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Preface

Modern mathematics has over 300 years of history. From the very beginning,
it was focused on differential equations as a major tool for mathematical mod-
elling. Most of mathematical models in physics, engineering sciences, biomath-
cmatics, etc. lead to nonlinear differential equations.

Today’s engineering and science students and researchers routinely confront
problems in mathematical modelling involving solution techniques for differen-
tial equations. Sometimes these solutions can be obtained analytically by nu-
merous traditional ad hoc methods appropriate for integrating particular types
of equations. More often, however, the solutions cannot be obtained by these
methods, in spite of the fact that, e.g. over 400 types of integrable second-order
ordinary differential equations were accumulated due to ad hoc approaches and
summarized in voluminous catalogues.

On the other hand, the fundamental natural laws and technological prob-
lems formulated in terms of differential equations can be successfully treated
and solved by Lie group methods. For example, Lie group analysis reduces
the classical 400 types of equations to 4 types only! Development of group
analysis furnished ample evidence that the theory provides a universal tool for
tackling considerable numbers of differential equations even when other means
of integration fail. In fact, group analysis is the only universal and effective
method for solving nonlinear differential equations analytically. The old inte-
gration methods rely essentially on linearity as well as on constant cocfficients.
Group analysis deals equally easily with linear and nonlinear equations, as well
as with constant and variable coefficients. For example, from the traditional
point of view, the linear equation

d™y dnly dy _
d—z;+alm+“~+an—1a+any =0
with constant coefficients a;,...,a, is different from the equation
_ d"ﬂ n1 d"‘lg _ dﬂ _
"F +a; x" o1 +--'+an_1x£+any—0

known as Fuler’s equation. From the group standpoint, however, these equa-
tions are merely two different representations of one and the same equation
with two known commuting symmetries, namely,
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for the first and second equation, respectively. These symmetries span two
similar Lie algebras and readily lead to the transformation x = In|Z| converting
Euler’s equation to the equation with constant coefficients.

I believe that Lie groups are interesting first of all due to their utilization
for solving differential equations. It was a mistake to isolate them from this
natural application and treat as a branch of abstract mathematics. “To isolate
mathematics from the practical demands of the sciences is to invite the sterility
of a cow shut away from the bulls” (P.L. Chebyshev, 1821~1894).

Today group analysis is becoming part of curricula in differential equations
and nonlinear mathematical modelling and attracts more and more students.
For example, the course in Partial Differential Equations at Moscow Institute
of Physics and Technology attracted more than 100 students when I used Lie
group methods, instead of 10 students that we had in the traditional course.
The same happened when I delivered similar lectures for science students in
South Africa and Sweden.

The present text is based on these lectures and reflects, to a certain extent,
my own taste and experience. Primarily, it has been designed for the course
in differential equations delivered at the Blekinge Institute of Technology for
engineering, mathematics and science students. Then the text has been revised,
enlarged and is used now in the following courses:

Differential equations: The course covers both ordinary and partial dif-
ferential equations; it combines basic classical methods, mainly for linear equa-
tions, with new methods for solving nonlinear equations analytically; designed
for beginners; students learn how to find symmetries of differential equations
by solving determining equations.

Analytical methods in mathematical modelling: The emphasis in
this course is on nonlinear mathematical models in physics, biology and cn-
gineering sciences; the course covers such topics as nonlinear superposition,
symmetry and conservation laws, group invariant solutions.

Group analysis of differential equations: The course introduces stu-
dents of mathematics and engineering to those areas of the theory of transfor-
mations groups and Lie algebras which are most important in practical appli-
cations; during the course, students develop analytic skills in modern methods
for solving nonlinear ordinary and partial differential equations.

Distributions and invariance principle in initial value problems:
An easy to follow introduction to basic concepts of the distribution theory with
emphasis on useful tools; Lie’s infinitesimal technique is extended to the space
of distributions and used, together with an invariance principle, for calculating
fundamental solutions and solving initial value problems for equations with
constant and variable coefficients.

In my presentation, I have striven to make the group analysis of differential
equations more accessible for engineering and science students. Therefore, the
emphasis in this book is on applications of known symmetries rather than on
their computation. In order to formulate the essence of my experience in solving
various types of differential equations, I rephrase the famous French aphorism
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cherchez la femme as follows:
If you cannot solve a nonlinear differential equation, cherchez le groupe.

My sincere thanks are due to my colleague Claes Jogréus for his lasting help.
My wife Raisa read the manuscript at various stages of completion of the second
edition, corrected misprints and contributed numerous valuable criticisms, for
which I make grateful acknowledgement. It is also a pleasure to thank my
daughters Sania and Alia for several helpful comments.

Karlskrona, 3 March 2009 Nail H. Ibragimov
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Chapter 1

Selected topics from analysis

This preparatory chapter is designed to meet the needs of beginners and pro-
vides a background in elementary mathematics and mathematical analysis
which is necessary in the succeeding parts of the book.

Additional reading: E. Goursat [10].

1.1 Elementary mathematics

1.1.1 Numbers, variables and elementary functions

Real numbers appear in our practical activities (c.g., while measuring distances,
weights, etc.) as approximate decimal numbers. For example, the distance to
the moon at perigee is S km, where the number S is approximately equal to
356630. A more accurate estimation of the distance is 356629 km and 744 m.
Hence,

744 7 4 4
S = 356629.744 = 356629 + 1000 = 356629 + 0 + 100 + 1000
If onc will continue further, one will get even better approximations and obtain
a representation of the number S as an infinite decimal. Thus, we use the

following definition.

Definition 1.1.1. Real numbers are identified with infinite decimals
a=0a9.a1a2...0pn..., (1.1.1)

where ag is an integer, and a;,az,...,a, ... are digits, i.e., they can assume
any of ten Arabic number symbols, 0 through 9. Eq. (1.1.1) means that
a a

a
— R T T T 1.1.2
a=ag+ 10+ 100+ + 10,.."‘ ( )
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Remark 1.1.1. If (1.1.1) is a periodical decimal, and only in this case, a is
a rational number, i.e., a = p/q, where p and g are integers, g # 0. The real
numbers determined by non-periodical infinite decimals are termed irrational
numbers. The numbers 0. (9)= 0. 9999... and 1 are identified.

Example 1.1.1. Famous examples of irrational numbers are:

V2 = 1.4142136. .. ~1.41
7= 3.1415926535 . . . ~ 3.14
e = 2.718281828459045 . . . ~ 2.72

1
~= lim (1+]§+--~+7—l—lnn)z0.58

n—oo
where v is known as Euler’s number.

Remark 1.1.2. It is a historical accident that we represent real numbers in
the decimal system. If Babylonian culture would last much longer we would
probably use the Babylonian sexagesimal system and employ, instead of (1.1.2),
the representation

a1 az

an
a=ao+ ot et et (1.1.3)

602 60

Definition 1.1.2. A variable z is a quantity to which any numerical value can
be assigned. A quantity with a fixed value is called a constant. One should
distinguish arbitrary constants from absolute constants. An arbitrary constant
retains any given value throughout the investigation, while an absolute constant
rctains the same value in all problems.

Example 1.1.2. In the equation of a circle, £2+y? = R?, z and y are variables
representing the coordinates of a point moving along the circle, while the radius
R is an arbitrary constant. On the other hand, the formula C = 2nR for the
circumference of the circle contains, along with the arbitrary constant R, two
absolute constants, 2 and n ~ 3.14.

Theorem 1.1.1. Any real number a is a limit of a sequence of rational num-
bers 1, = p,./gn, where p, and g, # 0 are integers:

a= lim r,. (1.1.4)

n—oo

Proof. Let the real number a be given by Eq. (1.1.1). We take for 7,, the
finite sums of the corresponding infinite series (1.1.2):

a) ay aa [¢5] as An
M=a+—,T2=0+—=4—, ..., Tn= —
1=+ g0 =00t 75+ 756 =ttt 1o

They provide a sequence of rational numbers {r,} satisfying Eq. (1.1.4).

The following definition is based on Theorem 1.1.1.
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Definition 1.1.3. The exponential function y = a®, where a > 0 is any real
number, is defined by the following equations:

a’=1, al =g, a"=ga---a, n=23,..., (here z = n);
n

1

ar" = Ya=be b =aq; a5=\/°a1', (here z = p/q);

a” = lim o™ = lim */aPn, (here z = lim z,, T, =Pn/n)"
n-—+00

n—oo n—o0

Basic laws of exponents:

1
a " = = a®a¥ = a* ¥, (ab)® = a® b, (a®) = a%V.
Example 1.1.3. Consider the number 10V2 = 25.954.... We have V2 =
nli.%w"’ where 2o = 1, z1 = 1.4, 2o = 1.41,.... Accordingly, 10V2 = lim Yn,
n—00
where yo = 10° = 10, y; = 10™ = 25.12, y, = 1072 ~ 25.70, . ...

In solving differential equations, one often encounters the exponential func-
tion
y=e". (1.1.5)
Here e is a real number determined by one of the most important limits in
mathematical analysis:

¢= lim (1+%)". (1.1.6)

n—00

Its value, accurate to fiftcen decimal places, is given in Example 1.1.1.
Function (1.1.5) is a representative of so-called elementary functions defined
as follows.

Definition 1.1.4. The basic elementary functions are:

y=C, C =const,;
y =z where z > 0, a is a real number;
y=a®, wherea>0, a+#]1;
y=log,z, wherea>0,a#1; z>0
y=sinz, y=cosz, y =tgz (=tanz), y = ctgxz;
y = arcsinz, y = arccosz, y = arctgz, y = arcctgr.
A function y = f(z) is called an elementary function if it is obtained from the

basic elementary functions by a finite number of operations involving addition,
subtraction, multiplication, division, and superposition.

Remark 1.1.3. The logarithm log,  with a = e is called the natural logarithm
and denoted by Inz.
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Remark 1.1.4. The basic trigonometric functions can be obtained from one
of them, e.g., from sin z, in combination with other basic elementary functions.
Indeed,

D) sinz V1 —sin?
cosz=V1—-sin‘z, tanr= ——, cotr= ——mm
V1-sin’z sz

Similar relations exist between inverse trigonometric functions as well, e.g.

(1.1.7)

z
arcsinz = arctan .
V1 - z2
Example 1.1.4. The following hyperbolic functions provide examples of non-
basic elementary functions:

T _ o-% eT 4+ ¢~ % eT — e~ %
sinh z = 3—2— , coshz= —+2—, tanh ¢ = pranpers (1.1.8)

Elementary functions of many variables are obtained in a similar way.

Example 1.1.5. The following function ¥(¢, z, z) is an elementary function of
three variables, t,z, 2 :

1 1
Y= —Zln lM + ?(2sin2z +he *sinz + l20'2z)

(1.1.9)

involving three arbitrary constants, ,, I, and M.

Example 1.1.6. The following functions that often occur in applications are
given by integrals and are not elementary:

. ¥ sint . .
Si(z) = < dt (the integral sine), (1.1.10)
0
[ o]
Ci(z) = - / %" dt (the integral cosine), (1.1.11)
2 o
erf(z) = — / e " dt (the error function), 1.1.12
@@= ( ) (1112)
T et ot
Ei(z) = — e’ ixy= [ &~
i(z) /_m : dt, li(z) /0 i Ei(ln z), (1.1.13)
o0
I'(z) = / e *t*"'dt (the Gamma function). (1.1.14)
0

The Gamma function plays an important part in analysis and differential
equations. It has interesting general properties, e.g.

T(z+1)=2l(z), D@)I{1-2)=—

W’ (1.1.15)

and the remarkable numerical values (see, e.g. [34]):

r(1) =1, r(%) = Vi, r(g) = 2—’:):3 T'(n+1) = 7!, (1.1.16)

where wy, is the surface area of the unit sphere in n dimensions.
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1.1.2 Quadratic and cubic equations

Problems of elementary mathematics can often be solved by the method of
transformations. Let us begin with clementary algebra.
Recall that the roots £ = z, and z = z, of the general quadratic equation

az? +bz+¢=0, a#0, (1.1.17)
are given by
—b+ Vb2 - 4dac
12 = '—'—-2(1— . (1.1.18)
The expression
A = b — dac (1.1.19)

is known as the discriminant of the quadratic equation (1.1.17). It is manifest
from (1.1.18) that the vanishing of discriminant (1.1.19),

A =b2—4ac=0, (1.1.20)

is the condition for Eq. (1.1.17) to have two equal roots, z, = z,.

In accordance with tradition, students learn from school to derive solution
(1.1.18) by completing the square. Indeed, this method is simple but it is not
suitable for tackling the general cubic as well as equations of higher degrees.

The idea of transformation of equations, unlike the method of completing
the square appropriate only for the quadratic equation, furnishes a general
method appropriate for solution of the quadratic equation as well as for a
simplification of equations of higher degrees. The simplest transformation of
equations is provided by a linear transformation of the variable « :

y=z+e€. (1.1.21)

It converts any equation of degree n into an equation of the same degree. In
particular, the quadratic equation (1.1.17) after the substitution z = y — ¢
becomes ay? + (b — 2ae)y + ae? — be + ¢ = 0. Hence, transformation (1.1.21)
converts (1.1.17) into a new quadratic equation,

ayl+by+c=0,
where _
G=a, b=b-2ae, C=c+ae?—be (1.1.22)

Defining ¢ from b — 2ae = 0, one obtains b = 0 and ¢ = ¢ — b%/(4a). Hence, the
transformation

converts (1.1.17) into the equation

b% — dac
4a

ay2 -
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Substituting its roots
b2 — dac
2a

in Eq. (1.1.23), one arrives at roots (1.1.18) of Eq. (1.1.17).

U2 = +

Consider now the general cubic equation written with binomial coefficients

for convenience of calculations:
az3 +3bz* +3cx+d=0, a#0.
After the linear transformation
y=az+b

it takes the form
v+ 3py+2¢=0,

where
p=ac—b, 2¢=a’d— 3abc+ 2%

The reduced equation (1.1.26) is readily solved by setting
Y= Vi + V1.

Then
¥ -3Vkly—(k+1)=0

and Eq. (1.1.26) yields
k+l=-2q, Vkl=-p.
It follows that k and ! are the roots of the quadratic equation
22+2qz—p3 =0.
Hence one of the roots, e.g. k, is given by
k=—-q+ \/q"'Tp”_ .

Let

u={-q¢+Vg+p°

(1.1.24)

(1.1.25)

(1.1.26)

(1.1.27)

be any one of the three values of this cube root. Then all three values of vk
are given by u, eu, ¢2u. Here € is an imaginary cube root of unity, i.e. ¢ =1,

and has the following form (see Section 1.2.6, Example 1.2. 1):

= _1%@, where i=-1.
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The square of € is the complex conjugate cube root of unity:

2_-1-iV3
2
Since Vkl = —p, the corresponding values of ¥/1 are
P _Po p

1

u u
They can be rewritten in the form v, ve2, ve, where

v=i e Vi

Summing up, one arrives at what is called Cardan’s solution for the cubic
equation. Namely, the roots of (1.1.26) are given by

N=u+v, Y=e€u-t e, Y3 = €2u + ev, (1.1.28)

u=V-g+VE+p3, v=1{-9-V@+p, (1.1.29)

The expression

where

A=g%4+p8 (1.1.30)
is termed the discriminant of cubic (1.1.26). It follows from (1.1.29) that
the vanishing of the discriminant is the condition for (1.1.26) to have two

cqual roots. The roots of the general cubic equation (1.1.24) are obtained by
substituting (1.1.28) in Eq. (1.1.25) and invoking (1.1.27).

Example 1.1.7. The equation y3 — 6y + 4 = 0 has form (1.1.26) with p = —2
and q = 2. Here ¢ + p® = —4, and hence (1.1.29) is written

u=Y2(-1+1), v=<Y2(-1-1).

The reckoning shows that u =144, v = 1 — 4, and formulae (1.1.28) provide
three distinct real roots:

n=2 y2=—(1+V3), ya=-1+V3. (1.1.31)

Remark 1.1.5. The discriminant of the general cubic equation (1.1.24) has
the form

3a2bc O
3b2cd 0
0 a 2b3c|’
0 b2c3d

The vanishing of discriminant (1.1.32) is the condition for Eq. (1.1.24) to have
two equal roots. Furthermore, the condition for Eq. (1.1.24) to have three
equal roots is provided by the following two equations (cf. (1.1.20)):

b —ac=0, b>—a’d=0. (1.1.33)

An invariant description of discriminant (1.1.32) and of Eq. (1.1.33) is given
in [21], Section 10.1.3.

(ad)? — 6abed + 4ac® — 3(be)? + 4b%d = —9 (1.1.32)
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1.1.3 Areas of similar figures. Ellipse as an example

Definition 1.1.5. The transformations
T =zcosf +ysinf+a,, §=ycosd—zsinb + ay, (1.1.34)

composed of rotations and translations, do not alter distances between points,
and hence areas of geometric figures in the (z,y) plane. Therefore transfor-
mations (1.1.34) are termed isometric or rigid motions in the (x,y) plane. In
geometry, two figures are said to be equal if one can be mapped to another by
an appropriate isometric motion.

Consider a scaling transformation
T=az, y=by, (1.1.35)

known also as a similarity transformation or dilation. The arbitrary constants
a # 0 and b # 0 are called the parameters of the transformation. The scaling
transformation determines a uniform expansion (contraction) from the origin
if a = b, and to a non-uniform expansion (contraction) otherwise.

Definition 1.1.6. Two geometric figures obtained one from another by a scal-
ing transformation (1.1.35) are said to be similar.

Example 1.1.8. Any rectangle is similar to the unit square
0<z<l, 0<y<l.

Indeed, given a rectangle with sides a and b, we first move it by a proper
translation and rotation to the “standard location” so that it will have the
form {0 < z < @,0 < y < b}. Then the stretching T = z/a, § = y/b converts
the rectangle to the unit square {0 <7< 1,0<y5<1}.

Theorem 1.1.2. Let two plain geometric figures, M and M, be similar and
let the latter be obtained from the former by a scaling transformation z =
az,§ = by. Then the arcas S and S of M and M, respectively, are related by

S = abS. (1.1.36)

Proof. Let us first consider a rectangle with sides m and n in the r and y
directions, respectively. After the dilation, one obtains a rectangle with sides
m = am and @ = bn. Hence, the areas of the original and new rectangles,
S = mn and § = M7, are related by (1.1.36). One can cover an arbitrary
figure (provided that it is not too fancy) by a grid of rectangular areas and
apply (1.1.36) to these rectangles. Imagine now the process repeated over and
over again with finer and finer grids. Since the area S of the figure in question

is the limit of the sums of the areas of the covering rectangles, this completes
the proof.
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A good example is provided by the ellipse. An ellipse, in the (z,y) plane, is
the locus of points the sum of whose distances from two fixed points (called the
foci of the ellipse) is constant. Let us use the standard equation of an ellipse
in the rectangular Cartesian coordinates:

2

|i~2

y2
+ 32‘ = 1; (1.1.37)

~

a

where a # 0 and b # 0 are arbitrary constants called the major and minor
semi-axes of the ellipse, respectively.

Theorem 1.1.2 furnishes an elementary method for calculating the area of
ellipses. We note that any ellipse (in particular, a circle) is similar to the unit
circle

Indeed, the stretching
F=2 =Y
2’ 7%

converts ellipse (1.1.37) to the unit circle
B2+y =1,
the area of the latter being S = n. Now formula (1.1.36) is written

5=35,
al

o

where S is the area of the ellipse. Thus, the area of ellipse (1.1.37) is

S = nab. (1.1.38)

1.1.4 Algebraic curves of the second degree

Straight lines, ellipses (in particular, circles), hyperbolas and parabolas provide
commonly known examples of algebraic curves on the plane.

Examples of non-algebraic curves are trigonometric curves, e.g. the sine,
cosine, tangent curves:

y=sinz, y=cosz, y=tanc,
logarithmic, exponential and probability curves:
2
z

y=hz y=e, y=e",

and a variety of spirals such as the spiral of Archimedes, the logarithmic, hy-
perbolic and parabolic spirals:

r=af, Inr=ab, r6=a, (r—c)2=a9,
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where r = /22 + y2?, 6 = arctan (y/z) and a,c = const.

In general, algebraic curves on the (z,y) plane are defined by equations
P(z,y) = 0, where P(z,y) is a polynomial of any degree in two variables, z
and y. Let us consider equations of the second degree:

Az? + 2Bzy + Cy® +az + by +c =0, (1.1.39)

where A, ..., c are arbitrary constants. If A = B = C =0, Eq. (1.1.39) reduces
to the linear equation ax + by + ¢ = 0 defining straight lines. We will discuss
the curves of the second degree when Eq. (1.1.39) contains at least one of the
quadratic terms Az2, 2Bxy and Cy?.

The general linear transformation

r=aT+Py+p, Y=7T+067+v (1.1.40)

on the planc maps any Eq. (1.1.39) into an equation of the same forn. We
consider here invertible transformations (1.1.40), i.e., such that

A=ad - By #0. (1.1.41)

Definition 1.1.7. Two equations of form (1.1.39) related by a linear transfor-
mation (1.1.40) are said to be equivalent. The curves determined by equivalent
equations are also termed equivalent curves.

We will classify the algebraic curves according to their equivalence. Note,
that the linear transformation (1.1.40) is composed of the transformation

r=aZ+PY, y=7T+0%y (1.1.42)
called the homogeneous linear transformation and of the translation
T=T+u, y=y+v (1.1.43)

The term homogeneous is due to the fact that the transformation (1.1.42) com-
prises the terms of the first degree in Z, 7 and therefore maps the principal part
of Eq. (1.1.39), i.e., the quadratic form

Az? + 2Bzy + Cy? (1.1.44)
into a quadratic form again, namely into the quadratic form
Az?+2B3zy +C7?2,
where
A=a?A+ 20yB + v2C,

B = aBA + (ab + By)B + v6C, (1.1.45)
C = B*A +286B + 62C.
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Furthermore, the translation (1.1.43) does not alter the quadratic terms of Eq.
(1.1.39). Therefore, we start the classification of algebraic curves according
to the equivalence of the quadratic forms (1.1.44) with respect to the linear
homogeneous transformations (1.1.42).

First we observe that one can try to annul simultaneously the cocfficients A
and C in (1.1.45). Namely, we write the equations A = 0 and C = 0, dividing
them by 2 and 62, respectively, and denoting the quantities o/ and /8 by
A, as the following quadratic equation:

AN +2BA+C =0. (1.1.46)

If B2 - AC # 0, Eq. (1.1.46) has two distinct roots, A; # Az, and one can let
a/vy = A and B/6 = A, since the equations & = A1y, 8 = A28 withy # 0,8 # 0
are compatible with condition (1.1.41) since A\; # .. In consequence, one

will annul A and C simultaneously. The expression B2 — AC is called the
discriminant of the quadratic form (1.1.44). The following statement is derived
from Eq. (1.1.45).

Lemma 1.1.1. The homogeneous linear transformation (1.1.42) changes the
discriminant as follows:

B?* — AC = A*(B? — AC), (1.1.47)
where A is defined by (1.1.41).
According to Lemma 1.1.1, each of the following three conditions:
B?-AC>0, B*-AC=0, B*-AC<0 (1.1.48)

remains unaltered under transformation (1.1.42), and hence under the general
linear transformation (1.1.40). Therefore, we will consider each case (1.1.48)
separately.

Let B2 — AC > 0. Then Eq. (1.1.46) has two distinct real roots

_-B+VB*-AC -B-VB?-AC
= - ,

A Az = Y

One annuls A and C simultaneously by letting a/y = A1 and 8/6 = As. Thgn,
letting, e.g. ¥ = & = 1, substituting a = A;, 8 = Az in (1.1.45) and invoking
that A\; A2 = C/A, A + A2 = —2B/A, onc obtains

- _ R2
B=2(_A_CVTB_)¢0_

Thus, rewriting Eq. (1.1.39) in the variables Z, § defined by (1.1.42):

T=MT+ N7, y=T+F (1.1.49)
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and dividing by B, one arrives at the following equation of a hyperbola:
TY+aT+b7+é=0. (1.1.50)

Consequently, we say that Eq. (1.1.39) with B? — AC > 0 represents algebraic
curves of hyperbolic type.
One can further simplify Eq. (1.1.50) by translation (1.1.43),

T=T+u Y= ',l,./ + .
Namely, letting u = —b and v = —a one reduces Eq. (1.1.50) to the standard
form
Zy =k, k=const.

If k = 0 the hyperbola reduces to the pair of intersecting straight lines, Z = 0
and § = 0. Note that setting £ = £ + 7, § = £ — 1, one obtains the following
second standard form of a hyperbola:

€ -n?>=k, k=const.

Remark 1.1.6. It is assumed above that A # 0. If A = 0 and C # 0, we
exchange z and y and arrive again at the assumption A # 0. Finally, if A =
C =0, then B # 0 and Eq. (1.1.39) has already form (1.1.50).

Let B2 — AC = 0. Then 1 Eq. (1.1.46) has the repeated root A = —B/A.
We let 8/6 = A and obtain C = 0. Moreover, the choice B = A yields that
B =0 and that A # 0. One can set, e.g. ¥ = 6 = 1. Then condition (1.1.41)
requires that & # A. Hence, rewriting Eq. (1.1.39) in the variables Z, ¥ defined
by (1.1.42):

z=aI+ Ay, y=IT+7 (a#), (1.1.51)
and dividing by A, one arrives at the following equation:

Z24+aT+by+é=0. (1.1.52)

Now the translation T = & — (a/2), ¥ = § reduces the latter equation to the
standard equation for a parabola:

B +bj+k=0.

Therefore, we say that Eq. (1.1.39) with B2 — AC = 0 represents algebraic
curves of parabolic type.

Let B2 — AC < 0. Then Eq. (1.1.46) has two complex roots, \; =
p +1iq, A2 = p — iq, where
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One can annul the coefficients A and C simultaneously by letting a/y = A
and 8/§ = Az in (1.1.45). One can set, e.g. v =& = 1 and obtain the complex
change of variables

z=(p+ig)z’ +(p—iq)y, y=z'+¢ (1.1.53)

mapping Eq. (1.1.39) into an equation of a hyperbola (1.1.50). We want,
however, to avoid complex change of variables and use only real variables. To
this end, we solve Eqgs. (1.1.53) with respect to z/ and ¢’ :

x'=2 py—z ,=g_,py—z

2 Tt 2q '’ y=37* 2q '’
and consider the real and imaginary parts of these complex conjugate variables
(multiplied by 2 for the sake of simplicity) as new real variables:

-z
q

Solving the latter equations with respect to z,y, we obtain the following real
transformation of form (1.1.42):

I=y, Y=

T=pT—qy, Y==%. (1.1.54)
It maps Eq. (1.1.39) into an equation of the form
P4+ +aT+by+E=0. (1.1.55)

One can climinate the terms of the first degree by the translation 7 = 7 —
(@/2), g =g — (b/2) thus reducing (1.1.55) to the standard form

2+t =k

This equation represents a circle if k > 0, a point if ¥ = 0, and no real locus if
k < 0. Thus, we say that Eq. (1.1.55) represents a circle with the understanding
that the degenerate cases indicated above may occur. Since a circle is special
case of an ellipse, we say that Eq. (1.1.39) with B2 —~ AC < 0 represents
algebraic curves of elliptic type.

We sumnmarize the above results in the following statement.

Theorem 1.1.3. Any Eq. (1.1.39) of the second degree represents a curve of
hyperbolic type and can be mapped by a homogeneous linear transformation to
form (1.1.50):

IJ+aT+by+é=0, if B?-AC >0, (1.1.56)
parabolic type and can be mapped to form (1.1.52):
T2 +az+by+é=0, if B -AC=0, (1.1.57)
and elliptic type and can be mapped to form (1.1.55):
T+y24+aT+by+é=0, if B?-AC<O. (1.1.58)

Remark 1.1.7. It is manifest from transformation (1.1.53) that elliptic and
hyperbolic curves are connected by complex linear transformations.
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1.2 Differential and integral calculus

1.2.1 Rules for differentiation

Let f(z) be a function of one variable. Its derivative f'(z) at a point z is

defined by f(a + A7) — f(2)
'(z) = lim 1EFET T 1.2.1
fi(z) = lim Ax (1.21)
It is customary to denote the derivative of y = f(z) also by
df(z) , dy

T2, v, & Dw=Daw), D) = Da(f(z).

Let u = f(z!,z2,...,z") be a function of n variables. Its partial derivative
with respect to one of the variables, e.g. z* is defined by

1 i i nY _ fpl 2 n
of lim flzl,...,x +A:z:,...,:1{) f(:c,:c,...,:c)‘

= 1.2
0zt Azi-o Azt (122)
It is often denoted also by
Ou D D D
% s Ui = Ugi, i(u) = z‘(u)) ;(f(l')),
where z = (z!,22,...,2").
The main rules for differentiation comprise:
(i) the formulae
D(au + bv) = aD(u) + bD(v),
D(uv) = vD(u) + uD(v),
D(u*) = au®~'D(u), (1.2.3)
u\ _ vD(u) —uD(v)
(7)==

where a,b and o are constants, u,v are functions and D is an ordinary or a
partial derivation;

(ii) the rule for the differentiation of the inverse function:

Dz(y) = ﬁ, (1.2.4)

(iil) the chain rule stating that if y = y(u), u = u(z), then

Dy (y) = Du(y) - Dx(u). (1.2.5)

The term chain rule is due to the possibility of iterating (1.2.5), e.g. if y =
y(u), v = u(v), and v = v(z), then

D.(y) = Du(y) - Dy(u) - Dz (v).
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1.2.2 The mean value theorem

The name refers to the following statement.

Theorem 1.2.1. Let f(z) be continuously differentiable in the interval [a,b].

Then, for any points z;,zz, where a < z; < z2 < b, there is at least one point
& € [z1,z2) such that

f(z2) = f(z1) = (z2 — 71) f'(£)- (1.2.6)

The following consequence of the mean value theorem is crucial in the in-
tegral calculus and in the theory of differential equations as well.

Theorem 1.2.2. Let y = f(z) be continuously differentiable in an interval
a < z < b. Then y’ = 0 within the interval [a, b] if and only if y = C = const.

Proof. If y = C, then it is obvious from definition (1.2.1) that y’ = 0. Let us
assume now that y’ = 0. According to Theorem 1.2.1, we have

y(x2) — y(z1) = (z2 — 21)y'(€)

for any z1,z; from the interval [a, b], where z; < £ < 5. By hypothesis, 3’ =0
in the whole interval [a, b], and hence y'(£) = 0. Therefore, the above equation
yields that y(z2) = y(z1), i.e., y = const. within the interval [a, b].

Corollary 1.2.1. Two functions have the same derivative if and only if their
difference is constant. In other words, f’'(z) = ¢’(z) if and only if

f(z) =g(z) +C, C = const.

1.2.3 Invariance of the differential

The differential of a function y = f(z) of one variable is

dy = y'dx.
Likewise, a differential of a function u = f(x!,z?,...,z") of several variables
is defined by
dum Pt gy Dm0 s
~ Ozl oz T & ox ’

We will often use the usual summation convention to omit the sign of sum-
mation when the index of summation is repeated as subscript and superscript.
For example, the above equation is written in the form

u |
du—a’?dx
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The invariance of the differential refers to the following property of the
differential of a function f(u). If u = u(z), then

df () 4, _ 4f(u(z)
af = = = da. (1.2.7)
The general statement is as follows.
Theorem 1.2.3. Let u = f(z) be a function of n variables z = (z!,...,z")
and let z* = z%(t),i = 1,...,n, be functions of s variables t = (t!,...,t*). Then

the differential of u regarded as a function u = f(z) of z is identical with the
differential of u regarded as a function u = f(z(¢)) of ¢, i.e.,

du= af (m) dz’ = Z 8/(=(t) g,ft)) dt*. (1.2.8)
k=1

i=1

In particular, if u = f(z,y) is a function of two variables, then an arbitrary
change of variables
T=¢(Z,9), y=1v@3, )
does not change the diffcrential, i.e.,

of (o(Z, 1), ¥(Z, .17)) C’f (p(Z, 7), ¥(Z, 17)) of(z,y) of(z,y)
EE a5 ST Bt W

or briefly:

gzt Pag= oy gy

du = 0% oy oz Oy

1.2.4 Rules for integration

Calculation of integrals is based on the following main rules.
1. Integration is the inverse operation to differentiation:

/df(:z:) =f(z)+C or /f'(:x:)da: = f(z) +C, (1.2.9)

where C is an arbitrary constant termed the constant of integration (cf. Corol-
lary 1.2.1).

2. Integration is a linear operation:
/ lau(z) + bo()|dz = a / w(z)dz + b / v(z)dz, a,b=const. (1.2.10)
3. Change of variables in integrals (see Eq. (1.2.7)):

[ @z = [ seten - 0. (12.11)
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/udv =uv — /vdu. (1.2.12)

5. Differentiation of definite integrals:

0 g [ 1) = f(@) (12.13)

4. Integration by parts:

¥(z) Y(x)
@) g5 [ otsas= [ 20D gyt a)g(uie), @) - o' @o(i(a). ).

»(z) ¥(z)

1.2.5 The Taylor series

The Taylor series expansion of f(z) at £ = a has the form:

f(@)=fla)+ f'(a)(z—a)+ -+ ﬁ':—i!(i)(w —a)"+--, (1.2.14)

where f(™)(a) is the value of the nth derivative of f(z) at = a. If @ = 0, the
Taylor scries (1.2.14) is known as the Maclaurin series and has the form

" (n) 0
f@) = 10+ Oz + LD g2 g L0 ey (1.2.15)
Let us compute the Maclaurin expansion of exponential function f(x) = ¢*
Since f'(x) = €%, we have f(0) = f/(0) = --- = f™(0) = 1, and expansion
(1.2.15) has the form

TI

f(x)_1+z+5|-+ gzn—

The following tables contain the Maclaurin and Taylor expansions of some
frequently used functions.
(i) The exponential function and logarithm

2 3

e

e® _1+x+—2-‘-+3 4.5 a®*=e"M*=1+zlna+---. (1.2.16)
1nx=(x—1)-(’”"21)2+(”"31)3—.-. 0<z<2). (1.2.17)
ln(1+z)=w—%2+%i—%4+~‘ (-1<z<1). (1.2.18)
ln(l—z):—[x+$—;+%i+%4+ ] (-1<z< ). (1.2.19)
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(ii) Algebraic functions (below, a is any positive real number)
1

: z=1+x+$2+x3+...+z“+..., (1.2.20)
1—-}_——1—:1:+:c —B (D)4 (1.2.21)
1 1 3 o35 5 357 4
—1xloe 2 AL SALAN 2.2
Jite T2t t21" F746° T3 468" T (1.2.22)

1 1 3 3.5
v =1t-2— — z? 3 -
lxz 5% 2.4 ¥346% 2463

ala - 1)(a-2) 23

t+.... (1.2.23)

(1+z)*=1+az+ °‘("2!" D % o (1.2.24)
(lxz)™“=1Far+ (2-:_1) 2:':a(a+13)'(a+2) 2+, (1.2.25)
(iii) Trigonometric and hyperbolic functions
sinm:x—§+§—j—%+-~-+(—l)"%;—ﬂ+ (1.2.26)
cosz:l—:;—':+z—‘;—?£+ + (- 1)"(2::)+ (1.2.27)
sxnhx—x+§+m5+z7—:+---+%+m. (1.2.28)
coshx=1+;—f+z—‘;+:—i+--~+-(§%'-;—!+-~. (1.2.29)
(iv) Some non-elementary functions (scc Example 1.1.6)
Si(z) = z - ;; + ;55! - ;77! +oee (1.2.30)
Ci(z) =v+lnz— 2“.’22! + 4”_”44! - 6”_”; . (1.2.31)
Ei(z) =v+In|z|+z+ 5 22| 33-:2! + 41_:44! +oee (1.2.32)
li(z) =Iln|lnz| +Inz + (l2n.a;)!2 (;n.a;)!" N (1.2.33)
erf(x)=%(x—§+%—%+---). (1.2.34)

where v is Euler’s constant defined in Example 1.1.1.
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1.2.6 Complex variables

A complex number has the form

z=z+iy, i=+v-1,

where z and y are real numbers termed the real and imaginary part of z,
respectively. The complez conjugate to z is the complex number z = z — iy.
Complex numbers are written also in the trigonometric representation

z = r(cosf + isin6) (1.2.35)

as well as in the equivalent polar representation (see further Euler’s formula
(1.2.41)):

z=re", (1.2.36)
where 7 and 6 are real numbers termed the modulus and argument of z, respec-
tively. It follows from (1.2.35) that the angle 6 is determined only to within an

arbitrary integer multiple of 2x. Taking this non-uniqueness into account, z is
written, e.g., in the polar representation (1.2.36) in the form

z=rel0+3k) g0 +1,42,.... (1.2.37)

The value € in the interval —x < § < &t is termed the principal argument.
The following functions of the complex variable are defined by extending
the Maclaurin series (1.2.16), (1.2.26) and (1.2.27) to the complex domain:

22 z"
e =14 z24 e e e, (1.2.38)
2! n!
23 25 z2n+1
R AN NN R 1L S 1.2.39
sinz=z-opt+ et + )(2n+1)!+ ( :
2 4 2n
P z z
=12 I VR Q" — 1.2.40
cos 2z =1 2!+4! + ( )(2n)!+ ( )

It follows that e** = cos 2z + isin z, and hence Euler’s formula:
™+ = ¢% (cos y +isin y). (1.2.41)
Using Euler’s formula, one can readily show that

iz —iz 1z _ n—iz
cos z = ete , sinz= -e———,?——. (1.2.42)
2 2i

Furthermore, Euler’s formula (1.2.41) and the polar representation (1.2.36) of
the complex number z = r(cos § + isin#) lead to de Moivre’s formula

2" = r"[cos(nd) + isin(nh))]. (1.2.43)
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Replacing in Eq. (1.2.43) n by 1/n and using representation (1.2.37) of z, one
obtains n values of {/z:

Yz = \"/F[cos(%+%§k)+isin(%+2§k)], k=0,1,...,n—1 (1.2.44)

Example 1.2.1. Let us obtain the cube roots of unity, i.e., solve the equation
w3 = 1. Writing the real number 1 in the trigonometric form:

1 = cos(2nk) + 7 sin(2nk),

and using Eq. (1.2.44) with k = 0,1, and 2, we obtain the following three cube
roots of unity:

_ol+w8 -1-4V3
T2 0 BT T

The hyperbolic functions (1.1.8) are also extended to the complex domain
in a usual way:

w = 11 w2

e? —e* e +c¢c™*
2 , coshz= .

The trigonometric and hyperbolic functions are connected by the following
cquations:

sinh z =

sinz = —isinh (iz), cosz = cosh(iz), tanz = —itanh(iz),
sinh z = —isin(iz), cosh z =cos(iz), tanh z = —itan(iz). (1.2.45)

The derivatives of the complex exponential, trigonometric and hyperbolic
functions are as follows:

(e*) = e*, (sin 2)’ = cos 2, (cos 2)' = —sin z,
(sinh z)’ = cosh z, (cosh z)' = sinh 2.

Using the polar representation (1.2.37) of 2, one defines the (multivalued)
logarithmic function of the complex variable as follows:

Inz=Inr+40+2nk), k=0,+1,42,... (1.2.46)

Finally, the exponential function a*, where a is any complex number, is defined
as follows:

a* =e*'"e, (1.2.47)

1.2.7 Approximate representation of functions

Definition 1.2.1. We say that a function a(z,€) is of order less than e? (with
an integer p > 1) and write

afz,e) = o(e?), €-—0, (1.2.48)



1.2. DIFFERENTIAL AND INTEGRAL CALCULUS 21

if
lim a(z,e) _

lim === =0. (1.2.49)

Equation (1.2.49) is satisfied if e.g., any one of the following two conditions
holds:

afz,€) = ePT'g(z,€), P(z,€) #o0ase —0
and
le(z,€)] < C [efP*, C = const.

Definition 1.2.2. Functions f(z,¢) and g(z,€) are said to be approzimately
equal with an error o(e?) as € — 0 if

f(z,€) - g(z,€) = o(e”).

To designate the approximate equality, we use either the notation g =~ f or
more spccifically

9(z,€) = f(z,€) + o(eP).
According to the Taylor expansion (1.2.14), an approximate representation

of f(z) with an error o((z — a)") as £ — a is as follows:

(n)
ﬂ@~ﬂ®+ﬁ@u-@+m+iﬁﬂu_@m (1.2.50)

For example, expansion (1.2.34) hints, e.g., the following approximation to the
error function:

erf(z) = \%_t(:c - %3-) + o(z?).

Remark 1.2.1. Approximately equal functions f and g are often called equi-
valent functions and are denoted f ~ g.

1.2.8 Jacobian. Functional independence. Change of vari-
ables in multiple integrals

Definition 1.2.3. Let z = (z!,...,z"). Functions
v =u%z), a=1,...,m, (m<n) (1.2.51)

are said to be functionally dependent if there exists at least one relation ®(u!(z),
...,u™(z)) = 0 and functionally independent otherwise.

A convenient test for the independence of functions (1.2.51) is formulated
in terms of their Jacobian matriz
ou®
ozt
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here the indices a and i denote rows and columns, respectively. Namely, func-
tions (1.2.51) are functionally independent if and only if the rank of the Jaco-
bian matrix is equal to m. If n = m, the test for the functional independence
is formulated in terms of the determinant

ou”
J = det (%)

Theorem 1.2.4. Functions u'(z),...,u"(z) of n variables z = (z!,...,z")
are functionally independent if and only if their Jacobian does not vanish.

known as the Jacobian.

The Jacobian is also useful in the generalization of the rule for the change
of variables (1.2.11) to multiple integrals. Namely, let functions (1.2.51) be
functionally independent and let m = n. Then (1.2.51) provides a change of
variables y = u(z) with the Jacobian J # 0. This change of variables leads to
the following rule for change of variables in multiple integrals:

/f(yl,yz, <oyt dytdy? - dyt (1.2.52)

= /f(ul(z),uz(x), .., u™(z))|J|dz'dz? - - - dz™.

1.2.9 Linear independence of functions. Wronskian
Definition 1.2.4. Consider m functions of one variable z :
v =u(2), ¥2=12(2), -\ Ym = Ym(2). (1.2.53)

Functions (1.2.53) are said to be linearly dependent if there exist constants
c1,...,Cm, not all zero, such that

c1y1(z) + c2y2(z) + -+ + emym(z) =0, (1.2.54)
and linearly independent if there is no relation of form (1.2.54).

A convenient test for the linear independence is formulated in terms of the
m x m determinant

% Y2  Ym
v v  Ym

Wy y2, . ym) = | ) . (1.2.55)
Y SRR

called the Wronskian of functions (1.2.53).

Theorem 1.2.5. Functions (1.2.53) are linearly independent if and only if
their Wronskian does not vanish,

W[yh Y2,.-4, ym] # 0. (1.2.56)
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1.2.10 Integration by quadrature

The practical integration of differential equations presumes knowledge of the
general solution to the simplest differential equation

dy _

3 = (1.2.57)

According to Theorem 1.2.2, the general solution of Eq. (1.2.57) is
y=C.

Let us dwell on the fundamental differential equation of the integral calculus
solved in the pioncering works of Newton and Leibnitz. Suppose that we are
given a continuous function f(z) and are asked to find a function y = F(z)
whose derivative is equal to f(z) :

dF(z)
4 =@

The function F(z) is called an integral of f(z) with respect to z. Thus, the
problem is to solve the first-order ordinary differential equation:

¥ = f(z). (1.2.58)

Its general solution is written

y= / f(@)dz +C, (1.2.59)

where [ f(z)dz = F(z) is any integral of f(z) with respect to z, and C is an
arbitrary constant known as the constant of integration. By specifying the con-
stant of integration, one obtains a particular solution. Hence, Eq. (1.2.58) has
an infinite number of solutions given by the one-parameter family of integrals
(1.2.59).

Notation. In calculus, the symbol [ f(z)dz of the indefinite integral is a stan-
dard notation for all solutions to Eq. (1.2.58), i.e., [ f(z)dz = F(z) + C with
F(z) denoting a particular integral of f(z). In the theory of differential equa-
tions, however, a different interpretation is commonly used. Namely, [ f(z)dz
is identified with any particular integral F(z) of the function f(z). This is the
interpretation which is adopted in the present book.

In notation (1.2.59), the general solution, e.g., to a second-order equation,

vy’ = f(z) (1.2.60)
involves two arbitrary constants C) and C; and is written
y= /da:/f(z)d:c + Ciz + Cs, (1.2.61)

where [dz [ f(z)dz = [ ([ f(z)dz)dz.
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Remark 1.2.2. In the classical literature, the integral formula (1.2.59) is
termed the quadrature. Consequently, the differential equation (1.2.58) is said
to be integrable by quadrature. The same terminology applies to the equation

y' = h(y),
since its solution is given by the integral formula similar to (1.2.59),
s= [Z sc=Hy) +C,
h(y)

whence y = H~1(z — C), where H~! denotes the inverse to H.

1.2.11 Differential equations for families of curves

Consider, in the (z,y) plane, a family of curves,
y=f(z,C,...,Cp) (1.2.62)
given, in general, implicitly by
®(z,y,Ch,...,Cp) =0. (1.2.63)

By the definition of implicit functions, Eq. (1.2.63) with y replaced by the
function f from (1.2.62) is satisfied identically in z (from some interval) for all
admissible values of the parameters C, k = 1,...,n. Consequently, one can
differentiate this identity with respect to z. Itcrating the procedure n times
yields:

0% + @ ! —
oz T ay? T
8%*® o*¢ , 8% , 0% ,
v +2—63:8yy + L + Y 0,
oo fel
e =) =
azn + + By 0. (1.2.64)

Elimination of the parameters Cy from Eqs. (1.2.63) and (1.2.64) yields an
nth-order ordinary differential equation

F(z,y,y,...,y™) =0 (1.2.65)

Function (1.2.62) provides a solution, depending on n arbitrary constants Cy,
to the differential equation (1.2.65). Accordingly, (1.2.65) is termed the diffe-
rential equation of the family of curves (1.2.62) or (1.2.63).

The above procedure can be simplified by using the following differential
algebraic notation (see Section 1.4).
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Notation. The total differentiation D, of functions depending on a finite
number of variables z,y,y’,y”,. .. is defined by

17} e} 7] 0
D=2 408 o n O e 9
s VgtV etV gm (1.2.66)

In this notation, Egs. (1.2.64) are written in a compact form:
D, =0, D2¢=0,..., D'®=0. (1.2.67)

Moreover, in this way one eludes the necessity of invoking equation (1.2.63) n
times while deriving equations (1.2.64).

Exercise 1.2.1. Find the differential cquation of the family of straight lines,
y = az + b containing two parameters, a and b.

Solution. By setting ® = y — az — b, Eqgs. (1.2.67) are written:
D=y -a=0, D*o=y"=0.

Here the last equation does not contain the parameters. Hence, the differential
equation (1.2.65) of straight lines is the simplest linear equation of the second
order:

" =0. (1.2.68)

Exercise 1.2.2. Find the differential equation of the family of parabolas given
in the form ® = y — az? — bz — ¢ = 0 and depending on three parameters, a, b,
and c.

Solution. Equations (1.2.67) are written:
D.®=1y —2z-b=0, Dg¢"=‘y"——2a=0, Di‘I’Ey'"=0.

Thus the differential equation of the parabolas is the simplest lincar equation
of the third order:
y" =0. (1.2.69)

Exercise 1.2.3. Find the differential equation of the family of circles given in
the form ® = (z —a)? + (y —b)2 -~ 2 =0.

Solution. Equations (1.2.67) yield:
r—a+ (y _ b)yl = 0, 1+ y12 + (y _ b)yll — 0’ 3ylyll + (y _ b)ylll = 0.

Here the third equation does not contain the parameters a and ¢, and it suffices
to substitute there the expression y — b = —(1 +y'2)/y"” found from the second
equation. Hence, the family of circles is described by the nonlinear equation:

1,012

y" -3 lyfy,z = 0. (1.2.70)
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Exercise 1.2.4. Find the differential equation of the family of hyperbolas
given in the form ® = (y —a)(b—cz) -1 =0.

Solution. Equations (1.2.67) yield:
(b—-cx)y —cly—a)=0, (b—ca)y” —2cy =0, (b—cx)y” —3cy’ =0.
We find from the second equation that b~ cz = 2¢y’/y” and substitute it into

the third one to obtain the following differential equation of the hyperbolas:

-2¥ __o (1.2.71)

1.3 Vector analysis

Vector analysis provides a natural and concise notation for formulating geo-
metrical and physical problems. Consequently, it has become a mainstay of
undergraduate curricula in the sciences and engineering. It is widely used in
Newtonian, continuum and relativistic mechanics, electrodynamics, etc. This
section contains the basic notions and formulae from vector analysis.

1.3.1 Vector algebra

The scalar product a - b of vectors a and b is a scalar quantity (i.e., a real
number) defined by

a-b=|al|b|cos 8, (1.3.1)

where 8 (0 < @ < m) is the angle between the vectors @ and b. The scalar
product is also written in the literature (a, b) or simply ab.
Let the vectors @ and b be written in the Cartesian coordinates:

a = a'i + a%j + a®k = (a',a?,43),
b = bi + b%j + b3k = (b, %, b°), (1.3.2)

where i, j and k are unit vectors along the first, second and third coordinate
axes, respectively. Then their scalar product is given by

3
a-b=) a'bh (1.3.3)
=1

An example of a scalar product is provided by mechanics: a force F having its
point of application moved through a displacement 2 does the work

W=Fz. (1.3.4)

It follows from Eq. (1.3.4) that in the particular case when the displacement
x is perpendicular to the force F then no work is done. For example, when
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These chaps do no work!

He does work

one carries a load in the earth’s gravitation ficld and moves along a horizontal
plane, he does no work. Refute the opinion of the puppy.

The vector product a x b of vectors a and b is the vector defined as follows:

1. the magnitude of @ x b is equal to |a@ x b] = |a||b|sin §, where 6 (0 <
0 < m) is the angle between the vectors a and b,

2. the vector @ x b is perpendicular to the plane spanned by a and b and
is such that the triplet a, b and a x b forms a right-handed system.

The vector product is also designated [a, b] or [a b]. The magnitude |a x b|
of the vector product is equal to the area of the parallelogram with the sides a
and b. Hence, the vector product represents a directed area and therefore it is
termed in the classical literature a vectorial area.

The vector product of two vectors (1.3.2) in the Cartesian coordinates is
written

1 j k
axb=|a!'a?a® (1.3.5)
b' b? b3
where
ik
al a? a3 | = (a?b® — a®b?)i + (a3b! — a*b%)j + (a'b? — a®bh)k.
bt b% b3

Eq. (1.3.5) shows that the vector product is anticommutative:

axb=-bxa.
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Given three vectors, a, b and ¢, one can produce the triple products
(a-be, ax((bxec), a-(bxc).
The vector triple product a x (b x ¢) is conveniently computed by
ax((bxec)=(a-c)b—(a-bd) (1.3.6)

The mized product a-(bx c) is the vector-scalar product sometimes called the
scalar triple product. It is scalar and is equal to the volume of the parallelepiped
having a, b, ¢ as its edges, provided that the triplet a, b, ¢ forms a right-handed
system. The mixed product satisfies the equations

a-(bxc)=b-(cxa)=c:(axb). (1.3.7)
The mixed product is written in the Cartesian coordinates as follows. Let
a= (al,a2’a3)’ b= (b],b2,b3), c= (61,62,63).

Then

al a? a3
bt b2 b3
2l

a-(bxe)= . (1.3.8)

1.3.2 Vector functions

A wvector function a = f(t) of a scalar variable t is a variable vector depending
on t. In coordinates, it can be identified with a triplet of scalar functions

al = fit), & =f(t), &&= fi)
and written as follows:

a = fi(t)i + fa(t)j + fa(t)k.

The derivative of a vector function is defined by

r o AF(@) L ft+At) - f(¢)
at lim .

1}

a =
At—0 At

In coordinates:
a’ = fi(t)i + f3(t)i + f3(t)k.
Likewise, the second-order derivative is given by

a’ = fl(t)i+ £ ()i + 3 (t)k.
Vector functions obey the usual rules of differentiation, e.g.

(@+b) =a’+V, (pa) =¢'a+ypad,
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(@a-b)=a"-b+a-b, (axb)=a xb+axb.

Let a vector a be a function of a scalar variable  and let ¢ = o(t):

= f(e(t)).

Then the chain rule for vector functions is written in the usual form:

1.3.3 Vector fields

A rapid treatment of differential calculus of vector fields is given here. All
calculations are given in a rectangular Cartesian reference frame. Conse-
quently the independent variables are the coordinates z,y, 2 of the position
vector £ = (z,y, z). All functions under consideration are assumed to be conti-
nuously differentiable.

A scalar field ¢ is a function of the position vector x == (z,y, 2) :

¢ =9(z,y,2).
A vector field a = (a*,a?,a®) is a vector function
a = a(z,y,2)

depending upon the position vector = (z, y, z).

Partial derivatives of scalar and vector fields are defined in a usual way, as
it was done above for vector functions of one variable.

Hamilton’s operator or the symbolic differential operator V is a vector given
in the rectangular Cartesian coordinates (z,y, z) by

0 a

o
=f— 4 9 — —_ 1.3.9
V=i +Jay+kaz, ( )

oz

where i, j and k are unit vectors along the x,y and z axes, respectively. In
other words, V is the vector operator with the components

a o /]
Ve=— Vy=_> Vz=5;

1.3.10
0z’ oy ( )

along the z,y, z axes. The familiar operations of gradient, divergence and curl
are written via Hamilton's operator as follows.

The gradient of a scalar field ¢ = ¢(z,y, 2) is the product of the vector V
by the scalar:

grad¢ & Vg = ¢z+a—ya+g—¢ (1.3.11)
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The divergence of a vector field a is the scalar product of the vectors V and
a=(a',a?,a%):
1 2 3
o def ol 2 3_0a 0 da”
dive = V-.-a=V,a' +V,a°+V,a° = B + 5y + 52
The curl or rotation of a vector field @ = a(z, y, 2) is the vector product of
the vectors V and a :

(1.3.12)

i 7 k
curla=rota & Vxa= 3%:%3211 (1.3.13)
ol a? ad
or
8a® Pa?\., (0a' Bad\., (0a® OBa'
crla= (5 -G )i+ (G -G )i+ (5~ )k (319

The operator V together with formulae of wvector algebra enables one to
rclate scalar and vector fields through differentiation. Let a, b and ¢,y be
vector and scalar fields, respectively, and let a, 3 be arbitrary constants. The
operator V has the following properties:

1. V(ap+p¢) =aVe+pVy
2. V-(ea+p8b)=aV-a+8V-b
3. Vx(aa+pb)=aVxa+pVxb
4. V(gy) =9V + oVy (1.3.15)
5. V-(¢a)=(Ve)-a+¢(V-a)
6. Vx(¢a)=(Vo)xa+¢V xa
7. V(axb)=b-(Vxa)-a- (Vxb)
2 2 2
8. v-(vqb)EV%EAqs:g—;;+—g?(fJrgT‘;s
9. V-(Vxa)=0, 10.V x(V¢)=0.

These properties are often written in notation (1.3.11)~(1.3.12). For example,
properties 5, 9 and 10 can be written as:

5.div(¢a)=¢diva+a-gradg, 9'.divrota=0, 10’ rotgrade =0.

1.3.4 Three classical integral theorems

Green’s theorem: Let V be an arbitrary region in the (z,y) plane with the
boundary V. Then

/av Pdz +Qdy = /V (?9‘2 - g—f)dwdy (1.3.16)
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for any (differentiable) functions P(z,y) and Q(z,y).

Stokes’ theorem: Let V be an (orientable) surface in the space (z, y, 2) with the

boundary 8V, and let P(z,y, z), Q(z,y, z) and R(z, y, z) be any (differentiable)
functions. Then

/z;v Pdz + Qdy + Rdz
_/ (?’f ‘Z’)d dy +(%§—%Q)d dz +(‘;P ‘;f)d dz. (1.3.17)

Eq. (1.3.17) is written in the vector notation as follows:
A~dz=/curlA-dS.
av v

Here A = (P,Q,R), dz = (dz,dy,dz) and dS = vdS, where v is the unit
outward normal to the surface V.

The divergence theorem (the Gauss-Ostrogradsky theorem): Let V be a volume
in the space (z,y, z) with the closed boundary 0V and A be any vector field.
Then
/ (A-u)dS=/(V-A)dzdydzE/ div Adzdyd-, (1.3.18)
1% v v
where v is the unit outward normal to the boundary dV of V.

1.3.5 The Laplace equation

The differential operator of the second order

2 o 8
2 — ——
A=V =322 + By? + 352 (1.3.19)
is called the Laplacian. The Laplace equation in three variables,
32 02 62
A= "’ ayf + 92 _,, (1.3.20)

is one of the most important equations of mathematical physics. It is a linear
partial differential equation of the second order.

Example 1.3.1. The spherically symmetric solution, ¢ = ¢(r), to the Laplace
cquation (1.3.20) has the form (see Problem 1.21)

s =20,

where r = /12 + y2 + 22 and C}, C; = const.
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1.3.6 Differentiation of determinants

The derivative of determinants is given by the following formula.:

a11(z) a2(z) - ain(z) a11(z) a12(z) -+ an(x)

-

= o(2) aa(@) - anlz)| = 3o |ah(@) aixle) - eln@)

=1

an1 () an2(z) -+ @an(z) an1(Z) an2(z) -+ Gan(z)

where a;;(z) = dai;(z)/dz.

1.4 Notation of differential algebra

The calculus of differential algebra furnishes us with a convenient language and
effective devices for tackling differential equations. In the classical mathemati-

cal analysis, it is customary to deal with functions u®(z), wherea = 1,...,m,
and z = (z!,...,z"). The derivatives
Ou®(z ®u*(z
u?(z):—Ll, uli(z) = = ( ,),...
ozt 4 Ozidxi

are also regarded as functions of .
Differential algebra suggests to treat the quantitics u®, u$, u%,... as vari-

ables and to deal with composite functions f(z,u(z),du(z)/dz,...) as with
functions f(z,u,u(),...) of the independent variables x,u, u), ... .

1.4.1 Differential variables. Total differentiation

Let us start with the one-dimensional case. Namely, let us consider one inde-
pendent variable z and one dependent variable y with the successive derivatives
v,y",...,y® ... . The total derivative (see (1.2.66))

0

D, = 6_:1:+y,62y+y”5%7+m+y(’+1)6y(’) + - (1.4.1)
acts on differential functions, i.e., functions
@ yay-.) (1.4.2)
of any finite number of the independent variables
T Yy =v,y2=v9",.... (1.4.3)

The set of all differential functions will be denoted by A.



1.4. NOTATION OF DIFFERENTIAL ALGEBRA 33

Let us illustrate the difference between D, and the partial differentiation
0/0z with respect to z by considering the action of both operations to the
following functions from A :

f=z, f=y, f=zy.
The total differentiation yields:

Dy(z)=1, D:(y)=y, Di(zy)=y +zy"
whereas the partial derivatives are:

o _, oy

dy_, oey)_ .,
oz oz y-

=0, £

1.4.2 Higher derivatives of the product and of
composite functions

The formula for higher derivatives of the product of functions applies to arbi-
trary differential functions as well. Namely, if f, g € A, then

K

D;(fg) = Dz(f)g + }: Gy ls (NP + /D). (144)

Furthermore, there is a formula due to Fai de Bruno (1857) for computing
higher derivatives of composite functions. It extends the chain rule (1.2.5).
Namely, consider a differential function of the form f(y). Then its kth-order

derivative is given, in terms of ¢/, ...,y*) and
df d?f w _ 9f
r _ G " o_ - J
f = dy 1 f y2 1y f dyk
by the following formula:
k! yl L yll 123 y(s) L, (k)
kegy = A () ) - ) ... ..
D”(f)‘zzl!z,!-.-zksf (u) 2! s! k' ’
(1.4.5)
where the sum runs through all non-negative integers Iy, ..., {x such that
li+24 - +klx=k, (1.4.6)
and p is the positive integer defined, for every solution set l,..., Ik of (1.4.6),
by
p=11+12+"'+lk- (147)

For example, if one needs the third derivative, one solves Eq. (1.4.6)—(1.4.7)
with k£ =3, i.e.,
Iy + 2l + 3l3 = 3,
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p=4L +1la+1s.

They have three sets of solutions, given by the following values of i1, I3, I3
(different from zero) and p :

DL=3p=3 2)L=110L=1p=2 3)lz=1p=1L
Hence, we have PPy = [ 43P
1.4.3 Differential functions with several variables
Now we deal with the following algebraically independent variables:
z={z'}, u={u}, uqg)={uf}, ug={uHh. .., (1.4.8)

where the index i runs over the values from 1 to n, and a from 1 to m. The

variables ug;, etc. are assumed to be symmetric in subscripts, i.e., uﬁ; = u;‘-‘i.

For cvery i = 1,...,n, we introduce the operator
0 1o} o
Dsz%"i'?t?a?-l'uggu—;;'l' (149)

and call it the total differentiation with respect to z*. The operator D; is a
formal sum of an infinite number of terms. However, it truncates when acting
on any function of a finite number of the variables z, u, (1), . . . . In consequence,
the total differentiations D; are well defined on the set of all functions depending
on a finite number of z,u,u(y), . ... For example, one can readily verify that

d
Di(z*) =¢8f, Di(wf)=v], Di(wi)=uf, Di(f(u') = aaf‘x u,
where ¥ are the Kronecker symbols defined by
k=1 if i=k; 6F=0 if i#k.

Thus, though variables (1.4.8) are algebraically independent, they are con-
nected by the following differential relations:

u,? = Di(ua), u% = DJ('U,?) = DjD,-(u"‘), e (1410)

The quantities z* are called independent variables, whereas u® are termed
differential variables with the successive derivatives ug, ugj, . .. of the first, sec-
ond, etc. orders, due to relations (1.4.10). We call an analytic function of a fi-
nite set of the variables z, u, u(1), - - - a differential function. The maximal order
p of a derivative involved in the differential function f = f(z, U U1,y - - > U(p))
is termed the order of this function and is denoted by ordf. If f is a differential
function of the pth order, then its total derivatives D; are differential functions
of order p+ 1. The set of all differential functions of finite order endowed with
the differentiations D; (1.4.9) is called the space of differential functions and is
denoted by .A.
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1.4.4 The frame of differential equations

Let F € A be a differential function of the order p. The equation

F(z,u,uqy,...,up) =0 (1.4.11)

defines a surface in the space of the variables z,u,. .., U(p)-

The concept of a differential equation comprises two distinctly different
ingredients, namely:

(1) a surface of form (1.4.11) called the frame of a differential equation (see
Fig.1.1);

(2) a class of solutions suggested by mathematical or physical content of a
differential equation.

In the classical literature, the solutions to differential equations were identi-
fied solely with sufficiently differentiable functions. Problems of modern mathe-
matics and physics require that the concept of solutions was broadened by con-
sidering generalized solutions (distributions) instead of the classical solutions.

In integrating ordinary differential equations, a decisive step is that of sim-
plifying the frame by a change of variables. Lie group analysis furnishes a
method for determining a suitable change of variables. Provided that an in-
finitesimal symmetry is known, we merely introduce so-called canonical vari-
ables. This simplifies the equation by converting its frame into a cylinder, i.e.,
the explicit dependence of one of the variables z or y has been eliminated.

As an example, consider the Riccati equation from Fig. 1.1. We will straight-
ened out the curved surface given in Fig. 1.1 into a cylinder given in Fig.1.2.

Figure 1.1: The frame of the Riccati equation y' + y2 —2/2* =0, p=1y'".
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Figure 1.2: The frame of the equation v’ + 2 —u-2=0, ¢=u'.

The Riccati equation

2
/ 2

is invariant under the dilation

T=az, Y=

SRS

Lie group analysis readily gives the canonical variables ¢t and u defined by
t=lnz, u=uzy.

In these variables the Riccati equation becomes
v+ul—u—-2=0.

The frame of the latter equation, obtained by setting u’ = gq, is a parabolic
cylinder, g+u2? —u—2 = 0, protracted along ¢. Hence, the hyperbolic paraboloid
of Fig. 1.1 is straightened out by passing to the canonical variables.

Similar approach is fruitful for all (ordinary and partial) differential equa-
tions with known symmetries. For this purpose, we use methods of Lie group
analysis in this book.

1.4.5 Transformation of derivatives

Let us begin with the case of one independent variable z and one dependent
variable y. Consider a change of variables

T=p(z,y), 7=v(z,y) (1.4.12)
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Theorem 1.4.1. The change of variables (1.4.12) implies the change of the
total differentiation:

Dy = D,() D5, (1.4.13)

where D, and Ds are the total differentiations with respect to z and Z, respec-
tively, and the following transformations of the successive derivatives:

T D:c(w) = D:,;((p)Dg('l/)) - Ds(w)D:%(‘P)
De(p)’ [De ()1 T

where §' = dy/dz, 3" = dy’'/dz.

(1.4.14)

Proof. The change of the total differentiation (1.4.13) is obtained from the
first equation of (1.4.12) by invoking the chain rule. To prove the first equation
of (1.4.14), it suffices to act by (1.4.13) to the second equation of (1.4.12)
and obtain D;(9)Dz(y) = D,(¥). Alternatively, one can use the following
calculations:

dy  ¢gdz+ Yydy _ (¥ + yld"y)dz _ Yo+ y,wy _ D.(¥) .

dZ ~ pedz+pydy (9= +y'0,)dz 0z +Y9y  Dal9)

The second equation of (1.4.14) and the higher derivatives are obtained by
iterating the procedure:

dg’ _ D) _ 1 D.(¥)
i@~ Duly)  Dulp) (Dx(<p))'

Example 1.4.1. The rule for differentiation of inverse functions (1.2.4) follows
simply from formula (1.4.14) applied to the change of variables

I=y, y==z
Indeed, since ¢ =y, ¥ = z, Eqs. (1.4.13) and (1.4.14) are written
D, = yl Dz

and

—I_

1 _, y
?$ ) y/3!

respectively.

Let us turn now to the general case of several variables and consider a
change of variables ' )
T =¢'(z,u), i=1,...,m, (1.4.15)

% =y*(z,u), a=1,...,m. (1.4.16)

In differential algebra, the corresponding change of derivatives are easily ob-
tained as follows. Let us note that the change of independent variables (1.4.15)
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implies the following relation between total differentiations D; and D; with
respect to the old and new variables, respectively (see (1.4.13)):

D; =ZD,-(¢J')EJ~, i=1,...,n (1.4.17)
=1

Then we differentiate both sides of Eq. (1.4.16) by using the equation 7¢ =
D;(u?) and, omitting the sign of summation, write the result in the form
D;(¥®) = Di(¢?)D;(u®) = u$ Di(¢?). Thus, the change of the derivatives of

the first order is determined by

73 D;i(¢’) = Di(¥™), (1.4.18)
or
i Pt
It remains to solve the latter equation with respect to Z$. The second differen-

tiation of Eq. (1.4.18) yields transformations of derivatives of the second order,
etc.

09 |, o0 N ga _ OV 500"
(61“ o Buﬁ) T 5

Example 1.4.2. Let ¢,z be two independent variables and u a dependent
variable. Let us introduce the new independent variables 7, € and the dependent
variable v defined by

7=t E=u, v=uz.

Egs. (1.4.17) and (1.4.18) yield:
Dt = Dr -+ 'll«zDg, Dz = u:tD€
and
0=, + ug v, 1 = Ug Vg,

respectively. Hence, the change of the first-order derivatives has the form:

1.5 Variational calculus

1.5.1 Principle of least action

Hamilton’s variational principle or the principle of least action states: The
motion of a mechanical system with a kinetic energy T(t,q,v) and a potential
energy U(t,q) is determined by the requirement that the trajectories of the
particles of the system provide an extremum for the action integral

t2

S= L(t,q,v)dt, (1.5.1)

ty
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where L(t,q,v) = T - U is called the Lagrangian of the system. Here t is
time, ¢ = (g!,...,q°) denote the coordinates of the particles of the system,
and v = ¢ = dq/dt are their velocities. The action is defined on the set of
functions ¢* = ¢*(t) such that the integral exists in an interval ¢; < ¢ < t.

Consider a variation of ¢ when it is replaced by q + dq. It is assumed that
the increment is a function §qg = dq(t) such that it is small everywhere in
the interval ¢; < ¢ < {; and vanishes at the boundary, dq(t,) = dq(t;) = 0.
Differentiation yields v = d[dq(t)] /dt. This causes the following variation of
the action integral (1.5.1): f:l’ [L(t,q+ bg,v + 6v) — L(t, q,v)]dt. Expansion of
the integrand in powers of the increments g and §v yields the linear principal
part of 4S (summation in o = 1,...,s):

oL . oL ..
65—/;1 (%&] +5;)—&5'U )dt

Upon integrating the second term by parts, it is written:

t2 T 9L 8L oL ta
0S = —_ —_— L] gy PN 4
5=, [aq° D‘(ava>]5q d“[ava‘s"],,

or, invoking the boundary conditions dq(¢,) = d¢(t2) =0 :

Dt(%)]Jq"‘dt, where D; = 2 +v"‘i +v® 4

65 = ot 0g> e

oL

t [aqa
The necessary condition for integral (1.5.1) to have an extremum is that

0S = 0. Since the time interval t; <t < to and the increments §g* are arbitrary,

it follows:
_EL - _EL = =1,...,s. 1.5.2
Dy ( - ) 0, a s ( )

Differential equations (1.5.2) are known as the Euler-Lagrange equations.
Thus, the trajectory ¢ = ¢(t) of a mechanical system with the Lagrangian
L(t, g, v) solves the Euler-Lagrange equations (1.5.2).

1.5.2 Euler-Lagrange equations with several variables

The case several independent variables z = (z!,...,z") and dependent (differ-
ential) variables u = (u!,...,u™) is treated similarly. Let us use the differential
algebraic notation and terminology.

Let L € A be a differential function of the first order. Let V C R™ be
an arbitrary n-dimensional volume in the space of the independent variables z
with the boundary 8V. An action is the integral

l[u]=/VL(a:,u,u(1))dz. (1.5.3)
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It is also termed a variational integral. The variation 6l[u] of the integral
(1.5.3), caused by the variation u + h(z) of u, is defined as the principal linear
part (in h) of the integral [, [L(z,u + h,uq) + h(1)) — L(z, 4, uq))ldz and has

the form: oL oL
ol[u) =/ [6 ah"‘ + a—ah“]d

On integrating the second term by parts, it is written:
oL OL\], . oL
il = [ |25 - i) [pode + [ D) e
Using the divergence theorem (1.3.18), we obtain
oL OL\],a oL ., .
8l[u) = / [a — D.(aua)]h dot | Guahvids
1

where v = (v!,...,v") is the unit outer normal to dV. Provided that the
functions h*(z) vanish on the boundary 8V, we arrive at the following:

5z[u]=/v [%—D (:I;)]hadz

A function u = u(z) is called an eztremum of the variational integral (1.5.3)
if 6l[u(z); = 0 for any volume V and any increment h = h(z) vanishing on V.
It follows from the above expression for é{[u] that a necessary condition for u
to be an extremum is given by the Euler-Lagrange equations:

§L _ oL .(aL

.61"_055;;- 5@)=0, a=1,...,m. (1.54)

Equations (1.5.4) provide, in general, a system of m partial differential equa-
tions of the second order. dL/du® is called the variational derivative.

Problems to Chapter 1

1.1. How much bigger is the surface area of the northern hemisphere of the
Earth than the area of the equatorial section of the Earth?

1.2. Find the inverse hyperbolic functions
(i) t = arcsinhx, (ii) t = arctanhz, (iii) t = arccoshz

by solving the following equations with respect to ¢ :

] ot — et et — et et +et
z =sinh t = 5 a:—tanht—w, € = cosht = 7
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1.3.

