a function of i-, defined by the equality /~"

(:~ .2U~~(y~-S~ J~

i-

Outside the equilibrium state, where it is zero, this quantity U is always positive.

From this equality, we draw

dU V ̃̃ c ̃

In this equality, let us replace qt by its expression analogous to (3i); let us observe, moreover, that we have, by virtue of Euler's theorem,

i- 1

and we can write

i - n

(33) ^=-^S,7lïl->* + 8.

/-

In this equality, the quantity S, equal to (a, q\ + +""<), has the appearance of a homogeneous form and of the third degree with respect to the quantities r/ q'h this form containing, moreover, no term independent of the<yj-; but the coefficients of this form are themselves functions of the quantities q^ q\ these coefficients remain finite, as well as their partial derivatives of the first Order, when the quantities y, <]̃ tend towards o.

The equality (3,'i) gives

i :z n f

if =-2i LS/'yr "+- (s'(//+ ôïi) giï ^qi + Wiqi) In this equality, let's replace all quantities q't by their



expressions similar to (3i); we will find

r=a

d~- IJ ~'1/. 2 = ,,1

In this equality, z has the aspect of a homogeneous form and of the third degree with respect to the quantities q, q't; but the coefficients of this form are themselves functions of (/ q'p and these functions do not grow beyond any limit when the quantities qi, q\ all tend towards o.

It is very easy to see that the quantity before z, in the second member of equality (34), is a positive definite quadratic form of the 2/i quantities qi, q'r

H is visi6led first that this quadratic form, where all the quantities S* are negative, can only be positive or null; it is also visible that, for it to be null, the following inequalities must be verified

(35) ?', = o.

(36) S/Çi-h -5-7=0.

But the n equalities (35) make all quantities zero - so that the n equalities (36) take your form

q,- o,

which demonstrates your stated proposition.

It follows that one can, to the absolute values of the quantities qt. q,ii <]'"̃, ̃̃̃: fl,,i assign upper bounds such that the second member of equality (34) is definitely not negative. Having done so, assume that the system is in stable equilibrium when in the state E,, defined by the equalities <7i = o, qn - o.

To the initial absolute values of the quantities q, q.2 q,, q '( <y2, q'n we will be able to assign upper limits such that the absolute values of these same quantities remain, that) be t, lower than a/? positive quantities arbitrarily given in advance; such, consequently



r ° ( )ue la quantité dounne rrar J', 1' l 3 j 1, ne I)u'sie 1 de- i° Que Ja quantité -rr given by the equality ('̃'>), ne de- venir négative pour aucune valeur de t;

2° That the quantity U, defined by the equality (A'2), can never exceed a positive value given in advance.

But we shall prove that we can, in addition, dispose of the initial values of the quantities q,, q-j, g, q\, qn, q'n in such a way that the initial value of- r is positive it will result, contrary to what has just been said, that U must, with l, grow beyond any limit; this contradiction cannot be solved, unless we assert, as we have done, that Eu is not a state of stable equilibrium.

The initial values of q, q, q, g,, are, so far, not subject to any condition other than this: The corresponding absolute values must not exceed certain limits. Let us agree to take, at the initial instant read,

2Î = )

?'

'1i

À being a positive number, provisionally arbitrary, and independent of the index i; let us denote by W what becomes <ï> when we replace each of the quantities q\ there by the corresponding quantity qt W will thus be a quadratic form of the quantities q,. The equality (?>̃'>) will give us, for the initial value of - > i=n

™> S)r--xfïs^xir-4

(34) 1 ̃. ( 1

A will have the appearance of a homogeneous form and of the third degree of the quantities < q>, .<̃/": the coefficients of this form will be, moreover, functions of the (m-j-i) quantities q,, yS) c/",À; but these functions will remain finite when d, q2 q,, tend to o, and that whatever small À may be.

t

Jja quadratic form - N S, q) =( ) is a posir~ defined form,

tive. When the absolute values of qt q,, remain



lower than the limits assigned to them, the report certainly admits an upper limit D

i~l~D.

-c- D,

Let's take for À the value

1

A = ÏD ̃

We can write

é = rs v

(~).(2~-}

~ti ~( ~,SLI~z~

From what we have said about A, we see that we can now give to the quantities q,, q.±, q,n values whose absolute values are at most equal to the upper limits which have been assigned to them, such that it is the same for the initial absolute values of the quantities q[, q'/n and such, finally, that the absolute value of the quantity .2 A is surely lower than the i =z n

C value of the positive definite quadratic form - S; qj ̃ 1=1

ai /dV\ ̃ -e

Then ( -7- will surely be positive.

Our theorem is thus proved.

The result we have just obtained for a system affected by viscosity is less complete than the result established by M. Liapoiinofl and by M. Hadamard for a system devoid of viscosity, and demonstrated in the preceding paragraph. Hadamard for a system without viscosity, and demonstrated in the preceding paragraph; a particularity, in fact, favored the demonstration of these geometers, a particularity which is no longer found in the case we have just treated Two quadratic forms of n variables can always, by the same linear substitution, be transformed into two forms which no longer contain any right-angled term; this proposition does not extend, in general, to three quadratic forms of n variables.

But, apart from the case treated by M. Liapouinoll'eu by M. Hadamard, there is another case, left aside in what precedes, where we will have to consider only two quadratic forms; it is the one where all the variables which define the system are



variables without inertia^), either puw& qaefmslktè "M^gémmin that the system can experience in jyissëhtAimmô'bH'e'â i{sàfè> a>bs, trac^on;' ides the changes of position of these'ipjiàréié! bt)kktde"\tièr'6knm>Y^a^n is the one that is done most often in Chemical MechanicsAe.i "jil! In these conditions, we vO^tu-biéM" aiàémM;M^(i'u4e*&iïtastilU'tion performed on the variables; ("Vf ot>i\tiwj<&;i<\piécimti!toénHfi replace by new^ variables c/t^q3, .q^t^les^ y i°That the state Eo be defitfi ^â^ksXA.^galiféâ.V, v.mmu \v, u"'\ u ,v1-"> ,i> vsWv 1\ a'sw,lro z. ~,1 "10' ,1")

5-1 = 0, Çi = o, ^n=o;

uj) tns~t~'uuMt io .-fio'Xu!))') ?~)) ~u nuw)'-1 Q., uh tnsirifr/fjoui îjb  a 'il .t-.n/jifnoM fjlij r> iri< fil r.'ii J>.c> >.xioi)(iii|)") "')') ̃>!)

(9) B = B0-h -(̃e"?î-+t^"9rîrt-H-S "srS)H-P,

.0 =a - - - -̃"- 1 h! - ,v ,S

xata ~y

where p is assumed to possess the properties that,RG,uq \xtfj:rbuted when writing for the first time (p. 368) this equality (())', 3" That the function dJssTpairvéW can be put in the form -̃ ̃ M,|'> ,> !;̃- ')i;|iiil,'ll)MI|' 'Ilii'Kl! ̃" f I 1 1 II l')9(jr!Ji I ï>,.C

(35) ;nr;ry, ~~J~ (~~1{r¡'{If¡o~2¿1i~~ t;IÍJ'r;irJ!2-/¡:if ~rm 3rrr rr~i ;db', erli >! ̃iiiiml .'iJi; ̃)!) i',i'ii> ni. m. il lri-)>- /having, the properties we have ascribed to it by, writing ̃ J r r 1 i(1.)X ,̃), -'iJudI lii-iliii'i] ,,y ê*jli rueup equality (20).. .Q3.~31 ~'1`3J ~1~110.1 111',1111,,1 ï, 1 t m>ctnusm)1~\o '1.))\1,('\ .a' 'J\I\' 7.t'.n't~t~ ~.110' lci, "httUS 'sllp^o-s^rÔ!"ïiqliièi'tà foh>lidh "àV^?pa^vèr^lue'^é'n^ièi lemem'lUfcftivè'tWfl'eS'tes -,ftiis-qu'-oh' niH p'afelifil "I' sv "l]">">wd(s\r, v.y :.Y ̃ Y fefmfi Ijjioo

1 ('/ 1. 0. f/o =^ O, Cf'n - 0\ r "t

̃ 7 in. 1 |)''ii'l ^i^iiIit'i/ liritii'i nff-1. icoV /'ïiifi'ii.ii 1 1 ̃ - '̃̃)̃) '.tniniii.J This amounts, to say that nçus do not adingttoqs, among the variables without inertia that define the state of the system, the introduction of no Tàt-iaWle^n^VilsèOsite^'que^ according to the theoreifc "ffë "lir visBOitt^jllcllltWVa" 'M WèM& ̃ffcjSO'Wpli'ehti'fté mbtd'i1fiicàt1iolrt "r^elfc qndcfenqii'e'. '̃"f?">J This hypothesis' 'exi^u'â'rtcWn1 r, "efficieri" F^nè'^tài-'lJè^afi'f'; -JiLLi'l- -'mirill'.({ .i -/KUll ll|. -̃ ̃! ->l-|i 1:1 l'-l '1 .<>! <])^ 1 (') P.  Diiiiem, Sur la-'itàbitUV clé^^uïlib^é 'eï'Hèi'^W-iaÔ^es'^ànP^éêe (Comptes rendus, t. CXXXV, i5 December 1902, p. 1088); Stability and viscosity ( Mémoires de la Société des .Sçioi^eb' physiques et naturelles de BordeaWei, (j* série, t. III, 1903, p. m).

D. - II. your



we will particularize it a little more and we will admit that all the coefficients F, F2 F,, are positive. No more than in the previous case, we will not make the approximate hypothesis that reduces S to a quadratic form of the quantities q

It is with the benefit of these assumptions that we can demonstrate the following proposition

If the coefficients S, S^ S,, are all different from o, and if at least one of these coefficients is negative, the state Eo cannot be a stable equilibrium state for the system. Let us formulate the equations of motion of the system. The first of these equations is the following:

IF e~, + FI q i + + ~t, = o.

S~F,+~=o.

We can write it

(36) S, 4,+ Iri^i-t- a, = o;

a, has the appearance of a quadratic form in qi and q'L; the coefficients of this form are themselves functions of the quantities qt, cfL; these functions do not grow beyond any limit when the quantities qi, q't all tend to zero.

We will admit that these equations really determine the motion of the system, i.e. that they unambiguously determine the n quantities q, q. q'u as n continuous functions of q,, c/2, q,

Since these equations are certainly verified when we make ?t=0, ?,,=0, ?t=0, <=0, which amounts to placing the system without velocity in the state Eo, the preceding proposition leads to the following one

The n quantities q, q, qtl all tend to zero when the /? quantities q, q, q,, all tend to zero. From then on, it is clear that equations (36) can be replaced by n equations of the following form

(3 ..1 if qi-4- y,

(3;) q =- pr <+- ti-



The ii quantities Yi may be written as quadratic forms in g, g~, <7H; but the coefficients of these forms will themselves be functions of the quantities g, ~2, q" these functions will not grow beyond any limit when the quantities </(, g=., c/" all tend toward zero.

Among the coefficients S,, S2' S, let us denote by SP any of the positive coefficients and by Sr any of the negative coefficients.  Let us consider the function U defined by equality (38) zU=~S>>>i--"rS~W,

n

the first summation is for all positive coefficients S~; the second for all negative coefficients S, none of the coefficients S, Sa, S" is omitted in this function, since none of them is zero.

We have dt dU =~ sF~ln9, Srg,,g~,

</U v c V c.

or, according to the equations of motion (3~). dU s~ v .S2 2

(39) ~=-1~F;

p

S can be written as a homogeneous and third degree form enc/t,q2,¡., <7< the coefficients of this form are functions of the quantities qi; they do not grow beyond any hrrnte when your quantities ~/tend all toward zero.

The equality ('3()) gives, its turn,

cl= U ~'s~ ~c s¡., v

-~=-F;2.

p ¡

In equality, let us replace all the quantities g~ by the values' taken from the equalities (37) and we will have

c~=tJ ~S; -1 53

(40) ~t~ -?~k;<Ïn~_ly1'z9~ `

p

can be written as a homogeneous and third degree form



with respect to the quantities q, ̃; the coefficients of this form, which are themselves functions of the quantities qi, do not grow beyond any limit when all quantities qi tend to zero.

L' Igu U 1 é' ci f En -y-j- " the preceding terms constitute a positive definite quadratic form of the quantities q J, q2, q, we see, therefore, that to the absolute values of these quantities, we can assign 2

upper limits such that- is positive, except in the case where we have t

?i = o, q.2=o, q,t-o,

~U U

in which case -jy- would be null.

Let us now suppose, in order to construct a reasoning by the absurd, that the state Eo is a stable equilibrium state of the system. To the initial absolute values of the quantities q, q2, q,t one could assign upper limits such that the absolute values of these same quantities would not exceed, at any instant, positive limits arbitrarily assigned in advance; such, therefore,

i° That the quantity U, given by equality (38), did not at any time exceed a positive limit A arbitrarily assigned in advance;

2° That the quantity ̃ never became negative.

There is nothing to prevent us from taking o as the initial value of all the quantities qp, while for the quantities qr (there is at least one), we will give initial values different from zero. Equality (3y) then allows us to write

(-") (~).=2~~

t~ 1` dt o="F/.z,,+Or;

o the i

3,. ii the aspect of a homogeneous form and of the third degree with respect to the quantities qr : the coefficients of this form depend on the quantities qr, and do not grow beyond any limit when these quantities tend to zero.

From then on, it is easy to see that one can, with the quantities qr, assi-



̃ - - - 1 /"u\

The initial values are close enough to o that \~[f j )Q is positive. But since -j-j- is never zero, (J should grow beyond a of any limit at the same time as t; hence a contradiction which leads to the correctness of the stated proposition.

It will be noticed that the demonstration would remain even if some coefficients F,- were negative, provided that these coefficients corresponded to coefficients Si which were positive. To a system defined by variables deprived of inertia, but endowed with viscosity, we can also extend the second theorem of M. Liapounoff.

For this purpose, let us assume that the variables that define the state of the system are chosen so that the coefficients F are all equal to unity; equality (35) can then be written

(.{2) ̃>.i=q>? + .f.

Let us suppose that the ballistic energy can be put in the form

(?4) B = B0-+-U,"-t-M,

where [)m is a form of degree m, defined negative of the variables q, q2 ,</" and where u has the properties that we assigned to it when we first wrote (p. 3t5) the equality (24). We will show that, under these conditions, the state Eo cannot be a stable equilibrium state for the system.

By a reasoning analogous to the one which provided the equalities (3-), we will prove that the equations of motion of the system can be put in the form

(43) qll dU"~ -1

(43) "'.=-^f-.

<x{ having the aspect of a form of degree m with respect to the quantities q,, q, the coefficients of this form are themselves functions of the quantities qt\ these functions do not grow beyond any limits when the quantities qi all tend towards zero.

Consider the quantity V defined by the equality

(44) ?. V = (?? ̃+-<?! +-+- ??,.



This quantity is essentially positive. If the state Eo were, for the system, a stable equilibrium state, one could, to the initial absolute values of the quantities q, q2, qn assign upper limits such that V never exceeded a positive quantity A arbitrarily given in advance.

Equality (44) gives us

d\

-fa = '1 1 1 1 + ?s 9t -1- - - ̃ 'Jnfj'n

or else, by virtue of equality (43),

dV l àUM o]ln\

~='7- l, dq 1 ya

or finally, by virtue of Euler's theorem,

dV u

(45) ^-=-mUm+P;

jî has the appearance of a form of degree (m -+̃ i ) with respect to the quantities qi; the coefficients of this form depend on the quantities çr/ and remain finite when all quantities qt tend to zero.

