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PRINTER'S NOTE

Throughout this book the a which takes the following form
in the formula (a) assumes the following form (a) whenever it
is used in the smallest type size, as a subscript or a super-
script. Both forms are meant to be the same,
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PREFACE

A series of Russian mathematicians==Chebyshev, Korkin,
Zolotaryov, Markov, Voronoi and others—have worked on the
theory of numbers. One can become acquainted with the con-
tent of the classical work of these notable mathematicians in
B. N. Delone’s book ‘“The Petersbhurg School of the Theory of
Numbers'’ (‘‘Peterburgskaya shkola teorii chisel,’’ in Russian,
1947).

Soviet mathematicians, working in the field of number theory,
have continued the great tradition of their predecessors and
have created powerful new methods which have been used to
obtain a series of first-class results; in the number theory sec-
tion of the book ‘‘Mathematics in the USSR after 30 years’’
(“Matematika v SSSR za 30 let,”’ in Russian, 1948) one can
find a report on the attainments of Soviet mathematicians in the
field of number theory, and the corresponding bibliographical
references.

In my book I present a systematic exposition of the funda-
mentals of number theory within the scope of a university
course. A large collection of problems introduces the reader
to some of the new ideas in number theory.

This fifth edition of my book differs considerably from the
fourth. A series of changes, allowing a simpler exposition,
have been made in all the chapters of the book. The most
important changes are the merging of the old chapters 1V and
V into one chapter IV (reducing the number of chapters to six)
and the new, simpler proof of the existence of primitive roots.

The problems at the end of each chapter have been essential
revised. The order of the problems is now in complete cor-
respondence with the order of the presentation of the theoreti-

vii



cal material. Some new problems have been added; but the
number of numbered problems has been substantially reduced.
This was accomplished by the unification, under the letters

a, b, ¢, ..., of previously separate problems which were re-
lated by the method of solution or by content. All the solutions
of the problems have been reviewed; in many cases these solu-
tions have been simplified or replaced by better ones. Particu-
larly essential changes have been made in the solutions of the
problems relating to the distribution of n-th power residues and
non-residues, and primitive roots, as well as in the estimations
of the corresponding trigonometric sums.

I. M. Vinogradov
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CHAPTER I
DIVISIBILITY THEORY

§1. Basic Concepts and Theorems

a. The theory of numbers is concerned with the study of the
properties of integers. By integers we mean not only the num-
bers of the natural number sequence 1, 2, 3, ... (the positive
integers) but also zero and the negative integers: -1, -2,

-3, ....

As a rule, in presenting the theoretical material, we will
use letters only to denote integers. In the cases in which
letters may denote non-integers, if this is not clear in itself,
we will mention it specifically.

The sum, difference and product of two integers a and b are
also integers, but the quotient resulting from the division of a
by b (if b is different from zero) may be an integer or a non-
integer.

b. In the case in which the quotient resulting from the di-
vision of a by b is an integer, denoting it by q, we have a = bq,
i.e. a is equal to the product of b by an integer. We will then
say that a is divisible by b or that b divides a. Here a is said
to be a multiple of b and b is said to be a divisor of the number
a. The fact that b divides a is written as: b\ a.

%e have the following two theorems.

1. I/f a is a multiple of m, and m is a multiple of b, then a is
a multiple of b.

Indeed, it follows from @ = a,m, m = m,b that a = a;m,b,
where a,m, is an integer. But this proves the theorem.



2, If we know that in an equation of the formk + 1+ ...+ n
=p+q+...+5,all terms except one are multiples of b, then
this one term is also a multiple of b.

Indeed, let the exceptional term be . We have

I=4Lb,...,n=nb,p=p,b,qg=¢q,b, ..., s =5,
k=p+g+...4s5<l=...~n
=(py+qi+. et~ ~...~n)b,

proving our theorem.

c. In the general case, which includes the particular case in
which a is divisible by b, we have the theorem:

Every integer a is uniquely representable in terms of the
positive integer b in the form

a=bqg+r, 0<r<b

Indeed, we obtain one such representation of a by teking bq
to be equal to the largest multiple of b which does not exceed
a. Assuming that we also have a = bq, +r,, 0 <r, < b, we find
that 0 = b{(q — ¢,) + r —r,, from which it follows (2, b) that r - r,
is a multiple of 5. But since |r ~r,| < b, the latter is only
possible if r ~r, = 0, i.e. if r = r,, from which it also follows
that ¢ = g,.

The number g is called the partial quotient and the number
r is called the remainder resulting from the division of a by b.

Examples. Let b = 14, We have

177=14 12 + 9, 0<9< 14
~64=14(=5)+6, 0<6<14;
154=14 11 + O, 0=0<14.

$2. The Greatest Common Divisor

a. In what follows we shall consider only the positive di-
visors of numbers. Every integer which divides all the integers
a, b,...,lis said to be a common divisor of them. The
largest of these common divisors is said to be their greatest
common divisor and is denoted by the symbol (a, b, ..., I).
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In view of the finiteness of the number of common divisors the
existence of the greatest common divisor is evident. If (a,
by...,)=1,thena, b, ..., ! are said to be relatively prime.
If each of the numbers a, b, ..., l is relatively prime to any
other of them, then a, b, ..., ! are said to be pairwise prime.
It is evident that pairwise prime numbers are also relatively
prime; in the case of two numbers the concepts of “‘pairwise
prime’’ and “‘relatively prime’’ coincide.

Examples. The numbers 6, 10, 15 are relatively prime since
(6, 10, 15) = 1. The numbers 8, 13, 21 are pairwise prime
since (8, 13) = (8, 21) = (13, 21) = 1.

b. We first consider the common divisors of two numbers.

1. If a is a multiple of b, then the set of common divisors of
the numbers a and b coincides with the set of divisors of b; in
particular, (a, b) = b.

Indeed, every common divisor of the numbers g and b is a
divisor of b. Conversely, if a is a multiple of b, then (1, b, $1
every divisor of the number b is also a divisor of the number
a, i.e. it is a common divisor of the numbers a and 5. Thus
the set of common divisors of the numbers g and b coincides
with the set of divisors of b, but since the greatest divisor of
the number b is b itself, we have (a, b) = b.

2. lf

a=bg+c,

then the set of common divisors of the numbers a and b coin-
cides with the set of common divisors of the numbers b and c;
in particular, (a, b) = (b, c).

Indeed, the above equation shows that every common divisor
of the numbers a and b divides ¢ (2, b, §1) and therefore is a
common divisor of the numbers b and ¢c. Conversely, the same
equation shows that every common divisor of the numbers b
and ¢ divides g and consequently is a common divisor of the
numbers a and . Therefore the common divisors of the num-
bers @ and b are just those numbers which are also common
divisors of the numbers b and c; in particular, the greatest of
these divisors must also coincide, i.e. (a, b) = (b, c).

3



c. In order to obtain the least common divisor as well as to
deduce its most important properties, Euclid’s algorithm is ap-
plied. The latter consists of the following process, Let a
and b be positive integers, By ¢, §1, we find the sequence
of equations:

a=0bqy+r,, 0<ry<b,

bﬂf’q;'l'f;, 0(";(?‘,,

ra =r r 0<r.<r

(1) F 3Ga + Ty Ta ¥
Th=y = I'n=1@n + Ty O0<ra<ro,

Tner = Tnnerr

which terminates when we obtain some r,,,, = 0. The latter
must occur since the sequence b, r,, 13, ... as a decreasing
sequence of integers cannot contain more than b positive
integers.

d. Considering the equations of (1), proceeding from the top
down, (b) shows that the common divisors of the numbers a
and b are identical with the common divisors of the numbers b
and r,, are moreover identical with the common divisors of the
numbers r, and r,, of the numbers r; and r,, .. ., of the numbers
In-, and 7, and finally with the divisors of the number r,,.
Along with this, we have

(a, b)'--" (bs r:)'-”- (ras f3)=‘ e = (rn-u rn)zrn'

We arrive at the following results.

1, The set of common divisors of the numbers a and b co-
incides with the set of divisors of their greatest common
divisor,

2. This greatest common divisor is equal to r,, i.e. the last
non-zero remainder in Euclid’s algorithm.

Example. We apply Euclid’s algorithm to the evaluation of

(525, 231), We find (the auxiliary calculations are given on
the left)



525] 231 925 =231+2 + 63,

462) 2 231 = 633+ 42,
21163 63= 42-1+ 21,
18913 42 = 21-2,
63ﬁ
4211
a2f21
42] 2

Here the last positive remainder is r, = 21. This means that
(525, 231) = 21.
e.1, /f m denotes any positive integer, we have {(am, bm)

= (a, b)m.

2.1f & is any common divisor of the numbers a and b, then

(a b (ﬂ, b) . . l ( a b ) l .
5’8/ 5 rpHReMAL T @/

the quotients resulting from the division of two numbers by
their greatest common divisor are relatively prime numbers.
Indeed, multiply each of the terms of the equations (1) by
m. We obtain new equations, where a, b, r,, ..., r, are re-
placed by am, bm, rsm, ..., rom. Therefore (am, bm) = r,m,
showing that proposition 1 is tre,
Applying proposition 1, we find that

a b a b
(a, b) = (3“5' 3‘8) = (3' 3‘)5;

and this proves proposition 2.

t.1. If (a, b) = 1, then (ac, b) = (c, b).

Indeed, (ac, b) divides ac and bc, which implies (1, d) that
it also divides (ac, bc) which is equal to ¢ by 1, e; but (ac, b)
also divides b and therefore also divides (c, ). Conversely,
{c, b) divides ac and b, and therefore also divides {(ac, b).
Thus (ac, b) and (¢, b) divide each other and are therefore
equal to one another.

2, If (a, b) = 1 and ac is divisible by b, then ¢ is divisible
by b.




Indeed, since (a, b) = 1, we have (ac, b) = (¢, b). But if ac
is a multiple of b, then (1, b) we have (ac, b) = b, which means
that (c, b) = b, i.e. c is a multiple of b.

3. If each a., a3y -+, Gy, is relatively prime to each by, b,,
ey by then the product a,a,. . .4, is relatively prime to the
product b\b,...b,.

Indeed (theorem 1), we have

(318385 . .Gy b)) = (@aay - . .Gy by)
=3y ccclpmy by)=..o=lag, by) =1,

and moreover, setting a,a,...a,, = 4, in the same way we find

(bybabs + - by A) = (bibs.. . by, A)
= (byeeibpy A= ... = (b, A)=1.

g. The problem of finding the greatest common divisor of
more than two numbers reduces to the same problem for two
numbers. Indeed, in order to find the greatest common divisor
of the numbers a,, as, ..., a,, we form the sequence of numbers:

(a;, Gz) = d,, (dzg as) = du (d.h 04) = d., teey (dn-p an) = dn'

The number d,, is also the greatest common divisor of all the
given numbers.

Indeed (1, d), the common divisors of the numbers a, and q,
coincide with the divisors of d,; therefore the common divisors
of the numbers a,, a, and a; coincide with the common divisors
of the numbers d, and a,, i.e. coincide with the divisors of d,.
Moreover, we can verify that the common divisors of the num-
bers a;, a,, as, a, coincide with the divisors of d,, and so forth,
and finally, that the common divisors of the numbers a,, a.,
+++y @, coincide with the divisors of d,,. But since the largest
divisor of d,, is d,, itsell, it is the greatest common divisor of
the numbers a,, a,, ..., a,.

Considering the above proof, we can see that theorem 1, d
is true for more than two numbers also. Theorems 1, e and
2, e are also true, because multiplication by m or division by



5 of all the numbers a, a,, ..., a, causes all the numbers

dyy dyy - .y dy, to be multiplied by m or to be divided by &.

$3. The Least Common Multiple

a. Any integer which is a multiple of each of a set of given
numbers, is said to be their common multiple. The smallest
positive common multiple is called the least common multiple.

b. Ne first consider the least common multiple of two num-
bers. Let M be any common multiple of the integers a and b.
Since it is a multiple of a, ¥ = ak, where k is an integer. But
M is also a multiple of b, and hence

ak

b

must also be an integer which, setting (a, b) = d, a = a,d,

b = b,d, can be represented in the form i, where (a,, 4,) =1

1
(2, e, 32). Therefore (2, £, $2) k& must be divisible by b,

k=byt= :i*t, where ¢ is an integer. Hence

\f ab t
M = d .
Conversely, it is evident that every #f of this form is a mul-
tiple of a as well as b, and therefore, this form gives all the
common multiples of the numbers a and b.
The smallest positive one of these multiples, i.e. the least
common multiple, is obtained for¢=1. Itis

ab
m= —.
d

Introducing m, we can rewrite the formula we have obtained
for M as:

d! =md.



The last and the next to the last equations lead to the
theorems:

1. The common multiples of two numbers are identical with
the multiples of their least common multiple.

2. The least common multiple of two numbers is equal to
their product divided by their greatest common divisor.

c. Assume that we are now required to find the least common
multiple of more than two numbers g, a;, ..., a,. Letting the
symbol m{a, b) denote the least common multiple of the num-
bers a and b, we form the sequence of numbers:

m(ay, @2) = my, m(m,y, @) =myy oovy mlmpgeyy 8,) =M.

The m,, obtained in this way will be the least common multiple
of all the given numbers.

Indeed (1, b), the common multiples of the numbers a, and
a, coincide with the multiples of m,, and hence the common
multiples of the numbers a,, a, and a; coincide with the common
multiples of m, and a,, i.e. they coincide with the multiples of
my. It is then clear that the common multiples of the numbers
@, Gy, Gy, a4 coincide with the multiples of m,, and so forth,
and finally, that the common multiples of the numbers a,, a,,
.+ ey G, coincide with the multiples of m,, and since the small-
est positive multiple of m, is m, itself, it is also the least
common multiple of the numbers ay, a3, + .+ up.

Considering the proof given above, we see that theorem
1, b is also true for more than two numbers. Moreover, we
have shown the validity of the following theorem:

The least common multiple of pairwise prime numbers is
equal to their product.

$4. The Relation of Euclid’s Algorithm to Continued Fractions

a. Let o be an arbitrary real number. Let g be the largest
integer which does not exceed «.
For a non-integer «, we have
1

a=q‘+—&—’-; a, > 1,



Similarly, for non-integers «,, ..., a,_, we have

o ® > L

LR I B S B I I B B R N B B I B I B B I SRR L N B A O

from which we obtain the following development of & in a con-

tinued fraction: )

L

(1) o« =q, +

+—_—-
7 qs + .

) 1
+ *

1
Qa—1 + % g

If « is irrational, then it is evident that there can be no

integers in the sequence «, «,, ..., and the above process
can be continued indefinitely.

If « is rational, then, as we shall see later (b), there will
eventually be an integer in the sequence «, «,, ..., and the
above process will be terminated.

b. If « is an irreducible rational fraction, then the develop-
ment of &« in a continued fraction is closely connected with
Euclid’s algorithm. Indeed, we have

a r

a = bg, + ry; ng‘+?"
b r

b = rgg+ 1y — =g, + —,
Ty ry
r A

Fy = Tyqy + Ty — = gy + —,
Fy ry



Fo-y I'n

Fpey © TnetQpn-a + Tny = qpn-y t ’
F'n—y rn—l.
rp-1

Fn—1 = "'nqns = qny

T'n
from which we find
a 1
b ' 1
q, +
q, + .
1
+ ——
In

c. The numbers q,, g,, ..., which occur in the expansion of
the number « in a continued fraction, are called the partial
quotients (for the case of rational o these are, by b, the par
tial quotients of the successive divisions of the Euclidean
algorithm), and the fractions

1 1
& = qu 8:""'Q1+;’ 6)=41+"_—'T1 sen
q, + —
qs

are called the convergents.
d. The very simple rule for the formation of the convergents
is easily obtained by noting that 5,(s > 1) is obtained from

1
841 by replacing g,._, in the expression for 5, by g4, + —

Indeed, setting P, = 1, Q, = 0, for the sake of uniformity,
we can represent the convergents recursively in the following

10



A P,

way (when the equation -E- =

is written here, it means

that 4 is denoted by the symbolaP,,, and B by the symbol Q,):

1
s 0Py 6'_""‘?;',"_ 2.9 +1 gP +P P,
, = = ’ = = . = =
1 Ql 1 9,1+ 0 an:"‘Qo Qa

1
+ — P, +P
(q’ Q)l o_‘?sPa"’Pl_Pl

(64 =)ovo, “@re O

etc., and in general

5 o 9oPas + Pomy Po
anu-—l + Qa-—: Qﬂ

Thus the numerators and the denominators of the convergents
can be recursively calculated by means of the formulae

Pa = q.'zpa-l + Pa-—gv
(2)
Q, = gaQo-1 + Qa-—a-

These calculations can easily be carried out by means of the

following schema:

9 q: | 9, qs gn
Pg 1 q, P: e PB-: Pa--l Pn cene Pn__[ a

Q[0 1]|Q,| ] Quca |Qaa| @u | [Qr-a | b

11



105

Example. Develop the number in a continuous fraction.

38
Here
los{3s 105 1
62 3 2+ ]
38| 29 1+ ]
20| 1 3 +
29| o 1
27| 3 1+ 5
L
8| 4
|1
212
Therefore the aforementioned schema gives:
gs 2 1 3 4 2
P, 1 2 3 11 47 105
o 0 1 1 4 17 38

e. We now consider the difference 5, — 5,_, of successive
convergents. Fors > 1, we find

Pﬂ - Pa._[ - h&
QB QB-—I B QBQB—I

where #y = P,Qs_y - QuPs_s; replacing P, and @, by their ex-
pressions in (2) and making the evident simplifications, we

find that 4, = ~&,_,. The latter, in conjunction with
hy = q,.0-1°1= -1, gives by = {~1)°. Thus

B ~ Dyn =

(3) PaQa-l. - Qapa-l = ("l)a (3 > O)v
12



-1)*°
Qs Qa-—l

Example. In the table of the example given in d, we have

@) 8, — B,_, = (s > ).

105°17 - 38-47 = (-1)* = -1,

11
P,

(2, b, $1). Hence (P, Q) = 1, i.e, the convergents — are
8

t. It follows from (3) that (P,, Q,) divides (-1)* =

irreducible.

g. We now investigate the sign of the difference 5, — « for
8, which are not equal to « (i.e. we exclude the case in which
8, is the last convergent for rational «). It is evident that &,
is obtained by replacing &, by ¢, in the expression (1) for «.
But, as is evident from a, as a result of this replacement

Gy is decreased,
Ggny is increased,
®,_y i8 decreased,

...................

{is decreased for odd s,
o

is increased for even s.

Therefore 5, — « < 0 for odd s and 8, — o > O for even s,
and consequently, the sign of 5, — « coincides with the sign
of (-1)°.

h. We kave
1

QaQa—l

Indeed, for 8, = « this assertion follows (with the equality
sign) from (4). For 8, unequal to «, it follows (with the in-
equality sign) from (4) and from the fact that, 5, — « and
851 ~— « have different signs, because of g.

Ia = 8&—1| <

13



85, Prime Numbers

a. The number 1 has only one positive divisor, namely 1.

In this respect the number 1 stands alone in the sequence of
natural numbers,

Every integer, greater than 1, has no fewer than two divisors,
namely 1 and itself; if these divisors exhaust all the positive
divisors of an integer, then it is said to be prime. An integer
> 1 which has positive divisors other than 1 and itself, is said
to be composite.

b. The smallest divisor, different from one, of an integer
greater than one, is a prime number.

Indeed, let g be the smallest divisor, different from one, of
the integer @ > 1. If ¢ were composite, then it would have
some divisor ¢, such that 1 < ¢, < g¢; but the number a, being
divisible by ¢, would also be divisible by ¢, (1, b, $1), and
this contradicts our hypothesis concerning the number gq.

c. The smallest divisor, different from 1, of a composite
number a (by b, it will be prime) does not exceed Va .

Indeed, let ¢ be this divisor; then a = q¢a,, a, > g from
which, multiplying by ¢, we obtain a > ¢*, ¢ < Va .

d. The number of primes is infinite.

The validity of this theorem follows from the fact that no
matter what different primes p,, p,, ..., p, are considered, we
can obtain a new prime which is not among them. Such a
prime is any prime divisor of the sum p,p, ...px + 1 which,
dividing the whole sum, cannot be equal to any of the primes
Pis Pay +++5 Px (2, b, $1).

e. There is a simple method, called the sieve of Eratos-
thenes, for the formation of a table of the primes not exceed-

ing a given N. It consists of the following.
We write down the numbers

(1) ,2 ..., N

The first number of this sequence greater than one is 2; it
is only divisible by 1 and itself, and hence it is a prime.

14



We delete from the sequence (1) (since they are composite
numbers) all the numbers which are multiples of 2, except 2 it-
self. The first number following 2 which is not deleted is 3;
it is not divisible by 2 (otberwise it would have been deleted),
and hence 3 is divisible only by 1 and itself, and hence it is
also prime.

Delete from the sequence (1) all the numbers which are
multiples of 3, except 3 itself. The first number following 3
which is not deleted is 5; it is not divisible by either 2 or 3
(otherwise it would have been deleted). Therefore 5 is divis-
ible only by 1 and itself, and therefore it is also prime.

And so forth.

Rhen this process has deleted all the numbers which are
multiples of primes less than the prime p, then all the numbers
remaining which are less than p* are primes. Indeed, every
composite number a which is less than p* has already been
deleted since it is a multiple of its smallest prime divisor
which is ¢ Va < p. This implies:

1. In the process of deleting the multiples of the prime p,
this set of deleted numbers must start with p*.

2. The formation of the table of primes < N is completed
once we have deleted all the composite multiples of primes

not exceeding VN .

$6. The Unicity of Prime Decomposition

a. Every integer a is either relatively prime to a given prime
p, or is divisible by p.

Indeed, (a, p), being a divisor of p, is either 1 or p. In the
firat case, a is relatively prime to p, and in the second, a is
divisible by p.

b. If the product of several factors is divisible by p, then
at least one of the factors is divisible by p.

Indeed (a), every factor is either divisible by p or is rela-
tively prime to p. If all the factors were relatively prime to p,
then their product (3, f, $2) would be relatively prime to p;
therefore at least one factor is divisible by p.
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c. Every integer greater than one can be decomposed into

the product of prime factors and uniquely, if we disregard the
order of the factors.

Indeed, let a be an integer greater than unity; if p, is its
smallest prime divisor, then a = p,a,. If a, > 1, then if p, is
its smallest prime divisor, we have a, = p,a,. If a, > 1, then,
in exactly the same way, we find a, = p,a,, etc. until we come
to some a, equal to one. Then a,_, = p,. Multiplying all
these equations together, and simplifying, we obtain the fol-
lowing decomposition of a into prime factors:

@ = PPy« +Pn-

Assume that there exists a second decomposition of the
same a into prime factors a = ¢,9,...4,. Then

PiPr+++Pn = 4193 +++Ga-

The right side of this equation is divisible by g,. There-
fore (b), at least one of the factors of the left side must be
divisible by g,. For example, let p, be divisible by ¢, (in
the order of enumeration in our arrangement) then p, = g, (p,
is divisible only by p, except for 1). Dividing both sides of
the equation by p, = g,, we have p,py...pn = ¢,95 .+ -q0s.
Repeating the preceding argumentation applied to this equa=
tion, we find py...pn = ¢y...qa, etc., until we finally find
that all the factors on one side, say the left side, are divided
out. But all the factors on the right side must be cancelled
simultaneously since the equation 1 = ¢,,,...9¢ for gn,,,
«+vy 4 greater than 1, is impossible.

Therefore the second decomposition into prime factors is
identical with the firat.

d. In the decomposition of the number a into prime factors,
several of them may be repeated. Letting p,, py, +--, px be
the different primes and «,, a,, ..., &y be the multiplicity of
their occurrence in a, we obtain the so-called canonical de-
composition of a into factors:

16



a = pyips? ... Pike

Example. The canonical decomposition of the number
588 000 is: 588000 = 2° 35 * 72,

e. Leta = pMpf1...pg* be the canonical decomposition of
the number a. Then all the divisors of a are just all the num-
bers of the form

d = p,Pipf ... pPr;

(1)
0<B, €y, 0B, <0y, vy 0€ Bx € ay.

Indeed, let d divide a. Then (b, $1) a = dgq, and therefore
all the prime divisors of d enter into the canonical decomposi-
tion of @ with indices no smaller than those with which they
enter into the canonical decomposition of d. Therefore d is of
the form (1).

Conversely, every d of the form (1) evidently divides a.

Example. All the divisors of the number 720 = 2¢ 3?5
can be obtained if we let 8,, B,, 8, in 26138155 run inde-
pendently through the values 8, = 0,1, 2,3,4; 8, = 0,1, 2;
B, = 0, 1. Therefore these divisors are: 1, 2, 4, 8, 16, 3, 6,
12, 24, 48, 9, 18, 36, 72, 144, 5, 10, 20, 40, 80, 15, 30, 60,
120, 240, 45, 90, 180, 360, 720.

Problems for Chapter 1

1. Let a and b be integers which are not both zero, and let
d = ax, + by, be the smallest positive number of the form
ax + by (x and y integers). Prove that d = (a, b). From this
deduce theorem 1, d, $2 and the theorems of e, §2. Generalize
these results by considering numbers of the form ax + by +
+ooot fu.

2. Prgve that, of all the rational numbers with denominators

P
2 represents the number o most

< Q,, the convergent 5, =

a
exactly.
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3. Let the real number o be developed in a continued frac-
tion; let N be a positive integer, let & be the number of decimal
digits in it, and let n be the largest integer such that @, < N.
Prove that » ¢ 5% + 1. In order to prove this, compare the
expressions for Q,, Q,, Q,, ..., Q,, with those which would
occur if all the g, were equal to 1, and compare the latter with
the numbers 1, E, £?, ..., E"? where E is the positive root of
the equation £ = £ + 1.

4. Letr > 1. The sequence of irreducible rational fractions
with positive denominators not exceeding r, arranged in in-
creasing order, is called the Farey series corresponding to r.

a. Prove that the part of the Farcy series corresponding to
r, containing fractions « such that 0 ¢ « < 1, can be ob-
tained in the following way: we write down the fractions

0 1 0+1

—,—. If 2 < r, then we insert the fraction

1
1+1 2
0

between these fractions, and then in the resulting sequence —

1 1
—, — between every two neighboring fractions 2t oond 2

2 1 b, d,

a, + ¢,
, and so

with b, + d;, < 7 we insert the fraction ;
1 + 4

forth as long as this is possible. First prove that for any two

pairs of neighboring fractions %- and 5- of the sequence, ob-

tained in the above manner, we have ad —~ bc = -1.

b. Considering the Farey series, prove the theorem: let
r » 1, then every real number « can be represented in the
form

P 0
a=6—+—; 0<Qg r, P,Q =1, |6] <1.

r

18



c. Prove the theorem of problem b using h, 4.
5, a. Prove that there are an infinite number of primes of

the form 4m + 3.
b. Prove there are an infinite number of primes of the form

6m + 5.

6. Prove that there exist an infinite number of primes by
counting the number of integers, not exceeding N, whose
canonical decomposition does not contain prime numbers dif-
ferent from p,, pyy - -+ y Pk

7. Let K be a positive integer. Prove that the sequence of
natural numbers contains an infinite set of sequences M, M +
+1,...,M + K -~ 1, not containing primes,

8. Prove that there are an infinite number of composite
numbers among the numbers represented by the polynomial
ax" + a.x" + ... + a,, wheren > 0, gy, a,, ..., G, are
integers and a, > 0.

9, a. Prove that the indeterminate equation (1) 2* + y* = 2,
x>0,y >0z>0,(x,y, z) = 1is satisfied by those, and
only those, systems x, y, z for which one of the numbers x
and y is of the form 2uv, the other of the form u* — +*, and
finally z is of the form «* + +*; hereu > v > 0, (4, v) = 1,
uv is even.

b. Using the theorem of problem a, prove that the equation
x* + y* = 2z* cannot be solved in positive integers x, y, z.

10. Prove the theorem: if the equation " + a,x™" + ... +
+ a, = 0, wheren > 0 and a,, a,, ..., a, are integers, has a
rational root then this root is an integer.

1 1 1
11, a. LetS = — + — 4+ ...+ —;n > 1. Prove that S
2 3 n

is not an integer.

1 1 1
b.letS=— +— + ... ¢+ i n > 0. Prove that S
3 5 2n + 1

is not an integer,
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12. Let n be an integer, n > 0. Prove that all the coef-
ficients of the expansion of the Newtonian binomial (a + 5)"
are odd if and only if » is of the form 2F - 1,

Numerical Exercises for Chapter 1

1, a. Applying the Euclidean algorithm, find (6188, 4709).
b. Find (81 719, 52 003, 33 649, 30 107).
125

2, a. Expanding o = in a continuous fraction and form-

ing the table of convergents (d, #4), find: &) 5,; P) the repre-
sentation of « in the form considered in problem 4, b, with

T = 20.
5391

in a continuous fraction and form=

b. Expanding o =

ing the table of convergents, find: «) 8,; B) the representation
of « in the form considered in problem 4, b, with 7 = 1000.

3. Form the Farey series (problem 4) from 0 to 1, excluding
1, with denominators not exceeding 8.

4. Form the table of primes less than 100.

3, a, Find the canonical decomposition of the number
82 798 848.

b. Find the canonical decomposition of the number

81 057 226 635 000,
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CHAPTER II

IMPORTANT NUMBER-
THEORETICAL FUNCTIONS

$1. The Functions [, $x}

a. The function [x] plays an important role in number theory;
it is defined for all real numbers x and is the largest integer

not exceeding x. This function is called the integral part of x.
Examples.

{71 = 7; [2.6] = 2; [4.75] = -5.

The function {2} = x — [x] is also considered sometimes. This
function is called the fractional part of x.
Examples.

§71 = 0; {2.61 = 0.6; |—4.75] = 0.25,

b. In order to show the usefulness of the functions we have
introduced, we prove the theorem:
The power with which a given prime p enters into the product

nl is equal to
[

Indeed, the number of factors of the product n! which are
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n

multiples of p is [—-—] ; of these the number of multiples of p?
p

is l:—-;—:—:l ; of the latter the number of multiples of p* is [Fn‘{l ,
etc. The sum of the latter numbers gives the required power
since each factor of the product nl which is a multiple of the
maximal p™ is counted m times by the above process, as a
multiple of p, p*, p*, ..., and finally, p™.

Example. The power to which the number 3 enters into the
product 40! is

[40] 40] [40]
3 [ 9 27

$2. Sums Extended over the Divisors of a Number

a. Multiplicative functions play an important role in number
theory, A function &a) is said to be multiplicative if the
following conditions are satisfied:

1. The function &(a) is defined for all positive integers a
and is not equal to zero except possibly for at most one such a.

2. For any two relatively prime positive integers a, and a,,
we have

6(a,a,) = 6(a,) 6(a,).

Example. It is not difficult to see that the function 6(a) =
= a”, where s is any real or complex number, is multiplicative.
b. From the aforementioned properties of the function 6 (a)
it follows in particular that (1) = 1. Indeed, let 8 (a,) be
different from zero, then 6(a,) = 6(1 * a,) = G(1)8(a,), i.e.

6(1) = 1. Moreover we have the following important property:
if 6,(a) and 6,(a) are multiplicative functions, then 6,(a) =

= 6,(a)d,(a) is also a multiplicative function. Indeed, we find
that
6,(1) = 6,(1)6,(1) = 1,
22



Moreover, for (a,, a,) = 1, we find

6.(a,a,) = 0,(a,a,)0,(a,a,) = 0,(a,)0,(a,)0,(a,)0,(a,) =
= 0,(a,)0,(a,)0,(a,)0,(a,) = 0,(a,)0,(a,).

c. Let 0(a) be a multiplicative function and let a =
= poip2...px*k be the canonical decomposition of the number

a. Then, denoting by the symbol ). the sum extended over
d\a

all the divisors d of the integer a, we have

2.0 =1+ 6@)+0p)+...+00p")...
d\a
vee (1 4+ 6(px) + 6(p%) + ... + O(pg*))

(if a = 1 the right side is considered to be equal to 1).
In order to prove this identity, we multiply-out the right
side. Then we obtain a sum of terms of the form

0 (0L ...0p5) = 6l ... pfe;

0< B <y 0B € %yy v0ny 0 B €

where no terms are lacking and there are no repeated terms,
and this is exactly the situation on the left (e, ¢6, ch. I).
d. For @(a) = a” the identity of c takes on the form

(1) 2d* =1 +p"+ p2*+ ...+ plo)...
d\a

voofl + pi + pX + ..+ pr¥)

In particular, for s = 1, the left side of (1) represents the
sum of the divisors S{(a) of the number a. Simplifying the right
side we find

a,+1 ayt1 Qg
pit ~ 1 ~1 Px 1
S(a)': : * - “o e
pr~- 1 Pa-1 Px — 1
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Example,

5(720) = S(2* +3* *5) =

pH_] M1 5H
= . . = 2418,
2 -1 3 -1 5-1

For s = 0, the left side of (1) represents the number of
divisors r{(a) of the number a and we find

ri@) = (¢, + D, + ... (ax + 1)

Example,

r(720) = (4 + 1)(2 + 1)(1 + 1) = 30,
83, The Mdbius Function

a. The Mébius function p(a) is defined for all positive
integers a, It is given by the equations: p(a) ~ 0, if a is
divisible by a square different from unity; p (@) = (-1)*if a
is not divisible by a square different from unity, where & de-
notes the number of prime divisors of the number a; in particu-
lar, fora = 1, we let &£ = 0, and hence we take p(1) = 1.

Examples.

p() =1, u(5) = -1, u(9) = 0,
p(2) = -1, pi6) = 1, p(10) = 1,
p(@) = -1, w(?) = -1, p(1) = -1,
u(4) = 0, 1(8) = 0, 2(12) = 0.

b. Let 0 (a) be a multiplicative function and let
G = pytpyt...prk
be the canonical decomposition of the number a. Then

}_:: p( o) = (1 - 6(p,))A - 0(p,) ... (1 = Blpy)).
d\a
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(If a = 1 the right side is taken to be equal to 1.)

Indeed it is evident that the function u{a) is multiplicative.
Therefore the function 8,(a) = p (a) @(a) is also multiplicative.
Applying the identity of ¢, 42 to the latter, and noting that
0,(p) = —0(p); 6,(p°) = O for s > 1, we have proved the va-
lidity of our theorem.

c. In particular, setting 8 (a) = 1, we obtain from b,

=0,ifa > 1,
2. uld
d\a

=1,ifa = 1.