1.4.
1.5.

1.6.
1.7.

1.8.

1.9.
1.10.

1.11.

Prove formula (1.1.7):

arcsinz = arctan

z
V1-12z2 ‘

Find the relation, similar to (1.1.7), between the inverse hyperbolic func-
tions arcsinh z and arctanhz.

Solve the cubic equation 23 — 322 + z + 5 = 0.

Work out each of the following integrals (k,m > 0 are any integers):
bid
/ sin(kz) sin(mz)dz, m #k,
-n

/x cos(kz) cos(mz)dz, m #k,

-

214
/ cos(kz) sin(mz)dz, m,k=0,1,2,...,

-

314 14
/sin2(k:r)dz, /cosz(kx)da:, k=1,2,....

n -n

Obtain the Maclaurin expansion (1.2.20) of the function 1/(1 - z).

Obtain the Maclaurin expansion (1.2.34) of the error function erf(z) using
its definition (1.1.12).

Check for the functional independence the following functions f,g and h
of three variables z,y, 2

=2 —y?, g=+1y?-22, h=z%-2%
=1/$2+y2, g__.‘/y2+z2’ h=$2+22;
(iit) f=vz2+9y2, g=+Vy*+22, h=z%-22

Differentiate the hyperbolic functions sinh z, coshz and tanh z.

Check for the linear independence of the following functions:

(i) y(z) =€%, wa(z) =75

(ii) yi(z) =€, y2(z) =coshz, ys(z)=sinhz,
(i) y(z) =€, y2(z) =€, y3(z)=sinhz,
(iv) yl(:c) =¢%, y2(x) =coshz, y3(z)=tanhz,
(v) wi(z) =sinhz, y(z)=coshz, y3(z)=tanhz,

Evaluate: (i) ™, (i) e!(V/2), (iii) i°.
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1.12.

1.13.

1.14.

1.15.

1.16.

1.17.

1.18.
1.19.

1.20.

1.21.

1.22,
1.23.
1.24.

PROBLEMS TO CHAPTER 1

Find the divergence V - & and the curl (V x &) of the position vector
z = (z,y,2)-

Let ¢, and a be scalar and vector fields, respectively. Evaluate:

(i) V x (V¢) = curl(grade),
(i) V-(V x a) = div(curla),
(ii) V- (a x z) =div(a x ),
(iv) V x(V x a) = curl(curla),

(v) V- (oVy—-9yVe).

Convert the following volume integral into a surface integral:
/ (pAy — YA¢)dxdydz.
1%

Work out expressions (1.4.14) for the change of the first and second
derivatives.

Obtain the transformation of the first and second derivatives under the
change of variables T = ¢*, = 1/y.

Obtain the transformation of the third derivative " under the change
of variables T =y, 7 =z (see Example (1.4.1)).

Solve the equation w3 + 1 = 0.

Prove the mean value theorem for definite integrals:
b
[ 1@z =@ 6-a), aseso
a
Prove that if g(z) does not change the sign when a < z < b, then
b b
[ 1@z = 1@) [ gz, asess
a a

Obtain the spherically invariant solution to the Laplace equation given
in Example 1.3.1 by looking for functions ¢ = ¢(r) satisfying the Laplace
equation (1.3.20), A¢ = 0.

Derive Egs. (1.1.45).

Prove Lemma 1.1.1.

Show that transformation (1.1.54) maps Eq. (1.1.39) to an equation of
form (1.1.55).
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1.25.

1.26.
1.27.

1.28.
1.29.

1.30.

1.31.

According to Remark 1.1.7, the elliptic and hyperbolic curves are con-
nected by complex linear transformations. Hence, Eq. (1.2.70) for circles
and Eq. (1.2.71) for hyperbolas should be connected by a complex trans-
formation. Find this complex transformation.

Prove the rule for differentiating determinants given in Section 1.3.6.

According to Egs. (1.1.16), the surface area w, of the unit sphere in n
dimensions is written in terms of the Gamma function as follows:

_ 2y/n"

G

Let here n = 2 and n = 3 and obtain the commonly known expressions
for the circumference of the unit circle in the plane and the surface arca
of the unit sphere in the three-dimensional space, respectively.

Prove the first equation (1.1.15), I'(z + 1) = zT'(z).
Evaluate I'(-1/2).

Evaluate the integral [;° e~*"ds by setting t = s2 in definition (1.1.14)
of I'(z) and letting z = 1/2.

Explain why formula (1.2.52) for the change of variables in multiple in-
tegrals contains the absolute value of the Jacobian J whereas the similar
formula (1.2.11) in the one-dimensional case does not?
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Chapter 2

Mathematical models

Differential equations, in a proper sense, have appeared in mathematics in the
1680s in the works of the creators of the differential and integral calculus. The
term differential equation was mentioned by G.W. Leibnitz for the first time
in his letter to I. Newton (1676) and then used in his publications after 1684.
Newton’s Principles [29] contains numerous differential equations formulated
and integrated in the framework of clementary geometry. Since then, the for-
mulation of fundamental natural laws and of technological problems in the form
of rigorous mathematical models is given frequently, even prevalently, in terms
of differential equations.

Additional reading: R. Courant and D. Hilbert [5]~[4], M.D. Greenberg [11],
N.H. Ibragimov [21], J.D. Murray [27)~[28], G.F. Simmons [35].

2.1 Introduction

Differential equations involve independent variables and dependent variables
together with their derivatives. A differential equation is said to be of the nth
order if it involves derivatives of this order but not higher.

If the dependent variables arc functions of a single independent variable,
the equations are termed ordinary differential equations (ODE). The renowned
Newton’s sccond law for a particle in an external force field F,

d(mwv)
dt

falls precisely into this category. Here time t is the independent variable, m
and v = (v!,v%,v%) denote the particle mass (in general, m is not constant)
and its vector velocity, respectively. Newton’s equation (2.1.1) is a system of
three equations of the first order with respect to the velocity components v*
regarded as the dependent variables, provided that the force F' depends upon
t and v alone. However, if F = F(t,z,v), we have a second-order equation

=F, (2.1.1)

45
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(2.1.1) for the position vector = (z!,z2,z3) of the particle. Indeed consider,
for simplicity sake, the case of constant mass m and substitute v = &’ where
the prime denotes differentiation with respect to ¢. Then equation (2.1.1) is
rewritten as the following system of three second-order equations:
2
m‘:lT‘: = F(t,z,z’). (2.1.2)
If, on the other hand, unknown functions depend on several independent
variables, so that the equations in question relate the independent variables, the
dependent variables and their partial derivatives, then one deals with partial
differential equations (PDE). A celebrated representative of this category is
d’Alembert’s equation for small transversal vibrations of strings:

02 2
ou _ 2?__"‘ =0, (2.1.3)
ot? Ox?
where k? is a positive constant. This is a second-order partial differential
equation with two independent variables, time ¢ and the coordinate z along
the string. It is also known as the one-dimensional wave equation.

A model of small transversal vibrations of uniform slender rods provides a
partial differential equation of the fourth order:

02y O*u
F + #% = f, (2.1.4)

where f is a total force acting on the rod and p is a positive constant.

The mathematical model of thermal diffusion, due to J.B.J. Fourier (1811),
provides a partial differential equation known as the heat conduction equation.
The one-dimensional heat equation has the form

6_“ - k2@

57~ K3 =0 (2.1.5)

2.2 Natural phenomena

2.2.1 Population models

Thomas Robert Malthus, the pioneer in the mathematical treatment of demo-
graphic problems, suggested in An essay on the principle of population as it
affects the future improvement of society (1798) his celebrated principle of po-
pulation. His model is mathematically rather simple and is based on the natural
assumption that the rate of population growth is proportional to the population
P considered. Accordingly, it is formulated by the differential equation

dP

P aP, a=const. > 0. (2.2.1)
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Hence the Malthusian principle provides unlimited growth of a population ac-
cording to the exponential law:

P(t) = Ppe*(*~%), (2.2.2)

where Py and P(t) denote the population in millions at the initial time ¢ = to
and at an arbitrary time ¢, respectively. The main consequence of the Essay
was that the realization of a happy society will always be hindered by the
universal tendency of the population to outrun the means of subsistence.

It was soon seen, however, that Malthus’ model is unrealistic and requires
a modification. Subsequently, several modified population models have been
considered in an attempt to find more realistic laws of population. One of them,
known as the logistic law, is described by the following nonlinear equation:

ccli—}t) =aP - fBP? a,B =const. # 0, (2.2.3)
where the nonlinear term 8P? can be interpreted as a kind of social friction.
An analysis of this law shows that it is adequate to describe certain insect
populations. However, its value as a gencral “law” of population growth is
extremely limited as far as human population is concerned.

A model of predator and prey suggested by A.J. Lotka (1925) and V. Volterra

(1926) is formulated by a system of nonlinear ordinary differential equations of
the first order,
%% = (a — by)z, 3—2 = (kz — l)y, (2.2.4)
where a,b, k, and [ are positive constants. Here y denotes a predator species
and z its prey. It is assumed that the prey population provides the total food
supply for the predators. A qualitative analysis of solutions of the above system
shows, e.g., that any biological system described by the Lotka-Volterra equa-
tions (2.2.4) ultimately approaches cither a constant or periodic population.

2.2.2 Ecology: Radioactive waste products

Radioactivity is a consequence of the breaking up of elements with high atomic
weights such as uranium minerals. The discovery of radioactivity provided
new means, e.g. of determining geological time, etc. Artificial radioactivity is
widely used in practical affairs — chemistry, medicine, nuclear energetics, etc.
However, an industrial use of nuclear energy requires an inexorable vigilance by
the population because of the danger of pollution by radioactive waste products.

A mathematical description of radioactive decay assumes that the rate of
decay is proportional to the amount of a radioactive substance. Therefore, the
mathematical model has form (2.2.1):

dU

T w 2.2.5
5 = ~FU (2.2.5)
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Here U is the amount of a radioactive substance present at time t and k is a
positive constant. The solution of Eq. (2.2.5) has the form

U(t) = Uge k%), (2.2.6)

where Uy is an initial (t = o) amount of the substance. The empirical constant
k depends on the radioactive matter in question. Usually, it is determined in
terms of the so-called half-life defined as the interval of time At =t — to after
which the substance will have diminished to half of its original amount.

Example 2.2.1. It is known that the half-life of radium is At = 1600 years.
Therefore, according to formula (2.2.6), Up/2 = Upe™'%%%  whence k = (In2)/
1600 = 0.00043. Thus, the radioactive disintegration of radium in t years is
given by

U) = er—-‘Lg-O%t.

2.2.3 Kepler’s laws. Newton’s gravitation law

The apparent motions of the planets appear to be irregular and complicated.
However, it was obvious in the remote past that the heavens ought to exemplify
mathematical beauty. This would only be the case if the planets moved in
circles. Indeed, in Greek science one can find a hypothesis that all the planets,
including the carth, go round the sun in circles. J. Kepler discovered, however,
that planets move in ellipses, not in circles, with the sun at a focus, not at
the center. He formulated in 1609 two of the cardinal principles of modern
astronomy: Kepler’s first law (Fig. 2.1) and Kepler’s second law (Fig. 2.2).
Kepler’s third law published in 1619 asserts that the ratio T2/R3 of the square
of the period T and the cube of the mean distance R from the sun is the same
for all planets.

Kepler’s laws reduce the motion of planets to geometry and reveal, at a new
level, a mathematical harmony in nature. From a practical point of view, it
was important that Kepler gave an answer, based on empirical astronomy, to
the question of how the planets move. The geometry of the heavens provided
by Kepler’s laws challenged scientists to answer the question of why the planets
obey these laws. The question required an investigation of the dynamics of the
Solar system. The necessary dynamics had been initiated by Galileo Galilei
and developed into modern rational mechanics by Newton in his Principles.

According to Newton's gravitation law, the force of attraction between the
sun and a planet has the form

o
F = r—sm, a=-GmM, (2.2.7)
where G is the universal constant of gravitation, m and M are the masses of a

planet and the sun, respectively, = (z!,z2,z3) is the position vector of the
planet considered as a particle, and r = |z| is the distance of the planet from
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Figure 2.1: Kepler’s first law: The orbit of a planet is an ellipse with the sun
at one focus.

Figure 2.2: Kepler’s second law: The areas swept out in equal times by the line
joining the sun to a planct are equal.

the sun. Hence, ignoring the motion of the sun under a planet’s attraction,
Newton's sccond law (2.1.2) yields

mis - S , @ = const. (2.2.8)

The problem on integration of Egs. (2.2.8) is referred to as Kepler’s pro-
blem. Newton derived Kepler’s laws by solving the differential equations (2.2.8).
It can be shown however that the Kepler’s laws arc direct consequences of
specific symmetries of Newton’s gravitation force. Specifically, the first and
second Kepler’s laws can be derived, without integrating the nonlinear equa-
tions (2.2.8), from conservation of two vector fields, namely, conservation of
the angular momentum

M = m(z x v), (2.2.9)

where the vector v = £ = dz/dt is the velocity, and conservation of what is
known as the Laplace vector

A-fpxM+2a (2.2.10)
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2.2.4 Free fall of a body near the earth

Consider the free fall of a body toward the earth under the assumption that
the gravity near the earth is constant and that it is the only force acting on
the object. Let m = const. be the mass of the object, h its height above the
ground, ¢ time, and

g~ 9.81 m/s?

is the acceleration of gravity near the earth. In this notation, the force of

gravity is F = —mg and Newton’s equation (2.1.2) is written
&h_ _
dt2 ~
This is an equation of form (1.2.60) with constant f = —g. Consequently,

integration (1.2.61) yields
h= —gt2 +Cit+Cy.

By letting ¢t = 0 in this solution and in the velocity v = ' = —-gt + C}, one
obtains the physical meaning of the integration constants, namely Co = hg is
the initial position of the body and C; = vy is its initial velocity. Thus, the
trajectory of a falling body is given by

h= —%tz + ot + ho. (2.2.11)
Exercise 2.2.1. A body at rest (v = 0) falls from the height ho. Find its
terminal velocity v, i.e., the velocity when the body reaches the ground.

Solution. By formula (2.2.11), h = hg — gt?/2, v = ~gt. Denoting ¢, the
instant when the body reaches the ground (h = 0) and v, its velocity at that
instant, one obtains v, = —gt., hg = gt2/2, whence climinating t.:

v. = —1/2gho . (2.2.12)

The minus sign appears owing to the fact that the h axis is directed upwards
from the surface of the earth whereas the body falls toward the earth.

2.2.5 Meteoroid

The fall of a distant body (meteoroid) before entering the earth’s atmosphere
is defined by Newton’s second law of dynamics (2.1.1) together with his law

of inverse squares according to which a meteoroid and the earth attract each
other by the force F = GmM /72, where

G =6.67 x 10~ 8cm®/(g - s?)
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is the universal gravitational constant, m and M denote the masses of a me-
teoroid and the earth, and r the distance between their centers. Let R be the
radius of the earth. Then the value of the force of attraction on the surface
of the earth is F = GmM/R?. On the other hand, the gravitation force near
the earth (i.e., the weight of a body with mass m) is written mg. Whence the
equation mg = GmM/R?, or GmM = mgR?. Hence, the object is attracted
to the earth by the force F = mgR?/r?.

The mass m of a meteoroid is constant before entering the earth’s atmos-
phere. Let us ignore the air resistance and assume that the mass does not
change along the whole trajectory of a falling meteoroid. Then Eq. (2.1.2) is

written: & R
r g
d? = —-TT . (2.2.13)
The minus sign appears since r is directed from the earth to the meteoroid and
hence it is opposite to the direction of the force of the gravitational attraction.

Exercise 2.2.2. Reduce the order of Eq. (2.2.13).
Solution. By letting dr/dt = v(r) and noting that
d’> dvdr dv _ 1d(¥?)

@ a e c2dr
we rewrite Eq. (2.2.13) in the form
a0 _ 202
dr r2
We integrate it, take into account that, in our notation, the velocity is negative
and obtain:

v=— 29:% +C, C = const. (2.2.14)

Exercise 2.2.3. Find the terminal velocity v. (i.e., the velocity on the surfacc
of the earth) of a meteoroid falling from a point at infinity where it was in rest.

Solution. Let us first specify the constant of integration in (2.2.14) by assum-

ing that initially (¢ = 0) the meteoroid rested (vo = 0) at a distance ro from

the center of the earth. Letting t = 0 and hence v = 0 in (2.2.14) yields that
= —2gR?/rq, and formula (2.2.14) becomes

1 1
v=-RVIN T
Letting ro = oo and r = R, one obtains the terminal velocity:

v. = —/29R. (2.2.15)

Hence the meteoroid reaches the ground with the same velocity as a body
falling from the height ho equal to the radius R of the earth (compare (2.2.15)
with (2.2.12)).
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2.2.6 A model of rainfall

The idea to suggest a simple model of this natural phenomenon came to my
mind while flying in a small airplane amongst whimsically shaped thick clouds
over Africa.

To start with, let me give a piece of information about clouds relevant to the
first stage of the suggested model. The typical thickness of clouds producing
precipitation is from 100 m to 4 km, but very thick clouds (cumulonimbus)
may reach 20 km. As an approximation to a mathematical model of rainfall,
let us simulate two successive stages of the phenomenon, the first stage being
the development of raindrops in clouds and the second one being the fall of
raindrops through the air.

1. Developing drops:

The onset of raindrops in clouds is imitated here by the free fall toward the
earth of a spherical mass of water in saturated atmosphere under the force of
gravity.

The mass m of a drop increases owing to condensation, the increment being
proportional to time and to the surface area of the drop, i.c., dm = 4nkridt,
where r is the radius of the drop and k is an empirical constant. On the other
hand, the mass of a spherical drop of water (with density p = 1) is m = 4nr3/3,
whence dm = 4nr?dr. Hence, dr = kdt, and Newton'’s second law (2.1.1) with
F = —mg is written: s

k%’l = —grd. (2.2.16)
The solution of this differential equation satisfying the initial condition, v = v
when r = rg, has the form:

4 3
__IH_T\, N
v = “(1 M)+ﬂm. (2.2.17)
Typical cloud droplets have the radius 79 & 10 um, while raindrops reach
the earth with radii about 1 mm. Let us assume, in our simplified model, that
the initial radius 7o of a drop is infinitely small. Then we let r¢ = 0 in solution
(2.2.17) to obtain v = —gr/(4k). Invoking the equation r = kt, we can write

v=—gt. (2.2.18)

Hence the magnitude |v| of the velocity of raindrops, at the stage of their
developing in clouds, increases as a linear function of time.

2. Falling rain:

This stage is imitated by the fall of raindrops through the air toward the
earth. It is assumed that gravity and air resistance are the only forces acting
on the object, e.g. the evaporation of falling drops is ignored.

Let air resistance be a function, f(v), of the velocity v of drops only. Let
us denote by m the mass of a raindrop at the instant when the drop leaves the
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clouds and assume that it remains unaltered during the fall, m = const. Then
the velocity of the raindrop is determined, according to Newton’s second law,
by a differential equation of the first order:

d
mé’- = —mg + f(v), (2.2.19)

together with the initial condition

v|g=t, = U, (2.2.20)

where the notation |;—,, means evaluated at t = t,. Here ¢, is the instant when
the raindrop leaves the clouds and v. is its terminal velocity in that instant.
Provided that ¢, and v, are found from the first stage, one obtains the velocity
of raindrops by solving the #nitial value problem (2.2.19)~(2.2.20).

Commonly, it is assumed that air resistance is proportional to the square of
the velocity of a falling object provided that the object is not “very small”and
that its velocity is less than that of sound but not infinitely small. However,
under certain conditions air resistance can be approximated by a linear function
of velocity as well. Thus, one can consider, as a reasonable model of rainfall,
the following simple form of Eq. (2.2.19):

d
md—: = —mg — av + Bv?, (2.2.21)
where a > 0 and 8 > 0 are empirical constants. The choice of the signs is in
accordance with the fact that the air resistance opposes the force of gravity
and that v is negative in our coordinate system which is directed upwards.

2.3 Physics and engineering sciences

2.3.1 Newton’s model of cooling

The phenomenon of cooling (heating) by a surrounding medium is commonly
used in everyday life. One immerses a body, for cooling (heating) it, in a
medium of lower (higher) temperature than that of the body. The medium
may be the surrounding air, a large cold bath, a preheated oven, etc., while
the body in question may be a thermometer, a hot metal plate to be cooled,
blood plasma stored at low temperature to be warmed before using, milk and
other liquids. It is assumed that the temperature T of the surrounding bath is
unaffected by the immersed body, i.e., T = const. or, in general, T is a given
function T'(¢).

It is assumed further that the temperature 7 of the immersed body is the
same in all its parts at each instant so that 7 = 7(¢). Then what is known as
Newton’s law of cooling states simply that the rate of change of 7 is proportional
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to the temperature difference T'— 7. Newton’s law of cooling is written as the
following ordinary differential equation of the first order:

dr

— =k(T-1), 2.3.1

= kT -7) (23.)
where k is a positive constant depending on the substance of the immersed

body and that of the surrounding medium.

Example 2.3.1. Pasteurization provides a good example. Recall that pas-
teurization is the partial sterilization of milk without boiling it and is based
on Louis Pasteur’s discovery that germs in milk temporarily stop functioning
if every particle of the milk is heated to 64° C and then the milk is quickly
cooled.

Let us imagine an educated farmer who decided to pasteurize milk for the
first time but, unfortunately, found that his thermometer was broken. Since
our farmer is an educated one, we can fancy that he would solve the problem
of warming the milk precisely to 64° having at his disposal only an oven and
his watch, by using Eq. (2.3.1) instead of the broken thermometer as follows.

The farmer has firstly to determine the coefficient k. To that end, he places
a cup of milk stored at room temperature 7o = 25°C in the oven set, e.g. at
T = 250° C and waits until the milk boils. Suppose it took 15 min for the milk
to boil. Now, letting the boiling temperature of milk be 90° C, the farmer uses
the solution to Eq. (2.3.1):

=T - Be . (2.3.2)

At the initial moment (¢ = 0) this equation is written 25° = 250° — B and
specifies the constant of integration, B = 225°. Then the solution at ¢t =15 min
yields:

90 = 250 — 225¢™15%,

where we consider only the numerical values. Hence, 15k = — In(160/225), or
k =~ 34/1500. Thus, Eq. (2.3.1) yields the following formula for the temperature
of the milk placed in the oven at 250°:

T = 250 — 225¢~34t/1500

For 7 = 64 it follows —34¢/1500 = In(186/225) ~ —0.19, whence ¢t ~ 8.4 min.
Thus, the farmer should warm the milk for 8 min 24 s in the oven set at 250° C.

Newton’s cooling law, appropriately adapted to real situations, provides
a good approximation to modelling, e.g. the temperature dynamics inside a
building. Indeed, let the inside temperature 7 be an unknown function of time
t. Let T = T(t) be the outside temperature considered as a given function.
We firstly note that Newton’s law (2.3.1), where k is a positive constant, is in
agreement with the natural expectation that the inside temperature 7 increases
(dr/dt > 0) when T > 7, and decreases (d7/dt < 0) when T < 7. The constant
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k has the dimension of t~! and depends on the quality of the building, in
particular on its thermal insulation. In common situations, 0 < k < 1, and it
is infinitely small in ideally insulated buildings.

Suppose that the building is supplied by a heater and by an air conditioner.
Denote by H(t) the rate of increase in temperature inside the building caused by
the heater, and by A(t) the rate of change (increase or decrease) in temperature
caused by the air conditioner. Assuming that these are the only factors affecting
the temperature in the building, we have the following modification of Newton’s
cooling law (2.3.1):

%:- = K[T(t) — ] + H(t) + At). (2.33)

As an example of Eq. (2.3.3) with A(t) # 0, let us assume that a furnace
supplies heating at a given rate H(t) > 0 and that the building is provided
with a thermostat to keep the inside temperature around a desired (critical)
temperature 7.. If the actual temperature 7(t) is above 7., the air conditioner
supplies cooling, otherwise it is off, then A(t) = I(7. — 7), where [ is a positive
empirical parameter, and Eq. (2.3.3) is written as

.‘;_: =k[T(t) — 7] + H(t) + (7. = 7), (2.3.4)
with given functions T'(t) and H(t) and the constants k, 7c, l.

Imagine the following situ-
ation. In a still cold winter evening
when the outside temperature
stayed constant at Tp = —10°C,
the electricity was shut-down in
your house at t; = 6pm. This
caused cessation of operation of
your heater and air conditioner for
the whole night. Suppose that the
inside temperature at tp = 6 pm
was 79 = 25°C. Unfortunately,
however, the door and windows in
your building were not well insu-
lated. Therefore, it took only an
hour for the inside temperature to
drop to 7 = 19.5° C.

Exercise 2.3.1. What tempera-
ture do you expect in your bedroom at 6 am, provided that the outside tem-
perature stays at Ty = —10° C the whole night?

Solution. According to the given conditions, we use Newton’s cooling law
(2.3.1). Its solution is given by (2.3.2),

7(t) = To — Be™*.
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Letting ¢ = to, we have 25 = —10 — Be** or B = —35¢**%. Hence (in ° C):
7(t) = —10 + 35e~K(t=t),

The condition T|t=to+1 = 19.5 yields that 19.5 = —10 + 35e%, whence k =
In(1.18) =~ 1/6. Thus, the inside temperature is given by

7(t) = —10 + 35~ (¢)/6 ¢y <t < t).
In particular, the temperature at t = ¢t; = 6am is —5.25° C. See Fig. 2.3.

25

Figure 2.3: On Exercises 2.3.1 and 2.3.2.

Exercise 2.3.2. Let, in the conditions of Excrcise 2.3.1, the outside tempera-
ture increase uniformly from —10°C at 6am to +8°C at noon. Find the
variation of the inside temperature during this time.

Solution. Invoking that the coefficient k of the building has the value k = 1/6
and that the variation of the outside temperature is given by

T(t) =-10+ 3(t - tl), t; <t <ty
where t; = 6, t = 12, and solving the corresponding equation (2.3.1),

dr 1
E = g[—10+3(t—t1) —T],

we obtain the following variation of the inside temperature (see Fig. 2.3):
T=-284+3(t—t1)+22.75e” ¢80 ¢ <t<t,.

Exercise 2.3.3. Suppose now that the previous accident happened when the
outside temperature was +8° C at t; = 6 pm decreasing to —10° C at t; = 6 am.
Find the temperature variation in your house during the night.
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Solution. Here, unlike the previous case, the outside temperature is unsteady
and is given by T(t) = 8 — 3(t —t9), where ty <t <t,. Eq. (2.3.1):

dr 3
q = 8- 5(t—to) 7]
has the general solution
_g. 3 _3 ~kt
‘r(t)—8+2k 2(t-to)—Be ,

where B = const. The initial condition 7|,_, = 25 yields B = (5 —17)e*t. We
know from Exercise 2.3.3 that, for the building in question, k = 1 /6. Hence,
B = —8e'/6, Thus, the variation of the inside temperature during the night is
given by (in °C)

3
() =17-5(t-to) + ge~(t-t)/6 <t <t,.

In particular, the temperature at ¢; = 6 am is around 0° C. See Fig. 2.4.
25

20t

Inside

-10 ~7

Figure 2.4: On Exercises 2.3.3 and 2.3.4.

Exercise 2.3.4. Solve Exercise 2.3.2 in the conditions of Exercise 2.3.3.
Solution. The solution has the form (see Fig. 2.4)
T=-28+3(t—t;))+28e /0t <t<t,.

Exercise 2.3.5. In the 1970s, I attended a conference on differential equations
organized by Sergey Sobolev at lake Baikal. We enjoyed, along with talks of
brilliant Siberian mathematicians, surprises of the unstable Baikal weather.
Though it was mid-summer, the temperature frequently varied during the day
as drastically as from +25° C to +5° C, and vice versa. In this exercise, I invite
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you to imagine that you are near Baikal and answer the following question.
Suppose that you are in a summer house with a bad insolation supplied by no
heater. Let us assume that at a certain time tg (denote it by to = 0), when the
temperature indoors was 79 = +16° C, the whether suddenly changed and the
outside temperature oscillated between +26° C and +6° C as follows (in ° C):

T(t) = 16 + A sin(nt), A =10. (2.3.5)

Will you prefer to stay at home or you believe that the temperature inside the
house will be the same as outside because of the poor insulation?

Solution. The differential equation (2.3.1), with T'(t) given by (2.3.5), is
written 4
r

pri k[16 + A sin(xt) — 7). (2.3.6)
Using the method of variation of the parameter in the solution 7 = Ce~*t of
the homogeneous equation 7/ = —k7, we write
T =C(t)e™*

and substitute in Eq. (2.3.6) to obtain
C'(t) = k[16 + A sin(nt)] e**.

The standard integral
1
/ c** sin(lr)dz = kz_+lz[k sin(lz) —  cos(lz)]e** + B
yields
— 1aakt : k
C(t) = 16e™ + B + m[k sin(nt) — nvcos(nt)]e*t.
Thus, the general solution of Eq. (2.3.6) has the form
_ v, Ak
7(t) =16 + Be™** + R [k sin(xt) — 7 cos(mt)).

The initial condition 7|,_, = 16 yields B = Akn/(n? + k?), and ultimately we
arrive at the following solution:

T(t) = 16 + nzA—sz[n e~* 4 ksin(nt) — 1 cos(nt)). (2.3.7)

Solution (2.3.7) manifests that it is better to stay inside the house than outside
whatever the insulation is. See Figs. 2.5 and 2.6, Where the outside tempera-
ture (2.3.5) is given by the dotted line.

Likewise, one can solve a more general problem when the outside tempera-

ture T'(t) and the initial temperature 7|,_, are

T(t) = To + A sin(wt) (2.3.8)
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Figure 2.5: Surprising Baikal weather: k=1, A =10.
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and
7], = 7o, (2.3.9)

respectively. Then the temperature indoors varies as follows:

Akw

() = To+ (To—To-l-m

)e—kt + wT/f:El_ca [k sin(wt) — w cos(wt)]. (2.3.10)

In particular, if the period of the variation of the outside temperature is 24
hours, i.e., 24w = 2x, then (2.3.10) becomes

12Akn )e* Kt

T(t)=To+(TO-T0+m

12Ak

T oo 1 2kein

nt nt .
1p ~ beos E] (2.3.11)

2.3.2 Mechanical vibrations. Pendulum

In everyday life, one encounters many types of vibrations. These are, e.g., the
rustle of leaves and twigs of trees caused by wind, the bouncing motion of a car
due to cracks in the road, water waves and the oscillation of a ship on waves,
cte.

A common example of a differential equation describing small mechanical
vibrations is provided by the physical problem of a heavy particle suspended
from a coiled spring and oscillating in the vertical direction y about its position
of equilibrium y = 0. The particle will be subject to a restoring force F; that is,
according to Hooke’s law, proportional to its displacement y from the position
y = 0 and is opposite to the displacement, i.e.,

Fl =_kya

with a positive constant coefficient k. In reality, when a body moves in a
medium, there is also a damping (or friction) force F; which tends to retard the
motion. Commonly, it is assumed that the force of friction is proportional to
the magnitude of the velocity of the particle, but opposite in direction. Hence,

dy

F=-l—
2 dt )

where the independent variable is time ¢, and the coeflicient of proportionality

l is a positive parameter called the damping constant. We denote by f(t) the

total external force (due to wind, cracks in the road, etc.) regarded as a given

function of time.
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Thus, applying Newton'’s second law (2.1.2) with
F=F+F,+ (@),

the equation for small oscillations of & particle with mass m is written

d2
Mz +1 +ky f@), (2.3.12)
or
Ly = f(t), where L = md2 +ld +k
de? dt '

The mechanical vibrations are said to be damped if | # 0, and undamped
otherwise. The motion is said to be free if f(t) = 0, and forced otherwise.

Damped oscillations of a mechanical system with n degrees of freedom are
described by a system of ordinary differential equations:

- &y dy AN
Z(mirdt—, +lijﬁ+kijy1> =f'(t), i=1,...,n,

Jj=1

with constant coefficients m;;,l;;, and ki;. It is written in form (2.3.12) after
introducing the vector notation y = (y',...,y"),f = (f%,...,f") and the
matrix differential operator L as follows:

d?

= f(t
Ly = f(¢), L= Md +Ad + B,

where M, A, B are matrices with the entries myj, l;j, and k;;, respectively.

Remark 2.3.1. Throughout the book, vectors y etc. are regarded as column
vectors though they are written as rows. Accordingly, in the matrix M = (m;;),
the indices ¢ and j denote rows and columns, respectively.

The above linear models are legitimate for infinitesimal vibrations (called
harmonic oscillations) when the amplitude of the vibrations is sufficiently
small. Finite vibrations (or their higher-order approximations) are usually
described by nonlinear differential equations and are known as anharmonic os-
cillations.

Example (Pendulum). A simple pendulum consists of a weight (a bob) mounted
on the lower end of a vertical rod. The upper end of the rod is suspended from
a flexible low-friction support. If one pulls the bob sidewise and releases it, the
pendulum swings to and fro in a vertical plane under the influence of gravity.
The use of a pendulum as a time measurer is based on the remarkable observa-
tion due to Galileo® that, within certain limits, its period of swing is constant
provided that the length of the pendulum rod remains unaltered.

1Galileo discovered the principle of a pendulum in 1581. This principle showed that one
can use an oscillating mass to keep time. The introduction of the pendulum was an important
development in construction of mechanical clocks. Galileo’s discovery can be compared with
the invention of a wheel for its ingenuity.
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The above property of a pendulum can be deduced from an appropriate
mathematical model. Let m be the mass of the bob of a pendulum and let { be
the length of the pendulum rod. The rod is a relatively light string so that its
mass is negligible compare to m. Let us denote by y the angular displacement
of the pendulum from its equilibrium position ¥ = 0. The mathematical model
of the pendulum is obtained from Newton’s second law (2.1.1) by letting v be
the linear velocity v = ldy/dt and F be the restoring component of the gravi-
tational force, F = —mgsiny. Hence, the governing equation of the pendulum
is written:

d%y
de?

The equation of small oscillations is obtained from the nonlinear equation
(2.3.13) by assuming y — 0 and replacing siny by its first approximation,
siny = y. Then one arrives at the linear equation for free harmonic oscillations:

+w?siny=0,  where w?= % . (2.3.13)

d2
T ety =o. (2.3.14)

Its general solution has the form (see Section 3.3.3, Example 3.3.2)
y = Cy cos(wt) + Cysin(wt), Cy,C2 = const.

The time taken for one complete cycle of swing of the pendulum is called the
period and is denoted by 7. It can be formally determined by the condition
that the above solution remains unaltered when ¢ is replaced by ¢ + 7, in other
words, if cos{w(t + 7)] = cos(wt) and sin[w(t + 7)] = sin(wt). Hence, w(t +7) =
wt + 2n, or wr = 2n. Thus, invoking the definition of w, one obtains the
following expression for the period of free harmonic oscillations that accords

with Galileo’s observation:
T = 2—n = 23‘[\/2’ (2.3-15)
w g

where g is the gravitational constant. The quantity w = 2/7 gives the number
of oscillations in 2x units of time, and consequently it is known as the angular
frequency.

Let us conclude this example by considering a pendulum of a practical
interest. Namely, let us find the length of a pendulum which makes one swing
per second (i.e., 7/2 = 15). Eq. (2.3.15) yields

=9 (1)
t= n2 (2) :
Substituting g ~ 9.81 m/s? and 7/2 = 1 s, we find the desired length:

{~1m.
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Remark 2.3.2. The period 7 (2.3.15) of harmonic oscillations does not de-
pend on the initial displacement of the pendulum. Despite the fact that this
conclusion provides a perfect mathematical explanation of Galileo’s observa-
tion, it is, however, in a discord with the theory of free fall also based on
Newton's law. Indeed, the time t. = \/2Zhg of a free fall (see Exercise 2.2.1),
unlike period (2.3.15) of a free swing, depends on its initial height hg. It is ob-
vious that the effect is caused by the linear approximation (2.3.14) of the exact
nonlinear model (2.3.13). Therefore, let us discuss the period of anharmonic
oscillations governed by (2.3.13).

Exercise 2.3.6. Integrate Eq. (2.3.13) imposing the conditions y = 0 when
t =0 and y = a when t = T'/4. Here T is the period of anharmonic oscillations
of the pendulum and « is its angular amplitude, i.e., the maximum angular
displacement, @ = y|max. Evaluate the period T and compare it with the period
7 of harmonic oscillations.

Solution. After multiplying Eq. (2.3.13) by dy/dt, one can integrate it once

Since o is the maximum displacement, (dy/dt)|y=a = 0. Hence, C = —2w?cos a.
Using the identity

cosy — cosa = 2[sin?(a/2) — sin®(y/2)],

one obtains:

% = 2wy/sin?(a/2) — sin®(y/2).
The integration yields:
Voo 9 . 2 ~1/2
/ [sin®(a/2) — sin®(u/2)] " "d(u/2) = wt. (2.3.16)
0
The integral in (2.3.16), known as the elliptic integral of the first kind, cannot
be expressed in terms of elementary functions. Defining the new variable v by

sin(u/2) = sin(a/2) sinv

and denoting k = sin(a/2), one can rewrite the above integral in the standard
form, viz.

[ tsn(ar2) - st/ Patufz) = [ oS

According to our formula for the change of variables, u = a implies sinv = 1,
i.e., v = /2. Invoking the condition that y = a when t = T/4, we conch'lde
that v = n/2 when t = T/4. Hence, one can readily determine the period
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by substituting ¢ = T'/4 in (2.3.16) and rewriting the elliptic integral in the
standard form. Thus,

n/2
T= 4\/2/ / ———ﬂ-——, where & = sin(a/2).
9Jo  1-k2sinv
If the angular amplitude « is infinitesimally small, a — 0, then k — 0, and
hence T coincides with 7 given by (2.3.15). The maximum difference of T from
(2.3.15) occurs when k — 1, i.e., when a — n (the vertical displacement). If
0 < a < x, then |«k?sin?v| < 1, and hence,

(1 - k?sin®v)~ Y2 = 1+ (k2/2)sin’ v + (3k*/8)sin*v + - - .

Integrating this series termwise by using the well-known integrals

/s'm2 vdv = (v/2) — (1/4)sin(2v),

/sin4 vdv = (3v/8) — (1/4) sin(2v) + (1/32) sin(4v),

etc., and finally substituting x = sin(a/2), we obtain the following expres-
sion for the period that is convenient for its numerical evaluation and, unlike
(2.3.15), theoretically satisfactory:

l 1 a 9 a
T=2m /2 (1426?24 Zsin® T 4.0 ). 2.3.17
2n\/;<1+4sm 5 T a0 5+ ) (2.3.17)

The first term coincides with (2.3.15) and defines the principal part 7 of the
period T, while the other terms of (2.3.17) are small. For example, high-class
clocks employed in astronomy for their astonishing accuracy, are furnished by
a pendulum with the amplitude a = 1.5°. For such clocks, the usc of the first
correction term of (2.3.17) gives

2.3.3 Collapse of driving shafts

At the beginning of the 20th century, constructors of motor ships came across
the troublesome phenomenon of a seemingly accidental “beating” and the pos-
sible collapse of shafts in power transmission systems (see Fig. 2.8). The
strange phenomenon was explained by means of differential equations.

According to the model of the vibrations of rods (2.1.4), the positions of
equilibrium of a uniformly rotating cylindrical shaft are given by the time-
independent (0u/dt = 0) solutions to Eq. (2.1.4), i.e., they are determined by
the fourth-order ordinary differential equation

d*u
U d $4 - f )
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where u is the shaft’s displacement from its equilibrium position « = 0, and f
is the density of the centrifugal force acting on the shaft. To find f, consider a
small element of the shaft dz and denote by p the weight of the shaft per unit
length. Then the mass of the element dz is

dm=Eda:,
g

where g is the acceleration of gravity. The centrifugal force df acting on dz
due to the rotation by a constant angular velocity w is

2
df = w?udm = pt_;- udz.

Hence,
2
pw
f =—-—1u,
g

and the differential equation in question is written

diu  puw?

du_m 2.3.

e 7 u (2.3.18)

where the positive constant u depends on the material of the shaft.

Let the shaft revolve at two bearings located at x = 0 and z = | (Fig.
2.7). Then u|z=g = ¢|z=t = 0. Furthermore, it can be shown that bearings are
points of inflection of the function u = u(z). Thus, one arrives at the problem
of investigating the solutions of the differential equation (2.3.18) satisfying four
boundary conditions:

d?u _ d?y

dr?lz=0 ~ ' dz?lz=
The phenomenon of “beating” occurs when the boundary value problem defined
by Eqgs. (2.3.18)~(2.3.19) has a “nontrivial solution”, i.e., a solution u = u(z)

that does not vanish identically in the interval 0 < z < L.
Integration of Eq. (2.3.18) rewritten in the form

ul,_,=0, ul _, =0, =0. (2.3.19)

4 2
g-x—t‘: =a'u, wherea? = % = const., (2.3.20)

provides its general solution
u = C16°® + Cye™*® + Cycos(ar) + Cysin(az), C; =const.  (2.3.21)
The boundary conditions (2.3.19) yield
Ci+Cy+C3=0, Cre® + Cre™® + Cjcos(al) + Cysin(al) =0,

Ci+Cy—C3=0, C1e°' + Cge""‘ - Cs cos(al) - Cy sin(al) =0.
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— »

Figure 2.8: A beating shaft.

The reckoning shows that C; = C, = C3 = 0 and Cysin(al) = 0. If C4 = 0,
one arrives at the trivial solution, u = 0, so that the shaft is straight. On the
other hand, by letting sin(al) = 0, i.e., a = nn/l, one obtains the cases when
beating occurs. Then (2.3.21) yields

u = Cysin(nnz/l).

According to the definition of a, the equation a = nn/! yields that a collapse
of the shaft is possible whenever its angular velocity approaches any one of the
following critical values:

n?n?
wn = " %“, n=12,.... (2.3.22)

2.3.4 The van der Pol equation

A common illustrative example is the discharge of an electrical condenser
through an inductive coil of wire. According to elementary laws of electric-
ity2, the phenomenon is described by the equations

dav dI

Cdt =-1I, V_LE = RI, (2.3.23)
where I is the current of the discharge, V the voltage (the potential difference
between the terminals of the condenser), R the resistance, C' the condenser’s
capacity, and L the coil’s inductance. Here I and V are functions of time ¢,
whereas R, C, and L are regarded as given constants. Hence, (2.3.23) is a system
of first-order ordinary differential equations with two dependent variables, I
and V, considered as unknown functions of ¢.

Let us denote the dependent variable V by y and its first and second deriva-
tives with respect to t by ¥’ and %”. In this notation, the second equation of
(2.3.23), upon substituting I from the first one, becomes a linear second-order
ordinary differential equation:

ay’ + by +cy=0,
2Formulated by G.S. Ohm in 1827 and then generalized by G.R. Kirchhoff.
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with constant coefficients a = LC, b= RC, and ¢ = 1.

Replacing in the second equation of (2.3.23) the classical Ohm'’s law by the
so-called generalized Ohm’s law, one obtains a nonlinear system,

v dr
Oy =-1, L5 =V-hD,

or an equivalent single nonlinear equation of the second order:
ay’ +y=-f('), a=const.

By letting f(y') = e(3"® — ¢/'), one arrives at the van der Pol equation used in
the theory of triodes:

ay’ +y=e(y —y°), &= const. (2.3.24)

In fact, van der Pol’s equation was the first nonlinear differential equation of
real physical significance having periodic solutions, the latter property being
originally recognized by Balth van der Pol from his experiences in studying
oscillations in electrical circuits and in connection with an electrical model of
the beating of the heart3.

2.3.5 Telegraph equation

It is common knowledge that in electrodynamics current strcaming along a
cable is well described by the following set of equations:

Cwi+Guw+7j, =0, Lj,+Rj+wy=0, (2.3.25)

where the dependent variables are voltage w and current intensity j, consi-
dered as functions of time ¢ and the coordinate z along the cable. Cocfficients
involved in the equations are constant and they characterize physical properties
of the cable, namely C is capacity, L is self-induction, R is resistance and G
is leakage, defined as loss of current divided by voltage. Excluding one of the
dependent variables, w or j, from Eqgs. (2.3.25) by means of differentiation
and denoting the remaining variable by v, one obtains a linear second-order
differential equation (for intensity or voltage) known as the telegraph equation

Vgt — C*Vzz + (@ + b)vy + abv = 0.

The constant factors involved here have the following physical meaning: c is
light velocity, a and b are capacity and inductive dumping factors. They are
connected with coefficients of the initial set of equations by the formulae

2 = —1— a= g b= '}E .
cL’ C’ L
3B. van der Pol, Philosophical Magazine, vol. 2, 1926, pp. 978-992; B. van der Pol and J.
van der Mark, Philosophical Magazine, vol. 6, 1928, pp. 763-775. See also [11], Section 7.5.

C
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The first derivative in the telegraph equation can be excluded by setting
u=eFty.

Then, upon designating the resulting positive constant (a — b)?/4 by k?, one
obtains the following form of the telegraph equation:

Uge — Cugy — k®u =0, ¢,k = const. (2.3.26)

2.3.6 Electrodynamics

An electromagnetic field has two components, namely, the vector E of the elec-
tric ficld and the vector H of the magnetic field. The theory of electromagnetic
waves, or electrodynamics is based on the Maxwell equations

%—f:c(VxH)—Mj, V. E = 4np,
?mﬂ = —(V x E), V.H=o. (2.3.27)

Here j and p are the electric current density and the electric charge density,
respectively, and ¢ ~ 3 x 10' cm/s is the velocity of light. The Maxwell
equations have four independent variables, namely, the time t and the posi-
tion vector & = (z,y, 2z). The dependent variables are the vectors E and H.
The current j and the charge p are given functions, j = j(t,z), p = p(t, z).
Thus, (2.3.27) is an over-determined system of first-order partial differential
equations: it contains eight equations for six components of E and H.
The Maxwell equations (2.3.27) are often written in physics in the form

1 8E 4n .

EE—curlH——c-g, div E = 4np,

16H .

z W = —curl E, divH = 0. (2328)

In the simplest case of propagation of electromagnetic waves in vacuum the
Maxwell equations become

10B _ wH, dvE=o,
c Ot
18H .
Pl T —curl E, divH =0. (2.3.29)
In this case, one can consider the determined system of differential equations
10F
8_ = curl H,

ot
H
W = —curl E. (2330)

ol ol
D
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Indeed one can show (see Problem 2.7) that the relations
divE=0, divH=0 (2.3.31)

hold at any time if they are satisfied at an initial time ¢ = ¢y, and hence they
are merely initial conditions. This statement applies to more general situation
when Eqgs. (2.3.31) are replaced by (see [21], Section 10.5)

divE = f(z), divH = g(z),

in particular to Eqs. (2.3.28) when j and p do not depend on time.

2.3.7 The Dirac equation

One of the fundamental equations in quantum mechanics is the Dirac equation

x Oy

7 bz*

Eq. (2.3.32) is used for the study of relativistic particles with a mass m and
spin 1/2, such as electron, neutron, proton and neutrino (when m = 0).

Here the dependent variable 9 is a 4-dimensional column vector with com-
plex valued components 3*, %2, 13,%*. In quantum mechanics, dependent vari-
ables are usually called wave functions. The wave function 1 satisfying the
Dirac equation is called a spinor due to its specific transformation properties
under the Lorentz group (sce Section 7.3.8). The independent variable is the
four-dimensional vector z = (!, 22, 23 2, z3 are the rcal valued

+my =0, m = const. (2.3.32)

,x3,2%), where z!, z
spatial variables and z* is the complex variable defined by z# = ict with ¢ being
time and c the light velocity. Furthermore, ¥ are the following 4 x 4 complex
matrices called the Dirac matrices:

0o 0 o0 -z'\ 0o 0 0 —1\

0 0 -—i 0 1 0
=10 i o ol =10 1 o ol

i 0 0 0 -1 0 o0 0)

0 ) 0\ 1 0 0 0\

0 0 i 0 1 0 0
=1 o o ol "={o o -1 o0

0 —i 0 0 0 0 -1}

2.3.8 Fluid dynamics

The fundamental mathematical model in fluid dynamics is provided by the
following system of nonlinear partial differential equations of the first order
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describing motions of a compressible fluid (gas):
pt+v-Vp+pdive =0,
plve+ (v-V)v]+Vp =0, (2.3.33)
pt+v-Vp+ A(p,p)dive =0,

where A(p, p) is an arbitrary function connected with the entropy S(p,p) by
the equation

0S/dp
A=-p3s Top (2.3.34)

The dependent variables are the velocity v, the pressure p and the density p
of the fluid. The independent variables are the time t and the position vector
z = (z,y,2).

If the entropy in the liquid is constant, S = const., the flow is said to be
isentropic.

In the casc of so-called polytropic flows, function (2.3.34) has the form
A = 4p, where « is a constant known as an adiabatic (polytropic) exponent.
The case v = 5/3 corresponds to the flow of a monatomic gas. Since the solar
neighborhood contains mainly monatomic gases, this case is important. Thus,
monatomic gases are described by the equations

pe+v-Vp+pdivy =0,
ploe+ (v-V)v]+Vp =0, (2.3.35)
pe+v-Vp+ gpdivv =0.

Another physically significant case corresponds to a planar isentropic flow
(i.e., S = const.) of a gas with the adiabatic exponent v = 2. The condition
that the flow is isentropic implies that one has to drop the last equation of the
gasdynamic system (2.3.33). Then, setting

1 2
P=3p, p = gh,

where g is the acceleration of gravity, one reduces the first two equations in
(2.3.33) to the following system:

hi +v-Vh+ hdive =0,
v+ (v-V)v+gVh=0.

Here v is a two-dimensional vector and V is Hamilton’s operator with two
components, V. and V, (see (1.3.10)). Egs. (2.3.36) describe the flow of a
shallow water over a flat solid wall in the (z,y) plane, where h is the height of
the water surface above the wall.

The planar non-steady-state potential gas flow with transonic speeds is
described by the equation

(2.3.36)

22Utz + Uglgy — Uyy = 0. (2.3.37)
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2.3.9 The Navier-Stokes equations

The incompressible flow of a viscous fluid is governed by the Navier-Stokes
equations

ve+(v-V)v+ %Vp =vAv, divv=0. (2.3.38)

Here the dependent variables are the velocity v = (v?,v?,v3) and the pressure
P, whereas the density p is assumed to be a given constant. The parameter v
is the viscosity of the fluid.

2.3.10 A model of an irrigation system

A mathematical model for investigating certain irrigation systems is given by
the following nonlinear partial differential equation (see [19], Section 9.8 and
the references therein):

C)re = [K(¥)¥z]; + [K(¥) (¥ — 1)], - S(¥). (2.3.39)

Here 1 is the soil moisture pressure head, C(¥) is the specific water capacity,
K(v) is the unsaturated hydraulic conductivity, S(¢) is a source term, ¢t is
the time, z is the horizontal axis and z is the vertical axis which is considered
positive downward. This equation may be used for describing of soil infiltration,
redistribution and extraction in a bedded non-deformable soil profile overlaying
a shallow water table and irrigated by a line source drip irrigation system. Line
source drip systems produce a continuous wetted band along the length of the
lateral (the y-axis), and hence the phenomenon actually involves all three space
coordinates, z,y, and z.

2.3.11 Magnetohydrodynamics

Magnetohydrodynamics deals with significant physical and engineering pro-
blems arising in investigating the motion of ionized fluids in the presence of
electromagnetic forces. Let us consider the mathematical model describing the
motion of a perfectly conducting fluid in a magnetic field. We assume that the
magnetic permeability u = 1. Let H denote the magnetic vector field and v
the flow velocity of the fluid. Taking into account the assumption of infinite
electrical conductivity of the fluid, one has the expressions

j=curlH

and
E=Hxv

for the vector j of the electric current density and the electric vector field E,
respectively.

The equations of magnetohydrodynamics are obtained by combining the
Maxwell equations (2.3.28) with equations (2.3.33) of hydrodynamics. Using
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the above expressions for j and E, one obtains the following equations (see,
e.g. [4], Chapter VI, §3a.6):

la_II.+curl(Hxv)=0, divH =0,
c ot

pt+v-Vp+pdive=0, (2.3.40)
ploe+ (v -V)v]+Vp— (curl H) x H = 0.

Here the term (curl H) x H is due to the force j x H exerted by the magnetic
field on a unit volume of the fluid. Since the equation div H = 0 is merely
an initial condition, Eqgs. (2.3.40) provide a sub-definite system: they contain
7 equations for 8 unknown functions IF', H2, H%,v',v?,v%; p and p. An addi-
tional equation should be added in accordance with physical requirements in
the problem.

2.4 Diffusion phenomena

2.4.1 Linear heat equation

The behavior of physical systems in diffusion processes is approximately de-
scribed by neglecting the molecular character of the system. The elements of
this idealized system arc assumed to be unaffected by molecular fluctuations
regardless of how small a volume is being considered.

Let us derive the differential equation governing a steady heat diffusion
in a homogeneous material, where homogeneity means that the mass density
p of the material, its specific heat c. and thermal conductivity k are positive
constants. We isolate in the material an arbitrary volume Q and denote by 9Q
its boundary. Let v be the unit outward normal to the surface 9. We denote
by u the absolute temperature, so that u = u(t, ) is the temperature field to
be determined for any time ¢t and x € Q.

After J.B.J. Fourier’s paper (1811) on the theory of heat conduction and his
famous book Théorie analitique de la chaleur (1822), the mathematical model
of thermal diffusion is usually based on the following physical principles of heat
balance known as Fourier’s law of heat conduction.

(i) The quantity of heat @ in Q is proportional to the mass of  and to its
temperature:

Q(t):/pc.udxdydz. (2.4.1)
Q

(ii) Heat diffuses from a higher to a lower temperature, and the heat flow
is proportional to the gradient of temperature, i.e., the heat flux in the volume
2 through its surface 92 is given by

/ (kVu-v)dS. (2.4.2)
a0
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(iii) The rate of change of the heat content (2.4.1) within , i.e., the quantity

QQ ou

Tl 9pc. ?a—t—dxdydz

is cqual to the rate of heat entering through the surface 89 in accordance with
(2.4.2). Hence, we have the following balance equation:

5
/ p e dzdydz = / (kVu - v)dS. (2.4.3)
Q an

Using the divergence theorem (1.3.18), one can convert the surface integral
in the right-hand side of Eq. (2.4.3) to a volume integral:

/ (kVu-v)dS = / V. (kVu)dzrdyd-z.
an Q
Consequently, the integral equation (2.4.3) becomes

fu
/pc.gdxdydz=/V‘(kVu)dxdydz. (2.4.4)
Q o

Since Q is arbitrary, the integral equation (2.4.4) is equivalent to the differential

equation

du
peng = V- (k). (2.4.5)

Since the thermal conductivity k is constant, we have
V.- (kVu)=kV:(Vu) =kAu,
where A is Laplacian (1.3.19). Thus, we arrive at the linear heat equation
u, = a?Au, (2.4.6)

where the positive constant a? = k/(pc.) is the diffusivity of the material.
In the one-dimensional case, when the temperature depends on time t and one
spatial variable z, the heat equation (2.4.6) has the form

u_ 0 _
ot 8z

A physical realization of the one-dimensional heat diffusion is as follows. Con-
sider an infinite uniform rectangular bar of a cross-sectional area S protracted
along the z axis, with the sides perfectly insulated. Assume that the temper-
ature T is uniform in any cross-section of the bar. That is, T = T'(t,z) is the
temperature of the bar at time t in the section parallel to the (y, z) plane at
a distance z from the origin O of the rectangular axes Oz, Oy, Oz. Let the

0. (2.4.7)
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N

Figure 2.9: One-dimensional heat flow.

domain § be the slice of the bar of thickness Az at a distance = from O (see
Fig. 2.9). The balance equation (2.4.3) is written approximately as

ASAT) _ g (6T aT )

at oz Oz
Dividing this equation by SAz, passing to the limit Az — 0 and denoting the
temperature T by u, we obtain the one-dimensional heat equation (2.4.7). It
is linear and has constant coefficients, i.e., it is invariant under the ¢- and z-
translations, because of our consideration of steady diffusion processes and the
assumption on uniformity of the material of the bar.

z+Az

2.4.2 Nonlinear heat equation

Our speculations in the previous section are based, in fact, on the assumption
that a change of temperature does not affect the physical characteristics p, c.
and k of the material. This assumption is reasonable if the change of tem-
perature is not high. Furthermore, it is also reasonable to assume that the
density and the specific heat will keep their initial constant values even under
the high temperature. The thermal conductivity will be affected, however, if
the temperature varies considerably.

Therefore, let us consider the balance equation (2.4.3) under the assumption
that p and c. are positive constants as before, but k depends on the tempe-
rature, k = k(u). Furthermore, one can let pc, = 1 by using an appropriate
scaling of time and write Eq. (2.4.5) in the following form:

17/
2V k() Vu). (2.4.8)
ot
Eq. (2.4.8) is called a nonlinear heat equation. It is often written in the form
Ou

i div [k(u) grad u]. (2.4.9)
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In the one-dimensional case, the nonlinear heat equation has the form

o i) Bu
a_'t‘ = 5 [k(u) %} (2.4.10)
or
Uy = [k(u) Uz)e = k(u) gz + K (1) (ug)?. (2.4.11)

2.4.3 The Burgers and Korteweg-de Vries equations

The Burgers cquation
Up = Ulg + VUgy (2.4.12)

is widely used in fluid mechanics, nonlincar acoustics, ctc. It is used, e.g. to
model the formation and decay of non-plane shock waves where the variable
z is a coordinate moving with the wave at the speed of the sound, and the
dependent variable u represents the velocity fluctuations.

The cocfficient v in the Burgers equation (2.4.12) is usually considered as
a constant. However, it is actually a function of the time, and hence there is
merit in studying the generalized Burgers equation

Uy = UUg + V(t) Uz (2.4.13)
The Korteweg-de Vries equation
Up = UUg + Y Uszy, M = const., (2.4.14)

is used, e.g. in mathematical description of propagation of long water waves in
channels.

The Burgers and Korteweg-de Vrics equations are distinguished among non-
linear partial differential equation due to their remarkable mathematical pro-
perties.

2.4.4 Mathematical modelling in finance

The mathematics of finance is aimed at studying stock price fluctuation as a
diffusion process in a random environment. Accordingly, time and uncertainty
are central elements in modelling the financial behaviour of economic agents.
Therefore, the basic mathematical models in finance are formulated in terms of
stochastic processes thus leading to stochastic differential equations. However,
under certain simplifying assumptions, the models often can be approximated
by usual differential equations.

A well-known equation of this type is provided by the Black-Scholes model
(1973) used in stock option pricing. The model is approximated by the following
linear equation with variable coefficients:

us + %Azxzum + Bxua: - Cu = 0! (2‘415)
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where A, B, and C are constant coefficients connected with characteristics of
the model. Note that the Black-Scholes equation (2.4.15) can be transformed
to the heat equation by a rather complicated change of variables.

2.5 Biomathematics

2.5.1 Smart mushrooms

It is natural to assume that growing mush-
rooms strive to minimize the waste of mois-
ture. Consequently, they should grow so
that their surface area is minimal thus re-
ducing the amount of evaporation.

Starting from this assumption, let us
find the optimal form of the mushrooms by
solving the following simple mathematical
problem. We will then compare the result
with real mushrooms. Consider curves y =
y(z) in the (z,y) plane connecting two fixed
points, P, = (z;,y;) and P, = (z2,y2). One
revolves the curves about the y axis to ob-
tain surfaces.

The problem is to find that curve for
which the surface of revolution has a mini-
mum area. Let us solve the problem. Comnsider a narrow strip of the surface
obtained when the variable z is between the values z and = + dz. The area of

the strip is
2nzds = 2nz/1 + y2dz
since
(ds)? = (dz)? + (dy)?
and hence

ds =+/1+y?dx.

Therefore, the total area of the surface of revolution is given by the integral
Z2
S = 2n/ z+/1 + y2dz.
z,

Hence, one arrives at the following variational formulation of the problem: find
the curve for which the variational integral

/L(x, Y,y )dz

with the Lagrangian

L=z\1+7y?
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has a stationary value. The condition for a stationary value is equivalent to
the Euler-Lagrange equation (1.5.2):

oL oL
5 D (6—1},) =0. (2.5.1)

Since in our example we have

L
oy 9 N1+y?’

Eq. (2.5.1) is written in the form of a conservation law (see Section 7.3):

D,(

)"

Whence, upon differentiation, one obtains the following nonlinear differential
equation of the second order:

!

(2.5.2)

1
v+ W +y¥) =0 (2.5.3)

The conservation law (2.5.2) yields the following first integral for Eq. (2.5.3):

/

Ty

i

Now we solve the above equation with respect to ¢/, integrate it and obtain the
general solution

= A = const.

y=B+ karccosh%,

with two constants of integration, B and k. Evaluating the inverse to the hy-
perbolic cosine (see (1.1.8)), we can write the solution in the form

y=B+kln

N
z—“-—i—k-'=c+kln|x+\/zz—k2|

where C = B — kn|k|.
Thus, the desired curve is given by the solution

y=C+kln|z+ V22 -k?|

of (2.5.3) satisfying the boundary conditions y(z1) = y1, y(z2) = vo.
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F

Figure 2.10: Growing by the law  Figure 2.11: A real mushroom.
y=C+kln|z+ Vz2 — k2|.

2.5.2 A tumour growth model

Recently, several mathematical models appeared in the literature for descri-
bing spread of malignant tumours. These models are formulated as systems
of nonlinear partial differential equations. One of these models is formulated
here.

In healthy tissue, balance is preserved between cellular reproduction and cell
death. A change of DNA caused by genetic, chemical or other environmental
reasons, can give rise to a malignant tumour cell which disrupts this balance
and causes an uncontrolled reproduction of cells followed by infiltration into
neighboring or remote tissues (metastasis).

Several authors? investigated the problem of invasion of malignant cells
into surrounding tissue neglecting cellular diffusion. Motivated by several im-
portant observations in tumour biology, they suggested a mathematical model
appropriate for studying the averaged one-dimensional spatial dynamics of ma-
lignant cells by ignoring variations in the plane perpendicular to the direction
of invasion. The model is formulated in terms of nonlinear partial differential
equations as the following system:

ue = f(u) - (ucz),,
= —g(c,p),
pt = h(u,c) — Kp.

Here u, ¢ and p, depend on time ¢ and one space coordinate  and represent
the concentrations of invasive cells, extracellular matrix (e.g. type IV collagen)
and protease, respectively. To describe the dynamics of a specific biological

4A.J. Perumpanani, J.A. Sherrat, J. Norbury, and H.M. Byrne, Physica D, 126, 1999.
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system, the authors of this model introduced arbitrary elements f(u), g(c,p)
and h(u, c) that are supposed to be increasing functions of the dependent vari-
ables u, ¢, p. For example, the function h(u,c) in the last equation of the above
system represents the dependence of the protease production on local concen-
trations of malignant cells and collagen, while the term —K p is based on the
assumption that the protease decays linearly, where K is a positive constant
to be determined experimentally via half-life.

By observing that the timescales associated with the protease production
and decay are considerably shorter than for the invading cells, the above model
can be reduced to the following system of two equations:

u = f(u) — (ucs),
= -g(C, u’)7 (254)

where f(u) and g(c,u) are arbitrary functions satisfying the conditions

fw) >0, gclc,u) >0, gu(c,u)>0.

2.6 Wave phenomena

Mathematical models of vibration phenomena are most simply derived by using
Hamilton’s variational principle or the principle of least action (see Section 1.5).
In classical mechanics, any mechanical system is described by a finite number of
variables (coordinates of the system) considered as unknown functions of time.
Consequently, the motion of the system is governed by ordinary differential
equations (1.5.2) discussed in Scction 1.5.1.

In continuum mechanics, the position of a continuous system no longer can
be characterized by a finite number of variables of time. In this case, the kinetic
and potential energies are represented by integrals from functions of several
variables. This leads to partial differential equations obtained via Hamilton’s
variational principle discussed in Section 1.5.2. Mathematical models have
particularly simple (linear) form if the motions are confined to the vicinity of
an cquilibrium position of a continuous system.

2.6.1 Small vibrations of a string

A string, considered as a thin elastic thread spanned along the z-axis, provides
a simple example of a one-dimensional continuous system.

Consider the following physical problem. Let us disturb a string from its
equilibrium position and release. Evidently, the string will seek to revert to
its original position due to the force caused by extension of the string when
disturbed. However, when the equilibrium position is reached the string does
not stop, inertia deviates it from the z-axis in the opposite direction, and the
process repeats. Thus, assuming stretching is the only force acting upon the
string, one has free vibrations of the string about its equilibrium position.
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Let us obtain the differential equation for determining the perpendicular
deviation u = u(z,t) of a point = on the string from the equilibrium position
at the time t. Thus we consider the small vibrations of the string by assuming
that higher powers of the function u(z, t) and of its derivatives can be neglected
compared with lower powers.

We use lower indices for partial derivatives along with the standard nota-
tion. For example the derivatives of the function u(z,t) with respect to the
variables = and t are denoted by u, and u., respectively.

Let p(z) be a line density of the string. Then the mass of a small part of the
string with the length dz in the interval (z, z+dz) equals p(z)dz. Accordingly,
the density of the kinetic energy T of the string at the point = at a time ¢ is
written in the form

T= %p(z) ul. (2.6.1)

The potential energy is proportional to the increase in length of the string
compared with its length at rest. The factor of proportionality is a positive
number p > 0 called the tension. Since the length of a string element dz upon
deviation becomes

ds = \/(dz)? + (u.dz)? = /1 +u2 dz ~ [1 + %uﬁ] dz,
the increase in length of the element of the string has the form

\/1+u§dz—dzz%u§dx.

Hence, the density of the potential energy is given by

1
=3 pul. (2.6.2)

One can apply to the continuous system the concept of an action S intro-
duced in Section 1.5.1. Then the action integral for the string is written

S = / Ldzdt,

where, according to Eqs. (2.6.1) and (2.6.2), the Lagrangian
L=T-U

has the form !
L= 3 [p(z)uf - pug]. (2.6.3)
Thus, the Euler-Lagrange equation (1.5.4) has the form:

6L 8L oL oL
bu - 9u D, (3—m) - D, (6—%) =0. (2.6.4)
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Here D; and D, are the total differentiations (see (1.4.9))
o 0 0 (7]

D, = — — — Yo

‘T 5t +ut8u +u“6ut -i-ut:c(?uﬂc

and o o P P
D, = —+4u;— — tUgpe—

oz tu ou +utz8ut tu dug

with respect to t and z, respectively.
For Lagrangian (2.6.3), we have

OL _o, OL _ oy, 2L _
u > Bu PP Gy T THUs

T

oL oL
Dt(%) = P(x)uu, D, (Bu—,,) = —MUlUgz.

Substituting the above expressions in Eq. (2.6.4), we obtain the following linear
partial differential equation of the second order:

and hence,

_p(x) Utt + U Uzg = 0.

Dividing by —p(z), we obtain the wave equation for free small transverse vi-
brations of a string:

— k2 = 2 = _Il_
uge — k*(2)ugz =0, where k*(z) @)’
or 52 52
gU 2% _
o k 557 = 0. (2.6.5)

If the string is subjected to the action of an external force f(z,t) perpendi-
cular to the string, the kinetic energy (2.6.1) remains the same, but the poten-
tial energy (2.6.2) takes the form

U= % il — f(z,)u. (2.6.6)
Now we have )
=3 [p(r)Uf - ;mi] + f(z,t)u (26.7)
instead of (2.6.3) and therefore,

% = f($, t)» g‘lf_; = p(z)utr %L; = —HUg.
Accordingly, Eq. (2.6.5) is replaced by the following equation for forced vibra-
tions of the string:
p(l’) Ut — P Uz = f(wa t)' (2.6.8)
Likewise, one can obtain the equation for longitudinal small vibrations of
an elastic rod:
p(z)uw — [E(z)usz)z = f(2,1), (26.9)
where E(z) is Young’s modulus, i.e., the modulus of elongation of the rod.
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2.6.2 Vibrating membrane

A membrane is a portion of a two-dimensional surface made from an elastic
material whose potential energy is proportional to change in the surface area.
The positive constant g > 0 (factor of proportionality) is called the tension.
The density of the membrane will be denoted by p(z, y).

Let the membrane at rest occupy a region of the planc (z,y), and let
u(z,y,t) be the deformation of the membrane normal to its equilibrium po-
sition. We again suppose that the deformations are small, and hence higher
powers of u, uz, u, are negligible compared with lower ones. Then the area of
an element of the deformed membrane is written

‘/1 +uZ +uZdzdy ~ [l + %(u"; + uf,)] dzdy. (2.6.10)

Subtracting the area dzdy of the element before deformation, one obtains the
following change of the area:

1
2 (u + u )dzdy
Hence, the density of the potential energy is

U
=5+ ),

while the kinetic cnergy is similar to that of string (2.6.1), namely:

T= —p(m y)ul.

Thus, the Lagrangian for the membrane has the form

_1 2 _ 2.2
=3 [p(z, y)ug u(uI + uv)] , (2.6.11)
and the corresponding Euler-Lagrange equation is written
6L oL oL oL oL
—= - —) =0, 2.6.12
5= o 2(5a) P=(5) DV(au,,) (26.12)

where D, D, and D, are the total differentiations with respect to ¢,z and y,
respectively:

17} o v} 7] 17}
D, = +'u:a +uztau +utz3u +uzy6uy

at

(7} Ie} 0 0 ad
D, = a—z+u16u+“ua +uzzau +Uzya y

0

d

0 0 0 0

Dy = —y +uy% + um% + umy*az + uwéu—y
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Substituting Lagrangian (2.6.11) in (2.6.12), proceeding as in the case of the
string and using again the notation

K(a,y) = £,
p(z,y)
one obtains the two-dimensional wave equation for a vibrating membrane:
0%u &%y 8%u
— -k —=+— ) =0 .6.1:
e (63;2 + 6y2) 0 (2.6.13)

The expression in the brackets is the two-dimensional version of Laplacian
(1.3.19), and Eq. (2.6.13) is often written in the form

ug — k*(x,y)Au = 0. (2.6.14)

In the presence of an external force f(z,y,t) normal to the planc (z,y) the
equation for forced vibrations of the membrane is written

ug — k*(z,y)Au = F(z,y,t), (2.6.15)

where F(z,y,t) = f(z,y,t)/p(z,y).

Most frequently, the wave equation is considered when the density p is
constant. Then the coefficient k% is also constant. This assurnption will also
be used in the three-dimensional wave cquation:

Upe — k2 Au = F(z,y,2,t), k® = const., (2.6.16)
where A is the Laplace operator (1.3.19):

02 H? 62
A=—_4+ 2 2.
Oz? + Oy? + 022
The wave equation (2.6.16) is called homogeneous if F = 0, and non-homogene-
ous otherwise (see Section 5.1).
Along with the one-dimensional (2.6.5) and two-dimensional (2.6.13) wave
equations, we also consider the three-dimensional linear wave equation

2 2 2 2
0“u 2((’) u Oy 0 u) -0 (2.6.17)

w "\aztar T ez

This is one of the basic equations of mathematical physics. For example, it
describes propagation of light waves; then the coefficient k? in Eq. (2.6.17) is
identical with ¢, where c is the velocity of light in vacuum.