Equality (45) gives, in turn, equality

~=~),

dt4l 1(iq, àql ) 1 1oq, dUm')

dt -l~y, dqt ld9 dy~~ l

dlL </i//l \àqn àqa )Hl1

If, in this last equality, we replace the quantities q'^q' f/'H by their values (43), we find

," ^v r/')u,v /àv,y-\

(46) C~tV l)yLCl~U''Z~.IZ+: .+' ~Unr ,2 + (. (46) dt2 =111 .dql. (~n)'] +'{. y qn

To the quantity y one could give the aspect of a form of degree (a m - i) with respect to the variables q,, q, the coefficients of this form would be themselves functions of the quantities c/i q,, they would remain finite when all these quantities would tend to zero. In the second member of equality (46), the first term is a form of degree (%m - -a), defined positive of the quantities q,, q-2, q,

Equalities (^5) and (46) show us that to the absolute values of the quantities r/ q", q, one can always assign limits



i dV d-> ̃ - -

such that the quantities- -> -r-^ are positive. out dt ~lt l

the case where we have t

?1 = O, q-i - O, Ijn = O,

case in which these two quantities would be zero.

From then on, it is easy to see that if the state Eo were a stable equilibrium state for the systems, one could, at <- e/2, q, assign initial values different from o, but so close to o, that V would grow beyond any limit with t. The contradiction we arrive at establishes the stated proposition. 3. Theory of small movements. Postulate on which it rests. How it leads to conditions that are required for the stability of the equilibrium.

Postulate of small movements. Let us consider a holonomic system defined by n independent variables x,, X2, X'n whose first p are affected by inertia, while the last (/? - p) are free of it. We will assume that no linear transformation performed on the variables x,, xn can make appear a new variable, free of inertia, which is not a linear combination of xp+l, x, the living force (£. will thus be a positive definite quadratic form of x'n x'p. Let us imagine that this system is in stable equilibrium in the state Eo defined by the equalities

X = O, X.i =11, Xn = O.

-Y At the initial instant tn. we give to xt, xiy. x,, values (47) X\ = zril, urs= zrlt, xn'= e.rin, r, As, - - -. i\h being n arbitrary quantities, and e an infinitely small positive quantity. At the same initial instant, we give dx\ dx., d

aux/? speeds -~ ̃ -- -r1- values

P clt clt vael1l's

(It of

d.vi cLri dxp (~) ,-¿¡-=E1')I' (jf=E "l2, 121 cll E~ 'rùi Vai - - -" Vp being yc arbitrarily chosen quantities.



YVûM~ a<M<?"/'0/~ that the ora a, regardless of t,

.a7t=6Yt")-+-E~-t(<

(Íg) ,J xZ eY=(t) + ~zyx (t.:),

( t.

the~functions Y, (t), ~'=(t), Y,t(t) and their first.derivatives with respect to t being finite whatever t, 2ës:~onctiou.s j~, ( t,e), y, ( t, e), y" ( t, e) and their preooc derivatives

mters and seconds with respect to t remaining finite whatever t and however small E is for t -o, and whatever e, /M/b/tC<<0/)(~,6), y2(t, e), .(<,s) cancel each other out; the same is true of o'Ti(<.s) wz(~>~ d?'r,(t,`)

e~~ ae /Mg/Me been dt ----. Jt

The correctness of this assumption does not follow, in any obvious way, from the definition of stability that we gave in the previous chapter; this is why we designate it here as a postulate; the admission of this postulate is the foundation on which rests the whole theory of small motions, the principles of which we will indicate.

Instead of looking at the previous proposition as a postulate, one could look at it as a definition of stability; but the equivalence between this new definition and the previous one would not be obvious at all; any system, stable according to the new definition, would certainly be stable according to the old definition, but the reciprocal of this proposition would be neither obvious nor demonstrated.

We will study the theory of small movements assuming that the system studied admits a ballistic energy and a dissipative function; concerning the living force '1, the ballistic energy B and the dissipative function S, we will make, moreover, similar hypotheses to those which we have made during the two preceding paragraphs, in other words, we will admit 1" That the ballistic energy B can be put in the form (50) B=B.-+-M-t-j)

Boétantia value of the ballistic energy in the state E,;



Q a quadratic form, with constant coefficients, in xt, -2?2) - - ̃ î ^H 1

jï a quantity that has the appearance of a third degree form in xt, a?2, x, the coefficients of this form are themselves functions of x(, x<2, ̃ ̃̃, xn that do not grow beyond any limit, nor do their derivatives with respect to x,, x2, x, when xlf x2 x,, tend to zero.

2° That the living force t£ can be put in the form (5i) " = e-j-T,

0 being a quadratic form, with constant coefficients, in x ( x 2 x p

t a quadratic form in x, x'.2, x'p whose coefficients can be written as linear forms in a^, x2, xn the coefficients of these forms are themselves functions of a7(,j?2, xn these functions do not grow beyond any limit when x,, x2, x, tend to o; the same is true of their first and second order derivatives with respect to the quantities #

Since 'St must be, whatever x,, x2, xln a positive definite form in x\ x'2 x'p, © is certainly a positive definite form in. x' x'2 x'p.

3° That the dispositive function S can be put in the form (.29) = *-+-

$ being a quadratic form with constant coefficients, positive or zero, of those of the velocities x\ xz, x'n which correspond to the variables affected by viscosity; we shall admit that no linear transformation carried out on the variables Xt, x,, can provide a variable whose derivative with respect to i would appear neither in 0 nor in

 this assumption, which leads to the exclusion of any variable free of both inertia and viscosity, requires that the form  becomes a positive definite form of x'p+t, x' when the quantities x,, xp are canceled there. /may be written as the sum of a quadratic form in x\,x',2, x'n, linear in xt x-2 x,, and a third degree form in x\, x' x'n; the coefficients of these forms are themselves functions of x{, x2, xn, x\, x'n> x'n these



functions and their derivatives with respect to .1: .c;, do not grow beyond any limit when the quantities x_, .r/ XI .x'.=, x;, all tend toward zero.

Let us designate by 0' what becomes S2 when to the quantities x,, :x2, x,, we substitute the quantities Y,, Y'2' Y,; let us designate in the same way by <")', < what becomes the forms 0, <1> when to the quantities j?~, :r;" we substitute the quantities

y = ~i y = ~1 dY,2

Yt dt y~- dt y't= dt

Let's formulate the equations of motion by Lagrange's method and we will easily find that the assumptions made allow us to give them the following form

d2 ®' YI,+ d2 .," d2 f)' ,." < + r)S)' +E~ t =o

d2 O, Y" Ô2 01 Y", d2 (-), Y~ ficp, + )£21 E~ =0, dŸY dY'r cïY2 dY', dY~, r dYl dY, 1 d2~ Y,~ +.+ ~2~~ y" + d~' de' (t `) -°

dY~dY~ '~Y~Y, 2 2 dl'p n dŸ~ dl' -c, rïLh' dS>'

af.2" +~t~lp+1(t,EW °,

¡J Y' "+1 -T- -.y-- +-+'+1 l,s)-o,

uï~+j Oï~-)-t 0,

~5- !L -r- dY! IL +sJ~la(t, E) _°,

the quantities yl(t; e) remaining finite whatever t and.whatever small e is.

Since these equations must be verified no matter how small e is, we must have, at any time, the following n equalities

C)2 O, n J29 Y" ()201 _c)-t'' dS2' Y=2 Y'+ dY''1 dY2 y2+ ..+ dyl~ dY~, Y~ dY'I + dY, °, ( JO < ¡J 1" 1

(50) J dY~, dY', Y' ô'2 ()201 Y, f)(li, ôo, ;dY~Y,dY~Y, 7) y; '~dY'~dY,°' dY~,+f + dY, °

dŸ'a: 11- + dŸ" 0.

The form <1>' is certainly a positive definite form of those quantities Y', Y' 2 r Y,, which appear therein and among which are



find, as we know, the quantities \'o + t Y),. If we replace there by o the quantities Y' Y' we obtain a positive definite form of the quantities Y'pl YH the discriminant of this form is positive.

Now this discriminant is the determinant of equations (5i), considered as linear equations in Y' (, lt. These equations thus provide us, for Y' Y'i:, (n - p) linear and homogeneous expressions in Y,, Y, Y' "S We shall not write these expressions, but we shall designate them as being the equations (5i bis).

In equations (5o), let us replace the quantities Y'p+I. Y^ ti by their expressions (ai bis), and treat the resulting equations ;as linear equations in Y' Y~ Y_. The determinant ;omes linear equations in Y" Y" Y "p. The determinant of the unknowns y is identical to the discriminant of the form 0', which is surely positive. These equations thus provide, for Y"( Y "p p linear and homogeneous expressions in Y Y, Y'( Y^. We will not write these expressions, but we will designate them as equations (5o bis). Equations (5o bis) and (5i bis) form a system of n linear, homogeneous, differential equations with constant coefficients that the functions Y, (t), Y2(t), Y,,(t) must verify. These equations are of second order with respect to the functions Y ,(t), y Yp(t), and of first order only with respect to the functions Yp+,(t), .Y,,(t).

If we observe that, for l .= o, the functions Y|, Y2, Ylt reduce respectively to given quantities 7), ti2, ,rtH ", that in the same way, the quantities Y'( Y' Y'p reduce to given values V,, 'o' .r{p, we see that the equalities (5o bis) and (5 ibis) unambiguously determine the n functions Y, (O, Y2(f), YH(i), and that it is the same for the equalities (50) and (;>.).

The study of the functions Y i (t) Y" (t), Y,,(t) is what is called the study of the small movements of the system; the equations (5o) and (oi), which determine these ;z functions, are called the equations of the small movements.

We will, first of all, deduce from the above a necessary condition for the stability of the equilibrium.

By a linear transformation on the variables that will be used for the



In order to define the state of the system, we can always assume that the quadratic form Q is expressed as follows (5a):>.ii = Sta;| -t- Sjar| -h.h- SnXf,.

We propose to prove the following theorem If any of the quantities S, S2 S, is negative, the state Eo cannot be a stable equilibrium state of the system.

Suppose, first, that one of the quantities S is negative, and that it is the quantity S, relative to a variable affected by inertia. It is clear that we will verify equations (5o) and (5i) if we write the equalities

Y,(O=Ae* Y,U) = o, Yn(O = o,

where A and À are two constants, provided that the second of these constants verifies the equality

t~e', e

5y7X2+^x-+-Si = o-

^r is positive; -^n is positive if the variable x, is assigned visPli y,, w I j"

and zero if this variable is devoid of viscosity; S, is negative by hypothesis; the preceding equation thus admits a positive root 1

d3 (( d2cp 2 d2~ S1 2

d2 <1>' J2 <1>' 2 2 ()2 e' 2

( 53 ) d~,z l' l dl",z ) dY'tz

( ,j ) > = -Wî + WàT?) ~4tfYy5tJ

2 (JY1,1

Regardless of the constant A, all conditions imposed on the quantities Y, (t), (t) will be verified if we take (55) ( ̃< = A, f|2 = o, ï)n = o, | t, = XtA, r), -o, V/.= o.

(5G) Y,(O = Ae^ Y,(0 = <>. Y,,(Z)- As, moreover, these conditions unambiguously determine the functions Y, (t), Yt(t), .Y,,(t), equations (56) give us-



are the only determinations of these functions that are compatible with the initial conditions expressed by equalities (55). But the function Y, (t) grows beyond any limit with t, which would be impossible, by virtue of the postulate of small movements, if the state Eo were a stable equilibrium state.

Let us now consider the case where a quantity 'Sp^t relative to a variable without inertia xp+l, would be negative.

We will verify equations (5o) and (5i) if we put (57) Y,(0=o, y;,(O = o, Y^,(() = Ael', Yn(t) = o, A being any constant and À the constant defined by the equation

r)ï(b'

(58) X + Sp+i = o.

p+i is, here, necessarily positive, while S^+i is negative tîyl 2

N+b

by hypothesis; A is therefore positive.

The conditions imposed on the functions Y, (<), Y,, (t), which cannot be verified in more than one way, will be verified by the expressions (37) if we were careful to take ̃ ̃ T)i = o, '<> = °> ï)p+, = A, r,n=o, ï)', = o, 0, r,'p = o.

From this point on, the demonstration ends as in the previous case.

For a system which would be entirely devoid of viscosity, the result we have just obtained is identical to that demonstrated by M. Liapounoff and M. Hadamard. For a system entirely deprived of inertia, it is a little more general than the one we established in the preceding paragraph; the demonstration of the latter assumed, in fact, that none of the coefficients S was equal to zero. For a system affected by both viscosity and inertia, it is much more complete than the one demonstrated in the previous paragraph.

It can be stated in a form that does not assume any particular choice of variables; this form is the following

A system cannot be in stable equilibrium in a stateE0 if



In the quadratic form it is likely to take negative values.

Lagrauge used this method i to demonstrate that a system devoid of viscosity cannot be in stable equilibrium in a state Eo where the form Û is negative definite, and he states that "this demonstration leaves nothing to be desired. "

After Lagrange, Poisson 2) and many other geometers used this method of small motions to demonstrate that certain inequalities are incompatible with the stability of certain equilibrium states.

Today, this demonstration is commonly regarded as lacking in rigor, in which they are certainly right, for it presupposes the adoption of the postulate of small motions which is neither obvious nor demonstrated; but some authors, while rejecting this demonstration as devoid of any value, expound the rest of the theory of small motions as if this rest were entirely rigorous, in which they are wrong, for this rest also rests on the postulate of small motions.


	Theory of small motions (continued). Integration of the equations of small motions in the case where the stability of the equilibrium is established on the other hand.



We will now assume that the quadratic form Q is a positive definite form; when in this form the variables are named i1, x, we will designate it more explicitly. by iï(x,,x, r,,); in the case where the velocities are x., .£", the forms 0 and  will be similarly designated by B(.r'ï2, x],), "K.'V ̃ -- x')-

Since the conditions imposed on the quantities Y,(t), Y,,(/) can be verified in only one way, we can. to determine these quantities, employ a synthetic method (') I-aouanuk, Analytical Mechanics, a* edition, second Part, sect. VI, art. !).

(:) S.-D. I'oesson, Traité de Mécanique, second Part, Cliap. IX, § Il, art. 546, second rdit-ion, t. If, p.|"Î3.



which consists in first finding n functions of t capable of verifying equations (5o) and (ai), and then taking advantage of the arbitrary constants contained in these functions to ensure that they verify the initial conditions (4") and (4&). In this analysis, we shall follow the procedure indicated by Mr. Routh('), completing it for the case where there are variables without inertia. We propose, first of all, to verify equations (5o) and (5i) by expressions of the form

(60) Y,(n = ",<;> Yj(O = *ise> Yn(<) = ane> where a,, a2, y. and ). are (/1+1) real or imaginary constants.

Substituting these expressions into equations (5o) and (5i), and writing that they are verified regardless of t, we find the following n equalities

s ,)<d " d àiï

(,2 + A-- -)- -- = o.

àa-i <fa, ôai

l::>q': ,q:

d0 + )` d~' of 0,

(6t) 1 ôap à* é,

to due

1 dx,,+t dxp~-t q q

d4> toQ o.