1
Setting 6(d) = —, we find
d

[ D) e

d\a d

¥=1, ifa:l

d. Let the real or complex f = f, fiy +« ., fn correspond to
the positive integers 8§ = 8,, 8,, v+, 8, Then, letting S’ be
the sum of the values of f corresponding to the values of &
equal to 1, and letting Sy be the sum of the values of f cor-
responding to the values of & which are muliiples of d, we
have

§* =) n{d)Sq,

where d runs through all the positive integers dividing at least
one value of 6.
Indeed, in view of ¢ we have

S'= il u@+ i p et fo ) pld.
d\ §, d\ 5, d\ 5,
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Gathering those terms with the same value of d and bracketing
the coefficient of this u(d), the bracket contains those and
only those f whose corresponding & are multiples of d, and
this is just S4.

4. The Euler Function

a8, Euler’s function ¢(a) is defined for all positive integers
a and represents the number of numbers of the sequence

(1) 0, l’ o.o,a—l
which are relatively prime to a.
Examples.
@(1) = 1, ¢l4) = 2,
¢(2) = 1, ¢(5) = 4,
(P(S) = 2’ CP(6) = 2,
b, Let
(2) a = pyipst...pek

be the canonical decomposition of the number a. Then

o)) 2

or also

@ 9@ = (" = ") ps — p )L (kR — pk¥T;
in particular,
(5) ¢p% = p* - p*", ¢lp) = p - 1.

Indeed we apply the theorem of d, $3. Here the numbers
& and the numbers f are defined as follows: let x run through
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the numbers of the sequence (1); to each value of x let the
number § = (x, a) and the number { = 1 correspond,

Then S’ becomes the number of values § = (x, a) equal to
1, i.e. becomes ¢(a). Moreover S; becomes the number of
values § = (x, a) which are multiples of d, But (x, a) can be
a multiple of d only if d is a divisor of the nuniber a. On the
strength of these conditions S, reduces to the number of values

of x which are multiples of d, i.e. to 2. Thus we find

d

CP(G) = Z ﬂ-(d)f-
d\a d

from which formula (3) follows in view of ¢, $3, and formula
(4) follows from (3) in view of (2).
Examples.

1 1 1
cp(60)=60(1——-)(——-—)(1—-—):16;
2 3 5

@(81) = 81 — 27 = 54;
p(8) = 5 -1 = 4.

c. The function (a) is multiplicative function.
Indeed, for (a,, a,) = 1, it follows evidently from b that

¢la,a,) = ofa,) ¢la,).

Example. (405) = ¢(81) @(5) ~ 54 - 4 = 216,

d. 2. ¢(d) = a.
d\a

In order to prove the validity of this formula we apply the
identity of ¢, $2, which for 8(a) = o(a) gives
old) = (1 + olp,) + o) + ... + @lpM))...
o1+ lpy) + @lpd) + ooo + lp%)),
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In view of (5), the right side can be rewritten as

1+@-D+E -p)+ ...+ -pH')...
ce el 4 (pe = 1) + (P = pi) + «ou + (pi*x = pe*™)),
which turns out to be equal to pjip;2...pg* = a after gather-

ing similar terms in each large parenthesis,
Example. Settinga = 12, we find

o(1) + ¢(2) + ¢3) + ¢(4) + ¢(6) + ¢(12) =
=1+1+2+2+24+4=12.

Problems for Chapter 11

1, a. Let the function f(x) be continuous and non-negative
in the interval Q < x < R. Prove that the sum

> (e

0<x€R

is equal to the number of lattice points (points with integer
coordinates) in the plane region: Q < x ¢ R, 0 < y € flx).

b. Let P and Q be positive odd relatively prime integers.
Prove that

LI L5

P
<x<— yl—
022 Oy(2

¢. Letr > 0 and let T be the number of lattice points in
the region x* + y* < . Prove that

T=1+4(+8 Z [\/f-f]-a;[—\/%—]’.
0<x<‘:/—;_—
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d. Let n > 0 and let T be the number of lattice points of
the regionx > 0,y > 0, xy < n. Prove that

Te2 ), H - Wal.

o<=gym L®

2. let n > 0, m an integer, m > 1, and let x run through
the positive integers which are not divisible by the m-th power
of an integer exceeding 1. Prove that

zﬁ'/f] - .

3. Let the positive numbers & and 8 be such that
fax], = 1,2, ...;(ByLy =1, 2, ...

form, taken together, all the natural numbers without repeti-
tions. Prove that this occurs if and only if « is irrational and

—+ —= 1
o

4,a. Letr > 1,t = [7], and let x,, x,, ..., x, be the num-
bers 1, 2, ..., ¢ in some order so that the numbers

0, {ax,}, {oazm}, o.vy lamed, 1

are non-decreasing. Prove the theorem of problem 4, b, ch, 1,

by considering the differences of neighboring numbers of the
latter sequence.

b. Let X, Y, ..., Z be real numbers, each of which is not
less than 1; let &, 8, ..., y be real numbers. Prove that there
exist integers x, y, ..., z, not all zero, and an integer u,
satisfying the conditions:
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le SX’ 'yl LY, ..., 'ZI Sz’
1
(I:J',---,Z)= 1, Iax+ + e + z—ul { —
By 4 XY...Z

5. Let a be a real number, c an integer, ¢ > 0. Prove that

[[a] o
c |~ Le
6,a. Let o, 8,..., Abe real numbers, Prove that

o+ B+ ...+ A2 [l +[B]l+ ... + (Al

b. Leta, b, ..., ! be positive integers, andleta + b + ...
... + 1 = n. Applyingh, $1, prove that

n!

aldl...ll

is an integer,
7. Let & be a positive integer, p a prime and
pa“'l - 1
Uy =

p-1

Representing % in the form & = pu, + pm_yti;m_y + +..

«es + Py, + po, Where u,, is the largest u, not exceeding 4,
Pmlim is the largest multiple of u,, which does not exceed £,
Pm-1lm-, 18 the largest multiple of u,,_, which does not ex-
ceed A — plig, Pm_alim_a i8 the largest multiple of u,,_,
which does not exceed 4 — pLi, — Pm_jli;.1 €1C:, prove that
numbers a such that the number p enters into the canonical
representation of a! with the power £, exist if and only if all
the py Pa_ys + + +» P1y Po are less than p, while, if this occurs,
the numbers g are just all the numbers of the form
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m*+1

8 = pmp™™ + ProaP™ + ..+ PP+ Pop + P,

where p’ has the values 0,1, ...,p - 1.
8, a. Let the function f(x) have a continuous second deriva-~
tive in the interval Q < x ¢ R. Setting

1
plx) = ;- - {xi, olx) = fp(z)dz,

prove (Sonin’s formula)

> ) - J’ f)dx + p (RIR) = p (QQ) -

Q<xLR

~- oRY’R) + o(Q)(Q) + fo(x)f"(x)dx.
Q

b. Let the conditions of problem a be satisfied for arbi-

o v}

trarily large R, while f |f’*(x)| dx converges. Prove that
R

0<xiR

R
Z flw) = C + of flxMdx + p(R)f(R) -

— oR)*(R) - f olx)f*"(x)dx,
R

where C does not depend on K. 4]
A

B

c. [f B takes on only positive values and the ratio

is bounded above, then we write 4 = O(B).
Let n be an integer, n > 1. Prove that

In(n)) = nlnn - n + O(lnn)
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9,a. Letn > 2,0(z, z,) = Z Inp, where p runs through
20<pgsz

the primes. Moreover, let ©(z) = 0(z, 0) and for x > 0,
Wx) = Ox) + OWx) + OWz ) + ...

Prove that

«) In([r]!) = ¥(n) + yﬂr(%) + l,!l(:—:‘) + ...

B) ylr) < 2n

y) © (n, 1)+ @(1,1)+ e(i, 1) $ e
2 3 4 5 6

=nln2 + OWr).
b. Forn > 2, prove that

In

7 —2 - lnn + 0Q),
p$n P

where p runs through the primes.

c. Let ¢ be an arbitrary positive constant. Prove that the
sequence of natural numbers contains an infinite number of
pairs p,, p,,. of prime numbers such that

Pﬂ‘»l < Pl‘l(l + f)o

d. letn > 2. Prove that

1 1
Z—=C+lnlnn+0( ),

p<n P Inn

where p runs through the primes and C does not depend on n,
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e, Let n > 2, Prove that

LA ( ) %) i lion (1 ' O(I:n))

where p runs through the primes and C, does not depend on n,
10, a, Let 68(a) be a multiplicative function. Prove that

6,(a) = ) 8(d) is also a multiplicative function.
d\a
b. Let the function 6(a) be defined for all positive integers

a and let the function ¢{(a) = ) @(a) be multiplicative.
d\a
Prove that the function G{a) is also multiplicative.

11. For m > 0, let r,,(a) denote the number of solutions of
the indeterminate equation x,x;...%5 = a(x,, %,y +..y % FUN
through the positive integers independently of one-another);
in particular, it is evident that r,(a) = 1, r,(a) = r(a). Prove
that

a. r,(a) is a multiplicative function.

b. If the canonical decomposition of the number g is of the
form @ = p,p,p, -+ pxs then r,(a) = m*.

c. If ¢ is an arbitrary positive constant, then

. T,{a)
lim =
a-=-m a4

—
3

d. ). rn(a) is equal to the number of solutions of the in-
o<agn

equality x,x,...x, < ain positive integers x,, x;, ¢+ ., X+
12. Let R(s) be the real part of the complex number s. For

@ 1
R(s) > 1, we set {(s) = Z —. Letm be a positive integer.

na1 Nt
Prove that
G = 3 =)
Nal n
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13, a. For R(s) > 1, prove that

C(s) =17

where p runs through all the primes.
b. Prove that there exist an infinite number of primes, start-
ing from the fact that the hammonic series diverges,

c. Prove that there exist an infinite number of primes, start-
2

ing from the fact that {(2) = 3—6— is an irrational number.

14. Let A(a) = Inp fora = p', where p is a prime and ¢
is a positive integer; and let A (a) = 0 for all other positive
integers a. For R(s) > 1, prove that

£(s) @ An)
Z(s) L o

13, Let R{s) > 1, Prove that

n( —i.)=z° )

p P

where p runs through all the primes.
16, a. Let n > 1. Applying d, $3, prove that

1= 2 pld) [1] .
0<d<n d

b, Let M(z, z) = ). pla); M(x) = M(x, 0). Prove that

zp<agsz

o) M(n) + M(E-) + M(i)+ wee=1,n 2 1.
2 3
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g) ¥ (n, i-)+ M(i,i)+M(i,i) +...==1,n 22,
2 3 4 5 6

c. Letn » 1, let! be an integer, I > 1, and let T, , be the
number of integers x, such that 0 < x ¢ n, which are not di-
visible by the /-th power of an integer exceeding 1. Applying
d, $3, prove that

Tiw = 5 4 [—é}]
-dal

17, a. Let a be a positive integer and let the function f{x)
be uniquely defined for the integers x,, x,, ..., x,. Prove

S’ = Z "(d)sdr
d\a

where S’ is the sum of the values of f{x) extended over those
values of x which are relatively prime to a, and S is the sum
of the values of f{x) extended over those values of x which
are multiples of d,

b. Let £ > 1 and consider the systems

Y. ’ vy ,’”» ,’r, . n)
Xyy Xy vervy Xd Xy 3%y 3000y %Xk s ""xl(

r xz(n)' LA J x}(n)!
each of which consists of integers, not all zero. Moreover,
let the function flx,, x,, ..., xx) be uniquely defined for these
systems, Prove that

§° = Zu(d)sd’

where S’ is the sum of the values of f(x,, x,, ..., x,) extended
over systems of relative prime numbers, and Sy is the sum of
the values of fix,, x,, ..., x,) extended over systems of num-
bers which are all multiples of d. Here d runs through positive
integers,
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c. Let a be a positive integer, and let F(5) be uniquely de-
fined for the divisors &§ of the number a. Setting

G(8) = 2, F(d),
d\§

prove (the inversion law for number-theoretic functions)

a
F = G{— .
@ = L KD (d)

d. Associate with the positive integers

81! 8’! ss ey 8!1

arbitrary real or complex numbers

fis s ooy fn

different from zero. Prove that

where P’ is the product of the values f associated with values
of & equal to one, and P4 is the product of the values f as-
sociated with values of § which are multiples of d, where d
runs through all the positive integers which divide at least
one &,

18. Let a be an integer, a > 1, 04(r) = 1™ + 2™ + .., +
+ n™; let ,(a) be the sum of the m-th powers of the numbers
of the sequence 1, 2, ..., a which are relatively prime to a;
let p,y pyy .. .y px be all the prime divisors of the number a.

a. Applying the theorem of problem 17, a, prove that

Umla) = 2o pld)d™on (i)

d\a d
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b. Prove that

Yila) = fz-cp(a).

¢. Prove that

& 1)k
,(a) = ( Tt D p,p,...pk)cp(a).

6

19. Let z > 1, let a be a positive integer; let T, be the
number of numbers x such that 0 < x € z, (x, a) = 1; let ¢
be an arbitrary positive constant,

a. Prove that

T, = L ud) H .

d\a d

b. Prove that

T, = = ola) + O(a9.
a

c. Let z > 1; let n(z) be the number of prime numbers not
exceeding z; let a be the product of the primes not exceeding

Vz . Prove that

n(z) = n(Vz) -1+ Z pld) [T;—:I .

d\a

20, Let R(s) > 1 and let a be a positive integer. Prove that

Y em (1 - p—l-) &),
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where, on the left side, r runs through the positive integers
relatively prime to a, while, on the right side, p runs through
all the prime divisors of the number a.

21, a. The probability P that & positive integers x,, x;, ...,
x, are relatively prime is defined as the limit, as N — o, of
the probability P, that the & numbers x,, x,, ..., x, are rela-
tively prime, when these & numbers take on the values 1, 2,
«++s N independently and with equal probability. Applying the
theorem of problem 17, b, prove that P = ({(k))™.

b. Defining the probability of the irreducibility of the frac-

tion Z as in problem a for k = 2, prove that P = =
Yy
22, a, Letr > 2 and let T be the number of lattice points

(x, y) with relatively prime coordinates in the region 2* + y* ¢
< r. Prove that

6
T =—r?+ O(rlnr).

m
b. Letr > 2 and let T be the number of lattice points (x, y,
z) with relatively prime coordinates lying in the region x?* +

+y? + z? ¢ r', Prove that
4
T = ———r* + O(r?)

3¢(3)

23, a. Prove the first theorem of ¢, $3, by considering the
divisors of the number a which are not divisible by the square
of an integer exceeding 1, and having 1, 2, ... prime divisors,

b. Let a be an integer, a > 1, and let d run through the di-
visors of the number g having no more than m prime divisors;

Prove that) u(d) > 0 for m even, and}" u(d) < 0 for m odd.

¢. Under the conditions of the theorem of d, $3, assuming
all the f to be non-negative and letting d run only through the
numbers having no more than m prime divisors, prove that

S’ <X udSa, S 3T WIS,
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according as m is even or odd.

d. Prove the validity of the same inequalities as in problem
¢, under the conditions of problem 17, a, assuming all the
values of f{x) are non-negative, as well as under the conditions
of 17, b, assuming all the values of f(x,, x,, ..., xx) are non-
negative,

1
24. Let ¢ be an arbitrary constant such that 0 < ¢ < E; let

N be an integer, r = InN,0 < g ¢ N5, 0 1< q,(q, D) = 1;
let #(N, q, ) be the number of primes such thatp ¢ N,p =
= q¢t + I, where ¢ is an integer. Prove that
N{gn¢
qr

w(N, g, 1) = OA); A =

In order to prove this, setting & = r*”¢, the primes satisfy-
ing the above condition can be considered to be among all
numbers satisfying these conditions relatively prime to a,
where a is the product of all primes which do not exceed e”
and do not divide 4. We can then apply the theorem of problem
23, d (under the conditions of problem 17, a) with the above a
andm = 22Inr + 1.

25, Let k be a positive even number, let the canonical de-
composition of the number a be of the form a = p,p,...px and
let d run through the divisors of the number a such that 0 <

< d < Va. Prove that
Jopld) = 0.
d

26, Let k be a positive integer, let d run through the posi-
tive integers such that ¢(d) = £, Prove that

Zp.(d) = 0,

27. Using the expression for ¢(a), prove that there exist an
infinite number of primes,
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28, a, Prove the theorem of d, §4 by showing that the num-
ber of integers of the sequence 1, 2, ..., a which have the

same greatest common divisor § with a, is equal to ¢ (-g—) .

b, Deduce expressions for ¢(a):

«) using the theorem of problem 10, b;
B) using the theorem of problem 17, c.

29, Let R(s) > 2. Prove that

o @ln) {(s-1)
El n® ¢(s)

30, Let n be an integer, n > 2, Prove that

Zn: p(m) = ;::—n’ + O(n In n).

Numerical Exercises for Chapter Il

1, a, Find the exact power with which 5 enters into the
canonical decomposition of 52581 (problem 5),

b. Find the canonical decomposition of the number 125!

2, a, Find (2 800) and S(2 800).

b. Find r{ 232 848) and 5(232 848).

3. Form the table of values of the function u(a) for all
a=1,2,...,100.

4. Find o) ¢(5040); 8) ¢( 1 294 700).

5. Form the table of values of the function ¢(a) for all
a=1,2 ...,50, using only formula (5), $4, and theorem
c, $4.

40



CHAPTER I

CONGRUENCES

$1. Basic Concepts

a. We will consider integers in relation to the remainders
resulting from their division by a given positive integer m
which we call the modulus.

To each integer corresponds a unique remainder resulting
from its division by m (c, ¢1, ch. 1); if the same remainder r
corresponds to two integers a and b, then they are said to be
congruent modulo m,

b. The congruence of the numbers a and b modulo m is
written as

a = b{mod m),

which is read: a is congruent to b modulo m.

¢. The congruence of the numbers a and b modulo m is
equivalent to:

1. The possibility of representing a in the form a = b + mt,
where t s an integer.

2. The divisibility of a — b by m.

Indeed, it follows from a = b(mod m) that

a=mqg+r,b=mg, +r; 0 r<m,
and hence

a-b=mlg-q)a=>b+mt,t={q-gq,
41



Conversely, froma = b + mt, representing b in the form
b=mqg, +r, 0 r<m,

we deduce

=]
il

mg+r,q=4q,+¢t,
i.e,
a = b{mod m)

proving assertion 1.
Assertion 2 follows immediately from assertion 1.

§2. Properties of Congruences similar to those of Equations

a. Two numbers which are congruent to a third are congruent
to each other.

This follows from a, §1.

b. Congruences can be added termwise,
Indeed, let
(1) a, = b,(mod m), a, = b,{mod m), ..., ay = by(mod m)
Then (1, ¢, §1)
(2) a, =b, + mt,, a; = by + mty, ..., Gy = by + mty,
and hence

B 48+ .. +8x=b  + b4+ .o +bp+mle, 4+t +...+ L),

or(1,c, $1)

G, + 8, + ... +ax = b, + b, + ... + bylmod m)
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A summand on either side of a congruence can be put on the
other side by changing its sign.

Indeed, adding the congruence a + b = c(mod m) to the evi-
dent congruence —b = —b{mod m), we finda = ¢ — b{mod m).

Any number which is a multiple of the modulus can be added
to {or subtracted from) any side of a congruence.

Indeed, adding the congruence a = b(mod m) to the evident
congruence mk = O{mod m), we obtain a + mk = b(mod m).

c. Congruences can be multiplied termwise.

Indeed, we again consider the congruences (1) and deduce
from them the equations (2). Multiplying equations (2) together
termwise we find

a,8,...ax = bb,...bx + mN,
where N is an integer. Consequently (1, ¢, $1),
a,8,...ax = b,b,... b (mod m),

Both sides of a congruence can be raised to the same power.

This follows from the preceding theorem.

Both sides of a congruence can be multiplied by the same
integer.

Indeed, mutliplying the congruence a = b{mod m) by the
evident congruence k& = k(mod m), we find ak = bk(mod m).

d. Properties b and ¢ (addition and multiplication of con-
gruences) can be generalized to the following theorem,

If we replace A, x,, %,, ..., X, in the expression of an

integral rational function S = EAxf“x,a’ .« . Xg* with integral

coefficients, by the numbers B, y,y ¥,y ++ . ¥x Which are con-
gruent to the preceding ones modulo m, then the new expres-
ston S will be congruent to the old one modulo m.

Indeed, from

A = B(mod m), x, = y,(mod m),

%, = y(mod m), ..., x5 = yx(mod m)
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we find (c)

A = B(mod m), x = y(mod m)
2 = y;¥mod m), ..., xg*x = yek(mod m),
Axhelr ., xgk 5 ByMyl ., yEx(mod m)

from which, summing, we find

Z: Axldxfa, | xpk = ZByf"‘y:’ e .y £ ¥(mod m),
If

a = blmod m), a, = b,(mod m), ..., a, = b,(mod m),
x = x,(mod m),

then

i

ax" + a 2" 4+ ...+ a2 ba + b + ... 4+ b,(mod m).

This result is a special case of the preceding one.
e. Both sides of a congruence can be divided by one of their
common divisors if it is relatively prime to the modulus.
Indeed, it follows from @ = b(mod m), @ = a,d, b = b,d,
(d, m) = 1 that the difference a — b, which is equal to {a, -
~ b, is divisible by m. Therefore (2, f, $2, ch. ) a, - b,
is divisible by m, i.e. a, = b,(mod m).

$3. Further Properties of Congruences

a. Both sides of a congruence and the modulus can be
multiplied by the same integer.
Indeed, it follows from a = b({mod m) that

a=0b+ mt ak = bk + mkt

and hence, ak = bk(mod mk),
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b. Both sides of a congruence and the modulus can be
divided by any one of their common divisors.

Indeed, let
as blmodm), a =ad, b =bd, m=myd.

We have
a=b4+mt ad=>bd +mdt, a, = b, + mt

and hence a, = b,{mod m,).

c. If the congruence a = b holds for several moduli, then it
also holds for the modulus equal to the least common multiple
of these moduli.

Indeed, it follows from a = b(mod m,), a = b(mod m,), ...,
a = b{mod my) that the difference a — b is divisible by all the
moduli m,, m,, ..., mx. Therefore (¢, $3, ch. 1) it must be
divisible by the least common multiple m of these moduli,

i.e. a = b(mod m).

d. I/f a congruence holds modulo m, then it also holds
modulo d, which is equal to any divisor of the number m.

Indeed, it follows from a = b(mod m) that the difference
a — b must be divisible by m; therefore (1, b, $1, ch. 1) it
must be divisible by any divisor d of the number m, i.e.

a = b{mod d).

e. If one side of a congruence and the modulus are divisible
by some number then the other side of the congruence must
also be divisible by the same number,

Indeed, it follows from a = b(mod m) thata = b + mt, and
if a and m are multiples of d, then (2, b, $1, ch, I) b must also
be a multiple of d, as was to be proven,

f. If a = b(mod m), then (a, m) = (b, m).

Indeed, in view of 2, b, $2, ch. I this equation follows im-
mediately froma = b + mt.

$4. Complete Systems of Residues

a. Numbers which are congruent modulo m form an
equivalence class modulo m,
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It follows from this definition that all the numbers of an
equivalence class have the same remainder r, and we obtain
all the numbers of an equivalence class if we let ¢ in the form
mq + rrun through all the integers,

Corresponding to the m different values of r we have m
equivalence classes of numbers modulo m.

b. Any number of an equivalence class is said to be a resi-
due modulo m with respect to all the numbers of the equiva-
lence class. The residue obtained for ¢ = 0 is equal to the
remainder r itself, and is called the least non-negative residue.

The residue p of smallest absolute value is called the
absolutely least residue,

m m
It is evident that we have p = r forr < ?; forr > — we

have p = r — m; finally, if m is even and r = ;, then we can

m m m
take for p either of the two numbers Y and — - m = -~—,

2 2
Taking one residue from each equivalence class, we obtain
a complete system of residues modulo m. Frequently, as a
complete system of residues we use the least non-negative
residues 0, 1, ..., m — 1 or the absolutely least residues; the
latter, as follows from our above discussion, is represented in
the case of odd m by the sequence

m-—1 m-—1
9 *e ey '-1’ 0, 1, " ey
2 2

and in the case of even m by either of the two sequences

-+ 1, v eey '-1, 0, ]., 20wy
2

m
Ty evny -1’ 0’ 1’ e ey
2
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¢. Any m numbers which are pairwise incongruent modulo m
form a complete system of residues modulo m.

Indeed, being incongruent, these numbers must belong to
different equivalence classes, and since there are m of them,
i.e. as many as there are classes, it follows that one number
falls into each class,

d, If (a, m) = 1 and x runs over a complete system of resi-
dues modulo m, then ax + b, where b is any integer also runs
over a complete system of residues modulo m.

Indeed, there are as many numbers ax + b as there are
numbers x, i.e. m. Accordingly, it only remains to prove that
any two numbers ax, + b and ax, + b comesponding to incon-
gruent x, and x, will also be incongruent modulo m.

But, assuming that ax, + b = ax, + b(mod m), we arrive at
the congruence ax, = ax, (mod m), from which we obtain
%, = x, (mod m) as a consequence of (a, m) = 1, and this
contradicts the assumption of the incongruence of the num-
bers x, and x,.

$5. Reduced Systems of Residues

a. By 1, $3, the numbers of an equivalence class modulo m
all have the same greatest common divisor relative to the
modulus, Particularly important are the equivalence classes
for which this divisor is equal to unity, i.e. the classes con-
taining numbers relatively prime to the modulus.

Taking one residue from each such class we obtain a re-
duced system of residues modulo m. A reduced system of
residues therefore consists of the numbers of a complete sys-
tem which are relatively prime to the modulus. A reduced
system of residues is usually chosen from among the numbers
of the system of least non-negative residues 0,1, ..., m — 1.
Since the number of these numbers which are relatively prime
to m is ¢(m), the number of numbers of a reduced system,
which is equal to the number of equivalence classes contain-
ing numbers relatively prime to the modulus, is ¢(m).
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Example. A reduced system of residues modulo 42 is
1, 5, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41.

b. Any @(m) numbers whickh are pairwise incongruent modulo
m and relatively prime to the modulus form a reduced system
of residues modulo m.

Indeed, being incongruent and relatively prime to the
modulus, these numbers belong to different equivalence clas-
ses which contain numbers relatively prime to the modulus,
and since there are ¢(m) of them, i.e. as many as there are
classes of the above kind, it follows that there is one number
in each class,

c. If (a, m) = 1 and x runs through a reduced system of
residues modulo m, then ax also runs through a reduced sys-
tem of residues modulo m.

Indeed, there are as many numbers ax as there are numbers
%, i.e. @(m)., By b, it only remains to prove that the numbers
ax are incongruent modulo m and are relatively prime to the
modulus, But the first was proved in d, $4 for the numbers of
the more general form ax + b, and the second follows from
(@, m =1, x,m) =1,

§6. The Theorems of Euler and Fermat
a, Form > 1and (a, m) = 1, we have (Euler’s theorem):
a®™ = 1 (mod m).
Indeed, if x runs through a reduced system of residues
X =Ty Py ooy Tep € = @lm),
which consists of the least non-negative residues, then the
least non-negative residues p,, p,, . ., pc of the numbers

ax will run through the same system, but, generally speaking,
in a different order {c, $5).
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Multiplying the congruences
ar, = p, (mod m), ar, = p, (mod m), ..., ar, = p. (mod m)
together termwise, we find
%7 Fyee i le = PyPaes.pe (mod m),
from which we find
a® = 1 (mod m)

by dividing both sides by the product r,r,...rc = 1Py . pe-
b. If p is a prime and a is not divisible by p, then we have
(Fermat's theorem):

(1) a®* =1 (mod p).

This theorem is a consequence of theorem a for m = p. The
latter theorem can be put in better form. Indeed, multiplying
both sides of the congruence (1) by a, we obtain the congruenc

a® = a (mod p),

which is valid for all integers a, since it is valid for integers
a which are multiples of p.

Problems for Chapter 111

1, a. Representing an integer in the ordinary decimal sys-
tem, deduce criteria for divisibility by 3, 9, 11.

b. Representing an integer in the calculational system to
the base 100, deduce a criterion for divisibility by 101.

c. Representing an integer in the calculational system to
the base 1000, deduce criteria for divisibility by 37, 7, 11, 13.
2,a. Letm > 0, (a, m) > 1, let b be an integer, let x run
through a complete, while £ runs through a reduced, system of
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residues modulo m. Prove that

a)Z{ax+b} =%(m-—l),

a 1
B) Zf{;f'} = E qJ(m).

b. Let m > 0, (a, m) = 1; let b, N, ¢ be integers, ¢t > 0; let
ax + b

flx) = » fN) > 0, fIN + mt) > 0, Prove, for the
m

trapezoid bounded by the linesx = N, x = N + mt,y = 0,
y = flx), that

(1) S= 2.8

where S is the area of the trapezoid, while the sum on the
right is extended over all the lattice points of the trapezoid

1
where 8 = 1 for the interior points, § = ry for the vertices,

1
5= —

for the remaining points of the contour.

1
c. Letting, in contradistinction to problem b, § = 5

for the vertices, prove formula (1) for a triangle with lattice
point vertices,
3,a. Letm > 0,(a,m)= 1,k > 0, let c be areal number,

let
S . mZ-' {ax + l,b(x)}

X=0 m

where (x) takes on values such that ¢ < ¢(x) < ¢ + & for

the values of x considered in the sum. Prove that
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1 1
|S—Em|$ﬁ+3.

b, Let M be an integer, m > 0, (a, m) = 1, let 4 and B be
real numbers, let

a A M+ m=1
A-—-—; +;,S= ’;M !Ax+BI.

Prove that

1 1
|S-—Em| < IA' +E.

¢. Let M be an integer, m > 0, (@, m) = 1,
M+m~—1

S= 3 i,

x=M

where the function f(x) has continuous derivatives f"(x) and
f(x) in the interval M < x < M + m ~ 1, while

a e 1 k
ffM)=— + —;@m=1]60] <l;—< || < —,
m m? A A
where
l<mgr,r=A,A4A>2, k1.
Prove that
1 k+3
‘S - —m| < b
2 2

4. Let all the partial quotients in the continued fraction
development of the irrational number A be bounded, let ¥ be
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an integer, let m be a positive integer, and let B be a real
number. Prove that

M+é+m=~—1 1
Z {Ax + B} = Em + O(ln m).
x=M

5,a. LetA > 2, £ > 1 and let the function f{x) have a
continuous second derivative satisfying the condition

1 k
— < Fy it
on the interval Q € x < R. Prove that
1
L [ﬂx)f=E(R-Q)+ 6A; |6] <1,

O<xg{R

A= Q2BR - Q) InA + BLAA™,
b, Let Q and R be integers, and let 0 < o 1. Under the
assumptions of problem a, prove that the number (o) of frac-

tions {f(x)}; x = Q + 1, ..., R such that 0 g o)t < ois
given by the formula

v =R - Q) + 6”+24; |6°] <1.

6, a. Let 7 be the number of lattice points (x, y) of the re-
gion 2* + y* < @ (r > 2). Prove that

T=a" 4 O(r% In 7).

b. Let n be an integer, n > 2, and let £ be Euler’s constant.
Prove that

1) + /2 + ...+ rR)=rllnn + 2E - 1) + O(n% (In n)).
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7. A system of n positive integers, each of which is repre-
sented to the base 2, is said to be proper if for every non-
negative integer s, the number of integers in whose representa-
tion 2 occurs, is even, and is said to be improper if this
number is odd for at least one s.

Prove that an improper system can be made proper by de-
creasing or completely deleting some one of its members,
while a proper system can be made improper by decreasing or
completely deleting any one of its members.

8. a. Prove that the form

%, + 3" xpy + ooe. + 3%, + x4,

where x,,, ¥, ..., X,, X, run through the values -1, 0, 1
independently of one another, represents the numbers

3nH o]

—H, ooy =1, 0, 1, ..., H; H =
3 -1

and represents each of them uniquely.

b, Let m,, my, ..., my be positive integers which are rela-
tively prime in pairs, Using c, $4, prove that we obtain a
complete residue system modulo m,m, ...m,, by inserting in
the form

xl + m‘xz + m‘m:x’ + " re + mimiuuomk_‘xk

the nambers x,, x,, ..., x, which run through complete residue
systems modulo m,, m,, ..., m,.

9. Let m,, my, ..., my be integers which are relatively
prime in pairs, and let

m‘m:ulomk = m1M‘ m’M: = see = mkﬁlkn

a, Applying c, ¢4, prove that we obtain a complete system
modulo m,m, ...m, by inserting in the form

Mz, + Myxy + .. + Myxy
23



the numbers x,, x,, ..., x; which run through a complete sys-
tem of residues modulo m,, m,, ..., my.

b. Applying ¢, $4, ch, Il and b, $3, prove that we obtain
a reduced system of residues modulo m;m, ... my by inserting
in the form

Mz, + Mx, + ... + Mpx,

the numbers x,, x,, . ."., %, which run through a reduced residue
system modulo m,, m,, ..., my.

c. Prove the theorem of problem b independently of theorem
¢, $4, ch, I1, and then deduce the latter theorem from the
former one,

d. Find an expression for ¢(p®) by an elementary method,
and using the equation in ¢, $4, ch. 11, deduce an expression
for ¢(a).

10, Let m,, m,, ..., my be integers greater than 1, which
are relatively prime in pairs, and let m = mym, ... m,,

mM, = m.

a, Letx,, x,, ..., x4, x run through complete residue sys-
tems, while &, &,, ..., &k € mun through reduced residue sys-
tems modulo m,, m,, ..., my, m. Prove that the fractions

Xy X, Xy
—+—+ LI B + -_

m, m, m

coincide with the fractions {i} , while the fractions

(6 £ ) it it e i [ £].

m, m, my m
b. Consider £ entiré rational functions with integral coef-
ficients of the r variables x, ..., w(r > 1):

(s) a 5, ¢ =
fﬂ(x’ ""w)Eaz sca’oooisx ...w’s——l,".’k,
AR EE]
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and let

) =
f(x’ teey w) = Z ca,_”’sxa...w;ca’_,_’g"‘
a'.."s

k

E M c(")

X4, «+.y W, fun through complete residue systems, while
Eus ooy W, Mun through reduced residue systems modulo m,;
%, ..., w run through complete residue systems, while

¢, ..., w run through reduced residue systems modulo m.
Prove that the fractions

{fx(xu vy wl) + + fk(xk’ L ) wk)}
m, o m

coincide with the fractions{ By e w)} , while the fraction
m

{[x(‘fu ey m: fk(gk’ veey mk)}
+ .0 +
My

m,

coincide with the fractions {ﬂf’ 2 m)} (a generalization
m

of the theorem of problem a),

11, a, Let m be a positive integer, let a be an integer, and
let x run through a complete residue system modulo m. Prove
that

ax m, if a is a multiple of m
P = {

0, otherwise,

b, Let « be a real number, and let M and P be integers with
P > 0. Letting () denote the numerical value of the differ
ence between a and the integer closest to « (the distance
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from « to the nearest integer), prove that

2 always
Mi+P-1

Z e2Miax

xa M

. 1
gmm(P,m-),h; !
3, for(d.)gz.

c. Let m be an integer, m > 1, and let the functions 3}(a)
and P(a) take on integral values such that P(a) > O for the
valuesa = 1,2, ..., m — 1. Prove that

1 | (2 + )f
~minm - — ——
n ‘ 1)form >

=1 |M(aytP (a)=1 a m
" ang(er <.ﬁ mlnm-—?,form; 12,

i =
e m

a=1 x=M{(a)

mlnm~-m, form» 60,

12, a. Let m be a positive integer, and let £ run through a
reduced residue system modulo m. Prove that

£
plm) = 3 27w
&

b. Using the theorem of problem a, prove the first of the
theorems of ¢, $3, ch, II (cf. solation of problem 28, a, ch, II),
c. Deduce the theorem of problem a, using the theorem of

problem 17, a, ch, H.
d. Let
flx, ..., w) = ). ca 8

a

x LK BR ]
vy d w
a.,.--,s

y .

be an entire rational function with integral coefficients of the
r variables x, ..., w(r > 1) and let a, m be integers with

m > 0; x, ..., w run through complete residue systems, while
¢, ..., @ run through reduced residue systems modulo m. We
introduce the symbols
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Sam = Lo Le .