Note that any wave equation with a constant coefficient k% can be reduced
to an equation with k2 = 1 by means of an appropriate dilation transformation.
Therefore, we shall also use the following equivalent form, e.g. of the free wave
equation:

U — Au=0. (2618)
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2.6.3 Minimal surfaces

We derived the wave equation for small vibrations of membranes using appro-
ximation (2.6.10) for the variation of the surface area of the membrane. The
problem on minimal surfaces® requires determination of all possible configura-
tions of the membrane when its surface area

/‘;,/l+u§+u§dm‘dy

has a minimum value. Hence, the corresponding differential equation for mi-
nimal surfaces is the Euler-Lagrange equation with the Lagrangian

L=y/1+u+ul. (2.6.19)

Since Lagrangian (2.6.19) does not involve u and u;, and since

T ———————— — I e———
Ous 1+ +ul Ouy 1+ u2 +ul

the Euler-Lagrange equation (2.6.12) is written

D, (——i—) + Dy<—i’———> =0 (2.6.20)

A1+ u2+ul o 1+uZ+ul

and leads to the following nonlinear equation:
(1 + u2)uge — 2ugtylicy + (1 + u2)uyy = 0. (2.6.21)
The linearization of Eq. (2.6.21) gives the Laplace equation
AU=Ugz +Uyy =0 (2.6.22)

for the equilibrium problem for the membrane.

2.6.4 Vibrating slender rods and plates

A physical slender rod is a thin wire which resists bending unlike the string
which resists elongation. A mathematical rod is a one-dimensional continuum,
lying at the straight line when at rest, which being bent gains potential energy

5The problem was first formulated by L. Euler. Some hundred years later, a Belgian
physicist J. Plateau suggested experiments for obtaining minimal surfaces and described
them in 1873. Since then, the problem of minimal surfaces became known as Plateau’s
problem, see. (35], p.534. A profound mathematical investigation of the problem is due
to R. Courant. I remember his lecture at the Russian-American conference held in 1963
at Novosibirsk University, where I was a student. His talk was enlivened by an illustration
where he repeated Plateau’s experiments and obtained minimal surfaces by dipping in a soap
solution pieces of wire bent into closed curves of various forms.
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with a density proportional to the square of the curvature. We denote by u(z, t)
the deviation of the rod from its position of equilibrium. We consider again
small vibrations defined as in the case of strings. The deformed rod is a curve
u = u(z,t) in the z,u plane, where time t is regarded as a parameter.

Recall that the curvature of a curve is the rate of change of its direction
(i.e., the tangent to the curve) and describes the flatness or sharpness of the

curve. For a plane curve u = u(z,t), the square of curvature K at the point z
is given by

KZ - u’?:z
(1+u2)3
and is approximated by
K?~d?,.

Hence, the density of the potential energy is given by

U= gu";x,
while the density of the kinetic energy has again form (2.6.1),
1
T=§pd,

where p = p(z), pu = const. Thus, the Lagrangian has the form

1
L=3 (puf - pugx). (2.6.23)
In the case of the Lagrangians involving the second-order derivatives:
L= L(t, T, U, Uz, Uty Uzz, Uzt utt)y

Hamilton’s variational principle provides the following Euler-Lagrange equation
(cf. (1.5.4)):

6L _OL oL oL
Fuou D (a‘u:) = Ds (auz)

, [ OL
4+ D? (_f’l’_) +D,D, (_‘93) p? ( 9 ) 0.  (2624)

Ouy, Ousz Ougzz

For Lagrangian (2.6.23), Eq. (2.6.24) is written as follows:

"Dt(put) - D:(ﬂumz) = —pUy — PUzzzz = 0.

We can also take into account external forces as we did for strings. Thus, small
transversal vibrations of slender rods are governed by the following partial
differential equation of the fourth order:

o° iy



86 2. MATHEMATICAL MODELS

where f is a total force acting on the rod and u is a positive constant.

Derivation of the differential equation for vibrating plates is similar to that
for rods. A plate is an elastic two-dimensional surface, plane when at rest,
the density of whose potential energy U after deformation is proportional to a
quadratic form in the principal curvatures K and H of the plate:

U =aH?+BK, a,f = const.

The expressions for K and H are given in any textbook of differential geo-
metry. In the case of two-dimensional surfaces given by the equation u =
u(z,y,t) with time t considered as a parameter, we have

2
Ugzlyy — U

=W oy H=div—-L,
(1+u? +u}) J1+uZ +ul

where Vu = (uz,uy). In the approximation of small vibrations, we have

K =

K ™ ugzuyy —ul,, H=div(Vu) = Au =ty + uyy.
Hence, setting a = u/2, we have
U= -g (Au)? + B(uzzuyy — uiy).
Exercise 2.6.1. Prove that
)
E(u,xuyy -u?,)=0. (2.6.26)

In view of Eq. (2.6.26), we take the Lagrangian in the form

L= % [pu? — p(Au)?). (2.6.27)

With this Lagrangian, the two-dimensional version of the Euler-Lagrange equa-
tion (2.6.24) gives the following fourth-order partial differential equation for
vibrating plates:

P + p(Uzzzz + 2Uzzyy + Uyyyy) = 0- (2.6.28)

2.6.5 Nonlinear waves

Let us consider a uniform membrane whose tension varies during deformations,
i.e., we assume that u = ¢(u) > 0 and p = const. Weset p =1 for the simplicity
sake. Then Lagrangian (2.6.11) is replaced by

L= [ - o) (a2 +43)], (2.6.29)
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and the corresponding Euler-Lagrange equation

oL |
3~ D) - P=(5) ~u(F5) = 0

is written

_% ¢ (u)ul - % ¢ (u) u2 — Dyfue] + Dg[¢(u)uz] + Dylp(u)u,] = 0

or
_l ¢I( ) 2 _ l / 2 / 2 2
2 Uj Uy 2 ¢ (u) Uy, — Uit + ¢(u)[uzz + “yy] +¢ (u)[uz + u’y] =0,
whence, upon collecting the like terms:
1
— gy + O(u) Uz + Uyy| + 2 & (u)u? + “31 =0.

Thus, we have the following nonlinear wave equation:

1
Uy = ¢(u) Au+ 3 &' (u)|Vul2. (2.6.30)
The nonlinear wave equation (2.6.30) can be written for any number of variables
z!,...,z". For example, the one-dimensional case yields:
1
uy = () gz + 3 ¢ (w)ul. (2.6.31)

The following nonlinear differential equations different from (2.6.31) are also
used in studying nonlinear wave phenomena:

Uit = [f(u)uz]ma
ure = [f(z, u)uz)s, (2.6.32)
uy = [f(u)uz + g(z,u)l=.

Defining the potential v by the equation u = v,, Egs. (2.6.32) are written,
respectively, as follows:

Uit = f(v:c)v:za
v = f(T,Vz)Vzz, (2.6.33)
Vgt = f(Vz )2z + 9(2, V).

The latter equations are encapsulated in the following reasonably general class
of nonlinear one-dimensional wave equations:

Ve = f(xa 'Uz)v:l:z + g(w, 'U:c)- (2.6.34)
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Another type of nonlinear wave phenomena of practical interest are known
in gas dynamics as “short waves”. They are described by the system

Uy ~ 2vp — 2(v — z)uy — 2kv =0,

vy +u; =0, k = const.

This system of two first-order equations can be reduced by the substitution
u = wy, v = —W; to one second-order equation, namely:

2wtz + 2($ + w:)w;: + wyy + 2sz = 0. (2~6~35)

2.6.6 The Chaplygin and Tricomi equations
The Chaplygin equation has the form

P(T)uyy + gz = 0. (2.6.36)

It plays a significant role in problems of high velocity aerodynamics and was
suggested by S.A. Chaplygin in 1902 in his dissertation “On gas jets”. The
Chaplygin equation is used for the study of the two-dimensional steady tran-
sonic flow and has practical applications, e.g. in aircraft enginecring for mo-
delling the flow of gas jets past a wing when the flight speed is close to the
speed of sound.

A good approximation of the Chaplygin equation is the Tricomi equation

TUyy + Uge = 0. (2.6.37)

Equations (2.6.36) and (2.6.37) provide examples of partial differential equa-
tions of so-called mized elliptic-hyperbolic type, e.g. (2.6.37) is elliptic when
z > 0 and hyperbolic when z < 0 (see Section 5.2.5). As a matter of fact,
Eq. (2.6.37) was suggested by F.G. Tricomi in 1923 in his study of linear
second-order partial differential equations of mixed type.

Problems to Chapter 2
2.1. Derive the Euler-Lagrange equations for the following Lagrangians:

1
(i) L=§[ui+“§+u§‘“?] _f(tsw)yyz)u’

.. 1 1
(i) L= 5 u2 — wug — 5 ud,

1
(i) L= 3 (—u? + pul)) — f(t,z)u, p= const.,
] 1
(ivy L= 3 [-uf + (uge + uyy)z] - f(t,z,y)u.
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2.2.
23.

2.4.

2.5.

2.6.
2.7.

Give a detailed derivation of Eq. (2.6.21).

The gravitational force of the Sun is spherically symmetric. Therefore,
one may naturally conclude that the motion of the planets should also be
spherically symmetric. This would only be the case if the planets moved
in circles on surfaces of spheres. J. Kepler discovered (1609), however,
that planets move in ellipses not in circles, on fixed planes not spheres,
with the Sun at a focus not at the centre. Explain what violates the
symmetry in the motion of planets.

Let us generalize Kepler’s problem and consider the motion of a particle
with mass m in an arbitrary central potential field

U=U(r), r=|z|=+(z")?+ (22)2+ (23)2

According to the principle of least action (see Section 1.5.1), the motion
of the particle is determined by the Lagrangian

L=

0|3

3
> @) -U(n).
i—1

Find the corresponding Euler-Lagrange equations (1.5.2).

The Dirac equation (2.3.32) is a vector equation. Its components provide
four equations. Write down these four equations explicitly.

Integrate Eq. (2.2.3): dP/dt = aP — BP? (a,f = const. # 0).

Derive from Egs. (2.3.30) that D;(div E) = 0, D;(div H) = 0, and hence
Eq. (2.3.31), div E = 0, div H = 0, hold at any time if they are satisfied
at an initial time t = tg.
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Chapter 3

Ordinary differential equations:
Traditional approach

This chapter is designed as a short account of basic traditional methods in-
vented mainly in the 17th and 18th centuries. These classical devices are
simple and therefore commonly used in the practice of integration of special
types of ordinary differential equations by means of ad hoc methods.

Additional reading: E. Goursat (9], G.F. Simmons (35].

3.1 Introduction and elementary methods

3.1.1 Differential equations. Initial value problem

An nth-order ordinary differential equation (ODE) is a relation
F(l‘,y,y',m»y(")) =0 (3.1.1)

connecting the single independent variable z, the dependent variable y and its

derivatives /,...,y™.

The classical definition of solutions of differential equations is as follows.

Definition 3.1.1. A function y = ¢(z), defined in a neighborhood of zo and
continuously differentiable n times, is said to be a solution of a differential
equation (3.1.1) if

F(z,¢(z),¢'(z),...,6™(z)) =0
identically in « from a certain interval
(zg — €,20 +€), €>0.
Since any function y = y(z) represents a curve in the (z,y) plane, solutions of

ordinary differential equations are also termed integral curves.

91
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Existence theorems furnish the core of the general theory of differential
equations, in particular, in Lie group analysis.

The first systematic investigations on the existence of solutions of differen-
tial equations are due to Cauchy (1845). Note that, e.g. in the case of Eq.

(1.2.58),
d

v _
a—f(m)v

with continuous f(z), one can readily obtain the solution that assumes a given
value yo at T = zg, by means of formula (1.2.59). The solution of this initial
value problem is unique, is defined in a neighborhood of the point zq and is
given by

y(z) = vo + / * F()de.

Cauchy extended this result by proving the existence of solutions of the initial
value problem for the general first-order equation:

% = f(=,y), Y,_,, =0 (3.1.2)
where f(z,y) is a continuous function in a neighborhood of the point (zg, yg) in
the (z,y) plane; the notation |1:=:t means evaluated at z = zg. Consequently,
initial value problems are often referred to as the Cauchy problem.

Thus, Cauchy’s result states the existence of integral curves passing through
any given point (zg,yo). However, the solution nced not be unique if only the
continuity of the right-hand side, f(z,y), is required. For example, the initial

value problem
dy
3z = 2V, Y]yg = 05

has two solutions, namely:
y=0 and y=|z— z¢|(z — z0).

Therefore, Cauchy’s investigations were continued and led to the general
theorems on existence and uniqueness of the solution of the Cauchy problem.
For our purposes, it suffices to use the following simple version of the existence
and uniqueness theorem.

Theorem 3.1.1. Let f(z,y) be a continuously differentiable function in a
neighborhood of the point (zg,yo). than the initial value problem (3.1.2) has
one and only one solution y = ¢(z) defined in a neighborhood of zj.

Remark 3.1.1. A more general version (though not the most general one) of
the theorem requires a weaker condition than the continuous differentiability,
namely so-called Lipschitz condition.

The existence and uniqueness theorem for higher-order equations has the
following form.
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Theorem 3.1.2. Given an nth-order equation
¥ = f(z,u,9,. . 9", (3.1.3)

the Cauchy problem is to find the solution to Eq. (3.1.3) satisfying the following
initial conditions:

dy =y "y = ynV
dz I=I¢ 0> o dzn-! T=z0 Yo )

Y] ezy = Y05 (3.1.4)

Let the function f in Eq. (3.1.3) be continuously differentiable in a neighbor-

(n

hood of zg,y0,¥g, - - -+ Yo =1 Then the Cauchy problem (3.1.3)~(3.1.4) has a
unique solution defined in a neighborhood of z,.

Remark 3.1.2. It follows that the general solution of nth-order differential

equations (3.1.3) depends precisely on n arbitrary constants Cy,...,Cy.

3.1.2 Integration of the equation y(™ = f(x)

The solution of the equation
y™ = f(z)

is similar to solution (1.2.61) of Eq. (1.2.60). Namely, the consecutive integra-
tion yields:

yn =/f(:t)dm+01, yn=2 =/dx/f(z)dz+01w+02»

whence finally the solution formula similar to (1.2.61):

xn-l zn—2
y—/dz/dz.../f(m)d:c+C1(n_1)!+Cz(n_2)!+---+Cn_1x +Chn,

where C,, . ..,C, are arbitrary constants of integration.

3.1.3 Homogeneous equations

Any homogeneous equation of order n can be integrated by quadratureifn =1,
and reduced to an equation of order n—1 if n > 1 (see Chapter 6). The general
homogeneity of differential equations is defined as follows.

Definition 3.1.2. An ordinary differential equation of an arbitrary order
F(z,y,y,...,y"M) =0 (3.1.5)

is said to be homogeneous if it is invariant under a scaling transformation
(dilation) of the independent and dependent variables (cf. (1.1.35)):

z=d*z, §= dvy, (3.1.6)
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where a > 0 is a parameter not identical with 1, and k and ! are any fixed real
numbers. The invariance means that

F(Z,9,%,....,™) =0, (3.1.7)
where ' = d7/d 7, etc. In particular, in the case of a first-order equation

¥ = f=,y) (3.1.8)
the homogeneity means that after dilation (3.1.6), Eq. (3.1.8) becomes

T i@ 9. (3.1.9)

Example 3.1.1. The first-order equation (cf. Example 3.2.2)

2zy
4 —_
L Ty 0

is homogeneous since it is invariant under the dilation T = az, ¥ = ay. Indeed,

dg ady d , 2Ty 2a%zy 2y

=TT =S90=Y, = =

372 -52  a2(3z2 —y?) 322 -2

and hence condition (3.1.9) is satisfied:

dy __ 2z§ . 2zy

— =y - == =0.
dz  3z2-32 Y T 32—
Example 3.1.2. The second-order cquation
n__2my
v i 0 (3.1.10)

is not homogeneous. Indeed, consider the general dilation (3.1.6) replacing it,
for the sake of convenience of calculations, by T = az, ¥ = by with positive
parameters a and b. Then we have

d’y b d%y 2y ab(2zy)

dz?  a?dz?’ 3T2—p? 3a2z2 - biy?

Hence, the equation
d’y 23y
dz? 332732

is written
b d?y ab(2zy)

—_—— e —— .

The invariance condition requires that

. b
(i) 3a%z? — b%y? = ¢(32% - 4?), (i) - = “?b (3.1.11)
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Since Eq. (3.1.11)(i) should hold identically in z and y, it follows that a? =
b? = c. Now Eq. (3.1.11)(ii) is written

b ab

a? a2
and yields a = 1. Furthermore, since a and b are positive, it follows from
b = a® = 1 that b = 1. Thus, the dilation T = az, § = by reduces to

the identity transformation Z = r, § = y and hence, by Definition 3.1.2, Eq.
(3.1.10) is not homogeneous.

Example 3.1.3. The equation
c
y+y'= 5, C=const, (3.1.12)

is homogeneous since it is invariant under the dilation Z=az, F=a 'y (see
also Problem 3.4 and Example 6.3.3).

Definition 3.1.3. One calls Eq. (3.1.5) double homogeneous if it is invariant
with respect to the independent dilations of the independent and dependent
variables, i.e., if it does not alter under the transformations

T=az, =y (3.1.13)
and
T=z, F=by (3.1.14)
with independent positive parameters a and b, respectively.
Example 3.1.4. The linear equations
zy'+Cy=0, C =const., (3.1.15)
and
x2y” + Cl zy, + C2y = 0, 01,02 = COnst., (3.1.16)

provide examples of double homogeneous equations of the first- and second-
order, respectively. They are known as Euler’s equations of the first and second
order, respectively (sce Section 3.4.4). As a matter of fact, Eq. (3.1.15) is the
most general double homogeneous equation of the first order (see Problem
6.11). On the other hand, the most general double homogeneous equation of
the second order has the form (see Problem 6.12)

Y = %H(%y,) (3.1.17)

where H is an arbitrary function. Eq. (3.1.16) is a particular case of (3.1.17)
and is obtained by setting

#(Z)=-a(%) +a
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Remark 3.1.3. The single homogeneity considered in Definition 3.1.2, unlike
the double homogeneity, deals with an invariance under dilations depending
on one parameter only. It can be obtained in practice by seeking a scaling
transformation T = az, § = by (see (1.1.35)) involving two parameters, a and
b. In most of applications, the calculations will end up with either the identity
transformation corresponding to @ = b = 1, or certain one-parameter dilation
(3.1.6). See, e.g. Example 3.1.2 and Problem 3.4.

3.1.4 Different types of homogeneity

The following two types of homogeneity corresponding to special types of dila-
tions (3.1.6) are of particular interest and usually (even mostly) are considered
in standard texts. An exception is provided by linear partial differential equa-
tions of the first order (see Section 4.1).

Type 1: Uniform homogeneity. The uniformly homogeneous equations are
invariant under the uniform scaling

T=az, J=ay (3.1.18)

obtained from (3.1.6) by letting k = [ = 1. Since the uniform scaling (3.1.18)
leaves unaltered the first derivative, §’ = y/, Egs. (3.1.8) and (3.1.9) yield that
flaz,ay) = f(z,y).

Example 3.1.5. The following first and second order equations with arbitrary
constant coefficients A, B and C are uniformly homogeneous:

1, Y n, A, B C
+<2=C + =y + —y==
y T ) y my 2y ]

, Z s A B C
+-=0C, +—=+—=—-
vy Y my'+y z

The standard form of the uniformly homogeneous equations of the first
order is (see Problem 6.2 (i))

v =¢(¥). (3.1.19)

Eq. (3.1.19) can be solved by considering the invariant y/z under dilation
(3.1.18) as a new dependent variable, i.e., by setting

y_ -
T or y = zu(zx).

Indeed, Eq. (3.1.19) takes the form
zu' +u = p(u)

and can be solved by separation of variables:

du dz
/m—/?=lnx+a



3.1. INTRODUCTION AND ELEMENTARY METHODS 97

Type 2: Homogeneity by function. This type of homogeneity designates the
invariance with respect to transformation (3.1.6) with k = 0, [ = 1, i.e., with
respect to the dilation of y only:

T=z, J=ay. (3.1.20)

The homogeneity by function is commonly employed in the case of linear or-
dinary differential equations (Sections 3.2.6, 3.3, 3.4) as well as linear partial
differential equations (see Sections 4.1 and 5.1).

The linear ordinary differential equation of the form

Yy +P(z)y=0

is homogencous by function and, morcover, furnishes the general form of first-
order equation that homogeneous by function (sec Problem 6.2 (ii)). The
higher-order equations of the form

¥ +ai@y™ V4 (@)Y +an(z)y =0, n>2,

are also homogeneous by function. However, in the case of higher-order equa-
tions, unlike the first-order equations, homogencity by function does not imply
the linearity. For example, the general form of second-order equations homo-
geneous by function is (see Problem 6.2 (ii))

!

Y= yF(x, %)

Consider an example of general homogeneity different from the above two
types. Let us take dilation (3.1.6) with k= /2, {=1:

T = a‘ﬁx, y=ay.

The corresponding general first-order homogeneous equations has the form

V2
dv_vp (y—) . (3.1.21)

dz =z z
Its integration is discussed further in Problem 6.10.

3.1.5 Reduction of order

Any second-order equation of the form

vy = f(y,y") (3.1.22)

can be reduced to a first-order equation by the substitution

! = p(y). (3.1.23)
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Indeed, employing the chain rule we have from Eq. (3.1.23):
y' =y ) =rp.
Now (3.1.22) becomes the first-order equation:

0’ = f(y.p) (3.1.24)

for the new unknown function p(y) with the independent variable y.
Provided that the general solution p = ¢(y,C1) to Eq. (3.1.24) is known,
the solution of the original equation (3.1.22) is obtained via Eq. (3.1.23),

dy _
I = W)
by one quadrature:
v _ z+C
#(y,C) >

Likewise, substitution (3.1.23) reduces the order by one of any higher-order
equation not explicitly involving the independent variable z, i.e., of equations
of the form

y(n) = f(y) yl) cee 1y(n‘l))'
In this case we have
yu = ylpl = pp’, ym — yt(ppr)/ — p(ppl)l — p(pl)z +P2P”, .

and hence our equation becomes an equation of order n — 1 for p(y) :
P = F (y,p,0,....0"?).

3.1.6 Linearization through differentiation

Sometimes, nonlinear equations can be linearized through differentiation. The
following example explains the idea.

Example 3.1.6. Consider the following nonlinear second-order equation:
2yy” ~y* =0. (3.1.25)

Differentiation yields 2yy”" = 0, whence y = 0 (a trivial solution to Eq.
(3.1.25)) or 3y’ = 0. The equation ¥ = 0 yields that y = az? + bz + ¢
with arbitrary constants a,b,c. To determine these constants, we substitute
the expression for y in Eq. (3.1.25) and obtain 4ac — b = 0. It follows that
either a # 0 and then ¢ = 4%/(4a), or a = b = 0. Accordingly, the general
solution to Eq. (3.1.25) has the form:

b2

1
y=az2+ba:+Z¢;=E(2am+b)2 (a#0), and y=c.
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3.2 First-order equations

3.2.1 Separable equations

The technique of separation of variables is applicable to first-order ordinary
differential equations of the type

v = p(z)a(y). (3.2.1)
We rewrite Eq. (3.2.1) in the differential form

1 dy
——=dz= dz,
q(y) dz »lz)

and integrate its both sides with respect to z :
1 dy /
———dz= z)dzr + C.
[azee= [

Here we change the variable of integration in the left-hand side from x to y by
using the rule for a change of variables in integrals (see Section 1.2.4) and the
invariance of differential (1.2.7), and rewrite the above integral equation in the

form d
Yy -

Evaluating the integrals in both sides and solving with respect to y, one obtains
the general solution involving the constant of integration C.

3.2.2 Exact equations
Definition 3.2.1. A first-order differential equation of the form

M(z,y)dz + N(z,y)dy =0 (3.2.3)
is said to be ezact if its left-hand side is the differential, i.e., if
0 o
=dd=—dr+ 3.2.4
Mdz + Ndy = d® 6zdm+ Oydy ( )

with some function ®(z,y).

For an exact equation (3.2.3), the function ® is found from Eq. (3.2.4)
rewritten as a system of differential equations for unknown &:

8% 8%

% = Maw, 3 =Ny, (3.2.5)

ox
This over-determined system (namely, two equations for one unknown function
®) is integrable (i.e., has a solution) if and only if the following holds:

ON _ oM (3.2.6)

oz oy )
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To solve Eqs. (3.2.5), let us integrate, e.g. the first equation of (3.2.5) with
respect to ,

®(z,y) = /M(x, y)dz + g(y), (3.2.7)

and substitute into the second equation of (3.2.5):

% / M(z,y)dz + ¢'(y) = N(=z,y). (3.2.8)

Solving (3.2.8) for ¢’(y) and integrating, we find g(y), substitute it into (3.2.7)
and ultimately obtain ®(z,y). The solution y = f(z,C) of the cxact equation
(3.2.3) is given implicitly by

®(z,y) =C, (3.2.9)

where C is an arbitrary constant.

One can also begin with integrating the second equation of (3.2.5) with
respect to y. Then Egs. (3.2.7) and (3.2.8) are replaced by the equations

&(z,y) = /N(z, y)dy + h(z) (3.2.10)
and
6%: / N(z,y)dy + h'(z) = M(z,y), (3.2.11)
respectively.
Remark 3.2.1. See also a simple method given in Section 6.6.2.

Example 3.2.1. Consider the equation (ye™ + cosz)dz + ze*¥dy = 0. The
functions M = ye* + cosx and N = ze*¥ obey condition (3.2.6):

ON oM
— =" = 7y
3 3 (14 zy)e™.

Equation (3.2.10) yields ®(z,y) = [ ze*¥dy + h(z) = e*¥ + h(z) and (3.2.11)
is written ye*¥ + h'(z) = ye™ + cosz, whence h/(z) = cosz. Thus,

&(z,y) = €™ +sinz.

Equation (3.2.9), e*¥ + sinz = C, yields the following general solution to the
equation in question:

1 .
y= In|C - sinz|.
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3.2.3 Integrating factor (A. Clairaut, 1739)

If Eq. (3.2.3) is not exact, it can be converted into an exact equation by
multiplying by an appropriate function. Namely, it was first shown by Clairaut
in 1739 that for any equation (3.2.3), there exists a function u(z,y), called an
integrating factor, such that the equivalent equation

u(Mdz + Ndy) =0

is exact. By the definition of exact equations, the integrating factor satisfies
the equation (see Eq. (3.2.6))

duN) _ o(uM)
Oz oy

(3.2.12)

The solution of this equation with respect to u(z,y) is not usually simpler than
the integration of the original equation (3.2.3). Howevcr, integrating factors
may be guessed and used in particular cases!. For example, it is widely used
in modern text for integration of non-homogeneous first-order linear equations
instead of the simple, effective and more general method of variation of para-
meters (see Section 3.2.7). The following theorem is useful.

Theorem 3.2.1. If two linearly independent integrating factors, u;(z,y) and
uz2(z,y), are known for Eq. (3.2.3), then its general solution is obtained without
integration by the equation

H1 (za y) A
—==C (3.2.13)
K2 (22, y)
Example 3.2.2. The equation
2zydz + (y? — 3z%)dy =0 (3.2.14)

is not exact since its coefficients M = 2zy and N = y? — 3z2? do not satisfy
(3.2.6). Let us check that u = 1/y* is an integrating factor. Indeed,

OuN) _ 0 (1 32 _ .z OWwM)_ 0 2zy T
Oz —ax(yz y“)_ 6y4’ dy 8y(y3) yt

Let us integrate the corresponding exact equation

2z 1 322
— 2 =0. 3.2.15
yada:+ (y2 " )dy 0 ( )
Equation (3.2.7) yields

2
®(z,y) = / i—ﬁdz +9(y) = 2—3 +9(v)

Lie group analysis provides a general formula for an integrating factor for first-order
equations with known infinitesimal symmetries (see Section 6.4.1).
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and Eq. (3.2.8) is written

322, . 1 3z
—y—4+9(y)—;§‘?,

whence ¢'(y) = y~2. Thus, g(y) = —1/y and we obtain finally (see also Example
6.6.3 in Section 6.6.2)

2
T 1
O(z,y)=— ——-
( 37y
The solution of our differential equation is given implicitly by
2 1 .
x—.i——=C, or z?—y*=Cy
A Y

The solution can be obtained without integration by using, along with p, =
1/y%, the second integrating factor uz = 1/(y® — z2y) (it is obtained in Section
6.4.1, Example 6.4.1). Eq. (3.2.13) yields
2

3 2 2
— I“1 - T
fr_ Y vy_"Y =C.

2 v y3

3.2.4 The Riccati equation
The general Riccati equation is a first-order equation with the quadratic non-
linearity:

¥ = P(z) + Q(z)y + R(z)y* (3.2.16)
The remarkable property of the Riccati equation is that it admits a nonlinear
superposition. Namely, the cross-ratio of any four solutions

n(z), v2(z), ys(x), ya(z)
of Eq. (3.2.16) does not depend on , i.e.,

ya(@) ~ ¥2(2) . 3(2) — ya(2)
va(z) —(z)  ys3(z) — yi(2)
It follows that one can obtain the general solution to Eq. (3.2.16) provided

that one knows three solutions. Indeed, let us fix in (3.2.17) any three distinct

particular solutions y;(z), y2(z), y3(z) and vary y4 to obtain general solution y
of Eq. (3.2.16). Then (3.2.17) assumes the form

=C, C = const. (3.2.17)

y—12(z)  ws(@) —va(z) _

v—un@)  yslz) —u(z)
with an arbitrary constant C. Solving the above equation with respect to y, one
arrives at the following representation of the general solution to Eq. (3.2.16):

_ C(2) + Pa(2)
Cp1(z) + pa(x)

(3.2.18)
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Here,
#1(z) = y2(x) — y3(x), w2(z) = ya(z) — y1(z),
¥1(z) = ni(x) v1(z), P2(z) = yo(z) wala).

Thus, the general solution of the Riccati equation is a linear-rational func-
tion (3.2.18) of an arbitrary constant C. Conversely, if the general solution of
a first-order differential equation is a linear-rational function of an arbitrary
constant, then the differential equation is a Riccati equation.

The arbitrary Riccati equation (3.2.16) can be reduced by a substitution
y — a(z)y to the form

v +y? =Q(z)y + P(z). (3.2.19)
Indeed, let 7 = a(z)y. Then

T = ) o _
y=-—-v y = y"&ﬁy

R+
Rilr

and
r_ 2 _ _l—/_£—2_ a_’ =
y-Ry -Qy-P= " [y e (Q+ a)y—aP]-
Hence, taking a(r) = —R(z) we map Eq. (3.2.16) to
7' +3°=Q(2)7 + P(),

where Q@ = Q + (a’/a), P = aP. Denoting j, Q@ and P again by y, Q and P,
respectively, we obtain (3.2.19).
Furthermore, Eq. (3.2.19) can be transformed by a substitution y — y +
B(z) to the form
v +y? = P(z) (3.2.20)

referred to as the canonical form of the Riccati equation. Indeed, we let §j =
y + B(z) and have

y=9-68@), ¥y=9-8@),
V+y'-Qu-P=7"+7’ - (Q+20)7- (P+5 - 5 - QB).

Hence, taking 8(z) = —%Q(z) we map Eq. (3.2.19) to
¥ +3° = Pa),

where P(z) = P(z) - %Q'(z) + ‘lez(a:). Denoting 7 and P again by y and P,
respectively, we obtain (3.2.20).

In general, a change of variables (z,y) — (Z,7) is called an eguivalence
transformation of the Riccati equation if any equation of form (3.2.16) is trans-
formed into an equation of the same type with possibly different coefficients.
Equations related by an equivalence transformation are said to be equivalent.
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The set of all equivalence transformations of the Riccati equation (3.2.16) com-
prise
(i) an arbitrary change of the independent variable:

T=¢(z), ¢@@)#0 (3.2.21)
(ii) linear-rational transformations of the dependent variable:

o(z)y + B(z)
Yz)y +68(z)
The Riccati equation is a first-order nonlinear equation. It can be rewritten

as a second-order linear equation. Namely, one can first reduce Eq. (3.2.16) to
form (3.2.19) and then set

7= ab — By #0. (3.2.22)

yul
u

to obtain the linear second-order equation
v’ = Q(z)u’ + P(z)u. (3.2.23)
The linearization, even by raising the order, may be useful for integration.
Example 3.2.3. Consider the Riccati equation (3.2.19) with P(z) =0 :
¥ +9* = Q2)y.
The associated linear equation (3.2.19),
v = Q)

can be readily integrated by quadrature. Indeed, setting u’ = z, one has the
first-order equation 2z’ = Q(z)z. Hence,

z = AeJ 9@z,
Substituting z = 4’ we have the equation
u' = AeJ Q@)=

whence upon integration:
u= A/efQ(”)d’d:c + B.

Invoking that y = u’/u we have

e J Q(z)dx

= C+fefQ(’)d“d:L" C = const.

y
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Example 3.2.4. Riccati himself discovered and investigated in 1724 particular
case of Eq. (3.2.16), namely the equation

Y = ay? +bz*, a,b,a = const. (3.2.24)

known today as the special Riccati equation. The general Riccati equation
(3.2.16) was introduced and studied for the first time by d’Alembert in 1763.
Francesco Riccati and Daniel Bernoulli noted independently that Eq. (3.2.24)
is integrable in finite form in terms of elementary functions if

4k .
a = ——.2’(}—:‘:1 with k—O,:i:l,:l:2,... . (3225)
Josef Liouville showed in 1841 that the solution to the special Riccati equation

(3.2.24) cannot be expressed via integration of elementary functions if o is
different from (3.2.25).

The author found in 1989 all linearizable Riccati equations [15]. The fo-
llowing statement extracted from [15], Section 4.2 (see also [21], Section 11.2.5)
provides a simple practical test for lincarization.

Theorem 3.2.2. The Riccati equation (3.2.16),
y' = P(z) + Q(z)y + R(z)y*,

is lincarizable by a change of the dependent variable y if and only if it obeys
any of the following two cquivalent conditions (A) or (B):
(A) Equation (3.2.16) has either the form

¥ = Q(z)y + R(z)y® - (3.2.26)
with two arbitrary functions Q(z) and R(z), or the form
y' = P(z) + Q(z)y + k[Q(@) - kP(z)]y? (3.2.27)

with two arbitrary functions P(z), Q(z) and a constant (in general complex)
coefficient k;
(B) Equation (3.2.16) has a constant (in general complex) solution.

Remark 3.2.2. Equation (3.2.26) has a constant solution y = 0. On the other
hand, Eq. (3.2.27) has a constant solution y = —1/k. Therefore, the linear
equation y' = P(z) + Q(z)y, which is a particular case of (3.2.27) for & = 0,
may be regarded as a Riccati equation having y = oo as its particular constant
solution.
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3.2.5 The Bernoulli equation

The nonlinear equation

¥+ P(z)y = Q(z)y", n#0andn#1,

is known as the Bernoulli equation®. It can be reduced to a linear equation and
solved by quadrature. Indeed, dividing both sides of the Bernoulli equation by
y™ we have y~"y’ + P(z)y!™" = Q(z), or

1 dyl—n

l1-n dz

+ P(z)y' ™" = Q().

Hence, the substitution z = y'~™ reduces the Bernoulli equation to the linear
equation

2 +(1-n)P(z)z = (1 - n)Q(z).

3.2.6 Homogeneous linear equations

The general linear equation of the first order has the form
¥ + P(z)y = Q(2). (3.2.28)

Equation (3.2.28) is homogeneous by function if and only if Q(z) = 0 (see
Section 3.1.4). Consequently, the following nomenclature is commonly used
in textbooks: Equation (3.2.28) is called homogeneous if Q(z) = 0, and non-
homogeneous otherwise.

Remark 3.2.3. For the sake of brevity, the general homogeneity is identified
in this terminology with the homogeneity by function. The convention has
not lead to confusion in the past. But nowadays when there is a tendency to
replace knowledge of mathematics by computer manipulations, morc and more
students and teachers understand homogeneity formally as a mere statement
that the right-hand side of a differential equation is equal to zero, and apply
it erroneously to nonlinear equations as well. From their point of view, Eq.
(3.1.10)
" 2y

Vg =0

would be homogeneous while the equations from Example 3.1.5, e.g.

€ cxo

o Ay B _C
T 2 T

would be non-homogeneous.

2]t was discovered by Jacques Bernoulli in 1695 and solved by Leibnitz in 1696.
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Consider the homogeneous linear equation
Yy + P(z)y = 0. (3.2.29)
We separate the variables:

%Q + P(z)dz =0

and integrate to obtain
Iny +/P(z)dx = const.

Hence, the solution is

y=Ce IP¥  C = const. (3.2.30)

3.2.7 Non-homogeneous linear equations. Variation of
the parameter

The simplest way for solving non-homogeneous linear equations (3.2.28) is pro-
vided by the method of variation of parameters suggested by Jean Bernoulli in
1697. Let us begin with an example.

Example 3.2.5. Let us solve the non-homogeneous equation

v -y=z (3.2.31)
We first consider the homogeneous equation of Eq. (3.2.31):

v-y=0

Its general solution is
y=Ce®, C =const.

Now we replace the constant of integration C' by an unknown function u(z)
and look for the solution of the non-homogeneous equation in the form

y = u(z)e”. (3.2.32)

Substituting ¥’ = v’ e® + ue® into Eq. (3.2.31), we obtain the following sepa-

rable equation for u(z) :

v =ze "

Integrating it and denoting the constant of integration again by C, we have
u= /:z:e"dz+C =—(z+1)e*+C, C = const.

Finally, we substitute the expression for u(z) into (3.2.32) and obtain the fol-
lowing gencral solution for Eq. (3.2.31):

y=Ce* -z -1. (3.2.33)
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In the case of the general non-homogeneous equation (3.2.28),
y' + P(z)y = Q(),
we proceed likewise. Namely, we solve the homogeneous equation of Eq. (3.2.28),
y' + P(z)y =0,
and replace in its general solution (3.2.30),
y=Ce IP¥  C=const.,

the constant of integration C by an unknown function u(z). In other words, we
look for the solution of the non-homogeneous equation in the form

y = u(z)e” S P42, (3.2.34)

We have
¥ =u'(z)e” S P4* — u(z)P(z)e / Pdz,

Substitution of this expression into Eq. (3.2.28) yields
W(z)e P4 =Q), or (2)=Q(z)e] P,

whence

u(z) = /Qefpd’dx +C, C =const.

Inserting the expression for u(z) into (3.2.34), we obtain the general solution
to the non-homogeneous linear equation (3.2.28) given by two quadratures:

y= (c+ / Qel Pd”dz) e~ Pdz, (3.2.35)

3.3 Second-order linear equations
The general linear equation of the second order has the form

Y’ +a(x)y +b(x)y = f(z). (3.3.1)
It is called homogeneous if f(x) = 0 and non-homogeneous otherwise (cf. Sec-

tion 3.2.6).
Equation (3.3.1) is often written in the form

Lafy] = f(=). (3.3.2)
Here L; is the following linear differential operator of the second order:

Ly, = D? + a(z) D + b, (3.3.3)
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where
d d2
D= — 2 _ -
dz’ dz?
Thus,
Lolyl = D?y +a(z) Dy + by = " + a(z) ' + b(z) y. (3.3.4)

The term linear refers to the following fundamental property of the operator
L2 :

L, [Clyl + Czyzl = Cng[yl] + Cng[yg], Cy,C; = const. (3.3‘5)

3.3.1 Homogeneous equation: Superposition

The homogeneous linear equation
¥ +a(z)y +b(z)y=0 (3.3.6)

or
Lyl =0

possesses the remarkable property called the superposition principle or more
specifically, the linear superposition. This principle follows from property
(3.3.5) of the linear differential operator L; and states that if y;(z) and yo(z)
are solutions of the homogeneous cquation (3.3.6), then their linear combina-
tion with arbitrary constant coefficients,

y = Ciyi1(z) + C2y2(z),

is also a solution. Indeed, since La[y;(z)] = 0, La[y2(z)] = 0, Equation (3.3.5)
yields:

L[y} = C1La[y1(z)] + CaLa[y2(z)] = 0.

Since the general solution of any second-order ordinary differential equation
involves two arbitrary constants, the superposition principle shows that the
general solution to Eq. (3.3.6) is given by

y = Ciy(z) + C2y2(x), (3.3.7)

where y; (z) and ya(z) are linearly independent solutions of Eq. (3.3.6). There-
fore, in order to construct the general solution of the homogeneous equation, it
suffices to find two independent solutions only. Consequently, we say that the
pair of linearly independent solutions, ¥, (z) and y»(z), furnish a fundamental
system of solutions for Eq. (3.3.6).
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3.3.2 Homogeneous equation: Equivalence properties

Equivalence properties are useful in practical integration of differential equa-
tions. An equivalence transformation of the homogeneous linear equations isa
change of variables preserving the linearity and homogeneity of Fgs. (3.3.6).
The set of all equivalence transformations comprises an arbitrary change of the
independent variable (cf. (3.2.21)):

T=¢(z), ¢'(z)#0, (3.3.8)

and the linear substitution of the dependent variable:
y=o(z)y, o#0. (3.3.9)

Definition 3.3.1. Two equations of form (3.3.6) are said to be equivalent
if they are connected by a combination of transformations (3.3.8)—(3.3.9).
Furthermore, two equations are termed equivalent by function if they can be
mapped into each other by a linear substitution (3.3.9).

Theorem 3.3.1. Any homogencous lincar equation (3.3.6),
y" +a(z)y’ +b(z)y =0,
is equivalent to the simplest linear equation
y' =0, (3.3.10)
where 7" = d%y/dz 2.

Proof. Equation (3.3.6) is reduced to form (3.3.10) by the transformation

_ o~ Jfalz)dz Y y
. / e T (3.3.11)

where z(z) is any solution of Eq. (3.3.6), i.e., 2" + a(z)z’ + b(z)z = 0. For
verification that transformation (3.3.11) maps the general lincar equation into
Eq. (3.3.10), see the solution to Problem 6.9.

According to Theorem 3.3.1, one can map into another any two equations of
form (3.3.6) by using both transformations (3.3.8) and (3.3.9). In other words,
all equations of (3.3.6) are equivalent. However, (3.3.11) shows the computation
of an appropriate equivalence requires knowledge of particular solutions of the
equations which one wants to transform into another.

Therefore, we will use here the equivalence by function which employs only
the linear substitution (3.3.9) and provides a simple and constructive way of
integration of a wide class of equations.
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Lemma 3.3.1. The general homogeneous linear equation (3.3.6),
¥’ +a(@)y +b(z)y =0,
is equivalent by function to the equation
¥ +a(r)y=0. (3.3.12)

Namely, the linear substitution

y=yge 1[al@)dz (3.3.13)
reduces it to the equation
7" +J(@)7 =0, (3.3.14)
where 1 ]
J(z) = b(z) — 1 a®(z) - 3 a'(z). (3.3.15)

Proof. We take an arbitrary linear substitution (3.3.9) and have
v=0@)7, ¥ =0(2)F +(2)7,
v =0o(x)7" +20'(2)F' +0"(2)7.
Hence, Eq. (3.3.6) becomes
03" +[20' +a0)y +[0" +ad’ +bo]y=0. (3.3.16)
We annul the term with §’ by letting
20’ +a0 =0,

whence
o = ¢t alz)dz (3.3.17)

Now we substitute function (3.3.17) and its derivatives
1 1 1
0/=—%ae~%fadz, o = (Za2__2_a/)e—;fadz
into Eq. (3.3.16), multiply the result by e? / @(=)4= and arrive at Eq. (3.3.14):

7"+ (b— l<12— la’) y=0. (3.3.18)
4 2
It is manifest from the proof that the function J(z) given by (3.3.15) remains
unaltered under the transformations of Eq. (3.3.6) via any substitution (3.3.9).
Therefore, J is called the invariant of Eq. (3.3.6). The invariance of J(z) and
Lemma 3.3.1 lead to the following result.
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Theorem 3.3.2. Two homogeneous linear equations,
v +a(z)y +b(z)y=0 (3.3.19)

and
7" +ai1(2)y’ +bi(z)7 =0, (3.3.20)

are equivalent by function, i.e., can be mapped one into another by an appro-
priate linear substitution (3.3.9) if and only if their invariants

1
J(x) = b(z) — l(12(:r) - —d'(z)
4 2
and
Ji(@)=bi(z) - £ al(x) 01(1‘)
are identical, i.e., J(x) = Ji(z). In particular, Eq. (3.3.6) is equivalent by

function with Eq (3.3.10), ” = 0, if and only if its invariant J(z) vanishes,
ie., Eq. (3.3.6) has the form

Yy +a(z)y + [1 a%(z) + = a’(z)] =0. (3.3.21)

Example 3.3.1. The equation

1
2,/ _ 2
'y +zy + (m 4)y 0 (3.3.22)

is not of form (3.3.21) and hence is not equivalent by function with the equation
7" = 0. The invariant of Eq. (3.3.22) is J = 1. On the other hand, the invariant
Jy of the equation

7' +7=0 (3.3.23)

has the same value, hence, J; = J = 1. In consequence, Eq. (3.3.22) is con-
nected with Eq. (3.3.23) by the linear substitution

g=Vry

obtained by employing (3.3.13) with a(z) = 1/z. Since the general solution of
Eq. (3.3.23) has the form (see Example 3.3.2 in the next section)

g=C)sinz + Cycosz,

the general solution to Eq. (3.3.22) is given by

y = —=(Cisinz + Cycos z).

SIi-
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3.3.3 Homogeneous equation: Constant coefficients
Consider the homogeneous linear equation (3.3.6) with constant coefficients:
¥'+Ay +By=0, A,B = const. (3.3.24)

Its solution was given by Leonard Euler in 1743. He looked for particular
solutions of the form (Euler’s ansatz)

y=e", A = const. (3.3.25)
Then the differential equation (3.3.24) reduces to the algebraic equation
M+ AAN+B=0 (3.3.26)
called the characteristic equation. Accordingly,
P\l =X +AX+B

is called the characteristic polynomial for Eq. (3.3.24). There are the following
three possibilities.

(i) The characteristic equation (3.3.26) has two distinct real solutions, A
and Az. Then one has two linearly independent particular solutions:

A].’l‘

yi(z) =M, yp(z) = e,
and the general solution of Eq. (3.3.24) is given by
y = C1eM® 4 Cpe?®, (3.3.27)

(i) The solutions of the characteristic equation (3.3.26) are complex, namely
A1 = a—~if and its complex conjugate A, = a—1i3. The corresponding complex
solutions can be written, using Euler’s formula (1.2.41), in the form

y =e*(cos Bz + isinfz), Y= e**(cosfBz — isinpfz).

Since their linear combinations with arbitrary complex cocfficients are again
solutions, we replace the complex solutions by the real ones by setting

1 1

n=zW+9, v=5u-9
Thus, the pair of conjugate complex roots provide two distinct real solutions:
y1(z) = e**cos Pz, y2(z) = e**sinfz. (3.3.28)
Hence, the general solution to Eq. (3.3.24) is given in this case by

y = Cy e** cos Bz + Cy e*” sin fz. (3.3.29)
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Example 3.3.2. Consider Eq. (2.3.14) of free harmonic oscillations
¥ +wiy =0, (3.3.30)

where w # 0 is a real number. The characteristic polynomial A% + w? = 0 has
the complex roots, \; = iw, A2 = —iw, and solution (3.3.29) has the form

y = C) cos wr + C; sinwr. (3.3.31)

(iii) The characteristic equation (3.3.26) has repeated roots, A} = Az. Then
formula (3.3.25) provides only one solution,
)q::’

y=e

However, in this case we can employ Theorem 3.3.2. Indeed, since the charac-
teristic polynomial has repeated roots, its discriminant vanishes:

A2 —4B=0.

But then the invariant
1
J=B->A?
4

also vanishes, and hence Eq. (3.3.24) reduces to 3” = 0. The root of the
characteristic polynomial is A, = —A/2, and transformation (3.3.13) is written:

y=ge—%fAd:l: =§-ef»\1d$ =ye'\11‘_

Whence, substituting the solution § = (C} + Caz) of the equation 7" = 0, we
obtain the following general solution to Eq. (3.3.24):

y = (C1 + Coz) M2, (3.3.32)
Example 3.3.3. Consider the equation
¥ +2y +y=0.
Its characteristic polynomial
P =X+22+1=(A+1)?

has the repeated real root A = —1. Consequently the general solution of the
differential equation is given by

y=(C1+Caz)e”2.
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3.3.4 Non-homogeneous equation: Variation of
parameters

Provided that fundamental system of solutions for the homogeneous equation
(3.3.6) is known, the non-homogeneous equation

' +a(z)y +b(z)y = f(z) (3.3.33)

can be solved by quadratures using the following method of variation of the
parameters.

Let us assume that we know a fundamental system of solutions ¥ (x), y2(z)
for the homogeneous equation, i.c., let

Yy +a(@)yy +b(z)y =0, ¥y +a(z)ys +b(z)y2 = 0. (3.3.34)

Then we can obtain the general solution to the non-homogeneous equation
(3.3.33) by the following method of variation of parameters. Just as in the
case of the first-order equation, we replace the constants C; and C: in solution
(3.3.7)

y = Ciyn(z) + Caya(x)

of the homogenous cquation by functions u(z) and ua(z), respectively. Thus,
we set

y = w(T)y1(z) + ua(z)y2(z). (3.3.35)
It follows:

y = wi(@)y1(2) + ua(2)ya(2z) + 11 (@) (z) + v2(2)uz(2)- (3.3.36)

If we substitute (3.3.35) into Eq. (3.3.33), we obtain only one equation for two
unknown functions u(z) and uz(z). Therefore, we can subject these function
to one more condition. We will take this condition in the form

i (z)uy(z) + y2(z)us(z) = 0. (3.3.37)
Then, invoking (3.3.35) and (3.3.36), we have
y = w1 (x) y1(2) + u2(2) y2(2),

y' = wi(z) ¥ (z) + ua(z) Y3(2),
Y = wi(z) i (2) + u2(z) ¥2 () + ¥i(z) wi(2) + y2(z) ua(2).

Thus,
v +a(z)y +b(z)y
= uy(2)[y! + a(z) ¥} + b(z) 1] + v2(z)[y7 + a(z) ¥3 + b(z) y2]
+ yi(2) ui (z) + ya(z) ua(z),
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and hence, invoking Egs. (3.3.34), we obtain from Eq. (3.3.33):

Y1 (z) v (z) + va(z) uz(z) = f(2). (3.3.38)

Since y1(z), y2(x) are known functions we obtain for determining u;,u; the
system of two equations (3.3.37) and (3.3.38):

yi(z)ui (z) + y2(z)ur(z) =
v1(z) uy () + ya(x) uz(z) = f(a:)

Since y;(z), y2(z) are linearly independent, the determinant of Eqs. (3.3.39)
W(z) = y1(z) y2(z) — p2(z) y1(z), (3.3.40)

known as the Wronskian, does not vanish. Hence, system (3.3.39) can be solved
with respect to the derivatives of the unknown functions:

v B@I@ L _w@iE
1 W) ' W(x) ’

(3.3.39)

and integration yields

__ [ @)f(=) _ [u@)f=)
uy = /T)da: + C U = / .—IW(—:;de + 02. (3341)

Substituting (3.3.41) into (3.3.35), we arrive at the following result.

Theorem 3.3.3. Let y1(z), y2(z) be a fundamental system of solutions for
the homogeneous equation (3.3.6),

y' +a(z)y +b(z)y=0.
Then the general solution to the non-homogeneous equation (3.3.33),

¥ +a(z)y' +b(z)y = f(z),

is given by quadratures and has the form:

V= Con@) + Cante) - (o) [ D de e [ 0

where W (z) is Wronskian (3.3.40).

Example 3.3.4. Let us solve the non-homogeneous equation
Y’ +y=sinz.

We have the fundamental system of solutions

yi1(z) =cosz, ya(z)=sinc,
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with the Wronskian W [y;(z), y2(z)] = 1. Formulae (3.3.41) yield

uy(z) = - /sin2 xdx = —% + ‘—ltsin2z + Ch,

. 1
uz(z) = /cosa:sm:z:dz =-3 cos’ z + Cy.
Hence, we obtain, after elementary simplification the following solution:
z
y=-—5cosz + Cicosz + Casinz.

In this example, we could express the general solution of the differential
cquation in question in elementary functions. However, this fact has no sig-
nificance and a representation of a general solution by quadratures is equally
useful, e.g. for solving initial value problems. The following two examples
illustrate the statement.

Example 3.3.5. Let us integrate the equation
y" + 2y — 8y = ze® (3.3.42)
and solve the Cauchy problem with the initial conditions
Y,0=0 V],o=1 (3.3.43)

The characteristic equation A2 + 2\ — 8 = 0 for (3.3.42) has the roots A\; = 2,
A2 = —4, and hence the fundamental system of solutions is provided by

yi(z) =e®, ya(z) =™

Wronskian (3.3.40) is W [y1(z), y2(z)] = —6e~2*. Using Theorem 3.3.3, we will

write the general solution to Eq. (3.3.42) in the following form convenient for
satisfying the initial conditions at z =0

T T
y = C1e® + Coe™ " + % [ez"/ re?Tdr — e““/ ’res"d'r]. (3.3.44)
0 0
Differentiating (3.3.44) we obtain
T T
Yy =2C1e%* —4Ce™ ¥ 4 %[ek / Te¥dr + 274 / re8’d-r] )
0 0

The initial conditions (3.3.43) are written Cy + C2 = 0, 2C; — 4C; = 1 and
yield C; = 1/6, C, = —1/6. Substituting into (3.3.44), we obtain the following
solution to the Cauchy problem (3.3.42)~(3.3.43):

T z
y= % [e2"‘ (1 + / 'rez"d'r) —e¥ (1 + / Tesrd'l')] . (3.3.45)
0 ]
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Remark 3.3.1. One can work out the integrals in (3.3.44) and rewrite the

general solution (3.3.44), and hence (3.3.45), in terms of elementary functions.
Indeed, integration by parts yields

* T
/ 7e’Tdr = ~ %’
0

I-—l/xez"drn—--ﬂriez‘"'—-1-e21+l,
2 Jy 2

27 |, 4 4
* 8-rd _T 8-rz l/z 81'd _Ees:c ie&c_*_L
/OT" TR, 64), S T8 64 64
Substitution into (3.3.44) yields
111 1 15 3
= 2z —4r | " |_p2z _ -4z _ Y 4x Y Az 3.46
y = C1e“" + Cae +6[4e 61¢ aa¢ tg¥e (3.3.46)

and solution (3.3.45) to the Cauchy problem (3.3.42)~(3.3.43) is written

1
S 8 4w 5 e 1 4 (3.3.47)

Y=24° "3 128 16

Example 3.3.6. Let us integrate the equation

1
Yy +2y -8y = m—ﬁe"”‘ (3.3.48)

and solve the Cauchy problem with the initial conditions

y|.1:=0 = 0’ y’]z=0 =1. (33‘49)

Proceeding as in Example 3.3.5 one obtains the solution to Eq. (3.3.48):

= Ce¥* + C. e'“-{-l e /I i d7'—e""/z 07T+1dr (3.3.50
y=uU 2 6 0 T+ 1 0 T+1 ' e )

Differentiating (3.3.50) one obtains

Y = 2C16% — dChe™®® 4+ + | / T et pee / iAo
3 o T+1 o T+1 .

The initial conditions (3.3.43) yield C; = 1/6, C; = —1/6. Hence, the solution
to the Cauchy problem (3.3.48)~(3.3.49) is

1 2x( /z e1'+1 ) 4 T e7-r+1
== 1 dr ) —e (1 . 3.
Yy 6[6 + T T|—e +/(; 7'_'_ldr (3.3.51)

Both integrals in (3.3.51) cannot be worked out in elementary functions.




3.3. SECOND-ORDER LINEAR EQUATIONS 119

3.3.5 Bessel’s equation and the Bessel functions

Bessel’s equation is the following homogeneous linear second-order equation
with variable coefficients:

22y +zy + (22 —n?)y =0. (3.3.52)

The solutions of this equation are termed the Bessel functions and play an
important part in mathematical physics. One of the solutions is denoted by
Jn(z) and is known as the Bessel function of nth-order. The power series
expansions, e.g. for n = 0 and n = 1 are as follows:

Jo(z) =1~ ( )2+ (2})2 (1)4_ (_3*})—2(’223)6 T

Jl(m)=§-%(‘”)3+§!1—3!(§)5—---. (3.3.53)

3.3.6 Hypergeometric equation
The second-order linear differential equation
z(1-2z)y" +[y-(a+B8+1)zly —aBy=0 (3.3.54)

with arbitrary parameters «, 3, and 4 are known as the hypergeometric equa-
tion. It has singularities at z =0, =1 and z = oo.
Furthermore, any homogeneous linear second-order differential equation

(2 + Az + B)y" + (Cz+ D)y +Ey=0 (3.3.55)

is transformable to the hypergeometric equation (3.3.54), provided that the
equation x2 + Az + B = 0 has two distinct roots z; and z,. Indeed, rewriting
Eq. (3.3.54) in the new independent variable ¢ defined by

=2z + (Iz — I )t (3356)
one obtains
C.’El +D dy
-Ct ~Ey=0.
t) dt2 Ty — T2 ] y=

Whence setting

Cxy+D

=7, C=a+p+1l, E=of
Iy — T2

and denoting the new independent variable t again by x, one arrives at equation
(3.3.54).

If o3 = 0, then the hypergeometric equation (3.3.54) is integrable by two
quadratures. Indeed, letting, e.g. 8 = 0 and integrating the equation

d _(a+lz—7v,
Yy z(1 - z)
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one obtains y’' = C;e%®), where
(a+l)z—~ )z -«
dz.
o) = [T
Now the second integration yields

y=0C /e"(x) dz + C;, C;, C2 = const.

In the theory of hypergeometric functions, the main emphasis is on asymp-
totics of the hypergeometric equation and its series solutions near the singular
points (see, e.g. the classical book [40]). However, in practicc one often needs
analytic expressions for the general solutions of certain types of the hyper-
geometric equation. Therefore, the following theorem3 determines a class of
hypergeometric equations integrable by elementary functions or by quadra-
ture. Numerous particular cases of this class can be found in various books on
special functions.

Theorem 3.3.4. The general solution of the hypergeometric equation (3.3.54)
with 8 = —1 and two arbitrary parameters o and ~ :

z(l-z)y" +(y—-az)y +ay=0 (3.3.57)

is given by quadrature and has the form
= X V=1 [z — - _2
y=0 (s a)/(m Vo= 1%z~ (v/a)}?) de+C; (2~ 1), (33.58)

where C) and C, are arbitrary constants.

Remark 3.3.2. If y and y—a are rational numbers, one can reduce the integral
in (3.3.58) to integration of a rational function by standard substitutions and
represent solution (3.3.58) in terms of elementary functions.

3.4 Higher-order linear equations

The general nth-order linear equation with variable coefficients has the form
Lyl =y™ +a1(@)y™V + - +an1 @)y +enl@ly = f(z).  (34.)
The term linear refers to the fundamental property

Lp[Cry1 + Caya] = CiLn[y] + Ca2La[ys) (3.4.2)
of the nth-order differential operator
Lo=D"+aiD" '+ +an1D +an,

where D = d/dz. Accordingly, Ly, is termed a linear differential operator. Eq.

(3.4.1) is said to be homogeneous if f(z) = 0, and non-homogeneous otherwise
(cf. Sections 3.2.6 and 3.3).

3N.H. Ibragimov, ‘Invariant Lagrangians and a new method of integration of nonlinear
equations’, J. Mathematical Analysis and Applications, V. 304, No. 1, 2005, pp. 212-235.



3.4. HIGHER-ORDER LINEAR EQUATIONS 121

3.4.1 Homogeneous equations. Fundamental system

The linear superposition principle follows from property (3.4.2) and states that
the general solution of the homogeneous linear equation

¥ ™ + a1 (@)™ 4+ an1 (@)Y +an(z)y =0 (3.4.3)

is a linear superposition of n linearly independent particular solutions:
y=Ciyi(x) + - + Cayn(z), (3.4.4)
where C, ..., Cy, are arbitrary constants. Any set y;(z),...,yn(z) of n lincarly

independent solutions is termed a fundamental system for (3.4.3).

3.4.2 Non-homogeneous equations. Variation of parame-
ters

Theorem 3.4.1. Let a fundamental system of solutions for the homogeneous
equation (3.4.3) be known. Then the general solution to the non-homogencous
equation (3.4.1) can be obtained by quadratures.

Proof. The solution can be obtained by the general method of variation of
parameters due to Lagrange (1774). Namely, we replace the constants C; in
(3.4.4) by functions u;(z) (cf. Section 3.3):

y = u()p () + - - + un(T)yn(2).

Lagrange’s method provides the following relations for determining the un-
known functions u;(z):

duy du,

== —2 =,
)1 dz + +Yn dz
du1 dun,
/ . ¢ 2%n
m-pd -2 $Un
1 dz ot s dz 0,
-nd -
yUE e ”-— = f(). (3.4.5)
dz
Since y1, - . . , Yn are known and they are linea.rly mdependent, equations (3.4.5)

can be solved with respect to the derivatives of the unknown functions and
written in the form integrable by quadrature:

d
“’“ =y(z), k=1,...,n.
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3.4.3 Equations with constant coefficients
Euler’s ansatz discussed in the case of second-order equations applies also to
higher-order homogeneous linear equations with constant coefficients,

™ +ay™ V4. +an1y +ay=0, ai,...,a, =const. (3.4.6)

Looking for a particular solutions of form (3.3.25),

y=¢e A =const.,
one reduces the nth-order differential equation (3.4.6) to the algebraic equation
of the nth degree,

PN =A"+ai X" '+ +ap_iA+a, =0 (3.4.7)

called the characteristic equation.

The polynomial P, () is known as the characteristic polynomial for (3.4.6).
Let Aj,...,An be real distinct roots of the characteristic equation (3.4.7). Then
the particular solutions ¢*'%, ..., ¢*»* provide a fundamental system. Accord-
ing to the superposition principle (3.4.4), the general solution of Eq. (3.4.6)
with constant coefficients is given by the linear combination

y = C1eM* 4 ... 4 Cpe®. (3.4.8)

The cases of complex as well as repeated roots are treated as in the case
of second-order equations discussed in Section 3.3. For example, let A; be
repeated s times. Then the corresponding solution is given by

y1=(C1 +Caz + -+ + Coz® t)eM?, (3.4.9)

with arbitrary constants C;. Taking into account all multiple roots, one obtains
the following modification of formula (3.4.8) for the general solution:

¥ = quz)eM” +. .. + g (z)e". (3.4.10)

Here g,(z) is the polynomial with arbitrary coefficients of degree s — 1, where
s is the order of multiplicity of the corresponding root A, (1 < s <r).
In the case of complex A; = a; + (11, the right-hand side of expression
(3.4.9) (and hence the first term of (3.4.10)) should be replaced by
(Cr+ Coz + - + Cyz® )™ cos(f z)
+(Copr + CosaZ + -+ + Coez® ) e™ * sin(By 7).

Example 3.4.1. Consider Eq. (2.3.20),

du 4
55-4- =au, o= const.



3.4. HIGHER-ORDER LINEAR EQUATIONS 123
The characteristic equation A* — a# = 0 has four distinct roots:
M=a, M=-a M=ai, M=-o.
Thus, one arrives at formula (2.3.21) for the general solution
u = C1e** + C2e™** 4 C3 cos(az) + Cysin(az).
Example 3.4.2. Consider the equation

dly
dx?

d?%y
2— =0.
+ 322 +y=0

The characteristic equation
M+2x2+1=0
has the repeated imaginary roots
M2=14, Ag4=A2=—
Hence, the general solution
= (C1 + Caz) cosz + (Cs + Cyz)sinz.

3.4.4 Euler’s equation

The equation

d"y o drly dy
:Enw-{-alz" ldxn_l+..‘+an_1za;+any=0, (3,4011)
where a,,...,a, = const., is known as Euler’s equation. This equation with

variable coefficients is invariant under the dilation, i.e., it does not alter after
replacing z by k z with a parameter k # 0. Therefore, the transformation

t=In|z| (3.4.12)

converting the dilation k z into the translation t + In |k|, maps Eq. (3.4.11) to
an equation with constant coefficients for the function y(t).

Example 3.4.3. Consider the second-order Euler equation

d2y dy
2 —

Iz +3z e +y=0.
Introducing the new independent variable ¢ = In|z|, we obtain
2y

v 2%, 0

d? dt
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For the latter equation, we have the characteristic equation
A2+2X+1=0,
which has the repeated root A\; = A2 = —1. Hence,
y=(Ci+Cat)e™".

Returning to the original variable z, we obtain the following general solution
of the equation in question:

1
Y= ; (Ci+Cs In III)

3.5 Systems of first-order equations

3.5.1 General properties of systems

Consider the general system of first-order ordinary differential equations

dy* i 1,2 n ;
E:f(z,y,y,...,y ), i=1,2,...,n. (3.5.1)
Let the functions f* be continuous in a ncighborhood of zo,¥3, - - -, y&.

We will use the vector notation

y‘:(yl’-"ayn)’ .f=(f1v"vfn)
and write an initial value problem for (3.5.1) in the compact form:

dy
& = T@), vl =, (3.5.2)

where
Yo= (Y0, ¥5)-
Thus, y is an n-tuple of dependent variables, the ith one of which is denoted
by ¥* and called the ith coordinate of the vector y.
The definition of classical solutions applies to systems of differential equa-
tions as well with the natural replacement of the single variable y by the vector

y. We will use the following simple version of the existence and uniqueness
theorem for systems.

Theorem 3.5.1. Let the function f(z,y) be continuously differentiable in a
neighborhood of the point (zg,yo). Then problem (3.5.2) has one and only one
solution defined in a neighborhood of zg. It follows that the general solution of
a system of n first-order differential equations (3.5.1) depends precisely on n ar-
bitrary constants C1,...,Cy, e.g. on arbitrarily chosen initial values y3,...,y3
of the dependent variables at z = . Accordingly, the gencral solution to
(3.5.1) is written

yi=¢i(xacls'-'an)» i= 1’2”-'3n- (353)
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3.5.2 First integrals

Consider a system of ordinary differential equations of the first order with n—1
dependent variables:

dy* i 1,2 n-1 .
E=f($ay,y IREREY’) ), 3=1,...,n-1. (354)

According to Theorem 3.5.1, its general solution has the form
¥i(x) = ¢i(z,C1,...,Cn_1), i=1,...,n—1,
whence, upon solving with respect to the constants of integration Cj;,
Yi(z, vt y%, .., y" D) =C;, i=1,...,n—1. (3.5.5)

The system of relations (3.5.5) is called the general integral of Eqs. (3.5.4). The
left-hand side of each Eq. (3.5.5) reduces to a constant when y!,32%,...,y""!
are replaced by the coordinates y'(z),y?(z),...,y" *(z) of any solution of
system (3.5.4). For this reason every single relation in (3.5.5) is known as a
first integral of the system of equations (3.5.4).

Example 3.5.1. Consider the system
dz dy
aY¥ o a”

One can integrate this system as follows. Differentiating the first equation
of (3.5.6) and substituting dy/dt from the second equation, one reduces the
problem to integration of the single second-order equation

—z. (3.5.6)

e
dt?
Its fundamental system is provided by

+z=0.

z() = cost, T(p) =sint

and hence,
T = C)cost + Capsint.

The first equation of (3.5.6), y = dz/dt, yields
y = Cacost — Cj sint.
Hence, the general solution to system (3.5.6) is given by
z = Cicost + Cysint, y=Cycost— Cysint. (3.5.7)
Solving Egs. (3.5.7) for C1, C,, one obtains the following first integrals:

z cost —ysint =C;, zsint+ycost=Cy. (3.5.8)
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Hence, the functions ¥ in Eqgs. (3.5.5) are
¥1(t,z,y) = z cost —y sint, ¥(t,z,y) = T sint +y cost. (3.5.9)

The first integrals can be obtained also by rewriting system (3.5.6) in the
following form (see further Egs. (3.5.13)):

Integration of the first equation written in the form zdz + ydy = 0 yields

z? +y? = a?, a = const. (3.5.10)

Now the second equation is written

dt+ —2__ g

[aZ — 2
and yields
t + arcsin(y/a) = C.

Invoking (3.5.10) and the clementary formula (1.1.7), we have
Yy

arcsin % = arctan ﬁ = arctan % , (3.5.11)
and hence,
t + arctan(y/z) = C.
Finally, we arrive at the first integrals (3.5.5) with the functions
it z,y) = 22 + 3%, ¥a(t,z,y) = t + arctan(y/z). (3.5.12)

instead of (3.5.9).

The set of the first integrals (3.5.5) is not the only possible representation
of the general solution. Indeed, any relation ¥(¢y,...,¥n—1) = C is a first
integral, and hence one can replace the functions 3 by any n — 1 functionally
independent functions ¥;(¥1,...,%n-1), ¢ = 1,...,n— 1. Therefore, it is useful

to have the definition of the first integrals independent on the general integral
(3.5.5).

Definition 3.5.1. Given a system (3.5.4), its first integral is a relation
Yz, yth gt y" ) =C

satisfied for any solution y* = y*(z), i = 1,...,n — 1, where the function ¥ is
not identically constant. In other words, the function 1, which is also called a
first integral for the sake of brevity, holds a constant value along each solution
with the constant C depending on the solution.
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System (3.5.4) can be rewritten in the form

dz _dy'  dy? dy™!
1 F 7—2— == fT—T )
Since the denominators can be multiplied by any function distinct from zero,
one can rewrite these equations (using the notation ¢ = (z!,z2,...,z") for the
variables z,y!,...,y""!) in the symmetric form:
dz!  dz?2 = de (3.5.13)
§Hz) (=) §™(z) o

The term symmetric is due to the fact that form (3.5.13) of n — 1 first-order
ordinary differential equations does not specify the independent variable, which
may be now any of the n variables z!,22,...,z™. A first integral of system
(3.5.13) is given by Definition 3.5.1 and is written

Y(z) = C. (3.5.14)
The first integral (3.5.14) is often identified with the function ¥(z).

Lemma 3.5.1. A function ¥(z) = ¥(z’,...,z") is a first integral of system
(8.5.13) if and only if u = ¥(x) solves the partial differential equation

0

Proof. Let a function 1(x) provide a first integral. Since () = const. for
any solution x = (z!,...,z") of system (3.5.13), the differential d¢ taken along
any integral curve of Egs. (3.5.13) vanishes:

[l

APV S (3.5.16)

dy = az! ozn

In other words, Eq. (3.5.16) holds whenever dz = (dz!,...,dz") is propor-
tional to the vector & = (£},...,€&M), ie, dz = A€, X # 0. Substituting
dz* = A€' into (3.5.16), one arrives at Eq. (3.5.15). Thus, we have proved
that Eq. (3.5.15) is satisfied at points = belonging to the integral curves of
system (3.5.13). But, according to Theorem 3.5.1, integral curves pass through
any point. Hence, Eq. (3.5.15) is satisfied identically in a neighborhood of any
point . The above steps are reversible. This completes the proof.

Definition 3.5.2. A set of n — 1 first integrals
Ye(x) =Ck, k=1,...,n—-1, (3.5.17)

is said to be independent if the functions ¥ (x) are functionally independent,
i.e., if there is no relation of the form F(¢y,...,%n-1) =0.
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Example 3.5.2. Consider the system

Integrating the equations
dz dy

dr dz
—=— and —=—,
z y z z

we obtain y/z = C; and z/z = Cy, respectively. Hence, we have the following
two independent first integrals:

Pi(z,y,2) = %, Pa(z,y,2) = i

Equation (3.5.15) has the form

Ou 2 2y
Yoz y@y 9z~
One can casily verify that this equation is satisfied by u = ¥,(z,y,2) = y/z
and u = yYy(z,y,2) = z/z.

Any set of n — 1 independent first integrals represents the gencral solution
of system (3.5.13). Since the general solution of a system of n — 1 first order
equations depends precisely on n — 1 arbitrary constants (see Theorem 3.5.1),
one arrives at the following statement.