A- -Ht =O.

dx,, dx,t =f),

In these legalities,,

Q'4= Q(au to,, )|, 8 = .8(i, a,,)j = (a,, a,,), To put them in this form, we observed that 0(a,, c/.p) is a homogeneous and second degree function of a, %p so that

so,'that d_ d2EJ d'e da OC x t ---- 2 '-~- ot ==~ ":-

dx~ dx~dx, dï)dx,, dx,

-̃̃

̃:̃̃̃ c)ie ^20 <)2e t> of 21 + dxl dx2 xz-+-a- 112, UP = dar,

(V) Routh, Stability of Motion (Adams Prise Essay for 187;); fiigid Dynamic, advanced part, s. 314-350.



The equalities (61) form a system of n linear and homogeneous equations in a,, a2, are; for these equations to admit a solution different from o, it is necessary that the determinant formed by their coefficients is zero; if we designate by A (à) this determinant, it is necessary that a verifies the equation

(62) A(X) = o.

It is very easy to see that this equation is an algebraic equation, integer, of degree (n-{-p); one sees without difficulty, indeed, that the coefficient of the term in \"+p is the product of two discriminants; one is the discriminant of the form ®( a,, (a(, a,,); by virtue of the assumptions made, the two forms in question are positive definite; their discriminants are therefore both positive; we are thus assured that the degree of the equation in ), cannot fall below (" -+-/>). The equation (62) thus admits (n p) real or imaginary roots, distinct or confused.

In order not to enter into algebraic complications whose mechanical interest would be minimal, we will limit ourselves to considering the case where the equation A(X) has only simple roots. Under these conditions, to each of the roots of equation (62), equations (6i ) correspond values of a,, or, an determined to within one factor.

Indeed, a value of X which cancels A(X) does not cancel at the same time if we designate by Ol~(),) the minor determinant time - ~p~~> or if we designate by A/7(X) the minor determinant obtained by deleting in A(À) the row i and the column we find without difficulty the equality

--~-=~~-!)~(' /~2.~ ~+-----A,y(~.

dh ~md Oxidoij da/ ~of~

ij

A value of that does not cancel -7^- cannot therefore cancel all the minor determinants A,y(À), which demonstrates the stated proposition.

Suppose that equation (62) admits a real sacine; we can then verify equations (61) by a real system of



values of ai, a3, a, Let us multiply respectively the n equalities (61) by a,, a2, aH, and let us add member by member the results obtained; after deleting the factor 2, we find the following equality

(63) 6(a,, .a,,)X2 -+- <!>(",, *")>. -+- Q( a,, "") = o. The quantities at, a,, are real and not all zero; Q(a,, aB) is therefore real and positive.

0("i, a^,) is positive, unless we have

(64) a, = o, a;, = 0.

Let us first consider this case. Since at least one of the quantities a.p+l, a;/ is necessarily different from o, <!>(",,, an) is surely positive and X surely negative.

Let us now consider the case where the equations (64 ) are not all simultaneously verified; equality (63) would be incompatible with a real value of ). if 4>(a( an) were zero; and since this quantity can only be zero or positive, À can only be negative. Hence this first theorem of M. Routh If the equation \Çk) = o has a real root, this root can only be negative.

Let's ask, in this case,

(65) X ==- L".

Equations (5o) and (bobis) will admit an integral of this form

(66) Y1(O = a,e-,(t) = a,e- Y,,(t) = a,,e- a.t, a2. a. not canceling the quantity <ï>(a,, a2, a"). A small motion, of the system could therefore not be represented by expressions of the form (66) if it did not involve any work of viscosity.

Hence this new corollary In a viscosity-free system, the equation A( a) = o admits only imaginary roots. To deal with this case, it will be useful to give in a more developed form the expressions of the quadratic forms Q, 0 and<ï>. l>- - II- ̃: 26



We will therefore write

2Q = ~n~ .2, A,t,t. 2L ` x~.(jx~:X'

'.II~'¡ -r", /ln "n' '-i) 1'<)'

(fi7) ) a" =W1i^12+.r-W/2+-W,7a"

2*= Fua;'i2-t-+ F,2^ V^ Vijx'/x'j. J

'i

In these equalities, the coefficients A, W', F are constants; in the first and in the third, the indices i and y can vary from t to /) in the second they can vary only from i to p. Let us now suppose that the equation

( (r>. ) A ( X ) = o

admits an imaginary root


. = [i. -+- i K



where K is surely diflerenl from zero. The equations (61) will give, in general, for a,, a2, a. imaginary values at = Pi -+- ifi, *n = Pn -S- ^Vn-

Substituting in equations (61) these values of a,, a, and expressing that in the first member of each of them, the real part and the coefficient of i must be separately zero; we find two groups of n equalities as follows

| Wn ( \i? Kl I -r- F,, \x -H An ] fil ~r

i + [V,,i(1u-2--Ki) + I'1>ji-4-A,1,|ÎJtt

-faWniAH-FujKy,- - (̃̃>. W^ji + F,) KYn=o,

(1)8) { .-̃: J ( F,Hl ;j. ̃+- Ai ,[ ) If ̃+̃ ̃ ̃ Fn/I-, i a -h A,+i ) $,,

I +' - Flp+i K y, - .- Fnp+t Ky,, = o, ( i W] i ji -+- l'n ) K P,, -4- ̃+̃ (2 W,,i -+- F "i ) K p"

1 + [ VVm ( jJ-2 - i<- ) -+- F,, a + A,, ]Yi H-

| _h.[W,ii(jJ.2- K2.) -Fn,:jH-A,,i]Y"=o,

((>9) '̃ F1/M-iKj3i- -+- Fii,h K yr ̃̃

-r- ( Fip.1 a -+- A i,, ) y, h- ( Fn/,+i \x ̃+- A,+1 ) y" = o,



Together with the root ( ij. 4-j'K.), equation (62), whose coefficients are real, admits the imaginary root conjugate (p. - t'K.) to the latter, correspond the values "l=Pl- Yl. -̃̃> ""=[" - 'Y'"

which still give the equalities (68) and (69).

Multiplying respectively the equalities (08) by y, y2 y, and adding member by member the obtained results we find the equality

( n" K") fw,, p, yi + - .+WW IW+^W/X P'ïy Py Y<)~| 1 L L '7 J

-t- u. Fn^iYi -+-- - ̃-+- ''"?" 7n-H^ (?' Y')

-T- [ A,, fir;, H-h- An,vH A'7< "fS/Yy-1- ?/Y')l -+ rAIl [31 'il -+" A;¡( ~¡'(i-+ -)


	4 K;j.e(- .>; -î v. K<tn; y,, .y,,) = o.



Let us multiply the equalities (fiy) by j3(, ji2, p, respectively, and add the results obtained member by member; we find the equality

( ,A" K") [ W,,?, Y. -- -W, P/.ï/i-^V "'̃̃ ̃+̃ P/ï')] I ̃ J


	a F1,3,ylj-+ l'i",3 "Y "+2'yC^Yy-PyY'-)]



'7 J

-H An [iLYi-t-- - -- A,lnpBY, A,J,(S,Vy+ P/Y/)

L~ j 'W -)


	jK 1*6(3,, .3/,)-'i.K'lM[ii, .p,,) = o.



By member to member the two equalities we have just written and observing that K cannot be zero, we find

(70) ̃->-iM"(Pi, ̃̃̃/?!-)̃- e "Yi. -̃̃r;}\

-i-(3,, .B,,) - (Vl.̃;") =0.

If, in the same way, we multiply respectively the equalities (68) by (3(, fi, the equalities (69) by y, y,M cl if we add



member to member results, we find the equality (71) (lu*-K')[e(3,£/,)-+-6(Tt, .y,,)J


	l[(?i %)- *(-(!, .T")1



-+̃ Û(P,, 3,,)-+- UCvi. ----Y") ="-

Let us apply these equations (70) and (71) to various cases.

i° System WITHOUT inertia. The quantity 0 being identically null, no value of v\ could verify 1 equation (70), unless we had

(P,V .£") + (yi, .f,,) = o.

But since the system is inertia-free, none of the variables that define the system is free of viscosity; the quadratic form $(j3(, -- ,8,,) would therefore be positive, unless all the j3 quantities were zero; the form <&(yt, yn) would similarly be positive, unless all the y-quantities were zero; the preceding equality would therefore require that all the x-quantities be zero, which is impossible.

For a system without inertia, equality (70) is an impossibility, which leads to the following consequence

In a system without inertia, the equation A (À) o has only real roots and the equalities (60) necessarily take the form (66).

Moreover, in such a system, the equalities (63) and (65) give the equality

(63 bis) *(a,, and,,) L'- Q(a,, ."") = 0.

2° SvsTEME without viscosity. The form <ï> is here identically zero on the other hand, no variable is free from inertia; the form €)(^i, - ,3") is therefore positive, unless all quantities 3 are zero, and the form @(yi, yA() is positive, unless all quantities y are zero; since the quantities j3 and y "e can all be zero at the same time, equation (70) requires that we have



If we remember that in a system free of viscosity, the equation A(a) = o cannot admit real roots, we arrive at this theorem

In a viscosity-free system, the equation A(À) = o admits only pure imaginary roots of the form ),=iK.

For such a system, the equations (61), now compatible, can be written

|K"- -- -o 0,

dx,

(72)

d~ d~ = 0,

K2

da" ôn.n

At each real value of K, solutions of the equation (fo bis) A(- i'K) = o,

they match a system of real values of a,, an determined to a constant factor.

The equalities (72), multiplied respectively by a.t, a,, and added member by member, give the equality

(fi) K20(a,, .an) - Q(a,an),

that one could, in this case, also derive from relation (71). If a,, a,, are a system of real values which verify the equations (7a), which have become compatible because a root of equation (62 bis) has been substituted for K, we will obtain another solution of these equations by taking the values Mx,, Ma,, where M is any real or imaginary constant. We will thus determine an integral of the equations of small motions, an integral which will be of the form

(74) Y, = M a, "" 1 Y,,= Mane<"<.

Equation (62) has real coefficients; if it admits the root ), - iK, it also admits the conjugate root X = - iK. This means that equation (62 bis) is an equation with



real coefficients in K2, whose roots are all real and positive, let us denote this equation by

(Ca ter) D(K") = o.

The solution À = - /Iv gives the equations (-2) the same form as the solution À = il£, corresponding to the same value of K.2. It follows that the equations of small motions admit, together with the integral (~4)i the integral

(74 bis) Yi=Na1e-"i', Y,,= Na,,e-<K<, 1,

where N is a new arbitrary real or imaginary constant.  Designating by P and z> two arbitrary real constants, nothing will prevent us from taking

P P

i11 Y er~, N =-<?.

->. a

Since the sum of two integrals of the equations of small motions is a new integral of these equations, we will see that to each of the ta real and positive values of K2 determined by equation (62 ter), we can make correspond an integral of the equations of small motions of the form (75) Y, = l'a, cos(K" -<i), Y,,= Pan cos(K< + <p), where P and cp are two arbitrary constants, while a,, a,, are constants which verify the equations (7a).

3° System k afit.cti': both of i.nehïik AND of viscosity.  -Consider equality (70).

For this equality not to be an absurdity, it is sufficient that the coefficient of u is not zero; moreover, this sufficient condition is at the same time necessary.

Indeed, for the coefficient of (u, in equality (70), to be zero, all the quantities jâ,, pp, y,, yp p would have to be zero; but then at least one of the quantities fifl+), fin, '(p+i-i - - - " Y" would be different from o and the term independent of p.. in the first member of equality (70), would be positive; equality (70) would become an impossibility.



If therefore the equation A (a) = o admits an imaginary root, this root, reported in the equalities (68) and (69), determines values of 3I; 3, y,, ." such that one does not have the ip equalities

(76) Pi = o, 3,, = 0, Yi = °. ̃̃-- ï/'=°- Hence, in equation (70), the coefficient of u is positive; the independent term is positive or zero, which proves this theorem of M. Routh

If the equation A (À) 0 has an imaginary root, the real part p. of this root is negative or zero, so that we can always write

(77) H = P2>

p being a real quantity, distinct or not from o.

To this root of the equation A(X) = o corresponds a system of 2n values jj| [i, y, v,,, which verify equations (68) and (69).

We obtain a new system of values that verify equations (68) and (69) by multiplying these quantities 3,, 3, P

-f,, y,, by an arbitrary constant, for example by- e'f, P and o being any two real constants. We will thus obtain a system of integrals of the equations of small motions if we pose:

Y,(<) = ~(~ ~)e-P~'<+<

,>

Y,(t) p e-P"

Y,, ( 0 = -j < P" +̃ <̃-(̃< ) e'~?H e'iK'+c?'

The equation A()v) - o has real coefficients; if it admits the imaginary root (- -p2 + /'K.), it also admits the imaginary conjugate root ( - p2 - iK). This new root corresponds to a new solution of equations (68) and (69), a solution that we will obviously obtain if we keep the values of 3|, 3,, that appear in the previous solution, and if we replace respectively y()_ vn by - |'M - y" to this new solution, we can substitute the one we obtain after multiplication by



p

some constant factor, the factor - e~'f for example. The solution ), = - p2 - ̃ i'K. of the equation A(X) = thus provides us with an integral of the small motion equation, and this integral is as follows

Z,(f) = £((3, t-Tl)e-?''e-K'+?',

Z,,(f) = p K

Z,,(O = £(P"- J-rn)e-P''e-"K'+c!

But the equations of the small movements are linear, so that any linear combination of two of their integrals gives a new integral; we can thus integrate them by taking

3ft(t) =Y,-(") +zt(o,

3n(t)=Yn(t)-hZn(t)

or

(78) ijiit) = Pe-P''[p, cos(K<-4-9) - yi cos(K<H-<p)J,

(78) .?"(*)= Pe-P'<[§,,cos(Kf-+-<f) - Yncos(K"-+-<p)].

In these equalities (78), P and " are, we recall, two arbitrary constants.

Small movements of viscosity-free systems. Determination of arbitrary constants.

We have shown how one can find functions of t which integrate the equations (61) of small motions. It remains for us to see how, by linearly combining a number of integrals analogous to those we have found, one can form an integral which depends on (n p) arbitrary constants; how one can then arrange these constants in such a way that the initial conditions (47) and (48) are verified. Instead of treating this problem in a general way, we shall confine ourselves to solving it for a system free of all viscosity; we shall leave it to the reader to see how and to what extent our analysis can be extended to other cases.



In this case, the equation A (À)= o takes the form

(6a ter) D(K*) = o;

it has real coefficients, and of degree n in K2 ; we know that it can only admit real and positive roots. We will continue to assume that these n roots are all distinct. If, in equations (72), we substitute for ¥J one of the K? roots of equation (62 ter), these equations become compatible we can derive a solution composed of quantities a(/, a.ni which are not all zero; any other solution is obtained by multiplying these quantities by the same arbitrary constant; the quantity ©(a)(-, a,) being positive under all circumstances, we can, thanks to the presence of this arbitrary factor, suppose the quantities a)(-, aBI- chosen in such a way that

(79) e(al'i -̃ %ni) = I-

We will assume that this is done for any value of the index

Equality (73) will then give us

(80) Û(a, .a,) = Kf.