S;,m = § Zexp(af(f, ooy @)/m)

Moreover, let m = m,m, ...my, where m,, ..., my are integers
exceeding 1 which are relatively prime in pairs, and let

my,Mg = m, Prove that

Sa,,m,_“-sak,mk = SM‘Q‘G-...-I-Mkﬂk,m’
, ’ ,
sa“m""sak,mk= SM;E;-I- .. .-l-Mkak,m .

e. Using the notation of problem d we set
Alm) = m™" 3 Sa,;my A7(m) = m™* 55, 1,

where a runs through a reduced residue system modulo m.
Prove that

Alm) ... A(my) = A(m), A”(m)...A"(my) = A”(m).

13, a. Prove that

¢(a) = E H(l - l"z-:‘ezm_p— )

n*o p P x=o

where p runs through the prime divisors of the number a.
b. Deduce the well-known expression for ¢(a) from the
identity of problem a.
14. Prove that

rla) = lim 2« 5° f: k= @+ Oexp(2niak/x) + &
0<x<Va *=1
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where 8§ = 1 or & = 0, according as a is or is not the square
of an integer,

13, a. Let p be a prime and let 4,, &,, ..., ko be integers,
Prove that

(hy + by + oo + AP = AP + A2 + ... + A5 (mod p),

b, Deduce Fermat’s theorem from the theorem of problem a.
c. Deduce Euler’s theorem from Fermat’s theorem.

Numerical Exercises for Chapter 111,

1, a, Find the remainder resulting from the division of
(12 371% + 34)* by 111.

b. ls the number 2!°* — 2 divisible by 1 093*?

2, a. Applying the divisibility criteria of problem 1, find
the canonical decomposition of the number 244 943 325.

b. Find the canonical decomposition of the number

282 321 246 671 737.
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CHAPTER IV

CONGRUENCES IN ONE
UNKNOWN

$1. Basic Concepts

Our immediate problem is the study of congruences of the
general form:

(1) flx) = 0(mod m); f(x) = ax” + a,x™* + ... + a,.

If a is not divisible by m, then n is said to be the degree
of the congruence,

Solving a congruence means finding all the values of x
which satisfy it. Two congruences which are satisfied by the
same values of x are said to be equivalent.

If the congruence (1) is satisfied by some x = x,, then
(d, §2, ch, III) this congruence will also be satisfied by all
numbers which are congruent to x, modulo m: x = x, {mod m).
This whole class of numbers is considered to be one solution.
In accordance with this convention, congruence (1) has as
many solutions as residues of a complete system satisfying it.

Example. The congruence

2+ 2+ 1= 0mod?7)

is satisfied by two numbers x = 2 and x = 4 among the num-
bers 0,1, 2, 3, 4, 5, 6 of a complete residue system modulo 7.
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Therefore the ahove congruence has the two solutions:
x = 2(mod 7), x = 4(mod 7).
§2. Congruences of the Firse Degree

a, A congruence of the first degree whose constant term has
been placed on the right side (with opposite sign) can be put
in the form

(1) ax = b{mod m).

b. Tuming to the investigation of the number of solutions,
we first restrict the congruence by the condition (@, m) = 1.
According to §1, our congruence has as many solutions as
residues of a complete system satisfy it. But when x runs
through a complete system of residues modulo m, ax also runs
through a complete residue system (d, 4, ch. ). Therefore,
in particular, ax will be congruent to b for one and only one
value of x taken from the complete residue system. Therefore
congruence (1) has one solution for (a, m) = 1.

c. Now let (@, m) = d > 1. Then, in order that the con-
gruence (1) have a solution it is necessary (e, $3, ch, Ill)
that b be divisible by d, for otherwise the congruence (1) is
impossible for all integers x, Assuming then that b is a
multiple of d, we seta = a,d, b = b,d, m = m,d. Then the
congruence (1) is equivalent to the following one (obtained
by dividing through by d): a,x = b,(mod m,), in which (a,,

m,) = 1, and therefore it will have one solution modulo m,.
Let x, be the least non-negative residue of this solution
modulo m,, then all the numbers x which are solutions of this
equation are found to be of the form

(2 x = x,(mod m,).

But modulo m the numbers of (2) do not form one solution,
but many solutions, and indeed as many solutions as there are
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numbers of (2) in the sequence 0,1, 2, ..., m - 1 of least
non-negative residues modulo m. But these consist of the
following numbers of (2):

x‘, x‘ + ml, xl + 2"‘1, reey xl + (d_ l)mlg

i.e. d numbers of the form (2), and hence the congruence (1)
has d solutions.

d. Gathering together our results, we obtain the following
theorem:

Let (@, m) = d. The congruence ax = b{mod m) is impossi-
ble if b is not divisible by d. For b a multiple of d, the con-
gruence has d solutions.

e. Tuming to the finding of solutions of the congruence (1),
we shall only consider a method which is based on the theory
of continued fractions, where it is sufficient to restrict our-
selves to the case in which (a, m) = 1.

Developing the fraction m/a in a continued fraction,

m 1
= =q +
a

q, + N
qs .. 1

9n
and considering the last two convergents:
Pay Pq
Qs O
by the properties of continued fractions (e, $4, ch. I) we have
mQney — aPpy = ¢1)7,
aP,., = (-1)"* (mod m),

a*(1)"P, b = b{mod m).

m
a
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Hence, our congruence has the solution
x = (-1)"*P,_,b(mod m),

for whose calculation it is sufficient to calculate P,_, by
the method described in d, $4, ch. 1.
Example. We solve the congruence

(3) 111x = 75(mod 321).

Here (111, 321) = 3, while 75 is a multiple of 3. Therefore
the congruence has three solutions.

Dividing both sides of the congruence and the modulus by
3, we obtain the congruence

(4) 37x = 25(mod 107),

which we must first solve, We have

10737
74| 2
37|33
a3
33] 4
32] 8
s [1
_i_ 4
q 2 1 8 4
P, 1 2 3 26 107

Hencen = 4, P,_, = 26, b = 25, and we have the solution
of congruence (4) in the form

x = <2625 = 99(mod 107).
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From this the solutions of congruence (3) can be represented
in the form:

x =99, 99 + 107, 99 + 2+ 107(mod 321),
i.e,
x = 99, 206, 313(mod 321).
§3. Systems of Congruences of the First Degree
a. We shall only consider the simplest system of congruences
(1) x = b,(mod m,), x = b,(mod m,), ..., x = by (mod m,)
in one unknown, but with different and pairwise prime moduli.
b. It is possible to solve the system (1), i.e. find all values
of x satisfying it, by applying the following theorem:
Let the numbers M, and M, be defined by the conditions
mmy...mg = Mmgy, MM, = 1{mod m,)
and let

%o = MM?by + MMy + .o. + MMIb,.

Then the set of values of x satisfying the system (1) are de-
fined by the congruence

(2) x = xo(mod mym,...my)

Indeed, in view of the fact that all the M, which are different
from M, are divisible by m,, forany s = 1, 2, ..., k, we have

Xy = M M2b, = b, (mod m,),

and therefore system (1) is satisfied by x = x,. [t follows
immediately from this, that the system (1) is equivalent to
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the system
(3) x = xy(mod m,), x = xy(mod m,), ..., x = x,(mod m,)

(i.e. the systems (1) and (3) are satisfied by the same values
of x). But the system (3), in view of the theorems of ¢, §3,
ch, Il and d, ¢3, ch. III, is satisfied by those and only those
values of x which satisfy the congruence (2).

c. If b, by, ..., by independently run through complete
residue systems modulo m,, my, ..., my, then xy runs through
a complete residue system modulo MMy oo s Mio

Indeed, x, runs through mm,...m, values which are incon-
gruent modulo mym, ...m,, in view of d, §3, ch, III,

d. Example. We solve the system

x = b,(mod 4), x = b, (mod 5), x = by (mod 7).
Here 4°5°7 = 4°35 = 5+28 = 7 * 20, while
35+3 = 1(mod 4), 282 = 1(mod 5), 20°6 = 1(mod 7).
Therefore
x = 35+3b, + 28+2b, + 20+6b, = 1055, + 56b, + 120b,

and hence the set of values of x satisfying the system, can be
represented in the form

x = 105b, + 56b, + 1205, (mod 140).
Thus, for example, the set of values satisfying the system
x = 1(mod 4), x = 3(med 5), x = 2(mod 7),
is

x=10514+ 563 + 120+2 = 93 (mod 140)
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while the set of values of x satisfying the system

x = 3(mod4), x = 2(mod 5), x = 6(mod 7),

is

x=105'3 +56°2 + 1206 = 27 (mod 140).

§4. Congruences of Arbitrary Degree with Prime Modulus

a. Let p be a prime. We shall prove general theorems re-
lating to congruences of the form

(1) flx) = 0(mod p); flx) = ax" + a;x™* + ... + a,.

b. A congruence of the form (1) is equivalent to a con-
gruence of degree not higher than p - 1,
Indeed, dividing f{x) by x* — x, we have

flx) = (x* - ) x) + R(x),

where the degree of R(x) is not higher than p — 1. But
xP - x = 0(mod p) implies that f{x) = R(x) (mod p), from
which our theorem follows.

c. If the congruence (1) kas more than n solutions, then all
the coefficients of f(x) are multiples of p.

Indeed, let the congruence (1) have at least » + 1 solutions,
Letting x,, x,, ..., %p, X4y be the residues of these solutions,
we can represent f(x) in the form

(2) flx) = alx - 2)(x — 7,)...(x = %oy)(x = 2oy ) x = x,) +
+b0x - x)x - x)...(x = xpy)(x = x0,) +
+elx - x)x—-x)...(6 - x,.;) +
+ oeineraens Ceteenerses Cereenas +
+ kx - x)(x - x,) +
+ Ux - x,) +

+ m.
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To this end, develop the summands on the right side into
polynomials, and then choose b so that the sum of the coel-
ficients of x™* in the firat two polynomials coincide with a,;
knowing b, we choose ¢ so that the sum of the coefficients of
2™ in the first three polynomials coincides with a,, etc.

Putting x = x,, x;, ..., X, %n4; Buccessively in (2), we
find that all the numbers m, I, &, ..., c, b, a are multiples of
p. This means that all the coefficients a, q, ..., a, are
multiples of p (since they are sums of numbers which are
multiples of p).

d. For prime p, we have the congruence (Wilson's theorem)

@) 1:2...(p = 1) + 1 = 0(mod p).

Indeed, if p = 2, then the theorem is evident. Ifp > 2,
then we consider the congruence

(x-1D&-2)...60 = (p-1)) = (x** = 1) = 0(mod p);

its degree is not higher than p — 2 and it has p - 1 solu-
tions, indeed solutions with residues 1, 2, ..., p ~ 1. There-~
fore, by theorem c, all its coefficients are multiples of p; in
particular the constant term is also divisible by p and the
constant term is just equal to the left side of the congruence

(3).
Example. We have 1°2°3°4°5°6 + 1 = 721 = 0(mod 7).

§5. Congruences of Arbitrary Degree with Composite Modulus
a. If my, myy ..., my are pairwise prime, then the congruence
(1) flx) = 0(mod mym,...my)

is equivalent to the system

flx) = 0(mod m,),

flx) = 0(mod m,), ..., flx) = 0(mod m,).
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Letting Ty, Ty, ..., T be the numbers of solutions of the
individual congruences of this system with respect to the
corresponding moduli, and letting T be the number of solutions
of the congruence (1), we have

T =T,T,...Ts.

Indeed, the first part of the theorem follows from ¢ and
d, $3, ch. Ill. The second part of the theorem follows from
the fact that each congruence

(2) flx) = 0(mod m,)

is satisfied if and only if one of the T, congruences of the
form

x = b, (mod m,),

where b, runs through the residues of the solutions of the
congruence (2), is satisfied, while all 7,7, ... T, different
combinations of the form

x = b,(mod m,), x = b,{mod m;), ..., x = by(mod m,),
are possible, which leads (c, $3) to different classes modulo

mlm: L} mk.

Example. The congruence
(3) flx) = 0(mod 35), flx) = x* + 2¢* + 8x + 9
is equivalent to the system

flx) = 0(mod 5), f(x) = 0(mod 7).

It is easy (81) to verify that the first congruence of this sys-
tem has two solutions: x = 1; 4 (mod 5), the second con-
gruence has three solutions: x = 3; 5; 6 (mod 7). Hence the
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congruence (3) has 2 3 = 6 solutions. In order to find these
six solutions, we must solve six systems of the form

(4) x = b, (mod 5), x = b, (mod 7),

which we obtain by letting b, run through the values b, = 1; 4,
while b, runs through the values b, = 3; 5; 6. But since

35=5*7=7'5,7'3=1(mod5), 5°3 = 1(mod 7),

the set of values of x satisfying the system (4) can be repre-
sented in the form (b, $3)

x = 214, + 15b, (mod 35).
Therefore the solutions of congruence (3) are
x = 31; 26; 6; 24; 19; 34 (mod 35).

b. In view of theorem a the investigation and solution of
congruences of the form

flx) = 0(mod ptp/...pgk)

reduces to the investigation and solution of congruences of
the form

(5) f{x) = 0(mod p®);

this last congruence reduces in general, as we shall soon see,
to the congruence

(6) flx) = 0{(mod p)

Indeed, every x satisfying the congruence (5) must neces-
sarily satisfy the congruence (6). Let

x = x, (mod p)
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be any solution of the congruence (6), Then x = x, + p¢,,
where ¢, is an integer. [nserting this value of x in the
congruence

flx) = 0(mod p?)
and developing the left side by means of the Taylor formula,

we find (noting that Il!— f*(x,) is an integer, and deleting

the terms which are multiples of p?)

flz,)
p

flx,) + pt,f’(x,) = O0(mod p?), + ¢f’(x,) = 0(mod p).

Restricting ourselves to the case in which f’(x,) is not di-
visible by p, we have one solution:

¢, =t/ (mod p); ¢ = ¢ + pt,.
The expreasion for x takes on the form
x = x, + p't] +plty = x, + ply;
inserting it in the congruence
flx) = 0{(mod p*),
we find
flx;) + pPtyf’(x,) = 0(mod p*)

ﬂx:) + t,f (%)
p

1}

0 (mod p).

Here f’(x,) is not divisible by p since

m

Xy

[ (x,)

%, (mod p),
f’(x,) (mod p),
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and hence the latter equation has one solution:
b = £ (mod p),
=4 +ph,
The expression for x takes on the form
x =% + p'ty +p'ty = x, + plLy;

and so forth, In this way, given a solution of the congruence
(6) we can find a solution of the congruence (5) which is con-
gruent to it. Hence, if [*(x,) is not divisible by p, each so-
lution x = x,(mod p) of the congruence (6) gives a solution
of the congruence (5):

X = Xgq + pa'ta;
x = x,{mod p%).

Example. We solve the congruence

flx) = 0(mod 27);
7) {

flx) = «2* + 7x + 4.

The congruence f{x) = 0(mod 3) has one solution x = 1(mod
3); here (1) = 2(mod 3), and hence, is not divisible by 3.
We find

x=1+ 3¢,
fl1) + 3¢,f°(1) = 0(mod 9), 3 + 3¢, °2 = 0(mod 9),
2, +1=0(mod3), ¢, = 1(mod3), ¢, = 1 + 3¢,

x =4 + 9,
f4) + 9,{*(4) = 0(mod 27), 18 + 9z, *2 = 0(mod 27),
2t, + 2 = O(mod 3), ¢, = 2(mod 3), ¢ = 2 + 3¢,

x =22 4+ 2Te,.
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Therefore, the congruence (7) has one solution:
x = 22(mod 27).
Problems for Chapter IV

1, a. Let m be a positive integer and let f{x, ..., w) be an
entire rational function with integral coefficients of the r
variables x, ..., w(r > 1). If the systemx = x,, ..., w = w,
satisfies the congruence

(1) flx, ..., w) = 0(mod m),

then (generalizing the definition of $1) the system of classes
of integers modulo m:

x = xy(mod m), ..., w = wy(mod m)
will be considered to be one solution of the congruence (1).

Let T be the number of solutions of the congruence (1).
Prove that

m=1 mel m=1 al{X,000,4w)
Tm = Z Z e Z e!frl ™
anld xXal wmd

b. Using the notation of problem a and problem 12, e, ch,
I, prove that

Tm = m’ Z Alm,).

My \m

c. Apply the equation of problem a to the proof of the
theorem on the number of solutions of a congruence of the
first degree.

d. Let m be a positive integer; leta, ..., [, g be
r+ l(r> 0)integers; d = (a,..., f, m); let T be the
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number of solutions of the congruence

ax + ...+ fw + g = 0(mod m).

Using the equation of problem a, prove that
m"™d, if g is a multiple of d,
T =
0, otherwise.

e. Prove the theorem of problem d, starting from the theorem
on the number of solutions of the congruence ax = b(mod m).
2,a, Letm > 1, (a, m) = 1. Prove that the congruence
ax = b(mod m) has the solution x = 5a¥™ ! (mod m).

b, Let p be a prime, 0 < a < p. Prove that the congruence
ax = b(mod p) has the solution

p— 1p-2...p-a+1)
1-2...a

x = b(-1)"!

(mod p).

¢, a) Find the simplest possible method of solving a con-
gruence of the form

2%x = b(mod m); (2, m) = 1.

B) Find the simplest possible method of solving a con=
gruence of the form

3%x = b(mod m); (3, m) = 1.

y) Let (@, m) = 1, 1 < a < m. Applying the methods used
in problems o) and 8), prove that finding the solutions of the
congruence ax = b (mod m) can be reduced to finding the solu-
tions of a congruence of the form b + m¢ = 0(mod p) where p
is a prime divisor of the number a.

3. Let m be an integer,m > 1,1 < r < m, (g, m) = 1,
Using the theory of congruences prove the existence of
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integers x and y such that

m
ax = y(modm), 0 < xgr, 0< |yl <T.

4, a. For (a, m) = 1, we will consider the symbolic frac-

tion — modulo m, which denotes any residue of a solution of
a

the congruence ax = b (mod m). Prove that (the congruences
are taken modulo m)
b b,

«) Fora = a,, b = b, we have — = —.
a a,

b
B) The numerator b of the symbolic fraction — can be re-
a

placed by a congruent b, which is a multiple of a, Then the

symbolic fraction = is congruent to the ordinary fraction

b
—, where the congruence is taken with ordinary integers.
a

b d bc + ad
N e s IS
a c ac

b d bd
5) — — = —
a ¢

ac

b, &) Letp be a prime, p > 2, and let a be an integer,
0 <a<p- 1, Prove that

-1 .
( P ) = (-1) (mod p).

a

B) Let p be a prime, p > 2. Prove that

-2 1 (mod o)
2]l - — 3+ =<.,, - m .
p 2 3 P - P
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5, a. Let d be a divisor of the number a which is not di-
visible by primes smaller than n, and let x be the number of
different divisors of the number d. Prove that the number of
multiples of d in the sequence

Mmi1-2...n,2°3...60+1),...,ala+1)...(a+n - 1)

nXa

7
b. Let pyy pys « 1., px be the different prime divisors of the

number a which are not smaller than n. Prove that the number
of integers of the sequence (1) relatively prime to a is

n n n
a 1 —_——— ( - _) v 1 a—
P. P2 Px
6. Letm,; ... x be the least common multiple of the num-

bers m,, myy +v0, My
a. Let d = (m,, m,). Prove that the system

x = b, (mod m,), x = b, (mod m,)
is solvable if and only if b, — b, is a multiple of d, and if the

system is solvable, the set of values of x satisfying this sys-
tem is determined by a congruence of the form

x = % ,(mod m,,).
b. Prove that, if the system
x = b,(mod m,), x = by(mod m,), ..., x = by (mod m,)

is solvable, the set of values of x satisfying it is determined
by a congruence of the form

X S X3,...,k (mod mx.:,....k)°
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7. Let m be an integer, m > 1, let @ and b be integers, and

let
a, b ax + bx’
- Ve e
(55) = pom (=)

where x runs through a reduced residue system modulo m,

while x° = — (mod m) (in the sense of problem 4, a), Prove
x

, b
the following properties of the symbol (a ) :

) (“”nb) is real. "'
o (%) - (%)

y) For (h, m) = 1, we have (“’“‘) - (“"’b) .

m m
8) For m,, m,, ..., m, relatively prime in pairs, setting
mm,...my = m, m = m,M,, we have

(a:ll) (a::,l) N (a:kl) _
) (M’,a, + Mo, + ...

m

+ 3y l)

8. Let the congruence

e §

apx" + ax" + ... + a, = 0(mod p)
have the n solutions

X2 X, %, ...y X, {(mod p).
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Prove that

—a5, (mod p),

6, = 6,5, (mod p),

[~]
L]
1]

a, = —a,5, (mod p),

«1"a,S,, (mod p),

Q
3
m

where S, is the sum of all the x,, S, is the sum of the products
of pairs of the x,, S, is the sum of the products of triples of
the x,, etc,

9, a. Prove Wilson’s theorem by considering pairs x, x* of
numbers of the sequence 2, 3, ..., p — 2, satisfying the con-
dition xx* = 1 (mod p).

b. Let P be an integer, P > 1,1°2...(P~-1)+ 1=
= 0(mod P). Prove that P is a prime,

10, a, Let (a,, m) = 1. Find a congruence of degree
n(n > 0) with leading coefficient 1, equivalent to the
congruence

1

a,x” + a,x™' + ... + a, = 0(mod m).

b. Prove that a necessary and sufficient condition in order
that the congruence flx) = 0(mod p); flx) = xn + a,x™" +
+ ...+ a,; n < p; has n solutions, is the divisibility by p of
all the coefficients of the remainder after the division of
zP — x by f(x).

c. Letn be a divisorof p — 1;n > 1; (4, p) = 1. Prove
that a necessary and sufficient condition for the solvability

p~1

of the congruence x" = A (modp)is 4" = 1(mod p), while
if the congruence is solvable, it has n solutions.

11. Let n be a positive integer, (4, m) = 1, we assume that
we know a solution x = x,(mod m) of the congruence
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2" = A(mod m). Prove that all the solutions of this con-
gruence can be represented as the product of x, and a residue
of a solution of the congruence y” = 1(mod m).

Numerical Exercises for Chapter 1V

1, a. Solve the congruence 256x = 179 (mod 337).
b. Solve the congruence 1215x = 560 {(mod 2755).

2, a. Solve the congruences of exercises 1, aand 1, b by
the method of problem 2, c.

b. Solve the congruence 1296x = 1105 (mod 2413) by the
method of problem 2, c.

3. Find all pairs x, y satisfying the indeterminate equation
1245x — 1603y = 999,

4, a. Find a general solution of the system

x = b,(mod 13), x = b,(mod 17).

Using this general solution, find three numbers whose divi-

sion by 13 and 17 gives the respective remainders 1 and 12,
6 and 8, 11 and 4,

b. Find a general solution for the system

x = b,(mod 25), x = b,(mod 27), x = b,(mod 59).
3, a. Solve the system of congruences
z = 3(mod 8), x = 11(mod 20), x = 1(mod 15).
b. Solve the system of congruences
= 1(mod 3), x = 4(mod 5), x = 2(mod 7),
x = 9(mod 11), x = 3 (mod 13).

6. Solve the system of congruences

x + 4y — 29 = 0(mod 143), 2x — 9y + 84 = 0(mod 143).
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7, a. What congruence of degree smaller than 5 is equivalent
to the congruence

322 + 42" + 32 4+ 2" + 2 + 2t 4+ 42T + 2+
+ 32 + 2 + 422 + 2x = 0(mod 5)?

b. What congruence of degree smaller than 7 is equivalent
to the congruence
2017 + 62 4+ 2 4+ 50 4+ 3t 4+ 20 4+ 2F 4 5at 4
+ 27 +32° +4x* + 62 + 42 + x + 4 = O0(mod 7)?

8. What congruence with leading coefficient 1 is equivalent
to the congruence (problem 10, a)

70x® + 78x% + 25x* + 68x® 4+ 52x + 4x + 3 = O(mod 101)?

9, a. Solve the congrnence

flx) = 0(mod 27), flx) = 7x* + 19x + 25,

by first finding all the solutions of the congruence

flx) = 0(mod 3)

by trial.

b. Solve the congruence 9x* + 29x + 62 = 0{(mod 64).
10, a. Solve the congruence ¥ + 2x + 2 = 0{(mod 125).
b. Solve the congruence «* + 42* + 2¢* + 2x + 12 =
0(mod 625).

11, a. Solve the congruence 62* + 27x* + 17x + 20 =
= 0(mod 30).

b. Solve the congruence 31x* + 572 + 96x + 191 =
= 0 (mod 225).

m

18



CHAPTER V

CONGRUENCES OF THE
SECOND DEGREE

€1. General Theorems

a. We shall only consider the simplest of the congruences
of degree n > 1, i.e, the two-term congruences:

(1) x" = almod m); (@, m) = 1

If the congruence (1) has solutions, then g is said to be an
n-th power residue, otherwise a is said to be an n-th power
non-residue. In particular, forn = 2 the residues or non-
residues are said to be guadratic, forn = 3 cubic, forn = 4
biquadratic.

In this chapter we shall consider the case n = 2 in detail
and we first consider the two-term congruences of the second
degree for odd prime modulus p:

(2) x* = a{mod p); (a, p) = 1.

c. If a is a quadratic residue modulo p, then the congruence
(2) has two solutions.

Indeed, if a is a quadratic residue, then the congruence
(2) has at least one solution x = x, (mod p). But since
(~x,P = x}, the same congruence also has the second solution
x = ~x, (mod p). This second solution is different from the
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first since x, = —x, (mod p) would imply 2x, = 0(mod p),
which is impossible since (2, p) = (x,, p) = 1.

These two solutions exhaust all the solutions of the con-
gruence (2) since the latter, being a congruence of the second
degree, cannot have more than two solutions {(c, $4, ch. IV),

p-1

d. A reduced residue system modulo p consists of

quadratic residues which are congruent to the numbers

@) r, o2, ..., (”"1)
2

p-1

and quadratic non-residues,

Indeed, among the residues of a reduced system modulo p,
the quadratic residues are those and only those which are
squares of the numbers (a reduced system of residues)

p-1 p-1
2 ' o.n."‘2. "'1' 1. 2' LCRC ] 2

@) -~

i.e. with the numbers of (3). Here the numbers of (3) are in-

congruent modulo p, since ¥ = P(modp), 0 < k <1 p-1

it would follow that the congruence x* = P (mod p) is satisfied

by four numbers: x = -I, -k, &, ! among the numbers of (4),
contradicting c.

e. If a is a quadratic residue modulo p, then

p~1

(5) a ? = 1(mod p);
if a is a quadratic non-residue modulo p, then

p~1

(6) a® = -1(modp).
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Indeed, by Fermat's theorem,

Pt Pt
af~! = 1(mod p); (a . l) (a 4 l)s 0(mod p).

One and only one of the factors of the left side of the latter

congruence is divisible by p (both factors cannot be divisible

by p, for if they were, then 2 would be divisible by p). There-

fore one and only one of the congruences (5) and (6) can hold.
But every quadratic residue a satisfies the congruence

() a = x*(mod p)

for some x, and therefore also satisfies the congruence (5),
which can be obtained by raising each side of (7) to the power
p-1

. Here the quadratic residues exhaust all the soluticus

-1
2

of the congruence (5), since it cannot have more than P

-1
solutions because it is a congruence of degree

Therefore the quadratic non-residues satisfy the congruence

(6).

§2. The Legendre Symbol

a. We now consider Legendre's symbol d (read as:

p
the symbol of a with respect to p). This symbol is defined

for all a which are not divisible by p; it is equal to 1 if a is
a quadratic residue, and equal to -1 if @ is a quadratic non-
residue. The number a is said to be the numerator, the num-
ber p the denominator, of the symbol.

b. In view of e, §1, it is evident that we have

(1) = ap: (mod p).
p
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c. Here we deduce the most important properties of the
Legendre symbol and in the next paragraph, the properties of
the generalization of this symbol==Jacobi’s symbol, which is
useful for the rapid calculation of this symbol, and hence
solves the problem of the possibility of the congruence

2 = a{mod p).
a a,
d. If a = a,(mod p), then (-—-) = (—) .
p p

This property follows from the fact that the numbers of an
equivalence class are all either quadratic residues or
non-residues,

(7)

e. |—] =1L

P

Indeed, 1 = 1* and hence 1 is a quadratic residue,
-1 2t

EIIES
P

This property follows from b fora = -1,

p-1

Since is even for p of the form 4m + 1 and odd for

p of the form 4m + 3, it follows that —1 is a quadratic residue
of primes of the form 4m + 1 and a quadratic non-residue of
primes of the form 4m + 3.

G - )

Indeed, we have

b. .. p=1 P~ p— p-1
(" ’) =(ab...0) T =a 7 b7 ...07 =

-G
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from which it follows that our assertion is true, A consequence

of our result is
(ab') (a)
p p

i.e, we can delete any square factor from the numerator of a
symbol.

h. In order to deduce further properties of Legendre'’s
symbol, we first give it another interpretation. Setting

p~1 :
p, = , we consider the congruences
a*l = ¢r,{mod p)
a*2 = ¢r, (mod p)
(1) L B I BN B B BE AR BN O B N B B B B B BN BN BN NN BN B B BN BN 3
p-1
a°p, = €p,Tp, (mod p); p, = 9

where ¢,r, is the absolutely least residue of ax and r, is its
modulus so that ¢, = +1.

The numbersa+1, a°1,a°*2, -a*2,...,a°p,, —a°p,
form a reduced residue system modulo p {c, $3, ch. II); their
absolutely least residues are just ¢,r,, —€,r,, €73, =673y o2+,
€p,Tpy —€pTp,e Lhose which are positive ie.r, 1, o007,

must coincide with the numbers 1, 2, ..., p, (b, $4, ch. IH),
Multiplying together the congruences (1) and dividing
through by

l.2ll.p‘ = r'r’clorp"

p=1
we finda * = ¢¢.. ‘€p, (mod p), from which (b) we have

a
(2) (';) = €€ . anfp,
83



i. The expression for Legendre's symbol which we have
found can be put in a more concise form. We have

5 - (B =5 2050 BB

which is even or odd according as the least positive residue

of the number ax is less or greater than %p, i.e. according as
€¢x = lore, = ~1. Itis evident from this that

e = (-1) [3%]

and therefore we find from (2) that

(1) o B

p

j. Assuming a to be odd, we transform the latter equation.
We have (a + p is even)

4 a+p a+p
(2a) (2a+2p) 2 2
p p p p
P1 P P
§ (ﬂ_?l!_] § a_: +§x
= (-1)** = (-1)* x=1

and hence

9 ¥ [ex] , 2
@) (_) (i) = = - ° :
p/\p

The formula (3) allows us to deduce two very important
properties of the Legendre symbol.
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2 £l
k. (—) = (1) * .
p

This follows from formula (3) fora = 1.
Moreover, since

2
-1
(8m + 1) = 8m* £ 2m, even
8
while
(8n £ 3)' - 1

3 = 8m* + 6m + 1, odd,

it follows that 2 is a quadratic residue of primes of the form
8z + 1(8n + 1, 8m + 7) and a quadratic non-residue of
primes of the form 8m + 3 (8m + 3, 8m + 5).

1. If p and q are odd primes, then (the quadratic reciprocity

law)
p-t | 8
CRES
P q

-1 -1
Since = .2 is odd only in the case in which

both numbers p and g are of the form 4m + 3 and even if one
of these numbers is of the form 4m + 1, the above property
can be formulated as follows:

If both the numbers p and ¢ are of the form 4m + 3, then
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In order to prove our results, we note that, in view of k,
formula (3) takes on the form

ax

lz’:l
(4) (i) - (_l)xnx P
p

g-1

Setting = ¢,, we consider p,q, pairs of numbers

which are obtained when the numbers a and y in the expres-
sions gx, py run through the systems of values

x = ].. 2. vy P Y = ]-l 2l coey Gy

independently,

We can never have gx = py, because it would follow from
this equation that py is a multiple of ¢ which is impossible
because (p, q) = {y, g) = 1 (since 0 < y < g). Therefore we
can set p,q, = 5, + S,, where S, is the number of pairs with
gx < py and S, is the number of pairs with py < gx.

It is evident that S, is also the number of pairs with

x < B-—y. For given y we cantakex = 1, 2, ..., [ﬂy] .

9 9

(Since £-y < B-ql < £ vehave [—y] < P1o)s
q q 2

Consequently,
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But then equation {4) gives

('E-) = (_1)51. (i):' (_1)81

q P

EIRT—
g /\p

from which the required property follows,

and hence

$3. Thke Jacobi Symbol

a. In order to evaluate Legendre's symbol most quickly, we
consider the more general Jacobi symbol. Let P be an odd
number greater than unity, and let P = p,p,...p, be its de-
composition into prime factors (some of which may be equal).
Moreover, let (a, P) = 1. Then Jacobi’s symbol is defined
by the equation

(7) - ()5 ()

The well-known properties of the Legendre symbol allow us
to establish analogous properties for the Jacobi symbol.

a a,
b. If a = a,{mod P), then (—-) = (——) .
P P

(- () 2)-
()G () ()
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so that a, being congruent to a, modulo P, is also congruent to
a, modulo p,, p;, +.+, psy Which are the divisors of P,

)
7))~ G)-

-1 Pt
o (2) -
In order to establish this, we note that
#)-(G)E)- )
o'’ ALY AR

p1=l = py~1 Pyt
= (-1) : + : + LI I + ’

but
P-1 - PiPy«sPr ~ 1 -
2 2
- - -1
(1+2pl )(1+2p. ) .(1+2p' )—1
2
5 =
-1 -1 -1
=Px Pa "+P: + 2N
2 2 2

and hence from formula (1) we deduce

=1 P;-l
(*F) =(-1) * .
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- (2)- (3)) - (7).