Theorem 3.5.2. A system of n — 1 first-order ordinary differential equations
(3.5.13) has n — 1 independent first integrals (3.5.17). Any other first integral
(3.5.14) of system (3.5.13) is expressible in terms of (3.5.17):

¥ =F@r,... 0 1) (3.5.18)

Example 3.5.3. Consider the system

It is equivalently rewritten as

dz dy dy dz

yz zz' T2 TY

1

or, multiplying through by z and z, respectively,

dz _dy dy _dz
y ' z y
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Rewriting them in the form ydy — xdz = 0 and ydy — zdz = 0 and integrating,
one arrives at the following two independent first integrals:

=2’ - =C, hr=2-9y’=0
Alternatively, the system in question can be written in the form

dr_dy do_ds

7] T z T

Then one arrives at the first integrals
=2t -y’ =Ci, dPa=2’-27=0;,

and hence one obtains three different first integrals, ¥, = C;,92 = Cs, and
13 = C3. However, they are not independent. Indeed, e.g. ¥3 = 11 — 9.

Thus, in this example, representation (3.5.18) of an arbitrary first integral
can be taken in the form ¢ = F(z? — y?,22 — ¢?).

3.5.3 Linear systems with constant coefficients

Euler’s method discussed above applies also to the general system of linear
homogeneous cquations of the first order with constant coefficients:

dyt <« «
E‘Z——+Ea,-jy’ =0,i=1,...,n, or y +Ay=0. (3.5.19)
j=1

Here y = (y',...,y™) denotes the dependent variables, ' = dy/dz and 4 =
(ai;) is & constant n x n matrix so that (Ay)' = 3°7_, aiy’.
Euler’s formula for particular solutions is now written

y =¢**1l, )= const. (3.5.20)

Here I = (I!,...,I") is an unknown constant vector to be determined from Eq.
(3.5.19). Substitution of (3.5.20) into (3.5.19) yields

(A+AE) =0, (3.5.21)

where E is the unit n x n matrix. The system of linear equations (3.5.21) has a
solution  # 0 if and only if the determinant |A+ AE| = det(A + AE) vanishes.
Subsequently, the characteristic polynomial P, and the characteristic equation
for system (3.5.19) are defined by

P.()) = |A+ AE| =0. (3.5.22)

Let the characteristic equation (3.5.22) have distinct roots, Aj,...,An. Then
one obtains precisely n linearly independent solutions 1(y), ..., of (3.5.21),
and hence the following fundamental system of solutions:

) =y, s Yo =€ L. (3.5.23)
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The general solution to system (3.5.19) is given by
Y= Cle’\" l(l) + o4 Cne'\"z l(n). (3.5.24)

If Eq. (3.5.22) has a complex root, A = a + i (and hence its complex con-
jugate), then Eq. (3.5.21) has a complex solution ! = p+iq. The corresponding
solution (3.5.20) splits into two real solutions:

Y1) = € (pcos Bz — gsin Bx),
Y(2) = €°* (psin Bz + g cos fz). (3.5.25)

Example 3.5.4. Let us solve the system (cf. Example 3.5.1)

dz _ dy _ —r
a- Y T
Here y = (z,y), a1 = a2 = 0, a12=-1, a2 =1 The characteristic equation

has the complex roots A = i, A = —i and Eq. (3.5.21) yields | = p + ig with
p = (1,0), ¢ = (0,1). Egs. (3.5.25) provide the fundamental system of solutions

Y() = (cost, —sint), () = (sint, cost). (3.5.26)
Writing y = C1y(1) + C2y(2), one arrives at solution (3.5.7):
z =Cjcost+ Cysint, y= Czcost— Cysint.

3.5.4 Variation of parameters for systems

Consider now systems of non-homogeneous linear equations:

dyf <& : .
T leaij(z)yf =fiz), i=1,...,n (3.5.27)
It is called homogeneousif f; =0, i = 1,...,n, and non-homogeneous otherwise

(cf. Section 3.2.6).
Let the general solution of the homogeneous system

dut n N
%.‘. E 01_1(33)?/‘1 =0’ 7:=1,...,n,
i=1

be known. Then the non-homogeneous system (3.5.27) can be solved by the
method of variation of parameters discussed for a single equation. Let us
illustrate the method by the following example.

Example 3.5.5. Consider the system

dz

dy
Fri = cost, a+x— 1. (3.5.28)
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The solution of the homogeneous system,

dz dy
dt—y—O, a?+a:=0,
is given by (3.5.7):
z = Cjcost + Cysint, y = Cycost — C;sint.

One can proceed as in the case of a single equation. Namely, replacing the con-
stants C1, C2 by unknown functions u(t), v(t) and substituting the expressions

z = u(t) cost + v(t)sint, y=v(t)cost — u(t)sint (3.5.29)
into Eq. (3.5.28), one obtains

du dv dv du
— S t -+ — 4 t —_ = ekt -
T cos T sin cost, T cost at sint =1,
whence:
du 2 . v .
— =cos”t — sint, = cost sint + cost. (3.5.30)

dt dt
Integration of Egs. (3.5.30) yiclds
t 1
u=y + 3 sint cost +cost+ K,, v= —% cos*t +sint + K,.  (3.5.31)

Substituting (3.5.31) into (3.5.29) and denoting the arbitrary constants K; and
K, by C; and Cy, respectively, one obtains the following solution of system
(3.5.28):

t
T = 1+-2-cost+01cost+Czsint,

t 1 .
y= —Esint— Ecost+Czcost—Cl sint.

It is convenient to represent the method of variation of parameters in the
vector form as follows. System (3.5.27) is written:

Yy + A(z)y = f(=). (3.5.32)

Furthermore, let us write the general solution (3.2.35) to the non-homogeneous
single linear equation 3 + P(z)y = Q(z) in the form

y=Cui(2) + 1) / 47\ (2)Q(z) de,

where
yl(x) = e—fP(x)dz

is a particular solution to the homogeneous equation 3’ + P(z)y = 0. Proceed-
ing as in Section 3.2.7, one arrives at the following result.
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Theorem 3.5.3. Let y1,...,Yn be a fundamental system of solutions for the
homogeneous system
v +A@z)y =0

Then the general solution to the non-homogeneous system (3.5.32) is given by
quadrature by the following formula:

y=Ciy(z) + -+ Cryn(z) + Y(2) /Y'l(:c) f(z)dz, (3.5.33)

where Y(z) is the n X n matrix defined by

Y(z) = ((2), -, yn(2)) (3.5.34)
and known as the fundamental matrix, and Y ~!(z) is the inverse matrix.

Example 3.5.6. Consider again system (3.5.28) from Example 3.5.5. It is
written in the vector form (3.5.32) as follows:

T 0 -1\ [z cost
+ = .
Y 10 y 1
Thus, we have a two-dimensional non-homogencous vector equation of form
(3.5.32) with the independent variable ¢ and

(= A_O—l t_cost
y—y, —lo’f()'- 1 .

The fundamental system of solutions of the homogeneous system is given by
(3.5.26). We write it in the form

cost sint
Yo = —sint)’ Ve = cost

and obtain the following fundamental matrix (3.5.34) and its inverse:

cost sint 1 cost —sint
Y= . , Y '= .
—sint cost sint cost

Thus, formula (3.5.33) for the solution is written:

cost sint
y=0C . + Cy
—sint cost
cost sint cost —sint cost
+ . . dt
—sint cost sint cost 1
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cost —sint\ [cost cos’t —sint
. dt = / dt
sint cost 1 sintcost 4+ cost

The integral in the right-hand side is written (see Eqgs. (3.5.30)):

We have

. t
/(cos2t —sint)dt 5+ %sint cost + cost
/(sintcost+cost)dt —%cos2t+s‘mt

Substituting this into the above cxpression for y and changing the arbitrary
constants Cy, Ca, we arrive at the solution given in Example 3.5.5. Namely,

cost sint 1 2+ tcost
y=0C . +Cy + = . .
—sint cost 2 \ —tsint - cost

Problems to Chapter 3

3.1. Integrate the following first-order equations:
Y _
1422’
(iv) ¥ =y+2%, (V)y+Cy+z+a2=0,

(i) ¥ =0, (ii)y =2zy, (ii)y =

3.2. Integrate the following second-order equations:
(i) y" =0, (ii)y" =2y, (i) y"=-2y, (iv)y" =2y,
(v) ¥ =y+2? (vi)y' = [z +2%)e,
3.3. Integrate the following third-order equations:
(1) y'” — 0’ (ll) ylll — y’ (iu) ylll +y = 0’
(V) v =y +22,

3.4. Single out the homogencous equations of the form 3’ +y? = C z*, where C
and s are any constants.

3.5. Verify the uniform homogeneity of the equations from Example 3.1.5.

3.6. Give detailed calculations of the proof of Theorem 3.3.1. Specifically,
verify that transformation (3.3.11) maps the general linear homogeneous
second-order equation (3.3.6) to the simplest form (3.3.10).

3.7. Test the linearization for the following Riccati equations:

i) ¥=1+9% (i)y=1-9% (i) y =z+2zy+z9?
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3.8.

3.9.

3.10.

3.11.

3.12.

3.13.

3.14.
3.15.
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(v) ¥ =z+9% (v) ¥ = P(z) + Q(x)y + [Q(z) - P(@)]y*,

(vi) ¥ =z +zy?, (vii) ¥’ = P(z) + Q(x)y + [Q(z) — 2P(2)]y?,

(viii) ¢ =z —z3?, (ix) ¥ = P(z) + Q(z)y + 2(Q(z) — 2P(z)]y?,

x) ¥ = P(z) + 1+ P@)y +3°, (xi) ¥’ = P(z) + 1 + 2P(a)]y + ¥°,

2 — 2

y_yz)

2 2
(i) ¥ = 5 ~9F, (<)Y = 5+
xiv) ¥ =z + (1 +z)?y+ (1 +z+2?)y?
by checking both properties (A) and (B) of Theorem 3.2.2.

Solve the following system with initial conditions:

dy' 5 dy?
rTERE AN T y’ylto_z’ylt()

Show that the following equation is exact and integrate it:

1.

Integrate the following equation describing free oscillations of a damped
mechanical system with a small damping force:

d’y . dy
d—ti + QbEt- +cy = 0,

where b, ¢ are positive constants such that b < c.

Solve the following equations:

1

i II+ =t , e " - .
(i) " +y=tanzx, (ii)y"+y pnt (iii) y" +y = pr

Solve the exact equation (ye™ + cosz)dz + ze*¥dy = 0 from Example
3.2.1 by using Eqgs. (3.2.7) and (3.2.8).

Find all second-order equations f(z,y,y’,y”) = 0 that are reducible to
the form g(z,y,y')y” = 0 through differentiation.

Integrate Euler’s equation z2y” + 2zy’ + 4y = 0, = > 0.

Integrate the equation

/
v_s¥ L 3¥ _q
y x+3z2 0



Chapter 4

First-order partial differential
equations

Partial differential equations of the first order with one dependent variable per-
tain to the theory of ordinary differential equations, the link between these two,
seemingly distinctly different, classes of equations being provided by charac-
teristics. Furthermore, an acquaintance with the theory of first-order partial
differential equations is a prerequisite for Lie’s theory.

Additional reading: E. Goursat [9], V.I. Smirnov [36], N.H. Ibragimov [21].

4.1 Introduction

Let z = (£*,...,z") be n > 2 independent variables and u a dependent vari-
able. We denote by p = (p1,...,pn) the partial derivatives p; = du/dz".

Recall that equations in which the number of independent variables is
greater than one are termed partial differential equations.  An equation is
said to be of the first order if the partial derivatives of highest order that occur
are of order one. A single partial differential equation of the first order with
one dependent variable is written

F(z!,..., 2", u,p1,-..,pn) = 0. (4.1.1)

If n = 2, the independent variables are denoted by z,y, the derivatives by
p = Ou/dz, ¢ = 8u/8y. Then Eq. (4.1.1) is written F(z,y,u,p,q) = 0. Its
solution u = ¢(x, y) defines a surface in the three-dimensional space x,y, u and
therefore it is often termed an integral surface.

The general linear first-order partial differential equation is written

£ (x)pr + -+ + €™ (2)pn + c(z)u = f(2), (4.1.2)

or

§1(w)% +. +£”(m)% + c(z)u = f(z). (4.1.3)

135
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If f(z) = 0, Eq. (4.1.2) is homogeneous by function (see Sections 3.1.4 and
3.2.6). However, the term homogeneous applies in the literature to Eq. (4.1.2)
with ¢(z) = 0 and f(z) = 0, i.e., to the equation

£ (@)pr+ -+ EMz)pn = 0. (4.1.4)
The general quasi-linear equation of the first order has the form
£z, u)pr + - + €Mz, w)pn = g(2, ). (4.1.5)

4.2 Homogeneous linear equation

Let us introduce the linear partial differential operator of the first order:

0 0
=) — 4 ... p)— .
X=¢ (:t:)az1 4+ 4 (:L')azn (4.2.1)
Lemma 4.2.1. Let * be new independent variables defined by
F=9(z), i=1,...,n. (4.2.2)
Then operator (4.2.1) is written in the new variables in the form
= 0 0
= =2 +... ny__—_
X =X(g )05:1 +- 4+ X(p )65:" , (4.2.3)

where X (¢*) = £'8¢' /82" + - - - + €"(z)dy* /O™,
Proof. The chain rule for the partial derivatives yields

0 06t 9
ozt prt Ozt Ozk

One can easily verify that the substitution of the above expressions into oper-
ator (4.2.1) transforms it to form (4.2.3).

In terms of this operator, the homogeneous linear partial differential equa-
tion (4.1.4) is written as follows:

ou Ou
=gl —_— e n —_— =
X =g (2)g5+ +£") 5 =0 (4.2.4)
Theorem 4.2.1. The general solution to Eq. (4.2.4) has the form
u=F@(a),...,¥n1(z)), (4.2.5)

where F is an arbitrary function of n — 1 variables and

¢1($) = Cl» seey ¢n—1(m) = Cﬂ—l
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are independent first integrals of the following system of n — 1 ordinary differ-
ential equations called the characteristic system for Eq. (4.2.4):

g 4= (4.2.6)

Proof. The function u defined by (4.2.5) solves Eq. (4.2.4). Indeed, we have

X(¥1) =0, ..., X(¥n_1) =0 by Lemma 3.5.1. Therefore, Eq. (4.2.4) follows
from the chain rule:

OF
B Ynmt) =0

Let us verify now that any solution to Eq. (4.2.4) has the form (4.2.5). Let
us introduce new independent variables

X (b s¥net)) = 52X () oo+

' =yi(z), ..., "' =Yaa(z), ™ =¢(z), (4.2.7)

where ¥,(z),...,%n-1(z) are the left-hand sides of n — 1 independent first
integrals of the characteristic system (4.2.6), and ¢(x) is any function which is
functionally independent of ¥,(z),...,¢¥n-1(z). Lemma 3.5.1 yields X(¢,) =
-+ = X(¥n-1) = 0, whereas X (¢) # 0. According to Lemma 4.2.1, Eq. (4.2.4)

takes the form

X() = X(6) e =0,

whence du/8z'™ = 0. Therefore, the general solution is an arbitrary function
of z%,...,2™"}, ie, u = F(2",...,2""1). Using Eqs. (4.2.7), we obtain
representation (4.2.5) of the general solution.

Example 4.2.1. Let us solve the following equation:

8_15.‘. @—0
Tor Ve T

The characteristic system (4.2.6) has the form dz/z = dy/y and provides the
first integral y/z = C. Consequently, the general solution (4.2.5) is written

u = F(y/z).
Example 4.2.2. Consider the equation

é_)g - xau =0
Yor "oy
The characteristic equation (4.2.6) has the form dz/y = —dy/z, or zdz + ydy
= 0. Integration yields the first integral z2+y? = C. Hence, the general solution
(4.2.5) is written u = F(z? + y?).
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4.3 Particular solutions of non-homogeneous
equations

Let us begin with the non-homogeneous linear equation (4.1.3) of the form

7, N
£ (@) gy +o o + @) 5z = S(2). (4.3.1)
Using operator (4.2.1), Eq. (4.3.1) is written
X(u) = f(2). (4.3.2)

Note that knowledge of a single solution u = ¢(z) of the non-homogencous
equation X (u) = f(z) provides the general solution. Namely, the general
solution u of Eq. (4.3.1) is given by

u = p(z) +v, (4.3.3)
where v is the general solution of the homogeneous equation, X (v) = 0. Indeed,
let X(p(z)) = f(z). By setting u = v + (), one obtains

X(u) = X(v) + X(p(2)) = X(v) + f(z).

It follows that X (u) = f(z) if and only if X (v) =

Thus, knowledge of a particular solution ¢(z) of (4.3.1) allows one to reduce
the integration of a non-homogencous linear partial differential equation (4.3.1)
to integration of the homogencous cquation or, equivalently, to determination of
n—1 independent first integrals of the characteristic system (4.2.6). In gencral,
it is not a simple matter to find a solution ¢(z). However, one can casily arrive
at a desired particular solution in special cases, e.g. in the following case.

Example 4.3.1. Let us solve Eq. (4.3.1) where one of the £*’s and the function
f depend upon the single variable z*, e.g.

() g + (& T £ ) e = f(). (43.4)

One readily obtains a particular solution to Eq. (4.3.4) by letting u = o(z?).
Substitution into Eq. (4.3.4) yields the ordinary differential equation

ot
§ ( ) d Z’l = )v
whence the solution is obtained by quadrature:

f(z')
3 (zl)dx
The general solution is provided now by formula (4.3.3).

p(zt) =
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Example 4.3.2. The equation with the independent variables z and 7,

ou Ou
2— _—
T +myay 1,

Oz
has form (4.3.4) with £' = 22 and f = 1. Consequently, one can look for a par-
ticular solution of the form u = ¢(z). Then the equation in question reduces to
the ordinary differential equation z2dp/dr = 1, whence one obtains (ignoring
the additive constant of integration) the particular solution ¢ = —1/z. The
associated system (4.2.6),

dz dy
@ " ay
has the first integral
% =C

Consequently, the general solution (4.3.3) is written
1 y
u=-z+F(2).
Example 4.3.3. Consider the equation
ou_,0u_
Yoz "oy TV

Upon dividing by y, it takes form (4.3.4) with £! = 1 and f = 1. Consequently,
assuming u = @(z), one obtains from dy/dz = 1 a particular solution ¢ = z.
The general solution of the corresponding homogeneous equation (see Example
4.2.2) is given by v = F (z? + y%) and therefore the general solution of the
non-homogeneous equation has the form:

u=z+F (22 +¢?).

Example 4.3.4. The general solution to the non-homogeneous equation

! Ou +-- 4+ nOu _ 1
or! ézn
has the form
u = ln|z"| + F (z'/2", 2%/, ..., 2" /z").

4.4 Quasi-linear equations
Arbitrary non-homogencous equations (4.1.3) can be solved by the general

method for the quasi-linear equations discussed in this section. We will show
that the general quasi-linear equation (4.1.5) with n independent variables,

E@u it + 46w o = (o), (4.41)
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in particular, an arbitrary non-homogeneous linear equation (4.1.3), can be
reduced to a homogeneous linear equation with n + 1 variables as follows.

Let us define u as an implicit function of z = (z!,...,z") by the equation
V!, ...,z u) =0 (44.2)
and treat V as an unknown function of n + 1 variables, z!,...,z" and u.
Differentiating Eq. (4.4.2) by means of the total differentiation
0 0
= —— + Py — 44.3
D ozt tp Ou ( )
one obtains
ov ov
iV = = iy — Y L = ]-» y 12,
D,v 7 +p.au 0, 1 n
whence oV /dz
z
| ——— =1,...,n. 444
P vigw (Then (4.4.4)

Inserting expressions (4.4.4) for p; into Eq. (4.4.1) one obtains the homogeneous
linear equation

ov ov av
£(z, u)gz—l + -+ €z, ")ﬁ +9($,U)'5; =0 (4.4.5)

for an unknown function V of n + 1 variables z!,...,z" and u. Now we apply
Theorem 4.2.1 to the linear equation (4.4.5) and obtain the following.

Theorem 4.4.1. The general solution of the quasi-linear equation (4.4.1) is
defined implicitly by the equation

V(z,u) =@ (1/’1 (z,u),..., Yn(z,u)), (4'4'6)
with an arbitrary function  of n variables such that 9V/du # 0. Here,
¢1(z,u) = Cl, ey ’l,[)n(:t,u) = Cn

are independent first integrals of the system of equations

1 2 n
T T = e~ e (447
called the characteristic system for the quasi-linear equation (4.4.1).
Example 4.4.1. Let us apply the method of this section to equation
yg—: - a:g% =1. (4.4.8)
Here g(z,y,u) = 1 and hence the characteristic system (4.4.7) is written
dz _ _dy_du

Y T 1
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We have to find two independent first integrals of this system. The first equa-
tion, zdz + ydy = 0, yields 22 + y? = a? = const. By virtue of this relation,
the second cquation is rewritten

du+——dy——=0,

whence, upon integration, u+arcsin(y/a) = C. Using formula (3.5.11), we have
u +arctan (y/z) = C. Hence, the two independent first integrals have the form

1=z +y? =C, 1y = u+ arctan(y/z) = Cs.
Therefore, the general solution of the corresponding equation (4.4.5),
ov. oV oV
de; - za—y + T " 0,

is given by formula (4.4.6):

V=0,t)=® (:):2 + 3%, u + arctan(y/z)) .
Hence, Eq. (4.4.2) is written

® (z? + y2,u + arctan(y/z)) = 0.

If 0% /0, # 0, one can solve the latter equation with respect to u and obtain
the solution in the explicit form

u = —arctan(y/z) + F (2% + %) . (4.4.9)
Remark 4.4.1. In polar coordinates defined by
z=rcosd, y=rsind, (4.4.10)

* r=+/22 +y?, 6 =arctan(y/z),
solution (4.4.9) is written v = —@ + f(r), thus suggesting to use the polar
coordinates. We have

du_ordu 000u Ou_orou o0u

8 Ordr Ox 00’ 8y 0Oyar 0Oyl

whence, substituting

or _z or_y 99 _ ¥ ¥z
or r'dy r' oz r2’ oy r?¥
we obtain %_EB_U_E@ @_2@_*_3__‘1{
8z ror r209’ o8y ror r2dl

Thus, Eq. (4.4.8) reduces to du/80 = —1 and yields u = -0 + f(r).
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Example 4.4.2. Consider the transfer equation known also as the Hopf equa-
tion u; + uuz = 0. The characteristic system (4.4.7) can be written formally
as

T w0
where the last term simply means that the system has the first integral u = C).
By virtue of this first integral, the characteristic system reduces to dz — C1dt =
0, whence £ — C,t = C2. We have two first integrals:

u=C; and z-tu=Cs,.

Therefore, V = ®(u,z — tu), and the solution to the Hopf equation is given
implicitly by (4.4.2):

O(u,z-tu)=0, or u=F(z-tu).

4.5 Systems of homogeneous equations

When several equations of form (4.1.2) for one dependent variable u are given
instead of a single one, they furnish a system (known also as a simultaneous
system) of linear partial differential equations of the first order. Since we have
several equations for one dependent variable, we deal here with what is called
over-determined systems.

We will consider here systems of homogenecous equations when the equations
composing the simultaneous system have form (4.1.4). After introducing r
differential operators of form (4.2.1),

7] 0
Xa=Ea(@)gr+ + (@5, a=1..,n (4.5.1)

a system of r homogeneous linear equations is written in the compact form
Xi(u) =0, ..., X;(u)=0. (4.5.2)

Equations (4.5.2) have a trivial solution u = const., which is of no interest to us.
Furthermore, it is apparent that any equation of the system can be multiplied
by a function of z. Thercfore, if a function u = u(z) solves s equations

Xao(u)=0, a=1,...,s<r,
it also satisfies their linear combination with any variable cocfficients A%(z) :

i A%(z) X o (u) = 0.

a=1

This motivates the following definitions.
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Definition 4.5.1. Differential operators X 1,--., X, are said to be connected
if there exist functions A*(z), not all zero, such that

A Z) X1+ + A°(2) X, =0, (4.5.3)

this being satisfied as an operator identity in a neighborhood of a generic z. If
relation (4.5.3) implies A! = - .- = A% = 0, we say that the operators X1,..., X,
are unconnected. In the latter case, the corresponding differential equations
X1(u) =0,..., X,(u) = 0 are said to be independent.

Let Z, be linear combinations of operators (4.5.1):

r

Zo=) hE(x)Xp, a=1,...,r,
B=1

with variable coefficients h2(z) whose determinant |h£(x)| is not zero. The
system of linear homogeneous equations

Zy(u)=0,...,Z.(u) =0 (4.5.4)
has the same set of solutions as the original system (4.5.2).

Definition 4.5.2. Systems (4.5.2) and (4.5.4), as well as the corresponding
operators X, and Z,, are said to be equivalent.

Lemma 4.5.1. The number r, of unconnected operators among operators
(4.5.1) is equal to the rank of the r x n matrix of their coefficients:

T. = rank({f, (z)), (4.5.5)

where a and ¢ denote rows and columns, respectively. The number r, is the
same for equivalent operators Z,,.

According to Lemma 4.5.1, any system of 7 homogeneous linear equations
can be replaced by a system of r, independent equations. It is clear that
more than n equations cannot be independent. Furthermore, if r = n, and if
operators (4.5.1) are unconnected (i.e., 7. = r = n), then the determinant of
the coefficients £ (z) is not zero. In this case the solution of system (4.5.2) is
trivial, u = const. Thus, a necessary condition for the existence of non-trivial
solutions is 7. < n. The condition r. < n alone is not sufficient, however for
the existence of non-trivial solutions.

Example 4.5.1. The system

Ou Ou Ou Ou
=2 —y— = Xo(u) =y e 422 =0
X (u) zay U 0, 2(u) Y5, zay
is composed of two independent equations since the operators X; and X, in-
volve differentiations in different variables. Integration of the first equation of
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the system yields u = v(x, p), where p = /y% + 22. Upon substituting this
expression into the second equation, one has

Since v does not involve the variable z ezplicitly, it follows that

a v

_a_,v) =0, and hence poe 0.

Consequently, u = v = const. Thus, the system in question does not have a
non-trivial solution even though r, = r = 2 is less than the number n = 3 of
the independent variables z, y, z.

To discern the true nature of the situation, one needs the following notion
of complete systems. Note that if u = u(z) solves system (4.5.2), then it solves
also the equations X, (Xg(u)) = 0 for any values of the indices a and 3. Hence,
u solves the following first-order equations:

= ; iy Ou
Xa (Xg(w) = Xp (Xa(w) = 3 (Xal€h) - Xal€h) 5 =0.
i=1
In other words, u annuls, together with operators (4.5.1), all their commutators
defined as follows.

Definition 4.5.3. The commutator of any two operators X, and Xg of form
(4.5.1) is the first-order differential operator [Xq, Xs] defined by

[Xa,Xp] = XaXp — XgXa,

or in the following equivalent form exhibiting the coefficients explicitly:

n

X Xo) = 3 (Xal€h) - Xo(6)) - (4556)

i=1

Thus, any solution of Egs. (4.5.2) solves the equations [X4, Xg](u) = 0 as
well. In consequence, one has the following alternatives: either some of commu-
tators (4.5.6) are independent of the original operators (4.5.1), or commutators
(4.5.6) are linear combinations with variable coefficients of operators (4.5.1).
The latter case means that the combined set of operators (4.5.1) and (4.5.6) is
connected.

In the first case, one should consider an extended system of differential
equations of the first order obtained by combining (4.5.1) with all independent
commutators. Then one can apply the above operations to this new system.
Proceeding in this manner, one ultimately reaches the second case and hence
arrives at what is called a complete system.
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Definition 4.5.4. Let (4.5.2) be a system of independent equations. It is

called a complete system if all commutators (4.5.6) are dependent on operators
(4.5.1):

(Xa, Xg] = D hl45(2)X,. (4.5.7)
=1

1f h;’w(z) = 0, i.e., if all commutators of operators (4.5.1) vanish, we have a
particular case of a complete system known as a Jacobian system.

The system of equations X;(u) = 0, X2(u) = 0 in Example 4.5.1 is not
complete. Consequently, the process of solution gave rise to a new equation,
and the corresponding complete system was self-generated.

If system (4.5.2) is complete, then any equivalent system (4.5.4) is also com-
plete. Furthermore, any complete system is equivalent to a Jacobian system.
To illustrate the integration procedure for complete systems, consider one more
example.

Example 4.5.2. Consider the system of equations X, (u) = 0, X2(u) = 0 with
the operators

a 0 0 o] a
Xl-zé;—ya, X2—5;+t£+y§~
The commutator of these operators has the form [X;, X2} = X3, where
0 0
X3 = ta + Za .

The three equations X;(u) = 0, X2(u) = 0, and X3(u) = 0 form a complete
system since

t
(X1, X2) = X3, [X1,X3]=- (;)(1 + gXa) X2, Xs) = =X

The equation X)(u) = 0 yields u = v(z,t,p), where p = /32 +22. Then
X3(u) = 0 reduces to
ta—v + p@ =0
op "ot
whence v = w(z, A), where A = p? — t2 = y? + 22 — t2. Now the last equation,
X, (u) = 0, reduces to dw/dz = 0. Thus,

u=¢(y> +22-17).

Problems to Chapter 4

4.1. Find the first integrals and the general solution of the system

dz 2 dy _

-— =Y.
a T ow W
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4.2, Find a first integral ¥(z,y) = C for

. . dz dy
(1) the equatio % =32

(ii) the system of the Lotka-Volterra equations (2.2.4).

4.3. Solve the homogeneous linear equations

Ou Ou Ou Ou
i) pl —— n__ = - _ .
i)z £ +- 4z 3am 0; (ii) Y3: %50 =0;
Ou du . Ou 26u
i) Yoe + 2 = ( = oo
(iii) Y3a +z ; 0; (iv) 2y6:z + 3z By

4.4. Solve the non-homogeneous linear equation

4.5. Solve the equations

du ou Ou ou Ou ou
i)y Yoz Ty (ii) Yoz %oy " yg(z), (iii) Yoz "oy = zh(y),

where g(z) and h(y) are arbitrary functions.
4.6. Show that u + arctan(y/z) = C is a first integral of the system

dz = _% = du.
Y T
4.7. Solve the equation
bu _ Ou_ 2
Yoz oy

4.8. Solve the following linear equation:

Ou
Ila—zl-+-'-+x"——;; =ou, o =const.#0.

oz

4.9. Investigate the completeness for the following system:

_ Ou Ou _ ou
Xl(u)=z<9y—y6 =0, X(u)= yb—-}-za =0.

4.10. Solve the following system of three equations with three independent
variables z,y, z

Xi(u) = z@ _ 2

Oy Y5z =0,
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Xo(u) = z% - zg—z =0,
0 o
Xs(u) = ya——: - xb% =0.

4.11. Consider the following system of two linear equations with four indepen
dent variables, ¢, z,y, and z :

@—@—0 siuz%wcosxa—u-i-Zcos szf—0
at 0z 3z By 9. =

t
Is this system complete? Solve the system.

4.12. Check that F'(u,z—tu) = 0 defines implicitly the solution to the equation
us + uuy = 0.

4.13. Solve the system

0_u+ (E—O 6_“_1+x?3_0
oz Yoz gy "0z
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Chapter 5

Linear partial differential
equations of the second order

This chapter contains mainly the second-order partial differential equations in
two independent variables. The emphasis is on the classification and methods
of integration. Before beginning this chapter, it’s recommended to read Section
1.1.4.

Additional reading: R. Courant and D. Hilbert (4], A. Sommerfeld [38], G.F.D.
Duff [6], S.L. Sobolev [37], J. Hadamard [12], A.N. Tikhonov and A.A. Samarskii
[39], I.G. Petrovsky [33].

5.1 Equations with several variables

5.1.1 Classification at a fixed point

The general linear second-order partial differential equation (PDE) with one
dependent variable u and n independent variables z = (z!,...,z") is

a¥ (x)ui; + b (z)u; + c(z)u = f(z), (5.1.1)

where the usual notation u; = Ou/dz*, Uy = 0%u/0r'0z’ is used for the
partial derivatives. According to the summation convention (Section 1.2.3), the
summation is assumed over ,j = 1,...,n. The coefficients a*/(z) are assumed
to be symmetric, i.e., a¥(z) = a’*(z).

Equation (5.1.1) is homogeneous by function if and only if f(z) = 0 (see
Section 3.1.4). Consequently, Eq. (5.1.1) is called homogeneous if f(z) = 0,
and non-homogeneous otherwise (cf. Section 3.2.6). Thus, the homogeneous
linear second-order partial differential equation has the form

a* (z)ui; + b*(z)u: + c(z)u = 0. (5.1.2)

149
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Let us write the left-hand side of Eq. (5.1.1) in the form
Llu] = a" (z)u;; + b*(z)u; + c(z)u, (5.1.3)
where L is the linear second-order diffcrential operator defined by
L = a"(z)D; D; + b*(z) D; + c(z). (5.1.4)

We will simplify the principal part of L, i.e., the terms with second-order deriva-
tives, by means of a change of variables z* = z*(z). The differentiations D; and
Dy with respect to =z and Z, respectively, are related by

0z* —
D, = EFD]‘
Hence, o
L=a"DyDy+---,
where o5 B3l
Gh — 9 OT ;.
Bt 527 % (5.1.5)
Let us fix on a definite point zo = (3, ...,z3) and introduce, at this point,
the quadratic form in g = (u1,...,4,):
K (p) = ag pipsj, (5.1.6)

with constant coefficients a§ = a'(xo). Consider a linear transformation
pi=oku, i=1,...,n (5.1.7)

We assume that it is invertible, i.e., the determinant |a¥| does not vanish.
Transformation (5.1.7) changes the quadratic form (5.1.6) as follows:
K(p) = aajafag-ﬂkﬂl. (5.1.8)

It is known from linear algebra that there exists a transformation (5.1.7)
such that the quadratic form (5.1.6) becomes a sum of squares, i.e.,

K(g) = e, (5.1.9)
i=1
where the ¢; are either +1 or 0. Now we compare (5.1.5) and (5.1.8) and set
ozt
3
Integration of these equations furnishes us with the linear change of variables
F=oks', k=1,...,n, (5.1.10)

leading to the following statement.



5.1. EQUATIONS WITH SEVERAL VARIABLES 151

Theorem 5.1.1. At any fixed point z9, Eq. (5.1.2) can be mapped by the
linear change of variables (5.1.10) to the following form:

Z 6(:0‘)2 =0, (5.1.11)

Equation (5.1.11) is called a canonical or standard form of Eq. (5.1.2).

If all of the £; have the same sign, e.g. +1 (if all of them are —1 we multiply
Eq. (5.1.2) by —1), we say that Eq. (5.1.2) has the elliptic type.

If none of the €; is zero and some of the ¢; are +1, some —1, we have Eq.
(5.1.2) of the hyperbolic type. Of these, equations of the normal hyperbolic type
are most frequent in applications. They are defined by the conditions that one
only of the ¢; is positive (or one only negative).

If some of the €; are 0, (5.1.2) is an equation of the parabolic type.

The above nomenclature applies to the non-homogeneous equation (5.1.1)
as well.

Equations with variable coefficients a'/ may have different types at different
points z. Moreover, it is impossible, in general, to find a change of variables,
defined not only at a fixed point but also in a certain domain, such that it maps
Eq. (5.1.2) to a canonical form in the whole domain. This is possible only if
Eq. (5.1.2) with several variables has constant coefficients a% or if there exists
some coordinate system in which the a*/ are all constants. The only exception
is provided by Eq. (5.1.2) with two independent variables (see Section 5.2).

5.1.2 Adjoint linear differential operators

The concept of the adjoint operator defined below plays an important part in
the theory and applications of linear differential equations.

Definition 5.1.1. Let L be a linear differential operator of any order. A linear
differential operator L* is called an adjoint operator to L if

vL[u) — uL*[v] = D;(p') = divP (5.1.12)

for all functions u and v, where P = (p',...,p") is a vector field with compo-
nents p*(z). Equation L*[v] = 0 is termed the adjoint equation to Eq. L[u] =

One can prove that the adjoint operator L* is uniquely determined by Eq.
(5.1.12). We will demonstrate this statement in the case of the second-order

operator (5.1.4): B )
L= a"(:l:)DiDj + b"(:t)D.' + C(l’)~

Theorem 5.1.2. The adjoint operator L* to L is uniquely determined and

has the form N .
L*[v) = D;D;(a”v) — D;(b'v) + cv. (5.1.13)
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Proof. The crucial idea is to consider the expression vL[u] and to transfer
differentiation from u to v. We have

vL[u] = va* D;Dju + vb* Dyu + cuv =
D;(va” Dju) — Di(va”)Dju + Di(vb'u) — uD;(vb*) + ucv.
Furthermore, we write the term —D;(va*)D;u in the form
-D;(va"¥)Dju = —D;(uD;(va")) + uD;Dj(a%v),

whence, interchanging ¢ and j in the first term of the right-hand side and
invoking that a*/ = a’t, we obtain

-D;(va”)Dju = —D;(uDj(va*?)) + uD;D;(a"v).
Finally, invoking that Dju = u; we arrive at the equation
vL[u] = u{D;D;(a"v) — D;(b'v) + cv} + D;{a"vu; + b'uv — uD;(a"v)}.

It follows that the adjoint operator is defined by (5.1.13) and satisfies Eq.
(5.1.12) with _ - . -
p' = aVvu; + b'uv — uD;(aVv). (5.1.14)

Remark 5.1.1. The definition of the adjoint operator is the same for sys-
tems of differential equations, e.g. in the case of second-order cquations when
the function u in Eq. (5.1.3) is an m-dimensional vector and the coefficients
a¥(z),b*(z) and ¢(z) of operator (5.1.4) are m x m matrices.

Definition 5.1.2. An operator L is said to be self-adjoint if
L{u] = L*[u] (5.1.15)
for any function u(z). Then Eq. L[u] = 0 is also termed self-adjoint.

Theorem 5.1.8. Operator (5.1.4), L = a¥(x)D;D; + b*(z)D; + c(x), is self-
adjoint if and only if

b*(z) = Dj(a¥(z)), i=1,...,n. (5.1.16)

Proof. Expression (5.1.13) of the adjoint operator L* can be written in the
form

L‘[v] = a"jvgj + (2Dj(aij) - bi) v; + (C - Di(bi) + D,'Dj (a‘j)) v. (5.1.17)
Substituting (5.1.17) in Eq. (5.1.15) and using the symmetry a’* = a% one
obtains

2D;(a¥) - b = b, c¢- Di(b') + D;D;(a”) =c. (5.1.18)

The first equation of (5.1.18) yields (5.1.16) whereas the second equation of
(5.1.18) is a consequence of (5.1.16). Note, that the proof is the same when
(5.1.3) is a system of second-order linear equations.
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Remark 5.1.2. It is stated in (4] (Appendix 1 to Chapter III, §2.2) that a
self-adjoint operator must obey, along with (5.1.16), one more condition:

D;(b*) = 0. (5.1.19)

However, condition (5.1.19) is needless. Indeed, let us consider, e.g. the fo-
llowing scalar equation in two independent variables z, y:

Llu] = %uzz + yPuyy + 27U, + 2yu, = 0.

The operator L is self-adjoint (see Problem 5.7) but does not meet condition
(5.1.19) since D;(b*) = Dz (b') + D (b?) = 4.

A simple example of a self-adjoint system that does not meet condition
(5.1.19) is

T2Ugz + Uyy + 22Uz + W =0,  Wag + YPwyy + 2ywy +u = 0.
vy vy v

The coefficients of this system with two independent variables x,y and two
dependent variables u, w satisfy equations (5.1.16) but do not meet condition
(5.1.19). Indeed,

2
au=1(¢)(1), 22:‘(1)1/02’ a2 = g2 =, c=i(l)(ﬂ’
2z 0 00 20
b = ;0, b2=|02y1, D,(b1)+Dy(b2)=‘02'¢o.

5.2 Classification of equations in two indepen-
dent variables

5.2.1 Characteristics. Three types of equations

The general form of the homogencous linear second-order partial differential
equations with two independent variables, z and y, is

Atgz +2Bugy + Cuyy+aus +buy +cu=0, (5.2.1)

where A = A(z,y),...,¢ = c(z,y) are prescribed functions. The terms with
the second derivatives,

Atzg + 2B ugy + Cuyy, (5.2.2)

compose the principal part of Eq. (5.2.1).
The crucial step in studying Eq. (5.2.1) is the reduction of its principal
part (5.2.2) to so-called standard forms by a change of variables

€=p(z,y), 7n="1v(z,y). (5.2.3)
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Let us obtain the standard forms of the principal parts for all equations of form
(5.2.1). The change of variables (5.2.3) leads to the following transformation
of the derivatives (see Section 1.4.5):

Uz = Prue + Pzlag, Uy = Pylg + Pyln,

Usz = PaUge + 20z Yllen + Yitng + Prztig + Yzaly, (5.2.4)
Uyy = Chtee + 20y tien + Pytny + Pyytie + Yyyun,

Uzy = PaipyUee + (Pz¥y + @y¥z)en + Vayling + Qaylie + Yoy,

Substituting expressions (5.2.4) in (5.2.2) and keeping only the terms with the
sccond-order derivatives ugg, gy, Ugy, We obtain the following principal part of
Eq. (5.2.1) in the new variables:

Auge +2Bugy + C un, (5.2.5)
where
A= A2 +2B .0y +C 2,
B = Apotpe + B (02t + 0y¥s) + C oy, (5.2.6)
C = A2 + 2B ooty + Cy2.

It is manifest from (5.2.6) that the principal part (5.2.5) will have only one
term, 2B, if we choose for ¢(z,y) and y(z,y) two solutions of the equation

Aw? +2Buw;wy + Cwl =0

provided that the latter has two functionally independent solutions, w; =
¢(z,y) and wy = 9(z,y). However, the equation under consideration may have
only onc solution or even no solutions at all since it is nonlinear. Thereforc, we
will dwell upon this problem.

Definition 5.2.1. The first-order nonlinear partial differential equation
Aw? +2Bwwy, + CwZ=0 (5.2.7)
is called the characteristic equation for Eq. (5.2.1). If w(x,y) is a solution of
Eq. (5.2.1), the curves
w(z,y) = const. (5.2.8)
are referred to as characteristics curves of Eq. (5.2.1).

The characteristics are important for integrating and/or understanding the
behaviour of the solutions of Eq. (5.2.1). In order to find the characteristics,
we set

Xz~ (6.2.9)
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and rewrite the characteristic equation (5.2.7) in the form
A(zx,y)A\? + 2B(z,y)A + C(z,y) = 0. (5.2.10)

Equations (5.2.1) are classified into three types in accordance with the num-
ber of their characteristics, i.e., with the number of real roots to the quadratic
equation (5.2.10).

Definition 5.2.2. Equation (5.2.1) is said to be hyperbolic if the quadratic
equation (5.2.10) has two distinct real roots, A (z,y) and A (z,y), i.e., if

B® - AC >0, (5.2.11)
parabolic if (5.2.10) has repeated roots, Ai(z,y) = da(z,y), i.e., if

B% - AC =0, (5.2.12)
and elliptic if the roots A\ (z,y), A2(z,y) are complex, i.e., if

B? - AC < 0. (5.2.13)

5.2.2 The standard form of the hyperbolic equations
Consider the hyperbolic type. Equation (5.2.10) has two distinct real roots

_ 2 _ _ - 2 _
PINT A ny) = BT CAC o

/\1(3, y) =

Substituting them into (5.2.9), we see that the characteristic equation (5.2.7)
splits into two different linear first-order partial differential cquations:

Ow Ow Ow Ow
o\, X — =0. .2.15
The characteristic systems (4.2.6) for Eqs. (5.2.15) are
dr dy dx dy
LW &y =0. 5.2.16
1 A(z,y) 1 d(z,y) ( )

Each equation of (5.2.16) has one independent first integral, ¢(z,y) = const.
and ¥(z,y) = const. for the first and the second equation of (5.2.16), respec-
tively. Accordingly, the functions ¢(z,y) and ¢(z,y) satisfy the first and the
second equation of (5.2.15), respectively:

Oy Oy oY oy

Y _ NP op _\, o, 5.2.17
Oz M Ay 0 Oz 2 8y ( )
and hence they are functionally independent. Thus, they provide two function-
ally independent solutions of the characteristic equation (5.2.10) and therefore
one can take them as the right-hand sides in the change of variables (5.2.3)
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thus reducing the principal part (5.2.5) to one term, 2Bug,,. The new vari_z}bles
¢ and 7 are termed the characteristic variables. Finally, we divide by 2B the
equation obtained from (5.2.1) after the change of variables and arrive at what
is called the standard form of the hyperbolic equations. We summarize (cf. Eq.
(1.1.56) in Theorem 1.1.3):

Theorem 5.2.1. The hyperbolic equations (5.2.1) are written in characteristic
variables in the following standard form

ugn + a(€,m)ug + (€, n)un + &&, n)u = 0. (5.2.18)

Exercise 5.2.1. Prove that the nontrivial (i.e., not identically constant) solu-
tions (z,y) and ¥(z,y) of the first and second equation of (5.2.17), respec-
tively, are functionally independent.

Example 5.2.1. A typical representative of the hyperbolic equations is the
wave equation (2.6.5)
Ut — Iczuu =0.

Setting t = y, we have A = —k?, B=0, C =1, hence B2 — AC = k? > 0. We
will continue the discussion of this example in Section 5.3.1.

5.2.3 The standard form of the parabolic equations

For the parabolic type, Eq. (5.2.10) has the repeated real root,

B
A= e
and the two equations (5.2.17) collapse into one equation
Op O0p
A=~ +B—
3z + oy (5.2.19)
Now we take the change of variables (5.2.3) in the form
E=p(z,y), n=z, (5.2.20)

where ¢(z,y) is a solution of Eq. (5.2. 19). One can readily verify that Egs.

(5.2.6) yield A=0,B=0. Dividing by C # 0, we obtain the following standard
form of parabolic equations (cf. Eq. (1.1.57) in Theorem 1.1.3).

Theorem 5.2.2. The parabolic equations (5.2.1) are written in the variables
(5.2.20) in the following standard form:

Uy + @€, N)ue + 5(5,7))u,, +é(€,n)u=0. (5.2.21)

We assumed above that A # 0. But if A = 0, then condition (5.2.12),

— AC = 0, yields that B = 0, and hence Eq. (5.2.1) is already in the
sta.ndard form (5.2.21).
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Example 5.2.2. A typical representative of the parabolic equations is the heat
equation (2.4.7)

U — azuu. =0.
Here A= —a?, B =0, C =0, and hence B2 ~ AC = 0.

5.2.4 The standard form of the elliptic equations

For the elliptic type, the condition B2 — AC < 0 yields that Eq. (5.2.10) has
no real roots but it has the complex root

-B+VBT=AC

A= 7

and the complex conjugate root Az = ;. We take the first equation of (5.2.15)
with the complex root A;:

Ow Ow

7 Mgy =0 (5.2.22)
and write its (complex) solution in the form
w = p(z,y) +i(z, y). (5.2.23)
The second equation of (5.2.15) is merely the complex conjugate to Eq. (5.2.22):
0w < 0w
— = =0,
Oz '8

where © = ¢(x,y) — i¢(z, y). Thercfore, we consider only function (5.2.23). It
solves the characteristic equation (5.2.7):

A(pz + ithe)? + 2B (px + 1) (y + ithy) + C (0 + ityy)? = 0.

Substituting (¢z +i¥z)? = @2 — 92 + 2ip;Ys, ... into the left-hand side of the
above equation and annulling the real and imaginary parts, we obtain

AQ: +2B sy +C o) = AY; +2BYathy + CYf,
Azt + B (py¥z + p2ty) + Cpythy = 0.
Hence, using the change of variables (5.2.3),
£=v(z,y), n=1(,y),

with ¢(z,y) and y(z,y) taken from (5.2.23), and invoking (5.2. 6), we have

A=C # 0 and B = 0. Now we divide by A Eq. (5.2.1) written in the new
variables and arrive at the standard form of elliptic equatlons given in the
following theorem (cf. Eq. (1.1.58) in Theorem 1.1.3).
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Theorem 5.2.3. Let Eq. (5.2.1) be an elliptic equation. We introduce new
variables

§= QO(:B, y)) n= 'P(-’L‘, y)’

where ¢(z,y) and ¥(z,y) are the real and imaginary parts of the solution
(5.2.23) to the complex characteristic equation (5.2.22). This change of vari-
ables transforms Eq. (5.2.1) to the following standard form:

Ugg + Uny + 8(€,n)ug + b€, M)uy + E(E n)u = 0. (5.2.24)

Example 5.2.3. A typical representative of the elliptic equations is the Laplace
equation in two variables,
Uzg + Uyy = 0. (5.2.25)

It is manifest that the characteristic equation (5.2.7), w2 + w? = 0, has no
real-valued solutions w(z, y).

Remark 5.2.1. It is manifest from Egs. (5.2.18), (5.2.24) that hyperbolic
and elliptic equations are connected by complex transformations (cf. Remark
1.1.7).

5.2.5 Equations of a mixed type

An example of second-order equations of a mixed type is provided by the Tri-
comi equation (2.6.37)

TUyy + Uz = 0. (5.2.26)

It is hyperbolic when z < 0 and elliptic when = > 0. The Tricomi equation
is used in gas dynamics as an approximate model in studying transonic flows.
Specifically, Eq. (5.2.26) corresponds to the subsonic gas flow in the clliptic
domain, and to the supersonic flow in the hyperbolic domain.

5.2.6 The type of nonlinear equations

The type of a nonlinear partial differcntial equation

A(T,y, U, Uz, Uy) Uzz + 2B(T, Y, U, Uz, Uy) Ugy
+ C(z, Y, u, Uz, Uy) Uyy + B(2, Y, 4, Uz, uy) = 0 (5.2.27)
depends on its solutions and is defined as follows.

Definition 5.2.3. Let
u” = h(z,y)

be any particular solution of Eq. (5.2.27). The type of the nonlinear equation
(5.2.27) on the solution u* is identified with the type of the linear equation

A™(2,Y) Uzz + 2B*(2,y) Uzy + C*(z,7) Uyy =0, (5.2.28)
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where the coefficients A*, B*, C* are obtained by replacing the dependent vari-
able u and its first derivatives by the function h(z,y) and its derivatives, re-
spectively, e.g.

A‘(:l:, y) =A (z, Y, h(xr y)v ht(za Y), hy(.'t, y).

The terms containing the derivatives of lower order are omitted in the li-
nearized equation (5.2.28) since they do not affect the type of the equation.

Example 5.2.4. Consider the nonlinear wave equation (2.6.31):
1
U = P(u) uzz + 5 &' (u)ul. (5.2.29)
If, e.g. ¢(u) = u?, then Eq. (5.2.29),
Uyt = u? Uzg + uui,
is hyperbolic for any solution u* = h(z,y). Likewise, if ¢(u) = —u?, then Eq.

(5.2.29),

2 2
Ut = —U" Ugz — U Uy,

is elliptic for any solution u* = h(z,y). On the other hand, letting, e.g. ¢(u) =
1 we obtain the nonlinear equation of the mixed type:

12
‘ll.u = uu;cz + —u_,,:.

2

It is hyperbolic for any positive solution v* = h(z,y), h(z,y) > 0, and eclliptic
for any negative solution u* = h(z,y), h(z,y) < 0.

5.3 Integration of hyperbolic equations in two
variables

We present here the simple and efficient integration methods due to d’Alembert
(1747), Euler (1770) and Laplace (1773). The Laplace invariants are vital to
this section.

5.3.1 d’Alembert’s solution

The first partial differential equation, the wave equation for vibrating strings,
use = k®uzgz, k = const., (5.3.1)

was formulated and solved by d’Alembert in 1747.
Let us solve Eq. (5.3.1) by transforming it to the standard form. The
characteristic equation (5.2.7) is written

w? — k2w = (wy — kwg)(we + kwz) = 0.
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It splits into two equations of the first order (cf. (5.2.15)):

Ow Ow
Bt +k 9z 0
and o . o .
ot oz
The associated equations (5.2.16),
dz
dt = %
and e d
=-7

have the first integrals = — kt = const. and =+ kt = const., respectively. Hence,
the characteristic variables for the wave equation are

E=xz—kt, n=zx+kt. (5.3.2)

In the characteristic variables (5.3.2), Eq. (5.3.1) is written in the standard
form

Ugn = 0. (5.3.3)
Integrating first with respect to 7 we have
ug = f(£)

whence, integrating now with respect to £ and denoting F(§) = [ f(£)d¢, we
obtain the general solution to Eq. (5.3.3):

u=F(§) + H(n). (5.3.4)

Now we return to the original variables by substituting in (5.3.4) the ex-
pressions (5.3.2) of the characteristic variables and ultimately arrive at the
following general solution of the wave equation (5.3.1):

u= F(z — kt) + H(z + kt) (5.3.5)

known as d’Alembert’s solution.

5.3.2 Equations reducible to the wave equation

Consider hyperbolic equations in two independent variables written in the stan-
dard form (5.2.18):

ugn + a(§, n)ue + b(€,n)uy + c(€,n)u = 0. (5.3.6)
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Some of equations of form (5.3.6) can be reduced to the wave equation (5.3.3)
by a change of variables, and hence, solved by d’Alembert’s method. Let
us single out all these equations. First of all, we identify the most general
form of changes of variables that can be utilized without loss of linearity and
homogeneity of Eqgs. (5.3.6) as well as their standard form. These changes of
variables are termed equivalence transformations and have the following form:

E=f€), T=gn), v=o0En)uy, (5.3.7)

where f'(€) # 0, 9'(n) # 0, and o(§,n) # 0. Here u and v are regarded as
functions of £,7 and &, 7, respectively. Eqgs. (5.3.6) related by an equivalence
transformation (5.3.7) are said to be equivalent.

Lg_t us begin with the restricted equivalence transformations (5.3.7) by set-

ting € = &, 7 = n and find Eq. (5.3.6) reducible to the wave equation by the
linear transformation of the dependent variable written in the form

v=ue?én),

We substitute the expressions
u=ype &M
ug = (vg — v%)e—w(f.n)’ Uy = (vy — vipy) e &
Ugn = (Ve — Vgn — Ung — VPgn + U Pg #n) e #Em
into the left-hand side of Eq. (5.3.6) and obtain

Ugn +aug +bu, +cu
= [vgn + (a — ¢q) vg + (5 — ) vy (5.3.8)
+ (—en + e Pn — awg — by + c)v]e”?.
Therefore, Eq. (5.3.6) reduces to the wave equation vg, = 0 if
a—¢n=0, b-ypg=0 (5.3.9)

and
Pen — g oy + apg +bpy —c=0. (5.3.10)

Equations (5.3.9) provide a system of two equations for one unknown function
@(€,m) of two variables. Recall that a system of equations is called an over-
determined system if it contains more equations than unknown functions to be
determined by the system in question. Over-determined systems have solutions
only if they satisfy certain compatibility conditions.

Thus, the system of equations (5.3.9) is over-determined. Its compatibility
condition is obtained from the equation p¢, = pne (independence of successive
partial differentiation on the order of differentiation) and has the form

ag = by. (5.3.11)
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Equation (5.3.10), upon using Egs. (5.3.9) and (5.3.11), is written as
ag +ab—c=0. (5.3.12)
Upon introducing the quantities h and k are defined by?
h=a¢+ab—-c, k=b,+ab-c, (5.3.13)
conditions (5.3.11) and (5.3.12) are written in the following symmetric form:
h=0, k=0. (5.3.14)

Remark 5.3.1. Equations (5.3.14) are invariant under the general equivalence
transformation (5.3.7). In consequence, the change of the independent variables
does not provide new equations reducible to the wave equation.

Summing up the above calculations and taking into account Remark 5.3.1,
we arrive at the following result.

Theorem 5.3.1. Equation (5.3.6) is equivalent to the wave equation if and
only if its Laplace invariants (5.3.13) vanish, h = k = 0. Any equation (5.3.6)
with h = k = 0 can be reduced to the wave equation vg, = 0 by the lincar
transformation of the dependent variable:

u=ve & (5.3.15)

without changing the independent variables £ and 7. The function ¢ in (5.3.15)
is obtained by solving the following compatible system:

9y 9y
= _ =X = . 3.1
Theorem 5.3.1 furnishes us with a practical method for solving a wide class
of equations (5.2.1)
Atzz +2Bugy + Cuyy +auz +buy +cu=0

of the hyperbolic type by reducing them to the wave equation. The method
requires the following two steps.

First step. Check if Eq. (5.2.1) is hyperbolic, i.e., if B2— AC > 0. Provided
that this condition is satisfied, reduce the equation in question to its standard
form (5.3.6) by introducing the characteristic variables (Section 5.2.2)

§=wl(z,y), n=uwaz,y) (5.3.17)

1Quantities (5.3.13) were introduced by Euler [7]. Then they were rediscovered by Laplace
(23] and became known in the literature as the Laplace invariants. See further Sections 5.3.3
and 5.3.4.
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Second step. Find the Laplace invariants (5.3.13). If h = k = 0, find ¢(§,7n)
by solving Egs. (5.3.16) and reduce your equation to the wave equation vg, = 0
by transformation (5.3.15). Finally, substituting v = f(£€) + g(n) into (5.3.15)
you will obtain the solution to your equation in characteristic variables:

u = [f(€) + g(n)]e~¥Em. (5.3.18)

Substitute here expressions (5.3.17) for £ and 7 to obtain the solution in the
original variables z,y.

Example 5.3.1. Let us illustrate the method by the equation

F__+3(1:3 ?) =0. (5.3.19)

First step. Here A =272, B = 0,C = —y~2, and hence B2-AC = (zy)~? >
0. Equation (5.2.7) for the characteristics has the form

() - (2 S O AY O TAN
z y T Y z Y .
It splits into two equations:

z y z y
They have the following first integrals:

z? — y2 = const., z2 4+ y2 = const.

Hence, the characteristic variables (5.3.17) are defined by
E=22—y% n=2"+4"
We have
Uz = Ug - €z + Uy - Nz = 22(ug + uy),
Uy =ug €y +Up- Ny = 2y(u,,—u€),
Uge = 2(ug + uy) + 42°((ug + un)e + (ug + un)y]
= 2(115 + ‘U»y,) + 4.’1:2(11“ + 2ugq + u,,,,),
Uyy = 2(un — ug) + 47 [(un — ug)n — (un — ug)e]
= 2(un — ug) + Y% (uee — 2ugy + Uny).

Therefore, Eq. (5.3.19) takes the following form:

z2 4+ - — 2 —y
2722 2z%y?

uen +
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Invoking that z2? — y? = £, 22 + y? = 1 and noting that

we ultimately arrive at the following standard form of Eq. (5.3.19):

2n 2
ugn + s ug — gy up =0. (5.3.20)

Second step. The cocfficients of Eq. (5.3.20) are

2 2

a=,72_€2’ =

_———n2_£2, c=0.

Substituting into (5.3.13) the expressions for a,b,c and their derivatives

4€n

g =by= 1 _

o - 7

we seec that h = k = 0. Now we solve Egs. (5.3.16):

and obtain
¢ = In(n’ ~ £2).
Consequently, substitution (5.3.15)
v = uen’ =€) = (- €)u (5.3.21)
maps Eq. (5.3.20) to the wave equation
vegn = 0.
Therefore,

v(&,n) = f(§) +g(n),

and (5.3.21) yields
f(€) +g(n)

72 — €2
Returning to the original variables by substituting £ = z2 ~y?, n = 22 +y? and
denoting F = f/4, H = g/4 we finally obtain the following general solution to
Eq. (5.3.19):

u(,n) =

F(z® - y*) + H(z" +4%)
z2y2 '

u(z,y) = (5.3.22)
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5.3.3 Euler’s method

We owe to Leonard Euler [7] the first significant results in integration theory
of hyperbolic equations not necessarily equivalent to the wave equation. He
generalized d’Alembert’s solution to a wide class of equations (5.3.6). Namely,
he introduced quantities (5.3.13) and showed that Eq. (5.3.6) is factorable if
and only if at least one of the quantities h and k vanishes. The solution of the
factorized equation (5.3.6) reduces to consecutive integration of two first-order
ordinary differential equations.
Euler’s method consists in the following. Consider Eq. (5.3.6),

Ugy t+ a‘(&s n)ui + b(f, ﬂ)un + C(ﬁ’ 77)“ =0,

with A = 0. Then this equation is factorable in the form
7] ou
(6_5 + b) (a_ﬂ + au) =0. (5.3.23)

v=1u,+au (5.3.24)

Setting

one can rewrite Eq. (5.3.23) as a first-order equation
ve+bv=0
and integrate it to obtain
v = Q(n)e~ S &ML, (5.3.25)

Now we substitute (5.3.25) into (5.3.24), integrate the resulting non-homoge-
neous linear equation

Uy + au = Q(n)e J HEmME (5.3.26)
with respect to 7 and obtain the following result.

Theorem 5.3.2. The general solution of Eq. (5.3.6),
ugy + a(&) 77)"& + b(é, 77)"'; + C(ﬁ, 7))“ =0,
with A = 0 is given by the formula

u= [P({) + ] Q(n)el "d”‘bdfdn] e~ Jedn (5.3.27)

containing two arbitrary functions, P(£) and Q(n).
Likewise, if £ = 0, Eq. (5.3.6) is factorable in the form

(a% + a) (gg + bu) _o. (5.3.28)
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In this case, we replace substitution (5.3.24) by
w = ug + bu. (5.3.29)

Now we repeat the calculations made in the case A = 0 and obtain the following
result.

Theorem 5.3.3. The general solution of (5.3.6),
ugn + a(§, mue + b€, N)uy + c(§,M)u =0,
with k = 0 is given by the formula

w= [Q(n) + [ Poye’ ""““""df] - Jbie. (5.3.30)

One can apply the above method when Eq. (5.3.6) is replaced by a non-
homogeneous equation

ugn + a{€, n)ue + b, nuq + c(§,n)u = f(&,n). (5.3.31)

Then, for example, when h = 0 one obtains the following result.

Theorem 5.3.4. The solution of Eq. (5.3.31) with A = 0 has the form

u= [P+ [ (@) + [ 16, mel Heag)ef - tisag]eToon. (5.332)

Example 5.3.2. Let us consider the following equation known as Darboux’s
equation:

Ugy + _ﬂ_u_y_ =0, A= const. (5.3.33)
r—y
Here,
a=0, b= B , ¢=0
-y
The Laplace invariants have the form
h=az+ab-c=0, k=by=——§—7;£0.
(z-v)

Formula (5.3.27) yields the general solution

u(z,y) = P(z) + f QW) (z — y)~Pdy.

Let us employ the general solution in the Cauchy problem with the initial
data given on the non-characteristic line z — y = 1:

Ulgoy=1 = uo(T), Uyle—y=1 = u1(z).
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Then the solution is written in the form
v
u= P(z) +/ Q(7)(z — 7)Pdr.
-1

The initial conditions yield

Ulg—y=1 = P(z) + /Il_l Q(T)(xz — 1) Pdr = uo(z),

Uylz—y=1 = Q(z —y) = w (z).

Hence,

Q) =w(y+1), P(z)=uo($)—/_xl_lux(f+1)($-T)'ﬂdf~

Thus, the solution to the Cauchy problem is

v

u(x,y)=uo(z)—/:-lu1(1'+l)(:z:—r —Adr + /ul(r+l )(z — )" Pdr.

-1

5.3.4 Laplace’s cascade method

In 1773, Laplace [23] developed a more general method than that of Euler.
In Laplace’s method, known also as the cascade method, the quantities h, k
play the central part. Laplace introduced two transformations. Laplace’s first
transformation has form (5.3.24):

v=u,+au, (5.3.34)
and the second transformation has form (5.3.29):
w=ug +bu. (5.3.35)

Laplace’s transformations allow one to solve certain equations when both Laplace
invariants are different from zero. Thus, we let A # 0,k # 0 and consider
transformation (5.3.34). It maps Eq. (5.3.6) to an equation of the same form,
namely,

Vegn + a1V + by vy + v =0, (5.3.36)
with the coefficients
dln|h Oln|h
a1=a—#, by=b, co=c+b,—ac-b anl L (5.3.37)
The Laplace invariants for Eq. (5.3.36) have the form:
2
ho=oh—k- 2L (5.3.38)

8¢dn ’
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Likewise, one can utilize the second transformation (5.3.35) and arrive to a
linear equation for w with the Laplace invariants

0?%1n |k| .
9Eon

If h; = 0, one can solve Eq. (5.3.36) using Euler’s method described above.
Then it remains to substitute the solution v = v(z,y) in (5.3.34) and to inte-
grate the non-homogeneous first-order linear equation (5.3.34) for u. If by #0
but ko = 0, we find in & similar way the function w = w(z, y) and solve the non-
homogencous first-order linear equation (5.3.35) for u. If h; # 0 and k2 # 0, one
can iterate the Laplace transformations by applying transformations (5.3.34)
and (5.3.35) to equations for v and w, etc. This is the essence of Laplace’s
cascade method.

hy=k, ky=2k—h-— (5.3.39)

Example 5.3.3. Let us apply Laplace’s cascade method to the following Dar-
boux equation:

Uy U,

+0
T—y T—y

Uzy — O =0, a, 8 = const. (5.3.40)

We alrcady considered its particular case (5.3.33) obtained from (5.3.40) when
o = 0. The coefficients of Eq. (5.3.40) are

a=— o b= 8
z—y’ z-y'
and hence,
___ o of  al-p)
e T v @R
by +ab—c s af _B1-oa)

Ty @-v? G-y
Thus, the Laplace invariants have the form

_a(1-p) _B-a)
o KT o

It followsthat.h:Oifa.-ﬁOorﬁ: l,and k =0if 8 =0or a = 1. Thus, Eq.
(5.3.40) can be solved by Euler’s method in the cases

(5.3.41)

a=0, B=1, f=0, a=1 (5.3.42)

Let us consider the general case and apply Laplace’s first transformation
(5.3.34). We have

Pumlh 2
9zdy ~  (z-y)?’
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and Eq. (5.3.38),
8% 1n |h|
hi=2h-k—- ——
1=2h 8z8y ’

yields
b @rD@=p)
(z - y)?
Hence, h; = 0 if and only if @ = —1 or B = 2. Thus, invoking (5.3.41), we
see that we can solve now Eq. (5.3.40) in the cases
a=0, a=ztl; 8=0, B=1 p[B=2. (5.3.43)

Applying Laplaces’ second transformation (5.3.35), we can further extend
(5.3.43) and obtain the following integrable cases:

=0, a=%1 a=2 f=0, f=+1, f=2. (5.3.44)

Continuing Laplace’s cascade method, one can solve the Darboux equation
(5.3.40) with any integers o and 3.

Remark 5.3.2. We summarize. Eq. (5.3.40),

U. u
Ugy — a—2— 4 g2
zT—y T—y

=0

can be solved in the following cases.
(i) By d’Alembert’s method when

a=8=0.
(ii) By Euler’s method when

a=0, =1 and B8=0, a=1.

(iii) By Laplace’s cascade method for any integers o and 3.

5.4 The initial value problem

5.4.1 The wave equation

Let us use d’Alembert’s formula (5.3.5) for solving the Cauchy problem for the
wave equation (5.3.1), usy = k%uzs, with the initial data

u|t=0 = ug(), u¢|t=0 = uy(z). (54.1)

Equations (5.3.5) and (5.4.1) yield

F(z) + H(@) = uo(z), H'(z)— F'(z) = % (). (5.4.2)
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Differentiating the first of Eq. (5.4.2) and adding to the second of Eq. (5.4.2)
we have

H'(@) =} [uo(e) + 222,

and hence,

H(z) = '-‘°—§”l + 2—1k : w1 (s)ds. (5.4.3)

Now we get from (5.4.2):

w(z) 1 [
= - — . 544
Py = 8 - 5 [ wtoyas (5.44)
Substitution of Eqs. (5.4.3) and (5.4.4) into d’Alembert’s formula (5.3.5) leads
to Theorem 5.4.1.

Theorem 5.4.1. The solution to the Cauchy problem for the wave equation
with the initial data (5.4.1) is given by

ug(z — kt) + uo(z + kt) g /=+'=‘

u(z,t) = 5 % ke

U1(8)d3. (5.4.5)

Solution (5.4.5) discloses a physical significance of characteristics, namely,
that waves propagate along characteristics. The following two examples provide
a good illustration. For more details, see [11].

Example 5.4.1. Let a plucked guitar string have the initial configuration
up(z) in the form of a pulse at a point z9. We release the string from the
rest, i.e., we let u;(z) = 0. Then solution (5.4.5) has the form

ug(z — kt) + uo(z + kt)
2

and describes the propagation of the initial configuration.

u(z,t) =

(5.4.6)

Example 5.4.2. Let us imitate the vibration of a piano string by the solution
of the Cauchy problem, where the initial displacement of the piano wire is zero,
uo(z) = 0, but the string is subjected to a localized initial velocity u;(z). Then
solution (5.4.5) has the form

1 z+kt
u(z,t) = = uy(s)ds. (5.4.7)

2k z—kt
5.4.2 Non-homogeneous wave equation

Let us consider the Cauchy problem with the initial conditions (5.4.1) for the
non-homogeneous one-dimensional wave equation

uge — k?ug, = f(x,t), k = const. (5.4.8)
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Lemma 5.4.1. The function v(z,t) defined by

1 t z+-k(t~T)
o(et) = o /0 dr / (s, 7)ds (5.4.9)

—k(t—7)
solves the non-homogeneous wave equation (5.4.8),
Ve — kzvz:t = f(x’ t)’
and satisfies the following initial conditions:
v|t=0 =0, Ut|t=0 =0.

Proof. Using rules (1.2.13) for differcntiation of definite integrals, one obtains
the following (see Problem 5.11):

1 t
v = 5/0 [f(z +k(t - 7),7) + f(z — k(t - 7),7)]dr,
k t
vu =g /0 [fz(z +k(t = 7),7) = falz ~ k(t - 7),7)dr + f(2,1),
1 t
b= o /0 [£(@ + k(t = 7),7) = f(z ~ k(t = 7), 7)}dr, (54.10)

Use = % /ot[fz(x +k(t—7),7) = fo(z = k(t - 7), 7)]dT.

The statements of the lemma follow from Egs. (5.4.9) and (5.4.10).

Theorem 5.4.2. The solution of the non-homogeneous equation (5.4.8),
upe — kP ugg = f(z,t),
satisfying the initial conditions
ul,_o = uo(2), ut|‘=0 = uy(z)
is unique and is given by

uo(z —kt) +uo(z +kt) 1 -+t

5 |, w@e

u(t,z) =

)
t T+k(t—T)

+§£IE f dr / (€, 7)de. (5.4.11)
0 z

—k(t-7)

Proof. Use Theorem 5.4.1 and Lemma 5.4.1.
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5.5 Mixed problem. Separation of variables

The method of separation of variables (Fourier’s method) is used, e.g. for sol-
ving mized problems when the solution of a differential equation under consi-
deration should satisfy prescribed initial and boundary values. In what follows,
we will use the following integrals (see Problem 1.5) .

Lemma 5.5.1. Let k and m be any integers, k # 0. Then

n

/ " sin(kz) sin(mz)dz = 0 (m # k), / sin(kz)dz = .
0 0 2

It is convenient to use these equations in the compact form
m n
/ sin(kz) sin(mz)dz = ) Okm, (5.5.1)
0

where 0, are the Kronecker symbols: égm =0if m£ kand fn = 1if m=k
(see Section 1.4.3).