Let us write that the equalities (72) are verified when we replace ai, a,, by a^ a, let us multiply them respectively by a, y, a,,y, and let us add member by member the results obtained; we find

Aiiai/"iyH-- - -+̃ An,,a,any-t- A/J,/(a/aîy-(- a.qi%pj)


	pq



= K(? W| I Z|/g|y-i- -t-W, ","̃""; -H /yf,,q (Xp/Xqj + O-gitl-pj) | L PI J Let's repeat the same operation by switching the role of the indices icxj; we find the equality

An",, a, ,--+-+- An,tanya,H-^ A/)?(awa7,-"- aqj*pi)

PI


	Ky W,l/ai/+-- - ̃ +WM gnygnl ̃-+-"^2^1 pq{piqifr"^"p/)"] ̃ - P'I j





Let us subdivide these two equalities member by member, observing that Kj certainly differs from K. and we find the equality, verified whenever the two indices i and j are different

(8 t) WttX,,X~+.W,tO[,X,,y-T-~W~(~)- X~X~) == 0. PI

This equality (81), transferred to any of the two previous equalities, gives us the equality

(82) AMaua,y- + .̃+̃ An,Ja,a,,y--t-JVA/,?(a/,£a(?y-l- ot,aw) = o, pq

To each of the roots of the equation D(K2) = o, let us correspond an integral, such as the integral (70), where P and are two arbitrary constants; let us sum these n particular integrals of the equation of small motions; we will obtain the general integral

YI(t) Piocji cos(K1; + (p1)-4-+-P,1a1,, cos(K< + (}>"), (83) ̃̃̃, ( Y,,(£) - Pi cos(Ki< -t-fi) -h.+- P,,a",, cos(K-4- tp,,), which depends on 111 arbitrary constants P,, Pn, <ot, <f, It is now a matter of determining these in constants in such a way that, for t == o, the quantities Y,(£), Yn(t) take the given values -/), y, andquc the quantities Y', (t), Y'n(t) also take the given values r{n.  For this object, we have the n equalities

au I', cos-f 1 +.H a! 1' cosç,, = rn,

<W

i.,n P, cnsœ, +.(- ï, P,, coso,, = ̃")";

K,a,, I', siiiïi,-)-i- K,,j1u l',t sino,, == - ̃ i

(85) 1` ( K,", sino, + .+- k,,a,lnP;l sin<p,, = - ̃")'".

Let's multiply equations (84) by

(WMa,, -h.+- Wi,,2,,i), ( W/1,aM + .t- Wnrlxni), 'and add them member by member taking into account the equalities



(79) and (8'); we obtain the first of the equalities

Ptcos<p) -(W1:x11+.+W,ax,t~) ~1+.+(W,t1 x11+.+~i'r,ttirtO-~a, (86) | P,COS<p, - ̃ = (Wis "u +.+-Witt*rti)r1,4-+(VV,1iaM-t- -H Wnna, )-(̃" P,cosi(i,,= (Wi1a,ji-1-4-\Vri,,a",)rj|-4-t-(W,11a,ii-l-f-W,jnann)TJ, lin operating in the same way on the equalities (84), we find the equalities

j - K, P, sincp, = (Wi|!]i+. + Wi,jBi)r,+.

-H(W,Iia,1T- + W,JBa,11)T1'B,

(87) [

I/ Kttl'a 5lnc~a= (W))K,t,+.Wt~K,,n)ï/j-t-

-4-(W,,i "ni-r-W";la,)V"-

+(W~tlxril'+.i-~Yttt7aan)~tt-

These equalities (86) and (87) make known, for any value of the index i, P,- cos s/ and Pi sin ï, so they unambiguously determine Pf and tang ",̃; they completely fix the form of the integrals (83).


	Small motions of viscosity-free systems (continued).  Properties of the living force and ballistic energy.



The main part of the ballistic energy of the vibrating system is

C8S; u> = e2Si[Yi(O, ̃--,YB(<)],

Y| (t), Y,,(<) being given by the equalities (83).

If we form this quantity by taking into account the equalities (80) and (82), we find without difficulty

(89) o> = ^[Kf l'ï cosHK.i-i-o,) -T-4- KBPjcos"(kn" + <pn)].

Similarly, the main part of the force is

(90) e = E!"[\"1(o! v,,(O]..

If we form this quantity taking into account equalities (79) and (81), we find

(91) 0= ^fKïP?si.iMK,)'-+-'ft)-i-K;iP?,.sin2(Kn/+:<pn)].



Let us denote by fI= the positive and independent quantity of t (92) Hs= 2(Ki Pi+.+K;P;).

Equalities (89) and (91) give

(93) M-i-9==E'H!

so that c2Ha is the main part of the living force constant.

Consider the positive quantity Ti defined by the equality t94) 4 'Tt2

(94) ~=~.

T,

Ti will be the period of one of the n simple vibrations of which the system is susceptible.

Let f9 be an extremely long time compared to Ti, so that the ratio of Ti to 5 can be considered as infinitely small. It is easy to find that the average value of cos2 ( -p- -)- o; ) during time B, i.e. the quantity

J r )+~ eos'- ( Ttt + dt,

1 1'+{;; 2TCt -+- dt,

cos! -j- T, -+- ?. )

differs infinitesimally little from -2 and that it is the same for the average value of sin2 ( ~- -t- cp/ )

average of sin 2 C2~~t~ T + q¡¡ - 1

This being the case, we immediately derive the following proposition from equalities (8g), (gi) and (93)

,Let an extremely long duration pa.r with respect to each of the periodPS T,, T~ </M simple vibrations of the system; ~soieni' c~ and the average values. during the time E, of the principal parts of the ballistic energy and of the living force; to an infinitesimal extent, one has

s

(95) cu-1j-esH




	Small motions of viscosity-free systems (continued). Law of formation of the roots of the equation D(K2)=o. The formation of the various Kj roots of the equation



(62b) D(K") = o

and of the quantities au-, a//t- which correspond to this root follows a very elegant rule which was given by Cauchy and then found by M. Routh (' ) and by M. Poincaré (2).

Any system of values of K?, a, a, is characterized by the fact that it verifies equations (72), and, in addition, equation (79) 8("1/, --<") = I-

Let us propose the following problem

Determine, among the systems of values of a. a,, which give 0(a,, .a,,) the value 1, a system which makes maximum, minimum or stationary In quantity Q (a, a,,). If a,, a,; is such a system, it will make the following proposition exact

The equation, linear and homogeneous in on,, oxn,

d6\ 00


	oai i ̃ - Sa,j = o



t n

results in the equation, linear and homogeneous with respect to the same variables,

due aD

̃r- ÙB| -t- -i- -r- toCH,, = O.

à%x àa.n

For this, it is necessary and sufficient that there exists a quantity À such that by multiplying the first of these two equations by X and subtracting the second, we obtain an identity; such, therefore, (' ) Routii, Proceedings of the Mathematical Society of London, vol. X, 1879, p. 46.

(J) H. PoiNCAnÉ, On the Partial Differential Equations of Mathematical Physics, § 5 ( American Journal of Malhematics, vnl, XI, 1889, p. 28^ ).



that we have

l I i of _" due ()

Oxi da,

(9") < --

I of where =0,

[ da,, da,, °'

If we compare these equations with equations (72), and if we observe that 0("i, a") is equal to t, we see that the quantity À is one of the quantities K'j, and that the system of values of a, aH determined by equations (96) is the system a, a, related to this quantity K?

If, moreover, we multiply the equalities (96) by al; a. respectively, and if we add member by member the results obtained, observing that (") (a. y.n) = 1, we find Q(ai, .a") = X.

We can therefore state the following proposition

Any system a,, a,( that solves the problem posed is a system a, a,i4-; the maximum, minimum or stationary value that it makes Q. (a a,,) is equal to the corresponding quantity K.

This theorem suggests a method for forming the quantities K'f, K^ in order of increasing magnitude. i" Let a,, n real variables be subject to verify the condition

(97) 0(*r, - ̃ "") = t.

To the positive definite quadratic form O (a, a,,), these variables make take an always positive value; this value admits a lower limit, and the condition (97) does not allow this limit to be 0; it is thus a certain positive quantity moreover, as 12 (a, a,,) is a continuous function of the variables a,, a, it surely reaches this lower limit which is thus its absolute minimum. This positive quantity, the absolute minimum of the values that Q (a,, a,,) can take when equality (97) is verified, is, according to the above theorem, a positive quantity.



tooth, one of the quantities Ki? and the smallest of them; let us denote it by K*.

The values of a,, a" which, while verifying equality (97), make û take this value K;, are those which, associated with the value K.* of K2, verify the equalities (72); let us name them

Ot,i, Z,,).

2" Let us now designate by a,, a,, n variables, subject to verify not only the equality (97), but also the equality (98) :W|1a11i|+. + W,, "a,|2,,+ XWw(a;,1a,+ î,1i()) = o. PI

We shall show, as in the previous case, that among the systems of values of a,, a, there is one which makes Q take a value smaller than all the others; this value, certainly positive, cannot be smaller thanK^, since K^ is the minimum of Q when y. i.n are only subject to verify equation (97).

Let us designate by k\ this quantity at least equal to K.J.

For a system of values of a,, a, subject to conditions (97) and (98), to make Q minimum, the two equations in Sa,, 3a,,

d0 of,

3 03! + .+ Oa,j=0,

(Wiia,i + .r-W,Ma,) 3a, -t-t(W,,i,, + + W/i,,ïSi)m"= o result in the equation

of i)Q

-- oai - r,y.n = o.


	dx,;



For this, it is necessary and sufficient that we can find two quantities g, G, independent of oa,, oa", such that we have d® y

1 g G(W'i,3:H-. ̃ ̃~i-W,a,,1)- c-- =0,

t said

(99)

ff-p- G( W|n, W,inanl ) - --== o.

G (Wl n OCI 1 WP~n')Cti 1 = Q,



Let's multiply respectively these equalities by a, a, and let's add member by member the obtained results, observing that

0(au, an, ) - i.

We find

"of 00 I due due

~G+~+.+~+.r-=0. aG+g Otll +.. ,+ Gtnl: Gtll. +.+-ara'dx` = 0, t

Let's put

U, = û(a, ."",). Oi = efa,i, anl),

and observe that

of of of, of,

̃ +. + "" = ", .+ ,"

t ,+Ot "1 n = S' -+ .nt

de ds de, due

Otjt--t-~t-T--="t'T---t-i-X,---

̃dx, 1 _L ..+ dan n. = 'da,, +. dan, -

The equality written a moment ago will become

"of, due, of, due,

9.G+ g -r- - a, + -H ( fl- ^- -j an = o.

\dx,t dKtt/ d~t d~

But the system a, a,M, K.J verifies the equations (72). The equality which precedes can thus be written

2G + (^-KÎ)(/ + .+ |eJ-a,\ = o.

\Òn this,

Now it is easy to see that

de, t +I det

"XI +-0:"

r da,, a'~r"' f/a,

is nothing else than the first member of condition (98), so that the previous equality gives

(ioo) G == O.

Equalities (99) are certainly verified by the system of values which makes Q take the value at the same time that it verifies conditions (97) and (98). Let us introduce, in these equations, this system of values; let us multiply respectively these equations



by these values a,, an, and add to the member the results obtained, taking into account the equalities (97) and (100); we find g = Q or g = k.

This equality, joined to equality (100), gives the equalities (99) the form

k\ of or = o,

k22 dxi dxl 0,

aar> 4

(101)

(101) I | oe du

< _da da>

I k\ (h.a 0%v = o.

These equalities (101), compared to the equalities (72), teach us

i° That the quantity k\ is one of the quantities K.j; we will designate it henceforth by Ki;;

2° That the system of values of a,, y.n which verifies the conditions (97) and (98) and makes Q take the minimum value K; is the system a)2, a/i2 which must, in the integration of the equations of small motions, be associated with this determination of K^. We already know that R^ cannot be less than K,; it will suffice for us to show that Kij is different from K^ to be sure that K2, outperforms K^.

Suppose, indeed, that Ki; is identical to K^. Equations (97) and (101) would then be identical to those which determine a, a, as the equation D (K2) = o is assumed to be free of multiple roots, these equations admit a single solution, so that we would have

~~ai? =~~x11, ~t2=Xnt.

Substituting a,2, a,,2 for a,, an in the first member of equality (98), this first member would become 20, or 2; the quantities a,2, a,,2 would not verify, as they have been subjected to, equality (98).

The quantity K':2 therefore certainly exceeds K2.

3° Suppose now that the n variables a,, a,, are U. - 11.. ̃ 2?



subject to verifying the three conditions

(97) 6(>i, .xn) = i,

(98) Wuan a,-+-4-VV,mï,7.4-V\V,)(7(a/,1a:,r- i,,",,) 0,

(98 6â) Wna^t- -+- W,a,,ja,, - N W,?( a,s "ï+ a?ji,,) = o.

The quadratic form O(a,, a,,) will reach a certain minimum, necessarily positive and at least equal to K;, which we will denote by kfr

For a system of values of at, a. subject to verify the equalities (97), (98), (98 bis), to make Q take a minimum value, there must exist three quantities g', Gt, G2 such that we have

toQ dQ

dat doci

-t-G,(Wjian-t-+V,llan,)-+- Gs( Wu axt -+- + Wnl an3) = 0, (102) ~1, :I,~I,I,V.I/,I,I,),~ ,I,I.~I,2, ~:I~~ j of

dx,t ~x,t

-f- G|(Wi "a,,+.+W",,aSI) + G2(WIna,,+.t-W/1/,a,l!) = o. The two quantities G, and Gj are zero; let us demonstrate this, for example, for the quantity G2.

Let's multiply, respectively, the equalities (102) by a, a,,o, and let's add member by member the obtained results, observing that a,2, a,,2 verify the equations (97) and (98); we find

de de ( àiï due

~Cx2+g(xt~ d® +.x,t, _~ti I (x~~ ttio +:+x".= dS~ -o. ` dxt dxrt l dxi daa

Let's put

POSOriS <2î= û(ats, aal),

62 = 0(^12, -- a "2).

The previous equality becomes

2 G2 4- s- -- - 1 a, -4- .+-#̃ 1 3 - ) "n == o.

dx,2 dX). 7.1+"'+ C)2,12 1)7,12,



The quantities ai2, a,i;>, associated with the value K^ of K-, verify the equations (72); therefore, the previous equality can be written

d 0.1

"G,= (Kï-,>(| ̃--£-)̃ )

tz a

In the second member, the quantity that multiplies (K?, - g) is none other than the first member of the condition (98 bis), a condition that the quantities a,, an are subject to verify. We thus find, as we had announced it,

G2 = o.

We would also find

G, = o,

so that the equalities (102) take the form

of due

è <r àm à'xi =s o

o.J.

of diï

d% to?.n

Reasoning then as in the previous case, we would show

That the minimum value /q of the quantity Q is one of the quantities Kj, or Ky.

That the values of a, a, subject to the conditions (97), (98), (98 bis), which make Q take this minimum value R,, are the quantities a(3, a, which the theory of small motions associates with this quantity Kij;

That the quantity K is definitely greater than the quantity K.ij. We shall continue in this way, thus determining quantities K. K* each of which will be greater than the previous one. After we have determined K.(, we shall be led to state and prove the following proposition

Let us consider the quantities a, a, which verify the condi-



tions

(97) 6(ai/i, ̃ - - > ï"") = 1,

(98) J Wn*ii "in -t-t-YV,,Ba,an,, +VwM(a((l a, +î,|ip") =o, p?

(g8 61s) Wn!ii,j| +. + WnnaBîa,m H-YWp^ïfîi, +",!i,") == °i A"/

(98"-i) W(1 "!" a, +- + WMiM-,3,l + yWn(ip,H", "+ V-iV') = °P'I

These quantities give Q ("m, - - <"") a positive value K, which is the largest root of the equation D(K2) = o; the quantities a, ctnn are those that small motion theory associates with this value of K2.

We have thus generated, in order of increasing magnitude, the n roots of the equation D (K2) = o, and the n systems of values of a( a,, which must be respectively associated to each of these roots.