( )= (%5) - (%) -
(@) -GG 6) - ()

and multiplying the symbols with the same numerators, we ob-
tain the required property. From this we obtain the corollary:

(%) - (7)
r. (%) -

Indeed,
@ \F p./\p. /) T\ b
p:—-l p:—-l o pi
=(_1)] + [ + .0+ g.
But
PP-1 pipi...pr=1
8 8
1 | 1 _
14+ 88 1 + 882 ...(1+a”' )-1
8 8 8
- 8
pi~-1 pi-1 pr ~ 1
= .e +2N
g T g Tty
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and hence we deduce from formula (2)

2 Pl
-l = —1 e .
(7)-
g. If P and Q are positive relatively prime odd numbers, then

Q Pt .04 /p
(F)“'” (6)'

Indeed, let Q = q,q9, ... g, be the decomposition of Q into
prime factors (some of them may be equal). We have

(- ()6 (9-22(2)-

r 8 pa-l qﬁl

L Z 2 2 ’ & Pa
= (~])a= B= T (—) =

1
G PR ).

But, as in d, we find

™

P-1 f -1 -1
- Z Pa + 2N. Q = Z iL—‘ + 2N
2 a1 1 2
and hence
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Example. As an example of the calculation of the Legendre
symbol (we will consider it to be a particular case of the
Jacobi symbol) we investigate the solutions of the congruence

x* = 219 (mod 383).

We have (applying in sequence the properties g, b, the corol-
lary of e, g, b, &, I, g, b, d):

()--(5) ) - ()
) () )R
) )

and hence the congruence under consideration has two
solutions,

S4. The Case of Composite Moduli

a. Congruences of the second degree with composite moduli
are investigated and solved in accordance with the general
methods of §3. ch. IV,

b, We start with a congruence of the form
(1) 2 = almedp®; a > 0, (g, p) =1,

where p is an odd prime.
Setting flx} = x* — a, we have f’(x) = 2x, and if x = x,
(mod p) is a solution of the congruence
(2) x* = a(mod p)
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then since (g, p) = 1 we also have (x,, p) = 1, and since p is
odd, (2x,, p) = 1, i.e. f’(x,) is not divisible by p. Therefore
to find the solutions of the congruence (1) we can apply the
argument of b, 45, ch, 1V, while each solution of the con-
gruence (2) gives one solution of the congruence (1). It
follows from this that

The congruence (1) has two solutions or none according as
a is a quadratic residue or a quadratic non-residue modulo p.

c. We now consider the congruence
(3) 2 =amed2%; o> 0, (a, 2) = 1.

Here f’(x,) = 2x, is divisible by 2, and hence the argument
of b, 43, ch. IV is inapplicable; it can be changed in the
following way:

d. If the congruence (3) is solvable, then, since (a, 2) = 1,
we have (x, 2) = 1,i.e. x = 1 + 2¢, where ¢ is an integer.
The congruence (2) takes on the form

1 + 4t + 1) = a(mod 29),

But one of the numbers ¢, ¢ + 1 is even and hence 4¢(¢t + 1) is
a multiple of 8. Therefore, for the solvability of the latter
congruence, and along with it also the congruence (3), it is
necessary that

4 a=1(mod4) for a« = 2; a = 1(mod 8) for « > 3.

e. In the cases in which condition (4) is satisfied, we con-
sider the question of finding solutions and the number of
solutions,

For o g 3, all the odd numbers satisfy the congruence in
view of d. Therefore the congruence x* = a(mod 2) has one
solution: x = 1(mod 2), the congruence x* = a(mod 4) has two
solutions: x = 1; 3 (mod 4), the congruence x* = a(mod 8) has
four solutions: x = 1, 3, 5, 7 (mod 8).
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In order to consider the cases o = 4, 5, ... all the odd
numbers are put in the two arithmetic progressions:

(5) x = (1 + 4¢,)
(1 + 4¢, = 1(mod 4); -1 ~ 4¢, 3 =1 = 3 (mod 4))

We now decide which of the latter numbers satisfy the con-
gruence x* = a{mod 16). We find

-1
(1 + 4¢,) = a(mod 16), ¢, = 2 5 (mod 2),

t, =ty + 2, x = (1 + 4] + 8,) = *(x, + 8,).

We now decide which of the latter numbers satisfy the con-
gruence x* = a(mod 32), We find

(x, + 8t,) = a(mod 32), ¢, = ¢t] + 25, x = (x, + 16¢,),

etc, In this way we find that the values of x satisfying the
congruence (3) for o > 3, are representable in the form

x = (¥, + 2%,).

These values of x form four diffrrent solutions of the con-

gruence (3)
x e x,; %, + 207 —x_; ~x, — 2%"'(mod 2%)

(modulo 4 the first two are congruent to 1 while the second
two are congruent to —1),
Example. The congruence

(6) x2* = 57 (mod 64)

has four solutions since 57 = 1(mod 8). Representing x in
the form x = (1 + 4¢,), we find
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(1 + 4¢,P = 57(mod 16), 8, = 56 (mod 16),
ty = 1{mod 2), ¢, = 1 + 2¢, x = (5 + 8¢,),
(5 + 8, = 57(mod 32), 5°16¢, = 32(mod 32),
t, = 0(mod 2}, ¢, = 2, x = (5 + 16¢,),
(5 + 16¢,)* = 57 (mod 64), 532, = 32(mod 64),
tg = 1{mod 2), £y = 1 + 2, x = +(21 + 32¢,).

Therefore the solutions of the congruence (6) are:

x = 121; 453 (mod 64).

f. It follows from ¢, d, and e that:
The necessary conditions for the solvability of the

congruence
x* = a(mod 2%); (@, 2) = 1

are:a = 1{mod4) for « = 2,a = 1{mod 8) for « > 3. If
these conditions are satisfied, then the number of solutions

isilfor a = 1;2for « = 2; 4 for & > 3.
g. It follows from b, f and a, $5, ch. IV that:
Necessary conditions for the solvability of congruences of

the form
2 = almodm); m = 2%Mp ... pexi (a, m) = 1

a= 1{(mod4) for o« = 2, a = 1{mod 8) for « > 3,

G () )

P P

If all of these conditions are satisfied, the number of solutions
is: 2% for o = Oand o = 1; 2" for o = 2; 2% for o > 3,
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Problems for Chapter V

Here p will always denote an odd prime.
1. Prove that finding the solutions of a congruence of the
form

ax* + bx + ¢ s O(mod m), (2a, m) = 1

reduces to finding the solutions of a congruence of the form
z* = g(mod m),

2, a. Using e, §1, find the solutions of the congruence
(when they exist)

x2* = a{mod p); p = 4m + 3.

b. Using b and k, $2, obtain a method of finding the solu-
tions of the congruence

x* = a{mod p); p = 8m + 5.

c. Find the simplest possible method of finding the solu-
tions of a congruence of the form

x’sa(modp);p=3m+1

when we know some quadratic non-residue N modulo p.
d. Using Wilson's theorem, prove that the solutions of the
congruence

2 +1=0(modp); p=4m + 1

x= £1-2.,..2m(mod p).
3, a. Prove that the congruence

(1) 2 + 1 = 0(mod p)
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is solvable if and only if p is of the form 4m + 1; the
congruence

(2) 2 + 2= 0(mod p)

is solvable if and only if p is of the form 8m + 1 or 8m + 3;
the congruence

2 + 3 = 0(mod p) -

is solvable if and only if p is of the form 6m + 1.

b. Prove that there are an infinite number of primes of the
form4m + 1.

c. Prove that there are an infinite number of primes of the
form 6m + 1.

4. Dividing the numbers 1, 2, ..., p — 1 into two sets, the
second of which contains at least one number, we assume that
the product of two numbers of the same set are congruent to a
number of the first set modulo p, while the product of two
elements of different sets is congruent to a number of the
second set modulo p. Prove that this occurs if and only if
the first set consists of quadratic residues, while the second
set consists of quadratic non-residues modulo p.

5, a. Deduce the theory of congruences of the form

2 = a(mod p®); (a, p) = 1,

by representing a and x in the calculational system to the
base p.
b. Deduce the theory of congruences of the form

x* = a(mod 2%); (a, 2) = 1,

by representing g and « in the calculational system to the
base 2.
6. Prove that the solutions of the congruence

2 = a(mod p%); (@, p) = 1
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are x = +PQ’ (mod p®), where

p (z+Va)®+ (z -~ Va)® 0 (z + Va)® - (z - Va)°
2 ' Na

2 = a(mod p), QQ’ = 1(mod p®).

7. Find a method of solving the congruence x* = 1(mod m)
based on the fact that this congruence is equivalent to the
congruence (x — 1)(x + 1) = 0(mod m).

8. Let (_a_) = 0 for (a, p) = p.
p

a, For (k, p) = 1, prove that

E (x(x + k)) - L
Xm0 p

b. Let each of the numbers ¢ and 5 have one of the values
t1, let T be the number of pairs x, x + 1, where x = 1, 2,

1
...,p—2,suchthat ("'x-) = €, (x+ ) = 7.

p

) )

c. Let (k, p) = 1, and let

- £z ()

p

Prove that

where x and y run through increasing sequences consisting,
respectively, of X and Y residues of a complete system modulo
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p. Prove that

|S| < V2XYp

In the proof use the inequality

15| < X;’Zy: (xy + k)

p

d. Let Q be an integer, 1 < Q < p,

S=‘i‘ls’xisx= (E(x+z)-

xe0 Zwd P
o) Prove that S = (p - Q)Q.

B) Let A be a constant, 0 < A < 1. Prove that the number
T of integers x = 0,1, ..., p ~ 1 for which the condition
S, < ("%} {g not satisfied, satisfies the condition

T < pQ~™.

y) Let p > 25, and let M be an integer. Prove that the

sequence

MM+, ..., +3Vpl-1

contains a quadratic non-residue modulo p.

9, a. Prove that the number of representations of an integer
m > 1 in the form

(1) m=x+y,&y)=1,x>0y>0
is equal to the number of solutions of the congruence

(2) 22 + 1= 0(mod m).
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In proving this, set r = Vm and use the representation of

z
o« = — given in the theorem of problem 4, b, ch. I, and then
m

consider the congruence obtained by multiplying (2) termwise

by ¢®.
b. Let a be one of the numbers 2, 3. Prove that the number
of representations of a prime p > a in the form

(3) p=x+ay,x>0,y>0

is equal to half the number of solutions of the congruence
4) z? + a = O(mod p).

c. Let p be of the form 4m + 1, (k, p) = 1,

S( = Pi (x(x’; k) )

X=0

Prove that (D. S. Gorshkov)

a) S(k) is an even number.
B) S(kt) = (-ﬁ-) S().

y) For (-r—) =1, (1) = -1, we have (cf, problem a.)
p p

p = (%S(r)) + (%S(n)) .

10. Let D be a positive integer which is not the square of
an integer. Prove that:

a. If two pairs x = x,, y =y, and x = x,, ¥ = ¥, of
integers satisfy the equation

2 - Dy =k
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for a given integer k, then the equation
X*=-Dy*=4#

is satisfied by integers X, Y defined by the equation (the +
sign can be taken arbitrarily)

X+YVD =(x, + y,WD)(x, t y,VD).
b. The equation (Pell’s equation)
(1) 2 ~Dyl =l

is solvable in positive integers x, y.

c. If x,, y, is a pair of positive x, y with minimal x (or,
equivalently, with minimal x + yVD ) satisfying equation (1),
then all paira of positive x, y satisfying this equation are
defined by the equations

(2) x+yVD = (g +y,VD)ir=1,2, ...

11, a. Let a be an integer, Let

p~1 a_x.
U,,p = Z (i) ezm P )

xe1 \P

«) For (a, p) = 1, prove that IU,,,,I = Vp .

In proving this, multiply U, , by its conjugate, which is
obtained by replacing i by —i, Letting the letters x, and x
be the summation variables of the original and conjugate sums,
we then gather together the terms of the product such that

x, = xt{mod p),
or

%, a x + t(mod p)

100



for fixed ¢.

B) Prove that

b. Letm > 2, (@, m) = 1,
ax?

Me=1 7/ 8 B
Sn,m = ¢
Xwd

o) Prove that S, , = U,,, (problem a),
B) It follows from the theorems of problems «) and a, «)

that S, , = yp . Prove the following more general result:

1Sa,m| = Vm, ifm = 1(mod 2),

|Sa,m| = 0, ifm = 2(mod 4),
|Sa,m| = V2m, if m = 0(mod 4).

y) Letm > 1, (24, m) = 1, and let a be an arbitrary

integer. Prove that

z:: exp (2n£____Ax’"-:- ax)

12, a. Let m be an integer exceeding 1, let i and @ be

= Vm.

integers such that 0 < M < M + Q@ < m, and let }_ denote

a sum extended over the z in a given set of integers, while z:/
]

denotes a sum extended over the z in this set which are con-
gruent modulo m to the numbers
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M.ﬂl'l"l,-o-.M'l"Q—l.

Moreover, let the function ® (z) be such that, for some A and
anya=1,2, ..., m — 1, we have

Z: O (z) exp (217:'-25-)

< A.
m

Prove that
E d(z) = gz ®(z) + 6A(nm - §),
B m -

1
where |6] < 1, 8 > 0 always, 5 > ;form} 12,

&> 1 for m > 60,
b. Let M and Q be integers such that 0 < M < ¥ + Q < p.

a) Prove that
M+Q-1 /o
::Z-:M (P)

B) Let R be the number of quadratic residues and let N be
the number of quadratic non-residues in the sequence M,

M+1, ..., M + Q - 1. Prove that

< Vp Inp.

1 e 1 )
R“‘;Q+‘;‘/F—’-I“P'N=’5‘Q‘?\/P—I“P; lo] < 1.

y) Deduce the formulae of problem 8), using the theorem of
problem 11, b, B8) and the theorem of problem a.

8) Letm > 2, (24, m) = 1, and let M, and Q, be integers
such that 0 < M, < My, + §, < m. Prove that
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Mo+ Qo-1

A
). exp (Zm——) < Vm lnm,
x=Mgq m

¢) Let p > 2, (4, p) = 1, let M, and @, be integers such
that 0 < My < My + Q, < p and let T be the number of integers
of the sequence Ax*; x = Mo, My + 1, ..., Mg + Oy - 1,
which are congruent modulo p to the numbers of the sequence

MqM+1, ..., M + Q - 1. Prove that

T = @Q + 6Vp (In p).

p

c. Deduce the formulae of problem b, 8) by considering the
sum

Pl p~i M4Q—1 M4Q~1 /g (2 calx - ay))
rr o X (p) exp |2m¢ -

aa0 Qwi x=M y=M
Numerical Exercises for Chapter V

1, a, Find the quadratic residues in a reduced residue sys-
tem modulo 23.

b. Find the quadratic non-residues in a reduced residue sys-
tem modulo 37.

2, a. Applying e, $1, find the number of solutions of the
congruences:

«) * = 3(mod 31); B) «* = 2(mod 31).
b. Find the number of solutions of the congruences:
o) 2* = S(mod 73); B) 2* = 3 (mod 73).

3, a. Using the Jacobi symbol, find the number of solutions
of the congruences:
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a) 2* = 226 (mod 563); B) ¥ = 429(mod 563).
b. Find the number of solutions of the congruences:
a) x* = 3766 (mod 5987); B) 2* = 3149(mod 5987).

4, a, Applying the methods of problems 2, a; 2, b; 2, ¢,
solve the congruences:

a) ' = 5(mod 19); B) z* = 5(mod 29); y) 2* = 2(mod 97).
b. Solve the congruences:

a) 2* = 2(mod 311); B) »* = 3(mod 277);
y) 2* = 11 (mod 353).

3, a. Solve the congruence 2* = 59(mod 125) by the methods
of:

o) b, 44; B) problem 8, a; y) problem 6.
b, Solve the congruence 2* = 9] (mod 243),
6, a. Solve the congruence 2* = 41 (mod 64) by the methods
of:
«) e, $4; B) problem 3, b,

b. Solve the congruence x* = 145(mod 256).
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CIIAPTER VI

PRIMITIVE ROOTS AND
INDICES

Q1. General Theorems

8. For (a, m) = 1 there exist positive y such that al =1
(mod m), for example (by Euler’s theorem) y = @(m). The
smallest of these is called: the exponent to whick a belongs
modulo m.

b. If a belongs to the exponent 8 modulo m, then the num-

bers 1 = a°, @', ..., a®* are incongruent modulo m.

Indeed, it would follow from a' = a*(mod m),0 ¢ k<1< §
that "% = 1(mod m), 0 < [ — k < §, which contradicts the
definition of 8. ,

c. If a belongs to the exponent 8 modulo m, then a” = a”

(mod m) if and only if y = y’ (mod 8); in particular {(for y* = 0

a? = 1(mod m) if and only if y is divisible by .

Indeed, let r and r, be the least non-negative residues of
the numbers y and y* modulo &; then for some ¢ and ¢, we
have y = 8¢ + r,y” = 8¢, + r. From this and from adal
(mod m) it follows that

a’? = (as)"a' z a' (mod m),
ayl = (as)‘“a" g g’ (mod m).

Therefore a” = a”* (mod m) if and only if a* = a”* (mod m),
i.e. (b), when r = r,,
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d. It follows from a® = 1 (mod m) and from ¢ y’ = 0)
that ¢(m) is divisible by 8. Thus the exponents to which
numbers belong modulo m are just the divisors of ¢(m). The
largest of these divisors is ¢(m). The numbers belonging to
the exponent (m) (if such exist) are called the primitive
roots modulo m.

§2. Primitive Roots Modulo p® and 2p°

8. Let p be an odd prime and let o » 1. We shall prove
the existence of primitive roots modulo p® and 2p*.

b, If x belongs to the exponent ab modulo m, then x° be-
longs to the exponent b.

Indeed, let x® belong to the exponent 8. Then x2¢ = 1
(mod m), and hence (¢, $1) ad is divisible by ab, i.e. § is
divisible by 5. On the other hand, (x2)* = 1 (mod m) implies
(c, 1) that b is divisible by 5. Hence & = b.

c. If x belongs to the exponent a, and y belongs to the ex-
ponent b modulo m, where (a, b) = 1, then xy belongs to the
exponent ab.

Indeed, let xy belong to the exponent §. Then (:cy)s = 1

(mod m). Hence x?%y?% = 1 (mod m) and (c, 81) 28 = 1
(mod m). Hence (¢, $1) b5 is divisible by a, and since

(b, a) = 1, 8 is divisible by a. In the same way we find
that § is divisible by b. Since (a, b) = 1, being divisible by
a and b, § is also divisible by ab. On the other hand,

(xy)?® = 1 (mod m) implies (¢, $1) that ab is divisible by 5.
Hence & = ab,

d. There exist primitive roots modulo p.

Indeed, let r be the least common multiple of all those
exponents

(1) 81: 83: srey 8,,

to each of which belongs at least one number of the sequence
1,2, ...,p — 1 modulo p, and let r = g{g; ... g% be the
canonical decomposition of the number 7. Then for each s,
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among the numbers (1) there exists some § which is divisible
by g3= and is therefore representable in the form § = aqe.
If x is a number belonging to the exponent 5, then, by b,

x; = x” belongs to the exponent ¢29, This holds for

s = 1,2, ...,k by c, the number g = x,x, ... x5 belongs
to the expomagt 9,%¢;? ... gx* = 1.

But since the exponents (1) are just the divisors of the
number r, all the numbers 1, 2, ..., p ~ 1 satisfy (c, §1)
the congruence x” = 1 (mod p). This means {(c, $4, ch, IV)
that p — 1 < r. Butris a divisorof p — 1. Hence
r=p - 1,i.e, g is a primitive root,

e. Let g be a primitive root modulo p. We can findat
such that u, which is defined by the equation (g + pt)*" =
= 1 + pu, is not divisible by p, The corresponding g + pt
is a primitive root modulo p°®for any o > 1.

Indeed, we have

g =1+ pl,
g +pt)? =14 p(Ty - g7 +.pT) = 1 + pu,

(2)

where, along with ¢, u runs through a complete residue system
modulo p. Therefore, we can find a ¢ such that u is not di-
visible by p, For this ¢, we deduce from (2) the equations

-
(g + pP®PY = (1 + pu)P =1+ py,
(3) < (g + pt)”z(”'” = (1 + p'u,)? = 1 + pu,,

k'

where u,, u,, ... are not divisible by p.
Let g + pt belong to the exponent 5 modulo p*. Then

4) (g + pt)® = 1(mod p°).

Hence (g + pt)s = 1 (mod p); and consequently § is a
multiple of p — 1, and since § divides ¢(p?) = p*'(p - 1),
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it follows that § = p™'(p ~ 1), where r is one of the numbers
1,2,..., «. Replacing the left side of the congruence (4)
by its expression in the appropriate equation of (2) or (3), we
find (u = u,)

1+ p'u, = 1{mod p%), p* = O(mod p%), r = &, & = @lp?),

i.e. g + pt is a primitive root modulo p“.

f. Let o 3 1 and let g be a primitive root modulo p®.
Whichever of the numbers g and g + p® is odd, is a primitive
root modulo 2p°.

Indeed, every odd x which satisfies one of the congruences
2?7 = 1(mod p®) and x” = 1 (mod 2p°) obviously satisfies
the other also. Hence, since ¢(p®) = ¢(2p°®) for all odd x,
a primitive root for one of the moduli p® and 2p?, is also a
primitive root for the other, But, of the two primitive roots
g and g + p® modulo p? at least one is odd; and conse-
quently, it will be a primitive root modulo 2p*.

$3. Evaluation of the Primitive Roots
for the Moduli p® and 2p°

The primitive roots for the moduli p® and 2p® where p is
an odd prime and « > 1, can be found by using the following
general theorem:

Let ¢ = q(m) and let q,, q;, ..., qx be the different prime
divisors of the number c. In order that a number g, which is
relatively prime to m, be a primitive root modulo m, it is
necessary and sufficient that this g satisfy none of the
congruences

c [ -

g™ = 1(mod m), gT’ =2 1(mod m),
(1 c

ceey g?: = 1(mod m).
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Indeed, if g is a primitive root, then a fortiori it belongs to
the exponent ¢ and hence none of the congruences of (1) can
be satisfied.

Conversely, we now assume that g satisfies none of the
congruences of (1). If the exponent § to which g belongs,

turns out to be less than c, then, letting ¢ be one of the prime

c c d

divisors of —;—, we would have 3° qu, — = du, g—‘; =1

(mod p), which contradicts our assumption. Hence § = ¢
and g is a primitive root.
Example 1. Letm = 41. We have ¢(41) = 40 = 2' -5,

40 40
= = 8, - - 20, Therefore, in order that the number g,

not divisible by 41, be a primitive root modulo 41, it is
necessary and sufficient that this g satisfy neither of the
congruences

(2) g* = 1(mod 41), g*° = 1(mod 41).
But going through the numbers 2, 3, 4, ... we find (modulo 41)

2* 2 10,3" =1, 4* = 18, 5 18, 6 = 10,

]

20 3 1, =1, 5% =1, 6 = 40.

From this we see that the numbers 2, 3, 4, 5 are not primitive
roots since each of them satisfies at least one of the con-
gruences (2), The number 6 is a primitive root since it satis-
fies neither of the congruences of (2).

Example 2. Let m = 1681 = 41°. A primitive root can also
be obtained here by using the general theorem, But we can
find it more simply by applying theorem e, $2. Knowing
(example 1) that 6 is a primitive root modulo 41, we find

6 =1+ 41(3 + 41)

(6 + 418)° = 1 + 41(3 + 41! - 6 + 417) = 1 + 4lu.
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In order that u be non-divisible by 41, it is sufficient to take
t = 0. We can therefore take the number 6 + 410 = 6 as a
primitive root modulo 1681.

Example 3. Let m = 3362 = 2 1681. The primitive root
can also he-obtained here by using the general theorem. But
we can find it more simply by applying theorem f, $2, Know-
ing (example 2) that 6 is a primitive root modulo 1681, we can
take as a primitive root modulo 3362 the odd number in the
pair 6, 6 + 1681, i.e. the number 1687.

$4. Indices for the Moduli p® and 2p°

a. Let p be an odd prime, a > 1; let m be one of the num-
bers p® and 2p%; ¢ = @(m), and let g be a primitive root
modulo m.

b. If y runs through the least non-negative residues
y=0,1, ..., ¢ — 1 modulo c, then g” runs through a
reduced residue system modulo m.

Indeed, g7 runs through ¢ numbers which are relatively
prime to m, and by b, $1, incongruent modulo m.

c. For numbers a, which are relatively prime to m, we
introduce the concept of index, which is analogous to the
concept of logarithm; here, a primitive root plays a role
analogous to the role of the base of a logarithm:

If

a = g7 (mod m)

(we assume that y > 0), then y is said to be the index of the
number a modulo m to the base g and is denoted by the symbol
y = ind a (more precisely: y = ind, a).

In view of b, every a, relatively prime to m, has some
unique index y” among the numbers of the sequence

y=0, 1,...,0-1.

Knowing y“, we can find all the indices of the number a;
by ¢, 41, these are all the non-negative numbers of the class
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y = ¥y (mod ¢).

It follows immediately from the definition of the index which
we have given here that the numbers with a given index y form
an equivalence class of numbers modulo m.

d. We have

indab.,.!=inda +ind b + ... + ind [ (mod ¢)
and in particular,

ind a" = n ind a (mod ¢).

Indeed,

a=g!"®?modm), b = g'"?® (mod m),

cery I = g4 1 (mod m),
and multiplying the latter together, we find
ab...l = glnd atlnd b+ ... +ind | (mod m).

Therefore,inda + ind b + ... + ind [ is one of the
indices of the product ab ... [,

e. In view of the practical use of indices, for each prime
modulus p (which is not too large) tables of indices have
been constructed. There are two tables: onc for finding the
index from the number, and the other for finding the number
from the index. The tables contain the least non-negative
residues of the numbers (a reduced residue system) and their
smallest indices (a complete system) corresponding to a
modulus pandc = @(p) =p - 1,

Example. We construct the preceding table for the modulus
p = 41. 1t was shown above (example 1, §3) thatg = 6isa
primitive root modulo 41; we take it as the basis of the

111



indices. We find (congruences are taken modulo 41):

6 =1 6 =10 6°=18 6 =16 6% = 37
6' =6 6 =19 67526 *=14 62 =17
6 =3 6Y=32 6'=33 6°=2 6* = 20
6 =11 6% =28 6°=34 67=12 6% =38
6*=25 62=4 6° =40 6°=31 6% =23
6 =27 6M=U 6'=23 =2 67=15
=39 64=21 62 =5 6° =09 6t =8

6=2 6% =3 62 =30 6*=13 6% =7

and hence our tables are:

N 0 1 2 3 4 5 6 7 8 9
0 0| 26 15 12 | 22 11]139 |38 ] 30
1 8 3127131 }25 )37 |24 ]33 16 9
2 34 14 20 | 36 13 4 17 5 11 7
3 23| 28 10 18 19 | 21 2132135 6
4 20

| 0 1 2 3 4 5 6 7 8 g9
0 1 6 | 36 11 25§27 {39 | 29 10 19
1 32| 28 4 |24 | 21 3 18 26 | 33 | 34
2 40 35 5] 30 16 14 2 12 31 | 22
3 9 13 37 17 20 38 23 15 8 7

Here the row number is the first digit and the column number
is the second digit of the number (index). At the place common
to the given row and given column we place the corresponding
index {number).

For example, we find the ind 25 at the place in the first
table common to the 2-nd row and the 5-th column, i.e.
ind 25 = 4, The number whose index is 33 is found in the
place in the second table common to the 3-rd row and the
3-rd column, i.e, 33 = ind 17.
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$s. Consequences of the Preceding Theory

a, Let p be an odd prime; o« 3 1, let m be one of the
numbers p%, 2p?, and finally, let ¢ = (m).
b. Let (n, ¢) = d; then:

1. The congruence
(1) x" = a (mod m)

is solvable ( and hence a is an n-th power residue modulo m)
if and only if ind a is a multiple of d.
In the case of solvability the congruence has d solutions,
2, The number of n-th power residues in a reduced residue

c
system modulo m is 'k

Indeed, the congruence (1) is equivalent to the congruence
(2 n ind x = ind a (mod ¢)

which is solvable if and only if ind a is a multiple of d
(d, $2, ch, IV),

If the congruence (2) is solvable, we find d values of
ind x which are incongruent modulo ¢; corresponding to them
we find d values of x which are incongruent modulo m, proving
assertion 1,

Among the numbers 0,1, ..., ¢ = 1, which are the smallest
indices of a reduced residue system modulo m, there are

%— which are multiples of d, proving assertion 2,

Example 1. For the congruence

(3) x® = 23 (mod 41)

we have (8, 40) = 8, while ind 23 = 36 is not divisible by 8,
Therefore the congruence (3) is unsolvable,
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Example 2. For the congruence
) #** = 37 (mod 41)

we have (12, 40) = 4, while ind 37 = 32 is divisible by 4.
Therefore the congruence (4) is solvable and has 4 solutions.
These solutions are obtained in the following way:

The congruence (4) is equivalent to the following ones:

12ind x = 32 (mod 40), ind x = 6 (mod 10),

Hence we find 4 values of ind x which are incongruent
modulo 40:

ind x = 6, 16, 26, 36,
from which we obtain the 4 solutions of the congruence (4)
x = 39, 18, 2, 23 (mod 41),
Example 3. The numbers
(5) 1, 4, 10, 16, 18, 23, 25, 31, 37, 40

whose indices are multiples of 4, are just all the biquadratic
residues (or the residues of any powern = 12, 28, 36, ...,
where (n, 40) = 4), among the least positive residues modulo

40
41. The number of integers in the sequence (5) is 10 = 7

c. Along with assertion b, 1, we shall also find the follow-
ing one useful:
The number a is an n-th power residue modulo m if and

only if

c

(6) a9 = 1 (modm).
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Indeed, the condition ind a = 0 (mod d) is equivalent to the
condition: -S- ind @ = 0 (mod c). The latter is equivalent to

condition (6).

Example. By the theorem of $3, the impossibility of the

c
congruence g9 = 1 (mod m) is equivalent to the statement
that g is a g-th power non-residue modulo m. In particular,
[

the impossibility of the congruence g = 1 (mod m) is
equivalent to the statement that g is a quadratic non-residue
modulo m (cf. e, ¢1, ch, V),

d, 1. The exponent & to which a belongs modulo m is de-

fined by the equation (ind a, c) = -;—- ; in particular, the fact

that a belongs to a number of primitive roots modulo m is
equivalent to the equation (ind a, c¢) = 1.

2. In a reduced residue system modulo m, the number of
numbers belonging to the exponent 8 is (8); in particular,
the number of primitive roots is {c).

Indeed, § is the smallest divisor of ¢ such that a® =1
(mod m). This condition is equivalent to

§ ind a = 0 (mod ¢),

inda=z=0 (mod f—)
5

This means that § is the smallest divisor of ¢ for which

or

—g— divides ind a, from which it follows that —g— is the largest

divisor of ¢ which divides ind a, i.e. — = (ind a, ¢), proving

¢
o
assertion 1.
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Among the numbers 0, 1, ..., ¢ — 1, which are the smallest
indices of a reduced residue system modulo m, the multiples

of %- are the numbers of the form -g-y, where y = 0, 1,

«ssy 8 — 1, The condition (-g-y)c = -;- is equivalent to

the condition (y, 8) = 1; and the latter is satisfied by (5)
values of y, proving assertion 2,

Example 1, In a reduced residue system modulo 41, the
numbers belonging to the exponent 10 are the numbers a such

40
that (ind a, 40) = 0 - 4, i.e, the numbers

4, 23, 25, 31.

The number of these numbers is 4 = (10).

Example 2. In a reduced residue system modulo 41, the
primitive roots are the numbers a such that (ind a, 40) = 1,
i.e, the numbers

6, 7, 11, 12, 13, 15, 17, 19, 22, 24, 26, 28, 29, 30, 34, 35.
The number of these primitive roots is 16 = (40).
86. Indices Modulo 2°

a. The preceding theory is replaced, for the modulus 22, by
a somewhat more complicated one,

b, Let a = 1, Then 2% = 2. We have ¢(2) = 1. A primi-
tive root modulo 2 is, for example, 1 = ~1 (mod 2). The
number 1° = (~1)° = 1 forms a reduced residue system module
2,

c. Let « = 2, Then 22 = 4. We have ¢{d) = 2, The
number 3 = ~1 (mod 4) is a primitive root modulo 4. The
numbers (~1)° = 1, (~1)! = 3 (mod 4) form a reduced residue
system modulo 4.
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d. Let « > 3. Then 2% > 8. We have ¢(2%) = 2%, ltis
easy to see that there are no primitive roots in this case; more
precisely: the exponent to which the odd number x belongs

modulo 2% does not exceed 2% = 5 (2%), Indeed, we have

¥ =14+ 8,
x‘=l+16£,,

¢ 4 8 8856838080540

o

2 =14 2%, = 1(mod 2%),
Therefore, there exist numbers belonging to the exponent
2%2, For example, 5 would be such a number. Indeed,

S=1+4,
5 =14+ 8+16
5 =1+ 16 + 324,

8 00 0 00 500t

a—3

5 =1+ 2% &+ 2%q,,

from which we see that none of the powers 5!, 5, 5%, ..., 5 &
is congruent to 1 modulo 2%.

It is not difficult to see that the numbers of the following
two rows:

a-2_
5, 5, ..., 51,

"'5., —5" s vy —5,

form a reduced residue system modulo 2%, Indeed, the number
of these numbers is 2+ 2%? = ¢(2%); the numbers of each
individual row are incongruent among themselves modulo 2%
(b, $1); finally, the nambers of the upper row are incongruent
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to the numbers of the lower row since the former are congruent
to 1, while the latter are congruent to ~1 modulo 4.

e. For convenience in later investigations, we express the

results of b, ¢, d in more unified form, which is also applicable
in the case o = 0.

Let
c=lico=1if a=00ra=1
c=2 ¢cp=2 if 22

(therefore cc, = ¢(2%)) and let y and y, run independently
through the least non-negative residues

y=0! "'1c-1;)’o=0, ss20y Cg — 1
modulo ¢ and c¢,. Then (~1)Y570 runs through a reduced

residue system modulo 2%,

f. The congruence

1) (-1)757¢ = (<1)” 57 (mod 2°)
holds if and only if

y = ¥’ (mod ¢), y, = ys (mod c,).