Proof. Using the equations

2

sina sin 8 = %[cos(a — B) —cos(a+ B)], sin‘a= %[1 — cos(2a)]

we obtain

/n sin(kz) sin(mz)dz = % /n[cos[(k — m)z] — cos((k + m)z]]|dz
0 0

= [sin[(k —m)z] sin[(k + m)z]]

2k—m)  2ktm) |, 0

0

and

a

" 1 [ n 1
in2 = - == - —gi
/o sin®(kz) dz 2/0 [1 - cos(2kz)]dz 5 sin(2kz)

=
o 2

5.5.1 Vibration of a string tied at its ends

Consider a mixed problem for describing vibrations of a string tied at its ends
z = 0 and z = [ with given initial configuration and velocity. Thus, the problem
is to find the solution of the wave equation

Ut = Uxg, (552)

with prescribed initial values:

ult:O = ‘U.()(.’L'), ut]t:o = u(z), (5.5.3)
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and the boundary values:

ul,_ =0, u|_,=0. (5.5.4)

z=|

Consistency of conditions (5.5.3) and (5.5.4) requires that
uo(0) = uo(l) =0, u(0)=u;(l) =0. (5.5.5)

The method of separation of variables consists in seeking particular solutions
in the product form

u(t,z) = T(t) X (x) (5.5.6)
such that none of factors vanishes identically. Substituting (5.5.6) into Eq.
(5.5.2) gives

T"X =TX".

Whence, separating the functions depending on t and z, respectively:

TII XII
— T — T — A
T X
where ) is a positive constant. The above equation is equivalent to the following

two equations:

T'+AT =0 (5.5.7)
and
X" +AX =0. (5.5.8)
The boundary conditions (5.5.4) yield
X(0)=0, X()=0. (5.5.9)

The general solution of Eq. (5.5.8) is
X =C; sinVAz +C; cos VAz (A >0).

The first condition in (5.5.9), X(0) = 0, yields C; = 0. Therefore, the solution
takes the form

X = CysinVAz. (5.5.10)
Then the second condition in (5.5.9), X(I) = 0, is written
CisinVAl=0.

Since the function X (z) should not be identical to zero, we require that C1 #0,
and the above equation yields

sin VAl = 0.

Hence, A assumes the following values:

2
Ak = ("T") . k=<1, £2, £3,... . (5.5.11)
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Substituting (5.5.11) into (5.5.10) we obtain the infinite sequence of solutions
to the boundary value problem (5.5.8)—(5.5.9):

Xi(z) = Cy sin knTz

It is convenient to choose the constant C; from the normalization condition:

/ Xu(z)Pdz = 1.
0

Using Lemma 5.5.1, we have

T
/[Xk(x)]zdz CZ/ sin? letzd =Cf£/ sin?(ky)dy = éCf

0

Thus, by setting C; = /2/l, we obtain the normalized functions

knzx

Xk(z) = \/Esm—l- (5.5.12)

The constants Ax given by (5.5.11) and the functions X(z) given by (5.5.12) arc
termed the eigenvalues and eigenfunctions, respectively, for the boundary value
problem (5.5.8)—(5.5.9). Note that it suffices to take only positive integers
k=1,2,... since eigenfunctions (5.5.12) have the property X_x = —Xj.

The general solution of Eq. (5.5.7) with A = Ax has the form

Tx(t) = ax, cos (\/xt) + b sin( Ak t), ak, b = const.

We obtain a formal solution u(t,z) to the wave equation by taking the series

u(t,z) = ZTk(t)Xk(I)

k=1

N.%I

i [ cos (v/At) + b sin (v/At)| sin (v 2),

k=1

or, upon substituting eigenvalues (5.5.11),

2 o knt knt
u(t,z) = \/; Z (a;= cos Tn + by sin Tn) sin ,—c-,;—z (5.5.13)
k=1

Subjecting (5.5.13) into the first initial condition in (5.5.3), u(0,z) = ug(z),

we obtain
uo(z) = f Zak snn-—~ (5.5.14)

k=1
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Equation (5.5.14) allows one to determine the coefficients ai. Indeed, multiply-
ing (5.5.14) by sin(mnz/l) and integrating from 0 to I, one obtains

l o0 t
. MmN 2 k
/0 ug(z) sin Tzdz = \/; E ak / sinTM sin m—;tic-da:. (5.5.15)
k=1 0

Rewriting the integral in the right-hand side of Eq. (5.5.15) in the new variable
y = nz/l and invoking Eq. (5.5.1), one has

{

. knz . mn U

/ sin —= §in Lz = - / sin(ky) sin(my)dy =
0 l { X Jo

Hence, Eq. (5.5.15) yields

! 00
. mnx l l
/; ug(x) sin ——l—dz = \/; kE___} g Okm = \/;am.

Ultimately, we arrive at the following expression for the coefficients:

2 1
A = \/;/ up(z) sin ?dm, m=12,.... (5.5.16)
0

The second initial condition in (5.5.3), u¢(0,z) = u;(z), is written

2 X kn . knzx
\/;ZTb" sin —— = uy(z).

k=1

n l
5 6km = 5 6km~

A~

Whence, multiplying by sin(mnz/l), integrating from 0 to [ and proceeding as
above, one obtains
mn mnz
——dz.

!
ﬁbm=A ul(z) sin i

Hence,

2l [
by = [_ / uy (z) sin de, m=12,.... (5.5.17)
mi 0 l

Now we substitute into (5.5.13) expressions (5.5.16) and (5.5.17) for the
coefficients ax and bk, respectively, and obtain the solution u(z, t) of the mixed
problem (5.5.2)—(5.5.4). It is still a formal solution because the function u(z, t)
is represented by the formal series (5.5.13) called the Fourier series. To verify
the solution, one has to prove that the Fourier series (5.5.13) converges and
twice continuously differentiable.

5.5.2 Mixed problem for the heat equation

Let us use the method of separation of variables to solve the following mixed

problem:
Ut = uII) (55.18)
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u|,_, = uo(z), (5.5.19)
ul,_,=0, wul,_, =0 (5.5.20)

Consistency of conditions (5.5.19) and (5.5.20) requires that
ug(0) = u(l) = 0. (5.5.21)

We begin by seeking the solutions of the product form
u(t,z) = T(t) X (z).
Substitution into (5.5.18) yields

XT' =TXx",
and hence,
TI XII A
T X 7~
It follows that
T +XT =0 (5.5.22)
and
X"+XX =0, X(0)=X()=0. (5.5.23)

The boundary value problem (5.5.23) is readily solved and gives the follow-
ing eigenvalues and cigenfunctions:

k 2

Equation (5.5.22) gives the following solutions:
Tk(t) = cke_(k"/l)z t
Thus, the function

2 < 2 knzx
u(t,z) = \/; D cpemkn/7 sin =~ (5.5.25)
k=1

solves (formally) the heat equation (5.5.18) and satisfies the boundary condi-
tions (5.5.20). The initial condition (5.5.19) yields

2~ .k
\/; ch sm?— = ug(x),
k=1

2 [ k
ck = \/;/ up(z) sin —%dz. (5.5.26)
0

Substituting (5.5.26) into (5.5.25), we obtain the solution of the mixed
problem (5.5.18)—(5.5.20).

whence
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Problems to Chapter 5

5.1,

5.2.

5.3.

5.4.

5.5.

5.6.

5.7.

Indicate all points (¢, z,y) where the operator
Llu] = tgz + uyy + o + (22 + 9% + 22 — 1) wge — s
is elliptic, hyperbolic and parabolic.

Find the adjoint operator for the following operator of order zero: L{u] =
c(z, y)u.

Find the adjoint operator for the following operator of the first order:
Liu] = a(z,y)uz + b(z, y)uy + c(z, y)u.

Find the adjoint cquation for the general hyperbolic equation in two vari-
ables written in the standard form (5.2.18):

Ugy + a(z, y)us + b(z, y)uy + c(z,y)u = 0. (P5.1)

Find the adjoint equation for each of the following equations of the second
order:

(i) Laplace equation: uzgz + Uyy + -, =0,

(ii) Wave equation: ug — k?(uzg + Uyy + uzz) =0,

(iii) Heat equation: u; — k?(uzs + Uyy + uzz) = 0,

(iv) Z2uzs + yPuyy + 2zu; + 2yuy, =0,

(v) Telegraph equation: uy — c2uzz — k?u = 0 (¢, k = const.),
(vi) Equation: us — p2(x)uzz — k?u = 0 (k = const.),

(vii) Black-Scholes model: u; + %A’:z:zu,_,,z + Bzu, — Cu =0,

Uz + Uy
z+y
Which of the given equations are self-adjoint?

(vili) ugy + = 0.

Find the adjoint equation and the adjoint operator for the following sys-
tem of the first order:

u + a(z, yud + bz, y)ul = 0, ul+ (e, y)ul + d(z, y)u = 0.

Rewrite the telegraph equation (2.3.26), u — c?uzz — k*u = 0, in the
characteristic variables, i.e., in the standard form (5.2.18).
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5.8.

5.9.

5.10.

5.11.

5.12.

5.13.

5.14.

5.15.

5.16.

PROBLEMS TO CHAPTER 5

Consider the following wave equations with a variable coefficient:

g — p2(T)uzz = 0. (P5.2)
Find all equations (P5.2) reducible to the wave equation ve, = 0.
The following statement is valid.

Theorem 5.5.1. Equation (P5.1) is equivalent to the telegraph equa-
tion, i.e., can be reduced to the telegraph equation vg, + kv = 0 (k =
const.) by an appropriate equivalence transformation (5.3.7),

£=f(z), n=9(), v=0(z,9)u,
if and only if the Laplace invariants of Eq. (P5.1) obey the conditions
h=k#0, (nlhl)sy =
Using this theorem, show that the equation
U — T2 Uz = 0

is equivalent to the telegraph equation v¢,+v = 0 and find the appropriate
change of variables.

Single out Eqs. (P5.2) equivalent to the telegraph equation ve, + kv =
0, k = const.

Calculate the derivatives of the function v(z,t) defined by (5.4.9):

z+k(t—7)
v(z,t) = / dT/ f(s,7)d
z—k(t—7)

and show that its first and second derivatives v, v and v, v, are given
by Egs. (5.4.10).

Let L be any linear differential operator and L* its adjoint operator.
Show that (L*)* = L, i.e., the adjoint operator to L* coincides with the
original operator.

Solve the mixed problem

Ut = Ugz, qu:O = u|z=21|: = 0, u|‘=0 = sin T, utlt=0 =0.

Solve the mixed problem
Ut = Uz, u|z=o = u|z=2n =0, u|t=0 =0, u¢|t=0 =singz.

Solve the mixed problem

Ut = Ugzg, uIz:O = u|z=2rl =0, uII.:O =sinz.
Discuss the mixed problem
Uy = Ugy, “’z=o = u|z=2" =0, u|t=0 = COST.



Chapter 6

Nonlinear ordinary differential
equations

Mathematical models of fundamental natural laws and of technological prob-
lems are formulated frequently, even prevalently, in terms of nonlinear differen-
tial equations. Many of them are based on Newton’s second law, and therefore
they involve differential equations of the second order.

Thus, mathematical models of real world problems provide many nonli-
near differential equations of the second order. The only genecral method for
solving these equations analytically is provided by Lie group analysis which is
particularly simple and efficient in the case of second-order equations.

Therefore, this chapter focuses on group analysis of nonlinear ordinary dif-
ferential equations with emphasis on integration of first and second order equa-
tions. Applications of Lie group methods to linear and nonlinear partial diffe-
rential equations are discussed in two last chapters.

Additional reading: S. Lie [26], L.V. Ovsyannikov [32], N.IL. Ibragimov [21],
P.J. Olver 31], G.W. Bluman and S. Kumei {2].

6.1 Introduction

The idea of symmetry permeates all mathematical models formulated in terms
of differential equations. Mathematical tools for revealing and using the sym-
metry of differential equations arc provided by the theory of continuous groups
originated and elaborated by an outstanding mathematician of the nineteenth
century, Sophus Lie. Lie group analysis provides general methods for integra-
tion of linear and nonlinear ordinary differential equations analytically using
their symmetries. Lie group methods are also efficient in finding exact solutions
to nonlinear partial differential equations.

Professor of Stanford University Brian Cantwell states in the preface to his
recent book [3]: “It is my firm belief that any graduate program in science or

179
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engineering needs to include a broad-based course on dimensional analysis and
Lie groups. Symmetry analysis should be as familiar to the student as Fourier
analysis, especially when so many unsolved problems are strongly nonlinear.”

Few would disagree with this statement. However, Lie group analysis has
not enjoyed widespread acceptance in the past and the subject is still neglected
in university programs. Moreover, there is a growing tendency in the modern
literature to augment the old tradition to neglect Lie group methods and to
write university texts on differential equations in a cookbook style containing
numerous ad hoc recipes for integrating various special types of equations by
means of artificial substitutions instead of using symmetries and dealing with
Lie’s few standard equations. Indeed, “often the less there is to justify a tradi-
tional custom, the harder it is to get rid of it” (M. Twain).

We present in this chapter a simple introduction to the basic concepts of the
Lie group approach to ordinary differential equations. For a detailed discussion
of the material outlined here, the reader is referred to [17].

6.2 Transformation groups

6.2.1 One-parameter groups on the plane
Let us consider a change of the variables z,y involving a parameter a :

Ta 1 I= <P(~T»yaa), g= w(zaya a‘)’ (62'1)
with functions ¢ and ¥ such that

To: o(z,9,0)=z, 9(z,y,0)=y. (6.2.2)

It is assumed that ¢(z,y,a) and ¥%(z,y,a) are functionally independent, i.c.,
their Jacobian does not vanish (see Section 1.2.8, Theorem 1.2.4):

Pz Py
Yz Yy

One can treat the equations T, (6.2.1) also as a transformation that carries
any point P = (z,y) of the (z,y)-plane into a new position P = (Z,%) and
write P = T,(P). Accordingly, the inverse transformation T;! given by

#0.

T,': z=¢"'(ZF,%,0), y=v"z.70) (6.2.3)
returns P into the original position P ie.,
T;'(P)=P.
Furthermore, Eqs. (6.2.2) mean that Ty is the identical transformation:

To(P)=P.
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Let T, and T, be two transformations (6.2.1) with different values a and
b of the parameter. Their composition (or product) TyT, is defined as the
consecutive application of these transformations and is given by

zT= v(f,ﬁ, b) = tP(‘P(z,ya a)ﬂ/’(-’ta Y, a)) b)a

¥ =%(E7.b) = ¥(e(zv,0),4(z,3,0), b). (6.2.4)

The geometric interpretation of the product is as follows. Since T, carries

Exe point P to the point P = T,(P), which T}, carries to the new position
E = Ty(P), the product T;T, is destined to carry P directly to its final location
P, without a stopover at P. Thus, (6.2.4) means that

P € Ty(P) = TvT.(P).

Definition 6.2.1. The one-parameter family G of transformations (6.2.1) obey-
ing the initial condition (6.2.2) is called a one-parameter group if G contains
inverse (6.2.3) and the composition T;T, of all its elements:

TyTo = To+b-

The latter condition, invoking (6.2.4), is written:

sa(cp(z,y,a),w(z,y,a), b) =p(z,y,a +b),

(6.2.5)
w(cp(z,y,a),w(m,y,a), b) = (z,y,a +b).

6.2.2 Group generator and the Lie equations

The expansion of the functions ¢(z,y,a) and ¥(z,y,a) into Taylor’s series
in @ near ¢ = 0, taking into account the initial condition (6.2.2), yields the
infinitesimal transformation

T~z +£&(x,y)e, T=y+n(z,yea, (6.2.6)

where
_ 9y(z,y,a) _%(=.ya) 6.2.7
€(x7y) - aa a=0 ) n(x7 y) - aa a=0 ( ks )

The vector (£,7) with components (6.2.7) is the tangent vector (at the point
(z,y)) to the curve described by the transformed points (Z,§), and is therefore
called the tangent vector field of the group G.

The tangent vector field (6.2.7) is associated with the first-order differential
operator

X =t g + 1@z (628)
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called the generator of the group G.

Given an infinitesimal transformation (6.2.6), or generator (6.2.8), trans-
formations (6.2.1) are defined by integrating the following system of ordinary
differential equations called the Lie equations:

dy
a'; = 5(90’ 7/))’ ‘Fla=0 =,

(6.2.9)
dy
az = 77(90) ¢)’ wlafo =Y.
These equations are written also as follows:
dz =
— =£(z,9), I|,_, =z,
da 0
_ (6.2.10)
dy S
3 = 1@0) F,o=v
For example, the group of rotations defined by
T =zxcosa+ysina, T =ycosa— zsina, (6.2.11)
has the infinitesimal transformation
Ixz+ya, YRY-—-za
and the generator
X = —(?— z 9 6.2.12
- yax 8 y ( R )
respectively. You can easily verify the Lie equations:
dz  _  _
da_ ¥ .'l:]a=0 =
dy

da =-T, y]a:O =4

Example 6.2.1. Let us find the one-parameter group given by its infinitesimal
transformation
I~z +az’, T~y + azy,

or, equivalently, by the following generator:

7] i)
=22 2
X=z pp + J:yay (6.2.13)

The Lie equations (6.2.10) have the form

az  _, _

Ez. - xz’ zla:O =z

g _ __  _

da =70 Yo =v.
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The differential equations of this system are easily solved and yield

1 Cs

I =— = .
ar G YT araC

The initial conditions imply that C, = —1/z, C; = —y/z. Consequently, we

arrive at the following one-parameter group known as the projective transfor-
mation group:

(6.2.14)

6.2.3 Exponential map

One can also solve the Lie equations (6.2.10) by looking for the solution in
the form of infinite power series. Then the group transformation (6.2.1) for a
generator X (6.2.8) is given by the following ezponential map:

z=e%(z), 7=e*(y) (6.2.15)
where 2 .
X _ a w2 1% e
et =14+ X+ X+t S!X e (6.2.16)

Example 6.2.2. Consider again generator (6.2.13):

o
X=2*—+zy=—-
T yay

a
According to (6.2.15)—(6.2.16), we should find X*(z) and X*(y) for all
s=1,2,.... We calculate several terms, e.g.

X(z) =2%, X%(z) = X(X(2)) = X(z?) = 21z%, X3(z) = X (2'2®) = 3!z*,

make a guess:
X*(z) = slz**!

and proof the latter equation by induction:
X*t(z) = X(s!lz®*1) = (s + 1)!z%z° = (s + 1)lz°*2.
Likewise, we calculate
X(y) =2y, X2(@) = X(zy) = vX (@) + 2X(y) = y2* + 22y = 2ya®,
X3(y) = A X (z?) + 22X (v)] = 2[y(22°) + 2°zy] = 3y,

make a guess
X*(y) = slyz®

and prove it by induction:

Xt (y) = s!X (yz*) = slsyz**! + z°(zy)] = (s + 1)lyz*+t.



184 6. NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS
Substitution of the above expressions in the exponential map yields:
eX(z)=z+az? 4+ +a’z"t +....

We rewrite the right-hand side in the form z(1+az+- - -+a®z®+- - - ) and observe
that the series in brackets is the Taylor expansion of the function 1/(1 — az)
provided that |az| < 1. Consequently,

T
T=e"%(z) =

1-az
Likewise, one obtains
eX(y) =y +ayz + a’yz® + -+ a’yz® +- -

=y(l+az+ --+a°z°+---).

Hence, v
T = aX = .
y=e"0) =1
Thus, we have arrived at the projective transformation (6.2.14):
~=_  Z -_ _ ¥
Tt 1oar YT 1w

6.2.4 Invariants and invariant equations

Definition 6.2.2. A function F(z,y) is called an invariant of the group G of
transformations (6.2.1) if F(Z,y) = F(z,y), i.c.,

F(‘P(x’ Y, a), ¢($, Y, a)) = F(.’L‘, y) (6217)
identically in the variables z,y and the group parameter a.

Theorem 6.2.1. A function F(z,y) is an invariant of the group G if and only
if it solves the following first-order linear partial differential equation:

OF _
Oy
Proof. Let F(z,y) be an invariant. Let us take the Taylor expansion of
F(p(z,y,a),¥(z, y,a)) with respect to a :

F
XF = f(z,y)%; +n(z,y) 0. (6.2.18)

F(p(z,y,a),%(z,y,0)) ~ F(z +a€,y + an) = F(z,y) +a(€g—5 + naF),

8y
or

F(z,9) = F(z,y) + aXF + o(a),
and substitute it into Eq. (6.2.17):

F(z,y) + aXF + o(a) = F(z,y).
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It follows that aX F + o(a) = 0, whence X F = 0, i.e., Eq. (6.2.18).

Conversely, let F(z,y) be a solution of Eq. (6.2.18). Assuming that the
function F(z,y) is analytic and using its Taylor expansion, one can extend the
exponential map (6.2.15) to the function F(z,y) as follows:

2 s
F(z,7) = X F(z,9) & (1 + %x X %x*’ 4 ) F(z,y).

Since XF(z,y) = 0, one has X?F = X(XF) =0,...,X*F = 0. We conclude
that F(Z,y) = F(z,y), i.e., Eq. (6.2.17) thus proving the theorem.

It follows from Theorem 6.2.1 that every one-parameter group of transfor-
mations in the plane has one independent invariant, which can be taken to be
the left-hand side of any first integral h(z,y) = C of the characteristic equation
for (6.2.18):

dz  dy _
£z,y)  n(z,y)

Any other invariant F is then a function of h, i.e., F(z,y) = ®(h(z,y))-

(6.2.19)

Example 6.2.3. Consider the group with generator (6.2.13),

0 0
- 2-— _
X=x %2 +zy By
The characteristic equation (6.2.19) is written
de _dy
Ty

and yields the first integral h = z/y. Hence, the general invariant is given by
F(z,y) = ®(z/y) with an arbitrary function ¢ of one variable.

Groups of transformations (6.2.1) and the related concepts discussed above
can be generalized in an obvious way to the multi-dimensional case by consi-
dering groups of transformations

¢ = fi(z,a), i=1,...,n, (6.2.20)
in the n-dimensional space of points z = (z!,...,z"). The generator of trans-
formations (6.2.20) is written

0
=£(z) 6.2.21
X =€) 5, (6:2:21)
where 9fi(z, )
i(g) - '@
6 (1') - Oa a=0.
The Lie equations (6.2.10) become
dzt L )
= @), T',_o=7" (6.2.22)
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The exponential map is written:
Tt=eX(zY), i=1,...,n, (6.2.23)

where

2 8
X o1+ 3x+ 8 xr v Lxe (6.2.24)
1! 2! s!

Definition 6.2.2 of invariant functions has the same formulation in the case of
several variables. Namely, an invariant is defined by the equation F(Z) = F(z).
The invariant test is again given by Theorem 6.2.1 with the evident replacement
of Eq. (6.2.18) by its n-dimensional version:

i (OF
.-;§ (@) 5= =0. (6.2.25)

Then n — 1 functionally independent first integrals ¥:(z),...,%n_1(z) of the
characteristic system for Eq. (6.2.25):

1 2 n
de’ _ da* dz (6.2.26)

provides a basis of invariants. Namely, any invariant F(z) is given by
F(z) = ®(%1(2),- -, ¥n-1(2)). (6.2.27)

Let us dwell on this higher-dimensional case and consider a system of equa-
tions

F(z)=0,...,F; =0, s<n. (6.2.28)

We shall assume that the rank of the matrix (8Fy/0z') is equal to s at all
points z satisfying the system of equations (6.2.28). The system of equations
(6.2.28) then defines an (n — s)-dimensional surface M.

Definition 6.2.3. The system of equations (6.2.28) is said to be invariant with
respect to the group G of transformations (6.2.20) if each point z on the surface

M is moved by G along M, i.c., z € M implies T € M. The surface M is called
an invariant surface.

Theorem 6.2.2. The surface M given by the system of equations (6.2.28) is

invariant with respect to the group G of transformations (6.2.20) with generator
X (6.2.21) if and only if

X(Fo|, =0 k=1...s. (6.2.29)
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6.2.5 Canonical variables

The following simple statement resulting from Lemma 4.2.1 has many applica-
tions, e.g. in integration of differential equations.

Theorem 6.2.3. Every one-parameter group of transformations (6.2.1) with
generator (6.2.8),

X = ¢(z, y) +n(z,y)

can be reduced, by a suitable change of variables

t=t(z,y), u=u(z,y), (6.2.30)
to the group of translations ¢ = ¢ + @, % = u with the generator
9
X=— 2.
e (6.2.31)

The variables ¢ and u are called canonical variables.

Proof. The change of variables (6.2.30) transforms the differential operator
(6.2.8) as follows (see Eq. (4.2.3)):

X = X(t(:c,y)) + X (u(z, y)) (6.2.32)

Hence, one arrives at operator (6.2.31) if one defines ¢t and u by solving the
following first-order linear partial differential equations:

X() = €z, v) e +n(z,y)5ﬁ -1,

(6.2.33)
X(u)= E(x,y) +n(x y)

Example 6.2.4. Let us find canonical variables for the dilation group with
the generator

7]
=T—+y—- 6.2.34
X=z5-+y 3y ( )
The first equation of (6.2.33) has the form
ot ot

X(t)=$£ +y6—y=1.

Since it is sufficient to find any particular solution to this equation, we can
look, e.g. for a solution t = ¢(z) depending only on z. Then the above equation
reduces to the ordinary differential equation z t'(z) = 1, whence ¢ = In|z|. The
second equation of (6.2.33) has the form

Ou Ou
(u)—xa—+ya
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The characteristic equation

has the first integral y/z = C, and hence u = y/z solves the equation X (u) = 0.
Thus, we have the following canonical variables:

y
t =In|z|, u=_-

In these variables, the dilation group

Il
8
4]
h)

<

Il

<

[¢]

I
reduces to the translation group

t=t+a, w=u.
Indeed,

t=In|z| = In(jz]e*) =In|z| + a =t +aq,

[<]

e
red

u = =

=Uu.

8Bl
<«

4
T

6.3 Symmetries of first-order equations

6.3.1 First prolongation of group generators

The transformation of derivatives under the group transformations (6.2.1), re-
garded as a change of variables, is given in Section 1.4.5. In particular, the
transformation of the first derivative is given by the formula

7 === (6.3.1)

Thus, starting from the group G of transformations (6.2.1) we have obtained
the group G(;) consisting of transformations (6.2.1) and (6.3.1) in the space
of the variables (z,y,y’). The group G(y) is called the first prolongation of
G. Substituting into (6.3.1) the infinitesimal transformation (6.2.6), ¢ = = +
aé(z,y), ¥ = y + an(z,y), and neglecting the higher order terms in a one
obtains the following infinitesimal transformations of y’ :

7 =Ll Sy +aD(Il - aD(©)] ~ ¥ + (D) - v DO

or
-g, = yl +aC1s
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where
G = D:(n) - lez(s) =17+ (ny - fz)y’ - yl2§y~ (6-3°2)
Therefore, the generator X of the group G after the prolongation becomes:
4] 7] 7]
X=£¢6— — —
3 5z 7 By +G oy (6.3.3)

Equations (6.3.2) and (6.3.3) are referred to as the first prolongation formula
and the first prolongation of the infinitesimal generator (6.2.13), respectively.

6.3.2 Symmetry group: definition and main property

Definition 6.3.1. The group G of transformations (6.2.1) is called a symmetry
group of a first-order ordinary differential equation

) (6:3.4)

or that Eq. (6.3.4) admits the group G if the form of the differential equation
(6.3.4) remains the same after the change of variables (6.2.1), i.e.,

47
% = f(ﬁ,y),

where the function f is the same as in the original equation (6.3.4). In other
words, G is a symmetry group for Eq. (6.3.4) if the frame (see Section 1.4.4)
of Eq. (6.3.4) is invariant, in the sense of Definition 6.2.3, with respect to the
first prolongation G(;y of the group G.

The main property of a symmetry group first proved by S. Lie (see, e.g.
[26], Chapter 16, Section 1, Theorem 1) is that G is a symmetry group if and
only if it converts any classical solution of Eq. (6.3.4) into a classical solution
of the same cquation.

The generator X of a group admitted by a differential equation is termed
an admitted operator or an infinitesimal symmetry of Eq. (6.3.4).

Example 6.3.1. It is evident that the equation

v = f(y)

does not alter after the transformation T = z + a since the equation does
not explicitly contain the independent variable x. Therefore, the symmetry of
this differential equation is given by the group of translations along the z-axis,

T = r + a, with the generator 5

=3
Likewise, the equation

¥ = f(z)
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admits the group of translations along the y-axis, § = y+a, with the generator

0
Example 6.3.2. The equation
r= (Y
y = f(z) (6.3.5)

admits the group of homogeneous dilations (scaling transformations)

a

T =ze* 7=y

with generator (6.2.34),
X = xi + .g .
TV ox yé)y

Example 6.3.3. Consider the following Riccati equation:

. 2
2 —
v+y - Z= 0. (6.3.6)

Its left-hand side is a rational function in the variables z,y, y'. Therefore, one
can try to find an admitted group in the form of a dilation:

T=kz, y=Ily.

Since 0 l -
= ; =2 / 2,2

L _ 2 - ==

VIV =yt T gn

the invariance condition requires that

2 2
-t -2 ! 2
+ __=)‘.( + __),
Y Yy =2 Yy y 2

where

l 2, 1
A= 5= I°= i
The latter equations yield | = 1/k, where k > 0 is an arbitrary parameter.
Setting k = e®, we get the non-homogeneous dilation group:

T=1zxe? F=ye

Hence, the Riccati equation (6.3.6) has the following infinitesimal symmetry:

0 0
X = To- = y@ . (6.3.7)
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6.3.3 Equations with a given symmetry

Solution of this problem is based on Definition 6.3.1 of a symmetry group,
prolongation formulae (6.3.2)—(6.3.3), and the invariant surface test (6.2.29).
Namely, in order to find the general first-order differential equation (6.3.4),

yl = f(xs y)7 (638)

admitting a given operator

X = §(z, y) - +n(z ,y) o5’ (6.3.9)

we prolong the operator X by means of formula (6.3.2):

a 0 0
X=¢5- +15, +(15?7

and write the invariant surface test (6.2.29):

of of
Cl|u’=!‘(x.u) 533 T By.

Substituting here the expression for {; given by the prolongation formula
(6.3.3), we obtain the following quasi-linear first-order partial differential equa-
tion for determining f(z,y):

§g£+n8f =1+ (my — &)f - & 2. (6.3.10)

Upon solving Eq. (6.3.10), we obtain all cquations (6.3.8) admitting the group
generated by operator (6.3.9).

Example 6.3.4. Let us find the equations admitting the operator

0 d
X = 125; - ya—y . (6311)
Equation (6.3.10) is written
of of
= —yz=— =-2f. 6.3.12
%3z Yoy 2f ( )

Taking its two first integrals ¥y = zy and ¥, = z2f, we obtain the general
solution to Eq. (6.3.12):
f=z"2F(zy).

lence, the equations admitting operator (6.3.11) have the form
22y’ = F(zy). (6.3.13)
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Example 6.3.5. Let us find the equations admitting the group of rotations
(6.2.11) with generator (6.2.12),

X = Yoz~ a:a—y- (6.3.14)
Equation (6.3.10) is written
y% - x% = —(1+ f?). (6.3.15)
The characteristic system (4.4.7) for Eq. (6.3.15) has the form
dz _ _dy___df |
y oz  1+f2?

The first equation, zdz + ydy = 0, yields x2 + y? =const. Hence, we take

Y1 =Vz?+y2

Thus, on the characteristic equations we have z2 + y? = a? = const. By virtue
of this relation, the second equation is rewritten (cf. Example 4.4.1)
df _  dy
1+ f2 h a? — y2 '
whence, upon integration,

arctanf = arctan (y/z) + arctanC. (6.3.16)

It remains to solve this equation with respect to the constant of integration C
and identify C with a first integral ;. Then the solution to Eq. (6.3.15) is

obtained explicitly by letting ¥, = F(3,). Thus, we write Eq. (6.3.16) in the
form

arctanf = arctan (y/z) + arctanF(¢,)
and solve it with respect to f by using the elementary formula

tana + tan g

tan(a + 6) = 1 —tana tanf

to obtain:

f= (y/z) + F(1) =y+a:F(\/;ﬁ—H/‘2)
1= (y/z) F(¥1) & —yF (/2% + 4?)

Hence, the equations admitting operator (6.3.14) have the form

yI= y+IF(VI2+y2)
z —yF(\/z? + y2)

: (6.3.17)

Table 6.3.1 shows us some nonlinear first-order equationg with a known syn-
metry.
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Table 6.3.1 Some nonlinear first-order equations
with a known symmetry

No. Equation Symmetry
1 Y = F(y) X =4
VR > 1.9 a
y = F(kz + ly) X=lz— F.m
‘ ' — g a
2 Y = F(y/z) X=zx5+Yp;
3 y = zF1F(y/z*) ’(:mo—az +ky—,c%
aaal am - - | a
4 zy = F(ze™¥) ‘(—’:B—x'*_fi-y
r o i o= _ 8 8
5 y = yF(ye™%) Y-‘a’;*yﬂ
r_ Y ; X - _ 8 Ya
6 Y —$+1:I*(y/a,) ‘\—5-;+;5g
7 zy =y+ F(y/z) X=2*£Z + Iy%
y 7
8 ) = — - e X = 2 279
V= ¥ Fly/z) Wor TV By
Yy
9 y = — X = :l,—
y z+ Fy) Yoz
10 2y’ =y + F(z) X=zz;
Yy , ¢
11 Y = ——————o X =zy2
v Inz + F(y) Y5z
12 zy’ = yllny + F(z)] X=zyz,

6.4 Integration of first-order equations using
symmetries
6.4.1 Lie’s integrating factor
Consider a first-order equation written in the symmetric form (3.2.3):
M(z,y)dz + N(z,y)dy = 0. (6.4.1)
Lie showed that if 5 N
X =8ay)g +n=y)g
is a symmetry for Eq. (6.4.1) and if €M + 7N # 0, then the function

1

“ = m (6~4.2)

is an integrating factor for Eq. (6.4.1). It is called Lie’s integrating factor.
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Example 6.4.1. The equation 2zydz + (y? — 3z%)dy = 0 from Example 3.2.2
is homogenecous (Example 3.1.1), i.e., has form (6.3.5) and admits

o a
X—252+y‘6—1/"

Lie's formula (6.4.2) provides the integrating factor

1 1
Tyt -3y Y -zly

m

Example 6.4.2. Let us solve the Riccati equation (6.3.6) by using Lie’s inte-
grating factor. We rewrite Eq. (6.3.6) in the differential form (6.4.1):

2
2 -
dy + (y - ?) dz =0, (6.4.3)
7] 0 o
and use symmetry (6.3.7), X = Tor 3 Substituting

2
— = — 12 —
E=z, n=-y, M—y—;z;2’ N=1

into (6.4.2), we obtain the integrating factor

=%
w= Ty —zy -2
After multiplication by this factor, Eq. (6.4.3) becomes

zdy + 1 z2y? -2
22y? —zy—-2 2y -zy-2

dz =0. (6.4.4)

This equation is exact, i.e., its left-hand side can be written in the form d®. The
function ®(z,y) can be determined by the general procedure described in Sec-
tion 3.2.2. In this particular case, we can use the following simple calculations.
Noting that
2,2 2,2
Ty —2=y+zy -—my-—2’
x z

we rewrite the left-hand side of Eq. (6.4.4) in the form

zdy + ydz dr d(zy) dz
PR—z-2 7 P —zu—2 3
Tyt —zy-2 Tyl —zzy—-2 =z

Denoting z = zy and using the decomposition

1 1
z2—z—2=§(zi2—zll)’
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/‘ dz —llnz_2
22-2-2 3 z+1

and hence Eq. (6.4.4) is written

we obtain

zdy + ydz dz 1, zy-2
Ty -zy-2 ¢z d(lnx 3 a:y+1)—0‘

The integration yields

Solving for y, we arrive at the solution of the Riccati equation (6.3.6):

228+ C _
V= Iz —0)

Example 6.4.3. Consider the following equation (see also Eq. (6.4.13)):

/

2
_ y
y=2%t3"

8w

It is shown in Example 6.4.6 that this equation has the symmetry
0 7]
X =2 — _
1=2Z 9z +zy 3y
Proceeding as in Example 6.3.3 from Section 6.3.2, one can see that our equa-
tion admits also the following dilation generator:

0 (0]
Xz =£E +2ya—y-

Writing the equation in this Example in the differential form
(z?y + y?)dz — z3dy =0

and substituting the coordinates of the operators X; and X, into (6.4.2), we
obtain two linearly independent integrating factors:

1 1 1 1

TRy -y 2y T @yt - 2%y ayly- %)

7

Equation (3.2.13), u1/u2 = C, is written y — 22 = Czy and yields the solution
y = z2/(1 — Cz). Compare with (6.4.15) in Example 6.4.6.
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6.4.2 Integration using canonical variables

To integrate a linear or nonlinear first-order ordinary differential equation

¥ = f(z,9) (6.4.5)

with a known infinitesimal symmetry

) )
X = E(x,y)a + n(z,y)a—y (6.4.6)

by the method of canonical variables, you need to make the following steps.

First step: Find canonical variables t,u by solving Egs. (6.2.33) for the
given generator (6.4.6).

Second step: Rewrite Eq. (6.4.5) in the canonical variables ¢ and u by letting
u be the new dependent variable of the independent variable ¢, i.e., letting
u = u(t) and expressing the old derivative y’ = dy/dz via new variables t,u
and the derivative 4’ = du/dt. Then Eq. (6.4.5) will have the integrable form

du

— = . 4.
o =W (6.4.7)
Third step: Integrate Eq. (6.4.7), substitute into its solution u = ¢(t,C)
the expressions ¢ = t(z,y) and u = u(z,y) thus obtaining the solution of Eq.
(6.4.5).

Example 6.4.4. One can integrate by quadrature any equation of form (6.3.5)
using its infinitesimal symmetry (6.2.34). To be specific, let us integrate the
following particular equation of form (6.3.5):

+ 2. (6.4.8)

First step: The canonical variables for the infinitesimal symmetry (6.2.34)
are found in Example 6.2.4. They are

t=lnlz|, u=2.
T

Second step: Let us rewrite Eq. (6.4.8) in the canonical variables ¢ and u.
Since y = zu and dt/dx = 1/z, we have denoting v’ = du/dt :

y'=g=d_(zu)—u+mg.l_‘— +md_u£— + '1_ /
T dr dz ~ dz = ¢ dt dg T Eutu.

Thus, Eq. (6.4.8) becomes a particular equation of form (6.4.7):

du
— =l

dt
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Third step: Integration of the above equation yields
1

.
VEETo o

whence, upon substituting ¢t = In|z| and y = zu :
z

4 VC —Inz?

Example 6.4.5. Let us integrate the Riccati equation (6.3.6),

22y,

dr z?
by applying the method of canonical variables to symmetry (6.3.7),
0 0
X=z_—-y—-
i yay

First step: Solution of Egs. (6.2.33) with the above operator X provides

the canonical variables, ¢t = In|z| and u = zy.

Second step: We have
dy d ru u  1ldu v 1dudt v u
—=—(—)=——-,-———=——+———:=——+—-
dz dz \z 2  zrdz 2  z dt dz 2  z?
Therefore,

dy , 2 v u u? 2 1.,
a;+y—;;=;§-;3+-$—2—m—2=z—,i(u+u —u—2)=0.
Thus, the Riccati equation is rewritten in the canonical variables in the follow-

ing integrable form (6.4.7):

du 2
—=—(v*-u-2
7 (uv*—u-2)
Third step: Let us integrate the above equation. Separating the variables:
du
—— = —dt,
ul—u-—2

decomposing here the rational fraction into elementary fractions:

11/ 1
w—uy—-2 3\u-2 wu+l)/)’

and integrating we have

“'f=—m+mc‘
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Now solve this equation with respect to u,

C + 2¢%

T et-C
substitute ¢ = In|z|, © = zy and obtain the solution of the Riccati equation
(6.3.6) given in Example 6.4.2:
_ 223 + C
¥y= z(z3 - C)’

Note that the above calculations require that both zy — 2 and zy + 1 do not
vanish. Therefore, we should add to (6.4.9) the singular solutions of Eq. (6.3.6):

C = const. (6.4.9)

2 1
y= and y= -7 (6.4.10)
Example 6.4.6. The equation
Y 1p(y
y=2+2F(Y), (6.4.11)
with an arbitrary function F, admits generator (6.2.13)
0 0
=z’ — — 4.12
X=z 9z + xyay (6 )
of the projective transformation group (6.2.14),
-z Y
1w YT 1w
Indeed, the equations
— 1 __ (1—az)y’ +ay
Dz(x) = (1 — 0,.'1,')2 ) D:B(y) (l _ 02)2
yield D.G)
dy (Y ’
p—)
=== ——"L=(1- .
Therefore,
7-3_1 ¥\_n- ' _g_l—a:vFg
o3 EF(E)_(I az)y’ +ay z T (m)
or
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Let us integrate a particular equation of form (6.4.11) by taking F(c) = o2,

i.e., the following equation (see Example 6.4.3):

(6.4.13)

First step: Egs. (6.2.33) with operator (6.4.12) are written:

a at Ou Ou
X t = 2—-— — 1 = 2—-- — =1).
@) z6x+zy8y , X(u) xam+zy6y 0
Taking a particular solution of these equations with ¢ = t(z), one obtains the
canonical variables

1
t=—=, u=2. (6.4.14)
z z
Second step: We have
d(zu) du du dt 1 1
r_ - du _ duad _ 12 2o
Y dz u+:1:d:C u+zdtd:z: u+:z:uz2 u+zu,

and Eq. (6.4.13) takes the following integrable form (6.4.7):

du
— =2

dt
Third step: Excluding the solution u = 0 and integrating we have

1
C+t

Substituting here t = —1/z,u = y/z and adding the solution u = 0 we arrive
at the general solution to Eq. (6.4.13) given by
z2

yv=1-g; &nd y=0. (6.4.15)

6.4.3 Invariant solutions

An essential feature of a symmetry group G of an ordinary differential ecquation
is that it converts any solution (integral curve) of the equation in question into
a solution. In other words, the symmetry transformations merely permute the
integral curves among themselves. It may happen that some of the integral
curves are individually unaltered under G. Such integral curves are termed
invariant solutions.

Example 6.4.7. Consider again the Riccati equation (6.3.6)

dy 2 _
a t x"’—o
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and find its invariant solutions with respect to the infinitesimal symmetry

The invariant test (6.2.18), X (J) = 0, provides a single independent invariant
zy. Therefore, Ty = const. is the only relation written in terms of invariants.
Hence, the general form of invariant solutions is zy = A, or y = A/z, A = const.
The substitution into the Riccati equation reduces the latter to an algebraic,
namely the quadratic equation, A2 — A — 2 = 0, whence A; = 2 and A\ = —1.
Thus, the invariant solutions are identical with two singular solutions (6.4.10):

2 1
= - d = —-——
) z ana y2 z

6.4.4 General solution provided by invariant solutions

The technique of invariant solutions furnishes a simple way for obtaining the
general integral of first-order ordinary differential equations with two known
infinitesimal symmetries. Consider the following example.

Example 6.4.8. Consider Eq. (6.4.11) with F(o) = o™, i.c., the equation

_Y
y-;+xn+1.

It admits, along with the projective group with generator (6.4.12), the dilation
group with the generator

o 7}
X=(mn- Uw?’fi +ny(,)—y~

Let us take, ¢.g. n = 2. Thus, we consider Eq. (6.4.13),

N

/

y:

8 |

+

le@

b
with two known infinitesimal symmetries:

0 0 0 g
X =z2— — = p-— —.
1 maz+zy6y, X2 xax+2yay

The equation X3(J) = 0 provides one independent invariant y/z%. Conse-

quently, the invariant solution is obtained by letting y/z% = ), or y = Az? with
an arbitrary constant A # 0. Then our differential equation reduces to



6.5. SECOND-ORDER EQUATIONS 201

Hence A = 1, and the invariant solution simply is

2

y=z" (6.4.16)
Let us take now the projective transformation (6.2.14)
= T - ¥
T = , =
1-az’ Y712 ax

generated by X, rewrite the invariant solution (6.4.16) in the new variables in
the form

§=72°
and substitute here the expressions for T and 7 :

y z?

1—a:c=(l—a:z:)2‘

Denoting the parameter a by C, one obtains the general solution (6.4.15):
T 1-Cz

Y

6.5 Second-order equations

6.5.1 Second prolongation of group generators.
Calculation of symmetries

The infinitesimal symmetries of ordinary differential equations of the second
and higher orders can be found by solving the so-called determining equations.
The student who wants to further develop his analytical skills in applying the
techniques of Lie symmetry analysis can find enough material in the literature
given in the bibliography. Furthermore, examples presented here will prepare
the reader, up to certain extend, to use computer algebra packages for calcu-
lating symmetries.

In this section, We will illustrate the method of determining equations by
calculating symmetries of second-order equations

'y” = f(x’ Y, y,)- (6'5'1)
We look for an admissible infinitesimal generator
0 i}
= —_— -— 6.5.2
X =&y g +n(m )5, (6.5.2)

with coefficients £ and 7 to be found from the following equation known as the
determining equation:

X' - feu)|,_ = @-Gly—t-nf)|,_ =0 653

Y= n=f
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where the symbol |,~—5 means that y” in the corresponding expression is re-
placed by the right-hand side of Eq. (6.5.1). Here, ¢; and (; are given by the
following prolongation formulae:

G =Dz(n) —y'De(§) = nz+ (my — &)Y — & Y7,
(= D:(Cl) - y,,Dz(E) = Tez + (277::y - fzz)y' (6'5'4)
+(nyy — 262)y? — &y VP + (ny — 262 — 36, ¥ )"

Upon substituting expressions (6.5.4) into Eq. (6.5.3), one obtains
Nzz + (277:=y - Ezz)y' + (Uyy - 2§zy)ya - ylséyy - &fz—nfy
+(ny — 26z — 3y,§y)f - ["h‘ + ("h/ - fz)y’ - 'yafy]fy’ =0. (6.5.5)

Equation (6.5.5) involves all three variables z,y and y', but 3’ does not oc-
cur in £ and 7. Consequently, the determining equation (6.5.5) decomposes
into several equations thus becoming an over-determined system of differential
equations for two unknown functions £ and 7. After solving this system, one
finds all infinitesimal symmetries for Eq. (6.5.1).

Example 6.5.1. Let us find the infinitesimal symmetries of the equation
y'==-— (6.5.6)

Substituting f = y'y~2 — (zy) ! into the determining equation (6.5.5) we have

/
1
M., — ! - 2 _ 8¢ .i. ¥y _ 2
Nzz + (2May = Eaz)y' + (Tyy — 26y )y — 76 22y + (2y3 xy2)n
y 1 1
+(my — 26 - 31/'{14)(? - E) B .372-[7’3 +(my - &)y - ylzﬁy] =0.

This equation should be satisfied identically in the variables z, y, and y’. Since
its left-hand side is a cubic polynomial in y’, we equate to zero the coefficients
of 4,32, ... and obtain the following four equations:

(y1)3 &y =0,

¥)* : 92 (myy — 262) — 26, =0,

¥)" : ¥ (Mg — €2z) — ¥z + 20+ 3(¥3/3)E, =0,
¥)" : 22YPna0 — 220 + 2y (26 — 1) — TN — Y€ = 0.

The first two equations yield, upon integration with respect to y :

£ =p(@)y+a(z), n=-p()n@?) +p'(@)y® +q(z)y + bz).
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We substitute these expressions for £ and 7 into the third and fourth equations.
The left-hand sides of these equations will contain, along with polynomials in
y, also the terms with In(y?). Equating the latter to zero, we get p(z) = 0.

Hence, £ = a(z), n = g(z)y + b(z). Now the third and fourth equations readily
yield

1
§= Cl$2 +Coz, n= (Clz + ECz)y.
We conclude that the general solution of the determining equation provides the
following infinitesimal symmetry of Eq. (6.5.6):

X = (0122 + sz) 6%: + (Cl:z + %Cg)y-a%

or
0 ij 0 yo
2 — 4 X ) = +
X = C1 (2: oz +myay) +Cg($az + 26y) C1X1 Cng,

where X; and X, are the following two linearly independent (basic) infinitesi-
mal symmetries of Eq. (6.5.6):

9 0
—3 2_ — - — — — 0.
Xl_x6m+:cyay, X, m6x+28y (6.5.7)

Example 6.5.2. Let us find the infinitesimal symmetries of the equation
Y +eyt +y2=0. (6.5.8)
Substituting f = —(e®¥y® + %) into the determining equation (6.5.5) we have

Nex + (2Mzy — €zz)y + (Myy — 25314)-’/2 - y’sgw
+3e3yyl4 n- (ny — 2§z _ 3ylgy)(e3yyl4 + yl2)
+[n + (ny — &)y — ¥26,)(4ey° + 24) = 0.

The left-hand side of this equation is a polynomial of fifth degree in y'. We4pro-
ceed as in the previous example, i.e., equate to zero the coefficients of ¥, 3y, ...
and obtain the following four independent equations:

(y,)s 1§y =0,
(y,)4 : 3("7y + 77) - 26:: =0,
(y’)3 Nz = 01
)" : &z =0
. 4
The coefficients for (y' )2 and (¥’ )0 vanish together with the coefficients of (1)

and (y' )1, respectively. The above four differential equations for § (z,y) and
n(z, y) are readily solved and yield (see Problem 7.16):

£=C+3C3z, n= 2Cs5 + Cre7Y,
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where C}, C3, C3 are arbitrary constants. Hence, the operator
a 0
X =&(z, y)a + (=, y)é;
admitted by Eq. (6.5.8) is given by

X =C1.X1 + Ca X2+ C3X3,

where
9 a (7] 0
—e v <L Y = = —3r— 19— .
Xi=e ay, X2 F X3 3xax+26y
In other words, Eq. (6.5.8) admits a threc-dimensional vector space L3 spanned
by operators (6.5.9).

(6.5.9)

6.5.2 Lie algebras

The above cxamples can serve to illustrate the general property of determining
cquations. Namely, the set of all solutions of these equations constitute what
is called a Lie algebra defined as follows.

Consider any first-order lincar partial differential operators

0 0 0 0
Xy = &i(z, y)a + m(z, y)gy' y X =&z, y)% + m(z, y)a—y - (6.5.10)

Definition 6.5.1. The commutator (X1, X2] of operators (6.5.10) is a linear
partial differential operator defined by the formula

[X17X2] = X|X2 - X2Xl)

or cquivalently

X, X2 = (X1(60) — Xal6) g + (alm) - Xa(m)) =+ (65.10)

Definition 6.5.2. Let L, be an r-dimensional linear space spanned by any r
linearly independent operators of form (6.5.10), i.e., the set of the operators

X=CIX1+"‘+CrXr, Cl,---,Cr=C0nSt-
The space L. is called a Lie algebra if it is closed under the commutator, i.e.,
[X,Y] € L. whenever X,Y € L,. This is equivalent to the condition that
[Xi, X;) € Ly (3,5 =1,...,7), e, if
(Xi, X;j] = ¢ Xk, cF; = const. (6.5.12)

The operators X, ..., X, provide a basis of the Lie algebra L.. We also say
that L, is a Lie algebra spanned by X; (i=1,...,7).
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Example 6.5.3. Consider operators (6.5.7). Using (6.5.11), we obtain the
commutator [X;, X2] = —X;. Hence, operators (6.5.7) span a two-dimensional
Lie algebra Ly. Accordingly, we say that Eq. (6.5.6) admits a two-dimensional
Lie algebra.

Definition 6.5.3. Let L, be a Lie algebra spanned by X;, i = 1,...,r. A
subspace L, of the vector space L, spanned by a subset of the basic operators,
e.g. by X1,...,X,, s <r,is called a subalgebra of L, if

[X,Y]e L, forany X,Y € L,,
ie., if
[X,‘,Xj] €L, i,j=1,...,s.
Furthermore, L, is called an ideal of L, if

[X,Y]e€ L, whenever XeL,, YelL,,

ie., if
Xi, X;l€Ls,i=1,...,8j=1,...,r

A convenient way to exposc a Lie algebra, subalgebra and other properties is to
dispose the commutators in a commutator table whose entry at the intersection
of the X; row with the X; column is [X;, X;]. Since commutator (6.5.11) is
antisymmetric, the commutator table will be antisymmetric as well, with zeros
on the main diagonal.

Example 6.5.4. Consider operators (6.5.9). Using Definition 6.5.11 of the
commutator, onc can readily sct up the following commutator table.

X1 X2 X3
X1 0 0 2X,
X 0 0 83X,
X -2X, ~3X, 0

It follows from the above table that operators (6.5.9) span a three-dimension-
al Lie algebra L3 admitted by Eq. (6.5.8). The table also shows that any two
operators, namely, (X1, X2), (X1,X3) or (X2, X3), span a two-dimensional
subalgebra. Furthermore, the commutator table also shows that the two-
dimensional subalgebra spanned by X; and X5 is an ideal of the Lie algebra
L3, whereas, e.g. the operators X; and X3 do not span an ideal of the Lie
algebra L.

6.5.3 Standard forms of two-dimensional Lie algebras

Lie’s method of integration of second-order ordinary differential equations dis-
cussed in the next section is based on so-called canonical coordinates in two-
dimensional Lie algebras. These variables provide, for every Lj, the simplest
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form of its basis and therefore reduce a differential equation admitting the Lo,
to an integrable form. The basic statements are as follows.

Theorem 6.5.1. Any two dimensional Lie algebra can be transformed, by a
proper choice of its basis and suitable variables t,u, called canonical variables,
to one of the four non-similar standard forms presented in Table 6.5.1.

Table 6.5.1 Structure and standard forms of L,

Type Structure of Ly Standard form of Lg
a . &
I [X1, X2] =0, &1z —mé&a #0 X1=&, 2= 5
[é] a
11 [X1, X2] =0, &im2 —mé2=0 Xlza, Xzzla
. . a ; 7] a
111 [X1, X2]=X1, &1z —mé2 #0 )&1———%, /\zzta +up-
v (X1, X2] = X1, &im2 —mé2=0 Xy = i, 2=ui
’ ’ ’ du Ou

Remark 6.5.1. In types III and 1V, the condition [X;, X2] = X; can be sa-
tisfied by a proper change of the basis in L; provided that [X,, X;] # 0.

6.5.4 Lie’s integration method

Lie proved Theorem 6.5.1 in order to integrate all second-order equations

¥ = f(z,5,9) (6.5.13)

admitting a two-dimensional Lie algebra. Lie’s method consists in classifying
these equations into four types in accordance with Table 6.5.1. Namely, in-
troducing canonical variables, ¢, u, one reduces the admitted Lic algcbra Ly to
one of the standard forms given in Table 6.5.1. Then one rewrites Equation
(6.5.13) in the canonical variables. The resulting equation

u” = g(t,u,u) (6.5.14)

will have one of the four integrable canonical forms given in Table 6.5.2.
Thus, the method is as follows. Provided that we know an admitted algebra
L, with a basis (6.5.10), the integration requires the following steps.

First step: Determine the type of L, according to the Structure column
of Table 6.5.1. A change of the basis of L, may be required to accord the
expression of the commutators for types III and IV (see Remark 6.5.1).
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Second step: Find canonical variables by solving the following equations
in accordance with the type:

Type 1: X;(t) =1, X2(t) =0; Xi(u) =0, Xo(u)=1.
Type II: Xi(t) =0, Xa(t) =0; X;(u)=1, Xa(u)=t.
Type IIL: X, (t) = 0, Xa(t) =t; Xi(u) =1, Xo(u) = .
Type IV : X (t) =0, X2(t) =0; X (u)=1, Xa(u)=u.

(6.5.15)

Then rewrite the differential equation in the canonical variables choosing ¢ as
a new independent variable and u as a dependent one. It will have one of the
integrable forms given in Table 6.5.2. Integrate the equation.

Table 6.5.2 Four types of sccond-order equations admitting Lo

Type Standard form of L2 Canonical form of the equation
I X1=g£, Xz=(—,% u’ = f(u)

11 X1=£—_. x2=t»a% v’ = f(t)

111 Xy = 5‘% X3 = t(,% +u—,da—u u’ = %f(u’)

v X1 = %, Xzzua% u” = f(t)'

Third step: Rewrite the resulting solution in the original variables z,y,
thus completing the integration procedure.

Example 6.5.5. The equation

v =y - oy (6.5.16)
admits the two-dimensional Lie algebra with the basis
a
_ 2 - r— 6.5.17
Xl yaz ’ X2 xoz ( )

First step: Operators (6.5.17) satisfy the equations
(X1, Xo] = X1, &me—mé2 =0,

and hence, L, has type IV in Table 6.5.1.
Second step: Equations (6.5.15) for type IV:

Xl(t) =0, Xz(t) = 0; Xl(u) =1, Xz(u) =u,
yield the canonical variables

t=y, u=

<@ | K
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From the definition of ¢, we have the change of the total differentiation:
D, = y’Da
and, using it in differentiating the equation u = z/y, we obtain
y—ay =y
Solving the latter equation for y’ we have
y =2,

z + y2u/

or rewriting the right-hand side in the new variables,

;1
T u+tu

Yy
Differentiating this equation again, we obtain

w_ g2+t 2u .
V=V artww)r ™ ([wrw)?

Consequently, Eq. (6.5.16) assumes the following linear form in accordance
with Table 6.5.2:

u" = —(t + %) W', (6.5.18)
Denoting 4’ = v, we rewrite Eq. (6.5.18) as a first-order equation:
dv 2
R G
whence )
Inv=InCy +In(t™?) - %
or

C1 _p
—e /2

v=t2

Hence, we have the equation
u = % e t'/2,
Its integration yields at the following solution of Eq. (6.5.18):
1
u=Cy+ C, / t—ze"tz/zdt.

Third step: Returning to the original variables, we arrive at the following
implicit representation of the general solution to Eq. (6.5.16):

=y (Cg+01/§15e‘”2/2dy).
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Example 6.5.6. We know from Example 6.5.1 that the nonlinear equation
(6.5.6):

admits the two-dimensional Lie algebra L, with basis (6.5.7). Therefore, we
can apply Lie’s integration method.
First step: We will use the basic infinitesimal symmetries in form (6.5.7’):

Then [X;, X2] = X1 (cf. Example 6.5.3) and £;72 — m €2 = x2y/2 # 0. Ilence,
the Lie algebra L, has the structure of type III in Table 6.5.1.

Second step: Let us find the canonical variables and integrate our equa-
tion. The system of equations X;(t) = 0, X2(t) = t for the new variable ¢

yields
—(¥)?
L= (m) , (6.5.19)
and the system X,(u) =1, Xz(u) = u for u yields
1 .
u=—=- (6.5.20)
z

In the canonical variables t, u, the operators X;, X3 in (6.5.7') become

fé] 0 7]
—le’, Xg—t’a—t'l-u%-

Under the change of the independent variable (6.5.19), the total differenti-
ation D, in z defined by (1.2.66) transforms into the total differentiation D,
in t defined by the following equation:

2 r_
D,,=D,(y—2) Dt=2w_3_ylph
T T

X1

or
D, =2u(t — Vty') D. (6.5.21)

Now we differentiate both sides of Eq. (6.5.20) by using Eq. (6.5.21) and
invoking that the left-hand side of (6.5.20) depends on t and its right-hand side
depends on z, to obtain

2

k]

1
= oe— =Y
z?

2u(t - VEy') Du(w) = D (—1)

T

or

U
I—-——-.
t— ity = 5o
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For calculation of the transformation of the second derivative, it is convenient
to write the transformation of the total differentiation and of the first derivative
as

2
Dz=u—,Dg
u
and
u
7
=Vt- —,
y vi 2/t

respectively. Then one readily obtains the following transformation of the

second derivative:

3 3,1
" u'u

u
V'S wker T 2 kR
Equations (6.5.19)—(6.5.20) yield

1 _
zy Vi

Furthermore, the expression for y’ and Eqgs. (6.5.19)-- (6.5.20) yield

¥Vt 2tV/iu

After substituting the above expressions, Eq. (6.5.6) assumes the integrable
form:

u' = —%u' (u’ + %) . (6.5.22)

Is Eq. (6.5.22) equivalent to the original equation (6.5.6)? More specifically,
the question is whether or not all solutions of Eq. (6.5.6) are obtained from the
solutions of (6.5.22) by the change of variables (6.5.19)~(6.5.20), and vice versa.
The answer is not self-evident since the variable ¢ defined by (6.5.19) involves
the dependent variable y of the original equation (6.5.6) and therefore ¢t can be
regarded as a new independent variable only if (6.5.6) does not have solutions
along which ¢ is not identically constant. The direct inspection shows, however,
that (6.5.6) has indeed such singular solutions where ¢ = const., namely the
solutions given by the straight lines:

y= Kz, K = const.

All the other solutions of Eq. (6.5.6) are obtained from solutions of (6.5.22) by
the change of variables (6.5.19)-- (6.5.20).

Furthermore, one should also inspect whether or not all solutions of Eq.
(6.5.22) are related with solutions of (6.5.6). We notice that Eq. (6.5.22)
is obviously satisfied by v’ = 0 as well as by v’ = —1/2, the corresponding
solutions being u = A, u=C — E—, where A and C are arbitrary constants.
According to {6.5.20), the first of the above solutions, u = A, means z = const.
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Hence, it is not related to any solution of Eq. (6.5.6) and should be ignored.
. t
But the second solution, u = C — 2 provides a solution of Eq. (6.5.6). Namely,

substituting there the expressions (6.5.19) and (6.5.20) for ¢ and u, respectively,
one obtains the following solution of Eq. (6.5.6):

y=+v2z + Cz2.

Now we integrate Eq. (6.5.22) excluding the above singular solutions, ie.,
assuming u’ # 0 and u’ + 1/2 # 0. Then (6.5.22) yields

du’ 2du’ du’ 2u’' +1
ln K t| = — = — _—
KV /u’(2u’+1) 2u' +1 / w In u "
or ,
Kl\/z _ 2u :{“1 ,
u
whence
P 1
v
2(Civt-1)
where  C; = K, /2 # 0. Finally, the elementary integration yields
= (v Vi
U= 0—,12( 1 t+ln‘01 t—- 1|+Cg).

Third step: Let us rewrite the solution in the original variables. Replacing
in the last equation ¢t and u by expressions (6.5.19) and (6.5.20), respectively,
one arrives at the following implicit representation of the solution y(z) of Eq.
(6.5.6) involving two constants, C; # 0 and Cs :

Cly+sz+xln|CI% - 1\+C? =0.
Adding to the latter two singular solutions discussed above one ultimately

arrives at the general solution of Eq. (6.5.6) represented by the following three
formulae with arbitrary constants K, C,C;,Cy with Cy #0:

y =Kz, (6.5.23)
y=xv2zr+Cz2, (6.5.24)
Ciy +Coz +zln )Clg - 1) +C2=0. (6.5.25)

The fact that the general solution of Eq. (6.5.6) is given by three distinctly
different formulae does not contradict Theorem 3.1.2 on the uniqueness of the
solution to any initial value problem. Indeed, the solution of the following
exercise shows that the initial conditions themselves single out from (6.5.23)—
(6.5.25) precisely one solution formula.
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Exercise 6.5.1. Solve the following Cauchy problems for Eq. (6.5.6):

Y 1
My = ¥ zy’ ylz:l =1, yll;.:—l =1
"_ Y 1 =1. 4 =0:
(ii) y _S—IE—E, 'z:l— ’y‘:z:l_ ’
y 1

n__ J
i) v =25 -

Solution. Problem (i): Substituting z = 1,y = 1,3’ = 1 into all three solution
formulae (6.5.23)—(6.5.25) one can verify that the initial conditions (i) can be
satisfied only by (6.5.23) with K = 1.

Problem (ii): Similar reasoning for x = 1,y = 1,y = 0 singles out the
second solution formula (6.5.24) with the plus sign and with C = -1.

Problem (iii): Likewise, the substitution z = 1,y = 1,3’ = 2 singles out the
solution formula (6.5.25) with Cy = 2,C; = —6.

Thus, the solutions to the above Cauchy problems are given by

Wy=z (i)y=v2z-22, (i) 2y—6$+mln|2% - 1| +4=0.

6.5.5 Integration of linear equations with a known par-
ticular solution

Let us assume that a particular solution y = z(z) to a linear equation

y' +a(z)y +b(z)y=0 (6.5.26)
is known. Thus, 2"'(z) + a(z)z'(z) + b(z)z(z) = 0 identically in z. We will
discuss here two different methods for obtaining the general solution of Eq.
(6.5.26) using its particular solution z(z).

First method is transformation to the simple form provided by Theorem
3.3.1. According to this theorem, the transformation

‘o e~ Ja(z)dz & y
- / e (6.5.27)

reduces Eq. (6.5.26) to the simplest second-order linear equation

v’ =0. (6.5.28)

It follows u = Cit + C3, whence the general solution to Eq. (6.5.26):

— Ja(z)dz
y = 2(z) [Cl / esz) dz + Cz] . (6.5.29)
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Second method is based on the fact that Eq. (6.5.26) is invariant under
the transformation = y + az(z), and hence admits the generator

0
X, = z(z)a—y : (6.5.30)
Since Eq. (6.5.26) is homogeneous, it admits also the generator

X, = (6.5.31)

y% ’
Operators (6.5.30) and (6.5.31) span a two-dimensional Lie algebra of type IV,
and hence Eq. (6.5.26) can be solved by Lie’s integration method discussed in

Section 6.5.4. Namely, the canonical variables for operators (6.5.30)~(6.5.31)
are

= = l— .
t=z, u @) (6.5.32)
In these variables, Eq. (6.5.26) is written in the integrable form:
u" + [a(z) + 2ﬂ] u' =0 (6.5.33)
z(x) ’

whence

e~ Jalz)dz
u= (Tla/r--gazgj——-dli4-(:5.

Thus, we arrive again to solution (6.5.29).
In practice, it is better to use one of the methods described above rather
than the final formula (6.5.29) for the solution.

Example 6.5.7. Consider the equation
V'=zy -y (6.5.34)

One can readily find its particular solution z(z) = z by looking for a polynomial
solution y = Ag+ A 2+ Azz%+- - - . Let us apply the first method of integration.
Transformation (6.5.27) yields

z2/2
t=/‘e2 dz, u=g-
x T

In these variables, Eq. (6.5.34) is written u” = 0, and hence u = Cit + C».
Substituting here the expressions for ¢ and u, we obtain the following general
solution to Eq. (6.5.34):

z2/2
y= [c1 / € da:-i-Cg]:Lx (6.5.35)

z2
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Let us apply the second method. Using the Lie algebra L of type IV
spanned by operators (6.5.30) and (6.5.31),
a a
Xi=z—, Xo=y—,
1=Z By 2=Y By
one obtains the canonical variables t = z,u = y/z. In these variables, Eq.
(6.5.34) is written

z
After the standard substitution u' = v and separation of variables, it becomes

d 2

L= (z-2)aw

v
and yields

ez2 /2
v= C] 2

It follows, upon integration:

ex’/Z
u= Cl / dz + C2~

2

Finally, y = zu yields the general solution (6.5.35).

6.5.6 Lie’s linearization test

Example 6.5.8. To illustrate the problem, consider the nonlinear equation

12 !
y" = 2(% - %) : (6.5.36)

We obtained it from the simplest linear equation (6.5.28), u” = 0, by the
following change of variables:

t=-, u=arctanz. (6.5.37)

<=

Indeed, applying the transformation formulae (1.4.13)~(1.4.14) to Egs. (6.5.37)
we have

! /
D, = _;’_2 D, _;’_2 Dy(u) = D (arctanz), (6.5.38)
whence
' _ y2
u = —m : (6539)
Differentiating both sides of Eq. (6.5.39) by using (6.5.38), we obtain
vy YR 2z
v T T
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Whence, invoking Eqs. (6.5.28) and (6.5.39), we ultimately arrive at Eq.
(6.5.36). Subjecting the general solution u = C;t — C; of the linear equation
(6.5.28) to the change of variables (6.5.37), we have

C
arctang = —% — Cs,
Y

and hence, we obtain the general solution to the nonlinear equation (6.5.36):

Ci

y= C, + arctanz

(6.5.40)

Lincarizable equations such as (6.5.36) occur in applications quite often.
Therefore, it is important to have a general test for identifying linearizable
equations. S. Lie [25] solved this problem for second-order ordinary differential
equations. Namely, he found the general form of all second-order equations
(6.5.13) that can be reduced to the linear equation

d%u du
3z = Al + Bu+C() (6.5.41)
by a change of variables
t= ‘P(I’ y), u= ¢($, y)~ (6542)

He showed first of all that the linearizable second-order equations should be
at most cubic in the first-order derivative. This statement can be obtained
by using the transformation of derivatives under a change of variables. Recall
that any linear equation can be reduced to the simplest equation (6.5.28) by
a change of both independent and dependent variables variables. We also
know fromn Lemma 3.3.1 the linear equations are equivalent by function to Eq.
(3.3.12). Here, we will write Eq. (3.3.12) in the variables ¢ and u :

v +a(t)u =0, (6.5.43)
where u” is the second derivative of u with respect to t. Then, using the trans-

formation of derivatives given by Theorem 1.4.1 in Section 1.4.5, we arrive at
the following result.

Lemma 6.5.1. All second-order equations obtained from Eq. (6.5.43) by a
change of variables (6.5.42) are at most cubic in the first-order derivative, i.e.,
belong to the family of equations of the form

Y+ F3(z, )y’ + Fa(z,9)y' % + Fi(z,y)y + F(z,y) =0, (6.5.44)
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where
— +a 3
Fa(z,y) = CyPyy — YyPyy Yy ’
P2y — Py
Patbyy — Yzyy + 2Py hzy — YyPzy) + 30022
Falm) = Yy — ey¥ ’
Pa¥y ~ Py¥a \ (6.5.45)
Fi(z,y) = y¥zz — YyPaz + 2Py — YePay) + 3020,
n Pty — Py¥a
Pz¥zz — YrPzz + a’lﬂtpi
F(z,y) = .
(z,y) PT——

However, not every equation of form (6.5.44) with arbitrary cocfficients
F;(z,y),...,F(z,y) is linearizable. The linearization is possible if and only if
the over-determined system of nonlinear partial differential equations (6.5.45)
for two function ¢(z,y) and ¥(z,y) with given Fs(z,y),..., F(z,y) is inte-
grable. Lie [25] provided the compatibility (i.c., intcgrability) conditions for
system (6.5.45). Lic’s linearization test can be formulated as follows (sce also

21)).

Theorem 6.5.2. Equation (6.5.44) is linearizable if and only if its coefficients
satisfy the following equations:

3(F3),,, - Q(Fz)xy + (Fl)yu = (3F1F3 - F22)x - 3(FF3)y - 3F3Fy + FZ(Fl)w
3Fyy — 2(F1)ay + (F2)zz = 3(FF3); + (FE — 3FFy), + 3F(F3); — Fi(F2)s.

Lie’s linearization test is simple and convenient in practice. Consider ex-
amples.

Example 6.5.9. The equation
y' + F(z,y) =0

has form (6.5.44) with F3 = F; = Fy = 0. The linearization test yields F, =0.

Hence, the equation y” + F(z,y) = 0 cannot be linearized unless it is already
linear.

Example 6.5.10. The equations

1
V' --+y%=0
T
and
" 1 ’ 73\
Y+ +y%) =0

also have form (6.5.44). Their coefficients are F5 = F} = —1 [z, [ =F =0
and F3 = F; = 1/z,F; = F = 0, respectively. The linearization test shows
that the first equation is linearizable, whereas the second one is not.
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If the coefficients F3(z,y),..., F(z,y) of Eq. (6.5.44) satisfy the lineariza-
tion test given in Theorem 6.5.2, then a change of variables (6.5.42) reducing
Eq. (6.5.44) to a linear equation of form (6.5.43) can be obtained by solving
the over-determined system of differential equations (6.5.45) for ¢(z,y) and
¥(z,y) with the known functions F3(z,y),...,F(z,y).