M. Poincaré and his disciples, especially M. Stekloff, M. Ed. Le Roy, M. Zaremba, have shown how this method extends to a host of problems of mathematical physics relating to continuous systems.

One would easily extend, mutatis mutandis, to the small motions of systems affected by viscosity but free of inertia all that we have just said about the small motions of systems affected by inertia, but free of viscosity.

We have studied exclusively the case where all roots of the equation A(À) = are distinct; many of the theorems we have proved extend to the case where this equation has multiple roots.

For a system affected by inertia, but free of viscosity, the equation A (),) = o reduces to the equation D (K2) = o.

The case where the equation D (K2) = o admits a double root had been the occasion of an erroneous proposition that Lagrange (f) and Laptace (2) had both formulated; this proposition was (') L.uuiange, Mécanique analytique, 2nd edition, 2* Part, Section VI, art. 7 (This passage is not found in the first edition of Mécanique analytique). (2) L.u'lace, Celestial Mechanics, 1" Part, Book II, art. 57.



rectified by M. Routh (3) and by W. Thomson and P.-G. Tait (4). Many other propositions can be demonstrated concerning small motions of systems affected or not by viscosity, in particular, when these motions are maintained by small external forces which are given functions of time. The study of these theorems would take us too far. We invite the reader to consult the Treatise of Natural Philosophy by W. Thomson and P. -G. Tait (vol. I, part 1), Lord Rayleigh's Theory of Sound and M. Routh's Advanced Part of Rigid Dynamic.

(3) Routh, Stability of motion, Adams prize for 1877, Chap. I, § 5. C) W. Thomson and l'G. Tait, Treatise of Natural Philosophy, Vol. I, part I, artt. 343 and 343 m, p. 376 and 38i.



CHAPTER XVIII.

STABILITY OF THE RELATIVE BALANCE.


	Relative equilibrium of a system with uniform rotational motion. Stability of this equilibrium. Criterion of W. Thomson and Tait.



Consider a system of rectangular coordinate axes Qx, Oy, Os, and assume that this system has a given motion with respect to fixed axes.

Let us imagine that a system, independent of external bodies, normally defined and of uniform temperature 2r, experiences, with respect to the moving axes, a strange motion, and let us propose to form, with respect to the moving axes, the equations of this motion.

We know the formula that provides these equations with respect to the fixed axes; it consists in writing that in any virtual modification of the system, we have [Chap. XII, equality (6)] (i) ?J- ^te -$-& = o,

¡. t).?

§ being the internal potential of the system, 5 the virtual work of the external actions, t the virtual work of the inertial actions, finally iK. the virtual work of the viscosity.

The internal potential -f does not depend on the position that the system occupies in space; it remains the same whether one uses the system of fixed axes or the system of moving axes; the same is true of the work of the external actions © which depends only on the change of position and state of the system with respect to the external bodies; the same is true of the virtual work R. of the viscosity, which depends on the changes in



B

of the system, but not of its absolute change of position in space.

According to the Coriolis theorem, the acceleration of a point of the system in absolute motion results from the acceleration of this same point in relative motion, the centrifugal acceleration and the compound centrifugal acceleration. We can therefore state the following proposition

If, in the virtual displacement with respect to the moving axes, we designate by G the virtual work of the centrifugal forces, by G' the virtual work of the compound centrifugal forces and by t' the work of the apparent inertial actions, i.e. of the inertial actions calculated by means of the accelerations related to the system of moving axes, we have

"t=8+6'+"t',

Equality (i) will thus be transformed into the following, which must be verified in any virtual modification of the system

(2) s#S2r - E-S - ©t' = o. rJ rJ7

Among the virtual modifications of the system is, in particular, the real modification that it experiences between the instants t and t + dt. In this modification,

-'̃-= dZ\

®/ being the living force of the motion relative to the moving axes. Equation (2) thus gives the following, true for the elementary real change that the system experiences in time dt (3) tftsf+a^flQr - g-3 - e'-& = o. Let us imagine, in particular, that the motion of the system of axes Ox, Oy, Oz is a uniform rotational motion, of angular velocity o>0, about a fixed axis with which the axis 0* remains constantly coincident. The compound centrifugal force applied to each of the elementary masses of the system is zero, so that it is the same for © If x, y, are the coordinates of a point of the elementary mass of the system.



dm, these coordinates being related to the mobile axes, the components, with respect to the same axes, of the centrifugal force applied to the mass dm are

Xc = u>lx dm, \c = ijt\y dm, Zc = o.

Thus, in any virtual displacement of the system, © = oj| (x Sa? -4- y Sy) dm

or even

(4) S= - 8V,

with

(5) V = -^£- f(x-hy)dm=~-l;l.

2 2

In this equality, \z is the moment of inertia of the system with respect to the axis Oz.

To calculate the expression of oV which appears in equality (4), one must not forget to leave invariable the value of wo which contains equality (5).

Equalities (2) and (3) become, therefore, in the case where the moving axes are animated by a simple uniform rotational motion about an axis coinciding with the axis Oz,

(6) a(^-+-v)- ^sa-e-i-v- = 0.

'0.7

(7) rf(tr+^+V)-4<ià-ï-". = o.

j. d3

Let us imagine that the system keeps an invariable temperature, an invariable state and, with respect to the mobile axes Ox, Oy, Oz, an invariable position; its motion is reduced to an overall displacement, and this overall displacement is a uniform rotation, of angular velocity w0, around a fixed axis which coincides unceasingly with Oz; we say that it is in relative equilibrium with respect to the axes Ox, Oy, Oz.

In such a motion, the apparent inertial forces are all zero, since each of the elementary masses keeps an invariable position with respect to the moving axes; the actions of viscosity



are all zero, since the system does not undergo any change of state and the relative disposition of its various parts is independent of time. Equality (6) then becomes

",if V d~ ,<

(8) <>i-V)-S2r--G = o.

03

This formula contains the necessary conditions for the system to be in relative equilibrium.

These conditions must be verified at any time t. Now, if at two different instants, two virtual modifications are imposed on the system which correspond to the same change of state and the same displacement with respect to the mobile axes, these two virtual modifications will make the sum of

8(£ + V)-^85.

f~

It is therefore necessary that they make 5 take the same value. If the external actions were not such that at any two different times, E would take the same value in two virtual modifications which correspond to the same change of state of the system and to the same displacement with respect to the moving axes, these external actions could not, in general, maintain the system in relative equilibrium. On the other hand, if the external actions have this property, it will be sufficient that equality (8) is verified at a particular instant to be verified at all instants.

It is easy to imagine cases where external actions have this property; here are some obvious ones i" No external body acts on the system.

2° The external bodies that act on the system are bodies of invariable state, animated by a uniform rotational motion, of angular velocity "n. around an axis that coincides with Qz.

3" The external bodies that act on the system are immobile and invariable bodies of state, whose figure and constitution are of revolution around an axis coinciding with Os. We will suppose from now on that the external actions enjoy the property that we have just defined.



Among the virtual modifications that loti can impose on the system are (if no linkage prohibits them) those that simply move it with respect to the axes Ox, Oy, Oz, without changing its state in any way; these modifications do not vary either the temperature 21 or the internal potential §.

Between these modifications, there are two which are particularly remarkable in that they do not vary the potential V of the centrifugal forces; these two modifications are an infinitely small translation parallel to Oz and an infinitely small rotation about this axis Oz. Equality (8) then tells us that, if the system is in equilibrium, the virtual work of the external actions will be zero in each of these two modifications; so that we can state the following proposition

If the system is in equilibrium and if there is no connection that prevents it from moving in space, all the external forces applied to it, composed as if they were acting on a solid body and reduced to the origin 0 of the coordinates, give a resultant perpendicular to Oz and a couple whose axis is also perpendicular to Oz. It is not necessary for this proposition to be true whatever the disposition of the system; it is only necessary, in order for equilibrium to be established, that the system be disposed, in this state of equilibrium, in such a way that it is true.  It can happen, in certain cases, that this proposition is true whatever the disposition of the system; this is what happens, for example, if no external body acts on the system. It can also happen that, whatever the disposition of the system, if we compose, by reducing them to the point 0, the external forces which are applied to it as we would compose them for a solid body, we find a couple whose axis is perpendicular to Oz: this is what happens, for example, if the figure and the constitution of the external bodies are of revolution around Oz. These particular cases occur so frequently in the problems that we will have to deal with, that it is necessary to stop for a moment.

The moving system can also be given a motive to move.



Such a virtual modification still leaves invariant the temperature £j, the internal potential -7 and the potential V of the centrifugal forces; moreover, it does not entail any virtual work of the viscosity actions. In such a modification, therefore, the virtual work of the inertial forces must be equal and of opposite sign to the virtual work of the external actions. From this, we can easily conclude the following propositions If the external forces applied to the system, compounded as if it were a solid body and redczite.s ~z a point on the axis of rotation Oz, always give a zero or perpendicular i~esulcant to Oz, the quantity of motion of the system, estimated in the direction Oz, remains constant; in other words, the projection on the axis 0 of the center of gravity of the system moves with a uniform motion.

If the external forces, composed in the manner just described, give a zero torque or a torque whose axis is perpendicular to Oz, the moment of the momentum of the system with respect to this axis Oz remains constant. Let us imagine that the system is a mechanical system whose definition makes no reference to the notion of temperature; or that it is subject to isothermal changes only, or that in all its changes, the entropy remains equal to a constant or to a given function of temperature. There will then exist, for this system, a usable energy A. Let us assume, moreover, that the system is not subject to any one-sided bonding in any real or virtual modification compatible with the supplementary relations, we will have to;

(9) m - 4- ssf = sa.

(9) ds il;;¡u.i = oA,

Formula (8), which contains the necessary conditions for relative equilibrium, will become

do) SA -+- 6V - E = o.

The formula (6), which summarizes the equations of motion, from-



will come

(u) 8.Y-I-3V - C" ̃- --,!R = o.

The usable energy of the system will therefore still play the role of usable energy in the motion relative to a system of axes animated by a uniform rotation, provided that we treat the centrifugal forces as external actions. If, on the other hand, we want to consider only the real external actions, we will have to assign the role of usable energy to the sum (Â-f-V) which we can call relative usable energy of the system.

reasoning similar to that developed in paragraph 2 of Chapter XVI (pp. 272-273) gives us without any difficulty the following theorem, which does not assume that the system is exclusively subject to bilateral connections

In a state Eo, a system has no local velocity with respect to the moving axes; from the state Eo, any virtual modification, compatible with the unilateral or bilateral links and the additional relations, makes the external work G take a value lower than the increase of the apparent usable energy (A-f-V); in the stateE0, the system, subjected to such additional relations, is surely in equilibrium with respect to the moving axes.

Let us imagine that the external actions derive from a potential û, so that in any virtual modification

O) S= - èii.

The two equalities (10) and (i 1), true for an exclusivenient system subject to bilateral bonds, will become (l i) 8 ( A. -4- i2 -t- V) = o,

U4) 3(A 4-12-1-V) ̃̃̃̃̃ A =0.

The quantity

H = A it

is the one that, in the study of the absolute motion, we have named V ballistic energy of the system.



In the study of the relative motion with respect to a system of axes animated by a uniform rotational motion, we will name the relative ballistic energy of the system the guanlity

(l5) B'= A + Q-t- V = B-+-V,

sum of the absolute ballistic energy and the potential of the centrifugal forces.

To justify this name, it is sufficient to apply equality ( 1 4) to a virtual change that coincides with the real change experienced by the system in time dt; the work i' of the apparent inertial forces is then equal to the decrease of the living force; the work il of the viscosity is null or negative; the equalities (14) and ( 15) thus give the condition

n 6 ) d& d B'

(6) dt dt 0

which justifies the name of relative ballistic energy given to the quantity B'.

The equality (i 3) can be written

(17) 3B'= o.

It teaches us that for a system, subjected exclusively to bilateral links, to be in relative equilibrium with respect to a system of axes animated by a uniform rotational motion, it is necessary that the relative ballistic energy experiences a zero variation in any virtual modification imposed on the system from the assumed state of equilibrium.

Condition (16) allows us to repeat the Lejeune-Dirichlet proof, as it was explained in paragraph 5 of the previous chapter (pp. 292-301); we can thus justify the following proposition

The relative equilibrium of the system is certainly stable, in a state where the apparent ballistic energy 13' takes a minimum value among all those that it can reach without violating the additional relations.



This stability condition does not assume any restrictions other than those which ensure, during the real motion of the system, the existence of an apparent usable energy; in particular, it does not assume, at least for systems defined by a limited number of quantities, that the initial perturbation respects the additional relations.

It may happen that certain changes of state or position of the system do not vary the apparent usable energy B'. If, for example, the external actions, composed as if the system were a solid body, and reduced to a point on the axis of rotation Oz, give, whatever the state of the system, a resultant perpendicular to Oz, a translation of the system parallel to Oz will not vary B'. In the same way, if these actions, composed in this way, give a resultant torque whose axis is always perpendicular to Oz, a rotation of the system about Oz will not cause Lî' to vary.

Let us suppose that in such a case, the quantity B', considered as a function of the only variables which appear in it, is a minimum in a certain state of the system, a state related to the mobile axes Ox, Oy, Oz. This state can still be called a state of stable equilibrium provided that we modify the definition of stability as indicated in Chapter KVtl, at the end of paragraph 5 (pp. 3o3-3o4). In this new definition of stability, no limit is imposed on the variations of the quantities that do not appear in the expression of the apparent ballistic energy B'; the state of the system at time t can be declared to be close to the considered equilibrium state, although in these two states such a quantity has extremely different values.

If, for example, a translation of the system parallel to the axis Oz does not vary the apparent ballistic energy B', the state t of the system at time t will be considered to be very little different from the equilibrium state, even if it is extremely far from it, provided that it can be brought to differ very little from it by a simple translation parallel to Oz. Similarly, if a rotation about Oz does not change the apparent ballistic energy B', a state of the system will be considered as very little different from the equilibrium state, if it can be brought to differ very little indeed by a simple rotation about Os.



SirW. Thomson (later Lord Kelvin) and P. G. Tait, in the second edition of their Treatise on natural Philosophy (' ), stated without demonstration a number of relations between the properties of the sum (A + Q-j-V), which they called Energy, and the stability of a system animated by a uniform motion of rotation; in their research, the system studied was a liquid mass.

The following are statements made by these authors

"i° If the energy corresponding to a given moment of momentum is a minimum or a maximum, the kinetic equilibrium (relative equilibrium) is surely stable provided that the liquid is perfectly devoid of viscosity. It seems likely that it is essentially unstable when the energy is a minimax(-); but we are not aware that this proposition has been demonstrated so far.

" 2° If there is a viscosity, however small, within the liquid, the equilibrium cannot possess secular stability in any of the cases where the energy is maximum or minimax the only configurations that have secular stability are those for which the energy has a minimum value for a given moment of momentum. "

The purpose of this second proposition is to make known a necessary condition for the stability of relative equilibrium, at least in the case where the system is afflicted with viscosity. We cannot deal with it here, since it is only a question of a sufficient condition.  Let us therefore examine only the first proposition.

The demonstrations developed in this paragraph do not tell us anything about what happens in the case where Y Enerqy (A + Q-j-V) is maximum or minimax; but, in the case where this quantity is minimum, not for a given moment of the momentum, but unconditionally, they do tell us what happens in the case where Y Enerqy (A + Q-j-V) is maximum or minimax.

(' ) Sir William Thomson and Peter Guthrie Tait, Treatise on natural Philosophy, new edition, art. 778" (j ) and (k); vol. I, part 11, p. 335.  (' ) Sir W. Thomson and P. 6. Tait say that a function is minimax when its first variation cancels out without this function being either maximum or minimum.