Indeed, the theorem is evident for « = 0, We therefore
assume that « > 0. Let the least non-negative residues of
the numbers y and y, be r and r,, and of the numbers y’ and
vs be r’ and r{ modulo ¢ and co. In view of ¢, $1 (-1 belongs
to the exponent ¢, while 5 belongs to the exponent ¢,), the
congruence (1) holds if and only if (1)’'5% = 1)*’5" (mod
2%),i.e.ifandonly if r = #*, r, = 1y (in view of e).

g If

a = (1)757¢ (mod 2°),
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then the system y, y, is called an index system of the number
a modulo 2%,

In view of e, every a relatively prime to 2% (i.e. every odd
a) has a unique index system y’, y, in the ccy = (2%) pairs
of values y, y, considered in e.

Knowing a system y*, y,, we can also find all index sys-
tems of the number a; according to f, these will be all pairs
¥» Yo consisting of the non-negative numbers of the equiva-
lence classes

y = y” (mod ¢), y, = yq (mod c,).

It follows immediately from the definition we have given of
index systems that the numbers with a given index system
¥ Yo forms an equivalence class of numbers modulo 27,

h. The indices of a product are congruent modulo ¢ and c,
with the sums of the indices of the factors,

Indeed, let y(a), yola); .. .; y(I), yo(!) be index systems for
the numbers a, ..., . We have

g ... 1= (1)@ Y DgYolad « o +YolD)

Therefore y(a) + ... + y(I), yola) + ... + yo(l) are the
indices of the product a ... !,

$7. Indices for Arbitrary Composite Modulus

a. Letm = 2% p® ... pg* be the canonical decomposi-
tion of the number m. Moreover let ¢ and ¢, have the values
considered in e, $6; ¢, = ¢(pJ=); and let g, be the smallest
primitive root modulo pge.

b. If

a = 17579 (mod 2%),

a = g/t (mod p(), ..., a = gi* (mod pg¥*),

(1)
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then y, yo, ¥4y « + «» ¥x i8 called an index system of the number
a modulo m.

It follows from this definition that y, y, is an index system
of the number a modulo 2%, while y,, ..., yx are indices of the
number a for the moduli pf, ..., pg*. Hence (g, $6; c, $4)
every a which is relatively prime to m (and hence also rela-
tively prime to all the numbers 2%, p, ..., pi*), has a unique
index system y’, yg; Y15 «+s Y5 in the ccoey oou cx = @plm)
systems which are obtained by letting y, yo, ¥4y <+ 4, yx Tun
independently through the least non-negative residues for the
moduli ¢, coy Cyy ««0, Cxy While all the index systems of the
number a are just all the systems y, y,, y,5 -+ ., yx consisting
of the non-negative numbers of the equivalence classes

y =y’ (mod c), ¥, 2 y, (mod ¢c,),
yr = yr (mod c,)y +vvy ¥ = yx (mod cy).

The numbers a with a given index system y, y,, ¥4y +¢v5s ¥x
can be found by solving the system (1), and hence they form
an equivalence class of numbers modulo m (b, $3, ch. 1V).

c. Since the indices y, yq, ¥1, - ++ ¥x Of the number a
modulo m are the indices for the respective moduli 2%, p(,
«.s, pek, we have the theorem:

The indices of a product are congruent modulo c, cgy ..+, C
to the sums of the indices of the factors.

1
d, Letr = ¢(2%) for o { 2and 7 = —2-cp(2°') for o > 2

and let % be the least common multiple of the numbers 7, c,,
v+ y Cx. For every a which is relatively prime to m the con-
gruence a® = 1 holds for all the moduli 2%, pl1, ..., pe*,
which means that this congruence also holds for the modulus
m, Hence a cannot be a primitive root medulo m in those
cases in which 4 < ¢(m). But the latter holds for « > 2,
fork > 1,and for @ = 2,k = 1, Hence for m > 1, primitive
roots can only exist if m = 2, 4, ps?, 2p; !, But the existence
of primitive roots in these cases was proven above ($6, $2).
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Hence

All the cases in which primitive roots modulo m, exceeding
1, exist are just the cases in which

m=2, 4, p°, 2Pa'
Problems for Chapter VI

The letter p always denotes an odd prime, except in problem
11, b where we also allow the value 2.

1, a, Let a be an integer, a > 1. Prove the odd prime
divisors of the number a® — 1 divide a — 1 or are of the
form 2px + 1.

b. Let a be an integer, g > 1. Prove that the odd prime
divisors of the number a® + 1 divide a + 1 or are of the form
2px + 1.

c. Prove that there are an infinite number of primes of the
form 2px + 1.

d. Let n be arPositive integer, Prove that the prime divisors
of the number 2*" + 1 are of the form 2"*'x + 1.

2. Let abe an integer, a > 1, and let n be a positive
integer. Prove that ¢(a" — 1) is a multiple of n.,

3, a. Let n be an integer, n > 1, Starting from the sequentce
1,2,..., n we form, for odd n, the permutations

1,3,5, ..., ~2,n,n-1,n-~3, ...,4, 2;
1,59, ...,7, 3
etc,, while for even n we form the permutations
1, 3,5, ..., e -1, n,n-2 ..., 4, 2
1,5,9 ..., 7, 3,

etc, Prove that the k-th operation gives the original sequence
if and only if 2* = +1 (mod 2n — 1).

b. Let n be an integer, n > 1, and let m be an integer,
m > 1, We consider the numbers 1, 2, .... n in direct order
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from 1 to r, then in reverse order from n to 2, then in direct
order from 1 to n, then in reverse order from n to 2, etc. From
this sequence we take the 1-st, (m + 1)-st, (2m + 1)-st, etc.,
until we obtain n numbers. We repeat the same operation with
this new sequence of n numbers, etc. Prove that the A-th
operation gives the original sequence if and only if

m* = +1 (mod 21 - 1)

4. Prove that there exist ¢(5) numbers belonging to the
index 3, by considering the congruence x° = 1 (mod p)
(problem 10, c, ch. IV) and applying d, $3, ch, 11,

5, a. Prove that 3 is a primitive root of any prime of the
fom2" + 1, n > 1,

b. Prove that 2 is a primitive root of any prime of the form
2p + 1if p is of the form 4n + 1, while -2 is a primitive root
of any prime of the form 2p + 1if p is of the form 4n + 3.

c. Prove that 2 is a primitive root of any prime of the form
4p + 1.

d. Prove that 3 is a primitive root of any prime of the form "

g1

2p + 1forn > landp >

2"1

6, a, «) Let n be a positive integer and let S = 1" + 2" +
+ +.. + (p = 1)". Prove that

S = -1 (mod p), if n is a multiple of p - 1,
S = 0 (mod p), otherwise.

B) Using the notation of problem 9, c, ch, V, prove that
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b. Prove Wilson’s theorem by applying b, $4.

7. Let g and g, be primitive roots modulo p, and let
aindg g. = 1{(modp ~ 1),

a. Let (a, p) = 1. Prove that

ind; a = «indg g (medp ~ 1).

b. Let n be a divisorof p ~ 1, 1 < n < p -~ 1, The num-
bers relatively prime to p can be divided into n sets by putting
those numbers such that ind a = s {mod n) in the s-th set
(s =0,1, ..., n = 1), Prove that that the s-th set for the
base g is identical with the s,-th set for the base g,, where
s, = as (mod n).

8. Find the simplest possible method of solving the con-
gruence x" = a (mod p) (convenient for (n, p ~ 1) not too
large) when we know some primitive root g modulo p.

9, Let m,a, ¢, Coy €1y« 00y Cxy Vs Yor Yus « ++ 5 Yx have the
values considered in §7. Considering any roots R, R,, R,,
.+ +y Ry of the-equations

RE =1, R =1, Rf1 =1, ..., R§k = 1,
we set
x(@) = RYRYoRY1 .. RY.

If (@, m) > 1, then we set y(a) = O,

A function defined in this way for all integers a is said to
be a character. f R = Ry = R, = ... = Ry = 1, then we say
that the character is principal; it has the value 1 for (a, m) =
= 1, and the value O for (a, m) > 1.

a. Prove that we obtain ¢(m) different characters in this
way (two characters are said to be different if they are not
equal for at least one value of a).

b. Deduce the following properties of characters:

«) x(1) = 1,
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B) x(aa,) = x{a,) x(a;),
y) xla) = x{a,), if a, = a, (mod m).

c. Prove that

m—1 ¢(m), for the principal character,
2. xla) =
a=o 0, for other characters.

d., Prove that, for given a, summing all ¢(m) characters,

we find
@lm), if a = 1 {mod m)
Y xla) =
X

0, otherwise,

e. By considering the sum

where a runs through a reduced residue system moduio m,
prove that a function (a) defined for all integers a and
satisfying the conditions

Yla) = 0,if (@, m) = 1,

/(a) is not identically equal to 0,

'l’(ata:) = '/’(ax)'ﬁ(a:):
Yla,) = yila,), if a, = a, (mod m),

is a character,
f. Prove the following theorems,
a) If y,{(a) and yx,(a) are characters, then y,(a) y,{(a) is

also a character.
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B) If y,(a) is a character and y(a) runs through all the
characters, then y,(a) x{(a) also runs through all the characters,
y) For (I, m) = 1, we have

x(a) ¢{m), if a = I (mod m)
= x

0, otherwise,

10, a. Let n be a divisorof p'~ 1,1 <n ¢ p — 1, and
let I be an integer which is not divisible by n. The number
]
R, = ™' ™ is a root of the equation R" = 1, and hence the
I Ind x

Al —
power e

, which is assumed to be equal to O for x
a multiple of p, is a character modulo p.

a) For (&, p) = 1, prove that

p~1 / _lind(x+k)—lindx)

exp | 2m¢ = =1,
xznx P \ n
) Let Q be an integer, 1 < Q < p, and let
1 Q-1 lind (x + 2)
S = pi IS"",xli; S],n,x = Z exp (2ﬂi - + )
xw0 S =0

Prove that S = (p - Q)Q.
y) Let Y be an integer, p > 4n*, n > 2. Prove that the

sequence M, ¥ + 1, ..., M + 2aVp ] ~ 1 contains a numbe
of the s-th set of problem 7, b,

2
b, Let p > 4 ( 235 let k& be the number of

p -1 )
olp-~ 1)
different prime divisors of p — 1, and let M be an integer.
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Prove that the sequence M, M + 1, ..., M +

+ 2[ ’(’ ~ D 2*Vp | — 1 contains a primitive root modulo p.
P -~
11, a. Let a be an integer, let n be a divisorof p —- 1,
1< ngp-1,andletkbe an integer which is not divisible

by n,
-1 k ind
Ua,p = pz exp (2m' - x) exp (Qm'ﬁ)

x=1 n P

«) For (a, p) = 1, prove that |U,, ol = .

B) Prove that
~k ind a Ua,p
exp (2ni———) = ——,
n U

1, p

y) Let p be of the form 4m + 1, and let

p-3 ind (2 + x)
S =
)" exp (2!: 2 )

Xm]

Prove that (cf, problems 9, a and 9, ¢, ch. V) p = 4* + B?,

where A and B are integers defined by the equation
S=A4 + Bi.

b. Let n be an integer, n > 2, m > 1, (@, m) = 1,

Savm = L exp (2,,;- “"") Sim= T exp (2m' “éﬂ) ,

m £ m

where x runs through a complete residue system, while ¢
runs through a reduced residue system modulo m (cf. problem
12, d, ch, I and problem 11, b, ch. V),

a) Let § = (»,p ~ 1). Prove that

|Sa,0l €6 -DVp.
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) Let (n, p) = 1 and let s be an integer, 1 < s £ n. Prove
that

-] I
Sa,p" =p*™, sa,P" = 0.

y) Let s be an integer, s > n. Prove that

— -1 ’
Sa’p,, = Pn Sa,pﬂ‘"’ Sa’pn = 0.

5) Prove that

4
Isa,ml < Cm‘-";r

where C only depends on n,
12, Let M and Q be integers such that 0 < M < M + Q < p.
a. Let n be a divisorofp ~ 1, 1 < n < p ~ 1, and let k be
an integer which is not divisible by n. Prove that

M+Q-1 (2” k ind x
ex
2, exp(2mi— )

xo M

< Vp Inp.

b, Let 7 be the number of integers of the s-th set of
problem 7, b, contained in the set of numbers M, # + 1, ..

veey M + Q — 1. Prove that

T=g+0\/p_lnp; 6] < 1.
n

c. Let & be the number of prime divisors of p — 1, and let
H be the number of primitive roots modulo p in the set of
numbers ¥, M + 1, ..., # + Q — 1. Prove that

-1
H= 31{)—1—)Q+ 62*Vp Inp; |6 < 1
p—
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d. Let M, and Q,be integers, 0 ¢ M, < M, + Q, < p~ 1,
and let / be the number of integers of the sequence ind M,
ind(M + 1), ..., ind  + Q —~ 1) in the sequence M,, M, + 1,
coey, My + Q = 1, Prove that

Q0.

] = 1+9\/;(lnp)’;|0|<1.
p—

13. Prove that there exists a constant p, such that: if
P > Po, nis adivisorofp ~ 1,1 < n <p ~ 1, then the
smallest of the positive non-residues of degree n modulo p is

L 1
<hi h =p®(lnp); ¢ = 2exp (1— —-) .

n

14, a, Let m> 1,(a, m) = 1,

mz-:l Hf v(z) ply) exp (2’"_1)'_) ;

X=8 y=0

T @ =X, T e = ¥

x=0 yw=0

Prove that | S| ¢ VXYm .

b, «) Let m > 1, (a, m) = 1, let n be a positive integer,
let K be the number of solutions of the congruence x" = 1
{(mod m), and let

ﬂ
m=1

S = Z x(x)e!”‘ m
Xwl
Prove that |S| ¢ KVm .

B) Let ¢ be an arbitrary positive constant. For constant n
prove that K = O(m*) where K is the number considered in
problem «).
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15, a. Let (a, p) = (b, p) = 1 and let r be an integer,
I"I = ny, 0 < n, <p,

Xl p
Prove that
3 44
S| <« —nip*
I I o 1 P

b. Let (4, p) = 1, let n be an integer, |r| = »,, 0 < n, <p
and let M, and Q, be integers such that 0 < M, < My + @, < p
«) Let

Mo+ Qo—1 Ax"
S = Z exp (947:‘ ) .
xuMg P

1

3 L3
Prove that | S| < -2—n’p‘ In p.

f3) Let M and Q be integers such that 0 < M < M + Q < p
and let T be the number of integers of the sequence Ax";
x =M, Mo +1, ..., My + Q, — 1, congruent to numbers of
the sequence M, M + 1, ..., M + Q, — 1 modulo p.

Prove that

Y 3

1
T = > + 2?, ﬂnp) |6| < 1.

c. Let b and ¢ be integers, (a, p) = 1, (b* — 4ac, p) = 1.
@) Let y be an integer,

xz
S = pzﬂ:‘ (a + bx + c) exp (anzf-) .
Xw0 p p
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3 2
Prove that |S]| < —2-p‘ .

B) Let M and Q be integers such that 0 < { < ¥ + Q < p,
and let

S =

M+ Q=1 (ax’ + bx + c)

x=M P

3 2
Prove that |S| < Ep‘ In p.

Numerical Exercises for Chapter Vi

1, a. Find (in the simplest possible way) the exponent to
which 7 belongs module 43.

b. Find the exponent to which 5 belongs modulo 108.

2, a. Find the primitive roots modulo 17, 289, 578.

b. Find the primitive roots modulo 41, 1681, 3362,

c. Find the smallest primitive roots modulo:

) 1682; B) 3362.

3, a. Form the table of indices modulo 17.

b. Form the table of indices modulo 41,

4, a. Find a primitive root modulo 71, using the method of
the example of ¢, $3.

b. Find a primitive root modulo 191.

5, a. Using the table of indices find the number of solutions
of the congruences:

a) 2*° = 79 (mod 97); B) x** = 17 (mod 97);

y) 2 = 46 (mod 97).

b. Find the number of solutions of the congruences:
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a) 32'? = 31 (mod 41); B) 72" = 11 (mod 41);
y) 52*° = 37 (mod 41).

6, a. Using the table of indices, solve the congruences:

a) x* = 59 (mod 67); 8) £** = 17 (mod 67);
y) £*° = 14 (mod 67).

b. Solve the congruences:

«) 23x* = 15 (mod 73); B) 37x* = 69 (mod 73);
y) 44x* = 53 (mod 73).

7, a. Using the theorem of ¢, $5, determine the number of
solutions of the congruences:

a) & = 2(mod 37); B) x** = 10 (mod 37).

b. Determine the number of solutions of the congruences:
«) 2* = 3 (mod 71); B) x* = 5 (mod 71).

8, a. Applying the methods of problem 8, solve the con-

gruences (in the solution of the second congruence use the
table of primitive roots at the end of the book):

«) ' = 37 (mod 101); B) z* = 44 (mod 101).
b. Solve the congruence
2 = 23 (mod 109).

9, a. Using the table of indices, in a reduced residue sys-
tem modulo 19 find: &) the quadratic residues; 8) the cubic
residues.
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b. In a reduced residue system modulo 37, find: ) the
residues of degree 15; B) the residues of degree 8.

10, a. In a reduced residue system modulo 43, find: &) the
numbers belonging to the exponent 6; 8) the primitive roots,

b. In a reduced residue system modulo 61, find: &) the
numbers belonging to the exponent 10; 8) the primitive roots.
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SOLUTIONS OF THE
PROBLEMS

Solutions of the Problems for Chapter 1.

1. The remainder resulting from the division of ax + by
by d, being of the form ax” + by’ and less than d, must be
equal to zero. Therefore d is a divisor of all numbers of the
form ax + by, and in particular is a common divisor of the
numbers a*1 + b0 =a and a0+ b°1 = b, On the
other hand, the expression for d shows that every common
divisor of the numbers a and b divides d. Therefore
d = (a, b), and hence theorem 1, d, $2 is valid. The
theorems of e, §$2 are deduced as follows: the smallest
positive number of the form amx + bmy is amx, + bmy,;

a b

the smallest positive number of the form —x + —y is

a b
-B“xo + Eyot

The generalization of these results is trivial.
2. We first note that the difference of two unequal rational

k 1
fractions —l- and il (1 >0, n> 0) is numerically > T
n n

We restrict ourselves by the assumption §, < §,41. Let %

be an irreducible fraction, which is not equal to 5, , such that
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0< b < Q,. Wecannot have §, < % < 8441 otherwise

we would have

a 5. > 1
b = Us =~ an
a 1
Spp1 — — 2
b 7 bQe
1
Oupr — 65 >

QaQa-l-l

Therefore % < 8, or 8§44y < % . In both cases 8, is closer

to athanf-.
b

3. For n € 6 the theorem is evident; we therefore assume
n> 6, Wehave

1+ V5

¢=—5

Lo 1-618 n.o; Iog‘og = 0-2-..;

Qh>1l=g, =1
QS>Qz+l>g:=22>£!
Q4>Qs+Q:>gs“'ga+gx>‘f+1”5’:

® o & a2 ® & 6 3 8 & g & A 2 A APPSR SRR P & ap ® ae LN ]

On >Qn-x+Qn-a>gn-l =gn-z+gn-s>f""+f"_‘=f""’-
Hence

logmN

N>E™hn<
logyo &

+ 2<5k+ 2,0 <5k +1.
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1
4, a, For the fractions 1 and 1 we have 0+1 - 1-1 =

A
= —1. Between the fractions 7 and % with 4D — BC = -1,
A+ C
B+D’
—B{Ad+C)=(4 + CD - (B + D)C = =1. Therefore the

assertion at the end of the problem is true. The existence of

we insert the fraction

and hence A(B + D) -

a i c
a fraction 7 such that " < T < —, l < r is impossible.
Otherwise we would have
k a 1 c k 1 c a b+d 1
e —m Y — m— 3 — — = — > >
l b b d l id d b 1bd bd

b. It is evident that it is sufficient to consider the case in

which 0 ¢ « < 1, Let% < tx<%,wherei andi are

neighboring fractions of the Farey series corresponding to r,
There are two possible cases:

a+c a+c c
g ®* < —

b+d;b+d\ d

a
ZSO.(

We therefore have one of the two inequalities

a 1 c < 1
— — <—-—; o - — { ——
*~ % b + d) d db + d)

from which the required theorem follows because b + d > r.
¢, For « irrational, the theorem follows from h, $4, if we

Pe-t

, where Q,_, < 7 < Q,.

take for — the convergent

- |
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In the case of rational « = %—, the above argument is only

valid for b > r. But the theorem is true for b < r, since we
P
can then take the fraction 2 itself for —, setting 6 = 0.

3, a. The remainder resulting from the division of an odd
prime by 4 is either 1 or 3. The product of numbers of the
form 4m + 1 is of the form 4m + 1. Therefore the number
4p, ... px — 1, where the p,, ..., px are primes of the form
4m + 3, has a prime divisor g of the form 4m + 3. Moreover
q is different from the primes p,, ..., py.

b. The primes greater than 3 are of the form 6m + 1 or
6m + 5. The number 6p, ... py — 1, where the p,, ..., px
are primes of the form 6m + 5, has a prime divisor ¢ of the
form 6m + 5. Moreover, q is different from the numbers
Pis + ooy Pre

6. Let p;, ..., px be any k primes, and let N be an integer
such that 2 < N, (3 In N)* < N. The number of integers a of
the sequence 1, 2, ..., N, whose canonical decomposition is
of the form a = pl1...pgk, is

In N k
g(n +1) <@BlnN* <N
In 2

In ¥

n 2

since o, < . Therefore there are numbers in the

sequence 1, 2, ..., N whose canonical decomposition con-
tains primes different from p,, ..., px.
7. For example, we obtain such sequences for

M=23 - (K+1t+2:t=1,2.,..

8. Taking an integer x, such that f(x) > 1 and f’(x) > 0
for x > x,, we set f(x;) = X. All the numbers f{x + X¢);
t=1,2,... are composite (multiples of X).
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9, a, If (1) holds, one of the numbers «, y, say x, is even;
it follows from

z 4+ z -
where, clearly, ( 5 Y , 5 y) = 1, that there exist

positive integers u and v such that

x zZ +Yy Z—-Y

— = uy, 2
2

=u,, 2

= v .

This implies the necessity of the condition considered in the
problem,

The sufficiency of these conditions is evident.

b. In the solution of this problem all letters denote positive
integers. Assume the existence of systems x, y, z such that
4+ y'=2,2x>0y>0,z>0,(,y, z) = 1, and choose
the system with smallest z. Assuming x to be even we find
ey, -u>v1,{u,v) =1, wherevis
even (for even u we would have y* = 4N + 1, u® = 4N,

v = 4N, + 1, 4N + 1 = 4N, — 4N, — 1, which is impossible)
llence u = 23, v = 2u?, ¥y + 40 = z}, 2u? = 2u,v,, u, = %},
v, = y3, x} + ¥} = z}, which is impossible since z; < z.

It follows from the non-solvability of the equation
x* + y* = z* that the equation x* + y* = ¢* is not solvable
in positive integers x, vy, ¢

k
10. Setting x = ik (k, ) = 1, we find

kﬂ + alkn-‘l + 00 + an!n = 0.

Therefore &£" is a multiple of / and hence ! = 1.
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11, a. Let & be the largest integer such that 2* < n and
let P be the product of all the odd numbers which do not
exceed n. The number 257*PS is a sum, all of whose terms,

except 2""P-2—k , are integers,

b. Let & be the largest integer such that 3* < 2z + 1 and
let P be the product of all the integera relatively prime t~ 6
which do not exceed 22 + 1. The number 3¥~'PS is a sum,

all of whose terms, except 3""1’?‘“ , are integers,

12, For n € 8, the theorem is immediately verifiable. It is
therefore sufficient to assume that the theorem is true for the
binomials a + b, (a + b), ..., (@ + b)"* forn > 8, and
prove that the theorem holds for (¢ + b)". But the coefficients
of this binomial, except for the extreme ones, which are equal
to 1, are just the numbers

n nln-1) nfn-1) ... 2

1’ 1.2 " 1-2... =1

A necessary and sufficient condition in order that all these
numbers be odd is that the extreme numbers, both equal to n,
be odd, and the numbers obtained by deleting the odd factors
from the numerators and denominators of the remaining numbers

be odd.

But, setting n = 21, + 1, these numbers can be represented
by the terms of the sequence

ny nn, - 1) nfn, - 1) ... 2
1’ 1.2 "T"1-2... (-1

Since n, < n, the latter are all odd if and only if n, is of the
form 2% — 1, i.e. if and only if » is of the form 2(2* - 1) +
+ 1= 28 ],

138



Solutions of the Problems for Chapter Il

1, a, On the ordinate of the point of the curve y = flx)
with abscissa x there are [f(x)] lattice points of our region,

b. The required equation follows from T, + T, = T,
where T, T,, T denote the number of lattice points of the
regions

Q P
0<x<;,0<y<6x,

P ¢
0<y<?,0<x<Fy,

¢ P
0<x2x< —,0<y < —.
2 2

¢. The required equation follows from
T=1+4T,+T,+T7,~-T),
where T\, T,, T,, T, denote the number of lattice points of
the regions
x=0,0<ygr;

r

—, 0
V2

0<x<

A
-
n
s
i
X
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d. The required equation follows from T' = T, + T, - T,,
where T,, T,, T, denote the number of lattice points of the
regions

0<xg Vo ,0<yg

R |=

0<ygVan ,0<x¢g

.
’

< | =

0<xgVan ,0<yg Vn.

2. The number of positive integers which do not exceed n
is equal to [r]. Each of them is uniquely representable in the
form xk™, where k is a positive integer; moreover, to a given

n

x there correspond [ —] numbers of this form,

x

3. We prove the necessity of our conditions. Let N be an
integer, N > 1. The number of values x such that (ax] ¢ N

N
can be represented in the form — + A; 0 < A < C, while the
o

number of values y such that [By] ¢ N can be represented in

N
the form E + A3 0 < A, € C,, where C and C, do not de-

N N
pend on N. Dividing — + A + E- + A, = N by N, and
o

1 1
letting N — ©, we find — + — = 1, The latter equation
o

for rational o = —:-(a > b > 0) would give [ab] = [B(a — b)].

Let our conditions be satisfied. Let c be a positive integer,

and let x, = S & and y, = % + 7 be the smallest
o
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integers such that x, 3 —, y, . Evidently, (ax] 2 ¢

c
?_
o 8
forxzx,and[ﬁylzcfory2y0,0<§<l,0<q<l,
af and By are irrational. Since xy + y, = ¢ + 7 + &£, we

aof By
& . b1

have £ + 5 = 1, = 1; therefore one and only one

of the numbers «£ and Bn is less than 1. Therefore, one
and only one of the numbers [ox,] and [By,] is equal to c.
4, a. Our differences are equal to

!axx}: ic"-(x’ - x;)}: caay ic‘(xt - xt-—x)!: {-or.x,},

they are non-negative, their sum is equal to 1, there are ¢ + 1
of them; therefore at least one of these differences does not

1 1
exceed 7 < —, and hence there exists a number smaller
i + r

1
than — of the form {+a«Q}, where 0 < Q < r. From

r
+taQ = [+aQ] + {+aQl, setting t[+aQ] = P, we find that

|aQ - P| < k3 a £ < X
r’ Q Qr
b. Setting X, = [X], Y, = [Y], ..., Z, = [Z], we consider
the sequence formed by the numbers fox + By + ... + yz}
and the number 1 arranged in non-decreasing order, assuming

that x, y, ..., z run through the values:

x=0,1, ..., Xp5y=0,1, ...,Y53 2=0,1, ..., Z,.

We obtain (X, + 1){(¥o + 1) ... (Z, + 1) + 1 numbers, from
which we obtain (X, + 1)(Yo + 1) ... (Z, + 1) differences.
At least one of these differences does not exceed

1 1
< —/—.
(Xo‘l'l)(Yo"'l) “se (Zo‘l"].) XY.‘.Z
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It is easy to obtain the required theorem from this.
5. We have « = ¢q + r + fal; 0<r<ag,

[[a]:, [ r] [a:' [ r+ {al]
—| =g+ =] =g, |=] = [¢g+ ——] =4q
c c c c

6,a, Wehave [a + B +... + Al =[a]l + [Bl +... +
+ =} + B+ .00+ At

b. The prime p divides nl, al, ..., I! to the exact powers

(6 - B

Moreover

e [

7. Assuming that there exists a number a with the required
properties, we represent it in the form

1

a=qup*™ + qeop* + oo+ g P+ qp + 97

0<qx <py 0K gpey <pyavny
0<q <p,0<q<p, 0<g”<p.
By b, $1,

h = quiiy + Quegligmy + oo + Qo + Gollye
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Moreover, for any s = 1, 2, ..., m, we have

Qo—gligay + Qooaligey + oo + QUi + Qolig < Uy

Therefore our expression for A must coincide completely with
the one considered in the problem,

8, a. Letting x, be an integer, @ ¢ « < 8 < R,
z, < a < 3 < x, + 1, and integrating by parts, we find

Ji] B
_ f fl)dx = f p @)z = pB)B) - ple)fla) -

B8
- a(B)’(B) + ola)f*(c) + fa(x)["(x)dx.

a

In particular, for Q < x,, x, + 1 < R, passing to the limit,
we have

Xq+l X g4l
1
} J' flakds = ——flo, + 1) - %f(x,) R f o) ).

We can then obtain the required formula easily.
b. Rewriting the formula of problem a in the form

R Q
2. flx) = f[(x)dx - f fixddx + p(R)(R) - p(QIQ) -

Q<x<{R
- a(R)’R) + o(Q) Q) + f alx)f” (x)dx - f alx)f"*(x)dx

Q R

we obtain the required formula.
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c. Applying the result of problem b, we find

Inl+In2+ ...+ lnnsC+nlnn-n+

1 o ¢
+ —Inn+ a(x)dx=nlnn—n+0(lnn).
2 2

n

9, a, «) We have (b, §1 and problem 5)

M G- 2 ([ﬂ R [;"-D+ oo Inp.

The right side represents the sum of the values of the function
In p, extended over the lattice points (p, s, u) with prime p of

n
the regionp > 0,s > 0,0 < u ¢ — . The part of this sum
P

corresponding to given s and u is equal to @ ( l/ i) ; the
u

part corresponding to given u is equal to (l) .
u

B) Applying the result of problem «) forn > 2, we have

In ([al1) - 21n ([%] !) -
=¢(n)—¢(%) +.,o(%) _4,(%) +...>.,a(n)-¢(%-).

Setting [—;—] = m, we then find () = 2m, [r] = 2m + 1)
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n (2m + 1)}
win) — ¢ (3) < In )
1'2..- m

n n n
¢(n)=¢(n)-—¢(;) +l,b(;) —5&(:) +
n (n
+¢(T) —lﬁ E) +...<n +

y) We have (by the solution of problem 8) and the result of
problem 8, c)

n n n [n]!
Eb(n)—sb(-z*) +¢(;) -'.b(z) +eeo=1In ([n]!).=
= [a]ln(n] - [r] - 2 [%] In [%] + 2 [—;—] + O(nn) =

=nln 2 + O(ln n),

+ +.-o=‘2no

n
4

| s

Moreover, for s » 2 we find (problem 8))

@(W)-@(‘/% )+
. < 2 Vn always
n
+ 8 (l/ ?) e [lnn]
=Q0fors>r;r = .

In 2
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Therefore

e ofg) o) o)
: ...—(B(n)—@(%) +@(%) -@(%) : ) <

<2Vn +2Vn + 2Vn +
+ 0o+ 2Vn <20Vn + VR )=00n ).

b. The result follows from equation (1), the inequality of
problem a, 8) and the equation of problem 8, c.
c. The equation of problem b for sufficiently large m gives

1 In 4
r L chmeo)y —, X —>1
m<pSm? P 2 m<p<m? P

If pnes > pall + ¢) for all pairs p,,, pny, such that
m < p, < Pnyt €< m* then we would have

© 4
E m(l + ¢ g

which is impossible for sufficiently large m.
d. It is evidently sufficient to consider the case in whicb
n is an integer.

In r

Setting y(r) = for r prime and y(r) = O for r = 1, and

for r composite, we have (problem b)

YD+ 92+ oo+ y0) = Inr+ al); |al)]| < C,,
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where C, is a constant. Hence, for r > 1 (we consider

a(l) = 1)

yr)=Inr-In(r-1) + o) = ar - 1),

1 Inr -1 -1
Z —=-T1+T,; T‘n Z ar n(r )
o<p<n P 1<rn In r

T y alr) - a(r - 1)

1<r&n In n

We have (8, b)

r- L L, & ( . +.J -

<en TINT i <gn \ 2P Inr 3 Inr

1
=C,+lnlnn+0(l ),
where C, is a constant, Moreover we find

1 1
T = a2 -
o (ln2 ln3)+

+...+a(n-1)( - 1 )+ a(n)'

ln (-1 Inn In n

But, for an integer m > 1, we have

1 1
¢, (ln m In(m + 1))+

c 1 1 C,
T In{m + 1) In{m + 2) Foeee s Inm’
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Therefore the series

1 1 1 1
a(z)(ln2 - ln3) +a(3)(ln3 - ln4) *

converges; therefore, if C, is its sum, then

1
T’WC’+0( )o
Inn

1
=C’-lnlnn+0( )
In n

where C’ is a constant, Setting C’ = In C, in the latter
equation, we obtain the required equation,

10, a. This result follows from ¢, $ 2.

b. Since (1) = (1) = 1, the function &a) satisfies condi-
tion 1, a, 2. Let a = a,a, be one of the decompositions of
a into two relatively prime factors, We have

T X 6dd,) = ¢la) = ylalla,) =
di\a; d)\ay
1)
= ). ) 6d,)ed,).

d;\ﬂ‘ d,\a,

If condition 2, a, §2 is satisfied for all products smaller than
a, then, for d,d, < a we have 8{(d,d,) = 6(d,)0(d,), and equaticn
(1) gives 6(a,a,) = 6(a,)0(a,), i.e. condition 2, a, $2 is also
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satisfied for all products a,a, equal to a. But condition
2, a, $2 is satisfied for the product 1 * 1 which is equal to 1.
Therefore, it is satisfied for all products,

11, a. Let m > 1; for each given x,, dividing a, the in-

a
determinate equation x, ... Xp-y%, = a has r_; (-——)
xm

solutions. Therefore

a

rmia) = ‘f; =1 (Z) ;

but when x,, runs through all the divisors of the number a, the

numbers d = — run through all these same divisors in re-
xﬂ'l

verse order. Therefore

rypa) = Z Tm—s(d).

d\a

Hence (problem 10, a), if the theorem is true for the function
Tm-1 (a), then it is also true for the function r,(a). But the
theorem is true for the function r,(a) = 1, and hence it is
always true.

b. If m > 1 and the theorem is true for the function r_,_,(a),
then

fm(a) = fm(Pl) vee rm(pk) =
= (tra(l) + 7 y(p,)) o0 (rny(1) + 1 (py)) =

=1 +m-1*=m*.