Example 6.5.11. Consider the equation

1
¥ =W +y¥) =0 (6.5.46)

from the previous example. We know that its coefficients

1
F3=Fl=—;, F2=F=0

satisfies the conditions of Theorem 6.5.2. Let us show that Eq. (6.5.46) can be
transformed into the simplest linear equation u” = 0 and find the linearizing
map. Thus, we assume that a(t) = 0 in (6.5.43). Then Eqgs. (6.5.45) for
determining ¢(z,y) and ¥(z,y) are written

1
‘Py"pyy — YyPyy = —;(‘Pzwy - (Py"r/’z)’

<P;p‘¢m, - %‘Pw + 2((pywzy - wy‘)ozy) =0, (6.5.47)
1
Soyw:::c - wySOzI + 2(‘P:¢zy - 'wx‘Pa:y) = _;(‘Pzd’y - ‘wax)»

%%: - wm‘P:cz: =0.

In order to linearize Eq. (6.5.46) it suffices to find any particular functions
¢(z,y) and ¥(z,y) which solve system (6.5.47) and are functionally indcpen-
dence, i.e., the Jacobian does not vanish:

Py — Pytbz # 0. (6.5.48)

Therefore, we will satisfy the last equation of system (6.5.47) by letting ¢, = 0,
i.e., ¢ = p(y). Then condition (6.5.48) requires that ¥. # 0 and ¢, # 0. To
further simplify calculations, set ¢ = y. Then the second equation of system
(6.5.47) yields %, = 0, whence

¥ = a(z) + b(y).
Now the first equation of (6.5.47) yields the equation with separated variables:
1
17 o
b'() = - a(o).

It follows that )
b (y) = = a'(z) = A, A= const.



218 6. NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS

These equations yield
A 2 A2
a(z):ix + Ciz + Co, b(y)=§y + K1y + Ka.

Noting that the third equation of (6.5.47) is satisfied identically and setting
A=2, C1 =C, = K; = K2 =0, we arrive at the following change of variables
(6.5.42):

t=y, u=z’+y> (6.5.49)

This change of variables reduces Eq. (6.5.46) to the linear equation u” = 0.
Writing the general solution of the latter equation in the form u+ At + B =0
and using (6.5.49), we obtain the following implicit solution of the non-linear
equation (6.5.46):

2+y*+Ay+B =0, A,B=const. (6.5.50)

Note that the change of variables (6.5.49) is illegal for the solution y = const. of
(6.5.46). Therefore, the general solution of Eq. (6.5.46) is obtained by adding
to (6.5.50) the singular solution y = const.

Example 6.5.12. The equation y” + y'2 = f(z) has form (6.5.44) with F3 =
R =0, F, =1, F = —f(z) and satisfies Theorem 6.5.2. Let us check if
our equation is linearizable by a change of the dependent variable only. In
other words, let us seek the linearizing transformation (6.5.42) in the form
t =z, u=Y(z,y). Then the first equation of (6.5.45) is valid identically while
the remaining threes equations yield:

¢'yy = "pu: %y = 0, wzx + f(z)¢y + Ot(:r)d) =0.

The first two equations yield ¥ = g(z) + CeV. Setting, c.g. C =1, g(z) =0,
we obtain 1) = e¥. Then the third equation yiclds a = — f(z). Thus, the change
of variables t = z, u = e¥ linearizes the equation in question and maps it to
v’ = f(z)u.

6.6 Higher-order equations

6.6.1 Invariant solutions. Derivation of Euler’s ansatz

The concept of group invariant solutions introduced in Section 6.4.3 for first-
order equations is applicable to higher-order equations as well.

Example 6.6.1. The general homogeneous linear ordinary differential equa-
tion with constant coefficients (3.4.6),

y(") + aly(n_l) + -4 an—ly, <+ any = 0, Aly.vyQp = ConSt.,
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admits the translation group with the generator

e}

oz

due to the constant coefficients, and the multiplication of y by any parameter,
i.e., the dilation group with the generator

X, =

X2=ya—y

due to the homogeneity of the cquation under consideration. Therefore, the

equation admits the linear combination of these generators, X = X; + AX3 :

0 0
X—a—x+)\y%, A = const.

The equation dy/y = Adz yields the invariant « = ye~**. The invariant solu-
tions are obtained by setting u = C. Hence, Euler’s ansatz (3.3.25):

y = Ce™.

Since ' = CXe?*,...,y") = CA"e*?, substitution into Eq. (3.4.6) yields an
algcbraic equation, namely, the characteristic equation (3.4.7):

AVt a Attt an A+ a, = 0.
Example 6.6.2. Consider Euler’s equation (3.4.11) from Section 3.4.4:

dr B dn-—l d
x"#+alz" IMT%-*-"'-l'an-lxd_:*'aﬂy:O’

where a;,...,a, = const. It is double homogeneous (sec Definition 3.1.3), i.e.,
admits the dilation groups with the generators

0 0
Xy =z5-, Xz—ya—y“

We proceed as in Example 6.6.1 and find invariant solutions by taking the
linear combination X = X; + AX3z :

a d
= — -_— = t.
X T + /\yay , A=cons

The characteristic equation dy/y = Adz/x yields the invariant u = y z~*. The
invariant solutions are obtained by setting u = C, whence

y=Cz*. (6.6.1)
Differentiating and multiplying by =, we have
2y = CAz>, z%y" =CX ..., 2"y =CA"zh,



220 6. NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS

Substituting into Eq. (3.4.11) and dividing by the common factor Cz* we
obtain the following characteristic equation for Euler’s equation (3.4.11):

,\"+a1A"'l+-~-+an_1)\+an=0.

It is identical with the characteristic equation (3.4.7) for the equation with
constant coefficients (cf. Section 3.4.4).

6.6.2 Integrating factor (N.H. Ibragimov, 2006)

It is customary to consider integrating factors exclusively for first-order ordi-
nary differential equations. Furthermore, in the classical approach to integrat-
ing factors, differential equations are written as differential forms (see Section
3.2.3). We will discuss here an alternative approach to integrating factors de-
veloped in [22]. The new approach allows us to determine integrating factors
for higher-order equations and systems.

Let u = (u!,...,u™) denote m > 1 dependent variables with successive
derivatives u(1) = {du®/dz},u(z) = {d?u®/dz?},... with respect to the single
independent variable z. The total differentiation (1.4.9) has the form

o « O i}
Dz:a—x-k-u(l)% +u&,)%+~«. (6.6.2)
The higher-order variational derivatives (cf. Egs. (1.5.4) and (2.6.24)) with
one independent variable and several dependent variables are written:

5 d d 58 5 8
bux ~ Quo * Que + Dz oug, bz oug, .,

Fooe (6.6.3)

The new approach to integrating factors for ordinary differential equations of
any order with one or several dependent variables is based on the following
statements (for more details and the proofs, see [21], Section 8.4).

Lemma 6.6.1. Let F(z,u,u),...,u()) € A. The equation D,(F) = 0 holds

identically in all variables z,u,u),... yU(s) 8nd U(,4) if and only if F = C =
const.

Lemma 6.6.2. A differential function F(z,u, U(1), - -+, U(s)) € A with one in-
dependent variable z is a total derivative:

F= DI(Q)a ‘I>(:c,u, U(1)s- -+ :u(a—l)) € Av (6'64)
if and only if the following equations hold identically in z, U Uy, ..

§F
J—u—a—O, 0z=1,...,m. (665)
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In the case of equations with one dependent variable y, we will use the usual
notation y',y”, etc. for the successive derivatives. The total differentiation
(6.6.2) and the variational derivative (6.6.3) are written

LA (s+1)_9
Do=gutvgy t¥'gpt +v" g+
and 5 5 5 , ,
< T o - a g 2 —_— - 3 — P
dy Oy zay' zoy" D; Ay + ) (6.6.6)

respectively. In this case, Lemmas 6.6.1 and 6.6.2 are formulated as follows.

Lemma 6.6.3. Let f(z,3,¢,...,¥*)) € A. If the equation D.(f) = 0 holds
identically in all variables z,y,7/, ...,y and y**1), then f = const.

Lemma 6.6.4. A differential function f(z,y,v',...,¥®) € A with onc inde-
pendent variable z is a total derivative, i.e.,

f=D:(¢), dz,uy,..., 3" V) €A, (6.6.7)
if and only if the following equation holds identically in z,y,v/,... :

0f _0f _p 8F | pO8f e 0f . Of
dy ~ Oy D, oy’ + =5y" Dz ay" = Gy =0. (6.6.8)

Definition 6.6.1. Consider sth-order ordinary differential equations

+.--4(-1)°D

a(z,y, v .y )y 4 b(z,u.y, . V) =0 (6.6.9)

A function p (z,y,y,...,¥*")) is called an integrating factor for Eq. (6.6.9)
if the multiplication by u converts the left-hand side of Eq. (6.6.9) into a total
derivative of some function ¢(z,y,%',...,y¢~ ) :

pay'® + ub = Dy(9). (6.6.10)

Knowledge of an integrating factor allows one to reduce the order of Eq.
(6.6.9). Indecd, it follows from Eqs. (6.6.9)~(6.6.10) that D;(¢) = 0, and
Lemma 6.6.1 yields a first integral for Eq. (6.6.9):

¢(z,y,9,...,4 ) =C. (6.6.11)

Definition 6.6.1 can be readily extended to systems of ordinary differential
equations of any order.

Theorem 6.6.1. The integrating factors for Eq. (6.6.9) are determined by
the equation

%(pay(’) + ub) =0, (6.6.12)

where §/6y is the variational derivative (6.6.6). Equation (6.6.12) involves the
variables z,y,¥/, . ..,y?*~? and is satisfied identically in these variables.
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Proof. Equation (6.6.12) is obtained from Lemma 6.6.2. The highest deriva-
tive that may appear after the variational differentiation (6.6.6) has the order
2s — 1. It occurs in the terms

(-1)°D3(ua) and (-1)-ipz [y 2]

Dropping the terms that certainly do not involve y(24=1), we have
-1 e O(ua)
— = —(_ 1 1, (s) ZAEE) ..
(1) D2(ua) = ~(-1) D3 [y T ] 4

Thus, the terms containing y("”"‘) annihilate each other, and Eq. (6.6.12)

involves only the variables z,y,7/,...,y*~2. This completes the proof.
For the first-order equation
a(z,y)y’ +b(z,y) =0, (6.6.13)

Eq. (6.6.12) is written:

:-y(#ay' + pb) =y (na)y + (ub)y — Dy(pa) =

Since D;(pa) = (pa): + y'(pa)y, we obtain the following equation for deter-
mining the integrating factor for first-order equation (6.6.13):

(ub)y — (ua): =0. (6.6.14)
Equation (6.6.14) is identical with Eq. (3.2.12) where N =a,M =b.

Example 6.6.3. Let us consider, from the new point of view, Eq. (3.2.14)
from Example 3.2.2. We rewrite Eq. (3.2.14) in the form

(v* - 3z%)y + 22y = 0,
and have

% [(y2 —32%)y + 2a:y] = 2yy’ + 2z — D, (y* — 32%) = 8z.

Thus, condition (6.6.12) is not satisfied, and hence (y? — 3z2)y’ + 2zy is not a
total derivative. On the other hand, upon multiplying by x = 1/y*, we obtain
the equation

+==0 (6.6.15)

v
satisfying condition (6.6.12). Indeed,

il 5 ) - e (G5

1 3:c2), 2z
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Now, we write
2

bnl-]) wheen) o)

and obtain . 9 .
1 3z, T T 1
(=5 =:(a-y)
Hence, the solution of our differential equation is given implicitly by

2 1
S--=C or 22-y*=Cy’.
¥y y
Consider now the second-order equations
a(z,y,¥')y" +b(z,y,9') = 0. (6.6.16)

The integrating factors u depend on z,y,y’, and Eq. (6.6.12) for determining
wu(z,y,y') is written:

51/ + ) =" (u)y + (), = D[y (ualy + (ubly] + D) = 0.
We have
Dq(pa) = y"(pa)y +y'(na)y + (na)s,
Di(pa) = y" (pa)y +y" (na)yy +24'y" (na)yy + 2" (ua)ey
+y"(ua)y +y*(na)yy + 2y'(na)zy + (4a)zz,
Do (y"(ua)y) = y"(ua)y + y" (ua)yy +y'y" (na)yy + 4" (4a)zy,
Dz((ub)y’) =y (ub)yry +y' (b)yy + (kb)zyr,

and hence,
P
35(““ ¥ + ub) =y" [y’ (Ba)yy + (4a)zy + 2(pa)y — (ub)yy) + 4 (Ba)yy

+ 23/’(#“)::11 + (1a)zz — yl(l»‘b)w’ — (ub)zyr + (ub)y.

Since this expression should vanish identically in z,y,y’ and y", we arrive at
the following statement.

Theorem 6.6.2. The integrating factors u(z, y,y’) for the second-order equa-
tion (6.6.16) are determined by the following system of two equations:

Y (pa)yy + (4a)zy + 2(pa)y — (pb)yy =0, (6.6.17)
y”? (na)yy + 2y (ua)zy + (4a)zz — Y (1)yy' — (Bb)zy + (ub)y = 0. (6.6.18)
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Theorem 6.6.2 shows that the second-order equations, unlike the first-
order ones, may have no integrating factors. Indeed, the integrating factor
u(z,y) for any first-order equation is determined by the single first-order lin-
ear partial differential equation (6.6.14) which always has infinite number of
solutions. In the case of second-order equations (6.6.16), one unknown func-
tion u(z,y,y’) should satisfy two second-order linear partial differential equa-
tions (6.6.17)~(6.6.18). An integrating factor exists provided that the over-
determined system (6.6.17)~(6.6.18) is compatible.

Remark 6.6.1. If a second-order equation (6.6.16) has two integrating factors
that lead to two distinctly different first integrals (6.6.11), then the general
solution to Eq. (6.6.16) can be found without integration.

Example 6.6.4. Consider the following second-order equation:
/2 ’

n Y g
y'+ - +37 =0 (6.6.19)

One can verify that its left-hand side does not satisfy condition (6.6.5), and
hence it is not a total derivative. Let us calculate an integrating factor. Equa-
tion (6.6.19) has form (6.6.16) with

2 '
a=1, b=% 3L,
y z

For the sake of simplicity, we will look for the integrating factors of the form
p = p(z,y). Equation (6.6.17) is written 2u, — (ub)yry = 0. Since (ub)yy =
2u/y, we obtain pu, = p/y, whence u = ¢(z)y. Thus, we have

H= ¢(z)y, Byy = 0, Hzy = d’,: Uzz = ¢”y, pub = ¢y12 + 3% yy"

() =32y, () =32, (ubley =20 +3(% - 2)y.

Substitution into Eq. (6.6.18) leads to the following Euler’s equation:
z2¢" — 3z¢' +3¢ = 0.

Integrating it by the standard change of the independent variable, ¢t = In|z],
we obtain two independent solutions, ¢ = z and ¢ = z3. Thus, Eq. (6.6.19)
has two integrating factors:

py =gy, po =1y, (6.6.20)

and can be solved without an additional integration (see Remark 6.6.1).
Indeed, multiplying Eq. (6.6.19) by the first integrating factor, we have

v LY
Ty (y” + 5 + 3;) =zyy” +zy? + 3yy’ = 0.
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Substituting ryy” = D.(xyy’) — vy’ — zy'?, we reduce it to Dy (zyy’) + 2yy’ =
D.(zyy' + y?) = 0, whence

zyy' + 9% = C1. (6.6.21)
Likewise, the second integrating factor (6.6.20) yields
dyy = C,. (6.6.22)

Eliminating y' from Egs. (6.6.21)—(6.6.22), we obtain the following general

solution to Eq. (6.6.19):
C,
y= i\/cl -2 (6.6.23)

Application of the linearization test (Section 6.5.6) shows that Eq. (6.6.19)
is linearizable. Therefore, it admits an 8-dimensional Lie algebra, and hence
can be integrated by the group method of Section 6.5.4. Consider now an
equation without symmetries.

Example 6.6.5. Consider the fol]owing non-linear second-order equation:

g oLy 2T b1 (6.6.24)
Y Y
One can verify, by solving the determining equations, that Eq. (6.6.24) has no
point symmetries, and hence cannot be integrated by Lie's method. Therefore,
let us apply the method of integrating factors. Eq. (6.6.24) has form (6.6.16)
with o .
a=1, =—y-——m—t£—y'+22:+1.
y Y

For the sake of simplicity, we will look for the integrating factors depending
on two variables. Let us take, e.g. p = u(z,y). Then Eq. (6.6.17) yields
ty = —u/y, whence u = p(z)/y. Now Eq. (6.6.18) is written:

2 2
_g y? - I; y + r +y’H,,,, +H,, —H, =0, (6.6.25)
Yy Y Yy
where
H= y%y'2+(a:+x2)1%y'—(2$+1)§'

The reckoning shows that Eq. (6.6.25) reduces to the simple equation

"(1')_|_(x+$2) p’(w) 0,

whence, separating the variables, we have p (x) = 0, i.e.,, p = const. Letting
p = 1, we arrive at the following integrating factor for Eq. (6.6.24):

Q| -

”:
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Upon multiplying by u, Eq. (6.6.24) becomes

L | 2 2r + 1
% - y? - ;f v+ =0 (6.6.26)

Its left-hand side can easily be written as a total derivative. Indeed,

" ! 2 2 2 1+2
y_=Dz(v_)+L2, _x_""f_ylsz(x+:c)_ +22
Yy Yy Yy Yy Yy Yy

and Eq. (6.6.26) is written

’ 2
D, (Lm—) —0. (6.6.27)
Yy
Hence,
y+z+ z2 e
y
or
Y +z+z>=Cy, C)=const. (6.6.28)

Integrating the non-homogeneous linear first-order equation (6.6.28) we obtain
the following general solution to Eq. (6.6.24):

y = CpcC1% — 1= / (a: + :1:2) e~ %dz, C,,C, = const. (6.6.29)

Working out the integral in (6.6.29), one can express the solution in elementary
functions. Namely,

1
y=Co— %;ﬁ - §x3 (6.6.30)
if C; =0 and
y = CpeC1% 4 5 [C +(2+cl)c,z+2+cl} (6.6.31)
if C, # 0.

Example 6.6.6. Consider the following system of the first-order equations:

F (x,% 2y, 2') = zzy’ — 2ryz’ +yz =0,
(6.6.32)
Fa(z,y,2,y,2") = 2y’ + 22%22' + 2222 + y = 0.

Let us check conditions (6.6.5). Setting u! =y, u? = 2, we have

JFI _ ’ 5F1 _ '
5 = -3z2', ek 3y +zy').
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Hence, Fi(z,y,z,y,2') is not a total derivative. On the other hand,

6F, 6F,
— =0, =
oy

and hence F; is a total derivative. Proceeding as in Example 6.6.3, we obtain
Fy = D,(zy + 2%2?). (6.6.33)

Let us find an integrating factor of the form p = p(z, y, z) for F;. The reckoning
shows that the first equation in (6.6.5) is written

SWR) _OWR) . ( OF:
dy Oy D. (” 8y')

= —3x2'u — T2ps + (yz — 2zy2’ )y — z22'p, = 0.
Since p does not depend on 2’, the above equation splits into two equations:
2ypy + 2. +3u =0, zpg —yuy =0.

Solving this system of the first-order linear partial differential equations, we
obtain

p= ;13 ¢(§_§’), (6.6.34)

where ¢ is an arbitrary function. One can verify that u given by (6.6.34) solves
also the second equation in (6.6.5),

S(uFr) _ O(pF1) OFy _
6z 08z D,(u 62’) =0,

and hence provides an integrating factor for F). Since the function ¢ in (6.6.34)
is arbitrary, we set ¢ = 1, multiply F; by u = z~3 and obtain

TY zyz |y zy

Substituting (6.6.33) and (6.6.35) into Eqs. (6.6.32), we obtain the following
first integrals:

T
:z:y+z222 =C}, -Z% = C,.

Solving for y and z, we obtain the general solution to system (6.6.32):

__GG . [ G
y= z(Cy+22)’ 7 Cy + 2
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6.6.3 Linearization of third-order equations

Lie’s method of integration is applicable to higher-order equations as well (see,
e.g. (26], [31], [17]). However, our concern here is on linearization rather than
on integration of higher-order equations.

It is advantageous, e.g. for calculation of invariants, to write the general
linear homogeneous equation {3.4.3) in the following standard form involving
the binomial coefficients:

nlea(z)

m_mm¢*”+“+mwdﬂwﬂaﬂy=awﬁ%)

y™ +ner (z)y™ N +

Equivalence transformations for higher-order equations (3.4.3) are provided
by the same transformations (3.3.8) -(3.3.9) as for the second-order equations:

T=¢(z), ¢'(z)#0,

y=o(z)y, o#0.

An analog of Theorem 3.3.1 for higher-order linear equations was discovered
in the nincteenth century. Namely, J. Cockle in 1876 and E. Laguerre in 1879
proved for n = 3 and for arbitrary n, respectively, that the two terms of orders
next below the highest can be simultaneously removed in any equation (6.6.36).
Their result can be formulated as follows (for the proof, see [21], Section 10.2.1,
and the references therein).

Theorem 6.6.3. Any equation (6.6.36) can be reduced to the form

n!c3(z)

m , _Mes(@)
A Ty P

y("—3) + -+ nca_1(z) y’ +en(z)y=0 (6.6.37)

by appropriate equivalence transformations (3.3.8)—(3.3.9). Determination of
the equivalence transformations requires integration of a second-order ordinary
differential equation independently on the order n of Eq. (6.6.36).

Form (6.6.37) is called Laguerre’s canonical form of the linear homogeneous
nth-order equation. In particular, the canonical form (6.6.37) of the third-order
equation is

¥ +a(z)y = 0. (6.6.38)

Recently we! found all linearizable third-order equations

ylll = f(z) Y, yly y”)' (6639)

We formulate here the basic theorems on linearization of third-order equations
and illustrate them by examples. We will use the canonical form (6.6.38) of
the linear third-order equations guaranteed by Theorem 6.6.3.

IN.H. Ibragimov and S.V. Meleshko, J. Math. Anal. Appl., 308(1), 2005, 266-289.
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Lemma 6.6.5. The third-order equations (6.6.39) obtained from a linear equa-
tion (6.6.38) by a change of variables (6.5.42) with py =0,

t=p(), u=1iz,y), (6.6.40)

belong to the family of equations of the form
y" +(A1y + Ao)y" + Bay® + Bay? + Biy' + By = 0, (6.6.41)

where Ay = Ao(z,y),...,Bs = Bs(z,y). The third-order equations (6.6.39)
obtained from a linear equation (6.6.38) by a change of variables

t=y(z,y), u=y(r,y), whereyp, #0, (6.6.42)
belong to the family of equations of the form

"

Y+ =3@y")? + (Cay? + C1y + Co)y"

y+r [
+Ds5y® + Dy + D3y + Day® + Dy yf + Do] =0, (6.6.43)
where Cy = Co(z,y),...,Ds = Ds(z,y), and r = r(z,y).

Egs. (6.6.41) and (6.6.43) with arbitrary coefficients Ag,...,Bs; and
Co, ..., Ds, respectively, provide two candidates for linearization.

Theorem 6.6.4. Equation (6.6.41) is linearizable if and only if its coefficients
satisfy the following five equations:

Aoy — A1z =0, (3B; — A2 -34y,), =0, (6.6.44)
3B; = 3A1; + AgA,, 9B;3 = 3A1y + A%, (6645)
27Boyy = (9B; — 6Agz — 243) A1 + 9(Biz — A1 By), + 340B,,. (6.6.46)

Provided that conditions (6.6.44)—(6.6.46) are satisfied, the linearizing trans-
formation (6.6.40) is defined by a third-order ordinary differential equation for
the function ¢(z), namely, by the Riccati equation

6% - 3x% =3B, - A2 - 34, (6.6.47)
for
x = L= (6.6.48)
Pz

and by the following integrable system of partial differential equations for

P(z,y) :
3ty = A1y, 3zy = (3x + Ao)d)y. (6.6.49)

1
Vazz = X Vae + Boty — 5 (34oz + AT —3B1 +9x*)¥= — Q,  (6.650)
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where x is given by (6.6.48) and Q is the following expression:
4
Q= %(AO:B:D + 2Ap Az + ﬁB()y - 3Bz + -9-148 —24¢B; + 2AIB())' (6.6.51)

Finally, the coefficient a of the resulting linear equation (6.6.38) is given by

a=Qp;3 (6.6.52)
Example 6.6.7. The equation
6 3 yl 3 yl 2 yl y i
" 2 hel " g P = — ] = 0.
y (yy +x)y +6(y2+xy+z2+x3) 0 (6.6.53)
is an equation of form (6.6.41) with the coefficients
6 3 6 6 6 6y
A1=—§,Ao=‘;,B3=y—2,32=a,31=x—2;30=:§‘ (6.6.54)

One can readily verify that coefficients (6.6.54) obey conditions (6.6.44)—
(6.6.46). We have

3B; - AZ — 34, = 0, (6.6.55)
and Eq. (6.6.47) is written
dx 2 _
2 iz x° =0.

Let us take its simplest solution x = 0. Then, invoking (6.6.48), we let ¢ = z.
Now Egs. (6.6.49) arc written
dlnjyy| _ 2 Oy, 1

Gy y’ 8z T
and yield
K
‘l/}y = .'B_yi ) K = const.
Hence,
K
= —:c_y + f(:r)
One can take any particular solution. We set K = —1, f(z) = 0 and take
1
Y=—
Ty

Invoking (6.6.55) and noting that (6.6.51) yields © = 0, one can readily verify
that the function ¥ = 1/(zy) solves Eq. (6.6.50) as well. Since Q = 0, Eq.
(6.6.52) gives a = 0. Hence, the transformation

1
t=z, u=— (6.6.56)
Ty

maps Eq. (6.6.53) to the linear equation

ull/ = 0.
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Example 6.6.8. Consider the following equation of form (6.6.41):
m 3 " 3 /2 !
¥+ - yy -3y —5Y +2y —-y=0. (6.6.57)
One can readily verify that its coefficients
A , Ao = -3, B3 =0, Bz——-— By =2, By=—y
y Y

obey the linearization conditions (6.6.44)- (6.6.46). Furthermore,
3B; — A2 - 34¢, = -3
and Eq. (6.6.47) is written

63X
d::: -3x*=-3.
We take its evident solution x = 1 and obtain from (6.6.48) the equation

¢" = ¢', whence
p=e".
Eqs. (6.6.49) have the form

Oy 1

Oy v’

¢zy=0

and can be readily solved. We take the simplest solution ¥ = y? and obtain
the following change of variables (6.6.40):

t=e, u=y2 (6.6.58)
Substituting = —2 and ¢, = e* = t into Eq. (6.6.52), we obtain a(t) =
—-2t73.
Thus, Eq. (6.6.57) is mapped by transformation (6.6.58) to the linear equa-
tion

u — t% u=0. (6.6.59)

Theorem 6.6.5. Equation (6.6.43),

¥+ —:_— [ 3W")? + (Cay? + C1y + Co)y”

+Dsy® + Dyy™ + D3y® + Day? + D1y + Do] -0,

is linearizable if and only if its coefficients obey the following equations:

Co = 61'5ﬁ 6 g_r +rC —rCy, (6.6.60)
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321” 602 301 602 or
= —_ - - 6.6.61
L oy tr 8y +C oy’ ( )

o0C, oC, 302 8C, 8%r or\2
18Do = 3r [r Oy 2 oz | oz +ar Oy 126 Oy 54(6x)

2 2
or Or Or _6 (ar

ar
+6r[3a 7+ 15 = % 8y T b—y-) + (3¢, —rCz)%]

+r [9(7'02 - 201)— —2C2 4+ 2rC,Cy

+4r2C2 + 182D, — 72r305], (6.6.62)
301 801 602 302 827' 621‘
Q2 heted 2 3 _ - _—
18D, =972 = 5 — 12r—= = 2777 = + 33r N 36r 5 3 +18-—
or or or or
+6(3C1 +4rCa) 5 — 3r(6C: + 71'02) + 18r( ay) - 185 5.
- 4rC? - 2r2C,Cy + 20r3C2 + 72r3 Dy — 2707 Ds, (6.6.63)
601 601 602 2 602 67’
Do = 3r— — 3—~ —
9D = 3r By 3 E 21r—— az + 217 ay + 15023
—15‘r'ng—y — C? - 5rC,C, + 14r°C2 + 54r2 Dy — 18073 D5, (6.6.64)
3D; = 3r %6;—2 - 3%0 — C1Cz + 2rC2% +12rD, - 30r%Ds, (6.6.65)
aD, __ 8°C, aC, 9*C, 0C,
54—61‘ = 18— 592 +3Cza—y — 723 By 3902%
6 02 602 602 or or
18 — 2
B 4Gyt 4 (72 B +33C)a +108Ds 5
or st 6D5 or
+270D, 3787 —108r2 =2 -
5. T 5, — 108 % 540rDs — B
+367C1 D5 — 87 C3 — 361 CaDy + 10872 C, D5 + 541 H, (6.6.66)
and OH o OH
T
E = 3Ha—y + Ta—y, (6667)
where
aD dD; aD or
H = _ - - —_
2 oz 3r ay 5D5 ay 2’!‘02D5

1[82C.
3[ By St 202 —2C1Ds + 2CzD4] + —C3. (6.6.68)
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If conditions (6.6.60)—(6.6.67) are satisfied, transformation (6.6.42),
t=9p(z,y), u=9vy), @ #0,

mapping equation (6.6.43) to a linear equation (6.6.38) is obtained by solving

the following compatible system of equations for the functions ¢(z,y) and

P(z,y) :

9 _ 9% O _ B¢y, W
% =3y 55" tTa (6.6.69)
Bp By 8%p\2 ) 2 o0C2](8p\2
Gay ay3 = 9(53/—2) + [151’D5 —3D4 — C - 38_] (ay) y (6.6.70)
Py dyp 1 2 8Cy1 3
35 =WDs g+ +z[157Ds - €3 3D, - 32 ]3y
8%p 0%y (Op\-1 3 261# O
- H’l’“ay? 6y2(6y) (6y ) 3y(3y) » (66.71)
where the function W is defined by the equations
BW or BW
35 = =[ci-rC+65 5 = lw, 3%, = CoW. (6.6.72)

The coefficient a of the resulting linear equation (6.6.38) is given by (cf.
(6.6.52))
H

2(py)?’
where H is the function defined in (6.6.68).

a= (6.6.73)

Example 6.6.9. Consider the nonlincar equation
¥ + l,[— 3y"2 — a:y'5] =0. (6.6.74)
Y
It has form (6.6.43) with the following coefficients:

r=0, Co=C=C2=0,
Dy=D, =Dy =D3=D4=0, D5=-x.

(6.6.75)

Let us test Eq. (6.6.74) for linearization by using Theorem 6.6.5. It is manifest
that coefficients (6.6.75) satisfy Eqs. (6.6.60)—(6.6.66). Furthermore, Eq.
(6.6.67) also holds since (6.6.68) yields

H=2 (6.6.76)
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Thus, Eq. (6.6.74) is linearizable, and we can proceed further. Egs. (6.6.72)
are written

oW _, W
oz Oy
and yield W = const. Therefore, Eqs. (6.6.69) have the form
0p _o W _ _yo
oz~  O0r Oy
and hence,
e=opy), v=-Wz'(y)+wy) (6.6.77)

Now, the third-order equations (6.6.70) and (6.6.71) yield the ordinary diffe-
rential equation

3
(,0”' = E - (6678)

=3 22 _ Pty Wiy (6.6.79)

for v¥(z,y), respectively. Using the expression for ¥ given in (6.6.77) and Eq.
(6.6.78) for o, we reduce Eq. (6.6.79) to

" 3 "2
32,—01"— 0¥ S —w—w"=0.

2 ¢7?

Hence, one can satisfy Eq. (6.6.79) by letting w(y) = 0. Then the construction
of the linearizing transformation requires integration of Eq. (6.6.78) known in
the literature as the Schwarzian equation. Its general solution is provided by
the straight lines

¢=ky+!, k,=const., (6.6.80)

and the hyperbolas

p=a+ , @a,b,c=const. (6.6.81)

b—cy

Let us take the simplest solution ¢ = y of form (6.6.80). Then (6.6.73)
yields a = 1. Furthermore, we set W = —1,w = 0 in (6.6.77) and arrive at the
change of variables

t=y, u=u, (6.6.82)
reducing (6.6.74) to the following linear equation:

u" +u=0. (6.6.83)



6.7. NONLINEAR SUPERPOSITION 235
6.7 Nonlinear superposition

6.7.1 Introduction

Sophus Lie had an extraordinary geometric imagination that simplified analyt-
ical calculations and often led him to new theoretical concepts. Lie’s general-
ization of linear equations and the related theory of nonlinear superpositions
considered in this section provide a good example.

Recall that solution of a homogeneous linear partial differential equation
and integration of its characteristic system (a system of ordinary differential
equations) are equivalent problems. Furthermore, any system of ordinary dif-
ferential equations with n dependent variables z°,

dzt .

d—“‘t = filt,z), i=1,...,n, (6.7.1)
can be regarded as the characteristic system for the partial differential equation
with n + 1 independent variables, t and z = (z!,...,2") :

ou ou du
— t,2)=—+ -+ f*(t,x)7— =0. 6.7.2
5 T Ga)gy +o+ D) g (6.7.2)
Lie noticed that the classical theories of linear ordinary differential equations
d i
’&zT =g (t)z' + - +aim(t)z?, i=1,...,n, (6.7.3)
as well as of the associated partial differential equations (6.7.2),
Ou e ; Ou
— ; — =0, 6.7.4
at + ‘.El Qi (t)x azk ( )

are due to the fact that the n? operators Xz = z'0/0z* generate a finite
continuous group with n variables z*, namely the linear homogencous group.
This observation led him to believe that the main features of linear equations
(6.7.3) can be extended to the vast class of nonlinear equations having the form
of a generalized separation of variables:

dr’

i Ty(t)Ei () + - + Tr(t)€i(z), i=1,...,m, (6.7.5)

provided that the operators
XOK:&;(I)%v a=1,...,1 (676)

span a finite-dimensional Lie algebra. The coefficients T, (¢) are arbitrary func-
tions of the variable t. Systems (6.7.5) are considered together with the equi-
valent linear partial differential equations

Al = %—‘t‘ +M@OX: +- -+ To() X u = 0. 6.7.7)
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Sophus Lie wrote in 1893 the following (see [15] and the references therein):

“T have already outlined a general integration theory for the equation Afu] =
0. The theory is based, as I explained in ‘General studies on differential equa-
tions admitting a finite continuous group’ (Mathematische Annalen, 25(1), 1885,
p. 128), on the fact that it is possible to find the general integrals of systems
(6.7.5) if one knows a certain finite number of their particular solutions

o=z, ., ZD), oy Tmo= (Th, .-, T)- (6.7.8)
I add that the expressions for the general solutions z = (z,...,z"), as func-
tions of quantities (6.7.8), are obtained by solving certain equations,
Jiz, ..zt 2, 2k, ) = G,
with respect to z!,...,z"™, where the J; designate what I call invariants of m+1
points =*, zi,..., z%, with respect to the group generated by X,,..., X;.

E. Vessiot, whose recent thesis constitutes such an important progress in
the theory of linear differential equations, has come to a lucky idea to look for
all ordinary differential equations possessing fundamental systems of integrals.
Alf Guldberg is also occupied by the same question.

It is a very interesting problem to seek, together with Vessiot and Guldberg,
all systems (6.7.1) whose general solutions z = (z',...,z") can be expressed
via m particular solutions only, viz.

R Y| . 1 . ;=
=0 (2], Xy Typye- s Zmy C1,..,Cn), i=1,...,n. (6.7.9)

Since these authors did not find, however, all my systems (6.7.5) admitting
in effect the required property, it seems to me that their investigations must
have a gap. I presume that these authors introduced implicitly an essential
restriction that the most general formulae (6.7.9) are deducible from a given
system of these formulae by merely changing arbitrary constants.

If I am correct, I have the fortune to be the first to prove rigorously and
simply that my systems (6.7.5) are the only ones possessing the required prop-
erty.”

6.7.2 Main theorem on nonlinear superposition
The above discussion leads to the following definition.
Definition 6.7.1. A system of ordinary differential equations (6.7.1),

dz? » .
G = f*(t,x), i=1,...,n,

is said to possess a fundamental system of solutions if its general solution can be
represented in form (6.7.9) involving a finite number m of particular solutions
(6.7.8) and n arbitrary constants C1, ..., Cy. Expression (6.7.9) of the general
solution is termed a nonlinear superposition, and the particular solutions (6.7.8)
are referred to as a fundamental system of solutions for Egs. (6.7.1).
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The following result due to Lie (1893) identifies those equations (6.7.1) pos-
sessing fundamental systems of solutions.

Theorem 6.7.1. Equations (6.7.1) possess a fundamental system of solutions
if and only if they have form (6.7.5),

%a‘; =Ti(0)Ei (@) +--- + T (€ (@), i=1,...,n,

where the coefficients £ () satisfy the condition that the operators
0
ozt

span a Lie algebra L, of a finite dimension r. The number m of necessary
particular solutions (6.7.8) is estimated by

X, =€ () a=1,...,r,

nm 2 r. (6.7.10)
Finally, superposition formulae (6.7.9)
Tt =ga"(z:%,...,:z{‘;..., :z:}n,...,a:"m; Ci,...,Cp), i=1,...,n,
are defined implicitly by n equations
Jizhy 2t 3,2, 2l 2h) =G i=1,...,n,  (6.7.11)

where J; arc functionally independent (with respect to z*) invariants of the (m+
1)-point representation V, = X, + X8+ xM of operators (6.7.6). In
other words, Ji(z1,...,Zm) solve the equations

aJ oJ

i i 9 i (O _
£a($)% +£a(zl)axi + +€a(zm)az:n =0, a=1,..,7 (6712)

and satisfy the condition det(8J;/dz*) # 0.

Proof (see the English edition of [15] and the related references therein). Let
Egs. (6.7.1), ‘
dz*
5 =
possess a fundamental system of solutions. The superposition formulae (6.7.9)
can be written, upon solving them with respect to C;, in the form

fi(tvz), i=1,...,n,

Ji(zt, .. 2 2,2, gk, ) =Ch, i=1,...,n.
Differentiating these identities with respect to t, one obtains the equations

6J¢ d:l,’fn _

8J; dz*  8J; dzf dzt,
ozk dt 7

5z dt T ok dt

+ .4 i=1,...,n,
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whence, invoking Egs. (6.7.1):

. Ji 6.].-
f“(t,z)% + f"(t,xl)g—ﬁ +oot A Tm) 5 = 0. (6.7.13)
1 m

Noting that Eqgs. (6.7.13) hold for any system of m + 1 solutions

z=(z',...,2"), z1 = (z},..,Z}), .- Tm = (zl,,...,z%),  (6.7.14)

and taking into account that the initial values of the latter are arbxtra.ry, we con-
clude that (6.7.13) are satisfied identically in nm+n+1 variables zi, .. ., zi,,zt
and t.
Now we introduce the operator
k d .
Y = f5(¢, a:)—k (6.7.15)
and denote by YU, ... Y{™) the operators obtained from Y by replacing = by
Z1,...,Tm, respectively. Then Egs. (6.7.13) are written:

YU+ YD)+ +Y™(J) =0, i=1,...,n
In other words, the linear partial differential equation of the first order
U =Y +YD 4. 4 Y™)(J)=0 (6.7.16)

must have n independent solutions Ji, . .., J, (6.7.11) that are free from t. Here
7]
UsY+YW4...4Ym = sk, :c) =+ f5(, :L';)a =4+ fE(t, z,,.)

is a differential operator with nm + n variables z*, z, (1 = 1,...,m) given
by (6.7.14). The variable ¢, involved in the coefficients of U, is regarded as a
parameler.

By letting ¢ assume a series of fixed values t,, one singles out from (6.7.16)
a certain number of linear partial differential equations that are free from the
parameter ¢t. The equations of this series have Ji,...,J, as their common
solutions since the latter do not explicitly depend upon the parameter t, and
hence solve Eq. (6.7.16) for any t, e.g. for all assigned values t = t,. According
to the classical theory of systems of linear partial differential equations of the
first order, the series of equations in question can be replaced by a system of a
finite number s of independent equations

U(J) = [Yo+ YD 4o 4 YM™)(J) =0, o=1,...,s, (6.7.17)

where Y, and Y{* are obtained by letting t = ¢, in Y and Y{¥), respectively.
System (6.7.17) has at most nm + n — s functionally independent solutions.
On the other hand, n independent solutions already exist, namely Ji,...,J,.
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Hence, nm+n—s > n. In other words, the number of Eqs. (6.7.17) is estimated
by s < nm.. Note that the operators U, are completely free from the variable t,
and that the general equation (6.7.16) must be a consequence of Eqs. (6.7.17).

Furthermore, one can replace (6.7.17) by a complete system adding to
the operators U, all independent commutators [U,, U;]. Since the operators
Y, Y .. Y{™) involve distinctly different types of variables z, we have

Us,Us] = [Yo, Yo + [Y, Y] 4o 4 Y™, Y (™), (6.7.18)
Let the resulting complete system comprise r independent equations:
Val) = [ Xa+ XV + -+ XM)(N)=0, a=1,...,r, (6.7.19)

where X, and X% are operators of the type Y, and Y™ respectively. Ac-
cordingly, V,, obey the commutator relations similar to (6.7.18):

[Va, V3| = [Xa, Xg] + [Xt(,l),Xg)] 4ot [x((;n)’xl(im)]'

Note that system (6.7.19) has at least n solutions, namely Ji, ..., J,. Hence,
as discussed above, 7 < nm. Since system (6.7.19) is complete, it obeys the
relations [V,, V3] = iz';,l,V,y (summation iny=1,...,7):

(Xa Xp] + (X, XS]+ -+ [XE™, X = R15(Xq + X§D -0+ X)),
Whence, separating the variables:
r
(Xao Xpl = S h15Xy;  [X$, X)) = B, XP, p=1,...m.
=1

At the beginning, the coefficients h,gﬁ might depend upon all nm + n vari-
ables (6.7.14). However, in cach of the final m + 1 equations, the hgﬂ can
involve only one kind of n variables. This is possible only if hzﬁ arc free from
all nm +n variables, i.c., they are constants czﬂ. Thus, X, satisfy the equations

Xa Xp) = €lpXy, @B=1,...,7, (6.7.20)

and hence span a Lie algebra L, of the dimension r < nm.
Since s equations (6.7.17) are contained in r equations (6.7.19), their ope-
rators are linearly connected as follows:

Uo=thﬁ, 0=l,...,s.

Here the coefficients hZ are, for the time being, functions of the variables
(6.7.14). But one can use expansions (6.7.17) and (6.7.19) of U, and Vg,
respectively, to obtain m + 1 separated equations:

Y, =hXp, YW =hEXY, p=1,..,m.



240 6. NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS

It follows, as above, that A8 can be only constants C?. Thus, Y, are linear
combinations of Xz with constant coefficients:

Y,=CPXs, o=1,...,8, (6.7.21)

and hence belong to the Lie algebra spanned by Xi,..., X,.
Since Eq. (6.7.16) with an arbitrary value of ¢ is a consequence of Egs.
(6.7.17), we have U = w\ Uy + - -+ + wsUs, or in the separated form:

Y=wY1+ - +wsYy; y =w1Y1(”)+--~+w,Y,,(“), u=1,...,m.

The latter equations yield that all w, are free from variables (6.7.14), z, 21, .. .,
Z,n, but may depend on ¢. Hence, Y = wi(£)Y1 + -+ + w,(t)Ys or, invoking
(6.7.21):

Y =Ti(t) X1 + - + T () X,. (6.7.22)

Here X, have form (6.7.6) and by (6.7.20) span a Lie algebra L,. Invoking
definition (6.7.15) of Y, we see that if equations dz*'/dt = f*(¢,z) possess a
fundamental system of solutions they have Lie’s form (6.7.5):

dz? . .
& =TE @) + - + T ).
We also obtained estimation (6.7.10), r < nm.

Conversely, all equations of form (6.7.5) have the required property. Indeed,
one can take the number m to be sufficiently large so that Eq. (6.7.16), or in
our case the equation

S Tat)[Xa + X + -+ X{V)(J) =0,

a=1
has at least n solutions Ji,...,J, that are functionally independent (with re-
spect to z!,...,z") and do not involve t. Then the equations
Ko+ X+ 4+ XM™)(J)=0, a=1,...,r, (6.7.23)

with an appropriately chosen m, are independent. Furthermore, system (6.7.23)
of r equations with nm + n independent variables is complete thanks to the
commutator relations (6.7.20). It has mn + n — r solutions. By taking a
sufficiently large m, one can find at least n solutions

Al n, .1 n, 1 n .
Ji(z®, ..,z 2y, 2T Ty T)y =107,

that are functionally independent with respect to z!,...,z". Now, one can
convert the derivation of Egs. (6.7.13) and show that J; hold constant values

whenever the mn + n variables (6.7.14) solve Egs. (6.7.5). This completes the
proof.
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Remark 6.7.1. Theorem 6.7.1 does not exclude the possibility to have, for a
given system of Eqs. (6.7.5), several distinctly different representations (6.7.11)
of the general solution as well as different numbers m of the particular solutions
(6.7.8) involved. See further Examples 6.7.6 and 6.7.7.

Remark 6.7.2. The Lie algebra L, spanned by operators (6.7.6) will be re-
ferred to as the Vessiot-Guldberg-Lie algebra for Eqs. (6.7.5).

6.7.3 Examples of nonlinear superposition

Example 6.7.1. Let us consider the single homogeneous linear equation dz/d¢
= A(t)z. Here, r = 1 and X = zd/dz (cf. Eq. (6.7.3) with n = 1). We take
the two-point representation V of X (see (6.7.19) with m = 1):

0 7}
V= .’B-a; + I %—1
and its invariant J(z,z:1) = z/z,. Eq. (6.7.11) has the form z/z, = C. Hence,
m = 1 and formula (6.7.9) is the linear superposition z = Cz,. Condition
(6.7.10) is satisfied as an equality.
Lie’s generalization (6.7.5) of this simplest example is the equation with
scparated variables:

dz
i T(t)h(z).

Here, 7 = 1 and X = h(z)d/dz. Taking the two-point representation
o 0
V= h(z)—a—m + h(l’l)a—zl ,

and integrating the characteristic Equation dx/h(z) = dz/h(z1), one ob-
tains the invariant J(z,z;) = H(z) — H(z:), where H(z) = [(1/h(z))dz.
Eq. (6.7.11) has the form H(z) — H(z,) = C. Hence, m = 1 and formula
(6.7.9) provides the nonlinear superposition z = H “YH(z,) + C).

Example 6.7.2. The non-homogeneous linear equation

515 = A(t)z + B(t)

has form (6.7.5) with 71 = B(t) and T; = A(t). The Vessiot-Guldberg-Lie
algebra (6.7.6) is an Ly spanned by the operators

d
dz’
Substituting n = 1 and 7 = 2 in (6.7.10), m > 2, we see that expression (6.7.9)
for the general solution requires at least two particular solutions. In fact, this

X1= Xo=z—"

dz
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number is sufficient. Indeed, let us take the three-point representation (6.7.12)
of the basic operators X; and X3 :

0 0 7] (7] 0
Vi= 5;+-3-x_1+55' Va=z 8x+zlaz T T2 52,

and show that they admit one invariant. To find it, we first solve the characte-
ristic system for the equation Vi (J) = 0, namely, dz = dz; = dz,. Integration
yields two independent invariants, e.g., u =z — I1 and v = x5 — x1. Hence, the
common invariant J(z,z,,z7) for two operators, V; and V, can be obtained
by taking it in the form J = J(u,v) and solving the equation Va(J(u,v)) =0,
where the action of V; is restricted to the space of the variables u, v by using
the formula V, = Va(u)8/du + Va(v)8/dv. Noting that Va(u) = z — z; = u and
Va(v) = 22 — ;1 = v, we have

0 a
Vo=u— 3u + V5
Hence, the invariant is J(u,v) = u/v, or returning to the original variables,
J(x,z1,72) = (£ — 11)/(z2 — 71). Thus, we have m = 2, and Eq. (6.7.11) is
written (z — z1)/(z2 — 71) = C, or (z — z1) = C(z2 — z1). Formula (6.7.9) is
then the linear superposition z = z; + C(z2 — z1) = (1 — C)z1 + Cra.

Example 6.7.3. An example of a nonlinear equation with a fundamental sys-
tem of solutions is the Riccati equation

dz

3 = PO +QWs + R)s® (6.7.24)

It has Lie’s form (6.7.5) with 7 = 3 and with the following operators (6.7.6):

d d

d
X1 = _ZE , X2 =T Xa = .’132— . (6725)

dz’ dr

The latter span the Lie algebra L3 of the projective group. Estimation (6.7.10),
m > 3, shows that expression (6.7.9) requires at least three particular solutions.
Let us check that this number (m = 3) is sufficient for producing the general so-
lution of the Riccati equation. Namely, let us take the four-point representation
(6.7.12) of operators (6.7.25):

a 0 7] 0 0 o 0 a
Vit —  — + — =r—
'T 9z o, + Oz + Oz3’ V2 *az t M35, Y 25, Oz, t 8 Oz3’
2 0 1o} 7] 7]
V3 = :l: 6_ + :tl oz 1 + 12 032 + 333 6.1:3 (6.7.26)

and show that they admit one invariant involving z. To find it, we proceed as
in Example 6.7.2. The characteristic system associated with V;(J) = 0 yields
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three invariants, uy = zy — z,uy = ) — 7o, and u3 = 23 — 7,. Now we restrict
V5 to these invariants to obtain

~ o}
V2=u1"‘“+u2_+u3b—&—'
3

6u1 0UQ
It provides two independent invariants, e.g.:

U2 _ T — T2 Uz _ T3 — T2

V= = , =
U 1 — T U2 T — T2

Finally, noting that the common invariant should be of the form J(v, w), we
calculate the action of V3 on the variables v and w to obtain

Va=(z1 - xz)[(l - U)-a% + (w - l)w%] .

Hence, the equation V3 (J(v, w)) = 0 is equivalent to
aJ aJ
1- 'v)-a—v +(w - l)wa—w =0.

The characteristic equation

v dw  _ dw  dw
1-v ww-1) w-1 w

provides the invariant J = (v — 1)(w — 1)}/w. Equating this invariant to an
arbitrary constant and substituting the expressions for v and w, onc obtains
the nonlinear superposition formula (3.2.17):

(z —zo)(z3 — 1) _
@ =)@ =20 ~C

Example 6.7.4. The system of two homogeneous linear equations

dz d
pri a1 (t)z + a12(t)y, Ezi{ = az ()T + ax(t)y (6.7.27)

has form (6.7.5) with the following coefficients:

Ty =au(t), Tp=an(t), Tz=an(t), Ti=ant),

& =(20), &=(0), &=(0=2), &=(0y)
Hence, the Vessiot-Guldberg-Lie algebra has dimension four and is spanned by
0 g ) 0

Xi=24-, X2=y£, X3=$5&, X4=ya—y'

7.2
g (6.7.28)
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Estimation (6.7.10) is written 2m > 4 and shows that one needs at least two
(m = 2) particular solutions. The calculations show that the three-point rep-
resentation of operators (6.7.28) indeed provides two invariants:

Jy=H27%Y g DY (6.7.29)

T1Y2 — T2 I1Y2 — T2H
such that the general solution is expressible in form (6.7.11) via two particu-
lar solutions, (z1,%:) and (z2,y2). The latter are presupposed to be linearly
independent, and hence z,y2 — z2y1 # 0. The explicit formula (6.7.9) for the

general solution is obtained by solving the equations J, = C, JJ2 = Cs2 with
respect to £ and y and provides the linear superposition:

z = Cix1 + Caxz, y = Ciy1 + Caya.

Example 6.7.5. In the case of two non-homogeneous linear equations

d
‘ff = a2 (t) + azz(t)y + ba(t), (6.7.30)

one has to add to the coefficients T, and £, of the previous example the fol-
lowing:

dx
5= a1 () + ar2(t)y + bi(2),

Ty = bl(t)v & = (1,0); Ts = bZ(t)» §6 = (0$ 1)
Hence, the algebra L4 of Example 6.7.4 extends to the algebra Lg spanned by

0 0 0 0 0

7]
X = ——’X = —,X =Ir—, = —’X ==, = ——
1=1 2=yz-» X3 Iay X4 Yo, X5~ 52 X 5y

oz

Representation (6.7.9) is provided by the linear superposition formula:
z=21+Ci(z2—21)+Co(T3~11), y = 41 +Ci(y2—1) +Co(ya—w1). (6.7.31)

Example 6.7.6. Lic considered the following system of linear equations:

dz d
5 =ty + i), d—f = —a(t)z + by(2), (6.7.32)
which, unlike the general system (6.7.30), requires only two particular solutions.

Lie’s reasoning is based on the fact that operators (6.7.6),

) 8 8 9
X = — = — =Y — — P —
1=5gr Xe=go Xe=ygz -z 3 (6.7.33)

generate the group of the rotation and two translations in the plane. Since this
group conserves all distances, any three solutions (z1,31), (z2,y2), (z,y) are

connected by the relations

(@ -z1)*+(y—n)? = K, (- 22)* + (y - ¥2)? = K. (6.7.34)
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Let us dwell on this example whose discussion discloses the advantages to
be gained from the use of invariants of m + 1 points under Vessiot-Guldberg-
Lie algebras. Estimation (6.7.10), 2m > 3, determines the minimum m = 2 of
necessary particular solutions. Consequently, we take the three-point represen-
tation of operators (6.7.33):

e} s} 0 o 0 17}

Vi= — 4+ — 4 — = — —_—
' 5 Tom Ty oy T oy
eyl 0, 0 8. a0
8 yaz dy 4 oz, 18y1 ¥ Oz, ”261,2

A basis of the common invariants for V; and V, is given by
UW=TZ—-—T), i=yY—Y, U2=T— T2, V2 =Y — Y.

Restricting the action of V3 to these invariants, one obtains the infinitesimal
simultancous rotation of the vectors u = (u1,u2) and v = (v, v;) :

A é] 7]
3 —"UIEI —u1%;+‘02% -uz‘a—v;'
The reckoning shows that basic invariants of this rotation are the magnitudes
|u| and |v] and the scalar product u - v of the vectors u and v. Returning to
the original variables, one ultimately arrives at the following basic invariants
of three points for the Vessiot-Guldberg-Lie algebra (6.7.33):

hr=(z-21)2+(y—m)? Y= (z—-22)* + (y — 2)%
Y3 =(z — z1)(z — 22) + (y — 11 )(y — ¥2).

Hence, the general nonlinear superposition (6.7.11), involving two particular
solutions, (z1,y1) and (z2,¥2), has the form:

Jl(whd’z»dm) = K11 J2(w17 192,'#3) = KZ: Ki = const., (6'735)

where J; and J; are arbitrary functions of three variables such that their Ja-
cobian with respect to z,y does not vanish identically, the latter condition
meaning that Eqs. (6.7.35) can be solved with respect to z and y. Letting,
e.g. J1 = ¢ and J; = 9, one obtains Lie’s representation (6.7.34) of the
general solution. Another simple nonlinear superposition is obtained by letting
Ji =% and Jp =93

(z-z1)}+@-n) =K1, (z—z1)(z—22) + (y— )y —y2) = Ks. (6.7.36)

Representations (6.7.34) and (6.7.36) of the general solution provide two dif-
ferent (i.e., functionally independent) nonlinear superpositions.

Thus, the general solution of system (6.7.32) can be represented as the
linear superposition (6.7.31) of three particular solutions or, alternatively, as a
nonlinear superposition (6.7.35) of two particular solutions.
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Example 6.7.7. Theorem 6.7.1 associates with any Lie algebra a system of
differential equations admitting a superposition of solutions. Consider, as an
illustrative example, the three-dimensional algebra spanned by

vl ] 7] a 7]
-9 =27 +y— . Xq=z°— —_ 6.7.37
Xl 9z’ X2 2zaz+yay1 3 x6x+zyay ( )
This algebra is a three-dimensional subalgebra of the eight-dimensional Lie
algebra of the projective group on the plane. Accordingly, the first equation of
the associated system (6.7.5),

d d

d_f = Ti(t) + 2Tx(t)z + Ts(t)z2, a% =Ta(t)y+ Ts(t)zy,  (6.7.38)
is the Riccati equation (6.7.24) with P = T},Q = 2T, R = T3. Operators
(6.7.37) span the Vessiot-Guldberg-Lie algebra L for system (6.7.38). Estima-
tion (6.7.10), 2m > 3, determines the minimum m = 2 of necessary particular
solutions. Consequently, we take the three-point representation of operators
(6.7.37):

0 0 0
Vi=g:tom tony
17) 1s] 0 0 6] o
Vo = 2za—+ya +2:L'16 +y16y +2x26 +y26y2

[

Vm£+zd+za+ 6+ 8+ 9
3 a ya 1 ax xlyla $2ax 3323/26

Operator V| provides five invariants, y,y1,¥2,21 = ] - ¢, 23 = T — ;. Re-
stricting V2 to these invariants, one obtains the dilation generator

~ 7] 17} 0 /] a
Vo=2210— + 220 — +
2 1621 %62, yc? tugs Oy tieg,~ c'?yg
Its independent invariants are
2 2
22
U =—, U= y , U3 = ——— yl u4=y—2-
2] I - T — z’ T, —T
Hence, a basis of the common invariants of V; and V; :
- 2 2
Ty —I
ul = —l , u2 = y . us — yl u4 = y2 .
Ty —T Iy —x z;-—:z: ) —

It remains to find the restriction I73 of V5 to the above invariants:

~ P 3
= Valui)—— + ... 2.
Vi = Va(u) o, + -+ Va(uq) s
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The reckoning shows that

Va(uy) = (T2 = 71)(z — z2) = (21— 2)(1 + w1y,

-
Va(uz) = =y® = — (21 — 2)ug, Va(us) = 42 = (z; — z)us,
T+z — 21
V3(u.;) =17 'yg = (:L‘l - .’B)(l + 2u1)u4.

r—on
Hence,

= d a
Vi= (11 - 1’) ((1 +up)ug— — g + usi- +(1+ 2u1)u4(%).
4

0u1 a‘uz 6u3
Consequently, the equation 173(1/)(u1, ..., u4)) = 0 is equivalent to
Oy oy oy (il
14 u)u—— — up— + uz—— + (1 == =
( 1) . +ug Bus +(1+ 2141)11,4au4 0,
whence, by solving the characteristic system
dul _ _(& _ dU3 _ dU4
(1 + ul)'u,l U9 u3 (1 + 2u1)U4 !
one obtains the following three independent invariants:
2,2 2
- YU Uy Uz (z2 — 1)y
=UQUR =E T/, = = ’
¥ 273 (z1 — )2 ¥ 1+u  (z1 —z)(z2 — )
2
U Ty —T
s 4 _ (-7l

= (1 + ul)ul = (Z‘g — $1)($2 - .’17) .

Hence, the general nonlinear superposition (6.7.11), involving two particular
solutions, (z1,%:) and (z2,y2), is written

Ji(¥1,¥2,93) = C1,  J2(¥1,%2,%3) = Cs, (6.7.39)

where J; and J; are arbitrary functions of three variables such that their Ja-
cobian with respect to z,y does not vanish identically (cf. Example 6.7.6).
Letting, e.g. J1 = v%¥; and J2 = /%293, i.e., specifying (6.7.39) in the form

W _ o , Yy2  _ Cs,
T —Z To—T
one arrives at the following representation of the general solution via two par-
ticular solutions:
_ Cizye — Cozapn Y= CiCa(z2 —71)
Ciy2—Coyn ' Ciyz — Capn

Recall that the general solution of the single Riccati equation (6.7.24) requires
three particular solutions. It is remarkable that when the same Riccati equation

is integrated in the system of two coupled equations (6.7.38), one needs to know
its two particular solutions only!
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Example 6.7.8. The following system of two nonlinear equations:

dx 2 T dy 2 y

a _ -z =2 -2 .7.40
- T otV (6.7.40)
arises in nonlinear optics (see further Section 7.2.6). It has form (6.7.5) with

the two-dimensional Vessiot-Guldberg-Lie algebra L, spanned by

o 7] 7]
X, = 2—+Z2 ) X=.’L'—+ -_—
L= 5 yc’)y 2 0z -"ay
Estimation (6.7.10) is written m > 1, hence one particular solution may be
enough to express the general solution. To verify that this is indeed possible,
let us find the invariants J(z,y; 1, 2) of the two-point representation of the
above operators:

2 0 2 0 0 0
Vi = 2?2 22y L 4oz 4 a2y -
L= gt TG, TG g

Vo= a:2 + 9 +z 0 + 0
2= %8z " Vay T "8z, T Vg,
Since [X1, X2] = —2X), and hence X; spans an idcal of L, it is convenient to
begin the calculations with the operator V. The first and the last equations of
the characteristic system for V;(J) = 0,

dz dy dn di

5 —1
v’z 2%y  yin iy

provide the invariants z = 22 — 2 and 2; = 22 — y?, respectively. It remains
to solve one equation, e.g.

dz _ d.’l:1
z(z2 — 2)  z(2% — 2)’

where z and z) should be regarded as constants. The integration yields a third
invariant,

1
zg=—ln——$——lln it

2 22—z zu 22z
or, upon substituting the values of z and z;,
_lnz—-Iny Inz;-—Ilny
SR S S S
Y -

Now, the restriction of the operator V; to the invariants z, 21, 23,

8 a8 o
Ve =2(sg; +age —np),
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readily yields two independent invariants, e.g.
z
Jy=—, = .
1 7 J2 Z229

Substituting here the values of z, 21, z; and equating the resulting expressions
for J; to arbitrary constants C;, we arrive at the following nonlinear superpo-
sition (6.7.11) for system (6.7.40):

_$2—y2 2 _ ,2

r"—y
J =55 = =lnz-Ilny - - = Cs.
1 z% — 912 C, Jp z—Iny l‘f — y? (ln:z:l lnyl) C,

6.7.4 Integration of systems using nonlinear superposi-
tion

The Vessiot-Guldberg-Lie algebra furnishes a theoretical basis for a new general
integration theory for systems of ordinary differential equations admitting a
nonlinear superposition [21].

To illustrate the approach, let us consider the simple case of systems of two
coupled equations:

%}' = Ti()EH(z,y) + Ta(t)EL (2, ),

‘(‘1_?: = Ty(t)€3(z, y) + T2(t)E3(z, y),

(6.7.41)

with a two-dimensional Vessiot-Guldberg-Lie algebra L, spanned by
o] 0 7] 7]
gl TN = €z, y)— + 2(z,y)—= . (6.7.42
X1 El(x)y)az +€l(z,y)6y1 X2 62(x’y)az +§2(z)y)ay ( )

To solve system (6.7.41), it suffices to transform the basic operators (6.7.42)
and the corresponding equations (6.7.41) to the standard forms given in Table
6.7.1 and obtained in accordance with Section 6.5.3.

Table 6.7.1 Standard forms of operators (6.7.42) and systems (6.7.41)

Vessiot-Guldberg-Lie algebra Canonical forms of (6.7.41)
I XI:(%, x;,:% %=T1(t). %=Tz(t)
I R 20, L=mi) + e
I1I X1 = ;%, Xzzxc%+y% i—f:Tz(t)z, %:Tl(t)+’1‘2(t)y
1A% x1=;—2, Xzzyé% %sz. %=T|(t)+Tz(t)y
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Example 6.7.9. Let us apply our method of integration to the system of equa-
tions (6.7.40) from Example 6.7.8:

dz 2 Z dy Yy
— =z, = -2 6.7.40
ik A R et S (6.7.40)
Its Vessiot-Guldberg-Lie algebra is the two-dimensional algebra spanned by
7] 0 0
=zy’ — + 2%y— =T—4y—- 6.7.43

We have

(X1, X2] = —2X1, &me —mé& = zy(y® — z%) #0.

Hence, operators (6.7.43) span an L; of type III in the classification of
Table 6.7.1.

Consequently, we can transform operators (6.7.43), and hence system (6.7.40)
to the standard form III of Table 6.7.1. We first find canonical variables Z,
for the first operator in (6.7.43) by solving the equations

X1(2) =0, Xi(§) =1.

Whence ) I

=_.2_ 2 - _y—IncT

T=z" -y, y__z2—y2 ‘ (6.7.44)
One can verify that variables (6.7.44) are, in fact, the canonical variables re-
quired for our algebra L,. Indeed, operators (6.7.43) are written in the form of
type III of Table 6.7.1:

0 0] i)
Xl—a_g) X2”2( a~+yay)

Hence, rewriting Eqs. (6.7.40) in the new variables (6.7.44), one obtains

dz _ z dj _ ]

w S =1+ (6.7.45)
Integration of Egs. (6.7.45) yields

. _C _

= Tl’ J=Cat+tlnt. (6.7.46)

Now we solve Egs. (6.7.44) with respect to z and y :

_ T
eZzy Y=\ o225 _1"

substitute here solutions (6 7.46) and finally arrive at the following general
solution to the system of Eqgs. (6 7.40):

f k f k
= m , ¥Yy=( m . (6.7.47)

Here, ( = Ct*, where C and k are arbitrary constants.
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Problems to Chapter 6

6.1. Check if the equation 4" — y"2 +zy = 0 admits the group of dilations with
the generator

0 0
X-za— +yay

6.2. Find the most general equations of the first and second orders admitting
the groups of dilations with the generators

o} d 7} 0
X = ) X =v— . (i) X =z-2.
(i) o + ya , () X yay , (i) X S
6.3. Check that the third-order equation
piu" = v2up” — w'?), v=const. #0, (P6.1)

where u = p(z), admits the operators

7] 0 0
Xi=5", X2—$5;+ua—’;

and, using these symmetries, reduce Eq. (P6.1) to a first-order equation.

6.4. Calculate the infinitesimal symmetries of the second-order equations

yl

7
My +L-ev=0 and @)y - y; +e¥=0. (P6.2)

6.5. Test for linearization the following second-order equations:

W)y =yw?-=zy?, (i) y" +3yy +y* =0, (P6.3)
12 ] ’

ay o _ oY _TY _y__i

i)y =25 - 75), M=o

/
" 3_/__,,_ 1) 2" _....:Ey_ =
(v) y + e =0, (vi)y +<1 y) 0.

6.6. Consider Eq. (6.5.6),

w_y 1
¥: zy’
and the second operator in (6.5.7) admitted by this equation:
0 yo
X, = 6 + 25 5y

(i) Find canonical variables ¢, u such that X, becomes X, = 0/6t.
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6.7.

6.8.

6.9.
6.10.

6.11.

6.12.

6.13.
6.14.

6.15.

PROBLEMS TO CHAPTER 6
(ii) Rewrite Eq. (6.5.6) in the variables t,u setting u = u(t).

(iii) Reduce the order of the resulting second-order equation u” = ¢(u,u’)
by using the substitution u' = p(u).

Integrate the equation

" k

v (1 + w?z?)? y=0, k, w = const. # 0,

using the following two symmetries of this equation:

5
y By
Write the solution for the arbitrary parameters k and w, and for the par-
ticular case k = 3w?.

0
X =(1 +w2z2)-aa—z +w2a:ya—y, X, =

Let Xi,...,X, span a vector spacc L,, and let [X;, X,] € L, for all i, .
Prove that [X,Y] € L, for any X,Y € L, (cf. Definition 6.5.2).

Prove that transformation (6.5.27) maps Eq. (6.5.26) to v” = 0.

Find the general form of the first-order equations admitting the operator

a d
X = \/§ :L‘a—x + ya;
and integrate them.

Find the general form of the first-order double homogeneous equations,
i.e., equations y’ = f(z,y) admitting two independent operators
o 0
Xi=y=—, Xo=z—-
1=Y By 2= oz
Find the general form of the second-order double homogeneous equations
v' = fz,y.v).

Check that function (6.5.35) satisfies Eq. (6.5.34).

Integrate the equation y” = 1y’ — 4y by first finding its particular poly-
nomial solution and then applying the methods of Section 6.5.5.

Verify that the change of variables ¢t = y, u = z2 + y? maps the equation
zy"” = y' + y'3 to the linear equation u” = 0 and check that z2 + y2 +
Ay + B = 0 provides the implicit solution to the equation zy” = ' + '3
(see Example 6.5.11).
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6.16. Verify that the non-linear equation
" Y3 _
admits the algebra Lo spanned by
0 a 0 0
X, =z2=— — = zy— + 2 —

and integrate the equation using this algebra. Clarify whether the L,
given above is the maximal Lie algebra admitted by the equation in ques-
tion.

6.17. Solve the following initial value problems:

Oy +2(y-2) =0, yy=0, yay=1,

@y +2(y-¥) =0, y) =y =0,

Wl -2) -0 o=k v()=%
(iv)y"+2( %)3 0. 42)=Va, y,(2)=ﬁ_§’
(v)y"+2(y’—%)3=o, y(2) =3v2, y'(2)=2_7\/§.

6.18. Find the general solution of the nonlinear equation (6.6.53):

/2 '

6 3 yv: .y Y y)
m_ 2y + =)y L _ 4+ 4+ 2 4+ Z)1=0.
y (yy+1)y +6(y2+$y+32 z3

6.19. Find the general solution of the nonlinear equation (6.6.74):

ym + 3%[ _ 3y112 /5 = 0.
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Chapter 7

Nonlinear partial differential
equations

This chapter contains simple applications of Lie groups for finding exact solu-
tions to nonlinear partial differential equations. Basic conservation theorems
are also presented here.

Additional reading: L.V. Ovsyannikov [32], W.F. Ames [1], N.H. Ibragimov [14],
(18], [19], [20], P.J. Olver (31], G.W. Bluman and S. Kumei [2], B.J. Cantwell
(3)-

7.1 Symmetries

The definitions of one-parameter groups and a symmetry groups for partial
differential equations are the same as that for ordinary differential equations.
For example, in the case of two independent variables ¢,z and one dependent
variable u, transformations (6.2.1) are replaced by invertible transformations
of the variables t,z,u :

t= f(t,z,u,a), Z=g(tz,u,a), @=h(tz,u,a), (7.1.1)

and the main group property (6.2.4)— (6.2.5) is replaced by the following equa-
tions:

t= f(Z,5,b) = f(t,z,u,a +b),
T =g(t,7,%,b) = g(t,z,u,a+b), (7.1.2)
= h(t,z,u,b) = h(t,z,u,a + b).

Thus, we use the following definition.

Definition 7.1.1. A set G of invertible transformations (7.1.1) is called a one-
parameter group of transformations in the space of variables t, z, u if G contains

255
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the identity transformation t =t, T = z, % = u, the inverse to its transforma-
tions and obeys the group property (7.1.2).

7.1.1 Definition and calculation of symmetry groups

Let us formulate the definition of a symmetry group for partial differential
equations by considering, e.g. evolutionary equations of the second order:

= F(t,z,u, Uz, Uzz), OF/Ouzz #0. (7.1.3)

Definition 7.1.2. A one-parameter group G of transformations (7.1.1) is said
to be admitted by Eq. (7.1.3) if Eq. (7.1.3) has the same form in the new
variables §,T, %, i.e.,

U = F(,Z,%, Uz, Uzz), (7.1.4)
where the function F is the same as in Eq. (7.1.3). Then G is called a symmetry
group of Eq. (7.1.3).

The construction of the symmetry group G is equivalent to determination
of its infinitesimal transformations

=t+ar(t,z,u), Txz+af(t,z,u), T~u+an(tz,u) (7.1.5)

obtained from (7.1.1) by expanding into Taylor series with respect to the group
parameter a and keeping only the terms linear in a. The infinitesimal trans-
formation (7.1.5) provides the generator of the group G, i.e., the differential
operator

X =1'(t,:r,u) o +£(t z, u) +n(t z, u) (7.1.6)

acting on any differentiable functlon J(t,z,u) as follows:

oJ aJ aJ
X(J) = T(t’z’u)a +§(t,z,u)% + ﬂ(t,x,u)a

Generator (7.1.6) is called an operator admitted by Eq. (7.1.3) or an infinites-
imal symmetry for Eq. (7.1.3).