The relative equilibrium is stable whether the system is viscous or non-viscous.

We will see, moreover, in paragraphs 4 and 10, that we can affirm the stability of the relative equilibrium in certain cases where the sum (A + Û+V) is minirnax.

The propositions stated by Sir W. Thomson and by P. G. Tait are therefore far from being all demonstrated; moreover, where demonstrations have been given, the conclusions to which they lead do not entirely agree with the rules formulated in the Treat.ise on Natural Philosophy. Nevertheless, we shall agree to give the name of W. Thomson's Criterion AND TAIT to the rule which is sufficient to ensure the stability of relative equilibrium as justified in the present paragraph.


	Application of the criterion of W. Thomson and Tait. Uniform rotation of a heavy solid fixed by one of its points. From the criterion of stability given by W. Thomson and Tait, we shall make an application which we shall borrow from M. Hadamard (' ).



A heavy solid body is suspended by one of its points O. Oz is, at point O, the vertical line directed downwards. We want to know if the solid body can rotate uniformly around Os, and if this rotation is stable. Let be. A., B, C the principal moments of inertia, at point 0, of the solid considered; let O ç, Ot), OÇ the principal axes of inertia at the same point; with respect to these axes, the center of gravity G has well determined coordinates which we will designate by 2, H, L.

With the axes OE, C)7], OÇ, the vertical axis Oz makes angles whose cosines are a; j3, -y, during the duration of a uniform rotation, these cosines remain invariable.

The moment of inertia of the body with respect to the Oz axis has for (') J. Hadamakd, On the stability of rotations in the motion of a heavy body about a fixed point (French Association ~6 ~!OMfeMe/!< d*u/) COr~~Mef~< ttK<OMy <Myt/)Ocy:t~EE (~4~oeM<<'o~aytpOMe~OMr <fety}ee/ne/:t des Sciences, Congrès de ISoideaiix, 1 8g5, session of August 5 i8t)5).



value (Aa'j-Bjj2 -+-Cy2), so that

(17) V~-(A~-Bp-hC'

(17) V=- ^-(AaBpH-C7>

The absolute usable energy A of an invariant solid is a constant, which we can always reduce to zero. The potential of the external actions is

S2 NI g.

M being the mass of the body, g the intensity of gravity, and the ordinate of the center of gravity G with respect to the axes Ox, Oy, O.z. We can therefore write

(18) Q = - M£-(3a-4-Hp-+-ZY).

The apparent ballistic energy has, here, for value

(19) JV = -M^(ïa-+-Ii:J + ZY;- - ( Aa'-+ B ,82- C-(*). Since the point 0 of the solid body is constrained to remain fixed, any virtual modification is reduced to a change in the orientation of the body with respect to the moving axes, i.e. to a variation in the cosines a, 3, y.  As these cosines constantly verify the relation

~2 +,(2 = i,

this variation is subject to the condition

( 20 ) a oot -h to 313 -i- y Sv = o.

Equality (19) gives, by the way,

(21) 8B'- (, o>3 a-+- M ff*)oa-( U coj S H- M^H)8(J--( G<o^ y-+-M^Z)8v.  For the solid body to be in relative equilibrium with respect to the axes O.r, Oy, Oz or, in other words, for it to rotate with constant velocity w0 around Os, it is necessary that 0 H' cancels for all systems of values of Sa, Sj3, Sy that verify condition (20).

For this, it is necessary and sufficient that there exists a quantity À such that we have, whatever Sa, 3|3, oy,


. ( a oa -+- £ 3J3 -T- V 07 ) -+- oB' = o



I). - II. U. a8



or, in other words, such that we have

..j'V \I rr rT

ws;x ~X-A a,

(?.) o~3 i = 1~1 t (

('>) Î:-tu B

wô y 11"

(J)2,! = M CO-

By squaring the two members of each of these equalities, and adding the results member by member, we find

( a3) a,* = m v2 [ jx"- v)ï + ( x b r- + a-cr-J To each value of the parameter equations (22) and (a3) correspond a system of values of a, [3, y, and a value of ojJ; when all the possible values are given, the orientations which form with O£, Or,, OÇ angles whose cosines are a, (5, y form the set of generatrices of a cone which has the point 0 as its vertex and which is invariably linked to the body. In order that the body, suspended by the point 0, can rotate with a uniform motion around the vertical, it must be oriented in such a way that one of the generators of this cone comes to lie along the vertical. Once this generatrix has been chosen, the absolute value that the angular speed of rotation must have is determined; the rotation can be carried out either in one direction or in the opposite direction.

These results are due to M. Slaude(').

In the case where the body is suspended by its center of gravity G, the three quantities S, H, Z are zero, and the preceding formulas become illusory; but, for the quantity SB', given by equality (21), to cancel each time equality (20) is verified, it is necessary and sufficient that there exists a quantity p. such that we have the three equalities

(/Wg -pOa - o. (lîcoj- n)p = o, (Cio-j- [jt)v = o. When the three moments of inertia A, B, C relative to the center of (') SïAUDE, Ce~er jOe/'maMe/t/e /h)<a</o/:a!;rey: &and a!e/' .Betfeg'M/tB- e~e.! ( -) Staude, C'eber permanente Rotationaxen bei der Bewegung eines schweren Kôrpers um einen feslcn Punkt {Journal fur die reine und angewandte Mathcmalik, Bd. CXIII, 1894, p. 3r8).



gravity are distinct from each other, these equalities can only be verified if two of the three quantities a, ji, y are zero; the body can only rotate with a uniform motion around an axis if this axis is one of the principal axes of inertia relative to the center of gravity; the angular velocity of rotation is, moreover, indeterminate. It is easy to see how this proposition extends to the case where two of the principal moments of inertia are equal to each other, and to the case where all three have the same value.

In order to discuss the stability of this relative equilibrium state, let us form o2B'.

Equality (21 ) gives us in general

(24) 32B' = - a)|fA(Sa)2-HB(o[i)2-HC(SY)2]


	
(Ato3a + M(§'E)8 "a - (BtoJp + M^Hjoap



	
( C i "l 7 ̃+- M g Z ) S2 y.





When the initial state is one of the possible apparent equilibrium states, a, (3, y verify the equalities (22), so that the previous equality becomes

̃,â "B' = - io?[A(S")!-HB(.ap)î-+-G(SY)î] - X(i)J(aSaa +- (3 3 £ -+- y S2 y)- But condition (20) gives, in turn, condition (25) (Sa)2-+-(3(i)2 + (oY)2+"â3a+ P8p + y 8BY =o, so that one finds

(26) 3B'=u>Ua-A)(3a)-t-(X - B)(3p)*-i-(X - C)(3y;!] In this expression oa, o'i, oy must verify the equality (20) which becomes, by virtue of the equalities (.22),

( v ) 8a T^ 0^ + j-l- Sv = o.

Let us take the value of oa from equality (20) and transfer it to equality (9.6); we will easily find that it can be put in the form

(.8) ~2BI 2,(À-.A)2f [ 0,-A)3/()'B ')')2:2(. (X~ A)8'Za-+-(X - C) "S^. 9


	(J._A)(X-C) (ûï)"



?- HZ >0 K 1


	(To- B) (To C) 01 oy





The variations ojî, oy are now arbitrary. For o-B' to be positive whatever 53, oy are, it is necessary and sufficient that we have the inequalities

( 29 ) i (X - A)JH*-t-a - B)'S2>o,

(''9-) ( (X - A)3Z*-r-(X - C)3Z!>o,

(3o) (X - B)S(X - C) "3* + (X - G)3(X - A)3H2-t-(X - A;3(X- B)3Z4>o. Condition (3o) can be written as

(31) (X - A)(X - B)(X - G)P(X)>o,

with

̃=̃2 H2 /2

v - f^)- (X-A)3 (X- B)3 + (X-Cj"

,A-) (A-) ,-)

Equality

dP(l)_ r s^ h" z" ]

3[1a-A),+(),B)~+(>(~f4,

a!X LfX - A) (X - B) (X - C;*J

shows us that - ^- is constantly negative. If we assume that the quantities C, B, A are distinct and arranged in order of increasing size

G < B < A,

the equation

(33) P(X) = o

will have a root u. between C and B, and another root v between B and A; I'(a) will have the following signs varying from - " to G, 'Pf),) will be negative,


	
C to !jl, - positive,



	
u. to B, negative,



	
B to v, positive,



	
v;'i A, - negative,



	
A to -j-ao, positive.





The first member of the inequality (3i ) is therefore positive when is less than jjl or greater than v, and negative when À is between |jl and v.

But when A is less than p. and hence less than B, the first member of the first inequality (29I is definitely negative.



So we see that, for conditions (29) and (3o) i to be all three verified, it is necessary and sufficient that is greater than v.

Hence the following theorem A stable rotation is certainly obtained when we take for a value greater than the largest root v cle l'égucztiorz (33) this r-acirze 'i is conzl~rise between the two largest principal moments of inertia relative to the point of suspension.

If one were to study by this means the stability of rotation of a solid body suspended by its center of gravity, one could not follow this calculation, which would be partly illusory; but, in this case, it is easy to discuss directly the sign of o2B'. We can still write the equality (24) which is simplified and becomes 8!B' = - u§[A(Sa)2+B(o^)2-+-C(SY)2]


	<"f [Aa8*3H-Bp32j} + O/S^y].



Equality (25) also remains true.

But in this case, the body can only rotate, as we know, around one of its main axes of inertia. Let us imagine that O? is this axis, which then coincides with Oz. We will have a = 1, p = o, y = °i

and the previous equalities will give

(34) S'B'=o)îL(A - B)(8j3)2-t-(A-C)(3T)2]. The variations o|î, oy are, here, arbitrary. For S2 B' to be positive, it is necessary and sufficient that we have

A - B > o, A - G> o,

i.e. the axis of rotation coincides with the axis corresponding to the largest moment of inertia, which is the minor axis of the Poinsot ellipsoid of inertia.

The criterion of W. Thomson and Tait, applied to the uni/formal rotation of a heavy body suspended by its center of gravity, thus teaches us that this rotation is stable if it takes place around the small axis of inertia; it teaches us nothing if the rotation takes place around the medium axis of inertia or the large axis of inertia.



This proposition teaches us that we could, without error, state this other proposition For a system, taken in a certain state, to be in stable relative equilibrium, it is necessary that the apparent ballistic energy B' be minimum in this state.

Such a proposition would lead us, in fact, to this corollary A heavy solid, suspended by its center of gravity, cannot be animated by a uniform and stable rotation around the mean axis of inertia nor the great axis of inertia.

Now the direct study of the motion of a heavy solid suspended by its center of gravity teaches ( ) that the uniform rotation of such a solid is stable when it takes place either around the large axis of inertia or around the small axis; it is unstable only if it takes place around the medium axis.


	Case where the moment of the external actions with respect to the axis of rotation is identically zero. New stability criterion applicable to this case.



When a system is arranged in such a way that it can rotate uniformly about an axis, the external actions have a zero moment with respect to this axis. It may happen that this condition is verified by the disposition of the system in relative equilibrium with respect to foreign bodies; but it may be that the moment of the external actions, with respect to the axis Oz which must serve as the axis of rotation, is zero whatever the state and position of the system. In the two preceding paragraphs, we have given examples of such actions.

The application to this case of one of the general theorems of Energetics (t. I, p. 171) leads to the correctness of the following proposition When the system solicited by such external actions experiences any real moezvemerza, the moment cle.sa quantity of motion relative to the axis Os keeps an invariable value.

(') See v. ai'pell, treatise on /Rational Mechanics, :>' edition, t. Il, PP- ni-'19-



It is possible to ensure the stability of the relative equilibrium of such a system using a criterion different from the one proposed by W.  Thomson and Tait.

This criterion can be put in two equivalent forms. We have justified ('), in 190 s, the first of these forms, by the demonstration that we are going to read; as early as 1880, M. Henri Poincaré had, in one of his Memoirs, inserted a few lines (-) which contained a kind of indication of this criterion and of this demonstration.

First of all, we will suppose that the external actions to which the studied system is subjected are absolutely arbitrary; later on, we will particularize them as we have just said.

Let us suppose that the system is animated, with respect to fixed axes whose axis is the same as that of the mobile axes, by a real or fictitious motion of absolutely any kind.

At a given instant t, the absolute velocity of a point P of the elementary mass dm can always be decomposed into a velocity perpendicular to the plane which passes through the point P and the z-axis, and a velocity situated in this plane; this last one meets the z-axis or is parallel to it; r being the distance of the point P to the z-axis, let us designate by rw the first of these velocities, evaluated in the direction of the positive rotations around the z-axis; either the second one, whose absolute value will be the only one to be considered.

The absolute life force of the system will then be

( -15 ) "̃ = ;'̃ f( >̃- tu2 ̃+- o2 ) dm

2

and the absolute momentum with respect to the z-axis will have the value

(36) M= I r'-mdm.

(' ) Pierre Dciiem, Sur la stabilité d'un système animé d'un mouvement de rotation (Comptes rendus, t. CXXXIl. p. 1021, séance du 29 avril 190s); Sur la stabilité de l'équilibre d'une masse fluide animée d'un mouvement de rotation (Journal de Mathématiques, 5° série, t. VII, 1901, pp. 3n-33o). (' ) H. POINCARÉ, Sur l'équilibre d'une masse fluide animée d'un mouvement de rotation, § l'i, the first three equations of this paragraph (Acta mathemalica, t. Vil, iS85, p. 366).



If any virtual modification is imposed on the moving system, accompanied by any change in this motion, M experiences a variation

(37) SM = a 10 /- or dm- I r- oto dm.

In the particular case where the modifications in question are imposed from a state where the system was rotating in one piece, with an angular velocity wu, around the axis of the s, we obviously have, in the initial state, tu = w0, 3 = 0, and the preceding equality becomes

( 38) 81YI = ai "0 I r 6r dm -4- f r2 Sco dm.

Now consider the quantity

<3g) w i (<>>"̃ r-- dm.

In any virtual modification of the system, accompanied by any change of the motion, this quantity experiences a variation

(4<>) 8W = a>2r8r dm-+- I r2ti> Su dm.

In the particular case where the system to which these modifications are imposed rotates in one piece, with an angular velocity d)0, around the s axis, this equality becomes

( il) SW = lo-j /- 8/- dm eu,, I r2 8w dm.

But in this virtual modification imposed on the system that rotated all in one piece, with angular velocity to0, around the z-axis, the centrifugal forces perform a work 1 £ = f "2 r 3/- dm.

We can therefore write

(i") 3 = (.),,o.\l 3\V.

The variation 5<o imposed, at each point of the system, on the



quantity w, has been, up to now, left arbitrary; let us imagine that it is associated to the virtual displacement imposed on the system in such a way that the moment M of the momentum does not undergo any variation; it will suffice for this, by virtue of equality (i8), to dispose at each point of the value of ooj in such a way that we have (43) 9.co0 /- or dm ̃+- r% Suj dm = o,

and this is obviously possible, in one or more ways, without contradicting the connections that could be imposed on any local movement of the system.

Let us designate by 5MW the value that takes, in such a variation. the quantity SW; we see that in any virtual displacement imposed to a system that turned all of a piece, with an angular speed 0, around the z-axis, we have

(44) e=-sMw.

According to equalities (4) and (8), for the system subjected exclusively to bilateral connections to remain indefinitely without any other motion than a uniform rotation, of angular velocity wo, about the z-axis, it is necessary that any virtual change imposed on the system, from the assumed state of relative equilibrium, verifies the condition

,¿ aJ~c.