But the theorem is true for the function r,(a), and hence it is
always true.

c. Let ¢ = me,, ¢, = 2y, andlet a = p* ... ppk be the
canonical decomposition of the number a, where p,, ..., px
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are arranged in increasing order, For the function
r,{a) = r{a) we have

r(a) a, + 1 &, +1 ay + 1
a? < 9a:7 3%M " (& 4+ 1)%kM

Each of the factors of the product on the right is smaller than

1 &, 1 2
—; the factors ; T"i such that r > 27 is smaller than
7 roe- )
o+ 1 1\z2"
Jea ¥ ° < 1. Therefore, setting C = (—) , we find
2% ¢ 1
r{a) . rla) . C
o <G lim e < lip i =0

Itis evident that r,(a) < (r(a))™ for m > 2. Therefore

lim =2 < Jim ('(“)) "o

8= a a-=om a‘z

d. We divide the systems of values x,, ..., x,,, satisfying
our inequality into (n] sets with subscripts 1, 2, ..., [r]. The
systems such that x, ... x; = a are put in the set with
subscript a; the number of these systems is r,,(a).

12, The series defining { (s) converges absolutely for
R(s) > 1. Therefore

L& 4] [+ 4] 1
()™ = nZ; Z. -

while, for given positive n, the number of systems n,, ..
such that n, ... n, = nis equal to r,(n),
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13, a. The product P = ] —— converges absolutely
i Q-
p
1 1 1
for R(s) > 1. Since = + + ... for
1 Pﬂ p’ﬂ
1 - a
p

N > 2, we have

1 4 |
g——+-F 4253
p{Nl _1_ olngN n

p

where the second sum on the right is extended over those
numbers n which are not divisible by primes larger than N.
As N — o, the left side tends to P, the first sum of the
right side tends to {(s), while the second sum on the right
tends to zero.

b. Let N > 2, Assuming that there are no primes other
than p,, ..., px, we find that (cf. the solution of problem a)

k 1 1
h——s L.

jor p_ L e<ngw P

Pi
This inequality is impossible for sufficiently large N because
1 1
the harmonic series 1 + T3t diverges.

¢. Assuming that there are no primes other than p,, ..., p,
we find (problem a)

k 1
m— - {92).
J=1
l1-—=
Py
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This equation is impossible in view of the irrationality of
2

m
2 =m T,
¢(2) 5
14, The infinite product for {(s) of problem 13, a converges
absolutely for R(s) > 1. Therefore

1 1 1

In {(s) = Z(-—7+ + 3 +)

s \P 2p**  3p

where p runs through all the primes, Differentiating, we find

2a sa

¢’ (s) Inp Inp
p* p p

£(s) = L

p

np )_ ©  Afn)

13. Let N > 2. Applying theorem b, $3, we have

g () B B

p<N p o<nlN N° n

where the second sum on the right is extended over those
numbers n larger than N which are not divisible by primes
exceeding N, Taking the limit as N — ®, we obtain the
required identity.

16, a. We apply d, $3 to the case in which

6=12,...,[na, f=1,1, ..., 1.

It is then evident that S* = 1. Moreover S, is the number of

values § which are multiples of d, i.e. [%:l .

b, o) The right side of the equation of problem a is the sum
of the values of the function u(d), extended over the lattice
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points (d, u) of the region d > 0, 0 < u % The part of

this sum corresponding to a given value of u, is equal to

o)

B) The required equation is obtained by termwise subtrac-
tion of the equations

M(n)+M(£) + M(i) + M(l) +oeee =1,
2 3 4
2M (1) + 2M(1) + 00 = 2.
2 4

c. Let n, = [r]; let §,, 5,, ..., 8, be defined by the con-
dition: §, is the largest integer whose I/-th power divides
Sy fo = 1. Then §* = Ty ,,, S4 is equal to the number of

multiples of d' not exceeding n, i.e. Sy = [:%—] . From this

we obtain the required expression for Ty .
3
In particular, since 7(2) = i we have

6

T,,n = —,—n + O(\/ﬂ_)
n

for the number T, ,, of integers not exceeding »n and not
divisible by the square of an integer exceeding 1.
17, a. We obtain the required equation from d, $3, if we set

83 = (xar a)r fa = ﬂxa)-
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b. We obtain the required equation from d, $3, if we set

83 = (xfa)’ siay xsr'))t fa = ﬂxsa), sy x;t'))'
c. Applying d, ¢3 to the case

S = 81: 83: ey 87!

f=F(= F( : F(Z

&) ()G
where we have written down all the divisors of a in the first
row, we have

S’ = Fla), Sy = Z:F(—df’-o—) - c(-}) :

d

d. The required equation follows from

\2 5 ) \2 5 () \2 5 (d)
, d\& d\?8 d\ 8
P L fl 1 fl 2 P fﬂ n .

18, a, We apply the theorem of problem 17, a, letting x run
through the numbers 1, 2, ..., a and taking f(x) = x™. Then

S’ = Ynla), Sg = d™ + 27d™ 4+ ... + (%) “gm o

- da, (3) .

a® a a
¥,(a) = §a p(d) (Eg + -5-) =3 ¢la).

b. We have
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We can obtain the same result more simply. We first write
down the numbers of the sequence 1, ..., a relatively prime
to a in increasing order, and then in decreasing order. The
sum of the terms of the two sequences equally distant from the
initial terms, is equal to a; the number of terms in each se-
quence is equal to ¢(a).

c. We have

a a? a
¢,(a) =§a p.(d) (ﬁ + ‘-'2*"' + ?d) =t

a? a
= —;cp(a) + E(l - p;) ves (1 - Pk)-

19, a. We apply the theorem of problem 17, a, letting x run
through the numbers 1, 2, ..., (z] and taking f(x) = 1. Then
§” = T,, Sqis equal to the number of multiples of d which

do not exceed z, i.e. S, = [%] .

b. We have

L u(@% + Or(@) = Efp(a) + 0@®).

c. This follows from the equation of problem 19, a.
20. We apply the theorem of problem 17, a, letting x run
through the numbers 1, 2, ..., N, where N > a, and teking

1
flx) = — . We then find

x

1 1 pld) 1
; o = Z p.(d) Z d%x® = Z d° Z _;;- '
<N d\a °<l’€£d d\a o<x§%

Taking the limit as N — ®, we obtain the required identity.
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21, a. We apply the theorem of problem 17, b, considering
the systems of values x,, x,, ..., x, considered in the defini-
tion of the probabilities P, and taking fla, 24y 000y 2y) = 1.

S’ NT*
Then P, = Sq = [7] , and we obtain

Nx

P, = = + 0
N Nk E dk

N
é Nd*=

( )

1
Py = (D™ + 0B); & = — for k > 2,

In N

A= for k = 2.

2

b. We have {(2) = 26—

22, a. Elementary arguments show that the number of lattice
points (u, v) of the region u? + v* < p*; p > 0, not counting
the point (0, 0), is equal to mp? + O(p). We apply the theorem
of problem 17, b, considering the coordinates x, y of the lat-
tice points of the region x* + y* < 7, different from (0, 0),
and setting f(x, ¥) = 1, Then T = S’ + 1, S, is equal to the

2
number of lattice points of the region u? + +* ¢ (:}-) , not
considering the point (0, 0). Therefore

r? r
SdnﬂF-I-O(E‘) y
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(r] P lel » 6
T =) pldn — + O(Z —) =—7~ 4+ 0@ClInr),

2
del d del n

b. Arguing in analogy to the above, we find

(] 4 7 (a1 P 4n P
— | = o(2).
T=§#(@3nd, +0(dz.:‘d’)_3{(3) + 0(F)

23, a. The number of divisors d of the numbers
a = p;* ... p *x which are not divisible by the square of an

integer exceeding 1, and having x prime divisors, is equal to

.4

k
( ) ; moreover p(d) = (~1)*. Therefore

k [k
2 pld =) (K)(—l)* = (1 -1)* = 0.

d\ﬂ Had

b. Let a be of the same form as in problem a. It is sufficien
to consider the case m < k. For the sum under consideration
we have two expressions

T ud) = (’;) - (’1‘ )+ s “”'"(Z)
_ar ((k) o) )

k
If m is even, then for m 7" the first expression <0, and

for m > — the second expression is > 0. If m is odd, then
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for m ¢ 2’ the first expression <0, and for m > 7 the

second expression 0.

¢. The proof is almost the same as in d, $3, except that
the result of problem b must be taken into account,

d. The proof is almost the same as in problems 17, a and
17, b,

24. Let d run through the divisors of the number a, let
(}(d) be the number of prime divisors of the number d, and
let (¥a) = s. Following the process given in the problem,
we have

W, q, 1) 2 pld) (‘N—d+6d) =
Q(d)<m q

=T+ T~ Ty |64] <1,

N (d) N
ITIS Z lﬁTo"'_Z'E_r'TJ" Z -d
Q(d¥m q T d QdY>m 9
Moreover
| T| < o [ ° s™ £ e™ < exp(57*~¢In r)it- N 0(A)
< nz.; n < P N o y

Finally, letting C,, C,, C, denote constants, we find
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N s 1
| TII s z: Z: )

9 nem+1 Q(d)=n d )

N

N
9n

ZI — <

N\
|
™
T~
/

25, To every divisor d, of the number a such that d, < Va

there corresponds a divisor d, such that d, > Va , dd, = a.
Here u(d,) = u(d,). Therefore

2y pld,) = ) pld) + J pld,) = 2 pld) =0,
d, dy dy

d\a

26. We consider pairs of numbers d which are not divisible
by the square of an integer exceeding 1, and satisfying the
condition ¢(d) = k, such that each pair consists of some odd
number d, and the even number 24,. We have u(d,) + u(2d,) = 0.

27. Let p,, ..., px are distinct prime numbers. Setting
@ = p, ...px, we have

CP(G) = (p‘ - 1) s en (Pk - 1)-

If there were no primes other than p,, ..., px, we would have

¢pla) = 1.
159



28, a. Our numbers are among the numbers s§; s = 1, 2,
veuy %. But (s5, @) = § if and only if (s, % ) =1

(e, 42, ch. I). Therefore the assertion in the problem is true
and we have

d\a d d\a

a=z:¢(i)=.>:¢u).

b, o) Let a = p .., pin be the canonical decomposition
of the number a. By a, the function ¢(a) is multiplicative,
while

pee = 2. o), psr = ¥ old), par - par = ¢lpae).
d\p" d\p"‘l

B) For a positive integer m, we have

m= ). (.
d\m

Therefore

ola) =§ u(d)%.
d\o

29, We have (p runs through all the primes)
®© ¢(n)

¢lp) ¢lp?) )
;,:, — mg(l-l- r + pe + o

1e —
- p° (s - 1)
fl- al..s ¢
p
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30. We have

P(l) + @(2) + ... + o) =

p{d) p{d) p(d)
= +2Z: + .. —_— =
dz\x d d\a d +n§n d
===dz::lu(d) (l+2+...+[—3—])=
=Zn: pld) ?:I’ + On ln n)
dal
= n2 df:;l F:f) + O lnn) = %n’ + O(n In n),

Solutions of the Problems for Chapter 111
1, a. It follows from
P =a,10"* +a,,10"* + ... + a,,
that
P=a,+ap,+ ... +a,{mod9)
since 10 = 1 (mod 9), Therefore P is a multiple of 3 if and
only if the sum of its digits is a multiple of 3; it is a multiple
of 9 if and only if this sum is a multiple of 9,

Noting that 10 = -1 (mod 11), we have

P=f+ay,+..)-(a +a, +...)(mod11),
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Therefore P is a multiple of 3 if and only if the sum of its
digits in the odd places minus the sum of its digits in the
even places is a multiple of 11.

b. It follows from

P = bl‘l ].Oon_l + bn_‘ ].O:Oﬂ-3 + .. + b‘
that

P=(b +5b +...)~(b,+5b,+...) (mod101)

since 100 = -1 (mod 101). Therefore P is a multiple of 101

if and only if (b, + b, + ...) - (b, + b, + ,..) is a multiple
of 101.

c. It follows from

P = ¢c,1000"* + ¢,,1000" + ... + ¢,

that

P=c,+chy +...4 c, (mod37)

since 1000 = 1 (mod 37). Therefore P is a multiple of 37 if
and only if c,, + ¢, + ... + ¢, is a multiple of 37.
Since 1000 = -1 (mod 7 * 11 * 13), we have

Psi,+cy+ ...)=-(cg+cy+...)(mod 7+11-13).

Therefore P is a multiple of one of the numbers 7, 11, 13 if
and only if (¢, + ¢y + ...) ~ (c; + ¢, + ...)i8 a multiple of
that number,

2, a, o) When x runs through a complete system of residues
modulo m, then ax + b also runs through a complete residue
system; the smallest non-negative residue r of the numbers
ax + b also runs through the numbers 0,1, ..., m - 1.
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Therefore

B) Applying the result of problem 18, b, ch. I, we find

2 {i{} = {m) = l<p(m).
£ m m 2

b. For ¢t = 1, we have [fIN + m)] - [AN)] = a,

5 3% ) =~V 4+ m) + ~[W] = = + =
megﬂﬂx_-;ﬂ +m+2f( —2+2m=-
N4+m N4m 1 1
= 3 fD- ) el - -a+ —m-1=5;
xo N4+ xo N 41 2 2

and the case in which ¢ > 1 also reduces to this case trivially
c. LetN, M, P,, P, be integers, M > 0, P, > 0,P, > 0,
The trapezoid with vertices (N, 0), (N, P,), (N + M, 0),
(N + M, P,) is a special case of the one considered in problem
b. Therefore equation (1) is also valid for it. Equation (1)
can also be obtained easily for such a trapezoid by consider-
ing the rectangle with vertices (¥, 0), (N, P + P), (N + M, 0),
N + M, P + P), which is equal to two such trapezoids, For
this rectangle, the equation

Z & = 57,
analogous to equation (1), is evident. Since ), & = 22,5

this implies $* = 285, so that we obtain equation (1).
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The analogous formula for the triangle considered in the
problem follows trivially from this result. But it is of some
interest to consider the following derivation: our triangle can
be obtained from a certain parallelogram with integral vertices
by dividing it into two equal triangles, Let S be the area of

the parallelogram and let T = )5 where the sum is extended

over all the lattice points of the parallelogram and § is de-
fined as in problem b, We will have proven the property of the
triangle that interests us, if we prove that S = T, We con-
sider a square whose side A increases to infinity, The whole
plane can be divided into an infinite number of parallelograms
of the above type. Let & be the number of parallelograms com-
pletely within the interior of the square, and let R be the
number of lattice points in the square, As 4 — ®, we find

l’lll _—= l l.lll-'——z = 1 l.ln - 1
? ) .
' A3 ' R '

kT

Multiplying these expressions termwise, we find
li > 1, S=T
m— = ’ = .
T

3, a. Let r be the smallest positive residue of the number
ax + [c] modulo m. We have

~E{=

ref m

where ¢ < ®(r) < ¢ + h; ¢ = {c}. The theorem is evident for
m € 24 + 1, We therefore only consider the case m > 24 + 1.

Setting
FL%%_L,WL
m m
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h
te for r=m—[h + €],

¢
we have -1 + — < 8() <
m

m
¢ h + ¢
..., m — 1; in the other cases — ¢ 6{r)
m m
Therefore
-1 1
—[h+¢]+¢gS—m2 gh+¢,|S—3m <h+—

b. We have

S=E{M+—W};¢(2)=m(AM+B)+-§—z.

=0 m m

We apply the theorem of problem a, setting 4 = |A|. Then
we obtain the required result.

c. We find

S=E{]W)+ oz 67; . f-(M+zo)z’}’

Zw0 m m 2

0<z,<m-1.

k
We apply the theorem of problem a, setting 4 = 1 + 3" We

then obtain the required result.

4. We develop 4 in a continued fraction. Let Q, = Q*
be the largest of the denominators of the convergents which
does not exceed m, and note (h, §4, ch. I)

A il o P00 =1, |6’] <1
== + [} = ] -
Q° Om '

165



It follows from m < Q4 < (gna + 1)0n € CQ,, where Cis
a constant which is not larger than all the ¢, + 1, that, for
the largest integer H’ such that H°Q’ < m, we have H* < C.
Applying the theorem of problem 3, b, we find

M+#'Q1 (4 81 1 H°Q’
Z x + >

xa M

3
< 7 C
2

Let m; = m —~ H’Q’. If m, > 0, then, choosing @** and H**
depending on m as we chose @’ and H* depending on m, we

find

M“.HIIOII_‘

g —C.

1
{Ax + B} - S HQ”

0o | w

l-M‘
Let my = m, — H’Q**. 1f m, > 0, then, as above, we find

Ma+H"’o""-‘

1
iAx + B; - EH'”Q”' < C,

po | oo

xu M4

etc,, until we find some m;, = 0. We then have (H°Q* +

+ H”Q” + ... + H*QW) = p)

Mem—1 1 3
> {dx + B} - —m |< —Ck.
x= M 2 2

The numbers Q*, Q**, .., , Q'*) satisfy the conditions
m>Q >m>Q” >m3..>m, > Q¥ >

Therefore (problem 3, ch. I) £ = O(In m), and hence the re-
quired formula is true.
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1
5, a. Let the sum on the Ieft be denoted by S, Let r = 47,
The theorem is evident for r < 40. We therefore assume that
r > 40. Taking M, = [Q + 1], we can find numbers a,, m,, 0
such that

a 7/
f'(Mi)l:';l—"-l- ;-‘;-;0<er, (a“ ml)=l, |6,I<1.
1 1

Taking M, = M, + m,, we find the numbers a,, m,, 6,
analogously; taking M, = M, + m,, we find the numbers

ay, m,, 0,; etc., until we come to M,,, = M, + m, such that
0 < [R] - M,,, < [r]. Applyingthe theorem of problem 3, c,
we find

1
'S - E(m' + My + e+ my + [R1=M,,,) | <

k+3
2

<s + %([R] - Maﬂ)’

k+ 3 r + 1
<s + .
2 2

1
S-E(R—Q)

1
The length of the interval for which 2 — € [ (x) €

m mr
a 1 24
£ — + — does not exceed — , Therefore there are
m mr mr
24

<—~— + 1 numbers m,, m,, ..., m, associated with the
m*r

fraction — . Let a, and a, be the smallest and largest values
m

of a associated with a given m.
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We have
a, — a, 2 k(R - Q) .

m mr A

&R -
a,—-a, + 1< (RAQ)m + 1.05.

Therefore, there are

(:EA:;_,_I)(M_,,Los),
mir A
= ———-—-—--MR -0 (E + z )+ (w—-zA + 1)1.05
r m e mir

numbers m,, m,, ..., m, associated with a given m. Summing
the latter expression overall m = 1, 2, ..., [r], we find

_ 3
s< R (oo, 22} L1046
r 2r? 3r
k(R - 7 A
<_(.R-—_gl.lnA+—_’
r 2 r
1 PR - A
\S——-—(R—Q)|<2(—-g)-lnA+8k—.
2 r r
b. We have
1
Y ffw+1-0l-=R-0 (<4,
<xgR 2

2 @)} - %(R_Q)

o<xSR

<A,
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from which, setting 5(x) = {flx) + 1 - o} - {flx)}], we find

l E 8(x)|<2A.
O<x<R

But, for {f(x)} < o we have 8(x) = 1 — o, while for
{fx)} > o we have 8(x) = — o, and hence |1 - o)lo) -
- oR - Q - ylo))| < 2A, from which we obtain the required
formula.

6, a. We apply the formula of problem 1, c, ch. II. Setting

flx) = Vr? « x? , we have

x ~r
*(x) = -, *(x) = —
[ ¥ - x? f r? - x¥4

in the interval 0 € x € ‘—/’-._2— . Therefore (problem 8, a, ch. II,

problem 5, a)

Y1

T:-4r+8f Vr? - x? dx+8p(-\/f2=)-:\/§— - 8p0)r -

r r? r r 3
—f— - 44— + B— {— 0 Inr) =
vz 2z ° \fz'{\fz'}

)
- nr* + 0(* In 7).

b. We have (problems 11, d and 1, d, ch. I)

r(D)+72 + .. +7(n) =2 2 [i] B (V9

o<x{vn | %
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It is sufficient to consider the case n > 64. We divide the

interval X < x ¢ Vn , where X = 2a7, into O(In n) intervals
of the form M < x ¢ M’, where M’ € 2M. Setting flx) =

n
= — , we have
x

’ h ’ 2. n Y 8n
f(x)"‘"' x,:f (x)"' x"4M’ Sf(x)s AN

in the interval < x ¢ M’. Therefore (problem 5, a)

r {f—} - L — s 067 In w),
M<!‘SM' x 2

2. {i} . —:12—\/; + O(n% (In n)?).

o<xY'n | x

Moreover (problem 8, b, ch, II)

1
r } = En+ o lnn s p(Va VA + O,
o<x$v'n

Therefore

VD+7D+...+ 7)) =

=2En +nlnn+ 2Va)Vao _ Vo —n+

+2Vn Vo } + O(n% (In n)?) =

=n{ln n + 2E - 1) + O(n% (In n)),
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7. Let the system be improper and let s be the largest
integer such that 2° enters into an odd number of numbers of
the system. We replace one of the latter numbers by the
smallest number containing only those powers 2” which enter
into an odd number of integers of the rest of the system.

Let the system be proper. A number smaller than one of
the numbers T of this system, differs from T in at least one
digit in its representation to the base 2,

8, a. Adding the number # = 3" + 3" + . . + 3 + 1to
each of the numbers of the system represented in the afore-
mentioned manner, we obtain numbers which we can obtain by
letting x,, Xpeyy ++ +5 %, X, in the same form, run through the
values 0, 1, 2, i.e. we obtain all the values 0,1, ..., 2H.

b. In this way we obtain m,m, ... m, numbers which are
incongruent to one-another modulo mm, ... m,, since

x‘ + m‘x: + m‘ﬂl’x, + [ ] + mlm’ “eae mk_‘xk =
’ ” ’ »
= x; + m‘x’ + m'm:x""‘ an e + mlm’ aae mk_1xk
(mod mym, ... my)
implies in sequence:
%, 8 x, (modm,), x, = 23 mx, = mx, (mod mym,), x, = x;;
I d
m‘m,x, = m‘m’x; (mOd mlm’m’), x’ = x’ y
etc,

9, a. In this way we obtain m,m; ... m; numbers which are
incongruent modulo m,m, ... m,, since

Mz, + My, + ... + Myxy = Myx{ + Myx) + ...+ M x,

(mod mym, ... my)
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would imply (every ¥,, different from ¥M,, is a multiple of m,)
M,x, 8 M.x; (mod m), x, = x, (mod m,), x, = xJ.

b. In this way we obtain ¢(m,)¢(m,) ... ¢(m,) =
= @(mym, ... my) numbers which are incongrueat modulo
m,m; ... m, by the theorem of problem a, and are relatively
prime to mym, ... m, since (M, x, + Myx, + ... +
+ Myxy, m,) = M,x,, m,) = 1,

c. By the theorem of problem a, the number M, x, + M,x, +
+ .+s + Mx, runs through a complete residue system modulo
mym; ... my when x,, x,, ..., %, run through complete residue
systems modulo m,, my, ..., my. This number is relatively
prime to mm, ... m, if and only if (x,, m,) = (x,, m,) =
= 40 = (x4, my) = 1. Therefore p{mm, ... my) =
= @(m,)p(m,) ... @lm,).

d. To obtain the numbers of the sequence 1, 2, ..., p*
relatively prime to p® we delete the numbers of this sequence
which are multiples of p, i.e. the numbers p, 2p, ..., p*'p.
Therefore @(p®) = p* - p@~*. The expression for ¢(a)
follows from the latter and theorem ¢, $4, ch. IL

10, a. The first assertion follows from

{x, x,,} {Mlx‘+ ...+M,,x,,}
—_— + soa + T o ;
m, m, m

the second assertion follows from

{f; fk} {M:fl + 00 + Mk‘fk}
— 4 s+ —p = .

b. The fractions

{fl(xu --'owa) fk(xk: ---’wk)}
+ oaee +

m, my
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coincide with the fractions

{f;(Mlxl‘P ooa'l‘M*xk, ssay le‘+lC.+Mkwk) + +

my

[ilMx, + coo+ MiXpy ooy M, + oo + Myw)) }
+ ?

m,

i.e. with the fractions

{f‘(x’ '."w) fk(x, sesy W)}
+ oael 4 .
m,

my

The first assertion follows trivially from this. The second
assertion is proved analogously.
11, a, If a is a multiple of m, we have

T exp (2:::'3:-): Ll=m

If a is not a multiple of m, we have

= 0.

xp (2,,,-:'1) 1

ax m

?exp (21" m) oe .
exp Zm‘—) -1

m

b. For non-integral «, the left side is equal to

exp(2nicM + P)) — exp(2niadf)
exp(2ria) - 1

1 < 1
sin m{c) hea)
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¢. By the theorem of problem b, the left side does not ex-
ceed T, where

rm-qui_)—-.

m
For odd m,
22 + 1
Tm<mzmlnzai = mlnm,
wal5
and for even m,
m 2 + 1 m 2 + 1
; Zm 3 Zm < mlnm.
oal§ o<alT

1
Form;G,since—;-— —;— o E-,theboundmlnmcanbe

decreased to

m 2a + 1 m m
2 g wEmuGR] ).
6 m 2 -1 3 6

o(ag—;'

The latter expression is > Z form 2> 12and > m for

m > 60.

12, a. Let m = p;* ... pg* be the canonical decomposition
of the number m. Setting p;* = m,, ..., px* = m,, and using
the notation of problem 10, a, we have

) o ) (o]

£, M €x Mx '3 m
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For o, = 1, we find

Zexp(Zm’ E’) = 3 exp (2;;5"’) - 1= -1

£, my zq mgy

For «, > 1, setting m, = p,m,, we find

2. exp (2::.' e ) =

£y Ma

= 3 exp (2,":") - mfi exp (Zni “,) = 0.

u=o0 mq

m=1 x
b. Let m be an integer, m > 1. Wehave ) exp 2ni— =
ZzZ=0 m

= 0. By the theorem of problem a, the sum of the terms on the
left side of this equation such that (x, m) = d, is equal to

2 exp (2mf£) = ). w(d)Sq,

£ m d\m

where, setting m = myd, we have

uesl mo

Sa= '3 exp (2ni—"-) .

The latter is equal to 0 for d < m and equal to 1 ford = m.
From this we obtain the theorem of problem a.
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d. This equation follows from problem 10, b,
e. We have

Almy) oo Almy) = m™" )0 oo )" Sa i my +oe Sagymy,
a, ag
where a,, ..., a5 run through reduced residue systems modulo

Myy «0+y My Hence (problem d) the first equation of the prob-
lem follows immediately.

We also prove the second result enalogously.
13, a. We have

-1 nx p, il n is a multiple of p,
5: exp (Zm‘—-) =

x=0 P 0, otherwise.

b. Expanding the product corresponding to a given n, we

find

2. %E oxp (2::;'1’1) :

d\a x=0 d

Hence, summing over all the n = 0,1, ..., a4 — 1, we cbtain
the expression for ¢(a).

14. The part of the expression on the right corresponding
to x dividing a, is equal to

. Fd
= El_l.n: (2(([ e + 0(1))) = 2.

K k
Setting ®(K) = ) exp (Zmi-) , the part corresponding to

k=1 x

@ 1
cll-"g 2 é gite
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x, not divisible by a, can be represented in the form

lim 2¢
€0

1 1 1
= lirg2c(¢(l) (1- 2”‘) +¢(2)(2”£ - 3”6)+ )

The factor to the right of 2¢, is < x in absolute value since
| ®(K)| < x; here lirg 2¢x = 0, Therefore the right side of

(tb(l) O©2) - d(1)  O@3) - d(2) )
+ + o] =

91+€ + giee€

the equation considered in the problem is equal to twice the

number of divisors of the number a which are smaller than Va

multiplied by 8, i.e. equal to r(a).
13, a. We have

(hy + h)P =

= 0 + (p)h{’"h, Faent (p P 1) AP+ AP =

g A2 4+ AP (mod p);
(hy + by + 2P = (hy + £))° + hY = AP + AP + AP (mod p),

etc.

b. Setting 4, = h; = ... = h, = 1, the theorem of problem
a gives Fermat’s theorem.

c. Let (a, p) = 1. For certain integers N,, N,, ..., N, we
have

aP =14+ Np, a?®2) = (1 + Np)? =14+ Np?,

dp’(p-l) = ]. + N’p" ey apa'-‘[p-[) = 1 + Napa’

a®®%) = 1 (mod p?).
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Letm = p{* .., p2* be the canonical decomposition of the
number m. We have

a®EM 5 ] (mod pd), ..., a?CkN) 2 1 (mod p;X),

a®?™) 5 1 (mod p), ..., a®?™) = 1 (mod p*),
a?®) = 1 (mod m).

Solutions of the Problems for Chapter IV

1, a. The theorem follows immediately from the theorem of
problem 11, a, ch, IIL,

b. Letd be a divisor of the number m, m = m,d, and let H,
denote the sum of the terms such that (a, m) = d in the expres-
sion for Tm in problem a, We find

Hy=T'5 . 3 exp (2m°°ﬂx";""’)),

8g Xx=0 wea( m

where a, runs through a reduced residue system modulo m,.
From this we deduce

Hd=d'z o e )0 exp

ag xg=0 wowo

mo—~1 mo=1 (2”,: ao[(xm saey wo)) = m' (mo)-

my,

c. Letm > 0,(a,m) =d,a = ayd, m = mgd, and let T be
the number of solutions of the congruence ax = b (mod m).
We have

Tm = mz-l mz-l exp (2",:3_(2.:__!,_).)

avw0 xeo m

- E "E exp (Zn 2m—133-)

am0 Z=0 m

ba, md, if b is a multiple of d,
= mz exp (—Zm-———-d =

ayeo 0, otherwise
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d. Settil’lg (a’, m) = d‘, (b’ d‘) = d:, Y (f, df..[) = d(,
me=dm,d =dmy...,dpy = dym,, we findd = d,,

m=1 m=1 m=-=1

Im=3. 3, 1. ---ufexp(Zni “(““b“““’f‘“g))

Q=0 xe0 y=o we m

=m 3 3 ... ) exp

ay1=0 ywo we=0

dy=1 m=1 m—1 ( Cay(by + oo+ fw 4 g))
2mi

LI BB S I B N Y B R N B B I RS B R NN I N N TR R N N ORE R R N R BB N RN NI RN R RN LU I

dpeey=1 m=1
= m™! Z Z exp (21!':' C ey (fo0 + g)) _

Qe =0 We0 Aoy

P 95 (2::' a,g)
= m exp |2nmi
L, a,

e. We apply the method of induction. Using the notation of
problem d, assume that the theorem is true for r variables, We
consider the congruence

(2) lv +ax + ...+ fw + g = 0 (mod m),

Let ({, m) = do. Congruence (2) holds if and only if ax +

+ .eo + fw + g =0 (mod dy). The latter congruence holds

if and only if g is a multiple of d*, where d* = (a, ..., f, do) =
= (1,a,...,f, m), and it has dg*d’ solutions. Therefore the
congruence (2) holds only if g is a multiple of d”; and it then

r
has d57d’ (-T— dy = m'd” solutions. Therefore the theorem

d

is also true for r + 1 variables. But the theorem is true for
one variable, and hence is always true.

2, a. We have a?™) = 1 (mod m), a - ba¥(™* = b (mod m)
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b. We have

P-1)...p~a+1 _
1-2...(a-1)

=b+1+2... (@ = 1) (mod p),

1-2... (@a-1) ab 1)*

and dividingby 1 -2 ... (@ = 1), we obtain the required
theorem.

¢. It is evidently sufficient to consider the case (2, b) = 1.
For an appropriate choice of sign, b + m = 0 (mod 4). Let
2% be the largest power of 2 dividing b + m. For 8 > k, we

have

bitm
2!:

x = (mod m).

If 5 < k, then

btm

9k=3y o —5 (mod m).

We repeat the analogous operation with this congruence, etc.

B) We consider (3, ) = 1. For an appropnate choice of
sign, we have b £ m = 0 (mod 3). Let 3 be the largest
power of 3 dividing b * m. For § > &, we have

btm

(mod m).

x =

If 8§ < k, then

btm

3"-817 = ——?-"s— (mod m)

We repeat the analogous operation with this congruence, etc.
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y) Let p be a prime divisor of the number a. Determine ¢ by
the condition b + mt = 0 (mod p). Let P 5 be the largest power
of p dividing (a, b + me), and leta = a,p°. We have

If |a,| > 1, then we repeat this operation with the new con-
gruence, etc.

This method is convenient for the case in wbicbh a has small
prime factors,

3. Setting ¢ = [r], we write the congruences

a*0 =0 (modm),
a*l =y, (modm),

Arranging these congruences so that their right sides are in
order of increase (cf, problem 4, a, ch, 1) and multiplying
termwise each congruence (except the last one) by its suc-
cessor, we obtain ¢ + 1 congruences of the form az = u

(mod m); 0 < |z| < r. Here0 < u < it in at least one con-
r

gruence, Indeed, u has ¢t + 1 > r values, these values are
positive, and their sum is equal to m.

4, a, «) This follows from the definition of symbolic
fractions,

B) Here we can set b, = b + mt, where ¢ is defined by the
condition b + mt = 0 (mod a); then the congruence ax = b
has as solution an integer which represents the ordinary

. b,
fraction —.
a
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y) We have (b, is a multiple of a, d, is a multiple of ¢)

= + o =
a c ac ac

b d b, d, byc + ad, be + ad
— + — -
a c

5) We have

= 4 o= =

a c ac ac

b d by, dy bd, bd
a c

b, ) We have (the congruences are taken modulo p)

(p_1) e-Dp-2...0p-a) _
12 ...a "

-1)°*1+-2...a .
- 1.2 ...a = )2

Now problem 2, b is solved more simply as follows:

b 1) -1 ... p-G@-1) (mod p)
a 1:'2...@-1° o pn

B) We have
2”-2_1 p-1 (G(-DpE-2
=1+ +
p 1-2 1-2-3
-Dp-2 ... p-(p~2
.. p-Dp-2 p - (p~-2)) (mod p).

1-2...(p-1)

5,a. Thenumbers s, s + 1,..., s + n = 1 have no di-
visors in common with d. The products s(s + 1) ... (s +
+ n — 1) can be put in n* sets in a number of ways equal to
the number of ways that d can be decomposed into n relatively
prime factors, where order of the factors is taken into account
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(problem 11, b, ch. 1), Letd = uu, ... u, be one of these
decompositions, The number of products such that s =
=0 (modu,),s +1=0(modu,), ..., s +n—=1=0 (mod

u,) is equal to % . Therefore the required number is equal to

2 2
d

b. This number is equal to

n*a

2. wd)Sqi Sq = '
d\a d

wbere & is the number of different prime divisors of the number
d. But we have

oot o2 2] (-3

d\a

6, a. All the values of x satisfying the first congruence are
given by the equation x = b, + m,t, where ¢ is an integer. In
order to choose from them those values which also satisfy the
second congruence, it is only necessary to choose those
values of ¢t which satisfy the congruence

mit = by, - b, (mod m,).