The group transformations (7.1.1) corresponding to generator (7.1.6) are
found by solving the Lie equations

.dt -__. dF -__. d=m T =
E = T(t,x, u)» a = f(t,.‘l), u.), 9 = ”(t’x, u)) (7'1'7)

with the initial conditions:
tao=t Z|_,=z u =u.

Let us turn to Eq. (7.1.4). The quantities #;, %z and @z involved in
(7.1.4) can be obtained by means of the usual rule of change of derivatives
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treating Eqgs. (7.1.1) as a change of variables. Then, cxpanding the resulting
expressions for 4z, @z, iisz into Taylor series with respect to the parameter a,
one can obtain the infinitesimal form of these expressions:

U uta ot T,u,u,us), 2 = ug +a Gt T, u,u,ug),
] (7.1.8)
Uzz = Uge +Q C?(t1 T, U, Ut, Uz, Utg, uzx) )

where (o, (1, (2 are given by the following prolongation formulae:
Co = Di(n) — ueDe(7) — uz Dy(§),

G = Dz(n) — ueDs(7) — uz Dz (€), (7.1.9)
(2 = Dz(Cl) - ut:cDx(T) - 'U'z:ch(f)-
Here, D; and D, denote the total differentiations with respect to t and z:

0 0 0
D=5 +Ut5&+ut¢3_ut tlag—,

0 0 0
D::':'— z 5 a Tz
bz T Uegy Ty, tUmg, -

Substitution of (7.1.5) and (7.1.8) into Eq. (7.1.4) yields

iz — F(t,%,8, 8z, Uzz) = us — F(t, 7,4, Uz, Uzz)

oF oF OF oF oF
+0(Co - éu—zm(z - 514_141 - %6 - af)-

Therefore, by virtue of Eq. (7.1.3), Eq. (7.1.4) yields

oF OF OF OF, OF

- %Cz - ‘au—zCI - =—n- Eﬁ “ %= 0, (7.1.10)

where u; is replaced by F(t,z,u, 4z, uz;) in (o, (1, (2.

Equation (7.1.10) defines all infinitesimal symmetries of Eq. (7.1.3) and
therefore it is called the determining equation. Conventionally, it is written in
the compact form

X[ut - F(t,z,u, ug, uw)] =0, (7.1.11)

where X denotes the prolongation of operator (7.1.6) to the first and second
order derivatives:

8 b] (s} d 0 07
X=‘r§+§% +n6—u +(oa—m+C15u—z+C26uu'

The determining equation (7.1.10) (or its equivalent (7.1.11)) is a linear ho-
mogeneous partial differential equation of the second order for unknown func-
tions 7(t,z,u), £(¢,z,u), 7(t,z,u). In consequence, the set of all solutions to
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the determining equation is a vector space L. Furthermore, the determining
equation possesses the following significant and less evident property. The vec-
tor space L is a Lie algebra, i.e., it is closed with respect to the commutator. In
other words, L contains, together with any operators X, X2, their commutator
[X1, X2] defined by

(X1, X2] = X1X2 — X2 X)1.

In particular, if L = L, is finite-dimensional and has a basis X;,...,X,, then
(Xa, Xg] = c;’ﬁXm

where czﬁ are constant coefficients known as the structure constants of L,.

The determining equation (7.1.10) should be satisfied identically with re-
spect to t, T, u, uz, Uzz, Uty treated as six independent variables. Consequently,
the determining equation decomposes into a system of several equations. As a
rule, this is an over-determined system since it contains more equations than
three unknown functions 7, ¢ and n. Therefore, in practical applications, the de-
termining equation can be explicitly solved. The following preparatory lemma
due to S. Lie simplifies the calculations.

Lemma 7.1.1. For Eq. (7.1.3), the symmetry transformations (7.1.1) have
the form

t=f(t,a), z=g(t z,u,a), @=h(tz,u,a). (7.1.12)

It means that one can search the infinitesimal symmetries in the form
0 (7] 0
X = T(t)& +£(t,z,u)5§ + n(t,z,u)a—u . (7.1.13)

Proof. Let us single out in the determining equation (7.1.10) the terms con-
taining u¢;. The prolongation formulae (7.1.9) show that w,, is contained only
in ¢3, namely, in the term u;; D;(7). Since Eq. (7.1.10) holds identically in
t,z,u, Uz, Ugz, Utz, We have Dy(T) = 7, + uy7y, = 0. Hence, 7, = 7, = 0, i.e,,
T = 7(t), and operator (7.1.6) has form (7.1.13).

Example 7.1.1. Let us calculate the symmetries of the following nonlinear
equation, known as the Burgers equation:

U = Ugg + Uly. (7.1.14)

According to Lemma 7.1.1, we search the infinitesimal symmetries in form
(7.1.13). For operators (7.1.13), the prolongation formulae (7.1.9) yield

Co = De(n) — uzDe(§) — 7' (t)ue, 1 = Dz(n) — uzD(€), (7.1.15)
G2 = Da(G1) — uzeDs(€) = D3(n) — uz D2(€) — 2uz2 D4 (€). ;
In our example, the determining equation (7.1.10) has the form

Go — G2 —uG1 —nug =0, (7.1.16)
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where (o,(1 and (; are given by (7.1.15). Let us single out and annul the
terms with u;;. Bearing in mind that u, has to be replaced by u.; + uu, and
substituting into (2 the expressions

DZ(£) = Da(&s + €uttz) = €uUze + Eun U2 + 262y Uz + Loz, (7.1.17)
Di(’?) = Dz(ne + M Uz) = Ny Uzz + Nuu ui + 27y Uz + Nz,
we arrive at the following equation:

2y uz +26; — 7'(t) = 0.

It splits into two equations, namely &, = 0 and 2§, — 7/(t) = 0. The first
equation shows that £ depends only on ¢,z, and integration of the second
equation yields

£= %T'(t):z: +p(t). (7.1.18)

It follows from (7.1.18) that D2(¢) = 0. Now the determining equation
(7.1.16) reduces to the form

1 1
ulnuy + [Er'(t)u + 57”(t)a: +p'(t) + 20z + 17] Ur + Uz + ez — e =0
and splits into three equations:

Tuu =0, UNz + N2z —~ M =0,
1 1 (7.1.19)
51"(t)‘u + 51"'(t):r +p'(t) + 20z + 0 =0.

The first equation of (7.1.19) yields 7 = o(t, z)u+p(t, x), and the third equation
of (7.1.19) becomes

(%T'(t) + a) u+ %‘r"(t)z +p'(t) +20: + p =0,

whence ] 1
o= —§T'(t), p= —§T”(t)a: - p'(t).
Thus, we have . .
n=-37Qu= 37Oz - P ). (7.1.20)

Finally, substitution of (7.1.20) into the second equation of (7.1.19) yields
';'T"'(t)r +p"(t) =0,
whence 7"(t) = 0, p”(t) = 0, and hence,

7(t) = C1t? + 2C3t + Cs3, p(t) = C4t + Cs.
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Invoking (7.1.18) and (7.1.20), we ultimately arrive at the following general
solution of the determining equation (7.1.16):

T = C]_t2+202t+03, §E= Citz+Coz+Cyt+Cs, n = —(Clt+Cz)u—C'1$—C4.

It contains five arbitrary constants C;. It means that the infinitesimal sym-
metrics of the Burgers equation (7.1.14) form the five-dimensional Lic algebra
spanned by the following linearly independent operators:

] 9 0 ral w2
Xi=g Xo=gp Xesdgton —ugp (7.1.21)
. 7] _p20 9 _ o |
Xa=tgo~gar Xe=tgttag —(e+tu)z

7.1.2 Group transformations of solutions

Any symmetry transformation of a differential equation carries over any solu-
tion of the differential equation into its solution. It means that, just like in
the case of ordinary differential equations, the solutions of a partial differen-
tial equation are permuted among themselves under the action of a symmetry
group. The solutions may also be individually unaltered, then they are called
tnvariant solutions. Accordingly, group analysis provides two basic ways for
construction of exact solutions: group transformations of known solutions and
construction of invariant solutions.

In this section, the method of groups transformations of solutions is illus-
trated by the lincar heat equation u; — uzz; = 0. An example of a nonlinear
equation, namely the Burgers equation, is considered in Section 7.2.2.

The method is based on the fact that a symmetry group transforms any so-
lution of the equation in question into a solution of the same equation. Namely,
let (7.1.1) be a symmetry transformation group of Eq. (7.1.3), and let a func-
tion

u=®(t, )

solve Eq. (7.1.3). Since (7.1.1) is a symmetry transformation, the above solu-
tion can be also written in the new variables:

o= ®(t, 7).
Replacing here @,%, % from (7.1.1), we get
h(t,z,u,a) = ®(f(t,z,u,a),g(t,z,u,a)). (7.1.22)
Having solved Eq. (7.1.22) with respect to u, one obtains a one-parameter
family of new solutions to Eq. (7.1.3).

The infinitesimal symmetries of the linear heat equation

Uy — Ugg = 0 (7.1.23)
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comprise the infinite-dimensional algebra with the generator

7]
X-,-—Ta—u

where 7 = 7(t, z) is an arbitrary solution of Eq. (7.1.23), and the 6-dimensional
Lic algebra spanned by (see Problem 7.2)

x1=3, x2=-—6, X3 = 2t—a-+xa X4=u-‘2-,
at Bz at " oz Bu
5 5 5 5 1 (7.1.24)
_ _ =427 _ - YAV
X5—2ta——z TuZe Xe tat+t 4(2t+z)uau

Consider, e.g. the operator Xs. It gencrates the heat representation of the
Galilean transformation:

o

=t, T=z+2at, T=ue @=ta’t), (7.1.25)

Any solution u = ®(t,z) of the heat equation can be converted into a new
solution by transformation (7.1.25). Since the heat equation is invariant under
this transformation, we write it in the form %; — %zz = 0 using the variables
{,T, 4, and take the solution in the same variables:

7= &(, 7).

Then we substitute here expressions (7.1.25) for #,T,%, and upon solving the
resulting equation

ue~(@=+a*) = &(t, z + 2at)
for u, we obtains the new solution
u = e+t ® (¢, z + 2at) (7.1.26)
involving the parameter a.

Exercise 7.1.1. Obtain the solutions of the heat equation by transformation
(7.1.25) and by formula (7.1.26) applied to the following two simple solutions:
(iu=1, (ii) u = z.

Solution. (i) Inserting T = 1 into (7.1.25), i.e., letting
ue-—(az+a’t) =1
one obtains the following new solution (7.1.26):

u= eax+a’t
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The same result is obtained from (7.1.26) by letting ®(¢,z + 2at) = 1.
(ii) Inserting ¥ = Z into (7.1.25), i.e., letting
we @7+ = g 4 20t
one obtains the following new solution (7.1.26):
u = (z + 2at) gz +a’t,

The same result is obtained from (7.1.26) by letting ®(¢t,z + 2at) = z + 2at.

7.2 Group invariant solutions

7.2.1 Introduction

If a group transformation maps a solution into itself, we arrive at what is
called a self-similar or group invariant solution. Consider, e.g. evolutionary
equations (7.1.3). Given an infinitesimal symmetry (7.1.6) of Eq. (7.1.3),
the invariant solutions under the one-parameter group generated by X are
obtained as follows. One calculates two independent invariants J, = A(t,z)
and J; = pu(t, z,u) by solving the equation

X(J)= ‘r(t.:v,u)%] +€(t,z,u)§-§ + n(t,m,u)%i— =0,

or its characteristic system:

dt _dz du
T(t?m?u) - {(t,.’l:,u) - ﬂ(t,r, u)

(7.2.1)

Then one designates one of the invariants as a function of the other, e.g.
p=(}), (7.2.2)

and solves Eq. (7.2.2) with respect to u. Finally, one substitutes the expression
for u into Eq. (7.1.3) and obtains an ordinary differential equation for the
unknown function ¢(A) of one variable. This procedure reduces the number of
independent variables by one.

Exercise 7.2.1. Find the invariant solution of the heat equation (7.1.23) un-
der group (7.1.25) with generator (7.1.24):
a 0
X=2t— —2u—-

2t 5 Tu 7u
Solution. There are two independent invariants for X. One of them is ¢, while
the other is obtained from the characteristic equation

dz du zdzr du

—+—=0, or — 4+ —=

2t zu 2t U
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Integration of the latter equation yields the invariant

z_
J=uetr.

Consequently, one seeks the invariant solution in the form J = #(t), or

2
u=¢(t)e .
Now, substitute this expression into the heat equation. We have
2 2
iy, T _22 = T 1 _z?
U = (¢ +.4t—2 )e i, uz——2—t¢0 ity Ugr = <m—2_t)¢e iT,

and the second-order partial differential equation u; — uz; = 0 reduces to the
first-order ordinary differential equation:

7.2.2 The Burgers equation

We know from Section 7.1.1, Example 7.1.1, that the Burgers equation (7.1.14),
Ut = Ugz + Ulg, has five infinitesimal symmetries (7.1.21):

0 7] 7] a 0
X]—&, X2—$, X3—2t§+za—x—tl,a, (723)
7] 0 20 7] -
X4-—-ta—z—-%, Xs =t E-ktx%—(x-f-tu)au'
Consider the generator X5 from (7.2.3). The Lie equations have the form
d¢ ., dz . da_ .
d—a'—t s az-—-t:l!, a;-— ($+tU)
Integrating them and using the condition e =0:f =¢,Z = z,4 = u we get
- t T
= T = 7= (1-—at)u—az. 7.24
t T—a’ *=7-a © (1—at)u—az ( )

Substituting transformation (7.2.4) into Eq. (7.1.22), one maps any known
solution u = ®(¢, z) of the Burgers equation to the following one-parameter set
of new solutions:

ar 1 t z
— . 7.2.5
u 1—at+1—atq>(1—at’1—at) ( )
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Example 7.2.1. One can obtain many examples, by choosing as an initial
solution ¥ = ®(¢,z), any invariant solution. Let us take, e.g. the invariant
solution under the space translation generated by X, from (7.2.3). In this case
the invariants are A = t and p = u, and Eq. (7.2.2) is written u = ¢(t).
Substitution into the Burgers equation yields the obvious constant solution
u = k. It is mapped by (7.2.5) to the following one-parameter set of solutions:

k+azx
u= .
1—-at

Example 7.2.2. One of the physically significant types of solutions is obtained
by assuming the invariance under the time translation group generated by X.
This assumption provides the stationary solution

u = &(x)

for which the Burgers equation yields

®" + o9’ = 0. (7.2.6)
Integrate it once:
, @
o'+ > =,
and integrate again by setting C; = 0,C; = 12 > 0,C; = ~w? < 0 to obtain:
2
®(z) = ——
() z+C’
v
&(z) = vth (c +3 z), (7.2.7)
&(z) = <
(z) wtan(C 22:).

The Galilean transformation =t,Z=z+at, T =u—a generated by X, maps
the stationary solutions (7.2.7) to travelling waves u = f (z - ct).

]?,xample 7.2.3. If one applies transformation (7.2.5) to the stationary solu-
tions (7.2.7), one obtains the following new non-stationary solutions:

u= T + 2
l—at z+C(l-at)’

_ 1 ' vz

U= {az+uth(C+———-2(1 —at))] , (7.2.8)
_ 1 WwT
u= 1ot [ax+wtan(0—m)J.
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Example 7.2.4. Let us find the invariant solutions under the projective group
generated by Xs. The characteristic system

dt dz du

2 tr z+tu
provides the invariants A = z/t and p = z + tu. Hence, the general expression
(7.2.2) for the invariant solutions takes the form

z

t
Substituting this expression into the Burgers equation (7.1.14), one obtains for
®()\) precisely Eq. (7.2.6). Hence, its general solution is obtained from (7.2.7)
where z is replaced by A. The corresponding invariant solutions are obtained
by substituting into (7.2.9) the resulting expressions for ®(\). For example,

using for $()) the second formula of (7.2.7) by letting there v = xt, one obtains
the solution

u=-24 %o(,\), A= (7.2.9)

I 4 nx

It is important in nonlinear acoustics and was derived by R.V. Khokhlov in
1961 by physical reasoning.

Example 7.2.5. The invariant solutions under the group of dilations gener-
ated by X3 lead to what is called in physics similarity solutions because of their
connection with the dimensional analysis. The characteristic system

provides the following invariants: A = z/+/¢, u = v/t u. Consequently, one secks
the invariant solutions in the form
1 T
u=—®(A A= —,
7 (A i
and arrives at the following equation for the similarity solutions of the Burgers
equation:

o' + ¢’ + %(,\ ® +0)=0. (7.2.11)
Integrating once, one has
o'+ %(@2 +A®)=C.
Letting C = 0, one obtains the solution (found in physics by O.V. Rudenko)
2 e—z /(4t)

U= Uat Bteri(z/(2Vh)
where B is an arbitrary constant and
erf(2) = 2 e ¥ ds

vn Jo

is the error function.
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7.2.3 A nonlinear boundary-value problem
Consider the following nonlinear equation

Au = ¢*, (7.2.12)

where u = u(z,y) and Au = uz; + uyy is the Laplacian with two independent
variables. Equation (7.2.12) admits the operator

i)

0
= — 2%, — 2.1

9
X=&5-+n
where £(z, y) and n(z, y) are arbitrary solutions of the Cauchy-Riemann system
&—my=0, §&+ne= 0. (7.2.14)

Consequently, one can express the gencral solution of the nonlinear equation
(7.2.12) via the solution of the Laplace equation

Av=0 (7.2.15)
in the form _
_ vz + vy

u=1In (2 = ) (7.2.16)

In other words, the nonlinear equation (7.2.12) is mapped to the linear
equation (7.2.15) by transformation (7.2.16). However, this transformation is
not particularly useful in dealing with concrete problems as it is clear from the
following example taken from [16].

Consider the following boundary-value problem in the circle of radiusr = 1 :

Au=¢e*, u|_, =0, (7.2.17)

where 7 = /22 + y2. The general solution (7.2.16) is not suitable for solving
our problem since it leads to the nonlinear boundary-value problem

1
Av=0, (v¥+02- 5112)|r=1 =0.
In order to solve problem (7.2.17) it is convenient to use the polar coordi-
nates
T=rcosyp, ¥Y=rsinep. (7.2.18)
In these coordinates Eq. (7.2.12) is written

1 1
Ury + ’__ur + r_zu;pcp =e". (7’2‘19)
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Since the differential equation and the boundary condition in problem (7.2.17)
are invariant with respect to the rotation group, we will seek the solution
depending only on the variable r. Then Eq. (7.2.19) is written

1
Urr + U = e*. (7.2.20)

We will assume that the function u(r) is bounded at the “singular” point r =0
and formulate the boundary conditions of problem (7.2.17) in the following
form:

u(1)=0, u(0) < oc. (7.2.21)

One can integrate Eq. (7.2.20) by means of Lie’s method. Namely, it has
two infinitesimal symmetries

0 0 0 d
X] —-1'5;—2—71, X2—1'1[11‘5;-’2(1+1D1‘)a' (7222)

We reduce the first operator to the form X; = §/38t by the change of variables
t=Inr, z=u+2lnr
Equation (7.2.20) is written in these variables as follows

&
de?
Integration by means of the standard substitution dz/dt = p(z) yields

=, (7.2.23)

dz
—_—=t+C,. 7.2.24
/ VCi + 2¢* +C2 ( )
Evaluating the integral in (7.2.24) one can verify that the condition u(0) < oo
is not satisfied if C; < 0. Therefore, we calculate the integral for Cy > 0. For
the sake of convenience we set C; = A2 and C; = Inc. Then we evaluate the
integral, rewrite the result in the old variables and obtain the following solution:

2X%(cr)*
=ln —m—m————. 7.2.25
u=ln r2[1 — (cr)*)? ( )
It follows that
ux(A=2)Inr (r—0),

and the condition u(0) < oo entails that A = 2. Furthermore, the boundary
condition u(1) = 0 takes the form

8¢ = (1 - c?)?,

whence
2 =5+2V6. (7.2.26)
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Hence, problem (7.2.17) has two solutions

u = In(8¢%) — In(1 — c?r?)? (7.2.27)
with
A =5-2v6
and
=5+ 2\/6,

respectively. The first solution corresponding to the case ¢ = 5 — 2V/6 is
bounded everywhere in the circle

?+y2 <1,

whereas the second solution corresponding to ¢ = 5 + 21/6 is unbounded on
the circle
z? +y? =12

with the radius r, = 1/c = 0.33 (see Fig.7.1 and Fig.7.2).

Figure 7.1: Solution (7.2.27) Figure 7.2: Unbounded solution, ¢ = § +
with ¢ = 5 — 2v/6 is bounded. 2v6, u(0) = u(rg) = wo = 4.37; r, =
1/c, o = V2/c.

7.2.4 Invariant solutions for an irrigation system
Consider the nonlinear partial differential equation (2.3.39),

CW)he = [K(¥)¥s), + [K(4) (%= — 1)), - S(¥),

modelling soil water motion in an irrigation system.
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The infinitesimal symmetries of Eq. (2.3.39) with arbitrary coefficients form
a Lie algebra called the principal Lie algebra Lp for Eq. (2.3.39). It is a three-
dimensional algebra spanned by

7] 0 0
Xx—m, Xz—g;, Xs—g;'

There are 29 particular types of the coefficients C(¥), K (%), S(%) when an
extension of the algebra Lp occurs. Let us consider here one of cases when Lp
extends by three operators. Namely, consider the equation (M = const.)

Mc‘W’ TP = (%), + (T%,), HeT VY + M e, (7228)

Equation (7.2.28) admits a six-dimensional Lie algebra Lg obtained by adding
to the basis X, Xg, X3 of Lp the following three operators:

_,0 1 w F,)

X4—t6t - 4(Me 1)6

Xs=sing ¢~* - — cosz ¢ z2+-1-cos:z e *(Me¥ — 1)—
’ Oz ’ 0z 2 oy’
- 20 L0 1 ke F)

Xg=cosz e 5y TSRz e o - 251n:cc (Me —1)%

/

//;% /;; N fm,..

- ‘\’/
\'/,','I\\/”“\\ \% ," \\/ ,’ \

30

Figure 7.3: Plot of solution (7.2.30), M =4,1; = -2,l; = —4,t = 0.01.

Let us find the invariant solutions based on the two-dimensional subalgebra
L, C Lg spanned by X4, Xs. Invariants J(t,z,2,9) of L, are defined by the



270 7. NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS
system of linear partial differential equations
X4(J)=0, Xs5(J)=0. (7.2.29)
This system provides the following basis of invariants:
v=te?*(e™¥ - M), A=e’sinz.
The invariant solutions have the form
te?* (e — M) = &()),

whence, upon solving for ¥:

1 e—2z
¥ = —Zln|M + = q»(,\)|.
Substitution into Eq. (7.2.28) yields
®'(X) =4,

whence
®(A) =222+ hA+1;, b, l2 = const.

Thus, the invariant solution is given by

e—22

t

b= _% In|M + S (26™sin? o + e* sinz + 1) |- (7.2.30)

7.2.5 Invariant solutions for a tumour growth model
Consider the tumour growth model (2.5.4):
ue = f(u) - (uez),, ¢ =—glc,u),
where f(u) and g(c, u) satisfy the conditions
f(u)>0, gclc,u)>0, gulc,u)>0. (7.2.31)
If f(u) and g(c,u) are arbitrary functions, system (2.5.4) is invariant only
under the translations in ¢t and z. In other words, it admits only the two-

dimensional Lie algebra spanned by

8 8
Xi=z, Xp= 5 (7.2.32)

There are, however, many particular functions f(u) and g(c,u) when system
(2.5.4) has more symmetries’. For example, if

f=au, g=G(ue™),

IN.H. Ibragimov and N. Sifstrém, Commaunications in Nonlinear Science and Numerical
Simaulation, vol. 9(1), 61-68, 2004.
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where o is an arbitrary constant and G an arbitrary function, the corresponding
system

ut = au — (ucz)z, ¢t =—G(ue™®)
has, along with X, X2, the additional symmetry

X3=2+u%-

Let us take, e.g. G(ue™°) = ue™° and consider the system

-C

uy = ou — (ucz)z, €= —ue”°, a = const. (7.2.33)

Let us find the invariant solutions under the one-parameter group generated
by the operator
a I}

_+u_-.

at t dc  Ou
The equation (X, + X3)J = 0 gives three independent invariants:

X, +X3=

z, Yr=c—t, Yr=ue "’
The corresponding invariant solutions are defined by
c=t+y1(z), u=cl(z) (7.2.34)

We have
ue =e'fa(z), us = e'yi(a),
a=1, c=9%(z) czz=19(2)
Substitution of (7.2.34) and (7.2.35) into the first equation of (7.2.33) yields

e'a(z) = ae'ya(z) — ¥y (2)¥3(z) — e'va(z)y] (2),

(7.2.35)

or
(1 - a)ia(z) + ¢ (2)¥2(z) + ¥2(z)97 (z) = 0. (7.2.36)
The second equation of (7.2.33) yields
1= —yy(z)e" 1@,

whence
Ya(z) = —e¥1(®), (7.2.37)

Now Eq. (7.2.36) becomes
")+ Y2+ (1-a)=0.

It follows that
Yi(z) =In|Az(z+ A)| fora=1, (7.2.38)
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P(z) =zva—-1+ lnlAg (1 :te”"""l(A""')) ‘ for o > 1, (7.2.39)
¥1(z) = In|Az cos (V1 —a (A1 — z))| fora<l, (7.2.40)

where A; and A, are arbitrary constants.
Substituting (7.2.37)~(7.2.40) into (7.2.34), we obtain the following three
different invariant solutions to system (7.2.33):

c(t,z) =t+ln|A2 (.’L‘+A1)|,

(7.2.41)
u(t,z) = —et|A2(z+ A)| ifa=1;
c(t,z) =t+zva—-1+ lnlAg (1 :l:ez""‘l(“‘““’)) , (7.2.42)
u(t,z) = —etteve-l |A2 (1 :I:ez""“l(A“’)) | ifa>1; -
and
e(t,z) =t +In|Azcos (VI—a (4 —2))],
(7.2.43)

u(t,z) = —e* |Azcos (VI—a (A —z))| ifa <.

Conditions (7.2.31) select, however, solution (7.2.43) with a < 0. Indeed,
only in this case the functions f(u) = cu and g(c,u) = ue™° satisfy conditions
(7.2.31):

fw)=au>0, gele,u)=-ue >0, gulc,u)=¢c“>0

and hence solution (7.2.43) with a < 0 is relevant to model (7.2.33).

7.2.6 An example from nonlinear optics

The phenomena. of the wave front correction for optical radiations in laser sys-
tems are simulated by nonlinear equations called the system of phase-conjugated
reflection equations, known also as wave front reversal. A simplified model ob-
tained by considering steady-state waves is described, upon choosing particular
parameters of a medium, by the following system from nonlinear optics (see
[21], Section 11.2.7):

a . 2 o . 2
(35 -i8) B2 = |EaPEy, (5 +iD)Ez = |Bi[Es, (7.2.44)
where A is the Laplace operator in the (z,y) plane, E; and E; are complex
amplitudes of incident and phase conjugated (amplified) light waves, respec-
tively.

Equations (7.2.44) are invariant under the translations of z, y, z, rotations
in the (z,y) plane and appropriate dilations of the dependent and independent
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variables. One can find an additional symmetry group using an analogy of the
left-hand sides of (7.2.44) and the heat equation. Namely, we denote by EZ the
complex conjugate quantities to E, and look for an infinitesimal symmetry of
system (7.2.44) in the following particular form:

9 2
X= 226_10_ + QE;:I (fa(z, Z)Eaaa +ga($ Z) aag,.)

obtained as an analog of generator (7.1.24),

8 8
X = 2t51-: - zua—;
of the Galilean transformation for the heat equation. Substitution of the ope-

rator taken into the above specific form in the determining equations yields

F) d i} . 0 . 0
X =2 +u.~(ElaE1 aEg'ElaE;J’E’aE;)'

Consider the two-dimensional Lie algebra spanned by operator (7.2.45) and
the generator 8/0y of the translations in y. The basis of invariants is

- E (7.2.45)

zZ, u= Ele—iz’/(atz)’ Uy = Ezcizz/(4‘)’

and the complex conjugates for u; and uz. Hence, we have the following general
form of the invariant solutions:

Ep = u1(2)e /)| By = yy(z)e~ /42, (7.2.46)
For simplicity sake, we consider the case of real functions %; and u;. Then
the substitution of expressions (7.2.46) into Eqgs. (7.2.44) yields

du; 2 U duy 2 Uz
Q@ 2y, - D22, Y2 2.4
dz T o g TUMT o, (7:247)

Equations (7.2.47) have been solved in Section 6.7.4, Example 6.7.9, where
u1,u2 and z are denoted by z,y and t, respectively. Making the corresponding
replacement in Eqgs. (6.7.47), we have the following general solution to Egs.

(7.2.47):
/ k / k
ul = m ) u2 = C m ) (7-2.48)

where ( = Cz*, C,k = const.
Finally, we substitute (7.2.48) into (7.2.46) and obtain the following invari-
ant solution of system (7.2.44):

2(1-¢?)

where ¢ = Cz* contains two arbitrary constants, C and k.

k . k _.
El - etz’/(4z)’ E2 C\/ ( Cz) e ;33/(42),
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7.3 Invariance and conservation laws

We discuss in this section a general method for constructing conservation laws
for differential equations obtained from the variational principle. The method
is based on two conservation theorems. First of them is Noether’s theorem {30]
associating conservation laws with ¢nvariance of variational integrals. The sec-
ond theorem, formulated in Section 7.3.6, generalizes Noether’s theorem and
associates conservation laws with invariance of the extremal values of varia-
tional integrals. It has been proved in [13].

The conservation theorems discussed here have numerous applications. Some
of them are included as illustrative examples. Many other applications in me-
chanics, physics and engineering sciences are collected in [18]-[20].

7.3.1 Introduction

Conservation laws provide one of the basic principles in formulating and inves-
tigating mathematical models.

In everyday life, one encounters a great varicty of evident conservation
laws, e.g. traditional customs, or natural laws such as alternations day-night,
summer-winter, invariable position of stars, etc. Some conservation laws may
not be clearly evident. One of such “hidden conservation laws” is what I
jokingly call the conservation of the number of problems. It states that “Each
individual has a fixed number of problems. If somebody helps him to solve one
of his problems, a new problem immediately replaces the solved one.” In my
numerous observations I have seen its manifestation over and over.

Our concern is, however, on mathematical conservation laws. The concept
of a conservation law is motivated by the conservation of such quantities as
energy, linear and angular momenta, etc. that arise in classical mechanics.
These quantities are conserved in the sense that they are constant on each
trajectory of a given dynamical system (see Section 1.5.1). Namely, a function
T = T(t,q,v) of time t, the position coordinates ¢ = (q',...,q°) and the
velocity v = (v!,...,v?) is called a conserved quantity if it satisfies the equation

Dy(T)=0 (7.3.1)
on each trajectory q = g(t) of the dynamical system in question. Since

aT or ., or
Dt(T) = E +v° % +0© % (732)
is the total derivative with respect to time, we can formulate the definition
as follows. Let g = ¢(t) be a given trajectory and v = ¢(t) the corresponding
velocity. Then the conservation equation (7.3.1) means that the function T(t) =
T'(t,q(t), v(t)) satisfies the equation dT'(t)/dt = 0. In other words, the conserved
quantity T'(t,q,v) is constant on each trajectory. Therefore, T is also called a
constant of motion.
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For example, a free motion of a single particle with the mass m is described
by the equation mv = 0. The energy E = m|v|?/2 of the particle is a constant
of the free motion. Indeed, its total derivative D;(E) = m® - v vanishes on any
trajectory due to the equation of motion mv = 0.

The extension of the conservation law (7.3.1) to continuous systems leads
to the following definition valid for any number n > 1 of independent variables.
Consider the partial differential equations, e.g. of the second order:

F(z,u, u(1), U(g)) =0, (7.3.3)

where £ = (z!,...,z") are the independent variables, u = (u!,...,u™) are the
dependent variables, and u(1y = {uf} and u(y;) = {uf;} denote the first and
second order derivatives, respectively (see the notation in Section 1.4.3).

Definition 7.3.1. A vector field C(x,u,u(,)) with n components,

c=(C,...,C" (7.3.4)
is called a conserved vector if it satisfies the equation
divC = Dy(C*) =0 (7.3.5)

on each solution u = u(z) of Eq. (7.3.3). Equation (7.3.5) is termed a conser-
vation law for Eq. (7.3.3).

Let us assume that onc of the independent variables is time, e.g. " = t.
Then, Eq. (7.3.5) implies existence of a function T'(2, u, u(1)) which is a constant
of motion. Namely, the following statement is valid.

Lemma 7.3.1. Let the conservation law (7.3.5) hold. Then the integral
T(t) =/ C"(a:,u(z),u(l))dzl~~dx"'1 (7.3.6)
mn—l

is constant along any solution u = u(z) to Eq. (7.3.3), i.e., satisfies Eq. (7.3.1),
provided that the components of the conserved vector C decrease rapidly and
vanish at infinity. Accordingly, C™ is termed the density of the conservation
law (7.3.5).

Proof. Let Q be an (n — 1)-dimensional tube domain in the space of all
independent variables (z!,..., z"~1,t) defined as follows:

n—1
Q: Y @)P=r’ u<t<t,
=1

where r and ¢, t, with t; < t; are arbitrary constants. Let S be the boundary
of © and let v be the unit outward normal to the surface S. Applying the
divergence theorem to the tube domain §2 and using Eq. (7.3.5) one obtains

/C-V da=/ divC =0. (7.3.7)
s Q
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Invoking that the components C* of the vector C are rapidly vanishing functions
at infinity, we can let 7 — 0o and neglect the integral over the cylindrical part
of the surface S in the left-hand side of Eq. (7.3.7). It remains to evaluate the
integrals over the lower base K (where ¢t = t;) and the upper base K, (where
t = t3) of the tube domain Q. To this end, we note that C - v = —C™|¢=¢, and
C v = C"|_s, at K, and K3, respectively. Furthermore, when r — oo, both
K, and K coincide with the (n — 1)-dimensional space R"™' of the spatial
variables (z!,...,z""'). Therefore, the integral in the left-hand side of Eq.
(7.3.7) at r — oo becomes

/ (C™|t=ty — C™|e=t, ) dz' - - -dz™ 1,
]Rn—l
and hence Eq. (7.3.7) yiclds that

Ccndz! - -dx""‘i = / crdz!---dz™ ! .
R"-! t=ta

Rn-! t=t,

Since the instants ¢; and ¢, are arbitrary, we conclude that integral (7.3.6) is
constant along any solution u = u(z) to Eq. (7.3.3), thus completing the proof.

Definition 7.3.2. If the divergence D;(C*) of a vector field C(z, u, u(;)) van-
ishes not only for solutions of Eq. (7.3.3), but for any function u(z), then C is
called a trivial conserved vector.

Remark 7.3.1. Vector fields C = (C'(z),C?(z),C?(z)) in R? satisfying the
cquation div C = 0 identically in a certain domain are called solenoidal vectors.?
Thus, a three-dimensional vector C(z, u,u(})) is a trivial conserved vector if and
only if it is solenoidal for any function u = u(z). Since we deal with arbitrary
dimensions, we will use in what follows our nomenclature a trivial conserved
vector.

Two conserved vectors are considered to be identical if one is obtained
from the other by adding a trivial conserved vector. Furthermore, it is clear
from the lincarity of the conservation equation (7.3.5) that if Eq. (7.3.3) has
several conserved vectors, Ci,...,C,, their linear combination C = k,C; +

-+++ k1 C, with constant coefficients is also a conserved vector for Eq. (7.3.3).
We summarize.

Definition 7.3.3. Let C),...,C; be conserved vectors for Eq. (7.3.3). They
are said to be linearly dependent if there exist constants k;, ..., k., not all zero,
such that the linear combination k;C; +- - -+ k; C is a trivial conserved vector,
and linearly independent otherwise.

2Constant vector fields provide examples of solenoidal vectors. Furthermore, vectors of
the form C = curl A are solenoidal (see Problem 7.9). Morcover, it is known in vector
analysis that all solenoidal vector fields C = (C(z), C%(z), C3(z)) can be presented in the
form curl A. (see examples in Problems 7.11 and 7.12).
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7.3.2 Preliminaries

Consider the variational integral (1.5.3),

/ L(z,u,u())dz, (7.3.8)
1%

and the Euler-Lagrange equations (1.5.4):

6L _ JL oL
au—azgu—o— ,(ﬁ)—o, a-—l,..‘,m, (739)
where the Lagrangian L involves the independent variables z = (z!,...,z"),

the dependent variables u = (u!,...,u™) and the first-order derivatives Uy =
{ug} of u with respect to z.
Let G be a one-parameter group of transformations

T = fi(z,u,a), T =¢%(z, u,a) (7.3.10)
with the gencrator
X = €z, u)i + n%(z, u)i . (7.3.11)
ozt ou>
Definition 7.3.4. Integral (7.3.8) is said to be invariant under the group G if
the following equation holds for any domain V and any function u(z) :

‘/;L(T,ﬂ,ﬁ(u)dT:/ L(x,u,u(l))dz. (7.3.12)
v \'4

Here, V C R™ is a domain obtained from V by transformation (7.3.10).

The following statements make Noether's theorem transparent. Proofs of
the lemmas are given, in a more general formulation, in [21], Chapter 8.

Lemma 7.3.2. Integral (7.3.8) is invariant under the group G if and only if
the following equation holds:

X (L) + LD;(¢*) =0, (7.3.13)
where X denotes the first prolongation of generator (7.3.11), hence,
. 0L oL oL - ~
X(L) = §lﬁ + ﬂogu—g + C?ﬂ v G =Di(n*) —u3Di(€).
Lemma 7.3.3. The following equation holds for any function L(z,u,u(,) :
X(L)+ LDi(€") = W“% +Di(CY), (7.3.14)
where _
We=n®-¢gu$, a=1,...,m, (7.3.15)
and ' . A oL '
C'=€L+(n*-&uf)—, i=1,...,n (7.3.16)

7 oug’
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Lemma 7.3.4. A function F(z,u,u()) is the divergence of a certain vector
field H = (H!,..., H™) if and only if the variational derivative of F' vanishes:

F = Dy(H*) iff ;TF; =0,a=1,...,m. (7.3.17)

7.3.3 Noether’s theorem

Theorem 7.3.1. Let the variational integral (7.3.8) be invariant under the
group with generator (7.3.11). In other words, let the invariance test (7.3.13)
be satisfied. Then the vector field C = (C?,...,C™) defined by

- o OL )
C'=£‘L+(n°—§’u§?‘)a—u?, i=1,...,n, (7.3.18)
is a conserved vector for Egs. (7.3.9), i.e., C satisfies the conservation law
(7.3.5) D;y(C%) = 0.
Proof. The statement follows from Lemmas 7.3.2 and 7.3.3.

Remark 7.3.2. The invariance of the variational integral (7.3.8) manifestly
implies the invariance of the Euler-Lagrange equations (7.3.9) under the group
G. Hence, Noether’s theorem gives a constructive way of determining conserva-
tion laws using a known symmetry group G of the Euler-Lagrange equations,
provided that G has the additional property to leave invariant the variational

integral.

Corollary 7.3.1. Lemma 7.3.4 shows that one can add to the Lagrangian any
divergence type function F. Consequently, the invariance condition (7.3.13) can
be replaced by the following divergence condition:

X(L) + LD;(¢*) = Dy(BY). (7.3.19)

Then one obtains, instead of (7.3.18), the following conserved vector:

G = EL+ (o - §ug) o — B (7.3.20)

7.3.4 Higher-order Lagrangians

Mathematical physics provides various mathematical models described by La-
grangians of the first and second order. For example, we had a second-order
Lagrangian (2.6.27),

1
L= 3 [l-mf — w(uzz + “uy)zlv

in the problem of vibrating plates. Therefore, it is useful to have, along with
the conservation formula (7.3.18), the similar formula for equations described
by second-order Lagrangians.
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Consider, in the previous notation, a Lagrangian L(z, u, u(1), 4(2)) involving
second-order derivatives. Then Noether’s theorem states that the invariance
of the variational integral leads to the conservation law (7.3.5), D;(C*) = 0,
where the Euler-Lagrange equations have the form

0L _ 0L oL oL\ _
and the conserved vector (7.3.18) is modified as follows:
; ; oL oL o
— T a _ —_— ay _—— .,
Ci=LE+W [ s Di( 6u§"k)] + D (W) S (7.3.22)

Here W< is again defined by (7.3.15), W® = n* — £7ug.
Remark 7.3.1 on conservation laws under the divergence condition is appli-
cable in the case of higher-order Lagrangians as well.

7.3.5 Conservation theorems for ODEs

Let us adapt the conservation theorem to systems of ordinary differential equa-
tions. We will slightly change the notation used above in discussing dynamical
systems, e.g. in Eq. (7.3.2). Namely, we will assume again that the inde-
pendent variable is time ¢, but we will denote the dependent variables (e.g.

coordinates of particles) by z = (z?, ...,x™). The velocities are denoted by
v =(vl,...,o"), where v* = i' = dz*/dt.
We will consider Lagrangians of the form
L(t,z,v) (7.3.23)
and the corresponding Euler-Lagrange equations
0L _ AL 8L .
5=%—Dt(%)—0, z—l,...,n, (7.324)
where D; is the total differentiation in ¢ (cf. Eq. (7.3.2)):
a 3 a X} a
Dg— E"’U oz +v 8v"
Let G be a group of transformations
t=o(t,z,a), Z'=1v'(tz,a), (7.3.25)
with a generator s 0
= il i .
X =£(t,z) 5 +n'(t, z) py (7.3.26)

In this notation, the infinitesimal invariance test (7.3.13) for the variational
integral with a Lagrangian (7.3.23) is written:

X(L)+ LD(¢) =0. (7.3.27)
Then Theorem 7.3.1 can be formulated as follows.
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Theorem 7.3.2. Let the invariance test (7.3.27) be satisfied. Then

; i\ OL
T=€¢(L+(n —&'")— (7.3.28)
ovt
is a conserved quantity, i.e., satisfies the conservation law
_or o1  .,0T _
Dt(T) = E +v 6Ii +v 6vi =0 (7329)

for all solutions z(t) of Egs. (7.3.24).

Furthermore, the divergence condition (7.3.19) and formula (7.3.20) for the
corresponding conservation vector arc given in the following statement.

Theorem 7.3.3. Let the following divergence condition be satisfied:
X(L)+ LD.(&) = Dy(B). (7.3.30)

Then oL
T=¢L+(n -&')55 -

is a conserved quantity for Egs. (7.3.24).

B (7.3.31)

7.3.6 Generalization of Noether’s theorem

Theorem 7.3.1 and Remark 7.3.2 show that the invariance of the variational
integral under the action of the group G admitted by the Euler-Lagrange equa-
tions furnishes a sufficient condition for (7.3.18) to be a conserved vector. Like-
wise, Corollary 7.3.1 gives a sufficient condition for (7.3.20) to be a conserved
vector. Examples show that the invariance and the divergence property are
not necessary conditions (see Section 7.3.7 and Section 7.3.9). Therefore, it
was desirable to obtain the necessary and sufficient condition for (7.3.20) to be
a conserved vector.

The solution to this problem was given in [13] (see also [21]). The result
is formulated in the following theorem. The term extremal values of the vari-
ational integral used in the theorem refers to the values of the integral (7.3.8)
on the solutions u(z) of the Euler-Lagrange equations (7.3.9).

Theorem 7.3.4. Let the Euler-Lagrange equations (7.3.9) admit a continuous
group G with generator (7.3.11). Then vector (7.3.18),
oL

@ b
ous

C =L+ (7 - €'ug)

provides a conservation law for Egs. (7.3.9) if and only if the extremal values of
integral (7.3.8) are invariant under G. The infinitesimal test for the invariance
of the extremal values of integral (7.3.8) is
; oL
X(L)+LDy(€") = F* 52, (7.3.32)

where F'* = F*(z,u,u())) are different from W defined by (7.3.15).
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Remark 7.3.3. If F* = W<, then (7.3.18) defines a trivial conservation law.
Indeed, Eq. (7.3.32) with F* = W and identity (7.3.14) yield that D;(C*)
vanishes identically. Hence, C! is a trivial conserved vector.

Corollary 7.3.2. Equation (7.3.32) for the invariance of extremal values can
be replaced by the divergence condition on extremal values:

X(L) + LDy(€') = F°35i +Di(B), F*#WwWe (7.3.33)

Then one obtains, instead of (7.3.18), the following conserved vector:

C=¢L+(n*-¢ “) a "~ B'. (7.3.34)

In the case of ordinary differential equations we use the notation of Section
7.3.5 and write Egs. (7.3.33)- (7.3.34) as follows:

X(L) + LDy(€) = F"; =+ Dy(B), F*#£W*, (7.3.35)
T=¢(L+ (0 - gv")% - B. (7.3.36)

7.3.7 Examples from classical mechanics

The motion of a single particle with a constant mass m in a potential field
U(t,x) is described by the Lagrangian

L=%lv|2 Ut,z), v = Z(v*)2 (7.3.37)

where & = (z!, 2, z3%) is the position vector of the particle, v = (v!,v%,v?) is
the velocity of the particle. The Euler-Lagrange equations (7.3.24) yield

42zt oU
da8 __oU 193 7.3.38
T o’ T ( )

The infinitesimal transformations of the group of transformations (7.3.25)
are often written in mechanics in the following form:

t=t+6t, T==z+0z, (7.3.39)
where 8t = af, 6z* = an* with the group parameter a.

Example 7.3.1. Free motion of a particle. The free motion corresponds to
U = 0. Then Egs. (7.3.38) yield the equation of free motion:

d_tf =0, (7.3.40)
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with the Lagrangian L = %|v|2. Equation (7.3.40) admits the Galilean group
comprising the translation in time, translations and rotations in the space
coordinates, and the Galilean transformation. Their generators are

8 8 8 ;8 . 0
Xo=gp Xi= g X9 =55 "5 Vo

7.3.41
ot ( )

where ¢,j = 1,2,3. Let us find the corresponding conservation laws.

(i) Time translation. Its generator is Xy. The conserved quantity obtained
by substituting the coordinates £ = 1 and 7! = 5?2 = n® = 0 of X, into Egs.
(7.3.28) and denoting E = —T, is the cnergy:

E = %|”|2~

(ii) Space translations. Consider the z!-translation generated by X; with
the coordinates £ = 0, ! = 1, n? = n® = 0. Equation (7.3.28) yields, upon
setting T = p', the conserved quantity p! = mv!. The use of all space transla-
tions with the generators X; furnishes us with the vector valued conservation
quantity, namely the linear momentum

P =mv.

(iii) Rotations. Consider the rotation around the z3-axis. Its generator
X12 has the coordinates £ = 0, n! = 22, n? = —z!, »® = 0. Substitution
into (7.3.28) yields the conserved quantity M3z = m(z2v! — z'v?). Using all
rotations with the generators X2, X33, Xo3, we conclude that the invariance
under rotations leads to conservation of the angular momentum (2.2.9):

M =m(z x v).

(iv) Galilean transformations. Their generators Y;, unlike Xo, Xi, Xij, do
not satisfy the invariance test (7.3.13). Namely, the extended action of Y; :
0,0
T8z T Bl
yields Y1(L) + LDy(§) = mv' = Dy(mxz!). Hence, the divergence condition
(7.3.30) is satisfied and one can apply Theorem 7.3.3. Then Eq. (7.3.31) with

B = maz! gives the conserved quantity T = m(tv! — z!). Using all operators Y;
and denoting T by Q, one obtains the vector valued conserved quantity

Q =m(tv — x).

)¢

Conservation of the vector Q is known, in the case of a system of particles, as
the center-of-mass theorem.

Example 7.3.2. Kepler’s problem. The two-body problem (e.g., thesun and a
planet) is known as Kepler’s problem (see Section 2.2.3). It has the Lagrangian

L= %lvl2 - g, where 7 = |x|, y = const. (7.3.42)
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The equations of motion (7.3.38) are written

d2zk z*
mF = ur—a, k=1,2,3, (7.3.43)
or in the vector form:
d?z T

o=
Equations (7.3.43) admit five generators of form (7.3.26):

8 ;] .0 a .0
X0 = — = ) — '_.’ = —_ P .0,
0= 5> Xij==x T 5 Z 3tat+2m pps (7.3.44)

The generators Xy and X;; of translation in time and rotations lead again to
the conservation of energy E and angular momentum M, respectively:

E= %|v|2+-:_f, M = m(z x v).

The operator Z does not lead to conservation laws (see Problem 7.13).

Example 7.3.3. Note that the threc infinitesimal rotations corresponding to
the operators X;; from (7.3.44) are written in form (7.3.39) as follows:

=0 dx=xxa, (7.3.45)

where a = (a', a?, a®). Equations (7.3.43) admit also the following generaliza-
tion of (7.3.45) (see [14], Section 25.1):

6t=0, dz=[zx(vxa)+|[xxv)xal (7.3.46)
The infinitesimal transformation (7.3.46) corresponds to the generators

X = (sz —zkyt — (z- v)6’°)azk,

Let us consider the first operator of (7.3.47):

i=1,2,3. (7.3.47)

N 0 7] 0
_ (2,2, 3,3\ 9 1 2,1\ _9 1,3 _ .31\ 9 .
X = (zv+$v)axl+(2xv :cv)azz+(2mv :z:v)ax3
The reckoning shows that the action of the first prolongation of X, (see Problem
7.14) on Lagrangian (7.3.42) has the form:

2
X\ (L) = —W* f’; + Dt( ke ) (7.3.48)

1t follows from (7.3.48) that X1, and hence all symmetries (7.3.47) meet neither
the invariance test (7.3.27) nor the divergence condition (7.3.30). Consequently,
Noether’s theorem does not apply to symmetries (7.3.47). On the other hand,
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(7.3.48) shows that the divergence condition (7.3.35) on extremal values is
satisfied with F* = —W¥*. Hence, (7.3.36) yields the conserved quantity

h= 27"(3"l (%) + (0%)%] — 2%0"® ~ z3v1v3) + ?,.ﬁ zt.

Making similar calculations for other two operators (7.3.47) and denoting T;
by 2A%, we arrive at the conservation of the Laplace vector (2.2.10):

A=[va]+p§-

Note that conservation of the Laplace vector yields that planets move on elliptic
orbits (see [21], Section 9.7.4). Thus, symmetries (7.3.47) are responsible for
Kepler’s first law.

7.3.8 Derivation of Einstein’s formula for energy

The geometric essence of the special relativity, formulated by A. Einstein in
1905 as a new physical theory, is that the three-dimensional Euclidean space
and the Galilean group are replaced by a four-dimensional space-time (called
the Minkowski space) and the Lorentz group, respectively.

The Lorentz group has the following generators:

0 0

1) 0
5 N g

0
Xoi = tg;

-~z + 5—2'17 5? , (7.3.49)

ozt oz’

Xo = X.;j = :L‘j
where i,j = 1,2,3, and c is the light velocity. Generators (7.3.41) of the
Galilean group are obtained from (7.3.49) by letting ¢ — oc.

The requirement of the invariance under the Lorentz group leads to the
following relativistic Lagrangian for a free particle with mass m :

2
L=-mc*\/1—-p%, where @ = % (7.3.50)

Let us apply Noether’s theorem to Lagrangian (7.3.50) taking, e.g. the time
translation with the generator Xy. The coordinates of X are £ = 1 and * = 0.
Substituting them into formula (7.3.28) and setting E = —T, one arrives at
Einstein’s formula for the relativistic energy:

Likewise, one can obtain all other relativistic conservation laws by using
generators (7.3.49) of the Lorentz group (see [21], Section 9.7.5).



7.3. INVARIANCE AND CONSERVATION LAWS 285

7.3.9 Conservation laws for the Dirac equations
Consider the Dirac equation (2.3.32),

katl)

Vo tmy =0, (7.3.51)
together with the conjugate equation

v ~

aTd;"’k —m$=0. (7.3.52)

Here ¢ is the row vector defined by
b=9T4, (7.3.53)

where ¥ is the complex-conjugate to 1 and T denotes transposition.
Equations (7.3.51)~(7.3.52) can be obtained from the Lagrangian

L=§[¢( g";+ w) (aﬁ" —mw)w] (7.3.54)

Indeed, we have

6L 611) k -~ 6L k a‘(/)
w——<6 k7 —'mw)) %-7ak m’¢'

The Dirac equations (7.3.51)~(7.3.52) provide examples for illustrating
both Noether’s theorem and Theorem 7.3.4.

Example 7.3.4. The simplest example for illustration of Noether’s theorem
is provided by the usual linear superposition written as the group of transfor-
mations ¥’ = ¥ + ap(z), ¥ =Y+ afp'(a:) with the generator

. 0
k(z) 3o + cpk(z)gz;—k . (7.3.55)

Here the vectors p(z) and @(z) are related by (7.3.53) and have the components
©*(x) and @ (z), respectively. They solve Eqgs. (7.3.51)—(7.3.52):

7] ~
7*5;—‘2- +myp =0, ¥ -mg=0. (7.3.56)

Let us check if Lagrangian (7.3.54) and generator (7.3.55) obey either the

invariance test (7.3.13) or the divergence condition (7.3.19). Since £ = 0, the
left-hand side of (7.3.13) reduces to X, (L) which is equal to

1{.( .8 oY ~
X,(L) = 3 [w(v’“a—;bk + mw) - (%7" - mw)sa]



286 PROBLEMS TO CHAPTER 7

and does not vanish identically. Hence, the invariance test (7.3.13) is not
satisfied. Let us check the divergence condition (7.3.19), i.c., check if the above
value of X, (L) is the divergence. This can be done by means of Lemma 7.3.4.
The reckoning yields:

&y

These expressions vanish due to Egs. (7.3.56). Therefore, according to Lemma
7.3.4, X (L) is the divergence, i.e., condition (7.3.19) is satisfied. One can
verify that X,(L) = Dy(B*) with

6 1/ 0p - 6 1 oy
Xo(L) = 3 (éx—i‘yk - m‘P) , ‘517)- o(L) = 3 ('ka? +m<p) .

B* = —% (J‘r"w - fp’v"w) :

Let us find quantities (7.3.18). We have

OL 0L _1(r. ok
¢6¢,k ‘pa{h 2(w7¢ WV))»

where we used the notation Di(y¥) = ¢, Dk(J;) = zz'k. Substituting these
quantities and the above expression for B into (7.3.20), we arrive at the con-
served vector

Ck = Yy p(z) - Bz} .

Problems to Chapter 7

7.1. Find the transformations of the dilation group with the generator Z from
(7.3.44):

Z= 3% + 23:*% .
7.2. Find all infinitesimal symmetries for:
(i) one-dimensional heat equation u; = Uzz,
(ii) two-dimensional heat equation u; = ugg + Uyy,
(iii) three-dimensional heat equation u, = u,, + Uyy + U
7.3. Find the invariant solutions of the one-dimensional heat equation u; =

Uzz Obtained by using the infinitesimal symmetry (see Problem 7.2(i))

X=X1+kX4=-gt-+kuaiu, k = const.

7.4. Investigate the invariant solutions of the two-dimensional heat equation
Ut = Ugz + Uyy Obtained by using:
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7.5.

7.6.

7.7.

7.8.

(i) one infinitesimal symmetry (cf. Problem 7.3)
0 ij

= E + kU% ) k= Const-,

(i1) the two-dimensional Lie algebra spanned by (see Problem 7.2(ii))

0] 0 0 7]
X—E-Fkuaa, Y—Xe_ya_z%.

The motion of a planet around the sun is governed by the system of
differential equations (2.2.8):

d’z «
m—at7=r—3:z, o = const.

Show that the energy of the planet defined by

3
_m 2, 2 _ i\2
E—5|v| +- where |v| —Z(v),

i=1
is a constant of motion, i.e., dE/dt = 0.

The motion of a particle with mass m in an arbitrary central potential
field U = U(r) is described by the Lagrangian L = % |v|? — U(r). For this
Lagrangian, find the equations of motion, that is, the Euler-Lagrange
equations.

The action integral with the Lagrangian of the previous problem, L =
2|v|2 - U(r), is invariant under the translation in time ¢ with the gener-
ator X, = /0t and the rotations of the spatial variables z!,z2, 22 with
the generators
(7] 0 g a a 0

— .2 _.1 9 39 19 _ .39 29
Ko =2 T g X3 =T T T g KB =T e T
Calculate the corresponding conservation laws given by Noether’s theo-
rem and compare with Problem 2.4.

Consider the central potential field of the form
U(r) = k k=
(r)= 2 = const.,

and the corresponding equations of motion of a particle:

2.0 i
dz _2k.1:

maeE T

i=1,2,3.
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7.9.

7.10.

7.11.

7.12.

7.13.

7.14.
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These equations admit, along with the time translation and the rotations
of the spatial variables (see Problem 7.7), the dilation and the projective
transformation generated by

@0 20 g0
X =Ug +0 50 T2 502 T 553

and 5 s 5 8
_429 1 6, 2096 | 39
Xe=t at+t(z £ +z 6x2+m 8:::3)’

respectively. Examine the applicability of the Noether theorem to the
symmetries X5, X6 and find the corresponding conservation laws T, Tg.

Let a be a three-dimensional vector field. Verify that curl a is solenoidal,
i.e., divcurla = 0 (see the property 9 in (1.3.15)).

Let £ = (z,y, 2). Show that
AN
div (’I‘—?) = 0.

Generalize this property to higher dimensions. Namely, let z = (z!,...,z")
and r = y/(z!)? +--- + (z")2. Find s such that

Check that the vector

= z Y o
T\ g2

is solenoidal and find a vector A such that B = curl A.

Return to Problem 7.10 and find a vector A such that
% = curl A.
r

Examine the generator Z from Problem 7.1 for applicability of the con-
servation theorems, i.e., check properties (7.3.30) and (7.3.33).

Find the first prolongation (i.e., extension to v* = dz* /dt) of the follow-
ing operator from Section 7.3.7:

X, =- (z2v2 + msvs) 5%— + (2m1v2 - a:zvl) % + (2::11)3 - z3v1) % .
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7.15. Transform the Black-Scholes equation (2.4.15),

1
us + §A2x2um + Bzu, -~ Cu =0,

into an equation with constant coefficients by the change of the variable
z into y = In|z|.

7.16. Solve the following over-determined system (four equations for two depen-
dent variables £(z,y) and n(z,y)) used in Section 6.5.1, Example 6.5.2:

€y=01 3(77y+7))'2§:=0, 7)::=0, E:m::Oo
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Chapter 8

(Generalized functions or
distributions

This chapter provides an easy to follow introduction to basic concepts and
methods of the distribution theory with emphasis on useful tools. Further-
more, the invariance principle used in Chapter 9 for calculating fundamental
solutions invites a reconstruction of the theory of group invariant solutions and
an extension of Lie’s infinitesimal technique to the space of distributions. This
is done in Section 8.4.

Additional reading: L. Schwartz [34], LM. Gel'fand and G.E. Shilov [8], N.II.
Ibragimov (17].

8.1 Introduction of generalized functions

Modern developments in applied mathematics, in particular investigations of
nonlinear problems in fluid mechanics, necessitated discontinuous solutions for
differential equations. Therefore, S.L. Sobolev introduced in the 1930s the so-
called generalized solutions. Moreover, even earlier the observation was made
that discontinuous solutions with certain singularities play a major part in
tackling problems of mathematical physics. J. Hadamard in the 1920s termed
these solutions elementary, at present they are mostly referred to as funda-
mental solutions. It was the endeavour to perceive the mathematical nature of
these solutions that gave birth to the modern theory of generalized functions
(S.L. Sobolev, 1936} or distributions (L. Schwartz, 1950). The most useful gen-
eralized function is Dirac’s §-function. It was introduced in theoretical physics
by P.A.M. Dirac in the 1930s and became one of efficient tools in the general
theory of differential equations.

291
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8.1.1 Heuristic considerations

Recall that the definition of a differentiable function implies that its differenti-
ation results in a classical (usual) function. One might still attempt to differ-
entiate non-differentiable functions generalizing the notion of differentiation.
This is one of possible ways for introducing generalized functions. The cru-
cial idea in this approach is to transfer differentiation from a non-differentiable
function to a differentiable one. An appropriate tool for implementing this idea
is provided by integration by parts for functions of a single variable and the
divergence theorem (1.3.18) for functions of several variables.

Let us consider the case of a single variable z. Provided that functions u(z)
and ¢(z) are continuously differentiable in ¢ < z < b, formula (1.2.12) of
integration by parts yields

/ab pdy = (utp)r; - /ab ud.

Furthermore, assuming that the function ¢(z) vanishes outside of a bounded
interval! of the z-axis and designating differentiation with respect to =z by D

one obtains
{ 00 +oo
/ wD(u)dz = —/ uD(p)dz.

o0 — o0
For the sake of convenicnce one interprets the integrals involved here as scalar
products (,) of the corresponding functions. Then, the above equation is writ-
ten in the form:
(Du, ) = —(u, Dyp). (8.1.1)

Reading the above equation from left to right one can interpret it merely as a
means of transfer of the differentiation D from a differentiable function u(z) to
another function of this type, ¢(z). However, one arrives at a non-trivial conclu-
sion reading it otherwise and assuming that only the function ¢ is continuously
differentiable. The function u is subject to the condition of convergence of the
integral in the right-hand side of Eq. (8.1.1).

The above approach is a decisive step for introducing a new differentiation.
Namely, let u be a function that might be non-differentiable in the classical
sense but satisfying the convergence condition of the integral in the right-hand
side of Eq. (8.1.1). A generalized derivative of the function u is such a “func-
tion” Du (in a generalized sense) that satisfies Eq. (8.1.1) for any continuously
differentiable function ¢ with a bounded support. It is evident that the gen-
eralized differentiation can be iterated till the function ¢ is differentiable. For
instance, the generalized derivative D2u of the second order is obtained as
follows:

(D2u7 ﬂo) = '"(Duv D‘P) = (U, Dz‘p)
1The smallest closed interval, outside of which the function p(z) vanishes, is termed the

support of this function and is denoted by supp(yp). If the interval supp(¢) is bounded, then
o(z) is referred to as a function with a bounded (compact) support.
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In order to be able to deal with derivatives of any order let us assume that
the function ¢ is infinitely differentiable. The set of infinitely differentiable
functions with a bounded support is denoted by Cg°. The functions ¢ € C§°
are referred to as test functions.

To understand the nature of the generalized derivative Du one should take
into account that for a fixed u the expression (Du, ) maps every function
@ € C§° into a number equal to (u, Dy). This operation is linear:

(Du,c1p1 + c2¢02) = c1(Du, 1) + ca(Du, p2); €1,¢2 = const,,
and continuous:
(Du,px) — (Du,p) whenever ¢x — ¢ in C§°.

Thus, the generalized derivative Du is a linear continuous functional over the
space C§°. These heuristic considerations can be also applied to functions in
several variables z = (z!,...,z") € R™ and entail the following definition.

8.1.2 Definition and examples of distributions

Definition 8.1.1. A generalized function or distribution is a linear continuous
functional f over the space C§° of C* functions p(z) = ¢(a,...,z") with
compact support. In other words, f maps any function ¢ € C§° into a number
denoted by (f, ). This operation is linear:

(f, o1 +92) = (fip1) + (fip2),  (ficp) = c(f,9); ¢ = const., (8.1.2)
and continuous:
if px — ¢ in C§°, then (f, k) — (f,¢). (8.1.3)

The convergence @ — ¢ in C§° means that the following conditions are satis-
fied:

L Prrp € Cgo,

2. the supports of all members of the sequence ;. are contained in one and
the same bounded closed subset of R",

3. the functions k() converge uniformly to ¢(z) together with all their
derivatives.

Example 8.1.1. Let a function f(z) be locally integrable, i.e., integrable in
any bounded domain of R". The integral

(o) = [ F@wele)ie (8.1.4)

defines a generalized function. The generalized functions of this type are said
to be regular and the others are termed singular.
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Example 8.1.2. The Heaviside function 6(z) in one variable z is

0,z <0,
8(z) = {1, i S0 (8.1.5)

It determines the regular generalized function (8.1.4) defined as follows:
+oc
(6,4) =/ p(z)dz. (8.1.6)
0

Likewise, the Heaviside function §(z — zo) :

0, z < xo,
8(z — 20) = {l,m>zg.

defines the regular generalized function by the integral formula
+00

(8(z - 70), () = / o(z)dz.

To
Example 8.1.3. Dirac’s é-function is the simplest but extremely important

singular generalized function. It is denoted by & or §(x) and is defined by the
formula:

(6, ) = ¢(0). (8.1.7)
This formula is also written as
(8(z), () = #(0),
where z € R". Likewise, 8(z — z¢) is defined by the formula:
(6(z — z0), p(x)) = p(z0).
The alternative notation for §(z — a) is d(4). It is often referred to as the 4-

function at the point a.

8.1.3 Representations of the /-function as a limit

The derivation of the following useful representations of the é-function can be
found, e.g. in (8}, Chapter I, Section 2.5.
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Theorem 8.1.1. Consider the case of a single variable z. The following equa-
tions hold:

. €
6(x) = 51}_{% AZ 1)’ (8.1.8)
_ . sin(vz)
é(z) = ull»nc}o pal (8.1.9)
1 [v.
= lim — i€z
i(z) ullm o _ye d¢, (8.1.10)
5z) = lim —— %
(z) = Jm o=, (8.1.11)

where the symbol t — +0 means that ¢ tends to zero assuming positive values.
The convergence f, — & of distributions is defined by

(fnr ) = (3,9).

We will use also the extension of (8.1.11) to the case of several variables

when z = (z!,...,z"). Denoting r = \/(z!)Z 4+ --- + (z")2, we have
lim — e~ % = 6(). (8.1.12)
t—+0 (2y/nt)"

8.2 Operations with distributions

8.2.1 Multiplication by a function

Multiplication of a distribution f by a C* function a(z) is defined by the action
of the product af on test functions ¢ as follows:

(af,¢) = (f, ap). (8.2.1)
The right-hand side of this equation is well defined since ay € Cg°.

Example 8.2.1. It follows from definition (8.1.7) of the d-function and the
multiplication rule (8.2.1) that

a(z)d = a(0)4. (8.2.2)
Indeed,

(a(2)d, %) = (6, a) = a(0)p(0) = (0)(4, ) = ((0)S, ¥).
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8.2.2 Differentiation

Differentiation of a distribution f is defined by the equation

(D,- f, ¢) = ( f, D.-np). (8.2.3)

Here the total differentiation D; coincides with the partial differentiation, D; =
0/8zt, since ¢ depends on the independent variables z* only. This definition
manifests that any generalized function is infinitely differentiable, the higher-
order derivatives being obtained by successive application of formula (8.2.3).
For instance, (D;D; f,p) = —(D;f, Djp) = (f, D;Djp). It follows in particular
that D_-,’D,‘f =D;D;f.
Example 8.2.2. The derivative of the Heaviside function is the é-function:
0'(z) = §(z). (8.2.4)

Indeed, formulae (8.1.1) and (8.1.6) yield

@0) = ~(6,¢) = — /0 W@ = g = 0(0) = (6.9)

8.2.3 Direct product of distributions

Let f(z) and g(t) be two distributions acting on functions of n variables z =
(z!,...,2") and m variables t = (t!,...,t™), respectively. Let ¢(z,t) be a test
function depending on n + m variables (z',...,z", t',...,t™).

Definition 8.2.1. The direct product f(z) ® g(t) of f(z) and g(t) is the dis-
tribution acting on test functions ¢(z,t) as follows:

(7@ @9 0(@t) = (f(2), (s(t), o(a,1)))- (8.25)

One can readily derive from Definition 8.2.1 the following properties of the
direct product (see, e.g. (8], Chapter 1, §5, or [34], Chapter 3):

(@ ® 9, 0(21®) = (f(@).0(2) (9(t) w(1),  (826)

f(z)®9g(t) = g(t) ® f(z), (8.2.7)

5(z) ® 8(t) = 8(z, 1), (8.2.8)

where 6(z),d(t) and &(z,t) are Dirac’s §-functions of the respective variables.
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8.2.4 Convolution
The convolution (f x g)(z) of two usual functions f(z) and g(z) in R is a

function defined by the following integral:

Ueo@ = [ 1o vy (8:2.9)

In order to define the convolution of distributions let us begin with regular
distributions. Namely, we consider action (8.1.4) of convolution (8.2.9) on test
functions and change the order of integration. We have

(F20.9)= [ 9@ete)iz = [ piz) [ [ 1wota - y)dy] da

= / f(y)dy / 9(z - y)p(z)dz = / f) [ / 9(z)p(z +y)dz] dy.

Denoting 2 in the last integral by z, we conclude that the convolution f*g
of regular distributions f and g is a distribution acting on test functions as
follows:

Uro0= [ 1w [ [ s@iete + s e (8.2.10)

Equation (8.2.10) can be written in the form

(f*x9,9) = (f(v), (9(z), 0(z +¥))).

This preliminary consideration entails the following definition.

Definition 8.2.2. Let f and g be any distributions such that at least one
of them has a compact support. Their convolution f * g is a distribution
determined by

(f*x9,0) = (f(¥), (9(z), p(z +9))). (8.2.11)
Using definition (8.2.5) of the direct product, Eq. (8.2.11) can be written
(f *9:¢) = (F(y) ® g(z), p(z + y))- (8.2.12)

Remark 8.2.1. Even though ¢(z) has a compact support, ¢(z + y) will not
have this property in the space of the variables z,y. Consequently, Eq. (8.2.12)
may have no meaning for arbitrary distributions f and g. The convolution is
well defined for distributions obeying certain conditions. The compactness of
the support of f or g is one of such conditions. We will not discuss here the
general restrictions since Definition 8.2.2 is sufficient for our purposes. For the
definition of the support of distributions, see, e.g. (34], Ch. II, §1.3, or [8], §1.4.

The following properties of the convolution are used in the next chapter.
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Theorem 8.2.1. Convolution (8.2.11) is commutative:

frg=g+*f. (8.2.13)
Proof. The statement follows from Eq. (8.2.12) and commutativity (8.2.7) of
the direct product.

Theorem 8.2.2. The convolution with the d-function exists for any distribu-
tion f and satisfies the following equation:

Fré=f. (8.2.14)

Theorem 8.2.3. Let the distributions f and g have compact supports. Then
the differentiation D; = 8/3z* of the convolution satisfies the following equa-
tions:

Di(f x g) = (Dif) xg = [ * (Dig)- (8.2.15)

8.3 The distribution A(r?>™")

8.3.1 The mean value over the sphere

Let us introduce the notation and make preliminary calculations. Let

I=(m1,,..’zn)emn, ’xl=\/($l)2+.“+(:cn)2.

The mean value B(r) of a function p(z) over the sphere Q. of radius r and
center 0 is defined by

B(r) = -Sl,—r A p(z)dS. (8.3.1)

The sphere €, is the set of the points z such that || = r, and S, is the
surface area of the sphere €2,.. Since 2, is similar to the unit sphere and has
the dimension n — 1, we have (cf. Section 1.1.3):

S, =r""lw,, (8.3.2)

where w, = 2v/a"/T'(n/2) is the surface area of the unit sphere in the n-
dimensional space. It follows from Eq. (8.3.1) that $(r) has one and the same
value at each point = € €1, independently of the position of  on the sphere
Q.. Therefore, B(r) is said to be a spherically symmetric function.