U ^8£r-3 - S = o.

We see that this condition can be stated as follows

For a state in which the system, subject only to bilateral connections, rotates with the angular velocity w0 around the z-axis, to be a state of relative equilibrium, it is necessary that any virtual change resulting from this state verifies the condition

(4'> ) 3.7 - '-- 85 -̃- 3U \V - 5 = o.

(431 d

This proposal does not imply any restriction on the external actions that solicit the system.



Let us now consider the case where these external forces always have, with respect to Oz, a zero moment.

In this case, in any motion of the system, the momentum with respect to Oz keeps an invariant value. Let us suppose that all motion is subject to an additional relation that ensures the existence of a usable energy A. Let us also suppose that the external actions admit a potential û.

Let us consider a state Eo where the system has no other motion than a uniform rotation, of angular velocity wo, around Oz. The quantities A, Q, W have then values Ao, û0, Wo the quantity of motion M with respect to Os has the value Mo- Let us take a state E of the system where we can reach, from the state Eo, respecting the bonds and the supplementary relation. To this state, let us associate a fictitious motion, but compatible with the bonds; in this state, the velocity at the point P is composed, as we have said, of the two rectangular velocities " and <p; let us choose this fictitious motion in such a way that its moment with respect to Oz is equal to Mo

(46) fr^wdm = M0.

This is of course always possible.

If the system under study depends on a limited number of normal variables, the local motion is certainly defined by a limited number of velocities, and the distributions of w which agree with the links and condition (46) depend on a limited number of arbitrary parameters; this is not the case anymore if, as we will assume in a forthcoming paragraph (§ 12), the locational motion of the system depends on an unlimited number of arbitrarily variable velocities.

To each of the distributions of <o that verify condition (46 corresponds a value of the quantity W.

Let us denote by ç,' the sum

Ci 7) (,' = A + W.

You can see that condition (4") can now be stated as follows

In a state Eo, a system, subjected exclusively to bonds



The only motion of the system is a uniform rotation, of angular velocity oj0, around Ç)z. Its quantity of motion with respect to this axis is Mo. For this state Eo to be a state of relative equilibrium of the system, it is necessary that in any elementary virtual modification, resulting from this state, and compatible with the bonds and the supplementary relations, we have

(48) SÇ - £ = o,

the quantity W, which appears in the expression (47 ) of C{, being calculated for the invariant value Mo of the momentum.

Let us now imagine that in the state Eo, where the system rotates, with a uniform velocity w0, around Oz, the system is not in relative equilibrium with respect to the mobile axes considered. Crossing the state Eo at the instant to, it experiences, from this instant on, a certain motion with respect to the moving axes. Let us consider this motion at time l, after t0.

Equation (i 3), applied to a real modification accomplished in time dt, gives us

(49) J(A + V)-6+5:-Jl=o.

If we observe that at time t0, the relative motion and, hence, the relative momentum of the system, are zero, this equation, integrated between /" and t, gives

(')')) .V -r- V- Ao - Vo- <? $'- A = O,

Ç and fà. being the work done by the external actions and the work done by the viscosity during the considered motion.  Moreover, the absolute velocity of a point P of the system is composed, at the instant t, of the two velocities ra> and ", perpendicular to each other, which we have defined; its velocity relative to the moving axes is composed of the two velocities r (w - w0) and this, directed like the two preceding ones, so that the apparent living force has for value

<£' - ̃̃ (io - (o,,)'2 /̃ dm -+- a- dm


	I o)2/ dm - lo -; /̃' dm - 2 dm ("o w2 dm t 2 t. .7





or, by virtue of equalities (5) and (39),

(5ij 4' = W V h - o2 dm - o>0 j eu/ dm. This equality would be true even if the quantity of motion of the system with respect to Oz did not have, "at the instant t, the value Mo; this is a remark that we will have to use later.

But, in the motion we are considering, this quantity of motion has constantly the value Mo the equality (46) is verified at any time t, so that we have

̃ Vo.

Equality (5i) can therefore be written

C == W Wo- V -t- Vo+ i Ç<f- dm.

Equality (5o) then becomes, taking into account equality (47)" (52) y"£+_£= ff-dm-Si.

This equality (52) can still be put in the form of inequality (53) G-+- (./o- Ç^o.

By means of this inequality (53), and by a reasoning similar to the one we have exposed in paragraph 2 of Chapter XVI (pp. 2"2-2-.>), we will obtain without difficulty the following theorem

A system, subject to unilateral or bilateral connections, and to additional relations which ensure it has usable energy, is solicited by external actions whose moment is identically zero with respect to the axis Os. In a state Eo, it has no other motion than a uniform rotation around Os. will surely be in relative equilibrium in the state \ia if the following proposition is true

Any finite virtual modification, coming from the state Eo, which verifies the additional bindings and relations, and which leaves the quantity I i>)r-dm its initial value Mo, starts with



make the external work take a value lower than the increase of the quantity <

Let's assume that the external actions which solicit the system derive from a potential 0. Let's say

( 54 ) 4" = (j -+- ii = A -4- Q -h W.

We propose to prove the following theorem In the state Eo considered in the previous theorem, the relative equilibrium of the system, subjected exclusively to bilateral connections, is certainly stable if the quantity <& has, in this state Eo, a smaller value than in any neighboring state to which a virtual modification subject to the following conditions can lead

It respects the holonomic linkage conditions It respects the additional relationships;

It leaves the integral I ior2dm the value Mo that it has in the Eo state.

It is well understood that two states of the system, relative to the mobile axes, are considered as neighboring, even if their positions relative to these axes would be very different, if they can indeed be made neighboring, in the ordinary sense of the word, by a simple rotation, any rotation at all, about Oz.

The proof of this theorem, following the Lejeunc-Dirichlet method, is immediate if the initial perturbation respects the supplementary relations, and does not vary the momentum of the system with respect to the axis O =

But such a restriction imposed on the initial perturbation would reduce the scope of the theorem too much, so it is important to remove it.  However, in order to avoid too long demonstrations, we will only lift it here in part we will suppose that the system is holonomic we will suppose, moreover, that the initial perturbation can vary the momentum of the system, but that it respects the supplementary relations; to lift this last restriction, it would be sufficient to operate



exactly as we did in paragraph o of Chapter XVI (pp. agS-Hoi) it is, moreover, of an analogous artifice that we are going to use here (''). c'e~st, d'allleqit~s, (I'tià artifice aii;tl4p~'Ile

Let us imagine, then, that any virtual modification of the system's calibration with respect to the moving axes can, when it respects the bonds and supplementary relations, be represented by the variation of n independent variables x,, a2, a, We suppose that any rotation of the system about the axis Oz does not cause any of these quantities to vary, since the states that succeed each other in such a rotation are not to be considered different. We would say the same of any translation parallel to Os, in the case where the sum of the projections on the z-axis of all the external forces would be identically zero, and where no linkage would oppose such a translation. Let us imagine, moreover, that any relative local motion of the system can be obtained, when the state of this system is known, by giving arbitrary values top speeds v,, cj, vp. It is a question of proving that Under the conditions of the statement, one can impose on the initial absolute values of the quantities ai, a2, a, vt, v->, v

upper bounds so small that we have, whatever t, (55) jaijlAi, J0C2JSA2, |an|SA", (56) je, |gU,, | t" 2 i$Us, K,|SUP. A,, A2, A, U(, U2, Un are positive quantities, arbitrarily given in advance.

(' ) Our first: demonstration of the criterion of stability here studied required the initial perturbation not to change the momentum with respect to the axis of rotation. We then tried to remove this restriction; but our demonstration was subordinated to the legitimacy of a supposition concerning the quantity [P.  Duhem, Stability, for any perturbation, of a system animated by a uniform rotational motion (Comptes rendus, t. CXXXIV, 6 January 1902, p. a3 ) On the stability, for any perturbations, of a system animated by a uniform rotation motion (Journal de O~atltématiques pures et apnliqzzées, 5° série, t. 1'III, igo2, /o;-me (YoMr/M/ e~e ~a!<Ae7Ma'<~MM ~:<e~ e< a~h~Mee~ 5" série, t. \'UI, ~902, p. 5)). Our late colleague and friend Adrien Féraud, auditor of the course we were giving at the time on these questions, found, for his part, a way to lift the restriction in question, and that without making any new hypothesis on the magnitude  [A. Féfiaud, Sur la stabilité de l'équilibre relatif d'une masse fluide (Bulletin astronomique, 1902, p, i4^)]-



We can always, in view of the demonstration, substitute smaller positive quantities for the quantities A,, Aw, Uj, U^ which have been given to us; the demonstration will only be more convincing.

By thinking, let us assign to the system a state and a motion, relative to the moving axes, which verify the following conditions i" From the state Eo, we can reach this state by a virtual modification which verifies all the additional links and relations

2" In this state, the momentum with respect to Oz has the same value Mo as in the state Eo

3" In this state, conditions (55) are all verified 4" K. designating a positive number and smaller than i chosen once and for all, we have

(5;) ie,j<(n-K)U,, !<v! = (i-+-K)U;j; 5" Finally, at least one of the following conditions is verified (58) jxi| = A1, |a2| = A2, | a" | = A, (r-K)U, S j. I,

(59) ̃--

We will say that such a state is a z-state.

It is easy to see that the state E() is not found among the stalls s, and that none of them can be infinitely close to the eial. Eo.

On the other hand, according to the character that <P is assumed to have in the state Eo, the difference ( <1> - (l>0) must be positive in any state, sufficiently close to Eo, where the momentum with respect to Os is equal to Mo.

From then on, we can always suppose that we have assigned to the quantities A,, A, L,, Up small enough values so that we can formulate the following proposition

The value of the difference (<î> - <î>), calculated for the various states s, admits a positive lower bound P.

Let us now give the system, at the moment, an initial perturbation which leads it from the state Eo to the state E, this perturbation.



subject to the binding conditions and the additional relations. is not constrained to leave the momentum invariant with respect to Oz, we will assume that it changes this momentum from the value Mo to the value OR.

From time t, the system experiences a relative motion whose moment with respect to O keeps a constant value, so that we have, whatever t,

(60) for2 dm = 011.

In the state E,, conditions (55) and (56) are, of course, verified.  The stability of the equilibrium Eo will be ensured if we can limit the initial perturbation in such a way that at no time t, after t, the system can take a state. C where all conditions (55) and (56) are verified, where at least one of them is verified as an equality, and where equality (60) is also verified.

Let us consider a state i". Without changing any of the values that the quantities a. ol.2, a,, take in this state, let us compose with the motion of the system a rotational motion around Oz, of which 0 is the angular velocity; we can dispose of 8 in such a way that the new moment of the quantity of motion with respect to Os has the value Mo it is sufficient, for that, to determine 0 by the equality

( 61 ) 0 T/-2 dm = Mo - OR

We can obviously assign to the initial perturbation limits such that (Mo - OR.) is, in absolute value, as small as we want; hence, such that the absolute value of 0 is less than any positive quantity we want, and this for any state C.

It follows that we can impose limits on the initial perturbation such that the following conditions are fulfilled 1" The rotational motion that we have composed with the motion of the system taken in any state C only varies the absolute values of the velocities c,, v, vp by quantities respectively less than KU(, KU2. KU^; the addition of



this rotational movement brings the system from a state to to a state s.

2° If, in the considered state £, we pose

ig> = ̃>-J t "2 r- dm

JL

the same quantity has for value, in the state z which corresponds in this state £,

W = f ( io -h 6 )2 r2 d//i.

These equalities, together with equalities (60) and (61), give

VV U.

2

We can therefore limit the initial perturbation so that (*!?-> - W) is as close to o as we want; hence, so that we have, for any state £,

(62) ;i&>-W|<~

Let us now apply equation (49) to the motion of the system, and integrate it between t, and t, remembering that the external actions derive from a potential iï. We will find the equality .,+~>+SZ-A,),1+'$, =~t,

A -t- X' -t- Q - A - >, - Qj -t- €' - ̃& = éh

where ®'( and Ï'sodI. are the values of the apparent living force at times l, and t, and where and ï> are the values of the function V at these same times.

But equality (Si), which is always applicable, gives us, taking into account equality (Go), the following expression for

£' =; w y; -+- I y 92 rfm on (o0,

and an analogous expression for (£',

These two expressions of <£', 21', transform the previous equality into

(63) A H- ii -t-"B> - A, - Q, - W, -h f <fdm - f *\dm=z&. d. 11. Il~ n



The two quantities A and Q have the same value in the state C and in the state î. We can therefore write

= a -+- a -+- w,

<ï> and VV referring to the state s. Similarly, we can write *0=.V,-f-Q1-4- Wo,

and Wo referring to the state Eo. Equality (63) then becomes

<ï> 0 = W - vif -t- #1 Wo -+- ftfdm - f'f-dm-h A. I cp2 dm can only be zero or positive; Si can only be zero or negative; the preceding equality therefore leads to the inequality (64 ) - 0^ W - \JP + #, - Wo+ A?i dm, which would certainly be verified at time t if, at that instant, the system passed through a state. C.

But one can impose upper limits on the initial perturbation such that this inequality cannot occur. We can, in fact, choose these limits in such a way that the two quantities ($>, - VV0) and o\ dm are as close to o as we want, hence, in such a way that we have the inequality ©l-VV0+- ftfdm <

at the same time as the inequality (6a). Under these conditions, the second member of the inequality (tvi) is less than P.

On the other hand, if at time l the system passes through a state t, the difference (<ï> - 0) that appears in the first member of inequality (64) is at least equal to P.

The inequality (64) can therefore not take place, and the theorem that we had stated is proved.




	Form given by M. H. Poincaré to the preceding criterion. Comparison with the criterion of W. Thomson and Tait. In the course of his Mémoire Sur l'équilibre cV une masse fluide animée d'un mouvement de rotation, M. H. Poincaré proposed ('), in order to ensure the stability of a relative equilibrium, a rule whose form differs from that which was justified in the preceding paragraph. By developing some indications given by M. Poincaré, it is easy to demonstrate the equivalence of these two rules.



Let's start by proving a Lemma that Mr. Poincaré uses.

Let dm be an elementary mass of the system, and a, b two quantities taking, at each point of the system, a given value : the quantity a is supposed to be essentially positive. Let us consider the form, quadratic with respect to any two quantities X, Y,

F = X2 f a dm. -h 2XY f ab dm -+̃ Y f ab dm.

We can write J J

F= f a(X2 + 26XY -+̃ bY) dm f a(X + 6Y)! dm.

If b has the same value at all points of the system, the form F can be equal to o without X and Y being both zero, it is necessary t and sufficient for this to have X= - bY if, on the contrary, b does not have the same value at all points of the system, F is necessarily a positive definite form in X, Y. We can therefore state the following proposition t

If a is a positive quantity at all points of the

(') H. Poincaré, Sur l'équilibre d'une masse fluide animée d'un mouvement de rotation, XIV, Stabilité des ellipsoïdes (Acta mathemalica, t. VII, 1883, pp..S66-367).



system, and if b does not have the same value at all these points, we have the inequality

( 65 ) la dm x J ab% dm - [ \J ( ab dm ) i > o. The rule we stated and justified in the previous paragraph can be formulated as follows

Let us denote by Iz0 the moment of inertia, with respect to the z-axis, of the system taken in the state Eo, i.e. the value of r2 dm in this state; the moment of the momentum with respect to the same axis is then Izowo = Mo, so that equality (46) can be written

(46 bis) /"2to dm = lzf)w0.