But this congruence is solvable if and only if b, — b, is a
multiple of d. Moreover, when the congruence is solvable,
the set of values of ¢ satisfying it is defined by an equation

m
of the form ¢t = ¢ + -th', where ¢’ is an integer; and hence

the set of values of x satisfying the system considered in the
problem is defined by the equation

m ., , b
x = b, + my [ty + Tt = X3+ Myat’s Xy = 04 + nilo
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b. If the system
x = b, (mod m,), x = b, (mod m,)

is solvable, the set of values of x satisfying it is represent-
able in the form x = x, , (mod m,,). If the system

x = x,, (modm,,), x = b, (mod m,)

is solvable, the set of values of x satisfying it is represent-
able in the fom x = x,, , (mod m,, ,). If the system

x =% ,, (mdm,,), x= b (mod m,)

is solvable, tbe set of values of x satisfying it is represent-
able in the fom x = x, , , , (mod m,, , ), etc.
7, «) I x is replaced by —x (and hence x” is replaced by

a, b

m

—x’) the sum ( ) is not changed.

B) When x runs through a reduced residue system modulo m,
x’ also rans through a reduced residue system modulo m.
y) Setting x = 4z (mod m), we find

(a, bh) ot ahz + bz’ ah, b
= e T — = »
m ; xp | em m m
5) We bave
(a‘, 1) a,, 1\
m, m, }
G + aymy + mx’ + m‘r')

= e i
Zx: ; P ( mymy
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Setting m,x” + myy’ = z”, we have

(a,mx + aymy)(mx’ + my’) = a,md + a,m} (mod m;m,),

) () - (=)

which proves our property for the case of two factors. The
generalization to the case of more than two factors is trivial.
8. The congruence

"t g, g -x)x-x) . - x,)=

= 0 (mod p)

ax" + ax

has n solutions. Its degree is leas than n. Therefore all its
coefficients are multiples of p, and this is also expressed in
the congruences considered in the problem,

9, a. Corresponding to x in the sequence 2,3, ,..,p — 2
we find a number x’, different from it, in the same sequence
such that xx’ = 1 (mod p); indeed, it would follow from
x = x’ that (x — 1)(x + 1) = 0 (mod p), and hence x = 1 or
x = p — 1. Therefore

2:3...p=2)=1(modp)1-2 ... (p =1 = -1 (mod p).

b. Let P > 2. Assuming that P has a divisor u such that
l1<u<P,wewouldhave1:2 ... (P = 1) + 1 = 1 (mod u).

10, a. We find 4 such thatash = 1 (mod m). The given
congruence is equivalent to the following one:

2" + ahx™' 4+ ... + aph = 0 (mod m),

b. Let (J(x) be tbe quotient and let R(x) be the remainder
resulting from the division of x» — x by f(x). All the coef-
ficients of Q(x) and R(x) are integers, the degree of Q(x) is
p — n, the degree of R(x) is less than n,

2P — x = flx)Q(x) + Rx).
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Let the congruence f(x) = 0 (mod p) have n solutions. These
solutions will also be solutions of the congruence R(x) =

= 0 (mod p); therefore all the coefficients of R(x) are multi-
ples of p.

Conversely, let all the coefficients of R(x) be multiples of
p. Then flx)Q(x) is a multiple of p for those values of x for
which 2P — x is also a multiple of p; therefore the sum of the
numbers of solutions of the congruences

f(x) = 0 (mod p), Q(x) = 0 (mod p)

is no smaller than p. Let the first have o, and let the second
have 8 solutions, From

ag<n B<p-np-np<a+f

we deduce ¢ = n, 8 = p - n,
p-1

n

c. Raising the given congruence to the power term=

wise, we find that the given condition is necessary. Let this

condition be satisfied; it follows from 2 — x =

Pt pt

= x(xP7 =4 " + 4" —1) that the remainder resulting
E..:l

from the division of x» — x by 2" — A is (4 " — l)x, where

p_-—l

A ™ - 1is amultiple of p.

11, It follows from x5 = A (mod m), y™ = 1 (mod m) that
(xey)" = A (mod m); here the products x,y, corresponding to
incongruent (modulo m)y, are incongruent, It follows from
25 = A(mod m), x" = A (mod m) that x® = x 2 (mod m), while,
defining y by the condition x = yx, (mod m), we have

y" = 1 (mod m).
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Solutions of the Problems for Chapter V

1. This congruence is equivalent to the following one:
(28x + b)* = b* — 4ac (mod m). Corresponding to each solu-
tion z = z, (mod m) of the congruence z? = b? — 4ac (mod m),
from 2ax + b = z, (mod m) we find a solution of the con-
gruence under consideration,

2, a, For (f—) = 1 we have a*™* = 1 (mod p),
p

(am+l)l = a(mOd P)y x = iam+l (mod P).

b. For (i) = 1 we have ¢*™** = 1 (mod p), a*™* = £1
p

2
(mod p), ®™** = ta (mod p). Since (--—) = —] we also
P

have 2¢™*! = -] (mod p), Therefore, for a certain s, having
one of the values 0, 1, we find

a:m+!2(4m+l) = a (mod P), x = iam+:2(:m+l)n (mod P)-

c. Let p = 24 + 1, where & > 3 and 4 is odd, (-a—) = 1,

p
We have

a’k_"' = 1(mod p), a’k_a" = t1(mod p), N’k-l" = -1(mod p).

Therefore, for some non-negative integer s, we find
g Near" T o 1 (mod p), @ NPT = £1 (mod p);
and hence for some non-negative integer s, we find

g Tayen (mod p), R P,
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etc.; finally we find

ha

a™N**x = 1(modp), x = *a * N (mod p).

d. We have

12 ...2n(p~2m) ... (p—=2(p -1 +1 = 0 (mod p),
(1+2...2m + 1 = 0 (mod p).

3, a. The conditions for the solvability of congruence (1)
and (2) are deduced trivially (I, $2 and k, $2). The con-

-3
gruence (3) is solvable if and only if (—) = 1. But

p
-3
(—) = (-P—) , while
p 3
(p) 1, if p is of the form 6m + 1,
3 -1, if p is of the form 6m + 5.

b. For any distinct primes p,, p,, ..., p, of the form
4m + 1, the smallest prime divisor p of the number
(2p,ps ...p)* + 1 is different from p,, p,, ..., p,, and since
(2p,p;...p,)* + 1 = 0(mod p), it is of the form 4m + 1.

c. For any distinct primes p,, pys ..., p, of the form
6m + 1, the smallest prime divisor p of the number

(2p,p; ...p)* + 3 is differepnt from p,, p,, ..., p,, and since
(2psp,...p, P + 3 = 0 (mod p), it is of the form 6m + 1.
4. There are numbers in the first set which are congruent
p-1 p-1
"

residues of a complete system; a number in the second set is
a quadratic non-residue, by definition. But the second set
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contains with this non-residue, all the products of the non-
residue with residues, i.e. it contains all the quadratic
non-residues.

5, a. In the number system to the base p, let

8 =a8ap%" + oo+ ap + ap

and let the required solution (the smallest non-negative resi-

due) be

X m xa,_‘pa'_‘ + ... + x‘p + xoo

We form the table:

ag-

2% g, veer 2x0x, 2x0%, 2x0x, 2%4%, Xo
2%,Xq, 2x,x, 2¢,x, e
2%,%4 s x:

where the column under a, consists of numbers whose sum is
the coefficient of p°® in the decomposition of the square of the
right side of (1) in powers of p, We determine x, by the
condition

xg = a (mod p).

X3 — G,

Setting ——— = p:s We determine x, by the condition

Py + 2x4x, = a, (mod p).

P1 + 2%0x, — 4,
p

Setting = p,, we determine x, by the
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condition

p, + 2xx, + % = a, (mod p),
ete. For given x,, the numbers x,, x,, ..., x5, are uniquely
determined since (x,, p) = 1.

h. Here

g = aa_lza-l + sa0 + 0,2' + 0323 + 012 + ao,

X = 20020 4 e+ 2,20 + 2,2 + %2 + %,

and we have the following table:

aa!-'l cuns a‘ a’ a’ al ao
2
X1 X a3y e X 1%, x
Xy % s %

We only consider the case « > 3. Since (g, 2) = 1, it follows
that a, = 1. Therefore x, = 1. Moreover g, = 0, and since
XX, + 43 = %, + x; = 0 (mod 2), we must have g, = 0, For
x, there are two possible values: 0 and 1. The numbers

Xyy Xy o0y Xg—y re uniquely determined, while for xo,, there
are two possible values: 0 and 1. Therefore, for o > 3, we
must have a = 1 (mod 8), and then the congruence under con-
sideration has 4 solutions,

6. It is evident that P and Q are integers, where Q is con-
gruent modulo p to a number which we obtain by replacing a
by z?, for which it is sufficient to replace Va by z, There-
fore Q = 2%z (mod p); therefore (Q, p) = 1 and @’ is
determined by the congruence QQ° = 1 (mod p). We have

P*—aQ’ = (z + Va )%z - Va )® = (z* - a)® = 0 (mod p?),
190



from which it follows that
(PQ*» = a(QQ’) = a (mod p%).

7. Let m = 2% ... p¥k be the canonical decomposition

of the number m., Then m can be represented in the form
m = 2%b, where (a, b) = 1, in 2* ways.

Let « = 0, It follows from (x — 1){x + 1) = 0 (mod m),
that for certain a and &

i

~1 (mod b).

x = | (mod a); x

Solving this system, we obtain x = x, (mod m)., Therefore
the congruence under consideration has 2* solutions.
Let o = 1. For certain g and b

x = 1 (mod 2a); x = ~1 (mod 2b).

Solving this system, we obtain x = x, (mod m). Hence this
congruence has 2* solutions,
Let « = 2. For certain a and b

x = 1 (mod 2a); x = -1 (mod 2b),

Solving this system, we obtain x = x, (mod 12) . Therefore

our congrunece has 2**! solutions.
Let « > 3. For certain a and b, one of the systems

it

1 (mod 2a); x = =1 (mod 2271b)
1 (mod 2%7'a); x = -1 (mod 2b)

x

il

x

is satisfied. Solving one of these systems, we obtain
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X = X, (mod%) . Therefore our congruence has 2%+

solutions.
8, a. Defining x” by the congruence xx’ = 1 (mod p), we
have

p1 [ x(x + k) = fxx’(xx’ + kx’)
£ () -E () -

x=3 P x=] P
p=t 1 + kx’
) Z ( ) .
xey P

It is evident that 1 + kx’ runs through all the residues of a
complete system, except 1. The required theorem follows
from this.

b, The required equation follows from

=B () 0 0)
SE () () )

c. We have

. (xy, + 5)(xy + 5)
saxErr )

x=0 y; ¥ P

The part of the expression of the right corresponding to the
case y, = y, does not exceed XpY. We consider the part cor
responding to a pair of unequal values y, and y, where we as-
sume that y > O for the sake of definiteness. Setting
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xy + k = z (mod p), we reduce this part to the form

ot z L‘—z+k(1—z}—)
XZ y y
p

from which (problem a) we find that it is <X in absolute

value. Therefore S* < XpY + XY?  2pXY.
d, o) We have

p=1 Q=1 Q=1 f(x + z,)(x + 2)
ppg (e

X=0 3,20 3%0 P

For z, = z, summation with respect to x gives p — 1. For
z, # z, summation with respect to x (problem a) gives -1.
Therefore

S=(p-1Q0-0Q0Q -1 =(p-0Q0Q.
B) By the theorem of problem &) we have
T(Qo.u-o.s?\)z <pQ; T< po-k.

y) Setting [Vp 1 = Q, we apply the theorem of problem o).
Assuming there are no quadratic non-residues in the sequence

under consideration, we find that |S_| > Q - 1 for
x=MM+1,...,M+ 20 — 1 and hence

00-1<(p-00,2Q-1<(@Q+ 1P -0,
Q’—SQ‘(O:

which is impossible for @ > 5.
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9, a. If m is representable in the form (1), then the solution
5) z = z, (mod m)

of the congruence x = zy (mod m) is also a solution of the
congruence (2). We will say that our representation is as-
sociated with the solution (5) of the congruence (2).

With each solution (5) of the congruence (2) is associated

not less than one representation (1). Indeed, taking r = Vm ,
we have

Zq P 0

-l——=——+

m Q QVm

;s P, =1,0<0¢< Vm, |0] <1

Therefore z,Q = mP + r, where |r| < Vim . Moreover, it
follows from (2) that |r|’ + Q? = 0(mod m). From this and
from 0 < |r]’ + Q* < 2m, we find

(6) m=|r|*+ Q.
Here (|r|, Q) = 1, since

r* + Q? (2,0 — mP)z,Q ~ rmP + Q?

m m

1=

= P’ (mod Q).

If |7| = r, then the representation (6) is associated with the
solution (5) because r = z,Q (mod m). If |r| = —r, then the
representation m = Q? + || is associated with the solution
(5) because z3Q = zyr (mod m), Q = zo| 7| (mod m).

No more than one representation (1) is associated with each
solution (5). Indeed, if there were two representations
m=x*+y*andm = x} + y} of the number m in the form (1)
associated with a single solution (5), then x = z,y (mod m),
x, = zoy, (mod m) would imply that xy, = x;y (mod m). There-
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fore xy, = x,y, from which it follows that x = x,,y - y,
because (x, y) = (x,, y,) = 1.
b. If m is representable in the form (3), then the solution

(7) z = z4 (mod p)

of the congruence x = zy (mod p) is also a solution of the
congruence (4). We will say that this representation is as-
sociated with the solution (7) of the congruence (4).

Knowing a solution (7) of the congruence (4), there is no
more than one representation (3), Indeed, taking r = Vp ,
we have

z P 0
20 L, s (P, =1,0<Qg Vp, |6] <1
r 0 o i

Therefore z,Q = r (mod p), where |r| < p. Moreover, it fol-
lows from (4) that |r|’ + aQ? = 0 (mod p). From this and
from 0 < Irla + a(}? < (1 + a)p it follows that we must have
|r|* + 20 = p or |r|* + 207 = 2p for @ = 2. In the latter
case, |r| iseven, |r| = 2r,p= Q@ + 2r}. Fora = 3 we
must have |r|’ + 3Q* = p, or |r|’ + 3¢* = 2p, or
lr|* + 3Q?* = 3p. The second case is impossible: modulo 4
the left side is congruent to 0 while the right side is congruent
to 2. In the third case, |r| is a multiple of 3, |r| = 3r,,
p=0Q"+ 3.

Assuming that two representations p = x? + ay? and
p = x1 + ay} of the number p in the form (3) are associated
with a single solution of the congruence (4), we find x = «,,
y = y,. Assuming that these representations are associated
with different solutions of the congruence (4), we find x = zy
(mod p), x, = —zy (mod p) and hence xy, + x,y = 0 (mod p),
which is impossible because

0 < (xy, + x,5) < (& + ¥ )} + 5}) < p.
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¢, &) The terms of the sum S(k) with x = x, and x = —x,
are equal.

B) We have

-1 2,2 2
Ste?) = 3 (”(x L )) - (-—‘—) S,

X=0 p P

y) Setting p — 1 = 2p,, we have

PSOY + pSEWY = 3 e P + 5 St <
f=1

tml

Fowr BRF (2elehyen)

ko) x=1 yeol kel P

For y different from x and p — x, the result of summation with

respect to k is -2 (1) jfory = xandy = p — xitis
p

(p -2 (i) . Therefore
p

1.\ (1
p;(S(r))’ + Px(S(n))i = 4pp,, p = (E-S(r)) + (E-S(n))

10, a. We have
X* - DY*=

= (x, + 71\/0—) (x, 7,\/5)(2‘1 - y,\/-D-)(x, ¥ y,\/ﬁ) = k2,
b, Taking any r, such that r, > 1, we find integers x,, y,

1

such that |y VD - x| < —,0< y < 1y, and multiplying
f

this termwise by y,\/b- + %, < 2y‘\/5 + 1, we find

|x2 - Dy| < 2VD + 1. Takingr, > r, so that
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1
IY;VD - x‘l > —, we find new integers x,, y, such that
T

2
ix: - Dy:l < 2VD 4 1, ete.
It is evident that there exists an integer , not equal to

zero, in the interval 2VD — 1 < k < 2VD + 1 such that
there is an infinite set of pairs x, y with x* — Dy? = k among
the pairs x,, y,; x,, ¥,; .. .; among these pairs there are two
pairs £,, n, and &, 5, such that &, = £, (mod |k|),

N, = 7, (mod | k|). Defining the integers &, 1o by means of
the equation & + q,\/ﬁ = (& + r),\/ﬁ-) (& + n,VD), we

have (problem a)
& - Oph = |kl & = €1 - Dn} = 0(mod k);
No = —fa’h + El’h = 0 (mod 'kl)-

Therefore & = £| k|, No = q'k', where £ and 5 are integers
and €* - Dp* = 1,

c. The numbers x, y defined by the equation (2) satisfy
(problem a) the equation (1).

Assuming that there exist pairs of integers x, y satisfying
equation (1), but different from the pairs determined by the
equation (2), we have

(% + yoVD ) < x + yVD < (xg + yoVD )™

for certain r = 1, 2, .... Dividing this termwise by

(x, + yoVD)*, we find
3) 1< X+ YVD < x4 yVD,

where (problem a) X and Y are integers determined by the
equation

D
X+ YVD = *+yVD

= (x VD) (x - yVD)*
(x, + yoVD )* vy !
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and satisfying the equation

4) X -DY?*= 1.

But from (4) we obtain the inequality 0 < | X| - |Y\/F| <1,

which along with the first inequality of (3) shows that X and
Y are positive. Therefore the second inequality of (3)
contradicts the definition of x, and y,.

11, a, «) We have

IUﬂm I’ - Ua,pva,p = ‘E E‘ (;t.) exp (Z"igu) .

f=) xwi p

For ¢ = 1, summation with respect to x gives p — 1; for

¢
t > 1itgives — (—) + Therefore

p

p—1 ¢
|Ua,p|’=p—l—z (;-) = P, |Ua,p| = \/_!

=y

or

— p=1 p-1 fx 4 ¢ x at
Vool = Uapplayp = T T ( ) (—) exp (2m°—) :
t=0 x=0 p p p

For ¢ = 0 summation with respect to x gives p — 1; for

at

t > 0it gives —exp (217;——) . Therefore
P

p=1 at
‘Uﬂm" =p-1- Z exp (2”"";") = Py IUﬂ,p' = \/;

i=1
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B) The theorem is evident for (a, p) = p. For(a, p) = 1 it
follows from

o (5 3] - ()

b, o) Let r run through the quadratic residues and let » run
through the quadratic non-residues, in a complete system of
residues. We have

a
Sup = 1+ 2 Y exp (2;:5-;'—) .

Subtracting

an

0=14) exp (Znigr—) + ) exp(2ni-—-—)
4 p n

p

from the latter termwise, we obtain the required equation.

B) We have

g M=t m— _a(t? + 2x)
|Sa’m| = ) 2 exp (2m - .

at?
For given ¢, summation with respect to x gives m exp (2::;-———-)
m

or 0 according as 2t is divisible by m or not. For odd m we

have

B |, ( _a'O)
aym| = mexp |2mi = m,
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For even m = 2m, we have
. a*0? .a*mj
IS,,,,,I = m exp |2ni + exp |2m ‘
m

Here the right side is equal to zero for odd m, and equal to
2m for even m,.
y) For any integer b we have

m-1 Ax? + 24bx
2 -
;o exp ( i - )

and choosing b such that 24b = a (mod m}, we again obtain
the result considered in problem 8).
12, a. We have

ISA,m| -

m Z: ®(z) = Z M:)::-l mz-:‘ ¢ (z) exp (2m alx - Z))

g=M aep

The part of the sum on the right corresponding to a = 0 is

equal to ) & (z); the part corresponding to the remaining

values of a is numerically (problem 11, ¢, ch. 1)

m=1 |1 M+Q=-1
<Ay ﬁ exp (Zm ) ‘ <Am(lnm - 8).
as} geM

b, a) This follows from the theorem of problem 11, a, o)
and the theorem of problem a,

B) The inequality of problem «) gives R — N = 8Vp In p.
Moreover it is evident that R + N = Q.

y) It follows from the theorem of problem 11, b, ) that the
conditions of the theorem of problem a are satisfied if we take
m = p, ®(z) = 1, while z runs through the values z = x?*;
z=0,1,..., p — 1. But, among the values of z there is
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one which is congruent modulo p to 0 and two congruent
modulo p with each quadratic residue of a complete residue
system, and hence

7 2G) = 2R, T 2(2) = p,

and we obtain

2R-—-Q—p+6\/; In p.
p

8) This follows from the theorem of problem 11, b, y) and
the theorem of problem a.

¢} It follows from the theorem of problem &) that the condi-
tions of the theorem of problem a are satisfied if we set

m = p, ®(z) = 1, while z runs through the values z = Ax*
x= Mg, My + 1, ..., My + Qo — 1. Therefore

Y e =T, ¥ 2 = Q,,

from which the required formula follows.

c. The part of the sum containing the terms with (g) = 1

P
is equal to p(R* + N?), the remaining part is equal to —2pRN.
Therefore the whole sum is equal to p(R - N).

The part of the sum containing the terms with a = 0 is
equal to 0, The remaining part is numerically smaller than
(problem 11, ¢, ch. )

p=1 [ M+Q=1 ax p=1 | M+ Q=1 —-ac
2ot ) exp 2n£—) 2o 2o exp (2mi ! ‘ <
am | xeM p ae1 | yeM p

< p*(lnp).
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Therefore p(R — N? < p*(lnp)?*, R = N < Vp Inp.

Solutions of the Problems for Chapter Vi

1, a. If g is an odd prime and a® = 1 (mod q), then a be-
longs to one of the exponents § = 1, p modulo q. For§ = 1
we have a = 1 (mod q), for 5 = p we have g — 1 = 2px
where x is an integer,

b. If ¢ is an odd prime and a® + 1 = 0 (mod g), then
a’® = 1 (mod q). Therefore a belongs to one of the exponents
& = 1,2, p, 2p modulo q. The cases 5 = 1, p are impossible.
For § = 2 we have a* = 1 (mod ¢), a + 1 = 0 (mod g). For
8 = 2p we have ¢ — 1 = 2px where x is an integer.

¢. The prime divisors of 2P — 1 are primes of the form
2px + 1. Let p,, p,y ++., p, be any k primes of the form
2px + 1; the number (p,p, ... p,)? ~ 1 has a prime divisor

of the form 2px + 1 which is different from P1s Pas <3 Pye
!

d. If g is a prime and 21" 4 1 = 0(mod q), then 92"
= 1 (mod q). Therefore 2 belongs to the exponent 2°*! module
g, and hence g — 1 = 27*'x where x is an integer.

2, It is evident that a belongs to the exponent n modulo
a" — 1. Therefore n is a divisor of ¢(a” - 1),

3, a. Assume that we arrive at the original sequence after
k operations, [t is evident that the k~th operation is equiva-
lent to the following one: consider the numbers in the sequence

1,2,...,.n-1,n,n,n~1,...,2,1,2, ...
cesgn—=1,n,n,n-1,...,2,1,2,...

in places 1, 1 + 2%, 1 + 2-2%,,... Therefore the number 2
is in the 1 + 2* place. Therefore the condition considered in
the problem is necessary. But it is also sufficient, since it
implies that we have the following congruences modulo 2z — 1:

151,1"‘2*50’1"’2'2&5—1,---
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or
lal,l+2k52,l+2'2k"=‘3, P

b. The solution is analogous to the solution of problem a.
4. The solution of the congruence x> =-1 (mod p) belongs

to an exponent of the form 8—; where 8’ is a divisor of §.

fon

Here &’ is a multiple of d if and only if 2" = 1 (mod p). Cone
sidering the & values of &” and taking f = 1, we find that

&
S* = ). u(d)S,, where S’ is the required number and S, = 7

d\&

5, a. Here (3; example ¢, 45) we must have (2 g 1) =
"+

= —], This condition is satisfied for g = 3,

b, Here we cannot have ( ) =1, g* = 1 (mod

2p + 1
2p + 1). This condition is satisfied for our values of g.

4p+1) =1, g* = 1 (mod

4p + 1). This condition is satisfied for g = 2,

&
2"p + 1
2°p + 1). This condition is satisfied for g = 3.

6, a, o) The theorem is evident if n is a multiple of p — 1.
Assume that n is not divisible by p — 1. If we disregard the
order, the numbers 1, 2, ..., p — 1 are congruent modulo p to
the numbers g, 2g, ..., (p — 1)g, where g is a primitive root
modulo p. Hence

c¢. llere we cannot have (

d. Here we cannot have (

) =1, g = 1(mod

S, = g"S, (mod p), S, = 0 (mod p).
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) We have

- 2 Pt p=t
PZ‘ (x(x + 1)) - pi" x ! (x: + l) F] (mod P)
Xel P xw)

from which (problem o)) we obtain the required result,
b. Forp > 2, we have

p—1

1:2...(p = 1) = gi*** o4p=t 5 g7 = ] (mod p).

7, a. We have glm"‘ﬂI = a (mod p), indy, aindy g, =
= indg a (mod p ~ 1), indy, @ = o indg a (mod p — 1)

b. It follows from indy @ = s (mod n), indy, a = « indg a
(mod p — 1) that indy, @ = as = s, (mod n).

8. Let(a, p — 1) = 1. Determining u by the condition
nu = 1 (mod p - 1) we find the solution x = a* (mod p),

Let n be a prime, p — 1 = n%, where « is a positive

integer and (¢, n) = 1. If the congruence is possible, then
a"" ¢ 2 1 (mod p); if @ > 1, then, noting that x = g"a—l"

(mod p),r = 0,1,,..,n — 1 are just all the solutions of

the congrience x" = 1 (mod p); for some r, = 0,1, ..., n -1
we have

na—:' na—l

a g" '= 1(modp);

if « > 2, then for certain r, = 0,1, ..., n — 1 we have

an"'"tgna'-"'l""a-‘"’ = 1 (mod p),

etc.; finally, for certain ro.y, = 0,1, ..., n — 1 we have

at gﬂtf‘%ﬂ’ P34 s 0 0 'l'l'la'-l t'ﬂ—l

= 1 (mod p).
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Determining 1 and v by the condition tu — nv = ~1, we obtain
n solutions:

a2

. av u!(ftfﬂf:{- cos#n . TN )‘fﬂa—'

= (mod p);

r=0,l,...,n—1-

Let the prime n, divide (n, p — 1), n = n;n,, n, > 1. Cor-
responding to each solution of the congruence y"! = a (mod p)
we obtain a solution of the congruence x"* = y (mod p).

9, a. [n this way we obtain ccyc,...c, = ¢(m) characters,

b, «) We have y(1) = R°,..R} = 1.

B)Y Lety y...,yiiy”,s «vu,y, be the index systems of
the numbers a, and a,; then y” + y*, ..., ¥, + y. isan
index system for the number a,a, (c, 7).

y) For a, = a, (mod m), the indices of the numbers a, and
a, are congruent to one-another nodulo ¢, ..., c, respectively,

¢. This property follows from

m=1 Q=1 C =l
) xla) = ZR”... ZRZ".
aw=0 Y=o Y k=0

d. This property follows from

X(a) - ZR')’ -c-Z Rzk-
R R,

e. Let y(a,) 2 0. Then y(a,) = yla,) (1), Therefore
(1) = 1. Determininga’ by the condition aa’ = 1 (mod m),
we have (a)y(a’) = 1. Therefore ¢i(a) 2 0 for (g, m) = 1.

FFor (a,, m) = 1, we have

s x(a) > x(a,a) x(a,) - xla)
= @) 5 dlaa) yYla) 5 ¢’
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therefore, either Z’ :;:a;
S a

But the first cannot hold for all y ; if it did, then we would
have # = 0, while I/ = ¢(m) since, summing over all char-
acters for given a, we have

= 0, or ¢a,) = yl(a,) forall a,.

Z ¢r(a)

Y(a) {‘P(M), if a=1 (mod m)’

0, otherwise,

f,a) IfR’, ..., R; and R”’, ..., R}’ are values of
R, ..., Ry corresponding to the characters y,(a) and y,(a),
then y,(a)y,(a) is a character corresponding to the values
R’R”, ..., RgR}.

) When R, ..., R, run through all the roots of the cor-
responding equations, then R’R, ..., RgR, run through the
same roots in some order.

y) Determining !” by the condition /I’ = 1 (mod m), we have

v (a) vial?’)
— = = (al’)
=0 " % @ § X

which is equal to ¢(m) or 0, according as a = [ (mod m) or
not.

10, a, &) Defining x* by the congruence xx* = 1 (mod p),
we have

p-1 lind(x + &) - lind x
). exp (Z:n’ ) =

Xe1 n
p=-1 [ind (1 + kx°)
o= 2 ] = -l.
Bt
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3) We have

Sa )2 3 ) exp|2m

x=0 Fy®0 z=)

p=1 Q-1 Q-1 ( dind(x + z,) - lind (x + -’-))

n

For z, = z, summing over x gives p — 1, and for z, unequal
to z, summatijon over x (problem «)) gives —1. Therefore

S=(p-10-00-1=(p-00Q.

y) Let Q_ be the number of integers of the sequence x + z;
z=0,1,...,Q - 1 which are not divisible by p, while T, ,
is the number of integers of this sequence which are in the
s-th set. Finally, let

Unx:“"_" Tnxrs" Unx
’ n + * ;ﬂ ']
We have
1 n=1 Q-1 ( I{ind (x + z) - s)
ﬂ’x= — exp =
n IZ.IQI n
1 n=1 ls
- —2mi — Snx
nglexp( :un) {0y x,
1 n=1 2 n-1\?
U'n,x € "";"(n— I)Z sl,n,x s S < (p - Q0.
n teg

Setting @ = [#Vp 1, and assuming that there are no numbers

Q-1

n
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for x =M, M+ 1,...,M + Q + 1, and hence

o[ i i-on

(aVp - 27 < (aVp - Vp 7,

which is impossible.

b. Let p, be the product of the different prime divisors of
the number p — 1, let @, be the number of integers of the
sequence x + z;z =0,1,...,Q ~ 1 which are not divisible
by p, and let G, be the number of integers of the same
sequence which are primitive roots modulo p. Finally, let

@\ - p-1 1
Pn Z: L‘-—-—- = T, Wy w — +Cx!

p=1
Q= ¥ wk.

Taking (&) = 1 and letting € run through the values
E=indx + 2);2=0,1,..., Q0 — 1, we obtain

S* = ) u(d)Sy. Here S’ is the number of values of & such
d\po

that (¢, p — 1) = 1 and hence S* = G,. Moreover, S, is the
number of values of ¢ which are multiples of d and hence
Sa = T4, (problem a, y) for s = 0), Therefore

1
we = —— + L pdTax= 2 pdUay,
4 d\po d\po

A< 2 D Udyxr @ < 240 - Q)Q.
d\po
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Serting Q = [P 2Vp ] and assuming that there are no primie
Q-1

tive roots in our sequence, we find that Iwgl 2 for

x=M,M+1,...,M+ Q-1 and hence

0 (Q; 1) < 2% — Q)Q,

P2XQ )’

*Vp - 2 P2xvVp -
(P2\/; )’(( p 2\/;

which is impossible,
11, a, a). We have

2 PTIRTH kind ¢ a(t — 1)x
|Ua,p| = Z Z exp | 2mi exp | 2mi——— | =
n

tw] xw) n

p=t kind ¢
=p-1-= 3 exp \2mi = p.

tex n

B) For (a, p) = p the theorem is evident. For (a, p) = 1,
it follows from

Uﬂm =

—kinda\ pm k ind ax ax
= exp |2mi—————| )" exp 2mi———|exp 2mi—| =
h x=1 n p

—kind a
= exp|2ri——| U, .

n

y)} It is evident that 4 and B are integers with |Sr =A*+ B2
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For certain ¢, €, ¢”’ such that |e| = [e’] = || = 1 we

have (problem £8})
1
= — X
t’\/;t\/;

p=1 p=1 p=1 ind 2, + ind z 2 x + 2(x + 1)
—2mi exp | 2m .