8.3.2 Solution of the Laplace equation Av(r) =0

Lemma 8.3.1. Let v be any spherically symmetric function, i.e., v = v(r).
Then the Laplace equation

Av = zn:’v,',' = 0,
=1
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where v, = D;(v) = dv/dz*, vi; = D?(v), is written:

" ’

n—1
v+ T v =0, (8.3.3)
where v = dv/dr.

Proof. The statement follows from the equations

v Il i)2 1 i\2
Di(U)E%=’U/7, D?(v):v”(tz) +vl|:;_(‘7;3) ]'

Remark 8.3.1. One can prove that the mean value of the Laplacian of a
function ¢(z) is identical with the Laplacian of the mean value of w(x), ie.,

n-—1

Bol(r) = Ap(r) =" + =

7' (8.3.4)

Let us find all spherically symmetric solutions v = v(r) of the Laplace
equation, i.c., integrate the ordinary differential equation (8.3.3). We have

" n—1 /____]; " _ /
Vit —— v—T[rv +(n—1)7']

(r) + (n—2)V] = %[rv’ +(n-2)v.

41—

Hence, Eq. (8.3.3) is written [rv/ + (n ~ 2)v)' = 0 and yields
™'+ (n-2)v=_C. (8.3.5)

If n > 2, we set C = (n — 2)C, and rewrite Eq. (8.3.5) in the scparable form
' +(n—-2)(v—C) =0.If n =2, Eq. (8.3.5) has the separable form rv’ = C.
If n = 1, Eq. (8.3.5) is written v = 0. The integration is simple in all cases
and yields the following.

Theorem 8.3.1. The gencral solution to Eq. (8.3.3) has the form
v=Cr+Cor¥ ™, if n#2 (8.3.6)
v=C1+Colnr, if n=2. (8.3.7)

8.3.3 Evaluation of the distribution A(r?—")

Theorem 8.3.1 shows that the fundamental system of solutions for Eq. (8.3.3)
comprises the trivial constant solution, e.g. v = 1 and the solutions 2~ and
In7 for n > 2 and n = 2, respectively. The functions 72~" and Inr have a
singularity at r = 0, i.e., at the origin £ = 0, and do not have classical deriva-
tives at the singular point. In consequence, the Laplacian of these functions
annuls at z # 0 and provides distributions near the singular point z = 0. We
will evaluate here the distribution A(r?~") when n > 2.
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Theorem 8.3.2. Let n > 2. Then A(r?~™) is the distribution given by
A(r?™") = (2 — n)wy, 6(x), (8.3.8)

where é(z) is Dirac’s d-function defined by Eq. (8.1.7) and wy, is the surface
area of the unit sphere.

Proof. It is manifest that the function 2" is locally integrable. Therefore,

invoking the differentiation rule (8.2.3) and definition (8.1.4) of distributions
determined by locally integrable functions, and then applying the equation

/W f(z)dz = /0  dr /n sas (8.3.9)

we obtain
(A(r* ™), 9) = (r*",A ) =/ rP " Apdz = / dr/ r2 " ApdS.
R" 0 -
Equations (8.3.1) and (8.3.2) yield

/ 2" A pdS = 1" 8, Ap(r) = wert ™ ™ 1Ap(r) = warBp(r).

v

Collecting the above equations and using Eq. (8.3.4), we have
o0 o ]
(A ), 9) = w,,/ rAp(r)dr = w,,/ 7"+ (n-1)p'|dr. (8.3.10)
0 0
Now, we evaluate the integral in the right-hand side of Eq. (8.3.10):
o o] [o ]
/0 %" + (= 1)Pdr = [ 167" + (n-2)Flar = [13" + (- 2)7]
0
Since ¢ € C§°, it vanishes at the infinity. Therefore,
— _— oo —
/7' + (n =27 = ~(n - 29(0) = ~(n - 2)(0).
Substituting this expression into Eq. (8.3.10), we obtain

(A ™), 0) = (2 = n)wnp(0) = ((2 - n)wnd(z), p(x)),
thus proving Eq. (8.3.8).

Remark 8.3.2. When n = 2, the following equation is valid instead of Eq.
(8.3.8):

A(Inr) = w, §(z). (8.3.11)
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Remark 8.3.3. Equation (8.3.8) holds also in the case n = 1. Thus, Eqs.
(8.3.8) and (8.3.11) are encapsulated in the following general formula:

n n/2
A = (2- ")1‘( 70 A2,
A(lnr) _r( /2) éz), n=2 (8.3.12)

The following particular cases are significant for applications:

A(lz]) =24(z), n=1,
A(lnr) = 2r6(z), n=2, (8.3.13)

A(r!) = —4né(z), n=3.

8.4 Transformations of distributions

The present section contains an extension of Lie’s infinitesimal technique to
the space of distributions. The results are employed in the next chapter.

8.4.1 Motivation by linear transformations

Consider, for the simplicity sake, the one-dimensional case and begin with the
widely known transformation termed the shift of distributions. It corresponds
to the translation T = z — a of the independent variable and is defined in ac-
cordance with the following transformation law of regular distributions (8.1.4).
Let f(z) be a locally integrable function of the single variable z. The shift
f(z — a) of the corresponding regular distribution is given by the formula of
change of variables:

(- aret) = [ stz - ahpta)iz = [ @@ +a)az.

Using here notation (8.1.4), one has

(fle-a),0@) = (f@, 0z +a) (8.4.1)
or, denoting T by z again, one obtains the following shift formula:
(£ - a)p(@) = (F@).pla +a)). (8.4.2)

Equation (8.4.2) is used as the definition of the shift for arbitrary distributions.
For example, the shift §(z — a) of the J-function has the form

(5(1: —-a), <p(m)) = (6(1), oz + a)) = p(a). (8.4.3)
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An arbitrary linear transformation of generalized functions is defined in a
similar way. Namely, let f(z) be a locally integrable function in R"™, and let

T=Az—a
be the general linear transformation, where a = (a!,...,a") is an n-dimensional

vector and A = (a;) is an arbitrary n x n matrix such that detA # 0. Then,
the change of variables in integral (8.1.4) yields

(42—, 0@) = [ fd2 - a)o(a)to = et [ s@pla" @+ a7,

This equation defines the linear transformation of arbitrary distributions:

( f(Az - a), (z)) (|detA|_1 F@), vlA~\(z + a)]), (8.4.4)
or, upon denoting T by z :
(f(42 - ), w(@)) = (Idetal™ f(2), o[~ (z +a)). (8.4.5)

8.4.2 Change of variables in the d-function
Let a function p(z) of one variable z be such that p(0) = 0, p'(0) # 0. Then

é(p(z)) = —7==6(z). (8.4.6)

4 (0)

If p(z) has several zeros, e.g. at points ay,...,a, and if p'(a,) # 0 for all
o=12,...,s, then (scc, e.g. [4], Ch. VI, §3.3, Eq. (2)):

1
( ) = ——0(z - o) 8.4.7
(0te) = - 5y 8= ) 847
Example 8.4.1. Application of (8.4.7) to §(z% — a2), a # 0, yields
§(z? — a?) [6(9: —a) -6z + a)] (8.4.8)

In the case of several variables z = (z1,...,z"), Eq. (1.2.52) yields

§(p(z)) = I J(0)|‘5(x J(O)—det(g J) . (8.4.9)

8.4.3 Arbitrary group transformations

Consider an arbitrary transformation T of points £ € R™ into T € R" :

T=Taz. (8.4.10)
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The transformation T is written in coordinates in the form

T =%'(z), i=1,...,n,
and its Jacobian is o
T
J = det (axa') . (8.4.11)

We assume that J # 0 and that T*(z) are infinitely differentiable.

Definition 8.4.1. The transformation f — f of an arbitrary distribution f
into a distribution f associated with (8.4.10) is defined by the following equa-

tion:
(f (Tx),<p(x)) = (7(5),¢(T“15)). (8.4.12)

Definition 8.4.1 is motivated by the linear transformations. Namely, the
shift formula (8.4.1) has form (8.4.12) with Tz = z — a and f = f. Likewise,
transformation (8.4.4) has form (8.4.12) with Tz = Az—a and [ = |detA|™" f.

In order to obtain the transformation of distributions associated with (8.4.10),
we repeat the reasoning used in the case of linear transformations. Namely, let
f(z) be a locally integrable function in IR™. The formula of change of variables
in integrals yields

(1a), o)) = [ 1@z)pte)s = [ 171(@) oir 20z
This motivates the following equation for arbitrary distributions:
(f@2)0(@)) = (7). w(T72)), (8.4.13)

where J is Jacobian (8.4.11). Equation (8.4.13) can be also written, upon
denoting 7 in its right-hand side by z again, as follows:

(£@2), e(@)) = (I f(2) (T 'a)). (8.4.14)

Comparison of Eq. (8.4.13) with Eq. (8.4.12) defines the following trans-
formation of arbitrary distributions:

f=J1f. (8.4.15)

Example 8.4.2. For the scaling transformation Z = ze® in R", formula
(8.4.15) yields _
f=emf (8.4.16)

Example 8.4.3. Consider the two-dimensional case and take the rotation
group
T=1zxcosa+ysina, J=ycosa—zsina.
Formula (8.4.15) yields B
f=F (8.4.17)
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8.4.4 Infinitesimal transformation of distributions

Consider a one-parameter group G of transformations in R™ :
T = Tu(z), (8.4.18)
with the infinitesimal transformation
Zixzi +ati(z), i=1,...,n (8.4.19)

According to Eq. (8.4.15), we extend the action of the group to distributions

f as follows:
T=Ta(z), f=J'Ff (8.4.20)

Here, Jacobian (8.4.11), J = det(8%*/8z7), is positive when the group para-
meter a assumes small values.

Expanding transformations (8.4.20) into Taylor’s scries in a near a = 0
and taking into account that J = 1 at @ = 0 one obtains, along with the
infinitesimal transformation of z given by (8.4.19), the following infinitesimal

transformation of f :
T~s-af |2 L)

Applying the rule for differentiating determinants (see Section 1.3.6) to Jaco-
bian (8.4.11), one obtains the following equation (see Problem 8.7):

dJ ;
E'm = D;(€"), (8.4.21)
where
a 1
DA€=Y 5

Thus, the infinitesimal transformation (8.4.19) of the independent variables is
accompanied by the following infinitesimal transformation of distributions:

f =~ f—aDi(€)f. (8.4.22)

In particular, letting f(z) = é(z) and invoking (8.2.2), one obtains the in-
finitesimal transformation of the é-function:

§~6—a[Di(€),_,) o (8.4.23)

Problems to Chapter 8

8.1. Let z be a single variable. Find the action of the derivatives of the d-
function on test functions. Namely, evaluate

(i) (6"(2), (=), (i) (8"(z), (), (i) (&' (z ~ o), p(x)).
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8.2.

8.3.

8.4.

8.5.
8.6.
8.7.

8.8.
8.9,
8.10.
8.11.
8.12.
8.13.

8.14.

8.15.

8.186.

Evaluate the following generalized functions:

R 2 o v v
(i) P_% n(z2 ?62)2 , (i) VILII;O/ e de, (iii) V]i’lgo/ fze‘&df‘

Let a(z) be a C™ function and f be any distribution. Prove that
(a(z)f) = o/ (2)f + a(z)f".
Let a(z) be any C* function. Prove that

(ax)b(z)) = a(0)d() + () ().

Prove Eq. (8.2.6), (f(z) ® g(t), p(z)(t)) = (f(2), o(2)) (9(2), %(2))-
Prove Eq. (8.2.8), §(z) ® 8(t) = é(x, t).

Prove the equation f * g = g = f for convolution (8.2.10) of regular dis-
tributions.

Prove properties (8.2.14) and (8.2.15) of the convolution.
Verify Eq. (8.3.4) for n =2 and n = 3.
Evaluate the distribution A(Inr) when n = 2 and prove Eq. (8.3.11).
Discuss Eq. (8.3.9).
Prove Eq. (8.4.21).
Let a(z) be any C™ function. Prove that
a(z)d' (z) = a(0)d'(z) — o/ (0)d(z).
Consider a change of the variable z given by y = p(z) and assume that
p(0) =0, p'(0) # 0. Prove Eq. (8.4.6), 8(p(z)) = p'(0)~! 8().

Let the function p(z) has several zeros, e.g. at points ai,...,a,, and let
p'(as) #0forallo =1,2,...,s. Prove Eq. (8.4.7):

i) = 3 o

o=1

§(z — ay).

Derive Eq. (8.4.8), 6(z% — a®) = [§(z — a) — §(z + a)]/(2a).
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Chapter 9

Invariance principle and
fundamental solutions

This chapter contains a new group theoretic approach to initial value problems
based on the invariance principle. The method is efficient for solving linear
equations both with constant and variable coefficients.

Additional reading: N.H. Ibragimov [20], Chapter 3.

9.1 Introduction

Lie group methods are usually regarded to be not particularly useful for solving
the initial value problem. This is due to the fact that arbitrary initial conditions
break the symmetry group of a differential equation in question. However, it
is shown in [15] that the fundamental solutions of the classical equations of
mathematical physics are in fact group-invariant solutions. This observation,
amplified by the formulation of the invariance principle in initial value prob-
lems, led to the development of a systematic group theoretic approach to the
fundamental solutions [17]. This new approach combines the philosophy of Lie
symmetries with the theory of distributions.

The key point of the success of the group theoretic approach to fundamental
solutions is that the initial value problem determining the fundamental solu-
tion, unlike the general problem with arbitrary boundary or initial conditions,
inherits certain symmetries of the differential equation. In consequence, one
can find the fundamental solutions by searching them as invariant solutions
under the inherited symmetry group.

The fundamental solutions for elliptic and parabolic equations are usual
functions and can be obtained by means of the classical Lie theory (see Sections
9.2.3 and 9.2.4). For hyperbolic equations, however, the fundamental solutions
are distributions (see Section 9.4). Therefore, one needs differential equations
with distributions presented in Section 9.4.2.

307
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The new method, unlike the Fourier transform method, is independent on
a choice of coordinates and is applicable not only to linear equations with
constant coefficients but also to equations with variable coefficients.

9.2 The invariance principle

9.2.1 Formulation of the invariance principle

A general principle formulated in [15] (see also [21]) and called an invariance
principle, adjusts Lie group theory to tackling boundary value problems, in
particular, an initial value or the Cauchy problem. This principle states that
if a differential equation admits a Lie group G and if a boundary/initial value
problem is invariant under a subgroup H C G, then one should seek the so-
lution to the problem among H-invariant solutions of the differential equation
in question. The invariance principle applicable both to linear and nonlinear
equations, but in what follows, it is employed to derive fundamental solutions
for linear partial differential equations. Accordingly, the invariance principle is
formulated here only for linear equations.

Definition 9.2.1. Let L be a linear partial differential operator with inde-
pendent variables z = (z!,...,z"). Let the differential equation L(u) = f(z)
admit a group G. Then the boundary value problem

L(u) = f(z), u|s = h(z) (9.2.1)

is said to be invariant under a subgroup H C G if

1) the manifold S is invariant under H,

2) the boundary (initial) condition u| s = h(z) is invariant under the group
H induced on S by H, i.c., H is the action of H restricted to S.

The invariance principle: If the boundary (initial) value problem (9.2.1)
is invariant under the group H, one should seek the solution of the problem
among the functions invariant under H.

9.2.2 Fundamental solution of linear equations with con-
stant coefficients

Definition 9.2.2. A fundamental solution for a linear differential operator L
with constant coefficients is a generalized function £ such that

LE =56, (9.2.2)

The characteristic property of fundamental solutions is given by the follow-
ing statement.
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Theorem 9.2.1. Let £ be a fundamental solution of a linear differential op-
erator L with constant coefficients. Then the function

u=Exf (9.2.3)
solves the non-homogeneous equation

Lu=f. (9.2.4)
Proof. Using properties (8.2.11)—(8.2.15) of the convolution, we have

Lu=L(Exf)= (LE)sf=d%f = f.

9.2.3 Application to the Laplace equation

Consider the Laplace cquation with an arbitrary number n > 3 of variables
z=(z!,...,2"):

n
Au=Y uy;=0. (9.2.5)
t=1

The symmetries of Eq. (9.2.5) comprise the finite-dimensional Lic algebra
spanned by

7] ;) ;)
= 2 =gl g g
Xi=pm Xo=Tpa 5
Y; = (2z'z7 - |a:|26ij)—67 +(2- n):c"'u.—(z (9.2.6)
ozi ou’ -
; O o . .
Z) = ’%;, Zs =ug- (i,7=1,...,n)
and the infinite-dimensional algebra with the generator
0
Xf = 751'; 9

where 7 = 7(r) is an arbitrary solution of the Laplace equation. In what
follows, we let however 7(z) = 0 and use only generators (9.2.6).

Let us find the fundamental solution £(z). We will apply the invariance
principle to Eq. (9.2.2) for the fundamental solution:

AE = 6(z). (9.2.7)

Namely, we will treat Eq. (9.2.7) as a boundary-value problem with the fixed
singular point (the origin) where the J-function is given. We will first single
out from (9.2.6) the operators that leave invariant the singular point £ = 0.
It is easy to see that this property satisfied by all operators (9.2.6) except the
translation generators X; (i = 1,...,n). For the generators of rotation X;; and
dilation Z, and Z; it is obvious, while the invariance test Yi(zk )|:r=0 =0 for
Y; is clear from the equation Y;(z*) = 2z*z* — |z|25%*.
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Now we turn to the invariance of Eq. (9.2.7). First of all, we note that Eq.
(9.2.7) admits the operators Xj;, since the Laplacian and the é-function are
invariant with respect to rotations. As far as the dilation generators Z; and
Z4 are concerned, they are not admitted separately. Therefore, we test for the
invariance their linear combination

0 o

- —- 9.2.8
o T g (9.28)
We prolong operator (9.2.8) to the second derivatives u;; and extend its ac-
tion to the d-function according to (8.4.23). Noting that in this case we have
D;(£*) = n and performing the prolongation we obtain the operator

a

5 0 a d a
—_— ‘_ e— — . — p— 2 — — —
Z=zx Frri ku 5+ (k—1)u; ou; + (k — 2)u;; ™ n566 (9.2.9)

It follows that

Z=1x

Z(Au - 8) = (k — 2)Au + nd.

Hence, the invariance condition is written
Z(Au—6)|aucs = (k—2+n)§ =0
and yields k = 2 — n. Thus Eq. (9.2.7) admits the following operators:

3?::" —z'%, Z=z (3:" +(2- n)u%~ (9.2.10)
Likewise one can verify that the operators Y; are admitted as well. But we will
not need them and will regard them as an ezcess symmetry of the fundamental
solution.

In accordance with the invariance principle, we shall look for invariant so-
lutions of Eq. (9.2.7) with respect to generators (9.2.10). The generators X;;
have two independent invariants, namely u and r = \/(z1)2 +... + (z")2. We
write the operator Z in these invariants:

Xij =Ti

8 a
Z_r5+(2—n)u%,

and solve the equation Z(J(r,u)) = 0 to obtain the following invariant for
operators (9.2.10):

J=ur"2,

The invariant solution is written in the form J = C = const., whence
u=Cr: ™", (9.2.11)

We know from Section 8.3 that function (9.2.11) satisfies Eq. (9.2.7) up to

a constant factor. Namely, comparing (9.2.11) with (8.3.8) yields the following
value of the constant C : )

‘T T
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where wy, is the surface area of the unit sphere. Hence, the fundamental solution
&, for Eq. (9.2.5) with n > 3 has the form (cf. (8.3.12))
£ = 1 r2-—n — P(n/ 2)
" (2-n)wa 2(2 - n)Var

We summarize: The fundamental solution for the Laplace equation (9.2.5)
is determined by the invariance condition up to a constant factor. Equation
(9.2.7) plays the role of a normalizing condition only.

Likewise, one can use the invariance principle in the case n = 2 and obtain
the fundamental solution (cf. (8.3.13))

r . (9.2.12)

1
= — 2.1
& o Inr (9.2.13)
for the Laplace equation in two variables (5.2.25),
Au = Uzxr + uvv = O- (9.2-14)

In the physically important case n = 3, formula (9.2.12) gives the funda-
mental solution (cf. (8.3.13))

1
= —_—— 9.2.15
£ 4nr ( )

for the Laplace equation in three variables (1.3.20),

AU = Ugz + uyy + Uz, = 0. (9.2.16)

9.2.4 Application to the heat equation
Consider the heat equation with n spatial variables z = (z!,...,z")
- Au=0, (9.2.17)

where A is the n-dimensional Laplacian in z* (see Eq. (9.2.5)).
The symmetries of Eq. (9.2.17) comprise the finite-dimensional Lie algebra
spanned by

o =9 _gid 9

Xo=gp Xi=pm X9=¥5 " Tom

a ; 0 i) i} ; 0
= 42 = u— ;= 2o — DU, 9.2.18
21_2t8t+x6w"’ Zy Uz Zo; 2t0x‘ Tugs ( )

Y= t’aat +tzx Bi - (2nt + I:z:l"‘)u2
and the infinite-dimensional algebra w1th the generator
X,=7 4

5;7
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where 7 = 7(t,z) is an arbitrary solution of the heat equation. We will let
7(t,z) = 0 and use only generators (9.2.18).
Equation (9.2.2) for the fundamental solution £(t, ) has the form

& — AE = 6(t, T) (9.2.19)
and is invariant under the group with the following generators:
9 9 i O
X =25 T g D= Hgm mTupy
Z = 2t—‘?— + z‘i - nu-(—a— . (9.2.20)

at ozt ou

Operators (9.2.20) are obtained by repecating the procedure used in the case of
the Laplace equation. Namely, they are singled out from generators (9.2.18)
by demanding the invariance of the point (¢ = 0, £ = 0) and the invariance of
Eq. (9.2.19).

Let us apply the invariance principle. Invariants for X;; are ¢, r, u. In the
space of these invariants the operators Zy; are written in the form

_ifatd By
Zo,_ =T (2;5—1&6“)
Solving the equations Zg;(J) = 0, one obtains two invariants of the rotations
and the Galilcan transformations, namely ¢ and p = ue” /(4t). Rewriting the
last operator of (9.2.20) in these invariants:
7] 8

Z=2ta—np—6-;-

and solving the equation Z(J) = 0, we obtain the following invariant:
J=1t"2p=u(Vt) e /0,
The invariant solution is given by J = const., i.e., has the form

2
u= ¢ e"«, t>0.

(vt)"
We extend it to ¢ < 0 by sctting v = 0 when t < 0. In other words,
_ Co(t) e‘i‘:

e (9.2.21)

where 6(t) is the Heaviside function (8.1.5) of ¢. Equation (9.2.19) plays again
the role of a normalizing condition. Namely, it is shown in Problem 9.10 and

in the next section that C = (2y/n)~". Thus, we arrive at the following funda-
mental solution for the heat equation with n spatial variables:

6(t) -2
@vm)"

En = (9.2.22)
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9.3 Cauchy’s problem for the heat equation

In this section, we introduce the concept of the fundamental solution for the
Cauchy problem and calculate it for the heat equation by using the invariance
principle. It follows from these calculations that the heat diffusion can be
directly derived from the invariance principle.

9.3.1 Fundamental solution for the Cauchy problem

Definition 9.3.1. The distribution E(¢,z) is called the fundamental solution
of the Cauchy problem for the heat equation if it solves the following initial
value problem:

E,—AE=0, E|_,=6Cx) (9.3.1)

Theorem 9.3.1. (See Problem 9.7). Let E(t, ) be the fundamental solution
of the Cauchy problem. Then the solution to the Cauchy problem

uy — Au =0, “|t=o = uo(x) (9.3.2)

is given by the convolution of E and the initial function uo(z) :

u(t,z) = Exuo = /W wo(€)Et, 7 — £)dE. (9.3.3)

Theorem 9.3.2. Let E(t, z) be the fundamental solution of the Cauchy prob-
lem and 6(t) the Heaviside function. Then

E=0(t)E(t,x) (9.3.4)
is the fundamental solution of the heat equation, i.e., & — AE = 6(t, z).
Proof. Indeed, we have
& — AE = 0'(t)E(t,z) + 0(t)(E: — AE).

Whence, invoking Eqs. (9.3.1) and using properties (8.2.4), (8.2.2) and (8.2.8)
of distributions, we ultimately arrive at Eq. (9.2.19):

£ — AE = 5(t)E(t, z) = 6()E(0, z) = 8(t) ® (z) = 8(¢, ).

9.3.2 Derivation of the fundamental solution for the Cauchy
problem from the invariance principle

Lemma 9.3.1. The Lie algebra admitted by the initial value problem (9.3.1)
is spanned by the following operators from (9.2.18):

Xij, Zoi, Z1—nZ2, Y, i,j=1,.,n (9.3.5)
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Proof. Since the algebra L is admitted by the differential equation (9.2.17),
one should consider only the invariance of the initial condition. Here, the
initial manifold S is given by t = 0. Further, the invariance of the initial
data (9.3.1) presupposes, in particular, that the support of §(z), i.e., the point
z = 0, remains unaltered. Thus, Definition 9.2.1 requires the invariance of the
equations ¢ = 0 and z = 0. This requirement removes from the algebra L the
translation generators X;, X, and hence reduces (9.2.18) to

Xij) in) Zly Z2: Y.

The initial condition in (9.3.1) is invariant under the operators X;;, Zo;, and
Y. It is not invariant under the two-dimensional algebra spanned by Z; , Z,.
Therefore, we inspect the invariance test for the linear combination:

; 0 a
Z = '——. -— = .
(Z1+kZ,)|,_ == e +kuau , k= const
Under this operator, the variable © and the é-function are subjected to the
transformations: _
T~ u+aku, 6=4—and.

It follows, that @ — & = u — § + a(ku + nd) + o(a), and that

(- 3)|u=6 = a(k + n)é + o(a).

Hence, the invariance condition of (9.3.1) has the form k& + n = 0. Thus, we
arrive at operators (9.3.5).

Theorem 9.3.3. The fundamental solution of the Cauchy problem for the
heat equation with n spatial variables has the form

En(t,z) = (9.3.6)

1 2
e .
(2v/nt)

It is the only function E = u(t,z) which satisfies the initial condition (9.3.1)

and is invariant under the group of rotations, Galilean transformations and
dilations with the infinitesimal generators

Xij v Zoiy, Z1—-nZz, t,j=1,.,n (93'7)

Proof. We first notice that the functionally independent invariants of the
rotations are t,r, u. Then we write the restriction of the Galilean operators Zy;
to functions of these invariants as follows:

_gi(otd 0
Zo.—.’t(Zrar uau .

For these operators, the independent invariants are ¢ and p = uexp(r?/(4t)).
The last operator of (9.3.7) is written in these variables in the form:

7] 0
Zy—nZy = 2t5t——np‘a—p.
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It has the only independent invariant J = t"/2p = t"/?uexp[r?/(4t)]. We con-
clude that the general form of the invariant function E = u(t, z) is obtained
from the equation J = C, whence

2

u=i-e'57, t>0.

(vt)"

Letting here ¢t — 0, using the initial condition (9.3.1) and invoking Eq. (8.1.12),
we obtain C = (2/%)~". Hence, we arrive at (9.3.6).

Remark 9.3.1. The fundamental solution (9.2.22) for the heat equation is
obtained by substituting (9.3.6) into Eq. (9.3.4).

9.3.3 Solution of the Cauchy problem

Equations (9.2.22), (9.3.6), (9.3.3) and (9.2.3) yield the following results.

Theorem 9.3.4. The fundamental solution £ of the heat equation (9.2.17)
and the fundamental solution E of the Cauchy problem for the heat equation
have the form (9.2.22)

__6@t) =
€= B \/_) e
and (9.3.6) .
= —— e"%’
E(t! z) (2@)“ )

respectively. The solution to the Cauchy problem (9.3.2),
— Au =0, “|¢=o = uo(z),

with a continuous initial data ug(z) is given by the following formula:

ult,z / w(€) e~ de, ¢>0. (9.3.8)
(0= G Joe @
Consider the Cauchy problem for the non-homogeneous heat equation:
u — Au = f(t,z), u|t=0 = up(z), (9.3.9)

with a twice continuously differentiable function f(¢,z) (¢ > 0) and a continu-
ous initial data ug(z). The solution to problem (9.3.9) is given by

(T,f) e
u(t,z) = //" NoETE e_xf_q_dfd'r

(2\/_) / uo(g)e d£, t>0. (9.3.10)
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9.4 Wave equation

9.4.1 Preliminaries on differential forms

Let ¢ = ¢(z) be a differentiable function, where z = (z!,...,2"). The differ-
ential of ¢,

n
d¢ = ; %dz‘
is written in the compact form
d¢ = ¢idz’,
where ¢; = 0¢(z)/0z*. The following generalization of the differential is useful.
Definition 9.4.1. A differential 1-form is the expression

w = a;(z)dz’, (9.4.1)
where a;(z), i =1,...,n, are arbitrary functions.

If, in particular, the coefficients a;(x) are partial derivatives of a function
¢, then the 1-form w is a differential, namely, the differential of ¢ :

w = d¢.

Let S be a surface in the three-dimensional space (z,y, z). Denote by dS
the element of surface area, and by v = (v!,12,13) the unit outward normal
to dS, where v!,1? and 3 are the components of v along the z,y and z axes,
respectively. In the theory of surface integrals, the notions of oriented surfaces
and surface clements arc of common use. Namely, an oriented surface element
(known also as an element of vectorial area) is defined by

vdS = (v'dS, v%dS, 13dS).

Its components are the projections of the vector vdS to the coordinate planes

(y,2), (2,z) and (z,y), respectively, and are written in the following form (cf.
Section 1.3.4):

v'dS =dyAdz, v*dS=dzAdz, v3dS =dzAdy. (9.4.2)

This notation presumes that we use the orientation on dS in accordance with
the usual right-handed system of vectors dz,dy, dz. If one changes the orien-
tation, one exchanges y and 2z and replaces v'dS by —v'dS. Hence, dz Ady =
—v'dS, and therefore one should take dy A dz = —dz A dy, etc. Accordingly,
one can associate the exterior product dy A dz with the vector product of the
vectors dy and dz directed along the y and z axes, respectively.

In the case of n independent variables z¢, the generalization of the above
construction leads to a formal ezterior multiplication A obeying the rule

dr* Adz? = —dz’ Adz'  (in particular, dz' Adz' = 0). (9.4.3)
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Definition 9.4.2. A differential 2-form is the expression
w= Y a;(z)dz' Ada’, (9.4.4)
t,j=1

where ai;(z), i,j = 1,...,n, are arbitrary functions. In virtue of property
(9.4.3) of the exterior product, sum (9.4.4) can be reduced to the form

w= a;;(z)da’ Ada. (9.4.5)

i<y

Definition 9.4.3. A differential p-form (simply, a p-form) is written

2 Qi iy, (x)dz' A--- Adz's, (9.4.6)

1W< <ip
where z = (z',...,2"), dz = (dz!,...,dz"), and ai,...i,(z) are continuously
differentiable functions. The summation is extended over all values iy,...,i, =

1,...,n such that ¢) < --- < ip.

The exterior differential calculus concerns manipulations with differential
forms and is determined by a formal ezterior multiplication A obeying law
(9.4.3) and by the ezterior differentiation defined as follows:

dw= ) Za““ 2 dzd Adz' A - Adz. (9.4.7)

11 <<y j=1

According to (9.4.7), the differential dw of a p-form w is a (p + 1)-form. The
exterior differentiation and multiplication of forms obey the following rules:

d*w = d(dw) = 0, (9.4.8)
wAn= (-1 Aw, (9.4.9)
dwAn) =dwAn+ (-1)Pw Adn, (9.4.10)

where w is a p-form and 7 a g-form. If p = n, then any n-form is written
w = a(z)dz! A--- Adz", and its integral is defined by

/ w= / a(z)dz' - --dz™. (9.4.11)

Definition 9.4.4. A form w is said to be closed if
dw =0, (9.4.12)
and ezact if there exists a (p — 1)-form 5 such that

w=dn. (9.4.13)
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Equation (9.4.8) shows that any exact form is closed. The following state-
ment known as Poincaré’s theorem asserts that the converse is valid as well.

Theorem 9.4.1. A differential form w is closed if and only if it is locally exact,
i.e., Eq. (9.4.13) holds in a neighborhood of a generic point z.

Example 9.4.1. In the notation of exterior differential calculus, Definition
3.2.1 of an exact equation (3.2.3) means that the left-hand side

w = M(z,y)dz + N(z,y)dy

of Eq. (3.2.3) is an exact 1-form (cf. (9.4.1) with n = 2) i.e., w = d®. Invoking
(9.4.7) and (9.4.3), the differential of w is written

ON oM

w=(5 "3

Since Theorem 9.4.1 states that the exactness of w is equivalent to dw = 0, Eq.
(9.4.14) yiclds the classical condition (3.2.6) of exactness.

)dx Ady. (9.4.14)

The concept of an integrating factor discussed in Section 3.2.3 applies to
differential forms as well. Namely, we say that u(z) is an integrating factor for
a differential form w if d(suw) = 0. According to Section 3.2.3, an integrating
factor exists for any 1-form.

The exterior differential calculus allows one to extend three classical integral
theorems formulated in Section 1.3.4 to higher dimensions as follows.

Theorem 9.4.2. Let V be a p-dimensional manifold (e.g. V is a p-dimensional
domain in an n-dimensional Euclidean space R™, p < n) with the boundary
0V, and let w be a (p — 1)-form. Then the following Stokes’ formula holds:

/ w=/ dw. (9.4.15)
v \4

Let us verify that Eq. (9.4.15) encapsulates the Green, Stokes and diver-
gence theorems as particular cases.

Derivation of Green’s theorem. In this case, V is a two-dimensional domain
in IR2. We consider a 1-form

w = P(z,y)dz + Q(z,y)dy. (9.4.16)
The exterior differentiation (9.4.7) yields
opP oP 0Q 0Q
dw=—dzA — — —
amdz dx+6ydyAda:+axda:/\dy+aydy/\dy,

whence using property (9.4.3) of the exterior multiplication one obtains

dw:(a_Q_f"f

5z By ) dz A dy. (9.4.17)
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Substituting (9.4.16) and (9.4.17) into (9.4.15), invoking definition (9.4.11) of
integrals of differential forms, one arrives at Green’s equation (1.3.16):

/av P(z,y)dz + Q(z,y)dy = /v (%3— - Z—P) dzdy.

Derivation of Stokes’ theorem. Let V be a two-dimensional domain in R?
and let

w = P(z,y,2)dz + Q(z,y, 2)dy + R(z,y, z)dz. (9.4.18)
Applying the exterior differentiation (9.4.7) and invoking that

drAdz=dyAdy=dzAdz=0

one obtains

dw = gfdy/\da:-ra dzAdz + -—de/\dy

Oy 0z
+6—deAdy+?dz/\dz+%;dy/\dz,
or
+(%{—%Q>d Adz +(%—Z—R)d Adz. (9.419)

Substituting (9.4.18) and (9.4.19) into (9.4.15) one arrives at Eq. (1.3.17).

Derivation of the divergence theorem (dimV = 3, V c R3). Rewriting the
left-hand side of Eq. (1.3.18) by using Eqs. (9.4.2), we consider the following
2-form

w = Aldy Adz + A%dz Adz + A%dz Ady = (A - v)dS. (9.4.20)

Applying differentiation (9.4.7) and invoking that, e.g., dy A dy A dz = 0, one
obtains

1
dw = gA—da:/\d /\dz+?-—dy/\dz/\dz+gidz/\dz/\dy
oz Sy 0z
Using property (9.4.9), one can write
dw =divAdz Ady Adz. (9.4.21)

Substituting (9.4.20) and (9.4.21) into (9.4.15) one arrives at Eq. (1.3.18).
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9.4.2 Auxiliary equations with distributions

Consider a surface in R™ given by P(z) = 0 with a continuously differentiable
function P(z). We assume that VP # 0 on the surface P(z) = 0.

Definition 9.4.5. Leray’s form ([24], Ch. IV, §1) on the surface P(z) = 0 is
an (n — 1)-form w satisfying the following equation:

dPAw=dz! A---Adz".
It can be represented in the form (see [24])

(dzr A AdETYAATTI AL AdZ®

w=(-1) P,

(9.4.22)

for any fixed i such that P, = P(z)/0z* # 0.
The Heaviside function 8(P) on the surface P(z) = 0 is defined by

1, P20,
(P) =
0, P<o.

It can be identified with the distribution
(8(P), ) = / ¢(z)dz. (9.4.23)
P>0
Dirac’s é-function 6(P) on the surface P(z) = 0 is defined by

@Pre) = [ o (9.4.24)
P=0
where w is Leray’s form. These two distributions are related by Eq. (8.2.4):

¢'(P) = 6(P). (9.4.25)

Using the above distributions, we will formulate and solve auziliary dif-
ferential equations, namely first-order involving distributions. They will be
employed for solving the Cauchy problem for wave equations. We start with
the simplest equation of this kind. Namely, let us consider the equation

zf' =0 (9.4.26)

with one independent variable z. Its only classical solution is f = const. It has,
however, more solutions in the space of distributions. Indeed, taking a(z) =z
in Eq. (8.2.2), a(z)d = a(0)4, one obtains

zé(z) = 0. (9.4.27)
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Invoking that 6'(z) = 8(z), where 6(z) is the Heaviside function with one
variable z, we conclude that Eq. (9.4.26) has, in distributions, the solution
f = 6(z) different from f = const. Since Eq. (9.4.26) is linear, the linear
combination

f=0Ci8(z) + Cy (9.4.28)

provides a distribution solution involving two arbitrary constants C, and C,.
The following theorems generalize equations (9.4.27) and (9.4.26).

Theorem 9.4.3. Dirac’s é-function (9.4.24) satisfies the following equations:
P§(P) =0, (9.4.29)
PS™(P) + mé™-D(P) =0, m=1,2,.... (9.4.30)
Proof. Using Definition (9.4.24), one has
(P&(P), @) = (6(P), Py) = o Pow =0,

i.e., Eq. (9.4.29). Furthermore, assuming that 8P/dz* # 0 (for some ¢ it must
be true in view of the condition gradP # 0), one obtains from (9.4.29), by
differcntiating it with respect to z?, the equation

9P 0P

which upon division by 8P/dz* yields Eq. (9.4.30) with m = 1. The consecutive
differentiation leads to Eqgs. (9.4.30) with m = 2,3,... thus completing the
proof.

Theorem 9.4.4. The first-order differential equation
Pf'(P)+mf(P)=0 (9.4.31)
has the general solution in distributions given by
f=C6(P)+C, for m=0, (9.4.32)
f=C8™" NP+ CoP™™  for m=1,2,... (9.4.33)

Proof. Use Theorem 9.4.3 and note that f = P™™ is the classical solution to
Eq. (9.4.31). For more details, see, e.g. [8].

9.4.3 Symmetries and definition of fundamental solutions
for the wave equation

Consider the wave equation with several spatial variables (see Eq. (2.6.18)):

Uy — Au = 0, (9434)
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where A is the n-dimensional Laplacian in the variables z = (z!,...,z").
The symmetries of the wave equation (9.4.34) comprise the finite-dimensional
Lie algebra spanned by (cf. generators (7.3.49) of the Lorentz group)

I N B S S
X"“ﬁ Xi_%’ X"""ax- xaxi’ XO'_t6z5+x ot’
_ 8 2 _ a (42 2 i_ _ o}

Z,=t 3_+ azi,32—u-6—u,Yo—(t + |z )6t+2tx3‘ (n l)tu—au,

i 0 i34 (42 2y 5ij) 0 i, 0
Y,-=2t:z5£+(2a:z’+(t |a:|)5’)6] (n—l)xu%,

where 4,5 = 1,...,n, and the infinite-dimensional algebra with the generators

(9.4.35)

X, =T(t, :c)c% ,

where 7(¢, z) is an arbitrary solution of the wave equation. We will let 7(t,z) =
0 and use only generators (9.4.35).
Equation (9.2.2) defining the fundamental solution £(¢, x) for the wave cqua-
tion has the form
gu - A£ = J(t,a:). (9436)

Let us give the definition of the fundamental solution of the Cauchy problem
for the wave equation similar to that for the heat equation. Note that the
general Cauchy problem with arbitrary initial conditions:

uu—Au=0, t>0,

Ul,g = u0(2), e, o =w(z) (9.4.37)
can be reduced to the following particular Cauchy problem:
Uy —Au=0, wu|,_,=0, g,y = h(z). (9.4.38)

Indecd, one can readily verify the following statement.

Lemma 9.4.1. Let v(t, z) and w(t, z) be the solutions to the particular Cauchy
problem (9.4.38) with h(z) = ug(z) and h(z) = u;(x), respectively. Then the

function 5
t
u(t,z) = w(t, z) + —% (9.4.39)
solves the general Cauchy problem (9.4.37).

Definition 9.4.6. The distribution E(t,z) is called the fundamental solution
of the Cauchy problem for the wave equation if it solves the following particular
Cauchy problem:

Ew-AE=0(t>0), E|,_,=0, E|,_,=26(z), (9.4.40)

where

= I _ ... OE(t,z)
Bl = Jim, E(t,2) Bl g = Jim, —5—
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Theorem 9.4.5. Let E(t, ) be the fundamental solution of the Cauchy prob-
lem. Then the solution to the Cauchy problem (9.4.38) is given by the convo-
lution of F and the initial function h(z) :

u(t,z) = E x h(z).

Remark 9.4.1. Let E(t,x) be the fundamental solution of the Cauchy prob-
lem. Then £ = 6(t)E(t,z) is the fundamental solution of the wave equation,

ie., & — AE = §(t.z).
9.4.4 Derivation of the fundamental solution

Proceeding as in Section 9.3.2, Lemma 9.3.1, one arrives at the following,.

Lemma 9.4.2. The Lie algebra admitted by Egs. (9.4.40) for the fundamental
solution is spanned by the following operators from (9.4.35):

Xi, Xoo, Zi+(1-n)Z2, Yo Vi, 4,j=1,.,m (9.4.41)

We will derive here the fundamental solution of the Cauchy problem for the
wave equations with odd n. The fundamental solution for the wave equation
with even n can be obtained by means of a simple method known as Hadamard'’s
method of descent presented in /12] (see also [4], [14]).

Theorem 9.4.6. The fundamental solution of the Cauchy problem for the
wave equation (9.4.34) with an odd number of spatial variables has the form:

m:%aﬂ—ﬁ) for m=1, (9.4.42)
E; = -21; §(t2-r?) for n=3, (9.4.43)

1 n-3
E,=——06(*) (2 =72 for n>3. 9.4.44

It is determined uniquely by the invariance principle. Namely, E(t,x) given by
(9.4.42)--(9.4.44) is the only distribution which solves the particular Cauchy
problem (9.4.40) and is invariant under the group of rotations, Lorentz trans-
formations and dilations with the infinitesimal generators

X;’j , Xoi, 41+ (1 -n)Z,, i,j=1,..,n (9.4.45)
Proof. The generators X;; , Xo; of the rotations and Lorentz transformations

have two independent invariants,  and p = t2 — r2, where r = |z|. We restrict
the dilation generator from (9.4.45) to these invariants:

a
Zi+(1-n)Zy= Zp% +(1- n)ua (9446)
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and look for invariant distributions of the form u = f(p). The invariance test
under operator (9.4.46) yields the ordinary differential equation

2pf'(p) + (n— 1)f(p) = 0.
We set n = 2m + 1 and rewrite it in form (9.4.31):
pf'() +mf(p)=0, m=0,1,2,....

Its general solution is given by (9.4.32), f(p) = C16(p) + C2, when m = 0 and
by (9.4.33), f(p) = C16(™~1)(p) + Cap~™, when m # 0. Thus,

u=C16(p) + C, (n=1),
u=Ci" ) (p) +Cop' T (n2>3).
The initial conditions in (9.4.40), together with the known equations
. ( n -3] — . _
lim 877 (p) = 0, lim 6(p) =0,

lead to

Hence, we have obtained the fundamental solutions (9.4.42)~(9.4.44).
Note that using Eq. (8.4.8) one can write (9.4.43) in the form

Ey= 4:17 [6(t—-r)—6(t+r)].

9.4.5 Solution of the Cauchy problem

The solution to the Cauchy problem for the one-dimensional wave equation is
given by (5.4.11). Using the fundamental solution, one can obtain the solution
for the wave equation with z = (z!,...,z"). We formulate the result for n = 3
and n = 2.

Theorem 9.4.7. The solution to the Cauchy problem

uy — KPAu = f(t,7), ul,_;=uo(z), wl,_,=u(z) (9.4.47)
is given by
1 [1 a1
u(t,2) = =3 [? / ui(§)dS + = (; / uo(ﬁ)ds)
l€—z|=kt |E—z|=kt

+ / f(t_‘gz“",g) de I}’ when n=3, (9.4.48)

-
[§—z|<kt K
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u(t,z) = L[ uy (§)dé L9 / wo(€)de
] 2 k = = - ¢ 3
" 1§ —z| <kt == alt atlf-—z|<kt k22 — € — z|?
t
f(r,€)dgdr B

§—z|<k(t—7)

9.5 Equations with variable coefficients

The invariance principle furnishes an effective method for deriving fundamen-
tal solutions for linear equations with variable coefficients. As an example, We
present here the fundamental solution for the Black-Scholes equation obtained
by using the invariance principle. One can find in [20], Chapter 3, the ap-
plication of the invariance principle to hyperbolic equations with variable coe-
flicients, namely to the wave equations in curved space-times with non-trivial
conformal group.

The fundamental solution of the Cauchy problem for the Black-Scholes
equation (2.4.15) is a distribution E(t,z;tg,zq) satisfying the following initial
value problem:

E.+ %A%"’Eu +BaE, -CE=0(t<t), E|__, =d@-g0). (951)

Using the invariance principle, the following fundamental solution has been
obtained (sec [15], English or Swedish edition, and the references therein):

. _ (nz —Inzg)* K? _
B tane) = o | - i (g +0) 0
K A?
—Zi(lﬂl‘ - ln:co)] , K= B - T . (952)

Problems to Chapter 9

9.1. Obtain the fundamental solution (9.2.14) of the Laplace equation in two
variables, uzz + uyy = 0, by means of the invariance principle.

9.2. Prove property (9.4.8) for the 1-form (9.4.16) with two variables.
9.3. Prove property (9.4.8) for the 1-form (9.4.18) with three variables.
9.4. Prove property (9.4.8) for an arbitrary p-form (9.4.6).

9.5. Prove property (9.4.9).

9.6. Prove Eq. (9.4.25).
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9.7.

9.8.

9.9.

9.10.

9.11.

PROBLEMS TO CHAPTER 9

Prove Theorem 9.3.1, i.e., verify that if E(t, z) is the fundamental solution
of the Cauchy problem for the heat equation, then the convolution

u(t2) = Eruo= [ uo@Blt.z - )y
Rﬂ
solves the Cauchy problem

uy — Au =0, u|t=0 = ug(z).

Prove Theorem 9.4.5, i.e., verify that if E(t,z) is the fundamental solu-
tion of the Cauchy problem for the wave equation, then the convolution
u(t,z) = E = h solves the Cauchy problem (9.4.38):

Ut — Au = O) ult=0 = 0) utlt:O = h’(x)
Derive solution (9.4.48) of the Cauchy problem for the three-dimensional

wave cquation.

Derive solution (9.4.49) of the Cauchy problem for the two-dimensional

wave equation by applying the method of descent to solution (9.4.48) of
the three-dimensional wave equation.

Prove that function (9.2.21),

u = Co(t) e‘%
(ve)"

satisfies Eq. (9.2.19) precisely in the case C = (24/x) ™.



Answers

Chapter 1
1.2. () arcsinh = In(s + Va7 +1), (i) arctanhz = L In : 2 (lzl <),

(iii) arccoshz = In(z £ Va2 - 1) (x> 1).
14. 21 =-1, 22 =2+1, 23 =2 —i.
1.5. We have

41 81
/ sin(kz) sin(mz)dz = cos(kz) cos(mz)dz =0, m #k,
-7 -
/ cos(kz) sin(mz)dz =0, m,k=0,1,2,...,
1 214
/ sin?(kz)dz = / cos’(kz)dz=n, k=1,2,....
- -

1.8. Functions (ii) are functionally independent whereas functions (i) and (iii)
are functionally dependent.

1.9. (sinhz)’ = coshz, (coshz) =sinhz, (tanhz) =1/cosh’z.

1.10. Functions (i), (iv) and (v) are linearly independent whercas functions
(ii) and (iii) are linearly dependent.

1.11. it = e™™/2,
1.12. V.2 =3, Vxz=0.
1.13. We have
(i) Vx(V¢)=0, (ii))V-(Vxa)=0,
(i) V-(axz)=x-(V x a),
(iv) V x (V x @) = V(V - a) — Va,
(V) V- (¢VY -9V o) = dAyY — pAs.
1.14. We have

/(¢A1/)—1/)A¢)d:cdydz=/ (VY — PV e)-vdS.
\'’4 av

327
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1.15. We have
o+ Yy Pzz+ 2y 0ay + Y 2oy + 30y

- _ Pz + y"‘/’y —"n _ Yr + ylwy Ve + 2y/7r/"zy 3 y,2'¢’yy + y”d)y
Pzt Yoy’ (pz +¥'py)?

1.16. 7' = —e "y 2y, 7" =(yy +2y° - yy")/(¥*e*).
1.17. ylll — (3y”2 — y:ym)/yrs_
1.18. The three solutions of the equation w® + 1 = 0 are

1
w1=§(1+i\/§), wz = —1, w3=%(1-i\/§).

1.21. The spherically symmetric solution is

¢(1’) = % + Ca.

1.25. The equation for circles

=0, y= y(z))

32112
" 2 = 0, z=z(t),

are connected by the complex transformation z = 2 + it, y =t + iz2.
1.29. I'(-1/2) = —2y/n.

1.30. /0 ¥ eds = V7i/2.
Chapter 2
2.1. The corresponding Euler-Lagrange equations are:
(i) uw — Au= f(t,z,y,2), see Eq. (2.6.16) with k =1,
(i) 2uiz + uzUzz — uyy = 0, see Eq. (2.3.37),
(iii) e + puzzzz = f, see Eq. (2.1.4),
(iv) et + Uzzzz + 2Ugayy + Uyyyy = f(t,2,9), cf. Eq. (2.6.28).

2.6. P =aCe™/(8Ce™ —1).

2.7. Equations (2.3.30) and equation 9 from (1.3.3) yield: D;(div F) = div E;
=cdiv(V x H) = 0, Dy(div H) = div H; = —cdiv(V x E) = 0.
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Chapter 3
3.1. (iv) y=Ce® — (2 +22+2), (v)y=e"*[Cs— [(z+2?)e1%dz].
3.2, (vi) y=C1z - In|Cz — f(z + 22)e%r"dg]| .
3.3. (iii) The general solution of the equation " +y =0 is

y=Kie "+ e*/? [Kz cos (? :z:) + K3sin (g z)], K; = const.,1=1,2,3.

3.4. The equation y’ + y? = Cz~2 is invariant under the dilation Z = az,
¥ =a !y and is the only homogeneous equation of the form y’ + y? = C z°.
3.11. The solutions are:

1+smz

(i) y=—cosz lnl ’+Cl cosz + Cysinz.

Hint : Use the integral/d—z ==ln|l+ﬂ|.
cosz

cosz
(if) y = cosz In|cosz| + zsinz + Cy sinz + Cy cos .

(iii) y = sinz In|sinz| — zcosz + C; sinz + Ca cos x.

3.13. The general second-order equations f(z,y,¥’,3y”) = 0 reducible to the
form g(z,y,y')y"” = 0 through differentiation, has the form

(az® + bz + c + ky)y" - l;-y"" — (2az + b)y' + 2ay = 0,

where a, b, ¢, k = const. Upon differentiation, this equation becomes
(az? + bz +c+ky)y” =0

and hence reduces to the linear equation "’ = 0.

3214 The standard substitution ¢ = Inx reduces the equation in question to
((il_t? + %g— + 4y = 0. The characteristic equation A2 + A + 4 = 0 has the roots
-1+iV15

3 - Hence, the fundamental system of solutions:

s (VDB 4 (VB
Y1 =¢€ 2 sin Tt’ Y2 =€ % cos Tt.

Thus, the general solution to the equation in question is

Y= % [Cl sin (-\/%_5 ln:c) + C2 cos (-\/%—5 lna:)]

A2 =

3.15. Multiplying the equation in question by z2, we obtain Euler’s equation
z%y" —3zy’ + 3y = 0 and integrate it by the standard change of the mdependent
vanable t = Inz. Simple calculations give the solution y = Cyz + Ca23.



330 ANSWERS

Chapter 4
4.9. The system is not complete. Cf. Example 4.5.1.
4.13. u = ¢(z — zy).

Chapter 5

5.9. The equation s —T?uz, = 0 is mapped to the telegraph equation vy +v =
0 by the transformation

£E= i-(t +Inz), 7= %(t —Inz), u(t,z)=vzv(n).

5.13. Since the initial condition involves only a trigonometric function, sinz,
the solution can be obtained by taking only one term in (5.5.13). Invok-
ing that | = 27, we let wu(t,z) = [acos(kt/2) + bsin(kt/2)]sin(kz/2). Dif-
ferentiating in ¢t and using the condition u,(0,z) = 0, we obtain b = 0.
Hence, u(t,z) = acos(kt/2) sin(kz/2). The initial condition ult=9 = sinz
is written asin(kz/2) = sinz, whence @ = 1, k = 2. Thus, the solution is
u(t,z) = cost sinz.

5.14. u(t,z) =sint sinz.
5.15. Formula (5.5.26) is written

ck = ! 2Rsin:z: sinkxdz
RV 2
Hence, ¢; = ¢c3 =c4 =--- =0, and
2n 2 1
Cp = — sin®zdzr = —n = V.
vV Jo v
Thus, series (5.5.26) for the solution has only one term:
1 . .
u(t,z) = 7 coe~ (@20t ging — ot ginz.

Alternative solution. Seek the solution in the form u = T(t)X(z) and
satisfy the boundary and initial conditions. Substitution in the heat equation
yields the first-order ODE T + AT = 0 for T'(¢) and the second-order ODE
X" +AX =0 for X(z). The boundary conditions are written X (0) = X (2n) =
0. The boundary value problem X” + AX = 0,X(0) = X(2n) = 0 yields
A = (k/2)?, X(z) = C, sin(kz/2), k = 1,2,.... Now, we solve the equation
T' + (k/2)?T = 0 and obtain T'(t) = Cze~*/2"t_ Finally, we have

u = Ce~ /2t gin(kz/2),

where C = C;C; = const. The initial condition yields C sin '“7” = sinz, whence
k =2,C =1, and we arrive at the solution u(t,z) = et sinz.

5.16. The problem is ill posed since the consistency conditions (5.5.21) are not
satisfied.
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Chapter 6
6.1. No.

6.2. The most general invariant equations are:
1
Vo' =& (_y_ " 2 AN
@y z), y IF(z,y),
yl
(i) ¥+ P(z)y=0, o' =yF (m, ;) ;

(i) ¥ = 286, ¥ = 2 Flu,ay).
6.3. The third-order equation

2, m

e =vQ@uu” - u'?), v=const.#£0
for u = p(z) can be reduced to the first-order equation
pss’ = s(p—s) +v(2s — p)
for s = s(p) by setting first ' = p(u) and then 7 = Iny, dp/dr = s(p).
6.4. Equation (P6.2) (i), 3" + (y'/z) — e = 0, has two symmetries

0 0 0 0
Xl—zlnza—2(1+ln:c)%, Xg—.’ta—2a—y'

Equation (P6.2) (ii), ¥’ — (v'/z) + e¥ = 0, has onc symmetry

Xx=z2 0.

6.5. Equations (P6.3) (i), (ii), (iii) and (vi) are linearizable, while (iv) and (v)
are not linearizable.

6.6. (i) The equations X3(t) = 1, Xp(u) =u yield t =Ilnz, v =y/\/z.
(ii) Equation (6.5.6) is written in the canonical variables t,u in the form
!
N N
VY EZ T
(iii) The substitution ' = p(u) yields u” = pp’, and hence reduces the
above equation to the first-order equation
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6.7. In the case of arbitrary parameters k and w, the solution is

y = AV1 + w?z? cos(C — p arctan(wz)),
where p = /1 + (k/w?), and A and C are constants. In particular, when k =

3w? the solution can be written, invoking the elementary formulae arctans =
arccos(1/v/1 + s2) = arcsin(s/V'1 + s2), in the form
1 - w?2? 2wz
=A| ———=cosC+ ————sinC) .
<\/1+w2z2 V1 +wiz?
6.10. The first-order equations admitting the operator

X = \/_a: 4—1,16a

dnyy‘/§
dz =z z |

The solution is given implicitly by quadrature

du
/—-@(u)_u=t+a

6.11. The double invariant first-order equation has the form

have the form

y'=C%, C = const.

6.12. The double homogeneous second-order equation has the form

n_Y Ty
y zQH(y)

6.14. Looking for polynomial solutions y = Ag + A1z + A22% + .-+ + Apz™ of
the equation y” = zy’ — 4y, one can verify that such a solution exists for n = 4
and is given by y = z* — 622 + 3. Applying one of methods of Section 6.5.5, one
obtains (cf. formula (6.5.29) with z(z) = z* — 622 + 3) the following solution
to the equation in question:

(:L' — 622 +3) I:CI/M—2+3)2,dZ+Cz].

6.16. The algebra L belongs to type II. Therefore, we solve equations X; (t) =
0, X1(u) = 1;X2(t) = 0, X2(u) = t and obtain the canonical variables ¢t =
y/x, u = —1/z. Since the variable ¢ involves the dependent variable y, it
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can be a new independent variable only if one excludes the singular solutions
of equation in question along which ¢t is identically constant. These singular
solutions are the straight lines, y = Kz, K = const. In the variables t,u
our equation is written u” = 2, whence u = t2 4+ C;t + C,. Substituting the
expressions for ¢ and u, we have y2 +Cyzy+Co2%+z = 0. Solving this equation
with respect to y and setting A = —C; /2, B = A? — C;, we obtain the general
solution y = Kz, y=Az+ vBz?-1z.

Since the equation in question admits an L of type II, it follows from Table
6.5.2 in Section 6.5.4 that it is lincarizable (indeed, it is mapped to the equation
u’ = 2), and hence admits an eight-dimensional Lie algebra.

6.17. (i) y=—§+,/§z2—z.

6.18. The general solution of Eq. (6.6.53) has the form (see (6.6.56)):

1
v= Kiz+ Kpz2 + K323’

K; = const.

6.19. It follows from Eqs. (6.6.82), (6.6.83) and Problem 3.3(iii) that the
general solution to Eq. (6.6.74) is given implicitly by

z =KV +e¥/? [Kg cos (-? y) + K3sin (? y)], K; = const.

Chapter 7

7.2. The infinitesimal symmetries of the linear heat equation comprise the
infinite-dimensional algebra with the generator

7]
X-, = Ta—u y
where 7 = 7(t, z) is an arbitrary solution of the heat equation, and:

(i) the 6-dimensional Lie algebra spanned by

8 8 a @ 0
Xi=g Xe=go, Xa=dgt+zg, Xe=ug.,
_ 1s) 0 _28 6___1_ 9 i
X5 = Zt% - xu% , Xeg=t o + t:c—-—ax 4(2t +z )‘uau

for the one-dimensional heat equation uy — uzy = 0,
(ii) the 9-dimensional Lic algebra spanned by

) 3 9 o & . 8 . @

Xl:‘&,XQ—_zyX3__y?X4_2t&+x£+y-a_g’Xs_uau’
8 8 13} 0 0 a0
X6=ya—x—$5;j,X7—2ta—QU%,Xs—2ta_y_yuau’
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o 0 0 1 o
2 2, .2
=2 +tr— +ty— — ~(4t+2* + ¥ u—
Xo=t'g +tog +tyg — 4l Y3y
for the two-dimensional heat equation u; = Uzz + Uyy,

(iii) the 13-dimensional Lie algebra spanned by

9 9 4o ., & , .98 9 8 8
Xi=gp Xa=go Xa=gn, Xa=go Xs =2t ag V5, * %5
2 o 9 a 2 8 a8
Xe=ug, Xi=ygz-—ag., Xs=25 —yz, Xe=1g -i5.

‘

X0 =2t— —zu

0 1s) d d
i — 92 yy— = %— — zu—,
p 3’ X1 =2t yuau , Xi2 zu

oy 0z ou

9 1 2, .2, .2 ﬁ
ot oz 0z 4(6t+a: Tyt )“au

for three-dimensional heat equation u; = uzz + uyy + u...

7 /] 0 17}
X3 =t?= + tz— +ty5§ +tz

7.3. The operator X = % + kus‘% has two independent invariants: z and
v = ue—*t. Hence, we look for the invariant solutions in the form v —= ¥(x),
whence u = 1(z) e*. Substituting in the heat equation, we get ¢ — kv = 0.
If k < 0, we let k = —a? and obtain ¢ = Cj cos(az) + Casin(az). Then the
invariant solution is

u = [C} cos(az) + C; sin(am)]e"’%.

If k > 0, we let k = 82 and obtain ¢ = Cje?t + Cye~Pt. Then the invariant
solution is ,
u=(Cre? + Coe™Pt)e .

7.4. (i) Procceding as in Problem 7.3, one can show that the invariance under
X = % + ku% yields u = ¢(z,y)e*’. Substituting into the heat equation
Up = Ugz + Uyy, We get Yop + Py = k.

(ii) The two-dimensional Lie algebra spanned by X,Y has the invariants
r = /z2 + y? and v = ue~*. Hence, we look for the invariant solutions in
the form v = ¢(r), whence u = ¢(r)e*t. Substituting into the heat equation
and multiplying by r, we obtain the equation r¢” + ¢’ — kr¢ = 0. Let us
assume that k < 0. Then setting k = —a? and ¥ = ar, we arrive at the
Bessel equation (see Section 3.3.5) for the Bessel function Jy(7) of order zero:
7" + ¢ + ¢ = 0, where the “prime” denotes the differentiation with respect
to 7. Hence, ¢ = Jy(7) and the invariant solution is given by

u = Jo(ar)e ",

7.8. We have: Ts = 2tE — mz - v, Tg = 2t°E + mz - (x — 2tv), where
E = Zv|? + kr~% is the energy.

7.10. s=n.
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7.11. One of simple solution is

z z y
A =20, .- :
! r( y 422 y2+22)

A more symmetric solution is

a- (R y) 220 =) ya =)
5 (T T e )

7.14._The first prolongation of X, is obtained by adding to the original oper-
ator X, the following terms:

a
(242 2\2 | 3.3 342
(zv + (v*)* + 2%0 +(v))6v‘

+(2.1: % +vle? - xzvl) 662 (22: 3 + o' - 1:"1.;‘)‘,;33 .

7.15. After introducing the variable y = In|z|, the Black-Scholes equation
becomes u; + 3 A2uyy + Kuy — Cu =0, where K = B — (A2/2) (cf. (9.5.2)).
7.16. The first equation, &, = 0, yields that £ = £(z). Then the fourth equa-
tion, &;; = 0, becomes £/(z) = 0, whence £ = K + Kpz, where K, K, =
const. Likewise, we obtain from the third equation, n, = 0, that n = n(y).
Finally, substituting the expressions for £ and n into the second equation,
3(ny +n) — 26, = 0, we obtain the first-order linear non-homogeneous ordi-
nary differential equation ' + 7 = % Kg, whence n = —K 2 + K3e~¥. Denoting
K3 =C,, Ky =C,, 3C3 = K;, we have the followmg general solution of the
over-determined system in question: £ = C; +3C3z, n = 2C5 + Cie7 V.

Chapter 8
8.1. We have

(i) (¢'(z), ¥(2)) = (8(z), —¢'(z)) = —¢'(0),
(ii) (8'(z — o), (z)) = (8(z — 20), —¢'(2)) = —¢'(z0)-

8.2. We have (see Section 8.1.3)

- 2ex
) i ez + o2

= -8, ) Jim [ icoeag = 208a)

(i) Yim £%e'7de = —2né"(x).
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Chapter 9

9.11. We have for function (9.2.21),

CAu=@@) S % _C %) A 7).
u — Au=¢'(t) (\/i),,e +4(¢) [((\/Z)"e T‘)t A((\/Z)"e )]
Invoking that '(t) = é(t), F(t,z)d(t) = F(0,z)d(t) and that

o g} _afC ou)_
((«f)"e ) A((ﬁ)" ) R

we obtain, using Eqs. (8.1.12) and (8.2.8),

w — Au=5(t) lim -T = C2vVm)™ §(t)é(z) = C(2VmE)" 6(t, z).

o,
o A

Hence, Eq. (9.2.19) requires that C(2v/xt)" = 1.
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Cardan’s solution for cubic, 7
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Chaplygin equation, 88
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Composition of transformations, 181
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damping, 60

gravitational, 51

of integration, 16, 23

of motion, 274
Convolution, 297

of distributions, 297

of functions, 297
Cubic equation, 6

Cardan’s solution, 7

discriminant, 7

d’Alembert’s formula, 169
d’Alembert’s solution, 160
d’Alembert, J. (1717~1783), 46
Darboux equation, 166
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of determinants, 32
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partial, 14
total, 32
Descent method, 323, 326
Determining equations, 201
Differential, 15
invariance of, 16
Differential equation, 45
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partial (PDE), 46
solution of ODE, 91
Differential form, 316
p-form, 317
1-form, 316
2-form, 317
closed, 317
exact, 317
Leray’s form, 320
locally exact, 318
Differential function, 34
space A, 34
Diffusivity, 73
Dilation (scaling), 8
Dirac equation, 69, 285
conjugate, 285
conservation law, 286
Lagrangian, 285
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Dirac matrices, 69
Dirac’s 4-function, 294
as a limit, 294
on a surface, 320
Dirac, P.A.M. (1902~1984), 291
Direct product, 296
Discriminant, 5, 7, 11
for general cubic, 7
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invariant description of, 7
Distribution, 293
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é-function, 294
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direct product, 296
group transformation, 304
infinitesimal transformation, 304
linear transformation, 302
multiplication by function, 295
Divergence theorem, 31
derivation of, 319
Driving shafts, 64
“beating” and collapse, 64, 66

Eigenfunctions, 174
Eigenvalues, 174
Einstein’s formula, 284
Electrodynamics, 68
Electromagnetic waves, 68
Elementary functions, 3
basic, 3
Ellipse, 9
area of, 9
Elliptic equation, 155
standard form, 158
Elliptic integral, 63
Equation, 5
adjoint, 151
Bernoulli, 106
Bessel, 119
Black-Scholes, 76, 289
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Burgers, 75 van der Pol, 67

Chaplygin, 88 wave, 81

characteristic, 113, 154 Equivalence transformation, 103
Darboux, 166 for hyperbolic equations, 161
differential, 45 for linear equations, 110
Dirac, 69 for the Riccati equation, 103
double homogeneous, 95 Equivalent, 10

elliptic, 155 by function, 110
equivalent, 10 curves, 10

Euler, 123 equations, 10, 104, 110, 161
Euler-Lagrange, 40 functions, 21

exact, 99 Error function, 4

first-order linear, 106 Euler’s ansatz, 113, 122, 219
fluid dynamics, 69 Euler’s equation, 95, 123, 220
frame of, 35 Euler’s formula, 19

heat, 46 Euler’s method, 165
homogeneous, 93 Euler’s number, 2

Hopf, 142 Euler, L. (1707~1783), 39
hyperbolic, 155 Euler-Lagrange equations, 40, 85
hypergeometric, 119 Exact equation, 99, 194
Korteweg-de Vries, 75 Existence theorem, 92, 93
Laplace, 31 for systems, 124

Lie, 182 Exponential function, 3

linear, 106, 120, 135, 235 complex, 20

linearizable, 215 Exponential map, 183
Lotka-Volterra, 47 Exterior, 316

Maxwell, 68 differential calculus, 317
mixed type, 88 differentiation, 317
Navier-Stokes, 71 multiplication, 316
non-homogeneous, 107 Extremum, 40

nonlinear, 84, 179

nonlinear heat, 74 Fad de Bruno’s formula, 33
nonlinear wave, 87 First integrals, 126

of ellipse, 9 independent, 127

ordinary differential (ODE), 45  First-order linear equation, 106
parabolic, 155 homogeneous, 106

partial differential (PDE), 46 non-homogeneous, 106
quadratic, 5 Fluid, 70

quasi-linear, 136 compressible, 70

Riccati, 102 perfectly conducting, 71
second-order linear, 108 viscous, 71

self-adjoint, 152 Fluid dynamics, 69

separable, 99 shallow water flow, 70

telegraph, 68 viscous incompressible flow, 71
Tricomi, 88 Formal solution, 175
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Fourier series, 175
Fourier’s law, 72
Fourier’s method, 172
Fourier, J.B.J. (1768~1830), 46
Frame of differential equations, 35
Function, 3

differential, 34

elementary, 3

error, 4

exponential, 3, 20

hyperbolic, 4
Functionally independent, 21
Fundamental solution, 308

for heat equation, 312

for Laplace equation, 311

of Cauchy’s problem, 313
Fundamental system, 109

linear equations, 109, 121, 129

nonlinear equations, 236

Galilean group, 282
Galileo Galilei (1564~1642), 49, 61
Gamma function I'(z), 4
Gas dynamics, 70
short waves, 88
Gas flow, 70
isentropic, 70
non-steady-state, 70
subsonic, 158
supersonic, 158
transonic, 70, 158
Gauss, C.F. (1777~1855), 31
Gauss-Ostrogradsky theorem, 31
Generalized function, 293
regular, 293
singular, 293
Generator, 182
Geometric figures
equal, 8
similar, 8
Gravitational constant, 51
G =6.67-1078< 51
s
Green'’s theorem, 30
derivation of, 318
Green, G. (1793~1841), 30

INDEX

Group, 181
generator, 182
one-parameter, 181
Guitar string, 170

Hadamard, J. (1865~1963), 291
method of descent, 323
Hamilton’s operator, 29
Hamilton’s variational principle, 38
Hamilton, W.R. (1805~1865), 29
Harmonic oscillations, 61
frequency, 62
period, 62
Heat diffusion, 72
Fourier’s law, 72
Heat equation, 46, 157
Cauchy’s problem, 315
fundamental solution, 315
linear, 73
non-homogeneous, 315
nonlinear, 74
one-dimensional, 73
several variables, 311
solution, 315
symmetries, 311
Heaviside function, 294, 320
Homogeneous equations, 93
double homogeneity, 95
homogeneity by function, 97
uniform homogeneity, 96
Homogeneous linear equation, 107
constant coefficients, 113, 122
first-order ordinary, 107
first-order partial, 135
higher-order ordinary, 121
second-order ordinary, 109
second-order partial, 149
Hooke’s law, 60
Hooke, R. (1635~1703), 60
Hopf equation, 142
Hyperbolic equation, 155
characteristic variables, 156
standard form, 156
Hyperbolic functions, 4, 18
complex, 20
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Hypergeometric equation, 119

Ideal of a Lie algebra, 205
Infinitesimal symmetry, 189
Infinitesimal transformation, 181
of é-function, 304
of distributions, 304
Initial data, 169
Initial value problem, 92, 307
Integral curve, 91
Integral surface, 135
Integrating factor, 101
for differential forms, 318
for higher-order equations, 221
Integration, 16
by parts, 17, 292
by quadrature, 24
constant of, 16
Lie’s method of, 206
Invariance principle, 308
Invariant, 111
equation (surface), 186
of a group, 184
of linear equation, 111
solution for ODE, 199, 218
solution for PDE, 262
Invariant solutions, 199, 262
for irrigation system, 269
for tumour growth, 272
Isentropic flow, 70
Isometric motion, 8

Jacobian, 180
Jacobian J, 22
Jacobian matrix, 21

Kepler’s laws, 48

Kepler’s problem, 49, 282
Kepler, J. (1564~1630), 48
Kirchhoff, G.R. (1824~1887), 66
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