If we consider all the states, close to the state Eo and subject to the condition (46 bis), that the system can present, and if, for each of these states, the inequality

(66) A -+- p ̃+̃ frudm> Ao- Qo+ i^ 2 is verified, the state Eo is a stable relative equilibrium state. Among the states, neighboring to Eo, for which the condition (46 bis) is verified, we can consider, in particular, those for which "has the same value at all points of the system the condition (66) could not be verified for all the states neighboring to E, and subject to the condition (46 bis), if it were not verified first for those, that we will name the states E'.

We can agree, moreover, to take, among the states E', those for which cp is zero at all points of the system; as cp does not appear in the preceding criterion, this condition does not change anything that has just been said.

Let us therefore consider a state (apart from the local relative motion) close to the state Eo, but any other state; let us designate by Ijr the moment of inertia of the system, taken in this state, with respect to the axis O-.  To obtain a state E', it will suffice to rotate



the system thus constituted around Oz, all in one piece, and with an angular velocity w given by the relation

(67) I2w = I-oUJo-

For such a state E', we have

J r2wydm-Iww2-Izo°'n.

Iz

If we want the inequality (66) to be verified every time the system is in a state close to the state Eo and its motion verifies the condition (666/5), it is necessary that the condition (68) A. + u + Ia^S>Ao+Q0 + IsoîJ 2

is verified whenever the state of the system is close to the Eo state.

I now say that this condition entails the correctness of the inequality (66).

I notice, first of all, that if w keeps a uniform value at any point of the system, '.s can differ from o without the conditions (66) and (68) 'ceasing to be identical.

It is therefore only necessary to demonstrate that the values of w are not uniformly distributed in the system.

Let us consider, then, a state of the system, close to the state Eo, and where the quantity (>> takes, at the various points of the system, different values which link the equality (46 bis). Let \z- I r2 dm be the moment of inertia, with respect to Oz, of the system taken in this state.  The inequality (65), where we can make a = /-2, b - w, gives us, by virtue of the inequality (46 bis),

r"-iodm - IJ0 w§> o.

It is therefore clear that inequality (68) leads to inequality (66).

The rule that we have justified is therefore equivalent to the following A system that has a certain state Eo (abstraction made



of the local motion), and which rotates with an angular velocity ti>0 around Oz, is in relative stable equilibrium if the external actions have an identically zero moment with respect to Oz, and if, in any state near Ko, the quantity 1 Jiu wÕ

(69) V = A ̃+- Q -+- .11^1

*2 I_

has a higher value than in the Eo state.

This is the criterion set out by Mr. H. Poincaré.

In the case where the external actions have, with respect to Os, an identically zero moment, we have two rules capable of assuring us that a state of relative equilibrium is stable, namely, the rule of M. H. Poincaré and the rule of W. Thomson and Tait. We can, as M. H. Poincaré did, compare the indications of these two rules.

The quantity V has the value - lz- The rule of W. Thomson 2

and Tait thus teaches us that the state Eo of the system is certainly in stable relative equilibrium, if we have, in any state close to that one,

.2

(70) A + Q - Ao-Q0 - ([Z_I,O)_" >0.

2

But the inequality (68) can obviously be written

(70 A + u_Ao_Qo_aa_iso)^ + (^iiisL2!!ïI>0. 2 Iz 7. 2.. It is clear that the inequality (7 1) follows from the inequality (70), but that the reciprocal is not exact.

We can therefore state the following proposition If the moment of the external actions is identically zero with respect to the rotational ace, all states of relative equilibrium whose stability the rule of W. Thomson and Tait af firm, are also declared stable by the rule of M. H. Poincaré but it may happen that the rule of M. H. Poincaré affirms the stability of certain states of relative equilibrium about which the rule of W. Thomson and Tait does not predict anything.



S. Application of the previous criterion to the case of a solid weighing fixed by one of its points.

The proposition which has just been established in the last place would give rise to the suspicion of a truth which has been previously demonstrated The criterion of W. Thomson and Tait cannot be transformed into a necessary condition for the stability of relative equilibrium. iVJut a question immediately arises Does not the criterion stated by M. Poincaré provide, in the cases where it is applicable, a necessary condition for the stability of relative equilibrium? It is to answer this question that we shall deal with a particular problem (' ).

The system that we are going to study is the one that has already been studied, in paragraph 2, by the method of W. Thomson and Tait. The weight of the body always has a zero moment with respect to the vertical axis of rotation; we will therefore be able, by the rule studied in the two preceding paragraphs, to discover cases where the relative equilibrium is surely stable.

We keep, of course, all the notations of paragraph 2.

Any motion of the solid body that is compatible with the bonds corresponds to the same value of w at all points of the body. We have therefore necessarily

W2

( -/̃>.) W = (.\i'+ B tjî-i C-/2) -,

at the same time as the momentum with respect to O^ has the value

<74) 0\l = (Aa B.3-J+ Cy)o>.

A is here, if one wishes, equal to o, while Q is given by the equality (iS), so that

tA) 2

(̃;&) <1> = Q-h W = -̃ M#(Ha-r- HS-t-Zy) -+- ( A a -+- B |32 -+- C?) - If we want the body to rotate with a uniform motion about the axis O-î, we must give its angular velocity of (') Pierre Dijiikm, Sur la stabilité de l'équilibre relatif ( Journal de Mathématiques, 5° série, t. V1H, lyoa, p. ai 5).



rotate a value w0 and associate to it values of x, p, y such that any elementary virtual variation which cancels o;)R-, cancels at the same time 3$; such, therefore, that the equality (76) 8ail' = (Aa2-t- Bp-H CY2)3co-f-2(A*oa-4- B (3 8^-4- G y 8y )<uo= o, joined to the equality

(20) a 8a + p S[3 -h- y 3y = ".

results in equality

(77) S= (A "J"-M-B)8*

+(Bwô~i 'MgFl)S(i

-t-(Gu>5Y - M^Z) "y -+-(Aa"-+-Bp2-+- Gy2)w08w = o.

For this, it is necessary and sufficient that the equalities (76) and (20), in Sa, ojj, ây, ûa>, lead to the equality

(78) (Au'a + M^S) Sa ̃+- ( Bo>J fi -f- M^H) 8^ ̃+̃ (Gai' y + M^Z) 8T = o which results from the equalities (-6)61(7-), But since this equality (78) no longer depends on or, it is necessary and sufficient that there exists a quantity ), independent of oa, o[3, oy, such that we have

[ "2* = M ffT^Â"

(M) (02P = M H

(22) ¡ (U2p 9

w2v-Mg-.

We thus find, as it should happen, the solution obtained in paragraph 2.

We will be assured that a relative equilibrium so determined is stable if we are assured that the second variation S2<ï> is positive in any virtual variation of x, fj, y, w that constantly leaves at 0)1 the value Mo taken in the state of relative equilibrium. Equality (75) can always be written

= -Mg-(Sa+HpH-ZY)-+-^7^-

In a virtual modification where DTL keeps the invariant value Mo, we have

S2<P=- M£-(S823-+-H3-3 + Z8*Y)-t- -^S'u).



If the initial calibration is the relative equilibrium state under consideration, w has the value o>0; a, [3, y verify the equalities (22); thus §2 = 82 10 -+- w|( Aa S2 a + B (3 S2 fi h- Gf o2 v )

2.. r'


	X00J (a 8 "a -h p 8* ,3 -+- y o2y)-



The identity (20) gives, moreover, the identity

"S'a + J3 o p H- y ô2 y + (S)2+(S?)2-I-(Sy)2= o,

so that we can write

(79) 82= - 82 "o-H(o2(Aa82a-+- BpS'3-t- Cf 8!y) (79) 2 2 0

h-Xw§[(8")î + (8P)>+(8y)"].

The general expression of oOR. is obtained by replacing wo by w in the first member of equality (76); one easily derives "vit

8S,')R- = 1- 3Ja>-h2oj(Aa8*a-i-Bp8 "p -+- Cy82y)


	4(AaoaH-B[3Sfj + CY8Y)8co-t-aa>[A(8a)2-i-B(Ôj3)2-l-G(8Y)2]. If the virtual modification is derived from the relative equilibrium state under consideration, and if it is subject to leaving DTl the invariant value Mo, equality (76) is verified and, moreover, §2i)Tl is zero; from the two equalities we have just discussed, we can easily derive this one



Mo 82<u-+-9.tu;(Aa8îa+ B (3 S2 p -t- Cy82Y)

`8 (Ax$a-B(io~#+Cy8'f)zwz+z(A(ôx)'-+B(ô~3)z+C(ôy)z~wô-o.  ACl:2+B~2+CI2.wo ° 2 .OC( + 1-' + °1 (>.)0-0. With this equality, equality (79) becomes

(Sq BZQx=4(Aaôx+B~'S(3+CY;ôy)zUlô

) 0 ~B~2_t_C~

-Hu>3|(X- A)(3a)*-(-(X- B)(8p)>H-(X - C)(3y)s]. 2

Whatever the values, linked by equality (20), that we give to Sa, Sj3, 3y, we will always be able to join to them a quantity 8(0 such that equality (76) is satisfied; therefore, for S24> to be positive in any virtual modiGcation, resulting from the relative state of equilibrium under consideration, which leaves to ;11L the invariable value Mo, it is necessary and



it is sufficient that the second member of equality (80) is positive for any system of values of oa, 8(3, oy which verifies equality (20). The criterion of M. Poincaré thus gives us, in the present case, the following proposition

The relative equilibrium, obtained by giving ~k a certain value and carrying over this value into the equalities (22), will certainly be stable if we have the inequality

(Si) 4(Aa8a-+-Bp8p-l-CTaY)*

( Aa2H-Bj32+ Gy2


	(X - A)(3a)-H(X - B)(8p)+(X - C)("y)!>o 0



for all values of oa, 3j3, 8y that verify condition (20) a 8a -+- 3 3(3 -+- y ôy = o.

We immediately recognize that these indications extend further than the indications drawn by M. Hadamard from the criterion of W. Thomson and Tait. The latter criterion announces as stable, according to equality (26), all the states of relative equilibrium for which we have

(X - A) (Say--h(X - B)(o[3)2-r-(>. - C)(8T)*>o.

But states for which we have

ol(X- A)(8a)2+(X- B)(Sp)*-t- (X - C)(8y)2

4(A~SK-)-B(~-)- Cy~


Âa2+ B|32-t- Gyî



it tells us nothing, while the new criterion tells us that they are also stable.

The discussion of the found condition can be conducted as the one given in paragraph 2.

It is a question of finding the necessary and sufficient conditions so that the quantity

.( (A a Sa -+- B |3 88 -1- Cy 8y)2

-f-(Aa+BS-t-Cy2)|(X- /V)(5a^-h(X - B) (8|3)2+ (X - C) foy)*] is positive whenever 3a, o|3, oy satisfy condition (20), or condition (27), equivalent to condition (20) when the initial state is a steady state.



Let's replace ox by its value as a function ofo~, oy, which will then be arbitrary quantities.

If we put

-=-2 2 H2 Z2

(82) Q-A(À-'2A)2+f3~)·ttzB)2+C(),L2C)z'

we will find that the previous quantity becomes

W z C~

M~

with

(83) œ= J4(B-A~H~[A-A~H~(A-B~E~ z + ? -l ( C A j2 Z2 -i- L )- A )3 '1,2 -f- ( )3 ,2 ] ( °

i 2:2 C)2 ~[4(B-A)(C-A)+~(A-Â~]HZ~ E2

This form, quadratic in ?-'-this must be defined positively the necessary and sufficient conditions for it to be so are easily put in the following form

1 4(B-A)''S!H~-+-Q[(~-A)3H~-+-().-B)~S~><), 1 4 ( C A )2Z2 Z2 A)3 Z2 (TO B)3E2] > 0,

(84) ( 4(C-A)''S~Z~Q[(~-A)s Z2+ (To G)3E2] > 0, (85) 4[(A-A.)3(B-C)!'H~Z~-t-(~-B)s(C-A)~Z!S!-+-(A-C)3(A-B)'E!H~ -+-Q[(A-B)3(A-C)~S'-(-(A-C)3(A-A)~Hs-t-(A-A)s(A-B)~Z~> o. The discussion of these inequalities is much more complicated than the one given in paragraph 2. Without giving this discussion here, we shall limit ourselves to making a remark.

Let us assume, as in paragraph 2, that the quantities A, B, C are different and are arranged in the following order

A > B > C.

Condition (85) will surely be verified for values of which neighbor A and C; it will not be verified for values of ), which neighbor B.

When, indeed, a tends to one of the quantities A, B or C,



Q grows beyond any positive limit, so that the first member of condition (85) has the same sign as the coefficient of Q, and this sign is known from the discussion in paragraph 2. Similar reasoning shows that the first condition (84) cannot be verified for values of ~k that are close to C.

The criterion of M. H. Poincaré is therefore certainly verified for all values of which exceed A; it is also verified for all values of X which are lower than A, but sufficiently close to A; it is not verified for values of X which are close to B or C.

More specific conclusions would require a more complete discussion of conditions (84) and (85).

Let us apply this criterion to the case where the solid body is suspended by its center of gravity.

We know that in this case, the body rotates around one of its principal axes of inertia. Let us assume that this axis is the 0 axis, which relates to the moment of inertia A. Then we have a = r, j3 = o, y = o,

so that equality (20) gives

Sa = 0

and also

8sa - (S[J)2- (Sy)2.

3, H, Z being zero, we have

S'-rJ, = Migîa,

2

and

Mo 3 "u> = 'n-4 f B(8?) "+- C(3Y)"] -t- 2 Aco" f(8fJ) "H- (8Y)" Starting,

8" = Mou>J[(A-B>(3p)"-t-(À - C)(8Y)].

For 02 to be positive whatever o[3 and 3y are, it is necessary and sufficient that we have A~C.

A>B, A>C.

The criterion of M. H. Poincaré, like that of W. Thomson and Tait, thus announces that a solid body suspended by its center



of gravity is in a state of relative stable equilibrium when it rotates with a uniform motion around its axis of greatest inertia; it does not announce the stability that occurs when the solid body rotates around its axis of least inertia.

No more, therefore, than the criterion of W. Thomson and Tait, this criterion can provide a necessary condition for the stability of relative equilibrium.


	External actions with zero moment



about any axis.

The criterion of relative stability studied in the previous three paragraphs assumes that, whatever the arrangement of the system, the external actions have a zero moment with respect to the axis Os which must serve as the axis of rotation.

In what follows, we propose to establish a new criterion whose use will be limited to the case where the external actions have, in any state of the system, a zero moment about any axis.

It is easy to imagine cases where such a condition is verified.

A first obvious case is when there are no external actions, the system being isolated in space.

A second case is when the external actions are reduced to a normal and uniform pressure applied to the whole surface that limits the system.

In any virtual modification, in fact, this pressure produces a work which has the value of the product of the magnitude of the pressure, positive when it is directed towards the interior of the system, by the decrease in volume which the system has experienced; nil when the volume does not vary, this work is therefore nil in any overall displacement applied to the system. The pressures in question, composed as if they were acting on a solid body, will therefore provide a zero force along any line and a zero moment with respect to any axis. We can verify this, if we wish, by means of a direct calculation. Let, at a point (x, r, ;) on the surface of the system, 11 be the



magnitude of the pressure, counted positively as said; let dS be an element, taken around this point, of the surface which limits the system, and n the half-normal to this surface, directed towards the interior of the system.

Composed as if they were applied to a rigid body, the actions we have just defined wil