T L T o :

ll.l =1 x=d

S

If z, + z is not equal to p, then summing over x gives zero.
Therefore

-]
5§ (_) exp (au'i) eV ISl = b
p

ze1 \ P

b, ) For given z, the congruence x" = z (mod p) is solv-
able only if ind z is divisible by 8, and it then has & solutions.
Therefore, for 8 = 1 we have 5, , = 0, If & > 1, then we have

=1 p=1 k ind z
Sap = 1 + Z ). exp (2:1;' ":3 z)exp (2m'-a——) .

k=0 zwj p

For k = 0, summation with respect to z gives ~1; for & > 0

it gives a quantity whose modulus is equal to Vp . The re-
quired result follows from this.
) Setting

x=u+pvyu=0,.,..,p" ' -lv=0,...,p~1,

we have

ax"

exp (2m‘ - ) = exp(2mia(u"p~® + nu""'p~'v).
p

For (u, p) = 1, summation with respect to v gives zero.
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Therefore

8—1_1

Sa,pe = ). exp(2riap

I"I—Bx;l) = pa—x’ Sa',pﬂ = 0,

y) Let p” be the largest power of p dividing n. We have
s 2 r+ 3, Setting

X =0uUu 4+ p"-‘-‘rv; It = 0, e ey pﬂ-l-f_ l, vﬂlo, -.-,PT+‘—

we have

ax"”

e xp (2:1:' - ) = exp(2mia(u”p~® + nu""'p~""'v)).
p

For (u, p) = 1, summation with respect to v gives zero.
Therefore

ps—l_‘ ' ax;l - ,
sa’pa = Z exp 2mi aen = pn Sa’pﬂ"ﬂ ’ Sa’-pa = 0,
xp=0 p

8) Let m = pit ... P:" be the canonical decomposition of
the number m. Setting

-14 v 1 a a
Ta,m = m Sa,m;v= :’mmpliﬂlla,.. =pkk‘1’k

and defining a,, ..., ax by the condition a = a M, + ...
.v. + ayM, (mod m), we have (problem 12, d, ch. III)

T,

For s = 1 we have

L
°

ITa,pﬂl < p'”"'n\/p— < np- .
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Forl < s € n, (n, p) = 1 we have
| Ta,pel = potovp < 1.
Forl < s < n,(n, p) = p we have

IT,,,,.,l Cp e <pgn

The case s > n reduces to the case s < n since

Ta’pa = p-""avp"-‘sa’pa-n = Ta’pu-n. Therefore
'Ta,ml € C = nn'-i-n’

from which we obtain the required inequality.
12, a. This follows from the theorem of problem 11, a, «)
and the theorem of problem 12, a, ch, Vv,

b, We have
M+ Q-1 n—1 k(ind x -
Tn= 3" ) exp (2m' =z 8)>
xeoM k=0 n

For k = 0, summing with respect to x we obtain Q; for

k > 0, we obtain a number whose modulus is <Vp In p. And
this implies the required formula.

c. Taking f(x) = 1 and letting x run through the numbers
x=indM,indM + 1), ...,ind i + Q - 1), we find (prob-

lem 17,a,ch, II) S’ = L p(d)Sy. Here S’ is the number of
d\p=1

x such that (x, p = 1) = 1; therefore S* = T. Moreover, Sq4 is

the number of values of x which are multiples of d, i.e. the

number of residues of power d in the sequence M, ¥ + 1, ...,

M+ Q -1, Then

H= 2, u(n’)(g + 04Vp lnp); e, <1, 6, = 0.

d\p-1 d
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d. It follows from the theorem of problem a that the condi-
tions of problem 12, a, ch. V are satisfied, if we set m = p— 1
P(z) = 1, while we let z run through the values z = ind x;
x=MM+1,...,M+ Q- 1. We then find (with Q, in

place of Q)

Z’(D(z)=‘]r Z{D(Z) =Q:] = p?‘l Q+ 0\/; (lll P)"

13, Assume that there are no non-residues not exceeding k.
The number of n-th power non-residues among the numbers

1,2,..., Q where
Q= Vp (p)

can be estimated by two methods: starting from the formula of
problem 12, b and starting from the fact that the non-residues
can only be numbers divisible by primes exceeding A, We find

1
1 Elnp+2lnlnp 1
n
" —Inp+2hnlnp P
c
Inl
l+4»“I“p 1
0<In il + 0 .
Inlnp Inp
1 + 2¢
Inp

The impossibility of the latter inequality for all sufficiently
large p proves the theorem,
14, a. We have

m=1 m-=i m=1

ISP < x5 55 o6 p) exp (zn——"l——’-”-) |

X®=0 y =0 yeo m
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For given y, and y summation with respect to x gives
Xm|ply}| or zero according as y, = y or not. Therefore

|SI" < XYm, |S| < VX¥m .

au"y"
i)
m

where « and v run through reduced residue systems modulo m.
Hence

b, o) We have

S =

qo(m)

S = ——-—El nE v(x)ply)exp (2m——-) ;

plm) =% y=0
vig) = 3 xw), ply) = ) y(v).
ufleax(mod m) vilmy{mod m)

But we have (problem 11, ch, 1V)

m=-1

m=-1 2
T v < Kotm), 3 Lot [ < K gm),
y=0

Therefore (problem a)

|S| -;(l;l-)—\/ch(m)Ktp(m)m = KVm.

B) Let m = 2%t ... p2* be the canonical decomposition

of the number m. The congruence x" = 1 (mod m) is equiva-
lent to the system

= 1 (mod 29, x" = 1 (mod p1), x" = 1 (mod p7).
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Let y(x) and y,(x) be the indices of the number x modulo 2
(g, $6). The congruence x" = 1 (mod 2%) is equivalent to the
system ny(x) = 0 (mod c), ny,(x) = 0 (mod c,). The firat
congruence of this system has at most 2 solutions, while the
second has at most n solutions. Therefore the congruence
x" = 1 (mod 2%) has at most 2n solutions. By b, §35, each of
the congruences x" = 1 (mod p;), ..., " = 1 (mod p*) have
no more than n solutions. Therefore
Ilnn

T Inn
K < 2% = 2(2%+1) " 2r(m))77; K = O (m©).

15, a. We have

-1 p—1 a(e” — 1)x™ + b(e - 1)x
IS]’ - exp (Zm' ) .
355 .

te] xe}

If¢" = 1 (mod p), then summation with respect to x gives

p— lfor ¢t = 1 (mod p) and -1 in the remaining cases.
Otherwise, taking z(¢ — 1)~ in place of x, we can represent
the part of the double sum corresponding to given ¢ in the form

E exp (%;-li) exp (2ﬂi ale” - DG - 1 z")
P

F 23 p
and hence
p=1 p=1
ISI: gp-1+ ) ) viwp(v)exp (2m' auu) ,
umi vey p

where v(1) is equal to the number of solutions of the con-
gruence (¢" — 1){¢ — 1)™" = u (mod p), while |p(v)| does
not exceed the number of solutions of the congruence

z" = v (mod p). Therefore 1{u) < 2n,, |p(W)| < n.,

p=1 2 p=1 2
2 |vw)|” € (p - 1)2a,, ) e < (p = Dn,.

ye] ve)
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Applying the theorem of problem 14, a, we find

1S|"<p-1+ Vip - D2n,ip - Dap < 2np°.

b, o) This follows from problem a and the theorem of prob-
lem 12, a, ch, V,

B) It follows from the theorem of problem «) that the con-
ditions of the theorem of problem 12, a, ch. V are satisfied, if
we set m = p, ®(z) = 1, where we let z run through the values

z=Ax"x = Mg, My + 1, ..., My + Qo — 1. Then

T ) =T, 0@ = Q,

from which we obtain the required formula.
c, a) Lety = day,(mod p). We have (problem 11, a, ch, V)

LA PZ-E (4a’x’ + 4abx + 4dac ) exp (%4ay,x _
P Zwd P p

1 p= ( z) Pﬁ ( _z(4a2? + 4abx + dac + 4ay,xz™"
exp

L
v p

1,p z=1

™

= Zexp

b (2ni-(b’ — dac)z — By, — y,'z™ ) .

The latter sum (problem a) is numerically < Y p*.

B) This follows from the theorem of problem o) and the
theorem of problem 12, a, ch, V.
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ANSWERS FOR THE NUMERICAL

EXERCISES
Answers for chapter I.

1, a, 17,

b. 23,
2 ) 5 15 ) 19 )

a am e = .
v el b= T Bl e = Tt T

1002 0

80
by} 8= =5 B & = o+ e 1000
3. We obtain 22 fractions.
5, a. 2¢-3%-10°.
b, 22 +8 5711?1723 - 87.

Answers for chapter II,

1, a. 1312.
b, 21% .3% .53 . A% . 1]%2.13% . 177 - 19° - 23% - 29* x
x 314+37 +41°+43*+47*+53? - 59" +61*+ 67 * 71 x
x 73+-79-83-89-97-101 103 - 107 - 109 - 113,
2, a, r(2800) = 30; S(2800) = 7688.
b. r(232 848) = 120; S(232 848) = 848 160,
3. The sum of all the values is equal to 1,
4. «) 1152; B) 466 400,
5. The sum of all the values is equal to 774.
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Answers for chapter Ill,

1, a, 70.
b. It is divisible,

2, a. 3*+5%+11% - 2999,
b.7-13°37+-73°101-137+17-19 - 257.

Answers for chapter IV,

1, a. x = 81 (mod 337).
b. x = 200; 751; 1302; 1853; 2404 (mod 2755).
2, b. x = 1630 (mod 2413).
3. x = 94 + 111¢; y = 39 + 47¢, where ¢ is any integer.
4, a. x = 170b, + 52b, (mod 221); x = 131 (mod 221);
x = 110 (mod 221); x = 89 (mod 221).
b, x = 11 1515, + 11 800, + 16 875, (mod 39 825).
5, a. x = 91 (mod 120).
b. x = 8479 (mod 15 015).
6. x = 100 (mod 143); y = 111 (mod 143).
7, a. 32" + 22 + 322 + 2x = 0 (mod 5).

a
b. x* + 52* + 3x* + 3x + 2 = 0 (mod 7).

8. x* + 4x° + 22x* + 76x* + 702* + 52x + 39 = 0 (mod
101).

9, a. x = 16 (mod 27).

b. x = 22; 53 (mod 64).
10, a. x = 113 (mod 125).
b. x = 43, 123, 168, 248, 293, 373, 418, 498, 543, 623

(mod 625).

11, a. x = 2,5, 11, 17, 20, 26 (mod 30).
b. x = 76, 22, 176, 122 (mod 225).

Answers for chapter V.

1,a. 1,2, 3, 4, 6, 8,9, 12, 13, 16, 18,
b. 2,5, 6, 8, 13, 14, 15, '17, 18, 19, 20, 22, 23, 24, 29,
31, 32, 35.
2, a. o) 0; B) 2.
b. «) 0; B) 2.
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3, a. «) 0; B) 22.
b. ) 0; B) 2.
4,8, a) x = 9(mod 19); B) x = 11 (mod 29); y) x = 14
(mod 97).
b. «) x = 66 (mod 311); B8) x = 130 (mod 277);
y) x = 94 (mod 353).
5, & x = 72 (mod 125).
b. x = 127 (mod 243).
6, a. x = 13, 19, 45, 51 (mod 64).
b. x = 41, 87, 169, 215 (mod 256).

Answers for chapter VI,

1, a. 6.
b. 18.
2,a, 3,3,3.
b. 6, 6, 1687,
c. «)3; 8)7.
5,a. a)0; B) 1; y) 3.
b. ) 0; 8) 1; y) 10.
6, a. a) x = 40; 27 (mod 67), B) x = 33 (mod 67),
y) x = 8, 36, 28, 59, 31, 39 (mod 67).

b. «) x = 17 (med 73); B) x = 50, 12, 35, 23, 61, 38
(mod 73), y) x = 3, 24, 46 (mod 73).
7, a. «) 0; B) 4.
b. «) 0; 8) 7.
8, a. ) x = 54 (mod 101). B) x = 53, 86, 90, 66, 8
(mod 101),
b, x = 59, 11, 39 (mod 109),
9,a a)l,4,5,6,7,9,11, 16, 17; 8) 1, 7, 8, 11, 12, 18,
b. «) 1, 6, 8, 10, 11, 14, 23, 26, 27, 29, 31, 36; 8) 1, 7,
9,10, 12, 16, 26, 33, 34.
10, a. «) 7, 37; B) 3, 5, 12, 18, 19, 20, 26, 28, 29, 30,
33, 34.
b. «) 3, 27, 41, 52; B) 2, 6, 7, 10, 17, 18, 23, 26, 30,
31, 35, 43, 44, 51, 54, 55, 59.
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TABLES OF INDICES

The Prime 3
N1O 3|4|51|6|778]|9 Il 0 51617
0 0 o1l

The Prime S
NllO 3141|516|7|81|9 Il o Sle|7
0 0 3|2 oli1

The Prime 7
Nllo 3l4 67189 |I]|o0 5|67
0 0 1141513 onl 5

The Prime 11
NIlOo] 1 314]516({7] 819 o]l 5i6|7
0 0 8|24} 9|7 3|6] DPII1]2 10]917
111 5 1

The Prime 13
N 0 3|4|5|6]| 7]|819 I/ 0 s|6]|7
0 412]19|5|11{3]|8 0 1 6|12 |11
1|10 1}|10
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The Prime 17

345678971012345678

0 111215 (15|11 |10]2 Ooft 11319]|10113|51{15{11|16
1 419l6| 8 111 8]714112| 2]l6
The Prime 19

The Prime 23
N 3l a1 sl el 7] 8] o] 7] o| 1] 2| 3] 4| sl¢| 7| 8
0 16| 4| 1|18l19| 6f10] ol 1| 5| 2\10] 4|20l8]17]16
1 14}21 17} 8| 7i2his{ (1|l 9|22 hsle1|i3|19l3f1s! 6
2 2 || 12|14

The Prime 29

o 3l s| sl 6| 7] 8] 9] {1l of 1le] 3] 4| s| 6] 7| 8

0 1] sl 2[22] sliz| alio]| (o]l 1| 2[4] 8l1s] 3| 6l12]24
1 2[18|13l27| sl21li1] o] {1l| ol18]|7|14|2827]25]21]13
2 26 {20 8{16[19[15 14 2{|2317|s[10/20[11]22 15

The Prime 31
N 1] 2] 3| 4| sl 6| 7| alo] /1] o] 1] 2f 3| 4} s| 6] 7
0 oleal 1118[20l2sl2sl12l2] {oll 1] 3| of27[10l26|16117]20
1]1a|23[1ol11]22[21] 6| 7|26|s| [1|[25113] 8|24|10]30]28 22| 4
2|l sleol17|27/13|10] 5| 3l16lo| |2]| shslisinl 2| ehsles} 7
3
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The Prime 37

Nl o 1] 2[ 3] 4] 5| 6| 7| 8| o] |7]] of 1| 2[ 3| 4] 5] 6] 7| 8] o

Ot O |

1} 2| 4| 8|16|32{27{17134|31"
25113|26|15130]23| 9[1836]35
33|29|21| S{10|20] 3| 6(12|24
11§22} 7114|28(19

24130)28]11|33}13| 4| 7|17|35
25|22§31{15]29]10|12| 6|34|21

0] 1l|26| 2§23|27|32] 3|16
14| 9| 5|20| 8{19]|18

The Prime 41
N1 O| 1| 2| 3] 4] S| 6| 7] 8t 9|/l O] 1] 2| 3| 4] 5| 6| 7| 8| 9
0 0]26|15]12122] 1}39]38|30 | [0}]| 1| 6/36]11|25]27|39|29]10|19
1| 8] 3|27|31|25|37|24|33|16]| 9| |1 ||32}{28B| 4}24|21| 3|18|26|33|34
21|34|14|29|36|13| 4|17| S|11]| 7| |2]|40]35| 5}30|16|14] 2|12|31|22
3||123|28|10418|19]21| 2|32|35]| 6 9[13|37117/20|38[23 15| 8| 7
41|20

The Prime 43
Nl o] 1] 2| 3| 4] S| 6| 7| 8| 9| |/Z|]| O] 1| 2] 3| 4] 5| 6| 7| 8] 9
0 0127] 1|12125|28|35|39] 2| Pb|i 1| 3} 9|27|38{28]41|37]25|32
1]| 10|30]13|32|20126|24]|38]29{19 | 11|| 10|30] 4]|12]|36]|22]23|26{35|19
21| 37|136|15|16140} 8|17] 3| 5141 | |2]] 14|42]40|34]16] 5|15] 2| 6|18
3|{11{34] 9|31|23|18|14] 7] 4|33 | BI| 11|33 {1313931] 7i21]|20|17] 8
411 22| 6|21 41| 24]29
|1

The Prime 47
NIl O 11 2| 3] 4| 5] o} 7|1 8| 9| |/|] O 1} 2| 3| 4| 5| 6] 7| 8| ©
0 0]18|20|36| 1/38|32{ 8|40 ] [Of| 1| 5125|31]|14|23|21|11]| 8|40
11119] 7]10|11] 4]|21|26]16{12|45| (1|} 12113|18|43]27]|41}{17]38] 2|10
21137] 6]25] 5|28] 2|29]|14122|35| 2]} 3]15|28|46]|42122116]|33 12426
31139| 3|44]|27|34(33|30]|42(17|31| 13]|36{39| 7135|34]29| 4|20] 6}30
411 9{15|24|13|43141| 23 4|1 9145137144|32]19
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The Prime 53

N[ of 1] 2| 3[4 s[ 6| 7| 8 o|[7]| o] 1| 2] 3| 4] 5| 6] 7
0 ol 1)17]| 2la7|18l14] 3l3s | bl 1| 2| 4| shels2fii]22
1|l48| s|19|24|15{12| 4{10l35|37 | 1| 17|34 |15]30| 7]14]28] 3
2|(49|31| 7|39|20l42|25l51|1646 | |2]| 24]48|s3[33 |13 [26]52|51
3||13laa[ s|23|11| 9|3sl30l3sls1 | [3][37]21ls2|31] o[18l36l19
a|[solssi32|22| s8l29lsolsal21|28 | s}l s6|30|25]50|47 (51 29! 5
s||43|27]26 I5 ]| 0}27
The Prime 59
N[ ol 1f 2| 3| 4| sl 6l 7| 8l ol [rll of 1| 2| 3] 4| 5| 6| 7
0 ol 1lsol 2| slsi|18| 3la2|lol! 1| 2| 4| sli6la2| s|10
1| 7l2s|s2|45|19]56{ 4|40[43|38 | |1 ||21]s2|25]50|41]23 |46 |33
2|l 8l10|26f15|53[12186134| 20128 | |2 ||28]56]53 47|35 |11 (22]44
3| s7[49| sl17}41]24 ls4|sslaols7 | I3 ||s7Issis1]a3)27]54 l49]30
sll ol1s|11l33l27|48l16|23|54]36 | I3 |[17134] 9|18]36!13]26(52
s|l 13|32]47{22|35|31 |21]30|29 3| 6l12[24s8137 |15 |30
The Prime 61

Nlollalslalslel 7|8lollill of 1] 2]3lals!efz
0 ol 1] sl 2|22| 7[40| 3|12 1| 2| 4| shela2] 3{ 6
1 f23[15| 8lsolsolesl 4|a7|13]26 | [1]]48[35] o|18]3el11}22]44
2 §24ls5 l16l57] 9lsala1|18|51(35 | |2]| 47133} s|10|20]40]|19|38
3 N20ls9| s|21|48]11|14]39]27|46 | I3]| 60[s0|57|53 45| 2958|855
4 N2s|s4|56/43[17[34 |58 20| 10|38 | [4]| 13| 26{52|43|25]50[30|17
s N4sls342|a3|19|37]52]32|36|31 | |s|| 14| 28]56]51 |41} 2114223
6 130

The Prime 67

0123456|789 ol 1| 2| 3| 4| 5| 6l 7

o| 1]as] 2|1slsot23| al12
16|s9[41/19]24 (54| 4l64|13|10
17|62(60|28l42(30|20|51|25]44
s5(47] s[32]es|3s|1a]22|11(s8
18[53|63| 9|61[27120]50]43l46
31[37|21ls7|s2| 8|26|49|45|36
s¢| 7|483s| 6|34(33

1| 2| 4| 8|16|32|64l61
19|38] 9|18/36| 5{10i20
26/52(37] 7|14|2856|45
25|50(33 |66 |65|631591{51
6112|2448 [29|58(49}31
47/27|54|41]15/|30{60|53
22|44 |21|42(17|34

AN W~ | 2
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The Prime 71

NIl o] 1| 2| 3| 4l s| 6| 7| 8| o |{s|] of 1] 2| 3! 4] 5| 6| 7| 8 o
0 ol sl2sli2l2sla2| 1l18s2 | lofl 1| 7}solsolssls1]| 2[1a{27}s7
1/{34(31]3839| 7|s4l24 laolsslie | 1]l 45|31} 4|28|s4|23}19l62| 856
2|[40]27|37|15 {44 |sslas | 8|13 les | [2]|37|ss]38)s3|18l41| 3|21] 5|35
3[|60|11|30|571s5 |20]64 I20|22]6s | I3|132]|11| 6|22]10|70|68l22]12]13
a|\46|25|33l48ls3|10|211 olso| 2 | ls]]20l60|57|aa]24|26|40]67 |33]17
slle2| s|s1|23]14]s0|191a3] 4] 3 | [s||asls2] 9|63|15/34 25 |33 [18]53]
6 g669175336676347614l 6|/ 30]68|s0|66|36l39]60 65 2961
71135
The Prime 73
Ml ol 1| 2| 3l 4] sl 6|l 71 8] o||/l] o] 1| 2| 3] 4] 5| 6| 7| 8] 9
0 of 8 sts| 1f1sjastaafrz ffolf 1] sasis2lavsol 3f1sf 2/10
1| 9lssl22lsols1]| 7]32[21|20{62 | 11]| 50]31| 9l45| 6|30] 4|20|27l62
2l| 17]30l63 46 ]30| 2l67|18l49|35 | I2|| 18]17{12[60 840?4513634
3|( 15|11(40 (61|20 [34(28(64(70]65 | (3] 24(47|16| 7[3s|20[72]e8|4s|21
|| 25| 4]a7/s1{71 13]s4(31(38fes | ls||32{14 [70]s8(71(63 [23(42|64(28
s|l 10|27 3l53l26ls56(57168l33| 5 | 15| 67la3l60l53l46/11 |55]56|61|13
6|l 23|58|10l45]s860l69150]37[52 | l6l| 65|33 [19|22|37|39]49]26|57]66
7142|4436 71| 38[44
The Prime 79

Il ol 1l 2l 3l sl s] el 2l 8l o| (il of 1| 2] 3] | s| 6| 7l & o
0 ol 4] 1 sle2l slsaliz| 2| oll 1] 3| ol27| 2| &]18}s4] 4|12
1|lssl6a| olasls7lealisl21] elaz | 1|l 3sl2o| 8|24 [72|58]16]48|65|37
2||70l54 [72l26|13|26/38! 3l61[11 | |2]l32{17151|74 l6a|34|23|69]49]s8
3|l 6756 I20l69(25|37]|10] 1013635 | 13]| s6l59] 19|57 [13]30!38 |35 |26]|78
4||74|75Is58l49]76|6430l59|17]28 | 1a|] 76|70|52|77|73|61)25|75|67]43
5||soj22s2|77| 7|s2|es[as[1s[31 | [s[sofz1fss| 7[21[e3[31]1sf42fs7
6|l 71]45 [60|55|24/18}73 [a8|20(27 | [6]| 62|28l 5|15 |45|56|10[30|11{33
7(1a1s1]14|44|23{s7|s0[a3[30| | |7]| 20(60|22|66)40]41}44 |53 |
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The Prime 83

gl o

N ol 1] 2| 3| 4 sl ¢l 7 1012345678§|
0 ol 172] 2|27173| 8l sle2 |Toll 1| 2| &| s|i6]azleslss| 72
1|[28l24 74| 77| 917 alsele3la7 || 1]] 28]56|20|s8|33|66|49[15]30
2||20t80 |25| 60l 75154 [78|5 2| 10|12 || 2l[ 37|74 65 [47] 11} 22|44] 5|10|2
all18(as| sl1sls7|3s 64| 20|48|67 |3} 40|80{77|71]50{35|70|57|31]6
a||30lsols1]|71]26| 7l61|23| 76|16 | |4 || 41|82l81|79]|75|67|51 10|38{7
s||sslas|7ols0l53]51111[37] 13|34 ||s || 6055|2715 ]25|50|17|3468 |53
6|/ 19l66|39|70| sl22|15|45|58|s0 ||6l| 23|46| o|18|36|72|61|39]78l7
7|1 36|33 |65|69|21|44 |40|32| 68|43 |[7]| 63|a3] 3| 6|12]24]48|13| 2615
8l|31]s2]41 gl 21/42

The Prime 89
Nl ol 1| 2| 3] 4| sl 6| 7] 8l o [fs] ol 1] 2] 3] 4l s| 6| 7| g o
0 olis| 1]32|70]17181]48] 2 llo] 1| 3| 9l27|e1|es|17|s1l6s]14
1| 86 I8s |33l 23| o|71{64| 6l1slas |[1| s2|37|22]66|20l60| 2| 68|54
2|l 14|82]12l57]49s2139| 3|25ls0 |l12| 73l41]34]13[3028]84]74 ls4]43
3|| 87/31|soles|22]63l34 115124 |}31 sol31| 4[12|36]10]57]82 68|26
a|| 30|21|10|29| 28| 72|73 Is4|65|74 |a| 78|56|79]50|a8|a6|80]62| 8|24
s|| sl 7|ss|78|10} 6641 36| 75143 {|5] 72|38|25|751a7l52| 67| 236929
oll 15|69|47|83| 8| s|13[s6l38lss |l6] 87(s3l71l35| 1648} 55l 76]50/61
71l 79{s2|s0|20(27|53l67|77]40[s2 |}7| s|15|45s6|4olssles|77|53|70
8f| 46| 4[37[61|26|7645]60[44| " |l8| 32| 7|21]63[11{33]10]30

The Prime 97
Ivll of 1| 2| 3| 4| s| 6] 7l 8| o l[/]| of 1] 2| 3] 4| s 6| 7| 8] @
0 o[3s|70lss| 1! 8ls1]| slss |[o]l 1 5|2s|2s]asl21] slso| 630
1{{3s| 6|42|2s|65|71|s0|80|78]81 [|1l 53|71|64|20]48]46|36|a3]|27(38
2[l 0| s|2al77]7¢| 2ls9|18| 3|13 ||2|| 93l77l04 [82l22|13165|34|73}74
3|l ols6|7s|60127]32]16|01|10]95 |3l 70| 7]35|78| 2|10]50|56|86|42
a|| 7|8s|30| 4|s8las|15|84]14]62 || 4|l 16|80|1260| ol45]31|58!96|02
s|[ 3663[93| 10[5287|37|55]47[67 Il s || 72|69]54|76{80|57|91]67[44 26
6|| 43|64|80|75|12]26[04|57|61[51 1|6|| 33|68la9|s1l61|14|70|59] 4|20
7|| 66|11|50| 28} 2072|531 21|33[30 ||7|| 3| 15|75]84|32]63)24]23|18]00
| 41188{23| 17|73|00f38(83lo2|s4 ||8(l 62|19]0s|87|47[4111(s5(81|17
9|| 79|56|49|20|22|82|48 o|| 85| 37!88|s2| 66| 30
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Table of primes < 4000 and their smallest primitive roots.

p lall 2 lell 2 {gll 2 lelt 2 lell 2 {sll ¢ |&
a2l 179 | 2l 410 | 2|l 661 | 2l o047 | 2ll 1220 | 2l 1523 | 2
3|2l 181 | 2l 421 ] 2{ 673 | s|| o33 | 3)| 1231 | afl1s31| 2
stalt 100 luofl 431 | 7Yl 677 | 2l o967 | sll 1237 | 2l 15431 5
7]3|| 103 | sl 433 | sl 683 | sl o71| 6]l 1249 | 7| 1540 | 2
12l 197 | 2ll 430 |asl|{ 691 { 3f] 977 3ll 1250 | 2| 1553 | 3
1302 100 [ afl sa3 | 2|l 701 | 2l o983 | sl 1277 | 2|l 1550 |10
17 )3l 211 | 2| 449 | 3]l 700 | 2| o901 | 6|l 1279 | 3|l 1567 | 3
19 2l 223 | all 457 (13ll 710 (12l o997 | 7|l 1283 | 2l 1571 | 2
23 | sll 227 | 2| 461 ] 2| 727 | s|| 1000 |11] 1280 | 6}] 1579 ] 3
20l 2|l 220 | 6ll 463 | 3ll 733 | 6ll 1013 | 3] 1201 { 2[| 1583 5
31| 3]l 233 | al| 467 | 2l 739 | 3|l 1019 | 2l 1207 haof} 1507 [ 11
37| 2l 239 | 7|l 479 J13|| 743 | s|| 1021 |10} 1301 | 2/| 1600 | 3
a1)6ll 261 | 7|l 487 | 2l 751 ] 3|| 1 031 | 14| 1303 | 6| 1607 | 5
a3|3ff 251 | 6f] 491 | 2|l 757 | 2fl 1033 | S| 1307 | 2| 1600] 7
47| sl 257 | all 499 | 7l 761 | 6lf 1039 | 3f| 1319 |13l 1613 ] 3
salzfl 263 | sil s03 | slf 760 [11]] 1049 | 3] 1321 13l 1620 2
solafl 260 | 2|l soo | 2l 773 | 2l 1051 7| 1327 | s}l 1621 | 2
61| 2|l 271 | 6|| s21 | 2| 787 | 2|l 1061 | 2| 1361 | 3] 1627 | 3
67)2ll 277 | sll s2al 2t 797 | 2ll 1063 | 3]} 1367 | s}l 1637 | 2
71| 7|| 281 | 3| 541 | 2[f 809 | 3f| 1069 | 6ff 1373 | 2[| 1657 |11
723alsll 283 | 3|l sa7 | 2/l 811 | 3|l 1087 3|l 1381 | 2]l 1663 | 3
200 all 203 | 2l ss7{ 2l a21 | 2|l 1001} 2l 1399 |13l 1667 | 2
83| 2|l 307 | sl sea | 2| 823 | 3|l 1003 | s!i| 1400 | 3|| 1669 | 2
8o all 311 |17ll seo | all s27 | 2/l 1007 3ll 1423 | 3|l 1603} 2
o7 sl 313 woff 571 | alls20 | 2l 1103 ] sl 1427 | 2l 1697 | 3
1012l 317 | 2|l 577 | sll sao Inaff 1100] 2| 1420 | 6| 1699 | 3
103! sl 331 | 3|l s87 | 2l 8sa | 2ll 1117 2l 1433 { 3ll 1700 | 3
107 2|l 337 |ro]| sea | 3l 857 | all 1123 2| 1430 ] 7| 1721 ] 3
100] 6lf 347 | 2l 5001 7/l ss9 ] 2ff va1ze |22l 1447 | 3ll 1723 | 3
13| 3fl 349 | 2ff son | 7fl s63 | sif 115117 1451 | 2ff 1733 | 2
127{ 3ll 353 | 3ll s07{ 3l 877 | 2ll 1153 sl 1453 | 2ll 1742 | 2
11| 2ff 350 | 7ll 613 2Jl 881 | all 1163 | sl 1459 | sl 1747 | 2
137] 3ll 367 | 6ll 617 3l 883 { 2ll 1171 2lf 1472 | 6l 1 753 | 7
130 2|l 373 | 2ll 619 2l 887 | sl 1181 7| 1481 | 3ff 1759 ] 6
190) 2l 379 { 2l| 631) 3]l 07| 2|l 1187 2| 1483 | 2|l 1777 | s
151| o 383 | s|| 651 3f] o2 17r 1193 3“ 1487 | s)l 1783 |10
157] sl| 3so | 2ll 643 11l o10 | 7| 1200 | 11| 1489 {14l 1787 | 2
163| 2|| 397 | sl 647 | sl o20 | 3|l 1213] 2|l 1493 ) 2/l 1780 | 6
167 sll 401 | 3| 6s3| 2ff 937 | sll 1217 3|l 1499 2|l 18020 {12
173 2|l 400 |21f| 6s0| 2ll 931 | 2|l 1223] sl 1snalnafl 1811 6
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{ continued)

p (sfl o le|| » ||| » |&| » sl o &)l » |s
1823 | s|| 2120 | sl 2417 3|| 2729 3|[3 049|113 373 | 5|3 601 ] 2
1831 3| 2131 2#2423 s|| 2 731 | 3|} 3 061 6'3389 3|[3697 | 5
1847 | s|| 2137 |10f] 2437 2| 2741 | 2| 3 067 | 2[y3 301 | afl3 701 2
1861 | 2fl 2 141 | 2f| 2 441 ] 6}f 2 749 s+ao79 6||3 407 | s||a 700 | 2
1867 | 2|| 2143 | 3|| 2447 s|[2763 ] 3|3 083 | 2|3 13| 2|[3 719 7
1871 |14f[ 2153 3”2459 2l 2767 | 3||3 080 | af{3 433 | s|[3727]| 3
1873 {10)| 2 161 |23f] 2 a67| 2f| 2 777 | 3|[3 100 | 6f|3 6a0 | 3ff3733 | 2
1877 | 2|) 2179 | 7|| 2473 s|j2789| 2|{3 119 7|3 457 | 7||3 739 7
1879 | 6|| 2203 | s|| 2477] 2|| 2791 6|3 121 ] 7[|3 461 | 2|3 761 | 3
1889 | 3l| 2207 sl| 2503 3|| 2797 | 23137 | 3f|3 463 | 3} 3767 5
1901 | 2| 2 213 | 2ff 2521 |17{{ 2 801 | 3[[3 163 | 3|3 467 [ 2f[ 3760 | 7
1907 | 2f| 2221 2|| 2531] 2|| 2803 | 2}|3 167 | 5|| 3 469 | 2f| 3 779] 2
1013 | a|| 2237 2|| 2539 2f|2819] 2}|3 169 7|3 491 ] 2| 3 793] 5
1931 | 2l 2230 3|l 2543 | 5| 2833 53181} 7[i3 499 2ll3707] 2
1033 | 5[ 2243 | 2| 2549] 2|| 2837 2|/ 3187 | 2|{3511 ] 7||3803] 2
1949 | 2|l 2251 7| 2551] el 2843 2ff 31010 h2f|3s27] 2f| 3821} 3
1951 | 3| 2267 2f| 2557| 2||2851| 2|3 203 | 2f{3 s27 | s[|3823| 3
1073 | 2| 2269 2|| 2579| 2|[2857 [11]|3 200 | 3[ta 520 17|/ 3 833 | 3
1979 | 2|| 2273 3] 2501 7|/ 2861 2}{3 217 | 5||3533 | 2f| 3847 5
1987 | 2|\ 2281 | 7| 2593| 7|| 2879 7|| 3 221 |10|| 3 539 | 2f 3851 2
1993 { s|| 2287 19| 2609 | 3||2887( s|[3229] 6|3 s41| 7|[3853] 2
1907 | 2| 2293 | 2ff 2617 5|/ 2897 3|[3 251 | 6)|3 547 | 2f 3863 ] 5
1999 | 3|| 2207 s|| 2621 | 2|/ 2903 | s|[3 253 | 2[ 3557 2[| 3877} 2
2003 [ sl 2309 2| 2633 | 3|t 2909 2|3 257 | 3|t 3 559 3| 3 88113
2011 | 3lf 2311 3)| 2647 3|{2917] 5]j3 250 ] 3f|as71| 2|3 880 |02
2017 | s|f 2333 | 2| 2657 | 3l 2022 sf{a 27 [ afls se1] 2 3907] 2
2027 | 2|| 2339] 2|| 2659 | 2| 2030 2|3 209} 2|3 583] 3| 3911]13
2029 | 2f| 2341 7|| 2663 | 5]|2 953 |13)| 3301 | 6] 3 593| 3l 3017 2
2039 | 7|| 2347 af| 2671 | 2|[2957| 2[| 3307 | 2|l 3607 sl|3o19] 3
2053 | 2l 2351 |1aff 2677 | 2[|2963] 2fl 3313 |10fj 3613) 2f| 3023 ] 2
2063 | s|[ 2357 | ol 2 esa 2r2959 allaane| sl{3617| 3l|3929| 3
2069 | 2|l 2371| 2f| 2687 | 5] 2971 |10]| 3 323 | 2j|3 623] s|[3931] 2
2081 | 3|| 2377 si| 2689 |10l 2 999 | 17| 3320 ] 3|3 631 |21} 3043 ] 3
2083 | 2|[ 2381} 3ff 2 693 2“3001 14|/ 3331 | 3|3 637| 2| 3947 2
2087 | s|f 2383 s} 2699 | 2fl3 011 ) 2]l3 343 ] slia 643 2[[3 967 6
2089 | 7{| 2389 2l 2707 | 2|[3 010 2|3 347 2|3 659] 2[|3 080 2
2099 | 2l 2393| af| 2711 | 7|[3 023 ] s||3 359 [11]f3 671]23
2111 | 7|| 2399 |n1ff 2713 | 8] 3 037 | 2[| 3 361 |22}|3 673 5
2113 | sl 2411 | 6ff 2719 | 3|[3 041 | 3f|3371] 23677 2
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